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Chapter 1

Introduction

In economics the usual assumption is that firms maximise their absolute
profit given the strategies pursued by their competitors, i.e. firms neglect
the potential effect of their own strategies on the profits of rival firms. For
a perfectly competitive environment, where there is no such external effect,
this strategy, i.e. to maximise absolute profit, seems to be most reasonable.

However, one could raise the question, if the absolute profit maximising strat-
egy is optimal in an imperfect competitive environment, that is in an environ-
ment in which firms possess market power. In such an environment actions
of one firm do not only affect its own profit but also the profits of all other
firms within the same industry.

A firm, which is aware of the negative external effect its strategy has on rival
firms profits, could, for instance, pursue a strategy which harms the profits
of its competitors more than its own profit, i.e. the firm could act spiteful.
Against an evolutionary background, in which the Darwinian-fitness of a firm
depends on the level of its absolute profit, such a spiteful strategy would be
reasonable since it obviously yields a strategic advantage in the sense that
the firms probability of survival within the industry increases.

Adding even another evolutionary component to this imperfect competitive
environment, that is firms are able to observe and adopt best responses over
the course of time, eventually could lead to a situation in which firms, which
gain a strategic advantage by pursuing a spiteful strategy, dominate the whole
population.
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If evolution in a specific industry actually reaches this point, one can finally
ask the question whether the situation, in which the whole population of
firms consists of spiteful acting firms, is stable in an evolutionary sense. In
other words, is the spiteful strategy an evolutionarily stable strategy if all
firms adopt this strategy – evolutionarily stable in this context means that
a deviant firm will not be able to gain a strategic advantage by choosing a
strategy different from spiteful behaviour.

The thesis at hand now has the aim to shed some light on all these questions.
A necessary prerequisite to answer these questions will be to define and intro-
duce all the relevant theoretical concepts which can be used as instruments
to analyse imperfect competitive settings – very important concepts in this
respect are the theory of spiteful behaviour on the one hand and evolution-
arily stable strategies on the other. The main source of reference against this
background will be chapter 2 on page 6, the Literature Review.

After the reader has been acquainted with the main theoretical concepts, the
line of argument outlined above will be analysed by means of modified ver-
sions of the well-known Cournot and Bertrand oligopoly models in chapter 3
on page 29 – the latter model will include a form of product differentiation
simply for evaluation reasons.

The main modification in both cases will be related to the preferences of the
players in the game – whereas in the classical cases all players are assumed
to have independent preferences, i.e. they are solely concerend about their
absolute payoff, in the alternative cases presented in this thesis a certain
share of players has interdependent preferences, i.e. they are concerned about
relative payoff.

In both cases it will be shown, as already indicated above, that players with
interdependent preferences gain a strategic advantage by acting spiteful. Es-
sentially this means that players with interdependent preferences act more
aggressively so that these players eventually end up with a higher absolute
payoff than their rivals with independent preferences. If the probability of
survival depends on absolute payoff then obviously players with interdepen-
dent preferences will have a strategic advantage. Note, however, that all this
observations can be made within a framework of strategic competition, where
only the objective functions of the players are modified.

In addition to this, evolutionary equilibria of the modified oligopoly models
will be analysed. Since the evolutionary process leading to an evolutionary
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equilibrium in the two models will not be modeled explicitly, the approach
choosen will differ from the usual procedures in evolutionary game theory
which often rely on models of imitation, inheritance, random mutation and
so forth.

By means of logical reasoning it will be shown that eventually spiteful acting
firms will dominate the whole population and the strategy of these firms in
this situation is also evolutionarily stable. Evolutionarily stable strategies in
a finite population of players often display this kind of spiteful behaviour. In
particular, the finite population evolutionary equilibrium is not necessarily a
Nash-equilibrium – this point will be illustrated with an example. Another
result will be that evolutionary or strategic advantage can be attained at the
expense of higher absolute payoffs.

The main contribution of this thesis, however, is to show that the outcome
of a strategic competition, when all competitors maximise relative payoffs, is
the same as in evolutionary equilibrium.
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Chapter 2

Literature Review

The following sections serve to introduce and analyse the most important
ideas, notions, concepts and theories in the context of the topic of this thesis.
After this review the reader should have the essential understanding to follow
the models in the next chapter.

2.1 Independent v. interdependent preferences

2.1.1 Profit maximisation assumption

The usual assumption in economic theory regarding the behaviour of the
firm is that firms choose a strategy which will maximise their absolute profit.
With regard to this profit maximisation assumption, Koçkesen et al. [7]
speak about the hypothesis of independent preferences, thereby taking a more
general view:

“[. . . ] agents choose their actions with the sole purpose of maxi-
mizing their own material payoffs regardless of how their actions
affect the payoffs of other individuals.” – i.e. they neglect the
potential external effect on others inherent in their actions.

The advanced reader will anticipate the consequences of such an assump-
tion and will therefore agree that the profit maximisation assumption can
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be characterised as one of the most important axioms in (micro-)economic
theory. Although one should think that there are many good reasons to ad-
here to such an important assumption, the theoretical foundations for it are
mostly intuitive by nature and arguments in favour are rather rare – for good
reasons as will be seen later.

Probably the most important argument for the profit maximisation assump-
tion is made on evolutionary grounds. Because most specifications of this
argument are very similar, only two of them are outlined in the following.
The first one, also known as the Friedman conjecture – brought forward by
Milton Friedman in [4] – is as follows:

Business based on “[. . . ] rational and informed maximization of
returns [. . . ] will prosper and acquire resources with which to
expand; whenever it does not, the business will tend to lose re-
sources [. . . ]. The process of ‘natural selection’ thus helps to
validate the hypothesis – or, rather, given natural selection, ac-
ceptance of the hypothesis can be based largely on the judgment
that it summarizes appropriately the conditions for survival.”

The second specification of the argument stems from Koçkesen et al. [7] and
can be summarised as follows: material sacrifices by one agent in order to
affect the payoffs of other agents will result in lower wealth for the sacrificing
agent, eventually leading to a situation in which the non-sacrificers dominate
the environment – unfortunately the authors do not provide any arguments
why exactely this situation should occur; if in addition a competitive selection
process is inherent in this environment, then forgoing any sacrifices becomes
a simple precondition for survival.

In other words and applied to an industrial environment, non-profit maximis-
ers, i.e. firms which are not exclusivelly concerned with their own material
payoff and which do take into account the potential effects of their actions
on other industry participants, will have a lower probability to survive and
therefore, over the long run, only absolute profit maximising firms will re-
main in the industry. As a result the optimal strategy to pursue for a firm
is to maximise absolute profit.

However, Koçkesen et al. immediately emphasize in [7] and [8] that although
the argument is somehow convincing in a perfectly competitive environment,
i.e. an environment in which agents are not able to affect the payoffs of
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other agents, it does not hold for strategic settings or imperfectly competitive
environments, i.e. environments in which the actions of one agent do not only
affect her own payoff but also the payoffs of all other agents.

The reasons for the argument not to be generally true – specifically in strate-
gic settings – and hence the resulting consequences are discussed in the fol-
lowing sections – at this point it should be mentioned that the following
comments are confined to industrial environments in which the agents are
firms.

2.1.2 The theory of spiteful behaviour

A very clear and intuitive explanation why the argument does not hold in
strategic environments is given by Schaffer [9]:

“[. . . ] a firm which does not maximise its profit may still earn
profits which are larger than those of its profit-maximising com-
petitors, if the costs to itself of its deviation from maximisation
are smaller than the costs it imposes on the maximising competi-
tors.”

The crucial point in Schaffer’s explanation is that the non-profit maximising
firm is able to impose larger costs on its rivals than on itself via its deviating
strategy. This requires, as indicated above, that the firms act in a strategic
environment, i.e. strategies or actions taken by one firm within the industry
do not only affect its own payoff but also the payoffs of all other firms. In
other words, there exists some kind of externality by which firms gain market
power.

Schaffer developed his intuitive explanation by applying Hamilton’s theory
of spite – a theory in evolutionary biology – to an industrial environment
in which firms act strategically. In evolutionary biology, a spiteful behaviour
is described as an action by an animal which harms both the animal itself
and other animals of its population. According to Hamilton, spiteful be-
haviour is likely to occur if it decreases an animal’s Darwinian fitness, i.e.
the probability of survival, less than the fitness of all other animals in the
population.
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Now, applying this theory to a strategic setting yields the following results:
if firms have market power, i.e. firms are able to affect the payoffs of all
other firms within the industry via their actions, the occurrence of a spiteful
behaviour – or strategy in this case – is very likely, simply because

“A firm which forgoes the opportunity to maximise its absolute
profit may still enjoy a selective advantage over its competitors
if its ‘spiteful’ deviation from profit-maximisation harms its com-
petitors more than itself.” (Schaffer [9]).

In other words, imperfectly competitive environments, i.e. an environment in
which firms posses market power, allow firms to acquire a strategic advantage
by pursuing a spiteful strategy, i.e. a strategy, different from the usual profit-
maximisation behaviour, which imposes more costs on the rivals than on
itself.

In this respect, Koçkesen et al. in [7] and [8] also speak about (negatively)
interdependent preferences, as opposed to the above mentioned independent
preferences, and strategic advantage. By (negatively) interdependent prefer-
ences the authors mean that an agent with this kind of preferences is not
only concerned about absolute payoffs, but also about relative payoffs, i.e.
absolute payoff in comparison with the average payoff to all agents – the term
‘(negatively) interdependent’ implies that the objective function of a player
with this kind of preferences increases with his own payoff but decreases with
respect to the payoffs to other players. A strategic advantage, on the other
hand, enables an agent to achieve a higher level of probability for survival
during the natural selection process.

Besides these terms, the authors also give a slightly different definition of
spiteful behaviour, as compared to Schaffer and Hamilton, that they call
spiteful effect :

“The spiteful effect occurs when it is possible for a player to devi-
ate from a Nash equilibrium action profile in such a manner as to
reduce the payoffs of other players more severely than the payoffs
of the deviating player.” (Koçkesen et al. [7])

The crucial difference in the two definitions is that the one given by Hamilton
does not rely on a Nash equilibrium action profile.
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Interconnecting all these terms with each other provides the following rela-
tionship (cp. explanation by Schaffer and Hamilton’s theory of spite): In the
presence of market power, negatively interdependent preferences may give
rise to spiteful behaviour; this will be the case when spiteful behavior results
in a strategic advantage.

In order to give the reader a much better understanding of the ideas, notions
and concepts introduced above, the following section will illustrate them by
means of a numerical example.

2.1.3 A numerical example

Consider a duopoly in which the decision variable is quantity – the classical
Cournot case. The two firms i = 1, 2, setting quantity qi ∈ [0,∞), both have
the same cost function C(qi) = cqi, i.e. firms have constant marginal cost c
and no fixed costs. Aggregate inverse demand is given by the linear function
P (Q) = a− bQ, with Q = q1 + q2 = Σqi (it will also be assumed that a, b > 0
and a > c). Profit to firm i can be written as πi(qi, qj) = (a− bQ− c)qi.

If both firms maximise absolute profit they solve the following maximisation
problem:

argmax
qi

πi(qi, qj) = (a− bQ− c)qi

[foc] d
dqi
πi(qi, qj) = −bqi + (a− bQ− c) = 0

[soc] d2πi(qi,qj)

dq2
i

= −2b < 0 (2.1)

Solving the first order condition of (2.1) for qi yields the reaction function
Ri(qj) of player i – as one can see, the second order condition guarantees
that the solution of the maximisation problem is going to be a maximum:

qi =: Ri(qj) =
a− bqj − c

2b
(2.2)

By inserting the reaction function of firm j into the reaction function of firm
i and vice versa one gets the Cournot-Nash equilibrium quantities qC

i and qC
j

– as one can see from (2.3) the solution is symmetric:
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qC
i =

a− c

3b
and qC

j =
a− c

3b
=⇒ QC =

2(a− c)

3b
(2.3)

Since the quantities set by the two firms in equilibrium are known, one can
also calculate equilibrium profits and price:

πC
i = πC

j =
(a− c)2

9b
and P (QC) = PC = c+

(a− c)

3
(2.4)

In this first part of the example, both firms maximise absolute payoffs given
the quantity set by the other firm. The two competing firms ignore the neg-
ative externality they impose on each other; compared to a monopolist, they
produce too much from the perspective of the industry, and this is because
they disregard the externality. Therefore the two firms have, according to
the definition given by Koçkesen et al. in [7], independent preferences.

Now suppose that firm i does not maximise absolute profit but the differ-
ence between its own profit and the industry average profit – this behaviour
could be denoted by relative profit maximisation. Therefore firm i solves the
following maximisation problem:

argmax
qi

fi(qi, qj) =: πi − (πi+πj)

2

[foc] d
dqi
fi(qi, qj) = a− 2bqi − c = 0

[soc] d2fi(qi,qj)

dq2
i

= −2b < 0 (2.5)

From (2.5) immediately follows the optimal quantity qA
i firm i should set –

again the second order condition guarantees that the solution of the maximi-
sation problem will result in a maximum:

qA
i =

a− c

2b
(2.6)

Equation (2.6) could also be interpreted as the reaction function of the rel-
ative profit maximising firm i. The interesting thing about this reaction
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function is that the optimal quantity of firm i does not depend on the quan-
tity set by firm j, the absolute profit maximiser. By inserting the reaction
function of firm i into the reaction function of firm j (see equation (2.2)) one
gets the Nash equilibrium quantity qA

j for firm j:

qA
j =

a− c

4b
=⇒ QA = qA

i + qA
j =

3(a− c)

4b
(2.7)

Under these conditions – firm i maximising relative profit and firm j max-
imising absolute profit – profits and price in equilibrium are:

πA
i =

(a− c)2

8b
, πA

j =
(a− c)2

16b
and P (QA) = PA = c+

(a− c)

4
(2.8)

Note that PA < PC – with PC being the price in the standard Cournot case
– and thus the total output in the industry is higher in this alternative case
as compard to the standard Cournot setting.

From equation (2.8) it is obvious that πA
i > πA

j , i.e. the relative profit max-
imising firm makes a higher absolut profit than the absolute profit maximising
firm. The intuition behind this result is as follows.

Instead of disregarding the externality, firm i is exploiting the externality
to harm the opponent. By setting a higher output level, firm i reduces the
payoff of firm j more than its own payoff – note that this is not totally in
accordance with the theory of spiteful behaviour since the deviation of firm
i does not harm itself. Instead of producing qC

i it sets qA
i > qC

i = qC
j causing

the market price to decrease to PA since QA > QC . This spiteful behaviour
by firm i, however, does more harm to firm j, the absolute profit maximiser,
than to firm i since both firms are now selling at a lower price. Firm j, acting
strategically, reacts to the higher quantity set by firm i by producing a lower
quantity. This then results in the initially observed instance that πA

i > πA
j .

12



2.2 Evolution and interdependent preferences

2.2.1 Motivation

The previous part of this chapter made clear that especially in strategic
environments firms which adopt interdependent preferences are able to out-
perform their competitors which maximise absolute profits – this has also
been demonstrated by a numerical example. Futhermore it has already been
indicated that by the adoption of interdependent preferences and by the re-
sulting spiteful behaviour, a firm is able to gain a strategic advantage over
its profit maximising competitors. The following part of the chapter now
concentrates on this strategic advantage and the evolutionary consequences
associated with it.

The main points in this respect will be emphasised by further developing the
example of the previous part of this chapter. Only then will the theoretical
foundations be presented. It should also be mentioned that the basis of
the following example and the graphical representations have been taken
from Schaffer [9], while the numerical part has been developed by the author
himself.

Recall the duopoly example from the previous part of this chapter and con-
sider the following economic selection process: after the two firms have set
their quantities a selection mechanism, that determines which of the two
firms will survive and therefore produces in the next period, is initiated.
Firm i is selected during this process with probability 0 < pi < 1, i.e. there
is no guarantee for survival or extinction.

The probability of survival depends on the absolute profit of firm i in the
following way: pi > pj if and only if πi > πj • this is the so-called survival
rule. This means that the Darwinian fitness of firm i is higher than the one
of firm j if and only if firm i outperforms firm j in terms of absolute profit.
To use the terminology from the previous part of this chapter: strategic
advantage is based on absolute profits.

Now think about the following: since firm i, the relative profit maximising
firm, has a strategic advantage over firm j, the absolute profit maximiser
– recall that πA

i > πA
j • it is more likely that firm i will survive the eco-

nomic selection process. From the higher Darwinian fitness of firms with
interdependent preferences, however, follows that the new rivals will also be
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endowed with such preferences, either through inheritance, imitation or any
other similar process.

So if both firms maximise the relative profit – that is the difference between
own profit and the industry average profit – they solve the same maximisa-
tion problem, illustrated in (2.5). It immediately follows that the optimal
quantities set by the two firms are

q∗i = q∗j = Q∗/2 =
a− c

2b
=⇒ Q∗ =

a− c

b
(2.9)

Under these conditions price and profits in equilibrium are:

π∗i = π∗j = 0 and P (Q∗) = P ∗ = c (2.10)

Equation (2.10) shows a quite astonishing result, namely that if both firms
have interdependent preferences, the equilibrium outcome of this ‘Interdepen-
dent Duopoly’ is equal to the competitive outcome P = c • the graphical
representation of this result is shown in Fig. 2.1.

Quantity

Price

P(Q)

MC=c

q
∗

i
q
∗

j

Q*/2 Q*

Figure 2.1

Not only are the equilibrium strategies q∗i and q∗j of this duopoly equal to
the competitive outcome strategies but they also represent the symmetric
evolutionary equilibrium (SEE), as Schaffer notes in [9]. To see this consider
the following case: while firm i continues to sell Q∗/2 – the equilibrium
strategy quantity – firm j deviates and produces some other quantity. No
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matter what quantity firm j will produce, firm i will always make a higher
profit and a lower loss than firm j respectively. Therefore firm i, due to the
survival rule outlined above, will always have a higher probability of survival
too.

“In other words, the strategy of selling Q∗/2 units of output is
analogous to the ESS [evolutionarily stable strategy, ed.] of evolu-
tionary biology that a deviant (‘mutant’) firm which uses another
strategy will always have a lower profit than a firm which sells
Q∗/2 [. . . ].” (Schaffer [9])

In order to illustrate the point consider Fig. 2.2 and Fig. 2.3 which represent
two different cases in terms of the quantity set by firm j – the quantity set
by firm i stays the same in both cases, i.e. qi = q∗i = qA

i . In Fig. 2.2 firm j
sells a smaller quantity than Q∗/2. This is the case, for instance, in which
firm j has independent preferences and therefore maximises absolute profit
(see above). Although, as can been seen from Fig. 2.2, firm j now earns a
positive profit πj, its profit is smaller than the profit of firm i, simply because
firm i, the interdependent preference firm, sells a larger quantity.

b

Quantity

Price

P(Q)

MC=c

q
∗

i
q

A
j

Q*/2
Q*

πi πj

Figure 2.2

A similar pattern can be observed if firm j sells a higher quantity than Q∗/2 –
see Fig. 2.3 on the following page. In this case, due to the high quantity sold
by firm j, price is below marginal cost and both firms make a loss. However,
since firm i sells a lower quantity than firm j, it suffers a smaller loss.
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b

Quantity

Price

P(Q)

MC=c

q
∗

i
qj

Q*/2 Q*

πi πj

Figure 2.3

As a result, firm i always has a higher Darwinian fitness, i.e. a strategic
advantage over firm j in the sense that its profit is higher or its loss is lower
and therefore it has a higher probability of survival. And since deviating
from the strategy Q∗/2 does not pay off with regard to the economic natural
selection process, the strategy can be denoted as evolutionarily stable.

2.2.2 A basic evolutionary model

The first section of this literature review was concerned with the profit max-
imisation assumption and the evolutionary argument brought forward in
favour of it. However, the last sections and especially the example in the
previous one have shown that in a strategic setting, i.e. in an environment
in which firms posses market power, evolutionary considerations speak in
favour of interdependent preferences as opposed to independent preferences,
with the latter associated with the profit maximisation assumption.

In this regard, Koçkesen et al. in [7] point out that

“While it is conventional in economic models to posit that indi-
viduals are material payoff maximizers, there is now mounting ex-
perimental evidence that contradicts this strong ‘independence’
hypothesis. The theoretical plausibility of this assumption has
accordingly been questioned recently by several economists on
evolutionary grounds.”
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One of these economists is Schaffer, whose motivating example with regard
to the evolutionary stability of interdependent preferences has already been
presented in the previous section. In [9] he argues that if the above men-
tioned Friedman conjecture is to be accepted as valid, then the process of
economic natural selection needs to be modelled explicitly in order to show
that evolution really favours independent preferences.

As a result, Schaffer himself undertakes the task of modelling economic nat-
ural selection and in doing so he uses a concept introduced by Maynard
Smith and Price, namely the so-called evolutionarily stable strategy (ESS).
Intuitivelly one could think of an ESS in the following way:

“[. . . ] an ESS is a strategy such that, if most of the members of
a population adopt it, there is no ‘mutant’ strategy [coming into
the population in a sufficiently small fraction, ed.] that would
give higher reproductive fitness.” (Schaffer [9])

Maynard Smith and Price defined their concept for a continuum population
of individuals playing a two-person game. Schaffer modified this concept
so that it can be applied to economic games with a finite population of
individuals – like the two firms in the previous example – who have a large
set of strategies – like the production levels of the two firms. In addition,
Schaffer confines himself to looking at a finite population which is playing
the field, i.e. all players compete with each other at the same time. The rest
of this section now presents this basic evolutionary model.

Since the model is looking at an evolutionary process, G, which denotes the
underlying game, is not only played once but for t periods. There are N
players and N is constant for all periods t. Each player i, with i = 1, . . . , N ,
has a strategy sit ∈ S, with S being the set of strategies available in Gt.
At this point Schaffer makes the simplifying assumption that sit = si, i.e.
player i does not change her strategy over time – one could think of inherited
strategies. As usual, every player i receives a payoff πit at the end of each
period. πit is a function of sit and s−it, i.e. the strategies of player i and
the strategies of all other players. Droping the subscript t one can write
π(si, s−i). Note also that only symmetric games are considered, i.e. the
payoffs to any player depend on her strategy and those of other players but
not on the name of the player.

One last word regarding this basic setting of the model. Although, as Schaffer
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indicates, one could think of the players of this game as being firms, it is
probably more intuitive to think of them as being the managers of the firms,
especially when taking into account that the number of players is constant
and they do not change strategy over time. One could, for instance, imagine a
constant number of firms which hire and fire managers, whose unchangeable
strategy determines the bahaviour of the firm. By replacing – or being forced
to replace – the manager, firms are able to change their strategies.

In order to complete the model, three more crucial conditions are needed.
The first one, denoted by Schaffer as the entry condition, in general sets out
how players decide whether or not to enter the game. Since in the model
at hand N is assumed constant, no such decision or no such condition is
required, i.e. if one player, be it a firm or a manager, is selected out of the
game, a new player enters.

The second one is the strategy choice rule, which determines the strategies
choosen by the players. Modelling the strategy selection by players generally
is a very difficult task due to the complex nature of this process. There are,
however, some behavioural patterns, like imitation of successful strategies,
which regularily appear in reality. On the other hand, of course, inherited
patterns or random choices because of mutation play an important role too.
For the moment, Schaffer decides to use the following strategy choice rule:
if one player is selected out of the game then the new player entering the
game will play any strategy si ∈ S with positive probability, i.e. mutation
has a positive probability – he also points out that the selection of a specific
strategy choice rule has a fundamental effect on the stability of the outcome
of the natural selection process.

Finally a survival rule – probably as important as the strategy choice rule
– is defined, which determines the probability that a certain player will par-
ticipate in the next round of the game. By deciding on such a rule, one
determines what Darwinian fitness is or in other words, the basis upon which
strategic advantage is built – thus a decision not to be underestimated.

In choosing such a rule, Schaffer goes the usual way by selecting a monotonic
survival rule for his model: if pit is the probability in period t that player
i will participate in the game in period t + 1 then it holds that pit > pjt

if and only if πit > πjt, i.e. player i is more likely to survive than player
j if and only if the profit of player i exceeds the one of player j – it is
also assumed that 0 < pit < 1, i.e. no player will survive/fail to survive
with certainty – recall that the same survival rule applies for the motivating
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example in the previous section. Schaffer does not forget to indicate that the
monotonicity assumption is not a handicap in modelling different survival
rules. To strenghten his argument he gives the following, important examples:
survival of player i could be dependent on absolute profit, perhaps in the form
pit = f(πit), f

′
> 0, or on relativ profit, with pit = f(πit/Σπ), f

′
> 0.

Now that all necessary parts have been developed, the evolutionary equi-
librium and the corresponding evolutionarily stable strategy (ESS) of the
modell can be defined. Within this context, Schaffer notes that the ESS,
i.e. the solution of the model, comes in two parts, namely an equilibrium
condition and a stability condition. The difference between these two is the
degree of stability of the solution, that is how many deviant players does
the equilibrium tolerate without changing. While the former is stable for
only one deviant player, the latter is stable for two or more deviant players –
note that as a result, only the stability condition is fully consistent with the
above mentioned definition of an ESS. It should also be mentioned that the
ESS defined in the following is symmetric, i.e. the ESS is the same for all
players, due to the composition of the model. Therefore the solution induced
by the ESS can be denoted by SEE, which stand for symmetric evolutionary
equilibrium.

Equilibrium condition

For the purpose of the above made differentiation between equilibrium con-
dition and stability condition, first consider the equilibrium condition case,
where N − 1 players have the SEE strategy sSEE ∈ S and only one player
– call her player d – chooses a different strategy sD ∈ S. The corrsponding
payoffs are πSEE and πD respectively. In a more formal way this means

πSEE ≡ π(sSEE | sD, sSEE, sSEE, . . . ), (2.11)

πD ≡ π(sD | sSEE, sSEE, sSEE. (2.12)

By means of these two payoffs, one can now define a symmetric evolutionary
equilibrium in the following way.

Definition 1. A strong (weak) SEE is given by a strategy sSEE ∈ S which
has the property that, if N − 1 players have this strategy and one deviant
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player has some other strategy sD, then for any deviant strategy sD ∈ S it
holds

π(sSEE | sD, sSEE, sSEE, . . . ) > (≥) π(sD | sSEE, sSEE, sSEE, . . . ) (2.13)

A player choosing the SEE strategy therefore has a strictly higher (or equal)
payoff than with any other deviant strategy. Together with the monotonicity
assumption stated above this means that those players choosing the SEE
strategy have a higher probability of survival than their deviant counterparts.
As a result we have reached a SEE in accordance with the definition made
above.

With this basic evolutionary model Schaffer now attends himself to the ques-
tion if the Friedman conjecture, i.e. profit maximisation appropriatly sum-
marises the conditions for survival, is valid or not. In doing so he analyses
the connection between SEE and SNE, the symmetric Nash equilibrium.

Definition 2. One can define a strong (weak) symmetric Nash equilibrium
as a strategy sSNE ∈ S which, for any alternative strategy sD, satisfies

π(sSNE | sSNE, sSNE, . . . ) > (≥) π(sD | sSNE, sSNE, . . . ). (2.14)

Confronting definition one and two reveals the main difference between a
SEE and a SNE: while the SNE compares the payoffs of a single player if
she chooses different strategies – the strategies of the other players remain
unchanged – the SEE compares the payoffs of two different players with
different strategies. Therefore the SNE is a comparison of the absolute payoffs
of one and the same player whereas the SEE relates the payoffs of two players
with different strategies, i.e. the SEE is based on relative payoffs – despite
the fact that the survival rule in the model could be based upon absolute
payoff – and the SNE is based on absolute payoffs.1

Another observation – and probably the most crucial one in the context of
Schaffers attempt to proof the Friedman conjecture wrong – can be made if
one formulates the SEE in a different way, namely as the Nash equilibrium
of a different game.

1In order to guard against misunderstandings, the following should be pointed out:
although both interdependent preferences and the SEE are associated with relative payoffs,
this does not automatically mean that only strategies based on interdependent preferences
will induce a SEE.
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Definition 3. Consider the normal-form game G ≡ {N,S, π}, where N , S
and π are the number of players, the strategy space common to all players
and the absolute payoff function to player i. The strategies (s∗1, . . . , s

∗
n) are

said to be a Nash equilibrium of this game if for every player i the following
holds

argmax
si∈Si

π(si | s∗−i). (2.15)

Basically this definition says that player i should choose the strategy which
maximises her absolute profit, given that all other players choose their opti-
mal strategies, i.e. which maximises their absolute profit. If this definition
of a SNE is applied to the SEE, one has to take into account that while the
former is based on absolute profits, the latter is not based on absolute but on
relative profits (see remarks above). As a result, the maximisation problem
of definition three has to be slightly modified: the strategy sSEE is said to
be a symmetric evolutionary equilibrium strategy if it solves

argmax
sD∈S

{πD − πSEE}. (2.16)

With regard to the intuition behind equation (2.16), one can think of it in
the following way: players choosing the evolutionarily stable strategy get a
profit of πSEE. Since playing the ESS is optimal by definition, a player, call
her d, who wants to maximise her profit relative to the other players – this
is why the player maximises the difference – should follow suit and also play
sSEE. If player d does not, she will get a profit πD < πSEE that does not
lead to a maximum of the difference in (2.16).

Due to the fact that the SEE strategy is symmetric, instead of writing πSEE

one can also write the following:

πSEE ≡ π(si | s−i) for i 6= d ≡ 1

N − 1

N∑
i6=d

π(si | s−i). (2.17)

By substituting expressions of (2.17) in (2.16) one finally gets the maximi-
sation problem
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argmax
sD∈S

{π(sd | s−d)−
1

N − 1

N∑
i6=d

π(si | s−i)}. (2.18)

What one can see from this last equation is that the SEE strategy solves
a maximisation problem different from absolute profit maximisation.2 By
means of this model Schaffer therefore succeeds to proove the Friedman con-
jecture wrong – at least under the assumptions made during the development
of the model, i.e. profit maximisation does not appropriatly summarises the
conditions for survival. On the contrary, in this model players which max-
imise the difference in profits are those with the highest probability of survival
and difference maximisation is evolutionarily stable too.

Stability condition

While the previous section was concerned about the equilibrium condition,
i.e. the stability of the SEE if only one deviant player – deviating from the
ESS – exists, the following section will address the issue of what Schaffer in
[9] calls the stability condition. This condition, generally speaking, indicates
how stable a SEE is if two or more players deviate from the ESS strategy.

Within this context, Schaffer speaks about Y -stability and global stability
respectively:

“[. . . ] an SEE is Y -stable under a given strategy choice rule if,
for a population with a total of anywhere from 2 to Y deviants
with any deviant strategies, the payoff of an SEE player is strictly
greater than the payoff of all the deviants. An SEE is globally
stable if this holds for any number of deviants up to N − 1 (since
we need at least one SEE player for the definition to make sense).”

In other words, if players with the SEE strategy have a higher probability of
survival – due to higher profits – than their deviant counterparts, no matter

2In fact, equation (2.18) is the definition of the Nash equilibrium strategy of the zero-
sum ’beat-the-average’ game introduced by Shubik [10]; the attentative reader will have
recognised that the numeric example presented in the previous part of this chapter is such
a beat-the-average game.
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which deviant strategy the latter choose and no matter how many deviators
there are, the SEE is called Y -stable – globally stable if Y = N−1, i.e. there
exits only one player with the SEE strategy.

However, as Schaffer indicates in [9], one has to take into account some
crucial facts with regard to the stability of a SEE. First of all it is possible
that there is no globally stable SEE or worse there is no SEE at all. Consider,
for instance, the example in which ‘it pays to be different’. If most players
choose a certain strategy A while only a minority chooses strategy B then the
latter will make a higher profit. As a result, more and more players would
choose strategy B until those players with strategy A make a higher profit.
In other words, deviants are always better off and there exists no SEE at all.

Two other crucial points mentioned by Schaffer are the absolute-payoff effect
and that the stability of a SEE is highly dependent on the strategy choice
rule choosen for the model. While the former is concerned with the fact that
SEE strategy players can have a very low absolute profit, the latter refers
to the increasing complexity if one chooses a random strategy choice rule
instead of an imitation strategy choice rule.

2.3 Aggregative games

After this short introduction to evolutionary concepts, the remaining part of
the Literature Review will deal with some general characteristics of games.
One of these characteristics, which deserve closer attention, concentrates on
the variables which determine the payoff of a player. Since there are many
games in econcomics in which the payoff-functions exhibit this characteristic
and the next chapter concentrates on this set of games, the following section
introduces them.

If the payoff to any player solely depends on the players individual strategy
and the sum of all strategies, the game is said to be aggregative – here the
aggregate would be the sum of all players strategies; if one replaces the sum
by any other combination, the game is said to be generalized aggregative. The
classic example for an aggregative game would be the Cournot Oligopoly in
which the payoff to player i depends on the output produced by player i and
the sum of all outputs produced. The following definition has been taken
from Alós-Ferrer & Ania [2].
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Definition 4. A (generalized) symmetric aggregative game with aggregate
g is a tuple Γ ≡ (N,S, π) where N is the number of players, the strategy
set S, common to all players, is a subset of a totally ordered space X, π :
S ×X → R is a real-valued function, and g : SN → X is a symmetric and
monotone increasing function, such that individual payoff functions are given
by πi(s) ≡ π(si, g(s)) for all s = (s1, . . . , sn) ∈ SN and i = 1, . . . , N .

Alós-Ferrer & Ania also point out in [2] that it is useful to express the aggre-
gate g, i.e. the combination of all strategies, in a different way, namely as an
aggregate g depending on the strategy of a certain player and the aggregate
of the strategies of all other players.

Definition 5. A family of symmetric aggregative games is a collection of
games {Γn}∞n=1 where Γn ≡ (N,S, π) is a (generalized) symmetric aggregative
game with aggregate gn such that g1(s) = s for all s ∈ S and there exists a
function g : X × S → X such that

gn+1(s1, . . . , sn, sn+1) = g(gn(s1, . . . , sn), sn+1) (2.19)

for all s1, . . . , sn+1 ∈ S, and all n ≥ 1.

Using (2.19), one can write the payoff to player i in one of the following ways
– recall that si denotes the strategy choosen by player i while s−i denotes
the strategies choosen by all other players:

πi(si, s−i) = π(si, g
n(si, s−i)) = π̃(si, g

n−1(s−i)), (2.20)

with π̃ : S ×X → R being defined as π̃(s, x) = π(s, g(x, s)).

One important reason why the aggregate is divided into an individual strat-
egy and an aggregate of all other strategies is that this step facilitates the
analysis of aggregative games – e.g. the analysis of best reply correspon-
dences (also see chapter 3 on page 29).
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2.3.1 Optimal aggregate-taking strategy

Another important concept with regard to aggregative games, which will be
useful in the course of this thesis, is the so-called aggregate-taking behavior.
The main idea behind this concept is that agents in an arbitrary aggregative
game ignore the effect of their individual decision/strategy on the aggregate.
Alós-Ferrer & Ania in [2] give the following defintion within this context:

Definition 6. Let Γ ≡ (N,S, π) be a symmetric aggregative game. We say
that s∗ ∈ S is an optimal aggregate-taking strategy (ATS) if

s∗ ∈ argmax
s

π(s, g(s∗, . . . , s∗)). (2.21)

A strict ATS is an ATS which is a strict maximizer of the problem.

One could interprete an ATS in the following way: given that all players
choose strategy s∗, the aggregate will be g(s∗, . . . , s∗). The optimal strategy
for a player facing this aggregate is again s∗.

2.3.2 Evolutionarily stable strategy in an aggregative
game

As a matter of course, the concept of an evolutionarily stable strategy can
be applied to aggregative games – this will be very helpful in the coming
sections of this thesis. The ESS of a generalised aggregative game can be
defined as follows (see Alós-Ferrer & Ania [2]):

Definition 7. Let Γ ≡ (N,S, π) be a symmetric aggregative game with ag-
gregate g. A strategy s ∈ S is said to be an evolutionarily stable strategy
(ESS) if for all s′ ∈ S it holds that

π(s, g(s
′
, s, . . . , s)) ≥ π(s

′
, g(s

′
, s, . . . , s)). (2.22)

The interpretation of (2.22) is that a deviant player with any strategy s′ ∈ S
performs worse than the players which choose the ESS in terms of absolute
profit – note that the aggregate contains the strategies of all players.
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In previous sections it has already been outlined that evolutionarily stable
strategies can vary in their degree of stability. For this notion too there is
an equivalent in aggregative games (see Alós-Ferrer & Ania [2]):

Definition 8. An ESS, s, is weakly (strictly) globally stable if, for all s′ 6= s
and all 1 ≤ m ≤ N − 1

π(s, g(s
′
, . . . , s

′︸ ︷︷ ︸
m

, s, . . . , s)) ≥ (>) π(s
′
, g(s

′
, . . . , s

′︸ ︷︷ ︸
m

, s, . . . , s)). (2.23)

That is, players choosing the ESS will always make a higher absolute profit
than deviant players regardless of the number of deviant players – note,
however, that all deviant players have to choose the same strategy s′ .

Another interesting fact is that, although the two concepts of aggregative-
taking strategies and evolutionarily stable strategies are different in nature,
one can make two important propositions which relate the two concepts –
the two propositions have been proved by Alós-Ferrer & Ania in [2]:

Proposition 1. Let Γ ≡ (N,S, π) be a symmetric aggregative game. Suppose
Γ is quasisubmodular in individual strategy and the aggregate. If s∗ ∈ S is
an ATS, then s∗ is also an ESS and it is weakly globally stable. If s∗ is a
strict ATS, then s∗ is the unique ESS (and hence also the unique ATS) and
it is strictly globally stable.

Proposition 2. Let Γ ≡ (N,S, π) be a symmetric aggregative game. Suppose
Γ is quasisupermodular in individual strategy and the aggregate. If s∗ ∈ S is
an ESS, the s∗ is also an ATS. If s∗ is a strict ESS, then s∗ is also a strict
ATS.

2.4 Supermodular and submodular games

In general, supermodularity and submodularity respectively are a particular
characteristic of a payoff-function of a game. If a certain game comprises a
payoff-function with one of these two characteristics, then it is said to be a
supermodular/submodular game.

The reason why the concepts of supermodular and submodular games are
examined here is that these concepts seem to be in relationship with the above
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indicated fact that interdependent preferences potentially yield a strategic
advantage over independent preferences (see section 2.1 on page 6). Koçkesen
et al. in [7], for instance, conclude that

“[. . . ] at any intragroup symmetric equilibrium of an action-
monotonic strictly supermodular game, the absolute payoffs to
interdependent players are strictly greater than those to indepen-
dent players [. . . ].”

Although generally the concepts of supermodularity and submodularity re-
spectively are relatively demanding, there also exists a more accessible and
intuitive interpretation, which should be sufficient for the purposes of this
thesis – especially with regard to the next chapter.3

2.4.1 Supermodularity

Definition 9. A function f : X × Y → R, with X, Y ⊆ R, is supermodular,
or has increasing differences, for the tuple (x, y) if for all x′ ≥ x and y′ ≥ y
it holds

f(x
′
, y

′
)− f(x, y

′
) ≥ f(x

′
, y)− f(x, y). (2.24)

The intuition behind this definition is as follows: a marginal increase of x
leads to a greater increase of the value of the function f the more y increases.

In order to make the above mentioned definition and equation (2.24) even
more clearer, consider the following game G ≡ {N,S, π}, where N is the
number of players, S is the strategy set common to all players and π repre-
sents the payoff-function π : S × SN−1 → R (in the following si denotes the
strategy of player i and g the aggregate of the strategies of all other players).
Game G is now said to be supermodular if for all s′i ≥ si and g′ ≥ g it holds

π(s
′

i, g
′
)− π(si, g

′
) ≥ π(s

′

i, g)− π(si, g), (2.25)

i.e. the incentive for player i to increase si increases with the level of the
aggregate g. In other words the strategies are strategic complements. If the

3For a more demanding definition/interpretation of these concepts see Koçkesen et al.
[7], p. 280ff.

27



function π is smooth and twice differentiable then the concept of increas-
ing differences represented in equation (2.25) can also be described using
derivatives in the following way:

∂2π(si, g)

∂si∂g
≥ 0. (2.26)

2.4.2 Submodularity

Definition 10. A function f : X × Y → R, with X, Y ⊆ R, is submodular,
or has decreasing differences, for the tuple (x, y) if for all x′ ≥ x and y′ ≥ y
it holds

f(x
′
, y

′
)− f(x, y

′
) ≤ f(x

′
, y)− f(x, y). (2.27)

This definition can be specified in the following way (cp. definition of super-
modularity): a marginal increase of x leads to a lower increase of the value
of the function f the more y increases.

Similar to the case of supermodularity, if one applies equation (2.27) to the
game described in the previous subsection, then game G is said to be sub-
modular if for all s′i ≥ si and g′ ≥ g it holds

π(s
′

i, g
′
)− π(si, g

′
) ≤ π(s

′

i, g)− π(si, g), (2.28)

i.e. the incentive for player i to increase si decreases with the level of the
aggregate g.4 In other words the strategies are strategic substitutes. If the
function π is again smooth and twice differentiable then the concept of de-
creasing differences shown in equation (2.28) can also be described in the
following way:

∂2π(si, g)

∂si∂g
≤ 0. (2.29)

4See subsection 3.1.2 on page 33 for an even more concrete example.
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Chapter 3

The Models

The models presented in the following sections – in fact the two models are
modified versions of the classic oligopoly models, namely the Cournot and
the Bertrand oligopoly models – are an application of the ideas, notions,
concepts and theories of the previous chapter. Therefore they are intended
to illustrate the interaction between the choice of objective function, market
power and evolutionary success.

3.1 Cournot oligopoly and interdependent pref-
erences

Section 2.1.3 on page 10 in the previous chapter already presented a Cournot
duopoly in which one of the players has interdependent preferences, i.e. this
player is not concerned about absolut profit but relative profit. This sec-
tion now is intended to generalise this Cournot duopoly, namely to the case
where the number of firms is n ≥ 2. It is divided into two parts: the first
one illustrates the Cournot oligopoly with interdependent preferences and its
results, while the second one analyses these results by means of the concepts
explained in the Literature Review.
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3.1.1 Alternative Cournot oligopoly

Consider the alternative Cournot oligopoly, in which firms i = 1, . . . , n, with
n ≥ 2, set quantities qi ∈ [0,∞] • q−i denotes the quantities set by all other
firms except firm i. All firms have the same cost function C(qi) = cqi, i.e.
there are no fixed costs and marginal costs are constant at c. Aggregate
inverse demand is given by the linear function P (Q) = a − bQ with Q =∑n

i=1 qi. With regard to the parameters of the inverse demand function it
will be assumed that a, b > 0 and a > c. Taking into account this basic
setting, the profit function of firm i is given by

πi(qi, q−i) = (a− b
n∑

i=1

qi)qi − cqi. (3.1)

As opposed to the usual Cournot oligopoly, not all firms have independent
preferences in this alternative version, i.e. not all firms maximise absolute
profit. Assume that there are 0 ≤ k ≤ n firms which have interdependent
preferences, i.e. they are concerned about relativ profits – the remaining n−k
firms still have independent preferences. Firms with this kind of preferences
maximise the difference between their own profit πi and the industry average
profit π̄ – in the following these firms are called relative profit maximisers.1
This difference is

fi(qi, q−i) = πi − π̄ = πi(qi, q−i)−
1

n

n∑
j=1

πj(qj, q−j). (3.2)

Now, given this information one can solve the maximisation problem for both,
the firms with independent preferences and the firms with interdependent
preferences. While for the former the problem is shown in (3.3), the problem
for the latter is depicted in (3.4).

1Section 5.1 on page 53 in the appendix addresses the issue of whether a firm with
interdependent preferences should include its own profit in π̄ or not.
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argmax
qi

πi(qi, q−i) = (a− bQ− c)qi

[foc] d
dqi
πi(qi, q−i) = −bqi + (a− bQ− c) = 0

[soc] d2πi(qi,q−i)

dq2
i

= −2b < 0 (3.3)

argmax
qi

πD
i (qi, q−i) = πi(qi, q−i)− 1

n

∑n
j=1 πj(qj, q−j)

[foc] d
dqi
fi(qi, q−i) = −b(qi − 1

n
Q) + (a− bQ− c)(1− 1

n
) = 0

[soc] d2fi(qi,q−i)

dq2
i

= −2b(n−1)
n

< 0 (3.4)

As one can see from above, both the second order condition for absolute
profit maximisers and the second order condition for difference maximisers
guarantee that the solution will be a maximum. Denoting the optimal quan-
tity set by a profit maximising firm i with qP

i and rearranging the first order
condition of (3.3) yields:

qP
i =

a

b
− c

b
−Q. (3.5)

Equation (3.5) shows that all firms which maximise absolute profit will set
the same quantity in the optimum. Therefore the solution qP

i is said to be
intragroup symmetric. If (3.5) is solved for qP

i one gets the reaction function
of an absolute profit maximising firm:

qP
i =: RP

i (q−i) =
1

2b

(
a− c− b

∑
j 6=i

qj

)
. (3.6)

Proceeding with the first order condition of (3.4) in the same way yields
similar results – the quantity set by a difference maximising firm i is denoted
with qD

i :

qD
i =

(a
b
− c

b

)(
1− 1

n

)
−Q

(
1− 2

n

)
. (3.7)
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Again, equation (3.7) shows that the quantity set by difference maximising
firms will be the same in the optimum and hence qD

i is intragroup symmetric.
The reaction function of a difference maximising firm i, on the other hand,
is given by:

qD
i =: RD

i (q−i) =
1

2b(n− 1)

(
(n− 1)(a− c)− (n− 2)b

∑
j 6=i

qj

)
. (3.8)

It has already been mentioned that in the optimum both qP
i , i.e. the quan-

tity set by an absolute profit maximising firm, and qD
i , i.e. the quantity set

by a difference maximising firm, are intragroup symmetric. As a result one
can also write qP

i = qP
A and qD

i = qD
A respectively.2 Since there are k differ-

ence maximising firms and n− k absolute profit maximising firms, the total
quantity in the optimum is

QA = (n− k)qP
A + kqD

A . (3.9)

Taking this into account and using equations (3.5) and (3.7) one can solve
for the optimal quantities qP

A , qD
A and QA:

qP
A =

(n− k)(a− c)

(n(n+ 1)− 2k)b
≥ 0 and qD

A =
(2n− k − 1)(a− c)

(n(n+ 1)− 2k)b
> 0, (3.10)

QA =
(n2 − k)(a− c)

(n(n+ 1)− 2k)b
> 0. (3.11)

Bearing in mind that a > c, n ≥ 2 and 0 ≤ k ≤ n, one can verify that the
above stated inequalities hold. Price PA and profits – πabs for absolute profit
maximisers and πrel for relative profit maximisers – in the optimum are then
given by

P (QA) = PA =
a(n− k) + c(n2 − k)

n(n+ 1)− 2k
= c+

(a− c)(n− k)

n(n+ 1)− 2k︸ ︷︷ ︸
≥0

, (3.12)

2The subscript A stands for ”alternative”.
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πabs =
(a− c)2(n− k)2

(n(n+ 1)− 2k)2b
≥ 0 and πrel =

(a− c)2(n− k)(2n− k − 1)

(n(n+ 1)− 2k)2b
≥ 0.

(3.13)

From the last expression in (3.12) one can already draw an important con-
clusion: PA, i.e. the equilibrium price in the alternative Cournot oligopoly,
will exceed marginal costs c only if k < n. If, however, k = n – that is
all firms maximise their relative profit – the equilibirum price will equal the
competitive price, i.e. PA = c. The implications for equilibrium profits πabs

and πrel are straightforward: only in case that k < n profits will be strictly
positive.

3.1.2 Analysis of alternative Cournot oligopoly

The first part of this analysis is focused on the question whether or not the
Cournot game described in the previous section is a (generalised) aggregative
game or not. In the Literature Review of this thesis it has already been noted
that a game is called aggregative if the payoff to any player depends on the
players strategy and the sum of all strategies including the players strategy
– it would be called generalised aggregative if the sum would be replaced by
any combination of all strategies.

Looking at equation (3.1) yet reveals that the general, (alternative) Cournot
oligopoly is an aggregative game since the payoff to firm i, denoted by πi,
depends on the strategy of firm i, which is the amount qi in this Cournot
case, and on the sum of all strategies, namely the total amount

∑n
i=1 qi:

πi(qi, q−i) = (a− b

n∑
i=1

qi − c)qi. (3.14)

Rearranging the profit function (3.14) also gives:

πi(qi, q−i) = (a− b(qi +
∑
j 6=i

qj)− c)qi. (3.15)

Equation (3.15) reveals another important interpretation, which will be useful
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in the further analysis: the profit to firm i depends on the quantity set
by firm i and an aggregate of the quantities set by all other firms. This
aggregate, called it gn−1, is defined in the following way: gn−1 : Sn−1 → R+

and gn−1(q−i) =
∑

j 6=i qj.
3 Therefore the profit to firm i can be written in

the following form:

πi(qi, g
n−1(q−i)) = (a− b(qi +

∑
j 6=i

qj)− c)qi. (3.16)

The next question of interest for this analysis is whether or not the (al-
ternative) Cournot game at hand is supermodular/submodular. In order
to answer this question, again the profit function has to be analysed. Sec-
tion 2.4 on page 26 argued that these two concepts are based on the idea of
increasing/decreasing differences. It has also pointed out that if the payoff-
function is smooth and twice differentiable then one can use cross derivatives
to check whether or not supermodularity/submodularity exists. Since the
payoff-function of the analysed Cournot game is smooth and twice differen-
tiable one can use this cross derivative check:

∂π(qi, g(q−i))

∂qi
= a− 2bqi − b

∑
j 6=i

qj − c,
∂2π(qi, g(q−i))

∂qi∂g(q−i)
= −b < 0. (3.17)

Due to the fact that the cross derivative is negative, the Cournot game is sub-
modular, that is it is characterised by decreasing differences in the quantity
qi and the aggregate g(q−i). The intuition behind this result is the follow-
ing: decreasing differences means that the incentive for firm i to increase its
quantity qi decreases with the aggregate g(q−i) – in the Cournot case the
latter is the sum of all quantities set by the other firms. In other words the
quantity set by player i and the total quantity set by all other players are
strategic subsititutes.

In order to avoid any misunderstandings regarding the submodular nature
of the Cournot oligopoly consider Figure 3.1 on the following page. The
illustration shows the graphic representations of two profit functions of the
form specified in equation (3.15). As one can see, the only difference between
these two profit functions is the level of the aggregate – the aggregate in this

3Compare (2.26) in section 2.4 on page 26.
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case would be
∑

j 6=i qj, which will be denoted with g in the example. Further
it will be assumed that g′ < g

′′ .4
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One can see that if the aggregate increases from g
′ to g′′ , the optimal quantity,

i.e. the quantity which maximises profits given the aggregate, decreases from
q∗

′
i to q∗

′′
i . The same conclusion can be drawn if one looks at the reaction

function of a profit maximising firm which is shown in (3.6) since this function
is decreasing in the total quantity set by all other firms.

The concept of submodularity, however, goes a step further than the reaction
function. Consider, for instance, a marginal increase in the quantity qi at
qi = 1.5. The subsequent increase in the profit of firm i depends on the level
of the aggregate. From figure 3.1 one can clearly see that if the aggregate is
equal to g′′ the increase in profit will be lower than if the aggregate equals
g
′ – the tangent at point A′′ has a smaller slope than the tangent at point
A

′ . Therefore one can conclude that the incentive to increase the quantity qi
decreases with the level of the aggregate g. The same is true for a marginal
increase in the quantity qi at qi = 5: although the tangent at point B′′ is

4The values choosen for the two profit functions are: a = 15, b = 1, c = 0, g
′
= 7.5 and

g
′′

= 9.
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much steeper than at B′ , i.e. the change in profits is much higher, the slopes
are negative.

The next issue to be addressed is the effect of firms with interdependent
preferences in this alternative Cournot game. First, however, assume that
there are no difference maximisers, that is k → 0. Naturally this case is
equal to the classic Cournot oligopoly in which all firms maximise absolute
profit – the results of this case can be found in section 5.2 on page 55 of the
appendix.

Now consider the effect on quantities, price and profits shown in equation
(3.10), (3.11), (3.12) and (3.13) if k → n, i.e. there are only difference
maximisers:

lim
k→n

qP
A = 0, lim

k→n
qD
A =

(a− c)

bn
, lim

k→n
QA =

a− c

b
, (3.18)

lim
k→n

PA = c, lim
k→n

πabs = 0, lim
k→n

πrel = 0. (3.19)

As one can see from (3.18) and (3.19) respectively, if all firms have interde-
pendent preferences, i.e. all firms are concerned about relative profit instead
of absolute profit, the solution to the alternative Cournot oligopoly is equal
to the competitive solution, that is price equals marginal costs and profits
are zero.

Another interesting observation can be made if one compares the two quan-
tities produced in equilibrium by absolute profit maximisers on the one hand
(qP

A) and relative profit maximisers on the other (qD
A ). One can easily show

that

qD
A − qP

A =
(a− c)(n− 1)

(n(n+ 1)− 2k)b
> 0. (3.20)

From equation (3.20) one can also see that the difference in quantities in-
creases with k. Therefore in the general, alternative Cournot oligopoly rel-
ative profit maximising firms will always produce more than their absolut
profit maximising counterparts – regardless of how many relative profit max-
imisers there are – and the difference between these quantities increases with
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the number of relative profit maximising firms.

This result suggests that firms with interdependent preferences act more
aggressively and their aggressiveness increases with their number – the ag-
gressiveness by difference maximisers can be associated with the theory of
spiteful behaviour introduced in section 2.1.2 on page 8 of the Literature
Review. The aggressive behaviour of relative profit maximising firms even-
tually leads to the result that, if the whole population consists of players
with interdependent preferences, i.e. k = n, the equilibrium price equals the
competitive price – see equation (3.12).

The rationale behind this is the following: in the alternative Cournot oligopoly
it is rational for a firm to have interdependent preferences due to evolution-
ary reasons (see below). Now, firms with interdependent preferences are not
concerned about absolute profit but about relative profit, i.e. a decrease in
absolute profit is no reason to worry for them. As a result these firms set a
quantity higher than the absolute profit maximising quantity – see equation
(3.20) – since their preferences have a different underlying principle. The ab-
solute profit maximisers, on the other hand, react strategically with respect
to this higher (total) amount and set a lower quantity – even lower than the
quantity set by firms in the usual Cournot oligopoly.

Another interesting oberservation arises if one looks at the difference of the
equilibrium profits πrel and πabs if k converges to n. The difference in equi-
librium profits is given by

πrel − πabs =
(a− c)2(n− k)(n− 1)

(n(n+ 1)− 2k)2b
. (3.21)

Evaluating this difference at a = 25, c = 0, b = 1 and n = 10 and plotting
the results for all possible values of k gives the graphic representation shown
in figure 3.2 on the following page.5

The figure clearly shows that the difference in profits is decreasing in k.
This means that although relative profit maximising firms have a strategic
advantage over absolute profit maximising firms – a strategic advantage could
arise if the probability of survival depends on the level of absolute profit –
this advantage is decreasing in k.

5The values have been arbitrarily choosen and one would get similar results for other
feasible values for a, b, c and n.
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3.1.3 Evolutionary equilibrium

The final issue to be addressed with regard to the general, alternative Cournot
oligopoly is the evolutionary equilibrium of this game. In order to find an
evolutionarily stable strategy one has to fall back on observations made in
the previous section as well as concepts introduced in the Literature Review.

First, comparing the profits of absolute profit maximiser and relative profit
maximising firms already reveals an important aspect of the game:

πrel − πabs =
(a− c)2(n− k)(n− 1)

(n(n+ 1)− 2k)2b
≥ 0 for k ≤ n, n ≥ 2. (3.22)

Equation (3.22) shows that except for the case where k = n, i.e. all firms
maximise relative profit, the difference in profits between relative profit and
absolute profit maximising firms respectively will be strictly positive since the
numerator and the denominator are positive, i.e. relative profit maximising
firms make a higher absolute profit than their rivals.

If the Darwinian-fitness of the players increases with their absolute profit and
players are able to observe the profits of their rivals then it is reasonable to
assume that over the course of time – and some imitation process in the back-
ground – more and more players will choose the relative maximising strategy
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since this behaviour obviously yields a competitive advantage.6 Eventually
this evolution implies that the number of relative profit maximising firms
will equal the total number of firms, i.e. k = n, and prices and profits will
be equal to the competitive or Walrasian outcome and all firms will produce
the quantity qD

A – in the following, qD
A for the case of k = n will be denoted

by q∗.

The question now is if the strategy q∗ – the Walrasian quantity – is an
evolutionarily stable strategy of the general, alternative Cournot oligopoly.
To answer this question one first has to recall the definition of an ESS which is
given by Definition 7 on page 25: players choosing the ESS are always better
off in terms of absolute profit than a deviant player choosing a different
strategy.

In proving that q∗ is in fact an ESS one can use the same argumentation
as in the motivating example in subsection 2.2.1 on page 13:7 first consider
the case in which all players choose q∗. By now it should be clear that in
this case price equals marginal costs, firms make zero profit and the total
Walrasian quantity equals nq∗. Now consider the case in which a deviant
player chooses q instead of q∗ with q < q∗. As a result, the total quantity
produced will be smaller than the total Walrasian quantity. Since the price
is strictly decreasing in total quantity, the price will now be larger than
marginal costs and all firms make a small profit. The deviant firm, however,
since it produces a smaller quantity, will make a lower profit than players
which produce q∗.

Finally, consider the case in which a deviant player chooses q instead of q∗
with q > q∗. Then the total quantity produced will be larger than the total
Walrasian quantity and hence the price will be smaller than marginal costs.
Therefore all firms will make a small loss. The deviant firm, however, since it
produces a higher quantity, will make a larger loss than the players choosing
q∗.

Another question arising within this context is if the ESS q∗ is globally sta-
ble. Recalling the definition of a strictly globally stable ESS which is given
by Definition 8 on page 26, one can make the following observation: regard-

6This argumentation is linked to the so-called indirect evolutionary approach identified
by Güth [6]. Of course, a more comprohensive analysis would have to dwell on the imitation
process in the background.

7Note that for the proof one has to assume constant returns to scale; this assumption
is fulfilled for the general, alternative Cournot oligopoly.
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less of the number of deviant players, firms choosing q∗ will always make a
higher absolute profit compared to their deviant rivals – the crucial point
here is that all deviant players choose the same deviant strategy. The ar-
gumentation is similar to the case in which only one deviant player exists
(see above). However, one can omit the line of argument in this respect since
Vega-Redondo in [12] shows in a very elegant way that q∗ actually is a strictly
globally stable ESS.

An alternative way to show that q∗ is an ESS would be to use the fact that
q∗ is an optimal aggregative-taking strategy (ATS) according to Definition 6
on page 25 – in short, if all players choose q∗ then it is optimal for a player
to choose q∗ as well if she faces the aggregate g(q∗, . . . , q∗). In addition, as
has been shown in the previous subsection, the general, alternative Cournot
oligopoly is a submodular game. As a result, Proposition 1 on page 26 holds
in this case and one can conclude that q∗ is in fact an ESS.

3.2 Bertrand oligopoly and interdependent pref-
erences

The following section analyses the effects of the existence of firms with in-
terdependent preferences within a Bertrand oligopoly with product differen-
tiation.8 Unlike in the previous section, in which a generalised, alternative
Cournot model was presented, the alternative Bertrand oligopoly is not gen-
eralised in the sense that n = 3, i.e. there are only three firms – the reason
why this analysis concentrates on this case is because of the bulky expression
one gets in the generalised version; for the sake of completeness, however,
section 5.3 on page 56 of the appendix presents the generalised, alternative
Bertrand oligopoly with product differentiation.

This section too will be structured in the following way: the first part illus-
trates the Betrand oligopoly with interdependent preferences and its results,
while the second one is attended to the analysis of these results.

8One could regard this choice as a refinement of the model in the previous section,
since Cournot competition, i.e. competition in quantities, is rather rare and price or
Bertrand competition is presumably predominant in todays economies and a setting with
heterogenous products / product differentiation seems to be more appropriate too.
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3.2.1 Product Differentiation

Before going into medias res some crucial elements of the Bertrand oligopoly
with product differentiation presented here have to be explained. The con-
sumers’ utility functions underlying the demand functions in this setting have
been taken from Vives [13] and are of the following form:

U(q) = α
n∑

i=1

qi −
1

2

(
β

n∑
i=1

q2
i + 2γ

∑
j 6=i

qiqj

)
, (3.23)

with |γ| < β/2 and α > γ • n denotes the number of goods/firms from
which consumers can choose while qi is the quantity the consumer chooses
from good/firm i. Differentiating (3.23) for qi and then for qj yields:

∂2U(q)

∂qi∂qj
= −γ. (3.24)

The intuition behind equation (3.24) is the following: if γ > 0 then the
marginal utility of consuming good i is decreasing with the consumption of
good j, i.e. the goods are substitutes; on the other hand, if γ < 0 then the
marginal utility of consuming good i increases with the consumption of good
j, i.e. the goods are complements.

As a result, γ measures the degree of substitutability/complementarity of two
different goods. This means that the closer γ is to −β/2 (β/2) the higher
the degree of substitutability (complementarity) of two different goods; if,
however, γ = 0 then the goods are homogenous.

Solving the consumers utility maximisation problem finally yields the follow-
ing demand function for the good of firm i (see Vives [13]):

Di(pi, pj) =
α

(β + (n− 1)γ)
− (β + (n− 2)γ)

((β + (n− 1)γ)(β − γ))
pi

+
γ

((β + (n− 1)γ)(β − γ))

∑
j 6=i

pj. (3.25)

For n = 3 this expression is reduced to
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Di(pi, pj) =
α

(β + 2γ)
− (β + γ)

((β + 2γ)(β − γ))
pi

+
γ

((β + 2γ)(β − γ))

∑
j 6=i

pj

=
α

(β + 2γ)
−

(β + γ)pi + γ
∑

j 6=i pj

((β + 2γ)(β − γ))
. (3.26)

3.2.2 Alternative Bertrand oligopoly

After this preliminaries, now consider the alternative Bertrand oligopoly in
which firms i = 1, 2, 3 set prices pi ∈ [0,∞) • p−i denotes the prices set
by all other firms. All firms have the same cost function C(D(pi, p−i)) =
cD(pi, p−i), i.e. marginal costs are constant and there are no fixed costs –
D(pi, p−i) is the demand function specified in equation (3.26). Taking into
account this basic setting, the profit function of firm i is given by

πi(pi, p−i) = Di(pi, p−i)(pi − c). (3.27)

A firm maximising its absolute profit therefore has to solve the following
maximisation problem:

argmax
pi

πi(pi, p−i)

[foc] d
dpi
πi(pi, p−i) =

α(β−γ)−(β+γ)c−2pi(β+γ)+γ
P

j 6=i pj

(β−γ)(β+2γ)
= 0

[soc] d2πi(pi,p−i)

dp2
i

= −2(β−γ)
(β−γ)(β+2γ)

< 0 (3.28)

Since the second order condition is fulfilled the solution to the maximisation
problem will be a maximum. Solving the first order condition given in (3.28)
yields the reaction function of an absolute profit maximising firm i:

pP
i =: RP

i (p−i) =
α(β − γ) + (β + γ)c+ γ

∑
j 6=i pj

2(β + γ)
. (3.29)
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Noting that this reaction function will hold ∀i maximising profit, i.e. the
equilibrium strategy will be symmetric, one can also write pP instead of pP

i .
Therefore

∑
j 6=i pj will be (n− 1)pP with n = 3. Taking all this into account

and solving (3.29) for pP yields:

pP =
α(β − γ) + (β + γ)c

2β
. (3.30)

Equilibrium demand and profit in this usual Bertrand oligopoly with product
differentiation are therefore:

Di(p
P ) =

(α− c)(β + γ)

2β(β + 2γ)
and πi(p

P ) =
(α− c)2(β + γ)(β − γ)

4β2(β + 2γ)
. (3.31)

Now assume, as in the previous generalised, alternative Cournot oligopoly,
that not all firms maximise absolute profit but some maximise fi = πi − π̄
with π̄ = (1/n)

∑n
i=1 πi, and n = 3 in this case. It will be assumed that there

are k such relative profit maximisers with interdependent preferences. The
maximisation problem of these firms is:

argmax
pi

fi(pi, p−i) = Di(pi, p−i)(pi − c)− 1
n

∑n
i=1Di(pi, p−i)(pi − c)

[foc] d
dpi
fi(pi, p−i) =

2α(β−γ)−2[β(2pi−c)+2γ(pi−c)]+γ
P

j 6=i pj

3(β−γ)(β+2γ)
= 0

[soc] d2fi(pi,p−i)

dp2
i

= −4(β+γ)
3(β−γ)(β+2γ)

< 0 (3.32)

As one can see from (3.32), the second order condition is fulfilled and there-
fore the solution of the maximisation problem will be a maximum. Solving
the first order condition yields the following reaction function of a difference
maximising firm i:

pD
i =: RD

i (p−i) =
α(β − γ) + (β + γ)c+ γ

∑
j 6=i pj

4(β + γ)
. (3.33)

Similar to the price pP
i set by profit maximising firms, pD

i , i.e. the price
set by a relative profit maximising firm, will also be intragroup symmetric.
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Writing therefore pD and pP respectively, one can specify the term
∑

j 6=i pj

in equation (3.29) and (3.33). For a profit maximising firm this term will be
(n − k − 1)pP + kpD, while for a difference maximising firm it will be (n −
k)pP +(k−1)pD. Inserting these expressions into the corresponding reaction
function and solving the resulting equations for pD and pP respectively yields
the following equilibrium prices of the alternative Bertrand oligopoly with
product differentiation (n = 3):

pD =
α(β − γ)(4β + γ(k + 3)) + (4β2 + βγ(k + 11) + 3γ2(k + 1))c

2(4β2 + βγ(k + 5) + γ2k)
, (3.34)

pP =
α(β − γ)(4β + γ(k + 5)) + (4β2 + βγ(k + 9) + γ2(3k + 5))c

2(4β2 + βγ(k + 5) + γ2k)
. (3.35)

3.2.3 Analysis of alternative Bertrand oligopoly

The first question this analysis is going to address is whether or not the alter-
native Bertrand oligopoly described in the previous section is a (generalised)
aggregative game, i.e. the payoff to any firm depends on the strategy choosen
by this firm and a combination of all strategies of all firms.

First consider the demand function (3.26) of this Betrand oligopoly. Rewrit-
ing this function gives

Di(pi, pj) = a− bpi + d
∑
j 6=i

pj, (3.36)

where

a =
α

(β + 2γ)
, b =

(β + γ)

((β + 2γ)(β − γ))
and d =

γ

((β + 2γ)(β − γ))
.

Instead of equation (3.36) one could also write
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Di(pi, pj) = a− bpi − dpi + d

n∑
j=1

pj. (3.37)

Inserting (3.37) into the profit function of firm i finally yields:

πi(pi, pj) = Di(pi, pj)(pi − c)

(a− bpi − dpi + d

n∑
j=1

pj)(pi − c), (3.38)

i.e. the profit to any firm depends on the price of that firm and the sum
of all prices set by all firms. Therefore the alternative Bertrand oligopoly
is an aggregative game – for the aggregate

∑n
j=1 pj one could also write

gn : Sn → R+, with gn being the aggregate.

Examining demand equation (3.36) also reveals another interesting interpre-
tation with regard to the profit of firm i in this alternative Betrand oligopoly:
since demand depends on the individual price pi and the sum of prices set by
all other firms, i.e.

∑
j 6=i pj, also the profit to firm i depends on its individual

price pi and an aggregate gn−1 : Sn−1 → R+, which is the sum of all other
prices. As a result, one can write

πi(pi, g
n−1) = (a− bpi + dgn−1)(pi − c). (3.39)

Writing the profit function in this form makes it easier to answer the next
question, namely if the alternative Betrand oligopoly is supermodular or
submodular, i.e. whether the game has increasing or decreasing differences.9
Since the profit function is smooth and twice differentiable, one can use the
cross derivative check in order to answer this question. Differentiating (3.39)
for pi and then for gn−1 gives:

∂πi(pi, g
n−1)

∂pi

= a− b(2pi + c) + dgn−1,
∂2πi(pi, g

n−1)

∂pi∂gn−1
= d, (3.40)

9See section 2.4 on page 26 for further explanation.
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with d = γ/((β+2γ)(β−γ)). Since the denominator will always be positive,
the the sign of γ, i.e. the degree of substitutability/complementarity, will
determine whether the game is supermodular or submodular.

Now, if γ > 0, i.e. the goods are substitutes, then the profit function has
increasing differences that is the higher the aggregate the higher the incen-
tive to increase the price. The intuition behind this result is the following:
the higher the prices for the substitute goods – and therefore the higher the
aggregate – the higher the price a firm can set without loosing too much de-
mand. In other words the strategies, in case of substitute goods, are strategic
complements.

If, however, γ < 0, i.e. the goods are complements, then the profit function
exhibits decreasing differences that is the higher the aggregate the lower the
incentive to increase the price. One can think of this result in the following
way: the higher the prices set by other firms, the lower the demand for ones
own good; increasing the own price even further would decrease demand
even more. In this case the strategies are strategic substitutes – like in the
alternative Cournot Oligopoly.

The next part of this analysis is a comparison between the results obtained
for absolute profit maximising firms on the one hand and relative profit max-
imising firms on the other. The main emphasis of this comparison is placed
on prices, demands and profits. Consider, for instance, the difference pD−pP ,
where the two prices pD and pP are given in (3.34) and (3.35) respectively:

pD − pP =
−(α− c)(β − γ)γ

4β2 + βγ(k + 5) + γ2k
. (3.41)

Clearly, as one can see from the expression in (3.41), the sign of the difference
between these two prices depends on the sign of γ, i.e. the degree of sub-
stitutability/compelementarity between the goods. If, for instance, γ > 0,
that is the goods are substitutes and the profit function exhibits increasing
differences, then the denominator will be positive while the numerator will
be negative, regardless of k. In other words, pD − pP < 0, i.e. relative profit
maximising firms will always set a lower price than their absolute profit max-
imising counterparts, no matter how many relative profit maximisers there
are.

On the other hand, if γ < 0, that is the goods are complements and the
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profit function exhibits decreasing differences, the numerator will always be
positive while the sign of the denominator is not clear a priori: it will be
positive only if 4β2 + γ2k > −βγ(k + 5) – note that the left hand side of
this inequality is positive while the right hand side is positive too in case of
γ < 0. One can show, however, that this inequality holds and therefore both
the numerator and the denominator are positive and hence pD − pP > 0,
again for all k. This means that in the case of complements relative profit
maximising firms will always set a higher price than their absolute profit
maximising counterparts.

Summarising the results one can conclude that relative profit maximising
firms always pursue a more aggressive pricing strategy: in the case of sub-
situte goods, in which strategies are strategic complements, relative profit
maximising firms beat down the price, while in the case of complement goods,
in which strategies are strategic subsitutes, relative profit maximising firms
boost prices.

Another interesting observation can be made if one analyses the change in
the difference pD − pP with respect to the number of difference maximising
firms k. By looking at equation (3.41) one can see that as k increases the
denominator increases too while the numerator is not affected by an increase
in the number of relative profit maximising firms.

In case of γ > 0, i.e. the goods are substitutes, the difference in prices
becomes less negative if k increases. On the other hand, if γ < 0, i.e. the
goods are complements, the difference in prices becomes less positive. In fact
this means that the higher the number of relative profit maximising firms
the more the two prices will converge to each other. Hence, relative profit
maximising players become less aggressive.

The results for the difference in prices is reflected in the differences of demand.
Comparing equilibrium demands for relative profit maximising firms on the
one hand and absolute profit maximsing firms on the other, one obtains:

DD −DP =
(α− c)γ

4β2 + βγ(k + 5) + γ2k
. (3.42)

Since the denominator is positive (see above), the sign of the difference in
(3.42) depends on the sign of γ: if the goods are substitutes (γ > 0) then
the relative profit maximisers face a higher demand while in the case of
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complements (γ < 0) they will face a lower demand. This result is a direct
implication of the pricing strategies pursued by relative profit maximising
firms in the two possible cases – beating the price in case of substitutes
results in higher demand while boosting the price in case of complements
results in lower demand.

Finally, it is worthwhile to analyse the profits of absolute and relative profit
maximising firms respectively. Without specifing the number of relative
profit maximising firms – the overall number of firms still is n = 3 • the
difference in profits is:

πrel − πabs =
(α− c)2(β − γ)(2β + γ(k + 1))γ2

2(β + 2γ)(4β2 + βγ(k + 5) + γ2k)2
. (3.43)

While the denominator of (3.42) will always be positive, the numerator will
be positive only if 2β + γ(k + 1) > 0. Since for the number of relative profit
maximising firms it holds k ≤ 3 and one recalls that |γ| < β/2, this condition
is fulfilled. Hence, relative profit maximising firms, regardless of their num-
ber, will always make a higher profit than absolute profit maximising firms
– note that this result is true for the case of substitute goods as well as for
the case of complement goods.

3.2.4 Evolutionary equilibrium

The last issue this thesis is going to address is the evolutionary equilibrium
of the alternative Bertrand oligopoly. As in the previous general, alterna-
tive Cournot model, it is reasonable to assume that in the Bertrand case
eventually the number of relative profit maximising firms will equal the total
number of firms – recall that relative profit maximising firms always maker a
higher absolute profit than their absolute profit maximising counterparts; if
survival is based on absolute profit than relative profit maximising firms will
have a strategic advantage and if firms can observe the profits of their rivals,
k will converge to n as firms imitate relative profit maximising behaviour.

The question now is if the Nash-equilibrium price pD – shown in (3.34) for
n = 3 and in (5.27) in the Appendix for the general case of n players – is
an evolutionarily stable strategy for k = n. Contrary to the previous model,
the line of argument will rely on a result shown by Tanaka [11].
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In this paper Tanaka shows that the evolutionarily stable strategy (ESS) is
equal to what he calls globally surviving strategy (GSS). This result is then
illustrated by means of a Betrand setting with product differentiation, which
has the same underlying assumptions as the alternative Bertrand model pre-
sented in this thesis. The only major difference is that Tanaka uses invers
demand functions of the form

pi = a− xi − b

n∑
j=1,j 6=i

xj. (3.44)

The invers of the demand function used in this thesis is equal to:10

Pi(q) = α− βqi − γ
∑
j 6=i

qj. (3.45)

By looking at (3.44) and (3.45) respectively one can see that the invers de-
mand functions are the same for α = a, β = 1 and γ = b. As a result, it will
be sufficient to show that the ESS Tanka identifies in the example is equal
to the Nash-equilibrium price pD for the case k = n • since the example of
Tanaka is not confined to the case where n = 3, one has to use the general
expression of pD given in equation (5.27) in the Appendix.

The ESS identified by Tanaka is equal to

p∗ =
(1− b)a+ [1 + (n− 1)b]c

2 + (n− 2)b
. (3.46)

Now, substituting k for n – recall that we are looking at the reasonable case
in which all firms are relative profit maximisers – and β for 1 – since one
has to account for the different factors in the invers demand functions – in
equation (5.27), one gets

pD =
α(1− γ) + c(γ(n− 1) + 1)

γ(n− 2) + 2
. (3.47)

10see Vives [13], p. 146
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Accounting for the remaining differences in the notation, one has to substitute
α for a and γ for b. This step finally yields

pD =
a(1− b) + c(b(n− 1) + 1)

b(n− 2) + 2
. (3.48)

Comparing the result for the ESS identified by Tanaka (equation (3.46)) with
equation (3.48) shows that pD for the case of k = n in fact is an evolutionarily
stable strategy of the alternative Bertrand oligopoly. Furthermore, since
the ESS identified by Tanaka is strictly globally stable, pD also represents a
stochastically stable equilibrium, that is no matter how many deviant players
– all choosing the same deviant strategy – exist, players choosing pD will
always be better off.

Changing (3.48) back to the initial notation yields:

pD =
α(1− γ) + c(γ(n− 1) + 1)

γ(n− 2) + 2
= c+

(α− c)(1− γ)

γ(n− 2) + 2
. (3.49)

In order to compare this outcome with the perfectly competitive outcome,
that is price equals marginal costs and the goods are perfect substitutes,
one has to look at the case where the goods are substitutes in this Bertrand
setting with product differentiation, i.e. γ > 0. Because the last term in
equation (3.49) will be strictly positive in this case, one can conclude that
the evolutionarily stable price in the Betrand case with substitute goods is
larger than marginal costs.11 Therefore, one can also conclude that the profits
in the symmetric evolutionary equilibrium will be positive.

11It is not equal to marignal costs, as in the Cournot case, since the initial assumption
was that goods are never perfect substitutes/complements.
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Chapter 4

Conclusion

In most (micro-)economic textbooks the profit maximisation assumption is
justified with the so-called Friedman conjecture. Friedman assumed that the
maximisation of returns, given natural selection within an industry, appro-
priately summarises the condition of survival of a firm. According to his
argument, every firm which forgoes to maximise absolute profits will eventu-
ally lose in the struggle for survival.

Thus, a common justification of the profit maximisation assumption is made
on evolutionary grounds. However, as has been shown in this thesis and in
the contributions of many other authors, the evolutionarily stable strategy,
i.e. the strategy which appropriately summarises the conditions for survival,
in the Cournot or the Bertrand oligopoly, for instance, is different from the
absolute profit maximisation strategy.

To prove the Friedman conjecture wrong, one not even has to fall back on
evolutionary reasoning, since a simple analysis of strategic competition is
sufficient. Both models in this thesis have shown that in an imperfect strate-
gic environment, in which firms possess market power, i.e. the strategy
choosen by one firm exerts a negative externality on the payoffs of all com-
petitors, firms which maximise relative profit, for instance, instead of absolute
profit make higher profits than their absolute profit maximising counterparts.
Therefore, as long as relative profit maximising firms exist within an industry,
absolute profit maximisation is not an optimal strategy to pursue.

Of course, relative profit maximisation is only one possible alternative which
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yields this result in a strategic environment. Future research, however, should
not try to find the optimal objective function a firm should adopt. It should
rather concentrate on the factors by which alternative objective functions
stand up to the usual absolute profit maximisation objective.

With regard to this aim and in order to conclude this thesis it is worthwhile
to trouble Charles Darwin once more, to whom the following quotation has
been ascribed to:

“It is not the strongest nor the most intelligent that survives but
rather the one most responsive to change.”
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Chapter 5

Appendix

5.1 Relative payoff maximisation

Provided that πD = πi − π̄ and π
′
D = πi − π̄−i, and given that π̄ =

∑n
i=1 πi

and π̄−i =
∑

j 6=i πj, show that

argmax
xi∈X

πD = argmax
xi∈X

π
′

D. (5.1)

Proof. Without loss of generality one can assume that i = 1. Therefore one
gets:

πD = π1 −
π1 + π2 + · · ·+ πn

n

=
1

n
[(n− 1) π1 − π2 − · · · − πn] (5.2)

π
′

D = π1 −
π2 + π3 + · · ·+ πn

n− 1

=
1

n− 1
[(n− 1) π1 − π2 − · · · − πn] (5.3)
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Maximising πD with respect to x1 yields the first order condition:

dπD

dx1

=
1

n

[
(n− 1)

dπ1

dx1

− dπ2

dx1

− · · · − dπn

dx1

]
= 0

= (n− 1)
dπ1

dx1

− dπ2

dx1

− · · · − dπn

dx1

= 0 (5.4)

On the other hand, maximising π′
D with respect to x1, results in the following

first order condition:

dπ
′
D

dx1

=
1

n− 1

[
(n− 1)

dπ1

dx1

− dπ2

dx1

− · · · − dπn

dx1

]
= 0

= (n− 1)
dπ1

dx1

− dπ2

dx1

− · · · − dπn

dx1

= 0 (5.5)

Comparing (5.4) with (5.5) shows that maximising πD = πi − π̄ yields the
same as maximising π′

D = πi − π̄−i. Finally, one has to check whether the
two maximisation problems really yield a maximum.

The second order condition in maximising πD with respect to x1 is:

d2πD

dx2
1

=
1

n

[
(n− 1)

d2π1

d2x1

− d2π2

d2x1

− · · · − d2πn

d2x1

]
< 0 (5.6)

Knowing that 1
n
> 0 and assuming that d2π2

d2x1
= d2π3

d2x1
= · · · = d2πn

d2x1
= d2π−1

d2x1
one

can also write (5.6) in the following way:

(n− 1)
d2π1

d2x1

< (n− 1)
d2π−1

d2x1

(5.7)

Finally, taking into account that in the case of n ≥ 2 it also holds (n−1) > 0,
one gets the second order condition:
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d2π1

d2x1

<
d2π−1

d2x1

(5.8)

If one maximises π′
D with respect to x1, one gets the same second order

condition as specified by the last equation, and therefore, if (5.8) is satisfied,
equation (5.1) will be fulfilled.

5.2 General Cournot oligopoly

Consider the classic Cournot oligopoly, in which firms i = 1, . . . , n set quan-
tities qi ∈ [0,∞] – q−i denotes the quantities set by all other firms except
firm i. All firms have the same cost function C(qi) = cqi, i.e. there are no
fixed costs and marginal costs are constant at c. Aggregate inverse demand
is given by the linear function P (Q) = a − bQ with Q =

∑n
i=1 qi. With

regard to the parameters of the inverse demand function it will be assumed
that a, b > 0 and a > c. Taking into account this basic setting, the profit
function of firm i is given by

πi(qi, q−i) = (a− b
n∑

i=1

qi)qi − cqi. (5.9)

The maximisation problem of firm i is shown (5.10) – note that all play-
ers in the classic Cournot oligopoly have independent preferences, i.e. they
maximise absolute payoff.

argmax
qi

πi(qi, q−i) = (a− bQ− c)qi

[foc] dπi(qi,q−i)
dqi

= −bqi + (a− bQ− c) = 0

[soc] d2πi(qi,q−i)

dq2
i

= −2b < 0 (5.10)

As one can see from above, the second order condition guarantees that the
solution will be a maximum. Denoting the optimal quantity set by a profit
maximising firm i with qP

i and rearranging the first order condition of (5.10)
yields:
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qP
i =

a

b
− c

b
−Q. (5.11)

Equation (5.11) shows that all firms will set the same quantity in the opti-
mum. Therefore the solution qP

i is said to be symmetric. If (5.11) is solved
for qP

i one gets the reaction function of firm i:

qP
i =: RP

i (q−i) =
1

2b

(
a− c− b

∑
j 6=i

qj

)
. (5.12)

Taking into account the symmetry of the solution, and using the reaction
function of firm i, one can conclude that:

qP =
1

2b

(
a− c− b(n− 1)qP

)
. (5.13)

Solving (5.13) for qP yields the following solutions of this general Cournot
oligopoly:

qP =
(a− c)

b(n+ 1)
and QP = nqP =

(a− c)n

b(n+ 1)
, (5.14)

P (QP ) = P P =
a+ cn

n+ 1
and πP

i =
(a− c)2

b(n+ 1)2
. (5.15)

5.3 General alternative Bertrand oligopoly

Consider the alternative Bertrand oligopoly in which firms i = 1, . . . , n set
prices pi ∈ [0,∞) • p−i denotes the prices set by all other firms. All firms
have the same cost function C(D(pi, p−i)) = cD(pi, p−i), i.e. marginal costs
are constant and there are no fixed costs.

The demand functionD(pi, p−i) is specified as follows (for further explanation
see section 3.2.1 on page 41):
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Di(pi, p−i) =
α

(β + (n− 1)γ)
− (β + (n− 2)γ)

((β + (n− 1)γ)(β − γ))
pi

+
γ

((β + (n− 1)γ)(β − γ))

∑
j 6=i

pj, (5.16)

where p−i =
∑

j 6=i pj holds in general. In order to make things easier one can
define the following variables:

σ =
α

(β + (n− 1)γ)
,

τ =
(β + (n− 2)γ)

((β + (n− 1)γ)(β − γ))
and

ψ =
γ

((β + (n− 1)γ)(β − γ))
.

As a result, the demand function specified in (5.16) is simplified to

Di(pi, p−i) = σ − τpi + ψ
∑
j 6=i

pj. (5.17)

Taking into account this basic setting, the objective function of firm i is given
by

πi(pi, p−i) = Di(pi, p−i)(pi − c). (5.18)

First consider the case in which all firm maximise absolute profit. In order to
obtain the the solution to this maximisation problem one has to differentiate
equation (5.18) with respect to pi – we will assume that the second order
condition of the maximisation problem is fulfilled so that the result is really a
maximum. Setting the first order condition equal to zero yields the following
reaction function of an absolute profit maximising firm i:

57



pP
i =: RP

i (p−i) =
(σ + cτ + ψ

∑
j 6=i pj)

2τ
. (5.19)

Noting that this reaction function will hold for all firms i maximising profit,
i.e. the equilibrium strategy will be symmetric, one can also write pP instead
of pP

i . Therefore
∑

j 6=i pj will be (n− 1)pP . Taking all this into account and
solving (5.19) for pP yields:

pP =
σ + cτ

2τ − ψ(n− 1)
. (5.20)

Pluging in the expressions for σ, τ, and ψ one obtains:

pP =
α(β − γ) + (β + γ(n− 2))c

2β + γ(n− 3)
. (5.21)

Now consider a player i who maximises the difference between her own profit
πi and the industry average profit π̃. Her objective function is then given by

fi(pi, p−i) = πi − πD
i = Di(pi, p−i)(pi − c)− 1

n

n∑
i=1

Di(pi, p−i)(pi − c). (5.22)

Differentiating equation (5.22) with respect to pi and solving the first or-
der condition of this maximisation problem yields the reaction function of
a difference maximising firm – again we will assume that the second order
condition of the maximisation problem is fulfilled:

pD
i =: RD

i (p−i) =
(σ + ψ

∑
j 6=i pj + cτ)(1− 1

n
)− 1

n
ψ(
∑

j 6=i pj − (n− 1)c)

(2τ − 1
n
2τ)

.

(5.23)

Similar to the price pP
i set by profit maximising firms, pD

i , i.e. the price set
by a difference maximising firm, will also be intragroup symmetric. Writing
therefore pD and pP respectively, one can specify the term

∑
j 6=i pj. For a
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profit maximising firm this term will be (n − k − 1)pP + kpD, while for a
difference maximising firm it will be (n− k)pP + (k − 1)pD. Inserting these
expressions into the corresponding reaction functions – equation (5.19) for
absolute profit maximising firms and equation (5.23) for difference maximis-
ing firms – yields:

pP =
σ + cτ + kpDψ

2τ + (k − n+ 1)ψ
, (5.24)

pD =
(n− 1)σ + c(n− 1)τ

2(n− 1)τ − (k − 1)(n− 2)ψ

+
[c(n− 1)− (k − n)(n− 2)pP ]ψ

2(n− 1)τ − (k − 1)(n− 2)ψ
. (5.25)

Solving these two equations for pD and pP respectively and inserting the ex-
pressions for σ, τ, and ψ finally yields the equilibrium prices of the alternative
Bertrand oligopoly with product differentiation:

pP =
α(β − γ)[2β(n− 1) + γ(k + (n− 2)(2n− 1))]

4β2(n− 1) + 2βγ(k + 3n2 − 9n+ 5) + γ2(2k + 2n2 − 7n+ 3)(n− 2)

+
[2β2(n− 1) + βγ(k + (n− 2)(4n− 3)) + γ2(k(2n− 3) + (n− 2)2(2n− 1))]c

4β2(n− 1) + 2βγ(k + 3n2 − 9n+ 5) + γ2(2k + 2n2 − 7n+ 3)(n− 2)
,

(5.26)

pD =
α(β − γ)[2β(n− 1) + γ(k + 2n2 − 6n+ 3)]

4β2(n− 1) + 2βγ(k + 3n2 − 9n+ 5) + γ2(2k + 2n2 − 7n+ 3)(n− 2)

+
[2β2(n− 1) + βγ(k + 4n2 − 10n+ 5) + γ2(k + n2 − 3n+ 1)(2n− 3)]c

4β2(n− 1) + 2βγ(k + 3n2 − 9n+ 5) + γ2(2k + 2n2 − 7n+ 3)(n− 2)
.

(5.27)
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5.4 German abstract

In der Volkswirtschaftslehre nimmt man üblicherweise an, dass Firmen ihren
absoluten Profit maximieren, gegeben die Strategien der Konkurrenten, d.h.
Firmen vernachlässigen den Effekt, den ihre Strategie auf die Profite der
übrigen Firmen ausübt. In einem perfekt strategischen Umfeld, in dem dieser
Effekt nicht existiert, ist die Strategie, den absoluten Profit zu maximieren,
durchaus plausibel.

Man könnte jedoch die Frage aufwerfen, ob absolute Profitmaximierung auch
in einem nicht perfekten, strategischen Umfeld, d.h. in einem Umfeld in dem
Firmen Markmacht besitzen, optimal ist. In solchen Wettbewerbsumfeldern
haben nämlich die Aktionen einer Firma nicht nur Auswirkungen auf den
Profit der Firma sondern auch auf die Profite aller anderen Firmen inner-
halb einer bestimmten Industrie, aufgrund des eben beschriebenen externen
Effektes.

Eine Firma, die sich dieses negativen externen Effektes bewusst ist, könnte
beispielsweise eine Strategie verfolgen, die den Profiten der Konkurrenten
mehr schadet als dem eigenen Profit, d.h. sie könnte ein boshaftes Verhalten
an den Tag legen. Vor einem evolutionärem Hintergrund, in dem die evolu-
tionäre Tauglichkeit von der Höhe des absoluten Profits abhängt, könnte ein
derartiges Verhalten zu einem strategischen Vorteil führen in dem Sinn, dass
das boshafte Verhalten die Überlebenswahrscheinlichkeit erhöht.

Fügt man zu diesem Umfeld noch eine weitere evolutionäre Komponente
hinzu, nämlich dass Firmen in der Lage sind beste Antworten zu beobachten
und diese zu übernehmen, so würde man vermutlich zu einer Situation gelan-
gen in der Firmen, die eine boshafte Strategie verfolgen und sich damit einen
strategischen Vorteil sichern, die gesamte Population an Firmen dominieren.

Erreicht die Evolution schließlich diesen Punkt, kann man sich die Frage
stellen, ob diese Situation, in der all Firmen boshaft handeln, evolutionär
stabil ist. In andere Worten, ist das boshafte Verhalten eine evolutionär
stabile Strategie wenn alle Firmen diese Strategie verfolgen – evolutionär
stabil bedeutet in diesem Zusammenhang, dass eine abweichende Firma nicht
in der Lage sich einen strategischen Vorteil zu sichern, indem sie eine andere
Strategie als das boshafte Verhalten wählt.

Die vorliegende Diplomarbeit hat es sich nun zum Ziel gesetzt, Licht auf all
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diese Fragen zu werfen. Eine notwendige Voraussetzung, um diese Fragen zu
beantworten, ist natürlich, alle relevanten theoretischen Konzepte in diesem
Zusammenhang einzuführen und zu definieren – wichtig sind hier vor allem
die Theorie des boshaften Verhaltens sowie evolutionär stabile Strategien.

Nachdem der Leser in der Literaturübersicht mit den wichtigsten theoretis-
chen Konzepten vertraut gemacht wurde, wird die oben beschriebene Ar-
gumentationslinie anhand von modifizierten Versionen des Cournot- sowie
des Bertrand Oligopol-Modells analysiert – letzteres Modell wird dabei eine
Form der Produktdifferenzierung um es analytisch zugänglicher zu machen.

Die angesprochene Modifikation steht in beiden Fällen im Zusammenhang
mit den Präferenzen der Spieler innerhalb des Oligopols – während in den
klassischen Versionen alle Spieler sogenannte unabhängige Präferenzen be-
sitzen, d.h. die Spieler kümmern sich nur um ihren eigenen, absoluten Profit,
präsentieren die hier vorgestellten Versionen den Fall in dem ein gewisser An-
teil an Spielern interdependente Präferenzen besitzen, d.h. diesen Spielern
ist der relative Profit wichtig.

In beiden Fällen wird gezeigt, was oben bereits angesprochen wurde, dass
nämlich Spieler mit interdependenten Präferenzen sich einen strategischen
Vorteil durch boshaftes Verhalten sichern. Im Wesentlichen heißt dies, dass
Spieler mit interdependenten Präferenzen aggressiver aggieren, sodass sie
schließlich einen höheren Profit als ihre Rivalen mit unabhängigen Präferen-
zen erzielen. Ist die Überlebenswahrscheinlichkeit von der Höhe des absoluten
Profits abhängig, dann eignen sich Spieler mit interdependenten Präferenzen
offensichtlich einen strategischen Vorteil an. Es sollte hervorgehoben werden,
dass all diese Beobachtungen bereits innerhalb eines strategischen Wettbe-
werbsumfeldes gemacht werden können.

Zusätzlich werden auch noch evolutionäre Gleichgewichte anhand der mod-
ifizierten Oligopol-Modelle analysiert. Da der evolutionäre Prozess, der zu
diesen Gleichgewichten führt, nicht explizit modelliert wird, unterscheidet
sich der hier präsentierte Ansatz von dem, der üblicherweise in der evolu-
tionären Spieltheorie gewählt wird und oft auf Modelle von Imitationsver-
halten, Vererbung und zufälligen Mutationen etc. aufbaut.

Durch logische Schlussfolgerung alleine ist es möglich zu zeigen, dass schließlich
Firmen die Population dominieren werden, die ein boshaftes Verhalten an den
Tag legen. Diese Strategie ist zudem evolutionär stabil in dieser Situation.
Evolutionär stabile Strategien in endlichen Populationen stehen ganz allge-
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mein in Verbindung mit boshaftem Verhalten. Insbesondere kann man auch
beobachten, dass das evolutionäre Gleichgewicht in einer endlichen Popu-
lation nicht notwendigerweise ein Nash-Gleichgewicht darstellt – diese Um-
stand wird anhand eines Beispieles verdeutlicht. Ein weiteres Resultat ist,
dass ein evolutionärer bzw. strategischer Vorteil auf Kosten eines höheren
Profites erreicht werden kann.

Der wichtigste Beitrag dieser Diplomarbeit ist jedoch zu zeigen, dass das
Resultat des strategischen Wettbewerbs, in dem alle Spieler den relativen
Profit maximieren, das gleiche ist wie im evolutionären Gleichgewicht.
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