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Abstract 
 

The term meiosis refers to a particular cell division involved in germ cells formation. During 

meiosis, the parental diploid cell generates haploid progeny, by performing one round of 

DNA replication followed by two cell divisions. In contrast to mitosis, the first round of 

meiotic cell division is characterized by the segregation of homolog chromosomes instead of 

sister chromatids. This is performed by formation of a physical connection between the 

homologous chromosomes, known as chiasma, which counteracts the forces generated by 

the microtubules to align the homologous chromosomes in the metaphase plate. 

Chiasma formation depends on two major events characteristic of meiosis: (1) DNA cleavage 

in the context of chromatin and its repair via the homologous chromosome and (2) the 

pairing and synapsis of homologous chromosomes prior to chiasma formation. Previous 

observations have suggested a direct connection between chromatin condensation and 

induction of Double-strand break (DSB) formation and repair during the meiotic 

recombination program; nevertheless the mechanism defining this particular interrelationship 

has not been elucidated so far. 

By performing a genome-wide approach based on Chromatin immunoprecipitation followed 

by hybridization to high resolution DNA microarray chips (ChIP-chip), we mapped several 

proteins required for meiotic recombination and synapsis of S. cerevisiae to their 

chromosomal positions. Contrary to expectations, components like Spo11p or Mre11p, 

required for DSB formation, do not exclusively localize to the chromatin cleavage sites, but in 

addition colocalize with components involved in chromatin organization, such as cohesins 

and axial element proteins. Interestingly, Spo11p localization at both DSB and cohesin sites 

was significantly enhanced by its Y135F catalytically dead mutation, suggesting that Spo11p 

localization at cohesin sites is important for forming DSBs. Furthermore, while Mre11p 

localization to the meiotic DSB sites requires Spo11p or Rec114p, but not DSB formation 

itself, its localization to cohesin sites is not impaired under these conditions.  

Meiotic DSB repair components, like the MRX complex and Com1, also do not localize 

exclusively to the site of DSB cleavage, but additionally interact with cohesin sites. 

Recruitment of Com1 to the DSB sites depends on Spo11p but not in the DSB formation 

itself. Furthermore, it is also abolished in the rad50S mutant background, but not in the 

mre11S or mre11-H125N mutants, distinguishing between a defective recruitment function 

of ad50S for Com1 and an enzymatic defect responsible for the accumulation of unrepaired 

meiotic DSBs in mre11S. Otherwise the phenotypes of the two different “S” mutants are 

indistinguishable. 
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Abstract 
 

These findings suggest a mechanism in which the chromatin folding in vivo participates in 

the induction and repair of DSBs during meiosis, where the chromosome core, defined by the 

cohesin sites plays an essential role in the recruitment of the components involved in these 

processes and where the loop region prone to cleavage is interacting with components 

attached to the core in order to allow DSB formation.   
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Introduction 
 

1 Introduction 

Among all living beings, a very large part is issue of a sexual reproduction characterized by 

the fusion of two germ cells or gametes. This event, also known as fertilization, gives rise to 

a single cell called a zygote, which in contrast to an asexual progeny, presents genetic 

characteristics from both parental donor cells. 

Because gametes fusion is the key event characterizing sexual reproduction, an imminent 

theoretical consequence of this process is the doubling of the zygotic chromosomes number 

from generation to generation. The inconsistency between the event of fertilization and the 

maintenance of the constant number of chromosomes between successive generations was 

first addressed in the late 19th century. Indeed, pioneering studies in the process of 

fertilization performed on sea urchin eggs by Oscar Hertwing (1875) established the 

important role of the cell nuclei in the emergence of a new organism. Around the same time, 

studies of somatic plant cell division performed by Edouard Strasburger revealed the 

existence of easily stainable particles in the nucleus. In the following years, other scientists, 

like Walther Flemming (1879-1882) who extended this observation to the animal kingdom, 

confirmed the existence of such “stainable threads” (denoted as chromosomes) which are 

duplicated during somatic cell division and then equally segregated into both daughter cells. 

Finally, in 1883 Edouard van Beneden reported that the germ cell contained only half of the 

number of chromosomes found in somatic cells [1].  

Based on these previous observations, the Zoologist August Weismann proposed in 1887 the 

existence of two kinds of cells: somatic cells, which were the general cells of the bodies, and 

germ cells (or germ-plasm), which were the cells involved in reproduction. The concept of a 

“reductive cell divison” was then proposed by Weismann in order to explain the observations 

of Van Beneden demonstrating the halving of the number of chromosomes in germ cells. 

This concept fit nicely with the reconstitution of the number of chromosomes during 

fertilization, and more over with the concept of chromosomes as vehicles of heredity 

(described in “The Germ-plasm, A Theory of Heredity” by Weismann in 1892) [2]. 

 In the same year, Theodor Boveri proposed a model where the homologous chromosomes 

pair during the “reductive cell division”, and this was confirmed in the following years by 

studies performed in grasshopper cells by Walter Sutton (1900). In 1905, Farmer and Moore 

gave the name of meiosis to this particular type of cell division, and finally, when the process 

of chromosome pairing, together with the reduction of the total number of chromosomes in 

germ cell formation, has been correlated with the Mendelian theory of characters 

segregation, it gave rise to the Chromosome Theory of the inheritance[3]. 
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An important observation with respect to chromosome pairing in meiosis was the fact that 

chromosomes seemed to stick together at particular points during chromosome separation. 

This fact brought Frans Janssens (1909) to suggest that the “cross-like” figures he observed 

in meiosis could correspond to sites where some kind of exchange between paired 

chromosomes took place, and he called these structures chiasma. This new concept 

suggested a direct connection between the cytological observations and Mendelian genetics. 

Indeed, the chromosome theory of the inheritance, which appeared with the parallelism 

between chromosome behaviour and Mendelism described by Sutton* and Boveri at the 

beginning of the 20th century, was confirmed by Thomas Morgan, who proved that genes are 

carried on chromosomes and demonstrated that occasionally, they are exchanged between 

homologous chromosomes during meiosis. He called this process “crossing over”, which was 

then used for mapping genetic factors on chromosomes of the fruit fly. Whit time, the 

correlation between the occurrence of genetic crossing over and the frequency of chiasmata 

became strong, and finally in 1931, H. Creighton and B. McClintock demonstrated that 

crossing over and chiasma indeed corresponded to the same meiotic event [4]. 

With the discovery of DNA as the material of inheritance, the elucidation of the molecular 

processes involved in chiasma formation and, by consequence, in meiotic recombination 

became the goal of a new generation of molecular biologists in the field. In the following 

paragraphs I would like to present an overview of the molecular events involved in meiotic 

chromatin condensation as well as meiotic recombination, mainly from the point of view of 

the experiments performed in Saccaromyces cerevisiae. Later on, I will present our main 

findings in the last four years since I joined the laboratory of Professor Franz Klein at the 

University of Vienna, and finally discuss their importance for the understanding of the 

molecular processes governing this particular kind of cell division.  

 

 

 

 

 

 

 

 

 

                                                 
* Sutton gives the name of “genes” to the pair of Mendelian factors that are separated from generation to 
generation; in a similar manner as chromosomes do in the germ cells formation process. 
 

 6 



Introduction 
 

1.1 An Overview of Meiosis 

The term “meiosis” refers to the specialized cell division required for the formation of germ 

cells in sexually reproductive organisms. Like mitosis, meiosis begins with the replication of 

the genetic information, but in order to generate haploid progeny cells from diploid parental 

cells, two subsequent cell divisions are required: meiosis I where the homologous 

chromosomes are segregated, and meiosis II where sister chromatids are pulled apart as in 

the case of a mitotic cell division.  

 Meiosis I is characterized by a long prophase (called prophase I) which can be subdivided, 

based on cytological analysis, into lep otene (chromosome condensation), zygo ene ( paring 

of homolog chromosomes), pachy ene (formation of a proteinaceous scaffold-like structure 

between the homologous chromosomes called the synaptonemal complex or SC), diplotene 

(the synaptonemal complex is no  longer visible, instead chromosomes are connected by 

chiasmata) and diakinesis ( spindle microtubules are formed and attach to monopolar 

kinetochores ). In metaphase I the homologous chromosomes are aligned to then be 

segregated in anaphase I (reviewed in [5]). 

t t

t

 

 

Figure 1: Schematic representation of the different meiotic stages from a 
cytological point of view (adapted from[6]). 

 

Considering that the main goal of meiosis I is to segregate homologous chromosomes, and 

not sister chromatids as in a regular mitosis, the key event of this stage is the formation of a 

physical connection between homologous chromosomes. Indeed, such connections, known 

as chiasmata, together with sister chromatid cohesion, counteract the force generated by 
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microtubules and in this way generate tension required to align the homologous 

chromosomes at the metaphase plate before segregation [7]. Chiasma formation depends on 

two particular events taking place in prophase I: 

 

1. Chromatin condensation  

2. Induction of a specific meiotic recombination programme 

 

Furthermore, we have to mention that in addition to chiasma formation, the attachment of 

microtubules to monopolar kinetochores, as well as the preservation of intersister-chromatid 

centromeric cohesion during meiosis I are essential events to ensure homologous 

chromosome segregation and to allow alignment and segregation of sister chromatids in 

Meiosis II respectively (a detailed review of these last events are presented in[8]). 

Prophase I

S phase

metaphase Imetaphase II

Prophase IProphase I

S phase

metaphase Imetaphase II

S phase

metaphase Imetaphase II

S phase

metaphase Imetaphase II metaphase Imetaphase Imetaphase II
 

Figure 2: Schematic representation of Meiotic cell division progression. Cohesin 
components are represented by a red cross between sister chromatids (green and brown 
lines duplicated in S-phase). Homologous chromosome pairing and progression of synapsis is 
illustrated during prophase I. Formation of the proteinaceous scaffold-like structure called 
the SC is represented in dark blue (prophase I). In metaphase I, the role of chiasma and 
sister chromatid cohesion in counteractin microtubule forces are represented. For simplicty, 
the segregation of only a single pair of homologous chromosomes is illustrated. 
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1.2 Chromatin condensation in Meiosis 

During S-phase, cohesin components are loaded in order to hold sister chromatids together. 

This process is common to both mitotic and meiotic cell division; nevertheless, meiosis 

utilizes a specific cohesin component, Rec8p, which replace the mitotic kleisin Scc1p [9]. At 

the beginning of prophase I, newly replicated homologous chromosomes are aligned in a 

proteinaceous filament-like structure, known as axial elements in Saccharomyces cerevisiae,

which is composed of the proteins Hop1p and Red1p. From cytological observation it is 

believed that during this process the cohesin components are aligned over this structure, 

giving rise to the particular chromatin organization where uncondensed loop regions are 

observed ementating out from the condensed axial element [10]. Indeed, recent cytological 

analyses performed in mice have shown a strict correlation between chromosome axis 

extension and a general shortening of chromatin loop size [11]. Finally, homologous 

chromosomes pair at defined regions to then interconnect the axial elements of both 

homologues by a transversal filament constituted of the protein Zip1p in budding yeast. This 

final structure is known as the synaptonemal complex and is present in several sexually 

reproductive organisms, but not in all.  For instance, fission yeast have intrachromosomal 

linear organization structures, but do not have an interchromosomal protein connection like 

in budding yeast [12].  

 

 

Axial Element
(Hop1, Red1)

chromatin
loops chromatin axis 

(cohesin)

Transversal filaments 
(Zip1)

Homolog chromosome Synapsis

Axial Element
(Hop1, Red1)
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loops chromatin axis 
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(Zip1)
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loops chromatin axis 

(cohesin)

chromatin
loops chromatin axis 
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Transversal filaments 
(Zip1)

Transversal filaments 
(Zip1)

Homolog chromosome Synapsis

 

Figure 3: Meiotic chromatin organization in Saccharomyces cerevisiae. Cohesin 
components loaded in S-phase are represented in green. The axial element (Hop1p and 
Red1p) and the transversal filament (Zip1p) are represented in red and blue respectively. 
The chromatin organization in uncondensed loops and a chromosome core defined by the 
synaptonemal complex is highlighted in this cartoon. 
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The previously described chromatin organization has been visualized by different approaches 

including Electron microscopy (EM) [9] as well as immuno-staining of chromatin spreads in 

budding yeast[13]. From this analysis the distance between the Axial elements in S. 

cerevisiae has been estimated to be 21-35um, which is considered the shortest SC measured 

to date, in contrast to distances of 150-180um in rodents, and 3mm for the SC of the sea-

lily, a distant relative of the starfish (for an extended review of the aspects of meiotic 

chromosome synapsis see [14]). 

Immunostaining analysis allowed the visualization of Rec8 foci overlapping with Zip1p 

stretches observed in pachytene stage, strongly suggesting the structural role of the cohesin 

component in organizing the chromatin together with the SC (figure 4A originally published 

in[13]). Furthermore, the immunostaining analysis of Spo11p, the meiotic specific nuclease 

required for meiotic recombination (see chapter 1.3.1.1), is shown in figure 4B and is 

compared to the long stretches formed by the SC component Zip1p (originally published 

in[15]). From this analysis it is possible to infer information related to the inter-relationship 

of processes such as chromatin condensation and meiotic recombination events. This issue is 

discussed in a later chapter of this study.  

 

 

Figure 4: Visualization of Synaptonemal complex: Particular examples of current 
methodologies employed to visualize meiotic chromatin condensation: Immuno-staining (A 
and B), Electron microscopy analysis (C) of chromatin spreads.  In A and B, the transversal 
filament Zip1 is immunostained in green and compared to foci formation of other 
components like Rec8, which is involved in sister chromatid cohesion (A) or Spo11, which is 
the nuclease specific involved in meiotic recombination initiation (B). In (C) the high 
resolution analysis let us differentiate between axial elements (AE) and the transversal or 
central element (CE). 
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1.2.1  Recombination nodules 

Electron microscopic analyses performed in organisms having a relative long distance 

between axial elements (AE) reveals more structures than the axial elements and the central 

element constituting the SC scaffold. Indeed, densely staining nodular structures have been 

observed between the AE. These structures, which quite often correlate with AE association 

sites or chromosome pairing sites, have been shown to contain recombination proteins like 

Rad51p and Dmc1p as well as RPAp in early pachytene stages. Furthermore, larger and 

denser nodular structures are observed in late stages, where the SC is completely formed 

(Pachytene). These “late recombination nodules” have been associated with the sites where 

chiasmata will appear in the diplotene stage [16]. 

 

 

Figure 5: Electron Microscopy analysis of mice chromosome spreads. Pachytene 
stage chromosome spread showing fully synapsed bivalent chromosomes. The electron-
dense recombination nodule (RN) is visible between the two axial elements of the 
synaptonemal complex. The chromosome regions labeled twist are artifacts produced during 
the spreading procedure. Adapted from [17]. 

Even though the role of these recombination nodules has not been completely elucidated, 

the evidence strongly suggests that the machinery involved in meiotic recombination works 

in direct association with the structural organization of the chromatin. Indeed, the number of 

recombination nodules at the different prophase stages correlates to the progression of 

recombination (see chapter 1.3 for a more detailed description of these events). Indeed, 

initiation of recombination introduces a larger number of double-strand breaks (DSBs) than 

the final cross-over products; in a similar way, early recombination nodules are more 

abundant than late nodular structures. Furthermore, the protein composition of such nodules 

correlates with the different recombination processes. From these correlations, early nodules 

are thought to be involved in homology search, in contrast to late nodules associated to 

recombination resolution required for chiasma formation[17]. 
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1.3 Meiotic recombination in budding yeast 

The term recombination refers to the exchange, or transfer, of fragments between DNA 

molecules and is observed in all organisms that have been studied to date. Recombination 

can be classified as homologous or nonhomologous recombination depending on the way the 

process takes place. Homologous recombination (HR) is observed between DNA sequences 

displaying a perfect or near perfect homology over several hundreds of base pairs. On the 

other hand, recombination between DNA sequences with little or no homology is known as 

nonhomologous recombination or end joining (NHEJ). In the particular case of meiosis, cross 

over formation is performed by the homologous recombination pathway, but in contrast to 

homologous recombination performed in mitosis, the initiation of recombination is performed 

by the introduction of  genome wide double-strand Breaks (DSBs) in a controlled manner 

[18]. Indeed, a high level of recombination events are produced by induction of specific 

meiotic recombination components which together with the chromatin organization status 

will direct the process towards interhomolog rather than intrasister chromatid exchanges. 

Meiotic recombination is initiated by the introduction of DSBs over the whole genome. This is 

performed by the meiotic specific nuclease Spo11p in S. ce evisiae [19], and there are 

conserved homologs in all other sexually reproductive organisms studied [20]. Once the DSB 

is formed, the 5’-DSB ends are resected in order to form a 3’-single strand DNA (ssDNA) tail 

of around 500 nucleotides in length[21]. The 3’-ssDNA-ends invade the intact homolog 

chromosome, and form a joint molecule termed the double Holliday junction (dHJ) [22]. 

Finally the dHJs are resolved to form cross over products which are indeed the physical 

connections between homologous chromosomes observed in cytological analysis and known 

as chiasma. In addition, we have to keep in mind that cross over products are not the only 

outcome of the meiotic recombination pathway. In some cases one of the 3’-ssDNA end 

invade the corresponding homolog region and after its elongation by DNA synthesis, it is 

displaced and anneals to complementary sequences that are part of the second DNA end, 

the final product of this recombination process is a non-crossover event. The molecular 

mechanism leading to non-crossover products is called SDSA for synthesis-dependent strand-

annealing [23]. In the next paragraphs we would like to explore the molecular mechanisms 

involved in the initiation of meiotic recombination, as well as the processing of the DSBs, in 

order to understand the motivations of this study.  

r
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Figure 6: Meiotic Recombination pathway. The meiotic specific nuclease Spo11p 
introduces a DSB in one of the homologous chromosomes (a-b). Spo11p is removed and the 
5’-DNA ends are resected (b-c). 3’-ssDNA ends invade the intact homologous chromosome 
(c-d). After a repair DNA synthesis step, the double Holiday junction intermediate is formed 
(d-e). Resolution of the double Holliday junction intermediate gives rise to the crossover 
product (e-f). 
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1.3.1  Initiation of meiotic recombination: 

As briefly described in the preceding paragraphs, meiotic recombination is initiated by the 

induction of meiotic DSB formation. It is important to mention that this event is directly 

connected to premeiotic DNA replication. Impairment of DNA replication through mutation of 

components such as cdc28, cdc21 or pol1 or through the use of chemical inhibitors of DNA 

replication such as hydroxyurea, also inhibits the initiation of recombination. In a similar 

manner, inducing mutations in both the clb5 and clb6 cyclins, which activate the protein 

kinase Cdc28p for the G1-S transition, inhibits initiation of meiotic recombination. 

Nevertheless, none of these mutants influence the expression of meiotic essential genes like 

SPO11 (reviewed in [24]). 

More surprisingly, it was shown that there is a strict temporal correlation between the timing 

of DNA replication and the incidence of DSB formation. Indeed, the delay of replication at 

defined chromosome regions by deleting replication origins gives rise to a delay of DSB 

formation in the same chromosome regions without affecting the behaviour of others [25], 

suggesting that the temporal interval between DNA replication and subsequent DSB 

formation is kept constant for each chromatin region. 

The mysterious connection between DNA replication and initiation of recombination was 

finally resolved by the discovery of a direct regulation of DSB formation via phosphorylation 

of Mer2p, one of the nine components required for DSB formation apart of Spo11p. This 

phosphorylation is essential for DSB induction and is performed by the budding yeast cyclin-

dependent kinase Cdc28 [26]. This report elucidated the mechanism involved in coupling 

DNA replication to DSB induction transition. 

Finally, there are reports indicating that Spo11p is required not only for DSB formation but 

also for premeiotic DNA replication. Indeed, SPO11 deletion was shown to decrease the 

length of S-phase by 25%. Furthermore, mutation of its catalytic tyrosine residue (spo11-

Y135F) does not affect DNA replication timing but does inhibit DSB formation [27]. These 

data suggest that recombination components, at least Spo11p and also Rad50p [28], are 

loaded (for an unknown reason) onto the chromatin structure during replication. Correlating 

these data with events such as the loading of cohesin during S-phase, as well as formation 

of axial elements in early prophase I, we can imagine that the chromatin organization also 

includes recombination components (already demonstrated in the case of recombination 

nodules), which links the enzymatic machinery with the protein-chromatin scaffold required 

for chiasma formation. 

Even though Spo11 has been shown to be the enzymatic component required for DSB 

formation in meiosis, its regulation depends on the presence of other 9 components, namely 
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Mer2p, Mei4p, Rec114p, Rec102p, Rec104p, Ski8, Mre11, Rad50p, Xrs2p[29]. In the 

following sections, each of these components will be introduced in order to infer their role in 

DSB formation.  

1.3.1.1 Spo11, the meiotic specific nuclease 

Spo11p has been shown to be the enzymatic component of a large complex involved in 

meiotic DSB formation. This meiotic specific nuclease shares a structural relationship to the 

Top6A subunit of TopoVI, an archeal type-IIB topoisomerase[30]. Mutagenesis of the 135th 

residue Tyrosine to Phenylalanine, (spo11-Y135F) in S. cerevisiae, based on the mechanism 

of action of known type II topoisomerases, was shown to inhibit its catalytic activity. 

Furthermore, this enzyme was found to form covalently linked Spo11-DNA complexes in vivo, 

demonstrating its enzymatic role, which proceeds through a trans-esterification mechanism 

based on the formation of a covalent linkage between the catalytic tyrosine and the 5’-DNA 

end [31],[32]. 

 

 

Figure 7: Model for Spo11 DNA nuclease activity. Spo11p binds to the DNA target 
region and then a covalent linkage intermediate is formed between the catalytic tyrosine and 
the 5’-DNA end. Finally Spo11p is removed through the activity of an unknown single-
stranded endonuclease. Figure adapted from [20]. 
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Immunostaining analysis of budding yeast chromatin spreads has shown that Spo11 binds to 

chromatin in early prophase I (leptotene) and persists unexpectedly until pachytene. The 

observed localization pattern persisted for the spo11-Y135F mutant, suggesting that its 

chromatin localization does not require the enzymatic activity. Furthermore, chromatin 

immunoprecipitation analyses (ChIP) have demonstrated its transient interaction with known 

DSB sites[15]. Interestingly, its chromatin localization depends on Rec102p, Rec104p as well 

as Rec114p, whereas Mer2p, Mei4p, Mre11p, Rad50p and Xrs2p did not appear to be 

essential components for Spo11-chromatin binding. 

As indicated before, meiotic DSB formation depends not only on Spo11p enzymatic activity, 

but several other components has been shown to be genetically essential for this 

process[29]. Between them, Ski8/Rec103 was at first identified as a component involved in 

cytoplasmic mRNA decay was later shown to be genetically essential for meiotic DSB 

formation in budding yeast [33]. Although homologues of Ski8p exist in most species, a role 

in meiotic recombination has only been demonstrated in three fungi (S. cerevisiae, S. pombe 

and Sordaria), suggesting that its role in meiosis is not conserved outside of fungi.  

These intriguing aspects of Ski8 biology do not seem to be interconnected because in one 

hand, other cytoplasmic Ski8 partners are not required for meiotic recombination, and on the 

other hand, its nuclear importing takes place specifically during meiosis and depends on 

Spo11p[34]. Supporting this conclusion, immunostaining analysis has shown Ski8 localizing 

on chromatin in a similar manner to Spo11p. 

The Ski8p crystal structure reveals the presence of a prominent site on the top surface of the 

beta propeller, which has been shown to be involved in mediating Spo11p-Ski8p 

interactions[35]. Furthermore, an extensive two-hybrid analysis has shown that Ski8p and 

Spo11p interact in a meiotic specific manner[34].  
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Figure 8: Two-hybrid interaction network of DSB formation components. Proteins 
involved in meiotic DSB formation are divided into four distinct subcomplexes: Ski8, Spo11; 
Rec104, Rec102; Mei4, Mer2, Rec114; and Mre11, Rad50, Xrs2. Two-hybrid interactions 
between subcomplexes are indicated by gray arrows (vegetative interactions) or black 
arrows (meiosis-specific interactions) [36]. 
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1.3.1.2 The Mer2/Mei4/Rec114 subcomplex 

Formation of the Mer2/Mei4/Rec114 subcomplex (referred to as MMR in this study) has been 

elucidated through different approaches. At first, immunostaining studies on chromatin 

spreads have shown partial colocalization between these components, however the absence 

of one of the three does not impair foci formation of the other two [37]. Furthermore, these 

three components have been co-immunoprecipitated, demonstrating a physical interaction. 

Finally, two-hybrid assays have shown vegetative interactions between Mer2/Mei4 and 

Mer2/Rec114 as well as a meiotic specific interaction between Mer2/Rec114 [36]. 

Even though these proteins do not have evident homologues in other organisms, this 

complex is thought to be the link between pre-meiotic DNA replication and the regulated 

entry into recombination. Mer2 is not a meiotic specific component; nevertheless, it was 

shown to increase in abundance and become specifically phosphorylated in early prophase I. 

This phosphorylation depends on the Cdc28-Clb5/6 kinase complex and results in 

phosphorylation of serine 30 and serine 271 residues, even though it was shown that 

Phospho-Ser30 is essential for DSB formation. Indeed, two-hybrid analysis has shown that 

Phospho-Ser30 is required for Mer2 dimerization, as well as for Mer2-Rec114 and Mer2-Xrs2 

interactions, strongly suggesting that this event not only regulates intra-subcomplex 

interactions but also induces inter-subcomplexes interactions[26].     

Mer2p was shown to localize on chromatin early in prophase I and its localization does not 

depend on any other component or on Cdc28 phosphorylation, indicating that its chromatin 

localization will give rise to a fully functional DSB formation complex only after Cdc28 

phosphorylation. Furthermore, DSB formation inhibition, for instance by the absence of 

Spo11p, gives rise to a prolonged life time of Phospho-Mer2p on the chromatin. 

In addition to its strong interaction with Mei4p and phosphor-Mer2p, Rec114p interacts with 

Rec102p and Rec104p. These interactions are not meiotic specific (based on two-hybrid 

assay)[36], but it is believed to interconnect the MMR subcomplex with the enzymatic 

Spo11/Ski8 subcomplex via Rec104/Rec102. According to this hypothesis, Spo11p forms foci 

on chromatin spreads from rec114 mutants, even though it is not found at DSB sites by ChIP 

analysis[15], suggesting that the Spo11p subcomplex presents an innate Chromatin binding 

affinity, which does not correspond to DSB sites, reason why it requires MMR complex for 

proper chromatin localization.  

Finally, Mei4p interacts with Rec114p and Mer2p in a non-meiotic specific manner, but it has 

in addition Rec104p/Rec102p meiotic specific interactions[36]. On the other hand, it was 

shown by ChIP assays that this protein is required for the timely removal of Spo11p[15]. 
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Figure 9: Cdc28-dependent regulation of meiotic DSB formation. (A) Cdc28/Clb5 
kinase phosphorylates Ser30 and Ser271 residues of Mer2. This event is required for 
Rec114p and Xrs2p interactions. Phosphorylation of Ser271 seems to be partially dependent 
on Ser30 phosphorylation. (B) Illustration of the role of Cyclin-CDK in promoting both 
premeiotic DNA replication and DSB formation. (C) Fluctuation of B type cyclin-Cdc28 kinase 
activities. DSB formation is restricted to the shaded green window at the beginning of 
meiotic prophase I. Notice that, in contrast to other CDK/cyclins, Cdc28/Clb5 activity is at 
intermediate levels during the DSB formation window[26]. 

 

 

 

 19



Introduction 
 

1.3.1.3 Rec102 and Rec104 

Rec102p and Rec104p were shown quite early to interact genetically. Indeed, once these 

components were identified as essential for meiotic DSB formation, the over-expression of 

REC102 was shown to suppress the conditional reduction in recombination observed for a 

rec104 temperature sensitive mutant[38]. This genetic interaction has been supported by 

biochemical evidence demonstrating that Rec102p, Rec104p and Spo11p all interact with one 

other [39]. Furthermore, their interdependence for proper nuclear localization, as well as the 

Spo11/Ski8 requirement for their chromatin interaction, strongly suggests their direct 

connection to the Spo11/Ski8 subcomplex is required in order to work as a functional unit 

[40]. On the other hand, REC102 and REC104 were shown to be essential for Spo11p 

localization at the meiotic DSB regions, suggesting that the identification of hotspot areas 

depends on these two components via a mechanism that is not yet fully understood [15], 

[41]. 

 

1.3.1.4 The MRX complex and its role in DSB formation 

In contrast to the previous subcomplexes, components of the MRX complex, namely Mre11, 

Rad50 and Xrs2, are ubiquitously expressed and have been shown to be important players in 

events such as DNA damage signalling, telomeres homeostasis, and DSB repair both in 

mitosis and in meiosis (for a review of the different roles of MRX complex [42]). 

In addition to these roles, the MRX complex is also essential for meiotic DSB formation; at 

least in the case of Saccharomyces cerevisiae [43], [44](model organisms like A. thaliana or 

S. pombe do not require this complex for meiotic DSB formation but for its repair). From a 

structural point of view, this complex is composed of a coiled coil protein, Rad50p, a metallo-

phosphoesterease nuclease, Mre11 and a third component Xrs2p, which was shown to 

interact with the phosphorylated Mer2 component of the MMR subcomplex through a two-

hybrid experiment [37]. Whereas Rad50p is believed to have a structural role, the DNA 

binding domain of the Mre11 nuclease has been shown to be essential for DSB formation in 

meiosis[44].  Furthermore, Mre11 localization at the DSB hotspot regions requires all DSB 

initiation components, with the exception of Rad50p, and it is not dependent on DSB 

formation itself [45]. 

Based on the previous studies, it is speculated that the MRX complex is recruited to the DSB 

formation complex via the Xrs2-Mer2 interaction, which indeed takes place only after the 

recruitment of all other components. Furthermore, recruitment depends on the DNA binding 
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activity of Mre11 as well as on the intermolecular bridging function of Rad50 coiled-coils 

dimers, although the role of this last requirement is still poorly understood [46].    

 

  

Figure 10: Components of the MRX complex. (a) Schematic representation of proteins 
composing the MRX complex. For Mre11, the nuclease domain as well as the DNA biding 
domains are highlighted. Rad50 is composed of two coiled coil domains connecting the 
globular domains (head and tail) with the hinge domain. Xrs2 contains a Fork-Head 
Associated domain (FHA) and a putative BRCT domain. (b) Structural representation of the 
MRX complex. The globular domains of Rad50p are dimerized (yellow). Mre11 binds to the 
Rad50p dimmer close to the globular domain (Blue). The Xrs2 component binding to Mre11 
is represented in red. (c) Scanning force microscopy image of the human MR complex 
illustrating the globular domain in light blue and both coiled coil arms in dark blue.[47]  
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Figure 11: Mesoscale conformation change in MRN complex upon DNA binding. 
(a) Atomic force Microscopy images of free human MRN complex. Notice that it is possible to 
visualize both coiled coil arms connected to the globular domain (high dense region). (b) In 
presence of a molar excess of dsDNA, the MRN complex shows a single, thick coiled coil. (c) 
In some cases is possible to find intercomplex coiled-coil apex interactions. (d) Artistic 
representation of different conformational changes in MRN complex observed in the 
presence of dsDNA molecules [47].  

 

In summary, the previous paragraphs referring to the characterization of different meiotic 

DSB formation components demonstrates the existence of functional subcomplexes among 

them, and their interconnections required for induction of recombination. In one hand, the 

MMR subcomplex (for Mer2, Mei4 and Rec114) was shown to be essential for the regulation 

of the transition between premeiotic DNA replication and the initiation of recombination. 

Furthermore, it was shown to control the recruitment of the MRX complex via Xrs2-

PhosphoMer2 interaction and also its interaction with the Rec104/Rec102 subcomplex via 

meiotic as well as mitotic specific interactions. On the other hand, the loss of chromatin 

localization observed for Spo11p under rec114, rec102, or rec104 mutant backgrounds 

strongly suggest that the interconnection between the MMR and Rec104/Rec102 

subcomplexes is essential for the proper localization of the enzymatic subcomplex 

Spo11/Ski8.  
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Whereas the subcomplexes network organization is well characterized, their localization on 

the chromatin and by consequence the understanding of their role in defining certain regions 

as meiotic DSB hotspots is still unclear. The fact that there are separate protein subgroups or 

subcomplexes involved in this process could be the consequence of their separate chromatin 

localization. Furthermore, the activation of a chromatin region as a meiotic hotspot could 

then be the consequence of the rearrangement of the chromatin because of the association 

of the different protein subcomplexes.   

  

1.3.2  Meiotic Double-strand Break repair 

As indicated before, meiotic DSBs are formed by the tyrosine nuclease Spo11p. In analogy to 

the topoisomerase IIB mechanism, the DNA cleavage is performed by a transesterification 

process, which is characterized by the formation of a covalent linkage between the catalytic 

tyrosine residue of Spo11p and the phosphate group at the 5’-end of the broken DNA. In 

order to ressect the DNA ends, and by consequence form the single-strand DNA tales 

required for homolog invasion, the covalently linked Spo11 protein needs to be removed. At 

this respect, it was recently shown that the Spo11 removal occurs by endonucleolytic 

cleavage a few base pairs away from the Spo11-DNA end (15-30nt away in S.

cerevisiae)[32]. 

 

r

Even though the nuclease involved in the removal of Spo11 has not yet formally been 

identified, there are strong evidences suggesting that the MRX complex together with a 

fourth protein, namely Com1/Sae2p, present the enzymatic activity involved in this process. 

Indeed, point mutations in RAD50 or in MRE11 have been shown to allow meiotic DSB 

formation in S. cerevisiae but they accumulate unrepaired DSBs, reason why they were 

named as ad50S and mre11S respectively for highlight the separation of function displayed 

by these mutations[48],[49]. The structural analysis of the Rad50S mutant demonstrates 

that seven of the introduced nine point mutations cluster into a surface patch forming a 

putative protein-protein interaction site in the globular domain (see figure 12)[50]. Taking 

into consideration that Com1/Sae2p is required for meiotic DSB repair even in the presence 

of a fully functional MRX complex; the proposed protein-protein interaction site was 

hypothetically associated to this protein. On the other hand, the structural analysis of 

mre11S has shown that one of the point mutations (P84S) is located in the proposed Xrs2p 

binding loop, possibly interfering with a proper Xrs2-Mre11 interaction. Furthermore, the 

second point mutation (T188I) was found in a surface loop containing conserved positively 

charged residues involved in Mre11-DNA binding activity(see figure 12)[51]. In addition to 

mre11S, other MRE11 mutants displaying the same meiotic DSB repair phenotype have been 
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characterized (mutants D16A, D56N, H125N, H213Y and mre11-6). Surprisingly, the common 

characteristic between all these mutants, like mre11S, is that they do not display nuclease 

activity in vitro. Of these mutants, mre11-H125N displays a clear meiotic phenotype without 

compromising other vegetative functions such as mating type switching, non-homologous 

end joining or telomere homeostasis, demonstrating that the nuclease activity of Mre11p is 

essential for the repair of Spo11p-DSBs in meiosis [52]. 

 While there is no doubt in the requirement of the nuclease activity of Mre11p for processing 

meiotic DSBs, its 3’-5’ exonuclease polarity characterized in vitro does not match the 5’-3’ 

resection activity required at DSB DNA-ends. An alternative model suggests the involvement 

of an endonuclease activity (MRX complex has shown to contain a hairpin endonuclease 

activity as well as a 3’-ssDNA branch cleaving activity) which fits with the characterized 

Spo11p removal mechanism [32]. On the other hand, the possibility that another component 

cooperates with the MRX complex for the removal of Spo11p is strongly suggested by the 

fact that Com1p is essential for this process. 
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Figure 12: Crystal Structure analysis of Mre11p and Rad50p. (A) Electrostatic surface 
calculated for Mre11p. Illustration of a dsDNA substrate (brown tubes) occupying the 
putative DNA binding site. (B) Representation of different Mre11 surface clusters containing 
particular mutations: the surface cluster containing the ScMre11(ts) mutation is represented 
in light blue, the Ataxia Telangiectasia-like disorder  (ATLD) mutation in pink and the 
ScMre11S mutations presenting a meiotic DSB repair phenotype is represented in yellow. 
The ATLD and the ScMre11 (ts) surface clusters are close to each other, as well as to the 
hydrophobic cluster (green) involved in Mre11-Rad50 interaction suggesting that their 
phenotypes could be a consequence of an impairment of this interaction. (C) Secondary 
structure of Rad50p illustrating the dimerized globular domains (Left). Electrostatic surface of 
Rad50p dimerized globular domains showing the surface cluster containing the rad50S 
mutations (right). Figures adapted from [50] and [51].    
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1.3.2.1 Com1/Sae2 and its connection to the MRX complex 

Com1/Sae2p was identified in 1997 in two different screens developed for the identification 

of essential genes required after induction of meiotic DSBs in S. cerevisiae [53],[54]. The 

com1/sae2 phenotype has been shown to resemble that of rad50S and mre11S mutants, 

namely absent or aberrant spore formation as a consequence of the failure of meiotic DSB 

repair. The COM1/SAE2 gene encodes a small hydrophilic protein (~40kDa) presenting 

homologues in other organisms. Indeed in a recent study, higher eukaryote homologues for 

Com1/Sae2 (e.g. the human homolog CtIP, that is shown to play a direct role in DSB repair 

in somatic cells together with the MRN complex[55]) were identified by protein sequence 

alignment algorithms (PSI-BLAST)[56]. Furthermore, some of these homologs, including 

those in A. Thaliana [56], S.pombe [57] and the C. elengans [58] have been genetically 

characterized. 

In addition to its role in meiotic DSB repair, Com1/Sae2p has been shown to be involved in 

processing hairpin-capped DSBs[59], as well as in resection of DSBs in somatic cells[60] in 

both cases connected with the activity of the MRX complex. On the other hand, Com1/Sae2p 

is phosphorylated by the protein kinases Mec1 and Tel1 in response to DNA damage in 

mitotic cells as well as in meiosis [61],[62]. In fact, mutations altering the Mec1/Tel1 

phosphorylation sites in Com1/Sae2p affect not only its in vivo phosphorylation, but also 

decrease the rates of mitotic recombination and abolish meiotic recombination by impairing 

meiotic DSB repair, connecting the checkpoint regulation process with its role in DNA 

damage repair [61,63]. 

Although all previous reports connect Com1/Sae2p to the role of MRX in DNA damage 

signalling and repair, there is no direct evidence for a physical interaction between them in 

S. cerevisiae until now. In contrast, its higher eukaryote homolog CtIP was recently shown to 

interact with the Nbs1p component (the Xrs2 homolog) of the MRN complex, as well as with 

BRCA1 (a higher eukaryote protein component involved in genome stability) in response to 

DNA damage in a cell cycle-dependent manner [64]. Even if we consider a hypothetical 

physical interaction between Com1/Sae2p and the MRX complex in S. cerevisiae, like in the 

case of the human homolog CtIP, the molecular role of this protein in DSB repair is still 

poorly understood. In this respect, a recent study reports an endonuclease activity for 

Com1/Sae2p characterized in vitro. Indeed, Com1 was shown to bind DNA and contains an 

endonuclease activity on single-stranded DNA even in the absence of MRX. However, it can 

process hairpin DNA structures only in the presence of MRX [65]. Furthermore, the presence 

of a rad50 mutant, (rad50-R20M) showing an “S” phenotype for meiotic recombination, in 

the MRX-Com1 complex in vitro has only a partial hairpin nuclease activity, but an increase 
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of the ionic strength of the reaction buffer (which destabilises weak protein-protein 

interactions) further affected the hairpin processing. This correlates with previous 

observations, where Com1p overexpression was been shown to partially rescue rad50S 

phenotypes produced by defects in DNA processing and single-strand annealing[60]. 

From the previous paragraphs, is speculated that Com1/Sae2p plays a direct enzymatic role, 

together with the MRX complex, in processing meiotic DSBs. The in vitro characterized 

nuclease activity could be responsible for the Spo11p removal, and its specific localization at 

the DSB chromatin site (the CtIP and Ctp1 homologues have been visualized by 

immunostaining in mitotic DNA damage response assays[55]) could depend on a physical 

interaction with the MRX complex, for instance via the RAD50 surface cluster structurally 

modified in the rad50S mutant version (see figure 14). Still we cannot exclude that further 

interactions, like that characterized between Nbs1 and CtIP, are involved in this process. 

 

Figure 13: Alignment of the putative homologues of the S. cerevisiae Com1/Sae2 
protein. Protein sequence alignment shows that the C-terminus is the most conserved 
region. Consensus residues above selected thresholds (90%, 70% and 50%) are illustrated 
below the alignment (hydroxyl consensus residues including amino acids S, T are denoted as 
“o”; aliphatic residues like I, L, V as “l”; aromatic residues like F, H, W, Y as “a”; positive 
charged residues like H, K, R as “+” and negative charged residues like D,E as “-“). Numbers 
and asterisks over the sequence alignment refer to amino acids exchanges introduced into 
the S. cerevisiae protein sequence. Red dashed lines indicate the S. cerevisiae Com1, the 
Human homolog CtIP and the A. Taliana At-Com1 protein sequences respectively. Figure 
adapted from [56]. 
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1.4 The influence of chromatin organization on meiotic DSB 

formation 

The uneven nature of meiotic recombination frequency across the whole genome has been 

apparent since its discovery. Indeed in all organisms studied to date, some genetic loci have 

a higher recombination frequency, and others recombine at a lower frequency than the 

average. According to these observations, regions of higher and lower recombination 

frequency are referred as hotspots and coldspots respectively. Since meiotic recombination 

depends on Spo11p-dependent DSBs, the frequency of DSB formation on the chromatin 

could follow a similar pattern.  

Characterization of several meiotic DSB sites on the chromatin by physical methods has 

demonstrated the fact that they are not random distributed, but instead display a hotspot-

coldspot nature, analagous to meiotic recombination. The complete physical map of meiotic 

DSBs on ChrIII of S. cerevisiae performed already 10 years ago demonstrated a strong 

correlation between the frequency of DSB formation and GC content [66]. Furthermore, high 

resolution analysis of DSB sites using DNA-microarray technology have shown recently that 

several hotspots were associated with local intergenic regions containing a high GC content 

[67]. 

Although hotspots are localized to defined regions on the chromatin, several attempts to 

identify a consensus sequence for DSB formation have failed. Nevertheless, a certain number 

of characteristics defining such chromatin regions have been elucidated, first, hotspots 

usually occur in intergenic regions containing a relatively high GC content. Second, DSB 

hotspot regions have been shown to be hypersensitive to the action of DNAseI and 

micrococcal nuclease, meaning that DSBs are preferentially formed in nucleosome free 

regions, or in other words, hotspots require accessible chromatin sites [68]. In some cases, 

hotspots were associated with the requirement of a specific transcription factor or factors; 

for instance the hotspot site located to the 5’ of the HIS4 gene requires the binding of Bas1, 

Bas2 and Rap1 transcription factors in order to become active [69]. Furthermore local 

chromatin histone modifications, such as acetylation [70], methylation [71] or even 

ubiquitinylation [72], have been shown to play a role in the frequency of DSB formation 

and/or recombination at certain hotspot regions. In summary, it seems that the DSB hotspot 

activity is a consequence of the local chromatin accessibility and the regional chromatin-

modification status. These criteria can be surpressed, at least patrially, by targeting meiotic 

recombination initiation components to regions that normally behave as coldspots. Indeed, 

fusion constructs between Gal4BD-Spo11p and VDE-Spo11p have induced DSB formation at 
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certain, but not at all, targeted coldspot regions [73,74], suggesting that it is possible to 

induce DSBs by forcing the accessibility of the recombination components to certain regions, 

but the fact that this does not always work demonstrates that the proper localization of the 

recombination machinery is not sufficient for DSB induction. 

 

 

Figure 14: Meiotic DSB physical map and GC-DNA content of ChrIII in S. 
cerevisiae. (a) Map of the localization and relative frequency of DSBs along chr III [66]. (b) 
GC content  of chr III determined in windows of 100kb moved in 1kb intervals[75]. A side by 
side comparison between the DSB physical map (a) and the chromosomal GC content (b) 
demonstrates the correlation between chromosomal sites where DSBs are preferentially 
formed and their high GC-DNA content. 

 

As described in a previous chapter, meiotic chromatin follows a particular condensation 

process which is responsible for the organization of the chromatin in uncondensed regions 

and chromosome cores. Taking into consideration that chromatin accessibility is a key issue 

for DSB formation, a priori we expect that the protein scaffold structure established during 

prophase I may have a direct influence on the DSB frequency over the chromosome. In fact, 

components involved in chromatin condensation, like Hop1p, Red1p and MeK1p in S. 

cerevisiae, are not absolutely essential for DSB formation, but the frequency of DSB 
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formation has been shown to be partially affected in some of these mutants. For instance, 

the absence of Red1p, a major structural component of the axial element in S. cerevisiae, 

reduces DSB formation to 20-60% of wild type levels. This large variability of its influence on 

DSB formation reflects its uneven effect on different analysed hotspots. Furthermore, the 

evaluation of its influence on DSB formation efficiency depends strongly on the strain 

background. In a typical DSB assay, the rad50S or com1/sae2 deletion background is used to 

accumulate DSBs over time. It was shown that this is not the case in a rad50S, red1 double 

mutant, and for this reason the study of DSB formation in this background could result in 

misleading interpretations of the real influence of the absence of this protein. In a recent 

study, the authors used a dmc1 rad51 background, in which no single strand-DNA invasion 

takes place and by consequence it is possible to accumulate DSBs over time, and 

demonstrated that the absence of red1p reduces DSB levels two to five fold compared to the 

wild type situation [76]. 

A more striking phenotype was observed for Hop1p, where its absence reduced DSB levels to 

5-10% of the wild type. In order to explain such a difference, it is speculated that in contrast 

to Red1p, which localizes at the chromosome Core and by consequence not at the DSB sites, 

Hop1p could localize to the DSB sites in addition to the chromosome axis, and play a direct 

role in its regulation [77]. This is still speculation as there is no cytological or biochemical 

evidence demonstrating a localization of this protein to sites other than the chromosome 

axis. However, some studies have shown a  partial rescue of the hop1 phenotype by 

overexpressing the recombination initiation component Rec104p, supporting the hypothesis 

for a direct role of Hop1p in DSB formation [78,79].  

Furthermore, Hop1p was shown to be phosphorylated in a DSB formation dependent 

manner, and this modification promotes dimerization of another component of the 

chromosome axis, the meiotic specific kinase Mek1p. Then, Mek1p is activated by trans-

autophosphorylation. The molecular target of this kinase has yet to be identified, but Mek1p 

was shown to be essential for suppression of meiotic DSB repair via inter-sister 

recombination [80]. 

In summary, we can conclude that the characteristics defining a chromatin region as a 

meiotic hotspot depends on several layers of molecular regulation; in the first layer we 

require a locally defined high GC content, then we require a particular chromatin-

modification status, where either transcription factors, or histone modifications, or both 

reorganise the chromatin to allow increased accessibility for the recombination components. 

Furthermore, the chromatin needs to be organized over a proteinaceous scaffold (the 

Synaptonemal complex) in order to define the uncondensed regions or loops where DSBs are 

preferentially formed. These different layers of molecular complexity are interconnected; for 
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instance, regions with high GC content correspond to highly transcribed areas [81], and 

transcription has been shown to define most of the cohesin localization sites which are used 

to built the protein scaffold in meiosis[82]. In fact, the actual model for defining chromatin 

regions as sites for DSB formation is still too simplistic, this is because the previously 

described criteria were established in a global chromatin analysis, and do not apply for local 

chromatin regions; for instance, not every uncondensed chromatin region corresponds to a 

DSB hotspot, suggesting that we are still missing other factors essentially for defining a 

chromatin region as “the one” to be cleaved. 

 

1.5 Genome wide DSB distribution and its analysis in a post-

Genome era 

The discovery of the double-helix structure of DNA in 1953 followed by the identification of 

the genetic code in 1961, revealed two important features of this molecule: Its 

complementarity as a source for the template copying mechanism responsible for high 

fidelity during replication of the genetic material; and its digital nature whereby precise 

nucleotide base pair combinations define the genetic code for proteins, the molecular 

machines of life. 

The first efforts to reveal the digital code of DNA were fulfilled at the end of the seventies 

with the sequencing of the first complete genome, the Bacteriophage fX174, a viral genome 

of about 5000 base pairs. The next decades which were accompanied by the combination of 

technical innovations and intensive instrumental automation, gave rise to a “genomic era” 

where the complete genome sequence of several model organisms (E. coli: September 

1997[83], S. ce evisiae: May 1997[84], C. elegans: December 1998[85], D. melanogaster: 

March 2000[86], A. Thaliana: December 2000[87], H. sapiens: February 2001[88,89]) have 

been drafted. These events represent a landmark in modern biology due to the 

establishment of a new approach to address biological questions. Indeed, the value of 

having the complete genome sequence is that we can study biological processes at the 

system level rather than by focusing on a single event. This new approach to biology needed 

to be accompanied by the development of tools that allow interrogation of the sequenced 

genomes. In a similar manner to how PCR became the method to address questions in a 

defined chromatin region, DNA biochips have become the strategy to interrogate whole 

genomes.  First described in 1995 [90], a DNA biochip, also known as DNA array, is an 

arrangement of several single-stranded DNA (ssDNA) molecules (referred as probes), 

covering for instance the complete sequence of a certain genome, deposited over a solid 

r
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support (nylon membrane, glass or plastic). Then, by using the complementarity of DNA , a 

labelled ssDNA substrate is hybridized to the biochip, and after several washes, the 

remaining substrate is analysed. The application of this kind of approach in a “post-genomic 

era” brought the characterization of the complete transcription map for S. cerevisiae, known 

also as the transcriptome, by hybridizing single-stranded cDNA derived from the total mRNA 

in yeast [91]. In a similar manner, the meiotic specific transcriptome was also identified, 

revealing that around 1600 genes, from a total of 6200, are meiotically regulated and, of 

these 1600, approximately 250 are expressed in a meiosis-specific manner [92]. 

DNA array technology can also be used to address protein-chromatin interactions; this is 

achieved by combining chromatin-immunoprecipitation with hybridization of pulled-down 

DNA onto DNA arrays containing the complete genome sequence. This type of approach has 

been used for the identification of cohesin binding sites in S. cerevisiae, demonstrating that 

cohesins are re-localized from their loading site to convergent regions of transcription 

[82,93,94]. In another study, the localization of the meiotic chromosomal axial element 

Red1p was compared to the localization of the cohesin complex as well as to the protein 

Dmc1, involved in 3’-single strand DNA end invasion during meiotic DSB repair [76]. In that 

way, a direct correlation for the localization of structural proteins like Red1p and cohesin 

components has been demonstrated, in contrast to the localization of Dmc1, which in a 

certain manner defines sites where the chromatin was cleaved in a meiotic specific manner. 

Furthermore, the Dmc1p-chromatin localization map obtained through a ChIP-DNA array 

strategy strongly overlapped with the meiotic DSB map obtained previously with physical 

methods in the rad50S background. From this analysis, the authors concluded that meiotic 

DSBs are formed in Red1/cohesin-free sites, which indeed correspond to uncondensed 

regions. It is important to mention at this point, that this approach not only confirmed the 

information we had regarding chromatin sites where meioitic-DSBs are formed on chr III in 

S. cerevisiae, but in addition it introduced a new strategy to identify meiotic DSB sites over 

the whole genome (the meiotic DSB physical map performed for chrIII of S. cerevisiae 

represented a tremendous effort, yet covered only ~2.6% of the total yeast genome). This 

approach enables not only the study of the genome-wide chromatin cleavage pattern, but 

also the localization of the components required for DSB formation, repair, chromatin 

structure, etc. 

Another important issue to mention in regard to DNA array technology is the sensitivity and 

the resolution of the different arrays. Indeed, the first version of this technology 

corresponded to the deposit of PCR fragments covering a certain chromosome (chrIII of S.

cerevisiae was initially used in order to compare ChIP-chip with the established DSB physical 

map) on a positively charged membrane. In this case, the deposited “probes” were not 
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perfectly contiguous, decreasing the resolution of the technique. Furthermore, in order to 

obtain a significant signal after hybridization, around of 1L of cells (4x107 cells/ml) were 

required for the chromatin immunoprecipitation and the final DNA sample was radioactively 

labelled [93]. The development of in si u synthesis methodologies for the design of probe 

arrays, such as photolithography (Affymetrix) or ink jet printing (Agilent, Nimblegen), as well 

as the development of DNA amplification procedures prior to hybridization, have dramatically 

improved resolution (5 nt for affymetrix and 30 nt resolution for Agilent in S. cerevisiae DNA 

arrays), as well as sensitivity

t

r

                                                

 †. 

The use of DNA microarrays combined with Chromatin immunoprecipitation was 

implemented for the identification of meiotic DSB sites in budding yeast by pulling down in 

Spo11p in a rad50S background[67]. In this study, the authors used DNA microarrays 

covering 6200 open reading frames (referred to as ORF arrays, in contrast to intergenic 

arrays containing no conding sequence probes, or tiling arrays containing the complete 

sequence) and demonstrated that the technique is able to reproduce the binding pattern of 

the physical map obtained for chromosome III. 

A new strategy developed in order to identify meiotic DSB sites in S. cerevisiae depends on 

the repair of the broken ends by 5’-end resection. This process generates 3’-ssDNA that can 

be specifically enriched in Benzoyl naphthoyl DEAE (BND) cellulose columns [95,96]. In order 

to accumulate ssDNA, the authors used dmc1, rad51 mutants, where the 5’-end resection is 

performed but its ability to invade the homologous chromosome is abolished. By hybridizing 

the enriched ssDNA to DNA microarrays, the authors demonstrated that the number of 

meiotic DSBs is indeed higher than previously found in the rad50S studies (40% difference 

between rad50S and dmc1 mutants). Furthermore, the newly identified DSBs were 

characterized in near centromeric and telomeric regions suggesting that the ad50S mutant 

could, in some fashion, inhibit the formation of DSBs in these regions. 

Finally, the use of the ChIP-DNA microarray strategy in order to identify the localization of 

components involved in meiotic recombination as well as chromatin organization may prove 

essential for understanding how the protein complexes are organized on the chromatin. In 

addition to the report described above, identifying the localization of Red1p using low 

resolution macroarrays, there are several studies accomplishing similar goals. Identifying the 

localization of Rec102/Rec104p on chromatin has been attempted using a macroarray 

strategy. Unfortunately, the low resolution of these DNA arrays, combined with the broad 

localization pattern of these proteins, provided few significant conclusions [40]. On the other 

hand, the study of Mre11p localization during DSB formation using ORF arrays revealed a 

 
† Probe arrays designed by in situ oligomer synthesis metodologies are called microarrays in contrast to the PCR 
fragments spotted in charged membranes called macroarrays, 
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strong correlation with the meiotic DSB map obtained by pulling down Spo11p in the com1 

deletion background [45]. This study demonstrates that this protein being part of the DSB 

formation complex and required for its repair, localizes at the meiotic DSB hotspot sites. 

However, this study requires further evaluation as it uses ORF DNA arrays, which only 

identifies sites of localization within this predefined pool of the whole genome. Indeed, a 

proper microarray analysis should interrogate the complete genome sequence. 

In order to address this poorly explored topic, which is the protein-chromatin interactions 

involved in meiotic recombination initiation and its connection with genome-wide chromatin 

organization, I will present in the following chapter the studies we have performed 

combining chromatin immunoprecipitation with hybridization to high resolution DNA 

microarrays. This study was performed in collaboration with the group of Professor Katsuhiko 

Shirahige, from the Tokyo Institute of Technology. The main goal of this study is to further 

our understanding of the events involved in meiotic recombination from the point of view of 

chromatin structure. Indeed, the use of microarray technology is our main read out for the 

identification of protein-chromatin interactions, which are then interpreted in a protein-

protein/protein-chromatin fashion in order to construct a model for meiotic DSB formation 

and its repair. Furthermore, during this study we developed strategies for the analysis of 

microarray data in order to help us interpret the DNA micro array readouts as well as for the 

construction of protein-protein networks by performing comparative analysis of DNA 

microarrrays. 
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2 Materials and Methods 

2.1 Yeast Media and Solutions 

2.1.1  Solid media 

2% Bacto-agar (Oxoid) is placed into glass bottles containing a magnetic rod, and the 

medium is mixed separately. Medium is placed into the glass bottle, then autoclaved for 20 

minutes at 120ºC. Medium is cooled to 55ºC with continuous stirring, then poured into Petri 

dishes (~20-30 ml/plate) and left at room temperature for 2 days. Finally all plates are 

stored at 4ºC. 

 

YPD plates: YPD rich medium plus 2% bacto-agar (see Liquid media and Solutions). 

 

YPG plates: contain a non-fermentable carbon source (Glycerol) that does not allow growth 

of petite mutants. 

• 1% bacto-yeast extract (Oxoid) 

• 2% bacto-peptone (Oxoid) 

• 3% (v/v) glycerol (100%) 

 

Geneticin (G418) plates: Medium used for KanMX-marker selection. The composition of 

this medium follows the same recipe as the YPD plates, but after cooling to 55ºC, 1ml of 

Geneticin (200mg/ml) is added before pouring plates.  

 

SPM plates: (Sporulation medium) 

• 2% Potassium Acetate, adjusted to pH 7.0 with Acetic Acid. 

 

SM plates (Synthetic minimal medium): Selective medium for prototrophic cells. SM plates 

are used currently for mating type test. 

• 0.17% bacto-yeast nitrogen base w/o amino acids and w/o Ammonium Sulfate 

(DIFCO) 

• 0.5% Ammonium Sulfate 

• 2% glucose 

Adjust to pH 7.0 with Sodium Hydroxide. 
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ADE-, URA- and TRP- drop-out plates: Selective plates are used to test auxotrophic 

markers. For the drop-out mix, the corresponding ingredient was omitted. 

• 0.17% bacto-yeast nitrogen base w/o amino acids and w/o Ammonium Sulfate 

(DIFCO) 

• 0.5% Ammonium Sulfate 

• 2% Glucose 

• 1.1% Casamino Acids (DIFCO) 

• 55mg Adenine per liter 

• 55mg Tyrosine per liter 

• 55mg Uracil per liter 

Adjust to pH 7.0 

After autoclaving and cooling to 55ºC, 5ml of 1% Leucin and 5ml 1% Tryptophane are 

added (The amino acid solutions are filter sterilized). 

 

HIS-, LEU-, ARG- and LYS- drop-out plates: 

• 0.8% Yeast nitrogen base w/o amino acids (DIFCO) 

• 55mg Tyrosine per liter 

• 55mg Uracil per liter 

• 55mg Adenine per liter 

After autoclaving and cooling to 55ºC, 100ml of 20% Glucose and 20ml of the filter-sterilized 

100x HIS-,LEU-, ARG- or LYS- drop-out solution are added to 1 liter of medium. 

 
Amino Acid Amount in g/liter 

Arginine 2 

Histidine 1 

Iso-Leucine 6 

Leucine 6 

Lysisne 4 

Methionine 1 

Phenylalanine 6 

Tryptophane 4 

Threonine 5 

Table 1: Recipe for amino acid drop-out solutions (100x) in use: For each drop-out 
solution the appropriate amino acid has been omitted. These drop-out stock solutions are 
prepared in double-distilled water, filter-sterilized and stored in the dark at 4ºC. 
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2.1.2  Liquid Media and solutions 

YPD (rich medium): 

• 1%  bacto-yeast extract (Oxoid) 

• 2% bacto-peptone (Oxoid) 

• 2% glucose 

2.1.2.1 Media required for synchronised meiotic time courses 

Pre-sporulation media (SPS):  

• 0.5% Yeast extract, 1% Peptone 

• 0.17% Yeast Nitrogen Base (without amino acids and without ammonium sulfate) 

• 1% Potassium Acetate 

• 1% Ammonium sulphate 

• 0.05 M potassiumbiphtalate, pH 5.5 (adjust pH with Potassium acetate, autoclaved) 

 

Sporulation media (SPM):  

• 1% Potassium Acetate pH 7.0, (autoclaved) 

 

Polypropylene Glycol (PPG) 1% 

 

Amino acid complementation media:  

• 1.5% Lysine 

• 2% Histidine 

• 2% Arginine 

• 1% Leucine 

• 0.2% Uracyl 

• 1% Tryptophane (filter sterilized). 

 

Formaldehyde 37% 

 

Glycine 2.5 M solution (autoclaved)  

 

TBS buffer:  

• 20 mM Tris-Cl (pH 7.5) 

• 150 mM NaCl.  
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2.1.2.2 Solutions for Chromatin immunoprecipitation 

Lysis buffer:  

• 50 mM HepesKOH (pH 7.5) 

• 140 mM NaCl, 1mM EDTA 

• 1% Triton X-100 

• 0.1% Na-deoxycholate (filter sterilized).  

Lysis buffer complete:  

Immediately before use add PMSF (1 mM final concentration), 250 µl of Aprotinin (1.4 

mg/ml) and 1 protease inhibitor tablet (Roche, Complete Protease Inhibitor Cocktail) per 50 

ml lysis buffer. 

 

Washing buffer: 

• 10 mM Tris-Cl pH 8 

• 250 mM LiCl, 0.5% Na-deoxycholate 

• 1 mM EDTA. 

 

Elution buffer: 

• 50 mM Tris-Cl pH 8 

• 10 mM EDTA, 1% SDS. 

 

PBS:  

• 137 mM NaCl 

•  2.7 mM KCl 

• 4.3 mM Na2HPO4 

• 1.47 mM KH2PO4, pH 7.4. 

PBS/ BSA:  

• 5 mg BSA per 1 ml PBS. 

 

TE buffer:  

• 10 mM Tris-Cl pH 8 

• 1 mM EDTA. 

 

Dynabeads:  

• Magnetic Dynabeads, (Dynal Biotech, Pan Mouse IgG). 

Glass beads: diameter 0.40-0.60 mm (Sartorius, BBI-8541701) 
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2.1.2.3  Solutions required for DNA purification 

Proteinase K (20 mg/ml) (Roche) 

 

Glycogen (10 mg/ml)  

 

Phenol/ chloroform / Isoamylalcohol : 25/24/1 ratio. 

 

NaCl 5 M solution. 

 

DNAse-free RNAse) (500 ug/ml) (Roche). 

 

96% Ethanol  

 

70% Ethanol  

 

Sodium Acetate 3M. 

 

2.2 Basic Yeast Techniques 

2.2.1  Growth  of Yeast Strains 

All yeast strains used in this study were grown either in solid yeast media (plates), or in 

liquid media shaking at 200 RPM, at 30ºC. In the case of meiotic time courses for ChIP 

preparations, diploid yeast strains were grown in 50 ml falcons containing 12 ml of rich  

media YPD (the amount of cells on the tip of a toothpick were enough for growing cells for 6 

hours before they were inoculated in pre-sporulation media SPS). The lid of the falcon tube 

was fixed with tape to allow air to enter, and the tubes were incubated at 30ºC with shaking 

at 200 RPM for 6 hours. After this period of time, cells were in the exponential growth phase.  

Cells were then diluted in SPS to reach the corresponding concentration for a meiotic time 

course setup. 
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2.2.2  Meiotic Time Courses 

Diploid yeast cells were inoculated in pre-sporulation medium (SPS,) to a final concentration 

of approximately 2x106 cells/ml (see Note 2.2.2.1)). Cultures were set up in 3 L Erlenmeyer 

baffled flasks (50 ml per sample, but not exceeding 15% of the total flask volume, to ensure 

optimal oxygenation).  

Cells were grown with vigorous shaking (250 rpm) for 12 to 16 hours at 30°C until the 

density reached 4x107 cells/ml. They were then collected by centrifugation (5 min, 3000 rpm) 

and resuspended at a concentration of 4x107 cells/ml in sporulation medium (SPM 

supplemented with amino acids (320µl Amino acid complementation media per 100ml SPM 

media) and PPG (100µl 1%PPG per 100ml SPM)) (time-point t=0h), and kept shaking at 250 

rpm for the whole time-course). Note that the SPM culture should not exceed 10% of the 

flask capacity (maximum 300 ml in a 3 L flask). The progression of the time-course was 

followed by regularly staining the DNA (DAPI) of samples (100 µl of culture into 500 µl 

Ethanol). Aliquots were typically taken at one-hour intervals and stored at 4°C until the end 

of the time-course. 

At the desired times, 50 ml-aliquots were collected for ChIP. Each sample was incubated 

with Formaldehyde (1% final concentration) for 30 minutes (see Note 2.2.2.2) at room 

temperature (shaking under the hood). The cross-linking process was stopped by addition of 

Glycine (to a final concentration of 131 mM) with shaking for 5 minutes.  

Finally, samples were washed twice with ice-cold TBS (with a centrifuge pre-cooled to 4°C), 

transferred to a 1.5ml eppendorf and frozen in liquid nitrogen. Samples were stored at -

80°C.  

Before proceeding with the preparation of the cell extracts, progression through meiosis was 

monitored for sufficient synchrony. Samples collected in ethanol were pelleted (10 seconds, 

high speed) and resuspended in 50µl of DAPI solution (0.2 µg/ml DAPI in water).  

To facilitate the counting, DAPI samples were sonicated for one second using a rod based 

sonicator, at medium strength. Finally, 5 µl were placed on a glass slide and the percentage 

of mononucleate, binucleate, and tetranucleate cells were evaluated for each time-point. In 

our hands, synchronous cultures of a wild-type SK1 strain typically reached the highest 

number of binucleate cells at 5 or at 6 hours after transfer to SPM. This should correspond to 

a peak of at least 25% binucleates for wild type SK1 cells (see Note 2.2.2.3). 
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2.2.3  Tetrad Dissection 

Tetrad dissection was performed in order to separate the four haploid spores derived from a 

diploid strain. For this purpose, the diploid strain to be analysed was sporulated in 2% 

Potassium Acetate SPM plates (a small amount of cells was transfered to an SPM plate then 

incubated at 30ºC overnight). Once yeast sporulation was confirmed with a phase contrast 

microscope, the yeast were resuspended in 92 ul of ddH2O supplemented with 4 ul of DTT 

(0.5 M) and 4 ul of Zymolyase T20 (10 mg/ml). This digestion mixture was incubated at 

30ºC for 30 minutes, and then diluted in 900 ml of ddH2O and kept on ice until dissection 

was performed. 

Finally, 25 ul of the digested mixture was spotted on a YPD rich media plate and by tilting 

the plate at a 45 degree angle, the digested mixture was spread, forming a line at the center 

of the YPD plate. Tretads were dissected with a Leitz micromanipulator. Dissected tetrads 

were grown at 30ºC for 2-3 days, until visible, when they were used for further analysis. 

 

2.2.4  Preparation of Yeast Genomic DNA 

2.2.4.1 Genomic DNA preparation for PCR genotyping 

This protocol is designed to prepare Genomic DNA from S. Ce evisiae by lysing yeast cells 

with glass beads. This procedure fragments the Genomic DNA, and for this reason this 

procedure is not recommended for applications such as the meiotic Double-Strand Break 

assay (DSB assay). Currently we use this protocol for PCR genotyping applications. 

r

 

Required solutions: 

 

Buffer A:  

• 2% Triton X-100, 1% SDS 

•  100 mM NaCl 

•  10 mM Tris-HCl pH=8.0 

•  1 mM EDTA pH=8.0 

 

PCI: 

•  Phenol: Chloroform: Isoamyl alcohol (25:24:1 v:v:v) mixture 

 

Glassbeads (diameter 0.40-0.60mm) 
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1x TE  buffer:  

• 10 mM Tris-Cl pH 8 

•  1 mM EDTA. 

 

96% Ethanol  

 

70% Ethanol  

 

RNAse (20 mg/ml) DNase free 

 

Potassium Acetate 5 M 

 

5 ml of YPD rich liquid media was inoculated with the corresponding yeast strains. They 

were grown at 30ºC overnight, and the next day cells were harvested by centrifugation at 

3000 RPM for 5min. Yeast pellets were resuspended in 200 ul of Buffer A and transferred 

into 1.5ml eppendorf tubes, to which 200 ul of PCI and ~200 ul of glass beads were 

added. 

Eppendorf tubes were vortexed for 7 minutes at 4ºC, then 200ul of 1XTE buffer was added 

and samples were vortexed again for 7 minutes. Samples were centrifuged for  5 minutes 

at full speed and the aqueous phase was then transferred into a new tube. 1 ml of 96% 

Ethanol was added and samples were kept at 4ºC for at least 30 minutes prior to 

centrifugation at full speed for 5 minutes. 

The precipitated pellet was resuspended in 200 ul TE containing 2 ul of 20 mg/ml RNAse 

solution and incubated at 37ºC for 30 minutes. Following this step, 200ul of TE and 200ul 

of PCI were added, the tubes were vortexed and centrifuged at full speed for 5 minutes. 

The Aqueous phase was transferred into a new eppendorf tube to which 20 ul of 5M 

Potassium Acetate and 96% Ethanol were added.  The tubes were incubated at 4ºC for 30 

minutes and finally centrifuged at full speed for 5 minutes. The precipitated pellet was 

washed with 70% Ethanol, dried, and resuspended in 50 ul of TE. 1 ul of the final dilution 

is required per PCR reaction.     
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2.2.5  Lithium-acetate Transformation of S. cerevisiae 

Required solutions: 

 

• Lithium Acetate 1 M 

• Polyethylene Glycol (PEG) 3350 50% 

• Salmon sperm DNA (ssDNA 10 mg/ml) 

• Glycerol 60% 

The yeast strain to be transformed was grown overnight (ON) in 5 ml YPD rich media. The 

following day, this ON culture was inoculate into 50 ml of YPD media to an optical density 

(OD660) of 0.1. Cells were grown for approximately 5hours (OD660 =0.5 to 0.7) and were 

then collected by centrifugation (3000 RPM/ 5minutes). The yeast pellet was resuspended in 

1 ml of 1 M Lithium Acetate and transferred into a 1.5 ml eppendorf. Cells were collected by 

centrifugation (6000 RPM 1 minute) and resuspended in 350 ul 1M Lithium Acetate. 

The transformation mixture contained 24 ul of yeast suspension, the DNA to be transformed 

dissolved in 15 ul ddH2O or TE, 90 ul of 50% PEG and 8 ul of ssDNA (10 mg/ml). This 

mixture was incubated at room temperature for 30-60 minutes, then was supplemented with 

6 ul of 60% Glycerol and incubated again at room temperature for 30-60 minutes. Finally, 

the cell mixture was incubated at 42ºC for 10 minutes (or 5 minutes at 45ºC) and then 

diluted with ddH2O to a final volume of 200 ul which was plated on two selective plates (100 

ul per plate). 

When the selective media contained G418, cells were first plated on YPD rich media plates 

(kept at room temperature ON), and then replica-plated onto G418 selective media. 
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2.2.6  Yeast Strains 

 

All strains used in this study were derived from the sporulation-proficient SK1 genetic strain 

background[97]. Genotypes of the diploid yeast strains are presented in the following table. 

Table 2: SK1 strains used in this study. 

FK strain collection 

reference number 

Genotype 

1151 MAT a/alpha, ho::LYS2, lys2, leu2::hisG, ura3 , 

COM1::Myc18::TRP1, trp1:hisG 

1180 MAT a/alpha, ho::LYS2  lys2, rad50S: URA3, ura3, COM1 

::MYC18::TRP1, trp1, LEU2 

, :

1203 MAT a/alpha, leu2, spo11::URA3, COM1 ::Myc18::TRP1 

1577 Mat a/alpha, COM1::Myc18::TRP1, trp1::hisG, Mre11::HA6::HIS3, 

his3::hisG, ura3, leu2::hisG, ade2 

1799 Mat a/alpha ho::LYS2, lys2, COM1::Myc18::TRP1, mre11S, 

leu2::hisG, ura3 

 

1900 Mat a/alpha  ura3, leu2::hisG, trp1::hisG,  mre11::KanMX4, 

COM1::Myc18::TRP1 

,

3077 MAT a/alpha, ho::LYS2  lys2, scc1-73  leu2, u a3, ade2, a g4, 

rec8::kanMX, Com1::myc18::TRP1 

, , r r

3364 Mat a/alpha  ho::LYS2, leu2, his3, ura3, trp1, XRS2::HA3::TRP1, 

rad50S::URA3, COM1::Myc18::TRP1 

,

3504 Mat a/alpha  ho::LYS2, u a3, leu2::hisG, trp1::hisG, his3::hisG, 

mre11-H125N, COM1::Myc18::TRP1, ade2 

, r

3523 MATa/alpha, ho::LYS2, lys2, leu2::hisG, ura3 , 

COM1::Myc18::TRP1, trp1::hisG, spo11-Y135F::HA::URA3, HIS3 

3570 MATa/alpha, ho::LYS2, lys2, leu2::hisG, ura3, COM1::Myc18::TRP1, 

rad50::URA3 

1576 Mat a/alpha  ura3, trp1::hisG, leu2::hisG, mre11::HA6::HIS3

his3::hisG, ade2::hisG 

, , 

1577 Mat a/alpha, COM1::Myc18::TRP1, trp1::hisG, mre11::HA6::HIS3, 

his3::hisG, ura3, leu2::hisG, ade2 

3526 Mat a/alpha  ho::LYS2, lys2, ade2::hisG, ura3, leu2::hisG, 

trp1::hisG, Mre11::HA6::HIS3, his3::hisG, spo11-Y135F::HA::URA3 

,
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3532 Mat a/alpha   ho::LYS2  ura3, leu2::hisG, trp1::hisG, his3::hisG, 

rec114::KANMX,, ura3, Mre11-HA6::HIS3 

, ,

3535 Mat a/alpha, rad50S::URA3, ura3, trp1::hisG, leu2::hisG, 

mre11::HA6::HIS3, his3::hisG 

3554 Mat a/alpha  ho::LYS2, lys2, ade2::hisG, ura3, leu2::hisG, 

trp1::hisG, Mre11::HA6::HIS3, his3::hisG, spo11::URA3, ura3 

,

1358 MAT a/alpha  ho::LYS2 ura3, trp1::hisG, leu2, 

SPO11::Myc18::TRP1 

, , 

1371 Mat a/alpha, ho::LYS2, SPO11::Myc18::TRP1, trp1, rad50S::URA3, 

ura3, leu2::hisG 

1488 MAT a/alpha  HO, lys2, leu2::hisG, ura3, TRP1, 

SPO11::Myc18::TRP1, rec102::URA3 

,

2872 Mat a/alpha, ho::LYS2, Spo11::Myc18::TRP1, com1::KanMX, leu2, 

ura3 

3039 MAT a/alpha,ho::LYS2, ura3, leu2::hisG, trp1::hisG, 

SPO11::Myc18::TRP1, hop1::LEU2 

3284 MAT a/alpha  ho::LYS2, ade2::hisG, ura3, leu2::hisG, trp1::hisG, 

his3::hisG, SPO11::Myc18::TRP1, mre11S 

,   

3529 Mat /alpha, ho::LYS2, SPO11::Myc18::TRP1, trp1::hisG, ura3, 

leu2::hisG, his3::hisG, mre11-H125N 

1281 Mat a/alpha  ho::LYS2, lys2, ura3, leu2::hisG, his3::hisG, 

trp1::hisG, XRS2::HA3::TRP1, COM1::Myc18::TRP1 

,

3364 Mat a/alpha  ho::LYS2, leu2, his3, ura3, trp1, XRS2::HA3::TRP1, 

rad50S::URA3, COM1::Myc18::TRP1 

,

3098 Mat a/alpha  ho::LYS2, u a3, leu2::hisG, trp1::hisG, his3::hisG, 

TetR::PK6::URA3, Tub2A 7xTetO Tub2B 

, r

3140 Mat a/alpha   ho::LYS2  ura3, leu2::hisG, trp1::hisG, his3::hisG, 

TetR::HA3::TRP1, Tub2A 7xTetO Tub2B::URA3 

, ,

3149 MAT a/alpha  ho::LYS2  lys2, leu2::hisG, his4, trp1::hisG, ura3, 

arg4-Nsp, REC8::HA3::URA3, TetR::HA3::TRP1, Tub2A 7xTetO 

Tub2B::URA3 

, ,

3152 MAT a/alpha, ho::LYS2 lys2, ura3, leu2::hisG, his4, trp1::hisG, 

REC8::HA3::URA3, spo11:URA3, TetR::HA3::TRP1, Tub2A 7xTetO 

Tub2B::URA3 

3155 Mat a/alpha  ho::LYS2, u a3, leu2::hisG, trp1::hisG, his3::hisG, , r
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TetR::Myc18::TRP1, Tub2A 7xTetO Tub2B::URA3 

3168 MAT a/alpha, ho::LYS2, ura3, leu2::hisG, trp1::hisG, 

SPO11::Myc18::TRP1, TetR::Myc18::TRP1, Tub2A 7xTetO

Tub2B::URA3 

 

3171 Mat a/alpha, ho::LYS2, trp1, SPO11::Myc18::TRP1, leu2, ura3, 

HIS???, com1::KanMX4,TetR::Myc18::TRP1, Tub2A 7xTetO 

Tub2B::URA3 

3175 MAT a/alpha, ho::LYS2  lys2, scc1-73  leu2, u a3, ade2, ADE2, 

trp1::hisG, his3::hisG?, rec8::kanMX, Com1::myc18::TRP1, 

TetR::Myc18::TRP1, Tub2A 7xTetO Tub2B::URA3 

, , r

3178 MAT a/alpha, ho::LYS2, lys2, leu2::hisG, ura3, 

COM1::Myc18::TRP1, trp1:hisG, his3::hisG?, TetR::Myc18::TRP1, 

Tub2A 7xTetO Tub2B::URA3 

3184 Mat a/alpha  trp1, COM1::Myc18::TRP1, ura3, rad50S::URA3, 

his3::hisG??, TetR::Myc18::TRP1, Tub2A 7xTetO Tub2B::URA3 

,

  

 

 
2.3 DNA Techniques 

2.3.1  Basic Techniques 

Basic techniques such as preparation of Agarose Gels, restriction digests, cloning, etc were 

performed as described in [98]. 

 

2.3.2  Polymerase Chain Reaction (PCR) 

Two different PCR protocol conditions were used depending on the application of interest. 

For analytical purposes, recombinant Taq polymerase from Fermentas was used as described 

in table 3. Because the error rate of Fermentas Taq polymerase is significant, for preparative 

purposes we used KOD-HIFI polymerase (TOYOBO) which has a higher fidelity (mutation 

frequency: 0.0035 versus 0.0039 for pfu DNA polymerase and 0.013 for Fermentas Taq 

polymerase) and a faster elongation rate (106-138 bases/second versus 25 for pfu DNA 

polymerase and 61 for Fermentas Taq polymerase). Table 3 and 4 contain the PCR 

conditions for Fermentas and KOD-HFI polymerase respectively.  
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Fermentas Taq polymerase PCR conditions Thermal cycler conditions 

• 79 ul ddH2O 

• 10 ul Buffer 10x 

• 5 ul MgCl2 (1.25 mM final conc.) 

• 2 ul dNTPs (10 mM) 

• 2 ul DNA template (100ng for Plasmid or 

genomic DNA) 

• 1 ul primer P1 (10 pmol/ul) 

• 1 ul primer P2 (10 pmol/ul) 

• 1 ul Fermentas recombinant Taq 

polymerase 

                  100 ul total volume 

• 94ºC                         3 minutes 

 

• 94ºC                         1 minute 

• Annealing temp.         30 seconds 

• 72ºC                         2 minutes 

              30 cycles 

• 72ºC                         7 minutes 

 

Table 3: PCR conditions for Fermentas recombinant Taq polymerase. In case the 
PCR product is weak or simply not present, it is possible to increase the final concentration 
of MgCl2 to 3 mM. This modification decreases the specificity, but increases total efficiency. 
It is therefore recommended only for analytical purposes. 

 
KOD HIFI Taq polymerase PCR conditions Thermal cycler conditions 

• 34.6 ul ddH2O 

• 5 ul buffer 10x (buffer 1 for plasmid DNA 

or buffer 2 for Genomic DNA) 

• 5 ul dNTPs (2 mM) 

• 2 ul MgCl2  (25 mM) 

• 1 ul DNA template 

• 1 ul Primer 1 (10 pmol/ul) 

• 1 ul Primer 2 (10 pmol/ul) 

• 0.4 ul KOD Taq polymerase (2.5 U/ul) 

                 50 ul total volume 

• 98ºC                       1 minute 

 

• 98ºC                       15 seconds 

• Annealing temp.        5  seconds 

• 72ºC                       20 seconds 

                       30 cycles 

• 72ºC                        1 minute 

 
Table 4: PCR conditions for KOD HIFI DNA polymerase. Depending on the length of the 
PCR amplicon, the time of elongation needs to be increased proportionally in order to obtain 
satisfactory results (up to 60 seconds per 2Kb Genomic DNA target). 
  
 
 

 47



Materials and Methods 
 

2.3.3  DNA gel extraction and/or purification/concentration 

using Qiagen Kit 

In order to extract DNA from agarose gels, as well as to purify PCR products from primer 

dimmers and remove salts, we used the DNA gel extraction kit from Quiagen (QiAquick Gel 

extraction Kit cat.no.  28706). 

  

2.3.4  PCR Mediated One Step tagging strategy 

A PCR mediated one step tagging strategy was used in order to tag yeast proteins at the C-

terminus with various tags such as MYC::TRP1, HA::HIS3, PK::KanMX and FLAG::KanMX ( 

This technique was initially described by [99] and [100] ). Briefly, a DNA plasmid containing 

the corresponding tagging cassette was used as PCR template. Primers used at this step 

contained 42 nt homology to the gene of interest (5’end), plus 18 nt at the 3’-end containing 

homology to the tagging cassette. In order to integrate the PCR amplified tagging cassette 

into the C-terminus of the gene of interest, the PCR product was concentrated to 12ul with 

the Qiagen Kit and transformed into the corresponding yeast strain following the protocol 

previously described. 

After 2-3 days of incubation at 30ºC, the selective plates presented several colonies that 

needed to be confirmed by PCR genotyping. For this purpose, Genomic DNA from the 

colonies to be analysed were prepared by following the protocol described in chapter 2.2.4.1. 

Positive PCR genotyping was confirmed by performing a western-blot analysis with the 

appropriate antibody. 

 

FK. Ref. 

number 

Type  Tagging

cassette 

Primer seq. 

Primer1:5’-target gene homology (42nt)… 

Primer2:5’-target gene homology (42nt)… 

Reference 

330 pUC19 Myc18::TRP1 Primer1: …TCCGGTTCTGCTGCTAG 

Primer2: …CCTCGAGGCCAGAAGAC 

Wolfgang 

Zachariae 

331 pUC19 HA3::TRP1 Primer1: …TCCGGTTCTGCTGCTAG 

Primer2: …CCTCGAGGCCAGAAGAC 

Wolfgang 

Zachariae 

414 pFA6a-

His3MX6 

HA6::HIS3  Gustav 

Ammerer 

 

Table 5: Plasmid tagging cassettes. 

 

 48 



Materials and Methods 
 

2.4 Protein Techniques 

2.4.1  Preparation of Yeast TCA crude protein extracts 

Required solutions: 

 

• Trichloroacetic Acid (TCA) 

• Glass beads 

• Tris base 1 M pH 8.0 

• 1x GSD buffer: 40 mM Tris/HCl pH 6.8, 8M urea, 5% SDS, 0.1 mM EDTA, 2% β-

mercaptoethanol (or 1% DTT) 

 

Five ml of yeast culture were collected in an eppendorf containing 1.2 ml 100% TCA (20% 

final concentration). Cells were centrifuged 3’ at 6000 RPM, washed once with 1 ml 10% TCA 

and resuspended in 200 ul 10% TCA with 200 ul glass beads. Eppendorf tubes were shaken 

in a vibrax for 20’ at 4°C at full speed. The extract was transferred to a new tube and beads 

were washed twice with 200ul 10% TCA. 

All washes were collected in the same eppendorf and then centrifuged for 10’ at 3000 rpm at 

RT. 

The supernatant was discarded and the precipitated proteins were resuspended in 200 ul 

1xGSD buffer and 20-25 ul 1 M Tris base (added for neutralization, the color of the loading 

buffer should be blue at the end), then boiled for 10’at 95°C. Before loading extracts were 

centrifuged 10’ at 3000rpm at RT. 

 

2.4.2  SDS-Gel electrophoresis 

• 10x Running Buffer (5L): 151.25g Tris, 748g Glycine, 50g SDS. 

 

Glass plates, combs and corresponding spacers were washed with ddH2O and ethanol before 

assembly (gel unit assembly is described by supplier). First, the resolving gel was prepared 

by mixing all components described in the following table and poured into the gel unit until it 

covered 2/3 of the total volume. Immediately, a few ml of ethanol was added in order to 

maintain a uniform surface during polymerization. Once the gel was polymerized, the ethanol 

was removed and the stacking gel was poured, covering the remaining volume in the gel 

unit. The desired comb was inserted and kept until polymerization was completed. 

Finally, the polyacrylamide SDS-gel was submerged into 1x running buffer, the comb was 

removed and the slots were washed one by one with a syringe filled with running buffer. 
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Boiled and centrifuged samples as well as the pre-stained molecular weight Marker (BioRad 

laboratories) were loaded and then electrophoresed at 100V at room temperature for 3 to 4 

hours depending on the required resolution. 

 

30% acrylamide-bisacrylamide 1.9 ml 

1 M Tris-HCl pH 8.8 2.6 ml 

ddH2O 2.4 ml 

20 % SDS 70 ul 

10 % Ammonium Persulfate (APS) 70 ul 

TEMED 6 ul 

Table 6: Recipe for resolving gel 8 % .  

 

30 % acrylamide-bisacrylamide 1.7 ml 

1 M Tris-HCl pH 6.8 1.25 ml 

ddH2O 7.1 ml 

20 % SDS 50 ul 

10 % Ammonium Persulfate (APS) 50 ul 

TEMED 10 ul 

Table 7: Recipe for stacking gel. 

 

2.4.3  Western Blot Analysis 

2.4.3.1 Western Transfer 

• 5x Transfer buffer (1L): 15.4 Tris buffer, 72.06g Glycine. (1x transfer buffer is 

supplemented with 15% methanol before use) 

 

Once the proteins were separated on the SDS-polyacrylamide gel (SDS-PAGE), they were 

transferred to a nitrocellulose membrane (Hydrobond-P, Amersham Pharmacia Biotech) for 

immunodetection. To accomplish this, the resolving gel was removed from the gel unit and 

submerged in transfer buffer. The transfer setup consisted of a “sandwich” where the 

resolving gel was placed between 3MM filter paper on one side and the nitrocellulose 

membrane followed by more 3MM filter paper on the other side. The transfer sandwich was 

placed in a plastic frame and transferred to the transfer chamber (BioRad Laboratories) 

which was filled with transfer buffer.  The gel was then electrophoresed at 100V for 1 hour. 
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To avoid overheating, the transfer chamber contained an ice block and the transfer buffer 

was stirred with a magnetic stir bar during transfer.   

2.4.3.2 Antibody Incubation 

• 1xTBS: 10 mM Tris buffer, 150 mM NaCl, adjust to pH 7.5 with HCl 

• 1xTBS-Tween: 1xTBS supplemented with 1/1000 volume of Tween-20. 

• Ponceau stain: 0.1%(w/v) Ponceau in 5% Acetic Acid (other variant: 0.1% Ponceau 

in 30% TCA and 30% sulfosalicylic Acid) 

 

Following protein transfer, the nitrocellulose membrane was placed into small plastic 

containers, washed once with 1XTBS-Tween, and then incubated with Ponceau stain to 

visualize the transferred proteins (This step was not mandatory but helped to evaluate the 

transfer efficiency before proceeding with immunodetection. The presence of the pre-stained 

marker in the nitrocellulose membrane indicated that the transfer was successful). In order 

to remove the Ponceau stain, the nitrocellulose membrane was washed several times with 

water. Once the membranes had recovered their original colour, they were incubated with 

blocking solution for 1 hour at room temperature with gentle shaking. Then membranes 

were incubated with the corresponding first antibody diluted in blocking solution for 1 hour 

at room temperature or overnight at 4ºC if required. The primary antibody solution was 

removed and membranes were washed 3 times for 5 minutes with 1xTBS-Tween buffer and 

blocked again for 30 minutes at room temperature. Finally the blocked membranes were 

incubated with the secondary antibody, diluted in blocking buffer, for 1hour at room 

temperature with gentle shaking. Membranes were then washed 3 times for 10 minutes in 

1xTBS-Tween and kept in 1xTBS-Tween until detection. 

 

2.4.3.3 Immunodetection by Enhanced Chemo-Luminescence 

(ECL-plus Amersham) 

The immunodetection was performed with the chemo-luminescence system ECL-plus 

(Amersham) kit. Briefly, the detection solutions A and B were mixed in a ratio 40:1 (the final 

volume required per membrane is 0.1 ml/cm2). The nitrocellulose membranes were removed 

from the TBS-Tween solution, excess liquid was removed and the detection mixture was 

poured on the membrane surface. Membranes were incubated with the detection mixture for 

5 minutes, then the liquid was carefully removed, membranes were covered in saran wrap 

and exposed to X-ray film. 
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2.5 Chromatin-ImmunoPrecipitation (ChIP) Assay 

The following protocol is designed to perform yeast chromatin immunoprecipitation to be 

analysed either by Quantitative Real-Time PCR (qPCR) or by hybridization to high density 

microarrays. The original version was kindly provided by K. Shirahige’s Lab[101], from the 

Tokyo Institute of Technology, during my visit in 2005. The final version was obtained by 

combining it with a previous protocol used in the lab[102]. Initial cell pellets required for this 

protocol were obtained by the Meio ic Time course protocol previously described in this 

document.  

t

    

2.5.1  Yeast extract preparation 

Cell pellets (50 ml = 20x107 cells) were resuspended in 1600 µl Lysis buffer and equally 

distributed to four 2-ml screw-cap tubes containing ca. 600 µl of glass beads (see Note 

2.5.1.1). To disrupt cells, the tubes were placed into a multibeads shocker (YASUI-KIKAI, 

Osaka, 2500 rpm 28 times cycles of 30 sec ON/ 30 sec OFF at 4°C) or into a pre-cooled 

vibrax unit (14 cycles of 1 min ON/ 1 min OFF) at 4°C. At this stage, breakage efficiency was 

checked by phase contrast microscopy (see Note 2.5.1.1). 

After breakage, a small hole was poked into the cap of the screw-cap tubes, and the tubes 

were placed in an inverted orientation into a 15ml falcon tube. The cell extract was then 

collected by centrifugation (4°C, 1 min, 3000 rpm), transferred into a 1.5 ml eppendorf tube, 

and centrifuged again for 1 minute at 5000 rpm, to remove air bubbles. Finally, the cell 

extracts were sonicated to shear chromatin to achieve the desired length. An average 

fragment length of slightly above 500 bp was achieved by sonicating 5 times at 37% power 

for 15 seconds (see Note 2.5.1.2). 

 

2.5.2  Chromatin Immunoprecipitation 

50µl of pan mouse IgG magnetic Dynabeads per sample were washed twice with 1ml of 

PBS/BSA. (Add liquid, vortex, fix beads at the bottom of the tube with the magnet, while 

removing liquid). Add 250µl primary antibody (see Note 2.5.2.1) (e.g., anti-Myc Antibody 

for IP against the Myc epitope) in PBS/BSA was added to the beads and incubated for 3 

hours at 4ºC with constant rotation (see Note 2.5.2.2). The beads were washed twice with 

1 ml PBS/BSA and resuspend in 100 µl PBS/BSA. 

After sonication, yeast extracts were centrifuged at 12000 rpm for 5 minutes to remove cell 

debris. The supernatant was transferred to a new 1.5 ml Eppendorf tube, and a 20µl aliquot 

was removed to prepare whole cell extract (WCE, keep at 4ºC). Note that the WCE was 
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prepared from each sample, because the final result is expressed as IP/WCE (sample) to 

correct for different amounts of template in the input. 

The remaining extract was incubated with the antibody-coated Dynabeads (25 µl per aliquot) 

for 1 to 3 hours at 4ºC with rotation or rocking. 

Beads were then washed as follows: 

 

• 2 times with 1 ml lysis buffer 

• 2 times with 1 ml lysis buffer /360 mM NaCl 

• 2 times with 1 ml washing buffer 

• 1 time with 1 ml TE. 

 

Samples were centrifuged at 1000rpm for 10 seconds and the supernatant was removed 

completely. (Hold beads at the bottom of the tube using the magnet while pipetting). 

40 µl of elution buffer was added and incubated at 65ºC for 15 minutes with shaking. The 

tubes were centrifuged at 12000 rpm for 1 minute and the supernatant was transfered into a 

new Eppendorf tube containing 160 µl of TE/1% SDS. 

To 20 µl of WCE, 380 µl of TE /1% SDS was added and the sample was split in half. 

Samples were incubated overnight at 65ºC to reverse the cross-linking. 

 

2.5.3  DNA purification 

To each of the 200 µl aliquots, 140µl TE, 3µl Glycogen (10mg/ml) and 7.5µl of Proteinase K 

(20mg/ml) were added and incubated at 37ºC for 2 hours. 

Samples were extracted twice with phenol/chloroform/isoamylalcohol ( 300µl PCI was added, 

the tubes were briefly vortexed, then centrifuged at 12000 rpm for 1 minute and the upper 

phase was recovered with care to avoid contamination from the interphase). 

The recovered phase was supplemented with NaCl (200 mM final concentration) and 2 

volumes of 96% Ethanol. Samples were vortexed and incubated at -20ºC for at least 30 

minutes. 

Samples were centrifuged for 30 minutes at 4ºC.  The DNA pellet was washed with ice-cold 

70% Ethanol. 

The DNA pellet was dried, then resuspended in 30 µl TE/RNAse solution (4 ug DNAse-free 

RNAse) and incubated at 37ºC for 1 hour. At this point, the different IP aliquots, including 

the WCE aliquots that were split in four at the beginning were pooled.  

(Optional) An additional phenol/chloroform/isoamylalcohol extraction can be performed 

(see Note 2.5.3.1), but will result in reduced yield. 
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Purified DNA was precipitated by adding 1/10 volume of 3M Sodium Acetate  and 2 volumes 

96% ethanol, then incubated at -20ºC for at least 30 minutes. 

Precipitated DNA was washed with ice-cold 70% ethanol, dried and resuspended in 30µl 

ddH2O. Samples were stored at -20ºC until analysed. 

 

2.5.4  Quantitative, Real-Time PCR analysis (qPCR) 

Many different protocols and reagents for real-time analysis of the precipitated DNA are 

available. We used the “SYBR Green” method, because it provides flexibility in choosing 

different chromosomal positions. Alternatively, if the analysis is performed routinely at the 

same chromosomal positions, techniques requiring modified oligonucleotides and which offer 

the possibility of multiplexing may also be economical. We use an iQ5 instrument (Biorad), 

but the “SYBR Green” method can also be performed on simpler real time PCR stations. Also 

“SYBR Green” can be exchanged for “MESA Green” (Eurogentec), which offers a larger 

dynamic range for monitoring the exponential amplification phase. For DNA quantification of 

a sample, the instrument needs a minimal series of 3 dilutions of a standard of “known” 

concentration. All measurements will be expressed relative to this standard. For the purpose 

of quantifying ChIP we recommend using WCE-DNA as a standard.  To obtain meaningful 

results, ChIP must be performed in parallel using the same conditions on cells lacking the tag 

(as a negative control to tagged baits), or on cells lacking the bait (if antibodies against the 

bait are used). Only the difference in signals between tagged and untagged (or plus/minus 

bait) can be regarded as specific. Here quantitative Real-Time PCR (qPCR) was performed as 

follows: 

A series of three 10-fold dilutions of the WCE sample (e.g. 1/30, 1/300, 1/3000) were 

prepared. 

PCR mix per sample: 

 

12.5 µl IQ SYBR Green Supermix  

0.5 µl Primer oligo mix   (10pmol/µl stock) 

9 µl ddH2O 

3 µl DNA sample   (IP sample or WCE dilution) 

---------------------------------------------------------------------------- 

  25 µl total reaction volume  

 

One master mix was prepared for all samples per each primer pair (i.e. per analyzed locus). 

All samples were performed in duplicate (see Note 2.5.4.1). Note that per primer pair 6 
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wells are required for the WCE dilution series, plus two wells for each sample. Thus it is 

economical to group samples analyzed with compatible primer pairs together in a run. 

First 22 µl of the master mix was filled into the wells of an optical 96-well plate and then the 

DNA samples (3 µl of either IP or WCE dilution) were added (see Note 2.5.4.2). 

A sealing film was placed over the 96-well plate to avoid evaporation. The plate was 

centrifuged for 1 minute at 500 rpm to remove air bubbles and placed into the real-time 

thermo cycler. 

qPCR was performed with the following setting (see Note 2.5.4.3): 

 

Cycle1: (1x) 

Step 1:   94,0 °C   for 03:00. 

Cycle2: (40x) 

Step 1:   94,0 °C   for 00:15. 

Step 2:   60,0 °C   for 01:00. 

Data collection and real-time analysis enabled. 

Step 3:   72,0 °C   for 01:00. 

Cycle 3: (1x) 

Step 1:   94,0 °C   for 01:00. 

Cycle 4: (1x) 

Step 1:   60,0 °C   for 01:00. 

Cycle 5: (71x) 

Step 1:   60,0 °C-95,0 °C  for 00:30. 

Increase set point temperature after cycle 2 by 0,5 °C 

Melting curve data collection and analysis enabled. 

 

During the qPCR run, the amplification can be observed online. This allows one to stop the 

run manually, after all samples have reached the plateau. (If this is done, the melting curve 

analysis has to be initiated manually.) 

Even though many programs offer a fully automated evaluation, it is useful to understand 

the underlying algorithms to be able to judge the quality and robustness of the obtained 

results. We can evaluate the amount of chromatin immunoprecipitated relative to the 

standard curve established for the WCE samples, and compare the fold enrichment obtained 

for the region of interest and the cold-spot region. 
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2.5.5  Interpretation of qChIP results 

The generation of data can be observed in “real time” during the PCR run. After all dilutions 

have reached the plateau, a melting analysis should be carried out. Since the melting 

temperature strongly depends on the product length, this is a convenient method to detect, 

and if necessary quantify, a primer dimer product, - a template-independent artifact, which 

could severely distort the result. (For an example see Fig. 15c, d. Primer-dimer formation 

occurs rarely if the “hotstart” strategy is used.) 

Typical qPCR results are shown in Fig. 15 (three unknowns and a “no template” control). 

The semi-logarithmic plot transforms the exponential amplification into a straight line and 

the program suggests a threshold (T), at which all curves should be in the linear range. This 

can be manually edited. Within the linear range such changes will have only very small 

effects, if all curves are parallel. T should not be chosen from too early cycles, where curves 

tend to deviate from linear. Much of this is likely caused by the FITC (spiked-in for “volume” 

control) and by the attempt of the system to subtract this signal (baseline subtraction). 

From the number of PCR cycles required to reach the threshold, the original amount of 

template is estimated (Fig. 15b), based on the assumption that amplification in the early 

“invisible” cycles occurred with the same efficiency as in the “visible” ones. The results are 

expressed relative to the standard (for which we use WCE, treated under similar conditions 

as the IP samples). Relative comparisons, such as time point x to time point zero (for 

meiosis-specific interactions), or cells containing the antigen (or tag) versus cells not 

containing it, are most intuitive and can be done right away. 

In order to refer to the efficiency of the technique, it is useful to refer to TT, the “total 

template present in the input”. The way we have defined the standard in Fig. 15b, a value 

of 1 corresponds to the amount of template present in 1µl of the WCE (1 µl contains 1/2400 

of TT). Since only 1/10 of the precipitate is used in the unknown IP samples, division by a 

factor of 240 converts IP values from WCE to TT units. (For example, the value of 6% of 

WCE, reached by Mre11-HA at the hotspot at t=4 hours in Fig. 16, corresponds to 0.025% 

of TT). This demonstrates that ChIP only recovers a very small fraction of the total template 

present. This may be due to the low efficiencies of the IP and artificial cross-linking. In 

addition, Mre11 may not occupy all templates. Nevertheless, the dynamic range between 

Mre11-HA and untagged is sufficiently large to identify even very weak binding sites. (The 

cold G-band at YCR011 is close to the weakest binding sites of Mre11 on chromosome 3, yet 

it is still significantly different from untagged, see Fig. 16). 
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Figure 15: Interpretation of qPCR data.  Amplification chart. Standard curve dilution 
series is represented by WCE 1:30, 1:300 and 1:3000 respectively (gray lines). Three 
different unknown samples are also represented in colored lines (a). Semi-logarithmic plot 
showing Ct value versus DNA initial Concentration. Estimation of DNA concentrations from 
the unknown samples by interpolation from the linear behaviour of the Standard curve 
dilution series is represented (b). Melting curve analysis (c, d).  Melting curve analysis for the 
amplified unknown samples is represented in (c). In (d), Sample presenting a specific 
amplification pattern (orange line) in contrast to the situation where the same sample 
presents primer dimmer products (red arrow) competing with the expected target amplicon. 
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Figure 16: qPCR analysis of Mre11-chromatin interaction over meiotic time 
course. 

 

2.5.5.1 What influences the qChIP result?  

Probably the most important parameter is the fraction of template occupied by the bait 

during crosslinking. However, the number of bait molecules per template will also 

significantly influence the qPCR value, as long as the efficiency of the IP is not close to 

100%. Third, but not least, the efficiency of cross-linking has a drastic effect. This includes 

the availability of side chains to interact with formaldehyde and DNA, but also whether the 

bait interacts directly with the DNA or via another protein. Finally and perhaps most 

importantly, solubility after crosslinking may be limiting. 
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2.6 Chromatin-Immunoprecipitation hybridized into High 

resolution Microarray DNA chips (ChIP on chip) 

In order to study chromatin-protein interactions in a genome wide manner, the chromatin-

immunoprecipitation strategy is combined with hybridization to microarray DNA chips. For 

this purpose, the immunoprecipitated DNA needs to be amplified, fragmented and labelled 

prior its hybridization. 

Depending on the type of DNA arrays in use, as well as the detection platform, the protocol 

required to perform the steps prior to hybridization can differ. In our case, we used S. 

cerevisiae Affymetrix Tiling arrays having 25 bp oligo probes with an average probe overlap 

of 20nt (currently termed a 5 nt resolution array).  The Affymetrix detection platform 

requires staining with a single dye, Phycoerytrin (excitation wavelength: 488nm), and the 

use of the automated washing station in order to stain and wash the hybridized probe arrays 

prior scanning.   

 

2.6.1 Modified Chromatin Immunoprecipitation (K. Shirahige’s 

protocol, TITec)  

Chromatin Immunoprecipitation was performed as previously described. In order to use the 

immunoprecipitated DNA for hybridization to probe arrays, the purified DNA was 

concentrated to a volume of 10 µl by Ethanol/NaAc precipitation (1/10 Volume 3M NaAc, 

2xVolume 96% Ethanol. After 30 minutes at 4ºC, DNA was centrifuged at maximum speed 

and washed once with 70% Ethanol). In order to perform genome wide PCR amplification, 7 

ul of the concentrated DNA was removed for the following steps. The remaining 3 ul were 

diluted to a final volume of 24 ul and used for qPCR analysis. This was done in order to 

evaluate the quality of the immunoprecipitated DNA prior to hybridization. In the same way 

we are able to evaluate the absolute amount of immunoprecipitated DNA in contrast to ChIP 

on chip analysis, where we evaluate the abundance of protein localization on the chromatin 

relative to the total Input DNA (called total whole Cell extract or WCE). The “relative” nature 

of this assay needs to be complemented by a qPCR analysis in order to estimate the absolute 

amount of the protein of interest on the chromatin. 
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Figure 17: Schematic representation of ChIP on chip assay [103]. Instead of the 
Uracil DNA Glycosylase fragmentation step, we perform a controlled DNAse I fragmentation 
procedure.  
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2.6.2 Random PCR amplification 

Because the amount of immunoprecipitated DNA is too low (below the sensitivity range of 

the Nanodrop Spectrophotometer, which is 2 ng/ul) to be directly detected by hybridization 

onto a DNA microarray chip, a PCR amplification step is required. The PCR amplification 

needs to cover all pulldown fragments in an unbiased manner.   The amplification procedure 

must not alter the differences in abundance between different pulldown fragments that exist 

prior to amplification. The method of choice in our case involves the use of a random primer 

which contains a consensus sequence at the 5’-end. During two linear rounds of 

amplification the random primer is used in order to introduce the consensus sequences at 

the ends of all pulldown fragments (see Round A); then an oligomer complementary to the 

5’-end consensus sequence is used in a second step for an exponential amplification (see 

Round B).   

2.6.2.1 Round A  Linear amplification:  

This first step is performed to introduce the consensus sequences into our 

immunoprecipitated genomic DNA. Two rounds of linear amplification are performed with 

Sequenase™ Version 2.0 DNA Polymerase at 37ºC in the presence of a random primer 

containing the consensus sequence at the 5’-end. 

 

Primer A: GTTTCCCAGTCACGATCNNNNNNNNN 

 

Setup: 

• 7 ul DNA IP (or 5 ul for wce) 

• 2 ul Sequenase buffer 5x 

• 1 ul Primer A (40 uM) 

 

Reaction mix: 

Prepare a reaction mix per sample as follows: 

• 1 ul Sequenase buffer 5x 

• 1.5 ul dNTPs (3 mM) 

• 0.75 ul DTT(0.1 M) 

• 1.5 ul BSA (500 ug/ml) 

• 0.3 ul Sequenase 

--------------------------------------- 

Total volume = 5.05 ul 
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Furthermore, dilute a Sequeanase sample as follows (1/4 dilution): 

• 3.6 ul sequenase dilution buffer 

• 1.2 ul Sequenase 

------------------------------------ 

 Total volume = 4.8 ul 

 

The setup mix was incubated at 94ºC for 2 minutes, then 10ºC for 5 minutes.  During the 

10ºC hold, the reaction mix (5.05 ul per sample) was added. Samples were then incubated 

at 37ºC for 8 minutes, 94ºC for 2 minutes, and 10ºC for 5 minutes. During the 10ºC hold, 

1.2 ul of diluted Sequenase was added and the reaction was incubated at 37ºC for 8 

minutes.  

 In order to proceed with the exponential amplification, samples were diluted in ddH2O to a 

final volume of 78 ul (add 61.75 ul). 

 

2.6.2.2 Round B  Exponential amplification:  

The exponential amplification was performed in the presence of consensus primer B which 

anneals to the consensus sequence introduced during round A. 

 

1 95ºC 5 min.  

2 98ºC 20 sec.  

3 40ºC 30 sec  

4 50ºC 30 sec  

5 72ºC 3 min. go to step 2  31x 

6 72ºC 7 min.  

7 4ºC hold  

• 78 ul DNA (from round A) 

• 10 ul KOD-XL 10x buffer 

• 1 ul Primer B (100pmol/ul) 

• 10 ul dNTPs (2mM each) 

• 1 ul KOD-XL polymerase 

---------------------------------------------- 

 Total volume= 100 ul 

   

2.5 ul of the amplification product were loaded onto a 1% agarose gel. The amplification 

product appeared as a smear between 300 – 2000 bp with an average of 500-1000bp. (the 

IP samples presented a broader smear than WCE).  

The remaining sample was purified and concentrated to a volume of 42 ul with microcon 

columns (MILIPORE YM-100 6000rpm, 15 min at RT) and the total amount of DNA was 

estimated with the Nanodrop spectrophotometer.  

For microarray DNA hybridization at least 5ug of amplified material is required, though up to 

7 to 10 ug of DNA per sample can be used. 
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2.6.3  DNA fragmentation 

In order to perform the microarray hybridization, DNA must be fragmented to an average 

length of 50-100 bp . For fragmentation we used a DNAse treatment. 

 

DNAse setup: 

• 2 ul DNAseI (1 U/ul) 

• 2 ul One-phor-all-buffer plus (10x) 

• 1.2 ul CoCl2 (25mM) 

• 8 ul ddH2O 

 

Reaction Mix:  

• 40.75 ul amplified DNA 

• 2.9 ul CoCl2 (25mM) 

• 4.85 ul One-phor-all-buffer plus (10x) 

• 1.5 ul DNAseI setup (added when the PCR block has reached 37ºC) 

37ºC 2min, 95ºC 15min. 

 

2.5 ul of sample was loded onto a 2% Agarose gel, which was run briefly. When the average 

fragment size was above 100bp the procedure was repeated by adding 1 ul of DNAseI into 

the remaining DNAse setup and then adding 1.5 ul of the DNAseI setup into the reaction 

mix. 

 

Figure 18: Random PCR amplification pattern before (left) and after DNAseI     
digestion (right). 
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2.6.4  Fragmented DNA labelling 

Once the DNA was fragmented, it was labelled at the 5’-ends by using terminal transferase 

and a Biotinylated-N11-ddATP. 

 

• 47.5 ul fragmented DNA (from DNAseI treatment) 

• 1 ul Biotin-N11-ddATP (1nmol/ul Perkin Elmer NEL508)  

• 12 ul Terminal Transferase buffer 5x 

• 1 ul Terminal Transferase (Roche 220582) 

  

The labelling reaction was incubated for 1hour at 37ºC. 

 

2.6.5  Affymetrix Microarray DNA chip hybridization 

After the DNA was 5’-end labelled with Biotinylated ddATP, a hybridization cocktail was 

prepared as following: 

First the number of microarray chips to be hybridized were equilibrated at RT for 15min. It is 

important not to break the septa during sample loading. 

Following equilibration, 250 ul of 1x pre-hybridization buffer was loaded into the probe array 

and incubated at 42ºC with constant rotation for at least 15 minutes. 

During the pre-hybridization step, the following hybridization cocktail was prepared: 

 

• 60 ul labeled DNA 

• 3.3 ul Oligo B2 controls (3nM) 

• 2 ul Herring Sperm DNA (10 mg/ml) 

• 60 ul SSPE 20X 

• 10 ul Triton-X 100 (0.1%) 

• 64.7 ul ddH2O 

-------------------------------------------------------- 

200 ul total 

 

The mix was incubated at 99ºC for 10 minutes, and then chilled on ice for 5 minutes. Finally, 

the hybridization mix was centrifuged at full speed for 5 minutes in order to precipitate 

insoluble material. 

The pre-hybridization solution was removed from the chip and 170 ul of the hybridization 

cocktail was loaded. The probe arrays were incubated at 42ºC for 16 hours with constant 
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rotation.  Following this incubation the hybridization cocktail was recovered and placed into 

its original eppendorf ( stored at -20ºC it can be re-hybridized at least two times more if 

necessary), and the probe array was filled with 250 ul of the less stringent washing buffer A 

and was kept at RT until washing. 

 

2.6.6  Microarray chips Washing and staining procedure 

The washing station requires two samples, the staining solution mix containing SAPE, 

(Streptavidin conjugated to Phycoerythrin), and one Antibody amplification sample 

(containing Anti-Streptavidin Goat Antibody conjugated to a biotin residue, as well as an 

Anti-Goat Antibody).  
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igure 19: Schematic representation of staining of Hybridized DNA. The affymetrix 
ersion uses an anti-Streptavidin (goat) biotin conjugated antibody; however Goat IgG is added in 
rder to avoid non specific interactions. 
APE solution Mix: 

• 600 ul 2xMES buffer 

• 48 ul acetylated BSA (50 mg/ml) 

• 12 ul SAPE (1 mg/ml)  

• 540 ul ddH2O 

------------------------------------------------- 

Total=1200 ul  Split in two eppendorfs (protect from light all the time) 

ntibody (Ab) mix: 

• 300 ul 2x MES buffer 

• 24 ul acetylated BSA (50mg/ml) 

• 6 ul Goat IgG (10mg/ml) 

• 3.6 ul biotinylated Antistreptavidin (Goat 0.5 mg/ml) 

• 266.4 ul ddH2O 

--------------------------------------------------------------- 

600 ul total 
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The Washing protocol used is called “EukGE-WS2v5” and was performed on the Affymetrix 

Fluidic station 450 (see figure 20) as follows: 

Automated steps performed into the  fluidic station 450 EukGE-WS2v5 protocol 

Post Hyb Wash #1 10 cycles of 2 mixes/cycle with Wash 

Buffer A at 30°C 

Post Hyb Wash #2 6 cycles of 15 mixes/cycle with Wash 

Buffer B at 50°C 

Stain Stain the probe array for 10 minutes in 

SAPE solution at 35°C 

Post Stain Wash 10 cycles of 4 mixes/cycle with Wash 

Buffer A at 30°C 

2nd Stain Stain the probe array for 5 minutes in 

antibody solution at 35°C 

3rd Stain Stain the probe array for 5 minutes in 

SAPE solution at 35°C 

Final Wash 15 cycles of 4 mixes/cycle with Wash 

Buffer A at 35°C. The holding 

temperature is 25°C 

Holding Buffer Buffer A loaded in the Final Wash is kept for Scanning 

 

Table 8: Fluidic station protocol used for washing S. Cerevisiae 1.0R Tiling arrays. 

 
 
 

Microarray chip cartridge slots

Eppendorf tubes containing 
staining solutions

Washing and waste 
solutions containers

Microarray chip cartridge slots

Eppendorf tubes containing 
staining solutions

Washing and waste 
solutions containers

 

 

Figure 20: Affymetrix Washing station 450. 
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2.6.7  Microarray chips Scanning and data treatment 

Following the washing step, the hybridized microarray DNA chips were scanned. If 

necessary, hybridized probe arrays may be stored at 4ºC for several hours before scanning, 

but must be warmed back to RT before being scanned. The GeneChip scanner 3000 TG is 

controlled by GeneChip Operating Software (GCOS). 

Before the probe array was scanned, the glass surface was cleaned, if required, with a soft 

tissue (kimwipe). Alcohol can not be used to clean the glass. 

The liquid level inside of the array was checked to insure the array was full, if it was not, air 

bubbles were manually removed and the inner chamber was filled with non-stringent buffer 

A. The excess fluid from around the septa was cleaned and one Tough-Spot was applied to 

each septum. 

 

 

Figure 21: Applying Tough-Spots to the probe array cartridge 

 

Finally the probe array was inserted into the scanner and scanning was performed as 

indicated in the Affymetrix instruction manual [103]. 
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2.6.7.1 Comparative analysis o  ChIP chip dataf  

Microarray scanning produces a file which contains a high resolution picture of the array 

surface (DAT file). In order to define borders than can be used for further analysis, during 

the Hybridization process a control oligomer is currently added into the hybridization cocktail 

(Oligo B2, see Affymetrix DNA hybridization procedure). The Oligo B2 hybridization pattern 

defines a grid (a single grid is known as a probe cell) which is used to perform local 

fluorescent signal normalization in order to correct for non-uniform hybridization patterns 

over the array surface. As part of GCOS treatment, a new file is generated (CEL file) which 

contains a single intensity value for each probe cell delineated by the grid (calculated by the 

Cell Analysis algorithm). 

Because we are interested in a relative enrichment during the chromatin 

immunoprecipitation process (IP for immunoprecipitation) compared to the total input DNA 

(WCE), a comparative analysis between the IP and the corresponding WCE CEL file needs to 

be performed. 

Comparative analysis between CEL files is widely explained in the literature; in this chapter a 

brief description of such procedure as well as the available tools available for this purpose 

are presented. 

  

2.6.7.2 ChIP-chip data normalization 

Comparative analysis of probe arrays requires a normalization treatment in order to correct 

for differences in total hybridized DNA between compared CEL files. 

The easiest way to perform such a normalization is to use a Median/Mean 

normalization[104], where the Median/Mean of the base-two logarithm of the ration of IP to 

WCE signal intensities is calculated and then subtracted to each log ratio value of each tile 

on a single array position. This procedure transforms the log-ratio distribution by centering it 

at zero, assuming that the Median/Mean represents the background/noise trend in the 

distribution and, consequently, it remains applicable in cases where up to 50% of the probes 

display a distinct behaviour compared to the noise/background base line.  

Taking into consideration that intensity-specific artefacts (coming for instance from an 

uneven hybridization pattern) can produce different background/noise intensities over the 

array surface, an alternative method, called LOESS normalization[105] (for locally weighted 

regression and smoothing scatterplots), first uniformly samples 50000 log-ratio values from 

the original data, to then perform a locally weighted regression on the sampled data. Finally 

the newly estimated “correction factor” is subtracted from the corresponding log-ratio 
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sample values. Then another set of 50000 sample log-ratio values are processed, until the 

total number of signal log ratio values have been processed in this manner. The main 

disadvantage of Loess normalization is that it is a computationally intensive method. 

In a more stringent method, called Quantile Normalization[106], intensity distributions are 

adjusted to be equivalent. For this, the signal intensities of each experiment are sorted into 

quantiles, and then the intensities in each quantile across the group of experiments are 

averaged. In contrast to LOESS and Mean/Median methods, Quantile Normalization does not 

require intensive computational treatment and also corrects for intensity-specific artefact. 

However, this method seems to be too stringent in certain situations, eliminating the 

variation in the degree of binding among experiments. 

The methods described above were the most commonly used protocols for Gene expression 

analysis and have since been extended to ChIP-chip experiments. Nevertheless, the 

Asymmetric nature of ChIP-chip data (in this case we expect only positive enrichment in 

contrast to gene expression analysis where genes can be over or under regulated), as well 

as the high proportion of signal enriched sites in the case of certain specific targets, histones  

for example (in gene expression analysis it is assumed that the proportion of differentially 

expressed genes is small and by consequence a Mean/Median strategy is able to identify the 

base line trend), means that these protocols are not always suitable tools for Normalizing 

ChIP-chip data.  In light of this, new methods specifically designed for ChIP-chip data have 

been developed recently[107], However, even though new algorithms have been proposed, 

there are no computational platforms currently available that are supplied with these 

algorithms. Consequently, their application remains restricted to groups capable of 

developing their own software. For this reason, there is a limited choice of software tools 

available for the treatment of ChIP-chip data and available options are further reduced as 

they tend to be technology specific ( two-color microarray chips from NimbleGen or Agilent 

and single-color microarray chips from Affymetrix cannot, in general, be processed by the 

same software). Additionally, the output data format produced by such available tools is not 

flexible enough in most of the cases. The most popular output format is a BAR file which 

associates signal intensity with the physical position of the corresponding probe on the array 

surface. This file format can only be opened in a Genome browser, where the information on 

the physical position of each probe on the array surface is associated to the chromosome 

position in order to create a chromosome map displaying the corresponding relative signal 

intensities. . However, these genome browsers generaly only allow screen shots of 

interesting regions, without the ability to export the whole genome or chromosome data into 

a text file format.  
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Figure 22: Different normalization methods: Log-intensity plot before normalization. 
The gray line represents where the IP and the WCE signal intensities are equal (a), A Loess 
regression curve fitted during normalization is represented in (b). Mean and Median 
normalization are shown in (c) and (d). Finally Loess and Quantile normalization are 
illustrated in (e) and (f). Notice that only Loess and Quantile are able to correct for intensity-
specific artifacts (Signals distribution in the scatter plot is centered to zero even for higher IP 
WCE average log signals). Adapted form [108].  
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Taking into consideration the described problems associated to ChIP-chip data treatment, we 

could suggest tools such as,Tilescope[108], CisGenome (which includes TileMap)[109], 

mpeak[110], MAT[111], R packages from Bioconductor (like “affy” or “oligo”) and the Tiling 

Analysis Software (TAS) from Affymetrix. Data analysis presented in this document was 

performed primarily in TAS using a quantile normalization approach. 

Figure 23 illustrates the data normalization treatment performed on CEL files corresponding 

to the Hop1p ChIP-chip experiment. In order to visualize the effect of the normalization 

treatment, signal intensities coming directly from the IP CEL file have been compared to 

those in the WCE CEL file. To achieve this, we constructed a scatterplot of Log2(IP/WCE) 

(called “M” for minus or difference) against Log2(IPxWCE)1/2 (called “A” for average or mean) 

.  This scatterplot shows the variability of the factor M as a function of the mean A. In the 

absence of hybridization artefacts, the points on the MVA plots (for M versus A) should be 

randomly scattered around the M=0 line. In reality, the scatterplot is shifted from the M=0 

line before normalization, and is corrected by the data normalization treatment. Finally, the 

normalized data can be associated to a physical chromosome position and represented in a 

2Dimensional plot showing the relative signal intensity Log2(IP/WCE) on the Y axis and the 

chromosome position on the X axis. This representation is the final output of the ChIP-chip 

experiment, complemented quite often by a statistical analysis associated to each data point 

to demonstrate significance.     

 

Figure 23: ChIP-chip data normalization. Signal intensities coming from ChIP-chip CEL 
files performed in Hop1p are represented in MVA plots, before (upper left panel) and after 
quantile normalization (upper right panel). Normalized data is then associated to physical 
chromosome positions in a 2D map representing the Log2(IP/WCE) on the Y axis and 
chromosome positions on the X axis    (lower panel). 
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Affymetrix tiling array technology includes mismatch probes as a way to associate a p-value 

to each probe signal intensity, nevertheless in our hands a PM/MM (for perfect 

match/mismatch)  analysis did not appear to be reproducible when comparing biological 

repeats of ChIP-chip maps for some of our studied proteins (see figure 24). This could be 

explained in part by the polymorphisms existing between SK1 yeast strain background and 

the sequence used for Affymetrix yeast arrays design, S288c (the nucleotide divergence 

between S288c and SK1 is 0.36% in contrast to 0.08% for W303[112]). For this reason we 

did not include PM/MM analysis in our ChIP-chip maps; instead we have developed 

alternative strategies in order to correct for tiles that are considered as been artefacts based 

in the nature of ChIP hybridization expected binding pattern. In the following paragraphs we 

describe the methodology used for this purpose. 

 

 

 

Figure 24: Typical artifact patterns observed in a ChIP-chip map. In some cases, 
strong Signal intensity fluctuations between consecutive data points are observed (a). Single 
data points which do not cover at least the expected minimum immunoprecipitated DNA 
length are not considered as been significant (b). Compaing two ChIP-chip maps for the 
same target protein under similar conditions often displays different “significancy” pattern 
based on the PM/MM ratio (c). Black bars and gray bars represent significant and no-
significant data points, respectively, based on the PM/MM ratio. The significant p-value 
threshold algorithm used for these ChIP-chip maps was developed in K. Shirahige’s 
Laboratory[101]. 
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2.6.7.3 Tooth brushing methodology for Signal intensity 

pattern correction 

The chromatin immunoprecipitation protocol previously described is designed to 

immunoprecipitate DNA fragments of 500-1000bp length on average. Taking into 

consideration that the S. cerevisiae tiling arrays resolution is 5bp (5bp resolution means that 

the 25nt length oligonucleotide probes spotted onto the array surface overlap the 

consecutive probe by 20 nt), at least 96 probe tiles are covered by an immunoprecipitated 

DNA fragment of 500 bp in length. Under these conditions, we should be able to identify 

several consecutive probes presenting a protein-chromatin binding pattern in contrast to tiles 

presenting strong signal intensity fluctuations compared to their neighbouring probes, which 

is likely a consequence of hybridization artefacts and are source of no-specific background. 

From the practical point of view, we do not work directly with signal intensities coming from 

the 25nt length probes; instead we perform a previous signal average between consecutive 

arrays covering 50nts in lenght (~6 consecutive probes). Furthermore, in order to estimate 

the signal intensity fluctuation between the averaged probes we calculate their Standard 

deviation. This data treatment step helps us to compress the number of data point that must 

be analysed. After this compression treatment, the number of data points needed to be 

considered for the hybridization of a DNA fragment of 500 bp is reduced to 10.  Therefore, 

we require at least 10 consecutive data points displaying a defined pattern to consider that 

chromatin site a protein binding region. 

A simplistic interpretation of protein-chromatin interaction sites mapped by ChIP-chip is to 

assume that they follow a Gaussian model, where the chromatin regions presenting the 

highest signal intensity in hybridized arrays are the closest to the Protein binding site. 

Similarly, the chromatin regions further from the protein binding site will be represented in a 

lower frequency in the immunoprecipitated DNA sample, and by consequence will display a 

lower signal intensity compared to regions closer to the protein binding site. Taking into 

account this Gaussian model, we have a further requirement to consider the pattern of 

hybridization as being indicative of actual protein-chromatin interactions.  In practice very 

few perfect Gaussian distribution patterns are found in ChIP-chip maps, at least not in high 

resolution maps where each data point corresponds to signal intensities covering ~50-100 bp 

chromatin regions. This difference can be attributed to hybridization artefacts that are 

spread over the array surface, which are added to the signal intensities at real protein 

binding sites. 
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Figure 25: Signal intensity Gaussian distribution for Protein-chromatin 
interactions mapped by ChIP-chip. 

 

To correct for deviations from Gaussian behaviour, we implemented quite early in the 

development of our data analysis a “clearing step” that we have named a tooth brushing 

procedure. This correction method uses signal intensities from neighbouring data points to 

correct for non-Gaussian behaviour. In this step, the signal intensity of every data point is 

compared with the left and right neighbours (in this case, a single data point corresponds to 

the average signal intensity of probes covering 300bp, which means we need 3 data points 

to cover at least 900 bp).  When the analysed data point displays strong differences with 

either one or both of its neighbours, the corrected signal intensity is interpolated from the 

neighbouring data points. This treatment removes data points that display unpredicted 

patterns without affecting sites that satisfy the previously described threshold conditions (see 

figure 26 and 27). 
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Figure 26: Tooth brushing data treatment. Data point signal intensities are corrected 
based on the signal intensity of the neighboring probes. The ideal situation for a binding site 
corresponds to three contiguous data points following a Gaussian distribution. Cases A, B 
and C illustrate different situations where the ideal distribution is not observed (upper panel), 
and where the tooth brushing strategy assigns a new signal intensity to the data points 
differing from a Gaussian model (lower panel). Notice that a single data point covers 300 bp 
and the ChIP DNA fragment is assumed to be at least 1kb in length. 

 

Figure 27: Tooth brushing data treatment. A comparison between the original ChIP-
chip profile for the Hop1 protein (upper panel) and the tooth brushed version (lower panel) 
demonstrates the efficiency of this data treatment in removing unexpected data points 
without modifying other regions. 
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2.6.7.4 ChIP-chip profile smoothed by Mean sliding window 

approach 

The “Tooth brushing” strategy previously described was developed for data points covering 

300 bp and assuming that an immunoprecipitated DNA fragment is at least 900 bp in length. 

However, performing a similar analysis for data points covering 50 bp leads to a dramatic 

increase in the number of neighbouring data points that must be compared (19 data points 

when assuming the ChIP fragment is 1kb) and it is therefore more difficult to determine 

whether a given data point is out of the Gaussian distribution expected for the 20 data points 

covering the 1kb region.  Indeed, in practice, several data points in a given 1 kb region will 

not follow the Gaussian distribution.  

A straight forward strategy for dealing with signal variability between consecutive data points 

is to introduce a mean/median sliding window.  In this case, we consider a defined 

chromosome length window where the mean/median of the relative signal intensities of the 

data points within the window, is calculated.  The chromosome window is the shifted by one 

data point and a new mean/median signal intensity is calculated. This approach eliminates 

strong signal intensity fluctuations and at the same time smoothes the global protein binding 

profile. Larger sliding windows provide more significant but less well resolved observed 

binding sites. In contrast, small sliding windows produce more resolved binding sites but 

compromise the certitude of been in presence of real binding sites. In our experience, a 1 kb 

sliding window provides a good compromise between binding site identification and 

certainty. Furthermore, a 3 kb sliding window produces nicely smoothed ChIP-chip profiles, 

reason why we prefer this resolution when presenting complete chromosome maps. 

 77



Materials and Methods 
 

 

 

Figure 28: Mean Sliding window approach. Three different sliding windows are shown 
for the Hop1 ChIP-chip map. Notice that the 3 kb sliding window presents nicely smoothed 
peaks when compared to the 0.3kb sliding window. In contrast, the 0.3kb sliding window 
presents better resolved binding sites than the 1 kb or the 3 kb sliding window maps. 

   

         

2.6.7.5 Quantitative comparison of different ChIP-chip profiles 

Because several proteins interact with the chromatin in an organized manner in order 

to ensure structural and/or enzymatic functions, the identification of their chromatin 

interaction sites by ChIP-chip technology followed by a comparative analysis between 

different profiles becomes a powerful strategy to decorticate such complex proteins-

chromatin organization. In the previous paragraphs, the methodology to generate a 

protein-chromatin interaction profile was introduced; in the following paragraphs we 

would like to describe the strategy we developed in order to compare different ChIP-

chip profiles in a quantitative manner. 

The intuitive approach for comparing different ChIP-chip profiles is to overlay them, 

in order to visualize similarities and differences. During this study, this was the 
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current strategy applied to single chromosome profiles and performed between few 

number of ChIP-chip maps. Nevertheless, a genome wide analysis requires a 

quantitative methodology performed in an automated manner. Furthermore, a 

comparative analysis of several profiles requires a different methodology than a 

visual analysis of overlayed ChIP-chip maps. 

Taking into consideration the signal intensity variability between profiles, an 

automated comparative analysis requires a simplification of the profile information. 

This simplification consists in the identification of “putative Protein binding sites” 

which will then be represented in a barcode format (a putative site is represented as 

a single bar associated to a chromosome position). Finally, the barcode format 

profiles can now be compared using strategies previously developed for gene 

expression comparative analysis, namely by using a technique known as clustering 

comparison. 

Identification of “putative Protein binding sites” is the most studied topic in the ChIP-

chip field, as it requires sensitive algorithms to discern between real signals, coming 

from Protein binding sites, from noise signals, produced by hybridization artefacts. 

The first attempt in this purpose described in the literature was to consider a fold 

threshold for the signal intensities. This strategy, that was first developed for gene 

expression analysis and then adapted to ChIP-chip analysis (an extensive description 

of the different methods used in gene expression analysis are presented in [113]) 

was shown quite early to be inappropriate because the fold threshold is chosen 

arbitrarily. Indeed, strong chromatin binding proteins present a high signal to noise 

ratio; whereas weak chromatin binding proteins present a low signal to noise ratio. 

Consequently, the fold threshold applied for these two different situations cannot be 

the same. In order to establish the fold threshold based on the chromatin binding 

characteristics, the standard deviation of the signal intensities distribution has been 

used as threshold parameter (+/-2σ for gene expression analysis and +2σ for ChIP-

chip data because of the positive skew expected from the signal intensities 

distribution). Even though this method provides the a constant fold threshold 

parameter between different ChIP-chip profiles, it will always report 5% of the data 

points as real binding sites, losing significant data points in some cases (like in the 

case of strong chromatin binding proteins) and creating false positives in cases 

where the signal to noise ratio is quite low. 
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Taking into consideration the fact that the average length of the ChIP DNA 

fragments hybridized to high resolution DNA microarrays covers several probes (in 

contrast to PCR-amplicon arrays where a single “probe” was as big as the average 

length of hybridized ChIP DNA fragment), a new generation of techniques specifically 

designed for ChIP-chip analysis has been recently developed. Between them we 

could mention PeakFinder[114], Chromatin immunoprecipitation on tiled arrays 

(ChiPOTle)[115], hidden Markov model analysis (HMM)[116], Algorithm for Capturing 

Microarray Enrichment (ACME)[117], as well as two other innovative methods, 

namely the Joint binding deconvolution (JBD)[118] and Model-based Deconvolution 

of genome-wide DNA binding also known as MeDiChI[119]. In contrast to the 

previous methods where the “neighbouring probe effect” is used to identify putative 

binding sites, and by consequence the resolution of the identification is limited to 

windows covering at least the average size of the hybridized ChIP DNA fragment, 

JBD increase the sensitivity of the binding site identification by using an 

experimentally determined distribution of fragment sizes to predict the probe 

intensity peak shape that a binding event will produce. With the same objective, 

MeDiChI predicts the behaviour of a single binding event from the experimentally 

derived ChIP-chip profiles composed of multiple binding events.  

All of the previously described methods would help us to transform the ChIP-chip 

profiles into the required barcode profile in order to perform a clustering analysis. 

Due to implementation problems that need to be overcome in order to use the more 

sophisticated versions, we developed our own methodology taking into consideration 

several of the criteria explained in the previous paragraphs. On one hand, we use the 

mean sliding window approach to partially remove signal fluctuation coming from 

hybridization artefacts. Then we define “comparative binding sites” by a threshold 

approach applied to the difference between the local maxima and the neighbouring 

local minima present in the profile. This is called a comparative binding site because 

we know that the sliding window approach produces an “artefactual” binding sites, 

nevertheless if we assume that the artefact introduced into the putative binding site 

localization is a constant associated to the sliding window size, we should be able to 

compare different profiles under the same sliding window resolution by using such 

“comparative binding sites”. In simple terms, we define a certain Peak as being part 

of our “comparative barcode profile” based on the distance of such a peak to its 
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neighbouring “valley” regions. Notice that this concept is new in the context of the 

previous methods applied for binding site identification, mainly because the signal 

intensity of a certain data point is not important by it self, but in context to its 

neighbouring regions defining a local minima. On the other hand, this approach 

requires that the peak evaluation process is performed independently of the zero line 

produced by the log2 data transformation; this means that “valley” regions located in 

the negative side of the semi log plot are still considered during the evaluation of the 

“Peak-valley” distance used as threshold criteria. In our experience, we know that 

peaks and valleys located in the negative side of the semi log plots can be 

reproduced in biological repeats, strongly suggesting that negative data points 

should be considered during data processing. 

 

 

 

Figure 29: Comparative barcode profile. A threshold approach is applied to the 
difference between the local maxima and the neighboring local minima present in Mre11 
ChIP-chip profile (represented in red). Peak signals satisfying the threshold criteria are 
represented in a barcode profile (represented in blue) instead of the original ChIP-chip 
profile before clustering comparative analysis. 

      

Barcode profiles can then be compared using clustering algorithms. For this purpose, 

we use a tool developed in the Dana Farber Cancer institute (MultiExperiment Viewer 

or MeV [120]), a hierarchical clustering approach was chosen for the analyses 

performed in this study. Furthermore, a Pearson correlation was used as the distance 

metric, in order to compare peak localization without the influence of the associated 

signal intensity information.   
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Figure 30: Hierarchical analysis for ChIP-chip assays. Barcode profiles corresponding 
to Mre11, Com1 and Xrs2 ChIP-chip assays are compared using a hierarchical clustering 
strategy. In order to compare the physical positions without considering the signal 
intensities, a Pearson correlation distance is chosen as the distance metric. The dendogram   
corresponding to the clustering analysis for Mre11, Com1 and Xrs2 ChIP-chip data was 
generated in MeV software (MultiExperiment Viewer) developed by the Dana-Farber Cancer 
Institute. 

 

Figure 30 illustrates the hierarchical clustering analysis performed on three different 

ChIP-chip barcode maps, Com1, Mre11 and Xrs2. From the dendogram 

representation we conclude that the Com1 and Mre11 barcode pattern are part of 

the same cluster, whereas Xrs2 is more distant. Nevertheless, such analysis does not 

address the pattern differences between Mre11, Com1 and Xrs2.  This is because the 

hierarchical analysis was performed using an average distance between Mre11 and 

Com1 before performing the comparison with Xrs2. In order to complement the 

Hierarchical clustering analysis with this missing information (what missing 

information?), a pairwise comparative analysis was implemented over the obtained 

cluster tree. This consists of calculating the percentage of matching overlaps 

between all barcode pattern combinations and representing it in a matrix that 

maintains the cluster tree organization (see figure 31). Such pairwise comparisons let 

us identify whether differences in the total number of peaks or a real difference in 
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the peak localization pattern is the reason for the corresponding clustering 

organization. Indeed, the example illustrated in figure 31 demonstrates the similarity 

in the total number of peaks between the Com1 and Mre11 barcode profiles, the 

percent of matching peaks between Com1/Mre11 and Mre11/Com1 are quite similar, 

as well as the high degree of peak overlap between these two profiles. In contrast, 

the Xrs2 barcode profile has more peaks than Com1 and Mre11, which is reflected by 

the asymmetry of the percent matching peaks between Xrs2/Com1 and vice versa, 

and despite the larger number of peaks, there is a smaller percentage of overlap. 

As a final note, the use of clustering analysis combined to with pairwise matrix 

comparison is mainly applied in a genome wide manner in order to quickly identify 

protein clusters.  These clusters can then be further scrutinized by returning to the 

high resolution analysis in order to identify the exact putative binding sites.     
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igure 31: Complementing the Hierarchical clustering analysis with a Pairwise
atching comparison matrix. The percentage of matching overlaps of all barcode 

attern combinations are represented in a Pairwise Matrix keeping the cluster tree
rganization (also represented in a color coded manner). Red colored diagonal
orresponds to the matching comparison performed in a single barcode profile (100% 
verlap). The illustrated Pairwise matrix analysis shows that Com1 and Mre11 barcode
rofiles present a symmetric matching pattern indicating that they have a similar
umber of total peaks and around 70% of them present the same localization pattern. 
n contrast, Com1 vs Xrs2 and Mre11 vs Xrs2 present a different total number of peaks
Xrs2 present more peaks than Mre11 or Com1) which is reflected in only 50% of
verlap between Xrs2 and the other barcode profiles. 
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3 Results 

In order to analyse the events involved in the initiation of meiotic recombination and its 

relationship to chromatin organization during prophase I, this study focuses on the use of 

Chromatin immunoprecipitation combined with hybridization to high resolution DNA 

microarray chips.  This approach, also known as ChIP on chip, is a powerful method to 

characterize protein-chromatin interaction events in a genome-wide manner. Briefly, yeast 

cells undergoing meiosis are sampled at the corresponding time points of interest. Extracts 

are prepared by mechanical disruption from cells prefixed with formaldehyde to crosslink 

proteins to DNA. Chromatin is fragmented by sonication and the protein of interest is 

immunoprecipitated either by using a monoclonal antibody against an epitope-tagged protein 

or by using a polyclonal antibody specific for the protein of interest. The chromatin that is 

immunoprecipitated in this manner is purified, PCR amplified, labelled and hybridized to DNA 

microarray chips (we currently prefer Affymetrix GeneChip S. cerevisiae Tiling 1.0R Array). In 

order to remove potential hybridization artefacts, a comparative analysis between the 

immunoprecipitated DNA (IP) and the total whole cell extract DNA (WCE) is performed by 

normalizing the probe array data sets obtained by hybridization of the IP and WCE samples. 

For most purposes we visualize the data is visualized in two dimensional plots, where the 

relative signal intensity between the IP and the WCE is represented on a Log2 scale on the Y 

axis (Log2(IP/WCE)) and the chromosome position is represented in the X axis (see figure 

32). As a negative control for chromatin immunoprecipitation, the complete procedure is 

performed in a yeast strain lacking the epitope tag for the antibody in use (untagged 

control). Figure 32A illustrates the chromatin interaction map established by ChIP on chip for 

two different proteins performed in this study, namely Mre11p and Com1p fused to epitope 

tags (6 copies of the HA epitope and 18 copies of the Myc epitope respectively). 

Furthermore, an untagged control map is shown to demonstrate the significance of the 

chromatin enrichment during immunoprecipitation of the proteins studied.  

 In order to validate the ChIP on chip maps, we performed qPCR analysis at defined 

chromosome positions. As shown in figure 32B, the qPCR analysis at three different 

chromatin regions shows chromatin enrichment corresponding to that observed by ChIP on 

chip relative to the untagged control. 
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Figure 32: ChIP on chip analysis performed on two different protein targets 
compared to the untagged control. (A) The chromatin interaction map for chromosome 
III of Mre11p (Pink), Com1p (Blue) and an untagged control (green) are represented in a 
3kb sliding window. The X axis corresponds to physical positions on chromosome III 
(kilobases) and the Y axis represents the relative signal intensity associated to each 
chromosome position (Log2(IP/WCE)). The relative signal intensity has been evaluated by 
performing a linear comparative analysis between the fluorescence signal intensity 
associated to the hybridization into the DNA microarrays of the immunoprecipitated DNA (IP) 
and that obtained for the total DNA whole cell extract (WCE) (TAS software). (B) The protein 
binding at three different chromatin regions was analyzed by qPCR in order to confirm the 
ChIP on chip maps. The Y axis represents the chromatin enrichment obtained during the 
immunoprecipitation, compared to the total DNA whole cell extract and expressed in Log2 
scale. The physical position of the analyzed chromatin regions are indicated in the X axis 
(dashed lines represented in (A)).    

 
As shown in the following paragraphs, this technique was used in order to establish a high 

resolution map of the organization of the chromatin during meiotic prophase I by 

characterising the chromatin localization of structural components, such as the meiotic 

cohesin protein Rec8p, the axial element component Hop1p, and the transveral filament 

Zip1p. Furthermore, the chromatin localization of meiotic recombination initiation factors was 
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analysed in the context of the chromatin organization. The chromatin localization of the 

meiotic specific nuclease Spo11p was studied under different conditions. First, meiotic DSB 

repair defective mutants, including rad50S, mre11S and com1/sae2, were used in the 

absence of crosslinking to map the chromatin sites where Spo11p remains covalently 

attached. Additional localization sites for this protein were then mapped by including the 

regular in vivo crosslinking procedure (Formaldehyde cells fixation). Furthermore, the 

chromatin localization of components involved in meiotic DSB repair, namely the Mre11 

complex as well as Com1/Sae2p, were characterized and analysed in the context of the 

chromatin organization, both in wild type cells as well as in different mutant backgrounds. 

Finally, we analysed the influence of the axes components in the chromatin localization of 

meiotic recombination components, namely in the case of Spo11p. In addition, we studied 

the chromatin interaction of RFA1p, a component of the Replication Protein A (RPA) 

heterotrimeric complex, either in the absence of meiotic DSB repair, or in the absence of 

chromosome axes components, like Red1p. 

The last subchapter is dedicated to the study of technical improvements we developed to 

allow a quantitative comparative analysis between different profiles. This consists of the 

introduction of an exogenous internal control into the tagged yeast strains of interest, in 

order to use it as a comparative parameter between different ChIP on chip profiles. 

For schematic reasons, this document presents protein-chromatin localization maps for 

chromosome VI and III of budding yeast. The complete set of whole genome ChIP on chip 

raw data files as well as the different average sliding window maps are stored in the 

database of the Department of Chromosome Biology, at the University of Vienna.  
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3.1 High resolution analysis of meiotic chromatin organization 

in Saccharomyces Cerevisiae 

 

3.1.1 Meiotic cohesin binds to defined chromatin regions 

Rec8p was previously shown to be essential for meiotic sister chromatids cohesion as well a 

for synaptonemal complex formation. Furthermore it was shown to colocalize with Zip1p, 

which defines the SC structure, in spread nuclei preparations at the pachytene stage by 

immunostaining [9]. Thus, this protein is considered to be at the heart of chromosome 

organization during meiotic prophase I. 

In order to identify the meiotic cohesin localization sites on the chromatin, we performed 

ChIP on chip analysis on a 3xHA-tagged version of Rec8p. This analysis revealed that Rec8p 

binds to defined chromatin regions, with a higher abundance at centromeres compared to 

chromosome arms. When we analyzed the chromatin localization of the mitotic cohesin 

component Scc1p, which is residually expressed in meiosis, we found that Scc1p binds to the 

same chromatin regions characterized for Rec8p (see figure 33 A). Genome wide analysis of 

the meiotic cohesin localization pattern reveals a direct correlation between the number of 

Rec8p-chromatin interaction sites per chromosome and the chromosome length, indicative of 

a relatively even distribution of Rec8p binding sites throughout the genome. An average 

distance between two consecutive Rec8p binding sites of 11.7 kb was estimated from 991 

cohesin binding sites identified across the S. cerevisiae genome from 3kb sliding window 

ChIP on chip profiles (see figure 33 B and C). This is similar to the previously reported 

10.9kb average distance for Scc1p binding sites during mitosis [114]. 

As demonstrated previously for mitotic cohesin, the Rec8p localization pattern negatively 

correlates with GC-rich regions and positively correlates with convergent transcription sites, 

supporting the model that a transcription based mechanism defines meiotic cohesin 

localization. Nevertheless, it is important to mention that not all of the identified meiotic 

cohesin sites correlate with a convergent transcripition event, indicating that there is possibly 

more than one mechanism involved in cohesin localization (figure 34). 
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Figure 33: The meiotic specific component Rec8p binds to defined chromatin 
regions. (A) Chromatin localization of Rec8p (red) and Scc1p (blue) on S. cerevisiae Chr VI 
in meiotic prophase I (3 hours after induction of the meiotic program). The illustrated ChIP 
on chip profiles are represented with a 3kb sliding window. The X axis represents the 
physical positions on chromosome VI (in Kilobases) and the Y axis the relative signal 
intensity associated to each chromosome position (Log2 scale). (B) Scatter plot of 
chromosome lengths versus number of Rec8p binding sites per chromosome. (C) Distribution 
of distances between contiguous Rec8p binding sites over the whole genome. A median and 
mean distance has been estimated to 10.5 and 11.7 kb respectively.  For figures B and C, 
Rec8p binding sites were identified by defining a threshold distance of 0.5 between the 
putative binding sites and their neighboring local minima regions, or valleys. The peak 
identification procedure was performed over the whole genome where a 3kb sliding window 
was applied over the original data points.  
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Figure 34: Meiotic cohesin-chromatin localization and its correlation with 
convergent transcription. Rec8p-chromatin localization represented in a 1kb sliding 
window is correlated with convergent transcription patterns on chromosome VI. Rec8p 
binding sites associated with convergent transcription are marked with a blue dashed line. In 
the X axis the physical chromosome positions as well as the annotated sequence features on 
chromosome VI are represented. The relative signal intensity associated to Rec8-chromatin 
enrichment on chromosome VI is represented in the Y axis.    
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3.1.2  Rec8p and Synaptonemal complex components interact 

with the same chromatin regions 

In order to establish a high resolution map of the organization of the synaptonemal complex 

(SC) on the chromatin, as well as to evaluate the Rec8p chromatin binding pattern in the 

context of the SC structure, we immunoprecipitated a component of the axial element, 

namely Hop1, as well as the transversal filament, Zip1p, by using specific polyclonal 

antibodies against the proteins of interest. As expected, all three components, Rec8p, Hop1p 

and Zip1p localize to the same chromatin regions demonstrating that Rec8p is indeed part of 

the chromosome core structure (see figure 35). 
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Figure 35: Comparison between Rec8p, Hop1p and Zip1p localization in 
chromosome VI of S. cerevisiae. Meiotic samples for this assay were collected 3hrs after 
meiotic program induction. All three components localize to the same chromatin regions. The 
illustrated ChIP on chip profiles are represented with a 3kb sliding window. The X axis 
represents the physical positions on chromosome VI (in Kilobases) and the Y axis the relative 
signal intensity associated to each chromosome position (Log2 scale).  

 

Whereas the chromatin localization of these components is strongly correlated, there are 

differences in the relative signal intensities between centromeric regions and chromosome 

arms. Indeed, a 30kb sliding window analysis reveals that in contrast to Rec8p, which has a 

relatively higher abundance within ~50 kb of the centromeric region on chromosome VI, 

Hop1p displays a higher affinity for chromosome arm regions. Zip1p follows a pattern similar 

to Rec8p but displaying a more moderate difference between the enrichment at centromeric 

regions than that at the chromosome arms. The analysis of the GC-DNA content under the 

same sliding window condition demonstrates that the region surrounding the centromere 

contains a lower GC content than the chromosome arms on chromosome VI. These findings 

agree with a previous report, where a positive correlation between the GC content and 
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Red1p chromatin localization pattern on chromosome III was demonstrated[76]. 

Furthermore, they showed that the GC-DNA content also correlates with the abundance of 

the physically mapped DSB sites[66] (in chapter 3.2.2 is shown that also Spo11p chromatin 

localization correlates with the GC-DNA content pattern on chromosome III). Indeed, it is 

speculated that Hop1p plays a direct role in DSB formation; nevertheless there is no 

evidence for its localization to meiotic DSB sites.  
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Figure 36: Distribution of Hop1p, Rec8p and Zip1p along chromosome VI in a 
30kb sliding window. Hop1p is more abundant on chromosome arms than the 
surrounding centromeric regions (A) in contrast to Rec8p and Zip1p (B). Analysis of the GC-
DNA content demonstrates that chromosome arms contain a higher GC content than the 
areas immediately surrounding the centromere (C and D) on chromosome VI. In (C) and (D) 
the Y axis represents the relative signal intensity associated to each chromosome position 
(left Y axis), as well as the % of GC DNA content (right Y axis). 

 

Based on the previous findings, we can construct a high resolution model of chromatin 

structure in meiotic prophase I. Indeed, we can use the Rec8p chromatin localization map to 

define, with bp resolution, the chromatin regions that are part of the chromosome core as 

and the sizes and genomic location of the uncondensed loop regions. This analysis will 

become essential in the following chapters as we will use it to identify the chromatin binding 

sites of recombination components in the context of the chromatin organization.  
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Figure 37: High resolution map of SC organization. The fact that Rec8p, Hop1p and 
Zip1p localize to the same chromatin regions suggests that Rec8p-chromatin localization 
pattern defines the chromosome core structure. From top to the bottom: The Rec8p-
chromatin localization pattern (ChIP on chip profile for chromosome VI) defines regions with 
high probability of finding Rec8p (represented by red rings). Chromatin regions exempt of 
Rec8p binding sites are represented as loops. Rec8p binding sites are associated to the SC 
structure (blue rods corresponding to the axial elements and green transversal components 
representing Zip1p).  
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3.2 Meiotic recombination events in the context of chromatin 

organization 

Considering that the chromatin structure has a direct influence on meiotic recombination, we 

were interested in characterizing the chromatin localization of several recombination 

components on the context of the high resolution map of the condensed chromatin we 

obtained by performing ChiP on chip analysis on Rec8p, Hop1p and Zip1p (see chapter 

3.1.2).   

 

3.2.1 Meiotic-specific Double-strand Breaks (DSBs) are formed 

in loop regions in S. cerevisiae 

In order to obtain a high resolution map of meiotic DSB sites over the whole genome, we 

took advantage of the fact that Spo11p remains covalently linked to chromatin after cleavage 

in repair defective mutants, namely rad50S, mre11S or com1/sae2. Under these conditions, 

meiotic DSBs accumulate over the time, thus the chromatin immunoprecipitation procedure 

was performed at late time points (5 or 6 hours after meiotic program induction) and in the 

absence of crosslinking.  Using these conditions we have mapped the localization of meiotic 

DSBs for the different repair defective mutants (figure 38). The Spo11p chromatin 

localization maps obtained from rad50S, mre11S and com1/sae2 mutants in the absence of 

formaldehyde crosslinking did not show significant differences either in signal localization or 

in intensity. 

To place these results in the context of chromatin organization, we performed a compared 

the meiotic cohesin map with the Spo11p chromatin localization sites in the rad50S mutant in 

the absence of crosslinking.  This analysis demonstrated that the chromatin cleavage occurs 

preferentially in uncondensed loop regions (figure 39). Indeed, this result was confirmed by 

comparing the published DSB physical map established for chromosome III and the Rec8p-

chromatin binding map we presented in the previous chapter (figure 38A). Furthermore, we 

found that 76% of the total numbers of loops on the yeast genome contained at least one 

Spo11p-chromatin covalently linked interaction site. Interestingly, the remaining 24% of 

loops not containing an Spo11p cleavage site have an average length of 9.3±3.9 kb, in 

contrast to a 12.5±6.3 kb average length for loops containing an Spo11p cleavage site; this 

demonstrates that the chromatin loops prone to cleavage by Spo11p are larger than the 

population exempt from Spo11p cleavage. Indeed, when we classified the loops by the 

number of Spo11p binding sites (BS), we realize that the average loop length increases with 
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the number of Spo11p-chromatin binding sites (no Spo11p: 9.3 ± 3.9 kb; 1 Spo11p BS per 

loop: 10.9 ± 4.1 kb; 2 Spo11p BS per loop: 16.3 ± 5.8 kb; 3 or more Spo11p BS per loop: 

21.4 ± 8.6 kb) (figure 40). This could be expected if Spo11p binds in a stochastic manner, 

larger loops would then be more likely to contain one or more Spo11p binding events than 

shorter ones; however, when we examine the signal intensity of the Spo11p binding sites, 

we do not find a direct correlation with the loop length. In fact, the average loop length only 

varies from 13.5 ± 6.4 kb and 14.4 ± 7.3 kb for Spo11p signal intensities greater than 0.5 

and 2 respectively (figure 41). In summary, the chromatin loops prone to be cleaved by 

Spo11p are 70% of the total number of loops on the yeast genome and have an average 

length of 14 kb.  
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Figure 38: Map of the meiotic DSB sites performed by immunoprecipitating 
Spo11p in DSB repair defective mutant backgrounds in the absence of 
formaldehyde crosslink. (A) Comparison between the published DSB physical map for 
chromosome III [66], and the Rec8p-chromatin localization map obtained by ChIP on chip 
demonstrates the preference of meiotic DSB formation events for uncondensed loops 
regions. (B, C and D) ChIP on chip maps of Spo11p in ad50S, mre11S or com1/sae2 
mutants in the absence of crosslinking are compared with the published DSB physical map. 
The X and the Y axis corresponds to the physical positions on chromosome III (Kilobases) 
and the relative signal intensity (IP/WCE) represented in log2 respectively.  

r

 

 

 94 



Results 
 

 

 

 

Figure 39: Spo11p-chromatin localization pattern obtained from rad50S mutant 
in the absence of Formaldehyde (-FA) and its comparison to the Rec8p-chromatin 
binding sites over the whole genome.  Spo11p and Rec8p profiles are illustrated in blue 
and red respectively. For each of the 16 chromosomes the centromere is indicated with a 
gray circle. Protein-chromatin interaction profiles are represented as a Log2 ratio (IP vs 
WCE) in a 3kb sliding window. 
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Figure 39: Continued. 
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Figure 39: Continued. 
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Figure 40: Histogram distributions of the number of chromatin loops presenting 
Spo11p binding sites. (A) Distribution of the total number of loops in the yeast Genome 
compared to the distribution of the number of loops having at least one Spo11p binding 
event (B). (C) Loops lacking Spo11p binding sites represent 24% of the total. Furthermore, 
the number of loops having one (D), two (E) and 3 or more (F) Spo11p binding events 
correspond to 56%, 17% and 3% respectively. 
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Figure 41: The chromatin loops prone to cleavage by Spo11p have an average 
length of 14 kb. (A) The total number of loops having at least one Spo11p binding site can 
be classified as a function of the Spo11p signal intensity: (C) 70% of the total number of 
loops on the yeast genome have Spo11 binding sites with a signal intensity higher than 0.5; 
(B)22% have signal intensities higher than 1  and (D) 2.5% have signal intensities higher 
than 2. The signal intensities correspond to the Log2 ratio between the IP and WCE 
comparative analysis. The increase in the number of Spo11p sites per loop together with the 
average loop length is illustrated in (E); and is in contrast to a relatively constant average 
loop length (~14 kb) observed when compared to the Spo11p signal intensities (F). 
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3.2.2  The meiotic specific nuclease Spo11 does not only 

localizes at DSB sites, but also at chromosome core regions 

 

In the previous paragraphs we have shown that the meiotic specific nuclease Spo11p cleaves 

preferentially at uncondensed chromatin loop regions. This was achieved by 

immunoprecipitating Spo11p from DSB repair defective mutants in the absence of in vivo 

protein-DNA crosslinking. In order to map additional sites where this protein may localize on 

the chromatin, we performed the same chromatin immunoprecipitation study, this time 

including a crosslinking step. Interestingly, the genome wide analysis performed in the 

presence of Formaldehyde (FA) for Spo11-myc18 in a rad50S strain background (5hrs after 

the meiotic program induction) shows a different pattern compared to that obtained in the 

absence of FA. Indeed, the previous Spo11p chromatin binding sites located in uncondensed 

loop regions in the absence of FA seem to be relatively weaker in intensity in the presence of 

FA. Furthermore, supplementary peaks at the flanking sites the DSB regions were mapped. 

When this new Spo11p map was analyzed in the context of the chromatin organization, we 

determined that in fact these additional peaks localize to the same sites where Rec8p was 

previously mapped. Supporting this finding, a similar pattern is observed when Spo11-

myc18p is pulled down from an mre11S mutant in the presence of FA (5hrs after meiotic 

program induction). Furthermore, the ChIP on chip analysis of Spo11-myc18p chromatin 

localization in a wild type situation (4hrs after meiotic program induction) shows a similar 

pattern, with a certain number of chromatin interaction sites overlapping the Rec8p binding 

regions, as well as additional signals corresponding to the uncondensed loop regions where 

DSBs are formed, even though these signals are strongly reduced in intensity when 

compared to the Spo11p map in the absence of FA in the DSB repair defective mutants 

(figure 42). Although Spo11p was mapped to Rec8p chromatin sites under these conditions, 

not all Rec8p sites are associated with Spo11p binding sites. Indeed, the analysis of the 

Spo11p-chromatin interactions in a low resolution (30kb sliding window) performed on 

chromosome III demonstrates that Spo11p shows a preference for the GC rich chromosome 

arm regions, either in the presence or the absence of FA. This pattern correlates with the 

fact that the high GC-DNA content regions on chromosome III present a higher meiotic DSB 

Hotspot abundance, as demonstrated previously by the characterization of the DSB physical 

map on chromosome III (figure 42). 

In order to separate the Spo11-chromatin binding activity from its enzymatic activity, we 

performed a genome wide chromatin interaction analysis with the catalytically dead mutant 
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Spo11-Y135F-myc18. Under these conditions the Spo11p-chromatin interactions were 

enhanced not only at the sites of DSBs formation, but also at the nearby chromosome core 

sites (defined by the Rec8p-chromatin localization pattern). Previous experiments have 

shown a stronger chromatin interaction at the YCR048W hotspot for Spo11-Y135F-myc18 

[15]; however, at that time, the fact that Spo11p localizes at chromosome core sites was 

unknown. 

 In order to confirm that Spo11p localizes at chromosome cores as well as at DSB sites when 

FA is added, we performed the Spo11p immunoprecipitation from rad50S mutant in the 

absence of FA (6hrs in SPM) and we compared to Spo11p localization in the wild type 

situation (4hrs in SPM) in the presence of FA. The immunoprecipitated chromatin was 

analyzed by qPCR targeting two specific sites, the well characterized hotspot YCR048W, as 

well as a chromosome core site identified by the Rec8p ChIP on chip analysis, namely the 

core site at position 233000 in chromosome III (referred to as Core 233 in this study). As 

expected, both conditions (plus or minus FA), allowed for the immunoprecipitation of the 

YCR048W hotspot. In contrast, the Core 233 region was only precipitated in the wild type 

situation in the presence of FA (figure 43 F). While the interaction of Spo11p at the 

chromosome core sites is consistent between the different studied yeast strain mutants, its 

role at that sites remains enigmatic. Indeed, the fact that meiotic DSBs are preferentially 

formed in loop regions precludes the possibility of an enzymatic activity at the core sites. We 

hypothesize that the localization of this protein at such regions is indeed the consequence of 

a chromatin organization event which directs the localization of Spo11p to the chromosome 

core. 
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Figure 42: Spo11p chromatin localization on chr III of budding yeast. (A) Spo11p 
profiles from rad50S mutant in the absence of FA (green) and in the presence of FA (blue) 
are compared to the meiotic DSB physical map (black). (B) Comparison between the 
chromatin localization patterns of Spo11p from a rad50S mutant background in the presence 
of FA (blue) and Rec8p (red). The global chromatin localization pattern (30 kb sliding 
window) of Spo11p in the rad50S mutant background performed with and without FA 
crosslinking compared to the chromosome III GC-DNA content (C) demonstrates the 
preference of this protein for regions containing higher GC-DNA content, where meiotic DSB 
sites were mapped previously (D). 
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Figure 43: Spo11p interacts not only with uncondensed chromatin loop regions, 
but also with chromosome core regions. The chromatin localization of Spo11p at 
regions surrounding the YCR048W hotspot is illustrated for different situations: (A) rad50S 
mutant background in the absence of FA (-FA); (B) rad50S mutant background in presence 
of FA (+FA); (C) mre11S mutant background (+ FA); (D) Spo11-Y135F (+FA); (E) wild type 
(+FA). In (F), the qPCR analysis performed for Spo11p rad50S (-FA) compared to Spo11p in 
the wild type background (+FA) demonstrates that Spo11p localizes to chromosome core 
site 233 in addition to the YCR048W hotspot in the presence of FA.  
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3.2.3  The MRX components localizes to DSB sites and 

chromosome core regions in meiosis I 

In addition to the specific nuclease Spo11p, meiotic DSB formation in Saccharomyces 

cerevisiae requires the presence of nine other components; among them, the MRX complex 

(for Mre11p, Rad50p and Xrs2p). In order to characterize the chromatin localization of the 

MRX complex, we took advantage of a functional HA-tagged Mre11p construct (6 copies of 

the HA-tag fused to the C-terminus of Mre11p).  Cells undergoing meiosis were collected at 

different time points to perform chromatin immunoprecipitation of Mre11p after 

formaldehyde fixation. The genome wide chromatin localization of Mre11p characterized at 

meiotic time point T4 (4 hours after meiotic program induction) using high resolution tiling 

microarrays demonstrated that this protein interacts specifically with meiotic hotspot regions. 

Indeed, the Mre11p-chromatin localization map, characterized on chromosome III, overlaps 

perfectly with the published DSB physical map[66] (figure 44). Interestingly, additional 

Mre11p-chromatin interaction sites correlate strongly with the chromatin localization of the 

meiotic cohesin component Rec8p. This correlation with Rec8p chromatin localization is 

preferentially observed at the chromosome arms, close to the chromatin regions prone to 

DSB events, in contrast to the regions surrounding the centromere where meiotic 

recombination is known to be strongly decreased. 

In order to evaluate the transient interaction of Mre11p with either hotspots or chromosome 

core regions during meiotic progression, a quantitative PCR analysis was performed in 

Mre11p chromatin immunoprecipitated samples from different meiotic time intervals. We 

specifically analysed the chromatin enrichment at the hotspot region located at position 50.6 

kb, as well as the widely characterized YCR048W hotspot located at position 212 kb both on 

chromosome III (called hotspot 50.6 and YCR048W in this study). Interestingly, the transient 

enrichment of Mre11p at these two hotspot regions showed a one hour difference when 

comparing the time points of highest relative abundance (four hours for hotspot 50.6 instead 

of 5 hours for YCR048W). This is supported by a higher abundance of chromatin enrichment 

for hotspot 50.6 at the 2 hour time point compared to the YCR048W hotspot, which is still at 

the same level as the 0 hour time point (see figure 44 B). Furthermore, the characterization 

of chromatin enrichment for chromosome core regions located at positions 219 and 233 kb 

on chromosome III demonstrated a similar kinetics to that observed for the hotspot 

YCR048W (highest relative chromatin enrichment at 5hours). This can be explained by the 

fact that the chromosome core regions we analysed are located in a proximal region to the 

YCR048W hotspot (right arm chromosome III), in contrast to hotspot 50.6 which is located 
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on the left arm of chromosome III. The difference in kinetics observed for the Mre11p-

chromatin interaction at two different DSB sites illustrates the existence of different timing in 

DSB formation which is directly connected with the differential timing of firing of the origin of 

replication[25]. Indeed, the studied hotspot in the left arm of chromosome III (Hotspot 50.6) 

is located between two early-firing origin of replication (ARS305 and ARS306), in contrast to 

the YCR048W hotspot which is flanked by the ARS315 (highly active but not early-firing) and 

ARS314 (passive origin of replication).  

In order to support the Mre11p-chromatin localization pattern, we characterized the genome 

wide localization of Xrs2p by taking advantage of a functional HA-tagged Xrs2p construct (3 

copies of the HA-tag fused to the C-terminus of Xrs2p). This analysis demonstrated, as 

expected, a strong correlation between the Mre11p chromatin localization map and that of 

Xrs2p at the time of meiotic DSB formation (4hours after meiotic program induction). 

Indeed, Xrs2p interacts with meiotic hotspot chromatin regions as well as hotspots near the 

chromosome Core (figure 45 A).  In order to study the dependency of Mre11p chromatin 

localization on DSB formation, we mapped Mre11p chromatin interaction sites in the 

presence of the spo11-Y135F catalytically dead mutant. Under these conditions, the Mre11p 

chromatin localization pattern did not change. Indeed, its localization to meiotic DSB sites as 

well as chromosome core regions was still observed (figure 45 C and E).  

Even though the Mre11p chromatin localization pattern was not modified by the spo11-

Y135F catalytically dead mutant, the absence of Spo11p did affect its chromatin localization 

at meiotic DSB sites. In contrast, Mre11p chromatin localization at the chromosome core 

regions was not impaired; demonstrating the requirement of Spo11p for Mre11p localization 

at the meiotic DSB sites but not at the core regions (figure 45 D). 

Finally, analysis of Mre11 in the absence of one of the components of the MMR subcomplex 

(MMR for Mei4, Mer2, Rec114), namely Rec114p, produced a similar pattern as that 

observed in the spo11∆ mutant background; a loss of interaction at DSB sites and a 

maintenance of the chromosome core interactions (figure 45 B). 
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Figure 44: Mre11p association with DSB sites as well as core regions. 

(A) Comparison between the physical DSB map (black) and the chromatin localization of 

Mre11-HA6 (Blue) and Rec8-HA3 (red) demonstrates that in addition to its localization to the 

meiotic DSB sites, Mre11p also localizes to the nearby chromosome core regions. (B) 

Quantitative PCR analysis of the transient Mre11p localization to defined chromatin sites 

during the progression of meiosis. Chromatin localization at the meiotic hotspot YCR048W 

(blue) and the hotspot 50.6 (light blue), as well as the chromosome core sites 219 (purple) 

and 233 (light orange), are   indicated in (A). Notice the difference in kinetics of Mre11p 

localization at the meiotic hotspot 50.6 compared to the YCR048W hotspot (red and green 

dashed line respectively). The cell progression in meiosis for the Mre11p transient chromatin 

interaction analysis presented in (B) is illustrated in (C). Mono, Bi, Tetra and Bi+ Tetra 

correspond to the percentage of mononucleates, binucleates and tetranucleates respectively, 

observed by DAPI staining at the different meiotic time points. 
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Figure 45: Mre11 interaction with DSB sites, but not with the core regions, 
depends on integrity of the DSB machinery, but not on DSB formation. Mre11p and 
Xrs2p chromatin interaction with the meiotic DSB sites and core regions is illustrated in (A). 
Mre11p still localizes to the chromosome core regions in rec114∆ (B) and spo11∆, but not to 
the DSB sites (D). In (C) is illustrated the Mre11p chromatin localization in the spo11-Y135
mutant. (E) The Mre11p chromatin localization at the YCR048W hotspot and at the Core 
region 219 is shown over the meiotic progression of spo11-Y135F yeast mutant strain. (F) 
Model representation of the different Mre11p chromatin localization patterns observed 
among the studied mutant strain backgrounds. 

 

 107



Results 
 

3.2.4  Com1/Sae2p, the component required to complete meiotic 

DSB recombination, localizes to the same chromatin 

regions as the MRX complex. 

In addition to its role in meiotic DSB formation, the MRX complex was shown to be essential 

for meiotic DSB repair. In fact, point mutations in Rad50p or in Mre11p (known as “S” 

mutants to emphasise the ”Separation of function” between DSB formation and repair 

performed by such mutations) were shown to allow meiotic DSB formation, but the removal 

of Spo11p from the cleaved DNA ends is impaired, and by consequence the DSBs 

accumulate over time without repair. In addition to the requirement for a fully functional 

MRX complex for meiotic DSB repair, the protein Com1/Sae2p has also been shown to be 

essential for meiotic DSB repair. 

In order to characterize the chromatin localization of Com1p, we took advantage of a 

functional Myc-tagged Com1p construct (18 copies of the Myc-tag fused to the C-terminus of 

Com1p).   Yeast cells undergoing meiosis were collected four hours after meiotic program 

induction, the time point at which the meiotic DSBs are formed and are undergoing repair 

during a standard SK1 yeast strain meiotic progression. The Genome wide Com1p chromatin 

interaction map has shown to present a strong correlation with the previously characterized 

Mre11p chromatin interaction map (figure 46). Despite its weak relative signal intensity 

compared to the Mre11p chromatin localization profile, the Com1p chromatin interaction map 

reproduces perfectly all Mre11 peaks corresponding to meiotic DSB sites, as well as 

chromosome core regions. This correlation was observed  not only for chromosome III, but 

was demonstrated over the whole genome by performing a clustering analysis in a 1kb 

sliding window, where 70% of the total number of peaks in the Com1p profile overlapped 

with the Mre11p map and vice versa (70% of the peaks on Mre11p map overlapped with the 

map of Com1p). This analysis demonstrates that both Com1p and Mre11p chromatin 

interaction maps have a similar number of peaks over the whole genome (3067 peaks for 

Com1p and 3144 peaks for Mre11 when the analysis is performed in 1kb resolution sliding 

window profiles), of which 30% do not overlap (see figure 31 in the Materials and methods 

where the clustering analysis for Com1p, Mre11p and Xrs2p chromatin interaction maps is 

illustrated).   
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Figure 46: Com1p localizes to the same chromatin regions characterized for 
Mre11p. The chromatin localization map of Com1p (blue) performed at 4 hours after 
meiotic program induction strongly correlates with that of Mre11p (pink). The meiotic DSB 
physical map is represented by black bars. Furthermore, the Rec8p-chromatin localization 
sites are represented in red over the cartoon of chromosome III. Notice that Com1p localizes 
not only to DSB sites (Black bars) but also to chromosome core regions. The X and Y axis 
correspond to the physical positions on chromosome III (in Kilobases) and the relative signal 
intensities associated to each physical position represented in Log2 scale (Log2(IP/WCE)) 
respectively. 

 
 
In order to study the influence of the components forming the meiotic DSB machinery on the 

proper localization of Com1p on the chromatin, we have analysed Com1p-chromatin 

localization on the absence of Spo11p. Under this condition, Com1p localization at the 

meiotic DSB sites was affected, in contrary, its interaction with the chromosome core sites 

was still detected (figure 47D). This observation correlates with the fact that Mre11p 

localization at the meiotic DSB sites is also impaired in the spo11∆ mutant background 

(figure 47D). This concordance of phenotypes would argue for a direct connection between 

the Mre11p and Com1p chromatin localization; nevertheless, the absence of Mre11p did not 

impair Com1p localization at the DSB sites (figure 47C). Furthermore, the mre11-H125N 

catalytic dead mutant, did not change Com1p localization pattern on the chromatin (still 

detected at DSB sites and core regions) (figure 47B). In order to demonstrate that Com1p 

localization pattern at the chromosome cores depends on the presence of the cohesin 

components, we have analysed its localization pattern in a rec8∆ mutant background. 

Interestingly, under this condition, Com1p localization at the chromosome cores and also at 

the meiotic DSB sites was strongly impaired.  
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In summary, these analyses demonstrated that Com1p is a protein that interacts with the 

chromatin, specifically at the sites where the meiotic DSBs are formed, but in addition it 

localizes at chromatin regions that were characterized as Rec8p binding sites and where 

several other early recombination components, like Mre11p, Xrs2p and Spo11p, localize. 

Furthermore, Com1p localization at the DSB sites depends on Spo11p but not in Mre11p, 

suggesting that its localization at that regions does not pass via a putative Mre11p-Com1p 

interaction. Finally, its affinity to the chromosome core regions, as well as to the DSB sites, 

depends on the presence of the cohesin component Rec8p, suggesting that its proper 

chromatin interaction pattern indeed depends on the chromatin organization adopted during 

meiotic prophase I.           
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Figure 47: Com1p interaction with the meiotic DSB sites is impaired in the 
absence of Spo11p, but does not depend on Mre11p. (A) Com1p chromatin 
localization is compared with Rec8p pattern and physical DSB map. The mre11-H125N 
catalytic dead mutant (B), or the absence of Mre11p (C) do not impair Com1p-chromatin 
localization. (D) Absence of Spo11p, abolish Com1p localization at the DSB sites, but not at 
the core regions. (E) Absence of Rec8p affects Com1p localization at the DSB sites and 
chromosome core regions. (F) Model summarizing Com1p localization on the chromatin 
under the studied mutants’ background.   
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3.2.5  Interaction of Com1/Sae2 with meiotic DSB sites is 

abolished in the rad50S mutant  

The characterization of Com1p’s genome wide chromatin localization demonstrated a strong 

correlation with that of the MRX complex (figure 46 and 48A). Considering that these 

components are essential for proper meiotic DSB repair, the identification of chromatin 

binding sites for Com1p strongly suggests its direct role in DNA repair and raises the 

possibility of a direct interaction with the MRX complex. However, the fact that both the MRX 

components as well as Com1p localize preferentially to chromosome core sites, in addition to 

their localization at the meiotic DSB sites, indicates that these components can interact with 

chromatin regions that have not been shown to be cleaved during meiotic recombination. In 

order to study the dependency of the Com1p-chromatin interaction on the presence of 

Spo11p, we previously characterized the genome wide localization of Com1p in an spo11∆

mutant background (chapter 3.2.4, figure 47D). Interestingly, its chromatin localization at 

meiotic DSB sites is impaired in this mutant background. Although it is depleted from the 

meiotic DSB sites, its chromatin localization at the nearby chromosome core regions is still 

observed, indicating that these chromatin interactions do not depend on meiotic DSB 

formation.    

 

On the other hand, the biochemical influences of the “S” mutations characterized in the MRX 

complex components, in the MRX as well as Com1p chromatin localization are not elucidated 

so far. In order to address this question, previous studies performed in our laboratory has 

been demonstrated a lost of foci co-localization between Mre11p and Com1p in a rad50S 

mutant background in chromatin spreads. Nevertheless this strategy was unable to discern 

between the alternate possibilities of a mislocalization of Com1p, of Mre11p, or both from 

the chromatin. Furthermore, the low resolution of such experimental assay is not suitable to 

distinguish between a loss of foci formation at the specific DSB sites in contrast to other 

possible binding regions. 

Taking advantage of the high resolution obtained with the ChIP on chip analysis, we decided 

to address the possible influence of the “S” mutations on the chromatin localization of the 

components involved in meiotic DSB repair. For this purpose, the characterization of the 

genome wide chromatin localization of Com1p in a rad50S mutant background demonstrated 

that in fact, Com1p interaction with the meiotic DSB sites is specifically impaired while its 

chromatin localization at the chromosome core sites remains intact, similar to the situation 

previously described for spo11∆ (figure 48B). Surprisingly, characterization of Com1p-

chromatin interactions in the mre11S mutant background, did not demonstrate a specific 
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depletion of Com1p-chromatin localization at either the meiotic DSB sites, or at the 

chromosome core sites (figure 48C), fact that also correlates with the analysis of Com1p 

localization under the m e11-H125N catalytic dead mutant (figure 47B). In contrast, analyses 

of the Mre11p chromatin localization demonstrate that neither the rad50S mutant 

background nor the absence of Com1p affects its chromatin localization pattern (figure 48D). 

These analyses strongly suggest a biochemical difference between the genetically identical 

mre11S and rad50S mutants in the context of meiotic DSB repair. Indeed, the ad50S 

mutation is associated with a loss of recruitment of Com1p to the meiotic DSB sites.  This is 

in contrast to the situation with the mre11S mutation, where Com1p recruitment seems to 

be unaffected, while it is known that the enzymatic activity of Mre11p is affected. 

r

r

r

Furthermore, the chromatin localization of Xrs2p was analysed in the rad50S mutant 

background. As is the case for Mre11p, its localization at both the meiotic DSB sites as well 

as the chromosome core regions did not change (figure 48E), indicating that the rad50S 

DSB-repair defective mutant affects the proper chromatin localization of Com1p specifically. 

To compare in a quantitative manner the various previously described genome wide 

chromatin binding profiles, we developed a hierarchical clustering strategy. Briefly, the 

protein-chromatin interaction profiles to be analysed are simplified into putative protein-

chromatin interaction sites barcode profiles which can then be compared to each other by 

performing a hierarchical comparative analysis (see chapter 2.6.7.5 in Material an methods 

for an extensive description of the methodology). This comparative analysis is performed 

only for the protein binding sites and not for the relative signal intensity, and is 

complemented by the pair wise quantification of the percentage of matching overlaps 

between all possible profiles combinations (this is described as a Pairwise matching 

comparison matrix). In figure 49, the ChIP on chip hierarchical clustering analysis performed 

for Spo11p, Mre11p, Xrs2p and Com1p components under the different previously described 

mutant backgrounds is shown. The pairwise matching matrix is represented in a colour code 

format in order to visually identify particular clustered regions. The clustering analysis over 

the whole genome demonstrates the strong similarity between Com1p and Mre11p ChIP on 

chip profiles.  

Furthermore, Spo11p-chromatin interaction profile and then Com1p in mre11S mutant 

background appears closer in similarity to the Com1p/Mre11p initial cluster group (figure 

49). In contrast, Com1p profiles in the rad50S and spo11∆ backgrounds cluster together, but 

far away from the Com1p/Mre11p clustering group. On the other hand, profiles of Xsr2p, 

Spo11p in mre11S mutant background and Xrs2p in the ad50S mutant background cluster 
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Figure 48: Com1p localization at the meiotic DSB sites is specifically impaired in 
spo11∆ and rad50S mutants background. (A) Com1p chromatin localization at the 
meiotic DSB sites as well as at the chromosome core regions is illustrated in comparison to 
Mre11p and Xrs2p localization. The specific loss of Com1p localization at the meiotic DSB 
sites in the rad50S and spo11 ∆ mutant backgrounds is shown in (B). Com1p chromatin 
localization in the mre11S DSB repair defective mutant is compared to the rad50S situation 
in (C). Mre11p chromatin localization at the DSB sites as well as at the core regions in the 
wild type, ad50S and com1 ∆ mutants respectively is illustrated in (D). The chromatin 
localization of Xrs2p in a wild type situation is compared to that in a rad50S mutant 
background in (E). (F) A cartoon model explains the different chromatin localization patterns 
characterized under the rad50S, spo11∆ and mre11S mutant backgrounds. Notice that the 
DSB sites are represented as black bars, and chromosome core sites are marked with black 
dashed vertical lines. 
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Results 
 

together with more than 80% matching overlap among them, again demonstrating the 

strong similarity between the chromatin localization observed for Spo11p and Xrs2p. Finally, 

the profile ofSpo11p in the rad50S mutant background in the absence of formaldehyde lacks 

significant similarity to any other profile; this is due to the absence of chromosome core 

interaction sites for Spo11p in this mutant background. 
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Figure 49: Hierarchical clustering analysis of Protein-chromatin interaction maps 
performed for meiotic recombination proteins involved in DSB formation and 
repair. The nodules of similarity of the clustering tree have been classified based on their 
positions on the tree (color code). The clustering analysis demonstrates that Com1p and 
Mre11p ChIP on chip profiles display a strong similarity (red line). In addition, Spo11p and 
Com1p in the mre11S mutant background are part of the same Com1p/Mre11p cluster 
similarity group (white dashed square). Furthermore, Com1p in rad50S and in spo11∆
mutant background clusters together but far away from the Com1p/Mre11p cluster (blue 
dashed square). The clustering analysis has been performed over the whole genome, with a 
1kb sliding window resolution (for an extended description of the clustering methodology, 
see chapter 2.6.7.5 in materials and methods). In addition, it has been complemented with a 
pairwise matching matrix (percent of matches represented in a color code). 
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3.2.6  Spo11p-chromatin localization detection is decreased in 

the absence of the axis components.  

Taking into consideration that the meiotic recombination machinery localizes not only to the 

DSB sites but also to the nearby chromosome core regions, we could speculate that 

chromatin structure plays a direct role in the initiation of meiotic recombination. Indeed, 

previous reports have demonstrated a reduction of DSB formation to 20-60% of wild type 

levels in a red1∆ mutant background, as well as a more remarkable effect (5-10% of wild 

type levels) in a hop1∆ mutant background. In order to analyse the effects of these 

mutations on protein-chromatin interaction, we performed a ChIP on chip analysis with the 

Spo11-myc tagged construct in the rad50S DSB repair defective mutant background. 

Whereas the presence or absence of the in vivo crosslinking procedure during sample 

preparation showed a strong difference in the chromatin localization of Spo11p in the rad50S 

background (Spo11p in rad50S +FA displays protein binding signals at the chromosome core 

regions in addition to the DSB sites), the absence of Red1p not only decreased the Spo11p-

chromatin interaction at DSB sites, but also at the chromosome core regions, either in the 

presence or absence of FA (figure 50 A and B). In addition, the chromatin localization of 

Spo11p in the absence of Hop1p showed a similar pattern, namely a strong decrease in 

chromatin binding at the DSB sites as well as a significant reduction at the chromosome core 

regions (figure 50 C and D).  

 In order to evaluate the influence of the chromosome core organization on the steps 

following Spo11p removal from the meiotic DSB-ends, we took advantage of a Myc-tagged 

RFA1 construct (18 copies of the Myc tag epitope fused to the C-terminus of RFA1) to 

monitor the formation of 3’-single-stranded DNA by resection of the 5’-DNA ends following 

Spo11p removal. Interestingly, the RFA1p-chromatin interaction map reveals its localization 

not only at the DSB sites but also at the nearby chromosome core regions (Figure 51A) as is 

the case of all of the other recombination proteins analysed. In order to know whether its 

localization at the Core regions depends on meiotic DSB formation as well as in DSB repair, 

in a joint experiment performed with Silvia Panizza, we have mapped RFA1p-chromatin 

localization in the absence of Spo11p and under the com1/sae2∆ DSB repair defective 

mutant background respectively. Under these conditions, RFA1p seems to localize at the 

chromosome core regions (although with a weaker intensity than that observed in the wild 

type situation) suggesting that this protein binds to the chromosome scaffold even in the 

absence of DSB formation or repair (figure 51C, E and F). Considering that progression of 

meiotic recombination requires single strand invasion into the homologue chromosome, a 
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process which depends on Dmc1p, we analysed the RFA1p-chromatin interaction in the 

absence of Dmc1p. Under this condition, the RFA1p-chromatin localization at the DSB sites 

showed a similar pattern to the wild type situation, but interactions at the chromosome core 

regions appear to be reduced (figure 51B). Finally, analysis of RFA1p-chromatin interactions 

in a red1∆ mutant background demonstrate specific interactions with meiotic DSB sites, 

similar to interactions observed in the wild type background, but with a reduced 

chromosome core affinity, as is the case for com1/sae2∆ or spo11∆ mutants (figure 51 D 

and F).  

Considering that the DSB repair defective mutants presented extremely weak Spo11p signal 

intensities when Red1p was deleted (figure 50), we hypothesized that this is the 

consequence of the Spo11p removal via a different pathway. In that case, the Spo11p 

dependent DSBs could be repaired, either following an inter-sister or inter-homolog pathway. 

Under this assumption, we tempted to detect RFA1p loaded molecules, as a way to monitor 

the repair of such yeast mutants. For it we performed a ChIP on chip analysis in an RFA1-

myc tagged strain under a com1∆, red1∆ double mutant (figure 51G). Unfortunately, we 

were not able to detect RFA1p chromatin enrichment associated to the meiotic DSB sites. 

Considering that this observation was unexpected, further analysis under com1∆, red1∆ and 

rad50S∆, red1∆ double mutants’ strains must be performed in order to be sure of the 

observed pattern in figure 51G. 

In summary, the loss of Spo11p-chromatin localization in the rad50S, red1∆ double mutant, 

either in the presence or absence of FA fixation, would suggest either an impairment of 

Spo11p-chromatin localization, or a suppression of the rad50S meiotic DSB repair defect. 

From previous reports it is known that the rad50S, red1∆ double mutant does not completely 

impair DSB formation, but formation is reduced 4 to 12 fold compared to the wild type 

situation[76]; this fact could explain the weak signal intensities detected for Spo11p-

chromatin interactions at the DSB sites in this double mutant. The same is true for the 

hop1∆ mutant where DSB levels are reduced to 5-10% of the wild type levels[77]. As an 

alternative method to monitor DSB repair we used the protein RFA1 to identify the presence 

of single-stranded DNA.  Our experiments have previously shown that even in the absence of 

DSB formation or repair, there is still a weak chromatin interaction specific to the chromatin 

scaffold. In contrast, DSBs that are normally repaired have RFA1p localized to the DSB sites, 

but RFA1p also shows strong chromosome core signals in regions presenting strong DSBs 

abundance. This specificity for the chromatin scaffold is decreased in a dmc1∆ mutant and 

abolished (returning to spo11∆ or com1/sae2∆ levels) in the absence of Red1p. Interestingly, 

both dmc1∆ and red1∆ mutants display a similar enrichment of RFA1p at the DSB sites a fact 
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that correlates with a previous report demonstrating the requirement of Red1p for loading 

Dmc1p onto the ressected DSB ends.   
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Figure 50: Spo11p-chromatin interactions analyzed by ChIP on chip are strongly 
reduced in red1∆ and hop1∆ mutants. (A and B) Spo11p-chromatin localization in the 
rad50S mutant background is strongly impaired by red1∆ either in the presence or absence 
of FA crosslinking. (C) Spo11p-chromatin interaction in a hop1∆ mutant background is 
strongly affected compared to the wild type situation. (D) The chromatin immunoprecipitated 
by Spo11p under the Wild type and hop1∆ situation was analyzed by qPCR. The analyzed 
chromatin regions corresponds to the YCR048W hotspot, and the chromosome core 219 
respectively (These chromatin regions are indicated in (C)).   

Figure 51: RFA1p binding in the presence or absence of Red1p. The chromatin 
localization of RFA1p at meiotic DSB sites as well as chromosome core regions is 
demonstrated in (A). The absence of RFA1p-chromatin localization at DSB sites is shown in 
(C) and (E) for spo11∆ and com1∆ mutants respectively. In dmc1∆ and red1∆ mutants, 
RFA1p localizes normally to the DSB sites, but the chromosome core localization is 
significantly reduced (B and D). In (F) the chromatin immunoprecipitated with RFA1p either 
in red1∆ or com1∆ was analyzed by qPCR for enrichment at the YCR048W hotspot and 
chromosome core 219 respectively (these chromatin regions are indicated in (A)). The 
preliminary tentative to demonstrate that DSBs induced in a com1∆, red1∆ double mutant 
load RFA1p is shown in (G). A cartoon model illustrating RFA1p chromatin localization 
pattern characterized during this study is illustrated in (H). Experiments corresponding to 
figures (A) and (B) were performed by Silvia Panizza. 
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3.3  Developing an internal control for ChIP chip analysis in 

Saccharomyces Cerevisiae  

In this study, comparative analysis between different ChIP on chip profiles was widely used 

in order to identify differences in protein localization over the entire yeast genome. While the 

comparative analysis was performed from the point of view of the chromatin interaction 

sites, the signal intensity associated to each binding site was used only as a relative means 

of site comparison within the same profile. Taking in consideration that the signal intensity 

associated to a defined chromatin binding site is directly proportional to the probability of 

finding such protein at that defined chromatin site; comparing several profiles not only in the 

context of the localization of the binding sites on the chromatin, but also in the context of 

their associated intensities becomes of great importance to determine the relative abundance 

of the protein of interest at defined chromatin sites under certain conditions. From a 

technical point of view, such an analysis becomes complex, mainly because the signal 

intensities obtained during a ChIP on chip analysis are the consequence of a mathematical 

comparative treatment between the relative fluorescence intensity obtained by the 

hybridization of the Immunoprecipitated DNA (IP) and the hybridization of the DNA from the 

whole cell extract (WCE). As a consequence, the signal intensity contains statistical 

significance when compared to other signals within the same ChIP on chip profile, but not 

when compared to a different one. 

An alternative that would allow comparative analysis between different profiles depends on 

the presence of a reference signal intensity in the compared profiles, which could then be 

used in order to “normalize” the profile’s signal intensities before comparison. The 

identification of a protein having such a binding site in vivo, characterized by a constant 

pattern between the different studied conditions, seems difficult. In order to circumvent this 

problem, we designed an exogenous internal standard into the profiles of interest. The 

strategy employed for this purpose depends on the use of the TetR-TeTO system as a 

Chromatin immunoprecipitation target. Here, the TetRp was fused to the epitope tag of 

interest (for myc-tagged proteins, we would use the myc-tag TetRp system) and expressed 

under a constant promoter, namely pURA3. Under these conditions, the TetRp will be 

immunoprecipitated together with the protein of interest. 

As the TetO repeat sequences are not part of the yeast genome, we planned to flank them 

with yeast chromatin sequences that lack protein binding sites in most, if not in all, of our 

ChIP on chip profiles. After comparing several ChIP on chip profiles we decided to use the 

chromosomal sequences located between positions 56100-59100 on Chr VI. Because this 
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chromosome region covers the TUB2 locus, we therefore named the chromatin regions we 

flanked on both sides of the TetO repeats (7xTetO repeats) TUB2A and TUB2B (figure 52). 

The final construct consisted of an 808 bp DNA fragment fused to the left side of the TetO 

repeat sequences (TUB2A), and an 1194 bp DNA fragment fused to the right side of the 

TetO repeat sequences (Tub2B). A 600 bp spacer between the end of the TUB2A and the 

beginning of the TUB2B sequence was included in order to produce a particular pattern 

during ChIP on chip analysis.   The Tub2A fragment will produce a signal over 3 data points 

(a single data point covers 300bp in this case), then a signal-free region covering 2 data 

points (also referred to as the GAP region or TUB2C) followed by signals covering 4 data 

points associated with the TUB2B fragment (figure 52A). This final construct was cloned into 

an integrative plasmid, containing the epitope-tagged TetR gene under control of the URA3 

promoter. The integrative plasmid was used to introduce the internal control construct into 

the URA3 locus on chromosome III (an extensive description of the Internal control design is 

presented in Appendix). 

Our first test of this system was performed with the PK-tag epitope fused to the C-terminus 

of the TetRp. The behaviour of this construct was evaluated by qPCR, where three different 

positions in Tub2A and Tub2B as well as a negative control amplicon targeting the GAP 

region between Tub2A and Tub2B were evaluated (figure 52C). As expected, a Gaussain 

distribution from the internal control construct was observed ‡ . ChIP on chip analysis 

performed for the TetR-PK construct demonstrated the presence of three contiguous data 

points with strong signal intensities (higher than 4 fold enrichment in the Log2 scale) 

followed by 2 data points lacking significant signal enrichment, and finally, 4 contiguous data 

points displaying strong signal intensities. This pattern correlates perfectly with that 

expected for the normalization construct. 

Even though the initial test of the internal control demonstrated the expected behaviour, 

when we included this construct as part of the study of a protein of interest, we realized that 

the ChIP on chip profile contained supplementary binding sites which were not dependent on 

the protein of interest. Figure 54 illustrates the particular case for the study of Rec8p. The 

ChIP on chip profile of chromosome VI demonstrates the presence of the internal control 

pattern in the profile of the HA-tagged Rec8p strain expressing the HA-tagged TetRp and 

containing the TUB2A-7XTetO-TUB2 construct. Nevertheless, additional chromatin binding 

                                                 
‡ The experimental evaluation of the distribution of the DNA fragments sizes produced by the ChIP protocols 
demonstrated that it follows a Gamma distribution and not a Gaussian distribution as currently considered. 
Indeed, sources of DNA fragment size variation in the population including differences in sonication and 
nonuniform PCR amplification generates an skewed distribution of the DNA fragments[118][118] Qi Y, 
Rolfe A, MacIsaac KD, Gerber GK, Pokholok D, Zeitlinger J, Danford T, Dowell RD, Fraenkel E, Jaakkola TS, 
Young RA, Gifford DK. High-resolution computational models of genome binding events. Nat Biotechnol 
2006;24 (8):963-70.. 
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sites which are not observed in the Rec8p-chromatin binding profile are seen. The 

comparison of the internal control profile (TetRp HA tagged) with the Rec8p profile 

containing the internal control reveals that at least some of the supplementary binding sites 

observed in the Rec8p profile with the internal control are indeed observed in the internal 

control profile. This suggests that, unexpectedly, the TetRp can also interact with some yeast 

chromatin regions, producing an artefactual binding pattern when the internal control is 

combined with an experimental sample. Furthermore, regions that were previously 

characterized as Rec8p binding sites were modified in their relative signal intensity, 

suggesting that TeTRp also interacts with some of the previously characterized Rec8p 

binding sites. 

Another important issue of the internal control design is the fact that URA3 promoter used in 

order to induce the expression of the TetR-tagged construct is not constant during meiosis. 

Indeed, the URA3 promoter was shown to be stable during the first two hours of meiotic 

induction (premeiotic replication phase), then repressed until T5 (5hours after meiotic 

program induction), to finally be reinduced[121]. Furthermore, this promoter is not 

constitutive, but depends on the Uracil present on the growth medium. For these reasons, 

the TetRp induction may not be induced in a similar manner in the different yeast strains, 

and by consequence the Internal control patterns to be used as reference between different 

ChIP on chip profiles are not necessarily comparable.   

These drawbacks caused us to abandon the internal control at this time.  However, there are 

still some improvements that could be made in order to use these constructs. The simplest 

correction, from a technical point of view, would be to systematically subtract the 

supplementary TetR binding sites by comparing the experimental data file with a control file 

produced by immunoprecipitating the TetR-tagged construct from a yeast strain lacking the 

TetO target sequence. With this correction, the influence of the supplementary TetRp 

binding sites on the chromatin could be systematically removed. Furthermore, in order to 

have a constitutive expression of the TetR-tagged construct even during meiosis, particular 

mutations into the URA3 promoter sequence could be performed. Indeed, a reported study 

on the URA3 promoter induction demonstrated that mutations introduced into the PPR1p 

binding site (which is the transcription factor which positively regulates the URA3 promoter) 

reduces the URA3 promoter activity to its constant basal expression level[122].  
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Figure 52: Design of an internal control for ChIp on chip comparison analysis. In 
(A) is illustrated the ChIP on chip map performed for Hop1p that was used together with 
other ChIP on chip protein profiles in order to identify the chromatin region where the 
internal control pattern should be introduced without affecting the endogenous protein-
chromatin interaction sites. The chromatin site between positions 56-59kb on chromosome 
VI was chosen for the introduction of the internal control binding pattern. Furthermore, the 
expected pattern of the internal control is represented in the cartoon surrounded by the red-
dashed square. (B) The integrative plasmid containing the TetRp fused to a specific tag 
epitope, as well as the TUB2A-7XTetO-TUB2B target sequence is linearized by ApaI digestion 
and integrated into the URA3 locus. The strategy performed for the chromatin 
immunoprecipitation of the TUB2A/TUB2B sequences by using an antibody against the TetRp 
construct is illustrated in (C). 
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Figure 53: Internal control construct evaluated by qPCR and ChIP on chip. (A) The 
ChIP on chip analysis performed on the PK-tagged TetRp construct shows the presence of 
the expected binding pattern at positions 56-59kb on chromosome VI. (B) A zoom in ChIP on 
chip map of the internal control construct demonstrates the presence of the expected 
binding pattern: 3 data points (a single data point corresponds to 300 bp) with high signal 
intensities, corresponding to the TUB2A fragment, an empty region covering 600 bp and 4 
data points with a high signal enrichment that correspond to the TUB2B fragment. (C) The 
predicted normal distribution for the internal control binding pattern was demonstrated by 
qPCR analysis. Three chromatin regions located in the Tub2A fragment, as well as three in 
the Tub2B fragment were analyzed for their enrichment by qPCR when TetRp is 
immunoprecipitated. The “one step PCR tag-epitope replacing strategy” used in order to 
construct variants of the PK-tagged TetRp construct is illustrated In (D). In a similar manner 
to (C), the qPCR analysis of the TUB2A and TUB2B chromatin enrichment performed by the 
different TetRp variant constructs is shown in (E).   
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Figure 54: Expression of the internal control system produces artefactual binding 
sites. Rec8p-chromatin localization map on chromosome VI (green) is compared to the 
TetRp internal reference map (blue) and that corresponding to the yeast strain expressing 
both the HA tagged version of Rec8p as well as the HA tagged version of TetRp (red). The 
internal control chromatin-binding pattern is indicated by the black arrow. Additional binding 
sites observed in the presence of the internal control are indicated by blue arrows. An 
example of a change in the relative signal intensity corresponding to a Rec8p binding site 
when the strain expresses the internal control construct is indicated by a red arrow. This 
comparative analysis demonstrates that the Internal control can modify the chromatin 
binding pattern of the protein under study (in this case Rec8p), not only by creating new 
unexpected binding sites, but also by modifying the relative signal intensity of the expected 
binding sites. 
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4 Discussion 

4.1 Rec8p is part of the chromosome core organization during 

meiotic chromatin condensation in prophase I. 

In this study we have used a ChIP on chip strategy in order to characterize, to a 1kb 

resolution, the genome wide chromatin localization of the meiotic cohesin component Rec8p. 

We have shown a direct correlation between the number of Rec8p binding sites per 

chromosome and the chromosome length, demonstrating the relatively even distribution of 

Rec8p binding sites throughout the yeast genome. This even distribution of Rec8p binding 

sites has an average distance between consecutive binding sites of 11.7kb, estimated from 

the 991 cohesin binding sites characterised across the S. cerevisiae genome when we apply 

a threshold distance of 0.5 between the putative binding sites and the neighbouring local 

minima regions, or valleys, over a 3kb average sliding window profiles (figure 33). A previous 

study performed with mitotic cohesin has shown an average distance between consecutive 

cohesin binding sites of 11kb; furthermore the authors have shown that meiotic Rec8p-

chromatin binding pattern is largely similar to that observed for Scc1p in mitosis[114]. 

Considering that Scc1p is still expressed initially in meiosis [121], we have characterized the 

chromatin binding pattern of the residual Scc1p component in meiosis I. We demonstrated 

that at T3 (3 hours after induction of the meiotic program) the residual mitotic cohesin 

component is loaded on the chromatin during meiosis, and both meiotic and mitotic cohesin 

components share a similar chromatin binding pattern (figure 33). 

The Rec8p binding pattern on the yeast genome has a negative correlation with GC-rich 

chromatin regions, as well as with meiotic DSB sites. In order to evaluate whether the 

meiotic cohesin localization is modified by the induction of meiotic recombination, we have 

analysed the Rec8p-chromatin binding profile in the absence of Spo11p. In this situation, we 

did not observe any significant differences when compared to the Rec8p-chromatin 

localization in the presence of Spo11p. 

Rec8p was shown to be essential for Synaptonemal complex (SC) formation and for sister 

chromatid cohesion suggesting a direct role of Rec8p in the structural organization of the 

chromatin during prophase I. In addition, this view is supported by its colocalization with 

Zip1p and Hop1 axes in cytological spread nucleus preparations. To further investigate this 

colocalization at the 1kb level resolution, we have mapped the chromatin localization of 

components of the SC, namely Hop1p and Zip1p. Comparing their binding patterns with that 

of Rec8p, we have shown that all three components interact with the same chromatin 
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regions (figure 35), demonstrating that Rec8p is indeed part of the chromosome core during 

meiotic prophase I.  Even though al three components bind to the same chromatin sites, 

their relative abundance in certain chromatin regions compared to others have been put 

forward by performing a low resolution 30kb sliding window  analysis. In this way, Rec8p 

was shown to have a strong affinity for areas surrounding the centromere on chromosome 

VI while Hop1p has a preference for the chromosome arms (figure 36). This is supported by 

a recent report demonstrating an alternated staining pattern between Zip1 and the axes 

components Hop1/Red1 observed in cytological spread nuclear preparations[123].  

Interestingly, the chromosome arms are characterized by a high GC content; and both GC 

content on chromosome VI and Hop1p binding are directly correlated with global preferences 

for DSB formation in meiosis (figure 36).  In a previous report, this correlation was already 

described for Red1p, another axial element component [76]. The authors were tempted to 

associate the relative abundance of Red1p at the chromosome arms with a direct role in 

facilitating the increased DSB frequency in these regions; however, the red1∆ mutant did not 

display a different pattern of DSB distribution over the studied chromosome, indicating that 

Red1p chromatin localization patterns do not define the chromatin regions prone to meiotic 

DSB formation.  

Finally, due to the fact that Zip1p is the transversal filament of the Synaptonemal Complex, 

connecting the chromosome cores of the homologs, and considering that Rec8p interacts 

with the same chromatin regions as the SC components, we have used the Rec8p-chromatin 

localization pattern to define chromatin organization. With this definition, chromatin regions 

lacking Rec8p binding sites are considered uncondensed loop regions, and those containing 

Rec8p binding sites are part of the chromosome core. With these assumptions, we 

established a high resolution map of the condensed chromatin during meiotic prophase I 

(figure 37), which we then used to localize recombination components in the context of 

chromatin organization.                
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4.2 Meiotic recombination induces Double-strand Breaks 

(DSBs) in chromosome loop regions. 

In order to characterize the localization of meiotic DSBs across the yeast genome, we have 

immunoprecipitated the meiotic specific nuclease Spo11p, in the DSB repair defective 

mutant’s background rad50S, mre11S or com1/sae2∆. Under these conditions, we do not 

need to in vivo crosslink the protein of interest to the DNA, because Spo11p is known to 

form a covalent linkage to the DNA during its cleavage and requires a fully functional MRX 

complex as well as Com1p in order to repair it. All three repair defective mutants had similar 

ChIP on chip DSB maps, indicating that their unrepaired DSB accumulation phenotypes are 

indistinguishable at this level of resolution (figure 38). 

The characterized meiotic DSB map was compared to the Rec8p-chromatin binding pattern 

with the objective to determine the localization of meiotic DSB sites within the context of the 

chromatin organization. From this comparison, we have concluded that the meiotic DSBs 

within the yeast genome are preferentially formed in uncondensed loop regions (figure 39). 

This conclusion is further supported by comparing the previously published physical DSB 

map established for chromosome III with the Rec8p-chromatin binding map established by 

ChIP on chip analysis (figure 38A). A more detailed analysis of the localization of the meiotic 

DSB sites in the context of the chromatin organization revealed that 70% of the total 

number of chromatin loops (defined as the distance between two consecutive Rec8p binding 

sites) presented at least one covalent Spo11p binding site of significant signal intensity 

(higher than 2 fold from the background level). Interestingly, the average size of the 

chromatin loops exempt of Spo11p cleavage sites (9.3 ± 3.9kb) are significantly smaller than 

that presenting Spo11p binding sites of significant signal intensity (13.5 ± 6.4 kb or 14.4 ± 

7.3 kb average loop length for Spo11p cleavage signal intensities > 0.5 or >2 respectively). 

Furthermore, whereas a direct correlation between the length of the chromatin loops and the 

number of Spo11p cleavage sites per loop has been elucidated during this study, there is no 

correlation between the length of the chromatin loops and the Spo11p-cleavage signal 

intensities. Indeed the chromatin loop populations presenting Spo11p cleavage sites with 

significant signal intensities presented a constant average length of 14 kb. From this analysis 

we could conclude that the chromatin loops presenting a higher Spo11p binding probability 

are characterized by an intermediate loop length significantly different from the average loop 

length identified across the S. cerevisiae yeast genome. 
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4.3 Spo11p and the MRX complex do not only localize at the 

DSB sites, but also at the nearby chromosome core regions. 

Considering that Spo11p is the meiotic nuclease component of the DSB initiation complex, its 

localization on the chromatin has been assumed to be exclusively at sites where the DSBs 

are formed. Nevertheless, previous reports demonstrated for instance the presence of 

Spo11p foci still at pachytene stage, fact that does not correlate with the kinetics of DSB 

formation [15]. Furthermore, as in the case of yeast, during mouse meiosis, Spo11 foci 

surprisingly colocalize with the Synaptonemal complex, a fact that is contradictory to the 

preference of DSB formation in loop regions. In order to identify supplementary Spo11p-

chromatin binding sites across the yeast genome, we have performed a ChIP on chip 

analysis under the rad50S mutant background, as in the case for the identification of DSB 

sites, but including the in vivo protein-DNA crosslinking treatment. Under these conditions, 

we identified Spo11p-chromatin interactions that correlate with the meiotic DSB sites, but in 

addition, supplementary binding sites flanking the DSB regions were identified (figure 42). 

The comparative analysis of this new Spo11p-chromatin binding pattern with the Rec8p-

chromatin interaction map, demonstrated that the additional Spo11p binding sites indeed 

correlated with the chromosome core. This finding is supported by a similar analysis in the 

presence of the other characterized DSB repair defective mutants, namely mre11S and 

com1/sae2∆ (figure 43). In fact also the wild type profile was a combination of core and loop 

signals (figure 43). Although Spo11p mapped to the chromosome core regions, not all Rec8p 

binding sites were associated with the presence of Spo11p. Indeed, the Rec8p binding sites 

that were associated with Spo11p were in chromosome regions which formed DSBs actively, 

often flanking a DSB site, suggesting a mechanistic relationship. 

Previously, Silvia Prieler in the lab demonstrated that immunoprecipiation of Spo11p yields a 

two-fold enrichment of the meiotic hotspot YCR048W when the catalytic Tyrosine residue 

has been mutated to Phenylalanine (spo11-Y135F mutation) than that obtained for the Wild 

type yeast strain[15]. Therefore, the association of Spo11p with that particular chromatin 

region either persisted longer or that the number of Spo11 molecules interacting with this 

chromatin region increased in this particular mutant. The reason for this behavior may be 

directly connected to the impairment of the enzymatic activity, and by consequence, any 

Spo11p-chromatin interaction which is not connected with the enzymatic activity of Spo11p 

should not be affected by the Y135F mutation. With this hypothesis in mind, we performed 

ChIP on chip analysis of the spo11-Y135F mutant, and, surprisingly, we found that the 

Spo11p binding pattern associated with the chromosome core was also increased, in a 
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manner similar to DSB sites (figure 43), suggesting that Spo11p localization at the core 

regions is somehow connected to the Spo11p enzymatic activity. 

Another component of the meiotic DSB initiation complex in Saccharomyces cerevisiae is the 

MRX complex (for Mre11p, Rad50p and Xrs2p). This complex is not specific to the meiotic 

cell division, but additionally plays an important role in the detection and repair of DNA 

lesions during mitosis. A previous report claimed that Mre11p preferentially associates with 

chromatin regions containing meiotic DSB sites. This was assessed by comparing its genome 

wide chromatin localization with the Spo11p-chromatin interaction pattern obtained from a 

com1/sae2∆ mutant background[45]. However, this analysis was performed on low 

resolution ORF-containing microarrays. Our high resolution Mre11p-chromatin interaction 

map confirmed the fact that this protein localizes at meiotic DSB chromatin regions, but in 

addition, chromatin interaction sites associated with the chromosome core close to the DSB 

sites were also observed (figure 44A). This finding is supported by the genome wide 

chromatin-localization analysis performed for another component of the MRX complex, 

Xrs2p, whose binding was characterized by interactions correlating with meiotic DSB sites as 

well as with the chromosome core (figure 45A). The similarity between the genome wide 

localizations of Mre11p, Xrs2p and and Spo11p was demonstrated by performing a 

hierarchical clustering analysis over the chromatin binding sites identified for these proteins. 

In contrast, the clustering analysis demonstrated a much lower similarity between the 

chromatin binding patterns of MRX components and that of Spo11p in a rad50S mutant 

background in the absence of in vivo crosslink (-FA) (Figure 49). This difference can be 

explained by the absence of binding at chromosome core regions in the latter profile. 

The analysis of Mre11p-chromatin interactions during meiotic progression revealed a 0.5-1 

hour time difference between its chromatin enrichment at the meiotic DSB hotspot located at 

position 50.6kb (left arm of chromosome III) and the YCR048W hotspot (position 212kb,  

right arm of chromosome III) (figure 44). Furthermore, the Mre11p-chromatin enrichment 

pattern for chromosome core regions close to the YCR048W hotspot (Core sites in position 

219 and 233 respectively) displayed similar kinetics to that observed for the YCR048W 

hotspot during meiotic progression. This observation maywell reflect a timing difference in 

DSB formation between these two meiotic DSB hotspots located at the left and the right 

arms of chromosome III. Borde et al showed that meiotic DSBs are initiated about 80 

minutes after passage of the replication fork[25]. In agreement with this finding, the hotspot 

at position 50.6kb (left arm) is flanked by two early origins of replications in contrast to the 

YCR048W. 

A previous report showed that Mre11p-chromatin localization at the YCR48W DSB hotspot 

depended on the presence of all proteins involved in meiotic DSB formation, with the 
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exception of Rad50p[45]. Chromatin localization of Mre11p across the yeast genome in the 

absence of Spo11p or Rec114p confirmed the lost of Mre11p binding to the meiotic DSB 

sites; but interestingly the chromosome core interactions were still present. On the other 

hand, the Mre11p-chromatin localization at the meiotic DSB sites as well as at the 

chromosome core regions were not affected by the spo11-Y135F mutation, demonstrating 

that the presence of Spo11 protein, but not its catalytic activity, is required for Mre11p 

localization at the meiotic DSB sites (figure 45).  

The genome wide chromatin localization studies performed for Spo11p and the MRX complex 

components revealed the presence of an unexpected localization pattern for recombination 

components, namely their interaction with chromosome core regions. Furthermore, the fact 

that the spo11-Y135F catalytic mutant enhanced Spo11p localization at both meiotic DSB 

sites and the neighbouring chromosome regions suggests that Spo11p localization at the 

chromosome core is somehow connected to its enzymatic activity, despite the fact that 

meiotic DSBs have been shown to be preferentially formed in uncondensed loop regions. 

Silvia Prieler in the lab previously demonstrated that Spo11p localization at the meiotic DSB 

sites was abolished in the absence of Rec102p, Rec104p or Rec114p[15].  Surprisingly, 

rec114∆ mutants maintained chromatin-associated Spo11 foci. This observation correlates 

with the fact that ChIP on chip analysis performed on Spo11p in the absence of Rec114p 

revealed the presence of chromosome core signals despite the absence of Spo11p 

localization at meiotic DSB sites (Silvia Panizza in the lab; unpublished data). From this data 

we can conclude that Spo11p and Mre11p chromatin localization at meiotic DSB sites 

depends on the presence of Rec114p, whereas their localization at the chromosome core is 

not dependent on Rec114p. ChIP on chip analysis performed in collaboration with Silvia 

Panizza, a postdoc in the lab, revealed that the MMR subcomplex (for Mer2, Mei4 and 

Rec114) is exclusively associated with chromosome core regions located in close proximity to 

meiotic DSB sites, but not at the DSB sites themselves.  

Figure 55 depicts a model summarizing the ChIP chip results obtained in this study combined 

with the two hybrid interaction map published previously[34,36] in order to correlate the 

studied protein-chromatin interaction patterns with the characterized two-hybrid interactions. 

For example, the MMR subcomplex was shown to localize exclusively at chromosome core 

regions. Furthermore the MRX complex that interacts with the MMR subcomplex via the 

Xrs2-Mer2 interaction localizes at the chromosome core regions in addition to the meiotic 

DSB sites. The DSB site localization of the MRX complex is impaired by the absence of 

Rec114p or Spo11p, suggesting that it depends on the interaction between Rec114p and 

Rec102/Rec104-Spo11/Ski8. Spo11p was shown to localize to meiotic DSB sites as well as 

chromosome core regions and, similar to the MRX proteins, its localization at meiotic DSB 
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sites depends on Rec114p, Rec102p or Rec104p. This again emphasizes the importance of 

the Rec114-Rec104/Rec102 interaction for Mre11p and Spo11p localization at meiotic DSB 

sites. While this interpretation highlights the existence of different chromatin localizations for 

the recombination initiation components, there is still a question that it cannot fully explain: 

Under the assumption that the DSB initiation complex needs to localize to a single chromatin 

region, where the DSB is formed, how do we form meiotic DSB breaks specifically in 

chromatin loop regions, when some of the essential components are localized to the 

chromosome core?. The first hypothesis that addresses this question is that the approach 

used to characterize their chromatin localization, ChIP-chip, is not able to detect the 

localization of the MMR complex to the DSB sites.  In this hypothesis, the chromatin 

interactions at the meiotic DSB sites are indeed the functional interactions involved in DSB 

formation, in contrast to the chromosome core interactions that would correspond to binding 

sites that lack a role in formation of DSBs. However, we favor the alternative previously 

proposed by Nancy Kleckner, which is the clustering of recombination initiation components 

at the chromosome core sites in the presence of a “Tethered-Loop/Core” structure [76]. In 

other words, the chromatin loops may interact with their neighbouring chromosome cores 

during meiotic DSB formation. In this model, the observed localization of Mre11p, Xrs2p and 

Spo11p both at the chromosome cores and DSB sites would correspond to the detection of a 

“Tethered-Loop/Core” structure (figure 56). This hypothesis is supported by the fact that the 

spo11-Y135F mutation enhances Spo11p localization at both loops and cores chromatin 

regions. In addition, the Rec114-Rec102/Rec104 interaction seems to be essential for 

tethering the chromatin loop to the chromosome core sites.  
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Figure 55: Chromatin localization of meiotic recombination components involved 
in DSB formation and correlation with two-hybrid protein interactions. The 
proteins analyzed for their chromatin localization are represented in colored ovals: Green for 
Spo11p, Orange and light blue for Mre11p and Xrs2p respectively, Pink for the MMR sub-
complex (characterized by Silvia Panizza). Proteins corresponding to white ovals were not 
characterized for their chromatin localization. The chromatin localization pattern of the 
different proteins under the various mutant backgrounds are illustrated: Either localized at 
uncondensed loop regions (DSB sites), or localized at the chromosome core (Red rings 
representing cohesin complex), or both. The two-hybrid proteins interaction network was 
adapted from Maleki et al.[36]. Notice that meiosis specific and vegetative interactions are 
illustrated in gray and black respectively. Question marks associated with the Spo11p 
localization in rec102∆ or rec104∆ indicates the absence of localization of Spo11p at the DSB 
sites but its localization at the chromosome cores was not analyzed.  
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Figure 56: Model illustrating the chromatin localization of the meiotic DSB 
formation complex components. In (A) the chromatin localization of the different 
components involved in meiotic DSB formation is illustrated in the context of our 
observations. The MMR complex represented in Pink highlights the requirement of Mer2 
phosphorylation in order to allow the recruitment of the other components (Phosphorylation 
represented by a black). The fact that Mre11p, Xrs2p and Spo11p were shown to localize at 
the meiotic DSB sites and at the chromosome core regions is illustrated by the presence of 
these components at the top of the uncondensed loop as well as at the chromosome core 
represented by the presence of the cohesin components (red rings). For simplicity, 
chromosome Axis components were not represented. The two-hybrid protein-protein 
interactions between Mei4p-Rec102p/Rec104p and Rec114p-Rec102p/Rec104p are 
represented in black and gray dashed arrows respectively (black for meiosis specific and gray 
for vegetative interactions respectively). In (B) the hypothesized “Loop/axis tethering” model 
is represented.      
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4.4 Com1/Sae2p binds to meiotic DSB sites and to chromosome 

core regions like MRX, but its specific localization at the 

DSB sites is abolished in spo11∆ or rad50S mutants 

In S. ce evisiae the repair of meiotic Double-strand Breaks (DSBs) depends on the MRX 

complex as well as on Com1/Sae2p[54]. This requirement has recently been shown to be 

conserved in organisms as diverse as S. pombe[57], C  elegans[58] and A. Thaliana[56]. 

Com1p was also recently been discovered as the ortholog of the mammalian CtIP[55], a 

gene with important roles in genome maintenance, DNA repair and tumor suppression. 

r

.

r

The role of the MRX complex in meiotic DSB repair has been demonstrated in budding yeast 

by the characterization of particular mutants that allow meiotic DSB formation to occur, but 

accumulate unrepaired meiotic DSBs where Spo11p remains covalently linked to the 5’-DNA 

broken ends[31]. This is the case of the rad50S and the mre11S mutants, known as “S” 

mutants to emphasise the separation of function between formation of the DSBs and their 

repair. The crystal structure analysis performed in nine different rad50S mutantions revealed 

that seven of them are located on a surface patch predicted to be a protein-protein 

interaction site[50]. On the other hand the m e11S mutant characterized by Knud Nairz 

previously in the lab[49], contains two point mutations which are speculated to be involved 

in the Mre11-Xrs2 interaction, as well as in its binding to DNA[51]. In addition to mre11S, 

other MRE11 mutants presenting the same meiotic DSB repair phenotype have been 

characterized (mutants D16A, D56N, H125N, H213Y and mre11-6). Surprisingly, the common 

characteristic between all these mutants, like mre11S, is that they do not display nuclease 

activity in vitro. Of these mutants, mre11-H125N displays a clear meiotic phenotype without 

compromising other vegetative functions such as mating type switching, non-homologous 

end joining or telomere homeostasis, demonstrating that the nuclease activity of Mre11p is 

essential for the repair of Spo11p-DSBs in meiosis [52]. 

 While the different mre11S-like mutants lead to impairment of its nuclease activity, the 

rad50S mutant is likely to lead to failure to recruit a fourth component to the MRX complex 

via the described putative protein-protein interaction site. Considering that Com1p is 

essential for the repair of meiotic DSBs, it’s possible that a direct interaction between Com1p 

and the MRX complex is mediated by Rad50p.  

ChiP on chip analysis performed for Com1p demonstrated that it binds to chromatin with a 

similar pattern as Mre11p. Indeed, Com1p was shown to interact with meiotic DSB sites as 

well as to the neighbouring chromosome core regions (figure 46). The similarity between the 
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Mre11p-chromatin binding profile and that of Com1p across the yeast genome has been 

evaluated by performing a hierarchical clustering analysis combined with a binary peak 

matching comparison (described in chapter 2.6.7.5). Surprisingly, the Com1p-chromatin 

binding pattern shows a 70% similarity with that of Mre11p, correlating with the fact that 

both proteins localizes to the same chromatin regions (the chromatin regions where we find 

divergence between Mre11p and Com1p localization correspond to chromosome areas with a 

lower frequency of meiotic DSB formation).  

The analysis of Com1p-chromatin interaction in the absence of Spo11p demonstrated that its 

localization at meiotic DSBs depends on the presence of Spo11p, although its localization at 

the chromosome core regions remained unaffected. In order to study the influence of the “S” 

mutations on the Com1p-chromatin localization, we performed a genome wide analysis of its 

chromatin interaction in the rad50S as well as the mre11S mutant background. Interestingly, 

the rad50S mutant lost Com1p localization at meiotic DSB sites, while the mre11S mutant 

retained the wild type localization (figure 48). This finding correlates with the fact that the 

rad50S mutant was previously shown to lose colocalization between Com1p and Mre11p on 

chromatin spreads by immunostaining analysis (Ivana Billic in the lab, unpublished data), 

fact that is not observed in mre11S. The Mre11p and Xrs2p chromatin binding pattern across 

the yeast genome did not change in presence of the rad50S mutation, strongly suggesting 

that this mutant has an influence exclusively on Com1p-chromatin localization (figure 48). 

In summary, Com1p localization at meiotic DSBs depends on the presence of Spo11p as well 

as on a fully functional Rad50p. This last point supports the hypothesis of a direct interaction 

between Rad50p and Com1p, which is impaired in the ad50S mutant.  r

The Hierarchical clustering analysis performed in order to evaluate the similarity of ChIP on 

chip profiles revealed another interesting fact related to the chromatin localization of Xrs2p. 

While the Xrs2p-chromatin binding pattern clustered together with that of Xrs2p performed 

in the rad50S mutant background, the chromatin localization pattern of Xrs2p in the mre11S 

mutant background appeared quite different, and did not form a significant cluster with any 

other protein (figure 49). This difference supports the hypothesis that at least one of the 

mre11S mutations abrogates the Mre11-Xrs2 interaction.                    
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4.5 What is the role of the chromosome core localization of 

meiotic recombination components? 

During this study, we characterized the genome wide chromatin localization of several 

meiotic recombination components involved in DSB formation and repair. Surprisingly, these 

components localized not only to the chromatin regions where the meiotic DSBs are formed, 

but additionally to chromatin regions that were identified as part of the chromosome core 

structure. Even though we would be tempted to assign a role not involved in meiotic 

recombination to this unexpected chromatin localization pattern, several observations 

suggest the opposite: (1) not all chromosome core regions are associated with meiotic 

recombination protein binding sites; indeed they correspond to chromatin regions in close 

proximity to meiotic DSB sites; (2) inactivation of the Spo11p catalytic site induces a stronger 

Spo11p-chromatin interaction not only at meiotic DSB sites, but also at the neighbouring 

chromosome core regions; (3) the Spo11p-chromatin localization either in a red1∆ or in a 

hop1 ∆ mutant showed  a strong decrease in interaction at both the DSB sites as well as the 

chromosome core regions; (4) a study of the chromatin localization of the single-strand DNA 

binding complex replication protein A (RPA), achieved by immunoprecipitating the 

component RFA1p, showed that this complex localizes to meiotic DSB sites and additionally 

to the neighbouring chromosome core regions. While RFA1p-chromatin localization at the 

chromosome cores is still observed in the absence of DSB formation (spo11∆ mutant), or in 

the absence of DSB repair (com1∆ mutant), a significant difference in their relative signal 

intensity (approximaetly 3-fold loss) is observed when compared to wild type, indicating that 

DSB formation induces RFA1p localization at the neighbouring chromosome core sites (figure 

51). 

 

 

During our study, we demonstrated that the absence of Red1p or Dmc1p negatively affected 

RFA1p localization at chromosome core sites, without impairing its interaction with DSBs. 

This correlates with the fact that red1∆ mutants show a reduction in DSB formation 

compared to wild type, but do not completely abolish their formation. Surprisingly, a dmc1∆

mutant did not display a stronger localization pattern for RFA1p at DSBs than wild type, 

despite accumulating longer resected DNA-ends.  This may be explained by a limiting supply 

of the RPA complex, as reported recently[124]. On the other hand, a previous report 

demonstrated that Red1p is also required for Dmc1p loading on the chromatin[76], a fact 

that may influence strand-resection in red1∆ mutants by creating longer ssDNA tracts from 

the few DSBs that are formed. This may explain the similarity of the RFA1p-chromatin 
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interaction at DSBs observed in red1∆ and wild type (notice that the ChIP signal seems 

broader in red1∆ compared to dmc1∆, which may reflect a similar DNA-end resection 

efficiency for a given amount of RFA1p in the cell, but in the presence of a different number 

of broken DNA-ends substrates) (figure 51).  

 

In the model proposed in figure 56, we speculate that meiotic recombination requires a 

“Tethered-Loop/Axis” local organization. This may explain the localization of recombination 

components involved in DSB formation at the chromosome core scaffold. This is true for 

components such as Spo11p and the MRX complex; unexpectedly, the MMR subcomplex was 

not found at meiotic DSB sites but instead showed strong chromosome core localization. One 

possible explanation may be that the MMR subcomplex is not in direct contact with the loop 

of chromatin that will be cleaved, but interacts with DSB sites through other components 

that are part of the DSB initiation complex. In fact, this may be the situation for all 

components, but depending on their relative position in the DNA-protein DSB initiation 

complex, their efficiency to immunoprecipitate either the chromatin loop, or the chromosome 

core, or both, may change. The same is true for protein components that are part of the 

chromosome core structure, like Hop1p and Red1p. Indeed, as demonstrated in this study, 

the ChIP on chip analysis performed for Hop1p demonstrated its specific localization at 

chromosome core regions; nevertheless, if the “Tethered-Loop/Axis” local organization 

happened, we should be able to localize chromosome core scaffold components at the DSB 

sites where the tethering takes place. Because there are multiple components built-up over 

the chromosome scaffold, the detection of loop-chromatin regions by immunoprecipitating 

chromosome core components may be extremely difficult. 

 

 

 

  

                           

  

 

 

 

 

 

 

 

 138 



Epilogue 
 

 

5   Epilogue 

This study has illustrated the use of a ChIP-DNA microarray approach as a way to 

characterize the chromatin localization of meiotic recombination components in a genome 

wide manner. One of the main consequences of the use of this strategy was the 

identification of unexpected chromatin binding sites for these proteins. Indeed, before we 

began this study, meiotic recombination components were believed to exclusively localize at 

meiotic DSB sites, a fact that has biased the interpretation of several observations. 

From a technical point of view, this study overcame several challenges; from the setup of the 

ChIP on chip pipeline in Vienna after my training at the laboratory of Professor Katsuhiko 

Shirahige, at the Tokyo Institute of Technology; to the development of data analysis tools 

together with Professor Franz Klein. We have developed data treatment methodologies in 

order to decrease the noise pattern present in the raw data profiles (a “Tooth brushing” 

strategy combined with the mean sliding window approach). Furthermore, we developed a 

hierarchical clustering analysis for ChIP on chip profiles, in order to compare them in a 

quantitative manner over the entire yeast genome. These data treatment methodologies are 

still in development, in order to improve the resolution and the certainty of the protein-

chromatin binding sites identification. 

In summary, this study permitted not only the identification of new unexpected chromatin 

binding sites for meiotic recombination components involved in DSB formation and repair, 

but in addition established the tools required for exploring the genome wide chromatin 

localization of other proteins to single nucleotide resolution.          
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6 Zusammenfassung 

Der Audruck Meiose bezeichnet eine spezielle Zellteilung die bei der Entstehung von 

Keimzellen wichtig ist. Eine diploide Elternzelle erzeugt dabei haploide Nachkommen, da eine 

Runde der DNA-replikation von zwei Zellteilungen gefolgt wird. Im Unterschied  zur Mitose 

werden bei der ersten meiotischen Teilung homologe Zentromere von einander getrennt, 

nicht Schwesterzentromere. Durch die Bildung von Chiasmata, physischer Verbindungen 

zwischen den Homologen kann ein Gegengewicht zu den Mikrotubulikräften geschaffen 

werden, wodurch es zur Ausrichtung der Chromosomen in der Metaphaseplatte kommt. 

Die Entstehung von Chiasmata benötigt einerseits die Initiation der meiotischen 

Rekombination durch DNA Doppelstrangbrüche (DSBs) und andererseits morphologische 

Veränderungen wie Chromosomenkondensation, Paarung und Synapsis. Obwohl ein direkter 

Zusammenhang zwischen Kondensation und DSB Bildung postuliert wurde, ist es nicht 

bekannt, wodurch eine bestimmte Chromatinregion gebrochen wird nicht bekannt. 

Mit Hilfe von ChIPchip, (genom-weiter Chromatin Immunprecipitation, kombiniert mit 

Hybridisierung an DNA-Microarrays) konnten wir die Chromosomalen positionen mehrerer 

Proteine, die in der meiotischen Rekombination und Synapsis von S. ce evisiae eine Rolle 

spielen recht genau bestimmen. Überraschender weise lokaliseren die meisten 

Komponenten, die für DSB Brüche nötig sind, nicht direkt an den Bruchstellen, sondern 

kolokalisieren mit strukturellen Komponenten der Chromatin Organisation, wie Kohäsinen 

und Axialen Element Komponenten. Diese Beobachtungen deuten auf eine Rolle der 

dreidimensionalen Faltung des Chromosoms für die Bruchbildung in der Meiose hin. 

r

Komponenten der frühen meiotischen Reparatur, wie die des MRX Komplexes (Mre11, 

Rad50, Xrs2) und Com1 wurden auch nicht exklusiv an der Stelle des DSBs gefunden. Auch 

sie interagieren mit Kohesininteraktionsstellen. In einer Mutante (rad50S) wird allerdings die 

Interaktion von Com1 mit Chromatin an den DSB Stellen unterbunden, parallel zu fehlender 

DNA Resektion und generell defekter Reparatur in dieser Mutante. Dieses Ergebnis zeigt eine 

Rekrutierungsfunktion von Rad50 für Com1 an, und paßt zu neuesten Ergebnissen, die Com1 

eine direkte Rolle im Prozeß der DNA Reparatur am DSB zuschreiben. 
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7 Appendix 

7.1.1 Notes: 

 2.2.2.1: To monitor cell growth in the pre-sporulation medium (SPS), it is 

recommended to establish a table of correlation between the number of yeast cells per ml 

determined with a hemocytometer and the corresponding optical density (OD660). Note that 

this correlation curve may differ between different strain backgrounds, cells grown in 

different media or for different spectrophotometers. This is a critical step to obtain a 

synchronous meiotic time-course. For instance, cell cultures that were overgrown (more than 

5x107 cells/ml) may exhibit poor synchrony, and in such case it is recommended to restart 

the procedure from the beginning. In the case that a cell culture did not reach the 

concentration of 4x107cells/ml, we recommend to wait until enough cell material has 

accumulated. 

  

2.2.2.2: The time of incubation with formaldehyde should be optimized for each 

protein of interest. In our hands a 30-minute incubation works well for cohesin and 

recombination proteins. Overnight incubation at 4°C was reported for cases, where the DNA-

protein interaction is expected to be particularly weak. A balance between too long fixation 

times, which will increase the background, and too short incubation times, which result in 

insufficient chromatin enrichment, has to be determined. 

  

2.2.2.3: Conditions described here refer to the SK1 background, which undergoes 

meiosis relatively fast, synchronously and efficiently. It should be considered that some 

mutant backgrounds may exhibit a different kinetic of meiotic divisions than wild-type cells. 

For instance, cells unable to form DSBs (such as spo11∆) may show binucleate cells earlier 

than wild type, while those defective in repair may spend a certain time arrested by the DNA 

damage checkpoint and will display a corresponding delay. For strains expected to sporulate 

with wild type efficiency, we only use experiments with “good“synchrony, because the 

intensity of transient signals depends on synchrony. We evaluate synchrony using the signal 

intensity of the transient signal “binucleate cells”, which should reach at least 25%.Of 

course; this can’t be used for mutants, which arrest or delay in meiotic prophase. 

  

2.5.1.1: We have obtained very satisfying results also without splitting the samples, 

at least for proteins yielding relatively strong signals. Also, the split samples can be fused at 

different steps after extract preparation, in order to keep the manipulations manageable, 
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with the risk, of course, that manipulations on the fused samples might not be as efficient as 

on the split samples. After cell opening breakage efficiency is checked under the microscope. 

More than 90% of the cells should be opened. In our hands the optimal diameter of the 

glass beads is (0.40-0.60mm). Much longer crushing times may cause uncontrolled shearing 

of DNA. The multibead shocker can be used for optimal temperature control during opening, 

but is very expensive. A regular Vibrax controlled by an electronic timer (which can be set to 

the minimum of 1min intervals) has also given us satisfying results. 

 

 2.5.1.2: The sonication step needs to be optimized. Sonicate for a certain number of 

cycles (e.g. 5x) for about 15 seconds interrupted by 15 second breaks. During sonication, 

samples should be cooled by ice-cold water. When optimizing sonication conditions, use 

formaldehyde cross-linked samples, keep sample volume constant and before analysis of the 

DNA length de-crosslink and PCI extract. The resulting fragment size can be determined by 

agarose gel electrophoresis. 

 

 2.5.2.1: How much antibody is required to load the beads needs to be determined 

empirically. This can be done by using the ChIP signal as read out, or – if little is known 

about the expected signals - by determining the ratio of antibody to extract, required to 

cause detectable depletion of the antigen from the extract. 

 

 2.5.2.2: Beads can be chosen from a wide range of products. We recommend the 

use of Dynabeads over regular agarose beads, because of better recovery rates and lower 

background (i.e. non-specific precipitation of target DNA by the beads). Protein A or Protein 

G coated beads are versatile, because they interact with a large range of different 

antibodies. To reduce non-specific interactions a pre-clearing step is recommend by some 

protocols, when using Protein A/G beads. We prefer to use pan mouse IgG or pan rabbit IgG 

beads (M-280, Dynabeads). Finally, we observed that adding Salmon sperm DNA (2mg/ml) 

to the PBS/BSA blocking solution can further increase the signal/background ratio, but will 

also, as a side effect, decrease the absolute signal intensity. 

 

 2.5.3.1: After protein and RNA removal, earlier protocols recommended an additional 

Phenol/Chloroform/isoamylalcohol extraction. However, we found that it can be safely 

omitted. 
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 2.5.4.1: Duplicates of PCR reactions typically differ by less than 10%. (The SYBR 

GREEN Supermix contains 20nM fluorescein, which allows the iQ5 to correct for small volume 

differences caused by pipetting errors). 

 

 2.5.4.2: If significant differences between duplicates occur, it is possible to spin the 

samples briefly directly before loading to avoid incompletely dissolved DNA. One may also 

consider increasing the volume of the loaded DNA from 3 to 6µl, depending on the 

availability of high precision pipettes. 

 

 2.5.4.3: We design all primer pairs to work with the same PCR program. To achieve 

this, our primers are 20 nucleotides long, have a GC content between 50 and 55% and a Tm 

>55 and <61°C. The product length can be between 100 and 500 nucleotides (ideally below 

200 to insure rapid and complete amplification). Before a new primer pair is accepted, it is 

tested for efficient amplification and for the absence of primer dimers under our exact qPCR 

conditions. We use currently Pr mer3, a computational tool developed to help with the 

design of oligonucleotide primers[125]. 

i
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7.1.2 Kinetics of the meiotic nuclear cell divisions for the mutant 

yeast strains used during this study. 
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Yeast mutant strains like rad50S, mre11S, mre11-H125N or com1∆, unable to 
process meiotic DSBs, present a poor-sporulation phenotype. 
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7.1.3  Materials and chemicals used during this study: 

 
chemicals/materials supplier product 

number 
   

Sterilization filters 0.20um Iwaki/Asahi technoglass #2052-025 

bacteriological agar Oxoid LP0011 

Sarstedt petridishes 8.4cm Sarstedt #821473 

Yeast Extract Oxoid LP0021 

neutralized bacterological 
peptone 

Oxoid LP0034 

(+)D-glucose (dextrose) Fluka/BioChemika #49159 

Difco yeast nitrogen base 
(w/o AA,AS) 

Difco #233520 

potassium acetate Merck #104820 

ammonium sulphate Merck #101217 

potassium biphthalate 
(potassium hydrogen 
phthalate) 

Merck #104874 

polypropylene glycol P2000 Fluka #81380 

Glycerol ReagentPlus Sigma-Aldrich G7757 

Casamino acids Difco #223120 

Monosodium glutamate (L-
glutamic acid, monosodium 
salt) 

Sigma-Aldrich G1251 

Geneticine G418 sulphate Calbiochem #345810 

ClonNat (nourseothricin) Werner BioAgents #5.0000 

Cycloheximide Sigma-Aldrich C1988 

Ampicillin, sodium salt Sigma-Aldrich A9518 

Sodium chloride (NaCl) Merck #106404 

Photospectrometer Hitachi Digilab U-2800 

Triple-baffled Fernbach flasks Bellco (via Dunn Labortechnik) #2543-60000 

Lithium acetate, dihydrate Sigma-Aldrich L6883 

Polyethylene glycol MW3350 Sigma-Aldrich P3640 

salmon sperm DNA (low MW) Fluka/BioChemika #31149 

Zymolyase 20T Seikagaku #120491 

Zymolyase 100T Seikagaku #120493 

Dithithreitol (DTT) Sigma-Aldrich D9779 

Leitz mechanical 
micromanipulator 

Leica none 

D(-)Sorbitol Merck #107758 

Sonicator (Bandelin Sonopuls) Bandelin UW2070 

DAPI (4',6-diamidino-2-
phenylindole) dihydrochloride 

Sigma-Aldrich D9542 

Calciumchloride, dihydrate Merck #102382 

PIPES   
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Fermentas Taq polymerase 
(1u/µl) 

Fermentas EP0404 

Novagen KOD DNA 
polymerase 

Novagen #71085-3 

Diemethylsulfoxid (DMSO) Merck #102931 

Phusion HotStart HiFi 
polymerase 

Finnzymes F-540 

PCR tubes, 200µl Sarstedt #72.737.002 

PCR tubes, 500µl Sarstedt #72.735.002 

mineral oil (heavy white oil) Sigma-Aldrich #330760 

Phenol, liquefied and tris 
saturated pH8 

Biomol #50734 

Chloroform Merck #102445 

Isoamylalcohol Merck #100979 

Ethanol, 96% Merck #100971 

Isopropanol (2-propanol) Merck #109634 

Sodium acetate, trihydrate Merck #106267 

Ammonium acetate Merck #101116 

Tris, ultrapure AppliChem A1086 

EDTA (Titriplex, 
Ethylenedinitrilotetraacetic 
acid) 

Merck #108417 

HCL (hydrochloric acid), 32% Merck #100319 

acetic acid, glacial (100%) Merck #100063 

QIAquick PCR Purification Kit Qiagen #28104 

QIAquick Gel Extraction Kit Qiagen #28704 

Agarose LE (low 
electroendosmosis), analytical 
grade 

Promega V3125 

BSA (10mg/ml;100x) for 
restriction digests 

New England BioLabs B9001S 

Sucrose (saccharose) Merck #107654 

Orange G Sigma-Aldrich O3756 

GeneRuler 1kb DNA Ladder Fermentas SM0311 

GeneRuler 50bp DNA Ladder Fermentas SM0371 

PageRuler Prestained Protein 
Ladder 

Fermentas SM0671 

UV transilluminator Appligene none 

Ethidium bromide Sigma-Aldrich E7637 

Calf Intestine Alkaline 
Phophatase (CIP) 

Fermentas EF0341 

T4 DNA Ligase (including 10x 
buffer) 

Fermentas EL0015 

SDS, Dodecyl sulfate sodium 
salt 

Merck #113760 

sodium hydroxide, p.a. Merck #106498 

RNase A Roche Applied Science #109169 

potassium hydroxide, p.a. Merck #105033 

Bio-Rad Protein Assay 
(Bradford) 

BIO-RAD #500-0006 
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KimWipe (Kimtech Science 
Tissue Wipers) 

Kimberly-Clark Professional #05511 

Lithium chloride Merck #105679 

Rnase, Dnase free, High 
Concentration (10mg/ml) 

Roche Applied Science #11579681001 

Proteinase K, recombinant, 
PCR grade, lyophilizate 

Roche Applied Science #03115879001 

Capillary plastic pasteur pipet, 
3.5ml, 20µl, sterile 

MBT #297804239 

Hexamminecobalt trichloride 
(CoHex) 

Fluka/BioChemika #52738 

β-mercaptoethanol, 2-
Mercaptoethanol 

Sigma-Aldrich M-3148 

Hexadecyltrimethylammonium 
bromide (CTAB) 

Fluka/BioChemika #52365 

Polyvinylpyrrolidone, MW 
40000 (PVP40) 

Sigma-Aldrich PVP40 

Polyvinylpyrrolidone, MW 
360000 (PVP360) 

Sigma-Aldrich PVP360 

Magnesium chloride 
hexahydrate 

Merck #105833 

di-Potassium hydrogen 
phosphate trihydrate 

Merck #105099 

Potassium dihydrogen 
phosphate 

Merck #104873 

Spermidine Sigma-Aldrich S0266 

Amersham Hybond-N+ GE Healthcare RPN303B 

VacuGene XL Vacuum Blotting 
Unit 

GE Healthcare #80-1266-24 

VacuGene XL Blotting Pump 
(220VAC) 

GE Healthcare #80-1265-15 

XhoI, High Concentration 
(50u/µl) 

Fermentas ER0693 

EcoRI, High Concentration 
(50u/µl) 

Fermentas ER0273 

BglII (10u/µl) Fermentas ER0082 

Ficoll 400 Fluka/BioChemika #46324 

Bromophenol blue Sigma-Aldrich B8026 

Xylene cyanol FF Sigma-Aldrich X4126 

UV Stratalinker 2400 Stratagene #2400 

High Prime DNA labeling kit Roche Applied Science #11585584001 

[a-32P]dATP 10mCi/ml 
6000Ci/mmol 

Amersham Biosciences AA0074 

Dextran sulfate, 500kDa GE Healthcare/USB #70796 

Syringes, 0.01ml/1ml, 
Omnifix-F 

B.Braun  

Sephadex G-50 Sigma-Aldrich G5080 

di-Sodium hydrogen 
phosphate (Na2HPO4´) 

Merck #106586 

Sodium dihydrogen phosphate 
dihydrate (NaH2PO4*2H2O) 

Merck #106342 

Phosphor screen, unmounted, 
general purpose (20x25cm) 

GE Healthcare/Molecular Dynamics #63-0034-86 

Storage phosphor screen 
eraser 

BIO-RAD  
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Molecular Imager FX Pro Plus BIO-RAD  

Bovine serum albumin (BSA), 
fraction V 

Sigma-Aldrich A9647 

Trichloroacetic acid Sigma-Aldrich T9159 

Urea Amresco #0378 

glass beads, diameter 0.40-
0.60mm 

Sartorius BBI-8541701 

Vibrax IKA VXR 

Ammonium persulphate, APS Sigma-Aldrich A-3678 

TEMED Sigma-Aldrich T-9281 

Acrylamide/Bisacrylamide 
solution (29:1, 3.3%C), 40%T 

BIO-RAD #161-0146 

Glycine AppliChem A1067 

Methanol, pure NEUBER #441992 
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