

MASTERARBEIT / MASTER'S THESIS

Titel der Masterarbeit / Title of the Master's Thesis

"Diversity of *Fascioloides magna* and *Fasciola hepatica* in Austria based on their genes and antigens"

verfasst von / submitted by Christian Husch, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc)

Wien, 2016 / Vienna 2016

Studienkennzahl It. Studienblatt / degree programme code as it appears on the student record sheet: A 066 830

Studienrichtung It. Studienblatt / degree programme as it appears on the student record sheet:

Betreut von / Supervisor:

Molecular Microbiology, Microbial Ecology and Immunobiology

Assoc. Prof. Univ.-Doz. Mag. Dr. Julia Walochnik

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared sources / resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources.

(Date)

(Signature)

Acknowledgements

I am grateful to my supervisor Prof. Julia Walochnik from the Medical University of Vienna and my co-supervisors Dr. Helmut Sattmann and Mag. Christoph Hörweg from the Natural History Museum Vienna for trusting me this interesting topic and their support during my master thesis.

Many credits go to my awesome colleagues in the laboratory for Molecular Parasitology, "mother and column of the lab" Iveta Häfeli, Dr. Martina Köhsler, Mag. Ute Scheikl, Mag. Elisabeth Dietersdorfer, Dr. Ursula Fürnkranz, Susanne Glöckl, Jaczek Pietrack, Mag. Adelheid G. Obwaller, my "Mündlerin" Verena Mündler, BSc, Nadine Hohensee, MSc, and Erik Simon Küng for their help and the very nice working atmosphere.

For their help in obtaining the individuals of *F. magna* and *F. hepatica* I would like to thank Dr. Hans Weissensteiner, Dr. Heinrich Prosl, Mag. Dr. Josef Ursprung, Dr. Peter Paulsen, Dr. Franz Plank, the abattoirs Berger, Eschenau, and Alpenrind GmbH, Salzburg, and the AGES, Tyrol.

I would also thank my fantastic colleagues from the recovery room, Wilhelminenspital, were I worked before and during my studies. They helped me to get free and/or change the date of duty for seminars, practical courses, exams and other universitary obligations.

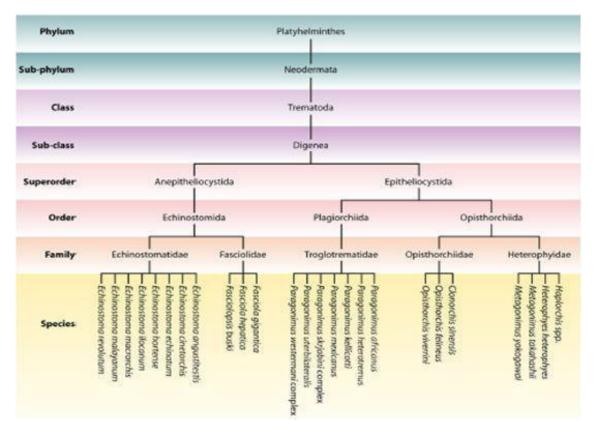
I am special thankful to "the chief of the duty roster" Karin Leputsch for her efforts.

At the end, I would like to thank my lovely parents for their great support. I feel very fortunate to be surrounded by my family and my friends, who believed in me and were tolerant during my studies.

TABLE OF CONTENTS

1.	Intr	roduct	ion	- 1 -
	1.1	Tren	natodes in general	- 2 -
		1.1.1	Classification	- 2 -
		1.1.2	Life cycle	- 3 -
		1.1.3	Intermediate hosts	- 5 -
	1.2	Faso	cioloides magna	- 7 -
		1.2.1	Distribution	- 7 -
		1.2.2	Prevalence and distribution in Austria	- 7 -
		1.2.3	Morphology	- 8 -
		1.2.4	Life cycle	11 -
		1.2.5	Medical relevance	14 -
		1.2.6	Diagnosis	16 -
		1.2.7	Molecular typing	16 -
	1.3	Faso	ciola hepatica	20 -
		1.3.1	Distribution	20 -
		1.3.2	Prevalence and distribution in Austria	20 -
		1.3.3	Morphology	21 -
		1.3.4	Life cycle	22 -
		1.3.5	Medical relevance	25 -
		1.3.6	Diagnosis	27 -
		1.3.7	Treatment	28 -
		1.3.8	Molecular typing	29 -
	1.4	Aims	s of the study	31 -
2.	Ma	terials	& Methods	32 -
	2.1	Sam	ples	32 -
	2.2	Mole	ecular biological techniques	38 -
		2.2.1	Primers	38 -

2.2.1.2 <i>F. hepatica</i> -39 2.2.2 DNA isolation -40 2.2.3 PCR -41 2.2.4 Gel electrophoresis -41 2.2.5 Purification of agarose gel bands -42 2.2.6 Sequencing PCR -42 2.2.7 Purification of sequencing PCR products -42 2.2.8 Sequence analysis -43 2.2.9 Establishment of a <i>cox1</i> and <i>nad1</i> haplotype system for -7 <i>F. hepatica</i> -43 - 2.2.10 Protein extraction from tissue -46 2.2.11 Isolation of membrane proteins. -46 2.2.12 SDS-polyacrylamide gel electrophoresis and immunoblotting - 47 - 3. Results -48 - 3.1 PCR -48 3.2 Diversity of <i>Fascioloides magna</i> -50 3.2.1 Alignment COX1 50 3.2.2 Alignment NAD1 -51 3.3 Diversity of <i>Fasciola hepatica</i> -52 3.3.1 New haplotype system -52 3.3.2 Asignment OX1 62			2	2.2.1.1 <i>F. magna</i> 3	38 -
2.2.3 PCR -41 - 2.2.4 Gel electrophoresis -41 - 2.2.5 Purification of agarose gel bands -42 - 2.2.6 Sequencing PCR -42 - 2.2.7 Purification of sequencing PCR products -42 - 2.2.8 Sequence analysis -43 - 2.2.9 Establishment of a <i>cox1</i> and <i>nad1</i> haplotype system for -43 - <i>F. hepatica</i> -43 - -43 - 2.2.10 Protein extraction from tissue -46 - 2.2.11 Isolation of membrane proteins -46 - 2.2.12 SDS-polyacrylamide gel electrophoresis and immunoblotting - 47 - 3. Results -48 - 3.1 PCR -48 - 3.2 Diversity of <i>Fascioloides magna</i> -50 - 3.2.1 Alignment COX1 -50 - 3.2.2 Alignment NAD1 -51 - 3.3 Diversity of <i>Fasciola hepatica</i> -52 - 3.3.1 New haplotype system -52 - 3.3.2 Assignment of the Austrian isolates to haplotypes -58 - 3.3.3 Alignment NAD1 -63 - 3.4				-	
2.2.4 Gel electrophoresis -41 - 2.2.5 Purification of agarose gel bands -42 - 2.2.6 Sequencing PCR -42 - 2.2.7 Purification of sequencing PCR products -42 - 2.2.8 Sequence analysis -43 - 2.2.9 Establishment of a <i>cox1</i> and <i>nad1</i> haplotype system for - <i>F. hepatica</i> -43 - 2.2.10 Protein extraction from tissue -46 - 2.2.11 Isolation of membrane proteins -46 - 2.2.12 SDS-polyacrylamide gel electrophoresis and immunoblotting - 47 - 3. Results -48 - 3.1 PCR -48 - 3.2 Diversity of <i>Fascioloides magna</i> -50 - 3.2.1 Alignment COX1 50 - 3.2.2 Alignment NAD1 -51 - 3.3 Diversity of <i>Fasciola hepatica</i> -52 - 3.3.1 New haplotype system -52 - 3.3.2 Assignment of the Austrian isolates to haplotypes -58 - 3.3.3 Alignment COX1 -62 - 3.3.4 Alignment NAD1 -63 - 3.4 Differen			2.2.2	DNA isolation 4	40 -
 2.2.5 Purification of agarose gel bands		2.2.3 PCR			41 -
2.2.6 Sequencing PCR -42 - 2.2.7 Purification of sequencing PCR products -42 - 2.2.8 Sequence analysis. -43 - 2.2.9 Establishment of a <i>cox1</i> and <i>nad1</i> haplotype system for -43 - <i>F. hepatica</i> -43 - 2.2.10 Protein extraction from tissue -46 - 2.2.11 Isolation of membrane proteins. -46 - 2.2.12 SDS-polyacrylamide gel electrophoresis and immunoblotting 47 - 3. Results. -48 - 3.1 PCR -48 - 3.2 Diversity of <i>Fascioloides magna</i> -50 - 3.2.1 Alignment COX1 -50 - 3.2.2 Alignment NAD1 -51 - 3.3 Diversity of <i>Fasciola hepatica</i> -52 - 3.3.1 New haplotype system -52 - 3.3.2 Assignment of the Austrian isolates to haplotypes -58 - 3.3.3 Alignment COX1 -62 - 3.3.4 Alignment NAD1 -63 - 3.4 Differences between the genera <i>Fascioloides</i> and <i>Fasciola</i> on the -65 - 3.5 Differences between the genera <i>Fascioloides</i> and <i>Fasciola</i> on		2.2.4 Gel electrophoresis			41 -
 2.2.7 Purification of sequencing PCR products			2.2.5	Purification of agarose gel bands	42 -
2.2.8 Sequence analysis			2.2.6	Sequencing PCR	42 -
 2.2.9 Establishment of a <i>cox1</i> and <i>nad1</i> haplotype system for <i>F. hepatica</i>			2.2.7	Purification of sequencing PCR products	42 -
F. hepatica -43 - 2.2.10 Protein extraction from tissue -46 - 2.2.11 Isolation of membrane proteins -46 - 2.2.12 SDS-polyacrylamide gel electrophoresis and immunoblotting -47 - 3. Results -48 - 3.1 PCR -48 - 3.2 Diversity of Fascioloides magna -50 - 3.2.1 Alignment COX1 -50 - 3.2.2 Alignment NAD1 -51 - 3.3 Diversity of Fasciola hepatica -52 - 3.3.1 New haplotype system -52 - 3.3.2 Assignment of the Austrian isolates to haplotypes -58 - 3.3.3 Alignment COX1 -62 - 3.3.4 Alignment NAD1 -63 - 3.4 Differences between the genera Fascioloides and Fasciola on the protein level -65 - 3.5 Differences between the genera Fascioloides and Fasciola on the antigen-level -65 -			2.2.8	Sequence analysis	43 -
2.2.10 Protein extraction from tissue -46 - 2.2.11 Isolation of membrane proteins. -46 - 2.2.12 SDS-polyacrylamide gel electrophoresis and immunoblotting. -47 - 3. Results. -48 - 3.1 PCR -48 - 3.2 Diversity of <i>Fascioloides magna</i> -50 - 3.2.1 Alignment COX1 -50 - 3.2.2 Alignment NAD1 -51 - 3.3 Diversity of <i>Fasciola hepatica</i> -52 - 3.3.1 New haplotype system -52 - 3.3.2 Assignment of the Austrian isolates to haplotypes -58 - 3.3.4 Alignment NAD1 -62 - 3.3.4 Alignment NAD1 -63 - 3.4 Differences between the genera <i>Fascioloides</i> and <i>Fasciola</i> on the protein level -65 - 3.5 Differences between the genera <i>Fascioloides</i> and <i>Fasciola</i> on the antigen-level -66 -			2.2.9	Establishment of a <i>cox1</i> and <i>nad1</i> haplotype system for	
2.2.11 Isolation of membrane proteins				F. hepatica	43 -
2.2.12 SDS-polyacrylamide gel electrophoresis and immunoblotting - 47 - 3. Results - 48 - 3.1 PCR - 48 - 3.2 Diversity of Fascioloides magna - 50 - 3.2.1 Alignment COX1 - 50 - 3.2.2 Alignment NAD1 - 51 - 3.3 Diversity of Fasciola hepatica - 52 - 3.3.1 New haplotype system - 52 - 3.3.2 Assignment of the Austrian isolates to haplotypes - 58 - 3.3.3 Alignment COX1 - 62 - 3.3.4 Alignment NAD1 - 63 - 3.4 Differences between the genera Fascioloides and Fasciola on the - 65 - 3.5 Differences between the genera Fascioloides and Fasciola on the - 65 -			2.2.10	Protein extraction from tissue	46 -
3. Results			2.2.11	Isolation of membrane proteins	46 -
3.1 PCR -48 - 3.2 Diversity of Fascioloides magna -50 - 3.2.1 Alignment COX1 -50 - 3.2.2 Alignment NAD1 -51 - 3.3 Diversity of Fasciola hepatica -52 - 3.3.1 New haplotype system -52 - 3.3.2 Assignment of the Austrian isolates to haplotypes -58 - 3.3.3 Alignment COX1 -62 - 3.3.4 Alignment NAD1 -63 - 3.4 Differences between the genera Fascioloides and Fasciola on the protein level -65 - 3.5 Differences between the genera Fascioloides and Fasciola on the antigen-level -66 -			2.2.12	SDS-polyacrylamide gel electrophoresis and immunoblotting 4	47 -
 3.2 Diversity of <i>Fascioloides magna</i>	3.	Res	sults	4	48 -
3.2.1 Alignment COX1 - 50 - 3.2.2 Alignment NAD1 - 51 - 3.3 Diversity of Fasciola hepatica - 52 - 3.3.1 New haplotype system - 52 - 3.3.2 Assignment of the Austrian isolates to haplotypes - 58 - 3.3.3 Alignment COX1 - 62 - 3.3.4 Alignment NAD1 - 63 - 3.4 Differences between the genera Fascioloides and Fasciola on the protein level - 65 - 3.5 Differences between the genera Fascioloides and Fasciola on the antigen-level - 66 -		3.1	PCR	4	48 -
 3.2.2 Alignment NAD1		3.2	Dive	rsity of <i>Fascioloides magna</i>	50 -
 3.3 Diversity of <i>Fasciola hepatica</i>			3.2.1	Alignment COX1	50 -
 3.3.1 New haplotype system			3.2.2	Alignment NAD1	51 -
 3.3.2 Assignment of the Austrian isolates to haplotypes		3.3	Dive	rsity of <i>Fasciola hepatica</i> - 8	52 -
 3.3.3 Alignment COX1			3.3.1	New haplotype system	52 -
 3.3.4 Alignment NAD1			3.3.2	Assignment of the Austrian isolates to haplotypes	58 -
 3.4 Differences between the genera <i>Fascioloides</i> and <i>Fasciola</i> on the protein level65 - 3.5 Differences between the genera <i>Fascioloides</i> and <i>Fasciola</i> on the antigen-level66 - 			3.3.3	Alignment COX1 6	62 -
protein level 65 - 3.5 Differences between the genera <i>Fascioloides</i> and <i>Fasciola</i> on the antigen-level 66 -			3.3.4	Alignment NAD1 6	63 -
3.5 Differences between the genera <i>Fascioloides</i> and <i>Fasciola</i> on the antigen-level 66 -		2 1			
antigen-level 66 -		3.4			65 -
4. Discussion 67 -			prote	ein level e	65 -
			prote Diffe	ein level	


	4.1	Dive	ersity of <i>F. magna</i> e	67 -
	4.2	Dive	ersity of <i>F. hepatica</i>	71 -
		4.2.1	COX1	72 -
		4.2.2	NAD1	74 -
	4.3	Нуро	othesis on the origin of <i>F. hepatica</i>	76 -
	4.4	Distr	ribution routes of <i>F. hepatica</i>	76 -
	4.5	Othe	er impacts on the distribution of <i>F. hepatica</i>	32 -
		4.5.1	The Roman Empire 8	32 -
		4.5.2	Middle Ages 8	32 -
	4.6	Prote	ein profiles of <i>F. magna</i> and <i>F. hepatica</i>	32 -
		4.6.1	Intracellular proteins 8	33 -
		4.6.2	Membrane proteins 8	34 -
	4.7	Antię	gen profiles 8	35 -
5.	Co	nclusi	on 6	37 -
6.	Ab	brevia	tions 6	38 -
7.	Glo	ossary		94 -
8.	Re	ferenc	es 10)2 -
9.	Ар	pendix	< 12	26 -
	9.1	Abst	ract 12	26 -
		9.1.1	English 12	26 -
		9.1.2	German 12	27 -
	9.2	Inde	x of Figures 12	29 -
	9.3	Inde	x of Tables 13	30 -

Human infestations with trematodes are an emerging problem (WHO, 1995; Keiser and Utzinger, 2005). The distribution of trematodes is facilitated when human faeces are used as fertilizers (Fried *et al.*, 2004). Among others, two, namely *Fascioloides magna* and *Fasciola hepatica*, have a great importance for the health of humans and animals and lead to a great economic loss annually (Robinson and Dalton, 2009; Králová-Hromadová *et al.*, 2011). The background of this is that *F. hepatica* has been endemic in Europe for thousands of years, while *F. magna* was introduced for the first time into Europe in the 19th century. The present thesis deals with the genetic diversity of *F. magna* and *F. hepatica* in Austria and with differences between the two species on the protein level.

1.1 Trematodes in general

1.1.1 Classification

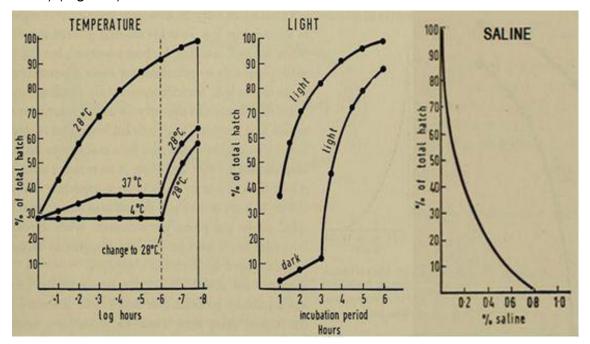

The trematodes are a class of endoparasites and belong to the phylum Platyhelminthes. Altogether, they include 18,000 to 24,000 species and parasitise molluscs and vertebrates. The class is divided into two subclasses: Aspidogastrea (Faust and Tang, 1936) and Digenea (Van Beneden, 1858) (Fig. 1.1). The smaller group, Aspidogastrea, includes around 80 species and parasitise molluscs, fish, and turtles. Digenea represent the majority of trematodes with 8,000 species, and parasitise molluscs (intermediate hosts) and vertebrates (final hosts) (Lucius and Loos-Frank, 2008; Eckert *et al.*, 2008). To reach the adult state, most of the trematodes need several hosts and their life cycle includes alternately sexual and asexual reproduction (Keiser and Utzinger, 2009).

Fig. 1.1: Classification of the Platyhelminthes (from Keiser and Utzinger, 2009). Both, *F. magna* and *F. hepatica* are members of the family of Fasciolidae.

1.1.2 Life cycle

When the final host excretes eggs via its faeces, and those eggs come in contact with water, miracidia hatch and infest the first intermediate host (e.g. an aquatic snail). They can localise the intermediate host through chemotaxis and chemokinesis (Keiser and Utzinger, 2009; Haider *et al.*, 2012). Several physical-chemical factors, such as temperature, humidity, light, and oxygen tension promote the hatching of the eggs (Vignoles *et al.*, 2014; Gold and Goldberg, 1976) (Fig. 1.2).

Fig. 1.2: The effect of temperature, light, and saline on hatching of trematode eggs (*Schistosoma mansoni*) (from Gold and Goldberg, 1976). At high or low temperatures and in the absence of light the hatching of the eggs strongly decreases. Optimal temperature conditions and the presence of light increase the probability of hatching rapidly. Salinity has the strongest impact on the hatching. In the absence of saline 100% hatch, whereas with 0.2% saline the hatching ratio is less than 50% and at 0.8% hatching is completely inhibited.

Inside the aquatic snail, the miracidia form sporocysts via metamorphosis, which then produce either rediae or more sporocysts. This is the onset of the asexual part of the life cycle. The rediae, a larval form of trematodes with an oral sucker, produce more rediae or cercariae, the next stage in the life cycle. Based on one miracidium over days to weeks tens of thousands of cercariae may originate. The cercariae leave the aquatic snail and move through the aquatic environment until they reach and penetrate the second intermediate host, if the life-cycle acquires two intermediate hosts, or, if only one intermediate host is required, encyst on water vegetation and other structures, such as watercress,

water caltrop, water lotus, water chestnut, water lily, and stones, or directly infest the final host. In trematodes, transmitted by terrestrial intermediate hosts, modes of life cycles are altered somehow. On the water plants or within the second intermediate host the cercariae become metacercariae which are encysted in a hyaline, elastic hull (Lucius and Loos-Frank, 2008; Keiser and Utzinger, 2009). Other sources of infection are drinking water contaminated with floating metacercariae and vegetables washed in contaminated water (Robinson and Dalton, 2009). When the final host ingests the infested second intermediate host or the plants, the metacercariae excyst in the duodenum, perforate the wall of the intestine, and cross the abdominal cavity on the way to the liver. In the adult stage the flukes are fully developed and capable of sexual reproduction (Lucius and Loos-Frank, 2008; Keiser and Utzinger, 2009) (Fig. 1.3).

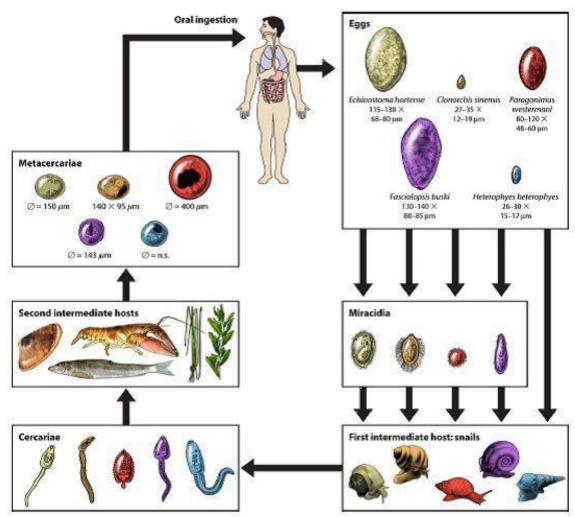


Fig. 1.3: The life cycles of different trematodes (from Keiser and Utzinger, 2009).

1.1.3 Intermediate hosts

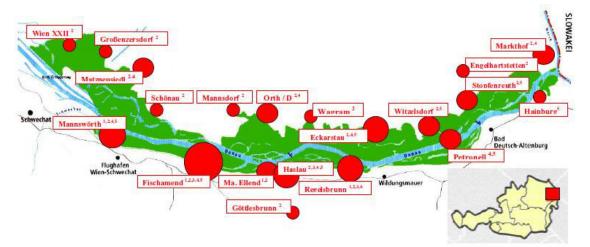
Trematodes and molluscs have a long lasting co-evolution, which has persisted for approx. 570 million years (Palaeozoic) and trematodes have invented methods to fully exploit their intermediate hosts (Lucius and Loss-Frank, 2008). The oldest fossil of the lymnaeid group is of *Galba* (between 146 and 208 million years ago), indicating that the lymnaeid group is ancient (Zilch, 1959–1960; Bargues *et al.*, 2001). *Galba truncatula* (class Gastropoda, family Lymnaeidae, genus *Galba*), was first described by Müller in 1774 and is a freshwater lymnaeid snail distributed worldwide (Fig. 1.4).

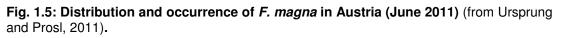
Fig. 1.4: Freshwater lymnaeid snail Galba truncatula (from Natural History Museum Vienna).

In Europe, *G. truncatula* and *Radix peregra* have proved to act as the main intermediate host for *F. magna* and *F. hepatica* (Relf *et al.*, 2009; Haider *et al.*, 2012). Depending on the continent, other aquatic snails can also act as intermediate hosts for *F. hepatica* (Smyth, 1976; Schnieder, 2006) (Tab. 1.1). The known intermediate host spectrum for *F. magna* includes only the species *G. truncatula*, *R. peregra*, *Lymnaea modicella*, *L. caperata*, *Pseudosuccinea columella*, *Stagnicola palustris nuttalliana*, *G. bulimoides techella*, and Fossaria parva (Haider, 2010; Eckert, 2013; Králová-Hromadová *et al.*, 2016).

Tab. 1.1: Intermediate hosts for *F. hepatica* (adapted from Smyth, 1976; Schnieder, 2006).

Continent/Country	Intermediate host
Europe	L. peregra
	L. palustris
	L. glabra
	L. stagnalis
	L. occulta
	L. turricula
Philippines	L. philippinensis
	L. swinhoei
	Amphipelpa cumingiana
Australia	L. tomentosa
	L. launcestonensis
New Zealand	Simlimnaea tomentosa
	L. alfredi
Japan	L. pervia
	L. japonica
Argentinia	L. viatrix
Venezuela	L. cubensis
Egypt	L. cailliandi
China	L. pervia
USA	L. bulimoides
	L. mulimoides techella
	G. ferruginea
	G. cubensis
	Fossaria modicella
	L. traskii
	P. columella
	L. modicella
Cuba	Tarebia granifera
Additionally in warmer regions	L. columella


1.2 Fascioloides magna


1.2.1 Distribution

F. magna is a parasitic flatworm, belonging to the Fasciolidae, and was first described in Italy by Bassi in 1875 (Leontovyč, 2014). *F. magna* originates from North America and was imported at least twice into Europe. The fluke was first introduced with game animals in La Mandria Regional Park near Turin (Italy) in the second half of the 19th century (Králová-Hromadová *et al.*, 2011; Leontovyč, 2014). The second introduction occurred in the first half of the 20th century, when *F. magna* was imported into Bohemia, Czech Republic (Ullrich, 1930). Afterwards infestations were also observed in Austria (Pfeiffer, 1983; Winkelmayer and Prosl, 2001; Ursprung *et al.*, 2006), Slovakia (Rajský *et al.*, 1994), Hungary (Majoros and Sztojkov, 1994), Croatia (Marinculić *et al.*, 2002), Serbia (Markinkovic and Nesic, 2008), Germany (Plötz *et al.*, 2015), and Poland (Demiaszkiewicz *et al.*, 2015).

1.2.2 Prevalence and distribution in Austria

In Austria, *F. magna* was detected for the first time in fallow deer in a game reserve (Pfeiffer, 1983). Today the flukes can be found in the East of Vienna and in the downstream region of the Danube, predominantly in Fischamend, Regelsbrunn, Orth, and Mannswörth (Winkelmayer and Prosl, 2001; Ursprung and Prosl, 2011; Hörweg *et al.*, 2011; Haider *et al.*, 2012) (Fig. 1.5).

1.2.3 Morphology

F. magna has a length of 8–10 cm and an oval dorsoventrally flattened body with no anterior cone (Králová-Hromadová *et al.*, 2011; Naem *et al.*, 2012) (Fig. 1.6).

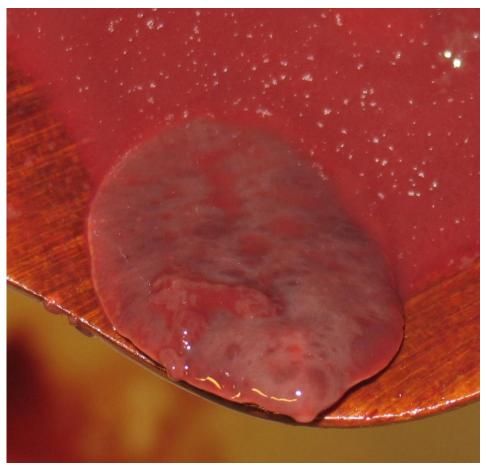


Fig. 1.6: Adult individual of F. magna (from Natural History Museum Vienna).

Located on the tegument are sharp spines, which are small around the oral and ventral suckers but with a sharp point. Other spines contain serrated edges with 15–22 sharp points (Naem *et al.*, 2012). The surface is covered by the tegument, a syncytial epithelium with sensory function and scale-like spines, implicated in nutrient absorption via membrane digestion and transport or endocytosis and secretion/excretion of endogenous material (Keiser and Utzinger, 2009; Naem *et al.*, 2012). This includes components of the surface plasma membrane and the release and turnover of the glycocalyx. This plays a major role in immune evasion, because it prevents the fluke from bile acids, enzymes, and immunoglobulins of the host (Halton, 2004). Synthesis and osmoregulation are other functions of the tegument. Excretion and

osmoregulation establish a gradient for ions and water through ionic pumps and Na⁺/K⁺-ATPase, which reside in the surface and basal plasma membranes (Pappas, 1975; Schuster, 2002; Halton, 2004) (Fig. 1.7).

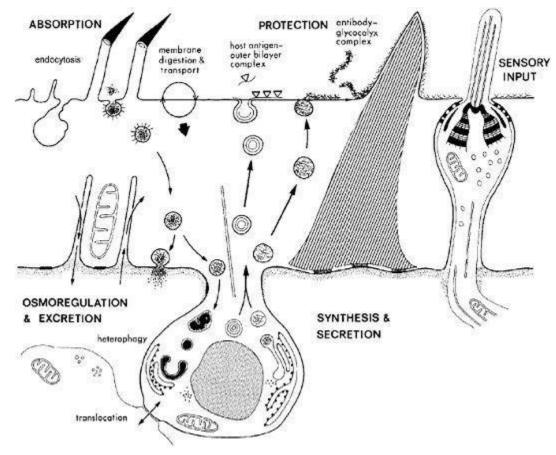


Fig. 1.7: Functions of the tegument of trematodes (from Halton, 2004).

The oral sucker is covered by small dome-shaped and ciliated papillae and the ventral sucker has two spine-like structures and a smooth surface. The genital pore closely anterior to the ventral sucker contains fewer spines than the other parts of the anterior end. The fluke has well-developed spines at the anterior end of the ventral side and small spines, mostly with one or three points and blunted edges on the posterior end of the ventral side. The spines located at the posterior end of the dorsal side grow progressively fewer, smaller, and shorter. A folded tegument with no spine is around the excretory pore and small groups of tiny spines between the folds. The testes are in the middle third of the body and the uterus is a short structure folded several times in the anterior part of the body (Naem *et al.*, 2012; Špakulová *et al.*, 2003).

The eggs are yellowish and approximately 168 x 101 μ m in size. At the pole, they have a lid, called operculum. This lid enables the passage of the miracidium out of the egg (Naem *et al.*, 2012) (Fig. 1.8).

Fig. 1.8: Egg of *F. magna* **containing a miracidium** (from Natural History Museum Vienna).

1.2.4 Life cycle

The life cycle of *F. magna* includes one final host and one intermediate host (Fig. 1.9).

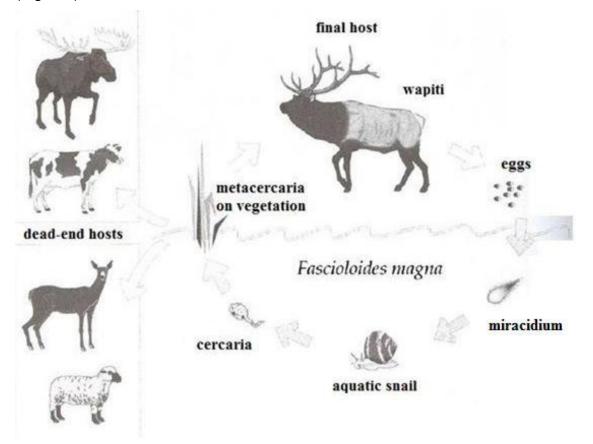


Fig. 1.9: The life cycle of *F. magna* (from Samuel *et al.*, 2001, modified).

F. magna usually is situated pairwise in a common capsule in the parenchyma of the liver of the final host with a connection to the bile duct. They can survive for up to five years (Samuel *et al.*, 2001) (Fig. 1.10).

Fig. 1.10: Pseudocysts in a liver of red deer infested with *F. magna* (from Špakulová *et al.*, 2003).

A mature fluke can release up to 4,000 eggs per day. The eggs are first collected in the cavity of the capsule and then released through the connection. They enter the duodenum and leave the host with the faeces. (Samuel *et al.*, 2001; Eckert *et al.*, 2008). Outside the host, several physical-chemical factors, such as temperature, humidity, light, and oxygen tension force embryonation, which can take as long as 35 days (Samuel *et al.*, 2001). The miracidia hatch from the eggs and seek a snail from the family Lymnaeidae (*Galba truncatula*), the intermediate host.

The miracidia penetrate the host and form sporocysts. The sporocysts contain germinal cells that produce up to 14 mother rediae, which migrate to the digestive glands, renal organ, reproductive organ, and pulmonary sac of the snails (Fig. 1.11).

Fig. 1.11: Redia of *F. magna* (from Natural History Museum Vienna).

Up to nine daughter rediae can be produced asexually from one mother redia and each daughter redia produces nine or 10 cercariae, which mature in the digestive glands of the snail (Samuel *et al.*, 2001) (Fig. 1.12).

Fig. 1.12: Cercaria of F. magna (from Natural History Museum Vienna).

The development within the snail takes 40 to 58 days and dependents on snail species and temperature (Haider *et al.*, 2012). The mature cercariae leave the snail and search for vegetation, where they encyst and are then called metacercariae. After ingestion, the metacercariae are stimulated in the stomach and the intestine to leave their cyst. The flukes subsequently perforate the wall of the intestine and cross the abdominal cavity to the liver. There the flukes penetrate the Glisson's capsule and continue their way across the liver, searching for other flukes.

1.2.5 Medical relevance

Fascioloidosis is a plant-borne zoonotic disease caused by F. magna. F. magna has veterinary medical importance and has an impact on domesticated and nondomesticated animals. Definitive hosts are cervids, primarily from the new world (Samuel et al., 2001). In Europe, F. magna infests the liver of red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) (Ursprung and Prosl, 2011; Kasny et al., 2012). Humans are not known to be a host (Samuel et al., 2001). Horses, pigs, sheep, and goats are dead-end hosts, as the parasite cannot complete the migratory stage; in sheep and goats the infestation is fatal within six months because the flukes migrate through different tissues and cause heavy damage. (Schnieder 2006; Samuel et al., 2001; Sattmann et al., 2014; Novobilský et al., 2007; Špakulová et al., 2003). In cattle and moose, the flukes are unable to connect their cyst with the bile duct, the flukes rarely mature and the few eggs produced do not reach the intestine. The infestation is thus not patent (Eckert et al., 2008; Samuel et al., 2001). In roe deer, F. magna causes great damage to the liver and other organs, and even infestations with low numbers of flukes are fatal (Bazsalovicsová et al., 2013; Ursprung and Prosl, 2011) (Fig. 1.13). Because of the heavy liver damages, F. magna can kill an entire roe deer population in an area (Ursprung and Prosl, 2011). In 1995, 90% of red deer and 60% of roe deer in Slovakia were infested (Ursprung and Prosl, 2011; Kasny et al., 2012). In Austria, the fluke spread through roe and red deer and led to heavy damage and death of the hosts (Winkelmayer and Prosl, 2001). From 2001 to 2006 a treatment programme was organised due to a prevalence in Austrian deer of up to 100% (Sattmann et al.,

2014). Deer were treated with triclabendazole (Fasinex[®]) admixed to winter food. In the following years the number of infestations decreased, but it was not possible to eradicate the fluke completely. In 2006, a shift to the Northern side of the Danube and a resurgence in the hosts was recorded (Ursprung *et al.*, 2006; Ursprung and Prosl, 2011).

Fig. 1.13: Fascioloidosis at a liver of a three year old roe deer (from Špakulová et al., 2003).

1.2.6 Diagnosis

Today, diagnosis is based on immunological tests like enzyme-linked immunosorbent assay (ELISA) and immunoblotting (Severin *et al.*, 2015). Previous methods for confirmation of a *F. magna* infestation have been based on examination of livers of dead animals and coprological examinations (Severin *et al.*, 2015)

1.2.7 Molecular typing

For the investigation of the diversity of *F. magna* sequence analyses of mainly two genes have been established: *cytochrome c oxidase subunit 1 (cox1)* and *nicotinamide dehydrogenase subunit 1 (nad1)*. The *cox1* gene is part of the respiratory complex IV in the mitochondrion and codes the information for an important enzyme in the aerobic metabolism (Lafontaine and Tollervey, 2001). The *nad1* gene is part of the respiratory chain and catalyses the transfer of electrons from NADH to ubiquinone (Lafontaine and Tollervey, 2001; Brandt, 2006).

Radvánský *et al.* (2011), Králová-Hromadová *et al.* (2011), and Bazsalovicsová *et al.* (2015) examined samples of *F. magna* from Slovakia, the Czech Republic, Croatia, Hungary, Italy, the United States of America (USA), and Canada. Radvánský *et al.* (2011) described seven haplotypes for *cox1* and Králová-Hromadová *et al.* (2011) described 16 haplotypes for *cox1* and 18 haplotypes for *nad1*. Bazsalovicsová *et al.* (2015) examined flukes from North America and described 32 haplotypes for *cox1* and 28 haplotypes for *nad1*. Haplotype 1 of the *cox1* gene and haplotype 3 of the *nad1* gene were shared by strains from Italy, the USA, and Canada. The most common haplotypes in Europe were haplotype 3 for *cox1* and haplotype 4 for *nad1*. These haplotypes are known to be common in Hungary, the Czech Republic, Slovakia, Croatia, and Austria (Králová-Hromadová *et al.*, 2011; Sattmann *et al.*, 2014). Other haplotypes known to occur in Hungary, the Czech Republic, Slovakia and Croatia are *cox1*: Ha 4, Ha 5; *nad1*: Ha 5, Ha 6, and Ha 7.

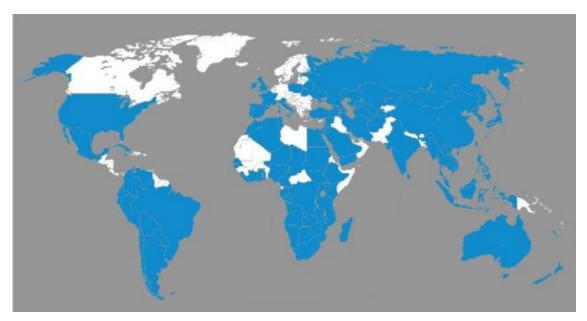
Known cox1 and nad1 haplotypes for *F. magna* with exemplary reference sequences are shown in tabs. 1.2 and 1.3. The mitochondrial genome of *F. magna* has a length of 14,047 bp. The position of the cox1 gene in the mitochondrial genome is in the range of bp 6,840–bp 8,384 and the position of the *nad1* gene is in the range of bp 5,162–bp 6,064

Haplotype	Known	Original description	Reference
	occurrence		sequences
1	Italy	Radvánský <i>et al</i> ., 2011	GU599860
	Canada		GU599861
	USA		
2	Italy	Radvánský <i>et al</i> ., 2011	GU599863
3	Croatia	Radvánský <i>et al</i> ., 2011	GU599867
	Czech Republic		GU599864
	Hungary		
	Slovakia		
4	Czech Republic	Radvánský <i>et al</i> ., 2011	GU599868
	Slovakia		GU599869
5	Czech Republic	Radvánský <i>et al</i> ., 2011	GU599870
6	Canada	Radvánský <i>et al</i> ., 2011	GU599871
7	USA	Radvánský <i>et al</i> ., 2011	GU599872
8	USA	Králová-Hromadová et al., 2011	GU599873
9	Canada	Bazsalovicsová et al., 2015	KP635014
	USA		KP635022
10	USA	Králová-Hromadová et al., 2011	GU599875
11	USA	Králová-Hromadová et al., 2011	GU599876
12	USA	Králová-Hromadová et al., 2011	GU599877
13	USA	Králová-Hromadová et al., 2011	GU599878
14	USA	Králová-Hromadová et al., 2011	GU599879
15	USA	Králová-Hromadová et al., 2011	GU599880
16	USA	Bazsalovicsová et al., 2015	KP635023
17	Canada	Bazsalovicsová et al., 2015	KP635015

Tab. 1.2: *cox1* haplotypes of *F. magna* (Radvánský *et al.*, 2011; Králová-Hromadová *et al.*, 2011; Bazsalovicsová *et al.*, 2015). Position in the *cox1* gene: bp 177–bp 615.

18	Canada	Bazsalovicsová <i>et al.</i> , 2015	KP635016
19	USA	Bazsalovicsová <i>et al</i> ., 2015	KP635021
20	Canada	Bazsalovicsová <i>et al</i> ., 2015	KP635012
21	Canada	Bazsalovicsová <i>et al</i> ., 2015	KP635013
22	Canada	Bazsalovicsová <i>et al</i> ., 2015	KP635019
23	USA	Bazsalovicsová <i>et al</i> ., 2015	KP635031
24	USA	Bazsalovicsová <i>et al</i> ., 2015	KP635032
25	USA	Bazsalovicsová <i>et al</i> ., 2015	KP635033
26	USA	Bazsalovicsová <i>et al</i> ., 2015	KP635034
27	USA	Bazsalovicsová et al., 2015	KP635035
28	Canada	Bazsalovicsová <i>et al</i> ., 2015	KP635020
29	USA	Bazsalovicsová et al., 2015	KP635024
30	USA	Bazsalovicsová <i>et al</i> ., 2015	KP635025
31	USA	Bazsalovicsová et al., 2015	KP635026
32	USA	Bazsalovicsová <i>et al</i> ., 2015	KP635027
33	USA	Bazsalovicsová <i>et al</i> ., 2015	KP635028
34	USA	Bazsalovicsová <i>et al</i> ., 2015	KP635029
35	USA	Bazsalovicsová <i>et al.</i> , 2015	KP635036

Tab. 1.3: *nad1* haplotypes of *F. magna* (Králová-Hromadová *et al.*, 2011). Position in the *nad1* gene: bp 498–bp 902.


Haplotype	Known	Citation	Reference
	occurrence		sequences
1	Italy	Králová-Hromadová et al., 2011	GU599834
2	Italy	Králová-Hromadová et al., 2011	GU599835
3	Italy	Králová-Hromadová et al., 2011	GU599836
	Canada		GU599845
	USA		
4	Croatia	Králová-Hromadová <i>et al.</i> , 2011	GU599844
	Czech Republic		GU599837
	Hungary		
	Slovakia		
	USA		
5	Czech Republic	Králová-Hromadová et al., 2011	GU599838
	Slovakia		GU599842

6	Czech Republic	Králová-Hromadová et al., 2011	GU599839
0	-		
_	USA		KP635059
7	Czech Republic	Králová-Hromadová et al., 2011	GU599840
8	Canada	Králová-Hromadová <i>et al.</i> , 2011	GU599846
9	USA	Králová-Hromadová <i>et al</i> ., 2011	GU599849
10	USA	Králová-Hromadová <i>et al</i> ., 2011	GU599850
11	USA	Králová-Hromadová <i>et al</i> ., 2011	GU599851
12	Canada	Králová-Hromadová <i>et al</i> ., 2011	KP635041
	USA		GU599852
13	USA	Králová-Hromadová et al., 2011	GU599853
14	USA	Králová-Hromadová <i>et al</i> ., 2011	GU599854
15	USA	Králová-Hromadová et al., 2011	GU599855
16	USA	Králová-Hromadová et al., 2011	GU599858
17	USA	Králová-Hromadová et al., 2011	GU599857
18	USA	Králová-Hromadová <i>et al.</i> , 2011	GU599859
19	Canada	Králová-Hromadová <i>et al</i> ., 2011	KP635042
	USA		KP635060
20	Canada	Králová-Hromadová et al., 2011	KP635043
21	Canada	Králová-Hromadová <i>et al</i> ., 2011	KP635044
22	Canada	Králová-Hromadová <i>et al</i> ., 2011	KP635045
23	Canada	Králová-Hromadová et al., 2011	KP635046
24	Canada	Králová-Hromadová <i>et al.</i> , 2011	KP635038
25	Canada	Králová-Hromadová et al., 2011	KP635039
26	USA	Králová-Hromadová <i>et al</i> ., 2011	KP635061
27	USA	Králová-Hromadová et al., 2011	KP635052
28	USA	Králová-Hromadová <i>et al.</i> , 2011	KP635053
29	USA	Králová-Hromadová et al., 2011	KP635062
30	Canada	Králová-Hromadová <i>et al.</i> , 2011	KP635040
31	USA	Králová-Hromadová et al., 2011	KP635063
32	USA	Králová-Hromadová et al., 2011	KP635050

1.3 Fasciola hepatica

1.3.1 Distribution

F. hepatica was first described by Linnaeus in 1758 and detected for the first time in humans by Pallas in 1760 when he detected it in the bile duct of a human corpse in Berlin, Germany (Pallas, 1760). *F. hepatica* has a worldwide distribution and infests a good number of mammal species, mainly cattle and sheep but also humans, and it is estimated that up to 50 million humans are affected, with more than 180 million at risk of infestation (Nyindo and Lukambagire, 2015) (Fig. 1.14).

Fig. 1.14: Distribution of fasciolosis (from http://www.bvgh.org/Current-Programs/Neglected-Disease-Product-Pipelines/Global-Health-Primer/Diseases/cid/ViewDetails/ItemID/23.aspx; cited in Nyindo and Lukambagire, 2015). Countries with reported cases of human fasciolosis are coloured in blue.

1.3.2 Prevalence and distribution in Austria

The main endemic areas of *F. hepatica* in Austria are in Vorarlberg, Salzburg, Upper Austria, and the Tyrol (Auer *et al.*, 1981; Auer and Aspöck, 2014). Samples of 28 patients were examined over the last years at the Institute for Specific Prophylaxis and Tropical Medicine of the Medical University of Vienna. Most infestations were found in Salzburg (11 patients) and the second most in Upper Austria (five patients). Four patients came from Vorarlberg, three from Vienna, two each from Styria and Tyrol, and one patient from Burgenland. More men were infested (17 patients) than women (14 patients) (Skoll, 2015). Concerning *F. hepatica* epidemiology in livestock in Austria a survey was given by Supperer and Pfeiffer in 1986.

1.3.3 Morphology

F. hepatica reaches a size of up to 5×1.3 cm (Lucius and Loos-Frank, 2008). The head has the form of a cone and a length of 3-5 mm, whereas the posterior end is broadly rounded (Fig. 1.15). The body is grimy grey to brown, bilaterally flattened, and shaped like a bay leaf (Schuster, 2002; Mas-Coma, 1997).

The surface is covered by the tegument, respiratory and circulatory systems are missing (Keiser and Utzinger, 2009). On the ventral side, there are two suckers, an oral and a ventral sucker, and numerous spines that cover the body surface. The flukes have no external signs of segmentation and the mouth ends

in the pharynx, a muscular tube that allows for sucking. The digestive system has only one opening, the oral sucker, which is not linear but branched, while it ends in several blind ducts (Lucius and Loos-Frank, 2008). Flukes use the oral and the ventral sucker to attach themselves to the wall of the bile ducts, intestine, or lung parenchyma (Keiser and Utzinger, 2009). Liver flukes are always hermaphrodites. The ovaries run laterally and disembogue, together with the cirrus, closely anterior to the ventral sucker. The testicles are located in the posterior two thirds of the body (Schuster, 2002).

Fig. 1.15: F. hepatica from ventral (orig.).

The yellowish eggs of *F. hepatica* are about $130-150 \times 63-90 \mu m$ in size and at the pole they have an operculum (Chen and Mott, 1990) (Fig. 1.16).

Fig. 1.16: Egg of *F. hepatica* (from Schuster, 2002).

1.3.4 Life cycle

In the life cycle, asexual phases in snails alternate with sexual phases in vertebrates (Whitfield, 1982) (Fig. 1.17).

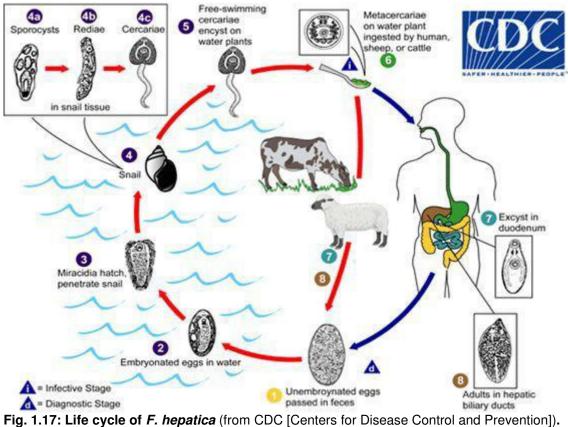


Fig. 1.17. Life Cycle of F. nepatica (nom CDC [Centers for Disease Control and Prevention]).

F. hepatica produces 20,000–50,000 eggs per day per fluke in the bile duct and the gall bladder of its hosts, which are excreted with the faeces (McManus and

Dalton, 2006). The majority of the eggs are destroyed in the gastrointestinal tract by bacterial toxins, and in water only 1/1,000,000 miracidia are able to find the intermediate host (Miliotis and Bier, 2003). In water, the miracidia complete their development and hatch in 9 to 15 days in the presence of warm weather conditions while colder temperatures retard the development. At 24 °C–28 °C the development of the eggs needs 12 days, whereas at 12 °C the development needs two months. The highest hatching rate occurs at 16 °C–20 °C whereas temperatures above 20 °C are not conducive to hatching (Gold and Goldberg, 1976; Kumar, 1999). In general, miracidia only hatch in the presence of freshwater, short-wave light, and in the broad absence of faeces (Gold and Goldberg, 1976; Vignoles *et al.*, 2014; Schnieder, 2006; Kumar, 1999). It has been reported that in darkness eggs failed to hatch, but that when these eggs were subjected to temperature changes of higher than 4 °C sometimes they could even hatch in the absence of light (Gold and Goldberg, 1976).

The miracidia are decoyed by glycoconjugates which are localised in the mucilages of the snail. The higher the concentration of the glycoconjugates is, the better the directed movement towards the snail will be. Lower concentrations lead to the contrary (Schnieder, 2006).

After contacting the intermediate host, a freshwater snail, the miracidia penetrate the tissue of the snail and form primary sporocysts. The sporocysts produce the first generation of rediae, which in turn produce the second generation of rediae that develop in the digestive gland of the snail (Robinson and Dalton, 2009). To reallocate resources of the snail to the production of parasitic stages, the snail is castrated mechanically by the rediae eating its gonads, which leads to a higher weight of the snail because of its growth due to an increase of the mass of the parasites, called gigantism. By this strategy, a miracidium in a snail with 6–8 mm of height can produce 350–500 cercariae (Lucius and Loss-Frank, 2008). After six to seven weeks, cercariae emerge from the snail either by active escape or passive extrusion and move through the aquatic environment until they reach various structures like vegetation, e.g. watercress (*Rorippa amphibian*), ramson (*Allium ursinum*), and caltrop nuts (*Trapa natam*) as well as salad, and windfalls. Water trickle and drains are also

important ways in which animals and humans become infested. (Keiser and Utzinger, 2009; Mas-Coma, 1997; Slifko *et al.*, 2000; Kühn and Schirmeister, 1989). On the vegetation, the cercariae encyst to metacercariae, and are ingested by cattle, sheep, or humans eating uncooked plants and/or drinking contaminated water (Usip *et al.*, 2014) (Fig. 1.18). Metacercarial cysts are highly resistant and can persist for a long time (Mas-Coma, 1997). Their infectivity is dependent on age: older metacercariae have a lower infectivity. They have a lifespan of a maximum of 48 weeks (Mas-Coma, 2005a).

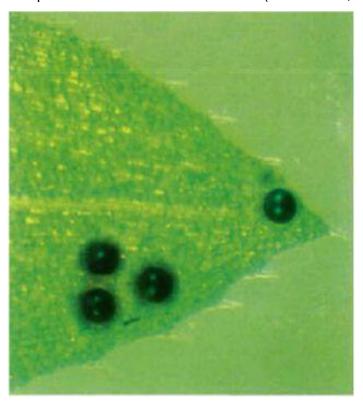


Fig. 1.18: Metacercariae located on vegetation (from Schuster, 2002).

When metacercariae come into contact with low pH in the stomach, the early immature juvenile initiates the process of excystment by digesting the wall of the cyst. Having arrived in the duodenum, the liver fluke excysts, and perforates the intestinal wall to reach the peritoneal cavity (Usip *et al.*, 2014). After migration to the liver parenchyma through the glisson's capsule, the flukes start to feed for 8–12 weeks (Rokni *et al.*, 2002). This stage causes the disease fasciolosis. At the end of the migration, the parasites reach the bile ducts, where they mature into adults and begin to produce eggs (Beckham *et al.*, 2006; Dalton *et al.*, 2003; Dusak *et al.*, 2012).

In sheep, *F. hepatica* can survive as long as 11 years, whereas in cattle they survive only between nine and 12 months (Mas-Coma and Bargues, 1997; Samuel *et al.*, 2001). Depending on geographical region, there are also other definitive hosts, such as oxen, buffalos, various wild ruminants, horses, donkeys, pigs, rabbits, beavers, coypus, elephants, and camels (Kumar, 1999). Because of the long life-span of the flukes in sheep, the high egg output, and the inability of the sheep to acquire immunity against the fluke, it is assumed that today's *F. hepatica* originated mainly in sheep, especially in species of the genus *Ovis* (Mas-Coma *et al.*, 2009).

1.3.5 Medical relevance

Fasciolosis is a plant-borne zoonotic disease caused by trematodes of the genus Fasciola, namely F. hepatica and F. gigantica (Parkinson et al., 2007). F. hepatica and F. gigantica have medical and veterinary importance. Fasciola infests the liver of many herbivorous mammals, including humans. During migration, the flukes can deviate from their path to the bile duct, thus other organs than the liver might be affected as well, which is called ectopic infestation (Dalimi and Jabarvand, 2005). While F. hepatica occurs in countries with a moderate climate, F. gigantica occurs mainly in tropical and subtropical parts of the world (Schnieder, 2006). This is explainable by the minimum temperature thresholds for their development. F. hepatica needs at least 10 °C and F. gigantica 16 °C for development (Malone et al., 1998; Yilma and Malone, 1998). Because of their close relationship, hybrid forms of F. hepatica and F. gigantica also exist (Itagaki and Tsutsumi, 1998; Agatsuma et al., 2000; Hoa Le et al., 2008). More than 300 million cattle and 250 million sheep were infested by *F. hepatica* worldwide and fasciolosis causing an economic damage of three billion US\$ globally per year through loss in productivity of milk and meat (Robinson and Dalton, 2009). For human infestations, estimations for the postdecades vary between 2.4 and 17 million in more than 70 countries with more than 180 million humans at risk of infestation or even more because of the unknown situations in many countries, primarily in Asia and Africa (Mas-Coma et al., 2014; WHO, 2015). In 2015, fasciolosis affected 50 million humans with 180 million at risk of infestation with high prevalences reported from Italy, Spain,

Great Britain, France, Greece, Turkey, Bolivia, Peru, Cuba, China, Egypt (Nile Delta), Vietnam, and the Northern Iran. Hyperendemics were reported from Egypt, Ethiopia, Iran, Iraq, Syria, and Saudi Arabia (Nyindo and Lukambagire, 2015). Altogether, fasciolosis is one of the most widely disseminated zoonotic diseases in the world and is classified as an emerging human disease (WHO, 2015; Nyindo and Lukambagire, 2015).

Fasciolosis is classified into two phases: an invasive or acute phase and a latent or chronic phase. The invasive or acute phase begins when the worm perforates the intestinal wall, and it lasts for two to four months (Valero *et al.*, 2003). When the fluke reaches the liver parenchyma, it eats its way through the liver to the bile duct, where the fluke produces eggs in order to start a new life cycle. The destruction of liver parenchyma may lead to intensive internal bleeding (Fig. 1.19). Symptoms are hepatomegaly, splenomegaly, fever, nausea, abdominal pain, skin rashes, pancreatitis, ascites, marked eosinophilia, and lower milk production (McConville, 2008; Fica *et al.*, 2011; Centers for Disease Control and Prevention [CDC], 2015).



Fig. 1.19: Acute fasciolosis at a goat (from Schuster, 2002).

Introduction

The latent or chronic phase starts with the egg production in the bile duct. When the gall bladder is depleted, the eggs are transported to the intestine. To start a new life cycle, the eggs must be deposited with the faeces. The flukes can survive for up to 13.5 years in the human body (Valero *et al.*, 2003). Symptoms are abdominal pain, anaemia because of internal bleeding, cholelithiasis, jaundice, enlarged gall bladder and bile duct and, because of the congested bile duct, cholangitis, and cholecystitis (Parkinson *et al.*, 2007; Valero *et al.*, 2003; Valero *et al.*, 2008; Valero *et al.*, 2006) (Fig. 1.20).

Fig. 1.20: Chronic fasciolosis at a cattle (orig). Enlarged bile ducts in the chronic phase of a *F. hepatica* infestation.

Parasite fragments and/or debris obstruct the bile duct. Consequently, the gallbladder swells and an acute pancreatitis can occur. Because of the backlog of the gall, the patient suffers from jaundice and cholestatic hepatitis. A bacterial superinfection can lead to acute cholangitis and cholecystitis and increase the problems. The symptoms are the same as in the latent phase (WHO, 2006).

1.3.6 Diagnosis

The diagnosis of a *Fasciola* infestation is based on the clinical symptoms in combination with marked eosinophilia and immunological tests like ELISA and immunoblotting (Fica *et al.*, 2011; Deplazes *et al.*, 2013).

1.3.7 Treatment

Triclabendazole (6-chlor-5-(2,3-dichlorphenoxy)-2-methylthio-benzimidazol) (TCBZ, Fasinex[®]) is a benzimidazole derivate and was introduced in the 1980s in veterinary practice. It was not used in humans until the epidemic of fasciolosis near the Caspian Sea in 1989 (Massoud, 1990). It is the only drug against fasciolosis that is recommended and named as essential medicine by the World Health Organisation (WHO) (WHO Model List of Essential Medicines, 18th list, April 2013). It is active against both, immature and adult flukes, and can be applied in the acute and chronic phases (Millán et al, 2000; Fairweather, 2005; WHO, 2015; Keiser and Utzinger, 2009).

For treatment of humans, a single dose with 10 mg/kg body weight should suffice. In case of treatment failure, a second dose with 10 mg/kg for a total dose of 20 mg/kg is indicated. The efficacy of triclabendazole is 80% to 90% (Kappagoda *et al.*, 2011). In 1999, a study from Fairweather and Boray, (1999b), showed that the effect of other drugs like niclofolan, brotianide, oxyclozanide, and rafoxanide, is much weaker than that of TCBZ. During the past years, resistance against triclabendazole has been observed (Gaasenbeek *et al.*, 2001; Moll *et al.*, 2000; Mitchell *et al.*, 1998; Winkelhagen *et al.*, 2012). Although praziquantel is the preferred drug for trematodes in general, triclabendazole is the drug of choice to treat a fasciolosis because *F. hepatica* has a poor response to praziquantel (Kappagoda *et al.*, 2011).

Another benzimidazole derivate is 'Compound Alpha' (Cpd α) or 'Compound 6' (Cpd 6) (5-chloro-2-methylthio-6-(1-napthyloxy)-1H-benzimidazole) having a very similar chemical structure to TCBZ (Usip *et al.*, 2014; McConville *et al.*, 2009). The advantage of this drug is its high impact on adult TCBZ-susceptible flukes, while the disadvantages are its low activity against juvenile TCBZ-susceptible flukes and the lack of any demonstrable activity against TCBZ-resistant flukes (McConville *et al.*, 2009).

Nitazoxanide (Alinia[®], Daxon[®], Colufase[®]) (2-acetolyloxy-N-(5-nitro-2-thiazolyl)benzamide) is a nitrothiazolyl-salicylamide derivate and was first described 1984 by Francois Rossignoll (Rossignoll and Maisonneuve, 1984).

This drug is effective against a broad range of parasites including trematodes (Fox and Saravolatz, 2005). For children up to 11 years of age, the recommended dosage is 100 or 200 mg (7.5 mg/kg) twice daily for three days, and for people older than 12 years of age this is 500 mg twice daily for seven days. With a 7 day course, the cure rates are 60% (Anderson and Curran, 2007; Kappagoda *et al.*, 2011).

1.3.8 Molecular typing

For *F. hepatica* no haplotypes have been established yet, but two genes, *cox1* and *nad1*, and two spacer regions, internal transcribed spacer 1 (ITS-1) and ITS-2, have been used for phylogenetic analysis.

The ITS is located between the small and the large subunit rRNA genes. In eukaryotes two types of ITS exist. ITS1 is located between 18S and 5.8S, and ITS2 is located between 28S and 5.8S (Lafontaine and Tollervey, 2001).

One of the largest studies on the diversity of *F. hepatica* was conducted by Semyenova *et al.* (2006). They examined individuals of *F. hepatica* from Eastern Europe and Western Asia and described two main lineages for *cox1* and *nad1*. The sequences were homogenous with no variation between flukes from Russia, Belarus, Armenia, Ukraine, and Turkmenistan. In general, *cox1* and *nad1* strains from Eastern Europe are rather similar to strains from Western Asia (Semyenova *et al.*, 2006), while strains from Southern Europe (Spain, Italy, and Portugal) show high accordance with strains from Northern Africa (Algeria, Tunisia, and Egypt) (Martins dos Santos, 2012; Farjallah *et al.*, 2013; Martínez-Valladares and Rojo-Vázques, 2014).

In 2005, Semyenova *et al.* examined the ITS-2 region of 58 *F. hepatica* and *F. gigantica* from Eastern Europe and Western Asia. They found no sequence variation between 43 individuals of *F. hepatica* from Russia, Ukraine, Armenia, Belarus, and Turkmenistan, indicating a high homogeneity.

Martins dos Santos (2012) described 12 haplotypes for *cox1* and five haplotypes for *nad1* for strains from Portugal. She revealed a low genetic

distance to strains from Tunisia and Algeria in *cox1* and a low genetic distance to sequences from Egypt and Italy in *nad1*.

In another study from Europe, Farjallah *et al.* (2013) examined the diversity of *F. hepatica* in Sardinia (Italy) by sequence comparisons of the ITS-1 and ITS-2 regions and the *cox1* and *nad1* genes. They revealed one haplotype for ITS-1, two haplotypes for ITS-2, three haplotypes for *cox1* and five haplotypes for *nad1*. In the *cox1* gene the Sardinian strains were similar to strains from France, Tunisia, Algeria, China, Australia, Uruguay, Japan, Ukraine, Turkey, Belarus, Armenia, Turkmenistan, and Russia. In the *nad1* gene the Sardinian strains were similar to strains from Russia, Belarus, Ukraine, Bulgaria, Armenia, Georgia, Azerbaijan, Turkey, China, Korea, Japan, Egypt, and Australia. The Sardinian strains show also similarities to sequences from Ireland, Egypt, the USA, and Uruguay.

Walker *et al.* (2007) examined the diversity of *F. hepatica* from Ireland for three different mitochondrial regions (*cox3/nad4*, *atp6/nad1*, and *cox1/*–rRNA) and revealed 35 haplotypes.

Walker *et al.* (2011) examined the *cox3* gene from 422 flukes from two farms from two geographical regions in the Netherlands and revealed 92 haplotypes. Two of these haplotypes were also found in samples of *F. hepatica* from Ireland, Poland, and Great Britain.

Martínez-Valladares and Rojo-Vázques (2014) examined 56 *F. hepatica* eggs for the *cox1* gene and 51 *F. hepatica* eggs for the *nad1* gene from three geographical regions in Spain. The eggs were collected from faeces of different sheep. In total, they revealed 32 haplotypes for the *cox1* gene and the *nad1* gene each.

Amer *et al.* (2011) examined flukes from Egypt and revealed 13 haplotypes for *cox1* and 14 haplotypes for *nad1*, indicating a high diversity within the population in Egypt.

Farjallah *et al.* (2009) examined *F. hepatica* from Tunisia and Algeria. They revealed identical sequences for the ITS-1 and ITS-2 regions from both

countries and a high sequence similarity of these isolates with isolates from Niger, Turkey, Ireland, Iran, and Egypt.

1.4 Aims of the study

The main aim of the present thesis was the genetic characterisation of Austrian isolates of *F. magna* and *F. hepatica*. Samples were isolated from infested animals, but included also recent and historic material from the Natural History Museum Vienna (NHMV). The genetic diversity was examined by sequencing the mitochondrial DNA (mtDNA) encoding the *cox1* and *nad1* genes. This was achieved by DNA extraction, PCR, DNA sequencing, and computer-assisted phylogenetic analyses. It was also aimed to proof the hypothesis of a low genetic diversity of *F. magna* and a high genetic diversity of *F. hepatica* in Austria.

A further aim of this thesis was to assess differences between the genera *Fasciola* and *Fascioloides* on the protein level. It is largely unknown whether the human parasite *F. hepatica* that has been endemic in Austria for hundreds of years shares important antigens with the imported and newly established parasite *F. magna*. For this reason, protein and antigen profiles were compared by SDS-Page and Western blot analysis using pooled human serum.

2. Materials & Methods

2.1 Samples

26 samples of *F. magna* (Fm), collected from various regions in the southeast of Vienna were included in this study (Tab. 2.1).

Tab. 2.1: Samples of <i>F. magna</i> with their year of collection, host, and source.

No.	Year	Host	Location ¹	N°	E°	
Fm1	2013	Red deer	Markthof, LA	48°11'34.908"	16°57'26.6754"	
Fm2	2013	Red deer	Markthof, LA	48°11'34.908"	16°57'26.6754"	
Fm3	2013	Red deer	Witzelsdorf, LA	48°8'58.3794"	16° 50'5.8194"	
Fm4	2013	Fallow	Mannsdorf, LA	48°9'9.2622"	16°39'35.301"	
		deer				
Fm5	2013	Red deer	Mannsdorf, LA	48°9'9.2622"	16°39'35.301"	
Fm6	2013	Red deer	22. district,	48°14'43.2"	16°56'43.7"	
			Untere Lobau, Vie			
Fm7	2013	Red deer	22. district,	48°13'51.132"	16°28'42.3366"	
	Ur		Untere Lobau, Vie			
Fm8	2013	Red deer	Eckartsau, LA	48°8'42.8958"	16°47'50.8308"	
Fm9	2013	Red deer	Orth/Donau, LA	48°8'41.3658"	16°42'5.4498"	
Fm10	2013	Red deer	Fischamend, LA	48°7'7.1646"	16°36'45.4968"	
Fm11	2013	Red deer	Fischamend, LA	48°7'7.1646"	16°36'45.4968"	
Fm12	2013	Red deer	Fischamend, LA	48°7'7.1646"	16°36'45.4968"	
Fm13	2013	Red deer	Fischamend, LA	48°7'7.1646"	16°36'45.4968"	
Fm14	2014	Red deer	Markthof, LA	48°11'34.908"	16°57'26.6754"	
Fm15	2014	Red deer	Markthof, LA	48°11'34.908"	16°57'26.6754"	
Fm16	2014	Deer	Markthof, LA	48°11'34.908"	16°57'26.6754"	
Fm17	2014	Red deer	Markthof, LA	48°11'34.908"	16°57'26.6754"	
Fm18	2014	Red deer	Eckartsau, LA	48°8'42.8958"	16°47'50.8308"	
Fm19	2014	Red deer	Orth/Donau, LA	48°8'41.3658"	16°42'5.4498"	
Fm20	2014	Red deer	22. district,	48°13'51.132"	16°28'42.3366"	
			Untere Lobau, Vie			

¹ Vie = Vienna, LA = Lower Austria

Fm21	2014	Red deer	Fischamend, LA	48°7'7.1646"	16°36'45.4968"
Fm22	2014	Red deer	Fischamend, LA	48°7'7.1646"	16°36'45.4968"
Fm23	2014	Red deer	Orth/Donau, LA	48°8'41.3658"	16°42'5.4498"
Fm24	2014	Red deer	Petronell, LA	48°6'39.488"	16°51'24.126"
Fm25	2014	Red deer	Witzelsdorf, LA	48°8'58.3794"	16°50'5.8194"
Fm26	2014	Red deer	Engelhartstetten,	48°10'2.152"	16°53´01.483"
			LA		

For a better overview the regions are marked on a map (Fig. 2.1).

Fig. 2.1: Samples of *F. magna* from various regions in Austria.

Eight samples of *F. hepatica* (Fh) were provided by the Natural History Museum Vienna (Tab. 2.2).

Tab. 2.2: Samples of <i>F. hepatica</i> with their year of collection, host, and sou	irce.

No.	Year	host	Location ²	N°	E°
Fh1	2004	Cattle	Mooslandl, LA	47°39'11.310"	14°45'50.985"
Fh2	2013	Cattle	Hall (Oberhall), Sty	47°34'23.613"	14°27'41.8422"
Fh3	2013	Cattle	Weissenbach/Enns, Sty	47°42'16.7688"	14°37'45.8292"
Fh4	2013	Cattle	Admont (Krumau),	47°35'0.204"	14°31'5.844"

² Tyr = Tyrol, Sbg = Salzburg, Ibk = Innsbruck, Car = Carinthia

			Sty			
Fh5	2013	Cattle	Johnsbach, Styr		47 31'59.2098"	14°36'16.0122"
Fh6	2013	Cattle	Weißenbach/Enn	s,	47°42'16.7688"	14°37'45.8292"
			Sty			
Fh30	2015	Cattle	St. Aegyd, LA		47°51'11.47"	15°33'39.117"
Fh31	2015	Cattle	Schwarzenbach	an	47°56'46.968'	15°23'0.491"
			der Pielach, LA			

Further 13 samples of *F. hepatica* (Fh) were collected at the abattoir Alpenrind GmbH Salzburg (Tab. 2.3).

No.	Year	host	Location	N°	E°
Fh7	2015	Cattle	Hopfgarten im	47°25'51.5274"	12°8'59.6034"
			Brixental, Tyr		
Fh8	2015	Cattle	Itter, Tyr	47°28'12.671"	12°8'36.472"
Fh9	2015	Cattle	Westendorf, Tyr	47°25'58.836"	12°12'55.770"
Fh10	2015	Cattle	Eugendorf, Sbg	47°52'01.679"	13°07'23.462"
Fh11	2015	Cattle	Seekirchen am	47°53'41.1108"	13°07'25.6542"
			Wallersee, Sbg		
Fh12	2015	Cattle	Seekirchen am	47°53'41.1108"	13°07'25.6542"
			Wallersee, Sbg		
Fh13	2015	Cattle	Eugendorf, Sbg	47°52'7.7046"	13°07'43.5828"
Fh14	2015	Cattle	Zell am Ziller, Tyr	47°14' 0.0954"	11°52'54.822"
Fh15	2015	Cattle	Feldkirchen, Car	46°43'31.136"	14°5'52.442''
Fh16	2015	Cattle	Ottenschlag, LA	48°41'55.623"	15°9'07.093"
Fh17	2015	Cattle	Ebbs, Tyr	47°37'46.2468"	12°12'53.4672"
Fh18	2015	Cattle	Söll, Tyr	47°30'13.8198"	12°11'32.5278"
Fh19	2015	Cattle	Maishofen, Sbg	47°21'39.744"	12°48'26.589"

Tab. 2.3: Samples of *F. hepatica* with their year of collection, host, and source.

Examined were the livers of cattle from various regions in Austria. The focus was on signs of infestations like dilated bile ducts (Fig. 1.20). To get the samples of *F. hepatica*, a section across the bile duct was performed and the flukes were drained off manually (Fig. 2.2). When the bile duct was clogged up

with calcifications and debris, the bile duct was opened in its direction to collect the samples (Fig. 2.3).

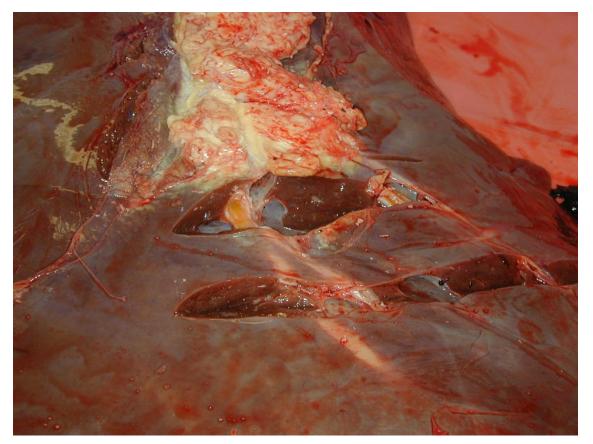


Fig. 2.2: Section of the bile ducts (orig.). A cut across the bile duct was performed to get samples of *F. hepatica*.

Fig. 2.3: Section of a bile duct (orig.). Because the bile duct was clogged up it was opened in its direction.

Finally, also 10 samples of *F. hepatica* provided by the AGES and collected from the livers of cattle from the Tyrol were included in this study (Tab. 2.4).

No.	Year	host	Location	N°	E°
Fh20	2015	Cattle	Tyrol (community	47°15'13.467"	11°36'5.3532"
			unknown)		
Fh21	2015	Cattle	Leutasch, Ibk	47°22'8.0178"	11°8'38.8458"
Fh22	2015	Cattle	Kössen, Ibk	47°40'7.251"	12°24'14.9184"
Fh23	2015	Cattle	Angerberg, Tyr	47°30'19.3392"	12°1'48.8676"
Fh24	2015	Cattle	Angerberg, Tyr	47°30'19.3392"	12°1'48.8676"
Fh25	2015	Cattle	Angerberg, Tyr	47°30'19.3392"	12°1'48.8676"
Fh26	2015	Cattle	Mühlbachl, Ibk	47°8'12.8286"	11°26'45.0852"
Fh27	2015	Cattle	Neustift im	47°6'32.565"	11°18'18.8856"
			Stubaital, Tyr		
Fh28	2015	Cattle	Ellbögen, Tyr	47°10'3.6474"	11°27'30.639"
Fh29	2015	Cattle	Innsbruck, Tyr	47°16'9.1632"	11°24'14.7666"

Tab. 2.4: Samples of *F. hepatica* with their year of collection, host, and source.

For a better overview the regions are marked on a map (Fig. 2.4).

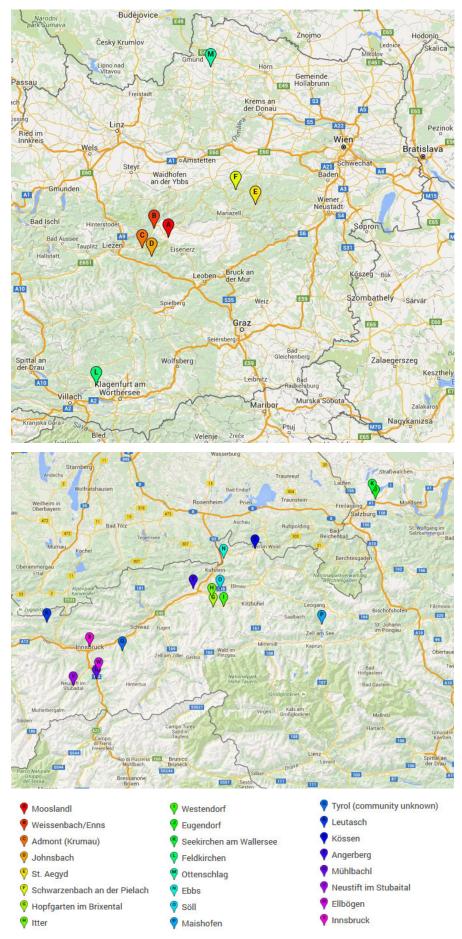


Fig. 2.4: Samples of *F. hepatica* from various regions in Austria.

2.2 Molecular biological techniques

In this study, partial sequences of the *cox1* and *nad1* genes were examined.

2.2.1 Primers

2.2.1.1 F. magna

To amplify a fragment of the mtDNA genes *cox1* and *nad1* the primer pairs from Králová-Hromadová *et al.* (2008), were used (Tab. 2.5):

Tab. 2.5: Primers for PCR amplification of mitochondrial genes *cox1* and *nad1* of *F. magna.* The expected size of the *cox1* amplicon is 439 bp and of the *nad1* amplicon 405 bp.

-	•			
Gene	Primer	Sequence	CG%	Melting
				temperature
				(T _M) (°C)
cox1	FmCOX1 fwd	5'-GGTCATGGGGT	42.11	54
	(FM_COX1_VAR1_F)	TATAATGA-3′		
cox1	FmCOX1 rev	5´-ACAGCATAGTA	47.37	56
	(FM_COX1_VAR1_R)	ATAGCCGC-3		
nad1	FmNAD1 fwd	5'-TTATGTGTGTT	30.00	52
	(FM_NAD1_VAR1_F)	GTTGTTTTG-3		
nad1	FmNAD1 rev	5'-CTACAACACAT	25.00	50
	(FM_NAD1_VAR1_R)	AAAAAAAAG-3′		

2.2.1.2 F. hepatica

The primers were chosen from the literature, the forward primer for *cox1* from Itagaki *et al.* (1998), the reverse primer for *cox1* and the primers for *nad1* from Semyenova *et al.* (2006) (Tab. 2.6).

Tab. 2.6: Primers for PCR amplification of mitochondrial genes <i>cox1</i> and <i>nad1</i> of <i>Fasciola</i>
hepatica. The expected size of the cox1 amplicon is 429 bp and of the nad1 amplicon 316 bp.

Gene	Primer	Sequence	CG %	Melting
				temperature
				(T _M) (°C)
cox1	FhCOX1 fwd	5'-TTGGTTTTTTGGGCAT	42.11	54
	(no orig. name)	CCT-3'		
cox1	FhCOX1 rev	5'-AGGCCACCACCAAAT	42.86	60
	(no orig. name)	AAAAGA-3´		
nad1	FhNAD1 fwd	5'-TATGTTTTGTACGGG	40.00	56
	(no orig. name)	ATGAG-3′		
nad1	FhNAD1 rev	5´-AACAACCCCAACCAA	42.86	60
	(no orig. name)	CACTTA-3′		

All primers were ordered from Microsynth AG Switzerland (<u>http://www.microsynth.ch/</u>) and used in a dilution of 10 pmol/µl.

2.2.2 DNA isolation

In order to isolate DNA from *F. magna* and *F. hepatica*, the QIAamp DNA Mini Kit 250 (QIAGEN, Vienna) was used.

In brief, 20–25 mg tissue of the respective fluke was cut into small pieces with a scalpel. The tissue was taken from the apical zone to avoid inclusion of genitals that could contain foreign sperm (Moazeni *et al.*, 2012).

180 µl buffer ATL and 20 µl Proteinase K were added to the samples and incubated on a shaker (Thermomixer comfort, Eppendorf, Hamburg, Germany) at 56 °C with 450 rpm (revolution per minute) over night. After a centrifugation step with the 1-15 Microfuge (Sigma-Aldrich, St. Louis, USA) for 1 min with 6,000 x g (times gravity), 200 µl buffer AL was added and after a 15 sec pulsevortexing the samples were incubated at 70 °C for 10 min. After an additional centrifugation step 200 µl of 100% ethanol were added and pulse-vortexed again for 15 sec. After centrifugation, the sample was added into the QIAamp Mini spin column and centrifuged. Then the column was washed with 500 µl buffer AW1 and after a centrifugation step, the column was washed with 500 µl AW2 and centrifuged with 18,000 x g for 3 min. Following an additional centrifugation step with 16,000 x g for 1 min, the column was washed with 200 µl buffer AE, incubated at room temperature for 1 min and centrifuged with 6,000 x g for 1 min. The amount of the DNA was measured using the NanoDrop ND-1000 spectrophotometer (Peglab, Erlangen, Germany) and then was stored at -20 °C.

2.2.3 PCR

All pipetting steps were performed in a sterile bench (Heraeus, Germany). For every PCR, a mastermix was prepared and mixed with sterile ddH₂O and different amounts of DNA (1 μ l, 3 μ l, 6 μ l) to a reaction volume of 50 μ l. Sterile ddH₂O without DNA was used as negative control. The positive control was done by morphological identification of the flukes. For the mastermix, 11 μ l ddH₂O, 5 μ l PCR buffer (Solis Biodyne), 5 μ l MgCl₂ (25 mM), 5 μ l forward primer (1 μ M), 5 μ l reverse primer (1 μ M), 1 μ l dNTP's (20 mM) and 0.25 μ l polymerase (Hot Fire DNA Polymerase I, 5 U/ μ l, Solis Biodyne) were used. The PCR reaction was performed in 0.2 ml soft PCR tubes using a thermocycler from Eppendorf programmed for 15 min initial denaturation with 95 °C and 30 cycles with denaturation at 95 °C for 1 min, annealing at 56 °C for 2 min, extension at 72 °C for 3 min and final extension at 72 °C for 7 min. Because of good results of previous test-PCR's (data not shown), the temperature specifications were used for all primer pairs.

2.2.4 Gel electrophoresis

DNA was separated in a 2% agarose gel. In brief, 1 g or 2 g agarose (Sigma-Aldrich Inc., Saint Louis, MO, USA) were dissolved in 50 ml or 100 ml 1x TAE (Tris-acetate-EDTA) buffer respectively (Carl Roth GmbH + Co. KG, Germany). After a short boiling period with a magnetic stirrer and a short cooling period, 3 μ l or 5 μ l (according to volume of 1x TAE buffer) GelRed (GeneOn GmbH, Germany) were added under stirring conditions to guarantee a uniform distribution in the liquid. After polymerisation of the agarose gel, the slots were loaded with a mixture of PCR product and 10x DNA loading buffer (Bromophenol blue), in a 1:10 ratio (loading buffer : PCR product) up to a volume of 30 μ l. To validate the size of the amplicons one slot was loaded with 20 μ l of a Step marker (50–3000 bp, Sigma-Aldrich Inc., Saint Louis, MO, USA). The electrophoresis was performed in an electrophoresis chamber (BIO-RAD Wide Mini-Sub Cell GT/Mini Sub Cell GT) containing 1x TAE buffer, using 100 V/300 mAmp.

In order to visualize the bands, the agarose gel was exposed to UV light, and for further usage, the gel bands were cut out using a scalpel.

2.2.5 Purification of agarose gel bands

The amplicons were purified according to the manufacture protocol of QIAquick[®] Gel Extraction Kit (250) (Qiagen, Vienna).

The gel bands were weighted, and 2 volumes of Buffer GQ were added to 1 volume of gel. After incubation for 10 min at 50 °C, or until the gel was dissolved, 1 gel volume of isopropanol was added. Following a centrifugation step in a column for 1 min with 16,000 x g and discarding the flow-through, the column was washed with 750 μ l Buffer PE and centrifuged for 1 min with 16,000 x g. An additional centrifugation step for 1 min with 16,000 x g was performed to remove Buffer PE completely and 50 μ l Buffer EB was added and centrifuged for 1 min to elute the DNA. The samples were stored at -20 °C.

2.2.6 Sequencing PCR

Sequencing PCRs were run with 3 μ l of the respective PCR product mixed with 2 μ l AB mix, 2 μ l forward or reverse primer (10 pmol) and 1 μ l AB Big Dye[®] Terminator 5x sequencing buffer (Applied Biosystems, Austria) and filled up with ddH₂O to a total volume of 10 μ l. The PCR amplification started with an initial denaturation phase at 96 °C for 30 sec followed by 40 cycles of denaturation at 96 °C for 10 sec, annealing phase at 50 °C for 5 sec and an elongation phase at 60 °C for 4 min.

2.2.7 Purification of sequencing PCR products

Following the PCR amplification, the PCR products were transferred into 1 ml tubes and mixed with 1 μ l sodium acetate buffer and 33 μ l 100% ethanol for precipitation. After an incubation period of 17 min on ice, the samples were centrifuged with 13,000 x g, 4 °C, for 30 min. The supernatant was discarded and the remaining pellet was washed with 90 μ l of 70% ethanol. An additional

centrifugation step with 13,000 x g, 4 °C, 10 min, followed. The supernatant was discarded and the sample tubes were air-dried for 3 min. 20 μ l HiDi Formamide (Applied Biosystems, Austria) were added, the remaining alcohol was evaporated and the tubes were incubated at 95 °C for 5 min on a heat block and then incubated for 5 min on ice. The tubes were stored at 4 °C until they were used for sequencing. The sequencing was performed in an automated ABI PRISM 310 Sequencer (PE Applied Biosystems, Langen, Germany).

2.2.8 Sequence analysis

For phylogenetic investigation, all sequences obtained were first blasted against sequences of trematodes available in GenBank by using BLAST (Altschul *et al.*, 1990). For haplotype identification, multiple alignments were performed using ClustalX (Thompson *et al.*, 1997) and manually edited with GeneDoc (Nicholas *et al.*, 2007). For the comparison of the obtained sequences of *F. magna* and *F. hepatica* with sequences from GenBank wobble bases were excluded.

2.2.9 Establishment of a *cox1* and *nad1* haplotype system for *F. hepatica*

As for *F. hepatica* no widely accepted haplotype system has been established yet, all sequences available at GenBank were compared to one another and a haplotype system was established, cut off: 1 bp difference. The sequences for the *cox1* gene of *F. hepatica* can be divided into two groups (group A and B), based on the localisation of the respective fragment within the gene (group A: bp 687-bp 1,000, group B: bp 35-bp 487) and the available sequences for the *nad1* gene by one group (group C: bp 6-bp 277) (Tabs. 2.7, 2.8, 2.9). For the present study, primers were chosen for group A because group B is only represented by strains from Egypt, Iran, and Peru. The fragment lengths are 313 bp for the *cox1* gene and 271 bp for the *nad1* gene. However, as the sequences available at GenBank considerably vary in length only a fragment of 313 bp for *cox1* and 271 bp for *nad1*, being available for all sequences, could be used for set-up the typing system.

	A1	A3	A3	A 4	A5	A6	A7	A 8	A9	A10	A11	A12	A13
A1													
A2	1												
A3	4	3											
A 4	4	3	6										
A5	3	2	5	1									
A6	25	24	23	22	23								
A7	4	3	6	2	1	20							
A 8	3	2	5	3	2	22	3						
A9	2	1	4	4	3	23	4	1					
A10	4	3	2	6	5	23	6	5	7				
A11	4	3	2	6	5	22	6	5	4	2			
A12	4	3	2	6	5	22	6	5	4	2	2		
A13	3	2	1	5	4	21	5	4	3	1	1	1	

Tab. 2.7: Differences of base pairs among the *cox1* haplotypes of group A.

Tab. 2.8: Differences of base pairs between the cox1	haplotypes of group B.

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
B1													
B2	8												
B3	9	2											
B4	8	1	3										
B5	9	3	4	3									
B6	5	7	9	8	9								
B7	5	5	2	1	2	7							
B 8	8	6	7	6	7	9	5						
B9	4	6	5	5	7	5	4	6					
B10	9	5	6	5	6	10	4	1	7				
B11	10	6	7	6	7	11	5	2	8	1			
B12	8	6	7	6	7	9	5	2	8	1	2		
B13	8	4	5	4	5	9	3	2	6	1	2	2	

100000	C20																				
1000000000	C19																				2
Contraction of	C18																		15	1	1
0000000	C17																		-	2	2
0.000000	C16				Ì													2	-	2	4
	C15																2	2	1	5	1
10000000	C14															e	-	e	2	3	2
0.00000000	C13													1	4	m	4	4	4	7	9
	C12													3	2	2	-	e	2	4	3
the nad I haplotypes of group C.	C11												-	-	e	2	2	4	3	5	4
bes of	C10			- 30								-	2	•	4	m	m	5	4	9	5
apioty	60										2	-	2	3	4	e	2	m	4	9	5
ad I na	80 C8			-36					- 2-12	m	4	m	2	5	۲	e	m	-	2	2	-
	C7								-	2	2	4	m	9	2	4	4	2	3	3	2
gnom	99 9							2	-	2	2	4	m	9	2	4	4	2	3	3	2
oairs a	CS						2	2	-	2	2	4	m	9	2	4	4	2	3	3	2
base p	5					2	2	2	-	2	2	4	m	9	2	4	4	2	3	e	2
es or	ប				m	m	m	e	2	4	4	m	2	2	2	m	m	-	2	4	e
erenc	C2			-	4	4	4	4	m	m	m	2	m	4	e	4	4	2	3	2	4
a: DII	υ Ο		21	20	20	20	20	20	19	21	21	20	19	22	18	20	20	19	20	19	18
I ab. 2.9: Differences of base pairs among		C	2	ទ	C4	C5	C6	C7	с8 С	60	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20

Tab. 2.9: Differences of base pairs among the *nad1* haplotypes of group C.

2.2.10 Protein extraction from tissue

For protein analysis, 300 mg of *F. magna* and *F. hepatica*, respectively, were hackled with a scalpel and homogenised with glass beads in 1.5 ml of PBS (phosphate buffered saline) in the tissue homogeniser Precellys 24 (Bertin Technologies) with 6 x 20 sec shaking and 2 min cooling at 4 °C. After a centrifugation step at 13,000 x g, 30 min, 4 °C, the supernatants were transferred into a 2 ml Eppendorf tube and precipitated according to Pumidonming *et al.* (2014) with adaptations:

In brief, the supernatants were resuspended in 10% trichloroacetic acid (w/v) (Sigma-Aldrich Inc., Saint Louis, MO, USA) in acetone (Merck KGaA, Darmstadt, Germany) in 2 ml Eppendorf tubes and incubated for 90 min at -20 °C. After a centrifugation step at 13,000 x g, 30 min, and 4 °C, the supernatant was removed and the pellet was washed twice with 90% (v/v) acetone in ddH₂O, followed by a centrifugation step at 13,000 x g, 30 min, and 4 °C. Following air drying, the proteins were resuspended at RT (room temperature) in SDS sample solubilisation buffer (1% (w/v) SDS, 100 mM Tris-HCl, pH 9.5, in ddH₂O). After another centrifugation step at 13,000 x g, 1 hour, and 4 °C, the supernatant was mixed with 4x SDS-PAGE loading buffer and heated to 95 °C for 10 min. Afterwards the mixture was loaded onto a 12.5% SDS gel as described below.

2.2.11 Isolation of membrane proteins

The extraction was performed according to an adapted protocol from Bordier, (1981). The tissues were transferred into ice cold PBS with 1 mM PMSF (phenylmethylsulfonyl fluoride) (Merck KGaA, Darmstadt, Germany), 1 mM EDTA (ethylenediaminetetraacetic acid), 1 mM DL-DTT (DL-dithiothreitol) and 1% Triton X-114 (all purchased from Sigma-Aldrich Inc., Saint Louis, MO, USA). After incubation at 4 °C for 90 min, and vortexing steps every 10 min, the samples were incubated at 30 °C for 10 min. After clouding of the solution, another centrifugation step followed at 10,000 x g, 5 min, at RT. Afterwards the

detergent phase was isolated, and the proteins were precipitated as described above.

2.2.12 SDS-polyacrylamide gel electrophoresis and immunoblotting

SDS-polyacrylamide gel electrophoresis was performed using a Mini-Protean[®] 3 Cell (Bio-Rad, CA, USA). Proteins were separated in 12.5% acrylamide with 20 mA, at RT, including a High Range Rainbow[™] Molecular Weight Marker (RPN756E, 12-225 kDa, Amersham Biosciences Europe GmbH, Freiburg, Germany). For protein profile analysis, the SDS-PA gel was stained with Coomassie Brilliant blue R-250 (Sigma-Aldrich, Saint Louis, MO, USA) and for immunoreactivity the proteins were transferred onto a PVDF membrane (polyvinylidene difluoride) (Bio-Rad, CA, USA) via semidry blotting with 220 mA for 2 hours. For transfer, Western transfer buffer (for 10x: 250 mM Tris-HCl, 1.92 M glycine in ddH_2O) was mixed with methanol in a dilution of 1:2 (10x buffer : methanol). To verify the protein transfer the membrane was stained with Ponceau S (Sigma-Aldrich, Saint Louis, MO, USA). The unspecific binding sites were blocked with blocking buffer (PBS, 3% bovine serum albumin (BSA), 0.1% Tween 20) for 1 hour at RT on a rocking platform. The membranes were incubated with pooled human serum (10 adult individuals without worm infestations) diluted with blocking buffer at a dilution of 1:100, overnight on a rocking platform at 4 °C. After three washing steps with washing buffer (PBS, 0.1% Tween-20) the membrane incubated with horseradish was peroxidase-conjugated Affini-Pure Goat Anti-Human lgG (Jackson ImmunoResearch Laboratories, San Francisco, USA), at a dilution of 1:100 with blocking buffer, for 2 hours on a rocking platform. The reactivity was made visible by developing the membrane with 4-chloro-1-naphtole (Sigma-Aldrich, Saint Louis, MO, USA) and H_2O_2 in 1x TAE on a shaker.

3. Results

3.1 PCR

Representative PCR products from the samples Fm1-Fm13 of *F. magna* in a dilution of 1:50 is shown in figure 3.1. The amplicon size of the respective fragment of the *cox1* gene is 439 bp and of the *nad1* gene 405 bp.

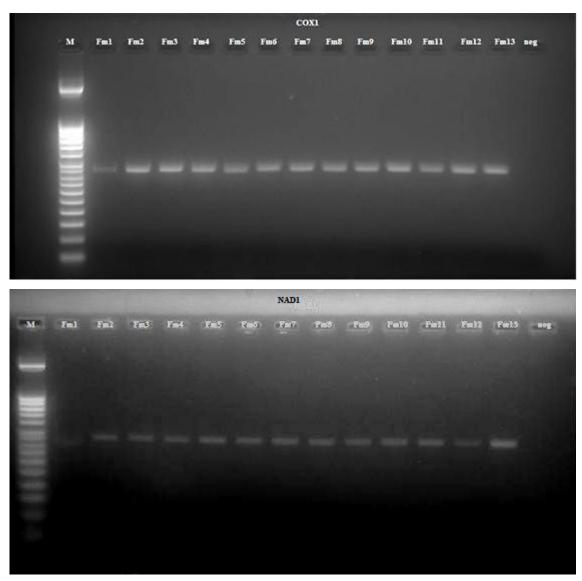


Fig. 3.1: PCR with samples of *F. magna* with a dilution of 1:50 with primers for the *cox1* and the *nad1* genes.

Representative PCR products from the samples Fh1-Fh6 of *F. hepatica* in a dilution of 1:50 is shown in figure 3.2. The amplicon size of the fragment of the *cox1* gene is 429 bp and of the *nad1* gene 316 bp.

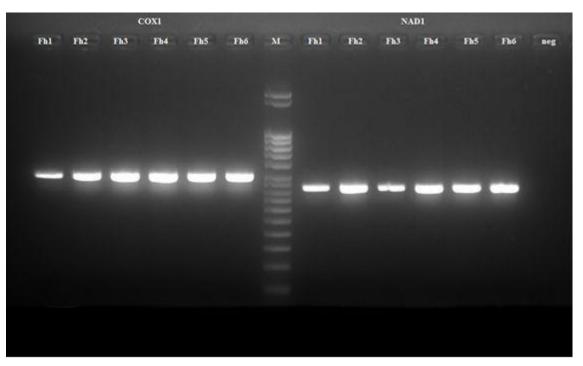
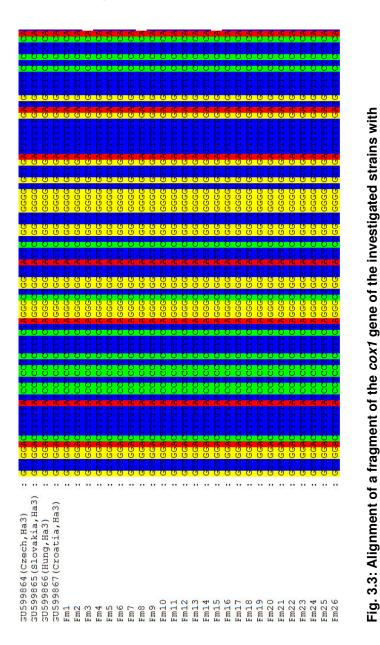



Fig. 3.2: PCR with samples of *F. hepatica* with a dilution of 1:50 with primers for the *cox1* and the *nad1* genes.

3.2 Diversity of Fascioloides magna

All 26 samples investigated had identical sequences (272 bp for *cox1* and 172 bp for *nad1* respectively because sequences were cut to receive a uniform length for all sequences) and are of the same haplotype, namely COX1-Ha3/NAD1-Ha4 (Fig 3.3, Fig. 3.4). The sequencing results yielded in some wobble bases in the sequences Fm3, Fm6, Fm8-Fm12, Fm15, Fm17, Fm19, Fm23–Fm26 but the wobble bases do not compromise the assignment to the haplotypes for the *cox1* gene and the *nad1* gene.

3.2.1 Alignment COX1

reference strains for haplotype 3 of *F. magna.* **For a better overview only a part of the most similar reference strains is shown.**

GU599843 (Hungary, Ha4) GU599841 (Slovakia, Ha4) GU599844 (Croatia, Ha4) GU599837 (Czech, Ha4) Em25 Em26 Em24

Fig. 3.4: Alignment of a fragment of the *nad1* gene of the investigated strains with reference strains for haplotype 4 of *F. magna*. For a better overview only a part of the most similar reference strains is shown.

3.2.2 Alignment NAD1

3.3 Diversity of Fasciola hepatica

3.3.1 New haplotype system

For cox1 the available sequences were divided into two main groups, corresponding to two different regions within the cox1 gene. The established cox1 and nad1 haplotypes for *F. hepatica* are shown in tabs. 3.1-3.3. The mitochondrial genome of *F. hepatica* has a length of 14,461 bp. The position of the cox1 gene in the mitochondrial genome is from bp 6,871–bp 8,402, and the position of the nad1 gene is in the range of bp 5,176–bp 6,078.

Haplotype	Isolate	Known	Citation	Exemplary
		occurrence		sequences
A1	Ar1	Tunisia	Farjallah, <i>et al</i> .,	GQ231551
			2009	
A2	Gf7	Tunisia	Farjallah, <i>et al</i> .,	GQ231548
	Ag3	Algeria	2009	GQ231549
	FhFrG1	France	Dong <i>et al</i> .,	AJ628039
			unpublished	
A3	FhFG5	France	Ai <i>et al</i> ., 2011	GU112488
	FhFG8			GU112481
	FspGXG3			GU112476
	FspGXG10			
	FspGXG12			
	FspGXG6			
A4	H27	Spain	Martínez-Valladares	KF111621
			and Rojo-Vázques,	
			2014	
A5	Ar5	Tunisia	Farjallah <i>et al</i> ., 2009	GQ231550
	FhCOI-H3	Italy	Farjallah <i>et al</i> ., 2013	JF824674
	FhNJG3	China	Dong <i>et al.</i> ,	AF216697
	FhGSG2	Spain	unpublished	
	H14	Australia	Martínez-Valladares	

Tab. 3.1: *cox1* haplotypes of *F. hepatica* (Group A). Cut off: one base pair difference. Position in the *cox1* gene: bp 687–bp 1,000.

	H29		and Rojo-Vázques,	
	Geelong		2014	
	strain		Le <i>at al</i> ., 2000	
A6	FhGSG17	China	Ai <i>et al</i> ., 2011	GU112484
	FhGSG18			GU112485
	FhGSG19			GU112486
A7	FhNJG4	China	Dong <i>et al</i> .,	AJ628036
	FhGSG1		unpublished	AJ628037
A 8	FhCOI-H1	Italy	Farjallah <i>et al</i> ., 2013	JF824670
A9	FhCOI-H2	Italy	Farjallah <i>et al</i> ., 2013	JF824672
				JF824673
A10	FhAM1	USA	Ai <i>et al</i> ., 2011	GU112482
A11	FhAM2	USA	Ai <i>et al</i> ., 2011	GU112483
A12	Fh23.3	Spain	Ai <i>et al</i> ., 2011	GU112457
A13	Fh2.3	Spain	Ai <i>et al</i> ., 2011	GU112454
	Fh2.5	Niger		GU112470
	Fh84.4			FJ469984
	FhCTO6			
	FhCTE5			
	FhCMA3			

The comparison of the sequences show that the three strains of the type A6 (China) have the lowest relationship to all other sequences with a sequence difference of up to 25 bp. Other strains from China show a much lower difference to other haplotypes (up to 6 bp).

Tab. 3.2: *cox1* haplotypes of *F. hepatica* (Group B). Cut off: one base pair difference. Position in the *cox1* gene: bp 35-bp 487.

Haplotype	Isolate	Known	Citation	Exemplary
		occurrence		sequences
B1	Fh-Co1-Eg8	Egypt	Amer <i>et al</i> ., 2011	AB553816
B2	Sh2	Peru	Reyna and	KJ716916
	Sw4		Sanabria,	KJ716923
			unpublished	
B3	Sh3	Peru	Reyna and	KJ716917
			Sanabria,	
			unpublished	
B4	Fh-Co1-Eg13	Egypt	Amer <i>et al</i> ., 2011	AB553812
B5	Fh-Co1-Eg9	Egypt	Amer <i>et al</i> ., 2011	AB553815
B6	Fh-Co1-Eg10	Egypt	Amer <i>et al</i> ., 2011	AB553819
B7	Ca1	Peru	Reyna and	KJ716910
	Ca2	Egypt	Sanabria,	AB553825
	Ca3	Iran	unpublished	GQ398054
	Ca4		Amer <i>et al</i> ., 2011	
	Sw5		Moazeni <i>et al</i> .,	
	Sh1		2012	
	Fh-Co1-Eg1		Moazeni <i>et al</i> .,	
	Fh-Co1-Eg2		unpublished	
	Geno-4			
	camel-B			
B8	Fh-Co1-Eg12	Egypt	Amer <i>et al</i> ., 2011	AB553823
	Geno-3	Iran	Moazeni <i>et al</i> .,	GQ398053
			2012	
B9	Fh-Co1-Eg7	Egypt	Amer <i>et al</i> ., 2011	AB553814
B10	Camel-A	Iran	Moazeni <i>et al</i> .,	FJ895605
	Persian-1	Peru	unpublished	FJ895604
	Ca5	Egypt	Sharifiyazdi <i>et al</i> .,	KJ716914
	Fh-Co1-Eg1		2012	
	Genosheep-1		Reyna and	
	Geno-1		Sanabria,	

			unpublished	
			Amer <i>et al</i> ., 2011	
			Moazeni <i>et al</i> .,	
			2012	
B11	Fh-Co1-Eg5	Egypt	Amer <i>et al</i> ., 2011	AB553817
				AB553818
B12	Fh-Co1-Eg4	Egypt	Amer <i>et al</i> ., 2011	AB553820
				AB553821
B13	Gencattle-2	Iran	Sharifiyazdi <i>et al</i> .,	GQ398056
	Geno-2	Egypt	unpublished	GQ398052
	Fh-Co1-Eg		Moazeni <i>et al</i> .,	AB553826
			2012	
			Amer <i>et al</i> ., 2011	

Group B is represented only by strains from Egypt, Peru, and the Iran.

Haplotype	Isolate	Known	Citation	Exemplary
		occurrence		sequences
C1	G4-3	China	Peng <i>et al</i> ., 2009	AB477369
C2	LSNad7	Spain	Martínez-	KF111637
			Valladares and	
			Rojo-Vázques,	
			2014	
C3	LSNad8	Spain	Martínez-	KF111630
			Valladares and	
			Rojo-Vázques,	
			2014	
C4	U3-1	China	Peng <i>et al</i> ., 2009	AB477362
	H1-1	Egypt		AB477357
	FhND1-Eg10			AB554185
C5	Fh-C10	China	Ichikawa <i>et al</i> .,	AB604929
			unpublished	

Tab. 3.3: *nad1* haplotypes of *F. hepatica* (Group C). Cut off: one base pair difference. Position in the *nad1* gene: bp 6-bp 277.

Results

C6	Fh-C7	China	Ichikawa <i>et al</i> ., unpublished	AB604926
C7	Fh-C8	China	Ichikawa <i>et al</i> ., unpublished	AB604927
C8	U1-2	China	Peng <i>et al</i> ., 2009	AB477361
C9	FhN11	Poland	Norbury <i>et al</i> ., unpublished	KR422390
C10	FhN1 FhN12 FhN13 FhN14 FhNDI-H3 FhND1-Eg2 IRFhN_0007 IRFhN_0030 FhNWey	Poland Italy Egypt Iran UK	Norbury <i>et al.</i> , unpublished Farjallah <i>et al.</i> , 2013 Akhlaghi <i>et al.</i> , unpublished Norbury <i>et al.</i> , unpublished	KR422392 JF824677 AB554179 KR422397
C11	complete genome unnamed FhNDI-H2	Ireland Italy	Itagaki <i>et al</i> ., 2005a Farjallah <i>et al</i> ., 2013	AB207156 JF824676
C12	FhND1-Eg9 ND1-P2	Egypt Peru	Amer <i>et al</i> ., 2011 Ichikawa-Seki, unpublished	AB554192 LC070667
C13	FhNDI-H5	Italy	Farjallah <i>et al</i> ., 2013	JF824679
C14	Ovine-B FhND1-Eg3 FhND1-Eg12 FhND1-Eg14	Iran Egypt	Amer <i>et al.</i> , 2011 Sharifi Yazdi <i>et al.</i> , unpublished Amer <i>et al.</i> , 2011	AB554191 GQ175364 AB554187
C15	Ovine-A U1-1 FhNDI-H1a FhNDI-H1b Fh-ND1-Eg1	Iran China Italy Egypt Australia	Sharifi Yazdi <i>et al.</i> , unpublished Peng <i>et al.</i> , 2009 Farjallah <i>et al.</i> , 2013	GQ175363 JF824675 AB207155

Kor1	South	Amer <i>et al</i> ., 2011	
H2-1	Korea	Itagaki <i>et al</i> ., 200	15a
Fh-C ⁻	11	Itagaki <i>et al</i> ., 200	5b
FhND	1-Eg13		
C16 Ovine	-C Iran	Sharifi Yazdi <i>et a</i>	l., GQ356033
		unpublished	
C17 FhND	I-H4 Italy	Farjallah <i>et al</i> .,	JF824678
		2013	
C18 H4-1	China	Peng <i>et al</i> ., 2009	AB477359
C19 FhND	1-Eg11 Egypt	Amer <i>et al</i> ., 2011	AB554181
C20 FhND	1-Eg8 Egypt	Amer <i>et al</i> ., 2011	AB554186
			AB554183

Haplotype C1 (China) shows the highest difference to all the other groups (up to 48 bp).

3.3.2 Assignment of the Austrian isolates to haplotypes

To determine to which haplotypes the Austrian sequences belong, 313 bp fragments for the *cox1* gene and 271 bp fragments for the *nad1* gene were examined and yielded in a 100% identity to different haplotypes (Tabs. 3.4, 3.5, 3.6).

The 31 individuals of *F. hepatica* investigated could be grouped into two different clusters for *cox1* and into three different clusters for *nad1*. The most common haplotype for *cox1* and *nad1* was represented by 21 individuals and the second most common by 10 individuals for *cox1* and nine individuals for *nad1*. One haplotype for *nad1* was represented only by one individual. Differences in the sequences were more pronounced in the *nad1* gene than in the *cox1* gene. Styria, the Tyrol, and Salzburg revealed all haplotypes except of one. Upper Austria, Lower Austria, and Carinthia only revealed one haplotype for each gene. The haplotype NAD1-C18 was found only in the Tyrol (Tab. 3.4). Thus, the Tyrol had the overall highest diversity of haplotypes.

For *cox1*, the Austrian flukes can be identified as belonging to the following haplotypes:

- COX1-A2 (21 isolates)
- COX1-A5 (10 isolates)

The sequences of COX1-A2 and COX1-A5 differ at two positions.

For *nad1*, the Austrian flukes can be identified as belonging to the following haplotypes:

- NAD1-C10 (21 isolates)
- NAD1-C15 (9 isolates)
- NAD1-C18 (1 isolate)

Altogether, the three haplotypes for *nad1* differ at 4 positions. More precisely, NAD1-C10 differs from NAD1-C15 at two positions and from NAD1-C18 at four positions. NAD1-C15 differs from NAD1-C18 at one position.

Haplotypes	Geographical distribution
COX1-A2	Styria, Upper Austria, Salzburg, Tyrol, Lower Austria,
	Carinthia
COX1-A5	Styria, Tyrol, Salzburg,
NAD1-C10	Styria, Upper Austria, Salzburg, Tyrol, Lower Austria,
	Carinthia
NAD1-C15	Styria, Tyrol, Salzburg,
NAD1-C18	Tyrol

Tab. 3.4: Geographical distribution of the haplotypes in Austria.

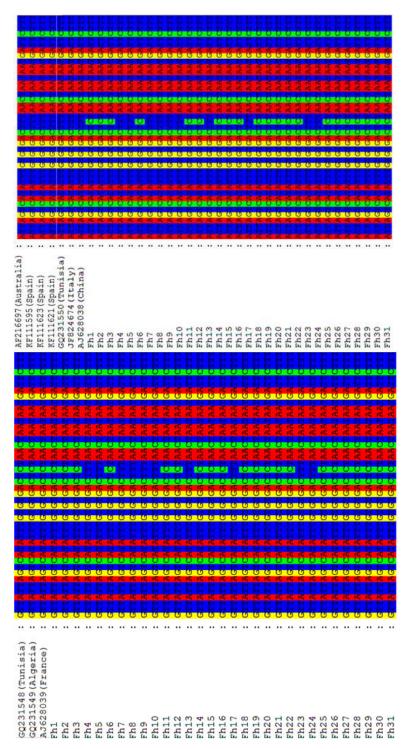
Tab. 3.5: Differences of base pairs among the *cox1* haplotypes and the Austrian haplotypes.

	COX1-A2		COX1-A5	
A 1		1		3
A2		0		3 2 5
A 3		3		5
A 4		3		1
A 5		2		0
A 6		24		23
A7		3		1
A 8		2		2
A9		1		3
A10		3		5
A11		3		2 3 5 5 5
A12		3		5
A13		2		4

Tab. 3.6: Differences of base pairs among the *nad1* haplotypes and the Austrian haplotypes.

	NAD1-C10	NAD1-C15	NAD1-C18
C1	20	20	20
C2	2	3	4
C3 C4	3	2	3
C4	3	2	2
C5 C6	4	3	3
C 6	4	3	3
C7	4	3	3
C 8	4	2	3
C9	1	4	5

Results


C10034C11145C12123C13234C14212C15301C16322C17212C18410C19544				
C12123C13234C14212C15301C16322C17212C18410		0	3	4
C13234C14212C15301C16322C17212C18410		1	4	5
C14212C15301C16322C17212C18410		1	2	3
C15301C16322C17212C18410	C13	2	3	4
C16322C17212C18410		2	1	2
C17 2 1 2 C18 4 1 0		3	0	1
C18 4 1 0	C16	3	2	2
	C17	2	1	2
C19 5 4 4		4	1	0
	C19	5	4	4

An overview of the haplotypes identified in Austria is shown in table 3.7.

Haplotype	Austrian samples	Austrian	Known
		provinces	distribution
COX1			
COX1-A2	Fh1, Fh2, Fh3, Fh6	Styria	Tunisia
	Fh11, Fh12, Fh14,	Upper Austria	Algeria
	Fh15, Fh16, Fh18,	Salzburg	France
	Fh19, Fh20, Fh21,	Tyrol	
	Fh22, Fh25, Fh26,	Carinthia	
	Fh27, Fh28, Fh29,	Lower Austria	
	Fh30, Fh31		
COX1-A5	Fh4, Fh5, Fh7, Fh8,	Styria	Tunisia
	Fh9, Fh10, Fh13,	Tyrol	Italy
	Fh17, Fh23, Fh24	Salzburg	China
			Australia
			Spain
NAD1			
NAD1-C10	Fh1, Fh2, Fh3, Fh6,	Styria	Italy
	Fh11, Fh12, Fh14,	Upper Austria	Egypt
	Fh15, Fh16, Fh18,	Salzburg	Iran
	Fh19, Fh20, Fh21,	Tyrol	United Kingdom
	Fh22, Fh25, Fh26,	Carinthia	Poland
	Fh27, Fh28, Fh29,	Lower Austria	
	Fh30, Fh31		

NAD1-C15	Fh4, Fh5, Fh7, Fh8,	Styria	China
	Fh9, Fh10, Fh13,	Tyrol	Egypt
	Fh23, Fh24	Salzburg	Iran
			Italy
			Australia
			South Korea
NAD1-C18	Fh17	Tyrol	China
			Egypt

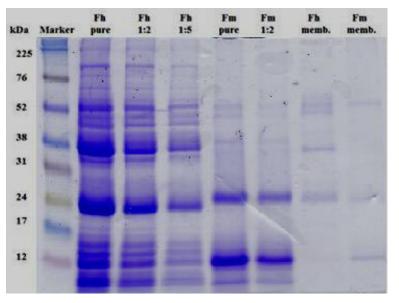
For some sequences the sequencing yielded solitary wobble bases. For the sequences of Fh7, Fh10, Fh17, Fh19, Fh20, Fh21, Fh28, Fh29, and Fh30 the assignment to the haplotypes for the *cox1* gene is nevertheless definite as the wobble bases are in highly conserved regions. For the *nad1* gene, wobble bases were found in samples Fh10, Fh14-Fh19, Fh21, Fh22, Fh24, Fh26-Fh28, Fh30, and Fh31. Also for this gene the wobble bases do not have an impact on the assignment to the haplotypes for the *nad1* gene.

3.3.3 Alignment COX1

Fig. 3.5: Alignment of a fragment of the *cox1* gene of sequences of the Austrian samples Fh1–Fh31 with COX1-strains. Only a variable fragment is shown.

3.3.4 Alignment NAD1

KT893731(Iran)		TTATCTCTTGCTTGCTTGCCTTGCCTTGCCTGCCTTGCCCTGCTG
KT893730(Iran)		TT <mark>ATCT</mark> GTTGGTTTTGTTGGCCTTGTGG
KR422397 (UK)		TT <mark>ATC</mark> TGTTGGTTTGGTTGGCTTGTGG
KR422389(Poland)		TT <mark>ATCTGTTGGTTTGGTTGGCTTGT</mark> GG
KR422390 (Poland)		TT <mark>ATCTGTTGGTTTGGTTGGC</mark> TTGTGG
KR422391 (Poland)		TT <mark>ATCTGTTGGTTTGGTTGGCTTGT</mark> GG
KR422392 (Poland)	:	TT <mark>ATCTGTTGG</mark> TTTTGTTGGCTTGTGG
KR422393 (Poland)	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TTGTGG
JF824677(Italy)		TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TTGTGG
AB554179(Egypt)	:	TT <mark>ATCTGTTGGTTTTGTTGTTGT</mark> GG
AB554180 (Egypt)	:	TT <mark>ATCTGTTGGTTTTGTTGTCGC</mark> TTGTGG
Fh1	:	TT <mark>ATCTGTTGGTTTTGTTGTCGC</mark> TTGTGG
Fh2	:	TT <mark>ATCTGTTGGTTTTGTTGGCTTGT</mark> GG
Fh3	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TTGTGG
Fh4	:	TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TTGTGG
Fh5	:	TT <mark>ATTTG</mark> TT <mark>GG</mark> TTTT <mark>G</mark> TT <mark>GGC</mark> TT <mark>G</mark> TGG
Fh6		TT <mark>ATCTGTTGGTTTTGTTGTGTGT</mark> GG
Fh7	:	TT <mark>A</mark> TTT <mark>GTTGGTTTT</mark> G <mark>TT</mark> GG <mark>C</mark> TT <mark>G</mark> TGG
Fh8	:	TT <mark>A</mark> TTT <mark>GTTGGTTTT</mark> G <mark>TT</mark> GG <mark>C</mark> TTGTGG
Fh9	:	TT <mark>ATTT</mark> G <mark>TTGGTTTTT</mark> GTTGG <mark>C</mark> TT <mark>GT</mark> GG
Fh10		TT <mark>A</mark> TTTGTTGGTTTTGGTTGGCTTGTGG
Fh11	:	TT <mark>AT</mark> CTGTTGGTTTTGTTGGCTTGTGG
Fh12	:	TT <mark>ATC</mark> TGTTGGTTTTGTTGGCTTGTGG
Fh13	:	TT <mark>ATTTG</mark> TT <mark>GGTTTTG</mark> TT <mark>GGC</mark> TT <mark>G</mark> TGG
Fh14		TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TTGTGG
Fh15	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TTGTGG
Fh16	:	TT <mark>ATC</mark> TGTTGGTTTTGTTGGCTTGTGG
Fh17	:	TT <mark>A</mark> TTTGTTGGTTTTGTTGGCTTGTGG
Fh18		TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh19	:	TT <mark>ATCTGTTGGTTTTGTTGGCTTGT</mark> GG
Fh20	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh21	:	TT <mark>ATC</mark> TGTTGGTTTTGTTGGCTTGTGG
Fh22		TT <mark>ATC</mark> TGTTGGTTTTGTTGGCTTGTGG
Fh23	:	TT <mark>A</mark> TTTGTTGGTTTTGGTTGGCTTGTGG
Fh24	•	TT <mark>A</mark> TTTGTTGGTTTTGGTTGGCTTGTGG
Fh25	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh26	•	TT <mark>ATC</mark> TGTTGGTTTTGTTGGCTTGTGG
Fh27	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh28	:	TT <mark>ATC</mark> TGTTGGTTTTGTTGGCTTGTGG
Fh29	:	TT <mark>ATC</mark> TGTTGGTTTTGTTGGCTTGTGG
Fh30		TT <mark>ATCT</mark> CTTGCTTTTGTTGCCTTGTGC
Fh31	:	TT <mark>ATCTGTTGGTTTTGTTGGCTT</mark> GTGG


Fig. 3.6: Alignment of a fragment of the *nad1* gene of sequences of the Austrian samples Fh1–Fh31 with NAD1-strains. Only a variable fragment is shown.

AB207155 (Australia)	:	TT <mark>ATTTGTTGGTTTGGTTGGCTTG</mark> G
GQ175363(Iran)	:	TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
AB477360 (China)	:	TT <mark>ATTTGTTGGTTTGGTTGGC</mark> TT <mark>GT</mark> GG
AB477358 (China)	:	TTATTTGTTGGTTGGGTTTGTGGCTTGTGG
JF824675(Italy)		TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
JF824680(Italy)	:	TT <mark>A</mark> TTT <mark>GTTGGTTTTGGTTGGC</mark> TT <mark>GG</mark> GG
AB604930(China)	:	TT <mark>A</mark> TTT <mark>GTTGGTTTTGGC</mark> TT <mark>GT</mark> GG
AB554184 (Egypt)	:	TT <mark>A</mark> TTT <mark>GTTGGTTTTGGC</mark> TT <mark>GT</mark> GG
AB554177 (Egypt)		TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
AB554189 (Egypt)	:	TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
AB477359(China)	:	TT <mark>ATTTGTTGGTTGGTTGGTGGC</mark> TT <mark>GG</mark> TGG
AB554190 (Egypt)	:	TT <mark>ATTTGTTGGTTGGTTTGGTGGC</mark> TT <mark>GG</mark> TGG
JF824678(Italy)		TT <mark>ATTTGTTGGTTGGTTTGGC</mark> TT <mark>GGC</mark> TT <mark>GG</mark> TGG
AB211239 (SouthKorea)	:	TT <mark>ATTT</mark> GTTGGTTTTGGTTGGCTTGC
Fh1	:	TT <mark>ATC</mark> TGTTGGTTTTGCTTGCTTGC
Fh2	:	TT <mark>ATCT</mark> GTTGGTTTTG <mark>TT</mark> GG <mark>CTT</mark> GTGG
Fh3	:	TT <mark>ATCTGTTGGTTTTGTTGGCTTG</mark> TGG
Fh4	:	TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TTGTGG
Fh5	:	TT <mark>ATTT</mark> GTTGGTTTTG <mark>TT</mark> GG <mark>C</mark> TT <mark>G</mark> TGG
Fh6	:	TT <mark>ATCTGTTGGTTTTGTTGGCTTG</mark> TGG
Fh7	:	TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TTGTGG
Fh8	:	TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TT <mark>GGC</mark> TT <mark>GG</mark> GG
Fh9	:	TT <mark>ATTTGTTGGTTGGTTTGGTGG</mark> TTG
Fh10	:	TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh11	:	TT <mark>AT</mark> CTGTTGGTTTTGGTTGGCTTGTGG
Fh12	:	TT <mark>ATC</mark> TGTTGGTTTTGTTGGCTTGTGG
Fh13	:	TT <mark>ATTTGTT</mark> GGTTTTGTTGGCTTGTGG
Fh14	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh15		TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh16	:	TT <mark>ATC</mark> TGTTGGTTTTGTTGGCTTGTGG
Fh17	:	TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh18	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh19	•	TT <mark>ATCTGTTGGTTTTGGTTGGC</mark> TT <mark>GG</mark> TGG
Fh20	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh21	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh22	:	TT <mark>ATC</mark> TGTTGGTTTTGGTTGGCTTGTGG
Fh23	:	TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh24	:	TT <mark>ATTTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh25	:	TT <mark>ATCTGTTGGTTTTGGTTGGC</mark> TT <mark>GG</mark> GG
Fh26	:	TT <mark>ATC</mark> TGTTGGTTTTGTTGGCTTGTGG
Fh27	:	TT <mark>ATCT</mark> GTTGGTTTTGGTTGGCTTGTGG
Fh28	:	TT <mark>AT</mark> CT <mark>GTTGGTTTTGGTTGGCTTG</mark> GG
Fh29	:	TT <mark>AT</mark> CT <mark>GTTGGTTTTGGTTGGC</mark> TT <mark>GT</mark> GG
Fh30	:	TT <mark>ATCTGTTGGTTTTGTTGGC</mark> TT <mark>GT</mark> GG
Fh31		TT <mark>ATCT</mark> CTTGCTTGCCTTCTGCCTTCTGC

Fig. 3.7: Alignment of a fragment of the *nad1* gene of sequences of the Austrian samples Fh1–Fh31 with NAD1-strains. Only a variable fragment is shown.

3.4 Differences between the genera *Fascioloides* and *Fasciola* on the protein level

F. hepatica revealed more protein bands than *F. magna*, moreover the bands were overall stronger (Fig. 3.8). *F. magna* and *F. hepatica* share intracellular proteins at 8, 12, and 52 kDa and membrane proteins at 24 and 52 kDa. However, *F. hepatica* has additional intracellular proteins at 9, 14, 15, 24, 35, 45, 51, 70, 74, 80, 100, and 225 kDa and additional membrane proteins at 35, 45, 51, and 53 kDa. *F. magna* has an additional intracellular protein at 25 kDa and membrane protein at 10 kDa.

Fig. 3.8: SDS-PAGE of intracellular and membrane proteins of *F. magna* **and** *F. hepatica.* Comparison of the protein profiles of both flukes. Fh = *F. hepatica*, Fm = *F. magna*, memb. = membrane

3.5 Differences between the genera *Fascioloides* and *Fasciola* on the antigen-level

F. hepatica has more immunoreactive proteins with pooled human serum than *F. magna*. They share an immunoreactive intracellular protein at 52 kDa and a membrane protein at 50 kDa. However, *F. hepatica* revealed additional intracellular antigens at approx. 8, 12, 15, 16, 26, 34, 38, 40, 52, and 225 kDa and a membrane antigen at 35 kDa. *F. magna* revealed additional intracellular antigens at 9, 24, 45, and 227 kDa and a membrane antigen at 35 kDa. (Fig. 3.9).

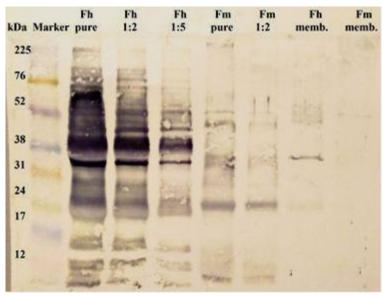


Fig. 3.9: Western blot of fractionated intracellular and membrane proteins of *F. magna* and *F. hepatica*. Comparison of the protein profiles of both flukes marked with antibodies. Fh = F. hepatica, Fm = F. magna, memb. = membrane

4. Discussion

In the present thesis, Austrian samples of *F. magna* and *F. hepatica* were characterised based on fragments of their *cox1* and *nad1* genes. Previous studies have shown that these sequences are useful markers for identification and differentiation (Farjallah *et al.*, 2009; Farjallah *et al.*, 2013; Amer *et al.*, 2011; Ai *et al.*, 2011; Semyenova *et al.*, 2006; Radvánský *et al.*, 2011; Králová-Hromadová *et al.*, 2011).

For *F. magna*, it was found that the Austrian population is totally homogenous. Only one *cox1* and one *nad1* haplotype was found.

For *F. hepatica*, a more diverse population was found. Altogether, two different *cox1* haplotypes and three different groups of *nad1* haplotypes were identified.

4.1 Diversity of F. magna

Altogether, 26 individuals of *F. magna*, isolated from Austrian red deer and fallow deer from the floodplains in the south of Vienna were examined for their *cox1* and *nad1* genes. The sequences were compared with strains published in GenBank.

It was found that all 26 samples of *F. magna* were of the same haplotype, namely COX1-Ha3/NAD1-Ha4. All 26 samples showed a 100% identity to isolates from Hungary, Slovakia, the Czech Republic, Croatia, and also to the two strains characterised in a previous study in this area, the only Austrian isolates of which sequence data are available (Sattmann *et al.*, 2014). In that study, they also found a 100% sequence identity to *cox1* haplotype 3 and to *nad1* haplotype 4, known to occur in Hungary, Slovakia, the Czech Republic, and Croatia. All these data in this study indicate that there is a genetically stable population of *F. magna* in Austria.

Although other haplotypes were also found in Slovakia, Hungary, the Czech Republic and Croatia (*cox1*: Ha4, Ha5; *nad1*: Ha5, Ha6, Ha7) to date individuals with these haplotypes have obviously not been able to expand to Austria. However, these haplotypes were found much less frequently also in the other countries (Králová-Hromadová et al., 2011). The low frequency might be the result of competitive pressure between the flukes. The lower genetic diversity in Austria indicates a recent introduction of *F. magna* and might also be a result of the impact of treatment programmes (Ursprung and Prosl, 2011). In contrast, the findings of more haplotypes in the neighbouring countries of Austria indicate a longer residence time of *F. magna* in these countries, particularly in the Czech Republic, where *F. magna* is known to occur since the 1940ies (Ullrich, 1930; Rajský et al., 1994; Majoros and Sztojkov, 1994; Marinculić et al., 2002). The population of F. magna in Italy is genetically distinguishable from the rest of Europe due to import of infested animals from various regions of the USA and due to the fact that the Italian individuals of F. magna only exist in an enclosed area (Králová-Hromadová et al., 2011). The haplotypes Ha1 and Ha2 (cox1) and Ha1, Ha2, and Ha3 (nad1) which are in Europe only found in Italy are identical to haplotypes in the west of the USA and Canada (Bazsalovicsová et al, 2013; Králová-Hromadová et al., 2011). The haplotypes from the other European regions are identical to haplotypes in the southeast of the USA (Králová-Hromadová et al., 2011). All these data indicate that the ancestors of the Austrian individuals of F. magna originated in the southeast of the USA and were introduced into Austria via the Czech Republic. An introduction via Slovakia and Hungary might also be possible. F. magna was found for the first time in Slovakia in 1988 (Rajský et al., 1994) and in Hungary in 1994 (Majoros and Sztojkov, 1994).

Studies from Hörweg *et al.* (2011), Liesinger (2011), and Haider *et al.* (2012) demonstrated that the prevalence in intermediate and final hosts depends on the season. Hörweg *et al.* (2011) examined the prevalence of *F. magna* in Austrian samples of *G. truncatula* from 38 locations collected from July 2004 until September 2005. Snails infested with *F. magna* were found only in the summer and at one location with a prevalence of 0.03%. Haider *et al.* (2012) examined the prevalence of *F. magna* in Austrian samples of *F. magna* in Austrian samples of *F. magna* in the summer and at one location with a prevalence of 0.03%. Haider *et al.* (2012)

peak of snails infested with *F. magna* was found in July with decreasing rates in August and September. In other months no infestation was detected. In 2011, Liesinger examined faeces from red deer on eggs of *F. magna*. The data show a peak in August, a decreasing rate in September and the highest peak in October which correlates with the data from Haider *et al.* (2012). When deer are infested with *F. magna*, the egg production starts approx. 12 weeks after infestation. In spite of an ongoing treatment programme, it was not possible to eradicate the population of *F. magna*. This could be seen in snails from their study, where the prevalence increased from 0.03% to 0.23%. Nevertheless *F. magna* to date seems to be restricted to an area in the southeast of Vienna and no further introduction of other haplotypes has occurred (Winkelmayer and Prosl, 2001; Ursprung and Prosl, 2011; Haider *et al.*, 2012, Sattmann *et al.*, 2014). Samples of *F. magna* used in the present study had been isolated mainly from red deer, and only in Lower Austria and Vienna, which correlates with the studies mentioned above.

Finally, although treatment programmes were and are not able to eradicate the population of *F. magna*, they have prevented a further spread into other parts of Austria. *F. magna* has a restricted final host range. The genetic diversity of *F. magna* in Austria was shown to be stable because for *cox1* and *nad1* only one haplotype was identified. Continuing studies are needed to control the distribution of *F. magna* with a special consideration of seasonal peaks.

To understand the distribution of *F. magna* in Europe and the importance of final hosts, a closer look into the past is needed:

F. magna was introduced into Europe for the first time when Savoy King Vittorio Emanuelle II ordered 60 wapiti from Wyoming, USA. 47 of them reached the La Mandria Park, Italy, and were hunted until 1865 (Apostolo, 1996; Bazsalovicsová *et al.*, 2015). However, with these animals, *F. magna* was also introduced and led to high deer mortality in 1875–1876 and 1977–1978, as the population of deer within the enclosed park exceeded 300 (Balbo *et al.*, 1989). Since the Royal Park is an enclosed region, Italy is the only country that shares haplotype 1 and haplotype 3 with North America (Oregon) and Canada (British

Columbia and Alberta) (Králová-Hromadová *et al.*, 2011; Bazsalovicsová *et al.*, 2015).

F. magna is of North American origin and evolved with ancestral *Odocoileus* spp. This is evidenced by apparent co-evolution and benign infestations in white-tailed and black-tailed deer (Samuel *et al.*, 2001). In North America and Canada, the fluke is enzootic in five major areas: the northern Pacific Coast, the Rocky Mountain trench, northern Quebec and Labrador, the Great Lakes region, the Gulf coast, lower Mississippi and the southern Atlantic seaboard. For *cox1* the haplotypes 1, 3, 6–35 and for *nad1* the haplotypes 3, 4, 6, 8–32 are found in the USA and Canada (Bazsalovicsová *et al.*, 2015).

Because *F. magna* is the only liver fluke, that has its origin in the Nearctic Region and due the fact, that other fasciolids were absent in the Neotropical Region before Columbus, it is assumed, that they originated after Gondwana was fragmented into South America and Africa 90–100 million years ago (Pitman *et al.*, 1993).

Red deer (*Cervus elaphus*), one of the main final hosts for *F. magna*, is the most widespread deer species worldwide. The species is of Eurasian origin and entered North America 11,000–70,000 years ago during the Pleistocene. They are mixed or intermediate feeders, alternating between browsing and grazing depending on the available habitat. This makes red deer resistant to changing environments and landscape conditions through glaciations, deglaciations, faunal extinctions, and human disturbances (Samuel *et al.*, 2001; Skog *et al.*, 2009). The colonisation routes of red deer based on cytochrome *b* sequences, published by Ludt *et al.* (2004), are shown in figure 4.1. Cervoids first appeared 25 million years ago, during the transition from the Oligocene to the Miocene, near what is now the Hindukush (Afghanistan and Pakistan) (Agustí and Antón, 2002).

Discussion

Fig. 4.1: Colonisation routes of red deer (*Cervus elaphus***)** (modified from Ludt *et al.*, 2004). The dotted lines show the migration routes of deer. The bold lines are natural barriers.

Today, the Western red deer can be classified into four groups: Western European, Balkanese, Middle Eastern, and African. Western Europe is separated from the Balkan group by the Alps and the Carpathians and from the Middle East by the Bosporus and the Caucasus (Ludt *et al.*, 2004).

Because most of the eastern and southern parts of Austria are within the Balkan group, only deer from this group might be responsible for the distribution of *F*. *magna* in the southeast of Vienna.

4.2 Diversity of F. hepatica

In this study, the 31 individuals of *F. hepatica* obtained from cattle from various regions in Austria could be grouped into two different clusters for *cox1* and into three different clusters for *nad1*. Differences were more pronounced in the *nad1* gene than in the *cox1* gene. The classification into haplotypes was not easy because the sequences available at GenBank have different lengths and are of different positions within the gene. Thus, the sequences were brought to the same length and the groups A and B for the *cox1* gene and group C for the *nad1* gene were established. Of course, this is an artificial system, but it is an attempt to establish a uniform haplotype system. If more sequences will be available the haplotype system will certainly become more heterogeneous. In general, the assignment of the Austrian samples is under reservation for several sequences because isolated bases could not be identified unambiguously.

This is the first study on the genetic diversity of *F. hepatica* in Austria. The data show a minor genetic diversity of Austrian isolates of *F. hepatica*, and high identities with isolates from other countries.

This chapter deals with the diversity of *F. hepatica* in Austria in comparison with results from other countries. Furthermore, the distribution of *F. hepatica* in the present and especially in the past will be discussed, with a focus on the anthropological impact.

4.2.1 COX1

In general, based on currently available sequences for the *cox1* gene, *F. hepatica* can be divided into two groups. Group A consists of strains from Italy, Spain, France, Algeria, Tunisia, China, Niger, Australia, and the USA. Group B consists of strains from Peru, Egypt, and Iran. The sequences of the two groups represent different locations within the *cox1* gene.

Haplotypes are usually based on SNPs. The diversity of *F. hepatica* has been examined for several European and non-European countries. The identity between strains from different continents is high (Alasaad *et al.*, 2007; Semyenova *et al.*, 2006).

The Austrian isolates revealed two different haplotypes which differ from one another by two bases:

Haplotype COX1-A2 is known to occur in Tunisia (GQ231548), Algeria (GQ231549), and France (AJ628039) with a 100% bp identity to the Austrian isolates.

COX1-A5 is known to occur in Tunisia (GQ231550), Italy (JF824674), China (AJ628035, AJ628038), Australia (AF216697), and Spain (KF111623, KF111621, KF111595) with a 100% bp identity to the Austrian isolates.

Thus, these haplotypes are wide-spread in both, European and non-European countries.

In Austria, both haplotypes were only found in Styria, the Tyrol, and Salzburg. One of these haplotypes was found additionally in Upper Austria, Lower Austria, and Carinthia. Between 1980 and 2013, 41 human cases of fasciolosis were registered and most of them were diagnosed in the Tyrol, Salzburg, Vorarlberg, and Upper Austria (Auer and Aspöck, 2014). Skoll (2015) reported that recent human cases of fasciolosis in Austria were found in Salzburg, Upper Austria and Vorarlberg. Salzburg, the Tyrol, and Upper Austria are known as endemic areas which correlate to the current findings. Unfortunately, no isolates from Vorarlberg were available for this study.

The current findings indicate that there is a diversity of *F. hepatica* in Austria, although cox1 is a comparably conserved gene and although only 31 individuals, partly from the same farm, were analysed. Farjallah et al. (2013) examined 66 isolates from cattle and sheep from the north and the middle of Sardinia, and found three haplotypes, whereby two of them differed at one site (312 bp/313 bp) and the third was represented by only one strain (JF824674) and differed from the other types at two (311 bp/313 bp) and three sites (310 bp/313 bp) respectively. Strains from China, obtained from two geographical regions, have been divided into three groups, group 1 represented by three strains (GU112484, GU112485, GU112486), group 2 by two strains (AJ628036, AJ628037), and group 3 by two strains (AJ628035, AJ628038). In that study, however the distance between the groups was higher, group 1 differed from group two at 23 sites (290 bp/313 bp) and from group 3 at 21 sites (292 bp/313 bp). However, Ai et al. (2011) examined 11 individuals of F. hepatica from three locations in China and found no differences. Semyenova et al. (2006) examined 220 flukes from 33 hosts and identified 10 cox1 types. They found two main lineages with a little genetic structuring between eastern European and western European populations of *F. hepatica*. One lineage was found in Europe, Armenia, America, and Uruguay, while the other lineage was found in Europe, Caucasus, Asia, China, Australia, and Japan. The Austrian isolates differ only at two positions.

In general, the *cox1* gene seems to have a low genetic diversity in *F. hepatica*. Moreover, only a low number of individuals of *F. hepatica* from few geographical regions and few final hosts have been examined worldwide. A higher number of hosts, geographical regions, and samples of *F. hepatica* may increase the diversity.

Walker *et al.* (2011) examined the *cox3* gene of 422 Dutch flukes from 20 cattle from two farms and revealed 92 haplotypes. This gene shows a much higher variability. Moreover, these farms harboured also sheep, introduced from elsewhere in the Netherlands. Also a high genetic diversity was found in a study from Walker *et al.* (2007). They examined 221 individuals of *F. hepatica* and found 18 composite haplotypes for *cox3/nad4* and 11 composite haplotypes for *cox1/rrna.*

In conclusion, the Austrian isolates revealed diversity, compared to the few individuals analysed and to the broad distribution of *F. hepatica* haplotypes throughout the world.

4.2.2 NAD1

In this study the Austrian isolates revealed three haplotypes which differed in up to four bases. The differences between NAD1-C10 and NAD1-C18 were more pronounced (4 bases) than between NAD1-C10 and NAD1-C15 (3 bases), and NAD1-C15 and NAD1-C18 (one base). All haplotypes are known to have a worldwide distribution.

NAD1-C10 is known to occur in Italy (JF824677), Egypt (AB554179, AB554180), Iran (KT893730, KT893731), United Kingdom (UK) (KR422397), and Poland (KR422389, KR422390, KR422391, KR422392, KR422393).

NAD1-C15 is known to occur in China (AB477358, AB477360, AB604930), Egypt (AB554177, AB554184, AB554189), Iran (GQ175363), Italy (JF824675, JF824680), Australia (AB207155), and South Korea (AB211239).

NAD1-C18 is known to occur in China (AB477359) and Egypt (AB554190).

In Austria the co-occurrence of all three haplotypes was found only in the Tyrol. In Styria and Salzburg, two of the haplotypes were found. In Upper Austria, Lower Austria, and Carinthia only one haplotype was found.

Haplotypes NAD1-C15 is known in China, Egypt, Iran, Italy, South Korea, and Australia. Thus, this haplotype group (collected in Tyrol, Styria, and Salzburg) is widely distributed in Eurasia and Australia.

Farjallah *et al.* (2013) investigated 66 samples of *F. hepatica* from cattle and sheep from the north and the middle of Sardinia and found five *nad1* haplotypes. Another study that has relevance for the present findings was published by Semyenova *et al.* (2006). They found two main lineages and have demonstrated that eastern European and western Asian populations of *F. hepatica* have little genetic structuring, probably due to a high gene flow between them and due to the movement of final hosts. These findings indicate that also for the *nad1* gene the diversity in *F. hepatica* is rather low. Interestingly, the haplotypes from Eastern Europe were not found in Austria. Walker *et al.* (2011), Walker *et al.* (2007), and Elliot *et al.* (2014) found that environment conditions and antihelmintics have a great impact on the genetic diversity of flukes. From 2002–2007 a drought period occurred in Australia, which might have resulted in a bottleneck-effect for the fluke populations and thus in fewer fluke genotypes in Australia (Elliot *et al.*, 2014).

In conclusion, the haplotypes of *F. hepatica* found in Austria are also found in other countries and continents. The results also show that *F. hepatica* in Austria is genetically more diverse than *F. magna*.

The level of diversity was higher in the *nad1* gene than in the *cox1* gene as seen by others (Elliot *et al.*, 2014; Semyenova *et al.*, 2006; Farjallah *et al.*, 2013). With the higher diversity, the *nad1* gene allows for a better distinction between strains. In general, the phylogenetic data for *F. hepatica* is poor. In most studies, only few isolates and only from a small number of locations and few animals were investigated.

4.3 Hypothesis on the origin of *F. hepatica*

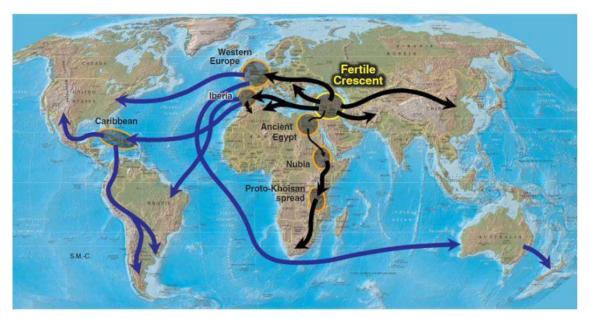
To understand the worldwide distribution of *F. hepatica*, a closer look into the past is needed. In this chapter, a short overview on the origin, the distribution routes, and the anthropological impact is given.

The results from the *cox1* and the *nad1* genes illustrate that almost all known haplotypes have a worldwide distribution.

It is generally assumed, that the ancient form of *F. hepatica* originated in Africa. One theory suggests that an ancient fasciolid form of *F. hepatica* was introduced to the Near East with African ruminants in the early Miocene (20.2–16.9 million years ago) when the sea level was low (Tassy, 1990; van der Made, 1999). Another theory is based on findings of basal fasciolids in African elephants and suggests that fasciolids originated in Africa in proboscideans that themselves originated approximately 50 million years ago. The radiation of the flukes in Eurasia occurred with this host, as proboscideans migrated and dispersed within Eurasia from approx. 18.5 to 0.8 million years ago (Lotfy *et al.*, 2008). A prehistoric invasion of *F. hepatica* into Europe is supported by findings of eggs of *F. hepatica* in human faeces collected in various regions in Europe from the Stone Age. Further findings of eggs of *F. hepatica* in human faeces are recorded from the Mesolithic period, the Neolithic, the Bronze Age, the Gallo-Roman period, and the Middle Ages (Mas-Coma *et al.*, 2005; Bouchet *et al.*, 2003).

4.4 Distribution routes of *F. hepatica*

F. hepatica is a parasite that is heavily dependent on its intermediate and final hosts. The wide distribution of *F. hepatica* has been caused firstly by natural movements of the intermediate hosts (longer lasting co-evolution between trematodes and molluscs) and secondly by natural movements of final hosts and translocations of these hosts by humans over hundreds of years all over the world and thirdly by the ability of the fluke to acquire a wide range of new hosts. Import and export of animals today and in the past seem to be major factors in


increasing the populations and the genetic structure of *F. hepatica* (Semyenova *et al.*, 2011).

For the distribution of the flukes, different scenarios are possible. The first ruminants evolved around 50 million years ago and were mainly feeding on fruits. The first global grass spreading period starting around 25 million years ago favoured the evolution of ruminants specialised on grass (Walochnik et al., 2010). Subsequently, the Miocene drop of the sea level caused by a highlatitude cooling event with an increase of the Eastern Antarctic ice sheets (Flower and Kennet, 1994; Miller et al., 1991). This led to the desiccation of the Tethys and the formation of vast grassland around 15 million years ago, which promoted the world wide spread and the enormous evolutionary success of modern ruminants (Walochnik et al., 2010; Agustí and Antón, 2002; Hag et al., 1987). The next grass-spreading period was seven to eight million years ago, when the Arabian plate stopped the circulation of warm deep-water between the Indo-Pacific and the Mediterranean Sea (Axelrod and Raven, 1978). The climate changed to cooler winters and decreased summer rainfalls and caused grass to spread over large areas of Europe and Asia (Axelrod, 1975; Cerling et al., 1997). This was advantageous for fast moving grazers, because they had an oversupply of food, which led to an expansion of the population (Ludt et al., 2004).

After the ancient flukes were introduced with these grazers into Eurasia, the adaption to new intermediate hosts was necessary. In the Near East, *Radix auricularia* (Linnaeus 1758) and *Radix gedrosiana* (Annandale and Prashad, 1919) were present, and the fasciolid ancestor was able to adapt to these hosts (Mas-Coma *et al.*, 2009). Due to its adaption to *G. truncatula* and Euro-Asiatic ovicaprine ancestors, the fasciolid ancestor was able to colonise colder regions (Hernandez Fernandez and Vrba, 2005). This is why *F. gigantica* and *F. hepatica* are found in different regions: *F. gigantica* needs higher temperatures for its development. Because *F. hepatica* changed to smaller lymnaeids such as *Galba* and smaller ruminants, which colonised colder regions, *F. hepatica* could adapt to colder environments. The geographical spread of *F. hepatica* in Europe, the Near East, and Asia could have taken place between 14.7 and 14.5

million years ago, when the diversification of the Caprinae occurred, and may also be the result of the greater mobility of the smaller ruminants and the wide distribution of *G. truncatula*. The adaption to other host species, such as *Bos*, *Bison*, and cervines, and the split of *Capra* and *Ovis* around 11.3 million years ago and following species 5.1–6.8 million years ago, intensified the distribution (Mas-Coma *et al.*, 2009).

For the distribution of the flukes within Eurasia and on other continents, humans were the main factor and domestication played an important role for the dispersal of the flukes. Domestication of grazers started in 15,000 BC (before Christ) and the first domesticated grazers were the wild herbivore progenitors of goats. Other species such as sheep and cattle followed (Aspöck and Walochnik, 2007; Pedrosa et al., 2005). In Central Europe, domesticated cattle and sheep, as two of the main final hosts, might have played a major role for the distribution of F. hepatica. The oldest known specimens of F. hepatica date back to 7,000 years ago in Central Europe and cattle were already domesticated 6,000 BC in Greece and Anatolia. However, at that time domesticated goats and sheep played a major role in Central Europe because they were already domesticated 7,000 BC (goats) and 8,200 BC (sheep) in Southwest Asia, Persia, and Anatolia (Aspöck, 2000). After 6,400 BC, the expansion of the Neolithic culture out of the Near East into Greece, the Balkans, and Central Europe occurred. The culture spread westwards to Europe, eastwards to Asia, and southwards to Africa (Mas-Coma et al., 2009) (Fig. 4.2).

Fig. 4.2: Spreading of *F. hepatica* in the post-domestication period (from Mas-Coma *et al.*, 2009). The yellow cycle illustrates the initial dispersal in the Near East with *Galba truncatula* and ovicaprines in the pre-domesticated period. The orange circles indicate regions with key roles in dispersal. The black arrows reveal the spread throughout the Near East in the post-domestication time, which originated in the Fertile Crescent, approximately 6,000 BC. Through the Balkans and Turkey-Greece, perhaps in the fourth and third millennium BC, a westward spread occurred to Central and Northern Europe. In the last 500 years the Americas and Oceania were colonised, denoted by blue arrows. The thin black lines indicate the spread to Africa through Egypt. Other colonisation routes in the Palearctic region, the Americas, the Indian subcontinent, and routes in Southeast Asia and the Far East are not included.

F. hepatica was probably spread into Europe by a southern and a northern route, whereby the southern route could include a sea passage through the Mediterranean Sea. Sheep, goats, and cattle played a major role for spreading. In the 11th and 12th centuries, the marine transport of infested sheep by Phoenicians, Greeks, and Romans can be assumed (Mas-Coma *et al.*, 2005; Bouchet *et al.*, 2003).

For Asia, two main routes, separated by the Himalaya chain, were possible: the first route through the Caspian Sea in northern and eastern directions, including the regions of Turkmenistan, Tajikistan, Iran, Uzbekistan, and Kirgizstan, and at least up to China and Mongolia to the Far East between the second and the 15th century AD (*anno domini*). An alternative southern route was also possible, but due to the absence of *G. truncatula* and appropriate lymnaeids in India and Southeast Asia, further spreading eastwards of *F. hepatica* in Southern Asia was not possible (Mas-Coma *et al.*, 2009).

Northwestern Africa, including Morocco, Algeria, and Tunisia, has a seasonally mild temperature and is optimal for the development of *G. truncatula*. At the beginning of the 20th century, in Egypt *F. hepatica* was absent, so the introduction of *F. hepatica* in northwestern Africa through northeastern Africa was not possible and probably occurred from the Levant, possibly through the Mediterranean Sea with the import of animals by the Phoenicians, Greeks, and/or the Romans, or with the medieval common Mediterranean market of the 11th the 12th century (Mas-Coma *et al.*, 2009). The Mediterranean Sea connected the northeast of Africa with Iberia, the Near East, and southern Europe and acted as a natural corridor for import and export of animals (Pereira *et al.*, 2006).

Because of the dominating presence of Radix natalensis (Kraus, 1848), F. hepatica was unable to distribute in the sub-Saharan, large Western, and Central African region (Brown, 1994). This lymnaeid is resistant to F. hepatica infestation, thus preventing a successful colonisation by this fluke. Due to the dry climate and the high temperatures, G. truncatula and F. hepatica were not endemic in Egypt in the past since the areas were desert (Mas-Coma et al., 2009). However, today, G. truncatula is endemic in Eastern Africa, especially in the flat lowlands of the Nile Delta, and in the mid-1990ies, F. hepatica reappeared in imported animals (El-Azazy and Schillhorn van Veen, 1983). The reappearance of both genera today was made possible by the construction of the Aswan Dam, which provided suitable environmental conditions (Mas-Coma et al., 2009). Pseudosuccinea columella (Say 1817), which is endemic in South Africa and the eastern equatorial countries, may also play an important role in transmission (Van Damme, 1984; Brown, 1994; Appleton, 2003). In the first millennium BC F. hepatica expanded southwards with Proto-Khoisan people, the oldest existing human group, and in the third millennium F. hepatica expanded to today's Kenya and Tanzania (Schlebusch et al., 2012; Mas-Coma et al., 2009).

The colonisation of Oceania and the Americas started between the 15^{th} and 19^{th} centuries, mainly from the western part of Europe. The spread of *F. hepatica* into these continents was driven by human migration and import of sheep,

cattle, and goats. Equids and other animals imported by Europeans played an important role for diffusion of the flukes into South America and the Caribbean (Apt *et al.*, 1993; Mas-Coma *et al.*, 1997).

For thousands of years, animals have been involved in different human activities, such as transportation, transhumance and trade. Especially sheep, goats, cattle, zebu cattle, taurine, buffaloes, donkeys, and pigs played and play an important role in the dissemination of the flukes. The transportation to other countries or continents and the seasonal movement of livestock between mountains and the lowlands, or the movement from one place to another due to the availability of grass or other plants enabled a wide expansion of *F. hepatica* to other areas (Mas-Coma *et al.*, 2009).

The distribution routes of humans and *F. hepatica* into Europe and Asia, seen in figures 4.2 and 4.3, show high similarities, with a beginning in the Fertile Crescent. After humans migrated out of Africa, they settled in the Fertile Crescent. In the post-domestication period, during migration to Asia, Africa, and the southern and northern parts of Europe, domesticated animals played an important role because of the need for milk, flesh, and transportation of people and goods.

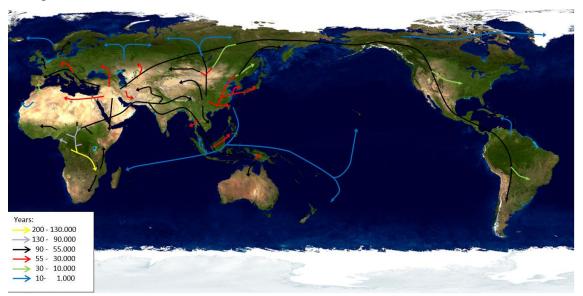


Fig. 4.3: Distribution routes of humans (modified from Kivisild *et al.*, 2003, original picture from Mauricio Lucioni, Lima, Peru).

4.5 Other impacts on the distribution of *F. hepatica*

4.5.1 The Roman Empire

Archaeological findings indicate that the Romans were infested with trematodes (*Fasciola hepatica*), nematodes (*Ascaris* sp.), cestodes (*Taenia* sp.), and adenophorea (*Capillaria* sp.) (Scarre, 1995; Dittmar and Teegen, 2003; Bakker, 2001). Romans may have spread parasites by themselves and with the transport of animals on their ships. The poor hygienic conditions in the Roman forts, the absence of veterinary investigations, and the expansion range of the Romans all enabled the unimpeded spread of parasites.

4.5.2 Middle Ages

Because of the poor hygienic conditions in the Middle Ages, many people were infested by parasites. Various parasite eggs have been found in latrines: *F. hepatica, Ascaris lumbricoides, Trichuris trichura* and *Diphyllobothricum latum* (Sczech, 1993). In cities, due to the lack of sanitary facilities and sewers, often a fatal cycle occurred: fountain – earth – latrine – earth – fountain (Sczech, 1993). This water and faecal cycle, with the presence of lymnaeid snails and water plants further amplified the distribution and the occurrence of infestations with *F. hepatica*.

4.6 Protein profiles of *F. magna* and *F. hepatica*

Proteins are important for the classification of parasite species. Especially the tegument, acting as an interface between the flukes and the host is covered by important proteins. For this thesis, proteins were extracted from the body and the tegument to test whether *F. magna* and *F. hepatica* share important proteins.

4.6.1 Intracellular proteins

It was found that *F. magna* and *F. hepatica* share intracellular proteins with 8, 12, and 52 kDa respectively. For *F. magna* there was an intracellular protein at 25 kDa while only for *F. hepatica* intracellular proteins with 9, 14, 15, 24, 35, 45, 51, 70, 74, 80, 100, and 225 kDa were found.

F. magna and *F. hepatica* are two different species of two different genera. Interestingly, they share three intracellular proteins with the same mass.

One of the most prominent bands was a band at approx. 12 kDa and it was present in the profile of both flukes. Figueroa-Santiago *et al.* (2011) described a FhSAP2 fusion protein (11.5 kDa), a member of the *F. hepatica* saposin like-2 protein family. This protein is thought to play a role in pore formation, membrane binding, cell lysis, and to interact with lipids (Cabán-Hernandez and Espino, 2013).

Kim *et al.* (2003) examined a low molecular weight protein (8 kDa), which can be used as diagnostic parameter in fasciolosis because it has no cross-reactions with other human trematodes. However, *F. magna* also has a band of this size, indicating that this protein is shared by both flukes and is essential in the mature stage. It is probably needed to attach on the bile duct and for nutrition.

Gaudier *et al.* (2012) described a protein FhTP16.5 with approx. 17 kDa that is poorly expressed in miracidiae, but highly expressed in juvenile and adult stages. This protein is detectable in humans with chronic fasciolosis and is a useful marker in serodiagnosis of fasciolosis (Gaudier *et al.*, 2012). Hillyer and Soler de Galanes (1988) revealed multiple proteins of 17 kDa to 26 kDa, a protein with 63 kDa, and a 17 kDa protein after they had incubated live *F. hepatica* in phosphate buffered saline (PBS). The multiple proteins in the range of 19 to 26 kDa were not seen in the present study. Only one protein with 24 kDa was observed. However, Gaudier *et al.* (2012) used RPMI 1640 medium for the transportation of the flukes. RPMI 1640 contains the reducing agent

glutathione and high concentrations of vitamins such as biotin and vitamin B_{12} , which might have increased the production of the 17 kDa protein.

Another study that has relevance for the present findings is from Collins *et al.* (2004). They describe a procathepsin L1 with approx. 37 kDa and a cathepsin L with 24.5 kDa. They are located in the gut of the parasites. Cathepsins are important for tissue penetration, feeding, and immunomodulation, which allow the establishment of the parasite in the host (Collins *et al.*, 2004). In order to overcome the intestinal wall, *F. hepatica* uses the proteases cathepsin B and cathepsin L. Every hour, the fluke secretes up to 1 μ g of cathepsin L, which degrades proteins associated with the extracellular matrix. While cathepsin L is essential for juvenile flukes for excystment, gut penetration, and the following migration to the liver, the lower expressed cathepsin B is necessary for migration and manifestation in the host, and has intracellular household functions. Therefore, cathepsin L is most decisive during the liver-based migration and adulthood, while cathepsin B is most decisive in newly excysted flukes and the early migratory phase (McGonigle *et al.*, 2008).

4.6.2 Membrane proteins

F. magna and *F. hepatica* shared two membrane proteins with a mass of 24 and 52 kDa, respectively. For *F. magna* there was an additional membrane protein at 10 kDa while for *F. hepatica* at 35, 45, 51, and 53 kDa.

It is possible that these proteins are produced in the membrane, or that they are produced in the cells of the body and then transported to the membrane.

Proteins between 25 and 48 kDa and of 50 kDa have also been identified in the tegumental syncytium but to date no characterisation of these proteins has been performed (Abdel-Raman *et al.*, 1999; Hanna and Trudgett, 1983)

Cantacessi *et al.* (2012) published a general overview of the proteome of *F. magna.* In total they described 80 proteins in the excretory/secretory products. The largest group consists of antioxidant proteins, followed by proteases,

structural proteins, and proteins involved in carbohydrate metabolism, protease inhibitors, and finally, unknown and miscellaneous proteins. In total 27 excretory/secretory proteins are shared by *F. magna* and *F. hepatica* and these might also have the same function. Further investigations are needed to examine whether these proteins are located in vesicles/excreted in the body for transportation to the membrane (Abdel-Rahman *et al.*, 1999).

In general, the higher number of intracellular and membrane proteins of *F. hepatica* might indicate a more complex proteome in *F. hepatica*, possibly in correlation to the wider and more complex host spectrum, but may also reflect technical shortcomings. The low number of identities between these proteins correlates with the rather distant relationship of *F. magna* and *F. hepatica*.

4.7 Antigen profiles

The results of this study indicate that *F. magna* and *F. hepatica* share one intracellular antigen with a mass of 52 kDa and a membrane antigen with 50 kDa. Several antigens were found only in *F. magna* or *F. hepatica*. Overall, less common antigens than common proteins were detected, indicating that not all proteins are recognised as antigens by human antibodies.

Hillyer and Soler de Galanes (1988) described a 17 and a 63 kDa antigen after immunoblot with human sera. They tested several closely related trematodes, but the 17 kDa antigen was only found in *F. hepatica*. A 63 kDa antigen showed cross-reactivity with *Schistosoma mansoni* and *Trichinella spiralis*. They hypothesised, that the 17 kDa antigen may prove to be a useful marker for fasciolosis. In this thesis the 17 kDa antigen couldn't be observed, neither in *F. magna* nor in *F. hepatica*. The 63 kDa antigen was visible as a weak band. This indicates that the 63 kDa antigen persists for a longer time than the 17 kDa antigen. In cured patients, the 17 kDa antigen was absent one year post cure and the 63 kDa antigen was diminished one year post cure. Because in the present study only sera from humans who were not infested with trematodes or *T. spiralis* were used, these bands were not seen in the antigen profile.

Abdel-Rahman *et al.* (1999) described a coproantigen with 26 kDa. It is secreted by the gut and excreted by the tegument of the fluke, and its antigenicity is enhanced by proteolytic enzymes found in the digestive tract. This antigen is stable under various conditions and is therefore useful in diagnostic tests for a *F. hepatica* infestation. It is possible that this is a cysteine proteinase, located in Fas1 and Fas2 antigens. Fas1 and Fas2 are specific and sensitive antigens for the diagnosis of fasciolosis (Cordova *et al.*, 1997; Kamel *et al.*, 2013). In the present study, this antigen was only found in *F. hepatica* in the body and not in the tegument. Because this antigen can only be found in the presence of proteolytic enzymes, the antigen was missing in the antigen profile for the membrane.

All of these described antigens are specific for *F. hepatica*, while antigens with bands of approx. 19–20, 37, 50, 60-63, and 85 kDa have shown cross-reactivity when patients were infested with other parasites (visceral leishmaniosis, Chagas disease, *Hymenolepsis nana* and strongyloidosis). In the present thesis, the band with 225 kDa has only been found in *F. hepatica*, but a band higher than 225 kDa has been found in *F. magna*. It is possible that these two antigens have the same function in both flukes.

In conclusion, some of the blotted proteins act as antigens and in general, *F. hepatica* revealed more antigens than *F. magna* in this study. The low number of identities between these antigens show that *F. magna* and *F. hepatica* share few antigens.

5. Conclusion

In this study, the genetic diversity of Austrian isolates of F. magna and F. hepatica was investigated. It was shown that all Austrian isolates of F. magna investigated so far belong to one and the same haplotype. As the isolates derived from various geographic locations and also from different years, it can be assumed that, until now, only one haplotype exists in Austria. This indicates a single introduction of *F. magna* into Austria, possibly directly from the Czech Republic or via Slovakia and Hungary, where the same haplotype is known to occur. The isolates of *F. hepatica* revealed two different haplotypes for *cox1* and three haplotypes for *nad1*. Both *cox1* haplotypes were found in Styria, Tyrol, and Salzburg. One haplotype was only found in Upper Austria, Lower Austria, and Carinthia. All three nad1 haplotypes were found in Tyrol, two haplotypes were found in Styria, Tyrol, and Salzburg and one haplotype was found only in Upper Austria, Lower Austria, and Carinthia. All these data indicate that Tyrol, Salzburg, and Styria are the most important endemic areas. Generally, F. hepatica is more diverse due to its long persistence in Eurasia and its broad host range.

The distribution of parasites is strongly coupled with the distribution and the possibility of migration of the respective hosts. *F. magna* occurs in restricted areas in Europe because of its recent introduction, its limited animal host range, and its hosts typically not leaving their territories. *F. hepatica* has been able to expand worldwide due to its broad host range and the anthropological impact. Humans with their ability to migrate long distances, to overcome natural barriers, and to import/export animals, have been significantly involved in the dissemination of *F. hepatica*.

The protein profile revealed three intracellular and two membrane proteins that were shared by both flukes. Overall, *F. hepatica* revealed a more complex protein and particularly antigen pattern, than *F. magna*.

6. Abbreviations

°C	- Degree Celsius	
μ	- Microliter	
Α	- Adenine	
ALT, ALAT, old: GPT	- Alanine transaminase	
AST, ASAT, old: GOT	- Aspartate transaminase	
AT	- Alkaline phosphatase	
bp	- Base pairs	
С	- Cytosine	
Car	- Carinthia	
CDC	- Centers for Disease Control and Prevention	
COX1	- Cytochrome oxidase subunit 1	

Cpd α, Cpd 6	- Compound alpha
ddH₂O	- Double-distilled water
DNA	- Deoxyribonucleic acid
dNTP	- Deoxyribose nucleoside triphosphate
EDTA	- Ethylenediaminetetraacetic acid
e.g.	- exempli gratia
ERCP	Endoscopic retrograde cholangiopancreatography
et al.	- et alii, et aliae, et alia
EtOH	- Ethanol
Fh	- Fasciola hepatica
Fig.	- Figure
Fm	- Fascioloides magna

fwd	- forward
G	- Guanine
g	- gravitational
g	- Gram
Gamma GT	- Gamma-glutamyl transpeptidase
GLDH	- Glutamate dehydrogenase
lbk	- Innsbruck
IgE	- Immunoglobulin E
lgG	- Immunoglobulin G
LA	- Lower Austria
М	- Mol
m	- Molar

Abbreviations

mA	- Miliampere
max	- Maximum
mg	- Milligram
MgCl ₂	- Magnesium chloride
min	- Minimum
ml	- Millilitre
NaAc	- Sodium acetate
NAD1	- Nicotinamide dehydrogenase subunit 1
NCBI	- National Centre for Biotechnology Information
ОН	- Hydroxy
PCR	- Polymerase chain reaction
pmol	- Picomol

rev	- Reverse
rpm	- Revolutions per minute
RT	- Room temperature
Sbg	- Salzburg
SDS-PAGE	Sodium dodecyl sulphate polyacrylamide gel electrophoresis
SNP	- Single-nucleotide polymorphism
spp	- Species
т	- Thymine
Tab	- Table
TAE	- Buffer with Tris, acetic acid and EDTA
тсвz	- Triclabendazole
T _M	- Melting temperature

Abbreviations

Tyr	- Tyrol
UV	- Ultraviolet
v	- Volt
Vie	- Vienna
x g	- times gravity

7. Glossary

Acute	A disease or medical condition that lasts for less than 6 months.
Adenine	A purine derivate and one component of nucleotides, DNA and RNA.
Adult	Phase in that an organism completed the juvenile phase and/or reach the sexual maturity.
Agarose	A polysaccharide, consisting of D-Galactose and 3,4-Anhydro-L-Galactose. Used for gel electrophoresis.
Alignment	Arrangement of DNA sequences.
Alinia	A synthetic antiprotozoal agent, containing the active ingredient nitazoxanide. It is also effective against a broad range of parasites including <i>F. hepatica</i> .
Alternation of generation	Changing of sexually and asexually reproduction and forms/generations.
Amplicon	DNA-sequence, a product of amplification.
Amplification	Overexpression of genes. Can happen in an optimised environment like PCR or naturally.
Anterior	Pertains the front or the lower surface of animals.
Cercariae	Free swimming larval stage of trematodes. Appears in the asexual part of molluscan intermediate hosts.
Chronic	A disease or medical condition that lasts for over 6 months.
Class	Used for classification of organisms. A class consist of orders.

	Hierarchical categorisation and determination
Classification	of relationships of organisms. The basis of the
	hierarchy is the species, followed by genus,
	family, suborder, order, subclass, class,
	phylum, and at last kingdom.
	A fasciolicide with a very similar chemical
Compound Alpha	structure to triclabendazole.
	A highly conserved mitochondrial gene, used
COX1	
	for genetic typing and barcoding of organisms.
Cytosine	A pyrimidine derivate and one component of
-	nucleotides, DNA and RNA.
Dead-end host	A host preventing the parasite from completing
	its development.
Dorsal	Pertains the back or the upper surface of
	animals.
Electrophoresis	Motion of dispersed particles in an electric
Liectiophoresis	field.
	Development of an environment resistant wall
Encystment	to help the organism to survive unfavourable
	environment conditions.
Fudamia	
Endemic	Occurrence of species in a specific area.
Enzootic	Occurrence of encodes in encodific enimele
Enzoolic	Occurrence of species in specific animals.
Enzymo	A protein catalyzing biochemical reactions.
Enzyme	A protein catalyzing biochemical reactions.
Eosinophilia	Increased number of eosinophils.
Losmophina	increased number of eosinophils.
Ecoinonhilo	White blood cells, part of the immune system.
Eosinophils	White blood cells, part of the immune system. Important for combating helminths.
Eosinophils Epidemiology	

Epithelium	Cells covering body surfaces or lining the internal surfaces of body cavities, tubes and hollow organs.
Excretion	Waste products of the metabolism, eliminated with faeces and/or through the skin.
Excystment	Parasite escapes from the protecting wall for further development.
Faeces	Waste products of the metabolism and non digestible components.
Family	A taxonomic unit which contains genera and species.
Fascioloidosis	The disease caused by <i>F. magna</i> .
Fasciolosis	The disease caused by <i>F. hepatica.</i>
Final host	A host in which a parasite attains sexual maturity.
Gel electrophoresis	A method to separate DNA or proteins by length.
GenBank	Sequence database with open access.
Gene	A protein or RNA coding unit of the DNA.
Genome	The whole of genes of an organism.
Glycocalyx	Polysaccharides, secreted by liver flukes to evade from the immune system of the host.
Guanine	A purine derivate and one component of nucleotides, DNA and RNA.
Habitat	A place where a population normally lives.
Haplotype	A variation of a gene sequence on the same chromosome. Can be specific for a population,

	individuals or a species.
Helminths	Parasitic worms, including nematodes,
	trematodes and cestodes.
Hermaphroditism	An individual contains male and female
	reproductive systems.
HiDi	Highly deionised
Homology	Characteristics of organisms, derived from a
Homology	common ancestor.
	Invasion and multiplication of body invading
Infection	organisms. These organisms can cause
	disease.
Infostation	Settlement of parasites in a body, which are
Infestation	unable to breed in the host.
	A host in which the larval stages of a parasite
Intermediate host	occur. The life cycle of parasites can include
	more than one intermediate host.
	Immature form of an organism. Phase before
Juvenile	organisms reach adulthood and/or sexual
	maturity.
Longo	Immature form of organisms. To reach
Larva	maturity, further development is required.
Life cycle	The course of the development of organisms.
	Part of the larval stage of parasites. The
Metacercariae	infective stage for the final host.
	-
Miracidium	Ciliated embryo, infective for the intermediate host.
Mitochondrion	A double membrane-bound organelle in
	eukaryotic cells.
Mollusca	Phylum of invertebrates.

Morphology	Description of form and structure of organisms
	but not their function.
NAD1	A highly conserved mitochondrial gene, used
	for genetic typing and barcoding of organisms.
Nucleic acid	Chain of nucleotides. Two forms of nucleic
	acids: DNA and RNA.
	Organic molecule. Consists of pyrimidine or
Nucleotide	purine base, ribose or desoxyribose and a
	phosphate group. They can form nucleic acids
	like DNA and RNA.
Operculum	A lid on parasite eggs. Enables the escape
	from the egg.
Oral sucker	The opening to the digestive gland. Flukes use
	the oral and the ventral sucker in order to
	attach on the wall of bile ducts and the
	intestine.
Parasite	Organism, living in or on other organisms and
	use them to get nourishment from it and for
	reproduction.
Pathogen	An organism which can cause a disease.
ratilogen	An organism which can cause a disease.
PCR	Technique to amplify DNA and to generate
	many copies of a DNA fragment.
Phylum	Catagory for algoritization. Consists of algorith
	Category for classification. Consists of classes.
Phylogeny	The evolutionary history, development and
	relationship of groups of organisms.
Plant-borne disease Dis	
	Diseases transmitted with plants.
Platyhelminthes	A phylum of acoelomate invertebrate
	organisms.
Polymerase	Enzyme which catalyzes the formation of
	polynucleotides. Needs a template strand of

	DNA or RNA.
Posterior	Pertains the back or the upper surface of
	animals.
Prevalence	A term in epidemiology. Describes the
	percentage of infected individuals in a
	population at a certain point of time.
Primer	A short single-stranded DNA-fragment which
	marks the starting point for the DNA synthesis
	in a PCR reaction. Can be used as forward
	and as reverse primer.
Proteinase	Enzymes able to destruct proteins.
Rediae	One part of the larval stage in the development
	of trematodes.
SDS-PAGE	A method to separate proteins by length.
Sequencing	A method to determine the nucleotide order in
	a DNA molecule.
SNP	A DNA sequence variation within a population.
	Between members of a species or paired
	chromosomes a nucleotide in a genome
	differs.
Species	For classification of organisms. It describes a
	group of organisms which usually breed
	among themselves to produce fertile offspring.
Syncytial epithelium	An epithelium, consisting of a group of cells,
	resulting from multiple cell fusions and
	interconnected with gap junctions.
Systematic	The study and classification of organisms. The
	goal is the reconstruction of their evolutionary
	history and relationships.
Taxon	Part of the classification. Consists of a group of
	one or more populations.

Taxonomy	The specification of groups of biological
	organisms based on the anatomical and
	morphological characteristics.
Tegument	Cells covering the external body surface. The
	function is, among others, nutrient absorption
	and immune evasion.
Thymine	A pyrimidine derivate and one component of
	nucleotides, DNA and RNA.
Trematoda	Part of the class within the phylum
	Platyhelminthes.
Triclabendazole	An antihelminthic drug and belongs to the
	benzimidazole family. Triclabendazole
	prevents polymerization of microtubules.
Vector	Carrier which is important for the transmission
	of parasites between hosts.
Ventral sucker	Opening, located near the oral sucker.
	Important for the movement together with the
	oral sucker, also called acetabulum.
Ventral	Pertains the front or the lower surface of
	animals.
Western-Blot	Technique to transfer proteins from a gel to a
	membrane to detect them with staining
	methods.
Zoonosis	A disease, transmitted from animals to
	humans.

Definitions largely following:

- Ash L. R., Orihel, T. C., **2007**, *Atlas of Human Parasitology*, 5th edition, American Society for clinical pathology, 486 – 494
- Aspöck, H. (Hsg.), **2002**, *Amöben, Zecken, Bandwürmer. Parasiten und parasitäre Erkrankungen des Menschen in Mitteleuropa*, Denisia 6, Kat. des OÖ Landesmuseums, 1 – 132
- Pschyrembel, W., **1994**, *Pschyrembel Klinisches Wörterbuch*, 261. Auflage, Walter de Gruyter GmbH & Co. KG, Berlin, Germany
- Walochnik, J., Aescht, E., **2002**, *Glossar medizinischer und biologischer Fachbegriffe*, Denisia, 6(184), 573 – 596
- Watson, J. D., Baker, T. A., Bell, S., P., Gann, A., Levine, M., Losick, R., **2014**, *Molecular biology of the gene*, 7th edition, Pearson, Cold Spring Harbor Laboratory Press, 21 pp

8. References

- Abdel-Rahman, S., O'Reilly, K. L., Malone, J. B., **1999**, *Biochemical characterization and localization of Fasciola hepatica 26-28 kDa diagnostic coproantigen*, Parasite Immunol., 21(6), 279 286
- Agatsuma, T., Arakawa, Y., Iwagami, M., Honzako, Y., Cahyaningsih, U., Kang, S.-Y., Hong, S.-J., **2000**, *Molecular evidence of natural hybridization between Fasciola hepatica and F. gigantica*, Parasitol Int., 49(3), 231 – 238
- Agustí, J., Antón, M., **2002**, *Mammoths, Sabertooths, and Hominids: 65 Million Years of Mammalian Evolution in Europe*, Columbia University Press, New York, US, pp 52
- Ai, L., Weng, Y. B., Elsheikha, H. M., Zhao, G. H., Alasaad, S., Chen, J. X., Li, J., Li, H. L., Wang, C. R., Chen, M. X., Lin, R. Q., Zhu X. Q., 2011, Genetic diversity and relatedness of Fasciola spp. isolates from different hosts and geographic regions revealed by analysis of mitochondrial DNA sequences, Vet Parasitol., 181(2-4), 329 – 334
- Akhlaghi, E., Mohammadi, M. A., Nasibi, S., Ziaali, N., Fasihi Harandi, M.,
 2015, Morphometric and molecular study of Fasciola isolates from ruminants in Iran, unpublished
- Alasaad S., Huang C. Q, Li Q. Y., Granados J. E., García-Romero C., Pérez J. M., Zhu X. Q., 2007, Characterization of Fasciola samples from different host species and geographical localities in Spain by sequences of internal transcribed spacers of rDNA, Parasitol Res., 101, 1245 – 1250
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J., **1990**, *Basic local alignment search tool*, J Mol Biol., 215(3), 403 410

- Amer, S., Dar, Y., Ichikawa, M., Fukuda, Y., Tada, C., Itagaki, T., Nakai, Y.,
 2011, Identification of Fasciola species isolated from Egypt based on sequence analysis of genomic (ITS1 and ITS2) and mitochondrial (NDI and COI) gene markers, Parasitol Int., 60(1), 5 12
- Anderson, V. R., Curran, M. P., **2007**, *Nitazoxanide, A Review of its Use in the Treatment of Gastrointestinal Infections*, Drugs, 67(13), 1947 – 1967
- Annandale, N., Prashad, B., 1919, Contributions to the fauna of Yunnan based on collections made by J. Coggin Brown, B.Sc., 1909-1910, Part IX, Two remarkable genera of freshwater gastropod molluscs from the lake Erh-Hai, Records of the Indian Museum, 16, 413 – 423
- Apostolo, C., 1996, The naturalistic aspects: flora, fauna and the environment.
 In: Lupo, M., Paglieri, M., Apostolo, C., Vaccarino, E., Debernardi, M. (Eds.), 1996, La Mandria Storia e natura del Parco, Edizioni Eda, Torino, 67 98
- Appleton, C. C., **2003**, *Alien and invasive freshwater gastropoda in South Africa*, Afr J Aquat Sci., 28(1), 69 – 81
- Apt, W., Aguilera, X., Vega, F., Alcaino, H., Zulantay, I., Apt, P., Gonzáles, V., Retamal, C., Rodríges, J., Sandoval, J., **1993**, *Prevalencia de fascioliasis en humanos, caballos, cerdos y conejos silvestres en tres provincias de Chile*, Bol Of Sanit Panam., 115(5), 405 – 414
- Aspöck, H., **2000**, *Paläoparasitologie: Zeugen der Vergangenheit*, Nova Acta Leopoldina NF 83, 316, 159 181
- Aspöck, H., Walochnik, J., **2007**, *Die Parasiten des Menschen aus der Sicht der Koevolution*, Denisia 20, Kataloge der oberösterreichischen Landesmuseen, Neue Serie 66, 179 254

Auer, H., Aspöck, H, 2014, Helminths and helminthoses in Central Europe:

general overview and diseases caused by trematodes (flukes), Wien Med Wochenschr., 164, 405 – 413

- Auer, H., Aspöck, H., Picher, O., Ploier, R., Tulzer, W., 1981, Menschliche Infektionen mit Fasciola hepatica in Österreich, Wien. Klin. Wochenschr., 93, 360 – 366
- Axelrod, D. I., Raven, P. H., **1978**, *Late cretaceous and tertiary vegetation history of Africa*, Werger, M. J. A. (Ed.), Biogeography and Ecology of Southern Africa. Junk, The Hague
- Axelrod, D. J., **1975**, Evolution and biogeography of Madrean–Tethyan sclerophyll vegetation, Ann. Missouri Botanical Garden, 62, 280 334
- Bakker, L., 2001, Archaeobotanical analysis of the town excavation "Am Mârzenbad 9" in the Lech town quarter of Augsburg (Bavaria, Germany), Augsburger Beiträge zur Archäologie 3, Sammelband 2000, Wißner-Verlag, 239 – 250
- Balbo, T., Rossi, L., Meneguz, P. G., **1989**, *Integrated control of Fascioloides* magna infection in northern Italy. Parasitologia 31, 137 – 144
- Bassi, R., **1875**, *Sulla cachessia ittero-verminosa, o marciaia dei cervi, causata dal Distomum magnum*, Il Medico Veterinario Torino, 4, 497 515.
- Bazsalovicsová, E., Králová-Hromadová, I., Radvánszky J., Beck, R., 2013, The origin of the giant liver fluke, Fascioloides magna (Trematoda: Fasciolidae) from Croatia determined by high-resolution melting screening of mitochondrial cox1 haplotypes, Parasitol Res., 112, 2661 – 2666
- Bazsalovicsová, E., Králová-Hromadová, I., Štefka, J., Minárik, G., Bokorová,
 S., Pybus, M., 2015, Genetic interrelationships of North American populations of giant liver fluke Fascioloides magna, Parasit Vectors, 8,

288 – 303

- Beckham, S. A., Law, R., H.-P., Smooker, P. M., Quinsey, N. S., Caffrey, C. R., McKerrow, J. H., Pike, R. N., Spithill, T. W., 2006, Production and processing of a recombinant Fasciola hepatica cathepsin B-like enzyme (*FhcatB1*) reveals potential processing mechanisms in the parasite, Biol. Chem., 387, 1053 1061
- Bordier, C., **1981**, *Phase separation of integral membrane proteins in Triton X-114 solution*, J Biol Chem., 256(4), 1604 – 1607
- Bouchet, F., Harter, S., Le Bailly, M., **2003**, *The state of the art of palaeoparasitological research in the old World*, Mem. Inst. Oswaldo Cruz, vol. 98(Suppl. I), 95 101
- Brandt, U., **2006**, *Energy Converting NADH:Quinone Oxidoreductase* (*Complex I*), Annu Rev Biochem., 75, 69 – 92
- Briggs, A., J. M. Good, R. E. Green, J. Krause, T. Maricic, U. Stenzel, C. Lalueza-Fox, P. Rudan, D. Brajkovic', Ž. Kuc'an, I. Gušic', R. Schmitz, V. B. Doronichev, L. V.Golovanova, M. de la Rasilla, J. Fortea, A. Rosas and S. Pääbo, 2009, *Targeted retrieval and analysis of five Neandertal mtDNA genomes*, Science, 325, 318 321
- Brown, D., **1994**, *Freshwater Snails of Africa and Their Medical Importance*, 2nd edition, Taylor & Francis Ltd, London, United Kingdom, 364 366
- Büscher, G., Bowen, F. L., Strong, M. B., Crowfoot, P. D., Saunders, M., 2004, Zur Wirksamkeit von Triclabendazol, seinen Hauptmetaboliten und anderen Substanzen gegen früh-unreife und unreife Stadien von Fasciola hepatica bei Schafen, Großtierpraxis, 5(5), 39 – 40
- Cabán-Hernández, K., Espino, A. M., **2013**, *Differential expression and localization of saposin-like protein 2 of Fasciola hepatica*, Acta Tropica,

128(3), 591 – 597

- Cantacessi, C., Mulvenna, J., Young, N. D., Kasny, M., Horak, P., Aziz, A., Hofmann, A., Loukas, A., Gasser, R. B., **2012**, A deep exploration of the transcriptome and "excretory/secretory" proteome of adul Fascioloides magna, Mol Cell Proteomics, 11(11), 1340 – 1253
- Carr, A. W., McCracken, R., Stillwill, W., **1993**, Uncoupling of rat liver mitochondria oxidative phosphorylation by the fasciolicide triclabendazole, J Parasitol, 79(2), 198 204
- Centers for Disease Control and Prevention. DPDx Laboratory Identification of Parasitic Diseases of Public Health Concern, http://www.cdc.gov/dpdx/fascioliasis/, Accessed 09.01.2015
- Centers for Disease Control and Prevention. DPDx Laboratory Identification of Parasitic Diseases of Public Health Concern, http://www.cdc.gov/parasites/fasciola/health_professsonals/, Accessed 09.01.2015
- Cerling, T. E., Harris, J. R., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., Ehleringer, J. R., **1997**, *Global vegetation change through the Miocene/Oligocene boundary*, Nature, 389, 153 – 158
- Chen, M. G., Mott, K. E., **1990**, *Progress in assessment of morbidity due to Fasciola hepatica Infection: a review of recent literature*, Trop. Dis. Bull. 87, 1 – 38
- Collins, P. R., Stack, C. M., O'Neill, S. M., Doyle, S., Ryan, T., Brennan, G. P., Mousley, A., Stewart, M., Maule, A. G., Dalton, J. P., Donnelly, S., 2004, *Cathepsin L1, the Major Protease Involved in Liver Fluke (Fasciola hepatica) Virulence*, J Biol Chem., 279(17), 17038 – 17046

Cordova, M., Herera, P., Nopo, L., Bellatin, J., Naquira, C., Guerra, H.,

Espinoza, J. R., **1997**, *Fasciola hepatica cysteine proteinases: immunodominant antigens in human fascioliasis*, Am J Trop Med Hyg., 57(6), 660 – 666

- Dalimi, A., Jabarvand, M., **2005**, *Fasciola hepatica in the human eye*, Transactions of the Royal Society of Tropical Medicine and Hygiene, 99, 798 – 800
- Dalton, J. P., Neill, S. O., Stack, C, Collins, P., Walshe, A., Sekiya, M., Doyle, S., Mulcahy, G., Hoyle, D., Khaznadji, E., Moiré, N., Brennan, G., Mousley, A., Kreshchenko, N., Maule, A. G., Donnelly, S. M., 2003, *Fasciola hepatica cathepsin L-like proteases: biology, function, and potential in the development of first generation liver fluke vaccines*, Int J Parasitol., 33, 1173 1181
- Demiaszkiewicz, A. W., Kuligowska, I., Pyziel, A. M., Lachowicz, J., Kowalczyk, R., 2015, Extension of occurrence area of the American fluke Fascioloides magna in south-western Poland, Ann Parasitol., 61(2), 93 – 96
- Deplazes, P., Eckert, J., von Samson-Himmelstjerna, G., Zahner, H., **2013**, *Lehrbuch der Parasitologie für die Tiermedizin*, 3rd ed., Enke Verlag, Stuttgart, Germany, p 153
- Dittmar, K., Teegen, W. R., 2003, The Presence of Fasciola hepatica (Liverfluke) in Humans and Cattle a 4.500 Year Old Archaeological site in the Saale-Unstrut Valler, Germany, Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 89 (Suppl. I), 141 – 143
- Dong, S., Huang, W., Lin, R., Qian, D., Wu, S., Song, H. and Zhu, X, **2004**, *Studies on DNA polymorphism of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) of Fasciola from mainland China*, unpublished

- Dusak, A., Onur, M. R., Cicek, M., Firat, U, Ren, T., Dogra, V. S., 2012, Radiological Imaging Features of Fasciola hepatica Infection – A Pictoral Review, J Clin Imaging, 2:2
- Eckert, J., Friedhoff, K. T., Zahner, H., Deplazes, P., **2008**, *Lehrbuch der Parasitologie für die Tiermedizin*, 2nd ed., Enke Verlag, Stuttgart, Germany, pp 150
- El-Azazy, O. M. E., Schillhorn Van Veen, T. W., **1983**, Animal fascioliasis and schistosomiasis in Egypt and Sudan, Helminthol Abstr., Series A, 52(8), 421 – 428
- Elliot, T., Muller, A., Brockwell, Y., Murphy, N., Grillo, V., Toet, H. M., Anderson, G., Sangster, N., Spithill, T. W., **2014**, *Evidence for high genetic diversity of NAD1 and COX1 mitochondrial haplotypes among triclabendazole resistant and susceptible populations and field isolates of Fasciola hepatica (liver fluke) in Australia*, Vet Parasitol., 200, 90 – 96
- Fairweather, I., **2005**, *Triclabendazole: new skills to unravel an old(ish)* enigma, Journal of Helminthology, 79, 227 – 234
- Fairweather, I., Boray, J. C., **1999b**, *Mechanisms of fasciolicide action and drug resistance in Fasciola hepatica*, CAB International, 225 276
- Farjallah, S., Sanna, D., Amor, N., Ben Mehel, B., Piras. M. C., Merella, P., Casu, M., Curini-Galletti, M., Said, K., Garippa, G., 2009, Genetic characterization of Fasciola hepatica from Tunisia and Algeria based on mitochondrial and nuclear DNA sequences, Parasitol Res., 105(6), 1617 1621
- Farjallah, S., Slimane, B. B., Piras, C. M., Amor, N., Garippa, G., Merella, P., **2013**, Molecular characterization of Fasciola hepatica from Sardinia based on sequence analysis of genomic and mitochondrial gene markers, Exp Parasitol., 135(3), 471 478

- Faust, E. C. & Tang, C.-C., **1936**, *Notes on new Aspidogastrid species, with a consideration of the phylogeny of the group*, Parasitology, 28, 487 501
- Fica, A., Dabanch, J., Farias, C, Castro, M., Jercic, M. I., Weitzel, T., 2011, Acute fascioliasis – clinical and epidemiological features of four patients in Chile, European Society of Clinical Microbiology and Infectious Diseases, CMI, 18, 91 – 96
- Figueroa-Santiago, O., Delgado, B., Espino, A. M., **2011**, *Fasciola hepatica* saposin-like-2 protein based ELISA for the serodiagnosis of chronic human fascioliasis, Diagn Microbiol Infect Dis., 70(3), 355 – 361
- Flower, B. P., Kennet, J. P., **1994**, *The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling*, Paleogeogr. Paleoclimatol. Paleoecol., 1008, 537 555
- Fossaria parva, the pygmy fossaria, http://bioweb.uwlax.edu/bio210/f2011/ draskoci_jess/interactions.htm, Accessed 09.01.2015
- Fox, L. M., Saravolatz, L. D., **2005**, *Nitazoxanide: A New Thiazolide Antiparasitic Agent*, Clin. Infect Dis., 40(8), 1173 – 1180
- Fried, B., Graczyk, T. K., Tamang, L, **2004**, *Food-borne intestinal trematodiases in humans*, Parasitol Res, 93, 159 170
- Gaasenbeek, C. P. H., Moll, L., Cornelissen, J. B. W. J., Vellema, P., Borgsteede, F. H. M., 2001, An experimental study on triclabendazole resistance of Fasciola hepatica in sheep, Vet Parasitol., 95, 37 – 43
- Gaudier, J. F., Cabán-Hernández, K., Osuna, A., Espino, A. M., 2012, Biochemical Characterization and Differential Expression of a 16.5-Kilodalton Tegument-Associated Antigen from the Liver Fluke Fasciola hepatica, Clin Vaccine Immunol., 19(3), 325 – 333

- Gil, J. M., BenKaabia, M., Chebbi, H. E., **2009**, *Macroeconomics and agriculture in Tunisia*, App Econom., 41, 105 124
- Gold, D., Goldberg, M., **1976**, Effect of light and temperature on hatching in Fasciola hepatica (Trematoda: Fasciolidae), Israel Journal of Zoology, 25, 178 – 185
- Haider, M., Hörweg, C., Liesinger, K., Sattmann, H., Walochnik, J., 2012, *Recovery of Fascioloides magna (Digenea) population in spite of treatment programme? Screening of Galba truncatula (Gastropoda, Lymnaeidae) from Lower Austria*, Vet Parasitol., 187, 445 – 451
- Halton, D. W., **2004**, *Microscopy and the helminth parasite*, Micron, 35, 361 390
- Hanna, R. E., Trudgett, A. G., **1983**, *Fasciola hepatica: development of monoclonal antibodies and their use to characterize a glycocalyx antigen in migrating flukes*, Parasite Immunol., 5, 409 425
- Haq, B. U., Hardenbol, J., Vail, P. R., **1987**, *Chronology of fluctuating sea levels since the Triassic*, Science, 235, 1156–1167
- Hernandez Fernandez, M., Vrba, E. S., **2005**, *A complete estimate of the phylogenetic relationships in Ruminantia: A dated species-level supertree of the extant ruminants*, Biol Rev., 80, 269–302
- Hillyer, G. V., Soler De Galanes, **1988**, Identification of a 17-Kilodalton Fasciola hepatica Immunodiagnostic Antigen by the Enzyme-Linked Immunoelectrotransfer Blot Technique, J Clin Microbiol, 26(10), 2048 – 2053
- Hoa Le, T., Van De, N., Agatsuma, T., Nguyen, T. G. T., Nguyen, Q. D., McManus, D. P., Blair, D., **2008**, *Humans fascioliasis and the presence*

of hybrid/introgressed forms of Fasciola hepatica and Fasciola gigantica in Vietnam, Int J. Parasitol., 38(6), 725 – 730

- Hörweg, C., Prosl, H., Wille-Piazzai, W., Joachim, A., Sattmann, H., 2011, Prevalence of Fascioloides magna in Galba truncatula in the Danube Backwater Area east of Vienna, Austria, Wiener Tierärztl. Mschr. 98, 261 – 267
- Hu, A., Meehl, G. A., Otto-Bliesner, B. L., Waelbroeck, C., Han, W., Loutre, M.F., Lambeck, K., Mitrovica, J. X., Rosenbloom, N., 2010, Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes, Nature Geoscience, 3, 118 – 121
- Ibarra-Velarde, F., Vera-Montenegro, Y., López-Arellano, R., Cantó-Alarcón, G., Castillo-Bocanegra, R., Hernández-Campos, A., 2005, Compound Alpha: Comparison of 2 Fasciolicide Formulations in Cattle, Intern J Appl Res Vet Met., 3(3), 266 – 270
- Ichikawa, M., Peng, M., Shibahara, T., Itagaki, T., **2010**, *A molecular study of nuclear and mitochondrial DNA types indicates that aspermic Fasciola species originated in China*, unpublished
- Ichikawa-Seki, M., **2015**, *Molecular characterization and phylogenetic analysis of Fasciola hepatica in Peru*, unpublished
- Itagaki, T., Kikawa, M., Skaguchi, K., Shimo, J., Terasaki, K., Shibahara, T., Fukuda, K., 2005a, Genetic characterization of parthenogenic Fasciola sp. in Japan on the basis of the sequences of ribosomal and mitochondrial DNA, Parasitology, 131(5), 679 – 685
- Itagaki, T., Kikawa, M., Terasaki, K., Shibahara, T. and Fukuda, K., 2005b, Molecular characterization of parthenogenic Fasciola sp. in Korea on the basis of DNA sequences of ribosomal ITS1 and mitochondrial NDI gene, J Vet Med Sci., 67, 1115 – 1118

- Itagaki, T., Tsutsumi K. I., Ito, K., Tsutsumi, Y., 2008, Taxonomic status of the Japanese triploid forms of Fasciola: Comparison of mitochondrial ND1 and COI sequences with F. hepatica and F. gigantica, J. Parasitol., 84, 445 – 448
- Itagaki, T., Tsutsumi, K., **1998**, *Triploid form of Fasciola in Japan: genetic relationships between Fasciola hepatica and Fasciola gigantica determined by ITS-2 sequence of nuclear rDNA*, Int J Parasitol., 28(5), 777 781
- Kamel, H. H., Saad, G. A., Sarhan, R. M., 2013, Dot-Blot Immunoassay of Fasciola gigantica Infection using 27 kDa and Adult Worm Regurge Antigens in Egyptian Patients, Korean J Parasitol., 51(2), 177 – 182
- Kasny, M., Beran, L., Siegelova, V., Siegel, T., Leontovyc, R., Berankova, K., Pankrac, J., Kostakova, M., Horak, P., **2012**, *Geographical distribution of the giant liver fluke (Fascioloides magna) in the Czech Republic and potential risk of its further spread*, Veterinarni Medicina, 57 (2), 101 – 109
- Keiser, J., Utzinger, J., **2005**, *Emerging Foodborne Trematodiasis*, Vol. 11, No. 10, 1507 1514
- Keiser, J., Utzinger, J., **2009**, *Food-Borne Trematodiases*, Clin. Microbiol. Rev., 22(3), 466 – 483
- Kim, K., Yang, H. J., Chung, Y.-B., 2003, Usefulness of 8 kDa protein of Fasciola hepatica in diagnosis of fascioliasis, Korean J Parasitol., 41(2), 121 – 123
- Kivisild, T., Rootsi, S., Metspalu, M., Mastana, S., Kaldma, K., Parik, J., Metspalu, E., Adojaan, M., Tolk, H.-V., Stepanov, V., Gölge, M., E. Usanga, S. S. Papiha, C. Cinnioğlu, King, R., Cavalli-Sforza, L., Underhill, P. A., Villems, R., 2003, *The Genetic Heritage of the Earliest*

Settlers Persists Both in Indian Tribal and Caste Populations, Am J Hum Genet., 72, 313 – 332

- Králová-Hromadová, I., Bazsalovicsová, E., Štefka, J., Špakulová, M., Vávrová, S., Szemes, T., Tkach, V., Trudgett, A., Pybus, M., 2011, Multiple origins of European populations of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), a liver parasite of ruminants, Int J Parasitol., 41, 373 – 383
- Králová-Hromadová, I., Juhásová, L, Bazsalovicsová, E., 2016, Intermediate Hosts of Fascioloides magna, In: The Giant Liver Fluke, Fascioloides magna: Past, Present and Future Research, SpringerBriefs in Animal Sciences, 67 – 69
- Králová-Hromadová, I., Špakulová, M., Horáčková, E., Turčeková, L., Novobilský, A., Beck, R., Koudela, B., Marinculi, A., Rajský, D., Pybus, M., 2008, Sequence analysis of ribosomal and mitochondrial genes of the giant liver Fluke Fascioloides magna (Trematoda: Fasciolidae): Intraspecific variation and differentiation from Fasciola hepatica, J. Parasitol, 94(1), 58 – 67
- Kühn, A. K., Schirmeister, J., **1989**, *Innere Medizin*, 5th edition, Springer-Verlag, Berlin Heidelberg GmbH, 234
- Kumar, V., **1999**, *Trematode Infections and Diseases of Man and Animals*, Kluwer Academic Publishers, 176
- Lafontaine, D. L. J., Tollervey, D., **2001**, *The function and synthesis of ribosomes*, Nat Rev Mol Cell Biol., 514 520
- Le, T. H., Blair, D., Agatsuma, T., Humair, P. F., Campbell, N. J., Iwagami, M.,
 Littlewood, D. T., Peacock, B., Johnston, D. A., Bartley, J., Rollinson, D.,
 Herniou, E. A., Zarlenga, D. S., McManus, D. P., 2000, *Phylogenies* inferred from mitochondrial gene orders-a cautionary tale from the

parasitic flatworms, Mol Biol Evol., 17(7) 1123 - 1125

- Le, T. H., Blair, D., Agatsuma, T., Humair, P. F., Compbell, N. J., Iwagami, M., Littlewood, D. T., Peacock, B., Johnston, D. A., Bartley, J., Rollinson, D., Herniou, E. A., Zarlenga, D. S., McManus, D. P., 2000, *Phylogenies inferred from mitochondrial gene orders-a cautionary tale from the parasitic flatworms*, Mol Biol Evol., 17, 1123 – 1125
- Leontovyč, R., **2014**, *Highland cattle and Radix labiata, the hosts of Fascioloides magna*, BMC Veterinary Research, 10 (41), 1 7
- Liesinger, K., **2011**, *Microscopic and molecular analyses on digenean trematodes in red deer (Cervus elaphus)*, Diploma thesis, University of Vienna, Austria
- Linnaeus, C., **1758**, *Systema Naturae per regna tria naturae secundum classes, ordines, genera, species, cum charactenbus, differentiis, synonymis, locis*, Editio Decima, reformata, Halmiae, Impensis Direct, Laurentii Salvii
- Lotfy, W. M., Brant, S. V., DeJong, R. J., Hoa Le, T., Demiaszkiewicz, A., Rajapakse, J. R. P. V., Perera, V. B. V. P., Laursen, J. R., Loker, E. S., **2008**, Evolutionary Origins, Diversification and Biogeography of Liver Flukes (Digenea, Fasciolidae), Am J Trop Med Hyg., 79(2), 248 – 255
- Lucius, R., Loos-Frank, B., **2008**, *Biologie von Parasiten*, 2. Auflage, Springer Verlag, pp 267 280
- Ludt, C. J., Schroeder, W., Rottmann, O., Kuehn, R., 2004, Mitochondrial DNA phylogeography of red deer (Cervus elaphus), Mol Phylogenet Evol., 31(3), 1064 – 1083
- Majoros, G., Sztojkov, V., **1994**, *Appearance of the large American liver fluke* Fascioloides magna (Bassi, 1875) (Trematoda: Fasciolata) in Hungary,

Parasitol. Hungaria, 27, 27 – 38

- Malone, J. B., Gommes, R., Hansen, J., Yilma, J. M., Slingenberg, J., Snijders,
 F., Nachtergaele, F., Ataman, E., **1998**, *A geographic information system* on the potential distribution and abundance of Fasciola hepatica and F. gigantica in east Africa based on Food and Agriculture Organization databases, Vet Parasitol., 78(2), 87 – 101
- Marinculić, A., Džakula, N., Janicki, Z., Hardy, Z., Lućinger, S., Živićnjak, T., **2002**, Appearance of American liver fluke (Fascioloides magna, Bassi, 1875) in Croatia a case report, Vet. arhiv., 72, 319 325
- Marinkovic, D., Nesic, V., **2008**, *Changes on the liver of fallow deer (Dama dama) caused by American giant liver fluke (Fascioloides magna) infection*, The Proceedings of Savetovanje veterinara Srbije, 20, Zlatibor, Serbia, 298 309
- Martínez-Valladares, M., Rojo-Vázquez, F., A., 2014, Intraspecific mitochondrial DNA variation of Fasciola hepatica eggs from sheep with different level of antihelmintic resistance, Parasitol Res., 113, 2733 – 2741
- Martins dos Santos, T. R., **2012**, *Genetic characterization of Portuguese* Fasciola hepatica isolates, Master's thesis, p 67
- Mas-Coma, M. S., Esteban, J. G., Bargues, M. D., **1999**, *Epidemiology of human fascioliasis: a review and proposed new classification*, Bulletin of the World Health Organization, 77(4), 340 346
- Mas-Coma, S., **2005b**, *Epidemiology of fascioliasis in human endemic areas*, Journal of Helminthology, 79, 207 216
- Mas-Coma, S., Bargues, M. D., **1997**, *Human liver flukes: A review*, Research and Reviews in Parasitology, 57 (3-4), 145 218

- Mas-Coma, S., Bargues, M. D., Valero, M. A., **2005a**, *Fascioliasis and other plant-borne trematode zoonoses*, Int J Parasitol., 35, 1255 1278
- Mas-Coma, S., Rodriguez, A., Bargues, M. D., Valero, M. A., Coello, J. R., Angles, R., **1997**, Secondary reservoir role of domestic animals other than sheep and cattle in fascioliasis transmission in the Northern Bolivian Altiplano, Res Rev Parasitol., 57, 39 – 46
- Mas-Coma, S., Valero, M. A., Bargues, M. D., 2009, Fasciola, Lymnaeids and Human Fascioliasis, with a Global Overview on Disease Transmission, Epidemiology, Evolutionary Genetics, Molecular Epidemiology and Control, Advances in Parasitology, Vol. 69, Chapter 2, 44 – 130
- Mas-Coma, S., Valero, M. A., Bargues, M. D., **2014**, *Fascioliasis*, Adv Exp Biol., 766, 77 - 114
- Massoud, J., **1990**, *Fascioliasis outbreak of man and drug test* (*Triclabendazole*) in Caspian littoral, Northern part of Iran, Bull Sod Fr Parasitol., 8, 438
- McConville, M., Brennan, G. P., Flanagan, A., Edgar, H. W. J., Hanna, R. E.
 B., McCoy, M., Gordon, A. W., Castillo, R., Hernández-Campos, A.,
 Fairweather, I., 2009, An evaluation of the efficacy of compound alpha and triclabendazole against two isolates of Fasciola hepatica, Vet Parasitol., 162, 75 – 88
- McConville, M., Brennan, G. P., Flanagan, A., Edgar, H. W. J., McCoy, M., Castillo, R., Hernández-Campos, A., Fairweather, I., 2008, Surface and internal tegumental changes in juvenile Fasciola hepatica following treatment in vivo with the experimental fasciolicide, compound alpha, Vet Parasitol., 153, 52 – 64

McGonigle, L., Mousley, A., Marks, N. J., Brennan, G. P., Dalton, J. P., Spithill,

T. W., Day, T. A. & Maule, A. G., **2008**, *The silencing of cysteine proteases in Fasciola hepatica newly excysted juveniles using RNA interference reduces gut penetration*. Int J Parasitol, 38(2), 149 – 155

- McManus, D. P., Dalton, J. P., 2006, Vaccines against the zoonotic trematodes Schistosoma japonicum, Fasciola hepatica and Fasciola gigantica, Parasitology, 43 – 61
- Miliotis, M. D., Bier, J. W., **2003**, *International Handbook of Foodborne Pathogens*, Marcel Dekker Inc., 537
- Millán, J. C., Mull, R., Freise, S., Richter, J., 2000, The efficacy and tolerability of triclabendazole in Cuban patients with latent and chronic Fasciola hepatica infection, J. Trop. Med. Hyg., 63 (5, 6), 264 – 269
- Miller, K. G., Wright, J. D., Fairbanks, R. G., **1991**, Unlocking the icehouse: Oligocene–Miocene oxygen isotopes, eustasy and margin erosion, J. Geographic Res., 96, 6829 – 6848
- Mitchell, G. B., Maris, L., Bonniwell, M. A., **1998**, *Triclabendazole-resistant liver fluke in `Scottish sheep*, Vet. Rec., 144, p 399
- Moazeni, M., Sharifi Yazdi, H., Ehsani, H., Valadan, R., **2009**, *Genetic characterization of Fasciola hepatica isolated from camel in Iran on the basis of the sequences of cytochrome oxidase 1*, unpublished
- Moazeni, M., Sharifiyazdi, H., Izadpanah, A., **2012**, *Characterization of Fasciola hepatica genotypes from cattle and sheep in Iran using cytochrome C oxidase gene (CO1)*, Parasitol Res., 110, 2379 – 2384
- Moll, L., Gaasenbeek, C. P. H., Vellema, P., Borgsteede, F. H. M., 2000, Resistance of Fasciola hepatica against triclabendazole in cattle and sheep in The Netherlands, Vet Parasitol., 91, 153 – 158

- Naem, S., Budke, C. M., Craig, T. M., 2012, Morphological characterization of adult Fascioloides magna (Trematoda: Fasciolidae): first SEM report, Parasitol Res, 110, 971 – 978
- Nicholas, K. B., Nicholas Jr., H. B., Deerfield, D. W. I. I., **1997**, *GeneDoc: analysis and visualization of genetic variation*, EMBNEW News 4, 14.
- Norbury, L. J., Wilkowski, P., Januszkiewicz, K., Zawistowska-Deniziak, A., Wasyl, K., Wedrychowicz, H., 2015, *Phylogenetic analysis of Fasciola hepatica from bison in Poland*, unpublished
- Novobilský, A., Kašný, A. M., Mikeš, L., Kovařčik, K., Koudela, B., **2007**, *Humoral immune responses during experimental infection with Fascioloides magna and Fasciola hepatica in goats and comparison of their excretory/secretory products*, Parasitol Res., 101, 357 – 364
- Novobilský, A., Kašný, M., Mikeš, L., Kovařčik, K., Koudela, B., **2007**, *Humoral immune responses during experimental infection with Fascioloides magna and Fasciola hepatica in goats and comparison of their excretory/secretory products*, Parasitol Res, 101, 357 – 364
- Nyindo, M., Lukambagire, A. H., **2015**, *Fascioliasis: An Ongoing Zoonotic Trematode Infection*, Biomed Res Int., 2015, 786195
- Pallas, P. S., **1760**, *Dissertatio medica inauguralis de infestis viventibus intra viventia*, Lugduni Batavorum
- Pappas, P. W., **1975**, *Membrane transport in helminth parasites: a review*, Exp. Parasitol., 37, 469 – 530
- Parkinson, M., O'Neill, S. M., Dalton, J. P., **2007**, *Endemic human fasciolosis in the Bolivian Altiplano*, Epidemiol. Infect., 135, 669 – 674
- Pedrosa, S., Uzun, M., Arranz, J. J., Gutierrez-Gil, B., San Primitivo, F., Bayon,

Y., 2005, Evidence of three maternal lineages in near eastern sheep supporting multiple domestication events, Proc Biol Sci., 272(1577), 2211 – 2217

- Peng, M., Ichinomiya, M., Ohtori, M., Ichikawa, M., Shibahara, T., Itagaki, T., 2009, Molecular characterization of Fasciola hepatica, Fasciola gigantica, and aspermic Fasciola sp. in China based on nuclear and mitochondrial DNA, Parasitol Res., 105(3), 809 – 815
- Pereira, F., Davis, S. J. M., Pereira, L., McEvoy, B., Bradley, D. G., Amorim,
 A., 2006, Genetic signatures of a Mediterranean influence in Iberian Peninsula sheep husbandry, Mol Biol Evol. 23(7), 1420 – 1426
- Pfeiffer, H., **1983**, *Fascioloides magna: Erster Fund in Österreich*, Wien. Tierärztl. Monat., 70, 168 – 170
- Pitman, W. C., Cande, S., La Brecque, J., Indell, S. C., **1993**, *Fragmentation of Gondwana: The separation of Africa and South America*, In: Goldblatt (Ed.), *Biological Relationships between Africa and South America*, Yale University Press, New Haven, 15 –37
- Plötz., C, Rehbein, S., Bamler, H., Reindl, H., Pfister, K., Scheuerle, M. C., **2015**, *Fascioloides magna epizootiology in a deer farm in Germany*,
 Berl Münch Tierärztl Wochenschr., 128, 177 182
- Pumidonming, W., Koehsler, M., Leitsch, D., Walochnik, J., **2014**, *Protein profiles and immunoreactivities of Acanthamoeba morphological groups and genotypes*, Exp Parasitol., 145, 50 56
- Radvánský, J., Bazsalovicsová, E., Králová-Hromadová, I., Minárik, G., Kádaši, L., 2011, Development of high-resolution melting (HRM) analysis for population studies of Fascioloides magna (Trematoda: Fasciolidae), the giant liver fluke of ruminants, Parasitol Res., 108, 201 – 209

- Rajský, D., Patus A., Bukovjan K., **1994**. *Prvý nález Fascioloides magna* (*Bassi, 1875*) *na Slovensku*, Slov. Vet. Čas., 19, 29 30
- Relf, V., Good, B., McCarthy, E., de Waal, T., 2009, Evidence of Fasciola hepatica infection in Radix peregra and a mollusc of the family Succineidae in Ireland, Vet Parasitol., 163, 152 – 155
- Reyna, G., Sanabria, R., **2014**, *Genetic variability of Fasciola hepatica isolated* from three definitive hosts, unpublished
- Robinson, M. W., Dalton, J. P., 2009, Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases, Phil. Trans.
 R. Soc. B, 364, 2763 2776
- Rokni, M. B., Massoud, J., O'Neill, S. M., Parkinson, M., Dalton, J. P., 2002, Diagnosis of human fasciolosis in the Gilan province of Northern Iran: application of cathepsin L-ELISA, Diagnostic Microbiology and Infectious Disease, 44, 175 – 179
- Rossignol, J. F., Maisonneuve, H., **1984**, *Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections*, Am J Trop Med Hyg., 33(3), 511 512
- Samuel, W. M., Pybus, M. J., Kocan, A. A., **2001**, *Parasitic diseases of Wild Mammals*, Iowa State University Press, Iowa, USA, pp 121 138
- Sattmann, H., Hörweg, C., Gaub, L., Feix, A. S., Haider, M., Walochnik, J.,
 Rabitsch, W., Prosl, H., **2014**, Wherefrom and whereabouts of an alien: The American liver fluke Fascioloides magna in Austria: an overview, Wien Klin Wochenschr., 126, 23-31
- Say, T., 1817, Description of seven species of American fresh water and land shells, not noticed in the systems, Journal of the Academy of Natural Sciences of Philadelphia 1(1-2), 14 – 15

- Scarre, C, **1995**, *The Penguin Historical Atlas of Ancient Rome*, Penguin Books Ltd, Bath Press, Avon, Great Britain, 24 25
- Schlebusch, C. M., Skoglund, P., Sjödin, P., Gattepaille, L. M., Hernandez, D., Jay, F., Li, S., De Jongh, M., Singleton, A., Blum, M. G. B., Soodyall, H., Jakobsson, M., 2012, Genomic Variation in Seven Khoe-San Groups Reveals Adaption and Complex African History, Science, 338, 374 379
- Schnieder, T., **2006**, *Veterinärmedizinische Parasitologie*, 6th edition, Paul Parey press, Berlin, pp 166 176
- Schuster, R. **2002**, *Leberegelbefall*, Denisia 6, Kataloge des OÖ. Landesmuseums, 184, 291 315
- Sczech, K. J., **1993**, Archäologische Befunde zur Entsorgung im Mittelalter. Dargestellt am Beispiel der Städte Konstanz und Freiburg i. Br., Albert-Ludwigs-Universität zu Freiburg i. Br., pp 130 – 143
- Semyenova, S. K. Morozova, E. V., Chrisanfova, G. G., Gorokhov, V. V., Arkhipov, I. A., Moskvin, A. S., Movsessyan, S. O., Ryskov, A. P., 2006, Genetic differentiation in eastern Europe and western Asian populations of the liver fluke, Fasciola hepatica, as revealed by mitochondrial NAD1 and COX1 genes, J. Parasitol, 92(3), 525 – 530
- Semyenova, S. K., Morozova, E. V., Vasiyev, V. A., Gorokhov, V. V., Moskvin,
 A. S., Movsessyan, S. O., Ryskov, A. P., 2005, *Polymorphism of internal* transcribed spacer 2 (ITS-2) sequences and genetic relationship between Fasciola hepatica and F. gigantica, Acta Parasitol., 50(3), 1 – 4
- Severin, K., Martinković, F., Janicki, Z., Marinculić, A., Slavica, A., Žele, D., Vengušt, G., Džaja, P., Vidić, Z., Konjević, D., 2015, Indirect ELISA and Western blotting as tools to diagnose fascioloidosis in a population of free-living red deer (Cervus elaphus), Veterinarski Arhiv, 85, 563 – 567

- Sharifi Yazdi, H., Moazeni, M., Rabbani, F., Mostafavi Zadeh,S. M., **2009**, Genetic characterization of Fasciola hepatica isolated from ovine in Iran on the basis of the sequences of gene for mitochondrial NADH dehydrogenase subunit I (NDI), unpublished
- Sharifiyazdi, H., Moazeni, M. and Rabbani, F., 2012, Molecular characterization of human Fasciola samples in Gilan Province, Northern Iran on the basis of DNA sequences of ribosomal and mitochondrial DNA genes, Comp Clin Path. 21(5), 889 – 894
- Skog, A., Zacho, F. E., Rueness, E. K., Feulner, P. G. D., Mysterud, A., Langvatn, R., Lorenzini, R., Hmwe, S. S., Lehoczky, I., Hartl, G. B., Stenseth, N. C., Jakobsen, K. S., **2009**, *Phylogeography of red deer* (*Cervus elaphus*) in Europe, Journal of Biogeography 36, 66 – 77
- Skoll, M., **2015**, *Die humane Fasziolose in Österreich eine retrospektive Analyse*, Dissertation, Medical University of Vienna, Austria
- Slifko, T. R., Smith, H. V., Rose, J. B., **2000**, *Emerging parasite zoonoses* associated with water and food, Int J Parasitol., 30, 1379 1993
- Smyth, J. D., **1976**, *Introduction to animal parasitology*, 3rd edition, Cambridge University Press, USA, 145 146
- Špakulová, M., Rajský, D., Sokol, J., Vodňanský, M., **2003**, *Giant Liver Fluke* (*Fascioloides magna*), an important liver parasite of ruminants, PaRPRESS, Bratislava
- Supperer, R., Pfeiffer, H., **1986**, *Zum Vorkommen des Großen Leberegels, Fasciola hepatica, in Österreich, Wien*, Tierärztl. Monatsschr., 55, 663 – 667

Tassy, P., 1990, The "Proboscidean Datum Event": How many proboscideans

and how many events, In: Lindsay, Fahlbusch, Mein (Ed.), European Neogene Mammal Chronology, Plenum Press, New York, 237 – 248

- Thang, Z., Schwartz, S., Wagner, L., Miller, W., **2000**, *A greedy algorithm for aligning DNA sequences*, J Comput Biol. 2000,7 (1-2), 203 214
- Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G., 1997, The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res. 25, 4876 – 4882
- Ullrich, K., **1930**, Über das Vorkommen von seltenen oder wenig bekannten Parasiten der Säugetiere und Vögel in Böhmen und Mähren, Prag Arch Tiermed., 10A, 19 – 43
- Ursprung, J., Joachim, A., Prosl, H., **2006**, *Vorkommen und Bekämpfung des Amerikanischen Riesenleberegels, Fascioloides magna, in einer Schalenwildpopulation in den Donauauen östlich von Wien*, Berl. Münch. Tierärztl., 119, 316 – 323
- Ursprung, J., Prosl, H., **2011**, Vorkommen und Bekämpfung des Amerikanischen Riesenleberegels (Fascioloides magna) in den österreichischen Donauauen östlich von Wien 2000 – 2010, Vet. Med. Austria, 99, 275 – 284
- Usip, L. P. E., Ibanga, E. S., Edoho, H. J., Amadi, E. C., Utah, E., 2014, Prevalence of Fascioliasis and the economic loss of condemned liver due to Fasciola infection in Cattle slaughtered at three abattoirs in Eket Urban, Akwa Ibom State of Nigeria, Global Advanced Research Journal of Food Science and Technology, Vol. 3(2), 54 – 75
- Valero, M. A., Gironès, N., García-Bodelón, M. A., Periago, M. V., Chico-Calero, I., Khoubbane, M., Fresno, M., Mas-Coma, S., 2008, Anaemia in advanced chronic fasciolosis, Acta Tropica, 108, 35 – 43

- Valero, M. A., Navarro, M., Garcia-Bodelon, M. A., Marcilla, A., Morales, M., Hernandez, J. L., Mengual, P., Mas-Coma, S., 2006, High risk of bacterobilia in advanced experimental chronic fasciolosis, Acta Tropica, 100, 17 – 23
- Valero, M. A., Santana, M., Morales, M., Hernandez, J. L, Mas-Coma, S., 2003, Risk of Gallstone Disease in Advanced Chronic Phase of Fascioliasis: An Experimental Study in a Rat Model, The Journal of Infectious Diseases, 189, 787 – 793
- Van Beneden, P., 1858, Mémoires sur les vers intestinaux. Supplement to Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Tome II, Paris, pp 376
- Van Damme, D., **1984**, *The freshwater Molluscs of Northern Africa distribution, biogeography and palaeoecology*, Dr. W. Junk Publishers, Dordrecht, The Netherlands
- van der Made, J., **1999**. Intercontinental relationship Europe-Africa and the Indian Subcontinent, In: Rössner, Heissig (Ed.), The Miocene Land Mammals of Europe, Dr. Friedrich Pfeil Verlag, Munich, Germany, 457 – 472
- Vignoles, P. Titi, A., Rondelaud, D., Mekroud A., Dreyfuss, G., 2014, Fasciola hepatica: effect of the natural light level on cercarial emergence from temperature-challenged Galba truncatula, Parasite, 21, 1 – 8
- Walker, S. M., Johnston, C., Hoey, E. M., Fairweather, I., Borgsteede, F., Gaasenbeek, C., Prodohl, P. A., Trudgett, A., 2011, Population dynamics of the liver fluke, Fasciola hepatica: the effect of time and spatial separation on the genetic diversity of fluke populations in the Netherlands, Parasitology, 138, 215 – 223.

- Walker, S. M., Prodohl, P. A., Fletcher, H. L., Hanna, R. E., Kantzoura, V., Hoey, E. M., Trudgett, A., 2007, Evidence for multiple mitochondrial lineages of Fasciola hepatica (liver fluke) within infrapopulations from cattle and sheep, Parasitol Res., 101, 117 – 125
- Walochnik, J., Harzhauser, M., Aspöck, H., **2010**, *Climate Change as a Driving Force for Evolution*, Nova Acta Leopoldina, 381, 21 32
- Whitfield, P. J., **1982**, *Parasitic helminths*, 2nd edition, Blackwell Scientific Publishing, Oxford, UK
- WHO, 1995, Control of foodborne trematode infections, Report of a WHO study group, 1 – 157
- WHO, **2006**, *Report of the WHO Informal Meeting on use of triclabendazole in fascioliasis control*, WHO headquarters, Geneva, Switzerland
- WHO, Foodborne trematode infections, Fascioliasis diagnosis, treatment and control strategy, <u>http://www.who.int/foodborne_trematode_infections</u> /fascioliasis/fascioliasis_diagnosis/en/ Accessed 09.01.2015
- Winkelhagen, A. J. S., Mank, T., de Vries, P. J., Soetekouw, R., 2012, Apparent Triclabendazole-Resistant Human Fasciola hepatica Infection, the Netherlands, Emerg Infect Dis., 18(6), 1028 – 1029
- Winkelmayer, R., Prosl, H., **2001**, *Riesenleberegel jetzt auch bei uns?*, Weidewerk 3, 42 44
- Yilma, J. M., Malone, J. B., **1998**, A geographic information system forecast model for strategic control of fascioliasis in Ethiopia, Vet Parasitol. 78(2), 103–127.
- Zilch, A., **1959**, *Gastropoda (Euthyneura)*, In: Schindewolf (Ed.), *Handbuch der Paläozoologie*, Gebrüder Borntraeger, Berlin, Germany, Vol. 6, 91 102

9. Appendix

- 9.1 Abstract
- 9.1.1 English

Diversity of *Fascioloides magna* and *Fasciola hepatica* in Austria based on their genes and antigens.

The aim of this study was to investigate the genetic diversity of *F. magna*, and for the first time, the diversity of *F. hepatica* in Austria. *Fascioloides magna* was introduced into Europe in the second half of the 19th century with game animals from North America and it mainly infests the liver of deer. Roe deer, sheep and goats are dead-end hosts and they usually die within six months after infestation. Human infestations are to date unknown. The common liver fluke *Fasciola hepatica* also is a parasitic flatworm, which however, occurs in more than 70 countries and infests the liver of various mammals including humans. It is estimated that around 50 million humans worldwide are infested by *F. hepatica*. As the main hosts are sheep and cattle, *F. hepatica* also has a great impact on meat and milk production and leads to significant economic loss annually.

Altogether, 26 individuals of *F. magna* isolated from deer, collected from the floodplains in the South of Vienna, which is the only known endemic region in Austria, and 31 individuals of *F. hepatica*, isolated from cattle, from various regions in Austria, were analysed by molecular biological methods. In order to distinguish the different haplotypes of the flukes, the sequences of the mitochondrial genes *cox1* and *nad1* were investigated and compared with reference strains. Moreover, as for *F. hepatica* no widely accepted haplotype system has been established yet, a new typing system was set up.

It was shown that all 26 individuals of *F. magna* are of the same haplotype, namely COX1-Ha3/NAD1-Ha4, respectively. Austria has this haplotype in common with Hungary, Slovakia, the Czech Republic and Croatia. The 31 individuals of *F. hepatica* could be grouped in two clusters for *cox1* and into three different clusters for *nad1*, whereby the most common *cox1* and *nad1*

haplotype was shared by 21 individuals and the second most common by 10 individuals for *cox1* and nine individuals for *nad1*. One *nad1* haplotype was represented only by one individual. Differences were more pronounced in the *nad1* gene than in the *cox1* gene.

This study indicates that the Austrian *F. magna* population is rather homogenous and might even be the result of a single introduction into Austria, while the Austrian *F. hepatica* population is more diverse. Moreover, it was shown that the protein profiles and even more so the antigen profiles of *F. magna* and *F. hepatica* are highly diverse and that *F. hepatica* reveals a more complex protein and antigen pattern than *F. magna*. In total, only three intracellular proteins and two membrane proteins are shared by both flukes. The antigen profile revealed one common intracellular and one common membrane antigen.

9.1.2 German

Zusammenfassung:

Molekularbiologische Charakterisierung von *F. magna* und *F. hepatica*-Isolaten aus Österreich.

Ziel der Studie war die Untersuchung der genetischen Diversität von *F. magna* und *F. hepatica* in Österreich. *Fascioloides magna* wurde in der zweiten Hälfte des 19. Jahrhunderts mit Jagdtieren aus Nordamerika importiert und befällt hauptsächlich die Leber von Wildtieren. Rehe, Schafe und Ziegen sind Fehlendwirte und sterben etwa 6 Monate nach dem Befall. Infektionen beim Menschen sind nicht bekannt.

Der gemeine Leberegel *Fasciola hepatica* ist in über 70 Ländern heimisch und befällt die Leber von zahlreichen Säugetieren, darunter auch die des Menschen. Schätzungen zufolge sind rund 50 Millionen Menschen weltweit mit *F. hepatica* infestiert. Da Schafe und Rinder Hauptendwirte darstellen, hat *F. hepatica* einen sehr großen Einfluss auf die Fleischproduktion und verursacht jährlich erhebliche wirtschaftliche Verluste.

Insgesamt wurden 26 Individuen von *F. magna* aus Lebern von Wild aus den Überschwemmungsgebieten südlich von Wien, dem einzig bekannten Endemiegebiet Österreichs, und 31 Individuen von *F. hepatica* aus Lebern von Rindern aus verschiedenen Regionen in Österreich, mit molekularbiologischen Methoden untersucht. Für die Bestimmung der Haplotypen wurden die Nukleotidsequenzen der mitochondrialen Gene *cox1* und *nad1* untersucht und mit Referenzstämmen verglichen.

Alle 26 Exemplare von *F. magna* sind vom selben Haplotyp, nämlich COX1-Ha3/NAD1-Ha4. Diesen Haplotyp hat Österreich mit Ungarn, der Slowakei, der Tschechischen Republik und Kroatien gemein. Die 31 Individuen von *F. hepatica* können in 3 Gruppen eingeteilt werden, wobei der häufigste Haplotyp für *cox1* und *nad1* bei 21 Individuen, der zweithäufigste *cox1*-Haplotyp bei 10 Individuen, der zweihäufigste *nad1*-Haplotyp bei 9 Individuen und 1 *nad1*-Haplotyp bei einem Individuum gefunden wurde. Weiters wurde deutlich, dass die Unterschiede im *nad1*-Gen ausgeprägter waren als im *cox1*-Gen.

Die Studie zeigt, dass die österreichische *F. magna*-Population eine größere Homogenität aufweist, was auf eine einzige Einschleppung schließen lässt, während hingegen *F. hepatica* eine höhere Diversität besitzt, was bereits von anderen Ländern bekannt ist. Es hat sich gezeigt, dass die Proteinprofile und insbesondere die Antigenprofile der beiden Leberegel sehr unterschiedlich sind. *F. hepatica* lieferte ein komplexeres Protein-Profil als *F. magna* und folglich mehr Antigene. Insgesamt waren 3 intrazelluläre und 2 Membranproteine den beiden Egeln gemeinsam. Das Antigenprofil zeigte, dass nur ein intrazelluläres und ein Membran-Antigen den beiden Egeln gemeinsam war.

9.2 Index of Figures

- Fig. 1.1: Classification of the Platyhelminthes.
- Fig. 1.2: The effect of temperature, light and saline of hatching on eggs from trematodes (*Schistosoma mansoni*).
- Fig. 1.3: The life cycle of different trematodes.
- Fig. 1.4: Freshwater lymnaeid snail Galba truncatula.
- Fig. 1.5: Distribution and occurrence of *F. magna* in Austria (June 2011).
- Fig. 1.6: Adult individual of *F. magna*.
- Fig. 1.7: Functions of the tegument of trematodes.
- Fig. 1.8: Egg of *F. magna* containing a miracidium.
- Fig. 1.9: The life cycle of *F. magna*.
- Fig. 1.10: Pseudocysts in a liver of red deer infested with *F. magna*.
- Fig. 1.11: Redia of *F. magna*.
- Fig. 1.12: Cercaria of *F. magna*.
- Fig. 1.13: Fascioloidosis at a liver of a 3 year old roe deer.
- Fig. 1.14: Distribution of fasciolosis.
- Fig. 1.15: *F. hepatica* from ventral.
- Fig. 1.16: Egg of *F. hepatica*.
- Fig. 1.17: Life cycle of *F. hepatica*.
- Fig. 1.18: Metacercariae located on vegetation.
- Fig. 1.19: Acute fasciolosis at a goat.
- Fig. 1.20: Chronic fasciolosis at a cattle.
- Fig. 2.1: Samples of *F. magna* from various regions in Austria.
- Fig. 2.2: Section of the bile ducts.
- Fig. 2.3: Section of a bile duct.
- Fig. 2.4: Samples of *F. hepatica* from various regions in Austria.
- Fig. 3.1: PCR with samples of *F. magna* with a dilution of 1:50 with primers for the *cox1* and the *nad1* genes.
- Fig. 3.2: PCR with samples of *F. hepatica* with a dilution of 1:50 with primers for the *cox1* and the *nad1* genes.
- Fig. 3.3: Alignment of a fragment of the *cox1* gene of the investigated strains with reference strains for haplotype 3 of *F. magna*.

- Fig. 3.4: Alignment of a fragment of the *nad1* gene of the investigated strains with reference strains for haplotype 4 of *F. magna*.
- Fig. 3.5: Alignment of a fragment of the *cox1* gene of sequences of the Austrian samples Fh1–Fh31 with COX1-strains.
- Fig. 3.6: Alignment of a fragment of the *nad1* gene of sequences of the Austrian samples Fh1–Fh31 with NAD1-strains.
- Fig. 3.7: Alignment of a fragment of the *nad1* gene of sequences of the Austrian samples Fh1–Fh31 with NAD1-strains.
- Fig. 3.8: SDS-PAGE of intracellular and membrane proteins of *F. magna* and *F. hepatica*.
- Fig. 3.9: Western blot of fractionated intracellular and membrane proteins of *F. magna* and *F. hepatica*.
- Fig. 4.1: Colonisation routes of red deer (*Cervus elaphus*).
- Fig. 4.2: Spreading of *F. hepatica* in the post-domestication period.
- Fig. 4.3: Distribution routes of humans.

9.3 Index of Tables

- Tab. 1.1: Intermediate hosts for F. hepatica.
- Tab. 1.2: cox1 haplotypes of F. magna.
- Tab. 1.3: nad1 haplotypes of F. magna.
- Tab. 2.1: Samples of *F. magna* with their year of collection, host, and source.
- Tab. 2.2: Samples of *F. hepatica* with their year of collection, host, and source (NHMV).
- Tab. 2.3: Samples of *F. hepatica* with their year of collection, host, and source (Alpenrind GmbH, Salzburg).
- Tab. 2.4: Samples of *F. hepatica* with their year of collection, host, and source (AGES).
- Tab. 2.5: Primers for PCR amplification of mitochondrial genes cox1 andnad1 of F. magna.
- Tab. 2.6: Primers for PCR amplification of mitochondrial genes *cox1* and *nad1* of *F. hepatica.*
- Tab. 2.7: Differences of base pairs among the *cox1* haplotypes of group A.
- Tab. 2.8: Differences of base pairs among the *cox1* haplotypes of group B.
- Tab. 2.9: Differences of base pairs among the *nad1* haplotypes of group C.

- Tab. 3.1: *cox1* haplotypes of *F. hepatica* (Group A).
- Tab. 3.2: *cox1* haplotypes of *F. hepatica* (Group B).
- Tab. 3.3: *nad1* haplotypes of F. hepatica (Group C).
- Tab. 3.4: Geographical distribution of the haplotypes in Austria.
- Tab. 3.5:Differences of base pairs among the *cox1* haplotypes and the
Austrian haplotypes.
- Tab. 3.6:Differences of base pairs among the *nad1* haplotypes and the
Austrian haplotypes.
- Tab. 3.7: Haplotypes of Austrian strains of *F. hepatica*.