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COGROWTH FOR GROUP ACTIONS WITH STRONGLY CONTRACTING ELEMENTS

GOULNARA N. ARZHANTSEVA AND CHRISTOPHER H. CASHEN

Abstract. Let G be a group acting properly by isometries and with a strongly contracting element on a geodesic
metric space. Let N be an infinite normal subgroup of G, and let δN and δG be the growth rates of N and G
with respect to the pseudo-metric induced by the action. We prove that if G has purely exponential growth
with respect to the pseudo-metric then δN/δG > 1/2. Our result applies to suitable actions of hyperbolic groups,
right-angled Artin groups and other CAT(0) groups, mapping class groups, snowflake groups, small cancellation
groups, etc. This extends Grigorchuk’s original result on free groups with respect to a word metrics and a recent
result of Jaerisch, Matsuzaki, and Yabuki on groups acting on hyperbolic spaces to a much wider class of groups
acting on spaces that are not necessarily hyperbolic.

1. Introduction

We consider the exponential growth rate δG of the orbit of a group G acting properly on a geodesic
metric space X. In various notable contexts this asymptotic invariant is related to the Hausdorff dimension
of the limit set of G in ∂X and to analytical and dynamical properties of G\X such as the spectrum of the
Laplacian, divergence rates of random walks, volume entropy, and ergodicity of the geodesic flow.

In some cases of special interest, the value of half the growth rate of the ambient space X is distinguished.
For example, when X = Hn and H is a torsion free discrete group of isometries of X, the Elstrodt-Patterson-
Sullivan formula [24] for the bottom of the spectrum of the Laplacian of H\X has a phase change when the
ratio of δH to the volume entropy of X is 1/2. Similarly, if X is a Cayley tree of a finite rank free group Fn

and H is a subgroup, then the Grigorchuk cogrowth formula [14] for the spectral radius of H\X has a phase
change at δH/δFn = 1/2. Our main result says that, in great generality, normal subgroups land decisively on
one side of this distinguished value:

Theorem 1.1. Suppose G is a group acting properly by isometries on a geodesic metric space X with a
strongly contracting element and with purely exponential growth. If N is an infinite normal subgroup of G
then δN/δG > 1/2, where the growth rates δG and δN are computed with respect to Gy X.

The ratio δN/δG is known as the cogrowth of Q := G/N. The hypotheses will be explained in detail in
the next section. Briefly, the existence of a strongly contracting element means that some element of G acts
hyperbolically on X, though X itself need not be hyperbolic, and pure exponential growth is guaranteed if
the action has a strongly contracting element and an orbit of G in X is not too badly distorted.

In negative curvature, the strict lower bound on cogrowth has been shown in various special cases [23,
21, 5, 16]. For X = G = Fn, the strict lower bound on cogrowth is due to Grigorchuk [14].

Grigorchuk and de la Harpe [15, page 69] (see also [12, Problem 36]) asked whether the strict lower
cogrowth bound also holds when Fn is replaced by a non-elementary Gromov hyperbolic group, and X
is one of its Cayley graphs. This long-open problem was recently answered affirmatively by Jaerisch,
Matsuzaki, and Yabuki [19] (see also a survey by Matsuzaki [18]). Their result applies more generally
to groups of divergence type acting on hyperbolic spaces. Theorem 1.1 gives an alternative proof of the
positive answer to Grigorchuk and de la Harpe’s question, and goes much beyond. In comparison, Jaerisch,
Matsuzaki, and Yabuki’s result applies to more general actions if one restricts to actions on hyperbolic
spaces, while Theorem 1.1 applies to many renowned non-hyperbolic examples.

Corollary 1.2. For the following Gy X, for every infinite normal subgroup N of G we have δN/δG > 1/2.
(1) G is a non-elementary hyperbolic group acting cocompactly on a hyperbolic space X.
(2) G is a relatively hyperbolic group, and X is hyperbolic such that G y X is cusp uniform and

satisfies the parabolic gap condition.
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(3) G is a right-angled Artin group defined by a finite simple graph that is neither a single vertex nor
a join, and X is the universal cover of its Salvetti complex.

(4) X is a CAT(0) space, and G acts cocompactly with a rank 1 isometry on X.
(5) G is the mapping class group of a surface of genus g and p punctures, with 6g− 6 + 2p > 2, and X

is the Teichmüller space of the surface with the Teichmüller metric.

Results (3)-(5) are new, only known as consequences of Theorem 1.1. Further new examples include
wide classes of snowflake groups [2] and of infinitely presented graphical and classical small cancellation
groups [1], hence, many so-called infinite ‘monster’ groups.

The generality of Theorem 1.1 is striking. Previous successes in showing the strict lower bound on
cogrowth have relied on fairly sophisticated results concerning Patterson-Sullivan measures on the boundary
of a hyperbolic space or ergodicity of the geodesic flow on G\X. These tools are not available in our general
setting. Instead, we use the geometry of the group action directly to estimate orbit growth. The idea of our
argument is as follows.

(1) If G contains a strongly contracting element for Gy X then so does every infinite normal subgroup
N of G. Let c ∈ N be such an element.

(2) By passing to a high power of c, if necessary, we may assume that its translation length is much
larger than the constants describing its strong contraction properties. In this case the growth δ[c] of
the set [c] of conjugates of c is exactly δG/2.

(3) A ‘tree’s worth’ of copies of [c] injects into the normal closure 〈〈c〉〉 of c, which is a subgroup of
N. It follows that the growth rate of 〈〈c〉〉, hence of N, is strictly greater than δ[c] = δG/2. In this
step we use the ‘hyperbolicity’ of the action of c, as quantified by strong contraction, to provide
geometric separation between copies of [c].

We used this strategy in our paper with Tao [2] (see also references therein) to prove growth tightness
of G y X for actions having a strongly contracting element. The key point was to estimate the growth
rate of the quotient of G by the normal closure of c. We chose a section A of the quotient map and built a
tree’s worth of copies of it by translating by a high power of c. By construction, the set A did not contain
words containing high powers of c as subwords, so translates of A by powers of c were geometrically
separated. There is a serious difficulty in applying step (3) for cogrowth, because [c] does contain words
with arbitrarily large powers of c as subwords. Indeed, any word of G can occur as a subword of an element
of [c], so we do not get the same nice geometric separation as hoped for in step (3), and consequently our
abstract tree’s worth of copies of [c] does not inject into G. We overcome this difficulty by quantifying how
this mapping fails to be an injection. We show there is asymptotically at least half of [c] for which the map
is an injection, and we use this half of [c] to complete step (3).

For an example where the conclusion of the theorem does not hold, consider the group G = F2 × F2
acting on its Cayley graph X with respect to the generating set (S ∪1)× (S ∪1), where S is a free generating
set of F2. The F2 factors are normal and have growth rate exactly half the growth rate of G. The action
Gy X does not have a strongly contracting element.

We thank the referee for the careful reading and helpful comments.

2. Preliminaries

We write x
∗

≺ y, x
+

≺ y, or x ≺ y if there is a universal constant C > 0 such that x < Cy, x < y + C, or
x < Cy + C, respectively. We define

∗

�,
+

�, �, ∗

�, +
�, and � similarly.

Throughout, we let (X, d, o) be a based geodesic metric space and let G be a group acting isometrically on
X. For Y ⊂ X and r > 0, let Br(Y) := {x ∈ X | ∃y ∈ Y, d(x, y) < r} and B̄r(Y) := {x ∈ X | ∃y ∈ Y, d(x, y) 6 r}.
Let Br := Br(o), and let S ∆

r := Br+∆ − Br.
There are induced pseudo-metric and semi-norm on G given by d(g, h) := d(g.o, h.o) and |g| := d(o, g.o).

2.1. Growth. The (exponential) growth rate of a subset Y ⊂ X is:

δY := lim sup
r→∞

log #Y ∩ B̄r

r

The Poincaré series of a countable subset Y of X is:

ΘY (s) :=
∑
y∈Y

exp(−sd(y, o))
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For any ∆ > 0 we also consider the series:

Θ
S ,∆
Y (s) :=

∞∑
i=0

(#Y ∩ S ∆(i+1)
∆i ) exp(−s∆i)

Θ
B,∆
Y (s) :=

∞∑
i=0

(#Y ∩ B̄∆i) exp(−s∆i)

The series Θ
B,∆
Y (s) and Θ

S ,∆
Y (s) agree with ΘY (s) up to multiplicative error depending on ∆ and s, so they all

converge and diverge together. Now, ΘY (s) converges for s > δY and diverges for s < δY . The set Y is said
to be divergent, or of divergent type, if ΘY (s) diverges at s = δY .

We say that Y ⊂ X has purely exponential growth if there exist δ > 0 and ∆ > 0 such that #Y ∩ S ∆
r

∗

�

exp(δr). Recall this means there is a constant C > 0, independent of r, such that exp(δr)/C 6 #Y ∩ S ∆
r 6

C exp(δr).
An action Gy X is (metrically) proper if for all x ∈ X and r > 0 the set {g ∈ G | d(x, g.o) 6 r} is finite.

When Gy X is proper we extend all the preceding definitions to subsets H of G by taking Y = H.o, e.g.:

δH := lim sup
r→∞

log #H.o ∩ B̄r

r
= lim sup

r→∞

log #{h ∈ H | |h| 6 r}
r

When G y X is cocompact, or, more generally, has a quasi-convex orbit, the growth of #S ∆
r ∩ G.o

is coarsely sub-multiplicative, which, when δG > 0, implies an exponential lower bound on #S ∆
r ∩ G.o.

Conversely, if G y X contains a strongly contracting element then the growth of #S ∆
r ∩ G.o is coarsely

super-multiplicative, which implies the corresponding exponential upper bound. For instance, Coornaert [9]
proved that a quasi-convex-cocompact, exponentially growing subgroup of a hyperbolic group has purely
exponential growth. More generally, in [2] we introduced the following condition that implies the pseudo-
metric induced by a group action behaves like a word metric for growth purposes: the complementary
growth of G y X is the growth rate of the set of points of G.o that can be reached from o by a geodesic
segment in X that stays completely outside of a neighborhood of G.o, except near its endpoints. We say
that Gy X has complementary growth gap if the complementary growth is strictly less than δG. Yang [25]
proved that if G acts properly with a strongly contracting element and 0 < δG < ∞ then complementary
growth gap implies purely exponential growth.

For relatively hyperbolic groups the complementary growth gap specializes to the parabolic growth gap
of [11], which requires that the growth of parabolic subgroups of a relatively hyperbolic group is strictly
less than the growth rate of the whole group. For another non-cocompact example, we showed in [2] that
the action of the mapping class group of a hyperbolic surface on its Teichmüller space has complementary
growth gap.

For a non-example, consider the integers Z acting parabolically on the hyperbolic plane. Hyperbolic
geodesics connecting o to n.o for large n travel deeply into a horoball at the fixed point of Z on ∂H2, far
from the orbit of Z. Although Z has 0 exponential growth in any word metric, in terms of this action on H2

it has exponential growth due entirely to the distortion of the orbit.

2.2. Contraction. A subset Y of X is C–strongly contracting, for a ‘contraction constant’ C > 0, if for
all x, x′ ∈ X, if d(x, x′) 6 d(x,Y) then the diameter of πY (x) ∪ πY (x′) is at most C, where πY (x) := {y ∈
Y | d(x, y) = d(x,Y)}. A set is called strongly contracting if there exists a C > 0 such that it is C–strongly
contracting. The projection distance in Y is dπY (x, x′) := diam πY (x)∪ πY (x′). We extend these definitions to
sets Z ⊂ X by πY (Z) := ∪z∈ZπY (z) and dπY (Z,Z′) := diam πY (Z) ∪ πY (Z′).

Strong contraction of Y is equivalent [2, Lemma 2.4] to the bounded geodesic image property: For all
C > 0 there exists C′ > C such that if Y is C–strongly contracting then for every geodesic γ in X, if
γ ∩ BC′ (Y) = ∅ then diam πY (γ) 6 C′.

Corollary 2.1. Suppose Y is C–strongly contracting and C′ is as above. Suppose γ is a geodesic defined
on an interval [a, b], possibly infinite. Let t0 := inf{t | d(γ(t),Y) < C′}, and let t1 := sup{t | d(γ(t),Y) < C′}.
Then diam πY (γ([a, t0])) 6 C′ and diam πY (γ([t1, b])) 6 C′, while γ([t0, t1]) ⊂ B̄3C′ (Y). If a and b are finite
and diam πY (γ(a)) ∪ πY (γ(b)) > C′ then πY (γ(a)) ⊂ B̄2C′ (γ(t0)) and πY (γ(b)) ⊂ B̄2C′ (γ(t1)).

An infinite order element c ∈ G is said to be a strongly contracting element for G y X if the set
〈c〉.o is strongly contracting. In this case Z → X : i 7→ ci.o is a quasi-isometric embedding and c is
contained in a maximal virtually cyclic subgroup E(c). This subgroup, which is alternately known as the
elementarizer or elementary closure of c, can also be characterized as the maximal subgroup consisting
of elements g ∈ G such that g−1〈c〉g is at bounded Hausdorff distance from 〈c〉. Since E(c).o is coarsely
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equivalent to 〈c〉.o, the set E(c).o is also strongly contracting. Note that E(c) = E(cn) for every n , 0.
Thus, when considering E(c).o, we can pass to powers of c freely without changing the set E(cn).o, and in
particular without changing its contraction constant.

For a strongly contracting element c, let E := E(c).o, and let Y be the collection of distinct G–translates
of E. Bestvina, Bromberg, and Fujiwara [4] axiomatized the geometry of projection distances in Y. With
Sisto [3] they showed that by a small change in the projections and projection distances, a cleaner set of
axioms is satisfied—these will allow us to make an inductive argument in the next section. The following
is [3, Theorem 4.1] applied to Y. We list here only those axioms that we will make use of and that are
not immediate from our particular definitions of Y, πY, and dπ

Y
. A detailed verification that Y satisfies the

hypotheses of [3, Theorem 4.1] can be found in [2].

Theorem 2.2. There exists θ > 0 such that for each Y ∈ Y there is a projection π′
Y

taking elements of Y
to subsets of Y such that for all X ∈ Y and g ∈ G we have π′

Y
(X) ⊂ Bθ(πY(X)) and π′gY(gX) = gπ′

Y
(X).

Furthermore, there are distance maps dY(X,Z) = diam π′
Y

(X) ∪ π′
Y

(Z) with |dY − dπ
Y
| 6 2θ such that, for

θ′ := 11θ, the following axioms are satisfied for all X, Y, Z,W ∈ Y:
(P 0): dπ

Y
(X,X) 6 θ when X , Y.

(P 1): If dπ
Y

(X,Z) > θ then dπ
X

(Y,Z) 6 θ for all distinct X, Y,Z.
(SP 3): If dY(X,Z) > θ′ then dZ(X,W) = dZ(Y,W) for allW ∈ Y − {Z}.
(SP 4): dY(X,X) 6 θ′ when X , Y.

For more details on strongly contracting elements and many examples, see [2].

Proposition 2.3 ([3, Lemma 2.2 and Proposition 2.3]). With θ′ as in Theorem 2.2, for each X and Z in Y
define Y(X,Z) := {Y ∈ Y − {X,Z} | dY(X,Z) > 2θ′} and Y[X,Z] := Y(X,Z) ∪ {X,Z}. There is a total
order @ on Y[X,Z] such if Y0 @ Y1 @ Y2 then dY1 (Y0,Y2) = dY1 (X,Z). The relation Y0 @ Y1 is defined
by each of the following equivalent conditions:

• dY0 (X,Y1) > θ′

• dY1 (X,Y0) 6 θ′
• dY1 (Y0,Z) > θ′

• dY0 (Y1,Z) 6 θ′

3. Embedding a tree’s worth of copies of [c].

For a subset H ⊂ G, let H∗ := H − {1}, and consider Ĥ :=
⋃∞

k=1(H∗)k. We consider Ĥ to be a ‘tree’s
worth of copies of H’ in allusion to the case of the free product H ∗ Z/2Z when H is a group. The group
H ∗Z/2Z acts on a tree with vertex stabilizers conjugate to H, and every element that is not equal to 1 or the
generator z of Z/2Z has a unique expression as zαh1zh2z · · · hkzβ for some k ∈ N, α, β ∈ {0, 1}, and hi ∈ H∗.

The naı̈ve map Ĥ → X : (h1, . . . , hk) 7→ h1c · · · hkc.o, where c is a strongly contracting element, is clearly
not an injection for H = [c], as it gives collisions (h−1, h) 7→ h−1chc.o 7→(h−1ch). To avoid collisions we
remove a fraction of [c] in four steps, and use a slightly different map. The main technical result is:

Proposition 3.1. Under the hypothesis of Theorem 1.1, let c be a strongly contracting element. After
possibly passing to a power of c, there is a subset G4 ⊂ [c] that is divergent, has δG4 = δG/2, and for which
the map Ĝ4 → X : (g1, . . . , gk) 7→ (

∏k
i=1 gic2).o is an injection.

The main theorem follows by an argument analogous to the one we used in [2], which we reproduce for
the reader’s convenience.

Proof of Theorem 1.1. Let c′ ∈ G be a strongly contracting element for G y X. Suppose that N < E(c′).
Since N is infinite, it has a finite index subgroup in common with 〈c′〉. But conjugation by an element of G
fixes N, so it moves 〈c′〉 by a bounded Hausdorff distance, which means G = E(c′) is virtually cyclic and
N is a finite index subgroup of G. However, 〈c′〉 has an undistorted orbit in X. Since this is a finite index
subgroup of G, the growth of G is only linear, contradicting the exponential growth hypothesis. Thus, we
may assume that G is not virtually cyclic and that N contains an element g that is not in E(c′). We showed
in [2, Proposition 3.1] that for sufficiently large n the element c := g−1(c′)−ng(c′)n is a strongly contracting
element of N.

Consider G4 as provided by Proposition 3.1 with respect to c. Then Ĝ4 injects into X, and, moreover, the
image is contained in 〈〈c〉〉.o ⊂ N.o. Therefore, the growth rate of N is at least as large as the growth rate of
the image of Ĝ4, which we estimate using its Poincaré series:

ΘĜ4
(s) =

∞∑
k=1

∑
(g1,...,gk)∈(G∗4)k

exp(−s|g1c2 · · · gkc2|)
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>
∞∑

k=1

∑
(g1,...,gk)∈(G∗4)k

exp

−sk|c2| − s
k∑

i=1

|gi|


=

∞∑
k=1

exp(−sk|c2|)
∑

(g1,...,gk)∈(G∗4)k

k∏
i=1

exp(−s|gi|)

=

∞∑
k=1

exp(−sk|c2|)

∑
g∈G∗4

exp(−s|g|)


k

=

∞∑
k=1

(
exp(−s|c2|)ΘG∗4 (s)

)k

Since G4 is divergent, for sufficiently small positive ε we have ΘG∗4 (δG4 +ε) > exp((δG4 +ε)|c2|), so ΘĜ4
(δG4 +

ε) diverges, which implies δĜ4
> δG4 + ε. Thus, δN > δĜ4

> δG4 + ε > δG4 = δG/2. �

The remainder of this section is devoted to the construction of the set G4 satisfying the conclusion of
Proposition 3.1. Here is a brief overview. We need a subset of [c] such that the given map is an injection.
It would be preferable if we could take conjugates of c by elements g that have no long projection to any
element of Y. It is easy to build an injection based on such elements, but, unfortunately, there are too few of
them in our setting—the growth rate of the set of such elements is strictly smaller than δG, so the growth rate
of c–conjugates by such elements is strictly smaller than δG/2. Instead, we consider elements g that do not
have long projections to E and gE; in a sense, these are elements ‘orthogonal to Y at their endpoints’, rather
than ‘orthogonal to Y’ throughout. The desired condition can be achieved with a small modification near
the ends of g, so this does not change the growth rate. We call this set of elements G1 and the conjugates of
(a power of) c by these elements G2. We define G3 by passing to a maximal subset of G2 such that elements
are sufficiently far apart. This does not change the set much; in particular, the growth rate is unchanged.
However, it will be an important point for the injection argument, because we show in Lemma 3.5 that if
g and h are in G3 then gE = hE implies g = h. The final refinement is to pass to the subset G4 of G3
of elements that are not ‘in the shadow’ of some other element of G3, that is to say, elements g such that
there does not exist h such that a geodesic from o to g.o passes close to h.o. The crux of the argument,
Lemma 3.6, is to show that at least half of G3 is unshadowed, so G4 is divergent with growth rate δG/2.
Finally, in Lemma 3.7, we check that G4 gives the desired injection.

Fix an element f0 ∈ G such that f0E is disjoint from E, o ∈ πE( f0.o), and f0.o ∈ π f0E(o). To see that such
an element exists, first note that there exists g ∈ G − E(c), for instance, as in the first paragraph of the proof
of Theorem 1.1. If E and gE are disjoint, let f1 and f2 be elements of G such that f1.o ∈ E and f2.o ∈ gE
realize the minimum distance between E and gE. Then the element f0 := f −1

1 f2 satisfies our requirements.
If gE and E are not disjoint consider gE and cngE, for some n. If they intersect then, by (P 0):

2θ > dπ
E
(gE, gE) + dπ

E
(cngE, cngE) > dπ

E
(gE, cngE) > |cn|

This is impossible once n is sufficiently large as c is strongly contracting. So, gE and cngE are disjoint for
such n, and we get f0 by the previous argument after replacing g with g−1cng.

Since E and f0E are disjoint and o and f0.o are contained in one another’s projections, strong contraction
of c, and hence of E, gives a constant C > 0 such that:

(1) dπf0E(o, f0.o) = diam π f0E(o) 6 C and dπ
E
(o, f0.o) = diam πE( f0.o) 6 C

In the sequel, we use the following notation: | f0| is the length of the element f0 just defined; ∆ is as in
the definition of purely exponential growth of G; C is a contraction constant for E; C′ is the corresponding
constant from Corollary 2.1; θ and θ′ are as in Theorem 2.2; K is a fixed constant strictly greater than
max{C, θ + θ′/2}. We call these, collectively, ‘the constants’. The terms ‘small’ and ‘close’ mean bounded
by some combination of the constants. When possible we decline to compute these explicitly since only
finitely many such combinations appear in the proof, except where noted. Furthermore, ∆ depends only on
G, and the others depend only on E = E(c).o. Since E(c) = E(cp) for all p , 0, we can, and will, pass
to high powers of c to make |cp| much larger than all of the constants and combinations of them that we
encounter.

Set G1 := {g ∈ G | dπ
E
(o, g.o) 6 2K and dπgE(o, g.o) 6 2K and gE , E}. This is a subset of G that is closed

under taking inverses.
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Lemma 3.2. For every g ∈ G at least one of the elements g, f0g, g f0, or f0g f0 belongs to G1.

Proof. First, consider g < E(c) with |g| 6 K. Recall g ∈ E(c) if and only if gE = E. By definition, πE(g.o)
is the set of points of E minimizing the distance to g.o. By hypothesis, o is a point of E at distance at most
K from g.o so d(g.o, πE(g.o)) 6 K, and dπ

E
(o, g.o) = diam {o} ∪ πE(g.o) 6 2K. The same argument for o

projecting to gE gives dπgE(o, g.o) 6 2K. Thus, elements g of this form already belong to G1.
Next, consider an element g ∈ E(c) such that |g| 6 K. Since g ∈ E(c), we have f0gE = f0E , E and

πE(g.o) = g.o, so dπ
E
(o, g.o) = d(o, g.o) 6 K. Using this estimate and (1), we see:

dπf0gE(o, f0g.o) 6 dπf0gE(o, f0.o) + dπf0gE( f0.o, f0g.o) = dπf0E(o, f0.o) + dπ
E
(o, g.o) 6 C + K < 2K

In the other direction, using the fact that o ∈ πE( f0.o) ⊂ πE( f0E), along with (P 0):

dπ
E
(o, f0g.o) 6 dπ

E
(o, f0E) 6 dπ

E
( f0E, f0E) 6 θ < K

Note that we did not use dπ
E
(o, g.o) 6 K for this direction—the inequality is valid for any g ∈ E(c).

Suppose g < E(c) and dπ
E
(o, g.o) > K then:

θ < K < dπ
E
(o, g.o) = dπf0E( f0.o, f0g.o) 6 dπf0E(E, f0gE)

This contradicts (P 0) if E = f0gE, since, by hypothesis, f0E , E and f0gE , f0E. Thus, E, f0E, and f0gE
are distinct, and we can apply (P 1) to get:

dπ
E
(o, f0g.o) 6 dπ

E
( f0E, f0gE) 6 θ < K

For |g| 6 K we are done, either g or f0g is in G1, and for |g| > K we have shown that there is at
least one choice of g′ ∈ {g, f0g} such that g′E , E and dπ

E
(o, g′.o) 6 K. If dπg′E(o, g′.o) 6 K then we are

done, so suppose not. Consider the possibility that g′ f0E = E. Then g′ f0.o ∈ E, so o ∈ πE( f0.o) implies
g′.o ∈ πg′E(g′ f0.o) ⊂ πg′E(E). Since g′E , E, (P 0) says dπg′E(E,E) 6 θ, so:

K < dπg′E(o, g′.o) 6 dπg′E(E,E) 6 θ < K

This is a contradiction, so E, g′E, and g′ f0E are distinct. Observe, since g′.o ∈ πg′E(g′ f0.o):

dπg′E(E, g′ f0E) > dπg′E(o, g′ f0.o) > dπg′E(o, g′.o) > K > θ

Thus, by (P 1) and the fact that g′ f0.o ∈ πg′ f0E(g′.o), we have dπg′ f0E(o, g′ f0.o) 6 dπg′ f0E(E, g′E) 6 θ < K.
To check that the first inequality has not been spoiled, use the fact that dπg′E(E, g′ f0E) > θ, so (P 1)

implies dπ
E
(g′E, g′ f0E) 6 θ, which gives:

dπ
E
(o, g′ f0.o) 6 dπ

E
(o, g′.o) + dπ

E
(g′.o, g′ f0.o) 6 K + dπ

E
(g′E, g′ f0E) < K + θ < 2K �

Define φ0 : G → G1 by fixing G1 and sending an element g ∈ G − G1 to an arbitrary element of the
nonempty set { f0g, g f0, f0g f0} ∩G1. The map φ0 is surjective, at most 4-to-1, and changes norm by at most
2| f0|.

For each p ∈ N, define G2,p := {g−1cpg | g ∈ G1} and φ1,p : G1 → G2,p : g 7→ g−1cpg.

Lemma 3.3. If p is sufficiently large then for every g ∈ G1 we have:

2|g| + |cp| − 8C′ − 8K 6 |φ1,p(g)| 6 2|g| + |cp|

Proof. The upper bound is clear. We derive a lower bound from strong contraction. From the definition of
G1 it follows that πg−1E(o) ⊂ B̄2K(g−1.o) and πg−1E(g−1cpg.o) ⊂ B̄2K(g−1cp.o), so:

(2) |cp| − 4K 6 dπg−1E
(o, g−1cpg.o) 6 |cp| + 4K

Let γ be a geodesic from o to g−1cpg.o. Its endpoints have projection to g−1E at distance at least |cp|−4K �
C′ from one another, for p sufficiently large, as c is strongly contracting. Thus, for t0 and t1 as in Corol-
lary 2.1, we have d(γ(t0), πg−1E(o)) 6 2C′, so d(γ(t0), g−1.o) 6 2C′ + 2K, and, similarly, d(γ(t1), g−1cp.o) 6
2C′ + 2K.

|φ1,p(g)| = |γ| = d(o, γ(t0)) + d(γ(t0), γ(t1)) + d(γ(t1), g−1cpg.o)

>
(
d(o, g−1.o) − (2C′ + 2K)

)
+

(
d(g−1.o, g−1cp.o) − 2(2C′ + 2K)

)
+

(
d(g−1cp.o, g−1cpg.o) − (2C′ + 2K)

)
= 2|g| + |cp| − 8C′ − 8K �

The following lemma also follows from (2).

Lemma 3.4. Let g−1cpg = φ1,p(g) ∈ G2,p. If p is sufficiently large then g−1E ∈ Y(E, g−1cpgE).
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We also claim φ1,p is bounded-to-one, independent of p. To see this, fix g ∈ G1 and consider h ∈ G1

such that φ1,p(g) = φ1,p(h). Then gh−1 commutes with cp, so gh−1 ∈ E(cp) = E(c). Thus:

|gh−1| = dπ
E
(o, gh−1.o) 6 dπ

E
(o, g.o)+dπ

E
(g.o, gh−1.o) = dπ

E
(o, g.o)+dπhg−1E

(h.o, o) = dπ
E
(o, g.o)+dπ

E
(h.o, o) 6 4K

So, h satisfies h−1.o ∈ B̄4K(g−1.o). By properness of Gy X, #G.o ∩ B̄4K(g−1.o) = #G.o ∩ B̄4K(o) is finite.
Let G3,p be a maximal (6K + 1)–separated subset of G2,p, that is, a subset that is maximal for inclusion

among those with the property that d(g.o, h.o) > 6K +1 for distinct elements g and h. Let φ2,p : G2,p → G3,p
be a choice of closest point. This map is surjective. By maximality, φ2,p moves points a distance less than
6K + 1. Thus, by properness of Gy X, the map φ2,p is bounded-to-one, independent of p.

Lemma 3.5. If p is sufficiently large then g−1cpgE = h−1cphE for g−1cpg and h−1cph in G3,p implies
g−1cpg = h−1cph.

Proof. Since g ∈ G1, dπgE(o, g.o) 6 2K, and:

dπg−1cpgE(o, g−1cpg.o) 6 dπg−1cpgE(o, g−1cp.o) + dπg−1cpgE(g−1cp.o, g−1cpg.o) 6 dπg−1cpgE(E, g−1E) + 2K

Furthermore, g ∈ G1 implies E , g−1E , g−1cpgE. By (2), dπg−1E
(E, g−1cpgE) > |cp| − 4K � θ, so by (P 0),

E , g−1cpgE. Thus E, g−1E, and g−1cpgE are distinct and we can apply (P 1) to see dπg−1cpgE(E, g−1E) 6 θ <
K. Plugging this into previous inequality gives:

(3) dπg−1cpgE(o, g−1cpg.o) < 3K

The same computation applies for h, so πg−1cpgE(o) ⊂ B̄3K(g−1cpg.o) ∩ B̄3K(h−1cph.o). Thus, g−1cpg and
h−1cph are elements at distance at most 6K in a (6K + 1)–separated set; hence, they are equal. �

For each D > 0, consider the set G′4,p,D consisting of elements g−1cpg ∈ G3,p such that there exists
a different element h−1cph ∈ G3,p such that h−1cphc2p.o is within distance D of a geodesic γ from o to
g−1cpg.o. Define G4,p,D := G3,p −G′4,p,D.

Lemma 3.6. For all D > 0, for p sufficiently large, G4,p,D is divergent and δG4,p,D = δG/2.

Proof. The maps φ2,p, φ1,p, and φ0 are surjective and bounded-to-one, with bound independent of p, so their
composition is as well. Furthermore, we know how they change norm: φ0 moves points at most 2| f0|, φ2,p
moves less than 6K + 1, and |φ1,p(g)| is estimated in Lemma 3.3. Putting these together, for any r > 0 and
g ∈ G ∩ S ∆

r we have:

(4) 2r + |cp| − 4| f0| − 8C′ − 14K − 1 6 |φ2,p ◦ φ1,p ◦ φ0(g)| < 2r + |cp| + 2∆ + 4| f0| + 6K + 1

Let t := 2r + |cp| − 4| f0| − 8C′ − 14K − 1, E := 4| f0|+ 4C′ + 10K + 1, and ∆′ := 2(∆ + E), so that (4) shows:

φ2,p ◦ φ1,p ◦ φ0(G ∩ S ∆
r ) ⊂ G3,p ∩ S ∆′

t ⊂ φ2,p ◦ φ1,p ◦ φ0(G ∩ S ∆+2E
r−E )

This lets us compare the size of spherical shells in G3,p and G:

(5) #G ∩ S ∆+2E
r−E > #G3,p ∩ S ∆′

t
∗

� #G ∩ S ∆
r

Pure exponential growth of G says that #G ∩ S ∆
r
∗

� exp(rδG). Combining this with (5), we have:

(6) #G3,p ∩ S ∆′

t
∗

� exp(δGr) ∗

� exp(−δG |cp|/2) exp(tδG/2)

This tells us that δG3,p = δG/2 and G3,p is divergent.
Now we will estimate an upper bound for #G′4,p,D ∩ S ∆′

r and see that for large p and r it is less than half
of #G3,p ∩ S ∆′

r . Thus, to get G4,p,D we threw away less than half of G3,p, at least outside a sufficiently large
radius. We conclude that δG4,p,D = δG/2 and G4,p,D is divergent.

Consider g−1cpg ∈ G′4,p,D ∩ S ∆′

r for any r > 7|cp|. By definition of G′4,p,D, there exists h−1cph ∈ G3,p such
that h−1cph , g−1cpg and h−1cphc2p.o is close to a geodesic γ from o to g−1cpg.o.

Let @ be the order of Proposition 2.3 on Y[E, g−1cpgE]. The first step of the proof is to show that E,
g−1E, g−1cpgE, h−1E, and h−1cphE are distinct elements of Y[E, g−1cpgE], and that the ordering is one of
the two possibilities shown in Figure 1 and Figure 2.

By Lemma 3.4, E @ g−1E @ g−1cpgE, so these three are distinct. Similarly, E, h−1E, and h−1cphE are
distinct. Lemma 3.5 implies g−1cpgE , h−1cphE.

We have |cp| + 2|g| > |g−1cpg|
+

� |h−1cphc2p| since h−1cphc2p.o is close to a geodesic from o to g−1cpg.o.
On the other hand, any geodesic from o to h−1cphc2p.o has projection to h−1cphE of diameter greater than
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g−1cpg.o

h−1.o h−1cp.o

g−1.o g−1cp.o

h−1cph.o
h−1cphc2p.o

γ

a

g g

h h

Figure 1. h−1cphE before g−1E, that is, h−1cphE @ g−1E

g−1cpg.o

h−1.o h−1cp.o g−1.o g−1cp.o

h−1cph.o h−1cphc2p.o

γb b′

g g

h h

Figure 2. h−1cphE after g−1E, that is, g−1E @ h−1cphE

|c2p| − 3K by (3). This is much larger than C′ when p is large, so |h−1cphc2p|
+
� |h−1cph|+ |c2p|

+

� 3|cp|+ 2|h|
by Corollary 2.1 and Lemma 3.3. Thus:

(7) |g|
+

� |h| + |cp|

However, by definition of G1, if h−1E = g−1E, then:

4K > dπg−1E
(o, g−1.o) + dπh−1E

(o, h−1.o) > d(g−1.o, h−1.o) > |g| − |h|
+

� |cp|

This is a contradiction for sufficiently large p. Similar considerations show h−1E , g−1cpgE, since o projects
close to h−1.o in h−1E, by definition of G1, and close to g−1cpg.o in g−1cpgE, by (3), but |h| � |g−1cpg|, by
Lemma 3.3 and (7).

Next we show that h−1E and h−1cphE belong to Y[E, g−1cpgE], and in the course of the proof we will
observe g−1E , h−1cphE. By hypothesis, there exists t such that d(γ(t), h−1cphc2p.o) 6 D. This implies
dπh−1cphE(γ(t), h−1cphc2p.o) 6 2D. Since dπh−1cphE(o, h−1cph.o) < 3K, by (3), we have dπh−1cphE(o, γ(t)) > |c2p| −

2D− 3K, which is large for p sufficiently large. Let t0 and t1 be the first and last times γ is distance C′ from
h−1cphE, as in Corollary 2.1 with respect to h−1cphE. We cannot have t 6 t0, since then dπh−1cphE(o, γ(t)) 6
C′, which is a contradiction for large p.

If t > t1 then dπh−1cphE(γ(t), g−1cpg.o) 6 C′, so:

dπh−1cphE(o, g−1cpg.o) > dπh−1cphE(o, γ(t)) − dπh−1cphE(γ(t), g−1cpg.o)

> |c2p| − 3K − 2D −C′

If t0 < t < t1 then we use Corollary 2.1 to say dπh−1cphE(o, g−1cpg.o) > |γ(t0, t1)| − 4C′, and then estimate:

|γ(t0, t1)| > d(γ(t0), γ(t))

> d (πh−1cphE(γ(t0)), πh−1cphE(γ(t))) −C′ − D

> dπh−1cphE(γ(t0), γ(t)) − diam πh−1cphE(γ(t0)) − diam πh−1cphE(γ(t)) −C′ − D

> dπh−1cphE(γ(t0), γ(t)) − 2C −C′ − D

> dπh−1cphE(o, γ(t)) − dπh−1cphE(γ(t0), o) − 2C −C′ − D

> |c2p| − 2D − 3K −C′ − 2C −C′ − D

Thus, h−1cphE ∈ Y[E, g−1cpgE] once p is sufficiently large. Additionally, this shows g−1E , h−1cphE
because, by (2) and (P 0), we have dπg−1E

(E, g−1cpgE) +
� |cp|, while dπh−1cphE(E, g−1cpgE)

+

� |c2p| from the
estimates above, and these are incompatible for sufficiently large p. Thus, the five axes are distinct.

From Corollary 2.1 we deduce that:

d(h−1cphc2p.o, h−1E)
+

� dπh−1cphE(h−1cphc2p.o, h−1E) +
� |c2p|

Thus, for large enough p we have d(h−1cphc2p.o, h−1E) > D > d(γ(t), h−1cphc2p.o), so strong contraction of
h−1E implies dπh−1E

(γ(t), h−1cphc2p.o) 6 C. Since o projects close to h−1.o in h−1E and h−1cphc2p.o ∈ h−1cphE
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projects close to h−1cp.o, Corollary 2.1 says γmust pass close to h−1cp.o. Now we can run the same argument
as for h−1cphE to see h−1E ∈ Y[E, g−1cpgE] once p is sufficiently large.

The first step of the proof is completed by observing that g−1E @ h−1E implies |h| +
� |g| + |cp|, which

cannot be true when p is sufficiently large, by (7). Thus, h−1E comes before g−1E and h−1cphE under @,
and we are left with the possibilities that h−1cphE @ g−1E, as in Figure 1, or the converse, as in Figure 2.

In the case of Figure 1, we have h−1cphE @ g−1E, so the projection of h−1cphc2p.o to g−1E is close to
the projection of o, which we know to be close to g−1.o. Write g−1.o = h−1cphc2pa.o as in Figure 1 with
|g| +
� 2|h| + 3|cp| + |a|.
In the case of Figure 2, we have h−1E @ g−1E and g−1E @ h−1cphE. The former implies the projection of

h−1cp.o to g−1E is close to the projection of o, which we know to be close to g−1.o, while the latter implies the
projection of h−1cph.o to g−1E is close to the projection of g−1cpg.o, which we know to be close to g−1cp.o.
Write g−1.o = h−1cpb.o with |g| +

� |h|+ |cp|+ |b| and write h.o = bcpb′.o as in Figure 2 with |h| +
� |b|+ |cp|+ |b′|;

together these give |g| +
� 2|b| + 2|cp| + |b′|.

Suppose we are in the case of Figure 2, so there are elements b and b′ such that (r − |cp|)/2 +
� |g| +

� 2|b|+
2|cp|+ |b′|. Since G has purely exponential growth, if i 6 |b| < i + 1 there are, up to a bounded multiplicative
error independent of p, r, and i, at most exp(δGi) possible choices for b and at most exp(δG( r−5|cp |

2 − 2i))
choices of b′, so there is an upper bound for the number of possible elements g by a multiple of:

(8)

r−5|cp |
4∑

i=0

exp(δGi) exp
(
δG

(
r − 5|cp|

2
− 2i

))
<

exp(rδG/2)
exp (5δG |cp|/2) (1 − exp(−δG))

The case of Figure 1 is similar, but gives an even smaller upper bound1. Thus, for all sufficiently large p
and r:

(9) #G′4,p,D ∩ S ∆′

r
∗

≺ exp(−5δG |cp|/2) exp(rδG/2)

Combining (6) and (9) gives:

(10) #G′4,p,D ∩ S ∆′

r
∗

≺ exp(−2|cp|δG) · #G3,p ∩ S ∆′

r

Crucially, the multiplicative constant in this asymptotic inequality does not depend on p, so for p suffi-
ciently large, exp(2|cp|δG) is more than twice the multiplicative constant, and (10) becomes a true inequality
#G′4,p,D ∩ S ∆′

r < 1
2 #G3,p ∩ S ∆′

r . We conclude that to get G4,p,D from G3,p we threw away fewer than half of
the points of G3,p in each spherical shell S ∆′

r such that r > 7|cp|. �

Lemma 3.7. For all sufficiently large D, for all sufficiently large p, the map Ĝ4,p,D → X : (g1, . . . , gk) 7→
(
∏k

i=1 gic2p).o is an injection.

Proof. Consider a point (
∏k

i=1 gic2p).o in the image. Set g0 := c−2p. Suppose that for each i we have
gi = e−1

i cpei for ei ∈ G1. For 0 6 i 6 k set z′2i := (
∏i

j=0 g jc2p).o, z2i := (
∏i

j=0 g jc2p)c−2p.o, and Z2i :=
(
∏i

j=0 g jc2p)E. For 0 < i 6 k set z2i−1 := (
∏i−1

j=0 g jc2p)e−1
2i−1.o, z′2i−1 := (

∏i−1
j=0 g jc2p)e−1

2i−1cp.o, and Z2i−1 :=
(
∏i−1

j=0 g jc2p)e−1
2i−1E. See Figure 3.

z0 = c−2p.o z′0 = o

z1 = e−1
1 .o z′1 = e−1

1 cp.o

z2 z′2

z2k−1 z′2k−1

z2k (
∏k

i=1 gic2p).o = z′2k

Z0 = E

Z1 = e−1
1 E

Z2 = e−1
1 cpe1E = g1E

Z2k−1

Z2k = (
∏k

i=1 gic2p)E

Figure 3. (
∏k

i=1 gic2p).o

Let us complete the proof assuming the following claim, to which we shall return:

(11) ∀0 6 i < j 6 2k, dπ
Zi

(z′i ,Z j) < 5K and dπ
Z j

(z j,Zi) < 5K

When p is sufficiently large, d(zi, z′i) � 10K for all i, so (11) implies thatZi @ Z j for all 0 6 i < j 6 2k,
where @ is the order of Proposition 2.3 on Y[Z0,Z2k].

Suppose that the map Ĝ4,p,D → X is not an injection; there exist distinct elements (g1, . . . , gm) and
(h1, . . . , hn) of Ĝ4,p,D with the same image z ∈ X. Suppose m + n is minimal among such tuples. If

1Replace each ‘5’ in (8) with a ‘7’. This accounts for the restriction that r − 7|cp | > 0.
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h1E = g1E then h1 = g1 by Lemma 3.5. This contradicts minimality of m + n, so we must have h1E , g1E.
Let Z0, . . . ,Z2m be as in Figure 3 for (g1, . . . , gm). By definition, o ∈ Z0 and z ∈ Z2m. By (11), πZ2m (o)
is close to z2m. By Corollary 2.1, any geodesic from o to z ends with a segment that stays close to the
subsegment of Z2m between z2m and z = z′2m. However, if Z′0, . . . ,Z

′
2n are as in Figure 3 for (h1, . . . , hn),

then the same is true for Z′2n, which implies dπ
Z2m

(Z′2n,Z
′
2n)

+

� d(z2m, z′2m) = |c2p|. Once p is sufficiently
large, (P 0) requiresZ2m = Z′2n. Thus, Y[Z0,Z2m] = Y[Z′0,Z

′
2n], and all of theZi andZ′j are comparable

in the order @ on Y[Z0,Z2m]. In particular,Z′2 = h1E , g1E = Z2, so one of them comes before the other.
Suppose, without loss of generality, that h1E @ g1E. Then dh1E(g1E,Z2m) 6 θ′, by Proposition 2.3, and
dπh1E

(Z2m, h1c2p.o) < 5K by (11), so:

dπh1E
(g1.o, h1c2p.o) 6 dπh1E

(g1E,Z2m) + dπh1E
(Z2m, h1c2p.o)

< θ′ + 2θ + 5K < 7K

On the other hand, dπh1E
(o, h1.o) < 3K, by (3), so dπh1E

(o, g1.o) > |c2p| − 10K � C′. By Corollary 2.1,
any geodesic from o to g1.o passes within distance 2C′ of πh1E(g1.o), which is less than 7K from h1c2p.o.
This means g1 ∈ G′4,p,(7K+2C′), which is a contradiction if D > 7K + 2C′. Thus, if D > 7K + 2C′ then for
sufficiently large p the map is injective.

We prove (11) by induction on m = j − i. For each 0 6 i < 2k we have that z′i and zi+1 differ by an
element of G1, soZi , Zi+1 and dπ

Zi+1
(zi+1, z′i) 6 2K. Furthermore, by (P 0), dπ

Zi+1
(Zi,Zi) 6 θ. Thus:

dπ
Zi+1

(zi+1,Zi) 6 dπ
Zi+1

(zi+1, z′i) + dπ
Zi+1

(z′i ,Zi) 6 dπ
Zi+1

(zi+1, z′i) + dπ
Zi+1

(Zi,Zi) 6 2K + θ < 3K

Similarly, dπ
Zi

(z′i ,Zi+1) < 3K.
Now extend m to m + 1: Suppose that for some m > 1 and all 0 < j − i 6 m we have dπ

Z j
(z j,Zi) < 5K

and dπ
Zi

(z′i ,Z j) < 5K. (Note that this impliesZi , Z j.) Then for all 0 6 i 6 2k − m − 1:

dZi+1 (Zi+m+1,Zi) > dπ
Zi+1

(Zi+m+1,Zi) − 2θ > d(zi+1, z′i+1) − 10K − 2θ � θ′

The final inequality is true for sufficiently large p, because the distance between zi+1 and z′i+1 is either |cp|

or |c2p|
+
� 2|cp|, according to whether i is even or odd. Thus, by (SP 3) and (SP 4):

dπ
Zi

(Zi+m+1,Zi+1) 6 dZi (Zi+m+1,Zi+1) + 2θ = dZi (Zi+1,Zi+1) + 2θ 6 θ′ + 2θ < 2K

which implies:

dπ
Zi

(z′i ,Zi+m+1) 6 dπ
Zi

(z′i ,Zi+1) + dπ
Zi

(Zi+1,Zi+m+1) < 3K + 2K = 5K

A similar argument gives dπ
Zi+m+1

(zi+m+1,Zi) < 5K. This completes the induction. �

Proof of Proposition 3.1. Take D and p as in Lemma 3.7. For this D, enlarge p if necessary to satisfy the
hypotheses of Lemma 3.6. Set G4 := G4,p,D. �

4. Questions

Question 1. Can we replace purely exponential growth of G by divergence of G in Theorem 1.1?

By [19], the answer is ‘yes’ when X is hyperbolic.

Recall in (5) we showed ΘG(s) is comparable to ΘG3,p (s/2), while it is clear that ΘG3,p (s/2) 6 ΘN(s/2).
If G is divergent then ΘG(s) diverges at s = δG, which means ΘN(t) diverges at t = δG/2. There are two
possible circumstances in which ΘN(t) diverges at t = δG/2:

(12) Either δN > δG/2, or δN = δG/2 and N is divergent.

We proved the first case of (12) directly, with the additional assumption of purely exponential growth of G.
The approach of [19] is to prove, if X is hyperbolic, that δN = δG when N is divergent, so, since δG > δG/2,
the second case of (12) is impossible. Thus, a positive answer to Question 1 would be implied by a positive
answer to the following question, which is also interesting in its own right.

Question 2. If G is a group acting properly by isometries with a strongly contracting element on a geodesic
metric space X and Gy X is divergent, is it true that for every divergent normal subgroup N of G we have
δN = δG?

Jaerisch and Matsuzaki [17] show that if F is a finite rank free group and N is a non-trivial normal
subgroup of F then, with respect to a word metric defined by a free generating set of F, there is a inequality
δN + 1

2δF/N > δF . Notice, δN > δF/2 by the lower cogrowth bound, and δF/N < δF by growth tightness of F.
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Question 3. Is there an analogue of Jaerisch and Matsuzaki’s inequality for G acting with a strongly
contracting element and complementary growth gap? Note that we know both growth tightness, by [2], and
lower cogrowth bound, by Theorem 1.1, for such actions.

For G = X = Fn [14, 20, 7] and X = H2 and G a closed surface group [5], there exists a sequence (Ni)i∈N

of normal subgroups of G such that δNi/δG limits to 1/2, so the lower cogrowth bound is optimal.

Question 4. Is the lower cogrowth bound optimal in Theorem 1.1?

We must mention that the upper cogrowth bound is also very interesting. Grigorchuk [14] and Cohen [8]
showed that when F is a finite rank free group, with respect to a word metric defined by a free generating
set the upper cogrowth bound δN/δF = 1 is achieved for N C F if and only if F/N is amenable. There have
been several generalizations [6, 21, 22, 13, 10] to growth rates defined with respect to an action G y X,
but the most general to date [10] still requires G to be hyperbolic, the action to be cocompact, and X to be
either a Cayley graph of G or a CAT(-1) space. In the vein of our theorem, it would be very interesting to
generalize such a result to a non-hyperbolic setting.
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