
DISSERTATION

Titel der Dissertation

„Trucks in Movement:

Hybridization of Exact Approaches and Variable
Neighborhood Search for the Delivery of Ready-Mixed

Concrete“

Verfasserin

Mag. Verena Schmid

angestrebter akademischer Grad

Doktorin der Sozial- und Wirtschaftswissenschaften
(Dr. rer. soc. oec.)

Wien, im November 2007

Studienkennzahl lt. Studienblatt A 084 157

Dissertationsgebiet lt. Studienblatt Internationale Betriebswirtschaft

Betreuer o.Univ.Prof. Dipl.-Ing. Dr. Richard F. Hartl

ii

Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

1. Introduction 1

2. Delivery of Concrete 5
2.1. Related Work . 7

2.2. Real World Issues . 11

3. Split Delivery Multi Depot Heterogeneous VRP with Time Windows (VRP⋆) 13
3.1. Model Formulation . 15

3.2. Finding good Lower Bounds for the VRP⋆-Formulation 20
3.2.1. Getting a small M . 20

3.2.2. Valid Inequalities . 21

3.2.3. Cutting Planes . 24

4. Integrated Hybrid Approach for Solving VRP⋆ 27

4.1. Basic Outline . 27
4.2. Hierarchy of Decision Variables . 28

4.3. Shaking Operators . 29

5. Multi-Commodity Network Flow Formulation 33

5.1. Base Patterns . 35

5.1.1. Generation of Base Patterns . 37
5.2. Reduced Mathematical Formulation . 38

5.3. Extensive Mathematical Formulation . 42

6. Variable Neighborhood Search 49

6.1. Basic Implementation . 50

6.2. Design Issues . 50
6.2.1. Shaking Phase . 50

6.2.2. Evaluation . 54

iii

Contents

6.2.3. Local Search . 58
6.2.4. Acceptance Decision . 61

7. Cooperative Hybrid Approach using MCNF and VNS 63
7.1. Communication between MCNF and VNS 64

7.1.1. Transformation: Class → Truck . 65
7.1.2. Transformation: Truck → Class . 65

8. Computational Experiments 67
8.1. Data Description . 67
8.2. Solving the VRP⋆ formulation . 72
8.3. Lower Bounds for VRP⋆ . 76
8.4. Integrative Hybrid Approach . 77
8.5. Reduced vs. Extensive MCNF Formulation 78
8.6. Initial Pattern Generation for MCNF . 81
8.7. Cooperative Hybrid Approach . 82
8.8. Cooperative Hybrid Approach vs. MCNF 83
8.9. Cooperative Hybrid Approach vs. VNS . 85
8.10. Cooperative Hybrid Approach vs. Integrative Hybrid Approach 89
8.11. Cooperative Hybrid Approach vs. Simulated Annealing 90
8.12. Summary . 92

9. Conclusion 95

iv

Contents

A. Abbreviations and Notation 99
A.1. Abbreviations . 99
A.2. Definition of Sets . 100
A.3. General Data . 100
A.4. Decision Variables for VRP⋆ . 101
A.5. Decision Variables for MCNF (reduced version) 102
A.6. Decision Variables for MCNF (extensive version) 102
A.7. Notation for Patterns . 103

B. Additional Results 105
B.1. Bounds for VRP⋆ . 105
B.2. Integrative Hybrid Approach . 110
B.3. Brute Force Patterns for MCNF . 113
B.4. Intelligent Base Patterns for MCNF . 115
B.5. VNS . 117
B.6. Cooperative Hybrid Approach . 118

C. Acknowledgment 119

Bibliography 121

Abstract 127

Abstract in German 129

Curriculum Vitae 131

v

Contents

vi

List of Figures

1.1a. Integrative Hybrid Approach . 3
1.1b. Cooperative Hybrid Approach . 3

2.1a. Loading restricted to home plant . 6
2.1b. Loading at any plant . 6

3.1. Representation as VRP⋆ (discarding loading operations) 14

5.1. Valid Pattern . 36
5.2. Valid Pattern with Gap . 36
5.3. Valid Pattern with Special Equipment . 37
5.4. Network Flow alike Presentation of Plant Nodes 44
5.5. Network Flow alike Presentation of Load Nodes 45
5.6. Trucks getting to Order to execute Delivery 47
5.7. Trucks leaving Order after executing Delivery 47

6.1. Deadlock situation without blocking orders 56

7.1. Hybrid Solution Procedure . 64

8.1. Area in Alto Adige . 68

vii

List of Figures

viii

List of Tables

4.1. Set of Neighborhood Structures (integrated hybrid approach) 29

6.1. Set of Neighborhood Structures (standalone VNS) 51

8.1. Properties of selected Instances . 71

8.2. Minimum and Maximum Number of Deliveries per Instance 72

8.3. Number of decision variables and constraints per instance (VRP⋆) 74

8.4. VRP⋆ solved as MIP . 75

8.5. Best Bounds after tmax = 4800 seconds . 76

8.6. Integrative Hybrid Approach . 77

8.7. Number of decision variables and constraints per instance (MCNF) 79

8.8. MCNF (reduced vs. extended version) . 80

8.9. Comparison Initial Base Patterns . 81

8.10. Parameter Study . 83

8.11. Cooperative Hybrid vs. MCNF Approach . 84

8.12. Cooperative Hybrid vs. VNS . 86

8.13. Cooperative Hybrid vs. VNS Approach (Details) 87

8.14. Cooperative vs. Integrative Hybrid Approach 89

8.15. Cooperative Hybrid vs. SA: Comparison of solution quality and run time . . 91

8.16. Summary of Results . 94

B.1. Best Bounds after tmax = 150 seconds . 105

B.2. Best Bounds after tmax = 300 seconds . 106

B.3. Best Bounds after tmax = 600 seconds . 107

B.4. Best Bounds after tmax = 1200 seconds . 108

B.5. Best Bounds after tmax = 2400 seconds . 109

B.6. Integrative Hybrid Approach (tmax = 150) . 110

B.7. Integrative Hybrid Approach (tmax = 300) . 110

B.8. Integrative Hybrid Approach (tmax = 600) . 111

B.9. Integrative Hybrid Approach (tmax = 1200) 111

B.10. Integrative Hybrid Approach (tmax = 2400) 112

B.11. Integrative Hybrid Approach (tmax = 4800) 112

B.12. Best solutions found using MCNF generating pinit brute force patterns 113

B.13. Average solutions found using MCNF generating pinit brute force patterns . . 113

B.14. Average runtimes using MCNF generating pinit brute force patterns 114

B.15. Best and Average Solutions found using compatible base patterns for MCNF 115

ix

List of Tables

B.16. Average total run times and time for generating pinit compatible base patterns116
B.17. Best Solutions (zmin) found using VNS after tmax seconds 117
B.18. Average Solutions (zavg) found using VNS after tmax seconds 117
B.19. Best Solutions (zmin) found using Cooperative Hybrid after tmax seconds . . 118
B.20. Average Solutions (zavg) found using Cooperative Hybrid after tmax seconds . 118

x

List of Algorithms

3.1. Callback Function for Cut Manager . 25
3.2. Iterative Relaxation . 25

4.1. Basic outline of LB using VNS . 28
4.2. Shaking Operator 1: FreeDelivery . 31
4.3. Shaking Operator 2: SkipOneDelivery . 31
4.4. Shaking Operator 3: AddOneDelivery . 32

6.1. Basic Steps of VNS . 50
6.2. Shaking Operator 1: ReplaceByUnused(κ) . 53
6.3. Forward Termination . 55
6.4. Backward Termination . 59
6.5. LocalSearch(x) . 60

xi

List of Algorithms

xii

1. Introduction

Concrete is needed almost everywhere. In order to build offices, commercial, residential or

retail buildings, factories, industrial or agricultural buildings, etc., some kind of building

material is needed. Concrete is one of the most used construction materials (see ERMCO,

2000).

Ready mixed concrete is a prosperous market. The total amount of concrete produced

in the European Union has increased from 318.4 million m3 in 2002 to 369.6 million m3 in

2005, which refers to a percental increase of 16.08%. In the United States the total amount

of concrete produced has risen 15% to up to 345 million m3 per year (see ERMCO, 2004,

2005) in the same period. Emerging markets such as China and India push the raising

demand for concrete even further.

Concrete itself is produced by blending cement, water and aggregates such as gravel and

sand. Additionally certain admixtures, e.g. retarders and accelerators are added to affect

the hydration (hardening) process of the material. Depending on what is the purpose

of the construction to be built, other ingredients are used to improve certain properties,

change color effects or water permeability. Concrete is a perishable good, in a sense that

it hardens after a given period of time. During the blending process it is still smooth

and can be transported for a limited amount of time if continuously in movement. After

about two hours, depending on accelerators or retarders in use, concrete hardens and it

will reach its durability and required strength.

As the name already suggests, ready-mixed concrete is not produced directly at con-

struction sites, where the actual demand occurs. Concrete is produced at plants from

where it is transported to construction sites using special types of vehicles designated for

transporting it. Either concrete is mixed just-in-time for the loading operation of a truck.

Or alternatively raw materials may be poured into the truck and are mixed on the way to

the construction site.

Concrete needs to be delivered from plants to construction sites using a heterogeneous

fleet of vehicles. Trucks need to be scheduled such that the demand at construction sites

can be satisfied. Usually an order cannot be satisfied by just one single truck, therefore

several consecutive unloading operations need to be scheduled. Typically concrete com-

1

1. Introduction

panies operate various plants. So one additional degree of freedom refers to the choice of

plant where a truck should be loaded before delivering concrete to a specific construction

site. The objective consists of minimizing travel times of all trucks. All orders have to be

satisfied in a feasible way, while also taking into account special types of unloading equip-

ment that might be necessary. Consecutive deliveries at one and the same construction

site cannot overlap. Any gaps in between will lead to a penalty in the objective function.

Linear Programming (LP) and formulations based on Mixed Integer Programming

(MIP) will find - in case they converge - an optimal solution. One of the disadvantages of

this approach might be that it would take way too long to solve those problems to optimal-

ity. On the other hand so called heuristics - or even more sophisticated metaheuristics -

exist, that try to find good (but not necessarily optimal) solutions in a reasonable amount

of time.

For solving large scale problem instances we decided to use hybrid approaches, com-

bining the power of meta-heuristics with the strength of exact approaches to overcome

the disadvantages of the two approaches if applied exclusively. Although it would be pos-

sible to state a complete mathematical formulation for the problem considered using a

MIP-formulation it is not possible to solve it in a reasonable amount of time as the num-

ber of decision variables and constraints involved increases exponentially as the size of

the instance considered increases. Therefore two hybrid approaches have been developed

to overcome the problems mentioned and solving problems in a reasonable amount of time.

This thesis presents a broad range of different ways on how to solve the problem stated

before. Various solution methods based on exact, heuristic, meta-heuristic and hybrid

approaches have been developed.

Exact methods based on a formulation for the Split Delivery Multi Depot Heterogeneous

Vehicle Routing Problem with Time Windows (SDMDHVRPTW) have been implemented.

In order to facilitate readability, this problem will be referred to as VRP⋆. The resulting

problem formulation can be solved to optimality for very small instances. For real-world-

sized instances, even with a steady increase in computational power, just “to MIP” is

not the way to success. Hence an algorithm, that controls the solution process of the

embedded MIP-formulation, has been developed to tackle larger problem instances as

well. This integrative hybrid approach is based on Local Branching (LB) (see Fischetti

and Lodi, 2003) which itself is guided by means of Variable Neighborhood Search (VNS)

(see Hansen and Mladenović, 2001; Mladenović and Hansen, 1997; Hansen et al., 2006).

Attention has also been paid to the development of valid inequalities and cuts to improve

2

the quality of lower bounds. VNS is a highly promising metaheuristic. See Glover and

Kochenberger (2003) for a general overview on most of the existing metaheuristics. Rather

than relying on commercial solvers such as XPRESS or CPLEX, that are mainly used as

black box, VNS is able to efficiently search the solution space by iteratively applying both

diversification and intensification strategies.

Another approach has been developed, that is based on a multi-commodity network

flow (MCNF) model formulation. The two resulting model formulations themselves have

been inspired by the model proposed in Durbin (2003) and Hoffman and Durbin (2007).

Rather then having a comprehensive view on the problem, only subparts of the problem

are considered and solved to optimality. So called patterns (options on how orders may be

satisfied) are generated heuristically and serve as an input for the MCNF. This approach

has first been presented in Schmid et al. (2006a) and Schmid et al. (2006b).

Moreover the entire problem may be tackled by just using VNS on its own. However

the best results where obtained when combining the two last-mentioned approaches. Both

methods used solely are capable of solving such problems. However, only the cooperative

hybrid approach enables us to combine the strengths of both techniques and compensates

their major drawbacks. Iteratively solutions obtained by MCNF serve as input for VNS

which is going to (locally) optimize it. The resulting solution (in terms of patterns) is fed

back into the MCNF problem, which is going to be optimized again. This approach was

first introduced in Schmid et al. (2007b) and Schmid et al. (2007c).

It can be shown that both hybrid approaches and the embedded combination of two

methods are by far more efficient then the use of any approach solely. Additionally we

compare our algorithm with a software tool based on Simulated Annealing (SA) available

in Austria. Our hybrid algorithms outperform results obtained by this tool.

Figures 1.1a and 1.1b present a basic outline of the integrative and cooperative approach.

In the integrative hybrid approach LB serves as subordinate, supporting the solution

process of the VRP⋆. Whereas the cooperative hybrid approach consists of two methods,

where both of them may also be applied solely and are equally valuable during the search

process.

VRP⋆

LB

Figure 1.1a.: Integrative Hybrid Approach

MCNF VNS

Figure 1.1b.: Cooperative Hybrid Approach

3

1. Introduction

The remainder of this thesis will be organized as follows: Exact methods based on a

formulation for the VRP⋆ will be presented in Chapter 3. The integrative hybrid ap-

proach based on Local Branching (LB) is presented in Chapter 4. Chapter 5 states the

formulations based on a MCNF model, the VNS will be presented in Chapter 6. The

combination between the two last-mentioned approaches into a cooperative hybrid version

will be introduced in Chapter 7. Chapter 8 finally compares the solutions obtained using

the different approaches mentioned before.

Results and insights obtained during the development process of this PhD thesis have

been incorporated in Schmid et al. (2007a) and Schmid et al. (2007d).

4

2. Delivery of Concrete

Companies in the concrete industry are facing the following scheduling problem on a daily

basis: concrete produced at several plants has to be delivered at customers’ construction

sites using a heterogeneous fleet of vehicles in a timely, but cost-effective manner. The

distribution of ready-mixed concrete (RMC) is a highly complex problem in logistics and

combinatorial optimization. One needs to assign plants to deliveries and hence decide

from which plant concrete will be transported the associated construction site. Next

all resulting truck movements need to be scheduled accordingly. Additionally a large

number of technical constraints dealing with the unloading operation itself also need to be

taken into account. Typically companies rely on skilled dispatchers that schedule truck

assignments to single deliveries, their movements throughout the day, such that the total

demand can be satisfied.

As the ordered quantity of concrete typically exceeds the capacity of a single vehicle,

several deliveries need to be scheduled to fulfill an order. At most one truck may unload at

a time. Single deliveries to be executed at one construction site may not overlap. Satisfying

orders on time is essential, consequently time windows need to be considered. Constructors

require an uninterrupted supply of concrete, hence the time between consecutive deliveries

will tried to be kept as small as possible.

Some vehicles may be used for the delivery of concrete only. Other vehicles, with

specialized unloading equipment, may have to be present at a construction site and assist

other vehicles with their unloading operation (some of them may also be able to transport

concrete). If special unloading equipment is demanded by an order such vehicles need to

arrive first at a construction site and remain at the construction site until the complete

order has been fulfilled. It is not possible to displace the truck assisting others with their

unloading operation. If an order requires special unloading equipment the first truck to

arrive needs to stay until the last truck has finished its unloading operation. Any displace

would be impractical, as it would take too much time, and hence disturb the unloading

process.

Concrete is not a homogeneous product, rather many different recipes exists. As op-

posed to many other problems related to vehicle routing any truck may only service one

5

2. Delivery of Concrete

order at a time. It is not possible to execute several deliveries without being loaded in

between, even if the capacity of the truck under consideration would be large enough to

execute several small deliveries. Hence trucks might only be partially loaded when serving

deliveries. It is not possible to store RMC. Every load of concrete is made just-in time

according to the specifications and requirements of the customer and trucks cannot serve

two different orders with the same concrete in their loading space. Therefore all trucks

basically commute between a plant, where they are going to be loaded, and construction

sites where unloading operations are supposed to take place. After unloading concrete at

the orders’ construction site it was dedicated for, trucks drive to a plant again.

The objective is to minimize total cost, consisting of total travel cost, (small) penalties

for delays between any two consecutive unloading operations for an order, and (high)

penalties for unfulfilled orders.

Trucks typically move between construction sites and plants. Loading operations take

place at plants, afterwards the trucks need to unload concrete at construction sites. Every

truck is assigned to a specific plant which is referred to as its home plant. Trucks start

their daily tour at their home plant and need to come back there by the end of the day.

The first loading operation per day is supposed to be executed at the corresponding home

plant. All remaining loading operation throughout the day may be executed at any other

plant as well and is not restricted to the home plant. In practice however schedulers tend

to schedule all trucks for each plant individually. This restricted view may lead to sub-

optimal solution. Using a global perspective however and by taking into account several

plants simultaneously will dramatically help to improve the quality of solutions found.

Figures 2.1a and 2.1b respectively depict a typical situation where profit can be obtained

by not scheduling the movements of trucks for each plant separately.

Plant Construction Site

Figure 2.1a.: Loading restricted to home plant Figure 2.1b.: Loading at any plant

6

2.1. Related Work

2.1. Related Work

Some related work on scheduling and dispatching trucks for the delivery of concrete can

be found in the literature: An overview of the main characteristics related to the delivery

and production of RMC can be found in Tommelein and Li (1999). Within their paper

they considered RMC delivery as a prototypical example for a just-in-time production

system, which is batched to specifications according to customers’ demand. Alternative

forms of vertical supply chain integration were investigated, based on data from industry

case studies.

Matsatsinis (2004) presents an approach to design a Decision Support System (DSS) for

routing trucks distributing RMC within a dynamic environment. In his work he concen-

trates on the DSS. Routing is determined by using heuristics and the exact approach itself

is only mentioned shortly. In comparison to our approach Matsatsinis splits the scheduling

of pumps and concrete carrying vehicles, resulting in a two level approach. In our case

however such decomposition is not possible, as some (hybrid) trucks are equipped with

special unloading equipment such as a pump or a conveyor belt and may also be used for

the delivery of concrete.

Naso et al. (2007) implemented a hybrid approach combining a constructive heuristic

based on a genetic algorithm (GA). During a preprocessing stage orders are split into

several jobs (deliveries) based on a fixed vehicle capacity. Unlike our approach they de-

compose the problem. First jobs and all resulting loading operations are assigned to plants

using a GA. The routing of trucks is executed at a second step. This is done by means

of a constructive heuristic, which makes sure the overall schedule gets feasible, based on

the assignment done by GA. Unlike our approach their fleet of vehicles is supposed to

be homogenous in terms of their capacity and is used for the delivery of concrete solely.

Hence the number of deliveries necessary to completely satisfy an order may be clearly

determined. Specialized unloading equipment such as pumps or conveyor belts and the

resulting assistance during the unloading operation of other trucks is not considered. Time

windows need to be kept and a strictly uninterrupted supply of concrete is needed. To

overcome potential bottleneck situations when many tight time windows need to kept they

also consider outsourcing production and hiring trucks externally as an option. Their ob-

jective is threefold. Transportation costs, in terms of distance traveled, the time for loading

and unloading waiting times as well as additional costs related to outsourced production,

hired trucks and the drivers’ overtime work will be considered.

Durbin (2003) and Hoffman and Durbin (2007) developed a decision-support tool. In

addition to a time-space network formulation they used a minimum-cost network flow

model and a heuristic based on tabu search to solve the problem at hand. His foundation

based on a time-spaced network representation mainly inspired our approach for solving

7

2. Delivery of Concrete

the problem at hand. The main idea of providing a set of different delivery options and

finally choosing one alternative per order however distracts the pure network flow formu-

lation.

A comprehensive approach for solving the problem refers to a formulation similar to

Capacitated Vehicle Routing Problems (CVRPs). Vehicle Routing Problems (VRPs) are

an extension of the classical and probably most extensively studied problem in logistics -

the Traveling Salesperson Problem (TSP) (see Bellmore and Nemhauser, 1968). A fleet

of vehicles, located at one single depot needs to be scheduled such that the customers

demand can be satisfied, while visiting every customer exactly once. CVRPs additionally

take into account the capacity of the vehicles that must not be exceeded at any point in

time. Capacitated Vehicle Routing Problems with Time Windows (CVRPTWs) also take

into account certain additional constraints concerning when customers should be visited.

One further extension refers to the location of the vehicles. As soon as the vehicles are no

longer located at one single depot but rather spread among various depots the problem

under consideration is called MDVRPTWs. VRPs and its various extensions are a very

active field in the research community and have been studied comprehensively in Toth

and Vigo (2001).

An extensive overview on Vehicle Routing Problems with Time Windows (VRPTW)

can be found in Bräysy and Gendreau (2005a,b). VRPs with multiple depots have been

extensively studied by Chao et al. (1993) and Cordeau et al. (1997). MDVRPTWs have

been tackled by Cordeau et al. (2001) and Polacek et al. (2004).

A common assumption for VRPs is, that every customer has to be visited exactly once

and that the demand of any single customer is less than the capacity of any vehicle. In

our case the demand of a single order typically exceeds the capacity of any single truck.

Several deliveries need to be executed to completely satisfy those orders. Due to the fact

that we consider a heterogeneous fleet of vehicles as well, we cannot pre-determine that

exact number of deliveries to be executed.

The first extension to the classical VRP taking into account serving customers with

more than one delivery has been developed by Dror and Trudeau (1989, 1990). They

addressed the Split Delivery Vehicle Routing Problem (SDVRP), which - opposed to the

classical formulation - drops the constraint that every customer has to be visited exactly

once. They showed that by allowing deliveries to be split - and hence allowing that any

customer may be visited more than once - substantial savings can be obtained. However

they only considered the case in which the demand of any single customer is less than or

8

2.1. Related Work

equal to the capacity of the vehicles. An IP formulation as well as valid inequalities has

been developed in Dror et al. (1994). See Archetti and Speranza (2007) for an overview

on SDVRPs.

The case where the demand exceeds the capacity also has been investigated. Archetti

et al. (2006) developed bounds and performed worst-case analysis for a similar problem

referred to as VRP+, a variant of the VRP, where the demand (Qi) of a customer could

exceed the capacity C of the vehicle and every customer has to be visited exactly ti =

⌈Qi/C⌉ times. Another extension referred to as SDVRP+ also has been investigated,

where the previous constraint is relaxed in a sense that every customer (obviously) has to

be visited at least ti times. Lower Bounds are explored in Belenguer et al. (2000).

As a further extension can be found in Archetti et al. (2005), where both the case of a

homogeneous fleet of vehicles with a capacity of two units and of a mixed fleet of vehicles

with capacity one and two respectively are considered. In case time windows need to be

considered as well, the resulting formulation is called Split Delivery Problem with Time

Windows (SDVRPTW). Different approaches based on Branch and Price and Tabu Search

can be found in Feillet et al. (2002) and Ho and Haugland (2004) respectively.

Within these approaches the exact timing of several deliveries to be executed for one

and the same customer is not important. Resulting gaps between consecutive deliveries

have no effect on the quality of the solution. In our case however, as constructors require

a preferably continuous inflow of concrete, consecutive unloading operations need to be

scheduled such that resulting gaps are tried to be kept as small as possible.

Following this notation our problem can be classified as a Split Delivery Multi Depot

Heterogeneous Vehicle Routing Problem with Time Windows (SDMDHVRPTW+), while

also taking into account that fact that the demand of any single customer might exceed

the capacity of any given truck available and that the exact number of visits cannot be

pre-determined. Throughout the remainder of this thesis we will refer to this problem as

the VRP⋆.

Our problem also seems to be related to the so called Vehicle Routing Problem with

Full Truckloads (VRPFL). In the case of VRPFL a given number of full truckloads need

to be shipped between specified pairs of locations. These problems have been addressed

by Arunapuram et al. (2003). The decision to be made can be reformulated in terms of

minimizing empty vehicle movements. An exact approach based on a formulation similar

to the one used for asymmetrical VRPs under distance restrictions has been proposed by

Desrosiers et al. (1988). For a comprehensive overview on VRPFL the interested reader is

referred to Bodin et al. (1983) and Ball et al. (1983) respectively. Our problem however

9

2. Delivery of Concrete

does not specify shipments to be made between specific pairs of locations (i.e. plants and

construction sites). Any order may be delivered from any plant that is not too far away.

An assignment of plants to orders is not supposed to be done. Additionally one needs to

keep in mind that the number of deliveries necessary cannot be determined in advance

and that single deliveries associated with one and the same order should be scheduled

just-in-time, in order to ensure a preferably continuous inflow of concrete.

VNS systems have proven their effectiveness in a multitude of problems. One of the

first descriptions can be found in Mladenović and Hansen (1997) and Hansen and Mlade-

nović (2001). Further efficient implementations for solving routing problems have been

developed by Kytöjoki et al. (2007). The VRPTW has been tackled using VNS by Bräysy

(2003), the vehicle routing problem with multiple depots and time windows (see Polacek

et al., 2004) and for real world routing problems (see Polacek et al., 2007a). Other suc-

cessful implementations include the capacitated arc routing problems with intermediate

facilities (Polacek et al., 2007b) and periodic routing problems (Hemmelmayr et al., 2007).

Recent successful implementations using VNS include the team orienteering problem (see

Archetti et al., 2007), scheduling and flow shop problems (see Blazewicz et al., 2008), nurse

rostering (see Burke et al., 2007), car sequencing problems (see Ribeiro et al., 2007) and

problems concerning berth allocation (see Hansen et al., 2007).

Hybridization of (meta-)heuristic and exact approaches is new and very active field of

research. Prandstetter and Raidl (2007) successfully implemented a hybridization combin-

ing VNS and integer linear programming for solving the car sequencing problems. Integer

Linear Programming techniques are used within a general VNS framework to explore

large neighborhoods. Blum (2005) combined Ant Colony Optimization (ACO) with beam

search for solving problems related to open shop scheduling. Furthermore ACO has been

combined with (modified versions) of classic algorithms such the one by Wagner Within

and Silver Meal for solving lot-sizing problems (Pitakaso et al., 2007). Also multi-level

capacitated lot-sizing problems have been solved using a hybrid approach. The problem

itself is decomposed into subproblems using ant system. These can be solved using a solver

such as CPLEX (see Pitakaso et al., 2006). The final solution itself can be obtained by

wisely combing partial results.

Our solution approaches emphasize on a hybridization of well known and efficient meth-

ods. Methods that could be applied solely are combined in order to overcome the major

drawbacks and concentrate their strengths. Inspired by a combination of VNS (see Mlade-

10

2.2. Real World Issues

nović and Hansen, 1997; Hansen and Mladenović, 2001) and Local Branching (see Fischetti

and Lodi, 2003; Hansen et al., 2006) we solve the problem based on the VRP⋆ formulation.

An exact approach based on a MCNF formulation (see Glover et al., 2003; Ahuja et al.,

1993) is guided by means of VNS to quickly find good solutions. Both methods used

solely are capable of solving such problems. However, only a cooperative hybrid approach

enables us to efficiently combine the strengths of both techniques and compensate for their

major drawbacks.

2.2. Real World Issues

In reality however there exist some additional restrictions concerning recipes of concrete.

First of all concrete is not a heterogeneous product, rather a multitude of different recipes

is available. Even if the same recipe would be used, not all plants may produce the exactly

same type of concrete. Some constructors may require the entire amount of concrete to be

delivered from the very same plant. According to legal restrictions the resulting schedules

might also be feasible in terms of working hours for the corresponding drivers. So far these

requirements are not going to be considered at all. However the model itself could easily

be extended to incorporate these types of conditions as well.

Due to its chemical characteristics concrete has a limited life time. It is perishable in a

sense that it starts to harden until it forms a firm building material. Traffic jams and delays

during the delivery process involve a certain risk. Usually especially designed chemical

substances are used for controlling the hardening process or even delay it if necessary.

Temperature and humidity are among some factors that affect the hardening process. But

regardless of all chemical ingredients and trimmings concrete cannot be transported for a

very long time.

The perishability itself is considered implicitly by means of a preprocessing stage taking

place. Delivering concrete from a plant to a construction site where the resulting traveling

time is above two hours is not permitted.

The problem under consideration here is supposed to be deterministic. All orders are

supposed to be known at the start of the optimization process. In reality however it is

very likely for orders to arise or change during the day. Changes that one might encounter

refer to the exact amount of concrete to be demanded and the specific time window when

unloading should start. It is not always straight forward for constructors to estimate the

real demand of concrete per day beforehand. Concrete plants and their dispatchers are

facing short-term modifications relating to the exact demand of concrete to be delivered.

11

2. Delivery of Concrete

This thesis however concentrates on a deterministic version where all instance related input

parameters are known beforehand and do not change dynamically. We decided to tackle

the deterministic version before considering the dynamic case. All knowledge gained while

working on the deterministic version will help us to overcome problems associated with

dynamic characteristics in the future. The solutions obtained by the deterministic version

are of good quality and the required run times are reasonable. Any solution obtained could

easily be used as a starting solution for reoptimizing the problem under consideration in

case input data changed.

12

3. Split Delivery Multi Depot

Heterogeneous Vehicle Routing Problem

with Time Windows (VRP⋆)

Exact methods based on a formulation for the Split Delivery Multi Depot Heterogeneous

Vehicle Routing Problem with Time Windows (SDMDHVRPTW) have been implemented.

Our formulation additionally takes into account some problem specific characteristics such

as special equipment that may be necessary. Trucks providing unloading equipment need

to arrive first at the construction site and assist (i.e. stay) later arriving trucks with their

unloading operation. Gaps between consecutive unloading operations are supposed to be

small and will be penalized in the objective function. In order to facilitate readability,

this problem will be referred to as VRP⋆.

Our formulation deviates from the classical MDVRPTW formulation. Customers place

their orders. An order typically cannot be satisfied by just one vehicle. Rather more

trucks need to be scheduled to arrive one after each other to satisfy the demand. One

order splits into various deliveries. However the exact number of deliveries to be executed

is not known beforehand. It depends on the capacity of vehicles assigned to deliveries for

any certain order. Similarly the time windows are not clearly specified. Only one time

window is given which refers to the start of the very first delivery per order. Starting the

first delivery before the beginning of the time window is not permitted, any late start will

be penalized in the objective function. All consecutive deliveries need to start afterwards

and are supposed to be non-overlapping. Any gaps between consecutive unloading opera-

tions are not desired and will be penalized accordingly.

Trucks start their daily tour at their home plant. By the end of the day every truck needs

to return to its home plant where it started its daily tour from. Trucks basically commute

between plants and construction sites corresponding to orders that are going to be served.

Loading operations of trucks are not restricted to their home plants. Trucks may also be

loaded at plants other than their home plant. Due to special characteristics of concrete a

13

3. Split Delivery Multi Depot Heterogeneous VRP with Time Windows (VRP⋆)

truck must not serve two customers (i.e. deliveries) with the same load of concrete. Rather

it has to be loaded with (fresh) concrete before going to an orders construction site. This

it not necessarily due to perishability. Rather concrete is such a heterogeneous product

with various different kinds of recipes.

Figure 3.1 depicts the situation that is going to be modeled. Trucks leave their home

plant and visit several customers (i.e. execute deliveries) throughout the day. By the end

of the day they need to return back to their home plant where they started their tour

from. The first loading operation is executed at the corresponding home plant. Between

executing two deliveries trucks need to be loaded. However the loading operation itself is

not explicitly shown in this graphic. In our case trucks are supposed to be loaded at the

closest plant en route between the corresponding construction sites.

customer (i.e. single delivery to be executed)plant

Figure 3.1.: Representation as VRP⋆ (discarding loading operations)

To completely satisfy an order usually several truck loads are necessary, as the demanded

quantity typically exceeds the capacity of any single truck. It is not known beforehand

how many deliveries are needed to satisfy any order. Appropriate bounding strategies have

been developed in order to overcome this problem and facilitate the optimization process.

The minimum number of deliveries required is calculated in a sense that it is assumed

that all unloading operations are executed by the largest truck available. Therefore the

minimum number of deliveries needed in to satisfy order o with a demand of Qo is given

by ⌈Qo/capmax⌉, where capmax denotes the capacity of the largest truck available. In

case the corresponding order requires special unloading equipment one also needs to take

into account the largest truck being equipped accordingly such that it could execute the

first unloading operation. Assume that the largest truck equipped accordingly executes

14

3.1. Model Formulation

the first unloading operation and all remaining deliveries are served by one of the largest

trucks available at all. In this case at least ⌈max(0, Qo− capoinstro
max)/capmax +1⌉ deliveries

are needed, where capoinstro
max refers to the capacity of the largest truck being equipped with

the instrumentation demanded by order o.

To strengthen the bounds and get an upper bound for the maximum number of de-

liveries necessary we consider the worst case where all deliveries are executed by trucks

with the smallest capacity available. Only trucks that are equipped with a real loading

space and have a non-zero capacity are considered in this case. The maximum number of

deliveries necessary is given by ⌈Qo/capmin⌉, where capmin denotes the smallest capacity

given any truck available. In case an order requires special unloading equipment the max-

imum number of unloading operations required is increased by one, taking into account a

truck with special equipment that might need to arrive first, which possibly has no loading

capacity at all.

This approach has been introduced in Schmid et al. (2007a), where an overview on the

problem description, the development of bounds and the resulting integrative hybrid ap-

proach are described in more detail.

Section 3.1 gives an overview on the implemented model formulation. For getting good

lower bounds several valid inequalities have been developed. Two different methods for

adding them intelligently are presented in Section 3.2. Inspired by strategies based on LB

and VNS imposed by Fischetti and Lodi (2003) and Hansen et al. (2006) we implemented

an integrated hybrid approach for guiding the optimization process of the MIP formulation.

Our approach is able to quickly generate good and feasible solutions. In the long run the

implemented approach is capable of providing high quality and competitive solutions. An

overview on the obtained solutions and bounds can be found in Section 8.2, 8.3 and B.1.

3.1. Model Formulation

A binary decision variable zo,d serves as an indicator whether or not a certain delivery d

associated with order o is supposed to be executed. In case the d-th delivery associated

with order o is going to be executed, zo,d is equal to 1, and 0 otherwise. The very first

delivery per order is referred to as d = 1.

Trucks and their behavior respectively need to be linked to the deliveries to be executed.

Hence the following decision variable is introduced: The binary decision variable yk
o,d

indicates whether a certain truck k is going to execute delivery d of order o. ao,d (bo,d)

15

3. Split Delivery Multi Depot Heterogeneous VRP with Time Windows (VRP⋆)

refer to the start (end) of the unloading operation associated with delivery d of order o.

lateo captures any delayed start of the first delivery associated with order o. In case the

first delivery starts after the end of the given time window [so, eo], the decision variable

will evaluate the length of the resulting gap. It captures late starts only. In case the first

delivery starts within the time window it will be equal to 0. Starting the very first delivery

before the start of the given time window is not permitted.

All truck movements are modeled in terms of three different types of decision variables.

xo2oo2,d2,k
o1,d1

is a binary decision variable evaluating to 1 if truck k, after having executed

delivery d1 of order o1, will serve delivery d2 of order o2. When going from o1 to o2 truck

k will drive from the construction site associated with order o1 to a plant, it is going to

be loaded there and finally drives to the construction site associated with order o2. The

choice of the plant where the loading operation in between is going to be executed is not

left as an option to the model itself. Rather the plant is chosen deterministically. Between

serving any two orders o1 and o2 the truck is going to be loaded at the closest plant en

route, when going from the construction sites associated with order o1 to o2 respectively.

For the very first and very last unloading operation per day xp2ok
o,d and xo2pk

o,d model

the corresponding behavior respectively. xp2ok
o,d refers to the very first movement of truck

k per day and will be equal to 1 if the first delivery to be performed along the planning

horizon refers to executing delivery d of order o. Truck k will start its daily tour from its

home plant, where it is also going to be loaded. Analogously xo2pk
o,d refers to the very last

movement of truck k per day. In case truck k will go back to its home plant immediately

after having served delivery d of order o, the associated decision variable will be equal to 1.

The aim of this optimization model is to minimize the total time traveled. Alternatively

any other distance related measure could be used. Additionally gaps between consecutive

deliveries or starting the first delivery of any order o after the end of the associated time

window are tried to be avoided and will be penalized accordingly using β as penalty value.

Formula 3.1 depicts the objective function. The travel time for going from truck k’s home

plant pk to the construction site associated with order o and vice versa is denoted by

TTpk,o and TTo,pk
respectively. The travel time necessary for a truck to drive from the

construction site associated with order o1 to order o2 is denoted by TTo1,o2
. This does not

include the time necessary for traveling directly. Rather it is made up of time necessary for

driving to the closest plant en route and the time necessary for driving to the construction

site associated with order o2. The time for the loading operation itself however is not

16

3.1. Model Formulation

included as part of the objective function.

min
∑

o1,o2∈O
d1∈Do1

d2∈Do2

k∈K

xo2oo2,d2,k
o1,d1

· TTo1,o2
+

∑

o∈O
d∈Do
k∈K

xp2ok
o,d · TTpk,o +

∑

o∈O
d∈Do
k∈K

xo2pk
o,d · TTo,pk

+

β
∑

o∈O

(lateo +
∑

d∈Do
d>1

(ao,d − bo,d−1))

(3.1)

In case a certain delivery is actually going to be executed (see associated decision variable

zo,d), one has to ensure that one of the trucks k is going to be assigned for executing this

particular delivery. If zo,d evaluates to 1 exactly one truck needs to be assigned to executing

delivery d of order o.

zo,d =
∑

k∈K

yk
o,d ∀o ∈ O, d ∈ Do (3.2)

Due to symmetry reasons the very first delivery associated with any order needs to be

executed by all means. Additionally consecutive deliveries may need to be executed. All

deliveries starting from the very first ones need to be executed until the total amount of

concrete demanded is met. Once a delivery is skipped no further deliveries can take place

any more.

zo,d ≤ zo,d−1 ∀o ∈ O, d ∈ Do,where d > 1 (3.3)

If truck k gets assigned to the execution of delivery d associated with order o, it somehow

needs to get there. A truck can either get there directly from its home plant by means of

executing its first delivery, or after having served any other delivery d1 of order o1.

yk
o,d = xp2ok

o,d +
∑

o1∈O
d1∈Do1

xo2oo,d,k
o1,d1

∀o ∈ O, d ∈ Do, k ∈ K (3.4)

Additionally the following relationship needs to hold: In case truck k has to execute a

certain delivery it also needs to leave the corresponding construction site and go somewhere

afterwards. Either the truck just finished its last unloading operation and returns back

home to its home plant. Alternatively the truck may serve any other delivery d2 associated

with order o2 afterwards. The corresponding constraint looks like this:

yk
o,d = xo2pk

o,d +
∑

o2∈O
d2∈Do2

xo2oo2,d2,k
o,d ∀o ∈ O, d ∈ Do, k ∈ K (3.5)

17

3. Split Delivery Multi Depot Heterogeneous VRP with Time Windows (VRP⋆)

Some logical constraints also need to hold. A truck is allowed to leave its home plant

(and execute its very first unloading operation per day) at most once (see Equation 3.6).

Equation 3.7 states that in case a truck leaves its home plant it also needs to return there

by the end of the day.
∑

o∈O
d∈Do

xp2ok
o,d ≤ 1 ∀k ∈ K (3.6)

∑

o∈O
d∈Do

xp2ok
o,d =

∑

o∈O
d∈Do

xo2pk
o,d ∀k ∈ K (3.7)

Usually trucks execute more then just one single delivery per day. To ensure a feasible

solution, the time difference between two consecutive unloading operations to be executed

by the same truck needs to be big enough. There needs to be enough time for the truck

to drive to the closest plant en route and for being loaded there. Usually trucks are free

to leave a construction site immediately after having finished their unloading operation.

Trucks bringing along special instrumentation and assisting other trucks during their own

unloading operations may only leave the construction site after the order’s demand has

been met completely and the last truck has finished its unloading operation. It needs to

stay and assist later arriving trucks with their unloading operation respectively.

Note that there are two cases that need to be distinguished: The first set of constraints

(see Equation 3.8a) refers to the general case. The second set (see Equation 3.8b) however

has been designed specifically for orders requiring special instrumentation and the trucks

that are equipped accordingly. In this case the first truck to arrive is not allowed to leave

the construction site immediately having finished its unloading operation. Rather it needs

to stay there until the last truck has finished its unloading operation. The end of the last

unloading operation is denoted by bo1,|Do1
|.

ao2,d2
≥ bo1,d1

+ xo2oo2,d2,k
o1,d1

· TTLk
o1,o2

+ M · (1− xo2oo2,d2,k
o1,d1

)

∀o1, o2 ∈ O, d1 ∈ Do1
, d2 ∈ Do2

, k ∈ K,where {o1 6∈ O′ ∨ d1 6= 1} (3.8a)

ao2,d2
≥ bo1,|Do1

| + xo2oo2,d2,k
o1,d1

· TTLk
o1,o2

+ M · (1− xo2oo2,d2,k
o1,d1

)

∀o1 ∈ O′, o2 ∈ O, d1 ∈ Do1
, d2 ∈ Do2

, k ∈ K,where {d1 = 1} (3.8b)

The time necessary for driving from the construction site associated with order o1 to order

o2 consists of the time necessary for driving to the closest plant en route, being loaded

there and driving tot the construction site associated with order o2. It is referred to as

TTLk
o1,o2

.

18

3.1. Model Formulation

At most one vehicle may be unloaded at any point in time. All deliveries d relating

to the same order o are supposed to be non-overlapping. Any gaps between consecutive

unloading operations will be penalized accordingly. One has to ensure that at most one

vehicle can unload at any point in time. Hence the following restrictions need to hold.

bo,d−1 ≤ ao,d ∀o ∈ O, d ∈ Do,where d > 1 (3.9)

The first delivery has to start after the begin of the given time window so. A too early

start is strictly not permitted.

ao,1 ≥ so ∀o ∈ O (3.10)

The first delivery of any order is supposed to start within a given time window. The

late start of the very first delivery associated with order o will be captured by means of

decision variable lateo. A late start of the first delivery of order o starts will be penalized in

the objective function accordingly. The first delivery of any order is considered as starting

late in case the unloading operation is initiated after the end (eo) of the corresponding

time window.

lateo ≥ ao,1 − eo ∀o ∈ O (3.11)

In order to ensure that the total quantity demanded will be delivered the following

constraint has to hold: The total quantity of concrete ordered by order o is referred to as

Qo. One has to ensure that the cumulative capacity of all trucks serving order o may not

fall below the ordered quantity Qo.

∑

d∈Do

k∈K

capk · y
k
o,d ≥ Qo ∀o ∈ O (3.12)

In case special unloading equipment is demanded by an order the truck to execute the

first delivery needs to be equipped accordingly. The type of special equipment demanded

by order o and the type of instrumentation truck k is equipped with are referred to as

oinstro and tinstrk respectively.

∑

k∈K

tinstrk · y
k
o,1 = oinstro ∀o ∈ O′ (3.13)

The time required for fully unloading truck k at the construction site associated with

order o is denoted by Uk
o . The length of any delivery is determined by the following set of

19

3. Split Delivery Multi Depot Heterogeneous VRP with Time Windows (VRP⋆)

constraints.

bo,d − ao,d ≥ Uk
o · y

k
o,d ∀o ∈ O, d ∈ Do, k ∈ K (3.14)

bo,d − ao,d ≤ Uk
o + M(1− yk

o,d) ∀o ∈ O, d ∈ Do, k ∈ K (3.15)

3.2. Finding good Lower Bounds for the VRP⋆-Formulation

As expected the attempt “to MIP” the problem was not really working successfully. As

a first step therefore we decided to work on the lower bounds. Instead of inconsiderately

taking any (probably too) large number we try to find good values for the M’s used by

constraints defined in Section 3.1. Solving the relaxed problem as such already gives some

kind of bound. Several sets of valid inequalities have been developed to improve the lower

bound ever further. Moreover they can be used to guide the solution process of the relaxed

problem formulation. These valid inequalities also have been proven to be highly useful

when it comes to adding cuts and constraints as cutting planes. This section is dedicated

to the implemented cuts. After an overview on the valid inequalities found, we will focus

on how and where to use them to quickly obtain good lower bounds for the problem at

hand. Some of the constraints are implemented using the M-method. Hence in order to

get tighter bounds we try to find good and feasible values for them.

3.2.1. Getting a small M

Feasibility of solutions from the trucks point of view is ensured by Constraints 3.8a and 3.8b

respectively. They do guarantee that enough time is planned for driving from construction

sites to orders, being loaded there and driving to the next construction site. These con-

straints have been implemented by using the so called “Big M-method”. Instead of just

picking any large number we try to take the smallest number possible instead. Therefore

we will be able to get tighter bounds.

The two constraints mentioned only need to become affective in case truck k executes

delivery d2 of order o2 right after having executed delivery d1 of order o1. However as

usually in optimization we are not clairvoyant, we do not know a priori in which sequence

trucks will execute deliveries. Therefore the constraints need to be imposed for every

possible outcome. Without loss of generality all possible situations need to be handled,

even situations where the above mentioned situation is not true.

The total planning horizon per day might be one reasonable value for the M used within

those constraints. It can further be improved by evaluating the maximum time distance

between the end (bo1,d1
) of any delivery d1 of the associated order o1 and the start (ao2,d2

)

20

3.2. Finding good Lower Bounds for the VRP⋆-Formulation

of delivery d2 for order o2.

At the earliest any delivery for order o can start at so (the start of the associated

time window). Any delivery starting to be executed prior to this point will result in an

infeasible solution. Suppose all previous deliveries d′ (where d′ < d) have been executed

by the smallest truck at hand the earliest start for delivery d associated with order o is

given by:

ao,d =

so + ⌈ capmin

URo
⌉ · (d− 1) ∀o ∈ O \O′, d ∈ Do

so + ⌈ capmin

URo
⌉ · (d− 2) + ⌈

cap
oinstro
min

URo
⌉ ∀o ∈ O′, d ∈ Do,where d > 1

so ∀o ∈ O′, d ∈ Do,where d = 1

(3.16)

The latest end (max(bo,d)) of any delivery d associated with order o however is not as

easy to estimate. Let’s assume however that all orders need to be satisfied by the end of the

planning horizon. Resulting gaps between consecutive deliveries unpredictably postpone

the end of any unloading operation. The planning horizon itself serves as the worst case

for the end of any delivery.

Coming back to the “big Ms” for Constraints 3.8a and 3.8b respectively. Without loss

of generality a good and feasible value is given by subtracting the two values accordingly.

For constraints referring to one and the same order (i.e. where o = o1 = o2 and d1 < d2)

an even tighter bound can be imposed. In case one and the same truck k is supposed

to execute both deliveries d1 and d2 of order o the minimum amount of time in between

is given by TTLk
o,o, including the time for truck k for driving from the construction site

associated with order o to the closest plant, being loaded there and driving back to order’s

o construction site.

For Constraints 3.15 ⌈capmax/URo⌉ - the maximum length of any unloading operation,

regardless of the truck to execute it - is an appropriate choice.

3.2.2. Valid Inequalities

All valid inequalities have been implemented after solving the relaxed problem based on

the VRP⋆ formulation. The solution process will be guided towards a possibly integer

solution, by the use of several additional constraints. When solving the MIP the con-

straints as such would not be needed at all, as the integrality itself would take care of

these situations. When solving only the relaxed problem however additional constraints

like the following ones help to guide the solution process and improve the quality of the

21

3. Split Delivery Multi Depot Heterogeneous VRP with Time Windows (VRP⋆)

lower bound. The following section describes typical situations found when looking at the

solution of a relaxed problem. The stated valid inequalities are implemented in to avoid

exactly those situations and the resulting (integer infeasible) consequences.

If it turns out that for an order requiring special instrumentation (o ∈ O′) only one

delivery is going to be executed (i.e. zo,d = 0 for d > 1), the first delivery cannot be

executed by a truck with no capacity. By all means the truck executing the first delivery

needs to be equipped accordingly. In case no second delivery is foreseen, the first truck to

arrive also needs to bring along enough capacity, otherwise the order’s demand cannot be

satisfied.

zo,2 ≥ yk
o,1 ∀o ∈ O′, k ∈ K,where capk = 0 (3.17)

Within any feasible integer solution a truck after leaving an order for good cannot

execute any other deliveries. In case the variable xo2pk
o,d′ takes on a positive value -

indicating that truck k returns back to its home plant after having executed delivery d′ of

order o - truck k cannot be foreseen for executing any later deliveries d (d′ < d) for the

very same order o.

yk
o,d +

∑

d′∈Do

d′<d

xo2pk
o,d′ ≤ 1 ∀o ∈ O, d ∈ Do, k ∈ K,where d > 1 (3.18)

Trucks that do not leave their home plant cannot be foreseen for executing any single

delivery. In case neither of the decision variables xp2ok
o,d for a fixed truck k evaluates to

one or at least takes on a positive value, truck k cannot be assigned and hence move to

any delivery.
∑

o∈O
d∈Do

xp2ok
o,d ≥

∑

o1,o2∈O
d1∈Do1

d2∈Do2

xo2oo2,d2,k
o1,d1

∀k ∈ K (3.19)

To avoid catch-22-alike situations a truck executing the first delivery of an order requir-

ing special instrumentation cannot be scheduled for any other delivery within the same

order. The first truck to arrive needs to stay at the construction site associated with

order o and assist all later arriving trucks with their unloading operation. The truck is

free to leave as soon as the truck scheduled for the last delivery has finished its unloading

operation.

yk
o,d ≤ 1− yk

o,1 ∀o ∈ O′, d ∈ Do, k ∈ K,where {d > 1 ∨ oinstro = tinstrk} (3.20)

22

3.2. Finding good Lower Bounds for the VRP⋆-Formulation

In case a truck is supposed to execute a delivery, decision variable yk
o,d for a fixed truck k

takes a non-zero value, truck k needs to already have left its home plant sometime before.

yk
o,d ≤

∑

o2∈O
d2∈Do2

:
¬{o=o2∧d2>d}

xp2ok
o2,d2

∀o ∈ O, d ∈ Do, k ∈ K (3.21)

For avoiding subtours from the trucks point of view the following set of constraints has

shown to be highly useful. Trucks that just came from their home plant (i.e. xp2ok
o,d takes

on a non-zero value) and go back home immediately cannot be foreseen for any other

delivery.

2− (xp2ok
o,d + xo2pk

o,d) ≥ xo2oo2,d2,k
o1,d1

∀o, o1, o2 ∈ O, d ∈ Do, d1 ∈ Do1
, d2 ∈ Do2

, k ∈ K (3.22)

In case a truck is supposed to execute two different deliveries d1 and d2 (where d1 < d2)

of one and the same order o, the time between the end of the previous delivery (bo,d1
) and

the start of the latter one (ao,d2
) needs to be sufficient such that the corresponding truck

k can drive to the closest plant for being loaded there.

bo,d1
+ TTLk

o,o · (yk
o,d1

+ yk
o,d2
− 1) ≤ ao,d2

∀o ∈ O, d1, d2 ∈ Do, k ∈ K,where d1 < d2 (3.23)

Trucks are not allowed to commute between two deliveries. In case decision variable

xo2oo2,d2,k
o1,d1

takes on a non-zero value its counterpart xo2oo1,d1,k
o2,d2

cannot take on a positive

value as well. Rather truck k needs to go somewhere else instead (either return home to its

home plant or to any other delivery). Usually Constraint 3.8a and 3.8b should take care

about this situation. When solving only the relaxed problem and because of the use of the

M-method in the previously mentioned constraints however certain features might not be

captured. Even better bounds are achieved by the use of the following set of constraints.

xo2oo,d,k
o1,d1

≤
∑

o2∈O
d2∈Do2

:
¬{o1=o2

∧d1=d2}

xo2oo2,d2,k
o,d + xo2pk

o,d ∀o, o1 ∈ O, d ∈ Do, d1 ∈ Do1
, k ∈ K (3.24)

23

3. Split Delivery Multi Depot Heterogeneous VRP with Time Windows (VRP⋆)

3.2.3. Cutting Planes

To solve the MIP all constraints stated in Section 3.1 are necessary in order to guarantee

a feasible solution. Some families of constraints however result in a very huge number

of constraints, most of which turn out to be not binding either. Therefore all families

of constraints have been classified as either being fundamental or non-fundamental. Non-

fundamental families of constraints typically result in a large number of constraints, mostly

due to the number of indices involved. Alternatively they might also result in a large set

of constraints, where most of which are non-binding and therefore not necessarily needed

to be considered from the very first step on.

The constraints depicted in Equations 3.8a and 3.8b respectively indeed do result in a

very large number of constraints due to the five indices involved. Therefore this family

of constraints is considered as being non-fundamental. Moreover the families of con-

straints corresponding to Equations 3.15 and 3.14 also have been classified as being non-

fundamental, as in relaxed solutions found most of them result to be non-binding anyway.

All remaining familie of constraints are considered as being fundamental.

The initial LP based on the relaxed MIP formulation can be solved easily. The resulting

bounds however are extremely week and can be strengthened by adding cuts to the original

LP formulation. On demand (i.e. whenever violated) we are generating cuts that cutoff

the current (i.e. fractional) solution. Inspired by the fundamental work on cutting planes

and integer programming in Gomory (1958, 1960) we developed two different approaches

for obtaining good lower bounds. For a more comprehensive overview on cutting planes

and their application to integer and mixed integer programming the reader is referred to

Schrijver (1980) and Marchand et al. (2002). When solving the model fundamental con-

straints only will be considered. All non-fundamental constraints and valid inequalities

will be added on demand, i.e. when discovered to be violated. The main difference be-

tween the two variants is made up by how violated valid inequalities and non-fundamental

constraints are going to be dealt with.

Variant 1: Within this approach the MIP, while imposing only fundamental constraints

right from the beginning, is going to be solved once. Instead of using the standard cut man-

ager embedded within XPRESS-MP we defined our own callback function. This routine is

going to be called at each node in the tree. At every node the current solution is examined

in terms of its actual feasibility. On request violated non-fundamental constraints, as well

as violated valid inequalities are going to be added as cuts. The cut manager routine

24

3.2. Finding good Lower Bounds for the VRP⋆-Formulation

will be called repeatedly at each node until no more cuts have been added. The resulting

sub-problem is automatically optimized if any cuts have been added. An algorithmic de-

scription of the embedded customized cut manager is shown in Algorithm 3.1. Any cuts

added are only good for the corresponding node where they have been generated, as in its

descendant child nodes.

Algorithm 3.1 Callback Function for Cut Manager

nV ← number of violated valid inequalities and non-fundamental constraints
if nV > 0 then

add violated non-fundamental constraints and valid inequalities as cuts
optimize resulting sub-problem again

end if

Variant 2: A different framework has also been tested, within which the resulting

relaxed problem is iteratively going to be solved. Again, only fundamental constraints are

considered right from the beginning. The solution obtained after having solved the relaxed

problem is examined in terms of potential infeasibilities. Violated constraints and valid

inequalities are added to the model as constraints and the updated relaxed formulation

is going to be solved again. An outline of this procedure can be found in Algorithm 3.2.

As opposed to the previous variant all added constrains are globally valid. Once they

have been added the have to be observed. The remaining run time is spent on solving the

formulation as MIP. The same callback function is used for the cut manager, as probably

not all of the non-fundamental constraints already have been added. To ensure feasibility,

some more cuts might still need to be added.

Algorithm 3.2 Iterative Relaxation

set up the VRP⋆ with fundamental constraints only
violated← true
while violated and terminationCriteria not met do ⊲ Loop over LP

solve relaxed MIP (LP)
nV ← number of violated valid inequalities and non-fundamental constraints
if nV > 0 then

add violated valid inequalities and non-fundamental constraints as constraints
end if

end while

solve MIP ⊲ use remaining run time

25

3. Split Delivery Multi Depot Heterogeneous VRP with Time Windows (VRP⋆)

26

4. Integrated Hybrid Approach for Solving

VRP⋆

As expected solving the problem based on the VRP⋆ formulation as a MIP, using any any

commercial solver as a black box, is not a promising idea. Especially for larger instances

it does not guarantee finding good feasible solutions - if any - in a reasonable amount of

time. Therefore a strategy based on LB (see Fischetti and Lodi, 2003) and inspired by

VNS is used to assist the solver during its optimization.

This chapter gives a short overview on the methodology used. Starting with a basic

outline of the framework we will focus on the problem specific knowledge in use and the

resulting implicit hierarchic structure. Finally the shaking operator in use will be specified.

All results obtained using this approach can be found in Section 8.4 and 8.10. A more

detailed overview is given in Section B.2.

4.1. Basic Outline

The following approach tries to systematically improve any given feasible solution. In

principle the integrated hybrid approach for solving the VRP⋆ formulation is inspired by

ideas coming from VNS. For a more detailed description of VNS please see Chapter 6, and

Mladenović and Hansen (1997) and Hansen and Mladenović (2001) respectively. Given

any initial solution where most of the variables are fixed, a certain amount of variables

are unfixed by resetting their upper and lower bound to their initial values respectively.

Then the problem is solved again using any general purpose solver used as a black box.

Only solutions that improve the current best solution will be accepted.

Given any feasible solution, three shaking operators resulting in nine different neigh-

borhood structures have been implemented. The neighborhood structures Nκ as such are

designed to grow as the neighborhood parameter κ increases, hence eventually enabling

us to escape local optima. After disturbing any feasible solution by leaving most of the

variables fixed and resetting certain bounds, the problem will be reoptimized and possibly

ends up in a new (local) optimum. An outline of this procedure is depicted in Algo-

rithm 4.1.

27

4. Integrated Hybrid Approach for Solving VRP⋆

The two approaches described in Fischetti and Lodi (2003) and Hansen et al. (2006) do

not explicitly state which decision variables are allowed to change. Actually all (however

not at the same time) of their binary decision variables would be allowed to change. Rather

their neighborhoods are defined in a sense that given any feasible reference solution, at

most a certain number of binary decision variables can change (i.e. flip its value from 0 to

1 or vice versa). Their neighborhood structures have been implemented by means of a so

called local branching constraint.

In our case we decided not to allow all decision variables to change. Rather we keep most

of them unchanged. Only certain decision variables are allowed to change. The choice

which binary decision variables are allowed to flip their value depends on the neighborhood

structure currently in use.

Algorithm 4.1 Basic outline of LB using VNS

x← any (feasible) initial solution
fix all zo,d and yk

o,d according to x
while stopping criterion not met do ⊲ run time limit tmax

κ← 1
while κ ≤ κmax do

Shaking(x, κ) ⊲ unfix some decision variables
x′ ← solve MIP again
if accept(x′) then ⊲ move or move not? (only accept better solutions)

x← x′

κ← 1 ⊲ continue with 1st neighborhood
else

κ← κ + 1 ⊲ continue with next neighborhood
end if

end while

end while

The VNS-based approach described in Chapter 6 will be used for obtaining an initial

solution. Alternatively any other (greedy) construction heuristics may be used. Instead

one could also feed the model into any solver used as a black box and wait for any (e.g.

the first) feasible solution to be found.

4.2. Hierarchy of Decision Variables

The decision variables may be represented using an implicit hierarchical structure. At the

top level one has to decide whether or not a certain delivery d associated with order o shall

28

4.3. Shaking Operators

be executed at all. The resulting decision is implemented by means of decision variable

zo,d. At a second stage one has to think about which truck shall execute it. Trucks have to

be assigned to single deliveries. The choice of truck k for executing delivery d associated

with order o is modeled in terms of yk
o,d. Finally all truck movements as well as the exact

timing for all single deliveries need to be determined and synchronized accordingly.

We observed that once the assignment of trucks to deliveries (and the choice whether or

not a certain delivery should be executed at all) is fixed, the resulting model can be solved

very quickly. Hence we decided to keep most decision variables zo,d and yk
o,d fixed and

only release some of them. Which of those binary decision variables will be un-fixed (i.e.

their lower and upper bounds will be set to 0 and 1 respectively) is be determined by the

current neighborhood structure, using some problem specific knowledge. All remaining

variables corresponding to the exact timing of deliveries (ao,d, bo,d), will left unrestricted

at all times. The same is true for those decision variables responsible for modeling the

movement of trucks (xp2ok
o,d, xo2pk

o,d, xo2oo2,d2,k
o1,d2

).

4.3. Shaking Operators

The development of the shaking operators was influenced by our problem specific knowl-

edge concerning the hierarchy of the decision variables in use described in the previous

section. Three shaking operators have been implemented resulting in κmax = 9 neighbor-

hood structures Nκ, where κ = 1, . . . κmax.

An overview on all nine neighborhood structures in use, the corresponding shaking

operator in use and their sequence is depicted in Table 4.1. Their structure is going to be

described in more detail within the following pages.

Table 4.1.: Set of Neighborhood Structures (integrated hybrid approach)

κ Shaking Operator percentage of items changed at most

1 FreeDelivery 10
2 FreeDelivery 20
3 FreeDelivery 30
4 SkipOneDelivery 10
5 SkipOneDelivery 20
6 SkipOneDelivery 30
7 AddOneDelivery 10
8 AddOneDelivery 20
9 AddOneDelivery 30

29

4. Integrated Hybrid Approach for Solving VRP⋆

The first shaking operator (FreeDelivery, responsible for neighborhood κ = 1 . . . 3)

no longer fixes the decision concerning which truck k is supposed to execute a certain

delivery. Given the current solution the assignment of trucks to deliveries in up to 10κ%

cases is discarded. An algorithmic description of this shaking operator can be found in

Algorithm 4.2.

By the use of this shaking operator and the three resulting neighborhood structures we

provide more flexibility to the model when it comes to scheduling all trucks accordingly.

By the use of the second shaking operator (SkipOneDelivery, responsible for neighbor-

hood κ = 4 . . . 6) we try to satisfy the demand by trying to serve orders with less deliveries

then currently scheduled. Therefore randomly at most 10(κ− 3)% of all orders where one

delivery could be skipped are selected. Hence only orders are going to be considered,

which are currently served by more deliveries then necessary (for the calculation of the

lower bound on the number of deliveries per order see page 14). For all orders selected the

last delivery is going to be skipped. The shortage in the supply of concrete is overcome

by choosing another (previous) delivery d′ of the same order in return. The choice of the

truck scheduled for executing delivery d′ is discarded, allowing the model to find another

(and possibly larger) truck instead. The choice of delivery d′ itself is biased by the capacity

of the truck executing it according to the current solution. The selection probability for

any delivery d is inversely proportional to the capacity of the truck currently executing

it, hence favoring the choice of deliveries being executed by smaller trucks. Algorithm 4.3

sketches the outline of this shaking operator.

By using this shaking operator we attempt to reduce the number of deliveries necessary

and hence decrease the total distance traveled.

The third shaking operator (AddOneDelivery, used in neighborhoods κ = 7 . . . 9) finally

works almost conversely to the one described previously. Rather then trying to reduce the

number of deliveries necessary this shaking operator tries to improve any given current

incumbent solution by allowing one additional delivery. A potential oversupply in concrete

has to be avoided. Therefore the assignment of trucks for one of the previous deliveries

within the same order is abandoned. The choice of delivery for which a new truck shall be

found is again biased. The selection probability for any delivery d′ is directly proportional

to the capacity of the truck foreseen to execute it based on the current solution. The

described changes and the associated variable unfixing is executed for at most 10(κ− 6)%

of all orders which again are chosen randomly. Again, only orders are considered where

the maximum number of deliveries that may be executed is not yet reached by the current

30

4.3. Shaking Operators

solution. (The calculation of the upper bound on the number of deliveries required can

also be found on page 14). A short overview on this shaking operator can be found in

Algorithm 4.4.

This shaking operator has shown to be very useful especially when it comes to reducing

the gaps between consecutive unloading operations. Although higher travel time may

result from an increase in the number of deliveries for any order. However we might be

able to compensate this by smaller or fewer gaps between consecutive deliveries.

Algorithm 4.2 Shaking Operator 1: FreeDelivery

Require: 1 ≤ κ ≤ 3
D′ ← random choice of 10κ% of deliveries executed by current solution
for all d′ ∈ D′ do

o← order corresponding to delivery d′

d← delivery index corresponding to delivery d′

k ← truck currently executing delivery d′

unfix yk
o,d ⊲ set lower bound to 0

for all k′ ∈ K, where k′ 6= k do

unfix yk′

o,d ⊲ set upper bound to 1
end for

end for

Algorithm 4.3 Shaking Operator 2: SkipOneDelivery

Require: 4 ≤ κ ≤ 6
O′′ ← random choice of 10(κ − 3)% of orders that could be served by one delivery less
for all o ∈ O′′ do

d← last delivery currently executed for order o
fix zo,d ⊲ set upper bound to 0
k ← truck currently executing delivery d of order o
fix yk

o,d ⊲ set upper bound to 0
d← randomly choose any other delivery of order o ⊲ bias towards smaller trucks
k ← truck currently executing delivery d of order o
unfix yk

o,d ⊲ set lower bound to 0
for all k′ ∈ K, where k′ 6= k do

unfix yk′

o,d ⊲ set upper bound to 1
end for

end for

31

4. Integrated Hybrid Approach for Solving VRP⋆

Algorithm 4.4 Shaking Operator 3: AddOneDelivery

Require: 7 ≤ κ ≤ 9
O′′ ← random choice of 10(κ− 6)% of orders that could be served by one more delivery
for all o ∈ O′′ do

d← last delivery currently executed for order o
unfix zo,d+1 ⊲ set upper bound to 1
for all k ∈ K do

unfix yk
o,d+1 ⊲ set upper bound to 1

end for

d← randomly choose any other delivery of order o ⊲ bias towards larger trucks
k ← truck currently executing delivery d of order o
unfix yk

o,d ⊲ set lower bound to 0
for all k′ ∈ K, where k′ 6= k do

unfix yk′

o,d ⊲ set upper bound to 1
end for

end for

32

5. Multi-Commodity Network Flow

Formulation

The RMC delivery problem can be modeled in terms of an integer multi-commodity net-

work flow problem (MCNF) on a time-spaced method. This approach has been inspired by

the model proposed in Hoffman and Durbin (2007) and Durbin (2003). Nodes represent

construction sites and plants at various points in time. Different nodes indicate potential

start (and end) points of loading operations at all plants respectively. Similarly from the

construction site’s point of view, nodes refer to the potential start (and end) of unloading

operations. The flow refers to the movements of trucks trough the network. Trucks with

the same capacity, home plant and equipment are aggregated into classes and handled as

one single type of commodity. The resulting model formulation has been introduced in

Schmid et al. (2007d).

All modeling approaches presented within this Chapter are based on a MCNF formula-

tion. Two different formulations will be presented within this chapter, both of which may

be used to solve problems concerning the delivery of concrete.

The first formulation (see Section 5.2) skips the choice where trucks are supposed to

be loaded before being able to deliver concrete to any construction site. Plants where

loading operations are supposed to take place are chosen automatically. Not necessarily

the closest plant of a construction site is chosen. Rather, in case the vehicle is going from

one construction site to any other one, the closest plant en route is chosen. Capacity

restrictions concerning the maximum number of vehicles to be loaded at a time are not

going to be enforced within this simplified model version. The very first loading operation

of any truck is always supposed to be executed at the home plant of the corresponding

truck, hence the very first movement per truck initiates at its home plant. As the truck also

needs to return back to its home plant by the end of the planning horizon the last movement

will terminate there. Throughout the day however the movement of trucks is modeled

in terms of orders. Trucks are said to move between orders and their corresponding

construction sites. Time for driving to the closest plant en route plus the time for loading

33

5. Multi-Commodity Network Flow Formulation

there will be considered implicitly.

The second approach however (see Section 5.3) models all loading operations explicitly.

It also takes into account the choice of the plant where vehicles are going to be loaded.

The choice of the plant where any loading operation is supposed to take place is not pre-

defined, but rather left to the optimization model itself. This formulation is extremely

useful when the capacity at plants is limited. This additional degree of freedom especially

makes sense when certain loading restrictions (i.e. the maximum number of trucks that

can be loaded at a plant at any time) have to be considered. In this case the movement of

trucks is modeled in terms of going back and forth between plants and construction sites

associated with any order. Again, trucks start and end their daily tours at their home

plants.

Within both formulations trucks are aggregated in terms of classes, whereas one class is

considered as one single commodity. Trucks within the same class have the same capacity

as well as instrumentation for unloading and are located at the very same home plant.

Both formulations are not extensive in a sense that all possibilities on how unload-

ing operations could take place (i.e. which trucks are going to execute them, how many

trucks are needed to completely satisfy an order, in which sequence are trucks supposed

to unload). Rather a limited number of so called patterns are generated. Every pattern

uniquely specifies when and how unloading operations may take place, as well as which

types of trucks are supposed to execute an unloading operation. All deliveries associated

with one pattern would completely satisfy the requested demand of the corresponding

order, as well as any requirements concerning special unloading equipment.

This chapter is organized as follows. A detailed overview on patterns, their significance

and generation is given in Section 5.1. Patterns serve as input for the MCNF formula-

tion. The models themselves are supposed to choose one pattern per order and determine

all resulting types of vehicle movements and all subsequent loading and unloading opera-

tions. The two different approaches are presented in Section 5.2 and 5.3 respectively. An

overview on the results obtained can be found in Section 8.6. For a comparison of the two

formulations the reader is referred to Section 8.5. A comprehensive outline can be found

in Section B.3 and B.4.

34

5.1. Base Patterns

5.1. Base Patterns

Rather than taking into account all possibilities when, where and which truck is (possibly)

supposed to execute a certain delivery and the resulting consequences thereafter, only a

limited number of patterns per order will be considered. Only given possibilities for every

single order - so called patterns - will be considered on how unloading operations could

take place, whereas the execution of all deliveries belonging to a pattern would completely

satisfy one order. The aim of the resulting optimization models (see Section 5.3 and 5.2)

consists of selecting at most one pattern per order, hence determining the exact timing of

all resulting loading and unloading operations, as well as the movements of trucks between

plants and orders, given certain patterns have been chosen to be executed.

Any pattern a for order o uniquely specifies all necessary unloading operations, such that

the demand will be completely satisfied. The sequence and types of trucks to execute single

deliveries, as well as the point in time when unloading is supposed to start will be specified.

Additional requirements concerning unloading equipment will also be considered.

If an unloading operation for order o of a truck of class c is supposed to start in t

according to fulfillment pattern a, the corresponding binary indicator P c,t
o,a will be equal

to 1. The start (end) of the very first (last) unloading operation is denoted by starto,a

(endo,a), the truck which is supposed to execute the first unloading operation is denoted

as firsto,a. Every pattern itself is feasible in a sense that subsequent unloading operations

do not overlap, the cumulative capacity of all scheduled trucks is able to meet the demand

and the first truck scheduled brings along special equipment if required by the order.

The set of pattern for any order o is denoted as Ao. A pattern is supposed to be

feasible if the first unloading operation does not start before the beginning of the time

window given for the corresponding order and all consecutive unloading operations are

non-overlapping. Moreover the accumulated capacity of all trucks scheduled for unloading

operations within any single pattern have to be able to meet the required demand. In case

special unloading equipment is required for order o the first truck scheduled within any

pattern a ∈ Ao needs to be equipped accordingly.

A graphical representation of a valid pattern a for order o is depicted in Figure 5.1. A

total number of 3 unloading operations is foreseen within this particular pattern a. The

accumulated capacity of trucks c1, c2 and c3 is sufficient such that the total demand can

be satisfied. The first unloading operation is supposed to be executed by a truck of class

c1. The second and third unloading operation would have to be executed by a truck of

class c2 and c3 respectively. All unloading operations are non-overlapping. There are

35

5. Multi-Commodity Network Flow Formulation

no gaps between consecutive unloading operations, as the unloading operation d starts

immediately after operation d− 1 is finished. The trucks serving an order within pattern

a do not need to be chosen uniquely. Any type of truck (in this case c1, c2 and c3) can be

foreseen (even several times within the same pattern) for executing unloading operations.

P c1,t1
o,a = 1

P c2,t2
o,a = 1

P c3,t3
o,a = 1

Figure 5.1.: Valid Pattern

Figure 5.2 also depicts a valid pattern. In this case there is a gap between two consec-

utive unloading operations. If such a pattern is going to be chosen it will be penalized

accordingly. In this case there is a gap between the second and third unloading operation

as the third unloading operation executed by a truck of class c3 does not follow up the

end of the previous unloading operation. In case this pattern would be chosen for order o

a penalty accrues for the resulting gap.

P c1,t1
o,a

P c2,t2
o,a

P c3,t3
o,a

Figure 5.2.: Valid Pattern with Gap

In case special unloading equipment is needed, the first truck c1 to arrive needs to bring

along the demanded equipment. This truck first executes its own unloading operation and

then needs to stay at the construction site (dotted line) and assist later arriving trucks

with their unloading operations respectively. The truck is allowed to leave after the last

truck has finished its unloading operation. Note that (see Section 2.2) trucks assisting

others with their unloading operation cannot be released or replaced by any other truck,

even if it would be equipped accordingly. The resulting rearrangement of trucks at the

construction site would take too long and is undesired and hence not executed in practice.

36

5.1. Base Patterns

P c1,t1
o,a

P c2,t2
o,a

P c3,t3
o,a

Figure 5.3.: Valid Pattern with Special Equipment

5.1.1. Generation of Base Patterns

Two different methods have been developed for generating base patterns which will be

first fed into the available pool of patterns before starting the execution of MCNF for the

very first time.

Brute Force

The first and rather myopic version is based upon a brute force approach. A comparatively

large number of patterns are generated for every order. These are feasible from the orders

point of view, but do not take into account all consequences concerning the resulting

movements of trucks. As a first step a number of x base patterns - preferably without any

gaps in between - will be generated. Patterns are generated sequentially, i.e. the type of

truck foreseen for the first unloading operation and the point in time when its unloading

operation is supposed to start will be determined first. Then further trucks will be added

to the pattern sequentially until the total quantity delivered satisfies the required demand.

All patterns generated for one order have to be unique.

The selection probability for choosing the first truck is proportional to the number

of trucks available within a given class of trucks, taking into account requirements for

unloading equipment. The first truck is supposed to start its unloading operation at

the beginning of the time window. All subsequently scheduled trucks are supposed to

start their unloading operation immediately after the previous one finished its unloading

operation. The selection probability again is directly proportional to the number of trucks

within a given class, but also taking into account if a truck can be scheduled next. The

selection probability is inversely proportional to the length of the resulting gap.

After having generated x base patterns for every order the pool of patterns will expanded

to 10 · x patterns by adding gaps to existing patterns. In order to insert a gap into an

existing pattern, a pattern and a delivery within will be chosen. The sequence of all trucks

remains unchanged. Just an artificial gap will be inserted and the timing will be adjusted

accordingly. The resulting pattern - which still needs to be unique per order - will then

37

5. Multi-Commodity Network Flow Formulation

be added into the pool of patterns.

This approach has been chosen for quickly generating a large number of possible options,

while not taking into account the integration between various orders and the consequences

upon the feasibility on patterns of different orders. Additional delays will be added on

purpose. In case the resources - in terms of the capacity of trucks available - are limited

and the schedule is tight this might be the only way to satisfy every order.

Compatible Base Pattern Generation

Contrary to the approach described above a more intelligent approach has been developed,

also taking into account interdependence between patterns of different orders. Instead of

randomly generating a huge number of patterns, less but more sophisticated patterns will

be generated. Step by step one pattern per order is going to be generated. Note that

all patterns generated at the same step do fit together and result in a feasible solution.

Again patterns are constructed sequentially. The unloading operations of the first truck

will be determined randomly, close to the time window given. The selection probability

of trucks is directly proportional to the number of trucks available within any given class

of trucks, the capacity of the trucks and inversely proportional to the distance from the

truck’s home plant to the construction site of the order. Gaps are tried to be kept as small

as possible, if necessary at all.

5.2. Reduced Mathematical Formulation

The problem is modeled as an integer multi-commodity flow problem on a time-space

network (with some similarities to the model proposed by Hoffman and Durbin (2007)

and Durbin (2003). Each type of delivery truck is modeled as a separate commodity.

Trucks with same capacity, home plant, and instrumentation are grouped into classes and

considered as one single commodity.

Usually, trucks are free to leave a construction site immediately after having finished

their unloading operation. However, if an order requires specialized unloading equipment,

the first truck to arrive needs to supply the required equipment and remain at the site until

the entire order has been fulfilled and the last truck has finished its unloading operation.

That truck may depart as soon as the last unloading operation of a fulfillment pattern has

been completed.

Only movements between orders and their corresponding constructions sites and all un-

loading operations taking place are modeled explicitly. All loading operations as well as

38

5.2. Reduced Mathematical Formulation

the choice of the plant where a loading operation could take place are implicitly given. As

the capacity of the plants is supposed not be limited, the closest one will be chosen. When

going from order o1 to o2 the loading operation will take place at the closest plant en route.

The objective of the optimization consists of minimizing traveling time as well as gaps.

Gaps might occur either as a consequence of delays between consecutive unloading oper-

ations scheduled at the same construction site or because of starting with the very first

unloading operation after the end of the corresponding time window.

Three different types of decision variables model the movements of trucks. The num-

ber of trucks of class c starting with their loading operation at their home plant in t for

driving to the construction site corresponding to order o afterwards is denoted by the

binary decision variable moveP2Oc,t
o . Similarly moveO2P c,t

o denotes the number of trucks

of class c leaving the construction site corresponding to order o at time t, to travel back to

their home plant. Please note that this decision variable is integer and not binary as the

remaining ones for modeling truck movements. Two trucks of the same class might leave

a construction site at the very same time in order to go back to their home plant. These

two types of movements correspond to the very first and last movement of trucks per day,

either coming or going back to their home plants. All other movements throughout the

day are modeled by means of the decision variable moveO2Oc,t
o1,o2

, which indicates the

number of trucks of class c leaving the construction site associated with order o1 to get

to order o2 in time, also being loaded meanwhile. The number of trucks of a given class c

not leaving their home plant at all is denoted by stayHomec.

The objective function Z (see Equation 5.1) basically consists of three terms. First

of all we wish to minimize the total travel times. An additional term β1 penalizes gaps

between consecutive unloading operation or the delayed start of any delivery. Finally

a (comparatively high) penalty term β2 is needed in case no pattern can be chosen for

an order. The home plant of trucks of class c is denoted by pc. Travel times from a

truck’s home plant pc to the construction site associated with order o (and vice versa) are

denoted as TTpc,o (TTo,pc). Travel times between two orders o1 and o2 (including the time

necessary for going to the closest plant en route without being loaded there) are referred

to as TTo1,o2
.

The set of orders is denoted by O. All patterns available in the pool of pattern for order

o ∈ O are denoted by Ao. C refers to the set of all classes of trucks. The time horizon is

39

5. Multi-Commodity Network Flow Formulation

denoted by T .

Z =
∑

o∈O
c∈C
t∈T

moveP2Oc,t
o · TTpc,o +

∑

o∈O
c∈C
t∈T

moveO2P c,t
o · TTo,pc+

∑

o1,o2∈O
c∈C
t∈T

moveO2Oc,t
o1,o2

· TTo1,o2
+

β1

∑

o∈O
a∈Ao

chooseo,a · delayo,a + β2

∑

o∈O

(1−
∑

a∈Ao

chooseo,a)

(5.1)

For every order at most one fulfillment pattern can be chosen. The choice itself is

modeled using a binary decision variable chooseo,a which will be equal to one if pattern

a ∈ Ao is chosen for order o. If no pattern can be chosen for any given order an additional

penalty term accrues.

∑

a∈Ao

chooseo,a ≤ 1 ∀o ∈ O (5.2)

In case a certain fulfillment pattern a ∈ Ao is chosen for order o ∈ O, one has to ensure

that all single deliveries associated with it, are actually going to be executed. All trucks

scheduled need to arrive just in time. An early arrival is not possible. Trucks will start

their unloading operations immediately after arriving at the construction site associated

with order o. TTLc
pc,o denotes the time necessary for loading at the home plant of truck

class c and driving to the construction site associated with order o. The time necessary

for going from any order o1 to o, while loading at the closest plant en route, is denoted by

TTLc
o1,o.

∑

a∈Ao

chooseo,a · P
c,t
o,a = moveP2O

c,t−TTLc
pc,o

o +
∑

o1∈O

moveO2O
c,t−TTLc

o1,o

o1,o

∀o ∈ O, c ∈ C, t ∈ T

(5.3)

Constraint 5.3 ensures that trucks scheduled within pattern a for order o arrive in time,

either coming from their home plant or any order where they might have been before, if

the fulfillment pattern a is chosen.

Trucks can leave a construction site either after having finished their unloading operation

or - in the very special case of the first truck scheduled to bring along special equipment

40

5.2. Reduced Mathematical Formulation

- after the last truck associated with a pattern has finished its unloading operation. The

time necessary for fully unloading a truck of class c at the construction site associated with

order o is denoted by U c
o . It is given by the truck’s capacity and the order’s unloading

rate.

Trucks do not have to leave immediately after being able to leave. The number of trucks

of class c not in use and waiting at order o in t is denoted by waitc,to . Due to the fact that

the choice of plants for loading operations, the loading operation at plants themselves and

the movements there are not modeled explicitly, idle trucks are modeled in sense that they

wait at a construction site after having finished there scheduled task awaiting their next

loading and unloading request.1

Constraints 5.4 are valid for all orders o ∈ O \ O′ not requiring any type of special

unloading equipment. Those are balance equations for every node ensuring that a truck of

class c can only leave a construction site associated with order o in case it already finished

its unloading operation or has been waiting there before. The first term on the left hand

side catches trucks just finishing their unloading operation in t, the second one refers to

trucks that have been waiting there idle since the last time period. Trucks could either

remain idle at the construction site, move to any order or move back home to their depot.

∑

a∈Ao

chooseo,a · P
c,t−Uc

o
o,a + waitc,t−1

o =
∑

o1∈O

moveO2Oc,t
o,o1

+ moveO2P c,t
o + waitc,to

∀o ∈ O \O′, c ∈ C, t ∈ T

(5.4)

Similarly, Constraints 5.5 have to hold for all orders o ∈ O′ requiring special unloading

equipment. The first truck to arrive needs to be equipped accordingly, but this will already

be taken care about when generating patterns for the corresponding order. Trucks again

are allowed to leave after finishing their unloading operation, or later in case they spend

some idle time at the construction site associated with order o. The first truck to arrive

however needs to stay at the construction site and only is allowed to leave after the last

truck associated with the pattern chosen has finished its unloading operation. We need

to make sure that these vehicles stay at the construction site. The start of the first

unloading operation associated with pattern a ∈ Ao is denoted by starto,a. The end of

the last unloading operations is denoted by endo,a respectively. This leads to the following

1In reality however and because of space limitations vehicles are not likely to spend their idle times
at construction sites after having finished their unloading operations. Without loss of generality, for
modeling purposes and in order to keep the formulation small any waiting time happens at the location
from which the vehicle departs. In case a vehicle is about to execute its first delivery on a particular
day this would correspond to its home plant. Otherwise it would wait at the construction site it just
finished its previous unloading operation before.

41

5. Multi-Commodity Network Flow Formulation

set of equations. The first term in the left hand side refers to trucks which have been

scheduled as first one for an order requiring special instrumentation. They are allowed to

leave (at earliest) when the last truck of the associated pattern has finished its unloading

operation. Please note that we need to exclude t = starto,a + ULo,c and c = firsto,a

unless t 6= endo,a for the special case where a pattern only consists of one single unloading

operation. In this case the truck will be allowed to leave immediately after having finished

its own unloading operation.

∑

a∈Ao:
¬{c=firsto,a∧

t=starto,a+Uc
o∧

t6=endo,a}

chooseo,a · P
c,t−Uc

o
o,a +

∑

a∈Ao:
{t=endo,a∧
c=firsto,a}

chooseo,a · P
c,starto,a
o,a + waitc,t−1

o =

∑

o1∈O

moveO2Oc,t
o,o1

+ moveO2P c,t
o + waitc,to ∀o ∈ O′, c ∈ C, t ∈ T

(5.5)

One has to ensure that trucks start their daily tours from their home plants and return

there after having executed their last unloading operation. Hence the following boundary

conditions need to hold: the number of trucks of a given class c available at a given plant

p (npc) equals the number of trucks originating their tour their plus the number of trucks

staying there throughout the day. All trucks need to return home analogously.

npc = stayHomec +
∑

o∈O
t∈T

moveP2Oc,t
o ∀p ∈ P, c ∈ C (5.6)

npc = stayHomec +
∑

o∈O
t∈T

moveO2P c,t
o ∀p ∈ P, c ∈ C (5.7)

Unfortunately the resulting model has no longer a pure MCNF structure, as certain

binary conditions (one pattern has to be chosen for every order, see Equation 5.2) disrupt

the network structure. Nevertheless the complexity of the model and run-times can be

reduced dramatically, compared to holistic approaches.

5.3. Extensive Mathematical Formulation

As soon as one might face additional capacity restrictions, where at most one truck can

be loaded at a plant at any given point in time, the model mentioned before is no longer

suitable. Loading operations were supposed to take place at the trucks’ home plant (when

initiating the daily tour) or on the closest plant en route between two construction sites

visited one after each other. The choice of plant was not left over to the model, rather

42

5.3. Extensive Mathematical Formulation

the closest one was always chosen. Neither the movements of all trucks were tracked in a

sense to find out when two of them are going to be loading simultaneously.

In case capacity restrictions at plant exists that limit the number of trucks that can be

loaded simultaneously, some adjustments need to be made with respect to the previous

formulation in order such that one additional feature can be incorporated: the choice of

plant where unloading operations are supposed to take place, while making sure that no

simultaneous unloading operations are going to take place.

Again the model is formulated as an integer multi-commodity flow problem on a time-

space network. The aim is again to find a cost-effective schedule which minimizes travel

times, while - given a set of possible patterns for every order - choosing possible good and

matching patterns, such that time gaps between consecutive unloading operations at the

same order can be avoided. Additionally the capacity restriction at plants needs to be

taken into account.

The decision variables moveO2P c,t
o,p and moveP2Oc,t

p,o are used to model truck movements

between plant p and the construction site corresponding to order o starting at t and

executed by any truck of class c, respectively. The start of any loading operation is

modeled by use of a binary decision variable loadc,t
p , which will be equal to 1 if a truck of

class c starts being loading at plant p at time t. Waiting (i.e. idle) time of trucks at plants

still being unloaded (or already loaded) is modeled in terms of waitBLc,t
p (waitALc,t

p)

respectively, indicating the number of trucks of a given class c which are waiting unloaded

(loaded) at plant p in t.

To ensure the validity of the underlying network flow structure, we need to make sure

that trucks somehow move through the given network. For a truck two options exist how

to enter a plant node: the first possibility compromises the fact that the truck would have

already been there in the previous time period and remains there idle and waiting before

being loaded at the given plant. Alternatively the truck could just arrive there (empty)

after having delivered concrete to a construction site. When leaving a plant node there

exist two possibilities as well: either the truck stays (empty) at the plant or is about to

start its loading operation. A graphical representation of plant nodes and the options

considered is depicted in Figure 5.4.

Generally speaking the flow balance equation for the plant nodes looks like this, where

TTo,p denotes the travel time necessary for getting from the construction site associated

with order o to plant p. Flow conservation constraints for empty trucks at plants are

43

5. Multi-Commodity Network Flow Formulation

modeled by means of Constraints 5.8.

waitBLc,t−1
p +

∑

o∈O
t≥TTo,p

moveO2P
c,t−TTo,p
o,p = waitBLc,t

p + loadc,t
p

∀p ∈ P, c ∈ C, t ∈ T,where t > 1

(5.8)

A graphical representation of the embedded time spaced network from the plants’ point

of view can be found in Figure 5.4.

t − 2 t − 1 t t + 1 t + 2

waitBLc,t−1
p waitBLc,t

p

loadc,t
p

moveO2P
c,t−TTo,p
o,p

Figure 5.4.: Network Flow alike Presentation of Plant Nodes

As boundary conditions one has to consider that a truck can only start from its home

location.

waitBLc,1
p + loadc,1

p = npc ∀p ∈ P, c ∈ C (5.9)

Similarly within every layer of the network one can identify time-indexed nodes after

loading operations (referred to as load nodes). Again, as this is a network flow formulation

trucks somehow need to enter and leave the load nodes (see second row of nodes in Fig-

ure 5.5). There exist only two possibilities how a truck can enter a load node: either the

truck started its loading operation at the corresponding plant previously and just finished

with it, or it is already fully loaded and has been waiting there since the previous time

period. When leaving the load node again two possibilities exist: either the truck remains

(fully loaded) at the plant or alternatively drives to the construction site corresponding

to some order. The flow balance equation for load nodes is formulated in Equation 5.10,

44

5.3. Extensive Mathematical Formulation

where Lc
p denotes the time necessary in order to fully load a vehicle of class c and plant p.

waitALc,t−1
p + load

c,t−Lc
p

p = waitALc,t
p +

∑

o∈O

moveP2Oc,t
p,o

∀p ∈ P, c ∈ C, t ∈ T, t > 1

(5.10)

.

Figure 5.5 depicts the situation graphically.

t − 2 t − 1 t t + 1 t + 2

load
c,t−Lc

p
p

moveP2Oc,t
p,o

waitALc,t−1
p waitALc,t

p

Figure 5.5.: Network Flow alike Presentation of Load Nodes

As the capacity for loading trucks at all plants is restricted such that at most one truck

can be loaded at once, the following Restrictions 5.11 and 5.12 have to be imposed.

∑

c2∈C

∑

t2∈T
t<t2<t+Lc

p

loadc2,t2
p = (1− loadc,t

p) ·M ∀c ∈ C, t ∈ T, p ∈ P (5.11)

∑

c∈C

loadc,t
p ≤ 1 ∀p ∈ P, t ∈ T (5.12)

Equation 5.11 states that as soon as any truck has started its loading operation at plant

p in time t, no other truck is permitted to start its loading operation during the length of

the loading process Lc
p. Equation 5.12 makes sure that at most one truck per plant can

start its loading operation at any point in time.

For every order one alternative should be chosen. If no feasible assignment of a pattern

45

5. Multi-Commodity Network Flow Formulation

to an order can be made this will be penalized in the objective function accordingly.

∑

a∈Ao

chooseo,a ≤ 1 ∀o ∈ O (5.13)

If an alternative is going to be chosen (i.e. if chooseo,a = 1), all corresponding deliveries

according to this pattern need to be realized. Trucks foreseen for a certain unloading op-

erations (according to a pattern chosen) need to get to the construction site corresponding

to that order just in time. And after having finished with their unloading operations (or

finished with assisting during the unloading operation of other trucks) the trucks have to

leave that site again. TTp,o denotes the travel time necessary for getting from plant p to

the construction site associated with order o.

Equation 5.14 ensures that all trucks scheduled within a given pattern arrive at the

construction site just in time if required by the chosen pattern.

∑

p∈P
t≥TTp,o

moveP2O
c,t−TTp,o
p,o =

∑

a∈Ao

chooseo,a · P
c,t
o,a ∀o ∈ O, c ∈ C, t ∈ T (5.14)

Equation 5.15 and 5.16 respectively make sure that trucks also leave the construction

site after having fulfilled their duties there. Usually trucks have to leave the construction

site immediately after having finished their unloading operation. Just in case the order

requires special instrumentation for its unloading procedures, the first truck scheduled and

arriving at the construction site needs to be equipped with the corresponding instrumen-

tation (the pattern already takes care about that). In this case the first truck arriving at

the construction site needs to stay and assist later arriving trucks with their unloading

operations. The first truck bringing along special instrumentation is only allowed to leave

the construction site when the last truck scheduled within the chosen pattern has finished

its unloading operation. Equation 5.15 handles the situation for all orders o ∈ O \O′ not

requiring any special type of unloading equipment. All trucks are allowed to leave the

construction site immediately after having finished their unloading operation. The latter

however deals with orders o ∈ O′ requiring unloading equipment. The first truck to arrive

is not allowed to leave the orders construction site immediately.2

∑

a∈Ao

chooseo,a · P
c,t−Uc

o
o,a =

∑

p∈P

moveO2P c,t
o,p ∀o ∈ O \O′, c ∈ C, t ∈ T (5.15)

2Please note that in case a pattern for any order o ∈ O′ only consists of one single delivery the associated
truck will leave immediately after having finished its unloading operation. There is no need to stay any
longer.

46

5.3. Extensive Mathematical Formulation

∑

a∈Ao:
¬{c=firsto,a∧

t=starto,a+Uc
o∧

t6=endo,a}

chooseo,a · P
c,t−Uc

o
o,a +

∑

a∈Ao:
{c=firsto,a∧

t=endo,a}

chooseo,a · P
c,starto,a
o,a =

∑

p∈P

moveO2P c,t
o,p ∀o ∈ O′, c ∈ C, t ∈ T,where t ≥ U c

o

(5.16)

A fragment of the embedded network flow structure corresponding to the two constraints

explained before is shown below. Figure 5.6 shows that if a certain pattern is chosen, the

designated trucks somewhere need to come from. The already have been loaded at any of

the plants. Figure 5.7 demonstrates how trucks can leave a construction site after having

finished their unloading operation.

P c,t
o,a

moveP2Oc,t
p,o

Figure 5.6.: Trucks getting to Order to execute Delivery

P c,t
o,a

moveO2P c,t
o,p

Figure 5.7.: Trucks leaving Order after executing Delivery

47

5. Multi-Commodity Network Flow Formulation

Finally we need to make sure that all trucks return to their home plant by the end of

the planning horizon.

waitBLc,|T |−1
p +

∑

o∈O

moveO2P
c,|T |−TTo,p
o,p = npc ∀p ∈ P, c ∈ C (5.17)

48

6. Variable Neighborhood Search

Exact algorithms are highly useful when it comes to solving combinatorial optimization

methods to optimality. In practice however small sized problem instances only may be

solved to optimality. Alternatively it might be possible to solve some real-world sized

instances to optimality, but nevertheless it is still not meaningful as the resulting run

time would end up being too high. Hence different types of heuristics or even more

sophisticated metaheuristics emerged which are able to quickly solve problems and find

good quality solutions (see Glover and Kochenberger, 2003). Due to the steady increase

in computational power, sophisticated search procedures such as Variable Neighborhood

Search (VNS) allow to search and intensify the search in the solution space. VNS is

a highly promising metaheuristic which has been developed by Mladenović and Hansen

(1997) and extended in Hansen and Mladenović (2001). It is a Local Search (LS) based

improvement heuristic. In contrast to population based approaches it concentrates on one

single solution only and does not incorporate any type of adaptive memory. An efficient

search within the solution space is guaranteed by both diversification and intensification

strategies in use. During shaking phases the current incumbent solution is perturbed

by means of different neighborhood structures, allowing the solution process to explore

various regions of the solution space and (hopefully) to escape any local optima. The

following LS steps intensify the search and are going to improve it locally.

The previous approaches based on MCNF (see Chapter 5) restricted their view to a

limited number of fulfillment patters given and let the MCNF choose one per order. The

VNS component however is able to diversify the search without being restricted to certain

patterns. During the solution process also unexplored regions of the solution space can be

visited within a certain neighborhood structure.

This chapter is organized as follows. First we will present the basic implementation for

the VNS. Afterwards design issues such as the shaking phase, the embedded LS operators,

the evaluation and acceptance scheme in the context of RMC delivery are going to be

explained. All trucks are handled individually and are no longer aggregated into classes.

This facilitates the evaluation process and feasibility check for any solution found. The

obtained results are depicted in Section 8.9. For a more detailed overview see Section B.5.

49

6. Variable Neighborhood Search

6.1. Basic Implementation

Any solution x found can further be improved by VNS. During the shaking phase several

neighborhoods are used to explore the solution space more thoroughly and avoid poten-

tially being trapped in local optima. Sequences of trucks designated to be sent to an order

will be inverted and exchanged. The embedded LS locally optimizes every solution ob-

tained after the shaking step. In the literature the LS phase is also referred to as iterative

improvement phase.

A neighboring solution x′ will be generated at random from neighborhood Nκ(x). Start-

ing from x′ the current solution is going to be locally optimized by means of LS. The

resulting solution is denoted by x′′. If this solution improves the current solution x, the

best incumbent solution x′′ will become the new current solution x and shaking continues

with the very first neighborhood. If no new best solution could be obtained, the search

continues within the next neighborhood κ+1. Ascending moves, i.e. accepting deteriorat-

ing solutions, are currently not employed. The algorithm though could easily be adapted

to incorporate this feature as well.

A sketch of the basic steps of the implemented VNS can be found in Algorithm 6.1.

Algorithm 6.1 Basic Steps of VNS

while stopping criterion not met do ⊲ Time, Iterations
κ← 1
while κ ≤ κmax do

x′ ← Shaking(x, κ)
x′′ ← LocalSearch(x′)
if accept(x′′) then ⊲ move or move not? (only accept better solutions)

x← x′′

κ← 1 ⊲ continue with first neighborhood structure
else

κ← κ + 1 ⊲ continue with next neighborhood structure
end if

end while

end while

6.2. Design Issues

6.2.1. Shaking Phase

In order to explore the solution space - in terms of potential patterns - more thoroughly,

two shaking operators, resulting in six neighborhood structures have been implemented.

50

6.2. Design Issues

Table 6.1.: Set of Neighborhood Structures (standalone VNS)

κ Shaking Operator max number of patterns changed

1 ReplaceByUnused 1
2 ReplaceByAny 1
3 ReplaceByUnused 2
4 ReplaceByAny 2
5 ReplaceByUnused 3
6 ReplaceByAny 3

The first shaking operator tries to replace sequences of trucks within a pattern by trucks

not used so far in any other pattern of the current solution. When selecting the trucks

there is a bias towards trucks with larger capacities and whose home plant is located closer

to the construction site associated with the corresponding order. The second shaking

operator works pretty similar, but this time the new trucks to be inserted instead are no

longer limited to those not in use according to the current solution. Rather new trucks

are selected randomly among all trucks available.

Neighborhood structures Nκ (κ = 1, 3, 5) relate to the first shaking operator and involve

changes of up to (κ + 1)/2 patterns; neighborhood structures Nκ (κ = 2, 4, 6) relate to

the second shaking operator and involve changes of up to κ/2 patterns. An overview on

the set of neighborhood structures is given in Table 6.1. The position and the length of

the sequence to be exchanged are determined randomly. The loss of unloading capacity

associated with the vehicles being removed needs to be compensated. Hence new vehicles

will be inserted into the pattern until the demand of the corresponding order can be

satisfied again. Furthermore, if the first vehicle of the sequence is going to be exchanged

and the order requires special unloading equipment, only vehicles equipped accordingly

will be considered when selecting the replacement for the first vehicle of the pattern.

Any neighborhood operator should perturb the current incumbent solution x which

might lead to a new best incumbent solution x′′ after applying LS. The main idea of

any shaking operator is to replace sequences of trucks within patterns belonging to up

to (κ + 1)/2 (or κ/2 respectively) orders by a different sequence of trucks. The position

and the length of the sequence to be exchanged are determined randomly. In order to

compensate for the capacity of all trucks that are about to be dismissed, new trucks will

be consecutively be inserted into the remaining schedule, until the total demand of the

corresponding order will be satisfied again.

First, the start (the position of the first truck), as well as the length of the sequence

51

6. Variable Neighborhood Search

to be exchanged will be determined randomly. The total length (i.e. the total number of

trucks) within pattern pato corresponding to order o is denoted by l(pato). Let s′ denote

the position of the first truck within the pattern which is going to be replaced. l′ stands

for the number of trucks that will be replaced. Starting from position s′ a total number of

l′ trucks will be replaced in any pattern. To compensate for the capacity of all trucks that

are about to be dismissed, new trucks will be consecutively be inserted into the remaining

schedule, until the total demand of the corresponding order (Qo) will be met again.

Let cumCap(pato) be the cumulative capacity of all trucks scheduled within the original

pattern pato for order o so far. cumCap(pat−o) denotes the cumulative capacity of trucks

going to be replaced within pattern pato. The capacity of newly added trucks is denoted

by cumCap(pat+o).

Any sequence of trucks obtained after the shaking process needs to be feasible from the

orders point of view. That implies that any additional requirements concerning special

equipment for unloading have to be considered and the accumulated capacity of all trucks

scheduled is able to satisfy the demand of the corresponding order. If the first truck within

a sequence is going to be exchanged and the corresponding order requested special unload-

ing equipment, only trucks bringing along equivalent instrumentation will be considered

when selecting the new first truck within this pattern.

Shaking operators only have an effect upon the sequence of trucks to be scheduled to

satisfy an order. The exact timing of all unloading operations as well as feasibility from

trucks point of view are ignored. After having executed any shaking operator, the result-

ing patterns are supposed to be feasible from any single orders point of view. However,

they do not constitute a feasible solution from the trucks’ point of view, as movements of

trucks between plants and construction sites as well as their loading operations necessary

in between, are not considered. In order to evaluate the effects of any shaking operator,

an evaluation function has been implemented, which is going to be described below. The

aim of the evaluation function is to determine the timing of all unloading operations to

be performed, based on a sequence of trucks given per order. The resulting solution will

not only be feasible from the orders’ point of view, but also from the trucks point of view,

i.e. giving enough time between consecutive unloading operations, to drive to a plant and

being loaded there.

The first shaking operator ReplaceByUnused tries to replace sequences of trucks in

patterns corresponding to up to (κ + 1)/2 orders. Trucks are going to be replaced by

other trucks not in use far within the current solution. When selecting new trucks for a

pattern, there is a bias towards choosing large trucks whose home plant is located close

52

6.2. Design Issues

to the construction site. The selection probability for a plant to be chosen is indirectly

proportional to the travel time from the construction site to the corresponding plant.

Additionally there is a bias towards choosing larger trucks, which might help to keep

the number of trucks needed (and resulting travel times) low. The resulting pattern

needs to remain feasible from the orders point of view (i.e. demand needs to be satisfied;

requirements concerning unloading equipment have to be considered). The procedure is

described in Algorithm 6.2.

Algorithm 6.2 Shaking Operator 1: ReplaceByUnused(κ)

omax ← rand(1,min(numberOfOrders, κ+1
2)) ⊲ number of orders to perturb

for any omax orders o ∈ O do

s′ ← rand(0, l(pato)− 1) ⊲ starting position of sequence to be exchanged
l′ ← rand(1, l(pato)− s′ − 1) ⊲ length of sequence to be exchanged
cumCap(pat−o)← capacities of trucks formerly scheduled at position s′ . . . s′ + l′

cumCap(pat+o)← 0
remove trucks scheduled at positions s′ . . . s′ + l′

while cumCap(pato)− cumCap(pat−o) + cumCap(pat+o) < demando do

p← selectP lant(o) ⊲ select plant: bias towards closer ones
k ← selectUnusedTruck(o, p) ⊲ select truck: bias towards larger ones
cumCap(pat+o)← cumCap(pat+o) + Capk

end while

end for

The second shaking operator ReplaceByAny, unlike the first one, tries to replace se-

quences of trucks by trucks chosen randomly. This time the selection process is no longer

restricted to trucks that are not in use so far within the current solution. The selection

of new trucks again will be biased towards trucks based in preferably close home plants

(with respect to travel times) to the corresponding construction site and trucks with larger

capacity. Again, the resulting sequences of trucks need to remain feasible from the orders

point of view. In case special unloading equipment is required by the construction site, the

first truck scheduled needs to be equipped with the corresponding instrumentation. The

first delivery may not begin before the start of the associated time window and the total

quantity demanded has to be met. To avoid contradictory situations, the truck bringing

along special instrumentation is not supposed to show up again within the same schedule

or pattern.

53

6. Variable Neighborhood Search

6.2.2. Evaluation

LS and the shaking operators embedded in VNS locally disturb any given solution x. A

solution consists of one pattern per order. After any disturbance the obtained solution

needs to be reevaluated. This is done through heuristically determining the start of any

single unloading operation. The resulting patterns have to be feasible from the orders’

point of view (i.e. unloading operations are non-overlapping). Additionally they also have

to be feasible from the trucks’ point of view. There has to be enough time, after a truck

is allowed to leave a construction site, to drive to a plant, being loaded there and get to

the next construction site just in time for its next unloading operation.

Two approaches based on forward and backward termination respectively have been

developed in order to accomplish the evaluation of any solution. Both approaches are

executed consecutively, starting with forward termination. Forward termination tries to

schedule every operation as early as possible while still taking into account the availability

of all resources (i.e. the trucks to be scheduled). The earliest possible start for the first

unloading operation per order is determined by the start of the associated time window.

The result obtained then serves as input for backward termination, where every unloading

operation is tried to be scheduled as late as possible. The best solution obtained is

accepted. These procedures have been inspired by the Critical Path Method (CPM) used

in activity planning (see Moder et al., 1983).

However some modifications had to be implemented with respect to trucks providing

special unloading equipment. Taking into account the fact that these might need to stay

longer and assist later arriving trucks is essential, as deadlock situations might arise. In

order to avoid them, the scheduling of certain unloading operations has to be delayed

artificially. Resulting patterns can be improved by applying backward termination after-

wards. However finding an improvement is not guaranteed, therefore the best solution

obtained by any of the two procedures will be accepted.

An algorithmic description of the implemented forward termination is depicted in Al-

gorithm 6.3. When applying forward termination all orders, starting from the very first

delivery, are scheduled in a consecutive manner. All deliveries are scheduled as early as

possible. Only one delivery may be scheduled at a time. The first delivery of every order

cannot start before the beginning of associated time window. Ties are broken arbitrarily.

In order to avoid deadlock situations trucks, assisting during unloading operations, have

to be blocked temporarily. The blocking is removed as soon as the construction of the

entire pattern is completed.

54

6.2. Design Issues

Algorithm 6.3 Forward Termination

1: Initialize ordered list L with first unloading operations of orders
2: while L 6= Ø do

3: l← first(L)
4: L← L− l
5: o← l.order ⊲ order under consideration
6: k ← l.vehicle ⊲ vehicle to perform unloading operation
7: t← l.time ⊲ start time of unloading operation
8: if order o is not blocked then

9: if vehicle k can reach construction site of o by time t then

10: schedule unloading operation with vehicle k at time t for order o
11: if there are remaining unloading operations for order o then

12: l.order ← o
13: l.vehicle← vehicle to perform next unloading operation
14: l.time← t + Uk

o

15: L← L + l ⊲ insert unloading operation in sorted list
16: end if

17: if first unloading operation of order requiring special equipment then

18: for o′ ∈ O′ requiring truck k and not yet started do

19: block o′ because of o
20: end for

21: end if

22: if last unloading operation of order o requiring special equipment then

23: for orders o′ that have been blocked by order o do

24: unblock o′

25: if order o′ no longer blocked by any order then

26: l.order ← o′

27: l.vehicle ← vehicle to perform first unloading operation
28: l.time← start time of first unloading operation
29: L← L + l ⊲ insert unloading operation in sorted list
30: end if

31: end for

32: end if

33: else

34: l.order ← o
35: l.vehicle ← k
36: l.t← earliest time vehicle k can reach construction site of order o
37: L← L + l ⊲ insert unloading operation in sorted list
38: end if

39: end if

40: end while

55

6. Variable Neighborhood Search

In case we are about the schedule the first truck of an order requiring special equip-

ment we need to check first whether order o is blocked (i.e. delayed) temporarily because

of any other order. The reason for blocking orders at all is because we want to avoid

deadlock situations. Deadlock-alike situations might arise where schedules cannot be fully

determined. Trucks might not be released because they are waiting for each other.

This relation can be illustrated by the following example: Imagine for instance the situ-

ation (see Figure 6.1) where we are about to schedule the timing for deliveries associated

with two orders o1 and o2, both of which require special unloading equipment. In order to

satisfy the demand two deliveries are necessary. Truck A (B) is supposed to execute the

first (second) delivery of order o1. For order o2 the sequence of trucks is just vice versa. It

is not known beforehand how long the trucks scheduled for the first delivery need to stay,

as the rest of the pattern has not been scheduled yet. Imagine further that the start of

the first unloading operations has already been determined for both orders. Now we are

trapped into a deadlock situation. Truck A, which has been scheduled for the first delivery

of order o1 cannot be released until the second delivery has been executed by truck B.

Hence we have to avoid the situation where any truck A waits for B, which itself cannot

leave before A has executed its unloading operation respectively.

o1:

o2:

truck A

truck B

Figure 6.1.: Deadlock situation without blocking orders

Therefore we cannot start determining the timing for the first unloading operation of

order o′ (requiring special instrumentation) executed by truck k if there is another order

o (where o′ 6= o), also requiring special instrumentation, where the beginning of some

unloading operations already has been scheduled, but the entire pattern is not yet finished

and truck k still is supposed to be used for order o as well. The blocking will be released

as soon as we finished scheduling the pattern for order o. Please note that any order may

be blocked by more than one order. Scheduling the first unloading operation can only be

started if it has not been blocked by any other order.

We finally schedule an unloading operation if order o is not blocked and truck k is able

to get there in time t (taking into account where it as been scheduled before, the time it

needs to get to order o, being loaded, etc). Usually it is known after having scheduled a

56

6.2. Design Issues

truck how long it lasts in order to execute its unloading operation, how long it needs to

stay and how long it would take to get to order o. However, for trucks executing the first

unloading operation of an order requiring special instrumentation, where the scheduling

of the pattern has not been completed yet this information is not yet available. Therefore

such trucks are temporarily unavailable and cannot be scheduled anywhere else in the

meantime. This information will become available as soon as the last unloading operation

for the corresponding order has been scheduled.

If the delivery for which the timing just was determined has not been the last delivery

scheduled within the pattern of order o a new entry will be added into the event list L.

The next unloading operation could start after the current one has been finished. In case

a pattern for an order which requires special unloading equipment just has been scheduled

entirely, orders that might have been blocked by order o can be unblocked. Again, it is

important to note that an order may be blocked by several orders. Unblocking it once does

not necessarily mean they are eligible to start scheduling their first unloading operation

immediately.

In case the timing of an order cannot be determined yet because the truck is not avail-

able, a new entry will be inserted into the event list L stating the next possible time where

truck k could be there.

Backward termination follows a similar principle. Starting from the last unloading

operation per order all unloading operations are tried to be scheduled as late as possible.

The starting time of the last unloading operation per order is adopted from the solution

just obtained from forward termination.

Backward termination works pretty much the same, just vice versa (see Algorithm 6.4).

Everything is tried to be scheduled as late as possible. The end of the last unloading oper-

ation is given by the solution just obtained after applying forward termination. The timing

of the last delivery of an order requiring special instrumentation cannot be determined

unless both trucks (the first and the last truck) are available. Again, analogous to what

had to be done during forward termination, orders might need to be blocked. The start

of the last delivery of an order requiring special instrumentation cannot be determined if

there is another order o′ also requiring special instrumentation, where the timing of some

deliveries (but not all yet) already has been determined and the truck under consideration

still needs to be scheduled.

After backward termination it needs to be verified that restrictions concerning time

windows are still observed. For any order o it is not permitted to initiate the first unloading

57

6. Variable Neighborhood Search

operation before the start of the associated time window. However, such a behavior is not

guaranteed after having applied backward termination. In case some orders are going to

be delivered too early all timings will be shifted accordingly, making sure that all deliveries

of any order o start after the start of the time window associated with the corresponding

order o. This kind of shift is necessary to guarantee feasible solutions in terms of the time

windows.

The resulting solution however might become worse. By shifting all timings back ac-

cordingly, some orders now start to be served after the end of the time window associated

with it. Feasibility of the solution remains unchanged. The quality however might de-

crease, as starting too late will be penalized accordingly. Therefore at the end the previous

solution found after having executed forward termination is compared with the one just

obtained after having executed backward termination. The best solution obtained will be

chosen and is used for evaluating the corresponding pattern.

6.2.3. Local Search

For the embedded LS (see Hoos and Stützle, 2004) three different operators have been im-

plemented in order to explore the solution space further and enrich the current pool of ful-

fillment patterns by new ones. One of the three LS operators (Shrink) has been introduced

by ourselves. Whereas the remaining two, IntraPatternMove and InterPatternSwap, are

inspired by well known LS operators to be found in the vehicle routing literature. See Gen-

dreau et al. (1997) and Kindervater and Savelsbergh (1997) for a more detailed discussion

of LS for vehicle routing problems.

All operators are executed based on first improvement. IntraPatternMove, the very

first operator tries to remove any single delivery within a pattern of a given order and

inserts it again at any other possible position. The second operator, InterPatternSwap,

exchanges two deliveries associated with patterns of two different orders. The last operator

Shrink tries to remove unnecessary trucks from any pattern as the quantity ordered might

be satisfied with all remaining deliveries.

In order to execute any of the three operations implemented within the process of LS

the timing of all deliveries will be dismissed. The actual move, swap or deletion takes

place, taking only into account the sequence of trucks from the pattern point of view.

Afterwards the timing for the start of all individual unloading operations will be deter-

mined again applying forward and backward termination. This enables us to evaluate any

solution found and make sure it is also feasible from the trucks point of view.

58

6.2. Design Issues

Algorithm 6.4 Backward Termination

1: Initialize inversely ordered list L with end of last unloading operations of orders
2: while L 6= Ø do

3: l← first(L)
4: L← L− l
5: o← l.order ⊲ order under consideration
6: k ← l.vehicle ⊲ vehicle to perform unloading operation
7: t← l.time ⊲ end time of unloading operation
8: if order o is not blocked then

9: if vehicle k can reach construction site of o by time t then

10: schedule unloading operation with vehicle k at time t for order o
11: if there are remaining unloading operations for order o then

12: l.order ← o
13: l.vehicle← vehicle to perform previous unloading operation
14: l.time← t− Uk

o

15: L← L + l ⊲ insert unloading operation in sorted list
16: end if

17: if last unloading operation of order o requiring special equipment then

18: for o′ ∈ O′ requiring truck k and not yet started do

19: block o′ because of o
20: end for

21: end if

22: if first unloading operation of order o requiring special equipment then

23: for orders o′ that have been blocked by order o do

24: unblock o′

25: if order o′ no longer blocked by any order then

26: l.order ← o′

27: l.vehicle ← vehicle to perform last unloading operation
28: l.time← end time of last unloading operation
29: L← L + l ⊲ insert unloading operation in sorted list
30: end if

31: end for

32: end if

33: else

34: l.order ← o
35: l.vehicle ← k
36: l.t← earliest time vehicle k can reach construction site of order o
37: L← L + l ⊲ insert unloading operation in sorted list
38: end if

39: end if

40: end while

59

6. Variable Neighborhood Search

Algorithm 6.5 LocalSearch(x)

improved← true
x← Shrink(x) ⊲ Shrink
while improved do

x′ ← IntraPatternMove(x) ⊲ Intra Pattern Move
if f(x′) < f(x) then ⊲ only accept better solutions

x← x′

else

x′ ← InterPatternSwap(x) ⊲ Inter Pattern Swap
if f(x′) < f(x) then

x← x′

else

improved← false
end if

end if

end while

x← Shrink(x) ⊲ Shrink again

A sketch of the solution procedure implied by LS can be found in Algorithm 6.5. Any

given solution, based on one pattern per order (x), is tried to be optimized locally. The

first operator to be executed is Shrink, which is supposed to eliminate unnecessary deliv-

eries of single patterns within solution x. The two following operators IntraPatternMove

and InterPatternSwap are executed on a first improvement basis. InterPatternSwap

will be performed as soon as IntraPatternMove cannot improve the solution x any more.

To complete the LS procedure one last iteration of Shrink will be executed again, just

to make sure no unnecessary deliveries remain within the patterns. All three operators

embedded will be described in more detail below.

Shrink: The aim of this operator is to make sure no unnecessary deliveries scheduled

within the current solution x. Any order might still be satisfied using less than the

scheduled number of deliveries. Therefore any pattern element of the current solution is

going to be revised. Any single delivery scheduled is tried to be omitted. The resulting

pattern needs to remain feasible. A delivery can only be omitted if the capacity of the

remaining trucks within this pattern still satisfies the total demand of the corresponding

order. Additionally all requirements concerning unloading equipment need to be satisfied.

In case a delivery can be dismissed without ending up in an infeasible pattern, it will be

deleted from the original schedule and the solution will be evaluated again.

Intra Pattern Move: This operator moves a truck associated with a single delivery

60

6.2. Design Issues

within one and the same pattern. For any order o, every truck originally scheduled to

fulfill a delivery at a certain position, is tried to be inserted at a later position. Again the

termination and timing of all deliveries associated with a single pattern will be dismissed

and only the sequence of trucks counts. In order to evaluate any solution found this

way, the timing will be determined using the approach described in Section 6.2.2. If

an improvement could be found the resulting solution is accepted as the new current

incumbent solution and the procedure starts over again. Such a move can only take place

if the resulting sequence of trucks remains feasible from the orders point of view. Any

requirements concerning specific unloading equipment still need to be satisfied.

Inter Pattern Swap: The aim of this operator is to swap single deliveries within

patterns corresponding to two different orders. Any combination of two trucks originally

scheduled for deliveries within a pattern associated with order o1 and o2 are tried to

be exchanged. After any swap the timing of all deliveries to be performed is dismissed

and new patterns (including timing) - based on changed sequences of deliveries - will be

constructed accordingly using forward and backward termination. The operator itself is

executed on a first improvement basis. Any swap that leads to a new best solution will

replace the current incumbent solution and the procedure starts over again.

6.2.4. Acceptance Decision

After performing any search step within LS or shaking the newly obtained solution needs

to be evaluated in order to be comparable with the current incumbent solution. There is no

need to deal with infeasibilities, as infeasible solutions and/or pattern are not going to be

generated at all. Any solution will only be accepted if it improves the current incumbent

solution. The evaluation function returns a value in terms of total traveling time plus a

penalty term for gaps between consecutive unloading operators or for starting the first

unloading operation too late, after the end of the given time window.

The VNS stops after a given number of iterations or a given number of iterations within

which no improvement has been found. Alternatively we stop the VNS after some maxi-

mum amount of time.

So far we do not allow any ascending moves, although they constitute one additional way

to escape local optima, as we tried to keep the number of parameters as small as possible.

Permitting deteriorating solutions indeed makes sense in case VNS is applied solely. In

the remainder of this thesis however we will focus on a cooperative hybrid approach (see

Chapter 7). By combining the strengths of VNS and MCNF we are able to obtain a global

perspective. Any incumbent solutions found during the stage of VNS will be added to

61

6. Variable Neighborhood Search

the pool of original patterns therefore enriching the choice process of the MCNF. The

MCNF focuses on the pure selection of patterns and the scheduling of all underlying truck

movements. Any solution found by MCNF serves as an input for VNS where it is going

to be locally optimized.

62

7. Cooperative Hybrid Approach using

MCNF and VNS

Linear Programming (LP) and formulations based on Mixed Integer Programming (MIP)

will find - in case they converge - an optimal solution. One of the disadvantages of this

approach might be that it would take way too long in order to solve those problems to

optimality. On the other hand so called heuristics - or even more sophisticated meta-

heuristics - exist, which attempt to find good, but not necessarily optimal solutions, in a

reasonable amount of time.

To solve large scale problem instances we decided you use a hybrid approach, combining

the power of meta-heuristics with the strength of exact approaches enabling us to overcome

the disadvantages of the two approaches if applied exclusively. Therefore a hybrid approach

has been developed in order to overcome the problems mentioned and solving problems in

a reasonable amount of time. The resulting framework is also discussed in Schmid et al.

(2007d).

An overview of the results obtained compared to all other approaches described previ-

ously can be found in Section 8.10, 8.8 and 8.9. A comparison with the tool based on SA

can be found in Section 8.11. For a detailed overview on results obtained using various

run time limits the reader is referred to Section B.6.

The implemented MCNF (see Section 5.2) model selects the pattern such that all routes

from the trucks point of view are feasible, in the sense that there will be enough time

between unloading operations for driving to a plant, being loaded with concrete and getting

to the next order in time.

A representation of the solution procedure applied can be found in Figure 7.1. As an

initial step, base patterns are generated for every order. Base patterns are generated

randomly using the brute force procedure described in Section 5.1.1. Alternatively a

more intelligent approach as been developed, trying to generate good patterns where

overlap with previously generated patterns is tried to be avoided (see Section 5.1.1). After

solving the MCNF, a VNS locally improves the solution obtained and generates additional

63

7. Cooperative Hybrid Approach using MCNF and VNS

patterns. The generation of these patterns is guided by the characteristics of the orders

as well as by the patterns selected in the last solution to the MCNF formulation.

Within the embedded hybrid framework VNS and MCNF alternate in trying to quickly

find a good and feasible solution. Any solution found by MCNF will be used as a starting

solution for the VNS, whereas the patterns chosen by the MCNF serve as the initial solu-

tion for the VNS. In case - based on the current pool of patterns - a complete solution (i.e.

a solution where one pattern for every order has been found) cannot be found by MCNF,

missing pattern will quickly be generated in order to get a complete solution.

Any solution which has been locally optimized by means of VNS serves as a (feasi-

ble) starting solution for MCNF. Additionally all incumbent solutions found during the

process of VNS will be added to the pool of patterns. Thereby the pool of patterns will

be enriched, yielding more alternatives and flexibility when it comes to solving the MCNF.

generation of
base patterns

MCNF VNS

solution

patterns

Figure 7.1.: Hybrid Solution Procedure

An overview on different means of communication between MCNF and VNS is given is

Section 7.1.

7.1. Communication between MCNF and VNS

For the MCNF formulation each type of delivery truck was modeled as a separate com-

modity. Trucks with same capacity, home plant, and instrumentation are grouped into

classes and considered as one single commodity. Analogously the generation of base pat-

terns was also controlled by this aggregated view and all patterns were generated based

on classes. Due to the aggregation of similar trucks into classes the size of the problem

can be kept smaller. Furthermore additional flexibility can be gained through the use of

class based patterns. For any pattern where a truck of class c is supposed to execute a

delivery, any truck k within the class c is eligible to perform all associated actions.

All solutions used throughout the process of VNS and LS have a different view on

patterns. To facilitate the evaluation of any given solution, all patterns are based on

64

7.1. Communication between MCNF and VNS

individual trucks. These two views are perfectly interchangeable. Two transformation

functions have been developed in order to transform any pattern from (individual) truck

to class view (and vice versa). The transformation functions will be described below.

Please note, that when the MCNF is executed for the very first time based on the

patterns initially generated, it is not guaranteed finding a solution where a pattern for

every order can be selected. The obtained solution is still feasible, but a comparatively

large penalty term in the objective function will penalize it accordingly. In this case,

before communicating the solution (in terms of patterns) to VNS, additional patterns

for orders where MCNF could not choose one, are generated. The generation of these

missing patterns follows the principle for generating compatible base patterns described

in Section 5.1.1. We try to generate patterns that preferably do not overlap with the ones

part of the current solution.

7.1.1. Transformation: Class → Truck

In order to use patterns found by MCNF as an initial solution for VNS or LS, patterns need

to be transformed into patterns based on individual trucks. During every transformation

exactly one pattern per order (i.e. one complete solution) will be transformed at a time.

In order to successfully transform a set of patterns, the combination of the set of patterns

needs to be feasible from the trucks point of view.

As the patterns under consideration just have been retrieved from a MCNF solution,

all individual truck movements can easily be derived by the values of the corresponding

decision variables. The path of any individual truck can be followed through the underlying

network flow structure. This knowledge helps to differentiate which truck is going to

execute which delivery within every pattern under consideration and the transformation

can be realized accordingly.

7.1.2. Transformation: Truck → Class

The other way round, in order to include patterns generated during the stage of VNS

and LS into the pool of patterns used by MCNF, patterns need to be transformed from

patterns based on individual trucks into patterns based on classes of trucks. This direction

of transformation is much easier than the one described before. The transformation is

straight forward, as every truck uniquely belongs to exactly one class of trucks. The exact

timing of all scheduled deliveries remains unchanged.

65

7. Cooperative Hybrid Approach using MCNF and VNS

66

8. Computational Experiments

8.1. Data Description

For our numerical results we use real data of a concrete company located in Italy for all

orders placed between January and November 2006. On average 42.9 orders had to be

served per day and an average amount of 514.39 cubic meters (m3) of concrete daily had to

be delivered. Their fleet of vehicles consists of 33 trucks, 14 of which are responsible for the

sole delivery of concrete only. Two vehicles are equipped with unloading instrumentation

only and do not have space for loading concrete. They cannot be used for transporting

concrete. The remaining 17 trucks are hybrid vehicles, which can be used for the delivery of

concrete as well. But they are also equipped with a pump or a conveyor belt respectively in

order to assist during unloading operations. The fleet is also heterogenous in terms of their

loading capacity. The average loading capacity per truck is 8.6 m3. The largest (smallest)

truck can carry up to 14 (6.5) m3 of concrete. On average 40.91% of all orders can be

unloaded without any special needs and equipment. 56.64% (2.45%) of all orders require

a pump (conveyor belt) at hand in order to execute all unloading operations respectively.

Figure 8.1 plots the location of their five plants as well as the location of all cities and

towns had to be delivered to.

Instances: Real world data is used for solving the scheduling problems of a medium

sized company operating in the concrete industry located in Alto Adige. All orders to be

satisfied the next day are known the evening before. The schedule is calculated during the

night. All orders and their characteristics are known beforehand. In the computational

tests real world data of 2006 is used. One problem instance relates to one single day,

taking into account all orders that had to be fulfilled that particular day. The available

data material at hand refers to orders placed and executed between January and October

2006.

The fleet of trucks, their instrumentation and capacity, as well as the number and

location of plants are fixed and given according to the equipment available at hand. The

fleet under consideration is large enough to satisfy all orders in a timely manner. Deliveries

67

8. Computational Experiments

location of construction sitesplant

Figure 8.1.: Area in Alto Adige

will not be outsourced to other logistic providers.

Trucks: Movements of trucks can take place between any plant and construction site

associated with any order. Generally trucks are going to be loaded at a plant’s site, drive

to the construction site associated with the corresponding order in order to unload. The

next plant visited not necessarily needs to be the same one where the truck has been

loaded right before. The only requirement for trucks is that they are located at specific

68

8.1. Data Description

plants (their home plants).

Trucks have to initiate their daily tour at their home plant. After having executed their

last unloading operation along their tour, every single truck is supposed to return back to

its home plant. Trucks do not have to be in use every single day. They also might remain

at their home plant and do not fulfill any single loading or unloading operation.

The fleet of truck is heterogeneous. On one hand their capacity varies, on the other

hand they differ in their instrumentation. Every truck is based at a particular plant called

its home plant. All trucks initiate their daily tour from their home plant and need to

return there by the end of the day. Some trucks can only be used for the delivery of

concrete only. Others might only assist during unloading operations, providing a pump or

a conveyor belt. There also exist hybrid vehicles which are used for delivery of concrete

and providing the required equipment during unloading operations. Note that the problem

itself cannot be decomposed into the scheduling of trucks transporting concrete only and

the scheduling of trucks equipped with unloading instrumentation. This is due to the fact

that some trucks can also be employed for executing both types of tasks.

Plants: Every plant has its predefined loading rate at which concrete can be poured

into the trucks. The time necessary in order to load a vehicle is implicitly given by the

plants loading rate and the vehicles’ capacity. The concrete poured into the vehicles is

considered homogenous. Any setup time between loading operations of two vehicles at

one and the same plant is considered as not being significant and hence neglected.

Trucks start their daily tours at their home plants respectively. Their first loading

operation will be performed at their home plant. Vehicles need to return there by the end

of the day. A vehicle’s loading operations are not restricted to its home plant. Throughout

the day they can be loaded at any other plant as well.

A plant’s capacity is defined by the number of trucks that can be loaded simultaneously.

Resource restrictions in terms of availability of required raw materials are not considered

within these modeling approaches.

Orders & Construction Sites: Typically orders are placed the day before. Orders are

not supposed to be postponable to one of the following days, but need to be executed. The

amount of concrete demanded per order typically exceeds the capacity of any single truck

available. Hence several deliveries need to be scheduled in a row in order to completely

satisfy an order.

Constructors typically require a constant inflow of concrete to efficiently build their

structures. Therefore all single deliveries should take place just in time. As soon as

one truck has finished its unloading operations, preferably the next truck should already

be available and ready to start its unloading operation. Any gaps between consecutive

69

8. Computational Experiments

unloading operations will constitute a problem for the constructor, therefore they should

be avoided to the best extent possible. Unloading operations are supposed to be non-

overlapping, hence only one truck can unload at a time. Due to space limitations at

construction sites, trucks are supposed to leave the construction site immediately after

having finished their unloading operations.

When placing an order, constructors also indicate a time window within which their

demand arises and the delivery of concrete should start. Therefore a time window is

assigned to every order and the requested deliveries have to be executed using the fleet

of vehicles available. During the given time window the first truck should arrive at the

construction site and start its unloading operation. The time window however does not

relate to any other deliveries other than the first one. An early start of the first delivery

before the start of the time window (so) is not allowed and does not result in a feasible

solution. In order to guide the solution process towards acceptable solutions, a late start

(i.e. after the end of the time window) will be penalized accordingly.

Usually trucks unload the concrete loaded directly (and on their own) into the construc-

tion site. Some of the trucks are equipped with special instrumentation which might be

needed during the process of unloading. Types of special instrumentation include pumps

and conveyor belts, which facilitate the unloading process. The type of unloading equip-

ment needed will be disclosed at the same time the order is placed. If any kind of special

instrumentation (pump or conveyor belt) is needed, the first truck to arrive at the cor-

responding construction site needs to be equipped accordingly. These trucks first unload

their own load of concrete. Afterwards they need to stay at the construction site and assist

later arriving trucks in performing their unloading operations respectively. The first truck

to arrive is only allowed to leave the construction site when the total demand of the order

has been satisfied and the last truck scheduled for a delivery has finished its unloading

operation. It is not possible to replace the truck assisting others with their unloading

operation. Any displace would be impractical, as it would take too much time, and hence

disturb the unloading process.

Only one truck may be unloaded at a construction site at any point in time. The time

needed for loading and unloading trucks is implicitly given by the plants’ loading and con-

struction sites’ unloading rate respectively. Even if the capacity of a truck would permit

serving several orders, trucks may only serve one order at a time. Hence small orders

imply that trucks will only be partially loaded.

The algorithm and its variants have been tested on 20 chosen test instances. One

instance refers to one day and all orders to be satisfied on this particular day. The

70

8.1. Data Description

instances can be grouped into four different classes, varying from very small (mini), to

small, medium-sized and larger ones. An overview on the particularities of all instances

and the aggregated classes is shown in Table 8.1.

The number of orders per instance (day) is denoted by no. The total (average) amount

of concrete to be delivered per day is denoted by
∑

Q (Qavg). The ordered quantity

corresponding to the smallest (largest) order per day is depicted by Qmin and Qmax re-

spectively. The last column shows the standard deviation Qσ of the ordered quantities

per day.

The first five instances are consisting of 13 to 18 orders respectively have been classified

as mini-sized instances. The group of small instances contains testcases with up to 39

orders. Instances with a total number of orders ranging from 50 to 60 are classified as

medium-sized instances. Instances with a total number of orders between 65 and 76 are

referred to as large.

Table 8.1.: Properties of selected Instances

n no

∑

Q Qavg Qmin Qmax Qσ

1 13 127.5 9.81 1.5 27 7.94
2 14 123 8.79 2 18.5 5.61
3 17 305.5 17.97 1 128.5 30.27
4 18 267.5 14.86 3 40 10.59
5 19 216 11.37 1 29.5 8.35

mini 16.2 207.9 12.56 1.7 48.7 12.55

6 27 554.5 20.54 0.5 97.5 28.92
7 28 305.75 10.92 0.75 48 12.42
8 33 413 12.52 0.5 101.5 19.52
9 34 535 15.74 0.5 98 19.67

10 39 498.5 12.78 1 178 29.71

small 32.2 461.35 14.50 0.65 104.6 22.05

11 50 736 14.72 0.5 172 30.15
12 50 502 10.04 0.5 48 11.05
13 55 491 8.93 1 36 8.67
14 55 824.5 14.99 1 104 21.15
15 60 648 10.80 0.25 66 15.18

medium 54 640.3 11.90 0.65 85.2 17.24

16 65 776 11.94 0.5 133.5 21.10
17 65 637.75 9.81 0.25 55 10.25
18 70 719 10.27 0.5 53 11.71
19 70 886 12.66 0.5 99 16.66
20 76 721.25 9.49 0.25 115 14.36

large 69.2 748 10.83 0.4 91.1 14.82

71

8. Computational Experiments

The following section shows results obtained. If not stated otherwise, all calculations

have been executed on desktop PCs (3.2 GHz, 3 GB RAM) and XPRESS-MP (v. 2006B)

was used for solving all problem instances. All run times are given in seconds. Usually

we present average and best results obtained per instance. All values presented are av-

eraged over five independent runs with different seeds for the embedded random number

generator. Variations within the results are the result of different sets of initial fulfillment

patterns in use and random choices within local search and shaking. Aggregated values

presented per categories (mini/small/medium/large) correspond to average over the values

obtained for all individual instances within that category.

In the following we describe some of the results for the variants we have designed and

studied. Starting with lower bounds and the attempt “to MIP” the problem based on

a VRP⋆ formulation, results obtained by applying the integrative hybrid approach will

be presented. Afterwards results obtained using the MCNF (using patterns generated

brute force and compatible ones), the pure VNS and the cooperative hybridization will

be presented. Finally we compare ourselves to a software tool available in Austria, whose

embedded algorithm is based on SA.

8.2. Solving the VRP⋆ formulation

The minimum and maximum number of deliveries necessary to satisfy all orders within

any given instance are denoted in Table 8.2. At least (at most) Dmin (Dmax) deliveries

are needed.

Table 8.2.: Minimum and Maximum Number of Deliveries per Instance

mini small medium large

n Dmin Dmax n Dmin Dmax n Dmin Dmax n Dmin Dmax

1 17 32 6 58 117 11 89 163 16 101 190
2 18 37 7 40 78 12 76 135 17 91 164
3 32 65 8 53 96 13 70 137 18 96 187
4 30 62 9 62 118 14 95 183 19 110 213
5 28 57 10 65 123 15 85 169 20 102 201

avg 25 50.6 55.6 106.4 83 157.4 100 191

In order to keep the number of decision variables and constraints in use small only

meaningful decision variables (i.e. decision variables that also might show up in an opti-

mal solution) are going to be generated. The meaningless decision variables going to be

excluded using problem specific knowledge are:

72

8.2. Solving the VRP⋆ formulation

- The first delivery of an order requiring special equipment may only be executed by a

truck which is equipped accordingly. All decision variables associated with trucks not

being equipped accordingly will always be fixed to zero in any feasible solution any-

way. Therefore for any o ∈ O′ decision variables like yk
o,1, where tinstrk 6= oinstro,

will not be added to the model at all. Similarly all resulting decision variables as-

sociated with the first and last movement of a truck per day will not be generated

respectively. If in a feasible solution a certain truck k will not be allowed to execute

a certain delivery, it will not go there either. Consequently xp2ok
o,1 and xo2pk

o,1,

where tinstrk 6= oinstro, are not generated respectively. The same holds for the

decision variables related to the movements of trucks between deliveries. xo2oo,1,k
o1,d1

and xo2oo1,d1,k
o,1 (for any o1 ∈ O, d1 ∈ Do1

) will not be added to the model either.

- Similarly in any optimal solution a truck with no capacity, which is only equipped

with some kind of special instrumentation, should only be scheduled for executing

the very first delivery of an order requiring the corresponding equipment respectively.

Scheduling these particular trucks for any other kind of delivery makes no sense and

will never be required by an optimal solution.

The same is true for all types of constraints accordingly. If a truck is not supposed

to execute a certain delivery all corresponding degree equations are not necessary either.

Although general purpose solvers such as XPRESS-MP or CPLEX possess the capability

to detect such unnecessary constraints and decision variables during their pre-processing

stage known as presolve, we decided to exclude them a priori, hence trying to keep the

size of the resulting model or matrix small and not running into out of memory problems

at small instances.

Table 8.3 indicates that number of decision variables (cols) and constraints (rows) in

use, when all or only meaningful ones are generated. By creating only meaningful ones the

number of decision variables and constraints on average can be reduced by 27%. During

the process of presolve which is embedded in XPRESS the number of decision variables and

constraints can further be reduced by a minor percentage. This mainly refers to decision

variables such as zo,d, where d ≤ do
min (indicating that a minimum number of deliveries

is necessary by all means). We could have excluded them as well. As the percentage of

variables and space that could be saved is negligible, we decided to leave them in the

model.

We tried to solve several instances on another computer with even more memory (3.2

73

8. Computational Experiments

Table 8.3.: Number of decision variables and constraints per instance (VRP⋆)

only meaningful ones % saved

all before presolve after presolve by reduce by presolve

n cols rows cols rows cols rows cols rows cols rows

1 37, 071 38, 147 27, 837 28, 828 27, 809 28, 774 −24.91 −24.43 −0.10 −0.19
2 48, 967 50, 202 32, 173 33, 221 32, 154 33, 177 −34.30 −33.83 −0.06 −0.13
3 146, 074 148, 193 105, 180 107, 112 105, 147 107, 035 −28.00 −27.72 −0.03 −0.07
4 133, 196 135, 218 96, 053 97, 854 96, 022 97, 784 −27.89 −27.63 −0.03 −0.07
5 113, 052 114, 919 78, 814 80, 443 78, 785 80, 375 −30.29 −30.00 −0.04 −0.08

mini 95, 672 97, 336 68, 011 69, 492 67, 983 69, 429 −29.07 −28.72 −0.05 −0.11

6 463, 700 467, 458 343, 927 347, 334 343, 867 347, 201 −25.83 −25.70 −0.02 −0.04
7 208, 758 211, 288 156, 625 158, 917 156, 584 158, 816 −24.97 −24.79 −0.03 −0.06
8 313, 955 317, 052 235, 080 237, 894 235, 025 237, 766 −25.12 −24.97 −0.02 −0.05
9 471, 564 475, 351 354, 173 357, 603 354, 110 357, 464 −24.89 −24.77 −0.02 −0.04

10 511, 844 515, 795 368, 146 371, 678 368, 079 371, 522 −28.07 −27.94 −0.02 −0.04

small 393, 964 397, 389 291, 590 294, 685 291, 533 294, 554 −25.78 −25.63 −0.02 −0.05

11 893, 455 898, 668 675, 504 680, 265 675, 410 680, 041 −24.39 −24.30 −0.01 −0.03
12 615, 247 619, 576 437, 315 441, 095 437, 236 440, 915 −28.92 −28.81 −0.02 −0.04
13 633, 408 637, 802 449, 383 453, 199 449, 312 453, 026 −29.05 −28.94 −0.02 −0.04
14 1, 123, 860 1, 129, 706 845, 941 851, 215 845, 844 850, 986 −24.73 −24.65 −0.01 −0.03
15 959, 813 965, 224 700, 426 705, 220 700, 338 704, 997 −27.02 −26.94 −0.01 −0.03

medium 845, 157 850, 195 621, 714 626, 199 621, 628 625, 993 −26.82 −26.73 −0.01 −0.03

16 1, 210, 747 1, 216, 812 897, 342 902, 761 897, 240 902, 523 −25.89 −25.81 −0.01 −0.03
17 904, 363 909, 610 662, 983 667, 636 662, 888 667, 406 −26.69 −26.60 −0.01 −0.03
18 1, 173, 123 1, 179, 098 849, 539 854, 789 849, 441 854, 550 −27.58 −27.50 −0.01 −0.03
19 1, 518, 975 1, 525, 766 1, 137, 853 1, 143, 948 1, 136, 928 1, 143, 948 −25.09 −25.02 −0.08 0.00
20 1, 353, 813 1, 360, 231 955, 347 960, 910 955, 242 960, 653 −29.43 −29.36 −0.01 −0.03

large 1, 232, 204 1, 238, 303 900, 613 906, 009 900, 554 905, 867 −26.94 −26.86 −0.03 −0.02

GHz, 4 GB RAM). We were only able to solve very small instances to (proven) optimality.

Solving the MIP using a stand-alone solver such as CPLEX as a black box was not able

to tackle instances of reasonable size.

Table 8.4 reports the result we got after running some very small instances classified

as mini. The maximum run time is varied between 1,000 and 1,000,000 seconds. The

best bound (solution) found after a given maximum run time of tmax is denoted as bmax

(zmin). Only the first and smallest instances can be solved to optimality. For instance

5 the gap after 1,000,000 seconds is still around 10%. We used the standard parameter

setting provided. The test runs were executed using the default settings of CPLEX 10.1.

A dash indicated that no solution was yet available. The penalty term β for gaps between

74

8.2. Solving the VRP⋆ formulation

consecutive unloading operations, or starting the first delivery after the end of the time

window, was set to 3.

Table 8.4.: VRP⋆ solved as MIP

n

tmax 1 2 3 4 5

1,000 bmax 314.57 754.82 889.87 1116.43 636.78
zmin 585.45 762.00 − − −

gap in % 46.27 0.94 − − −

5,000 bmax 314.57 761.83 889.87 1116.45 637.51
zmin 331.90 762.00 − − −

gap in % 5.22 0.02 − − −

10,000 bmax 322.79 761.83 889.87 1116.72 637.51
zmin 331.90 762.00 − − −

gap in % 2.74 0.02 − − −

50,000 bmax 331.02 761.83 889.87 1118.20 641.01
zmin 331.90 762.00 − − 7766.60
gap in % 0.27 0.02 − − 91.75

100,000 bmax 331.02 762.00 889.87 1118.20 641.01
zmin 331.90 762.00 − − 719.70
gap in % 0.27 0.00 − − 10.93

500,000 bmax 331.02 762.00 889.87 1118.20 641.01
zmin 331.90 762.00 − − 715.47
gap in % 0.27 0.00 − − 10.41

1,000,000 bmax 331.02 762.00 889.87 1118.20 641.01
zmin 331.90 762.00 − − 715.47
gap in % 0.27 0.00 − − 10.41

75

8. Computational Experiments

8.3. Lower Bounds for VRP⋆

Rather than spending too much time waiting for getting a feasible integer solution when

solving VRP⋆ formulation as MIP we were able to achieve good bounds, using the two

different variants described in Section 3.2.3. Based on the relaxed MIP formulation, con-

sidering fundamental constraints only, violated non-fundamental constraints as well as

valid inequalities were added on demand. The only difference between the two variants

refers to the way violated non-fundamental constraints and violated inequalities are go-

ing to be handled with. Variant 1 adds them as cuts during the process of optimization.

Within Variant 2 the relaxed formulation is iteratively going to be solved. All violated

valid inequalities and non-fundamental constraints were added as constraints. The total

run time was set to tmax. The best bounds obtained after a total run time of 4800 seconds

using each variant are shown in Table 8.5. At every step at most cutmax cuts (constraints)

were added at every step. If more than cutmax constraints or valid inequalities were vi-

olated cutmax were chosen randomly among all violated ones. This approach was chosen

in order to avoid adding too many constraints (cuts) simultaneously and hence ending up

with memory issues. The best bounds obtained using each variant are highlighted in bold.

A more detailed overview on bounds can be found in Section B.1.

Table 8.5.: Best Bounds after tmax = 4800 seconds

Variant 1 Variant 2

cutmax

class n 100 500 1000 ∞ 100 500 1000 ∞

mini 1 331.02 331.02 316.92 316.92 331.02 331.02 331.02 331.02

2 754.82 754.82 754.43 754.43 754.63 754.65 754.65 754.65
3 903.51 903.51 923.69 903.51 922.02 922.02 922.02 922.02
4 1128.06 1130.67 1128.06 1128.06 1170.34 1171.42 1171.42 1171.42

5 − 642.07 − − 642.07 642.07 642.07 642.07

small 6 1298.32 1297.89 1298.24 1297.62 1303.16 1303.16 1303.16 1303.16

7 1070.99 1070.99 1070.99 1070.99 − − − −

8 1416.50 1430.60 1429.72 1430.79 1422.29 1422.29 1422.29 1422.29
9 1414.15 1414.15 1414.15 1414.15 1414.73 1414.73 1414.73 1414.73

10 1704.39 1704.39 1704.39 1704.39 1704.39 1704.39 1704.39 1704.39

medium 11 2137.28 2159.68 2163.22 − 2157.27 2157.27 2157.27 2157.27
12 1813.15 1813.15 1813.15 1813.15 1813.97 1813.97 1813.97 1813.97

13 1839.73 1831.16 1839.73 1839.73 1839.73 1839.73 1839.73 1839.73

14 1892.10 1921.26 1921.26 − 1927.87 1927.87 1927.87 1927.87

15 1749.35 1769.91 1769.91 1769.91 1785.26 1785.26 1785.26 1785.26

large 16 2017.20 2025.04 2025.04 − 2031.38 2031.38 2031.38 2031.38

17 2046.67 2032.69 2032.69 2046.67 2037.78 2037.77 2037.77 2037.77
18 2080.05 2093.74 2093.74 2093.74 2152.21 2152.21 2152.21 2152.21

19 2445.68 2445.68 2445.68 − 2450.63 2450.63 2450.63 2450.63

20 2016.68 2023.06 2023.06 − 2023.06 2023.06 2023.06 2023.06

Note: adding at most cutmax cuts/constraints at every step.

76

8.4. Integrative Hybrid Approach

A dash indicates that no results could be obtained due to memory issues. Variant 2

seems to work better. Compared to Variant 2, where cuts are iteratively added on a node

level, on average stronger bounds can be obtained by iteratively adding constraints to the

relaxed problem.

8.4. Integrative Hybrid Approach

The integrative hybrid approach (as described in Chapter 4) tries to improve any given

solution by explicitly allowing certain decision variables to change with respect to the

current incumbent solution. The initial solution is found by applying VNS (see Chapter 6)

for a given time limit of tinit seconds. The remaining time of the total run time tmax is

designated to repeatedly solving MIPs, while applying LB based on VNS.

Table 8.6.: Integrative Hybrid Approach

tinit

1200 1800 2400

class n zmin zavg zmin zavg zmin zavg

mini 1 331.90 331.90 331.90 331.90 331.90 331.90
2 762.00 762.00 762.00 762.00 762.00 762.00
3 1007.73 1038.56 1007.73 1019.89 1007.73 1034.46
4 1182.97 1185.49 1182.97 1185.49 1182.97 1185.49
5 670.42 681.27 666.93 676.06 670.42 676.76

small 6 1504.70 1522.89 1473.23 1503.69 1483.15 1500.39
7 1135.88 1156.27 1131.92 1148.92 1124.97 1147.51
8 1533.30 1542.12 1533.92 1541.99 1532.42 1541.76
9 1531.58 1586.46 1527.28 1596.95 1526.90 1581.15
10 2020.55 2083.81 1966.52 2039.22 1971.73 2024.79

medium 11 2481.57 2545.46 2469.95 2493.90 2453.25 2467.09
12 1939.60 2001.48 1940.37 2008.85 1940.37 1988.17
13 1979.87 2015.20 1976.38 2013.96 1976.38 2015.84
14 2579.87 2777.94 2509.75 2610.40 2462.18 2582.00
15 2098.30 2136.37 2003.62 2099.15 2002.28 2092.75

large 16 2293.63 2384.89 2241.47 2307.73 2273.98 2336.68
17 2267.92 2299.36 2228.98 2268.45 2215.23 2262.07
18 2532.10 2588.16 2505.95 2551.34 2465.33 2518.80
19 − − − − − −

20*
− − − − 2266.32 2266.32

* only one solution available for instance 20 (memory issues)

Table 8.4 presents the solutions values obtained when applying the integrative hybrid

approach for a total run time limit of 4800 seconds. tinit, the time designated for the

generation of an initial solution was varied between 1200 and 2400 seconds respectively.

77

8. Computational Experiments

The best solutions obtained (while varying tinit) are highlighted in bold. Columns heading

zmin and zavg represent the best and average solutions found. The algorithm can solve mini

to medium sized instances without any problems. For two of the larger instances however

we encountered memory problems. Instance 19 could not be solved due to memory issues.

A more detailed overview on the integrative hybrid approach using different total run

times (tmax) and various parameter settings for the time designated for finding a good

initial solution (tinit) can be found in Section B.2.

8.5. Reduced vs. Extensive MCNF Formulation

When using the extensive formulation one is able to consider additional constraints such as

loading restrictions. The maximum number of trucks that can be loaded at any plant can

be set to one. Additionally the choice of plant where loading operations should take place

is no longer fixed but rather left to the optimization itself. However the resulting number of

constraints and decision variable increases dramatically when using the extensive version

(compared to the reduced formulation). Table 8.7 gives an overview on the number of

decision variables and constraints in use given the reduced and extensive formulation for

an exemplary input for 50 patterns per instance. The input patterns have been generated

using the approach described in Section 5.1.1.

By using the reduced formulation the number of constraints and decision variables can

be reduced by as much as 86% for mini-sized instances. The potential for reducing the

matrix size decreases as the instance size increases. But still for large instances the number

of decision variables (constraints) can be reduced by 39.98% (43.5%).

Table 8.8 plots the differences in solution runs obtained by using the reduced (see

Section 5.2) and the extended (see Section 5.3) version for the MCNF formulation. In

order to get a feeling for the consequences for a possible limitation in the number of trucks

that can be loaded simultaneously the following setting was set up. A total number of 50

patterns were generated using the brute force approach. Then the MCNF formulation was

solved using both approaches using the same pool of patterns. Run times can be decreased

dramatically when as an additional restriction one does not have to make sure that at most

one truck can be loaded at all plants at any point in time. For mini instances average run

times could be decreased by 80%. As the size of problem instances increases this percentage

even reaches 99.54% for large instances. For very small instances the consequences of this

additional constraint have almost no effect on the objective function value. Few vehicle

movements and resulting loading operations at plants tend not to overlap. As the size

78

8.5. Reduced vs. Extensive MCNF Formulation

Table 8.7.: Number of decision variables and constraints per instance (MCNF)

extensive reduced % saved

n cols rows cols rows cols rows

1 58,157 58,308 6,543 6,481 −88.75 −88.88
2 64,728 64,928 7,624 7,546 −88.22 −88.38
3 55,321 54,607 8,620 8,271 −84.42 −84.85
4 71,237 70,862 11,232 10,876 −84.23 −84.65
5 57,583 57,199 9,198 8,904 −84.03 −84.43

mini 61,405 61,181 8,643 8,416 −85.93 −86.24

6 66,971 65,164 16,918 15,682 −74.74 −75.93
7 58,037 57,034 14,565 13,900 −74.90 −75.63
8 68,737 67,347 19,384 18,310 −71.80 −72.81
9 72,388 70,559 24,254 22,822 −66.49 −67.66
10 69,528 67,570 27,049 25,273 −61.10 −62.60

small 67,132 65,535 20,434 19,197 −69.81 −70.93

11 70,888 67,950 28,457 25,961 −59.86 −61.79
12 74,724 72,611 33,347 31,026 −55.37 −57.27
13 72,099 70,022 30,530 28,016 −57.66 −59.99
14 80,362 76,966 38,607 34,652 −51.96 −54.98
15 78,897 76,021 36,599 33,071 −53.61 −56.50

medium 75,394 72,714 33,508 30,545 −55.69 −58.11

16 75,779 72,278 41,899 37,389 −44.71 −48.27
17 70,265 67,285 34,622 30,991 −50.73 −53.94
18 75,639 72,304 43,388 39,037 −42.64 −46.01
19 87,617 83,874 64,084 58,131 −26.86 −30.69
20 80,538 77,228 52,369 47,432 −34.98 −38.58

large 77,968 74,594 47,272 42,596 −39.98 −43.50

of the problem instance increases the effects of this additional restriction are noticeable.

For medium instances relaxing this constraint on average involves an improvement of the

solutions’ quality by 4.92%, due to lower traveling times and less gaps between unloading

operation. For medium and large instances the rate of improvement corresponds to 3.28

and 6.73% respectively. As practitioners told us that queues and bottleneck situations do

not really seem to be a problem in reality we decided to use the reduced model formulation

for all following test runs. The penalty term β1 for gaps between consecutive unloading

operations was set to 3. For penalizing orders for which no pattern has been chosen β2

was set to 5000.

79

8. Computational Experiments

Table 8.8.: MCNF (reduced vs. extended version)

extensive reduced

n zmin zavg tavg zmin zavg tavg %zgap %tgap

1 367.30 461.18 6.92 367.30 461.18 2.34 0.00 −66.13
2 928.08 1008.14 7.01 928.08 1005.59 2.46 −0.25 −64.95
3 1546.52 1602.55 20.81 1546.52 1594.44 2.94 −0.51 −85.87
4 1850.83 1875.05 18.78 1850.83 1875.05 3.55 0.00 −81.12
5 1050.95 1156.02 11.11 1050.95 1155.83 2.92 −0.02 −73.70

mini 1148.74 1220.59 12.92 1148.74 1218.42 2.84 −0.16 −74.35

6 7084.05 8204.05 570.55 7084.05 7295.48 7.84 −11.07 −98.63
7 1596.80 1707.88 38.86 1596.80 1707.88 5.18 0.00 −86.67
8 2551.23 3492.86 196.65 2551.23 3470.82 8.38 −0.63 −95.74
9 2746.90 3875.95 928.41 2746.90 3820.16 10.53 −1.44 −98.87
10 3638.05 6554.46 277.70 3405.92 5803.57 11.03 −11.46 −96.03

small 3523.41 4767.04 402.43 3476.98 4419.58 8.59 −4.92 −95.19

11 8554.95 11095.44 13509.55 8381.37 9401.47 29.89 −15.27 −99.78
12 3022.97 3182.70 3592.03 3022.97 3166.76 21.18 −0.50 −99.41
13 2964.65 3053.84 373.48 2964.65 3049.38 17.16 −0.15 −95.41
14 13165.50 14547.48 18568.33 13126.60 14246.68 81.27 −2.07 −99.56
15 8411.23 11822.75 3955.10 8408.03 11793.87 44.85 −0.24 −98.87

medium 7223.86 8740.44 7999.70 7180.72 8331.63 38.87 −3.65 −98.60

16 8401.47 9477.86 21142.32 8387.47 9464.01 130.62 −0.15 −99.38
17 8348.70 9487.36 4006.92 8348.70 9476.18 37.67 −0.12 −99.06
18 8819.95 10211.25 75041.09 8666.98 9887.88 152.20 −3.17 −99.80
19 5037.10 5207.28 19363.06 5006.97 5092.20 107.44 −2.21 −99.45
20 3918.62 5286.62 177177.30 3823.08 4711.64 71.36 −10.88 −99.96

large 6905.17 7934.08 59346.14 6846.64 7726.38 99.86 −3.30 −99.53

80

8.6. Initial Pattern Generation for MCNF

8.6. Initial Pattern Generation for MCNF

Two different methods in order to generate an initial pool of patterns have been imple-

mented and are tested against each other. The two methods compared to each other

are described in Section 5.1.1 and 5.1.1 respectively. The former approach generates a

large number of patterns randomly. The latter version however only generates a smaller

number of more intelligent (i.e. compatible) patterns. In both cases, based on the initial

pool of base patterns, the MCNF was solved only once. To evaluate the quality of the set

of fulfillment patterns on the performance on the MCNF - when it is going to be solved

once - we compared the following settings. The algorithm has been tested on our 20 test

instances. The MCNF was solved once with 100 base patterns generated randomly and

20 compatible patterns.

Table 8.9.: Comparison Initial Base Patterns

random (r) compatible (c) c vs. r

n zmin zavg tavg zmin zavg tavg %zgap %tgap

1 352.77 383.50 1.44 333.13 333.41 3.13 −13.06 117.82
2 811.62 853.17 1.74 771.48 819.04 3.09 −4.00 78.08
3 1450.65 1495.36 4.79 1222.55 1297.46 7.88 −13.23 64.57
4 1619.82 1659.10 4.78 1327.47 1403.63 6.12 −15.40 27.96
5 929.23 988.98 3.46 796.15 838.80 4.80 −15.19 38.89

mini 1032.82 1076.02 3.24 890.16 938.47 5.01 −12.18 65.46

6 2982.80 6151.30 74.23 2168.05 2236.54 118.29 −63.64 59.35
7 1407.12 1451.65 7.22 1244.38 1276.04 11.89 −12.10 64.68
8 2108.20 2178.06 12.41 1922.65 1947.91 22.06 −10.57 77.83
9 2284.02 2427.55 23.13 2055.27 2131.55 104.31 −12.19 350.93
10 2813.27 3047.74 30.22 2480.60 2519.20 59.97 −17.34 98.45

small 2319.08 3051.26 29.44 1974.19 2022.25 63.30 −23.17 130.25

11 3684.87 3873.28 371.87 3136.22 3173.99 1320.30 −18.05 255.05
12 2572.33 2645.08 33.03 2376.78 2506.69 279.25 −5.23 745.35
13 2501.37 2643.80 33.25 2437.12 2478.77 135.90 −6.24 308.68
14 4192.85 7514.34 3359.29 3237.23 3287.30 8064.79 −56.25 140.07
15 3249.75 5901.09 854.11 2739.30 2834.30 2003.82 −51.97 134.61

medium 3240.23 4515.52 930.31 2785.33 2856.21 2360.81 −27.55 316.75

16 3401.10 3520.92 1828.77 2812.85 2944.49 1802.65 −16.37 −1.43
17 3024.80 3128.63 259.18 2652.65 2767.51 1043.74 −11.54 302.71
18 3318.97 3535.87 557.42 3179.18 3260.93 3508.40 −7.78 529.40
19 3966.80 4133.45 5741.05 3512.55 3598.98 24195.52 −12.93 321.45
20 3110.68 3226.02 352.35 2956.88 2992.23 1715.96 −7.25 387.00

large 3364.47 3508.98 1747.75 3022.82 3112.83 6453.25 −11.17 307.83

all 2489.15 3037.94 677.69 2168.12 2232.44 2220.59 −18.52 205.07

81

8. Computational Experiments

Table 8.9 depicts the effects of the initial pool of patterns in use. The best (average)

solution found using brute force or compatible patterns is denoted by zmin (zavg). The

necessary run times in seconds are given by tavg . In the last two columns the deviation in

terms of average solutions found (%zgap) and total run times (%tgap) is reported.

Using the compatible pattern generation instead of randomly generating a compara-

tively large number of initial base patterns dramatically helps to improve solution quality.

On average the quality of the solution found can be improved by 18.52%. For mini (small)

instances the solution can be improved by 12.18% (23.17%). For medium and large in-

stances solution quality is improved by 27.55% and 11.17% respectively.

For a more detailed overview on solutions with different numbers of base patterns in-

volved the reader is referred to Section B.3 and B.4 respectively. The number of brute

force patterns was varied between 50 and 1000 patterns per order. On the other side 5 up

to 20 compatible patterns were generated per order.

8.7. Cooperative Hybrid Approach

Two important parameters can be varied when executing our cooperative hybrid approach

as described in Chapter 7. The number of iterations i used for consecutively executing the

embedded MCNF and VNS component, along with the percentage of time p designated for

the execution of the embedded MCNF component. The total run time will be equally split

among all iterations. Within every iteration at most a fraction of p of the total run time

designated to a single iteration will be spent for optimizing the MCNF. The remaining

time is spent on VNS, which feeds back patters into the pool of pattern, enriches and

diversifies it.

We tested different parameter settings for medium-sized instances and a run time limit

of 600 and 1200 seconds respectively. The number of iterations i had been varied between

6 and 10, in steps of two. The percentage p of time designated for the embedded MCNF

took values from 20% to 40%. The average results obtained are reported in Table 8.10.

The numbers reported are averaged over all five medium-sized test instances (instance 11

to 15).

The algorithm is quite robust in terms of the parameter choice. Different settings lead

to only to small variations in the average solutions found. More iterations given a fixed

run time limit lead to a smaller amount of time designated for a single iteration. The

more iterations we have given a fixed run time limit, the higher the percentage designated

for the embedded MCNF component should be.

82

8.8. Cooperative Hybrid Approach vs. MCNF

Table 8.10.: Parameter Study

tmax = 600 tmax = 1200

p p

i 20% 30% 40% avg 20% 30% 40% avg

6 2354.25 2311.94 2331.90 2332.70 2266.41 2285.19 2318.37 2289.99
8 2355.00 2364.59 2320.95 2346.84 2281.67 2289.56 2299.03 2290.09
10 2367.64 2353.87 2339.53 2353.68 2309.02 2286.79 2281.53 2292.45

avg 2358.96 2343.47 2330.79 2285.70 2287.18 2299.64

8.8. Cooperative Hybrid Approach vs. MCNF

The main difference between the cooperative hybrid approach (as described in Chapter 7)

and the MCNF component (see Chapter 5), if applied solely, is the set and the generation

of fulfillment patterns used during their optimization process. The cooperative hybrid

approach in a sense depends on the embedded VNS component, which is responsible for

generating good patterns and hereby enriching the pool of patterns to choose from. Whilst

the MCNF can only rely on the set of fulfillment patterns generated initially by use of

a greedy procedure. In order to evaluate the impact of the different pools of fulfillment

patterns we set up the following test environment. First the hybrid method is executed

for a given fixed maximum run time (tmax = 150, . . . , 4800 seconds). Then we have a look

at the number of patterns in the pool of patterns the procedure ends up with. The same

number of patterns the cooperative hybrid method ends up with was generated (using

compatible patterns) to initialize the MCNF model. The MCNF model is solved once

with the same maximum run time limit imposed. Table 8.11 depicts the results obtained.

We report the best (zmin) and average (zmax) solutions found for both the MCNF

component and our cooperative hybrid approach. The best results obtained are highlighted

in bold. The improvement in percentage of the hybrid approach with respect to the MCNF

component is indicated by %zgap.

Our hybrid approach clearly outperforms the MCNF component. Given the same num-

ber of patterns the best solutions are always obtained using our hybrid approach. Also

on average the hybrid approach always finds better solution than the pure MCNF using

the same number of patterns. This clearly shows the superiority of the embedded VNS

component in order to generate good patterns and thereby enriching the pool of patterns.

For mini instances the rate of improvement might not yet be so obvious, as the MCNF

component with its greedy pattern generator is still able to achieve good quality solutions.

These experiments highlight the importance of the high-quality solutions generated by

83

8. Computational Experiments

Table 8.11.: Cooperative Hybrid vs. MCNF Approach

MCNF CHyb

class tmax zmin zavg zmin zavg %zgap

mini 150 863.17 887.60 800.08 814.78 −8.20
300 860.70 882.25 793.77 806.28 −8.61
600 858.30 878.19 794.67 808.35 −7.95
1200 857.79 872.69 793.08 803.66 −7.91
2400 855.92 870.77 791.10 800.61 −8.06
4800 850.19 862.76 792.98 798.66 −7.43

small 150 1900.55 2151.01 1597.10 1674.84 −22.14
300 1870.40 1944.18 1575.05 1627.38 −16.29
600 1868.81 1924.70 1558.61 1605.30 −16.59
1200 1852.15 1909.95 1560.06 1600.45 −16.20
2400 1827.22 1874.83 1535.54 1570.12 −16.25
4800 1806.94 1859.73 1546.52 1578.15 −15.14

medium 150 2769.93 4190.80 2550.09 2729.95 −34.86
300 2786.29 3606.75 2322.64 2457.30 −31.87
600 2717.86 3355.17 2268.40 2364.59 −29.52
1200 2641.14 2940.63 2207.48 2289.56 −22.14
2400 2580.30 2739.30 2190.75 2260.75 −17.47
4800 2599.96 2689.42 2164.66 2245.08 −16.52

large 150 3083.38 3765.57 2922.04 3195.76 −15.13
300 2987.91 3692.10 2732.46 2842.27 −23.02
600 2897.71 3044.75 2465.38 2612.09 −14.21
1200 2857.92 2974.79 2399.34 2500.48 −15.94
2400 2840.36 2951.44 2408.09 2493.39 −15.52
4800 2817.14 2922.89 2375.71 2461.54 −15.78

the embedded VNS component, which is clearly a good choice when it comes to generate

good compatible patterns. This clearly demonstrates the ability of the embedded VNS

component in our hybrid approach to intelligently diversify and improve the quality of

patterns within the pool of patterns, enabling the embedded MCNF to finding high quality

solutions.

84

8.9. Cooperative Hybrid Approach vs. VNS

8.9. Cooperative Hybrid Approach vs. VNS

We wanted to test the effects and effectiveness of VNS (see Chapter 6) and our cooperative

hybrid approach (as described in Chapter 7) based on the same run time limit tmax. The

main difference between the VNS component and our cooperative hybrid approach is again

the generation and usage of patterns. The hybrid approach can take a global view and

consider all patterns held in the pool of patterns. Its memory is constantly updated as the

embedded VNS component adds all patterns resulting from new best incumbent solution

into the pool. The pure VNS component however is initiated with one fulfillment pattern

per order. In every shaking step and the following local search step only a set of one

pattern per order is considered simultaneously. The visibility is limited, all changes only

take place on a rather local level.

In order to test the cooperative hybrid approach against the pure VNS variant the fol-

lowing set of experiments has been set up. Both algorithms were tested given a maximum

total run time limit of tmax seconds. The VNS component is initiated with one pattern per

order. Shaking and local search steps are executed iteratively until the total run time limit

is reached. We initiated our cooperative hybrid approach with 15 fulfillment patterns per

order (using the greedy procedure described in Section 5.1.1). The number of iterations (i)

was set to 8. The percentage of run time devoted to the solution process of the embedded

MCNF (p) was set to 30%, resulting in a remaining fraction of 70% designated for the

execution of VNS.

We report the best (zmin) and average (zmax) solutions found for both the VNS com-

ponent and our cooperative hybrid approach. The best results obtained are highlighted

in bold. The improvement in percentage of the cooperative hybrid approach with respect

to the VNS component is indicated by %zgap.

This again clearly demonstrates the superiority of the cooperative hybrid approach. The

best solutions are always obtained by the cooperative hybrid version. Also on average the

solutions obtained by the cooperative hybrid beat the VNS component. Please note that

for medium and large instances the best solution obtained by VNS is outperformed by the

average solution found by the hybrid approach. Not surprisingly both methods produce

better results as the maximum total run time tmax increases. This clearly shows that the

embedded VNS component used within the cooperative hybrid is highly useful to diversify

the search effectively.

The solution values obtained for all classes are averaged over all individual instances

within that class. The total run time devoted to every single run is denoted as tmax.

The best and average solutions found are denoted as zmin and zavg respectively. The best

85

8. Computational Experiments

Table 8.12.: Cooperative Hybrid vs. VNS

VNS CHyb

class tmax zmin zavg zmin zavg %zgap

mini 150 809.04 825.77 800.08 814.78 −1.33
300 808.64 824.58 793.77 806.28 −2.22
600 808.64 823.41 794.67 808.35 −1.83
1200 808.64 821.69 793.08 803.66 −2.19
2400 807.95 819.80 791.10 800.61 −2.34
4800 807.70 818.02 792.98 798.66 −2.37

small 150 1679.94 1796.89 1597.10 1674.84 −6.79
300 1584.93 1683.56 1575.05 1627.38 −3.34
600 1578.29 1644.61 1558.61 1605.30 −2.39
1200 1573.76 1624.99 1560.06 1600.45 −1.51
2400 1568.32 1611.83 1535.54 1570.12 −2.59
4800 1568.32 1605.32 1546.52 1578.15 −1.69

medium 150 3341.22 3767.34 2550.09 2729.95 −27.54
300 2875.96 3224.47 2322.64 2457.30 −23.79
600 2475.64 2833.09 2268.40 2364.59 −16.54
1200 2335.47 2477.99 2207.48 2289.56 −7.60
2400 2282.88 2369.67 2190.75 2260.75 −4.60
4800 2257.36 2345.65 2164.66 2245.08 −4.29

large 150 4035.64 4501.99 2922.04 3195.76 −29.01
300 3528.55 3893.28 2732.46 2842.27 −27.00
600 3182.03 3471.21 2465.38 2612.09 −24.75
1200 2691.74 2876.55 2399.34 2500.48 −13.07
2400 2556.84 2667.09 2408.09 2493.39 −6.51
4800 2534.85 2619.46 2375.71 2461.54 −6.03

solution found - based on the same run time limit - in the direct comparison of VNS and

the hybrid approach is highlighted in bold. The percental improvement of the solution

found by our hybrid approach compared to the solution found by VNS is depicted in the

last column and indicated by %zgap.

86

8.9. Cooperative Hybrid Approach vs. VNS

A more detailed overview of the results obtained for every single instance can be found

in Table 8.13. The run time limit was set to 300 and 600 seconds respectively.

Table 8.13.: Cooperative Hybrid vs. VNS Approach (Details)

tmax = 300 secs tmax = 600 secs

VNS CHyb VNS CHyb

n zmin zavg zmin zavg %zgap zmin zavg zmin zavg %zgap

1 331.90 331.90 331.90 331.90 0.00 331.90 331.90 331.90 331.90 0.00
2 762.00 762.51 762.00 762.51 0.00 762.00 762.51 762.00 762.51 0.00
3 1090.90 1134.98 1021.58 1062.30 −6.40 1090.90 1132.15 1026.07 1073.17 −5.21
4 1182.97 1192.63 1182.97 1185.39 −0.61 1182.97 1190.92 1182.97 1185.39 −0.46
5 675.45 700.87 670.42 689.31 −1.65 675.45 699.56 670.42 688.79 −1.54

mini 808.64 824.58 793.77 806.28 −1.73 808.64 823.41 794.67 808.35 −1.44

6 1590.83 1673.09 1581.68 1639.95 −1.98 1589.95 1642.54 1510.13 1585.68 −3.46
7 1161.83 1228.30 1118.00 1140.30 −7.16 1161.83 1226.03 1131.77 1144.55 −6.65
8 1534.13 1600.29 1541.45 1585.43 −0.93 1534.13 1588.07 1510.75 1550.60 −2.36
9 1556.23 1689.96 1547.87 1615.70 −4.39 1547.97 1627.58 1543.00 1616.30 −0.69
10 2081.63 2226.19 2086.23 2155.51 −3.17 2057.55 2138.81 2097.42 2129.38 −0.44

small 1584.93 1683.56 1575.05 1627.38 −3.53 1578.29 1644.61 1558.61 1605.30 −2.72

11 3185.18 3502.68 2632.18 2748.89 −21.52 2628.63 2836.28 2601.60 2688.99 −5.19
12 2127.08 2436.70 1953.87 2071.51 −14.99 2056.60 2177.31 1926.78 2034.41 −6.56
13 2040.92 2191.52 2025.88 2059.70 −6.02 2040.92 2104.50 2022.67 2050.10 −2.58
14 3705.90 4256.65 2784.83 3025.02 −28.93 3201.90 3814.48 2634.17 2834.58 −25.69
15 3320.70 3734.78 2216.43 2381.39 −36.24 2450.13 3232.86 2156.77 2214.86 −31.49

medium 2875.96 3224.47 2322.64 2457.30 −21.54 2475.64 2833.09 2268.40 2364.59 −14.30

16 3367.17 3986.32 2616.25 2728.93 −31.54 3052.72 3353.09 2277.22 2440.06 −27.23
17 3224.45 3492.57 2312.23 2409.69 −31.01 2736.68 3100.87 2215.73 2323.32 −25.08
18 3483.98 3816.04 2849.75 2958.78 −22.46 3038.58 3442.29 2523.17 2705.24 −21.41
19 4206.72 4366.80 3347.53 3463.85 −20.68 3854.63 3978.70 2939.25 3094.95 −22.21
20 3360.42 3804.66 2536.55 2650.09 −30.35 3227.52 3481.08 2371.52 2496.88 −28.27

large 3528.55 3893.28 2732.46 2842.27 −27.21 3182.03 3471.21 2465.38 2612.09 −24.84

total 2199.52 2406.47 1855.98 1933.31 −13.50 2011.15 2193.08 1771.77 1847.58 −10.83

Based on a run time of 300 seconds the hybrid approach finds the best solution in 18

out of 20 instances. The average solutions obtained by the hybrid approach improve the

average solution found by VNS by 1.73% (3.53%) for mini (small) instances and 21.54%

(27.21%) for medium (large) instances. Over all instances the average solution found can

be improved by 13.5%. For a run time of 600 seconds in 19 out of 20 instances the best

solution found is obtained by using our hybrid approach. The average solution found by

our hybrid approach over all instances can be improved by 10.83%. For small, medium

87

8. Computational Experiments

and large instance the improvement of the average solution found compared to the pure

VNS variant is 2.72%, 14.3% and 24.84% respectively.

A even more comprehensive overview on the results obtained by VNS using different

run time limits are illustrated in Section B.5.

88

8.10. Cooperative Hybrid Approach vs. Integrative Hybrid Approach

8.10. Cooperative Hybrid Approach vs. Integrative Hybrid

Approach

Finally we wanted to test the effectiveness of both hybrid approaches against each other.

The cooperative approach (see Chapter 7) repeatedly solves problems based on MCNF

formulations. It is basically a pattern selection mechanism. The fulfillment patterns at

hand are generated using a greedy procedure. Moreover all patterns which are part of

any new best incumbent solution found during the process of VNS are added. Hence the

pool of pattern is currently updated and enriched allowing the MCNF to select good and

compatible patterns. The integrative hybrid approach (as described in Chapter 4) however

is based on a formulation for the VRP⋆ formulation, which is iteratively solved. In each

iteration, depending on the current NeighborhoodNκ certain decision variables are allowed

to change with respect to the current incumbent solution. This systematic approach is

inspired by LB and VNS. Table 8.14 presents the values obtained. The total runtime limit

Table 8.14.: Cooperative vs. Integrative Hybrid Approach

IHyb CHyb

class tmax zmin zavg zmin zavg %zgap

mini 150 798.88 832.79 800.08 814.78 −2.16
300 795.54 827.95 793.77 806.28 −2.62
600 795.54 817.21 794.67 808.35 −1.08
1200 794.53 807.60 793.08 803.66 −0.49
2400 794.53 804.04 791.10 800.61 −0.43
4800 791.00 798.12 792.98 798.66 0.07

small 150 1718.40 1794.06 1597.10 1674.84 −6.65
300 1613.47 1701.95 1575.05 1627.38 −4.38
600 1586.93 1639.48 1558.61 1605.30 −2.08
1200 1549.86 1599.03 1560.06 1600.45 0.09
2400 1554.60 1584.98 1535.54 1570.12 −0.94
4800 1527.83 1559.12 1546.52 1578.15 1.22

medium 150 2851.23 3306.39 2550.09 2729.95 −17.43
300 2660.16 2905.36 2322.64 2457.30 −15.42
600 2391.57 2599.50 2268.40 2364.59 −9.04
1200 2273.30 2370.47 2207.48 2289.56 −3.41
2400 2218.30 2307.91 2190.75 2260.75 −2.04
4800 2166.89 2229.17 2164.66 2245.08 0.71

large∗ 150 3355.97 3672.47 2747.35 3029.02 −17.52
300 2881.34 3195.51 2592.74 2699.13 −15.53
600 2570.67 2778.96 2338.71 2489.54 −10.41
1200 2437.35 2538.57 2273.89 2375.65 −6.42
2400 2370.15 2431.15 2281.87 2382.79 −1.99
4800 2318.18 2372.52 2278.62 2369.05 −0.15

(∗ instances 19 and 20 omitted, as only few solutions available for integrative hybrid approach)

89

8. Computational Experiments

tmax was varied between 150 and 4800 seconds. For the cooperative hybrid approach the

number of iterations was set to 8. Within every iteration 30% of the designated run time

was dedicated to solving the MCNF, the remaining time is allocated to the VNS. The same

amount of run time was designated for the execution of the integrative hybrid approach.

The best results obtained per instance are highlighted in bold. zmin (zavg) denotes the

best (average) solution for all instances for both approaches.

The results show that the cooperative approach is still better than the integrative hy-

bridization. However some new best solutions were found by the integrative hybrid ap-

proach.

8.11. Cooperative Hybrid Approach vs. Simulated Annealing

A company in Austria developed and sold a tool designated for solving full truck load

problems. Their approach is based on SA. SA is inspired by means of statistical mechanics

and the behavior of systems with many degrees of freedom in thermal equilibrium at a

finite temperature (see Kirkpatrick et al., 1983). We compare the results obtained by our

hybrid approach based on a total run time of 150 seconds, which is typically the amount

of time the tool based on SA needs in order to terminate. All results are depicted in

Table 8.15.

The results obtained by our hybrid approach represent average values over 5 runs. All

results obtained by the approach based on SA are averaged over 25 runs. The number of

cooling phases was varied between 1 and 5, with 5 runs executed at every stage. The best

solution found is highlighted in bold. The best solution found per instance is always found

by our hybrid approach, which also on average finds the best solutions. For small instances

the average solution quality can be increased by 38.34% at comparable run times. For

medium (large) instances the solution can be improved by 37.88% (38.09%) on average

compared to a reduction in run time of 13.6% (14.02%)

90

8.11. Cooperative Hybrid Approach vs. Simulated Annealing

Table 8.15.: Cooperative Hybrid vs. SA: Comparison of solution quality and run time

SA CHyb

n zmin zavg tavg zmin zavg tavg %zgap %tgap

1 333.64 363.88 102.84 331.90 331.90 152.46 −8.79 48.25
2 778.58 834.95 60.84 762.00 762.51 152.72 −8.68 151.02
3 1180.89 1424.20 152.32 1053.12 1104.48 153.36 −22.45 0.68
4 1379.54 1586.97 134.48 1182.97 1186.61 153.92 −25.23 14.45
5 723.60 935.26 127.96 670.42 688.38 153.35 −26.40 19.84

mini 879.25 1029.05 115.69 800.08 814.78 153.16 −18.31 46.85

6 2337.61 2880.06 155.56 1599.85 1732.60 157.13 −39.84 1.01
7 1429.77 1672.89 137.64 1139.53 1157.88 155.37 −30.79 12.88
8 2077.83 2464.71 163.96 1547.82 1578.51 158.34 −35.96 −3.43
9 2409.88 2921.99 177.44 1575.98 1654.95 159.52 −43.36 −10.10
10 3223.41 3863.32 202.84 2122.33 2250.26 163.20 −41.75 −19.54

small 2295.70 2760.59 167.49 1597.10 1674.84 158.71 −38.34 −3.84

11 4057.40 4593.99 218.48 2698.88 2909.58 168.25 −36.67 −22.99
12 3110.75 3866.32 170.16 2052.37 2193.88 168.72 −43.26 −0.85
13 3231.78 3781.86 185.52 2100.62 2178.18 170.71 −42.40 −7.98
14 4215.76 5135.75 231.60 3333.25 3641.25 177.11 −29.10 −23.53
15 3670.80 4396.75 203.92 2565.32 2726.87 178.11 −37.98 −12.66

medium 3657.30 4354.93 201.94 2550.09 2729.95 172.58 −37.88 −13.60

16 3810.40 4673.39 215.08 2673.67 2984.90 183.61 −36.13 −14.63
17 4016.47 4510.84 207.92 2444.65 2692.13 177.17 −40.32 −14.79
18 4654.08 5587.77 211.20 3123.72 3410.02 185.99 −38.97 −11.94
19 5347.55 6027.76 245.16 3499.70 3734.63 190.76 −38.04 −22.19
20 4358.41 5008.30 204.68 2868.47 3157.13 191.27 −36.96 −6.55

large 4437.38 5161.61 216.81 2922.04 3195.76 185.76 −38.09 −14.02

all 2894.55 3413.93 177.45 2012.79 2155.83 168.42 −33.39 3.00

91

8. Computational Experiments

8.12. Summary

A comprehensive overview on the best results and bound obtained using the various ap-

proaches explained throughout this thesis can be found in Table 8.12. Three different

methods for finding good lower bounds have been implemented. The first column of re-

sults corresponds to the best bounds obtained after letting run the formulation based on

VRP⋆ (as described in Chapter 3) using CPLEX as a black box for 1 million seconds. The

second and third column headed by V1 and V2 correspond to the best bounds obtained

when applying the iterative relaxation or solving the MIP including cuts respectively. At

most 100 cuts or constraints were added on each step (cutmax = 100). A detailed descrip-

tion of the two approaches can be found in Section 3.2.3. The best bound obtained is

highlighted in bold.

In terms of solution quality we compare the best (feasible) solutions found using inte-

grative hybrid approach (as described in Chapter 4), solving the MCNF formulation (see

Chapter 5) and the pure VNS approach (as described in Chapter 6). Furthermore we in-

clude the best results obtained using our cooperative hybrid approach (see Chapter 7) and

the ones obtained using the tool based on SA, which is currently in use in a company in

Austria. The integrative hybrid approach was run for a total run time limit of tmax = 4800

seconds. tinit = 2400 seconds were spent on finding a good starting solution. The MCNF

was run (without any run time limit) given pinit = 200 (20) patterns generated brute force

(using the compatible pattern generation) respectively. The very same instances were

solved using the pure VNS approach for a total run time of tmax = 4800 seconds. The

cooperative hybrid approach was solved given the same run time limit. The total run time

limit was equally split among i = 8 iterations. Within every iteration p = 30% were spent

for solving the embedded MCNF formulation. The best (average) solutions were obtained,

after having executed 5 independent runs per instance. All best solutions are based on 5

independent runs. For the tool based on SA the following setting was chosen: the number

of cooling phases was varied between 1 and 5, with 5 independent runs executed at every

stage. The best results obtained are highlighted in bold.

The table clearly shows the superiority of both hybrid approaches. On average the

integrative hybrid approach dominates the cooperative version. The average solutions

found by the integrative hybrid version improve the ones found by the cooperative one by

2.13% based on a run time limit of 4800 seconds. For solving large scale problem instances

however the cooperative version is much more reliable, as the integrative hybrid approach

runs into memory problems for instances with more than 70 orders.

Regarding the pure VNS variant the cooperative hybrid approach on average finds

92

8.12. Summary

solutions which improve the ones found by VNS by 4.13% (based on the the same run

time limit of 4800 seconds). For lower run times the difference is even higher. The tool

based on SA has been outperformed. The average solutions found by our cooperative

hybrid approach improve the ones found by SA by 46.77%.

For obtaining good lower bounds we executed our two Variants V1 and V2 for 4800

seconds respectively, using valid inequalities added on demand. On the other side CPLEX

was ran for 500,000 seconds. The gap between our best solutions found and the lower

bounds is remarkable. For mini and small instances the best solutions found the gap is

as small as 2.71 and 8.86% respectively. For medium and large instances the gap only

reaches 10.6 and 9.41%.

93

8.
C
om

p
u
ta

ti
on

al
E
xp

er
im

en
ts

Table 8.16.: Summary of Results

best bounds best solutions zmin average solutions zavg

n C1 V12 V23 IHyb4 MCNF5 MCNF6 VNS7 CHyb8 SA9 gap IHyb4 MCNF5 MCNF6 VNS7 CHyb8 SA9

1 331.02 331.02 331.02 331.90 333.13 333.13 331.90 331.90 333.64 0.27 331.90 345.99 333.41 331.90 331.90 363.88
2 762.00 754.82 754.63 762.00 769.53 771.48 762.00 762.00 778.58 0.00 762.00 782.50 819.04 762.51 762.00 834.95
3 889.87 903.51 922.02 1007.73 1243.77 1222.55 1089.68 1021.08 1180.89 8.51 1034.46 1352.98 1297.46 1112.31 1036.69 1424.20
4 1118.20 1128.06 1170.34 1182.97 1436.48 1327.47 1182.97 1182.97 1379.54 1.07 1185.49 1486.39 1403.63 1186.11 1184.60 1586.97
5 641.01 − 642.07 670.42 834.52 796.15 671.97 666.93 723.60 3.73 676.76 888.29 838.80 697.29 678.10 935.26

mini 748.42 779.35 764.01 791.00 923.49 890.16 807.70 792.98 879.25 2.71 798.12 971.23 938.47 818.02 798.66 1029.05

6 1118.20 1298.32 1303.16 1483.15 2297.13 2168.05 1568.72 1524.52 2337.61 12.14 1500.39 2346.93 2236.54 1585.63 1573.61 2880.06
7 1063.63 1070.99 − 1124.97 1243.03 1244.38 1148.02 1120.32 1429.77 4.40 1147.51 1320.50 1276.04 1189.58 1127.76 1672.89
8 1411.08 1416.50 1422.29 1532.42 1952.98 1922.65 1534.13 1527.23 2077.83 6.87 1541.76 1991.37 1947.91 1571.76 1544.42 2464.71
9 1414.15 1414.15 1414.73 1526.90 2009.13 2055.27 1535.02 1529.35 2409.88 7.35 1581.15 2240.99 2131.55 1583.53 1553.17 2921.99
10 1675.15 1704.39 1704.39 1971.73 2733.05 2480.60 2055.73 2031.20 3223.41 13.56 2024.79 2785.79 2519.20 2096.12 2091.77 3863.32

small 1336.44 1380.87 1461.14 1527.83 2047.06 1974.19 1568.32 1546.52 2295.70 8.86 1559.12 2137.12 2022.25 1605.32 1578.15 2760.59

11 2137.28 2137.28 2157.27 2453.25 3162.70 3136.22 2566.92 2395.48 4057.40 9.94 2467.09 3390.79 3173.99 2667.59 2532.27 4593.99
12 1813.15 1813.15 1813.97 1940.37 2355.42 2376.78 1921.03 1884.97 3110.75 3.77 1988.17 2397.36 2506.69 2007.63 1971.01 3866.32
13 1829.73 1839.73 1839.73 1976.38 2348.83 2437.12 2030.32 1993.88 3231.78 6.91 2015.84 2411.31 2478.77 2047.20 2011.33 3781.86
14 1892.10 1892.10 1927.87 2462.18 3527.02 3237.23 2592.85 2457.80 4215.76 21.56 2582.00 3639.64 3287.30 2784.32 2580.00 5135.75
15 1757.30 1749.35 1785.26 2002.28 2843.18 2739.30 2175.70 2091.17 3670.80 10.84 2092.75 2893.83 2834.30 2221.53 2130.80 4396.75

medium 1885.91 1886.32 1904.82 2166.89 2847.43 2785.33 2257.36 2164.66 3657.30 10.60 2229.17 2946.59 2856.21 2345.65 2245.08 4354.93

16 2017.20 2017.20 2031.38 2273.98 3055.58 2812.85 2441.40 2300.85 3810.40 10.67 2336.68 3111.70 2944.49 2496.31 2380.36 4673.39
17 2028.88 2046.67 2037.78 2215.23 2703.47 2652.65 2346.05 2167.77 4016.47 5.59 2262.07 2781.07 2767.51 2380.84 2224.42 4510.84
18 2080.05 2080.05 2152.21 2465.33 3014.60 3179.18 2533.83 2367.25 4654.08 9.08 2518.80 3078.77 3260.93 2562.18 2502.38 5587.77
19 2445.68 2445.68 2450.63 − 3695.02 3512.55 3073.52 2853.68 5347.55 14.12 − 3781.13 3598.98 3214.05 2924.99 6027.76
20 2016.68 2016.68 2023.06 2266.32 2782.55 2956.88 2279.45 2189.02 4358.41 7.58 2266.32 2941.22 2992.23 2443.95 2275.55 5008.30

large 2117.70 2121.26 2139.01 2305.22 3050.24 3022.82 2534.85 2375.71 4437.38 9.41 2345.97 3138.78 3112.83 2619.46 2461.54 5161.61

all 1522.12 1541.95 1567.25 1697.74 2217.06 2168.12 1792.06 1719.97 2817.41 7.90 1733.09 2298.43 2232.44 1847.12 1770.86 3326.55

1 VRP⋆ on CPLEX for 500,000 seconds
2 Variant 1 (iterative relaxation): tmax = 4800 seconds, cutmax = 100
3 Variant 2 (MIP including cuts): tmax = 4800 seconds, cutmax = 100
4 Integrative Hybrid Approach: tmax = 4800 seconds, tinit = 2400 seconds
5 MCNF using pinit = 200 patterns per order generated brute force
6 MCNF using pinit = 20 compatible base patterns per order
7 pure VNS: tmax = 4800 seconds
8 Cooperative Hybrid Approach: i = 8, p = 30%, tmax = 4800 seconds

94

9. Conclusion

In this thesis we presented some highly effective solution procedures for solving full truck

routing problems for the delivery of ready-mixed concrete. Most of the approaches them-

selves are not restricted to this application exclusively. They can easily be extended in

order to be applied for other problem classes. Typically the demand of a single order

exceeds the capacity of any single truck available, hence every order needs to be split

into several deliveries. As the fleet of trucks under consideration is supposed to be het-

erogeneous in terms of capacity the exact number of deliveries to be executed cannot be

predetermined. All consecutive unloading operations corresponding to one single order

cannot overlap and the gaps in between should be kept as small as possible. Additionally

we consider multiple depots. Trucks are positioned at one (called their home) depot and

need to return back there by the end of the day. Additionally we are taking into account

special unloading equipment required by some constructors. If a special unloading equip-

ment such as a pump or a belt is needed the first truck to arrive needs to be equipped

accordingly, it needs to assist all later arriving trucks with their unloading operation and

stays until the last delivery has been finished.

The first approach chosen is based on an extended version of the classical formulation

for vehicle routing problems (VRP⋆). It has been extended in a sense that we allow (or

even require) multiple visits to our customers. We consider the multiple depot case with

a heterogeneous fleet of vehicles. Any single order is split into several deliveries and all

consecutive deliveries need to be scheduled properly. The resulting MIP-formulation is

highly accurate and theoretically would guarantee finding an optimal solution. In practice

however the resulting run times are far too high and finding good feasible solutions - if

any - cannot be guaranteed in a reasonable amount of time. For a detailed description of

the model formulation see Chapter 3. Some results for small instances can be found in

Section 8.2. For the best bounds obtained the reader is referred to Section 8.3. Only two

of the very smallest instances consisting of 13 and 14 orders respectively could be solved

to optimality. All remaining instances given a total run time limit of one million seconds

could not be solved to optimality.

95

9. Conclusion

Alternatively we developed a model based on a multi-commodity network flow formu-

lation (MCNF). This formulation works on a set of patterns used as input. A pattern

represents an option concerning how an order could be satisfied. It uniquely specifies

the exact timing of all unloading operations and the sequence of trucks to execute them.

Every pattern itself is feasible from an order’s point of view. Before initiating the MCNF

formulation several patterns per order are generated and fed into the pool of patterns. The

main task of MCNF is to select one pattern per order and making sure that everything

turns out to be feasible from the trucks’ point of view. Given a limited number of input

patterns it only has a restricted view on the solution space. However the formulation itself

can be solved to optimality, given the pool of patterns, in a reasonable amount of time.

See Section Chapter 5 for a detailed description of the model formulation. Up to 10000

patterns have been randomly generated and get into the model formulation, but the re-

sults were not even able to come close to the ones obtained by our hybrid approaches. See

Section 8.6. A more detailed overview on the results obtained can be found in Section B.3

and Section B.4 respectively.

Both previous approaches rely on a commercial solver such as CPLEX or XPRESS used

as a black box. In order to go without a solver we developed a metaheuristic approach

based on variable neighborhood search (VNS). VNS is a highly effective metaheuristic

which is able to both explore and intensify the search within the solution space, starting

from any initial solution. This method is able to score in terms of performance and is a

rather simple but highly flexible approach. Finding a global optimum solution however is

not guaranteed. So far we do not consider ascent moves. The formulation itself however

can easily be adapted in order to incorporate such features as well. This approach based

on VNS is a highly cost-efficient way to solve problems. It does not rely on any commer-

cial solver such as XPRESS or CPLEX, but can be run on any personal computer. It

guarantees finding a feasible solution. The run time can be set at discretion. The quality

of solutions obtained is good. For a detailed description of the implemented algorithm see

Chapter 6. Detailed results using various run time limits are depicted in Section B.5.

Hybrid approaches constitute a relatively new and highly ambitious field of study in

the scientific community. By combining exact methods and heuristic or metaheuristic

approaches we are able to combine their strengths and overcome their major drawbacks

and disadvantages. All three approaches described before can be applied solely. However,

when incorporated within an intelligent hybridization framework they are able to produce

far better results.

As just “to MIP” the formulation based on VRPs was not the way to success we decided

96

to help and guide the optimization process by means of an integrative hybrid approach. A

local branching (LB) scheme inspired by the concept of VNS and its resulting neighbor-

hood structures has been developed in order to assist and guide the solution process of

the MIP-optimization. Given any feasible solution, where most of the decision variables

remain fixed, certain parts of the solution space can consciously be explored further by

resetting bounds of previously fixed decision variables. This results in highly complex

and specialized framework, where we - using our problem specific knowledge - are able

to efficiently explore the solution space. Up to medium-sized problem instances can be

solved while finding high quality results in a reasonable amount of time. This approach on

average performs best for all mini, small and medium-sized instances. The best solutions

for 10 out of 15 instances were found by our integrative hybrid approach. For large in-

stances however with more than 65 orders this algorithm is no longer the preferred choice,

as the required amount of memory increases and the problem instances no longer could be

solved on our computers. For a detailed description of this hybrid framework the reader

is referred to Chapter 4. A detailed overview on the results obtained can be found in

Section 8.4 and Section B.2 respectively.

The second hybridization framework is cooperative in nature. Within this approach

both MCNF and VNS communicate with each other. The best solution found by MCNF

serves as an initial solution for VNS. All new best solutions found during the process of

VNS will be fed back into the pool of patterns used by MCNF. This iterative procedure

works highly effective. VNS is able to improve any given solution using the embedded

shaking and local search operators and constantly updates and enriches MCNF’s pool of

patterns. MCNF on the other hand is able to take a global view over all patterns and

picks compatible ones while scheduling exact timing of all truck movements. This ap-

proach has been proven to work highly efficient. Even large scale instances with up to 76

orders (resulting in up to 200 individual deliveries to be executed. The results obtained

using this hybrid approach are of high quality and outperform the results obtained by

each of its components when applied solely. This approach is able to solve even the largest

problem instances at hand. For mini, small and medium instances the results obtained

by this approach are comparable to the ones obtained by the integrative hybrid approach.

For 9 out of 15 instances the best known solution could be obtained. Compared to the

previous hybrid version this framework is even able to solve large instances and achieve

high quality solutions. A comprehensive overview on this cooperative hybrid framework

is given in Chapter 7. Detailed results can be found in Section B.6. A comparison of

the performance of this approach compared to its components MCNF and VNS - if ap-

plied solely - are shown in Section 8.8 and Section 8.9. On average - over all instances

97

9. Conclusion

and based on the same total run time - the results obtained by the cooperative hybrid

approach improve the ones obtained by MCNF (VNS) by 16.78% (9.22%). Compared to

the tool based on SA we are able to improve their results - after a run time limit of 150

seconds by 33.39%. For a comparison of the two hybrid approaches the reader is referred

to Section 8.10.

From a scientific point of view both the cooperative and hybrid approach are highly

competitive and produce high-quality solutions. The latter mentioned cooperative hybrid

approach works extremely well. However the framework is highly sophisticated. The

former mentioned integrative hybrid approach is able to find some new best solutions

while still taking the second place after the cooperative version. Especially when tackling

to solve large instances we are not insusceptible from running into memory problems.

For a company planning to invest in a tool able to tackle problems like this, the author’s

recommendation looks as follows. Depending on the budget of a company VNS might be

an appropriate choice for solving daily scheduling problems for the delivery of ready-

mixed concrete. Good solutions can be obtained within a reasonable amount of time. For

scheduling a company’s operation on a larger scale it does make sense to decide in favor

of a hybrid framework. However this includes the acquisition of a commercial solver able

to solve large-scale MIP-formulations.

98

A. Abbreviations and Notation

A.1. Abbreviations

Abbreviation Description

ACO Ant Colony Optimization

CHyb Cooperative Hybrid Approach

CPM Critical Path Method

CVRP Capacitated Vehicle Routing Problem

CVRPTW Capacitated Vehicle Routing Problem with Time Windows

DSS Decision Support System

GA Genetic Algorithm

IHyb Integrative Hybrid Approach

LP Linear Programming

MCNF Multi Commodity Network Flow

MDVRPTW Multi Depot Vehicle Routing Problem with Time Windows

MIP Mixed Integer Programming

RMC Ready Mixed Concrete

SA Simulated Annealing

SDMDHVRPTW Split Delivery Multi Depot Heterogeneous Vehicle Routing Problem

with Time Windows (aka VRP⋆)

SDVRP Split Delivery Vehicle Routing Problem

SDVRPTW Split Delivery Vehicle Routing Problem with Time Windows

VNS Variable Neighborhood Search

VRP Vehicle Routing Problem

VRP⋆ see SDMDHVRPTW

VRPFL Vehicle Routing Problem with Full Truckloads

VRPTW Vehicle Routing Problem with Time Windows

99

A. Abbreviations and Notation

A.2. Definition of Sets

Symbol Description

P set of all plants p

O set of all orders o

O′ set of orders requiring special unloading equipment (O′ ⊂ O)

Do set of deliveries for order o

T set of all points in time t

K set of all trucks k

C set of all classes of trucks c

Ao set of all patterns for order o

A.3. General Data

Symbol Description

Dmin minimum number of deliveries per instance

Dmax maximum number of deliveries per instance

do
min minimum number of deliveries for order o

Do
max maximum number of deliveries per order o

n instance

no number of orders per instance

zmin best solution found

zavg average solution found

zgap percentage gap in average solutions found

bmax best lower bound

tmax run time limit in seconds

tinit run time limit for finding a starting solution (IHyb)

i number of iterations (cooperative hybrid approach)

p percentage of time spent on execution of MCNF (CHyb)

cutmax maximum number of cuts to be added per step

Qo ordered demand (in m3) for order o

so start of time window associated with order o

eo end of time window associated with order o

oinstro unloading equipment required by order o

100

A.4. Decision Variables for VRP⋆

capk capacity of truck k

capc capacity of truck in class c

capmin capacity of truck with smallest capacity

capmax capacity of largest truck

capoinstro
max capacity of the largest truck equipped with the instrumentation de-

manded by order o

capoinstro

min capacity of the smallest truck equipped with the instrumentation de-

manded by order o

tinstrk type of unloading equipment of truck k

tinstrc type of unloading equipment for trucks within class c

pk home plant of truck k

pc home plant of trucks within class c

npc number of trucks of class c at plant p

URo unloading rate at construction site associated with order o

Uk
o time required to unload truck k at construction site of order o

U c
o time required to unload truck of class c at construction site of order o

Lc
p time required to load truck of class c at plant p

TTp,o travel time from plant p to construction site of order o

TTo,p travel time from order o to plant p

TTLk
p,o travel time (from plant p to order o) + time for loading of truck k at p

TTLc
p,o travel time (from plant p to order o) + time for loading of truck of class

c at p

TTLk
o1,o2

travel time (from order o1 to order o2 via closest plant en route) plus

time for loading truck k there

TTLc
o1,o2

travel time (from order o1 to order o2 via closest plant en route) plus

time for loading truck of class c there

do
min minimum number of deliveries required for order o

cumCap(pat−o) capacity of trucks what will be removed from pattern of order o

cumCap(pat+o) capacity of trucks that will be inserted into pattern of order o

A.4. Decision Variables for VRP⋆

Symbol Description

zo,d binary, evaluates to 1 if delivery d for order o will be executed

ao,d start of delivery d for order o

101

A. Abbreviations and Notation

ao,d earliest possible start of delivery d for order o

bo,d end of delivery d for order o

yk
o,d binary, evaluates to 1 if truck k executes delivery d for order o

lateo gap before first delivery for order o

xp2ok
o,d binary, evaluates to 1 if truck k serves delivery d of order o first

xo2pk
o,d binary, evaluates to 1 if delivery d of order o is the last one served by

truck k

xo2oo2,d2,k
o1,d1

binary, evaluates to 1 if truck k serves delivery d2 of order o2 immediately

after having served delivery d1 of order o1

A.5. Decision Variables for MCNF (reduced version)

Symbol Description

waitc,to number of trucks of class c waiting (idle) in time t at construction site

of order o

chooseo,a binary, evaluates to 1 if pattern a is chosen for order o

stayHomec number of trucks of class c that remain idle throughout the day

moveP2Oc,t
o binary, number of trucks of class c that start being loaded at their home

plant in t in order to go to construction site associated with order o

immediately afterwards (first task per day)

moveO2P c,t
o number of trucks of class c that move back to their home plant in t after

unloading at order o

moveO2Oc,t
o1,o2

binary, number of trucks of class c leaving order o1 in time t and going

to o2 while being loaded at the closest plant en route

A.6. Decision Variables for MCNF (extensive version)

Symbol Description

waitALc,t
p number of trucks of class c waiting (full) at plant p in time t

waitBLc,t
p number of trucks of class c waiting (empty) at plant p in time t

chooseo,a binary, evaluates to 1 if pattern a is chosen for order o

stayHomec number of trucks of class c that remain idle throughout the day

102

A.7. Notation for Patterns

moveP2Oc,t
p,o binary, number of trucks of class c that start being loaded at plant p in

t in order to go to construction site associated with order o immediately

afterwards

moveO2P c,t
o,p number of trucks of class c that move to plant p in t after unloading at

order o

loadc,t
p number of trucks of class c start being loaded at plant p in time t

A.7. Notation for Patterns

Symbol Description

starto,a start of first unloading operation associated with pattern a of order o

endo,a end of last unloading operation associated with pattern a of order o

firsto,a class of truck scheduled for first unloading operation by pattern a of

order o

delayo,a gaps (before first delivery and between consecutive unloading opera-

tions) produced by pattern a of order o

P c,t
o,a binary indicator, equal to 1 if truck of class c is supposed to start un-

loading in t according to patter a of order o

103

A. Abbreviations and Notation

104

B. Additional Results

B.1. Bounds for VRP⋆

Table B.1.: Best Bounds after tmax = 150 seconds

Variant 1 Variant 2

cutmax

class n 100 500 1000 ∞ 100 500 1000 ∞

mini 1 316.92 316.92 316.92 316.92 331.02 331.02 331.02 331.02
2 754.43 754.43 754.43 754.43 754.43 754.43 754.43 754.43
3 903.51 903.51 917.16 903.51 922.02 922.02 922.02 922.02
4 1128.06 1128.06 1128.06 1128.06 1167.73 1167.73 1167.73 1167.73
5 640.56 640.56 640.56 640.56 642.07 642.07 642.07 642.07

small 6 1289.92 1289.92 1289.92 1289.92 1289.92 1289.92 1289.92 1289.92
7 1063.63 1063.63 1063.63 1063.63 1065.74 1065.74 1065.74 1065.74
8 1411.08 1411.08 1411.08 1411.08 1416.04 1416.04 1416.04 1416.04
9 1414.15 1414.15 1414.15 1414.15 1414.15 1414.15 1414.15 1414.15
10 1675.15 1675.15 1675.15 1675.15 1704.39 1704.39 1704.39 1704.39

medium 11 2137.28 2137.28 2137.28 2137.28 2137.28 2137.28 2137.28 2137.28
12 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15
13 1829.73 1829.73 1829.73 1829.73 1829.73 1829.73 1829.73 1829.73
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

large 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

105

B. Additional Results

Table B.2.: Best Bounds after tmax = 300 seconds

Variant 1 Variant 2

cutmax

class n 100 500 1000 ∞ 100 500 1000 ∞

mini 1 331.02 316.92 316.92 316.92 331.02 331.02 331.02 331.02
2 754.43 754.43 754.43 754.43 754.43 754.43 754.43 754.43
3 903.51 903.51 923.69 903.51 922.02 922.02 922.02 922.02
4 1128.06 1130.67 1128.06 1128.06 1169.11 1169.11 1169.11 1169.11
5 642.15 640.64 641.19 640.56 642.07 642.07 642.07 642.07

small 6 1289.92 1289.92 1289.92 1289.92 1297.42 1297.42 1297.42 1297.42
7 1063.63 1070.99 1070.99 1070.99 1078.35 1078.35 1078.35 1078.35
8 1411.08 1411.08 1411.08 1411.08 1416.49 1416.49 1416.49 1416.49
9 1414.15 1414.15 1414.15 1414.15 1414.15 1414.15 1414.15 1414.15
10 1675.15 1675.15 1675.15 1675.15 1704.39 1704.39 1704.39 1704.39

medium 11 2137.28 2137.28 2137.28 2137.28 2137.28 2137.28 2137.28 2137.28
12 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15
13 1829.73 1829.73 1829.73 1829.73 1831.16 1831.16 1831.16 1831.16
14 1892.10 1892.10 1892.10 1892.10 1892.10 1892.10 1892.10 1892.10
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

large 16 2017.20 2017.20 2017.20 2017.20 2017.20 2017.20 2017.20 2017.20
17 2028.88 2028.88 2028.88 2028.88 2028.88 2028.88 2028.88 2028.88
18 2080.05 2080.05 2080.05 2080.05 2080.05 2080.05 2080.05 2080.05
19 0.00 2445.68 2445.68 2445.68 2445.68 2445.68 2445.68 2445.68
20 2016.68 2016.68 2016.68 2016.68 2016.68 0.00 2016.68 2016.68

106

B.1. Bounds for VRP⋆

Table B.3.: Best Bounds after tmax = 600 seconds

Variant 1 Variant 2

cutmax

class n 100 500 1000 ∞ 100 500 1000 ∞

mini 1 331.02 316.92 316.92 316.92 331.02 331.02 331.02 331.02
2 754.43 754.43 754.43 754.43 754.43 754.43 754.43 754.43
3 903.51 903.51 923.69 903.51 922.02 922.02 922.02 922.02
4 1128.06 1130.67 1128.06 1128.06 1170.34 1171.42 1171.42 1171.42
5 642.15 640.64 641.19 640.56 642.07 642.07 642.07 642.07

small 6 1289.92 1289.92 1289.92 1289.92 1297.62 1297.62 1297.62 1297.62
7 1070.99 1070.99 1070.99 1070.99 − 1079.65 1079.65 1079.65
8 1411.08 1417.38 1429.72 1416.50 1422.28 1422.28 1422.28 1422.28
9 1414.15 1414.15 1414.15 1414.15 1414.15 1414.15 1414.15 1414.15
10 1675.15 1675.15 1704.39 1704.39 1704.39 1704.39 1704.39 1704.39

medium 11 2137.28 2137.28 2137.28 − 2156.16 2156.16 2156.16 2156.16
12 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15
13 1829.73 1829.73 1829.73 1829.73 1831.16 1831.16 1831.16 1831.16
14 1892.10 1892.10 1892.10 1892.10 1892.10 1892.10 1892.10 1892.10
15 0.00 0.00 0.00 0.00 1749.35 0.00 1749.35 0.00

large 16 2017.20 2017.20 2017.20 2017.20 2024.91 2024.91 2024.91 2024.91
17 2028.88 2028.88 2028.88 2028.88 2032.69 2032.69 2032.69 2032.69
18 2080.05 2080.05 2080.05 2080.05 2080.05 2080.05 2080.05 2080.05
19 2445.68 2445.68 2445.68 2445.68 2445.68 2445.68 2445.68 2445.68
20 2016.68 2016.68 2016.68 2016.68 2016.68 2016.68 2016.68 2016.68

107

B. Additional Results

Table B.4.: Best Bounds after tmax = 1200 seconds

Variant 1 Variant 2

cutmax

class n 100 500 1000 ∞ 100 500 1000 ∞

mini 1 331.02 316.92 316.92 316.92 331.02 331.02 331.02 331.02
2 754.43 754.43 754.43 754.43 754.43 754.43 754.43 754.43
3 903.51 903.51 923.69 903.51 922.02 922.02 922.02 922.02
4 1128.06 1130.67 1128.06 1128.06 1170.34 1171.42 1171.42 1171.42
5 642.15 640.64 641.19 640.56 642.07 642.07 642.07 642.07

small 6 1289.92 1297.62 1297.62 1297.62 1303.14 1303.14 1303.14 1303.14
7 1070.99 1070.99 1070.99 1070.99 − − − −

8 1416.50 1430.60 1429.72 1417.45 1422.28 1422.28 1422.28 1422.28
9 1414.15 1414.15 1414.15 1414.15 1414.71 1414.71 1414.71 1414.71
10 1704.39 1704.39 1704.39 1704.39 1704.39 1704.39 1704.39 1704.39

medium 11 2137.28 2137.28 2137.28 − 2156.50 2156.50 2156.50 2156.50
12 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15
13 1829.73 1831.16 1831.27 1831.16 1839.73 1839.73 1839.73 1839.73
14 1892.10 1892.10 1892.10 − 1920.86 1920.81 1920.86 1920.81
15 1749.35 1749.35 1749.35 1749.35 1762.78 1762.78 1762.78 1762.78

large 16 2017.20 2017.20 2017.20 − 2025.04 2025.04 2025.04 2025.04
17 2028.88 2028.88 2028.88 2028.88 2032.69 2032.69 2032.69 2032.69
18 2080.05 2080.05 2080.05 2080.05 2093.61 2093.61 2093.61 2093.61
19 2445.68 2445.68 2445.68 2445.68 2450.60 2450.60 2450.60 2450.60
20 2016.68 2016.68 2016.68 − 2023.06 2023.06 2023.06 2023.06

108

B.1. Bounds for VRP⋆

Table B.5.: Best Bounds after tmax = 2400 seconds

Variant 1 Variant 2

cutmax

class n 100 500 1000 ∞ 100 500 1000 ∞

mini 1 331.02 331.02 316.92 316.92 331.02 331.02 331.02 331.02
2 754.43 754.82 754.43 754.43 754.50 754.43 754.43 754.43
3 903.51 903.51 923.69 903.51 922.02 922.02 922.02 922.02
4 1128.06 1130.67 1128.06 1128.06 1170.34 1171.42 1171.42 1171.42
5 − 640.64 641.19 − 642.07 642.07 642.07 642.07

small 6 1298.32 1297.89 1298.24 1297.62 1303.16 1303.16 1303.16 1303.16
7 1070.99 1070.99 1070.99 1070.99 − − − −

8 1416.50 1430.60 1429.72 1430.79 1422.29 1422.29 1422.29 1422.29
9 1414.15 1414.15 1414.15 1414.15 1414.73 1414.73 1414.73 1414.73
10 1704.39 1704.39 1704.39 1704.39 1704.39 1704.39 1704.39 1704.39

medium 11 2137.28 2137.28 2137.28 − 2157.27 2157.27 2157.27 2157.27
12 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15 1813.15
13 1839.73 1831.16 1839.73 1839.73 1839.73 1839.73 1839.73 1839.73
14 1892.10 1892.10 1892.10 − 1921.21 1921.21 1921.21 1921.21
15 1749.35 1749.35 1749.35 1749.35 1762.92 1762.92 1762.92 1762.92

large 16 2017.20 2017.20 2017.20 − 2025.04 2025.04 2025.04 2025.04
17 2028.88 2028.88 2032.69 2032.69 2032.69 2032.69 2032.69 2032.69
18 2080.05 2080.05 2080.05 2080.05 2093.74 2093.74 2093.74 2093.74
19 2445.68 2445.68 2445.68 − 2450.63 2450.63 2450.63 2450.63
20 2016.68 2016.68 2016.68 − 2023.06 2023.06 2023.06 2023.06

109

B. Additional Results

B.2. Integrative Hybrid Approach

Table B.6.: Integrative Hybrid Approach (tmax = 150)

tinit

class n 60 120 150 300 600 900 1200 1500 1800 2400 4800

mini 1 331.90 335.47
2 762.00 762.00
3 1171.75 1164.73
4 1197.58 1191.70
5 700.72 697.60

small 6 1894.28 1839.27
7 1251.54 1216.38
8 1631.71 1591.79
9 1786.94 1718.54
10 2405.84 2288.94

medium 11 4279.80 3581.56
12 2424.76 2206.67
13 2463.69 2275.26
14 4074.38 3811.67
15 3289.31 2841.12

large 16 3821.47 3227.00
17 3004.15 2734.33
18 4191.80 3728.92
19 − −
20 4287.11 3674.86

Table B.7.: Integrative Hybrid Approach (tmax = 300)

tinit

class n 60 120 150 300 600 900 1200 1500 1800 2400 4800

mini 1 331.90 331.90 335.47
2 762.00 762.00 762.00
3 1162.48 1157.38 1152.05
4 1197.58 1190.88 1190.88
5 698.42 697.60 695.08

small 6 1881.50 1825.74 1798.62
7 1250.38 1179.90 1184.12
8 1598.80 1568.63 1559.35
9 1752.57 1696.68 1688.96
10 2329.71 2238.79 2217.05

medium 11 4228.69 3544.17 3353.57
12 2358.29 2186.34 2162.54
13 2341.21 2221.57 2215.27
14 4062.45 3752.92 3527.57
15 3231.32 2821.78 2687.63

large 16 3766.72 3178.24 2997.30
17 2969.44 2700.67 2649.78
18 4181.88 3707.61 3539.79
19 − − −
20 5021.12 3701.22 3391.86

110

B.2. Integrative Hybrid Approach

Table B.8.: Integrative Hybrid Approach (tmax = 600)

tinit

class n 60 120 150 300 600 900 1200 1500 1800 2400 4800

mini 1 331.90 331.90 331.90 331.90
2 762.00 762.00 762.00 762.00
3 1150.49 1110.80 1116.53 1110.59
4 1197.58 1190.49 1185.88 1190.49
5 696.72 697.60 691.25 691.08

small 6 1874.55 1816.44 1776.32 1694.00
7 1242.11 1174.52 1181.74 1176.67
8 1578.36 1561.36 1545.48 1557.68
9 1724.32 1689.64 1665.59 1640.87
10 2268.85 2185.84 2175.64 2128.17

medium 11 4219.68 3486.47 3349.71 3023.36
12 2245.96 2135.07 2148.28 2106.55
13 2226.56 2156.43 2163.33 2101.89
14 4021.49 3736.13 3513.46 3358.04
15 3161.56 2746.86 2639.16 2407.65

large 16 3701.50 3101.75 2934.02 2742.30
17 2899.63 2641.67 2614.42 2531.99
18 4164.14 3670.92 3516.67 3062.59
19 − − − −
20 6033.30 4848.97 3645.90 3334.43

Table B.9.: Integrative Hybrid Approach (tmax = 1200)

tinit

class n 60 120 150 300 600 900 1200 1500 1800 2400 4800

mini 1 331.90 331.90 331.90 331.90 331.90 331.90
2 762.00 762.00 762.00 762.00 762.00 762.00
3 1138.82 1099.04 1098.11 1087.28 1071.49 1062.99
4 1197.19 1189.67 1185.88 1190.49 1190.49 1190.49
5 694.76 696.46 691.08 686.47 682.14 681.96

small 6 1858.35 1814.44 1769.45 1690.41 1592.11 1562.65
7 1236.31 1170.91 1180.73 1173.96 1156.82 1155.25
8 1570.12 1553.92 1539.43 1548.48 1544.19 1545.92
9 1706.07 1668.13 1633.09 1615.83 1599.56 1604.68
10 2220.69 2161.41 2139.71 2112.97 2102.48 2107.90

medium 11 4219.68 3466.86 3349.71 3018.54 2613.52 2585.93
12 2213.96 2038.98 2130.81 2103.72 2051.51 2032.19
13 2192.04 2131.11 2121.27 2081.78 2043.44 2042.24
14 3992.90 3731.96 3513.46 3348.90 2895.41 2839.46
15 3110.70 2732.53 2590.51 2373.21 2248.45 2205.14

large 16 3841.70 3149.58 2921.82 2726.80 2509.83 2444.27
17 2871.08 2620.69 2608.53 2496.77 2370.24 2359.08
18 4106.38 3664.02 3493.58 3050.96 2735.65 2650.42
19 − − − − − −
20 6033.30 4848.97 3645.90 3555.21 2640.32 2583.71

111

B. Additional Results

Table B.10.: Integrative Hybrid Approach (tmax = 2400)

tinit

class n 60 120 150 300 600 900 1200 1500 1800 2400 4800

mini 1 331.90 331.90 331.90 331.90 331.90 331.90 331.90 331.90 331.90
2 762.00 762.00 762.00 762.00 762.00 762.00 762.00 762.00 762.00
3 1116.66 1099.04 1069.56 1075.97 1061.66 1044.90 1059.56 1042.75 1042.08
4 1192.19 1189.67 1185.49 1190.49 1189.67 1189.67 1185.49 1185.49 1185.49
5 694.76 693.95 687.17 686.47 681.79 680.90 681.27 676.76 676.76

small 6 1834.01 1811.34 1765.83 1681.60 1567.23 1559.16 1538.27 1516.62 1505.04
7 1218.94 1167.82 1172.47 1170.94 1156.73 1155.25 1156.73 1156.56 1153.59
8 1557.17 1553.66 1536.75 1546.95 1541.57 1545.64 1544.17 1545.30 1547.35
9 1690.88 1661.16 1601.71 1615.02 1587.44 1590.84 1587.99 1593.43 1597.85
10 2196.48 2145.52 2114.41 2108.64 2078.83 2072.46 2097.76 2059.34 2059.95

medium 11 4219.68 3465.39 3349.71 2996.55 2608.71 2576.65 2551.84 2506.82 2494.88
12 2192.77 2022.67 2128.45 2098.12 2033.02 2013.45 2009.84 2019.08 2013.75
13 2171.09 2113.07 2106.51 2073.27 2038.41 2024.22 2021.76 2023.03 2015.38
14 3991.67 3725.19 3513.46 3347.06 2892.91 2838.29 2777.94 2646.94 2610.90
15 3109.62 2732.53 2585.18 2354.38 2246.30 2184.54 2178.16 2115.64 2121.93

large 16 3802.59 3103.19 2889.88 2885.28 2464.54 2413.11 2384.89 2345.05 2353.02
17 2864.38 2563.43 2557.83 2475.99 2361.02 2329.51 2329.63 2293.47 2281.25
18 4073.55 3664.02 3462.90 3032.72 2716.06 2641.19 2578.93 2577.57 2560.79
19 − − − − − − − − −
20 6033.30 4848.97 3645.90 3555.21 2640.32 − 2382.03 − −

Table B.11.: Integrative Hybrid Approach (tmax = 4800)

tinit

class n 60 120 150 300 600 900 1200 1500 1800 2400 4800

mini 1 331.90 331.90 331.90 331.90 331.90 331.90 331.90 331.90 331.90 331.90 331.90
2 762.00 762.00 762.00 762.00 762.00 762.00 762.00 762.00 762.00 762.00 762.00
3 1114.16 1083.58 1054.33 1072.11 1053.06 1030.71 1038.56 1041.61 1019.89 1034.46 1037.09
4 1186.37 1189.67 1184.67 1189.67 1184.67 1189.67 1185.49 1184.67 1185.49 1185.49 1184.67
5 692.75 693.07 686.99 685.60 681.09 680.26 681.27 676.76 676.06 676.76 675.06

small 6 1834.01 1806.18 1756.30 1681.60 1564.67 1549.50 1522.89 1507.94 1503.69 1500.39 1492.30
7 1216.77 1162.34 1162.31 1170.94 1149.93 1155.22 1156.27 1156.15 1148.92 1147.51 1142.28
8 1540.34 1550.75 1535.50 1546.95 1539.01 1540.56 1542.12 1536.02 1541.99 1541.76 1544.17
9 1687.92 1654.67 1599.11 1607.64 1570.56 1568.53 1586.46 1585.24 1596.95 1581.15 1560.46
10 2159.72 2121.08 2078.92 2108.20 2062.99 2071.07 2083.81 2056.36 2039.22 2024.79 2019.48

medium 11 4219.68 3452.58 3349.71 2996.55 2595.74 2576.65 2545.46 2495.11 2493.90 2467.09 2465.65
12 2191.85 2014.19 2094.11 2098.12 2011.71 1994.07 2001.48 1999.29 2008.85 1988.17 1981.16
13 2126.19 2072.01 2074.27 2059.25 2037.51 2015.02 2015.20 2021.88 2013.96 2015.84 2009.60
14 3962.31 3725.19 3513.46 3347.06 2884.09 2832.11 2777.94 2646.09 2610.40 2582.00 2514.39
15 3061.62 2732.53 2534.58 2315.58 2240.34 2179.56 2136.37 2089.72 2099.15 2092.75 2095.57

large 16 3946.87 3103.19 3008.82 2885.28 2508.52 2392.26 2384.89 2338.96 2307.73 2336.68 2294.50
17 2767.97 2533.12 2536.84 2435.93 2342.26 2312.45 2299.36 2287.58 2268.45 2262.07 2227.11
18 3801.78 3664.02 3414.58 3032.72 2677.79 2641.19 2588.16 2577.57 2551.34 2518.80 2477.30
19 − − − − − − − − − − −
20 6033.30 4848.97 3645.90 3555.21 2640.32 − − − − 2266.32 2270.82

112

B.3. Brute Force Patterns for MCNF

B.3. Brute Force Patterns for MCNF

Table B.12.: Best solutions found using MCNF generating pinit brute force patterns

pinit

class n 50 100 200 300 400 500 600 700 800 900 1000

mini 1 367.30 352.77 333.13 333.13 333.13 333.13 333.13 333.13 333.13 333.13 333.13
2 928.08 811.62 769.53 769.53 764.55 764.55 764.55 762.00 762.00 762.00 762.00
3 1546.52 1450.65 1243.77 1239.68 1166.12 1159.48 1159.48 1159.48 1159.48 1159.48 1159.48
4 1850.83 1619.82 1436.48 1359.07 1304.43 1281.73 1281.73 1281.73 1279.48 1270.95 1270.95
5 1050.95 929.23 834.52 813.80 757.20 756.15 743.32 743.32 743.32 743.32 743.32

small 6 7084.05 2982.80 2297.13 2088.30 2010.80 1995.25 1995.25 1991.57 1976.62 1976.62 1962.55
7 1596.80 1407.12 1243.03 1238.72 1225.35 1210.20 1206.65 1205.57 1205.57 1196.62 1196.62
8 2551.23 2108.20 1952.98 1856.32 1802.72 1793.82 1793.82 1793.57 1783.25 1782.17 1768.00
9 2746.90 2284.02 2009.13 1988.42 1974.98 1952.58 1931.62 1863.90 1863.90 1852.80 1852.18
10 3405.92 2813.27 2733.05 2723.20 2692.08 2640.13 2608.93 2608.18 2566.40 2460.57 2534.43

medium 11 8381.37 3684.87 3162.70 3425.08
12 3022.97 2572.33 2355.42 2233.73
13 2964.65 2501.37 2348.83 2335.82
14 13126.60 4192.85 3527.02 3407.93
15 8408.03 3249.75 2843.18 2689.25

large 16 8387.47 3401.10 3055.58
17 8348.70 3024.80 2703.47
18 8666.98 3318.97 3014.60
19 5006.97 3966.80 3695.02
20 3823.08 3110.68 2782.55

Table B.13.: Average solutions found using MCNF generating pinit brute force patterns

pinit

class n 50 100 200 300 400 500 600 700 800 900 1000

mini 1 461.18 383.50 345.99 337.93 336.98 333.59 333.31 333.13 333.13 333.13 333.13
2 1005.59 853.17 782.50 774.16 770.35 768.36 767.36 766.85 766.85 764.04 764.04
3 1594.44 1495.36 1352.98 1335.16 1269.97 1252.57 1227.86 1224.45 1219.07 1218.12 1216.82
4 1875.05 1659.10 1486.39 1399.29 1363.27 1342.67 1320.12 1314.11 1304.49 1298.50 1287.11
5 1155.83 988.98 888.29 856.06 798.12 788.04 780.15 777.57 773.24 771.87 770.09

small 6 7295.48 6151.30 2346.93 2192.48 2163.12 2148.50 2110.46 2065.95 2033.24 2023.92 2006.49
7 1707.88 1451.65 1320.50 1263.08 1237.91 1229.68 1221.10 1217.78 1215.98 1206.43 1204.72
8 3470.82 2178.06 1991.37 1903.67 1867.28 1854.65 1844.89 1834.08 1824.05 1820.43 1796.22
9 3820.16 2427.55 2240.99 2154.32 2081.14 2051.82 2012.20 1944.49 1939.76 1923.78 1918.62
10 5803.57 3047.74 2785.79 2747.37 2717.86 2683.79 2653.55 2633.11 2619.85 2559.54 2559.33

medium 11 9401.47 3873.28 3390.79 3425.08
12 3166.76 2645.08 2397.36 2233.73
13 3049.38 2643.80 2411.31 2335.82
14 14246.68 7514.34 3639.64 3407.93
15 11793.87 5901.09 2893.83 2689.25

large 16 9464.01 3520.92 3111.70
17 9476.18 3128.63 2781.07
18 9887.88 3535.87 3078.77
19 5092.20 4133.45 3781.13
20 4711.64 3226.02 2941.22

113

B. Additional Results

Table B.14.: Average runtimes using MCNF generating pinit brute force patterns

pinit

class n 50 100 200 300 400 500 600 700 800 900 1000

mini 1 1.3 1.4 1.8 2.1 2.2 2.5 2.7 3.1 3.3 3.7 3.8
2 1.6 1.7 2.2 2.5 2.7 2.9 3.1 3.4 3.8 4.0 4.5
3 2.9 4.8 6.8 11.4 10.6 14.9 16.2 19.4 23.6 28.4 35.0
4 3.6 4.8 6.1 6.1 6.7 6.8 11.3 12.5 12.0 15.0 18.1
5 2.9 3.5 4.5 4.9 5.2 6.2 6.6 8.1 8.5 9.0 11.1

small 6 7.8 74.2 483.0 1921.2 7200.3 19185.0 25341.8 32752.4 47531.2 86220.8 64091.1
7 5.2 7.2 9.1 13.3 11.6 17.1 21.2 23.1 28.9 28.0 26.9
8 8.4 12.4 25.4 24.3 38.0 86.2 104.5 101.6 103.5 288.4 115.2
9 10.5 23.1 119.7 155.9 180.9 284.1 462.1 165.9 212.6 453.5 810.5
10 11.0 30.2 260.7 1055.7 4810.0 7633.6 35475.3 41389.9 92973.0 69090.8 103187.0

medium 11 29.9 371.9 5964.1 36608.8
12 21.2 33.0 106.1 28.1
13 17.2 33.3 38.8 53.3
14 81.3 3359.3 41303.4 200330.0
15 44.8 854.1 11267.7 28066.3

large 16 130.6 1828.8 16006.2
17 37.7 259.2 2597.4
18 152.2 557.4 2516.2
19 107.4 5741.0 99823.4
20 71.4 352.4 1515.5

114

B.4. Intelligent Base Patterns for MCNF

B.4. Intelligent Base Patterns for MCNF

Table B.15.: Best and Average Solutions found using compatible base patterns for MCNF

zavg zmin

pinit

class n 5 10 15 20 5 10 15 20

mini 1 338.78 334.02 334.02 333.13 353.16 334.71 334.19 333.41
2 945.82 827.65 794.23 771.48 1016.94 890.65 843.19 819.04
3 1448.75 1363.10 1283.45 1222.55 1543.49 1409.89 1332.08 1297.46
4 1617.27 1482.32 1420.20 1327.47 1817.33 1556.76 1493.29 1403.63
5 1076.58 906.35 856.77 796.15 1114.29 961.52 893.26 838.80

small 6 2425.33 2342.55 2191.92 2168.05 2832.13 2541.29 2327.57 2236.54
7 1530.80 1388.32 1301.95 1244.38 1575.77 1404.75 1329.10 1276.04
8 2281.30 1996.72 1923.43 1922.65 2438.96 2118.73 2025.37 1947.91
9 2734.27 2108.25 2085.53 2055.27 2962.82 2373.83 2190.05 2131.55
10 2968.23 2602.97 2553.97 2480.60 3221.10 2762.44 2619.65 2519.20

medium 11 3835.87 3513.17 3260.20 3136.22 4222.74 3542.27 3292.25 3173.99
12 3249.38 2723.52 2427.20 2376.78 3363.17 2854.08 2588.08 2506.69
13 3108.75 2684.90 2473.07 2437.12 3274.88 2760.34 2555.52 2478.77
14 5011.77 3677.72 3303.03 3237.23 5346.76 3901.00 3446.81 3287.30
15 4268.37 3244.62 2920.75 2739.30 4762.58 3367.29 2973.71 2834.30

large 16 3794.52 3128.00 2881.88 2812.85 4465.41 3406.65 3083.81 2944.49
17 4191.22 3216.30 2867.75 2652.65 4577.36 3330.29 2942.87 2767.51
18 4611.90 3659.85 3253.72 3179.18 5006.35 3796.61 3396.58 3260.93
19 4969.63 3982.92 3624.58 3512.55 5166.71 4068.27 3771.53 3598.98
20 4551.03 3332.37 3123.72 2956.88 5043.90 3429.80 3137.03 2992.23

115

B. Additional Results

Table B.16.: Average total run times and time for generating pinit compatible base patterns

tavg tinit
avg

pinit

class n 5 10 15 20 5 10 15 20

mini 1 2.48 2.61 2.71 3.13 0.01 0.02 0.03 0.06
2 2.60 2.85 2.98 3.09 0.02 0.03 0.05 0.06
3 3.15 5.35 6.25 7.88 0.03 0.07 0.12 0.16
4 3.90 4.97 5.77 6.12 0.03 0.06 0.10 0.14
5 3.21 3.87 4.21 4.80 0.02 0.05 0.08 0.13

small 6 8.00 17.38 41.70 118.29 0.09 0.18 0.28 0.40
7 5.16 8.03 10.69 11.89 0.05 0.10 0.17 0.23
8 7.83 12.61 19.34 22.06 0.07 0.15 0.24 0.33
9 11.06 30.14 50.59 104.31 0.09 0.19 0.31 0.42
10 12.44 21.97 49.15 59.97 0.12 0.24 0.38 0.52

medium 11 24.92 111.26 382.20 1320.30 0.20 0.42 0.64 0.88
12 17.45 45.51 81.03 279.25 0.17 0.34 0.52 0.71
13 22.55 56.07 58.84 135.90 0.19 0.39 0.60 0.83
14 37.27 482.57 2393.55 8064.79 0.27 0.56 0.85 1.13
15 42.79 201.28 510.24 2003.82 0.28 0.57 0.88 1.21

large 16 37.65 241.08 600.34 1802.65 0.34 0.72 1.11 1.52
17 59.09 239.34 624.55 1043.74 0.28 0.53 0.82 1.11
18 56.94 347.84 1644.19 3508.40 0.34 0.72 1.08 1.48
19 83.06 778.10 5792.82 24195.52 0.34 0.70 1.06 1.45
20 46.39 256.72 813.22 1715.96 0.43 0.89 1.35 1.80

116

B.5. VNS

B.5. VNS

Table B.17.: Best Solutions (zmin) found using VNS after tmax seconds

tmax

class n 150 300 600 1200 2400 4800

mini 1 331.90 331.90 331.90 331.90 331.90 331.90
2 762.00 762.00 762.00 762.00 762.00 762.00
3 1090.90 1090.90 1090.90 1090.90 1090.90 1089.68
4 1184.95 1182.97 1182.97 1182.97 1182.97 1182.97
5 675.45 675.45 675.45 675.45 671.97 671.97

small 6 1618.38 1590.83 1589.95 1568.72 1568.72 1568.72
7 1161.83 1161.83 1161.83 1161.83 1148.02 1148.02
8 1534.83 1534.13 1534.13 1534.13 1534.13 1534.13
9 1680.62 1556.23 1547.97 1546.58 1535.02 1535.02
10 2404.03 2081.63 2057.55 2057.55 2055.73 2055.73

medium 11 3629.38 3185.18 2628.63 2610.77 2590.03 2566.92
12 2585.60 2127.08 2056.60 1991.57 1921.03 1921.03
13 2785.35 2040.92 2040.92 2039.75 2036.05 2030.32
14 4010.82 3705.90 3201.90 2738.12 2691.32 2592.85
15 3694.93 3320.70 2450.13 2297.12 2175.95 2175.70

large 16 3861.93 3367.17 3052.72 2499.27 2448.42 2441.40
17 3706.55 3224.45 2736.68 2374.28 2373.20 2346.05
18 3946.97 3483.98 3038.58 2586.58 2533.83 2533.83
19 4494.88 4206.72 3854.63 3331.78 3112.65 3073.52
20 4167.85 3360.42 3227.52 2666.80 2316.08 2279.45

Table B.18.: Average Solutions (zavg) found using VNS after tmax seconds

tmax

class n 150 300 600 1200 2400 4800

mini 1 331.90 331.90 331.90 331.90 331.90 331.90
2 763.02 762.51 762.51 762.51 762.51 762.51
3 1139.23 1134.98 1132.15 1127.53 1121.20 1112.31
4 1193.84 1192.63 1190.92 1188.52 1186.11 1186.11
5 700.87 700.87 699.56 697.99 697.29 697.29

small 6 1769.89 1673.09 1642.54 1603.94 1600.27 1585.63
7 1230.36 1228.30 1226.03 1211.12 1189.80 1189.58
8 1606.13 1600.29 1588.07 1587.66 1575.62 1571.76
9 1738.37 1689.96 1627.58 1601.64 1583.90 1583.53
10 2639.71 2226.19 2138.81 2120.57 2109.56 2096.12

medium 11 4012.65 3502.68 2836.28 2748.02 2679.89 2667.59
12 2869.20 2436.70 2177.31 2055.58 2016.84 2007.63
13 2962.88 2191.52 2104.50 2077.61 2050.92 2047.20
14 4814.34 4256.65 3814.48 3082.71 2860.66 2784.32
15 4177.63 3734.78 3232.86 2426.04 2240.03 2221.53

large 16 4634.89 3986.32 3353.09 2706.43 2519.82 2496.31
17 4105.21 3492.57 3100.87 2474.92 2418.08 2380.84
18 4456.51 3816.04 3442.29 2731.30 2628.57 2562.18
19 4938.90 4366.80 3978.70 3483.62 3257.61 3214.05
20 4374.43 3804.66 3481.08 2986.49 2511.37 2443.95

117

B. Additional Results

B.6. Cooperative Hybrid Approach

Table B.19.: Best Solutions (zmin) found using Cooperative Hybrid after tmax seconds

tmax

class n 150 300 600 1200 2400 4800

mini 1 331.90 331.90 331.90 331.90 331.90 331.90
2 762.00 762.00 762.00 762.00 762.00 762.00
3 1053.12 1021.58 1026.07 1021.58 1011.70 1021.08
4 1182.97 1182.97 1182.97 1182.97 1182.97 1182.97
5 670.42 670.42 670.42 666.93 666.93 666.93

small 6 1599.85 1581.68 1510.13 1529.15 1510.10 1524.52
7 1139.53 1118.00 1131.77 1118.00 1127.08 1120.32
8 1547.82 1541.45 1510.75 1532.22 1508.13 1527.23
9 1575.98 1547.87 1543.00 1545.35 1532.32 1529.35
10 2122.33 2086.23 2097.42 2075.57 2000.05 2031.20

medium 11 2698.88 2632.18 2601.60 2512.98 2440.63 2395.48
12 2052.37 1953.87 1926.78 1951.82 1939.23 1884.97
13 2100.62 2025.88 2022.67 2006.85 2007.53 1993.88
14 3333.25 2784.83 2634.17 2432.48 2438.58 2457.80
15 2565.32 2216.43 2156.77 2133.28 2127.77 2091.17

large 16 2673.67 2616.25 2277.22 2249.10 2323.70 2300.85
17 2444.65 2312.23 2215.73 2166.58 2163.87 2167.77
18 3123.72 2849.75 2523.17 2405.98 2358.03 2367.25
19 3499.70 3347.53 2939.25 2890.43 2917.38 2853.68
20 2868.47 2536.55 2371.52 2284.60 2277.48 2189.02

Table B.20.: Average Solutions (zavg) found using Cooperative Hybrid after tmax seconds

tmax

class n 150 300 600 1200 2400 4800

mini 1 331.90 331.90 331.90 331.90 331.90 331.90
2 762.51 762.51 762.51 762.00 762.00 762.00
3 1104.48 1062.30 1073.17 1059.42 1040.01 1036.69
4 1186.61 1185.39 1185.39 1185.39 1185.39 1184.60
5 688.38 689.31 688.79 679.56 683.76 678.10

small 6 1732.60 1639.95 1585.68 1573.40 1555.26 1573.61
7 1157.88 1140.30 1144.55 1135.49 1138.48 1127.76
8 1578.51 1585.43 1550.60 1565.74 1548.76 1544.42
9 1654.95 1615.70 1616.30 1588.14 1544.49 1553.17
10 2250.26 2155.51 2129.38 2139.45 2063.62 2091.77

medium 11 2909.58 2748.89 2688.99 2614.89 2512.02 2532.27
12 2193.88 2071.51 2034.41 1997.36 2009.64 1971.01
13 2178.18 2059.70 2050.10 2039.02 2045.22 2011.33
14 3641.25 3025.02 2834.58 2588.24 2539.27 2580.00
15 2726.87 2381.39 2214.86 2208.29 2197.62 2130.80

large 16 2984.90 2728.93 2440.06 2379.48 2379.70 2380.36
17 2692.13 2409.69 2323.32 2223.85 2235.77 2224.42
18 3410.02 2958.78 2705.24 2523.61 2532.91 2502.38
19 3734.63 3463.85 3094.95 3005.84 2960.84 2924.99
20 3157.13 2650.09 2496.88 2369.63 2357.72 2275.55

118

C. Acknowledgment

We would like to thank Hans Karl Huber and Daniela Feichter from Rienz Beton for pro-

viding us access to real-world data. This project was supported, in part, by FWF grant

P20342-NI3. Academic Licenses of XPRESS-MP (v. 2006B) by Dash Optimization as well

as CPLEX (v. 10.1) were used for the test runs.

The author would like to thank Martin W.P Savelsbergh and Juan José Salazar-González

for their valuable collaboration and useful insight into MCNF and VRP⋆ respectively.

119

C. Acknowledgment

120

Bibliography

Ahuja, R.K. and Magnanti, T.L. and Orlin, J.B. Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall, 1993.

Archetti, C. and Speranza, M.G. An Overview on the Split Delivery Vehicle Routing

Problem. In Operations Research Proceedings 2006, pages 123–127, 2007.

Archetti, C. and Mansini, R. and Speranza, M.G. Complexity and Reducibility of the

Skip Delivery Problem. Transportation Science, 39(2):182–187, 2005.

Archetti, C. and Savelsbergh, M.W.P. and Speranza, M.G. Worst-Case Analysis for Split

Delivery Vehicle Routing Problems. Transportation Science, 40(2):226–234, 2006.

Archetti, C. and Hertz, A. and Speranza, M.G. Metaheuristics for the Team Orienteering

Problem. Journal of Heuristics, 13(1):49–76, 2007.

Arunapuram, S. and Mathur, M. and Solow, D. Vehicle Routing and Scheduling with Full

Truckloads. Transportation Science, 37(2):170–182, 2003.

Ball, M.O. and Golden, B.L. and Assad, A.A. and Bodin, L.D. Planning for Truck Fleet

Size in the Presence of a Common-Carrier Option. Decision Sciences, 14(1), 1983.

Belenguer, J.M. and Martinez, M.C. and Mota, E. A Lower Bound for the Split Delivery

Vehicle Routing Problem. Operations Research, 48(5):801–810, 2000.

Bellmore, M. and Nemhauser, G.L. The Traveling Salesman Problem: A Survey. Opera-

tions Research, 16(3):538–558, 1968.

Blazewicz, J. and Pesch, E. and Sterna, M. and Werner, F. Metaheuristic Approaches for

the Two-Machine Flow-Shop Problem with Weighted Late Work Criterion and Common

Due Date. Computers and Operations Research, 35(2):574–599, 2008.

Blum, C. Beam-ACO: Hybridizing Ant Colony Optimization with Beam Search: An

Application to Open Shop Scheduling. Computers & Operations Research, 32:1565–

1591, 2005.

121

Bibliography

Bodin, L. and Golden, B. and Assad, A. and Ball, M. Routing and Scheduling of Vehicles

and Crews: The State of the Art. Computers & Operations Research, 10(2):63–211,

1983.

Bräysy, O. A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem

with Time Windows. INFORMS Journal of Computing, 15(4):347 – 368, 2003.

Bräysy, O. and Gendreau, M. Vehicle Routing Problem with Time Windows, Part I:

Route Construction and Local Search Algorithms. Transportation Science, 39:104 –

118, 2005a.

Bräysy, O. and Gendreau, M. Vehicle Routing Problem with Time Windows, Part II:

Metaheuristics. Transportation Science, 39:119 – 139, 2005b.

Burke, E.K. and Curtois, T. and Post, G. and Qu, R. and Veltman, B. A Hybrid Heuristic

Ordering and Variable Neighbourhood Search for the Nurse Rostering Problem. Euro-

pean Journal of Operational Research, 2007. to appear.

Chao, I.M. and Golden, B.L. and Wasil, E.A. A New Heuristic for the Multi-Depot Vehicle

Routing Problem that Improves upon Best Known Solutions. American Journal of

Mathematical and Management Sciences, 13:371–406, 1993.

Cordeau, J.F. and Gendreau, M. and Laporte, G. A Tabu Search Heuristic for Periodic

and Multi-Depot Vehicle Routing Problems. Networks, 30:105–119, 1997.

Cordeau, J.F. and Laporte, G. and Mercier, A. A Unified Tabu Search Heuristic for

Vehicle Routing Problems with Time Windows. Journal of the Operational Research

Society, 52:928–936, 2001.

Desrosiers, J. and Laporte, G. and Sauve, M. and Soumis, F. and Taillefer, S. Vehicle

Routing with Full Loads. Computers & Operations Research, 15:219–226, 1988.

Dror, M. and Trudeau, P. Savings by Split Delivery Routing. Transportation Science, 23:

141–145, 1989.

Dror, M. and Trudeau, P. Split Delivery Routing. Naval Research Logistics, 37:383–402,

1990.

Dror, M. and Laporte, G. and Trudeau, P. Vehicle Routing with Split Deliveries. Discrete

Applied Mathematics, 50:239–254, 1994.

122

Bibliography

Durbin, M. T. The Dance of the Thirty-Ton Trucks: Demand Dispatching in a Dynamic

Environment. PhD thesis, George Mason University, 2003.

ERMCO. Ready mixed concrete (A natural choice). European Ready Mixed Concrete

Organization, 2000.

ERMCO. European ready-mixed Concrete Industry Statistics. European Ready Mixed

Concrete Organization, 2004.

ERMCO. European ready-mixed Concrete Industry Statistics. European Ready Mixed

Concrete Organization, 2005.

Feillet, D. and Dejax, P. and Gendreau, M. and Gueguen, C. Vehicle Routing with Time

Windows and Split Deliveries. Working paper, 2002.

Fischetti, M. and Lodi, A. Local branching. Mathematical Programming, 98(1–3):23–47,

2003.

Gendreau, M. and Laporte, G. and Potvin, J.Y. , Local Search in Combinatorial Opti-

mization. John Wiley & Sons, New York (NY), USA, 1997.

Handbook of Metaheuristics. International Series in Operations Research & Management

Science. Kluwer Academic Publishers, Norwell (MA), USA, 2003.

Glover, F.W. and Klingman, D. and Phillips, N.V. Network Models in Optimization and

their Application in Practice. John Wiley & Sons, New York (NY), USA, 2003.

Gomory, R.E. Outline of an Algorithm for Integer Solutions to Linear Programs. Bulletin

of the American Mathematical Society, 64:275–278, 1958.

Gomory, R.E. Solving Linear Programming Problems in Integers. In Combinatorial Anal-

ysis, Proceedings of Symposia in Appied Mathematics, 1960.

Hansen, P. and Mladenović, N. Variable Neighborhood Search: Principles and Applica-

tions. European Journal of Operational Research, 130(3):449–467, 2001.

Hansen, P. and Mladenović, N. and Urošević, D. Variable Neighborhood Search and Local

Branching. Computers & Operations Research, 33(10):3034–3045, 2006.

Hansen, P. and Oğuz, C. and Mladenović, N. Variable Neighborhood Search for Minimum

Cost Berth Allocation. European Journal of Operational Research, 2007. to appear.

123

Bibliography

Hemmelmayr, V.C. and Doerner, K.F. and Hartl, R.F. A Variable Neighborhood Search

Heuristic for Periodic Routing Problems. European Journal of Operational Research,

2007. to appear.

Ho, S.C. and Haugland, D. A Tabu Search Heuristic for the Vehicle Routing Problem

with Time Windows and Split Deliveries. Computers & Operations Research, 31(12):

1947–1964, 2004.

Hoffman, K. and Durbin, M. The Dance of the Thirty Ton Trucks. Operations Research,

2007. to appear.

Hoos, H.H. and Stützle, T. Stochastic Local Search: Foundations & Applications. Morgan

Kaufmann Publishers, San Francisco (CA), USA, 2004.

Kindervater, G.A.P. and Savelsbergh, M.W.P. , Local Search in Combinatorial Optimiza-

tion. John Wiley & Sons, Chichester, USA, 1997.

Kirkpatrick, S. and Gelatt, C.D. and Vecchi, M.P. Optimization by Simulated Annealing.

Science, 220(4598):671–680, 1983.

Kytöjoki, J. and Nuortio, T. and Bräysy, O. and Gendreau, M. An Efficient Variable

Neighborhood Search Heuristic for Very Large Scale Vehicle Routing Problems. Com-

puters and Operations Research, 34(9):2743–2757, 2007.

Marchand, H. and Martin, A. and Weismanteil, R. and Wolsey, L. Cutting Planes in

Integer and Mixed Integer Programming. Discrete Applied Mathematics, 123:397–446,

2002.

Matsatsinis, N.F. Towards a Decision Support System for the Ready Concrete Distribution

System: A Case of a Greek Company. European Journal of Operational Research, 152

(2):487–499, 2004.

Mladenović, N. and Hansen, P. Variable Neighborhood Search. Computers & Operations

Research, 24(11):1097–1100, 1997.

Moder, J.J. and Phillips, C.R. and Davis, E.W. Project Management with CPM, PERT

and Precedence Diagramming. Van Nostrand Reinhold, New York (NY), USA, 1983.

Naso, D. and Surico, M. and Turchiano, B. and Kaymak, U. Genetic Algorithms for

Supply-Chain Scheduling: A Case Study in the Distribution of Ready-Mixed Concrete.

European Journal of Operational Research, 177(3):2069–2099, 2007.

124

Bibliography

Pitakaso, R. and Almeder, C and Doerner, K.F. and Hartl, R.F. Combining Population-

Based and Exact Methods for Mmulti-Level Capacitated Lot-Sizing Problems. Interna-

tional Journal of Production Research, 44(22):4755–4771, 2006.

Pitakaso, R. and Almeder, C. and Doerner, K.F. and Hartl, R.F. A MAX-MIN Ant System

for Unconstrained Multi-Level Lot-Sizing problems. Computers & Operations Research,

34:2533–2552, 2007.

Polacek, M. and Hartl, R.F. and Doerner, K.F. and Reimann, M. A Variable Neighborhood

Search for the Multi Depot Vehicle Routing Problem with Time Windows. Journal of

Heuristics, 10(6):613–627, 2004.

Polacek, M. and Doerner, K.F. and Hartl, R.F. and Kiechle, G. and Reimann, M. Schedul-

ing Periodic Customer Visits for a Traveling Salesperson. European Journal of Opera-

tional Research, 179(3):823–837, 2007a.

Polacek, M. and Doerner, K.F. and Hartl, R.F. and Maniezzo, V. A Variable Neighborhood

Search for the Capacitated Arc Routing Problem with Intermediate Facilities. Journal

of Heuristics, 2007b. to appear.

Prandstetter, M. and Raidl, G.R. An Integer Linear Programming Approach and a Hybrid

Variable Neighborhood Search for the Car Sequencing Problem. European Journal of

Operational Research, 2007. to appear.

Ribeiro, C.C. and Aloise, D. and Noronha, T.F. and Rocha, C. and Urrutia, S. An Effi-

cient Implementation of a VNS/ILS Heuristic for a Real-Life Car Sequencing Problem.

European Journal of Operational Research, 2007. to appear.

Schmid, V. and Doerner, K.F. and Hartl, R.F. and Savelsbergh, M.W.P. and Stoecher,

W. Hybridization of Exact Methods and Metaheuristics for Solving Full Truckload

Problems for Ready-Mixed Concrete. Presentation at Matheuristics 2006, 1st Workshop

on Mathematical Contributions to Metaheuristics, 2006a.

Schmid, V. and Doerner, K.F. and Hartl, R.F. and Savelsbergh, M.W.P. and Stoecher, W.

Hybridization of Exact Methods and Metaheuristics for Solving Full Truckload Problems

for Ready-Mixed Concrete. Presentation at IWDL 2006, International Workshop on

Distribution Logistics, 2006b.

Schmid, V. and Doerner, K.F. and Hartl, R.F. and Salazar-González, J.J. Local Branching

guided by Variable Neighborhood Search for Ready-Mixed Concrete Delivery Problems.

2007a. working paper.

125

Bibliography

Schmid, V. and Doerner, K.F. and Hartl, R.F. and Savelsbergh, M.W.P. and Stoecher, W.

An Effective Heuristic for Ready Mixed Concrete Delivery. Presentation at TRISTAN

VI, Sixth Triennial Symposium on Transportation Analysis, 2007b.

Schmid, V. and Doerner, K.F. and Hartl, R.F. and Savelsbergh, M.W.P. and Stoecher,

W. Hybridization of Exact and Metaheuristic Approaches: a Cooperative Local Search

and Network Flow Heuristic. Presentation at MIC 2007, Seventh International Meta-

heuristics Conference, 2007c.

Schmid, V. and Doerner, K.F. and Hartl, R.F. and Savelsbergh, M.W.P. and Stoecher, W.

A Hybrid Solution Approach for Ready-Mixed Concrete Delivery. 2007d. submitted.

Schrijver, A. On Cutting Planes. Annals of Discrete Mathematics, 9:291–296, 1980.

Tommelein, I.D. and Li, A. Just-In-Time Concrete Delivery: Mapping Alternatives for

Vertical Supply Chain Integration. In Proceedings of the Seventh Annual Conference

of the International Group for Lean Construction IGLC-7., pages 97–108. University of

California, Berkeley, 1999.

The Vehicle Routing Problem. Society for Industrial and Applied Mathematics, Philadel-

phia (PA), USA, 2001.

126

Abstract

Companies in the concrete industry are facing the following scheduling problem on a daily

basis: concrete produced at several plants has to be delivered at customers’ construction

sites using a heterogeneous fleet of vehicles in a timely, but cost-effective manner. As

the ordered quantity of concrete typically exceeds the capacity of a single vehicle several

deliveries need to be scheduled to fulfill an order. The deliveries cannot overlap and the

time between consecutive deliveries has to be small.

This thesis presents a broad range of different ways on how to solve the problem stated

above. Various solution methods based on exact, heuristic, meta-heuristic and hybrid

approaches have been developed.

Exact methods based on a formulation the so called VRP⋆ (a Split Delivery Multi Depot

Heterogeneous Vehicle Routing Problem with Time Windows) have been implemented.

The resulting problem formulation can be solved to optimality for very small instances. For

real-world-sized instances however, even with a steady increase in computational power,

just to “to MIP” is not the way to success. Hence an algorithm, which controls the solution

process of the embedded MIP-formulation, has been developed in order to tackler larger

problem instances. This integrative hybrid approach is based on Local Branching (LB)

which itself is guided by means of Variable Neighborhood Search (VNS). Attention has

also been paid to the development of valid inequalities and cuts in order to improve the

quality of lower bounds.

Another approach has been developed, which is based on a multi-commodity network

flow model (MCNF) formulation. Rather than having a comprehensive view on the prob-

lem only subparts are considered and solved to optimality. So called patterns (options on

how orders could be satisfied) are generated heuristically and serve as an input for the

MCNF. Given on a set of input pattern it is possible to solve the problem to optimality.

Moreover the entire problem can be tackled by just using VNS on its own. The best

results where obtained when combining the two approaches based on MCNF and VNS.

Both methods used solely are capable of solving such problems. However, only the co-

operative hybrid approach enables us to combine the strengths of both techniques and to

127

Abstract

compensate for their major drawbacks. Iteratively solutions obtained by MCNF serve as

input for VNS which is going to (locally) optimize it. The resulting solution (in terms of

pattern) is fed back into the MCNF problem, which is going to be optimized again.

It can be shown that both hybrid approaches and the embedded combination of two

methods are by far more efficient then the use of any approach solely. Additionally we

compare our algorithm to a software available in Austria, which is based on Simulated

Annealing (SA). Our hybrid algorithms outperform results obtained by the commercial

product.

128

Abstract in German

Beton erzeugende Unternehmen sehen sich täglich vor die Aufgabe gestellt, für die Be-

lieferung der Baustellen eine möglichst effiziente Tourenplanung - unter Berücksichtigung

ihrer heterogenen Fahrzeugflotte - zu erstellen. Da der Betonbedarf einer Baustelle die Ka-

pazität eines einzelnen Fahrzeuges übersteigt, muss in der Regel jede Baustelle mehrmals

hintereinander mit Beton beliefert werden. Das Planungsproblem ergibt sich nun insbeson-

dere daraus, dass sich aufeinander folgenden Lieferungen nicht überschneiden dürfen, da

nicht mehrere Fahrzeuge gleichzeitig entladen werden können. Eventuell entstehenden

Lücken zwischen aufeinanderfolgenden Lieferungen jedoch sollten möglichst kurz gehalten

werden.

Im Rahmen dieser Dissertation werden mehrere Methoden besprochen, mit Hilfe derer

eingangs erwähntes Tourenplanungsproblem gelöst werden kann. Die angewendeten Konzepte

basieren auf exakten Verfahren, Heuristiken, Metaheuristiken, sowie hybriden Ansätzen.

Ein exaktes Modell, beruhend auf einer Erweiterung des klassischen Vehicle Routing

Problems (VRP, Tourenplanungsproblem) wurde entwickelt. Allerdings lässt sich die

daraus resultierende Formulierung nur für äußerst kleine Instanzen exakt lösen. In der

Praxis hingegen, ist dieser Ansatz aufgrund der zu langen Rechenzeiten und des enor-

men Rechenaufwandes nicht sinnvoll anwendbar. Daher wurde ein von Local Branching

(LB) inspiriertes Verfahren konzipiert. Dieser integrativ hybride Ansatz wendet zusätzlich

Nachbarschaftstrukturen, wie sie auch bei Variable Neighborhood Search (VNS) angewen-

det werden, kombiniert an. Darüber hinaus wurden valid inequalities für eine Verbesserung

der unteren Schranken herangezogen.

Ein weiterer Ansatz beruht auf einer Formulierung für multi-commodity network flow

Problemen (MCNF). Anstatt einer globalen Sicht auf das Problem an sich, werden in

diesem Zusammenhang nur ausgewählte Subbereiche näher betrachtet. So genannte Muster

werden für alle Bestellungen generiert. Jedes Muster legt eindeutig fest, wie und wann

ein bestimmter Auftrag abgewickelt werden könnte. Neben der Auswahl der Fahrzeuge

wird auch der zeitliche Ablauf der Lieferungen aus Sicht der Baustelle bestimmt. All diese

Muster dienen als Input für die MCNF Formulierung, dessen Hauptaufgabe die Selektion

129

Abstract in German

genau eines Musters pro Auftrag darstellt. Gleichzeitig muss sichergestellt werden, dass

alle daraus resultierenden Touren aus Sicht der Fahrzeuge zeitlich tatsächlich durchführbar

sind.

Darüber hinaus kann die Problemstellung auch allein mithilfe von VNS gelöst werden.

Beide Verfahren sind zwar eigenständig in der Lage das Problem zu lösen, die besten

Ergebnisse wurden jedoch durch eine Kombination dieser Ansätze erzielt. Nur durch eine

gezielte kooperative Verzahnung der beiden Ansätze ist in der Lage die Stärken der beiden

zusammenzulegen und etwaige Nachteile zu verringern. Lösungen die vom MCNF-Ansatz

erzielt werden, dienen als Input für den VNS Ansatz. Dieser wiederum füttert sämtliche

neuen besten Lösungen (im Sinne der oben erwähnten Muster) zurück an das MCNF,

welches daraufhin einen erneuten Auswahlprozess initiiert.

Es wurde gezeigt, dass sich mit beiden hybriden Ansätzen ausgezeichnete Ergebnisse

erzielen lassen. Der verzahnte Ansatz ist um einiges effizienter als die jeweils einzeln

angewandten Verfahren. Weiters werden die erzielten Ergebnisse mit einer Softwarelösung,

welches basierend auf Simulated Annealing (SA) entwickelt wurde, verglichen. Die oben

erwähnten Verfahren sind in der Lage diese Ergebnisse in hohem Maße zu übertreffen.

130

verenaschmid

Personal Data

date of birth August 13, 1981 in Feldkirch, Austria

citizenship Austria

Education

2004-2008 Master Program in Business Informatics.
University of Vienna, Vienna, Austria

2003–2007 Doctoral Program in International Business Administration.
University of Vienna, Vienna, Austria

Aug–Dec 2002 Exchange Program.
University of Illinois at Urbana-Champaign, Urbana-Champaign, USA

2000–2004 Bachelor Program in Business Informatics.
Vienna University of Technology, Vienna, Austria

1999–2003 Master Program in International Business Administration.
University of Vienna, Vienna, Austria

PhD Thesis

title Trucks in Movement

supervisor Richard F. Hartl

description Hybridization of Exact Approaches and Variable Neighborhood Search for the Delivery of Ready-

Mixed Concrete

Master Thesis

title Der Einsatz von Materialflussanalyse bei der logistischen Beurteilung einer Ersatzin-
vestition am Beispiel eines Infrastrukturzulieferunternehmens

supervisor Manfred Gronalt

Experience

Vocational

2003–2007 Research Assistant, University of Vienna, Vienna.
Department of Business Administration - Production and Operations Management

Mar–Jun 2003 Tutor, Vienna University of Technology, Vienna.
Institute of Computer Languages - Theory and Logic Group

Talks & Presentations

October 2007 Annual Meeting of Austrian Society of Operations Research (OEGOR).
A Hybrid Solution Approach for Ready-Mixed Concrete Delivery
V. Schmid, K.F. Doerner, R.F. Hartl, M.W.P. Savelsbergh and W. Stoecher

June 2007 MIC 2007 (Montreal, Canada)
Metaheuristics International Conference.
Hybridization of exact and metaheuristic approaches: a cooperative VNS and network flow
heuristic
V. Schmid, K.F. Doerner, R.F. Hartl, M.W.P. Savelsbergh and W. Stoecher

Fleischmanngasse 4/26 • 1040 Wien, Austria
B verena.schmid@univie.ac.at

mailto:verena.schmid@univie.ac.at

June 2007 Tristan IV (Phuket, Thailand)
Sixth Triennial Symposium on Transportation Analysis.
An effective heuristic for ready mixed concrete delivery
V. Schmid, K.F. Doerner, R.F. Hartl, M.W.P. Savelsbergh and W. Stoecher

October 2006 IWDL 2006 (Brescia, Italy)
International Workshop on Distribution Logistics.
Hybridization of exact methods and metaheuristics for solving full truck load problems
for ready-mixed concrete
V. Schmid, K.F. Doerner, R.F. Hartl, M.W.P. Savelsbergh, and W. Stoecher

August 2006 Matheuristics 2006 (Bertinoro, Italy)
1st Workshop on Mathematical Contributions to Metaheuristics.
Hybridization of exact methods and metaheuristics for solving full truck load problems
for ready-mixed concrete
V. Schmid, K.F. Doerner, R.F. Hartl, M.W.P. Savelsbergh and W. Stoecher

November 2005 SimForumSteyr’05 (Linz, Austria)
Produktions- und Logistiksysteme am optimalen Betriebspunkt.
Simulation des Schiffsverkehrs auf der Donau durch Prioritäten- und Reihenfolgeplanung -
Vorbild für die Fertigungslogistik?
V. Schmid and R. Fromwald

Papers

submitted A Hybrid Solution Approach for Ready-Mixed Concrete Delivery.
V. Schmid, K.F. Doerner, R.F. Hartl, M.W.P. Savelsbergh and W. Stoecher

working paper Local Branching guided by Variable Neighborhood Search for Ready-Mixed Con-
crete Delivery Problems.
V. Schmid, K.F. Doerner, R.F. Hartl and J.J. Salazar Gonzáles

Teaching

summer term Linear Programming using XPress-MP, University of Vienna.
Linear Programming and Modeling, Sensitivity Analysis, Duality, Advanced Modeling Techniques

Applications: Transportation, -shipment, Ressource Allocation, Location, TSP, VRP, etc.

winter term Simulation using AnyLogic, University of Vienna.
Queueing Theory, Discrete Event Simulation

Applications: Service, Manufacturing Models, Shop Floors, Health Care

Languages

german mother tongue

english advanced, fluent in written and spoken toefl score 263

spanish fluent diploma básico de la lengua española

Computer skills

programming C++, Java, Visual Basic

optimization Xpress, Gams, Cplex

simulation AnyLogic, Arena

Interests

research Variable Neighborhood Search, Linear Programming, Hybridization

traveling South East Asia, South America

hobbies Boxing, Skiing, Cycling

Fleischmanngasse 4/26 • 1040 Wien, Austria
B verena.schmid@univie.ac.at

mailto:verena.schmid@univie.ac.at

	cv071020.pdf
	Personal Data
	Education
	PhD Thesis
	Master Thesis
	Experience
	Talks & Presentations
	Papers
	Teaching
	Languages
	Computer skills
	Interests

