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Introduction 

1 Introduction 
 

1.1 The immune system protects from infectious disease 

 

Multicellular organisms have developed diverse mechanisms to fight foreign invaders. The 

complexity and specificity of these mechanisms have increased during evolution. Mammals 

defend themselves against constant challenges by viruses, bacteria, fungi and parasites 

using a sophisticated immune system that consists of a network of soluble molecules, 

specialized cells, tissues and organs. The components of the immune system work 

together in a coordinated manner to prevent the entry of infectious agents or of foreign 

substances in general into the body. If microbes enter the host despite these protective 

measures, the immune system reacts by mounting an immune response, which is a 

collection of processes that aim to kill and clear the invading pathogen. 

 

The immune system is divided into two branches: the innate and the adaptive immune 

system. Innate and adaptive immunity are interdependent, and therefore the cooperation 

between the two is crucial for mounting an appropriate immune response to various 

pathogens. [1] 

 

1.1.1 Innate immune system 

 

The innate immune system is the first line of defense against invading pathogens. It 

prevents infections and often eliminates microbes before the adaptive immune response is 

mounted. In addition, it stimulates and modulates the quality of the subsequent adaptive 

immune responses. The components of the innate immune system are epithelial barriers, 

circulating effector cells i. e. phagocytes and natural killer (NK) cells, the complement 

system and other soluble mediators. 

 

Epithelial barriers physically prevent entry of pathogens into the host organism and often 

secrete chemical substances that interfere with microbial growth. For example, lysozyme 

degrades the bacterial cell wall component peptidoglycan and is secreted in tears and 

saliva. Antibiotic peptides known as defensins protect gut and respiratory epithelia. 

 

The phagocytes including neutrophils, macrophages and dentritic cells display various 

germ line-encoded pathogen recognition receptors (PRRs) that recognize highly conserved 
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molecular structures shared by large groups of microbes. These so-called pathogen-

associated molecular patterns (PAMPs) are usually essential for the survival or 

pathogenicity of microbial pathogens, but are not present on mammalian cells. Examples 

for PAMPS include lipopolysaccharide (LPS) of gram-negative bacteria, DNA sequences 

rich in unmethylated CG dinucleotides (CpG-DNA) as found in bacteria or viruses, and viral 

double-stranded RNA (dsRNA). Some PRRs like the macrophage mannose receptor 

promote endocytosis upon ligand recognition resulting in the internalization of a microbe 

by phagocytosis. Phagocytosed microbes are eventually killed by reactive oxygen and 

nitrogen species when the phagosome fuses with the lysosome to form the 

phagolysosome. Other PRRs like Toll-like receptors (TLRs) activate a signaling cascade 

leading to the induction of inflammatory cytokines [2] that recruit more cells to the 

infection site and stimulate the adaptive immune response. A schematic overview on 

phagocyte functions is displayed in figure 1. 

 
Figure 1. Macrophages phagocytose microbes and produce inflammatory cytokines. Phagocytes like 
macrophages express a variety of germ line-encoded PRRs. Here five such receptors are illustrated – the LPS 
receptor CD14, the complement receptor CD11b/CD18, the macrophage mannose receptor, the scavenger 
receptor and the glucan receptor. The mannose receptor mediates phagocytosis of microbes. Ingested 
microbes are killed when the phagosome fuses with the lysosome. Other phagocyte receptors lead to the 
production of various inflammatory cytokines [3]. 
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Natural killer cells trigger apoptosis in host cells infected with viruses or intracellular 

bacteria, and tumor cells. 

 

Soluble factors of the innate immune system include the blood plasma proteins of the 

complement system, a proteolytic cascade that ultimately leads to lysis of microbes, and a 

variety of inflammatory cytokines like tumor necrosis factor α (TNFα), type I interferons 

(IFNα and IFNβ) and many others. 

 

1.1.2 Adaptive immune system 

 

The most prominent components of the adaptive immunity are B cells (lymphocytes 

matured in the bone marrow) and T cells (lymphocytes matured in the thymus) that 

mediate two types of adaptive immune responses, called humoral and cellular immunity 

respectively. Humoral immunity is the principal defense mechanism against extracellular 

microbes and their toxins. B cells secrete antibodies that constitute the effectors of 

humoral immunity as they recognize microbial antigens, neutralize the infectivity of 

microbes, and target extracellular microbes for elimination by various mechanisms e. g. 

ingestion by phagocytes or lysis by complement proteins (figure 2). 

 
Figure 2. Effector mechanisms of adaptive immune cells. B cells recognize soluble antigens and 
differentiate into antibody secreting plasma cells. Helper T cells recognize antigens displayed by antigen 
presenting cells e. g. macrophages and secrete cytokines. Cytolytic T cells recognize antigens on infected cells 
and kill them [1]. 
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Cellular immunity targets intracellular microbes such as viruses as well as certain bacteria 

that survive and proliferate inside host cells, and are therefore inaccessible for antibodies. 

T cells are the mediators of cellular immunity. Cytolytic T lymphocytes kill cells that are 

infected with microbes, whereas helper T lymphocytes instruct phagocytes of the innate 

immune system e. g. macrophages to kill ingested microbes. Moreover, helper T cell-

secreted cytokines cause inflammation and stimulate proliferation and differentiation of T 

and B cells. 

 

The hallmarks of adaptive immunity are described below. i) Specificity: Lymphocyte 

receptors and thus adaptive immune responses are specific for distinct antigens or even 

structural details of antigens, so-called epitopes. ii) Diversity: Lymphocyte receptors are 

expressed clonally. Thus each lymphocyte displays receptors with a single antigen 

specificity. However, the diversity of an individual’s lymphocyte population, the 

lymphocyte repertoire, is very large (approximately 107 to 109). Receptor diversity is 

generated by somatic rearrangement of gene fragments during B and T cell maturation. 

iii) Memory: Secondary immune responses are faster, stronger, and qualitatively different 

in comparison to primary immune responses, because the respective lymphocyte clone 

expands after the primary encounter with an antigen and long-lived memory cells are 

generated. iv) Specialization: Immune responses are tailored to each pathogen to 

maximize efficiency. v) Self-limitation: Once the antigen has been cleared, immune 

responses eventually decline until homeostasis is reached due to regulatory mechanisms. 

vi) Nonreactivity to self: The immune system distinguishes between its own (self) and 

foreign (nonself) antigens. It responds to nonself antigens, but tolerates self antigens in 

healthy individuals. [1] 

 

1.1.3 Common and d stinct features of innate and adaptive immune 

responses 

i

 

Innate immunity is phylogenetically older than adaptive immunity and can be found in 

insects and plants, while mechanisms of adaptive immunity only occur in vertebrates. In 

contrast to lymphocyte receptors, innate immune receptors are not clonally expressed and 

recognize common structures on microbes. As their specificity is genetically determined, 

their diversity is limited and estimated to be in the range of 102 to 103. 

 

The innate immune response is mounted within hours after infection, whereas adaptive 

immune responses take 3 – 5 days to develop, since appropriate lymphocyte clones need 
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to expand and differentiate into effector cells. During this time the innate immune system 

contains the infection or even clears it. The innate immune response is fast, but its quality 

remains unchanged, whereas the adaptive immune response is optimized during the 

course of an infection. Moreover, the adaptive immune system is capable of building an 

immunological memory and therefore improves its response with repeated exposures to a 

given antigen. 

 

Immunologists have focussed their research interests on adaptive immune responses for 

many decades, while innate immunity was considered to be of minor importance for 

immune functions and thus has been neglected. The seeming unspecificity and 

primitiveness of innate immunity due to its ancient origin may explain the lack of 

attention. During the last 10 years the perspective has changed as research is revealing 

the powerful role of the innate immune system. Studies on the septic shock causing agent 

LPS that is produced by all gram-negative bacteria and leads to TNFα release by 

macrophages led to the identification of TLR4 as its receptor. Further investigations 

revealed the specificities of the remaining members of the TLR family. Ever since the 

ground breaking studies on TLR function, innate immunity as been a fast growing 

research area. In contrast to earlier assumptions, recent findings demonstrate that innate 

immunity is crucially important for the host immune defense and for driving adaptive 

immunity. 

 

1.2 Innate immunity to viral infections 

 

The prerequisite for an antiviral innate immune response is the detection of viruses by 

PRRs of innate immune cells. Viruses are typically sensed by the presence of their 

genomes consisting of either DNA or RNA, but there are also PRRs that recognize other 

PAMPs like glycoproteins on the viral surface. Several nucleic acid sensors exist, for 

example the membrane-associated TLRs 3, 7, 8 and 9 as well as various cytosolic 

receptors. Engagement of these receptors with their respective ligands triggers a signaling 

cascade that ultimately leads to the production of cytokines and chemokines (figure 3).  

 

The central event of the antiviral immune response is the induction and secretion of type I 

interferons (IFNα and IFNβ) that establish an antiviral state in infected and adjacent cells 

and promote adaptive immune responses. IFNβ production is tightly controlled by 

extracellular and intracellular signals. The concerted action of the transcription factors  
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Figure 3. Antiviral innate immunity pathways. Various PRRs specifically recognize nucleic acids to sense 
viral infection. This figure illustrates the membrane associated TLRs 3, 7, and 9 as well as the cytosolic 
receptors RIG-I and MDA-5. The characteristics of these receptors and their signaling pathways are described 
below. Ultimately nucleic acid stimulation leads to the induction of type I IFNs and inflammatory cytokines. 
 

activator protein 1 (AP-1), nuclear factor κB (NF-κB) as well as interferon regulatory 

factors 3 and 7 (IRF3 and IRF7) is required for transcriptional activation of the IFNβ gene. 

AP-1 is activated by phosphorylation of the stress kinases Jun N-terminal kinase (JNK) and 

p38. The activity of the IRFs and NF-κB is regulated by their subcellular localization. In 

unstimulated cells, the inhibitor of NF-κB (I κB) binds to NF-κB dimers and sequesters 

them in an inactive form in the cytosol. Viral infection results in activation of the I κB 

kinase (IKK) complex that phosphorylates I κB targeting it for polyubiquitinylation and 

subsequent proteasomal degradation. Free NF-κB dimers translocate to the nucleus and 

activate their target genes e. g. IFNβ. Inactive IRF3 and IRF7 are also retained in the 

cytosol. Upon viral challenge the non-canonical IKKs, TANK binding kinase 1 (TBK1) or 

IKK-i, phosphorylate IRF3. Phosphorylation causes a conformational change and 

dimerization of IRF3 that allow nuclear translocation and transcription factor activity. AP-1, 

IRF3 and NF-κB bind to their respective binding sites in regulatory sequences of the IFNβ 

gene and participate in the formation of a multiprotein enhancer complex that remodels 

chromatin in the promoter region and allows transcriptional initiation of IFNβ. 
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IFNβ in turn acts in an autocrine and paracrine manner on neighbouring cells. It binds to 

the IFNα/β receptor (IFNAR) that signals via the Janus kinase (JAK)/ signal transducer 

and activator of transcription (STAT) pathway. STAT1 and 2 proteins form a heterotrimeric 

complex with IRF9 called IFN-stimulated gene factor 3 (ISGF3) that transcriptionally 

activates interferon stimulated genes (ISGs) by binding to the corresponding regulatory 

sites, the IFN stimulated response elements (ISRE). Among the ISGs are the members of 

the IFNα family which create a positive feedback loop ensuring a robust interferon 

response. Most ISGs are effectors of the innate immune response to viruses as they 

establish an antiviral state in host cells that interferes with viral replication (figure 4). 

Examples of such effector proteins are double-stranded RNA-activated protein kinase (Pkr) 

and 2’-5’ oligoadenylate synthetase (Oas3). Pkr, activated when bound to dsRNA, a 

common viral replication intermediate, phosphorylates and thus inactivates eukaryotic 

translation initiation factor 2 (eIF2α), thereby inhibiting protein translation within infected 

cells. Oas3 is also stimulated by dsRNA. It polymerizes special oligomers that activate the 

endoribonuclease RNaseL to cleave viral as well as cellular RNAs [4, 5]. 

 
Figure 4. Type I interferons induce an antiviral state in the cell. Secreted IFNβ binds to the IFNα/β 
receptor in an autocrine and paracrine fashion and signals via the JAK/STAT pathway to activate ISGs that 
inhibit various stages of virus replication. 
 

1.2.1 Toll-like receptors 3, 7, 8 and 9 are membrane-associated nucleic acid 

receptors 

 

12 members of the TLR family (TLR1 – 12) have been identified in mammals so far [6]. 

They are expressed on various types of immune cells, most prominently though on 
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macrophages and dentritic cells (DC). However, certain nonimmune cells like fibroblasts 

and some epithelial cells also express TLRs. All TLRs are integral membrane glycoproteins 

that share a tripartite structure consisting of an N- terminal extracellular domain with 

variant numbers of leucine-rich repeats (LRR), a single transmembrane region, and an 

intracellular Toll/interleukin-1 receptor (TIR) domain. The extracellular domain confers 

specificity for PAMPs, whereas the TIR domain mediates downstream signaling by 

recruiting cytosolic adaptor proteins [7]. 

 

TLR signaling is achieved by either the MyD88-dependent pathway or the MyD88-

independent pathway. In the latter pathway TRIF (TIR domain containing adaptor 

inducing interferon-beta) functions as an adaptor instead of MyD88 (myeloid 

differentiation primary response gene 88). All TLRs, except for TLR3, signal in a MyD88-

dependent manner [8]. Only TLR3 and TLR4 recruit TRIF as an adaptor [9]. Differences in 

adaptor usage by TLRs result in activation of distinct signaling pathways and transcription 

factors and therefore in a different outcome in terms of gene expression [8]. 

 

The TLRs for nucleic acid detection - TLRs 3, 7, 8 and 9 - are found almost exclusively in 

endosomes with their TIR domain facing the cytosol, whereas all other TLRs are cell 

surface receptors. TLR3 is specific for dsRNA, murine TLR7 and human TLR8 detect 

single-stranded RNA (ssRNA), and TLR9 recognizes CpG-DNA. 

 

1 2.1.1 TLR3 .

 

TLR3 is the receptor for dsRNA, a very potent inducer of IFNβ. dsRNA represents the 

genome of dsRNA viruses, is generated as a replication intermediate of ssRNA viruses, or 

originates from symmetrical transcription of DNA viruses. TLR3 is expressed in 

conventional dentritic cells (cDCs), but not in plasmacytoid DCs (pDCs). It is also 

expressed in macrophages, in several epithelial cell types, and in astrocytes in the brain. 

While in cDCs TLR3 is found in endosomes, epithelial cells display it on the cell surface. 

TLR3 expression is dsRNA and type I IFN-inducible [6]. 

 

What are the signaling events downstream of TLR3? Upon stimulation TLR3 triggers a 

signaling cascade that leads to the activation of the transcription factors NF-κB, IRF3, and 

IRF7, consequently leading to the induction of IFNβ and proinflammatory cytokines. TLR3 

relays the signal via a single TIR domain containing adaptor called TRIF (TIR-domain 

containing adaptor inducing interferon-beta). In contrast to all other TLRs, TLR3 only 
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signals through TRIF. TRIF recruits TRAF6, RIP1, and TRAF3, in which TRAF6 and RIP1 

activate the canonical IKK, while and TRAF3 is responsible for activation of the non-

canonical IKKs TBK1 and IKK-i [10]. 

 

1.2.1 2 TLR7, TLR8 and TLR9 .

 

TLR7 and TLR8 are receptors for ssRNA and the antiviral imidazoquinoline compounds 

imiquimod and R848. TLR9 is specific for DNA sequences rich in unmethylated CG 

dinucleotides, also designated as CpG-DNA for cytosine phosphatidyl guanosine. While 

CpG-DNA is highly methylated in eukaryotic cells, it remains largely unmethylated in 

bacterial and viral genomes. Synthetic CpG-oligonucleotides (CpG-ODN) act species-

specific and are divided into 2 classes: type A/D and type B/K. The A/D type of CpG-ODNs 

contains a phosphodiester CpG motif that is flanked by phosphorothioate-modified polyG 

stretches at the 5’ and 3’ ends and potently induces IFNα in pDCs, but not cDCs. The B/K 

type of CpG-ODNs are short CpG containing sequences with a phosphorothioate backbone 

throughout that do not induce type I IFN in pDCs, but inflammatory cytokines in other cell 

types like macrophages [6]. 

 

TLR7, TLR8, and TLR9 are highly expressed in pDCs. Stimulation of these TLRs with their 

respective ligands results in massive IFNα secretion in pDCs, but not in cDCs. 

Interestingly, TLR7, TLR8, or TLR9 mediated IFNα production of pDCs depends on MyD88 

as an adaptor. MyD88 mainly leads to activation of NF-κB and secretion of 

proinflammatory cytokines when recruited to other TLRs. However, in the case of TLR7, 

TLR8, and TLR9 in pDCs, MyD88 recruits a complex consisting of IL-1R-associated kinase 

4 (IRAK-4), IRAK-1, TNFR-associated factor-6 (TRAF6), TRAF3, IKKα, and IRF7. Out of 

these complex components IRAK-1, TRAF3, and IKKα regulate IRF7 activation 

independent of the non-canonical IKKs TBK1 and IKK-i. 

 

The ability of pDCs to secrete high levels of IFNα in response to TLR7, TLR8, or TLR9 

stimulation presumably depends on the constitutively high expression of IRF7 in this cell 

type, as IRF7 is essential for IFNα transcription. Alternatively, TLR ligands may remain in 

endosomes for longer periods of time in pDCs than in cDCs [10]. 
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1.2.2 Retinoic acid-inducible gene I-like helicases are cytosol c dsRNA 

receptors 

i

. -I

 

1 2.2.1 RIG  

 

During replication of most viruses intracellular dsRNA accumulates in the cell and triggers 

type I interferon production. Due to its localization in the endosomal membrane TLR3 

detects extracellular dsRNA that has reached the endosome by the endocytotic pathway, 

but fails to recognize cytosolic dsRNA. 

 

Does a TLR3-independent pathway for detection of cytosolic dsRNA exist? In 2004, the 

first cytosolic receptor for dsRNA was reported, namely the DExD/H box-containing 

helicase retinoic acid-inducible gene I (RIG-I). RIG-I was identified by screening an 

expression cDNA library for those cDNAs that enhance IRF reporter activity in response to 

polyI:C stimulation [11]. RNAi of RIG-I demonstrated its role in antiviral immunity, as 

neither IRF3 nor NF-κB could be activated upon viral challenge. In agreement with this 

finding, induction of IFNβ and interferon-stimulated genes was abolished in RIG-I-/- MEFs 

in response to several RNA viruses. 

 

Recognition of viral dsRNA by RIG-I is accomplished by its helicase domain. Apart from 

the helicase domain, RIG-I contains two N- terminal caspase recruitment domains 

(CARDs) and a C-terminal repressor domain (RD) [12]. RIG-I signaling activity tightly 

regulates the CARD domains. This is illustrated by the finding that overexpression of full 

length RIG-I does not stimulate IFNβ expression in absence of a stimulus, whereas 

overexpression of the N-terminal part consisting of the CARD domains is sufficient to do 

so [4]. In resting cells the RD domain associates with the CARD domains, thereby keeping 

RIG-I in an autoinhibitory state. Presumably, ligand binding to the RIG-I helicase domain 

causes a conformational change that liberates the CARD domains from the RD domain and 

allows signal transmission [12]. Recently, it was reported that ubiquitination of the RIG-I 

CARD domain by the E3 ubiquitin ligase tripartite motif protein 25 (TRIM25) enhances 

RIG-I-mediated signaling upon viral infection (figure 5) [13]. 

 

How does activated RIG-I relay the signal? Four studies independently described a protein 

named IFNβ promoter stimulator 1 (IPS-1) [14], mitochondrial antiviral signaling protein 

(MAVS) [15], virus induced signaling adaptor (VISA), [16] or CARD adaptor inducing IFNβ 

(Cardif) [17] as the signaling component immediately downstream of RIG-I. MAVS is a 62 
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kDa protein that consists of an N- terminal CARD-like domain followed by a proline-rich 

domain and a C-terminal transmembrane domain targeting it to the outer mitochondrial 

membrane. Overexpression of MAVS induces the transcription factors NF-κB, IRF-3, as 

well as IRF7, and as a result, type I IFN expression. On the other hand, knockdown of 

MAVS expression abolishes IFN induction upon viral infection. In addition, the IKKs 

responsible for activation of NF-κB and IRF-3 are not activated in the absence of MAVS. 

Finally, overexpression of MAVS protects cells from the cytopathic effects of a VSV 

infection, whereas RNAi of MAVS makes them more susceptible to killing by the virus. 

These findings demonstrate the essential role of MAVS in antiviral innate immunity [4]. 

 
Figure 5. Activated RIG-I relays the signal to MAVS. In resting cells RIG-I activity is autoinhibited by an 
intramolecular association of the RD domain. Stimulation with viral dsRNA causes a conformational shift. Thus 
the RD domain dissociates from the CARD domains which allows signal transmission to MAVS by a CARD-
CARD interaction [18]. 
 

Interestingly, MAVS is a mitochondrial protein and thus presents the first link between 

innate immunity and mitochondria. Mislocalization of MAVS to other subcellular 

compartments abolishes MAVS function, whereas a truncated form consisting of only the 

CARD domain and the transmembrane domain is sufficient for IFNβ induction. 

 

Epistasis studies position MAVS downstream of RIG-I and upstream of various proteins 

known to be involved in viral responses such as the non-canonical IKK TBK1. RIG-I is 

believed to recruit its adaptor MAVS by CARD-CARD interaction. While binding of the two 

proteins was shown in overexpression studies, interaction between endogenous RIG-I and 

MAVS in response to viral infection remains to be demonstrated [4, 15]. Due to the fact 

that MAVS acts upstream of the canonical and non-canonical IKKs, it coordinates several 
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signaling pathways that lead to NF-κB as well as IRF activation. The early steps of RIG-I 

signal transduction are summarized in figure 5 [18]. 

 

1 2.2.2 O he  RIG-I-like helicases . t r

 

By homology to RIG-I two closely related proteins were found. Melanoma differentiation-

associated gene 5 (MDA-5) shares 23% and 35% of its amino acids with the RIG-I CARD 

and helicase domains respectively, and like RIG-I positively regulates IFNβ induction. In 

contrast Lgp2, lacks the CARD domain and acts as a negative regulator of the pathway. It 

competes with RIG-I and MDA-5 for dsRNA binding, but devoid of a CARD domain, it is 

incapable of transmitting signals [19]. These three proteins are grouped into the family of 

RIG-I-like helicases (RLHs). 

 

Comparison of antiviral immunity in MDA-5 or RIG-I deficient mice revealed that MDA-5 is 

stimulated by the synthetic analogue for dsRNA polyinosinic acid • polycytidylic acid 

(polyI:C), whereas RIG-I does not respond to polyI:C, but to in-vitro transcribed dsRNA. 

Furthermore it was shown that MDA-5 and RIG-I recognize different sets of viruses. While 

MDA-5 interferes with picornavirus infection, RIG-I is essential for the detection of 

paramyxoviruses, influenza virus, and Japanese encephalitis virus [20]. The reason for the 

difference in specificity is explained by the finding that RIG-I does not recognize dsRNA 

molecules per se, but rather a 5’ triphosphate on ssRNA molecules typical for most viral 

RNAs that may or may not form double-stranded structures. This modification is also 

found in in-vitro transcripts. In contrast, eucaryotic RNAs are protected by a 7-methyl-

guanosine cap and picornaviral RNA is covalently linked to the viral protein VPg [21]. 

 

Due to the co-evolution of pathogens and the host innate immune system, viruses 

developed strategies to interfere with immune responses. A prominent example is 

hepatitis C virus (HCV) whose NS3/45 protease cleaves MAVS and the TLR3 adaptor TRIF 

to inhibit IFNβ induction [6]. The V proteins of paramyxoviruses associate and thus 

inactivate MDA-5 signaling [22]. 

 

1.2.3 Cell-type specific differences in type I interferon production 

 

dsRNA is a widespread viral PAMP. Therefore its recognition by TLR3 should be essential 

for the host’s antiviral response. However, the physiological role of TLR3 was unclear as 

susceptibility to many viral infections such as vesicular stomatitis virus (VSV), lymphocytic 
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choriomeningitis virus (LCMV), or murine cytomegalovirus (MCMV) was not affected in 

TLR3-/- mice. To investigate the relative contributions of TLR3 and RIG-I signaling to 

antiviral innate immunity, RIG-I-/- and TRIF-/- MyD88-/- cells were compared for their IFN 

responses upon viral challenge. IFNβ induction after infection with Newcastle disease virus 

(NDV, a ssRNA virus) was abrogated in RIG-I deficient mouse embryonic fibroblasts 

(MEFs) and resulted in increased viral yield. However, TRIF-/- MyD88-/- MEFs, lacking all 

TLR signaling, displayed the same antiviral activity as wild-type cells. IFNβ and IFNα 

production of cDCs also depended on RIG-I. In contrast, induction of both interferons was 

abolished in MyD88 deficient pDCs arguing for an essential role of TLRs in this cell type. 

Therefore, the RIG-I and TLR pathways are non-redundant and cell type specific [6, 23]. 

 

1.2.4 DAI is a cytosolic receptor for DNA 

 

Earlier studies had provided evidence for the existence of DNA receptors distinct from 

TLR9 [24, 25], before DNA-dependent activator of IFN-regulatory factors (DAI) was very 

recently identified as the first cytosolic DNA receptor. DAI contains 3 DNA-binding 

domains arranged in tandem, 2 of which had been already described as left-handed Z-

form DNA-binding domains. It was shown that DAI overexpression results in earlier and 

stronger type I IFN induction in response to DNA, but not RNA stimulation. Reciprocally, 

RNAi of DAI resulted in reduced IFN induction and less IRF3 dimerization after DNA 

stimulation. This was confirmed by the observation that cells, where DAI had been 

silenced are more susceptible to infection with the DNA virus herpes simplex virus-1 (HSV-

1), but not with the RNA virus Newcastle disease virus (NDV). Moreover, DAI seems to 

recruit TBK1 and IRF3 upon DNA stimulation according to co-immunoprecipitation studies 

[26].
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2 Aim of the study 
 

Viral infection is detected by diverse receptors of the innate immune system that 

recognize conserved molecular patterns and trigger various immune responses including 

production of type I interferon. Knowledge on the signaling pathways that mediate 

interferon production and the understanding of the complex cross-talk of sensing, 

transmitting and effecting are still incomplete. Only recently in 2004, the role of nucleic 

acid receptors other than TLRs began to emerge with the identification of RIG-I and MDA-

5. When this project was started in November 2006, various lines of evidence supported 

the existence of more, yet unidentified nucleic acid sensors that are independent of TLR-

signaling, such as receptors for unmethylated CpG-rich sequences [25] or B-form DNA 

[27]. The latter was revealed to be DAI in July 2007 illustrating the rapid pace at which 

innate immunity research is currently evolving. Therfore, the goal of my diploma thesis 

was to identify new nucleic acid sensors implicated in antiviral innate immunity by a 

combined genomics and proteomics approach. 

 

The central hypothesis of this thesis was that nucleic acid receptors bind to nucleic acids 

and are transcriptionally regulated by nucleic acid stimulation. Pull-down experiments with 

immobilized nucleic acids followed by mass spectrometric analysis were performed to 

identify nucleic acid binders, while genes, whose expression is regulated by nucleic acids, 

were determined by microarray analyses. By these means 2 datasets - the proteomics 

dataset including nucleic acid binders and the genomics dataset consisting of genes 

regulated by nucleic acids - were generated.  

 

Based on the before mentioned hypothesis, proteins that belonged to both the proteomics 

and the genomics datasets had to be filtered in order to compile a list of candidate 

proteins. 

 

Once a list of 24 candidate proteins had been generated, the functional relevance of each 

candidate for antiviral innate immunity needed to be assessed. As the key event of the 

innate immune response against viruses is the production of type I interferon, we 

determined which candidates are essential for interferon induction upon nucleic acid 

stimulation. For this purpose real-time PCR had to be established as a read-out system for 

transcriptional activation of type1 interferons as well as other cytokines. 
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3 Materials and methods 
 

3.1 Molecular biology 

 

3.1.1 Plasmids 

 

pDONR201 (Invitrogen) 

 Gateway donor vector containing attP sites 

 

pRV NTAP (GS 2xT) Gw (CeMM) 

 Gateway destination vector with attR sites for N-terminally TAP-tagged 

proteins. The TAP-tag consists of protein G, followed by two TEV protease 

cleavages sites, streptavidin binding protein, and a myc-epitope. 

 

pIE N-HA (CeMM) 

 Gateway destination vector with attR sites for N-terminally HA-tagged proteins 

 

3.1.2 Cloning of candidate 4 

 

Candidate 4 was reversely transcribed and amplified from RAW264.7 cell RNA using the 

SuperScript One-Step RT-PCR System for Long Templates (Invitrogen) and candidate 4-

specific primers flanked by sequences required for the subsequent Gateway cloning 

(Invitrogen) procedure. The Gateway technology is a cloning method based on the site-

specific recombination properties of the bacteriophage λ. Cloning was carried out 

according to the manufacturer’s instructions. Briefly, in the BP reaction, the candidate 4 

PCR product and the donor vector were recombined using their attB and attP sites 

respectively, and as a consequence, the candidate 4 entry clone containing attL sites was 

generated. In the following LR reaction the attL sites of the entry clone and the attR sites 

of the destination vector recombined, giving rise to the candidate 4 expression clone. 

Successful cloning was verified by restriction digest and DNA sequencing. 

 

3.1.3 Site-directed mutagenesis 

 

To generate a catalytically inactive mutant of candidate 4 a point mutation resulting in an 

amino acid change was introduced in the wild-type sequence using the QuikChange Site-
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Directed Mutagenesis Kit (Stratagene) according to the manufacturer’s recommendations. 

Primers that contain the desired mismatch were designed and the candidate 4 entry clone 

served as a template for the subsequent PCR reaction. Next, the original non-mutagenized 

plasmid strands were removed by DpnI restriction digestion. This enzyme cleaves dam-

methylated DNA from bacterial origin, but not unmethylated DNA from PCR amplifications. 

The modified entry clone was used for the Gateway LR reaction as described in 3.1.1. 

 

3.2 Cell biology 

 

3.2.1 Cell lines and cell culture 

 

HEK293 (DMSZ) 

 Human embryonic kidney cell line 

 

HEK293gp (Prof. Herbert Strobl, Medical University of Vienna) 

 Human embryonic kidney cell line stably expressing the retroviral core protein 

(gag) and the retroviral polymerase (pol) and thus used as a packaging cell line 

 

RAW264.7 (Prof. Thomas Decker, University of Vienna) 

 Murine macrophage cell line  

 

RAW NTAP candidate 4 

 Murine macrophage cell line stably expressing N-terminally TAP-tagged 

candidate 4 

 

Cell lines listed above were cultured in DMEM (Invitrogen) supplemented with 10% fetal 

bovine serum (Invitrogen) as well as 100 U/ml penicillin and 100 µg/ml streptomycin 

(Invitrogen) at 37°C in a 5% CO2 humidified incubator. Cells were maintained at 

subconfluency by splitting them three times a week using trypsin (Invitrogen) for HEK cell 

lines or dissociation buffer for RAW cell lines. 

 

Dissociation buffer 0,54 M KCl 

0,06 M sodium citrate 
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3.2.2 RNA interference 

 

For each candidate siRNA SMARTpools targeted at the NCBI RefSeqs (NM_xxxxxx) 

corresponding to the peptides found in the proteomics dataset were purchased from 

Dharmacon. siRNAs were dissolved according to the manufacturer’s instructions to obtain 

a 20 µM solution. Expression of endogenous candidate proteins in RAW 264.7 cells was 

silenced by 2 rounds of transfection on consecutive days using 50 nM siRNA: The day 

before transfection 1x105 cells/well were seeded on a 6-well plate. 500 µl serum-free 

DMEM were mixed with 5 µl siRNA stock and 15 µl HiPerfect (Qiagen). The mix was 

incubated 5-10 min at room temperature to allow for complex formation and then added 

dropwise to the cells covered with 500 µl culture media. 6 h after transfection 1 ml media 

was added to the cells. This procedure was repeated on the following day. The day after 

the RNAi treatment cells were stimulated. 

 

3.2.3 Stimulation of cells 

 

polyI:C, polydAdT:dTdA and salmon sperm DNA (SSD) were obtained from Sigma, 

dissolved in water and tested for endotoxin using the QCL-1000 Chromogenic LAL 

Endpoint Assay (Cambrex). Invitrogen synthesized the mouse-selective CpG-

oligodeoxynucleotide (CpG-ODN) 1826 5’-tccatgacgttcctgacgtt-3’ as a phosphorothioate 

that was resuspended to obtain a 1 mM solution. Lipopolysaccharide from E. coli serotype 

0111:B4 (LPS) was purchased from Sigma and prepared as a 1 mg/ml stock. Imiquimod 

was obtained from Invivogen and stored as a 20 mM stock. Mouse IFNβ was purchased 

from R&D systems as a 1x106 U/ml solution. Unless stated otherwise cells were stimulated 

with 10 µg/ml polyI:C, 1 µg/ml polydAdT:dTdA or SSD, 1 µM CpG-ODN, 1 µg/ml LPS, 50 

µM imiquimod, and 100 U/ml IFNβ. 

 

For stimulation of cytosolic nucleic acid receptors, RAW264.7 cells on 35 mm dishes were 

transfected with the indicated amounts of RNA or DNA. PolyI:C was transfected using 

HiPerfect (Qiagen): the appropriate amount of polyI:C in a total volume of 100 µl serum-

free DMEM was mixed with 12 µl HiPerfect. The mix was incubated 5-10 min at room 

temperature to allow for complex formation and then added dropwise to the cells. For 

DNA-stimulations Lipofectamine 2000 (Invitrogen) was used as a transfection reagent: 

first, 10 µl Lipofectamine 2000 were diluted in 250 µl serum-free DMEM and incubated for 

5 min at room temperature. Next, the required amounts of polydAdT:dTdA, SSD, or CpG-

ODN were diluted in 250 µl serum-free DMEM. Then 250 µl diluted Lipofectamine 2000 
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were mixed with 250 µl diluted DNA. After a 20 min incubation at room temperature the 

transfection mix was added dropwise to the cells. 

 

When stimulation of membrane-associated nucleic acid receptors was required, or for 

other than nucleic acid treatments, stimuli were directly added to the culture media. 

 

After indicated stimulation periods either cell lysates or RNA extracts were prepared. 

 

3.2.4 Transient transfection 

 

HeLA cells were transfected using Polyfect (Qiagen) according to the manufacturer’s 

instructions. In brief, 1x104 cells/well were seeded on an 8 chamber culture slide (BD 

Falcon) one day before and transfected with 0,5 µg plasmid DNA and 4 µl Polyfect in a 

total volume of 50 µl. 24 h later cells were stained for immunofluorescence. 

 

3.2.5 Generation of stable cell lines by retroviral gene trans er f

 

As pantropic viruses were generated, the entire procedure was carried out under S2 

conditions. 

 

In order to produce recombinant viruses containing the gene of interest, HEK293gp cells 

were transfected using Polyfect (Qiagen). For this purpose cells were seeded at 70% 

confluency on 10 cm dishes. 6 h later 8 µg of TAP-construct DNA and 2 µg plasmid DNA 

coding for the viral envelope protein VSV-G were diluted in a total volume of 300 µl 

serum-free DMEM and mixed with 100 µl Polyfect. After a 5 - 10 min incubation period at 

room temperature the transfection mix was diluted to 1,4 ml with media and added to the 

cell culture dish containing the packaging cells with 7 ml media. The next day the medium 

was replaced by 6 ml fresh medium. Two days after transfection the medium containing 

recombinant viral particles was harvested and centrifuged at 250xg for 3 min. The 

supernatant was filtered to remove packaging cells and added to subconfluent RAW 264.7 

on a 35 mm dish that had been incubated with 5 µg/ml polybrene (Sigma) for 5 min to 

facilitate the fusion of the virus with the cell membrane. Another 6 ml medium were 

added to the packaging cells to allow further virus production for a 2nd infection procedure 

the next day. After recovery from viral infection, cells were sorted for highly GFP-positive 

cells (TAP constructs contain GFP under an internal ribosomal entry site as a marker) by 

preparative FACS (Dieter Prinz, St. Anna Kinderspital) to enrich for transduced cells. 
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3.3 Protein biochemistry and immunological assays 

 

3.3.1 Immunofluorescence 

 

Cells were washed with PBS (Invitrogen), fixed with ice cold absolute ethanol (Sigma) for 

2 min, and washed with PBS again. Then cells were permeabilized with 0,5 % Triton-X 

100 (Sigma) in PBS for 5 min and blocked with 3 % BSA (Sigma) in PBST for 10 min. 

Next, the slide was incubated with anti-HA.11 antibody (Covance) diluted 1:1000 in 0,1 % 

Triton-X 100 in PBS for 1 h. After washing with 0,1 % Triton-X 100 in PBS the samples 

were incubated with Alexa 594 goat anti-mouse IgG (Molecular Probes) diluted 1:500 in 

0,1 % Triton-X 100 in PBS for 40 min. Finally the slide was washed with 0,1 % Triton-X 

100 in PBS and nuclei were stained with 300 nM DAPI (Sigma) in PBS for 10 min. The 

slide was rinsed briefly with water and a coverslip was mounted with mowiol 

(Calbiochem). 

 

PBST 

 

0,1% Tween 20 

in PBS 

 

 

3.3.2 Cell lysates for protein gels 

 

To prepare lysis buffer, IP buffer was supplemented with the following protease inhibitors 

immediately before use: 1 mM PMSF (Sigma), 5 µg/ml TLCK (Roche), 10 µg/ml TPCK 

(Biomol), 1 µg/ml leupeptin, 1 µg/ml aprotinin and 10 µg/ml soybean trypsin inhibitor (all 

Roche). 50 µl or 100 µl chilled lysis buffer were added per well of a 24 or 6 well plate, 

respectively. After 2 min incubation on ice, lysed cells were rinsed from the dishes and 

collected in a tube. The crude extract was centrifuged for 10 min at 13000 rpm at 4°C to 

pellet insoluble material. The supernatant is the cell lysate. If normalization of protein 

amounts among samples was required, the total protein concentration was determined by 

a Bradford assay (Bio-Rad) according to the manufacturer’s instructions using known 

amounts of BSA (Sigma) as reference. 

 

IP buffer 50 mM Tris pH 7,5 

150 mM NaCl 

5 mM EDTA 

5 mM EGTA 

1% NP-40 
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3.3.3 SDS-PAGE 

 

An aliquot of cell lysate corresponding to 50-100 µg total protein was mixed with an 

appropriate amount of 4x SDS sample buffer and heated at 95° for 3 min. PageRuler 

Prestained Protein Ladder (Fermentas) was used as a molecular weight marker. Marker 

and samples were loaded on a discontinuous polyacrylamide gel consisting of a 10 % 

separating gel and a 5 % stacking gel: 

 

10% separating gel  

30% acrylamide/ bisacrylamide (Sigma) 10 ml 

gel buffer 1 7,5 ml 

water ad 30 ml 

Temed (Sigma) 30 µl 

10% APS (Sigma) 300 µl 

 

5% stacking gel  

gel buffer 2 20 ml 

Temed (Sigma) 30 µl 

10% APS (Sigma) 200 µl 

 

The PAGE was run at 60 or 90 mA depending on gel size until the running front left the 

gel. Protein gels were further analyzed by Western blotting or silverstaining. 

 

4x SDS sample buffer 200 mM Tris- HCl pH 6,8 

40% (v/v) glycerol 

8% (w/v) SDS 

brom phenol blue 

1,4 M β- mercaptoethanol 

Gel buffer 1 1,5 M Tris-HCl pH 8,8 

0,4% SDS 

Gel buffer 2 0,125 M Tris-HCl pH 6,8 

0,1% SDS 

5 % acrylamide/ bisacrylamide 

Running buffer 50 mM Tris-HCl pH 8,5 

380 mM glycin 

7mM SDS 

 

 

 20 



Materials and methods 

3.3.4 Western blots 

 

Proteins were transfered onto a Protran nitrocellulase membrane (Whatman Schleicher & 

Schuell) using a semi-dry blotting apparatus. For assembly of the blotting sandwich 2 

sheets of filter papers soaked in transfer buffer were placed on the positively charged 

anode at the bottom of the apparatus, followed by the membrane, the polyacrylamide gel 

containing negatively charged proteins, and another 2 layers of wet filter paper. The blot 

was run at 1 mA/cm² for 1 h. When the transfer of the proteins to the membrane was 

completed, unspecific binding sites were blocked with blocking solution for at least 15 min. 

 

a) Blots for TAP-tagged proteins 

The membrane was incubated with IRDye 800-conjugated anti-myc antibody (Rockland) 

in blocking solution for 1 h. 

 

b) Candidate 4 blots 

The membrane was incubated with a mouse candidate 4-specific antibody diluted 1:2500 

in blocking solution for 1 h. After washing the membrane 3 times with PBST, it was 

incubated with an Alexa Fluor 680-labeled goat anti-mouse antibody (Invitrogen) for 30 

min. 

 

Blots were washed again 3 times and scanned using the Odyssee Infrared Imaging 

System (Li-Cor Biosciences) 

 

PBST 

 

Blocking solution 

 

Transfer buffer 

0,1% Tween 20 

in PBS 

5% Blotting Grade Blocker Non-Fat Dry Milk 

in PBST 

2,5 mM Tris 

15 mM glycin 

10 % (v/v) methanol 

 

 

3.3.5 Silverstaining 

 

First the gel was incubated in fixation solution for 1 h at room temperature. Then it was 

washed in 30% ethanol twice for 20 min and in water once for 20 min. After sensitizing 

the gel for 1 min with 0,02% Na2S2O3 solution and washing with water three times for 20 

sec, it was incubated with cold silver nitrate solution for 20 min. Next, the gel was washed 
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again with water three times for 20 sec. At last the gel was incubated in developer 

solution until the desired staining intensity was reached. Incubation for at least 5 min in 

5% acetic acid stopped the staining. 

 

Fixation solution 

 

Silver nitrate solution 

 

Developer solution 

40% ethanol 

10% acetic acid 

0,2% AgNO3

0,007% formaldehyde 

3% Na2CO3 

0,018% formaldehyde 

 

 

3.3.6 RNA resins 

 

PolyU agarose, polyC agarose, polyA and polyI were purchased from Sigma. A volume of 

about 10 µl lyophilized polyU agarose or polyC agarose were dissolved in 400 µl RNase-

free water and incubated on ice for 10-15 min to allow the agarose to swell. After washing 

the resins twice with wash buffer they were resuspended in 2 ml of wash buffer each. 

PolyA and polyI were diluted in RNase-free water to a final concentration of 2 mg/ml and 

heated to 65°C. 2 ml of polyA were added to 1ml of polyU agarose. 2 ml of polyI were 

added to 1 ml of polyC agarose. Each of the four samples (polyC, polyI:C, polyU, polyA:U) 

was supplemented with 40 U of RNasin Ribonuclease Inhibitor (Promega). PolyI:C and 

polyA:U were incubated on the rotary wheel at 4°C over night. The next day, all four 

samples were washed three times with TAP default lysis buffer. 

 

Wash buffer 

 

TAP default lysis buffer 

50 mM Tris/HCl pH 7,5 

100 mM NaCl 

50 mM Tris/HCl pH7.5 

5 % glycerol 

0,2 % NP-40 

1,5 mM MgCl2 

100 mM NaCl 

 

 

3.3.7 DNA resins 

 

PolydA:dT and polydAdT:dTdA were obtained from Sigma. 10 U of polydA:dT or 

polydAdT:dTdA were dissolved in 1 ml water each and then denatured by heating to 95°C. 

For annealing of the complementary strands the DNA solutions were allowed to cool down 

slowly to room temperature. In order to use these dsDNAs as affinity reagents they were 
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labelled with biotin. For the labelling reaction 450 µl dsDNA, 50 µl 10x restriction enzyme 

buffer 2, 16,6 µl 1 mM dATP, 8,4 µl 1 mM dUTP-biotin, and 5 µl 50 U/µl Klenow DNA 

polymerase (all New England Biolabs) were mixed and incubated at 25°C for 1 h. The 

mouse-selective CpG-oligodeoxynucleotide (CpG-ODN) 1826 5’-tccatgacgttcctgacgtt-3’ 

was synthesized as a biotinylated phosphorothioate by Invitrogen. 

 

Next, the biotin-labelled DNAs were incubated with Ultralink Immobilized Streptavidin Plus 

resin at 4°C for 1 h (Pierce) to immobilize polydA:dT, polydAdT:dTdA, or CpG-ODN on 

agarose beads. The resins were washed three times with TAP default lysis buffer.  

 

TAP default lysis buffer 50 mM Tris/HCl pH7.5 

5 % glycerol 

0,2 % NP-40 

1,5 mM MgCl2

100 mM NaCl 

 

 

3.3.8 Pull-down experiments 

 

Immediately before use, TAP default lysis buffer was supplemented with protease 

inhibitors as follows: 0,4 mM Na3VO4, 20 mM NaF and 1 tablet/ 50 ml Complete Mini 

Inhibitor Cocktail (Roche). 4x108 RAW264.7 cells were lysed in 12 ml TAP default lysis 

buffer as the cell extract should be very concentrated (>20mg/ml; here: 28mg/ml). In 

order to prevent RNA degradation, cell extracts for RNA pull-downs were supplemented 

with 25 U/ml RNasin Ribonuclease Inhibitor (Promega). 2 ml lysate were incubated with 

each of the immobilized RNAs or DNAs for 2 h on a rotary wheel at 4°C. The resins were 

washed with 10 ml TAP default lysis buffer containing protease inhibitors. Bound proteins 

were eluted by boiling in 50 µl 2x SDS sample buffer (Fluka) and submitted to mass 

spectrometry analysis (Dr. Keiryn Bennett, Mass Spectrometry Department, CeMM). 

 

TAP default lysis buffer 50 mM Tris/HCl pH7.5 

5 % glycerol 

0,2 % NP-40 

1,5 mM MgCl2

100 mM NaCl 
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3.3.9 Tandem affinity pur ficat oni i  

 

5x108 RAW cells stably expressing candidate 4 were harvested by scraping them in 10 ml 

PBS (Invitrogen) supplemented with 1mM EDTA (Sigma). The cell suspension was 

centrifuged at 300 x g for 5 min at 4°C. Cells were resuspended in 10 ml PBS and 

centrifuged again. Finally, the pellet was frozen in liquid nitrogen and stored at – 80°C for 

further use. 

 

The cell pellet was resuspended in approximately 5 ml TAP default lysis buffer 

supplemented with 0,4 mM Na3VO4, 20 mM NaF and 1 tablet/ 50 ml Complete Mini 

Inhibitor Cocktail (Roche) immediately before use. To ensure complete lysis the 

suspension was incubated for 30 min on ice and then centrifuged at 15 000 x g for 15 min 

at 4°C. Next, the supernatant was centrifuged at 100 000 x g for 1 h at 4°C. The 

supernatant from the 2nd centrifugation step constitutes the lysate, 150 µl of which were 

spared for Western blotting. 

 

200 µl Rabbit IgG Agarose suspension (Sigma) were washed twice with lysis buffer and 

centrifuged at 2000 rpm for 1 min. The lysate was combined with 200 µl washed IgG bead 

suspension and incubated for 2 h at 4°C on a rotating wheel. After completion of the 

incubation time the beads were pelleted at 600 rpm for 2 min at 4°C. 90 µl supernatant 

were taken for Western blotting. Subsequently the beads were washed with 10 ml lysis 

buffer and 5 ml TEV buffer at 4°C. 

 

Protein complexes were eluted by TEV cleavage, adding 400 µl TEV protease solution 

(CeMM) and incubating at 16°C for 1 h. The eluate was collected by gravity flow. The 

beads were rinsed with another 400 µl TEV buffer to quantitatively elute protein 

complexes. This fraction was combined with the initial eluate. 40 µl of 800 µl TEV eluate 

were spared for Western blotting. 

 

150 µl Ultralink Immobilized Streptavidin Plus resin (Pierce) were washed twice with TEV 

buffer and centrifuged at 2000 rpm for 1 min. The TEV eluate was combined with 150 µl 

washed streptavidin bead suspension. After incubation for 1 h at 4°C on a rotating wheel, 

protein complexes bound to the beads were pelleted at 600 rpm for 2 min. 90 µl 

supernatant were saved for Western blot analysis. Next, the beads were washed with 10 

ml TEV buffer. 
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Finally the protein complexes were eluted from the streptavidine resin by addition of 400 

µl saturated biotin solution and incubation at 16°C for 5 min. The remaining streptavidin 

beads are boiled in 50 µl 2x SDS sample buffer for 3 min. The biotin eluate as well as the 

boiled bead fraction were submitted to mass spectrometry analysis (Dr. Keiryn Bennett, 

Mass Spectrometry Department, CeMM). 

 

TAP default buffer 50 mM Tris/HCl, pH7.5 

5% glycerol 

0.2% NP-40 

1.5mM MgCl2

100mM NaCl 

 

TEV buffer 10 mM Tris/HCl, pH 7.5 

100 mM NaCl 

0.5 mM EDTA 

 

Saturated biotin solution 10 mM Tris 

10 mM NaCl 

add spatula tip biotin to 10 ml buffer immediately before use 

 

 

3.3.10 Mass spectrometry analysis  

 

TAP samples were analyzed by one-dimensional SDS-PAGE using NuPAGE 4 – 12% bis-

Tris gels (Invitrogen) followed by silver staining. Specific bands and/or regions of interest 

were excised from the gel and digested in situ with modified porcine trypsin (Promega). 

Tryptically-digested samples were analyzed by data-dependent nanocapillary reversed-

phase LC-MSMS using customized 75 µm inner diameter columns packed with C18 3 µm 

diameter Reprosil beads (Maisch) on a nanoLC system (Agilent Technologies) coupled to a 

quadrupole time-of-flight (QTOF) mass spectrometer (QTOF Ultima, Waters). Proteins 

were identified by automated database searching (Mascot Daemon, Matrix Science) 

against the International Protein Index protein sequence database (IPI, European 

Bioinformatics Institute, www.ebi.ac.uk/IPI/). Results from the database search were 

parsed into EPICenter (Proxeon Biosystems) for automated validation and protein 

grouping based on the number of shared peptides identified by MSMS. Criterion for a 

positive protein identification was identification of a minimum of 2 peptides as there is a 

relationship between abundance of peptides and peptide counts. 
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3.4 Genomic analyses 

 

3.4.1 RNA extraction 

 

RNA was purified using the RNeasy Mini Kit (Qiagen) in combination with QIAshredder 

columns (Qiagen) following the manufacturer’s recommendations. If real-time PCR was to 

be performed RNA was digested with DNase (Fermentas) to eliminate a potential genomic 

DNA contamination. RNA quantity was determined by measuring the absorbance at 260 

nm in a spectrophotometer. RNA quality was verified by running 5 µl of RNA sample after 

DNase digestion diluted 1:1,5 in loading buffer on a 1 % agarose (Sigma) gel in TAE, and 

checking for integrity of the 28S and 18S rRNA bands. 

 

Loading buffer 8 ml formamide 

20 µl 0,5 M EDTA 

1,98 ml RNAse-free water 

 

TAE 40 mM Tris 

40 mM acetic acid 

1 mM EDTA 

 

 

3.4.2 Microarray analysis 

 

RNA samples were applied to the GeneChip Mouse Genome 430 2.0 Array (Affymetrix) 

(Dr. Martin Bilban, KIMCL, AKH Wien). The microarray data was computed using the 

software tool “Significance Analysis of Microarrays” (SAM) [28] in order to identify 

regulated genes (Gerhard Dürnberger, Bioinformatics Department, CeMM) 

 

3.4.3 Quantitative PCR 

 

Reverse transcription was carried out according to the manufacturer’s recommendation. In 

brief, 1 µg RNA and 0,5 µg oligo(dT)18 primer (Fermentas) in a total volume of 11 µl were 

heated for 5 min at 70°C, then chilled on ice. Next, 4 µl 5x reaction buffer (Fermentas), 2 

µl 10 mM dNTPs, 20 U RNasin ribonuclease inhibitor (Promega), and water were added to 

reach a final volume of 19 µl. The mix was incubated at 37°C for 5 min. 1 µl 200 U/µl 

RevertAid™ M-MuLV Reverse Transcriptase (Fermentas) was added to each reaction and 

incubated at 42°C for 1 h. The enzyme was heat-inactivated at 70°C for 10 min. 
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Real-time PCR was performed with iTaq SYBR Green Supermix with ROX (Bio-Rad) as 

detection chemistry using the ABI PRISM 7700 Sequence Detection System (Applied 

Biosystems) or the Rotor-Gene 6500 (Corbett). Primer sequences are listed below: 

Gene Species Primer pair  

IFNβ Mouse Forward primer (5’-3’) TCAGAATGAGTGGTGGTTGC 

  Reverse primer (5’-3’) GACCTTTCAAATGCAGTAGATTCA 

HPRT Mouse Forward primer (5’-3’) CGCAGTCCCAGCGTCGTG 

  Reverse primer (5’-3’) CCATCTCCTTCATGACATCTCGAG 

CycB Mouse Forward primer (5’-3’) CAGCAAGTTCCATCGTGTCATCAAGG 

  Reverse primer (5’-3’) GGAAGCGCTCACCATAGATGCTC 

 

For each reaction, 10 µl iTaq SYBR Green Supermix, 0,5 µl 10 µM primer mix, 4,5 µl water 

and 5 µl 1:20 diluted cDNA were combined by hand or using the CAS-1200 liquid handling 

system (Corbett). PCRs were run with the following thermoprofile: Initial denaturation at 

95°C for 3 min; then 40 cycles of 94°C 30 sec, 60°C 15 sec and 72°C 30 sec. Melting 

curves were checked after each run to detect potential primer dimers and contaminations. 

Results were calculated from Ct values by the 2-∆∆Ct method [29] using either CycB or 

HPRT as a refernce. 
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4 Results 
 

4.1 Generation of a list of candidate proteins 

 

In order to identify novel components of innate immunity signaling in response to nucleic 

acid stimulation a combined proteomics and genomics approach was utilized. 3 different 

nucleic acids were tested, namely polyI:C, polydAdT:dTdA, and CpG-ODN. All of these 

compounds have been shown to be potent inducers of IFNβ secretion. PolyI:C is the 

synthetic analogue for dsRNA, which is the ligand for the membrane-associated TLR3 as 

well as the cytosolic receptor MDA-5. PolydAdT:dTdA is believed to adopt a B-form 

configuration in solution and mimics double-stranded DNA (dsDNA), whose cytosolic 

receptor DAI was recently identified, but had been unknown at the start of this project. 

CpG-ODNs are known to activate TLR9 signaling in a species-specific manner. Even 

though receptors are known for these ligands, the existence of even more yet unidentified 

ones is likely. The identification of such receptors was the goal of this project. The 

experimental flow as well as the major contributors to each task are outlined in figure 6.  

 

4.1.1 Pull-down experiments ident fy nucleic acid binding proteins i

 

To study which proteins bind to nucleic acids, pull-down experiments were performed 

using 3 different nucleic acids immobilized on agarose beads: PolyI:C and polydAdT:dTdA, 

the synthetic analogues for dsRNA and dsDNA respectively, as well as CpG-ODN. Cell 

lysate prepared from the murine macrophage cell line RAW264.7 was incubated with the 

various immobilized nucleic acids and bound proteins were identified by mass 

spectrometry. Four polyI:C, two CpG-ODN and one polydAdT:dTdA pull-downs were 

analyzed. 

 

Incubation of cell lysates with polyC served as negative control for the polyI:C pull-down. 

PolyC does not induce IFNβ production and therefore proteins that bind to polyC alone 

would not be of interest. For the DNA pull-downs streptavidin beads were used as 

negative control, because the corresponding nucleic acids were coupled to agarose beads 

by biotin-streptavidin interaction. 

 

The polyI:C pull-down in particular revealed a vast number of interacting proteins (data 

not shown). Among about 300 proteins we found transcription factors as well as splicing  
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Figure 6. Overview of the experimental setup for this diploma project. 1, Initial pull-down 
experiments and RNA preparations for microarray analyses (Dr. Tilmann Bürckstümmer, Innate Immunity 
Group, CeMM). 2, Microarray analysis (Dr. Martin Bilban, KIMCL, AKH Wien). 3, Mass spectrometry analysis 
(Dr. Keiryn Bennett, Mass Spectrometry Department, CeMM). 4, Bioinformatics (Gerhard Dürnberger, 
Bioinformatics Department, CeMM) 5, Functional relevance of candidates (Evelyn Dixit, Innate Immunity 
Group, CeMM). 
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factors, which demonstrates that the proteins identified by this approach specifically bind 

to nucleic acids. More importantly, proteins with well established roles in innate immunity 

to viral infection were pulled down as well. For example the classical effectors of the viral 

dsRNA response 2’-5’ oligoadenylate synthetase (Oas3), double-stranded RNA-activated 

protein kinase (Pkr), and PKR-activator A (Prkra) were identified with 32, 19, and 2 

peptides, respectively. Moreover, the cytoplasmic sensors of viral infection, the helicases 

RIG-I, MDA-5, and Lgp2, were identified with 8, 3, and 7 peptides, respectively.  

 

The pull-down data demonstrates that among the nucleic acid binders are proteins with 

functional relevance for innate immunity signaling. How could we filter selectively for 

proteins that are involved in the recognition of nucleic acids and as a consequence elicit 

an IFNβ response? Our hypothesis was that nucleic acid receptors not only bind to nucleic 

acids, but are also transcriptionally regulated by them. In this scenario up-regulation of a 

nucleic acid binding protein would create a positive feedback loop resulting in enhanced 

IFNβ production, which is a common principle in cytokine regulation. 

 

4.1.2 Microarray analyses reveal nucleic acid-regulated genes 

 

In order to find out which genes are transcriptionally regulated by nucleic acids, 

RAW264.7 cells were stimulated with polyI:C, polydAdT:dTdA, or CpG-ODN. After the 

treatment total RNA was extracted and alterations in gene expression in comparison to 

untreated cells were analyzed using a microarray (Dr. Martin Bilban, KIMCL, AKH Wien). 

Regulated genes were determined by the software tool “Significance Analysis of 

Microarrays” (SAM) (Gerhard Dürnberger, Bioinformatics Department, CeMM). The data 

indicates that regulated genes are functionally relevant for innate immunity processes, 

supporting the initial hypothesis. This is illustrated below for dsRNA signaling pathways 

(table 7A and B). Both known cytosolic dsRNA receptors RIG-I and MDA-5 as well as the 

negative regulator of this pathway, Lgp2, are upregulated in response to polyI:C 

treatment (table 7A). Expression of the membrane-associated counterpart for dsRNA 

recognition, TLR3, is strongly increased, but also downstream signaling components like 

the TLR3 adapter TRIF and several IRF family members are induced by polyI:C stimulation 

(table 7B). Interestingly, polydAdT:dTdA upregulates dsRNA signaling molecules much like 

polyI:C treatment does. This finding may be due to the fact that both stimuli lead to 

IFNβ production and thus result in induction of the same IFN-regulated genes. CpG-ODN 

stimulation seems to have a minor impact on the regulation of dsRNA signaling 
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components. A possible explanation might be that CpG-ODNs affect type I IFN production 

in a different manner than polyI:C or polydAdT:dTdA do. 

Table 7A 

Ligand 

Sensors 

polyI:C 

TLR3/RIG-like helicases 

CpG 

TLR9 

polydAdT:dTdA 

DNA receptors 

 4 h 6 h 4 h 6 h 4 h 6 h 

RIG-I 3,81 3,48 1,42 1,89 3,22 5,44 

MDA-5 6,07 6,41 1,88 2,26 5,36 7,45 

Lgp2 4,13 5,78 1,49 2,74 3,53 4,33 

MAVS 0,80 0,95 1,10 1,32 0,88 1,66 

TBK1 1,39 1,33 1,10 1,32 0,88 1,66 

 

Table 7B 

Ligand 

Sensors 

polyI:C 

TLR3/RIG-like helicases 

CpG 

TLR9 

polydAdT:dTdA 

DNA receptors 

 4 h 6 h 4 h 6 h 4 h 6 h 

TLR3 8,27 10,51 1,63 1,87 8,81 18,24 

TRIF 0,95 1,93 2,01 3,02 0,95 1,82 

TBK1 1,39 1,33 1,10 1,32 0,88 1,66 

TRAF6 0,85 1,10 1,08 1,31 0,97 0,93 

IRF1 4,66 2,67 0,92 0,87 7,43 2,59 

IRF2 2,17 1,53 1,02 0,90 2,13 1,94 

IRF3 0,90 0,97 0,99 1,04 1,04 0,83 

IRF7 2,89 3,84 1,47 1,67 3,12 2,01 

IRF8 1,95 1,72 2,21 1,80 2,38 1,29 

IRF8 1,63 1,95 1,82 2,03 2,05 1,35 

Table 7A and B. Regulated genes are functionally relevant. RAW264.7 cells were stimulated with 10 
µg/ml polyI:C, 1 µM CpG-ODN, or 1 µg/ml polydAdT:dTdA for 4 and 6 h. Total RNA was analyzed for 
expression changes using a microarray. Fold changes relative to untreated cells are displayed. dsRNA signaling 
for A. cytosolic receptors and B. Membrane-associated TLR3. 
 

4.1.3 Merging the proteomics and genomics datasets 

 

In order to find out which genes encode nucleic acid binding proteins and are regulated by 

nucleic acids, the information obtained from both approaches - microarrays and pull-

downs - needed to be combined. Therefore two datasets were generated, the genomics 

and the proteomics dataset (figure 8). For the genomics dataset all genes that were found 

to be regulated by polyI:C, polydAdT:dTdA, or CpG-ODN were pooled into one large  
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Figure 8. Flowchart of the bioinformatics procedure to generate candidate list. Proteomics and 
genomics data were combined to identify nucleic acid binders that are transcriptionally regulated by nucleic 
acids. 
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dataset composed of 12 285 genes regulated >1,25fold. We proceeded similarly to 

generate the proteomics dataset. 2209 proteins identified in any of the four polyI:C, the 

two CpG-ODN, and the polydAdT:dTdA pull-downs were combined in one dataset. Thus 

the genomics dataset consists of all genes that are regulated by any of the 3 nucleic acids 

tested, while the proteomics dataset includes all proteins that bind to any of the 3 nucleic 

acids. 

 

Next, we searched for genes that were present in both the proteomics and the genomics 

dataset i. e. in the intersection of these two sets. To this end the pull-down data was 

mapped onto the microarray dataset. This analysis was performed with a Perl program 

developed in-house using annotation data provided by Affymetrix (Gerhard Dürnberger, 

Bioinformatics Department, CeMM) and revealed 220 genes in the overlap of the genomics 

and proteomics datasets. 

 

In the following step we discarded all genes whose transcription is less then twofold up or 

down regulated, because it may be difficult to prove biological relevance for these genes 

despite the fact that less than twofold regulation is statistically significant. 41 out of the 

220 genes met this criterion.  

 

At last, proteins found in the negative controls, i. e. polyC and streptavidin pull-downs, 

and in the core proteome were subtracted. PolyC is the complementary strand to polyI 

which together constitute polyI:C. While polyI:C is a potent inducer of IFNβ, stimulation 

with polyC does not have this effect and therefore serves as negative control. The DNAs 

polydAdT:dTdA and CpG-ODN were immobilized on streptavidin beads after biotinylation. 

The streptavidin pull-down allows discrimination between proteins that bind specifically to 

DNA and those that stick to streptavidin or the beads themselves. The most abundant 

proteins in the cell represent the core proteome that is identified by analyzing lysates of 

untreated RAW264.7 cells. As these proteins are present in such large amounts they are 

likely to be co-purified with specific interactors. Therefore the core proteome may be 

subtracted from mass spectrometry analyses. Even though the most prevalent proteins 

are usually not regulated and are likely to be contaminants, the inherent problem of this 

approach is that false negatives might be excluded. Being aware of this pitfall, we decided 

that we would rather lose a candidate than have a higher background noise. After 

subtraction of negative controls we ended up with a list of 24 candidate proteins (table 9). 
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Table 9 

Fold change Peptide count 

polyI:C CpG 
poly 

dAdT:dTdA
polyI:C CpG 

poly 

dAdT:dTdA

Candidates 

4 h 6 h 4 h 6 h 4 h 6 h    

1 25 20 5 4 33 31 3/4 6/10 - 

2 8 13 2 3 8 14 2 - - 

MDA-5 6 7 2 2 5 8 3 - - 

3 5 7 2 3 4 7 2 - - 

RIG-I 4 4 - 2 3 6 7/3/8/5 - - 

4 4 4 2 2 5 3 - 2/4 - 

5 4 4 2 2 4 2 3/2 5/7 - 

Pkr 3 3 2 2 3 3 19/11/8/6 - - 

IKK-i 2 3 3 3 - - - 3 - 

Oas3 2 2 - - 2 3 32/8/18/12 - - 

6 2 2 - - 2 3 3/2   

7 - 2 - - 2 3 1/8/3 - - 

8 2 2 - - 2 3 2 - - 

9 - - - - - -3 2 - - 

10 2 2 - - 2 3 13 - - 

11 2 2 - - 2 3 2 - - 

12 - - - - -2 -3 2 - - 

13 - - -3 -2 - - - 12 - 

14 - -2 -3 - -3 -3 14/2 - - 

15 - - - - - -2 14/5/10/6 3 - 

16 - - -2 - - -2 2/4 - - 

17 - - -2 - - - 17/3 - - 

18 - - - - - -2 2 - - 

19 - - -2 - - -2 8/3/3/3 5/7 - 

Table 9. List of candidates. Summary of the 24 candidates including their fold change of expression after 4 
or 6 h nucleic acid stimulation and the number of peptides counted for each protein in the respective nucleic 
acid pulldown. Four polyI:C, two CpG-ODN, and one polydAdT:dTdA pull-downs were analyzed. 
 

The 24 candidates include 5 molecules known to be implicated in the innate immune 

response to nucleic acids. These proteins are RIG-I and MDA-5, the cytosolic receptors for 

dsRNA, IKK-i, an activating kinase of the transcription factor IRF3, as well as the 

interferon-stimulated genes Pkr and Oas3. The presence of these known pathway 

components in the candidate list demonstrates the validity of the approach. Except for 

IKK-i the above mentioned proteins have been reported to directly interact with nucleic 

 34 



Results 

acids. Whether IKK-i binds indeed to nucleic acids remains to be shown. Alternatively, it is 

possible that the pull-down experiments also identified proteins that form complexes with 

nucleic acid binders and thus are co-purified, which is conceivable for IKK-i. 

 

Among the remaining 19 candidates we find 10 well characterized proteins, 6 proteins 

with little available information, and 3 very poorly annotated ones. Some candidates are 

known to be implicated in innate immune responses, whereas others have not yet been 

described to be involved in immunological processes. Regarding enzymatic activity we 

found 3 RNA modifying enzymes, 1 DNA modifying enzyme, 2 kinases, and 2 helicases. 

Moreover, 2 transcription factors are included in the list of candidates (figure 10). Most of 

the candidates are polyI:C binding proteins, few interact with CpG-ODN, but none were 

pulled down with polydAdT:dTdA as summarized in table 9. 

 
Figure 10. The candidates are functionally diverse proteins. Among the candidates we find RNA and 
DNA-modidying enzymes, helicases, kinases, transcription factors, and proteins without enzymatic activity or 
unknown function. The figure illustrates how many candidates belong to each category. Furthermore, the 
number of well annotated proteins and of those with a reported role in immune processes is indicated, e. g. 
4/3 of 7: Out of 7 proteins 4 are well annotated and 3 are implicated in immunology. 
 

4.2 Confirmation of microarray data by quantitative PCR 

 

To validate the genomics dataset, the expression change of 6 randomly selected 

candidates in response to nucleic acid stimulation was analyzed by quantitative PCR. 

RAW264.7 cells were stimulated with polyI:C, polydAdT:dTdA, or CpG-ODN for 4 h and 6 
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h, RNA was extracted, reversely transcribed in cDNA, and real-time PCR performed. 

Results for 3 candidates are shown in figure 11. 

 

Both methods, microarray analysis and quantitative PCR, detected similar changes in 

expression levels for the 6 candidates tested (3 examples are shown), despite having used 

RNA from two different biological experiments. In general we noticed that reduced 

expression of candidates in response to nucleic acid stimulation is more difficult to 

reproduce than their induction, however we have no explanation for this observation. 

Overall these findings argue for the reliability of the genomics dataset that is an integral 

part for generation of the candidate list. 
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Figure 11. Comparison of transcriptional activition of candidates as measured by microarray 
analysis and quantitative PCR. RAW264.7 cells were stimulated by transfection of 1 µg/ml polydAdT:dTdA 
or 10 µg/ml polyI:C, or by addition of 1µM CpG-ODN to the media. 4 and 6 h later RNA was extracted, cDNA 
prepared, and real-time PCR performed using gene-specific primers for candidate 1, 3, or 17. Results are 
normalized to the respective control. 

 

4.3 Validation of functional relevance of candidates 

 

After having generated a list of proteins with potentially yet unknown implications in the 

innate immune response, the candidates had to be tested for their functional relevance. 

Two complementary research avenues were pursued in parallel: i) Effects on IFNβ 

induction in response to nucleic acid stimulation after silencing of each candidate were 

evaluated. ii) One promising candidate was chosen based on a thorough literature search 

and its role for IFNβ activation was investigated in more depth. 

 

4.3.1 Evaluation of all candidates in parallel 

 

. f4 3.1.1 Ef ect of candidate silencing on polyI:C-stimulated IFNβ induction 

 

As nucleic acid stimulation results in type I IFN secretion, we wanted to test the effect of 

each candidate on IFNβ induction. Therefore we targeted each candidate with a gene-

specific siRNA pool. 24 h after RNAi treatment, RAW264.7 cells were stimulated by polyI:C 

transfection for 4 h, and IFNβ induction relative to unsilenced RAW264.7 cells was 

determined by quantitative PCR. Two biological experiments were performed and each 
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cDNA was analyzed twice by real-time PCR. One representative experiment is shown in 

figure 12. 

 
Figure 12. Functional relevance of candidates for polyI:C-induced IFNβ production. siRNA treated 
cells were stimulated by transfection of 10 µg/ml polyI:C. Transcriptional activation of IFNβ was determined 
by real-time PCR. Data is normalized to mock siRNA transfected mock stimulated cells. The red dashed line 
indicates the normal level of IFNβ induction in mock siRNA transfected polyI:C stimulated cells, i. e. the 
threshold. 
 

PolyI:C stimulated cells that were not treated with any siRNA reflect normal IFNβ 

induction. This threshold is indicated by a red dashed line in figure 12. If silencing of a 

candidate results in decreased IFNβ induction relative to the threshold, this protein is 

positively involved in the IFNβ response. Conversely, increased IFNβ induction after knock 

down of a candidate indicates a negative regulator. 

 

Most importantly, the 5 candidates with an established role in IFNβ induction, showed the 

expected effects, which validates the experimental setup. It is noteworthy that knock 

down of MDA-5, but not RIG-I had an effect, even though both proteins are receptors for 

viral dsRNA which was believed to be mimicked by polyI:C. However, it was reported that 

RIG-I rather recognizes 5’ triphosphates in RNA molecules than dsRNA per se. The exact 

structural detail recognized by MDA-5 is not known yet. This result confirms that polyI:C 

is not the activating ligand for RIG-I, even though RIG-I binds to polyI:C. The data 

reveals mostly positive regulators among the other 19 candidates. 
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The knock down efficiency is a key aspect of the experimental setup. Due to the selection 

procedure all candidates are transcriptionally regulated by nucleic acids. To verify that an 

induction does not overrule the silencing of a candidate, the knock down efficiency was 

determined for a subset of candidates by real-time PCR using candidate-specific primers. 

Knock down efficiency for the tested candidates ranges between 60 and 90% (figure 13). 

Therefore, we concluded that the silencing efficiencies are similar for the remaining 

candidates. This interpretation implies that unchanged IFNβ levels in the candidate 

evaluation data are not due to failed RNAi, but to functional irrelevance of candidates. 

Candidate 1: 86% knock down

0

10

20

30

40

50

siCandidate 1 mock siRNA

fo
ld

 in
du

ct
io

n

polyI:C stimulation mock stimulation  

Candidate 4: 66% knock down

0

5

10

15

siCandidate 4 mock siRNA

fo
ld

 in
du

ct
io

n

polyI:C stimulation mock stimulation  

 39



Results 

Candidate 6: 80% knock down
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Figure 13. Knockdown efficiencies of candidates 1, 4 and 6 after polyI:C stimulation. The same 
cDNAs as in figure 12 were used. Relative amounts of candidate 1, 4 and 6 transcripts were determined by 
real-time PCR. Data is normalized to mock siRNA transfected mock stimulated cells. Samples of candidate 
siRNA transfected mock stimulated cells were not tested. 
 

In order to determine the significance of the candidate evaluation data all 4 datasets were 

submitted to statistical analysis (Dr. Jacques Colinge, Bioinformatics Department, CeMM). 

In summary, the original Ct values from one real-time PCR run consisting of two replicates 

of each gene of interest (goi) and each reference gene (ref) were bootstrapped. This 

means all possible combinations of goi and ref were formed. Bootstrapping yielded four 

datapoints for each of the samples, i. e. 24 silenced (siCandidate) and the non-silenced 

(mock siRNA) polyI:C-stimulated samples. This data was analyzed twofold, namely by 

pairwise comparison for each dataset separately and by analysis of variance (ANOVA) for 

all four datasets simultaneously (table 14). 

 

For pairwise comparison, the Wilcoxon test was performed on all pairs of silenced and 

non-silenced samples within one dataset. The Wilcoxon test is a non-parametric 

hypothesis test, i. e. it does not assume Gaussian distribution of data within a population 

and it is based on the hypothesis that two samples - silenced and non-silenced - are the 

same. This hypothesis is proven wrong, when the two samples are different from each 

other. The likelyhood of this event to occur by conincidence is given by the p-value. If a 

silenced sample differed from a non-silenced sample with a p-value smaller than 0,0035, 

a successful event was scored. This procedure was applied to all 4 datasets. Knockdown 

of a given candidate was defined to have a significant effect on polyI:C-stimulated IFNβ 

induction, if at least 3 successes were counted within 4 datasets. 
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Table 14 
Candidate Pairwise comparison ANOVA 

 Successes Relevance of candidate Relevance of candidate

1 3 + + 

2 inversion - - 

MDA-5 3 + + 

3 inversion - - 

RIG-I inversion - - 

4 3 + - 

5 3 + + 

Pkr 4 + + 

IKK-i 4 + + 

Oas3 4 + + 

6 4 + + 

7 4 + + 

8 2 - - 

9 2 - - 

10 inversion - - 

11 4 + + 

12 inversion - - 

13 4 + + 

14 4 + + 

15 4 + + 

16 4 + + 

17 3 + + 

18 4 + + 

19 inversion - - 

Table 14. Statistical analysis of functional relevance of candidates for polyI:C-induced IFNβ 
production. Summary of results from pairwise comparison and ANOVA. +: candidate is functionally relevant, 
–: candidate is not relevant, inversion: knockdown of a candidate resulted in significant, but contradictory 
alterations of IFNβ expression and thus candidate is categorized as not relevant. 
 

ANOVA enables analysis of the 4 datasets simultaneously. This statistical method corrects 

the trends of datasets and takes the variability of the biological experiment into account. 

For ANOVA, the non-parametric Friedman test was performed. If knockdown of a 

candidate resulted in IFNβ levels differing from the threshold with a p-value smaller than 

0,05, the candidate was considered to be functionally relevant for IFNβ induction by 

polyI:C. 
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The statistical analysis confirms the interpretation of results for the 5 control candidates. 

Knockdown of MDA-5, but not RIG-I affects polyI:C-induced IFNβ induction. For RIG-I the 

silenced samples were indifferent from the non-silenced samples or showed significant, 

but opposite effects. All candidates whose knockdown resulted in such an inversion were 

classified as non-relevant. In three datasets silencing of MDA-5 lowered IFNβ induction 

significantly and once an opposite, but insignificant trend was observed. The other three 

controls qualified unambiguously as positive regulators of the IFNβ response. Out of the 

19 candidates 12 have positive effects on IFNβ induction, while the other 7 have no 

significant impact. The functionally relevant candidates are 1, 6, 7, 11 and 13 - 18. 

Candidate 4 passed statistical analysis by pairwise comparison, but did not meet the 

requirements with ANOVA. 

 

4 3.1.2 Ef ec  o  candidate silencing on polydAdT:dTdA-s imulated IFNβ induction . f t f t

 

The polydAdT:dTdA evaluation was performed as described in 4.3.1.1, except cells were 

stimulated with polydAdT:dTdA. One biological experiment was carried out and the cDNA 

was analyzed twice by real-time PCR. The results of one of the PCR runs is shown in 

figure 15. 

 
Figure 15. Functional relevance of candidates for polydAdT:dTdA-induced IFNβ production. siRNA 
treated cells were stimulated by transfection of 1 µg/ml polydAdT:dTdA. Transcriptional activation of IFNβ 
was determined by real-time PCR. Data is normalized to mock siRNA transfected mock stimulated cells. The 
red dashed line indicates the threshold. 
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Neither RIG-I nor MDA-5 were expected to have an effect in this experimental setup, 

whereas IKK-i as activating kinase of IRF3 might be implicated. In this regard the results 

show contrary trends. However, it is unknown, if the 5 control candidates are involved in 

polydAdT:dTdA-stimulated IFNβ induction. 

 

As the candidate list does not contain any polydAdT:dTdA-binding protein, it is 

conceivable that only 2 candidates, 6 and 18, show an impact on polydAdT:dTdA-induced 

IFNβ induction. These proteins may have a general effect on gene expression like 

expected of a splicing factor or could be far downstream components of IFNβ induction 

such as transcription factors. However, more biological experiments are required to 

identify candidates with significant effects by statistical analysis. 

 

4.3.2 “Educated guess”-approach 

 

A comprehensive literature search revealed specifically interesting properties of candidate 

4, which encouraged us to study this protein in more detail. Candidate 4 is a DNA-

modifying enzyme that, if inactivated by mutation, leads to a severe disease with an 

inflammatory component. Candidate 4 knock-out mice have been reported to show an 

inflammatory phenotype as well. Moreover, a concise hypothesis on the mechanism of 

action of candidate 4 has been proposed, but not been proven, yet. In this model 

candidate 4 would modify DNA in the cytosol and thereby modulate the IFNβ response. 

 

4.3.2.1 Expression of candidate 4 is nucleic acid- and IFNβ-inducible 

 

To study which stimuli induce the transcription of candidate 4 RAW264.7 cells were 

treated with polyI:C, polydAdT:dTdA or CpG-ODN for 4 h and 6 h, RNA was extracted, 

reversely transcribed in cDNA, and real-time PCR was performed. The results indicate that 

candidate 4 is induced by both polydAdT:dTdA and polyI:C about 4 to 8 fold depending on 

the time point, and by CpG to a lesser extend (figure 16). 
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Figure 16. Candidate 4 transcription is activated by nucleic acids. RAW264.7 cells were stimulated by 
polydAdT:dTdA or polyI:C transfection (1 µg/ml and 10 µg/ml, respectively), or by addition of 1µM CpG-ODN 
to the media. 4 and 6 h later RNA was extracted, cDNA prepared and real-time PCR performed using gene-
specific primers for candidate 4. Results are normalized to the respective control and displayed in comparison 
to the corresponding microarray data. 
 

Next, we tested candidate 4 induction on the protein level. RAW264.7 cells were 

stimulated by transfection of polydAdT:dTdA, salmon sperm DNA, CpG-ODN and polyI:C 

as well as by addition of polyI:C, LPS, imiquimod and IFNβ to the media. 24 h after 

treatment lysates were prepared and analyzed by Western blotting for candidate 4 

expression (figure 17). 

 
Figure 17. Candidate 4 expression is induced by various stimuli. RAW264.7 cells were stimulated by 
transfection of 500 ng/ml polydAdT:dTdA or salmon sperm DNA, 1 µM CpG-ODN or 10 µg/ml polyI:C, or by 
addition of 10 µg/ml polyI:C, 1 µg/ml LPS, 50 µM imiquimod or 100 U/ml IFNβ to the media. Lysates were 
prepared 24 h after treatment and 50 µg total protein were analyzed by Western blotting using a candidate 4- 
specific antibody. 
 

The Western blot shows that candidate 4 is induced by all tested nucleic acids, but most 

strongly by polyI:C regardless if transfected, thus stimulating signaling via cytosolic 

receptors, or added to the media, consequently activating membrane-associated TLR3 
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signaling. As polyI:C stimulation leads to IFNβ production, elevated candidate 4 

expression may be due to secreted IFNβ that stimulates cells in an autocrine fashion. This 

is supported by the fact that IFNβ treatment leads to an increased production of candidate 

4 as well. Moreover, candidate 4 expression is stimulated by LPS signaling through TLR4, 

but not by the TLR7 agonist imiquimod. 

 

4.3.2.2 Candidate 4 is a perinuclear protein 

 

Databases frequently list candidate 4 as a nuclear protein due to a membrane domain that 

is predicted to target it to the nuclear envelope. However, it has been reported that 

candidate 4 is part of a complex that is endoplasmic reticulum-associated. The proposed 

mechanism of action requires candidate 4 to modify DNA in the cytosol in order to 

modulate the type I IFN response. If candidate 4 indeed was a nuclear protein, its 

localization would interfere with this hypothesis and thus make it irrelevant. Therefore we 

analyzed the subcellular localization of candidate 4 by immunofluorescence of transiently 

transfected HeLa cells (figure 18). 

 
Figure 18. Candidate 4 is a perinuclear protein. Hela cells were transiently transfected with HA-tagged 
versions of candidate 4, Arid3A or RIG-I. 48 hours after transfection immunofluorescent staining was 
performed using an HA-specific primary antibody and an Alexa 594-labeled secondary antibody. Nuclei were 
visualized by DAPI staining. 
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Arid3a is a nuclear protein which is reflected by a staining pattern that co-localizes with 

DAPI fluorescence. RIG-I is a cytosolic protein and yielded diffuse staining throughout the 

cytoplasm. Even though candidate 4 and RIG-I stain differently, the immunofluorescence 

data indicates that candidate 4 is predominantly found in the cytoplasm in close proximity 

to the nucleus, which is in agreement with the proposed model. 

 

4.3.2 3 Overexpression o  candidate 4 reduces IFNβ induction in response to DNA 

stimulation 

. f

 

Next, we investigated the role of candidate 4 on the IFNβ response upon DNA stimulation. 

A stable RAW264.7 cell line overexpressing an N-terminally TAP-tagged version of 

candidate 4 was generated and stimulated with increasing concentrations of 

polydAdT:dTdA (data not shown) or salmon sperm DNA for 4 h. Transcriptional activation 

of IFNβ was determined by real-time PCR (figure 19). 
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Figure 19. Overexpression of candidate 4 decreases IFNβ induction. RAW264.7 cells and RAW cells 
stably overexpressing candidate 4 were stimulated by transfection of indicated concentrations of salmon 
sperm DNA as well as polyI:C. IFNβ induction 4h after stimulation was measured by real-time PCR. Data is 
normalized to mock stimulated RAW264.7 cells. 
 

IFNβ induction in response to DNA is reduced by 66 (2500 ng/ml DNA) to 80% (64 ng/ml 

DNA) in cells overexpressing candidate 4 in comparison to RAW264.7 cells. Interestingly, 

polyI:C-stimulated IFNβ induction is decreased by 98%. This finding indicates either a 
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generalized effect of candidate 4 on IFNβ expression or an unspecific effect that does not 

require the catalytic properties of candidate 4. 

 

4 3.2.4 In eracto s o  candida e 4. t r f t  

 

To study the mechanism of action by which candidate 4 is involved in the regulation of the 

IFNβ response upon nucleic acid stimulation we sought to identify interactors of candidate 

4 by tandem affinity purification (TAP) [30]. Analysis of protein complexes by TAP requires 

fusion of the TAP-tag consisting of protein G, the Tobacco Etch Virus (TEV) protease 

cleavage site and streptavidin binding protein (SBP) with the protein of interest. This 

fusion protein will then serve as bait during the TAP procedure. Therefore an N-terminally 

tagged version of candidate 4 was cloned and used to generate a stable RAW264.7 cell 

line. Lysates were prepared and subjected to TAP. Aliquots of lysate and eluate were 

analyzed by Western blotting to determine the quality of the purification (figure 20). 

 

The bait was detected in the lysate and the eluates. In the lysate the bait appeared as a 

60 kDa protein, whereas in the eluates as a 45 kDa protein. This size difference is due to 

the fact that the TEV protease cleaves off the protein G moiety (20 kDa) of the TAP tag. 

This result indicated that the purification was performed successfully. As the specific 

elution of complexes was incomplete, both fractions biotin elution and boiled beads were 

submitted to mass spectrometry. 

A                                                     B 

Figure 20. Comparison of lysate and eluate of the NTAP candidate 4 TAP. 70 µg total protein of the 
lysate and 2 µl of the eluate were loaded on a protein gel. For the subsequent Western blot analysis a myc-
specific antibody was used to probe for NTAP candidate 4 as all TAP constructs contain a myc-epitope. 
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In order to visualize the proteins that were co-purified with the bait, the eluate was 

analyzed by silver staining (Melanie Planyavsky, Mass Spectrometry Department, CeMM) 

of an SDS- PAGE (figure 21) 

 
Figure 21. NTAP candidate 4 interactors isolated by TAP. Silver staining of an SDS-PAGE loaded with 
the NTAP candidate 4 eluate shows several potential interactors that were co-purified with the bait. 
 

The silver gel illustrated that there are several potential interactors that co-purify with 

candidate 4. The individual bands were isolated from the gel and are currently identified 

by mass spectrometry. 

 

4.3.2.5 Overexpression of catalytically inactive mutants of candidate 4 still reduces 

DNA-induced IFNβ induction 

 

As described in 4.3.2.3 overexpression of candidate 4 decreased IFNβ levels in response 

to DNA, but also polyI:C stimulation which might indicate an unspecific or indirect effect. 

To address this issue two catalytically inactive point mutants of candidate 4 were cloned. 

One of the introduced point mutations was reported to be a disease causing mutation. If 

the observed effect depended on the protein’s enzymatic activity, it should be abolished 

when inactive mutants are overexpressed. Therefore the experiment was repeated to 

compare 4 cell lines side by side: 3 RAW cell lines expressing either wild-type candidate 4, 

mutant 4a or mutant 4b and the parental RAW264.7 cell line (figure 22). 
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Figure 22. Overexpression of wild-type and inactive candidate 4 affect IFNβ induction in an 
identical manner. RAW264.7 cells and RAW cells stably overexpressing candidate 4 wild-type, mutant 4a or 
4b were stimulated by transfection of indicated concentrations of salmon sperm DNA as well as LPS. IFNβ 
induction 4h after stimulation was measured by real-time PCR. Data is normalized to mock stimulated 
RAW264.7 cells. 
 

Overexpression of candidate 4 wild-type showed an overall weaker reduction of IFNβ 

transcriptional activation in comparison to the previous experiment. More importantly, 

overexpression of either of the two inactive mutants did not reverse this effect. These 

results suggest that the effect of overexpression of candidate 4 is not as strong as we had 

originally hoped and that the effect is independent of the suggested catalytic activity of 

the protein. Such a catalytic activity-independent effect could imply poor specificity of 

candidate 4 in the process or a general dominant-interfering effect that occurs also with 

the catalytically incompetent forms. Thus, more experiments are needed to conclusively 

dismiss this candidate as non-specific or, alternatively, elucidate its mode of action in the 

nucleic acid-sensing pathway. 
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5 Discussion 

 

The goal of this project was to identify novel nucleic acid receptors based on the 

hypothesis that several more than the few identified so far should exist and that nucleic 

acid receptors bind to nucleic acids and are transcriptionally regulated by nucleic acids. 

Thus a combined proteomics and genomics approach was utilized to generate a list of 

candidate proteins. 

 

For this purpose nucleic acid binding proteins were identified by pull-down experiments 

using 3 different nucleic acids immobilized on agarose beads: polyI:C mimicking dsRNA, 

polydAdT:dTdA for B-form DNA and CpG-ODN as synthetic analogue for bacterial or viral 

unmethylated CG dinucleotides. The purified nucleic acid interactors were analyzed by 

mass spectrometry to reveal their identity. Due to the large quantity of identified nucleic 

acid binding proteins, a filtering criterion had to be introduced. Our assumption was that 

proteins that are functionally relevant for nucleic acid detection, e. g. a receptor, would 

be transcriptionally regulated in response to nucleic acid stimulation. This additional 

selection process has two advantages: On one hand it decreases the number of potential 

receptors; on the other hand it increases the probability of proteins that are functionally 

relevant for innate immunity signaling in response to nucleic acid treatment. Therefore 

alterations in expression patterns in response to stimulation with the before mentioned 3 

nucleic acids were assessed by microarray analysis. Regulated genes were determined 

using the software tool SAM. Once two datasets - one protomics set including all proteins 

binding to any nucleic acid tested and one genomics set consisting of genes regulated by 

any of the three nucleic acids - had been established, we looked for proteins that 

belonged to both datasets. In the end we obtained a list of 24 candidates binding to and 

being regulated by either polyI:C, polydAdT:dTdA or CpG-ODN. 

 

Next the nucleic acid-sensing candidates were assessed in two ways in parallel. For a side 

by side evaluation of all candidates, the effect of candidate silencing on transcriptional 

activation of IFNβ after nucleic acid stimulation was determined. Complementary to this, 

we chose to investigate one particular candidate, namely the DNA-modifying enzyme 

candidate 4, in more depth. 
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5.1 List of candidate proteins 

 

19 candidate proteins and 5 proteins with established roles in antiviral innate immunity - 

RIG-I, MDA-5, IKK-i, Oas3 and Pkr - constitute the list of candidates. The presence of 

these five proteins in the candidate list validates our approach and facilitates quality 

control during subsequent experiments. 

 

The 19 candidate proteins that were identified as potential components of nucleic acid 

signaling pathways are quite diverse in terms of their enzymatic activity, their domain 

structure and the extent of annotation. While for some proteins there is barely any 

information available, others are well characterized proteins, some of which have been 

reported to be implicated in immunological processes. 

 

Nucleic acid receptors are estimated to account only for a small fraction of nucleic acid 

binding proteins. Thus we expected to find among our candidates not only receptors, but 

also proteins involved in nucleic acid binding further downstream of ligand recognition, 

and proteins whose function is not restricted to innate immunity responses. The latter 

category of candidates includes transcription factors, splicing factors or proteins involved 

in DNA replication, repair and recombination. All these proteins are nucleic acid binding 

proteins. If they are transcriptionally regulated by nucleic acid or IFNβ stimulation, we 

would find them in our candidate list. Pkr represents a downstream effector of antiviral 

immunity. It contains two dsRNA binding motifs suggesting its role as a nucleic acid 

receptor. However, its RNA binding domains serve to regulate kinase activity that allows 

interference with viral replication. While Pkr apparently is not the receptor that triggers 

the initial wave of IFNβ and thus is not involved in the early events of IFNβ induction, it 

contributes to the amplification of type I IFN production at a later stage of the innate 

antiral immune response. Another scenario is illustrated by IKK-i. This non-canonical IKK 

does not contain any nucleic acid binding domain, nor has it been reported to be a nucleic 

acid binder, but still it is part of the candidate list. One possible explanation is that IKK-i 

forms a complex with an actual nucleic binder and thus is co-purified. Which protein it 

was binding to, is unknown. It may be in the candidate list, if its expression changes in 

response to nucleic acid stimulation. 
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The polyI:C pull-downs yielded by far the most interactors, followed by CpG-ODN pull-

downs and the polydAdT:dTdA pull-down. In fact, a surprisingly small number of proteins 

bind to polydAdT:dTdA. In contrast to polydAdT:dTdA, polydA:dT neither assumes the 

confirmation of B-form DNA when in solution, nor stimulates type I interferon secretion. 

Therefore polydA:dT serves as a negative control. When eluates from a polydA:dT and a 

polydAdT:dTdA pull-down were compared side by side on a silver stained protein gel, the 

staining pattern was identical for the most part. As some differences were apparent in the 

gel region corresponding to proteins larger than 64 kD, only this region rather than the 

whole lane was submitted to mass spectrometry analysis. The low number of identified 

polydAdT:dTdA binders is reflected in the composition of the candidate list. 12 candidates 

are polyI:C binders and regulated by polyI:C, which is only true for 3 candidates in the 

case of CpG-ODN. On top of this 3 more candidates are regulated by and bind to both 

nucleic acids, polyI:C and CpG-ODN. The remaining candidates bind to polyI:C, but are 

regulated by a different nucleic acid, which is polydAdT:dTdA in 5 instances and CpG in 

one case. PolydAdT:dTdA, polyI:C and to a lesser extent CpG-ODN result in IFNβ 

secretion that in turn modulates gene expression. Therefore, we speculate that the 

genomics dataset mainly consists of IFNβinducible genes. Based on this assumption, we 

are not concerned if proteins bind to a different type nucleic acid than the one they are 

regulated by. 

 

However, the fact that none of the candidates binds to polydAdT:dTdA was considered 

disturbing. To counteract the imbalanced contribution of polydAdT:dTdA binding proteins 

to the candidate list, meanwhile three more polydAdT:dTdA pull-downs were performed 

and regardless of the abundance of purified interactors visible on silver stained gels the 

whole lane was analyzed by mass spectrometry. Additional polydAdT:dTdA- binding 

proteins were blended with the proteomics dataset and the described bioinformatics 

procedure was applied to obtain an updated candidate list for future experiments. The 

new list contains 28 candidates, eight of which are polydAdT:dTdA-binding proteins. Six of 

the polydAdT:dTdA binders are also transcriptionally regulated by polydAdT:dTdA. 

 

The absence of TLRs from the list is probably due to the lysis conditions that were applied 

for the initial pull-down experiments. As TLRs are integral membrane proteins, a higher 

detergent concentration may be required to solubilize them. On the other hand proper 

ligand recognition by TLRs might require additional proteins that stabilze the interaction 
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with nucleic acids which are available under physiological conditions, but not in cell 

lysates. 

 

Is DAI among the candidates? The recently identified cytosolic DNA receptor, DAI, is not 

among the candidates, because it was not detected in any of the performed pull-downs. 

Due to its specificity for dsDNA, DAI was neither pulled-down with polyI:C nor CpG-ODN. 

Moreover, it was not identified in the original polydAdT:dTdA pull-down, because the 44 

kDa protein DAI ran below the cut-off for mass spectrometry analysis of 64 kDa. 

However, it was not found in any of the additional pull-downs, where all purified proteins 

were analyzed, either. DAI expression in resting cells is very low. As pull-down 

experiments were performed with lysates of unstimulated cells, the amount of purified 

DAI may have been below the detection limit of the mass spectrometry set-up. 

Alternatively, there may be cell-specific differences regarding DNA receptors. DAI was 

shown to act in fibroblasts (MEFs and L929) and kidney cells (HEK293T), but other 

proteins than DAI may serve as DNA receptors in macrophages, i. e. RAW264.7 cells as 

used in this study. 

 

Even though our approach failed to identify DAI as a candidate due to technical or 

biological reasons, the properties of DAI further validated the validity of our approach: 

DAI is a DNA binding protein and it is strongly induced in response to DNA stimulation. 

 

5.2 Candidates affecting polyI:C-induced IFNβ induction 

 

In order to determine the functional relevance of candidates on polyI:C-stimulated IFNβ 

induction, endogenous candidate expression was knocked down using a pool of gene-

specific siRNAs before cells were stimulated with polyI:C. If the knockdown resulted in 

statistically significant alterations of transcriptional activation of IFNβ, the candidate was 

considered to be functionally relevant. MDA-5, but not RIG-I, IKK-i, Oas3 and Pkr are 

essential for IFNβ production upon polyI:C treatment, which is in agreement with previous 

studies. Oas3 and Pkr do not trigger IFNβ induction, but amplify the response once it has 

been initialized. Thus the lack of amplification due to silencing of endogenous Pkr and 

Oas3, may result in reduced IFNβ levels. Based upon this data we concluded that the 

experimental setup was valid. Among the remaining 19 candidates, 12 candidates are 

functionally relevant and 7 candidates have either controversial or non-significant effects. 
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The high number of potentially relevant candidates was unexpected. The goal of the 

“filtering” process was to reduce the number of candidates before detailed functional 

studies had to be started. As it is not feasible to characterize 12 candidates in detph, 

additional and more stringent selection criteria may need to be applied in order to make 

an accurate decision on further research startegies. 

 

5.3 Candidates affecting polydAdT:dTdA-induced IFNβ 

induction 

 

The functional relevance of candidates on polydAdT:dTdA-induced IFNβ induction was 

investigated in analogy to the above described polyI:C evaluation. However, as only one 

biological experiment was performed, the statistical significance of the data could not be 

determined. Considering the composition of the candidate list consisting of mainly polyI:C 

binders but no polydAdT:dTdA interactors, it is conceivable that very few if any 

candidates are functionally relevant for IFNβ production in response to dsDNA stimulation. 

In fact, the preliminary data obtained so far suggests only two candidates, 6 and 18, as 

positive regulators of IFNβ induction.  

 

Nevertheless further biological experiments as well as technical repeats of the relative 

quantification of IFNβ transcripts are required for statistical analysis of the data. 

Moreover, the new polydAdT:dTdA binding candidates identified by analysis of additional 

pull-down experiments need to be tested as well. 

 

5.4 Alternative approaches to determine the functional 

relevance of candidates 

 

How can the accuracy of candidate evaluation be improved? Due to the initial selection 

procedure, the expression of all candidates is regulated by nucleic acid stimulation to 

various degrees. For a 4 h polyI:C stimulation alterations in candidate expression range 

between slight downregulation and 25fold upregulation. Overall, most candidates are 

upregulated in response to nucleic acid treatment. Thus a major drawback of the RNAi 

approach is that the candidate expression level affects the knockdown efficiency to a 

certain, but among all candidates variable extend. In the worst case, induction of a 
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candidate might rescue the knock down. Therefore it might be interesting to relate the 

knock down efficiency of each candidate to its effect on IFNβ induction as candidates with 

a strong knockdown for a given change in IFNβ induction may be less promising than 

those with a weaker knockdown. However, knockdown efficiency can only be determined 

at the transcriptional level as antibodies are not available for all candidates, while the 

analysis of knockdown efficiency on the protein level would be most appropriate for this 

approach. 

 

In order to circumvent this issue, dominant negative versions of candidates could be 

generated and overexpressed before nucleic acid stimulation. On the downside, the 

generation of dominant negative mutants is time-consuming and difficult for poorly 

characterized proteins and the precise mode of action of the interfering mutants often 

remains elusive.  

 

Alternatively, assessing which candidates selectively affect IFNβ induction could help to 

better focus on the functional relevance of candidates, as production of type I interferons 

is the key event in antiviral immunity. Both TNFα and IFNβ induction depend on the 

activation of the transcription factor NF-κB, but only IFNβ induction requires activation of 

IRF3 and IRF7. Thus candidates that have an effect on IFNβ, but not TNFα induction, are 

more likely to be essential for signal transduction in response to viral infection. 

 

The five control proteins in the candidate list are associated with two phases of host 

defence against viruses: While RIG-I, MDA-5 and IKK-i are signaling molecules that lead 

to IFNβ induction, Oas3 and Pkr are effectors whose expression is stimulated by IFNβ 

secretion. In addition to their effector functions that interfere with viral replication, Oas3 

and Pkr amplify type I interferon induction by an unknown mechanism, but they are not 

involved in the initial events of IFNβ induction. Only candidates that trigger IFNβ 

production qualify as potential nucleic acid receptors. In order to subdivide the candidates 

into the 2 classes of IFNβ inducers or IFNβ-induced effectors, wild-type cells need to be 

compared to cells deficient in IFN signaling, e. g. cells lacking functional interferon 

receptor or Jak/Stat signal transduction. The read-out for such epistasis studies can either 

be the abundance of IFNβ transcripts determined by quantitative PCR, or measurement of 

the IFNβ promoter activity by a reporter gene assay after knock down of candidates and 

nucleic acid stimulation. Performance of reporter gene assays in parallel to quantitative 
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PCRs would have the advantage of having a second read-out to substantiate the data, but 

would require to switch from murine macrophages to more easily transfectable cells like 

MEFs. 

 

Epistasis studies as described above may also be carried out in a more detailed manner. 

Overexpression of signaling components typically has the same effect as activation of the 

corresponding pathway with an external stimulus, e. g. overexpression of MAVS results in 

IFNβ production. If knockdown of a candidate results in decreased IFNβ induction in 

MAVS overexpressing cells, this candidate acts downstream of MAVS. Conversely, 

silencing candidates upstream of MAVS would not interfere with IFNβ production due to 

MAVS overexpression. In analogy, this procedure would allow to position candidates 

relative to TBK-1 and IKK-i as well. 

 

Conduction of a screen in the fruitfly Drosophila melanogaster using the first genome-

wide transgenic RNAi library [31], constructed in Vienna, represents another, directly 

functional approach to validate the relevance of those  candidates that have a fly 

orthologous gene. The library covers about 90% of the predicted protein-coding 

sequences in the Drosophila genome. Each of the approximately 22 000 transgenic lines 

carries a transgene consisting of an inverted repeat of a short gene fragment under 

control of the trans-acting UAS element. In order to achieve a conditional knockdown in 

the tissue of interest, these transgenic lines are crossed with strains expressing GAL4 in a 

tissue-specific manner thereby creating a functional GAL4-UAS expression system: The 

transcription factor GAL4 is expressed in the tissue of interest, binds to the UAS element 

and thus drives transcription of the transgene yielding a long dsRNA hairpin that has been 

shown to trigger RNAi in Drosophila. Candidate validation in Drosophila requires 

identification of orthologous candidate proteins, and expression of corresponding 

transgenes in fly immune cells. Conditional gene silencing would reveal, if a given 

candidate is essential for immunity against infection in Drosophila. 

 

5.5 Candidate 4 

 

In addition to the parallel evaluation of all candidates, we chose one candidate, number 4, 

in order to be able to perform more in-depth validation. Why was candidate 4 selected for 

follow-up studies? Once the list of candidates had been generated, the decision was 
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based on an “educated guess”, i. e. an extensive literature search was performed. 

Candidate 4 specifically evoked our interest, as it had been recently reported that a 

mutation inactivating candidate 4 leads to a severe disease. Despite being caused by a 

genetic defect, its phenotypic presentation is reminiscent of a congenital infection. 

Furthermore, a model has been proposed on how the DNA-modifying enzyme candidate 4 

would lead to abnormal immunological parameters, one of which being raised type I 

interferon levels in the serum. According to this hypothesis, candidate 4 would modify 

DNA in the cytosol of e. g. dying cells and thereby modulate the subsequent interferon 

response. 

 

In order to test this hypothesis candidate 4 was cloned, and a cell line stably expressing 

candidate 4 was generated. If the hypothesis was true, overexpression of candidate 4 

should lead to decreased IFNβ induction upon DNA stimulation. Comparison of parental 

cells with the overexpressing cells confirmed this hypothesis initially. However, further 

experiments with catalytically inactive mutants of candidate 4, wild-type candidate 4 and 

parental cells, showed that the previously observed effect is not due to the enzymatic 

activity of candidate 4. The finding that candidate 4 overexpression also affects polyI:C- 

and LPS-stimulated IFNβ production, despite being a DNA-modifying enzyme, further 

argued for a possible unspecific effect. Notably, knockdown of candidate 4 affects IFNβ 

induction in the polyI:C evaluation while it does not seem to have an impact in the 

polydAdT:dTdA evaluation. Overall, the results regarding candidate 4 are such that no 

definitive conclusions are allowed within the time frame of this diploma work. 

The possibility exists that the observed effect was due to the fact that stable cell lines 

generated by retroviral gene transfer were compared to parental cell lines. The retroviral 

infection may have interfered with the ability to induce IFNβ in response to various 

stimuli. Thus using mock transduced cells instead of parental cells would be appropriate 

for a fair comparison. More experiments are planned in the laboratory to reach the 

decision point of whether to continue with the candidate or discard it. 

 

5.6 Conclusion 

 

This thesis describes how 24 candidates were identified as potential components of innate 

immunity signaling in response to nucleic acid stimulation, and tested for their functional 

relevance for IFNβ induction. The list was obtained by combination of proteomics and 
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genomics, where the proteomics branch identified proteins that bind to nucleic acids, 

which is a key property of a nucleic acid receptor. Could one imagine other ways to obtain 

a list of nucleic acid binding proteins? Simple Modular Architecture Research Tool 

(SMART) lists roughly 100 domains with and without enzymatic activity involved in nucleic 

acid binding including helicase domains as present in RIG-I and MDA-5 and the DNA 

binding Zalpha domain in DAI. Both, the proteomics and the domain dataset, can be 

merged with the genomics dataset in order to find nucleic acid binding proteins whose 

expression is regulated by nucleic acids. While the limitations of the proteomics approach 

are of technical nature, such as sensitivity of mass spectrometry equipment and co-

purification of unspecifically binding proteins, the domain approach depends on the 

curation quality of the database. Furthermore, the virtual approach can only identify 

nucleic acid binders that contain annotated nucleic acid binding domains, whereas it fails 

to identify proteins with unknown nucleic acid binding domains or proteins lacking a clear 

and detailed domain annotation. For example the CARD domain of RIG-I is not annotated 

in the SMART database. In addition, databases may contain incorrect information , e. g. 

the Zalpha domain of DAI is listed as an RNA binding domain, even though it is a DNA 

binding domain. 

 

This diploma work has lead to the identification of several candidate genes likely to be 

involved in the intracellular recognition of nucleic acids and in the signaling to innate 

immunity pathways. Further work will be needed in order to further validate all of the 

candidates. The ambitious attempt to obtain conclusive data on a single chosen candidate 

on top of the parallel evaluation has yielded contradictory results and proven to elude the 

time-frame offered by a diploma thesis. Thus, also in the case of the hand-picked “super”-

candidate, number 4, more work will be needed. As this thesis was finalized, we obtained 

news from an international conference on innate immunity (last week of October 2007) 

that a leading innate immunity laboratory has reported the identification of the protein 

corresponding to candidate 4 as a major new player in the cellular process leading to the 

recognition of foreign nucleic acid. Thus, this diploma work may have provided the basis 

for a whole new research avenue on this protein. 
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6 Summary 

 

The innate immune system is the first line of defense against invading pathogens. Innate 

immune cells such as macrophages express pattern recognition receptors (PRRs) that 

detect conserved structures shared by many microbes, so-called pathogen-associated 

molecular patterns (PAMPs). Viruses are typically sensed by the presence of their 

genomes. Various PRRs are implicated in virus detection and trigger a signaling cascade 

that leads to the secretion of type I interferon (IFNα and IFNβ). Type I interferons are 

essential for antiviral immunity, as they limit virus replication and stimulate the adaptive 

immune system. However, the knowledge on the signaling pathways leading to interferon 

induction is still incomplete, and while the first cytosolic nucleic acid sensors are being 

identified, evidence for the existence of more, yet unknown receptors accumulates. 

 

Therefore, the aim of my diploma thesis was to identify novel nucleic acid sensors 

implicated in antiviral innate immunity. The central hypothesis was that nucleic acid 

receptors bind to nucleic acids and are transcriptionally regulated by nucleic acid 

stimulation. To this end we chose a combined proteomics and genomics approach. Two 

datasets were generated: The proteomics dataset consists of nucleic acid binding proteins 

that were identified by pull-down experiments with immobilized nucleic acids and 

subsequent mass spectrometry analysis. The genomics dataset includes genes that are 

regulated by nucleic acids as determined by microarray analysis. Based on the before 

mentioned hypothesis, proteins that belonged to both datasets were selected to compile a 

list of 24 candidate proteins. Among these 24 candidates are five proteins with an 

established role in nucleic acid signaling e. g. the receptors for double-stranded RNA 

(dsRNA), RIG-I and MDA-5, whose presence in the candidate list validates the approach. 

 

Once the candidate list had been generated, the microarray data was confirmed for 

selected candidates by real-time PCR. 

 

In order to assess the functional relevance of each candidate for antiviral innate immunity, 

the effect of candidate silencing on nucleic acid-stimulated IFNβ induction was measured 

by real-time PCR. The five control candidates showed the expected effects and 12 out of 

the 19 remaining candidates positively regulate IFNβ induction by polyI:C, the synthetic 

analogue of dsRNA. Thus this thesis provided the basis for further research leading to the 

identification of additional nucleic acid receptors. 
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In parallel to the RNAi-based evaluation of candidates, the DNA-modifying enzyme 

candidate 4, was investigated in more detail. Candidate 4 is a IFNβ-inducible, perinuclear 

protein. When inactivated by mutation, candidate 4 has been reported to cause a severe 

disease with an inflammatory component. Contradictory results were generated regarding 

its role in DNA-mediated IFNβ induction. Therfore, further studies are needed to elucidate 

its mechanism of action. 
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7 Zusammenfassung 

 

Das angeborene Immunsystem stellt die erste Verteidigungslinie gegen eindringende 

Pathogene dar. Zellen des angeborenen Immunsystems wie z. B. Makrophagen 

exprimieren Mustererkennungsrezeptoren (pattern recognition receptors), die konservierte 

Strukturen vieler Mikroorganismen, sogenannte Pathogen-assoziierte molekulare Muster 

(pathogen-associated molecular patterns), erkennen. Viren werden vorwiegend durch die 

Anwesenheit ihrer Genome detektiert und lösen eine Signaltransduktionskaskade aus, die 

zur Sekretion von Typ I Interferonen (IFNα und IFNβ) führt. Typ I Interferone sind 

essentiell für die Ausbildung antiviraler Immunität, da sie die Replikation des Virus 

hemmen und die spezifische Immunabwehr stimulieren. Allerdings sind die Signal-

transduktionswege, die zur Interferoninduktion führen, nicht vollständig geklärt, und 

während die ersten cytosolischen Nukleinsäuresensoren entdeckt werden, häufen sich die 

Indizien für die Existenz weiterer, noch unbekannter Rezeptoren. 

 

Das Ziel dieser Diplomarbeit war, neue Nukleinsäurerezeptoren, die maßgeblich zur 

angeborenen antiviralen Immunantwort beitragen, zu identifizieren. Im Mittelpunkt des 

Projekts stand die Hypothese, dass Nukleinsäurerezeptoren an Nukleinsäuren binden und 

von Nukleinsäuren transkriptionell reguliert werden. Folglich wurde eine Kombination aus 

Proteomik und Genomik als experimenteller Ansatz gewählt. Zwei Datensätze wurden 

generiert: Der Proteomikdatensatz enthält Proteine, die an Nukleinsäuren binden. Zu 

diesem Zweck wurden Pulldown- Experimente mit immobilisierten Nukleinsäuren 

durchgeführt um Nukleinsäure- bindende Proteine zu isolieren, die anschließend mittels 

Massenspektrometrie identifiziert wurden. Gene, deren Expression durch Nukleinsäure-

stimulation transkriptionell reguliert werden, wurden mithilfe von Microarrays erfasst und 

repräsentieren den Genomikdatensatz. Basierend auf der eingangs erwähnten Hypothese, 

wurden die Proteine, die in beiden Datensätzen vorhanden waren, in eine Kandidatenliste 

aufgenommen. Zu den 24 Kandidaten zählen fünf Proteine, deren Funktion innerhalb der 

Nukleinsäuresignaltransduktion bereits bekannt ist, wie z. B. die Rezeptoren für doppel-

strängige RNA (dsRNA) RIG-I und MDA-5. Die Tatsache, dass diese fünf Proteine Teil der 

Kandidatenliste sind, validiert den experimentellen Ansatz. 

 

Nachdem die Kandidatenliste erstellt worden war, wurden die Microarray- Ergebnisse 

mittels real-time PCR bestätigt. 
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Zusammenfassung 

Weiters wurden die Kandidaten auf ihre funktionelle Relevanz für die Entstehung einer 

Nukleinsäure-stimulierten antiviralen Immunantwort untersucht. Zu diesem Zweck wurde 

die Auswirkung des Silencings der einzelnen Kandidaten durch RNA- Interferenz auf IFNβ− 

Induktion aufgrund Stimulation mit Nukleinsäuren mittels real-time PCR bestimmt. Die 

fünf Kontrollkandidaten zeigten die erwarteten Effekte, und zwölf der restlichen 19 

Kandidaten hatten einen positiven Einfluss auf die IFNβ Induktion, wenn mit dem 

synthetischen dsRNA- Analogon polyI:C stimuliert wurde. Im Rahmen dieser Diplomarbeit 

wurde somit die Basis für weiterführende Untersuchungen zur Identifikation von 

Nukleinsäurerezeptoren geschaffen. 

 

Parallel zu der auf RNA- Interferenz basierenden Evaluation der Kandidaten wurde das 

DNA- modifizierende Enzym Kandidat 4 genauer untersucht. Kandidat 4 ist ein IFNβ- 

induzierbares, perinukleäres Protein. Mutationen, die eine Inaktivierung von Kandidat 4 

nach sich ziehen, bewirken eine schwere Erkrankung mit entzündlicher Komponente. 

Welche Rolle Kandidat 4 bei DNA- stimulierter IFNβ- Induktion spielt, konnte aufgrund 

widersprüchlicher Ergebnisse nicht geklärt werden. Weitere Versuche sind notwendig um 

die Funktion von Kandidat 4 zu verstehen.  
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Abbreviations 

9 Abbreviations 
 

ANOVA Analysis of variance IRAK-4 IL-1R-associated kinase 4 

AP-1 Activator protein 1 IRFs Interferon regulatory factors 

APS Ammonium persulfate ISGs Interferon stimulated genes 

BSA Bovine serum albumin ISRE IFN stimulated response element 

CARD domain Caspase recruitment domain JAK Janus kinase 

Cardif CARD adaptor inducing IFNβ JNK Jun N-terminal kinase 

cDC conventional dentritic cell LCMV Lymphocytic choriomeningitis virus 

cDNA complementary DNA LPS Lipopolysaccharide 

CpG-ODN cytidine-guanosine dinucleotide LRR Leucine-rich repeat 

 containing oligo-deoxynucleotide MAVS Mitochondrial antiviral signaling 

DAI DNA-dependent activator of  protein 

 IFN-regulatory factors MCMV Murine cytomegalovirus 

DAPI 4',6-diamidino-2-phenylindole MDA-5 Melanoma differentiation-associated 

dATP Deoxyadenosine triphosphate  gene 5 

DMEM Dulbecco’s Modified Eagle Medium MEFs Mouse embryonic fibroblasts 

DNA Deoxyribonucleic acid MyD88 Myeloid differentiation primary 

DNAse Deoxyribonuclease  response gene 88 

dNTP Deoxynucleotide triphosphate NDV Newcastle disease virus 

dsDNA double-stranded DNA NF-κB Nuclear factor κB 

dsRNA double-stranded RNA NK cells Natural killer cells 

dUTP-biotin Biotinylated deoxyuracil  NTAP N-terminally TAP tagged 

 triphosphate Oas3 2’-5’ oligoadenylate synthetase 

E. coli Escherischia coli oligo(dT)18  Single-stranded 18-mer oligo- 

EDTA Ethylenediamine-tetraacetic acid  deoxythymidine 

eIF2α Eukaryotic translation initiation PAGE Polyacrylamide gel electrophoresis 

 factor 2α PAMP Pathogen-associated molecular  

ER Endoplasmic reticulum  pattern 

FACS Fluorescence-activated cell sorting PBS Phosphate-buffered saline 

FCS Fetal calf serum PCR Polymerase chain reaction 

GFP Green fluorescent protein pDC plasmacytoid dentritic cell 

HA Hemagglutinin Pkr Double-stranded RNA-activated 

HCV Hepatitis C virus  protein kinase 

HEK293 Human embryonic kidney cell line PMSF  Phenylmethanesulfonyl 

HSV-1 Herpes simplex virus- 1  fluoride 

IFN interferon polydA:dT Polydeoxyadenylic-thymidylic acid,  

IFNAR IFNα/β receptor  ds homopolymer 

IgG Immunoglobulin G polydAdT:dTdA Poly(deoxyadenylic-thymidylic) acid,  

IKK I κB kinase  ds alternating copolymer 

IPS-1 IFNβ promoter stimulator 1 polyI:C Polyinosinic–polycytidylic acid, 

   double-stranded homopolymer 
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Abbreviations 

Prkra PKR-activator A STAT Signal transducer and activator of  

PRR Pattern recognition receptor  transcription 

RAW264.7 Murine macrophage cell line TAP Tandem affinity purification  

RD Repressor domain  TBK1 TANK binding kinase 1 

RIG-I Retinoic acid-inducible gene I  TEMED N,N,N′,N′-  

RLHs RIG-I-like helicases   Tetramethylethylenediamine 

RNA Ribonucleic acid  TEV Tobacco etch virus 

RNAi RNA interference  TIR domain Toll/interleukin-1 receptor domain 

rRNA Ribosomal RNA  TLCK Na-Tosyl-Lys-chloromethylketone 

RT Reverse transcription  TLR Toll-like receptor 

SAM Significance analysis of  TNFα Tumor necrosis factor α 

 microarrays TPCK Tosyl-L- phenylalanin- 

SBP Streptavidin binding protein   chloromethylketon 

SDS Sodium dodecyl sulfate  TRAF6 TNFR-associated factor-6 

siRNA Small interfering RNA TRIF TIR domain containing adaptor 

SMART Simple modular architecture   inducing interferon-beta 

 research tool  TRIM25 Tripartite motif protein 25 

SSD Salmon sperm DNA  Tris Tris(hydroxyamino)methane 

ssRNA Single-stranded RNA VISA Virus-induced signaling adaptor 

  VSV Vesicular stomatitis virus 
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