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List of Symbols

N the set of all positive integers
R the set of all reals
R R ∪ {±∞}
P(0, 1] the set of all probability measures on (0, 1]
P[0, 1] the set of all probability measures on [0, 1]
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a ∧ b minimum of real numbers a and b
a ∨ b maximum of real numbers a and b
a.s.→ convergence almost surely
p→ convergence in probability
d→ convergence in distribution
Xn

=
a Yn Xn − Yn

p→ 0
‖X‖p the Lp-norm of a random variable X
I the identity function
1A the indicator function of the set A:

1A(x) =
{

1 if x ∈ A
0 if x /∈ A

F−1 the inverse distribution function corresponding to the distribution function F
F̂n empirical distribution function of a sample of size n from distribution function F
Gn empirical distribution function of a sample of size n from Uniform[0,1] distribution
Un Uniform empirical process i.e.

√
n(Gn − I)

U Brownian bridge: Un
d→ U

Vn The process
√
n(G−1

n − I)
V Brownian bridge −U
X ∼ F Random variable X follows the distribution F
X

d= Y Random variable X and Y follow the same distribution
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Chapter 1

Introduction

1.1 History/Risk functionals

Many economic activities such as trading of assets, design of contracts and
capital allocation decisions yield uncertain outcomes and different courses
of action result in different sets of possible outcomes. In fact, there have
been long going efforts to cope with risk stemming from such uncertainty-
whereby the aim is to quantify the abstract notion of (financial) risk and
thus provide tools for decision makers to control the possible losses resulting
from economic activities with uncertain outcomes. Under the assumption
that the stochastic profit/loss of the investment under consideration can be
modelled by a random variable X defined on a measure space (Ω,F), a risk
functional associates to such a stochastic variable some numerical value.

Consequently, a risk functional R is an extended real valued mapping on
(sub-)space of all real valued measurable functions, which we denote by X .
Before commencing with a more precise definition of such risk functionals,
in terms of its domain, the values it may take and the properties it should
possess to yield meaningful results, we consider some commonly known and
applied examples of risk functionals. For this purpose, let us assume that
X represents a profit variable (i.e. higher values are preferred) and consider
acceptability functionals instead of risk functionals which are counterparts of
measures of risk in the sense that a risk averse decision maker wants to max-
imize acceptability or equivalently minimize risk i.e. if A is an acceptability
measure, then −A is a measure of risk and vice versa.)

As a first example, we consider variance corrected expectation

A(X) = E(X)− δ[E(X2)− (E(X))2],

(where δ is a risk weight), which was proposed by Markowitz [38], and is
known to be one of the earliest acceptability functionals. It forms an inte-
gral part of the well known µ−σ analysis in portfolio composition theory and
has received much attention in academics as well as in practical applications.
However, it has the severe drawback that it penalizes also ”positive devia-
tions” as risk. Further, it also violates the requirements of being a coherent
functional as it is not positively homogenous and not monotonic.)

Another extensively used acceptability functional is Value at Risk (at
level α) denoted as V@Rα. It was introduced by JP Morgan [13] and is
defined as the α quantile of the profit (i.e. negative of the loss) distribution.
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V@Rα is widely used in the industry and is in fact, also part of the financial
regulations (see e.g. the Basel accord documented in [9]). However, it also
has its shortcomings. In particular, its non-concavity may lead to a situation
where

V@Rα(X + Y ) < V@Rα(X) + V@Rα(Y ),

meaning that acceptability of a more diversified portfolio is smaller. Put in
other words V@R may penalize diversification – a property not in line with
the general requirements for a meaningful risk functional. See [6] and [15]
for a more detailed discussion. Further, in many a applications like portfolio
optimization, Value at Risk often figures in an optimization problem either
as part of the constraints or in the objective function and the property of it
being non-concave renders these problems of optimization computationally
intractable. (See e.g. [26, 37, 57, 28, 60])

In an attempt to identify the properties, that a risk functional should
desirably fulfill, Arztner et. al. introduced the concept of coherent risk
functionals on finite spaces ([5, 6]), which was later generalized by Delbaen
to general spaces [16]. This frame-work was further extended leading to
the definition of convex risk measures (see e.g. [22, 24, 51]), law-invariant
or version independent risk functionals [35]. Risk measures satisfying these
properties like (negative of) average value at risk (introduced in [46, 2] and
identified as a coherent risk measure in [40]), expectation corrected lower
deviation (see e.g. [50, 43]) have found their way to wide ranging applications
in the financial industry e.g. in portfolio optimization, asset pricing, capital
allocation problems, performance analysis and evaluation etc (see [20, 14,
7, 33, 34, 52]). In this work, we will focus on the class of coherent and
law-invariant functionals.

1.2 Coherent risk functionals

Let (Ω,F,P) be a probability space and X a linear space of real valued, F

measurable functions. An acceptability functional is a mapping A :X → R =
R∪ {±∞}. According to Arztner et. al [6], such an acceptability functional
is said to be coherent if it satisfies the following properties:

A1 Concavity: ∀X,Y ∈ X , λ ∈ [0, 1]

A(λX + (1− λ)Y ) ≥ λA(X) + (1− λ)A(Y )

A2 Monotonicity: If X ≤ Y a.s. then A(X) ≤ A(Y )

A3 Translation equivariance: A(X + a) = A(X) + a

A4 Positive Homogeneity: If λ > 0 then A(λX) = λA(X).
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We mention here that we will assume X to be a profit variable instead
of loss variable. If Y corresponds to a loss variable then X = −Y can be
considered. Further, like mentioned before, in this work acceptability func-
tionals will be considered instead of risk functionals - if A is an acceptability
measure, then −A is a measure of risk and vice versa i.e. the aim of minimiz-
ing risk can equivalently be stated as that of maximizing acceptability. (It
maybe mentioned that since the aim is to establish the asymptotic properties
of empirical estimators of such functionals, it suffices to consider acceptabil-
ity functionals for profit variables.) The concept of coherence was originally
developed for risk functionals (see [6]), however, it can easily be seen that
for a coherent acceptability functional A, the mapping R = −A, from X to
R = R ∪ {±∞}, will yield a coherent risk functional, i.e. it will satisfy

R1 Convexity: ∀X,Y ∈ X , λ ∈ [0, 1]

R(λX + (1− λ)Y ) ≤ λR(X) + (1− λ)R(Y )

R2 Monotonicity: If X ≤ Y a.s., then R(X) ≥ R(Y )

R3 Translation antivariance: R(X + a) = R(X)− a

R4 Positive Homogeneity: If λ > 0, then R(λX) = λR(X).

Following are some commonly used examples of coherent acceptability
functionals. The proof that these functionals indeed satisfy the properties
[A1]-[A4], can be found in [42, 43, 51].

Example 1.1. For X ∈ L1(Ω,F,P), Average Value at Risk at level α for
α ∈ [0, 1], denoted by AV@Rα(X), is defined as

AV@Rα(X) =
{

1
α

∫ α
0 F−1(t)dt, α ∈ (0, 1]

sup{x|F (x) = 0}, α = 0,
(1.1)

where F−1 is the inverse distribution function corresponding to the distri-
bution function F of X, i.e.

F−1(t) = inf{x : F (x) ≥ t}, t ∈ (0, 1).

This functional, also referred to as the Conditional Value at Risk (in [46]), or
as Expected Shortfall [2], basically gives the average over the worst (100α)%
of the outcomes. This functional being coherent- in specific concave over-
comes the drawbacks of Value at Risk. Further we will see that it also better
asymptotic properties than Value at Risk, since it averages over all the values
below the α quantile, while Value at Risk is just the α quantile itself.

Example 1.2. Let X ∈ L1(Ω,F,P), then Expectation corrected mean absolute
deviation functional is defined as

A(X) = E[X]− c|X − E(X)|,
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where c ∈
[
0, 1

2

]
. This functionals measures the absolute deviations from the

mean (corrected with the expectation). More generally, for X ∈ Lp(Ω,F,P),
the functionals based on p-th central absolute moment can be considered,
i.e.

A(X) = E[X]− c ||X − E(X)||p ,

where ||[X − E(X)]||p = E [|X − E(X)|p]1/p and c ∈
[
0, 1

2

]
.

Example 1.3. Let X ∈ L2(Ω,F,P) then Expectation corrected lower semi-
deviation is defined as

A(X) = E(X)− Std−(X),

where Std−(X) =
(
E([X − E(X)]−)2

)1/2 and [Y ]− = −min(Y, 0). This func-
tional corresponds to measuring the negative deviations from the mean. This
measure is an improvement to the Expectation corrected Variance, as an ac-
ceptability functional it does not penalize positive deviations. Further, unlike
variance such functionals are positively homogenous as well as monotonic-
in fact, these functionals are coherent. Instead of lower semi-deviation, more
generally expectation corrected p-th lower partial moment may be considered
i.e. for X ∈ Lp(Ω,F,P)

A(X) = E(X)−
∣∣∣∣[X − E(X)]−

∣∣∣∣
p
.

Such acceptability functionals based on one sided moments were first con-
sidered in [21].

Various other properties besides [A1]-[A4], have been studied in the lit-
erature for acceptability functionals (see [42, 43]) for example:

A5 Comonotone additivity: For any two comonotone random variables X,
Y

A(X + Y ) = A(X) +A(Y ).

A7 Strictness: A(Y ) ≤ E(Y ).

A6 Law invariance: ifX and Y have the same distribution, denoted by
X

d= Y , then A(X) = A(Y ). This property is also referred to as
version independence.

A8 Dominance

• Isotonicity w.r.t. first order stochastic dominance: X ≺FSD Y
implies A(X) ≤ A(Y ), where X ≺FSD Y denotes that X is
dominated by Y in the first order sense, i.e. E[U(X)] ≤ E[U(Y )]
for all non decreasing U for which the integrals exist.
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• Isotonicity w.r.t. second order stochastic dominance: X ≺SSD

Y implies A(X) ≤ A(Y ), where X ≺SSD Y denotes that X
is dominated by Y in the second order sense, i.e. E[U(X)] ≤
E[U(Y )] for all non decreasing concave U for which the integrals
exist.

The property [A5] and [A6] will be of relevance in this work- more pre-
cisely, if a functional A satisfies properties [A1]-[A5], i.e. is coherent and
comonotone additive, then in the dual representation (given in (1.2) and
(1.3) below), the set over which the infimum is taken, turns out to be a
singleton set and for this case the asymptotic analysis reduces to the case of
considering a linear combination of order statistics. If A satisfies properties
[A1]-[A4] and [A6], then A(X) can be equivalently be expressed in terms
of the distribution function F of X, as we will see in Chapter 2. For fur-
ther reading and a deeper insight on the topic of risk functionals following
literature, serves as a good starting point [6, 16, 24, 42].

1.3 Dual representation

Definition 1.1. An acceptability functional, A is said to be proper if
A(X) <∞ ∀X ∈ X and dom(A) = {X ∈ X |A(X) > −∞} 6= ∅.

It is evident that proper risk functionals will correspondingly take values
only on R ∪ {+∞}.

Coherent functionals, i.e. functionals satisfying properties [A1]-[A4], if
they are additionally proper and lower semi-continuous have a dual repre-
sentation. In this Section, we will review the standard results concerning
these representations, following the approach in [42] and [50].

We will assume that X = Lp(Ω,F,P) for some p = [1,∞] and that Z
is the dual space such that < X ,Z > is a dual pairing. More precisely, for
X = Lp(Ω,F,P) with p ∈ [1,∞), the dual space Z is given by Lq(Ω,F,P)
with q satisfying 1

p + 1
q = 1 and the dual pairing by

< X,Z >=
∫

Ω
X(ω)Z(ω)dP(ω) = E(XZ).

For X = L∞(Ω,F,P), the dual space Z is given by the space of all finite
signed measures on (Ω,F) such that∫

Ω
|X(ω)|d|µ(ω)| <∞,∀X ∈ X , ∀µ ∈ Z

where |µ| is the total variation measure i.e. |µ| = µ+ +µ− and µ = µ+−µ−
is the Jordan decomposition of µ.

By Fenchel-Moreau theorem, which states that for a proper, concave and
upper semi-continuous function the bi-dual of the function is the functional
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itself (see [8, 45]), it can be derived that for X = Lp(Ω,F,P) with p ∈ [1,∞],
that a proper, upper semi-continuous, coherent functional has the following
dual representation (see [50, 42, 6, 22, 47])

- for p ∈ [1,∞),

A(X) = inf
{∫

Ω
X(ω)Z(ω)dP(ω) : Z ∈ Z

}
, (1.2)

where each Z ∈ Z ⊆ Lq(Ω,F,P) with 1/p + 1/q = 1 satisfies that
Z ≥ 0 a.s. and

∫
Ω Z(ω)dP(ω) = 1.

- for p = ∞

A(X) = inf{
∫

Ω
X(ω)dµ(ω) : µ ∈ D}, (1.3)

with D being a set of probability measures on (Ω,F).

Such dual representation theorems can also be derived for acceptability func-
tionals defined on more general spaces, see for example [42, 51] for further
reading.

Recollect that an acceptability functional A is said to be law invariant
or version independent if it only depends on the distribution function of the
random variable, i.e.

A6 if X d= Y then A(X) = A(Y )

and in this case, we will also denote it by A[F ] where F is the distribution of
X (and also of Y ). Since law-invariant functionals do not explicitly depend
on the measure space, one can consider it as a functional of the distribution
of the profit variable and use the empirical distribution to estimate it. In
Chapter 2, we see that if (Ω,F,P) is assumed to be non atomic, then for
X = Lp(Ω,F,P), with p ∈ [1,∞], there exists a representation for coherent
and law-invariant functionals in terms of the distribution function of the
random variable, (see [42, 35]) i.e.

A(X) = A[F ] = inf

{∫
(0,1]

AV@Rα[F ]dm(α) : m ∈M0

}
, (1.4)

where M0 is a subset of P(0, 1] the set of all probability measures on (0, 1],
F is the distribution of X and AV@Rα(F ) is defined in (1.1) i.e.

AV@Rα(X) ≡ AV@Rα[F ] =
{

1
α

∫ α
0 F−1(t)dt, α ∈ (0, 1]

sup{x|F (x) = 0}, α = 0,

provided the first moment under F exists, i.e.
∫∞
−∞ |u|dF (u) < ∞. This

result will be discussed in more detail in Chapter 2.
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1.4 A summary of this work

In this thesis, the asymptotic properties of empirical estimator for the ac-
ceptability functional with representation like in (1.4) are investigated. If
in (1.4) the distribution F is replaced by the empirical distribution function
F̂n, then one gets a empirical estimator for the acceptability function i.e.

A[F̂n] = inf

{∫
(0,1]

AV@Rα[F̂n]dm(α) : m ∈M0

}
, (1.5)

In other words, for a random sample X1, . . . Xn, where each Xi follows the
distribution function F , the empirical distribution function F̂n (see Definition
(2.4)), gives an estimator A[F̂n] for A at F . Our aim is to consider the
conditions under which this estimator exhibits the ’right’ behavior as the
sample size n increases. More precisely, we will deal with the following two
issues

• Consistency: Does A[F̂n] converge to A[F ] as n→∞? (The appropri-
ate notions of convergence, will be introduced in the Chapter 2.) This
is obviously a desired property of the estimator that it converge to the
true value with increasing sample size.

• Asymptotic distribution of this estimator: We will consider the condi-
tions under which a limiting distribution for

√
n(A[F̂n]−A[F ]) exists

and derive the limit distribution itself. A limit distribution can be used
for constructing confidence intervals for the unknown value of A[F ]).

We will see that although all functionals in this class owing to coherence,
share the properties of concavity, monotonicity, positive homogeneity and
translation equivariance, they do not share the same asymptotic behavior.
For the asymptotic properties, the following properties will prove relevant:

(a) The mass that measures in M0 assign to a neighborhood of zero.

(b) The tail behavior of F.

(c) For the asymptotic distribution, also the uniqueness of the minimizer
in (1.4), if it exists.

The above essentially follows from the observation that,∫
(0,1]

AV@Rα[F ] dm(α) =
∫ 1

0
F−1(t)Jm(t) dt, (1.6)

where Jm(t) :=
∫
(t,1]

1
αdm(α) for 0 ≤ t ≤ 1. Note that Jm is a non-increasing

function on [0, 1]. In fact, it is clear that as t approaches 0, Jm can potentially
grow large, while on the other hand near to 1, it is bounded. For this reason,
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the asymptotic distribution of the estimators of these functionals depends,
among other factors, on the behavior of Jm near to 0 i.e. the mass that
measures in M0 assign to a neighborhood of zero and the left tail behavior
of F (i.e. F−1 near to 0.) Therefore, we will see that one of the conditions
required to ensure finite asymptotic variance, is that the measures in M0

and F−1 should ’together’ satisfy some bounded growth conditions. (In the
case that the set of measures M0 is not a singleton, we will need condition
to hold even uniformly.) Hence, for distribution functions F with bounded
support the conditions for establishing asymptotic behavior will be much less
stringent.

We will further see that if the minimizer is not unique, one can not
expect an asymptotic normal distribution. This justifies separating the case
when A is a comonotone additive functional (in which case, the set M0 is a
singleton) and the not comonotone additive case. In fact, in view of (1.6),
one can write the empirical estimator A[F̂n] of A[F ] in terms of the of order
statistics i.e. ∫

(0,1]
AV@Rα[F̂n]dm(α) =

∫ 1

0
F̂−1

n (t)Jm(t)dt

=
1
n

n∑
i=1

cniXn:i,

where cni := n
∫ i

n
i−1
n

Jm(t)dt for 1 ≤ i ≤ n. (See Section 3.3.3 for further de-

tails). Hence, for the comonotone additive case, one can use Limit Theorems
developed for L-statistics (see [54] or Theorem 19.1.1 of [55]) in analyzing
asymptotic behavior of the corresponding empirical estimator. However, to
analyze the non-comonotone additive case, i.e. when a family of weighting
functions {Jm}m∈M0 , are involved we will extend these classical results to a
uniform version.

This Thesis is structured as follows: Chapter 2 deals with representation
result discussed in (1.4), introduces the empirical estimators that we want to
consider and the setting for the asymptotic analysis of these estimators i.e.
the assumptions and notations. Chapter 3 deals with issue of consistency of
these estimators while in Chapter 4 the issue of asymptotic distribution is
considered. Some of the longer proofs are relegated to the Appendices.
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Chapter 2

Framework

In this chapter, we will consider coherent law invariant risk functionals dis-
cussed in Section 1.3, for which there exist a representation in terms of the
distribution function of the considered variable, (see Theorem (2.1) below).
The law-invariance property allows an acceptability functional to be viewed
as a functional on the space of distribution functions. This representation,
also referred to as Kusuoka representation, will serve as the mainstay of our
analysis, in the sense that we will focus on functionals that can be repre-
sented in this form. In fact, the representations of coherent version indepen-
dent risk functionals (2.1) and (2.2) below, enable convenient application of
the empirical process theory tools to investigate their asymptotic properties,
as shown in the next Chapters. We will see empirical estimators of these
functionals can be written in terms of the order statistics, facilitating the
use of classical limit theorems developed for L-statistics (i.e. linear combina-
tion of order statistics) to derive the properties of these estimators, at least
for the comonotone additive case. (For the general case, we give an exten-
sion of these classical results in Chapter 4).) We will conclude this Chapter
with some assumptions and notations, providing the framework required for
studying the asymptotic behavior of these estimators.

2.1 Representation of coherent law invariant risk
functionals

Let Fk denote the set of all distribution functions F on R for which the k-th
moment exists, i.e.

F ∈ Fk ⇐⇒
∫ ∞

−∞
|u|kdF (u) <∞.

In the following we will restrict our attention to acceptability functionals A
with domain Lp(Ω,F,P), p ∈ [1,∞] where the probability space (Ω,F,P) is
non-atomic.

Theorem 2.1. Let A be a coherent version independent functional defined
on X = Lp(Ω,F,P), p ∈ [1,∞]. If A has a dual representation of the form
(1.2) for p ∈ [1,∞), or (1.3) for p = ∞, then for any X ∈ X with distribution
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function F ∈ F1,

A(X) = inf

{∫
(0,1]

AV@Rα[F ]dm(α) : m ∈M0

}
, (2.1)

where M0 is a subset of P(0, 1], the set of all probability measures on (0, 1]
and AV@Rα[F ] is as defined in (1.1). Further, if the mapping A is comono-
tone additive (i.e. for X, Y comonotone random variables, A(X + Y ) =
A(X) +A(Y )), the set M0 in (2.1) is a singleton and therefore

A(X) =
∫

(0,1]
AV@Rα[F ]dm(α). (2.2)

Proof. See Theorem 2.45 in [42] for p ∈ [1,∞) and [35] for p = ∞. (The
proof of Theorem 2.45 in [42] has also been given in the Appendix A.)

Note that for any X with distribution function F, and any p ∈ [1,∞],

X ∈ Lp(Ω,F,P) ⇐⇒ F ∈ Fp,

as both state the existence of the p-th moment. Further, F ∈ Fp, for some
p ∈ [1,∞], implies that F ∈ F1 (by Hölder′s inequality) and this will be
often our minimum requirement on F , i.e. that the first moment under F
exist. In fact, this assumption is also justified by the occurrence of AV@R
in the representation (2.1), as AV@R1[F ] is the expectation under F .

Since the representation of version independent coherent functionals as
functions of AV@R, like in (2.1), first occurred in a paper by Kusuoka (see
[35]), we will refer to the representations of this kind as ’Kusuoka represen-
tation’. Functionals of the sort (2.2) have also been studied under the name
of Spectral risk measures in [1], Weighted V@R in [12] and Distortion risk
functionals in [41]. In the next chapters, we will analyze the asymptotic
behavior of empirical estimators of coherent and law invariant functionals of
the form (2.1) and (2.2).

Next we look at the Kusuoka representation of some of the well-known ex-
amples of acceptability functionals. These examples are discussed in Chapter
2 of [42].

Example 2.1. (Expectation corrected lower semi-deviation.)
Let Y ∈ L2(Ω,F,P). Consider

A(Y ) = E(Y )− Std−(Y ),

where Std−(Y ) =
(
E([Y − E(Y )]−)2

)1/2. (Such acceptability functionals
based on one sided moments were first considered in [21].) It is known that
its dual representation is given by

A(Y ) = inf{E[Y Z] : Z = 1 + V − EV ;V ∈ V}, (2.3)
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where V = {V : V ≥ 0, ‖V ‖2 = 1} (see [43] and [51]). The Kusuoka
representation for this functional is

A(Y ) = inf{
∫

(0,1]
AV@Rα[F ]dm(α) : m ∈M0},

where Y ∼ F ∈ F2 and

M0 =

{
m ∈ P(0, 1] :

∫
(0,1)

∫
(0,1)

min(v, w)
vw

dm(v) dm(w) = 1

}
.

Example 2.2. (Mean deviation functional.)
Let Y ∈ L1(Ω,F,P) and consider

A(Y ) = E[Y ]− cE [|Y − E(Y )|] , c ∈
[
0,

1
2

]
,

for which the dual representation is given by (see [43] and [51])

A(Y ) = inf{E[Y Z] : Z = 1 + V − E[V ], ||V ||∞ ≤ c}.

The Kusuoka representation for this functional is given as

A(Y ) = inf{
∫

(0,1]
AV@Rα[F ]dm(α) : m ∈M0},

where Y ∼ F ∈ F1 and

M0 =

{
m ∈ P(0, 1] :

∫
(0,1)

1
v
dm(v) ≤ c

}
.

2.2 Assumptions and notations

We now introduce a few concepts and terminology from asymptotic statistics
required in this analysis. We start with some concepts of convergence:

Let {Xn}n∈N be random elements defined on a probability space (Ω,F,P)
taking values in some metric space (D, d).

Definition 2.1. Xn is said to P-converge almost surely ( a.s.) to X, denoted
by Xn

a.s.→ X, if for every ω ∈ Ω\A, where A is a set with P(A) = 0, it holds
that

Xn(ω) → X(ω) as n→∞.

Almost sure convergence is also referred to as convergence with proba-
bility 1.
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Definition 2.2. Xn is said to converge in probability to X, denoted by
Xn

p→ X, if for every ε > 0

P(ω : d(Xn(ω), X(ω)) ≥ ε) → 0 as n→∞.

This definition requires the metric space D where Xn, X take values to
be separable, since then the mapping d(Xn, X) is a measurable mapping.
(See page 225 of [10] for a proof). However, when D is a normed space,
(with norm || · ||), then coninuity of the norm as a function from D to R and
measurability of Xn−X, yields the measurability of the mapping ||Xn−X||.
(This will our setting- D will be the normed space of all bounded functions
on M0, equipped with the supremum norm, where M0 is the set of measures
occurring in (2.1)).

We also mention that, we will often make use of the following equiva-
lent condition to prove convergence in probability of a sequence of random
variables (see Corollary 4.13 in [19])

Lemma 2.1. For {Xn}n≥1 and X measurable maps defined on the proba-
bility space (Ω,F,P) and taking values on a normed space (or a separable
metric space), Xn

p→ X iff for every subsequence of Xn, there exist a further
subsequence converging P-almost surely to X.

Proof. We will only show the reverse implication. Let ε > 0. There exists a
subsequence {Xnk

}k≥1 of Xn, which satisfies that

P({‖Xnk
−X)‖ > ε}) k→∞−→ lim sup

n→∞
P({‖Xn −X‖ ≥ ε}).

Now by our assumption corresponding to Xnk
, there exists a further subse-

quence Xnkl
which converges a.s. to X. Therefore

P({‖Xnkl
−X‖ ≥ ε}) → 0 as l→∞

and hence lim supn→∞P({‖Xn −X‖ ≥ ε}) = 0.

Thus, we also see that almost sure convergence implies convergence in
probability.

Definition 2.3. Xn is said to converge in distribution to X, denoted by
Xn

d→ X, if
E(f(Xn)) → E(f(X)) for every f ∈ Cb(D),

where Cb(D) denotes the space of all real valued, continuous and bounded
functions on D.

In fact the following remark connecting the convergence in probability to
convergence in distribution will prove useful in our analysis. (See Theorem
4.3 of [10] for a proof.):
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Remark 2.1. ForXn,X measurable mappingsXn
p→ X implies thatXn

d→ X.

Further, if for some constant c ∈ R, Xn
d→ c then Xn

p→ c.

If D = R, then in fact also the following holds (see page 24 in [10] or
Section 25 in [11])

Theorem 2.2. Xn converges in distribution to X iff Fn(x) → F (x) for
every continuity point x of F as n→∞.

We will introduce further theorems related to these concepts as and when
required.

Next we define the empirical distribution function of a sample:

Definition 2.4. For an independent and identically distributed (i.i.d.) sam-
ple X1, . . . , Xn of size n, where each Xi has distribution function F (denoted
as X ∼ F ), the empirical distribution function is defined as

F̂n(x) =
1
n

n∑
i=1

1(−∞,x](Xi), x ∈ R. (2.4)

Definition 2.5. The inverse distribution function of F , F−1 : (0, 1) → R is
defined as:

F−1(t) = inf{x : F (x) ≥ t}, t ∈ (0, 1). (2.5)

We will denote by X1:n ≤ . . . ≤ Xn:n the order statistics of the random
sample X1, . . . , Xn i.e. Xk:n will be the k−th minimum of the sample (of
size n) or equivalently

Xk:n = F̂−1
n (

k

n
).

We will assume that Xi are of the form Xi = F−1(ξi) for i.i.d. Uniform
(0,1) random variables ξi defined on a common probability space (Ω,F,P),
where F−1 is the inverse distribution function of F . Note that the distribu-
tion of each F−1(ξi) is again F :

Remark 2.2 (The inverse transformation). If ξ ∼Uniform(0,1) defined on
(Ω,F,P), then for a fixed distribution F , X := F−1(ξ) has distribution
function F . In fact

{X ≤ x} = {ξ ≤ F (x)}. (2.6)

Proof. This is Theorem 1.1 in [55]. The proof is as follows:

ξ ≤ F (x) =⇒ X = F−1(ξ) ≤ x, −∞ < x <∞

by (2.5). On the other hand if X = F−1(ξ) ≤ x then for every ε > 0,
F (x+ ε) ≥ ξ. Hence, we have shown that (2.6) holds; that is the events are
equal and hence, P{X ≤ x} = P{ξ ≤ F (x)} = F (x).
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We will denote by Gn the empirical distribution and by Un the empirical
process corresponding to ξ1, . . . ξn respectively i.e.

Gn(t) =
1
n

n∑
i=1

1(−∞,t](ξi) for 0 ≤ t ≤ 1 (2.7)

and
Un(t) =

√
n [Gn(t)− t] for 0 ≤ t ≤ 1. (2.8)

It is known that the process Un converges in distribution to a Brownian
bridge, U, denoted as Un

d→ U and the process Vn satisfies

Vn(t) :=
√
n
[
G−1

n (t)− t
] d→ V = −U. (2.9)

(See e.g. Theorem 16.4 of [10] or [55] for a proof.)
For a special construction this convergence can be enhanced to a.s. con-

vergence

Theorem 2.3. There exists a triangular array of row independent Uni-
form(0,1) random variables {ξn1, . . . , ξnn;n ≥ 1} and Brownian bridges U
that are all defined on the same probability space (Ω,F,P) for which

‖Un − U‖ a.s.→ 0

and
‖Vn − V‖ a.s.→ 0 (2.10)

where V = −U and U is a continuous function on (0,1).

Proof. See Theorem 3.1.1 in [55].

We will see that the above Theorem along with Theorem 2.4 and the
assumption that Xi = F−1(ξi) for i.i.d. Uniform (0,1) random variables
ξi, will prove to be an important tool in establishing the limit theorems of
the risk/acceptability functionals. The following theorem relates the empir-
ical distribution function based on a sample X1, . . . , Xn and that based on
F−1(ξ1), . . . , F−1(ξn) :

Theorem 2.4. The sequences of random functions F̂n (corresponding to a
random sample X1, . . . , Xn) and Gn(F ) on (−∞,∞) have identical proba-
bilistic behavior; denoted as

F̂n
d= Gn(F ).

Proof. See Theorem 3.1.1 in [55].

We will later argue that the assumption of Xi = F−1(ξi) is not restrictive
while establishing the asymptotic distribution of A(F̂n), especially in view
of Remark 2.2 and Theorems 2.3 and 2.4. When establishing the consistency
results, we’ll remark when this assumption is superfluous and otherwise the
appropriate modification in the results, when this assumption is pretermit-
ted.



19

Chapter 3

Consistency

We know that the empirical distribution function, F̂n

F̂n(x) =
1
n

n∑
1

1(−∞,x](Xi),

is a random variable for each x and by the Strong Law of Large Numbers,
it converges to F (x) with probability one, i.e.

F̂n(x) a.s.→ F (x). (3.1)

In fact, that this convergence is uniform for x ∈ [0, 1], is the classical
Glivenko-Cantelli Theorem (see Theorem 20.6 of [11]). In this chapter, we
will be concerned with same issue as in eq:CSLLN but for A[F̂n].

Given the empirical distribution function F̂n, and a law invariant ac-
ceptability functional A, (i.e. A depends only on distribution function (see
Property [A6] in Section 1.2), A[F̂n] gives an empirical estimate of A[F ].
In this section, we analyze the conditions under which this estimator also
converges to the ”right limit” i.e.

A[F̂n] a.s.→ A[F ] as n→∞.

In this case, A[F̂n], the empirical estimator of A[F ] is said to be strongly
consistent or that A is consistent at F . On the other hand, if

A[F̂n]
p→ A[F ] as n→∞

then A[F̂n] is a weakly consistent estimator of A[F ].
For a functional T that can be viewed as a functional on a subset of

distribution functions, we have the following two definitions: (see Section
1.4 and 2.6 of [31])

Definition 3.1. • T is said to be weakly continuous at F if

Fn
d→ F =⇒ T (Fn) → T (F ) as n→∞.

• T is said to be strongly consistent at F if

T (F̂n) a.s.→ T (F ) as n→∞.
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• T is said to be weakly consistent at F if

T (F̂n)
p→ T (F ) as n→∞.

It is clear from the above definition and from Glivenko Cantelli Theorem
(which gives the weak convergence of the empirical distribution function F̂n

to F a.s.), if T is weakly continuous at F , then T is consistent at F . (See
also Section 2.6 of [31]). In fact, for some of the functionals we consider
below, we establish the consistency by establishing weak continuity.

Though our focus would be on the analysis of law invariant coherent
functionals, we start with the example of Value at Risk. It is a law-invariant
but not a coherent acceptability functional. We consider this functional for
two reasons: firstly, as mentioned before, owing to its importance from the
point of view of application in the industry and secondly, since the Value
at Risk corresponds to the quantile function, the result obtained will be of
relevance in our further analysis.

3.1 Value at Risk

Value at Risk (at level α) denoted as V@Rα, was introduced by JP Morgan
[13] and is defined as the αth quantile of the profit (or negative of the loss)
distribution.

Definition 3.2. Value at Risk at level α for a random variable X with
distribution F is defined as

V@Rα[F ] = F−1(α), α ∈ (0, 1)

where F−1 denotes the quantile function (or inverse distribution function)
defined in (2.5)

As is evident from the definition, V@Rα depends only the distribution
function and hence is law invariant. However, for two random profit variables
X and Y , it may happen that

V@Rα(X + Y ) < V@Rα(X) + V@Rα(Y ),

which violates the sub-additivity property and hence V@R is not a coherent
functional. (See [6] and [15] for a more detailed discussion on this topic.)

Corresponding to the random sample X1, . . . , Xn, the empirical V@Rα,
is given by

V@Rα[F̂n] = Xi:n for
i− 1
n

< α ≤ i

n
, 1 ≤ i ≤ n.

The consistency of V@Rα(F̂n) follows from the well known result that the
empirical quantile function is a consistent estimator for the quantile func-
tion. For completeness’ sake we give here a proof of this classical result (see
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Theorem 1.3 of [55]). In fact, the following result, shows that the functional
V@Rα is weakly continuous provided α is a continuity point of F−1.

Proposition 3.1. For α ∈ (0, 1), V@Rα[Fn] → V@Rα[F ] as Fn
d→ F if α

is a continuity point of F−1.

Proof. : This proof is based on Theorem 1.3 of [55]. Let ε > 0 and choose x
such that F−1(α)− ε < x < F−1(α) with F continuous at x. Now

x < F−1(α) ⇒ F (x) < α

⇒ ∃N ∈ N : Fn(x) < α, n ≥ N

⇒ ∃N ∈ N : F−1
n (α) ≥ x, n ≥ N

⇒ ∃N ∈ N : F−1
n (α) ≥ x > F−1(α)− ε, n ≥ N

⇒ lim inf
n→∞

F−1
n (α) ≥ F−1(α).

Now let α′ > α and choose y such that F−1(α′) < y < F−1(α′) + ε with F
continuous at y.

α < α′ ≤ F ◦ F−1(α′) ≤ F (y) ⇒ ∃N ′ ∈ N : α ≤ Fn(y), n ≥ N ′

⇒ ∃N ′ ∈ N : F−1
n (α) ≤ y, n ≥ N ′

⇒ ∃N ′ ∈ N : F−1
n (α) ≤ y < F−1(α′) + ε, n ≥ N ′

⇒ lim supF−1
n (α) ≤ F−1(α′)

⇒ lim supF−1
n (α) ≤ F−1(α)

provided F−1 is continuous at α. Thus

lim
n→∞

F−1
n (α) = F−1(α) at all continuity points α of F−1. (3.2)

Now for the case that Fn is the empirical distribution function F̂n we get,

Corollary 3.1. For α ∈ (0, 1), V@Rα[F̂n] a.s.→ V@Rα[F ], if α is a continuity
point of F−1.

Proof. From the Glivenko -Cantelli theorem, we know that

sup
x∈(0,1)

|F̂n(x)− F (x)| a.s.→ 0 as n→∞,

and hence also that Fn(x) converges to F (x), for every continuity point of
F , i.e. by Theorem 2.2

F̂n
d→ F

and now the conclusion follows from Proposition 3.1.
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3.2 Average Value at Risk, AV@R

Recall that we denoted by F1 the class of all distribution functions for which
the first moment exists and for X ∼ F ∈ F1, the Average Value at Risk,
AV@R is defined as

AV@Rα[F ] =
{

1
α

∫ α
0 F−1(t)dt α ∈ (0, 1]

sup{x|F (x) = 0} α = 0.

Remark 3.1. The functional AV@R satisfies the following two properties

1. AV@Rα[F ] is non decreasing in α.

2. AV@R is continuous in α, i.e. α 7→ AV@Rα[F ] is continuous.

The importance of −AV@R, as a risk functional is manifested in both
practical as well as theoretical aspects: from the practical point of view,
it is one of the most widely employed risk functional in the industry from
amongst the class of coherent risk functionals, and theoretically it is of vital
importance as it forms the building block for all other coherent law-invariant
acceptability functionals, as we saw in Theorem 2.1. For this reason we
analyze it separately here.

The empirical estimate of AV@Rα is given by

AV@Rα[F̂n] =
{

1
α

∫ α
0 F̂−1

n (t)dt, α > 0
sup{x : F̂n(x) = 0} α = 0

(3.3)

which in terms of the order statistics can be written as:

AV@Rα[F̂n] =

{
1

nα

(∑[nα]
i=1 Xi:n + (nα− [nα])X[nα]+1:n

)
, α > 0

X1:n α = 0
(3.4)

where [nα] denotes the greatest integer less than or equal to nα.
Like in the case of V@R, if we show that AV@R is weakly continuous then

consistency would follow as a consequence of the Glivenko-Cantelli theorem.
However, weak continuity of AV@R holds only for α ∈ (0, 1]. For the case
α = 0, we give an counter example below to show that AV@R0 is not weakly
continuous, and establish the consistency by a different argument.

Lemma 3.1. If {Fn}n∈N, F ∈ F1, and Fn
d→ F then for each α ∈ (0, 1],

AV@Rα[Fn] → AV@Rα[F ], as n→∞.

Proof. First of all note that since F−1 can have only countably many jump
points, it is continuous for almost every t ∈ (0, 1), and hence, it follows from
(3.2) that

F−1
n (t)→F−1(t) for almost every t ∈ (0, 1)
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and hence that

1(0,α)(t)F
−1
n (t)→1(0,α)(t)F

−1(t) for almost every t ∈ (0, 1).

This also gives that there exists N ∈ N such that for all n ≥ N∣∣1(0,α)(t)F
−1
n (t)

∣∣ ≤ ∣∣F−1(t)
∣∣+ ε for almost every t ∈ (0, 1).

Further since F ∈ F1, i.e., ∫ 1

0
|F−1(t)|dt <∞,

we get by the Dominated Convergence Theorem (see [11]) with dominating
function |F−1(t)|+ ε that

1
α

∫ α

0
F−1

n (t)dt→ 1
α

∫ α

0
F−1(t)dt.

Corollary 3.2. If F ∈ F1, then for α > 0, AV@Rα[F̂n] → AV@Rα[F ] a.s.

Proof. Note that F̂n ∈ F1 for every n ∈ N. Now the conclusion follows like
in Corollary 3.1, by Glivenko Cantelli Theorem and Lemma 3.1.

Remark 3.2. For the case α = 0, AV@Rα[F ] is not weakly continuous. This
is because AV@R0[F ] is the essential infimum of F i.e.

AV@R0[F ] = lim
α↓0

AV@Rα[F ] = inf
α∈(0,1]

AV@Rα[F ] = sup{x : F̂n(x) = 0}

= essinf[F ]

and "discontinuity at essinf[F ]," will therefore result in AV@R0[F ] being not
weakly continuous. The following example makes this clear:

F (x) =
{

0 x ∈ (−∞,K)
1 x ∈ [K,∞)

Fn(x) =


0 x ∈ (−∞,K − 1)
1/n x ∈ [K − 1,K)
1 x ∈ [K,∞)

Fn
d→ F , however, AV@R0[Fn] 9 AV@R0[F ] since AV@R0[F ] = K while

AV@R0[Fn] = K − 1 for all n.

However, when Fn is the empirical distribution function F̂n, AV@R0[F̂n]
is the first order statistics and known to be a consistent estimator for
essinf[F ].



24 Chapter 3. Consistency

Lemma 3.2. For F ∈ F1, AV@R0[F̂n] → AV@R0[F ] a.s.

Proof. Notice that AV@R0[F̂n] is decreasing in n since

AV@R0[F̂n] = sup{x : F̂n(x) = 0} = min(X1(ω), . . . , Xn(ω))
≥ min(X1(ω), . . . , Xn(ω), Xn+1(ω))
= AV@R0[F̂n+1].

Now if AV@R0[F ] = K, K ∈ R then for any i and for any ε > 0, Xi > K− ε
with probability 1. This implies that probability of sampling a value smaller
than K is 0, i.e.

F̂n(K − ε) = 0 w.p. 1.

Therefore, AV@R0[F̂n] ≥ K − ε and since AV@R0[F̂n] is also decreasing in
n, the following limit exists and

lim
n→∞

AV@R0[F̂n] ≥ K,with probability 1. (3.5)

If this limit would be strictly greater than K,then for some δ > 0,
AV@R0[F̂n] > K + δ for all n which would in turn imply F̂n(K + δ

2) = 0
for all n. However, this leads to a contradiction since by Glivenko-Cantelli
theorem

0 = F̂n(K +
δ

2
) → F (K +

δ

2
) > 0.

One can similarly argue the case when AV@R0[F ] = −∞.

The following Lemma shows that the consistency of AV@Rα[F̂n] even
holds uniformly in α if AV@R0[F ] > −∞.

Lemma 3.3. If a sequence Rn(x) of distribution functions converges to a
continuous distribution function R(x), then the convergence is uniform in x.

Proof. See Theorem 2.10.1 of [27].

Corollary 3.3. For F ∈ F1, with AV@R0[F ] > −∞,

sup
0≤α≤1

|AV@Rα[F̂n]− AV@Rα[F ]| a.s.→ 0. (3.6)

Proof. Note that for any distribution function G, RG : R→ [0, 1] defined as

RG(α) =


0 α < 0
AV@Rα[G]−AV@R0[G]

AV@R1[G]−AV@R0[G]
α ∈ [0, 1]

1 α > 1

is a continuous distribution function by Remark 3.1. Further by Corollary
3.2 and Lemma 3.2, RF̂n

converges pointwise to RF a.s. Now using the
Lemma 3.3, we get the required result.
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3.3 Coherent law-invariant risk functionals

In this section, we will consider functionals which have Kusuoka representa-
tion (2.1) i.e.

A[F ] = inf
m∈M0

∫
(0,1]

AV@Rα[F ]dm(α), (3.7)

where M0 ⊂ P(0, 1] and their empirical estimators, given by

A[F̂n] = inf
m∈M0

∫
(0,1]

AV@Rα[F̂n]dm(α). (3.8)

For establishing the conditions for consistency of these estimators, we will
distinguish between the cases A[F ] = −∞ and A[F ] > −∞. One can see
that since AV@R is non-decreasing in α, it holds that

• AV@R0[F ] > −∞ =⇒ A[F ] > −∞

• A[F ] = −∞ =⇒ AV@R0[F ] = −∞

and in both these cases, consistency results can be established without any
further assumptions, essentially with the aid of Corollary 3.3. However, when
AV@R0[F ] = −∞ and A[F ] > −∞, then some further growth conditions
will be required on the tails of the distribution F and on the mass assigned
near 0 by the measures in M0.

3.3.1 The case AV@R0[F ] > −∞

Theorem 3.1. If F ∈ F1 satisfies AV@R0[F ] > −∞, then

A[F̂n] a.s.→ A[F ] as n→∞,

where A[F̂n] and A[F ] are as defined in (3.7) and (3.8) respectively.

Proof. Let ε > 0. By Corollary 3.3, we know that for every ω ∈ Ω, there
exists Nω ∈ N such that

sup
α∈[0,1]

|AV@Rα[F̂n]− AV@Rα[F ]| < ε/2, for all n ≥ Nω. (3.9)

(By redefining the elements on a null set in Corollary 3.3, the conclusion in
(3.6) may be assumed to hold for every ω ∈ Ω.) For each k ∈ N, define the
subset Ak of Ω as

Ak = {ω : Nω ≤ k}.

Clearly, ∪k∈NAk = Ω. For a fixed k, consider Ak. Let m′ ∈M0 be such that

inf
m∈M0

∫
(0,1]

AV@Rα[F ]dm(α) ≥
∫

(0,1]
AV@Rα[F ]dm′(α)− ε

2
.
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Then for ω ∈ Ak, it follows from (3.9) that for n ≥ k

A[F̂n]−A[F ]

= inf
m∈M0

∫
(0,1]

AV@Rα[F̂n]dm(α)− inf
m∈M0

∫
(0,1]

AV@Rα[F ]dm(α)

≤
∫

(0,1]

(
AV@Rα[F̂n]− AV@Rα[F ]

)
dm′(α) +

ε

2

≤
∫

(0,1]

ε

2
dm′(α) +

ε

2
< ε.

The other inequality can be established similarly. For each n ≥ k, let m′
n ∈

M0 be such that

inf
m∈M0

∫
(0,1]

AV@Rα[F̂n]dm(α) ≥
∫

(0,1]
AV@Rα[F̂n]dm′

n(α)− ε

2
.

Then as before, again by (3.9), we get that on Ak, and for n ≥ k,

A[F ]−A[F̂n] ≤
∫

(0,1]
AV@Rα[F ]dm′

n(α)−
∫

(0,1]
AV@Rα[F̂n]dm′

n(α) + ε/2

≤
∫

(0,1]
sup

α∈[0,1]
|AV@Rα[F ]− AV@Rα[F̂n]|dm′

n(α) +
ε

2

≤
∫

(0,1]

ε

2
dm′

n(α) +
ε

2
= ε

i.e. on Ak, limn→∞ |A[F ] − A[F̂n]| < ε. Since this holds for every Ak and
ε > 0 was arbitrary we have

A[F̂n] a.s.→ A[F ] as n→∞.

Next we consider the case when A[F ] = −∞. In this case we show that
A[F̂n] is a consistent estimator in the sense that A[F̂n] a.s.→ −∞ as n→∞.

3.3.2 The case A[F ] = −∞

Theorem 3.2. If F ∈ F1 and A[F ] defined in (3.7) satisfies that

A[F ] = inf{
∫

(0,1]
AV@Rα[F ]dm(α) : m ∈M0} = −∞

then A[F̂n] as defined in (3.8) is a consistent estimator i.e. A[F̂n] a.s.→ −∞
as n→∞.
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Proof. We first show that it suffices to prove that for every −K ≤ 0 there
exists a m ∈M0 and NK,ω ∈ N such that

∀n ≥ NK,ω,

∫
(0,1]

AV@Rα[F̂n]dm(α) ≤ −K. (3.10)

If (3.10) holds then, taking infimum over m ∈ M0 will give that for all
n ≥ NK,ω

A[F̂n] = inf{
∫

(0,1]
AV@Rα[F̂n]dm(α) : m ∈M0} ≤ −K

i.e.
lim sup

n→∞
A[F̂n] ≤ −K a.s.

and this being true for every −K ≤ 0, the required result will be established.
Now we show (3.10). Let ε > 0. Since A[F ] = −∞, there exists m ∈M0

such that ∫
(0,1]

AV@Rα[F ]dm(α) ≤ −K − 2ε.

Further, since in this case AV@R0[F ] = −∞, it follows from AV@Rα[F ]
being non-decreasing and continuous in α, that∫

(x,1]
AV@Rα[F ]dm(α) ↓

∫
(0,1]

AV@Rα[F ]dm(α) as x→ 0.

Hence, we can choose δ ≡ δ(K) ∈ (0, 1] such that∫
(δ,1]

AV@Rα[F ]dm(α) ≤ −K − ε.

This also yields,

AV@Rδ[F ] ≤ AV@Rδ[F ]m[δ, 1] ≤ −K − ε < 0. (3.11)

Like in Corollary 3.3 one can obtain a.s. uniform convergence of
AV@Rα(F̂n) on [δ, 1] i.e.

sup
δ≤α≤1

|AV@Rα[F̂n]− AV@Rα[F ]| a.s.→ 0

and hence, for a.e. ω, there exists some Nδ, ω, such that∫ 1

δ
AV@Rα(F̂n)dm(α) ≤

∫ 1

δ
AV@Rα(F )dm(α) + ε for n ≥ Nδ, ω. (3.12)

Thus, by (3.11) and (3.12) and Corollary 3.2 for n ≥ Nδ, ω∫
(0,1]

AV@Rα[F̂n]dm(α) ≤
∫

(0,δ]
AV@Rδ[F̂n]dm(α) +

∫
(δ,1]

AV@Rα[F̂n]dm(α)

≤
∫

(0,δ]
(AV@Rδ[F ] + ε)dm(α) +

∫
(δ,1]

AV@Rα[F ]dm(α) + ε

≤ (−K)M(0, δ)−K ≤ −K.
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3.3.3 The case AV@R0[F ] = −∞ and A[F ] > −∞

Now we consider the case for F ∈ F1, AV@R0[F ] = −∞ and A[F ] > −∞.
Since A[F ] > −∞, for any m ∈ M0,

∫
(0,1] AV@Rα[F ]dm(α) > −∞. Thus,

by Fubini’s theorem∫
(0,1]

AV@Rα[F ]dm(α) =
∫

(0,1]

∫ α

0

1
α
F−1(t)dtdm(α)

=
∫ 1

0

∫ 1

t
F−1(t)

1
α
dm(α)dt

=
∫ 1

0
F−1(t)Jm(t)dt, (3.13)

where Jm(t) :=
∫
(t,1]

1
αdm(α) for 0 ≤ t ≤ 1. Based on this observa-

tion, one can see that A[F̂n] is a linear combination of the order statistics
X1:n, . . . , Xn:n:∫

(0,1]
AV@Rα[F̂n]dm(α) =

∫ 1

0
F̂−1

n (t)Jm(t)dt

=
n∑

i=1

∫ i
n

i−1
n

F̂−1
n (t)Jm(t)dt

=
n∑

i=1

Xn:i

∫ i
n

i−1
n

Jm(t)dt

=
1
n

n∑
i=1

cmniXn:i, (3.14)

where cmni := n
∫ i

n
i−1
n

Jm(t)dt for 1 ≤ i ≤ n.
To give a few examples of the function Jm, we see that the function Jδα ,

which corresponds to the Dirac measures δα, 0 < α ≤ 1, is given by

Jδα(t) =
1
α
1(0,α](t).

In fact, in this case∫ 1

0
F−1(t)Jδα(t) dt =

1
α

∫ α

0
F−1(t)dt = AV@Rα[F ] =

∫
(0,1]

AV@Ru[F ] dδα(u).

(3.15)
Similarly, we can derive the following correspondences

- Jm(t) = ptp−1, 0 < p ≤ 1 corresponds to dm(α) = p(1 − p)αp−1 dα +
pdδ1(α). The pertaining functional is called the power distortion func-
tional.
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- Jm(t) = − log t corresponds to m being the Lebesgue measure on (0,1]
i.e. dm(α) = dα.

Based on the observation in (3.13) and (3.14), the asymptotic consistency
of A(F̂n) can be derived by the following Law of Large Numbers (LLN) for L-
statistics (linear combination of order statistics), see [54] or Theorem 19.1.1
of [55].

Theorem 3.3. Suppose the following conditions of bounded growth and
smoothness hold

1. Bounded growth condition
J : [0, 1] → R is such that |J(t)| ≤ B(t) where

B(t) = K1t
−b1(1− t)−b2 for 0 < t < 1 with b1 ∨ b2 < 1

and |F−1(t)| ≤ D(t) where

D(t) = K2t
−d1(1− t)−d2 for 0 < t < 1 with any fixed d1, d2 (3.16)

and a = (b1 + d1) ∨ (b2 + d2) < 1.

2. Smoothness: Except on a set of t’s of F−1-measure 0, J is continuous
at t (where F−1-measure is the Lebesgue-Stieltjes measure associated
with F−1).

Then ∫ 1

0
F̂−1

n (t)J(t)dt−
∫ 1

0
F−1(t)J(t)dt a.s.→ 0.

Proof. The proof based on Theorem 19.1.1 of [55] is given in Appendix B
(see Theorem B.1).

Remark 3.3. The bounded growth condition on the tail behavior of F in
(3.16), can be related to a moment condition on the distribution function F ,
by the following observation (see Remark 19.1.1 in [55]): if g : (0, 1) → R

is such that g ≥ 0, is decreasing in a neighborhood of 0 and increasing in
a neighborhood of 1 and has

∫ 1
0 g(t)dt < ∞, then tg(t) ≤

∫ t
0 g(s)ds → 0

as t → 0 and (1 − t)g(t) ≤
∫ 1
t g(s)ds → 0 as t → 1. Applying this to

g(t) = |F−1(t)|r, when F ∈ Fr, i.e.∫ 1

0
|F−1(t)|rdt <∞

yields that
|F−1(t)| ≤ [t(1− t)]−1/rφ(t)

where near to 0, φ(t) = K(
∫ t
0 |F

−1(s)|rds)1/r → 0 as t → 0 and near to
1, φ(t) = K(

∫ 1
t |F

−1(s)|rds)1/r → 0 as t → 1 (K is some constant) and
therefore φ can be bounded by a constant.
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Theorem 3.3, can be directly employed to deal with the case of A being
a comonotone additive functional i.e.

A[F ] =
∫

(0,1]
AV@Rα[F ]dm(α), F ∈ F1. (3.17)

In this case, the asymptotic consistency of A[F̂n] =
∫
(0,1]AV@Rα[F̂n]dm(α)

follows as a consequence of Theorem 3.3 by setting J = Jm where

Jm(t) =
∫

(t,1]

1
α
dm(α), for 0 ≤ t ≤ 1. (3.18)

Theorem 3.4. Suppose that A is a comonotone additive coherent functional
with representation as in (3.17) and F ∈ F1. Let Jm, as defined in (3.18),
and F satisfy the following conditions

1. Growth condition

Jm(t) ≤ K1t
−b for 0 < t <

1
2
, (3.19a)

|F−1(t)| ≤ K2t
−d1(1− t)−d2 for 0 < t < 1 with fixed d1, d2 (3.19b)

and a = (b+ d1) ∨ d2 < 1.

2. Smoothness: Jm satisfies the smoothness condition of Theorem 3.3.

Then the empirical estimator A[F̂n], defined as

A[F̂n] =
∫

(0,1]
AV@Rα[F̂n]dm(α)

converges a.s. to A[F ] as n→∞.

Proof. Jm being non-negative and non-increasing on [0,1], the conditions of
Theorem 3.3 are satisfied and hence the required result holds.

For the general case of non comonotone additive functionals, in which
the case the set M0 in the representation (2.1), i.e.

A[F ] = inf
m∈M0

∫
(0,1]

AV@Rα[F ]dm(α), (3.20)

need not be a singleton set, the consistency of the estimator

A[F̂n] = inf
m∈M0

∫
(0,1]

AV@Rα[F̂n]dm(α) (3.21)

can be established like in Theorem 3.4, but now by uniformly controlling the
mass put at values near 0 by the measures m ∈M0 and uniform smoothness
conditions on the weighting factor {Jm}m∈M0 , where

Jm(t) =
∫

(t,1]

1
α
dm(α), for t ∈ [0, 1].
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This extension of Theorem 3.4 is formulated and proven in the next Theorem.
Further, in Theorem 3.6 we will show that the uniform smoothness condition
can also be relaxed.

Theorem 3.5. Let F ∈ F1 and A be version-independent coherent func-
tional with representation (3.20). Further, let for each m ∈ M0, Jm(t) =∫
(t,1]

1
αdm(α) for 0 ≤ t ≤ 1. Suppose that

1. F and {Jm}m∈M0 satisfy the following growth condition

sup
m∈M0

|Jm(t)| ≤ K1t
−b for 0 < t <

1
2

(3.22a)

|F−1(t)| ≤ K2t
−d1(1− t)−d2 for 0 < t < 1 with fixed d1, d2

(3.22b)

and a = (b+ d1) ∨ d2 < 1.

2. Smoothness Condition: Except on a set of t’s of F−1-measure 0,
{Jm}m∈M0 are equi-continuous at t i.e. for any ε > 0, there exists
δt > 0 such that

|s− t| < δt =⇒ sup
m∈M0

|Jm(s)− Jm(t)| < ε.

Then A[F̂n] a.s.→ A[F ] as n→∞, where A[F̂n] is as defined in (3.21).

Proof. See Theorem B.3 in Appendix B

In the next theorem, like mentioned before, we give conditions to estab-
lish the asymptotic consistency of A[F̂n] without the smoothness assumption
of the previous theorem and these conditions are easily verified for the exam-
ples of acceptability functionals considered in Section 2.1. Further, while the
previous Theorem requires the assumption of the random sample X1, . . . Xn

being of the form Xi = F−1(ξ1) and for arbitrary random sample X1, . . . Xn

defined on a common probability space, the conclusion in the result weakens
to weak consistency- (see Remark 3.4 below), the next Theorem, gives strong
consistency result also for a general random sample.

Theorem 3.6. Let F ∈ F1 and A be version-independent coherent func-
tional with representation (3.20). Suppose that one of the following condi-
tions is satisfied

• there exists K > 0 such that

sup
m∈M0

||Jm||∞ = sup
m∈M0

Jm(0) < K, (3.23)
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• for some r, s > 1 : 1
r + 1

s = 1 and some K > 0 it holds that∫
|u|sdF (u) <∞ and , sup

m∈M0

∫ 1

0
[Jm(t)]rdt < K, (3.24)

then

sup
m∈M0

{∣∣∣∣∣
∫

(0,1]
AV@Rα[F ]dm(α)−

∫
(0,1]

AV@Rα[F̂n]dm(α)

∣∣∣∣∣
}

a.s.→ 0

and hence A[F̂n] a.s.→ A[F ] as n→∞, where A[F̂n] is as defined in (3.21).

Proof. For any m ∈M0, we have∣∣∣∣∣
∫

(0,1]
AV@Rα[F ]dm(α)−

∫
(0,1]

AV@Rα[F̂n]dm(α)

∣∣∣∣∣
=

∣∣∣∣∫ 1

0
F−1(t)Jm(t)dt−

∫ 1

0
F̂−1

n (t)Jm(t)dt
∣∣∣∣ .

Now by an application of Hölder’s inequality we have that∣∣∣∣∣
∫

(0,1]
AV@Rα[F ]dm(α)−

∫
(0,1]

AV@Rα[F̂n]dm(α)

∣∣∣∣∣
≤ K

∫ 1

0
|(F−1(t)− F̂−1

n (t)|qdt,

where q = 1 if (3.23) holds and q = s if (3.24) holds. Now using Lemma
3.4 below, we get for both the cases above that

∫ 1
0 |F

−1(t)− F̂−1
n (t)|qdt→ 0

a.s., and hence,

sup
m∈M0

{∣∣∣∣∣
∫

(0,1]
AV@Rα[F ]dm(α)−

∫
(0,1]

AV@Rα[F̂n]dm(α)

∣∣∣∣∣
}

a.s.→ 0.

The following lemma is an analogue to Corollary 2.6.1 in [55],

Lemma 3.4. If for some s ≥ 1,
∫
|u|sdF (u) < ∞ then

∫ 1
0 |F

−1(t) −
F̂−1

n (t)|sdt→ 0 a.s.

Proof. Let ε > 0 be given. Let δ(ε) ≡ δ be such that
∫
[δ,1−δ]c |F

−1(t)|sdt < ε.

Using the Glivenko Cantelli theorem, we have F̂n(t) d→ F (t), hence as argued
at the beginning of Lemma 3.1, for almost every t ∈ (0, 1), F̂−1

n (t) → F−1(t)
a.s.. Therefore, it follows that

|F̂−1
n (t)− F−1(t)|s → 0
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and also that
F̂−1

n (t)s − F−1(t)s → 0.

Further, on [δ, 1− δ], it holds that

|F̂−1
n (t)|s ≤ |F̂−1

n (δ)|s+|F̂−1
n (1−δ)|s ≤ |F−1(δ)|s+|F−1(1−δ)|s+ε,∀n ≥ Nε,δ.

By dominated convergence theorem it follows that, for n ≥ N1,δ,ε∫ 1−δ

δ
|F̂−1

n (t)s − F−1(t)s|dt < ε

and similarly we can show

|F̂−1
n (t)− F−1(t)|s ≤ 2s(|F−1(δ)|+ |F−1(1− δ)|)s + ε,∀n ≥ Nε,δ

and dominated convergence theorem gives n ≥ N2,δ,ε∫ 1−δ

δ
|F̂−1

n (t)− F−1(t)|sdt < ε.

By SLLN we know that

|
∫ 1

0
|F̂−1

n (t)|s − |F−1(t)|sdt| < ε,∀n ≥ Nε.

Combining the above for n ≥ Nε, N1,ε,δ, N2,δ,ε∫
[δ,1−δ]c

|F̂−1
n (t)|sdt

=
∫

[δ,1−δ]c
|F̂−1

n (t)|s − |F−1(t)|sdt+
∫

[δ,1−δ]c
|F−1(t)|sdt

≤
∫ 1

0
|F̂−1

n (t)|s − |F−1(t)|sdt−
∫ 1−δ

δ
|F̂−1

n (t)|s − |F−1(t)|sdt+ ε

≤ 2ε+
∫ 1−δ

δ
|F̂−1

n (t)s − F−1(t)s|dt < 3ε.

Finally, by Minkowski’s inequality∫ 1

0
|F̂−1

n (t)− F−1(t)|sdt

=
∫ 1−δ

δ
|F̂−1

n (t)− F−1(t)|sdt+
∫

[δ,1−δ]c
|F̂−1

n (t)− F−1(t)|sdt

< ε+

(∫
[δ,1−δ]c

|F̂−1
n (t)|sdt

) 1
s

+

(∫
[δ,1−δ]c

|F−1(t)|sdt

) 1
s

s

< ε+ [ε
1
s + (3ε)

1
s ]s.

Since ε > 0 was arbitrary, the result follows.
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Remark 3.4. As is evident from the proofs, all Theorems in this Chap-
ter, except Theorem 3.4 and Theorem 3.5, providing the asymptotic con-
sistency results of acceptability functionals hold, without assuming the ran-
dom sample Xi to be of the form F−1(ξi). When this assumption is omitted,
then Theorem 3.4 and Theorem 3.5 hold but with the conclusion modified
from a.s. convergence to A[F̂n] − A[F ] d→ 0. This follows from the fact
that a.s. convergence implies convergence in distribution (for measurable
maps) and thatA(F̂n) based on the original sample as well that based on
(F−1(ξ1), . . . , F−1(ξn)) have the same distribution (- we refer to Section
4.2.2 for a proof of this and for details on establishing the measurability of
A[F̂n].) In fact, if the random sample X1, . . . Xn is defined on a common
probability space, we can also conclude that A[F̂n]−A[F ]

p→ 0.

3.3.4 Examples

We already treated the consistency results for the examples V@R and AV@R.
We see that for the examples of p-th lower partial moment and p-th central
absolute moment - classical functionals used in statistics- the results of con-
sistency of the empirical estimator can also be established by the Theorems
proved above.

Example 3.1. Let X ∼ F ∈ Fp. Then from Section 2.1 we know that the
Expectation corrected p-th lower partial moment has the following Kusuoka
representation:

ELStdp(X) = inf{
∫

(0,1]
AV@Rα[F ]dm(α) : m ∈M0}

where

M0 =

{
m ∈ P(0, 1] :

∫ 1

0

[∫
(u,1]

1
α
dm(α)

]q

du ≤ 1

}

and 1
p + 1

q = 1.
Hence, by Theorem 3.6 we get that Expectation corrected p-th lower

partial moment is consistent.

Example 3.2. The expectation corrected mean deviation functional, for X ∼
F ∈ F1

A(X) = E[X]− cE [|X − E(X)|] , c ∈ [0,
1
2
],

which has the Kusuoka representation (see Section 2.1)

A(X) = inf{
∫

(0,1]
AV@Rα[F ]dm(α) : m ∈M0},
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where

M0 =

{
m ∈ P(0, 1] :

∫
(0,1)

1
α
dm(α) ≤ c

}
is again consistent by Theorem 3.6.
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Chapter 4

Asymptotic distribution

Introduction

The aim of this Chapter is to consider the limit distribution for empirical
estimator of the coherent law-invariant functional or more precisely, to in-
vestigate the conditions under which there exists a limiting distribution of

√
n(A[F̂n]−A[F ]) (4.1)

and also to identify this limit itself.
As was done, while establishing the consistency of acceptability function-

als, we use the observation made in (3.13) that∫
(0,1]

AV@Rα[F ] dm(α) =
∫ 1

0
F−1(t)Jm(t) dt, (4.2)

where Jm(t) :=
∫
(t,1]

1
αdm(α) for 0 ≤ t ≤ 1, to write the empirical estimator

A[F̂n] of A[F ] in terms of the of order statistics (see Section 3.3.3). This
in turn allows the application of the following Central Limit Theorem for
L-statistics (see [54] or Theorem 19.1.1 of [55]) in analyzing asymptotic dis-
tribution of version independent functionals with representation as in (2.1).

Before stating the Central Limit Theorem for L-statistics, we recall some
of our assumptions and results mentioned in Section 2.2: we denote by Gn

the uniform empirical distribution and by Un the uniform empirical process
corresponding to ξ1, . . . ξn respectively i.e.

Gn(t) =
1
n

n∑
i=1

1(−∞,t](ξi) and Un(t) =
√
n [Gn(t)− t]

and that the process Un converges in distribution to a Brownian bridge, U
(denoted as Un

d→ U) and the process

Vn(t) =
√
n
[
G−1

n (t)− t
] d→ V = −U.

We also remind the reader that we assume Xi to be of the form F−1(ξi)
where ξ1, . . . ξn are i.i.d. Uniform [0,1]– that this assumption leads to no loss
of generality is argued in Remark 4.5 below.
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Theorem 4.1. Suppose the following conditions of bounded growth and
smoothness hold

1. Growth condition
J : [0, 1] → R is such that |J(t)| ≤ B(t) where

B(t) = K1t
−b1(1− t)−b2 for 0 < t < 1 and fixed b1, b2

and |F−1(t)| ≤ D(t) where

D(t) = K2t
−d1(1− t)−d2 for 0 < t < 1 and fixed d1, d2

and a = (b1 + d1) ∨ (b2 + d2) < 1
2 .

2. Smoothness: Except on a set of t’s of F−1-measure 0, J is continuous
at t (where F−1-measure is the Lebesgue-Stieltjes measure associated
with the monotonically non-decreasing function F−1).

Then
√
n

(∫ 1

0
F̂−1

n (t)J(t)dt−
∫ 1

0
F−1(t)J(t)dt

)
d→ N (0, σ2),

where σ2 =
∫ 1
0

∫ 1
0 [s ∧ t− st]J(s)J(t)dF−1(s)dF−1(t).

Proof. A proof of this Theorem can be found in [54] or in [55] (Pages 660-665
and 688-692). The idea is to show that for

Tn :=
∫ 1

0
F̂−1

n (t)J(t)dt and µ :=
∫ 1

0
F−1(t)J(t)dt,

Zn :=
√
n(Tn − µ) is equivalent to Sn

n i.e. Zn − Sn
n

p→ 0, where

Sn

n
:=

∫
(0,1)

UnJdF
−1

and then to show that Sn
n

d→ Z where

Z =
∫

(0,1)
UJdF−1

and U being a Brownian bridge, we will have that Z has the required normal
distribution. (For the details of this proof as given in [55], refer to Theorem
B.1 in Appendix B).

For a comonotone additive acceptability functional, i.e. functionals with
representation (2.2) the asymptotic distribution of (4.1) follows as a direct
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consequence of Theorem 4.1. However, to tackle the non-comonotone addi-
tive case i.e. with representation (2.1) we will need to extend Theorem 4.1
to a ’uniform’ version. Defining for each m ∈M0,

Jm(t) :=
∫

(t,1]

1
α
dm(α) for 0 ≤ t ≤ 1, (4.3)

the functional with representation (2.1) can be written as

inf
m∈M0

∫
(0,1]

AV@Rα[F ] dm(α) = inf
m∈M0

∫ 1

0
F−1(t)Jm(t) dt. (4.4)

Note that for any m ∈M0, Jm is a non-increasing function on [0, 1]. In fact,
it is evident that as t approaches 0, Jm can potentially grow large, while on
the other hand for t near to 1, Jm is well behaved in the sense that it can
be bounded. This observation, in view of (4.4) above, allows one to see that
the asymptotic distribution of the functionals in (2.1) depends, among other
factors, on the behavior of Jm near to 0 i.e. the mass that the probability
measures in M0 assign to a neighborhood of zero and the left tail behavior
of F (i.e. F−1 near to 0.) Therefore, we will see that one of the conditions
required to ensure finite asymptotic variance of (4.1) is that the measures
in M0 and F−1 should ’together’ satisfy some (uniform) bounded growth
conditions. This is also the reason that distribution functions with bounded
support will prove favorable. While the tail behavior of F and the behavior
of measures in M0 near to 0, influences the existence of a limit distribution
of (4.1), the uniqueness of the minimizer in (4.4) (if it exists) plays a role
in the determination of the limit distribution itself. We will see through an
example that in case of more than one minimizers asymptotic normality can
not be expected in general.

We will begin our analysis with investigating the asymptotic distribution
of AV@Rα, which as we discussed in (3.15), corresponds to the case that
M0 in representation (2.1) consists of a Dirac measure i.e. M0 = {δα}.

4.1 Average Value at Risk, AV@R

As discussed in Section 3.2, from (3.4), we know that the empirical estimate
of AV@Rα for F ∈ F1 is given by

AV@Rα[F̂n] =

{
1

nα

(∑[nα]
i=1 Xi:n + (nα− [nα])X[nα]+1:n

)
, α > 0

X1:n α = 0
(4.5)

where [nα] denotes the greatest integer less than or equal to nα.
Observe that, for the case α = 1, AV@R1[F̂n] is the sample mean and

AV@R1[F ] =
∫
udF is the expectation under F and for this case the asymp-

totic distribution is given by the classical Central Limit Theorem. For α = 0,
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AV@Rα[F̂n], is the first order statistics or the sample minimum and the
asymptotic properties of it are again well known (see e.g. [27]).

To establish the asymptotic properties of AV@Rα for 0 < α < 1, we
will apply Theorem 4.1 with J(t) := 1

α1(0,α](t) for t ∈ [0, 1]. In this case,
notice that J(t) = 0 for t ∈ (α, 1] and we can use the following Remark
to Theorem 4.1 to obtain the asymptotic distribution of the AV@Rα, when
F−1 is continuous at α.

Remark 4.1. In Theorem 4.1, if J equals 0 on (b, 1] for some 0 < b < 1 then
the bounded growth assumption and smoothness condition has to hold only
on (0, b].

Proof. The proof follows directly from the proof of Theorem 4.1. See also
Theorem 19.1.1.iv in [55].

Theorem 4.2. For 0 < α < 1, if F−1 is continuous at α and

|F−1(t)| ≤ t−d, d <
1
2
, t ∈ (0, α] (4.6)

then √
n(AV@Rα[F̂n]− AV@Rα[F ]) d→ N (0, σ2) as n→∞,

where
σ2 =

1
α2

∫ α

0

∫ α

0
(s ∧ t− st) dF−1(s) dF−1(t). (4.7)

Proof. Follows by setting J(t) = 1
α1(0,α](t) in Theorem 4.1 and Remark

4.1.

Example 4.1. We show in a specific, but typical example what happens if
F−1 is not continuous at α.

To this end, let F be of the form

F (x) =


R(x), if x < a
α := R(a) if a ≤ x ≤ a+ γ
R(x− γ), if x > a+ γ

(4.8)

with γ > 0 and R is a distribution function for which the inverse distribution
function satisfies that, R−1 is continuous at α = R(a) with α ∈ (0, 1) and
satisfies the growth condition in (4.6) i.e. |R−1(t)| ≤ t−d, d < 1

2 , t ∈ (0, α].
Notice that F−1 has a jump of height γ at α, since

F−1(t) =
{
R−1(t), if t ∈ (0, α]
R−1(t) + γ, if t ∈ (α, 1).

(4.9)

Since F−1 and R−1 coincide on (0, α], we get that

AV@Rα[F ] = AV@Rα[R].
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Figure 4.1: The distribution functions F and R of (4.8)

Figure 4.2: The inverse distribution function of F and of R

Observe also that, R(a) = α and continuity of R−1 at α yields R−1(α) =
a. (This is a consequence of Proposition 1.1.3 of [55], according to which
R−1(R(a)) = R−1(α) ≤ a and equality fails iff for some ε > 0, R(a − ε) =
R(a). If however, for some ε > 0, R(a− ε) = R(a) then

R−1(α) ≤ a− ε < a and lim
h↓0

R−1(α+ h) ≥ α

and the assumption of continuity of R−1 at α is violated.)
Now a geometrical consideration shows that (for the observation sequence

Xi = R−1(ξi) and Yi = F−1(ξi) where ξi are i.i.d. Uniform(0,1) random
variables)

AV@Rα[F̂n] = AV@Rα[R̂n] +
γ

α
[α− R̂n(a)]+,

where [u]+ = max(u, 0). To see this, we consider the uniform order statistics

ξ1:n ≤ . . . ≤ ξk:n ≤ α < ξk+1:n ≤ . . . ≤ ξn:n
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whereby we assume that k is the largest index such that ξk:n ≤ α < ξk+1:n.
(We can assume w.l.o.g. that such an index k exists, since if ξn:n ≤ α, then
there is nothing to prove owing to (4.9).) Correspondingly, we get the order
statistics for distribution R as

X1:n ≤ . . . ≤ Xk:n ≤ a < Xk+1:n ≤ . . . ≤ Xn:n

or equivalently

R−1(ξ1:n) ≤ . . . ≤ R−1(ξk:n) ≤ a < R−1(ξk+1:n) ≤ . . . ≤ R−1(ξn:n),

since Xi:n = R−1(ξi:n) for 1 ≤ i ≤ n. Note that R−1(ξk:n) ≤ R−1(α) = a <
R−1(ξk+1:n) follows from the fact that α is in the range of the distribution
function R (see 1.1.22 in [55]). In view of (4.9), we see that the order
statistics Yi:n = F−1(ξi:n), 1 ≤ i ≤ n satisfies

Yi:n = F−1(ξi:n) =
{
R−1(ξi:n), if i ≤ k
R−1(ξi:n) + γ, if i > k.

Further, F̂n being the empirical distribution function corresponding to dis-
tribution F , we have

F̂−1
n (α) = inf{x : F̂n(x) ≥ α}

= min{Yi:n : F̂n(Yi:n) =
i

n
≥ α}

= Yxnαy:n

where xxy denotes the smallest integer greater than or equal to x. Finally,
observing that

F̂−1
n (α) ≤ F−1(ξk:n) ⇐⇒ Yxnαy:n ≤ Yk:n ⇐⇒ xnαy ≤ k ⇐⇒ α ≤ k

n

we get that

AV@Rα[F̂n] =
1
α

∫ α

0
F̂−1

n (t)dt

=
1
nα

[nα]∑
i=1

Yi:n + (nα− [nα])Y[nα]+1:n


=

{
AV@Rα[R̂n], if α ≤ k

n

AV@Rα[R̂n] +
∑[nα]

i=k+1 γ + ((nα− [nα])γ, if α > k
n

= AV@Rα[R̂n] +
γ

α
[α− R̂n(a)]+

where the last equality follows from the fact that R̂n(a) = k
n .



4.2. Coherent law-invariant functionals 43

Hence, denoting

Z(1)
n :=

√
n(AV@Rα[R̂n]− AV@Rα[R])

and
Z(2)

n :=
√
n
γ

α
(α− R̂n(a)),

we get √
n(AV@Rα[F̂n]− AV@Rα[F ]) = Z(1)

n + [Z(2)
n ]+.

Thus, it can be seen that
√
n(AV@Rα[F̂n] − AV@Rα[F ]) is stochastically

larger than
√
n(AV@Rα[R̂n] − AV@Rα[R]) and the same relation holds for

the respective asymptotic distributions. Now since
√
n[R̂n(x) − R(x)] =

Un(R(x)) and Un converges in distribution to a Brownian bridge and we
know from the proof of Theorem 4.2 that Z(1)

n is asymptotically equivalent
to − 1

α

∫ α
0 Un(t) dR−1(t), while Z(2)

n equals − γ
αUn(α) i.e.

Z(1)
n − 1

α

∫ α

0
Un(t)dR−1(t)

p→ 0 and Z(2)
n = −γ

α
Un(α).

Thus, we get that the pair (Z(1)
n , Z

(2)
n ) converges in distribution to the nor-

mally distributed pair (Z(1), Z(2)), with parameters

E(Z(1)) = E(Z(2)) = 0,

Var[Z(1)] =
1
α2

∫ α

0

∫ α

0
[s ∧ t− st] dR−1(s)dR−1(t),

Cov[Z(1), Z(2)] = γ
1− α

α2

∫ α

0
t dR−1(t),

Var[Z(2)] =
γ2

α
(1− α).

Thus the asymptotic distribution of
√
n(AV@Rα[F̂n] − AV@Rα[F ]) is the

distribution of Z(1) + [Z(2)]+, which is non-normal, if γ > 0.

4.2 Coherent law-invariant functionals

We will first prove that if A is a comonotone additive functional i.e. with rep-
resentation (2.2) then using Theorem 4.1, the asymptotic distribution of the
empirical estimator A[F̂n] can be established to be normal. However, in the
general case i.e. when the functional has a representation of the form (2.1),
we will see that the assumptions of Theorem 4.1 will have to be strengthened
(as can be expected) to uniform conditions on the measures in M0 and still
asymptotic normality can not be expected when the minimizer(if it exists)
is not unique.
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4.2.1 Comonotone additive functionals

When A is a comonotone additive functional, in which case the set of prob-
ability measures M0 in (2.1) is a singleton, i.e.

A[F ] =
∫

(0,1]
AV@Rα[F ]dm(α), F ∈ F1. (4.10)

then the limit distribution ofA[F̂n] =
∫
(0,1] AV@Rα[F̂n]dm(α) can be derived

again from Theorem 4.1 by setting J = Jm where

Jm(t) =
∫

(t,1]

1
α
dm(α), for 0 ≤ t ≤ 1. (4.11)

Theorem 4.3. Suppose that A is a comonotone additive coherent functional
with representation as in (4.10) and F ∈ F1. Suppose that Jm as defined in
(4.11) and F satisfy the following conditions

1. Growth condition

Jm(t) ≤ K1t
−b for 0 < t ≤ 1

2
(4.12a)

|F−1(t)| ≤ K2t
−d1(1− t)−d2 for 0 < t < 1 with d1, d2 ≥ 0 (4.12b)

and a = (b+ d1) ∨ d2 <
1
2
.

2. Smoothness: Jm satisfies the smoothness condition of Theorem 4.1.

Then √
n(A[F̂n]−A[F ]) d→ N (0, σ2),

where σ2 =
∫ 1
0

∫ 1
0 [s ∧ t− st]Jm(s)Jm(t)dF−1(s)dF−1(t).

Proof. Jm being non-negative and non-increasing on [0,1], the conditions of
Theorem 4.1 are satisfied and hence the required result holds.

4.2.2 Non comonotone additive functionals

Now we investigate the case of non-comonotone additive functionals, i.e. for
functionals of the form

A[F ] = inf

{∫
(0,1]

AV@Rα[F ]dm(α) : m ∈M0

}
, F ∈ F1. (4.13)

In this case, to establish the asymptotic distribution of (4.1), we will need
to consider the stochastic process

Zn(m) =
√
n

[∫
(0,1]

(
AV@Rα[F̂n]− AV@Rα[F ]

)
dm(α)

]
, (4.14)
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i.e. for each n ∈ N, (4.14) is a stochastic process indexed by elements
m ∈ M0 and we will show that for every ω, Zn(ω) takes values in the
normed space B(M0), the space of all bounded functions on M0, equipped
with the supremum norm. We will need to establish the weak convergence
of this process (in B(M0)). The weak convergence of Zn will facilitate using
the classical framework of applying the Delta method and Hadamard differ-
entiability (of the infimum operator), to obtain the limiting distribution for
the estimator considered in (4.1). So next, we verify that the process (4.14)
indeed takes it’s values in B(M0) .

Framework for weak convergence

Let P[0, 1] denote set of all probability measures on ([0, 1],B[0,1]), where B[0,1]

is the Borel sigma-algebra on [0,1]. Further, let P[0, 1] be endowed with the
weak(-star) topology i.e. the weakest topology such that for every bounded
continuous function ψ, the map from P[0, 1] into R

m 7→
∫

[0,1]
ψdm

remains continuous. P[0, 1] is a compact, separable, metrizable topological
space. (See Chapter 2 of [31] for details). Let (B(M0), || · ||∞) denote the
space of all real-valued bounded functions on M0 along with the supremum
norm, i.e. for f ∈ B(M0),

||f ||∞ = sup
m∈M0

|f(m)|,

and equipped with the Borel sigma-algebra, B. Further, let Cb(M0), be the
subspace of B(M0), consisting of all real valued continuous and bounded
functions on M0.

We define the mapping Y : M0 → R as

Y (m) =
∫

(0,1]
AV@Rα[F ] dm(α). (4.15)

Then we know that Y ∈ B(M0), since from A[F ] > −∞ and F ∈ F1, it
follows that −∞ < A[F ] ≤ Y (m) ≤ AV@R1[F ] for all m ∈ M0. For any
n ∈ N, consider the stochastic process

Yn(m) =
∫

(0,1]
AV@Rα[F̂n] dm(α), (4.16)

indexed by elements of M0 taking values in B(M0), i.e. for every ω ∈ Ω,
Yn(·, ω) ∈ B(M0) and for any m ∈ M0, Yn(m) : Ω → R is measurable
since Yn(m) is a linear combination of order statistics and order statistics
are measurable.
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In fact, this process takes values a.s. in Cb(M0) ⊂ B(M0). This is
because for almost every ω ∈ Ω and for any fixed n ∈ N,

AV@R0[F̂n] ≤ AV@Rα[F̂n] ≤ AV@R1[F̂n],

and hence the mapping α 7→ AV@Rα[F̂n] is bounded and continuous on
[0,1] and this in turn along with the fact that M0 is equipped with the weak
topology yields that, Yn : M0 → R is continuous. We can extend the same
argument to show that Y ∈ Cb(M0), if AV@R0[F ] > −∞.

Remark 4.2. Since the mapping α 7→ AV@Rα[F̂n] is bounded and continuous
on [0,1], we get that

m 7→
∫

(0,1]
AV@Rα[F ] dm(α)

as a mapping from P[0, 1] into R is continuous and in fact, uniformly con-
tinuous (as P[0, 1]) is compact). Thus, Yn which is the restriction of this
mapping to M0 is also uniformly continuous.

Remark 4.3. If F has bounded support, i.e. F ∈ F [c, d] for some c, d ∈ R
where F [c, d] is the set of all distribution functions, F such that F (c) = 0
and F (d) = 1, then the mapping Y defined in (4.15) as

Y : m 7→
∫

AV@Rα[F ] dm(α)

is continuous, i.e. Y ∈ Cb(M0). In this case, we can also assume M0 to be
closed and hence compact in the representation (4.13).

We will obtain the limit distribution of A[F̂n], in two steps

• First we will establish that the process Zn(·) :=
√
n(Yn(·) − Y (·))

converges in distribution in B(M0) to some Z(·).

• The second step will be to apply the Delta method stated in Theorem
4.7 to obtain the limit theorem for A[F̂n].

Before establishing weak convergence of Zn, we "guess" the limit Z by
considering the finite dimensional limit of Zn. Note that for every ω ∈ Ω,
Zn is a sequence of B(M0)-valued process i.e.

Zn(·, ω) =
√
n(Yn(·, ω)− Y (·, ω)) ∈ B(M0)

and that for any m ∈ M0, Zn(m) is a measurable mapping from Ω → R.
The finite dimensional limit of Zn, is a process Z ∈ B(M0) such that the
following holds

Zn(m1, . . . ,mk)
d→ Z(m1, . . . ,mk),
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for all k ∈ N and all m1, . . . ,mk in M0. In fact, we will show that Zn con-
verges in finite dimension to a zero-mean Gaussian process, Z with covariance
structure,

Cov(Z(m1), Z(m2)) =
∫ 1

0

∫ 1

0
[s ∧ t− st]Jm1(s)Jm2(t)dF

−1(s)dF−1(t),

(4.17)
where Jmi(t) =

∫
(t,1]

1
αdmi(α) for 0 ≤ t ≤ 1 and i = 1, 2. It suffices to show

that for any k ∈ N and m1, . . . ,mk inM0, and {βi}k
i=1, satisfying 0 ≤ βi ≤ 1

with
∑k

i=1 βi = 1,
k∑

i=1

βiZn(mi) = Zn(
k∑

i=1

βimi)

converges to a normal distribution with mean 0 and variance

k∑
i=1

k∑
j=1

βi βj

(∫ 1

0

∫ 1

0
[s ∧ t− st]Jmi(s)Jmj (t)dF

−1(s)dF−1(t)
)
.

Now, if the conditions of bounded growth and of smoothness in Theorem 4.1
hold for each m ∈ M0, then these will also hold for any measure which is
convex combination of m1, . . . ,mk,

β1m1 + . . . βkmk := m

and since m is again a probability measure in P(0, 1], we get by Theorem
4.1 that √

n(Yn(m)− Y (m)) d→ N (0, σ2
m)

where

σ2
m =

∫ 1

0

∫ 1

0
[s ∧ t− st]Jm(s)Jm(t)dF−1(s)dF−1(t)

=
∫ 1

0

∫ 1

0
[s ∧ t− st]

(
k∑

i=1

βiJmi(s)

) k∑
j=1

βiJmj (t)

 dF−1(s)dF−1(t)

=
k∑

i=1

k∑
j=1

βi βj

(∫ 1

0

∫ 1

0
[s ∧ t− st]Jmi(s)Jmj (t)dF

−1(s)dF−1(t)
)
.

Thus, we see that the finite dimensional limit of Zn is a Gaussian process
with covariance structure∫ 1

0

∫ 1

0
[s ∧ t− st]Jm1(s)Jm2(t)dF

−1(s)dF−1(t)

where Jmi(t) =
∫
(t,1]

1
αdmi(α) for 0 ≤ t ≤ 1 and i = 1, 2.
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Weak convergence of Zn

In this section, we give sufficient conditions for the weak convergence of the
process Zn. We start with the definition of weak convergence or convergence
in distribution for mappings taking values in a normed space.

Definition 4.1 (Weak convergence). Let (D, || · ||) be a normed space,
(Ωn,Fn,Pn) be a sequence of probability spaces and Xn : Ωn → D be mea-
surable maps. The sequence Xn converges weakly to a Borel measurable map
X, if

Ef(Xn) → Ef(X) for every f ∈ Cb(D)

where Cb(D) the space of all continuous and bounded functions f : D→ R.

In our case, we want to establish the weak convergence of Zn to Z, i.e.
D in the above definition will correspond to the normed space B(M0) along
with supremum norm. We will first show that, for each n ∈ N, the mapping
Zn defined on (Ω,F,P) and taking values in B(M0) (equipped with Borel
sigma algebra B) is measurable.

Remark 4.4. For each n ∈ N, Zn is F−B-measurable.

Proof. Fix n ∈ N. Since Zn is the map

Zn(·) =
√
n(Yn(·)− Y (·))

and Y is not random, it suffices to show that Yn : Ω → B(M0) is measurable.
In fact, as Yn takes values in Cb(M0) ⊆ B(M0) it suffices to show that
Yn : Ω → Cb(M0) is measurable. This is because for any open set OB(M0) of
B(M0),

Y −1
n (OB(M0)) = Y −1

n (OB(M0) ∩ Cb(M0))

and OB(M0) ∩ Cb(M0) is open in Cb(M0), (since Cb(M0) is a subspace of
B(M0) and in specific, have the same norm).

Now consider C to be the space of all functions on M0 which have a
continuous extension to M0 i.e.

C = {f ∈ Cb(M0) : f has continuous extension to M0}. (4.18)

Note also that f ∈ C implies that f is uniformly continuous on M0, since
M0 is a closed and hence compact subset of P[0, 1]. Clearly there exists a
bijective mapping h,

h : C → C(M0)

which is also norm preserving and hence a homeomorphism. (h is the
limit mapping i.e. for f ∈ C, h(f) is a mapping on M0 and is defined
as h(f(m)) := limn→∞ f(mn) where m ∈ M0 and {mn}n∈N ⊂ M0, is a
sequence converging to m in M0. Since f is continuous on M0, we know
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that limn→∞ f(mn) exists and the uniform continuity of f ensures that the
map h is well-defined.)

By Remark 4.2 we know that Yn ∈ C and we can define the mapping
Y ′n : Ω → C(M0) as

Y ′n = h ◦ Yn

and then the measurability of Yn will follow from the measurability of Y ′n as
h−1 is also continuous.

Ω -
Yn C

Y ′n
@

@
@

@R ?

6

C(M0)

For each m ∈M0, we know that Yn(m) : Ω → R being a linear combina-
tion of order statistics is measurable. (Order statistics are measurable since
any order statistics Xk:n, 1 ≤ k ≤ n can be written as

Xk:n = min
#(I)=k;I⊆{1,...,n}

max
i∈I

Xi

and maximum (or minimum) over finitely many random variables is again a
random variable.) This implies that for any m ∈M0,

Y ′n(m) : Ω → R

is measurable. Now we have the required measurability of

Y ′n : Ω → C(M0)

using the fact that M0 is a closed and therefore compact subset of the
compact and metrizable space P[0, 1] and the following result (see Section
1.5 of [59]):
For any compact metric space T and W a stochastic process on C(T ), W :
Ω → C(T ) is measurable. (This can be proven as follows: for any z0 ∈ C(T ),
the closed ball of radius r around z0 is the complement of the set ∪s∈T0{z :
|z(s) − z0(s)| > r}, T0 being a countable dense subset of T . Hence every
closed and therefore every open ball is measurable with respect to the finite
dimensional subset algebra. To complete the proof, one just needs to observe
that the ball sigma algebra and Borel sigma algebra coincide for a separable
space.)

We are now in a position to show that the assumption of the random
sample X1, . . . , Xn being of the form Xi = F−1(ξi), where ξ1, . . . ξn are i.i.d.
Uniform [0,1], is not restrictive- this follows from our next Remark where it
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is proven that Zn based on a i.i.d. sample X1, . . . , Xn from distribution func-
tion F and that based on F−1(ξ1), . . . , F−1(ξi) have the same distribution.
Let us denote the former, for ease of notation, by Zn, then the next Remark
shows that Zn

d= Zn. Then proving Zn
p→ Z, hence Zn

d→ Z will yield the
required result for Zn i.e. Zn

d→ Z. The reason for this assumption, lies in
the simplification of the proofs; when it is assumed that Xi = F−1(ξi), then
one can use the special construction of Theorem 2.3 and hence the powerful
result that

Un − U a.s.→ 0.

This will become clear in the proofs of Theorems establishing the weak con-
vergence of Zn.

Remark 4.5. Zn
d= Zn.

Proof. As is in the proof of the previous Theorem, it suffices to show that Yn

based on a i.i.d. sample X1, . . . , Xn from distribution function F (denoted
by Yn) and that based on F−1(ξ1), . . . , F−1(ξi) induce the same distribution
on C ⊂ Cb(M0), where C, is defined in (4.18). Now for any m ∈ M0, from
the fact that (X1, . . . , Xn) and (F−1(ξ1), . . . F−1(ξn)) have the same joint
distribution, we can conclude that

1
n

n∑
i=1

cmni(Xn:i)
d=

1
n

n∑
i=1

cmni(F
−1(ξn:i))

where cmni = n
∫ i/n
i−1/n Jm(t)dt and hence by (3.14) in Section 3.3.3 that

Yn(m) d= Yn(m). (4.19)

Note that this already proves the required result in the co-monotone additive
case, where M0 is a singleton set. Further, (4.19) also implies that the
finite dimension distribution of Yn and Yn on (C,C) coincide (where C is
the Borel sigma-algebra on C with respect to the supremum norm.) The
finite dimensional sets form a determining class (see [10]) i.e. two measures
coinciding on the finite dimension sets of C also coincide on all the Borel
sets. This follows along similar argument as given at the end of last proof
(for C(T )). More precisely, we observe that separability of C(M0) implies
the separability of C w.r.t. supremum norm. This in turn yields that the
open-ball sigma algebra and the Borel sigma-algebra coincide and as at the
end of last proof the ball sigma-algebra can be shown to coincide with the
finite dimensional sigma algebra.)

For the weak convergence, we also need to show that Z, the limiting
process of Zn, is also measurable. This can be achieved by proving that it is
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a point-wise limit of a (sub-)sequence of measurable functions. Further, this
will also yield that Z ∈ B(M0) a.s., since for each n ∈ N, Zn ∈ B(M0) and

sup
m∈M0

|Z(m)| ≤ sup
m∈M0

|Zn(m)− Z(m)|+ sup
m∈M0

|Zn(m)|. (4.20)

In Theorem 4.4, we see that if the bounded growth and smoothness
conditions of Theorem 4.1 hold ’uniformly’ in m, then the desired weak con-
vergence of the process Zn holds. In Theorem 4.5 we show that smoothness
condition on the measures m ∈ M0 can be relaxed if the distribution func-
tion F and the density quantile function f(F−1) (where f is the density
function corresponding to the distribution function F ) satisfy some stronger
smoothness conditions. Though Theorem 4.4 and Theorem 4.5, are stated in
terms of our setting of acceptability functionals, it is evident from the proofs
that except for the representation of A no special properties of the accept-
ability functionals are used- i.e. these Theorems generalize the Theorem 4.1-
see Remark 4.7 below.

Theorem 4.4. Let A be version-independent coherent functional with rep-
resentation (4.13) and F ∈ F1. Further, let for each m ∈ M0, Jm(t) =∫
(t,1]

1
αdm(α) for 0 ≤ t ≤ 1. Suppose that

1. F and {Jm}m∈M0 satisfy the following growth condition

sup
m∈M0

|Jm(t)| ≤ K1t
−b for 0 < t ≤ 1

2
(4.21a)

|F−1(t)| ≤ K2t
−d1(1− t)−d2 for 0 < t < 1 (4.21b)

and a = (b+ d1) ∨ d2 <
1
2
.

2. Smoothness condition: Except on a set of t’s of F−1-measure 0,
{Jm}m∈M0 are equi-continuous at t.

Then Zn(·) =
√
n(Yn(·)− Y (·)) converges in distribution in B(M0) to Z(·),

a zero-mean Gaussian process with covariance structure given by (4.17).

Proof. The proof of this Theorem follows along the same lines as the proof of
Theorem 4.1. The idea is to show that Zn is equivalent to Cn i.e. Zn−Cn

a.s.→
0, where Cn ∈ B(M0) is defined as

Cn(m) =
∫

(0,1)
UnJmdF

−1

and then to show that for every subsequence of {Cn}, again denoted by {Cn},
there exists a further sub-sequence {Cnk

}k such that Cnk
−Z a.s.→ 0 as k →∞

where Z ∈ B(M0) is the mapping m 7→
∫
(0,1) UJmdF

−1. Thus we will have
shown in view of Lemma 2.1 the required convergence and further, U being
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a Brownian bridge, it will follow that Z(·) is a zero-mean Gaussian process
with covariance structure (4.17). All these claims have been established in
Theorem B.3 in Appendix B.

Now we show that the condition of equi-continuity of {Jm}m∈M0 in the
previous Theorem can be omitted if F satisfies the following conditions:

(F1) F has a continuous density f that is positive on some (c, d) where
−∞ ≤ c < d ≤ ∞ with F (c) = 0 and F (d) = 1.

(F2) f ′ exists on (c, d) and satisfies

supc<x<dF (x)[1− F (x)]
|f ′(x)|
f2(x)

≤M <∞.

Remark 4.6. 1. Condition (F1) and (F2) are satisfied by many of the
standard distributions such as the normal distribution, exponential
distribution and logistic distribution (see Page 644 of [55]).

2. Condition (F1) also implies that derivative of F−1,

d

dt
F−1(t) =

1
f(F−1(t))

, 0 < t < 1.

exists.

Theorem 4.5. Let A be version-independent coherent functional as in (4.13)
and F ∈ F1. Suppose F satisfies the conditions (F1), (F2) and further that
F and {Jm}m∈M0 satisfy the bounded growth conditions in (4.21). Then
Zn(·) =

√
n(Yn(·) − Y (·)) converges weakly in B(M0) to Z(·), a zero mean

Gaussian process with covariance structure given by (4.17).

To prove Theorem 4.5 we will need Lemma 4.1 and Lemma 4.2. Let
Qn(u) denote the standardized quantile process (see [55]) i.e.

Qn(u) = f(F−1)(u)
√
n[F̂−1

n (u)− F−1(u)], 0 < u < 1.

For a function q ≥ 0 on [0, 1] that is positive on (0, 1), the || ·/q||-distance
between two functions x and y on [0, 1] is given by (see Page 38 of [55])

||(x− y)/q|| = sup
0<u<1

|x(u)− y(u)|/q(u).

when this is well defined.
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Lemma 4.1. Suppose F satisfies conditions (F1) and (F2). Then for any
r < 1/2 and q(u) := [u(1−u)]r, for 0 ≤ u ≤ 1 and for the special construction
of Theorem 2.3 ∣∣∣∣∣∣∣∣(Q0

n −V)
q

∣∣∣∣∣∣∣∣ p→ 0 as n→∞ (4.22)

where Q0
n(u) = f(F−1)(u)

√
n[F̂−1

n (u)−F−1(u)]1[1/(n+1),n/n+1](u) and V is
the Brownian bridge defined in (2.10).

(For a proof of this Lemma we refer to Theorem 18.1.3 in [55].)

Lemma 4.2. Suppose F and Jm satisfy the conditions of Theorem 4.5 i.e.
F fulfills Conditions (F1) and (F2) and F and Jm satisfy the bounded growth
conditions (4.21) with a < 1/2. Let q(u) := [u(1− u)]r for 0 ≤ u ≤ 1 where
r > a. Then

sup
m∈M0

∫ 1

0
[u(1− u)]r

Jm(u)
f(F−1(u))

du <∞.

Proof. Since F and F−1 are differentiable on (0, 1) we get that∫ 1

0
[u(1− u)]r

Jm(u)
f(F−1(u))

du =
∫ 1

0
[u(1− u)]rJm(u)dF−1(u).

Now the claim can be established, like in Lemma B.1, by partial integration
and using the bounded growth condition (4.21) i.e. denoting F−1 by g, and
by M a generic constant, we get for any m ∈M0,∫ 1

0
[u(1− u)]rJm(u)dF−1(u)

≤
∫ 1

0
[u(1− u)]rB(u)dg

≤
∫ 1

0
[u(1− u)]r−bdg

≤ M [u(1− u)]r−bg|10 +M

∫ 1

0
|g[ d
du

[u(1− u)]r−b|du

≤ 0− 0 +M

∫ 1

0
[u(1− u)]−d|[ d

du
[u(1− u)]r−b|du using a < r

≤ M

∫ 1

0
[u(1− u)]r−d−b−1du

< ∞ since a = b+ d < r.

Thus taking supremum we get,

sup
m∈M0

∫ 1

0
[u(1− u)]r

Jm(u)
f(F−1(u))

du <∞.
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Proof of Theorem 4.5

Proof. For any m ∈M0,

√
n(Yn(m)− Y (m)) =

√
n

∫
(0,1]

(
AV@Rα[F̂n]− AV@Rα[F ]

)
dm(α)

=
∫

(0,1)

√
n[F̂−1

n (u)− F−1(u)] Jm(u) du

= Zn
1 (m) + Zn

2 (m) + Zn
3 (m)

where

Z1
n(m) =

∫ 1/(n+1)

0

√
n[F̂−1

n (u)− F−1(u)] Jm(u) du,

Z2
n(m) =

∫ n/(n+1)

1/(n+1)

√
n[F̂−1

n (u)− F−1(u)] Jm(u) du,

Z3
n(m) =

∫ 1

n/(n+1)

√
n[F̂−1

n (u)− F−1(u)] Jm(u) du.

We will show that for the special construction of Theorem 2.3 Z1
n

a.s.→ 0,
Z3

n
a.s.→ 0 and for every subsequence of Z2

n, (also denoted by Z2
n) there exists

a further subsequence {Z2
nk
}k∈N such that Z2

nk
−Z a.s.→ 0. This will give also

that Z ∈ B(M0) by (4.20) and the measurability of Z. Thus, by Lemma 2.1
and the fact that Zn based on the original sample and that based on the
special construction of Theorem 2.3 have the same distribution, the required
result follows.

We begin with showing Z1
n

a.s.→ 0. For any m ∈M0

Z1
n(m) =

∫ 1/(n+1)

0

√
n[F̂−1

n (u)− F−1(u)] Jm(u) du

≤
∫ 1/(n+1)

0

√
n|F̂−1

n (u)− F−1(u)| sup
m∈M0

Jm(u) du

=
∫ 1/(n+1)

0

√
n|F̂−1

n (u)− F−1(u)|uη Jm(u)
uη

du

≤ sup
0<u<1/2

|[F̂−1
n (u)− F−1(u)]uη)|

√
n

∫ 1/(n+1)

0
u−η−b du,

where η is chosen such that b + η < 1
2 and

∫ 1/2
0 |F−1(t)|1/ηdt < ∞. The

existence of such an η is ensured by the bounded growth assumption of
(4.21). To see this, we note that as the growth condition (4.21) holds for
b and d satisfying b + d < 1

2 , we can choose some ε ∈ (0, 1) such that for
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η := d
1−ε it still holds that b + η < 1

2 . Now from this we can conclude that∫ 1/2
0 |F−1(t)|1/ηdt <∞, since for t ∈ (0, 1

2),

|F−1(t)| ≤
(

1
t

)d

=⇒ |F−1(t)|
1−ε

d ≤
(

1
t

)1−ε

=⇒
∫ 1/2

0
|F−1(t)|

1
η dt ≤

∫ 1/2

0

(
1
t

)1−ε

<∞.

Since F−1 is continuous and
∫ 1/2
0 |F−1(t)|1/ηdt <∞, it follows that (see [39])

sup
0<u<1/2

|[F̂−1
n (u)− F−1(u)]uη| a.s.→ 0 as n→∞.

Further,
√
n

∫ 1/(n+1)

0
u−η−b du→ 0

since b+ η < 1/2. Therefore, we get supm∈M0
|Z1

n(m)| a.s.→ 0.
Similarly, it can be shown that supm∈M0

|Z3
n(m)| a.s.→ 0 by observing that

for any m ∈M0, Jm being non-increasing on [0,1],

sup
1/2<t<1

Jm(t) ≤ sup
m∈M0

Jm(1/2) <∞.

Now lets consider the mapping Z2
n. For any m ∈M0,

Z2
n(m) =

∫ n
(n+1)

1
(n+1)

√
n[F̂−1

n (u)− F−1(u)]Jm(u) du

=
∫ 1

0

√
n
[
f(F−1(u))

(
F̂−1

n (u)− F−1(u)
)
1[ 1

(n+1)
, n
(n+1)

](u)
] Jm(u)
f(F−1(u))

du.

=
∫ 1

0
Q0

n(u)
1

f(F−1(u))
Jm(u) du.

Define q(u) := [u(1 − u)]r for 0 ≤ u ≤ 1, where r satisfies that a < r < 1
2 .

From Lemma 4.1 we know that∣∣∣∣∣∣∣∣(Q0
n −V)
q

∣∣∣∣∣∣∣∣ p→ 0 as n→∞. (4.23)

Hence, for every subsequence of Z2
n (again denoted by Z2

n), by Lemma 2.1,
(4.23) and Lemma 4.2 we get that there exists a further subsequence Z2

nk

such that

sup
m∈M0

|Z2
nk

(m)− Z(m)| ≤

∣∣∣∣∣
∣∣∣∣∣(Q0

nk
−V)
q

∣∣∣∣∣
∣∣∣∣∣ sup

m∈M0

∫ 1

0

q(u)
f(F−1(u))

Jm(u) du

a.s.−→ 0
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where Z := [m 7→
∫ 1
0 V(u) 1

f(F−1(u))
Jm(u) du]. Therefore, in view of Lemma

2.1 we proved that
√
n(Yn − Y ) d→ Z. Since V is a Brownian bridge, Z is a

zero-mean Gaussian process with covariance structure (4.17) (see Proposition
2.2.1 of [55]).

Remark 4.7. It is evident from the proofs of Theorem 4.4 and 4.5, that
since no special properties of the acceptability functionals were used, these
Theorems can be stated in general for functions of order statistics. More
precisely, suppose B(D) is the normed space of all bounded functions on the
set D, where the norm on B(D) is the supremum norm. Further, let for each
d ∈ D, Jd be a real valued mapping on [0,1] and the mapping Y defined as

d 7→ Y (d) :=
∫ 1

0
F−1(t)Jd(t)dt

belong to B(D) i.e.
sup
d∈D

|Y (d)| <∞

and for each n ∈ N, the stochastic process Yn be in B(D), where

d 7→ Yn(d) :=
∫ 1

0
F̂−1

n (t)Jd(t)dt.

Let
Zn(·) :=

√
n(Yn(·)− Y (·))

and Z be defined as
d 7→ Z(d) :=

∫
UJddF

−1.

Suppose either Assumption 1 or Assumption 2 holds:

• Assumption 1
Suppose F ∈ F1 and let for each d ∈ D,

1. F and {Jd}d∈D satisfy the following growth Condition

sup
d∈D

|Jd(t)| ≤ K1t
−b1(1− t)−b2 for 0 < t < 1 (4.24a)

|F−1(t)| ≤ K2t
−d1(1− t)−d2 for 0 < t < 1 (4.24b)

and a = (b1 + d1) ∨ (b2 + d2) <
1
2
.

2. Smoothness Condition: Except on a set of t’s of F−1-measure 0,
{Jd}d∈D are equi-continuous at t.

• Assumption 2
Suppose F ∈ F1 and satisfies the Conditions (F1), (F2) and further
that F and {Jm}m∈M0 satisfy the bounded growth conditions in (4.24).
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Then for the special construction of Theorem 2.3, Z ∈ B(D) and there
exists a subsequence {Znk

}k∈N of {Zn}n∈N such that

Znk
− Z

a.s.→ 0

and further if {Yn}n∈N are either elements of Cb(D) and B(D) is equipped
with the Borel sigma algebra or otherwise if B(D) is equipped with finite
dimension subset sigma algebra, then Zn converges weakly in B(D) to a zero
mean Gaussian process with covariance structure given by

Cov(Z(d1), Z(d2)) =
∫ 1

0

∫ 1

0
[s ∧ t− st]Jd1(s)Jd2(t) dF

−1(s) dF−1(t).

The limit distribution of coherent version independent functionals

Now we discuss the second (and final) step of applying the Delta method
for obtaining the limit distribution of version independent functionals. We
mention here that the Delta method holds under more general conditions
than the version stated in Theorem 4.7 below and we refer to [48] for further
reading and to [53] for similar appication in the field of stochastic program-
ming.

Definition 4.2. For D and E be metrizable topological vector spaces, a map-
ping φ : D 7→ E is said be Hadamard differentiable at θ if there exists a map
φ′θ : D→ E such that

limn→∞
φ(θ + tnhn)− φ(θ)

tn
= φ′θ(h)

holds for any h ∈ D and for any tn ↓ 0 and hn converging to h in D. In this
case, the map φ′θ is called the Hadamard derivative of φ.

The notion of Hadamard differentiability can be extended to more general
situations, see e.g. [48] for further details. The Delta theorem essentially
depends on the extended continuous mapping Theorem for which a proof
can be found in, for example, [58], or see Theorem 1.11.1 of [59])

Theorem 4.6 (Extended continuous mapping theorem). If Dn ⊂ D
be arbitrary sets and gn : Dn → E be arbitrary maps (n ≥ 0) such that for
every sequence, xn ∈ D: for every subsequence n′ if xn′ → x and x ∈ D0,
then gn′(xn′) → g0(x). Let Xn : Ωn → Dn and X be Borel measurable with
values in D0, such that g0(X) is Borel measurable taking values in E. Then
Xn

d→ X implies gn(Xn) d→ g0(X).

Theorem 4.7 (Delta method). Let D and E be metrizable topological
vector spaces. Let φ : D 7→ E be Hadamard differentiable at θ. Let Xn : Ω 7→
D be maps with rn(Xn − θ) d→ X for some sequence rn → ∞, where X is a
random element taking its values in D, then rn(φ(Xn)− φ(θ)) d→ φ′θ(X).
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Proof. Define gn(h) = rn(φ(θ + r−1
n h) − φ(θ)) on the domain Dn = {h :

θ + r−1
n h ∈ D}. By Hadamard differentiability for every hn → h in D,

gn(hn) → φ′θ(h). Now the required result that gn(rn(Xn − θ)) d→ φ′θ(X)
follows from the extended continuous mapping theorem (Theorem 4.6) and
by noting that φ′θ(X) is a random element in E, since φ′θ being continuous
is Borel measurable.

In our case, the mapping φ will be the infimum operator; let I : B(M0) →
R denote the infimum operator, i.e. for f ∈ B(M0)

I(f) = inf
m∈M0

f(m). (4.25)

(Note that the I is a Lipschitz continuous mapping between two normed
spaces.) The following Lemma gives the Hadamard derivative for this oper-
ator (see [36], [48]).

Lemma 4.3. Let X be a set and D = B(X) be the linear normed space
of all real valued bounded functions on X with the supremum norm, i.e.
||f || = supx∈X |f(x)| for f ∈ D. Let I(f) = infx∈X f(x). Then I is
Hadamard differentiable for any f ∈ D and we have for any h ∈ D

I ′f (h) = lim
ε↓0

inf
x∈S(f,ε)

h(x)

where S(f, ε) := {x ∈ X : f(x) ≤ I(f) + ε}.

Proof. We follow here the proof given in [48]. Let f and g be in D, tn be a
sequence of positive numbers tending to 0 and hn be a sequence converging
in D to h ∈ D. Then for any n and xn ∈ S(f, t2n) the estimates

I(f+tnhn)−I(f) ≤ (f+tnhn)(xn)−f(xn)+t2n ≤ tnh(xn)+tn||hn−h||+t2n

and hence,

lim sup
n→∞

1
tn

(I(f + tnhn)− I(f)) ≤ lim
ε↓0

inf
x∈S(f,ε)

h(x).

Now let x̄n ∈ S(f + tnhn, t
2
n). Then we have

I(f + tnhn)− I(f) ≥ (f + tnhn)(x̄n)− f(x̄n)− t2n ≥ tnh(x̄n)− t2n

≥ tn inf
x∈S(f+tnhn,t2n)

h(x)− tn||hn − h|| − t2n

≥ tn inf
x∈S(f,2t2n+2tn||hn||)

h(x)− tn||hn − h|| − t2n,

where the last inequality is due to the fact that

S(f + g, ε) ⊂ S(f, 2ε+ 2||g||)
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and is valid for any ε > 0 and g ∈ D. Hence,

lim inf
n→∞

1
tn

(I(f + tnhn)− I(f)) ≥ lim
ε↓0

inf
x∈S(f,ε)

h(x).

Thus we have the required result.

Note that the mapping g → I ′f (g), though not linear, is continuous.

Remark 4.8. In Lemma 4.3, if X is a compact set and D = C(X) is the
linear normed space of all real valued continuous functions on X (equipped
with the supremum norm), then I is in fact the minimum operator i.e.
I(f) = minx∈X f(x) and

I ′f (g) = inf
x∈S(f,0)

g(x)

where S(f, 0) := argmin x∈Xf(x). (See [32] for a direct proof.)

Assuming now that Zn(·) =
√
n(Yn(·) − Y (·)) converges weakly to Z(·)

(sufficient conditions for which have already been established in Theorem 4.4
and 4.5), we can apply the Delta method with φ being the infimum operator
I and D = B(M0) to get that

n1/2(I(Yn)− I(Y )) d→ I ′Y (Z) = lim
ε↓0

inf
m∈S(Y,ε)

Z(m) (4.26)

where S(Y, ε) := {m ∈ M0 : Y (m) ≤ I(Y ) + ε}. Thus we proved the
following theorem.

Theorem 4.8. Let A be version-independent coherent functional as in (4.13)
with F ∈ F1 and suppose that for Yn, Y defined in (4.15) and (4.16) respec-
tively, Zn(·) :=

√
n(Yn(·)− Y (·)) converges weakly to Z(·) in B(M0) then

√
n
(
A[F̂n]−A[F ]

)
d→ lim

ε↓0
inf{Z(m) : m ∈ S(A[F ], ε)}

where S(A[F ], ε) := {m ∈M0 :
∫
(0,1] AV@Rα[F ]dm(α) ≤ A[F ] + ε}.

Remark 4.9. By Remark 4.3, we know that when F has bounded support
then Zn(·) =

√
n(Yn(·) − Y (·)) ∈ C(M0) with M0 compact. In this case,

Remark 4.8 under the assumptions of Theorem 4.8 will yield that,

√
n (A[Fn]−A[F ]) d→ min{Z(m) : m ∈ argmin A[F ]}. (4.27)

In the previous remark if argmin A[F ] is not a singleton in (4.27) i.e.
the minimizer is not unique in the representation (2.1) of the acceptability
functional, the asymptotic distribution need not be normal, as demonstrated
in the following example.
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Example 4.2. Consider the functional

A(Y ) = min{AV@R0.5(Y ), 0.5AV@R0.25(Y ) + 0.5AV@R0.75(Y )}.

Let (ξi) be an independent sample from a Uniform[0,1] distribution. Ob-
viously, if Y ∼ F where F is Uniform[0,1] distribution, AV@Rα(Y ) =
AV@Rα[F ] = α/2. Thus

A[F ] = AV@R0.5[F ] = 0.5AV@R0.25[F ] + 0.5AV@R0.75[F ] = 1/4.

Let
Zn(δα) =

√
n(AV@Rα(F̂n)− AV@Rα(F ))

for any 0 < α < 1. By Theorem 4.5, one gets that for 0 < α, β < 1, Zn(δα)
and Zn(δβ) are asymptotically normal and that the asymptotic covariance
of Zn(δα) and Zn(δβ) equals

1
αβ

∫ α

0

∫ β

0
[s ∧ t− s · t] ds dt =

α

2
− α2

6β
− αβ

4

for α ≤ β. In particular, the asymptotic variance of Zn(δα) equals α
3 −

α2

4 .
Hence, the asymptotic covariance matrix of the joint distribution of Zn(δ0.5)
and 0.5(Zn(δ0.25) + Zn(δ0.75)) is

C =
1

288

(
30 25
25 22

)
.

Thus, the asymptotic distribution of
√
n(A[F̂n] − A[F ]), by (4.27), is the

same as the distribution of min(Z1, Z2), where (Z1, Z2) is a normal pair
with zero mean and covariance matrix C and is therefore, non-normal. In
fact, the distribution of T = min(Z1, Z2) is given by

fT (t) = φ(t|σ2
1)[1− Φ(

t−m1(t)

σ2

√
1− ρ2

)] + φ(t|σ2
2)[1− Φ(

t−m2(t)

σ1

√
1− ρ2

)]

where φ(·|σ2) denotes the density function zero-mean normal distribution
and variance σ2 and

m1(t) = E(Z1|Z2 = t) =
ρσ1

σ2
(t)

and
m2(t) = E(Z2|Z1 = t) =

ρσ2

σ1
(t).

To see that in general, the minimum of a vector, which has a multi-variate
normal distribution, is not normally distributed we refer to [29].
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Appendix A

Kusuoka representation

In this Section we give the proof of Theorem 2.1, for p ∈ [1,∞) which appears
in [42] as Theorem 2.45.

Theorem A.1. Let A be a coherent version independent functional defined
on X = Lp(Ω,F,P), p ∈ [1,∞]. If A has a dual representation of the form
(1.2) for p ∈ [1,∞), then for any X ∈ X with distribution function F ∈ F1,

A(X) = inf

{∫
(0,1]

AV@Rα[F ]dm(α) : m ∈M0

}
, (A.1)

where M0 is a subset of P(0, 1], the set of all probability measures on (0, 1]
and AV@Rα[F ] is as defined in (1.1).

Proof. Let F be the distribution ofX and G denote the set of all distributions
of Z ∈ Z. Let H be the family of all joint distributions such that the first
marginal is F and the second marginal is a member of G. If H ∈ H, we may
construct a random variable X ′ (by possibly extending Ω) such that (X ′, Z ′)
has distribution H with Z ′ ∈ Z. A being version independent and X and
X ′ having the same distribution F ,

A(X) = A(X ′) = inf{E(X ′Z ′) : Z ′ ∈ Z} (A.2)

= inf{
∫
x.z dH(x, z) : H ∈ H}.

Invoking a known coupling result, we know that if X ∼ F and Z ∼ G have
to be coupled such that E(XZ) is minimal (or equivalently that Cov(XZ) =
E(XZ)−E(X)E(Z) =

∫
H(x, z)−F (x)G(z) dx dz is minimal, see [30]) they

have to be coupled in an anti-monotone way. That is

inf{
∫
x.z dH(x, z) : F and G are the marginals of H} (A.3)

=
∫
F−1(u)G−1(1− u)du.

Thus we have shown that

A(X) = inf{
∫
F−1(u)G−1(1− u) du : G ∈ G}. (A.4)
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Since Z ≥ 0 and E(Z) = 1 for all Z ∈ Z, we can definemG as the measure
with distribution function MG where dMG(u) = −u dG−1(1−u), 0 < u < 1
and point mass mG({1}) = G−1(0) ≥ 0 at 1. MG is monotonically increasing
and for 0 < u < 1,∫

(u,1)

1
y
dMG(y) = −

∫
(u,1)

dG−1(1− y) = G−1(1− u)−G−1(0).

Now, ∫
(0,1)

F−1(u)G−1(1− u)du

=
∫

(0,1)
F−1(u)

[∫
(u,1)

1
y
dMG(y) +G−1(0)

]
du

=
∫

(0,1)

∫
(0,y)

1
y
F−1(u)du dMG(u) +

∫
(0,1)

F−1(u)G−1(0)du

=
∫

(0,1)
AV@Ry[F ]dMG(y) + AV@R1[F ]G−1(0).

It remains to show that mG is indeed a probability measure on (0, 1].

mG(0, 1] =
∫
1(0,1)(u)dMG(u) +mG({1})

= −
∫

(0,1)
udG−1(1− u) +G−1(0)

=
∫

(0,1)
d(−u G−1(1− u)) +

∫
(0,1)

G−1(1− u)du+G−1(0)

= −G−1(0) +
∫

(0,1)
G−1(1− u)du+G−1(0) = 1

since
∫
(0,1)G

−1(1 − u)du = E[G] = E(Z) = 1. Finally, using (A.4) one sees
that

A(X) = inf

{∫
(0,1]

AV@Ry[F ]dmG(y) : G ∈ G

}
.
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Appendix B

Proofs of Theorems in Chapter
3 & 4

In this appendix, we prove Theorem 19.1.1 of [55], (figuring in this Thesis
as Theorem 3.3 and Theorem 4.1) which gives the asymptotic behavior for
L-statistics or linear combination of order statistics i.e. of∫ 1

0
F̂−1

n (t)J(t)dt =
n∑

i=1

∫ i
n

i−1
n

F̂−1
n (t)J(t)dt

=
n∑

i=1

Xn:i

∫ i
n

i−1
n

J(t)dt

=
1
n

n∑
i=1

cniXn:i,

where cni := n
∫ i

n
i−1
n

Jm(t)dt for 1 ≤ i ≤ n, J : [0, 1] → R and F̂n is the
empirical distribution of X1 . . . Xn. We will then prove the extension of it to
the uniform case where there a family of weighting functions, {Jm},m ∈M0

involved- i.e. the proof of Theorem 4.4.

Theorem B.1. Suppose the following conditions of bounded growth and
smoothness hold

1. Growth condition
J : [0, 1] → R is such that |J(t)| ≤ B(t) where

B(t) = K1t
−b1(1− t)−b2 for 0 < t < 1 with b1 ∨ b2 < 1

and |F−1(t)| ≤ D(t) where

D(t) = K2t
−d1(1− t)−d2 for 0 < t < 1 for any fixed d1, d2

and a = (b1 + d1) ∨ (b2 + d2).

2. Smoothness: Except on a set of t’s of F−1-measure 0, J is continuous
at t (where F−1-measure is the Lebesgue-Stieltjes measure associated
with F−1).

Then
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• SLLN: if the growth condition holds with a < 1,

∫ 1

0
F̂−1

n (t)J(t)dt−
∫ 1

0
F−1(t)J(t)dt a.s.→ 0 as n→∞. (B.1)

• CLT: if the growth condition holds with a < 1/2,

√
n(
∫ 1

0
F̂−1

n (t)J(t)dt−
∫ 1

0
F−1(t)J(t)dt) d→ N (0, σ2), (B.2)

where

σ2 =
∫ 1

0

∫ 1

0
[s ∧ t− st]J(s)J(t)dF−1(s)dF−1(t). (B.3)

Proof. Let

Tn =
∫ 1

0
F̂−1

n Jdt =
∫ 1

0
F̂−1

n dΨ

where Ψ(t) =
∫ t
1/2 J(s)ds for 0 < t < 1 and let

µ =
∫ 1

0
F−1Jdt =

∫ 1

0
F−1dΨ

(assuming ψ and µ are well defined integrals.)
Recollect that in view of Remark 4.5, w.l.o.g. Xi are assumed to be of

the form Xi = F−1(ξi) for i.i.d. Uniform(0,1) random variables ξi defined on
a common probability space (Ω,F,P), where F−1 is the inverse distribution
function of F , which we will denote by g

g(t) := F−1(t) = inf{x : F (x) ≥ t}, t ∈ (0, 1).

Further, by Gn we denoted the empirical distribution and by Un the empirical
process corresponding to ξ1, . . . ξn respectively i.e.

Gn(t) =
1
n

n∑
i=1

1(−∞,t](ξi) and Un(t) =
√
n [Gn(t)− t]

and

Vn(t) =
√
n
[
G−1

n (t)− t
] d→ V = −U. (B.4)

where the Brownian bridge U corresponds to the limiting distribution of Un.
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The sketch of the proof is as follows (whereby we will verify later that
the step (B.6) holds under the assumption of bounded growth)

Tn − µ =
∫ 1

0
g(G−1

n )dΨ−
∫ 1

0
gdΨ

=
∫ 1

0
gd[Ψ(Gn)−Ψ] (B.5)

= −
∫ 1

0
[Ψ(Gn)−Ψ]dg (B.6)

=
a −

∫ 1

0
[Gn − I]Jdg1 (B.7)

= − 1
n

n∑
i=1

∫ 1

0
[1ξi≤t − t]J dg

:= − 1
n

n∑
i=1

Yi :=
Sn

n
. (B.8)

Thus, the error made in approximation (B.7) has to be controlled. That is,
we need to control

γn = Tn − µ− Sn

n
. (B.9)

In particular,

γn =
{
o(1) a.s. yields SLLN if E(Y ) <∞
op(n−1/2) yields CLT if E(Y 2) <∞

We will proceed with the further proof along the following steps:

• We will first prove (B.6).

• Then in Lemma B.1 we will verify that E(|Yi|) < ∞ if a < 1 and
Var(Yi) <∞ if a < 1/2.

• Next step will be to re-write γn and derive certain properties of it which
simplifies the next two steps.

• Then we establish the SLLN, i.e. γn = o(1) a.s., if the growth condition
holds with a < 1.

• To establish CLT we’ll show that if the growth condition holds with
a < 1/2 then γn = op(n−1/2). Then it will follow that

∫ 1
0 JUndg

d→
N(0, σ2) since

∫ 1
0 JUndg −

∫ 1
0 JUdg p→ 0,

Before we begin with the proof of (B.6), a word to the notation. We let
M denote a generic constant. To simplify notation we assume b1 = b2 = b
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and d1 = d2 = d. Further, note that g = F−1 being non-decreasing d|g| can
be replaced by dg.

Now we prove (B.6). From (B.5), we have

Tn − µ =
∫ 1

0
gd[Ψ(Gn)−Ψ] (B.10a)

= g[Ψ(Gn)−Ψ]|10 −
∫ 1

0
[Ψ(Gn)−Ψ]dg (B.10b)

= −
∫ 1

0
[Ψ(Gn)−Ψ]dg; (B.10c)

since in the interval 0 < t < ξ1:n we have under the assumption of bounded
growth (with a < 1)

|g(t)[Ψ(Gn(t))−Ψ(t)]| ≤ D(t)
∫ t

0
B(s)ds ≤Mt−d

∫ t

0
s−bds

≤ Mt1−(b+d) = Mt1−a → 0 as t→ 0.

and a symmetric argument holds works for ξn:n ≤ t < 1.
Next we verify the conditions for the existence of E(Tn−µ) and Var(Tn−

µ) or equivalently of E(Yi) and of Var(Yi).

Lemma B.1. Under the assumption of bounded growth

∫ 1

0
[t(1− t)r]B(t)d|g|(t) <∞ if r > a (B.11)

Thus the random variable

Y :=
∫ 1

0
[1ξ≤t − t]J dg (of (B.8))

satisfies

E(Y ) = 0 if a < 1

and

V ar(Y ) =
∫ 1

0

∫ 1

0
s ∧ t− stJ(s)J(t)dg(s)dg(t) <∞ if a < 1/2,

and E(|Y |2+δ) <∞ for all 0 ≤ δ < 1
a − 2 if a < 1/2.
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Proof. Note that for r > a,∫ 1

0
[t(1− t)]rB(t)dg ≤

∫ 1

0
[t(1− t)]r−bdg

≤ M [t(1− t)]r−bg|10 +M

∫ 1

0
|g[ d
dt

[t(1− t)]r−b|dt

≤ 0− 0 +M

∫ 1

0
[t(1− t)]−d|[ d

dt
[t(1− t)]r−b|dt using a < r

≤ M

∫ 1

0
[t(1− t)]r−d−b−1dt

< ∞ since a = b+ d < r. (B.12)

Further,

Y :=
∫ 1

0
[1ξ≤t − t]J dg =

∫ ξ

0
[−t]J dg +

∫ 1

ξ
[1− t]J dg.

Thus by Fubini’s theorem

E(|Y |) ≤ E
∫ 1

0
|[1ξ≤t − t]||J | dg

=
∫ 1

0
E|[1ξ≤t − t]||J | dg

=
∫ 1

0
2[t(1− t)]|J | dg (B.13)

< ∞ if a < 1 by (B.12)

where we used in (B.13) that for any t ∈ (0, 1)

E|[1ξ≤t − t]| =
∫

ξ≤t
|1ξ≤t − t|dP+

∫
ξ>t

|1ξ≤t − t|dP

=
∫

ξ≤t
|1− t|dP+

∫
ξ>t

| − t|dP.

= 2t(1− t)

Similarly, another application of Fubini shows that

E(Y ) =
∫ 1

0
E(1ξ≤t − t)J dg =

∫ 1

0
0J dg = 0.

Note that to show

E(Y 2) = E
(∫ ξ

0
(−t)J dg +

∫ 1

ξ
(1− t)J dg

)2

<∞
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it suffices to show that E(
∫ ξ
0 (−t)J dg)2 <∞ and E(

∫ 1
ξ (1− t)J dg)2 <∞.

Now,

|
∫ 1

ξ
(1− t)Jdg| ≤

∫ 1

ξ
(1− t)B(t) dg

≤ ξ−b

∫ 1

ξ
(1− t)−b+1 dg

since for t > ξ, (1
t )

b < (1
ξ )b (B.14)

= ξ−b

(∣∣∣(1− t)−b+1g(t)|1ξ
∣∣∣+ ∫ 1

ξ
|g ((1− t)−b+1)′| dt

)
≤ 0 + (1− ξ)B(ξ)D(ξ) + ξ−b

∫ 1

ξ
D(t)|(1− t)−b+1)′| dt (B.15)

≤ B(ξ)D(ξ) +Mξ−(b+d)

∫ 1

ξ
(1− t)d(1− t)−b+1−1 dt

≤ B(ξ)D(ξ) +Mξ−(b+d)

∫ 1

0
(1− t)−b−d dt

< B(ξ)D(ξ) +Mξ−(b+d)(1− ξ)−b−d

using that
∫ 1
0 t

−k <∞ if k < 1 and b+ d < 1
= MB(ξ)D(ξ) (B.16)

where we used in (B.15) that

lim
t→1

(1− t)−b+1g(t) ≤ 1. lim
t→1

(1− t)1−b−d = 0 since b+ d < 1

and that

lim
t→ξ

(1− t)−b+1g(t) ≤ lim
t→ξ

t−d(1− t)1−b−d = ξ−d(1− ξ)1−b−d.

Similarly one can show that |
∫ ξ
0 (−t)J dg| ≤MB(ξ)D(ξ).

Now,

E(B(ξ)D(ξ))2 =
∫ 1

0
[t(1− t)]−2adt <∞

since −2a+ 1 > 0 i.e. a = b+ d < 1/2.

Next we derive certain properties of γn (see B.9) useful in proving (B.1)
and (B.2).

−γn =
∫ 1

0
[Ψ(Gn)−Ψ]dg −

∫ 1

0
[(Gn)− I]Jdg

=
∫ 1

0

{∫ Gn(t)
t J(s)ds
Gn(t)− t

− J(t)

}
[Gn(t)− t]dg(t)

:=
∫ 1

0
{An}[Gn(t)− t]dg(t) (B.17)
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where An(t) =
∫ Gn(t)

t J(s)ds

Gn(t)−t −J(t) and we define the ratio to be 0 if Gn(t) = t.

Consider An. Since ||Gn−I|| → 0 a.s. by Glivenko-Cantelli, the Smoothness
Condition implies that

for a.e. ω An(t) → 0 a.e.|g| as n→∞ (B.18)

(follows from the First theorem of Calculus.) Next, we seek an a.s. bound
on An. Now,

|An(t)| ≤
∫ Gn(t)
t |J(s)|ds

Gn(t)− t
+ |J(t)|,

so that for any tiny θ > 0 and for ξ1:n ≤ t < ξn:n we have

|An(t)| ≤ [B(Gn) ∨B] +B

≤ Mθ[t(1− t)]−(b+θ) a.s. for n ≥ nθ,ω

using Lemma B.2 For 0 < t < ξ1:n, we have Gn(t) = 0 so that

|An(t)| <
∫ t
0 B(s)ds

t
+B ≤Mt1−b/t = Mt−b

and a symmetric argument applies ξn:n ≤ t < 1. Thus for any small θ > 0
we have

|An(t)| ≤Mθ[t(1− t)]−(b+θ) on (0,1) a.s. for n ≥ nθ,ω. (B.19)

Now we prove (B.1) and (B.2).

• Case (i) (SLLN) In this case, for n ≥ nθ,ω we have from (B.17) that

lim sup
n→∞

|γn|

≤lim sup
n→∞

∣∣∣∣∣∣∣∣ Gn − I

[I(1− I)]1−θ

∣∣∣∣∣∣∣∣ lim sup
n→∞

∫ 1

0
|An(t)|[t(1− t)]1−θdg(t)

≤ 0 · 0 = 0 (B.20)

provided θ was chosen small enough that a + 2θ < 1. This follows by
using Lai’s Theorem stated as Theorem B.2 below, with ψ(t) := [t(1−
t)]θ−1 for the first 0 and for the second 0 using (B.18) and (B.19) and
using the dominated convergence theorem with dominating function

Mθ[t(1− t)]1−b−2θ

where we note that
∫ 1
0 Mθ[t(1− t)]1−b−2θdg(t) <∞ follows from B.11

in Lemma B.1 for 1− 2θ > b+ d i.e. a+ 2θ < 1. Hence, we have that

|γn| = |Tn − µ− Sn

n
| a.s.→ 0
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and finally, by similar argument as in (B.20),

|Sn

n
| =

∣∣∣∣∫ 1

0
[Gn − I]Jdg

∣∣∣∣ a.s.→ 0

and therefore, we have the required result

Tn − µ
a.s.→ 0.

• Case (ii) (CLT) In this case, for n ≥ nθ,ω we have from (B.17) that

√
n|γn| ≤

∣∣∣∣∣∣∣∣ Un

[I(1− I)]1/2−θ

∣∣∣∣∣∣∣∣ ∫ 1

0
|An(t)|[t(1− t)]1/2−θdg(t)

≤ Zn · Λn

where
Zn =

∣∣∣∣∣∣∣∣ Un

[I(1− I)]1/2−θ

∣∣∣∣∣∣∣∣ = Op(1)

follows from Inequality 3.6.3 of [55] and

Λn =
∫ 1

0
|An(t)|[t(1− t)1/2−θ]dg(t) a.s.→ 0

provided θ was chosen small enough that a+2θ < 1/2. (As in the SLLN
case, this follows using (B.18) and (B.19) and using the dominated
convergence theorem with dominating function

Mθ[t(1− t)]1/2−b−2θ

where
∫ 1
0 Mθ[t(1 − t)]1/2−b−2θdg(t) < ∞ by B.11 in Lemma B.1 for

1/2− 2θ > b+ d i.e. a+ 2θ < 1/2).

Hence, we have that
√
n|γn| =

√
n|Tn − µ − Sn

n |
p→ 0. Next we note

that

√
n
Sn

n
=

√
n

[
− 1
n

n∑
i=1

∫ 1

0
[1ξi≤t − t]J dg

]

=
√
n

(
1
n

n∑
i=1

Yi

)
.

Hence, Yi being i.i.d., we get by Lemma B.1 and the classical CLT that

√
n
Sn

n

d→ N (0, σ2) (B.21)

where σ2 is given by (B.3). This establishes the required result, how-
ever, for later it is useful to observe that the convergence in distribution
in (B.21) can also be established as follows.
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We note that

√
n
Sn

n
=

√
n

[
− 1
n

n∑
i=1

∫ 1

0
[1ξi≤t − t]J dg

]

=
√
n

∫ 1

0
[Gn − I] dg

=
∫ 1

0
UnJ dg.

Further, for the special construction of Theorem 2.3

|
∫ 1

0
UnJ dg −

∫ 1

0
UJ dg| p→ 0

since for any a < r < 1/2, as before, by B.11 in Lemma B.1 we get
that

|
∫ 1

0
UnJ dg −

∫ 1

0
UJ dg| ≤

∣∣∣∣∣∣∣∣ Un − U

[I(1− I)]r

∣∣∣∣∣∣∣∣ ∫ 1

0
|J(t)|[t(1− t)]rdg(t)︸ ︷︷ ︸
<∞ a.s. for r>a

and by Theorem 3.7 of [55]∣∣∣∣∣∣∣∣ Un − U

[I(1− I)]r

∣∣∣∣∣∣∣∣ p→ 0 for r < 1/2.

Finally, note that
∫ 1
0 UJ dg ∼ N (0, σ2) where σ2 is given by (B.3)

(see Proposition 2.2.1 of [55]). Thus, since
√
nSn

n based on the special
construction and that based on the original sample have the same
distribution we established (B.21) by an alternate technique.

Theorem B.2. [Lai] For positive functions ψ non-increasing on (0, 1
2 ] and

symmetric about t = 1
2 ,

lim sup
n→∞

||(Gn − I)ψ|| =
{

0 a.s.,
∞ a.s., according as

∫ 1

0
ψ(t)dt =

{
<∞
= ∞.

Proof. See Theorem 10.2.1 of [55]

Lemma B.2. Fix 0 < δ < 1. Let ε > 0 be given. Then a.s. for n exceeding
some nδ,ω,ε, we have

Gn(t) > (1− ε)[t(1− t)]1+δ

and
1−Gn(t) > (1− ε)[t(1− t)]1+δ
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Proof. See Theorem 10.6.1 of [55].

Now we discuss the proof to Theorems 3.5 and 4.4 in the following The-
orem. This Theorem extends the previous theorem giving the conditions
under which the conclusions of the previous theorem hold uniformly for a
family of weighting factors {Jm}m∈M0 . In our case, M0 ⊂ P(0, 1] occurring
in the representation (2.1).

Theorem B.3. Suppose the following conditions hold

1. Growth condition
Jm : [0, 1] → R is such that supm∈M0

|Jm(t)| ≤ B(t) where

B(t) = K1t
−b1(1− t)−b2 for 0 < t < 1 with b1 ∨ b2 < 1

and |F−1(t)| ≤ D(t) where

D(t) = K2t
−d1(1− t)−d2 for 0 < t < 1 for any fixed d1, d2

and a = (b1 + d1) ∨ (b2 + d2).

2. Smoothness: Except on a set of t’s of F−1-measure 0, {Jm}m∈M0 is
equi-continuous at t i.e. for any ε > 0, there exists δt > 0 such that

|s− t| < δt =⇒ sup
m∈M0

|Jm(s)− Jm(t)| < ε.

Then

• (for SLLN): if the growth condition holds with a < 1,

sup
m∈M0

∣∣∣∣∫ 1

0
F̂−1

n (t)Jm(t)dt−
∫ 1

0
F−1(t)Jm(t)dt

∣∣∣∣ a.s.→ 0 as n→∞.

(B.22)

• (for CLT): if the growth condition holds with a < 1/2, then for

Yn(m) :=
∫ 1

0
F̂−1

n (t)Jm(t)dt

and

Y (m) :=
∫ 1

0
F−1(t)Jm(t)dt

we have that
Zn(·) :=

√
n(Yn(·)− Y (·)) (B.23)

converges in distribution in B(M0) to Z(·), a zero-mean Gaussian pro-
cess with covariance structure given by

Cov(Z(m1), Z(m2)) =
∫ 1

0

∫ 1

0
[s∧ t− st]Jm1(s)Jm2(t)dF

−1(s)dF−1(t).
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Proof. This proof follows along similar lines as the proof of Theorem B.1.
For each m ∈M0, define

T (m)
n := Yn(m)

=
∫ 1

0
F̂−1

n Jmdt =
∫ 1

0
F̂−1

n dΨ(m)

where Ψ(m)(t) =
∫ t
1/2 Jm(s)ds for 0 < t < 1 and let

µ(m) := Y (m)

=
∫ 1

0
F−1Jmdt =

∫ 1

0
F−1dΨ(m).

Like in proof of Theorem B.1, we can write (for each m ∈M0,)

T (m)
n − µ(m) =

∫ 1

0
g(G−1

n )dΨ(m) −
∫ 1

0
gdΨ(m)

=
∫ 1

0
gd[Ψ(m)(Gn)−Ψ(m)] (B.24)

= −
∫ 1

0
[Ψ(m)(Gn)−Ψ(m)]dg (B.25)

where the last step can be shown to hold under the bounded growth assump-
tion (with a < 1) in a similar way as (B.10). Now define

−γ(m)
n :=

∫ 1

0
[Ψ(m)(Gn)−Ψ(m)]dg −

∫ 1

0
[(Gn)− I]Jmdg

and
S

(m)
n

n
:= −

∫ 1

0
[(Gn)− I]Jmdg.

Now to show (B.22), we show that supm∈M0
|γ(m)

n | = o(1) a.s., more
precisely we show that

sup
m∈M0

{
∫ 1

0
[Ψ(m)(Gn)−Ψ(m)]dg −

∫ 1

0
[Gn − I]Jmdg} → 0 a.s.

while to show the weak convergence of Zn in (B.23), we will need to show
that supm∈M0

|γ(m)
n | = op(n−1/2).

Let us consider for m ∈M0, γ
(m)
n .

−γ(m)
n =

∫ 1

0

{∫ Gn(t)
t Jm(s)ds

Gn(t)− t
− Jm(t)

}
[Gn(t)− t]dg(t)

:=
∫ 1

0
{A(m)

n }[Gn(t)− t]dg(t) (B.26)
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where A(m)
n (t) =

∫ Gn(t)
t Jm(s)ds

Gn(t)−t − Jm(t) and we define the ratio to be 0 if
Gn(t) = t.

Since ||Gn− I|| → 0 a.s. by Glivenko-Cantelli Theorem, the Smoothness
Condition implies that, as n→∞

for a.e. ω sup
m∈M0

|A(m)
n (t)| → 0 |g| − a.e. (B.27)

[Reason: For any fixed t ∈ (0, 1) by the smoothness condition we have that
for given ε > 0 there exists δε,t such that

sup
m∈M0

|Jm(s)− Jm(t)| < ε, if |s− t| < δε,t. (B.28)

Choose Nδ such that

supt∈(0,1)|Gn(t)− t| ≤ δε,t for all n ≥ Nδ.

Hence, for any m ∈M0

|A(m)
n (t)| =

∣∣∣∣∣
∫ Gn(t)
t Jm(s)ds

Gn(t)− t
− Jm(t)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ Gn(t)
t [Jm(s)− Jm(t)]ds

Gn(t)− t

∣∣∣∣∣
≤

∫ Gn(t)
t supm∈M0

|Jm(s)− Jm(t)|ds
Gn(t)− t

≤ ε for all n ≥ Nδ.

Taking supremum over M0, gives the required result.]
Next, we seek an a.s. bound on supm∈M0

|A(m)
n |. Now, for any m ∈M0

|A(m)
n (t)| ≤

∫ Gn(t)
t |Jm(s)|ds

Gn(t)− t
+ |Jm(t)|,

so that for any tiny θ > 0 and for ξ1:n ≤ t < ξn:n we have

|A(m)
n (t)| ≤ [B(Gn) ∨B] +B

≤ Mθ[t(1− t)]−(b+θ) a.s. for n ≥ nθ,ω

using Lemma B.2. For 0 < t < ξ1:n, we have Gn(t) = 0 so that

|A(m)
n (t)| <

∫ t
0 B(s)ds

t
+B ≤Mt1−b/t = Mt−b

and a symmetric argument applies ξn:n ≤ t < 1. Thus for any small θ > 0
we have

sup
m∈M0

|A(m)
n (t)| ≤Mθ[t(1− t)]−(b+θ) on (0,1) a.s. for n ≥ nθ,ω. (B.29)
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Case (i) (for SLLN) From (B.26), we have that for each m ∈ M0 and
n ∈ N

|γ(m)
n |

≤
{∣∣∣∣∣∣∣∣ Gn − I

[I(1− I)]1−θ

∣∣∣∣∣∣∣∣}{∫ 1

0
sup

m∈M0

|A(m)
n (t)|[t(1− t)1−θ]dg(t)

}
.

Therefore taking limits we get (like in Theorem B.1) that

lim sup
n→∞

sup
m∈M0

|γ(m)
n |

≤
{

lim sup
n→∞

∣∣∣∣∣∣∣∣ Gn − I

[I(1− I)]1−θ

∣∣∣∣∣∣∣∣}{lim sup
n→∞

∫ 1

0
sup

m∈M0

|A(m)
n (t)|[t(1− t)1−θ]dg(t)

}
= 0 · 0 = 0

provided θ was chosen small enough that a+ 2θ < 1.
Hence, we have that

sup
m∈M0

|γ(m)
n | = sup

m∈M0

|T (m)
n − µ(m) − S

(m)
n

n
| a.s.→ 0

and similarly that

sup
m∈M0

∣∣∣∣∣
∣∣∣∣∣S(m)

n

n

∣∣∣∣∣
∣∣∣∣∣ = sup

m∈M0

∣∣∣∣∫ 1

0
[Gn − I]Jmdg

∣∣∣∣ a.s.→ 0

and therefore, we have the required result

sup
m∈M0

|T (m)
n − µ(m)| a.s.→ 0.

Case (ii) (for CLT) From (B.26), for n ≥ nθ,ω we have that

√
n|γ(m)

n | ≤
∣∣∣∣∣∣∣∣ Un

[I(1− I)]1/2−θ

∣∣∣∣∣∣∣∣ ∫ 1

0
sup

m∈M0

|A(m)
n (t)|[t(1− t)1/2−θ]dg(t)

≤ Γn · Λ(m)
n

where

Γn =
∣∣∣∣∣∣∣∣ Un

[I(1− I)]1/2−θ

∣∣∣∣∣∣∣∣ = Op(1)

follows from Inequality 3.6.3 of [55] and

Λ(m)
n =

∫ 1

0
sup

m∈M0

|A(m)
n (t)|[t(1− t)1/2−θ]dg(t) a.s.→ 0
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provided θ was chosen small enough that a+2θ < 1/2. (As in the SLLN case,
this follows using (B.18) and (B.19) and using the dominated convergence
theorem with dominating function

Mθ[t(1− t)]1/2−b−2θ

where
∫ 1
0 Mθ[t(1− t)]1/2−b−2θdg(t) < ∞ by (B.11) in Lemma B.1 for 1/2−

2θ > b+ d i.e. a+ 2θ < 1/2).
Hence, we have that along a subsequence

sup
m∈M0

√
n|γ(m)

n | = sup
m∈M0

√
n|T (m)

n − µ(m) − S
(m)
n

n
| a.s.→ 0. (B.30)

Next we note that

√
n
S

(m)
n

n
=

√
n

[
− 1
n

n∑
i=1

∫ 1

0
[1ξi≤t − t]Jm dg

]

=
√
n

n∑
i=1

∫ 1

0
[Gn − I]Jm dg

=
∫ 1

0
UnJm dg. (B.31)

Define the mapping Z : M0 → R as

Z(m) :=
∫ 1

0
UJm dg. (B.32)

Now Z ∈ B(M0) a.s. is evident from the following argument: for any
a < r < 1/2

sup
m∈M0

|Z(m)| ≤
∣∣∣∣∣∣∣∣ U

[I(1− I)]r

∣∣∣∣∣∣∣∣ ∫ 1

0
sup

m∈M0

Jm(t)[t(1− t)]r dg(t) <∞ a.s.

using as before that∫ 1

0
sup

m∈M0

|Jm(t)|[t(1− t)]rdg(t) <∞ a.s. for r > a

and ∣∣∣∣∣∣∣∣ U
[I(1− I)]r

∣∣∣∣∣∣∣∣ = Op(1) a.s. for r < 1/2.

Now to show the weak convergence of the process Zn to a Gaussian
process with appropriate covariance structure we proceed as follows: For
the special construction of Theorem 2.3, we will show that a subsequence
{Znk

}k∈N of {Zn}n∈N converges to Z a.s. i.e.

sup
m∈M0

|Znk
(m)− Z(m)| a.s.→ 0.
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This will yield the measurability of the process Z (being the point wise limit
of a (sub-)sequence of measurable functions) and hence by Lemma 2.1 that

Zn − Z
p→ 0.

Since Zn based on the special construction has the same distribution as that
of the Zn based on the original sample, we get the required convergence in
distribution of Zn.

Now, we know that

Zn(m) =
√
n(Yn(m)− Y (m)) =

√
n(T (m)

n − µ(m)) (B.33)

For the special construction of Theorem 2.3, since for r < 1/2∣∣∣∣∣∣∣∣ Un − U

[I(1− I)]r

∣∣∣∣∣∣∣∣ p→ 0,

(see Theorem 3.7 of [55]), by Lemma 2.1 we can extract a subsequence such
that this convergence is a.s., i.e. there exists a subsequence {Unk

}k∈N such
that ∣∣∣∣∣∣∣∣ Unk

− U

[I(1− I)]r

∣∣∣∣∣∣∣∣ a.s.→ 0.

This in turn, along with (B.11) gives that for any a < r < 1/2,

sup
m∈M0

∣∣∣∣∫ 1

0
Unk

Jm dg −
∫ 1

0
UJm dg

∣∣∣∣
≤

∣∣∣∣∣∣∣∣ Unk
− U

[I(1− I)]r

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
a.s.→ 0 for r<1/2

sup
m∈M0

∫ 1

0
|Jm(t)|[t(1− t)]rdg(t)︸ ︷︷ ︸

<∞ a.s. for r>a

i.e.

sup
m∈M0

|
∫ 1

0
Unk

Jm dg − Z(m)| a.s.→ 0. (B.34)

Hence, from (B.31), (B.33), (B.32), and (B.30),(B.34) we have shown that
for the subsequence {Znk

}k∈N of {Zn}n∈N, based on the special construction
of 2.3 that

sup
m∈M0

|Znk
(m)− Z(m)|

≤ sup
m∈M0

|Znk
(m)−

∫ 1

0
Unk

Jm dg|+ sup
m∈M0

|Unk
Jm dg − Z(m)|

a.s.→ 0.
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Further, observing that Z is a zero-mean Gaussian process (see Proposition
2.2.1 of [55]) with covariance structure

Cov(Z(m1), Z(m2)) =
∫ 1

0

∫ 1

0
[s ∧ t− st]Jm1(s)Jm2(t)dF

−1(s)dF−1(t)

completes the proof.
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Abstract

Asymptotic Properties of coherent version independent Risk
Functionals

The subject of risk and acceptability measures has received wide spread
attention in the last years owing to the importance of it in many of the
financial applications. Assuming that the profit/loss of the investment under
consideration can be modelled by a random variable X defined on a measure
space (Ω,F), a risk functional quantifies the risk involved in the activity.

In this work, the class of law-invariant coherent risk measures will be
considered. Law invariance is a useful property since in this case the risk
functional does not explicitly depend on the event space Ω, and it suffices
to know the distribution of the profit variable. Hence, one can derive the
asymptotics of the functional based on the empirical distribution.

Using well known representation results for coherent risk measures the
empirical estimator for a risk measure A(X) can be written as

A[F̂n] = inf

{∫
(0,1]

AV@Rα[F̂n]dm(α) : m ∈M0

}
, (4.35)

where AV@Rα is the average (conditional) value at risk at level α.
My aim is to consider the conditions under which this estimator has the

’right’ behaviour as n increases. In specific, the following two issues will be
considered:

• The issue of asymptotic consistency: Does A[F̂n] converge to A[F ]
(almost surely or in probability) as n→∞?

• The issue of asymptotic distribution of this estimator: Identifing the
limit distribution of

√
n(A[F̂n] − A[F ]) and giving conditions for the

existence of the same.

The thesis examines under what conditions on F andM0 the above goals
can be met. The approach that is chosen, is to write the integral in (4.35) as
linear combination of order statistics. This in turn allows the application of
the Strong law of large numbers and Central Limit Theorem for L-statistics
in analyzing asymptotic behaviour of version independent functionals with
representation (4.35) and the set M0 a singleton set. To tackle the general
case when |M0| > 1, the classical theorems for L-statistics are extended to
their respective ’uniform’ versions.

This Thesis gives the extensions to these Theorems and thereby provides
answers to the issues of asymptotic behaviour of the empirical estimators of
risk functionals, discussed above.



88 Abstract

Asymptotische Eigenschaften der Klasse der koherenten
versionsunabhängigen Risikofunktionale

In der vorliegenden Arbeit betrachten wir die asymptotischen Eigen-
schaften der Klasse der koherenten versionsunabhängigen Risikofunktionale.
Diese Klasse von Risikofunktionalen erfreut sich sowohl in der Forschung als
auch in der praktischen Anwendung großer Beliebtheit.

Wir nehmen an, dass der unsichere zukünftige Profit/Verlust
wirtschaftlichen Handelns durch eine Zufallsvariable X auf einem
Wahrscheinlichkeitsraum (Ω,F) gegeben ist. Ein Risikofunktional quan-
tifiziert den abtrakten Begriff des Risikos für die Position X. Die Eigenschaft
der Versionsunabhängigkeit gewährleistet, dass die betrachteten Funktionale
nur von der Verteilung von X abhängen (also nicht von Ω). Dies ermöglicht
es das Risko von X mittels empirischen Daten zu schätzen.

Genauer sind diese Schätzer für A(X) von der folgenden Form

A[F̂n] = inf

{∫
(0,1]

AV@Rα[F̂n]dm(α) : m ∈M0

}
, (4.36)

wobei F̂n die empirische Verteilung ist.
Diese Arbeit beschäftigt sich mit den asymptotischen statistischen Eigen-

schäften der obigen Funktionale. Insbesondere werden die folgenden beiden
Fragestellungen behandelt.

• Konsistenz: Konvergiert A[F̂n] fast überall nach A[F ], wenn n→∞?

• Asymptotische Verteilung: Unter welchen Bedingungen existiert

lim
n→∞

√
n(A[F̂n]−A[F ])

und welche Verteilung hat diese Größe.

Es werden Bedingungen an F und M0 identifiziert under welchen die
beiden obigen Fragen positiv beantwortet werden können. Da sich das In-
tegral in (4.36) als Linearkombination von order statistics schreiben lässt,
können diese Fragen im Fall M0 = {m} mittels klassichen Resultaten über
L-statistics behandelt werden. Für den allgemeinen Fall |M0| > 1 werden
diese Resultate zu deren ’gleichmäßigen’ Versionen erweitert.
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