Titel
Isotope analysis in the transmission electron microscope
Autor*in
... show all
Abstract
The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12C or 13C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.
Stichwort
Atomistic modelsGrapheneMass spectrometryTransmission electron microscopy
Objekt-Typ
Sprache
Englisch [eng]
Persistent identifier
https://phaidra.univie.ac.at/o:538036
Erschienen in
Titel
Nature Communications
Band
7
Verlag
Springer Nature
Projektnummer
P 28322-N36 – Austrian Science Fund (FWF)
Projektnummer
MA14-009 – Vienna Science and Technology Fund (WWTF)
Projektnummer
336453-PICOMAT – European Union (all programmes)
... show all
Erscheinungsdatum
2016
Zugänglichkeit

Herunterladen

Universität Wien | Universitätsring 1 | 1010 Wien | T +43-1-4277-0