Description (de)
Second Vienna Symposium on the Foundations of Modern Physics in Honour of Daniel Greenberger and Helmut Rauch
Mitschnitt einer gemeinsamen Veranstaltung des Instituts für Quantenoptik und Quanteninformation der ÖAW (IQOQI) und der Fakultät für Physik der Universität Wien am Freitag, dem 12. Juni 2009 im Lise Meitner-Hörsaal der Fakultät für Physik
Teil 6:
- Wolfgang P. Schleich: Factorization of Numbers, Schrödinger Cats and the Riemann Hypothesis
- Nicolas Gisin: Independent Nonlocalities
Abstract Schleich: In this talk we connect the three different topics: factorization of numbers, Schrödinger cats and the Riemann hypothesis. The bridge between these areas is the concept of a Gauss sum. Gauss sums manifest themselves in various phenomena such as the Talbot effect, wave packet dynamics or quantum carpets. Moreover, Gauss sums can be used to efficiently factor numbers. In the meantime five experiments have used such an approach. They rely on NMR techniques, the physics of cold atoms and femtosecond pulses. At the moment the largest number that was factored using a Gauss sum algorithm is a 17 digit number. The talk summarizes these activities. Moreover, we propose an elementary quantum system which provides us with the Riemann Zeta function. We show that its zeroes are a consequence of the interference of two quantum systems with opposite phases. However, the preparation of such a superposition state (Schrödinger cat) is impossible unless one takes advantage of entangled quantum systems. In this sense analytic continuation familiar from complex analysis finds entanglement as its analogue in quantum mechanics.
INHALT
======
Kapitel Titel Position
---------------------------------------------------------------------
1. Vorspann 00:00:00
2. W. Schleich: Introduction 00:00:39
3. W. Schleich: Factorization with Gauss sums 00:10:20
4. W. Schleich: Experiments 00:25:58
5. W. Schleich: Riemann zeta function 00:33:35
6. Questions from the audience 00:44:21
7. N. Gisin: Locality. Quantum measurements 00:48:19
8. N. Gisin: Entanglement swapping. Bi-locality 00:59:52
9. N. Gisin: An elegant Bell inequality 01:11:07
10. N. Gisin: Multi-partite nonlocality 01:14:33
11. Questions from the audience 01:26:19
Keywords (de)
Gaußsche Summe, Faktorisierung, Riemannsche Zeta-Funktion, Bellsche Ungleichung, Nichtlokalität