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Abstract 

 (i) Erythropoiesis strictly depends on signal transduction via the erythropoietin 

receptor (EpoR) – Janus kinase 2 (Jak2) – signal transducer and activator of transcription 5 

(Stat5) axis, regulating proliferation, differentiation and survival. Using mice completely 

lacking Stat5 we demonstrated that these animals suffer from microcytic anemia due to 

reduced expression of the anti-apoptotic proteins Bcl-xL and Mcl-1 resulting in enhanced 

apoptosis. Moreover, transferrin receptor-1 (TfR-1) cell surface levels were decreased >2-fold 

on erythroid cells of Stat5-/- animals. This reduction could be attributed to reduced 

transcription of TfR-1 mRNA and reduced expression of iron regulatory protein 2 (IRP-2), the 

major regulatory molecule of TfR-1 mRNA stability in erythroid cells. Finally, both genes 

were demonstrated to be direct transcriptional targets of Stat5. This established an unexpected 

mechanistic link between EpoR/Jak/Stat signaling and iron metabolism, processes absolutely 

essential for erythropoiesis and life. 

 (ii) Deletion of EpoR or Jak2 causes embryonic lethality as a result of defective 

erythropoiesis. The contribution of distinct EpoR/Jak2-induced signaling pathways to 

functional erythropoiesis is incompletely understood. We demonstrated that sole expression 

of a constitutively activated Stat5a mutant (cS5) was sufficient to overcome proliferation 

defects of Jak2-/- and EpoR-/- cells in an Epo independent manner. Transplantation of Jak2-/- 

fetal liver cells transduced with cS5, into irradiated mice gave rise to mature erythroid and 

myeloid cells of donor origin up to 6 months after transplantation. In conclusion, we 

demonstrated that activated Stat5 is a critical downstream effector of Jak2 in 

erythropoiesis/myelopoiesis. 

  (iii & iv) Stat5 has been implicated in lymphoid development and leukemic 

transformation. Most studies addressing these aspects have, however, so far employed 

“hypomorphic” Stat5-knock out mice still expressing N-terminally truncated Stat5 (Stat5ΔN/ΔN 

mice). We reanalyzed lymphoid development in Stat5-/- mice with a complete deletion of the 

Stat5a/b gene locus. CD8+-T-lymphocytes, γδ T-cell receptor positive T-cells as well as CD4+ 

CD25+ FoxP3+ regulatory T-cells were completely absent in Stat5-/- animals. Furthermore 

FoxP3, the transcription factor strictly required for regulatory T-cell polarization was shown 

to be a direct target gene of Stat5. Additionally, B-cell maturation was abrogated at the pre–

pro-B-cell stage in Stat5-/- mice. Most strikingly however, Stat5-/- cells were resistant to 

leukemic transformation in vitro and leukemia development in vivo, induced by Abelson 

oncogenes (bcr/abl p185 & v-abl).  
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1 Introduction 

1.1 Hematopoiesis 
 
Hematopoiesis (derived from ancient greek: haima - blood; poiesis – to make) is the process 

of formation of all cellular blood components. Blood is a very complex organ, consisting of 

multiple specialized cell types. The vast majority of cells in blood are erythrocytes (red blood 

cells; approx. 4-6x106 cells/µL human blood) whose functions are tissue oxygen transport and 

carbon dioxide removal. Thrombocytes (platelets; approx. 2-5x105 platelets/µL human blood) 

are responsible for blood coagulation (blood clotting) to prevent blood loss in case of blood 

vessel damage. The category of leukocytes, the cellular guardians of our body, can be 

subdivided into granulocytes, lymphocytes and monocytes (white blood cells; approx. 4-

10x103 cells/µL human blood). Their multifaceted task is to clear and destroy old and/or 

defective cells as well as to fight pathogens.  

 In tissues with high cellular turnover (e.g. blood) stem cells are pivotal for lifelong 

maintenance of organ function. Hematopoietic stem cells (HSCs), residing in the bone 

marrow (BM) of adults, are responsible for the permanent daily production of all mature 

blood lineages (Weissman 2000). 

 

 

1.1.1 Ontogeny of the hematopoietic system in the mouse 
 

Already more than 100 years ago the observation of the close temporal and spatial 

relationship between blood and endothelial cells during embryogenesis led to the hypothesis 

of a common ancestral cell, called hemangioblast (His 1900). This hemangioblast was 

believed to reside in the yolk sac (Haar and Ackermann 1971; Ferkowicz and Yoder 2005) 

and to spawn both, the hematopoietic as well as the endothelial lineage, during embryonic 

development. Although a primary allocation of hemangioblasts to the yolk sac was backed by 

early studies (Murray 1932; Shalaby et al. 1995; Shalaby et al. 1997), Gordon Keller and 

colleagues were able to provide experimental evidence for the existence of such a cell type in-

vitro in embryoid-body differentiation cultures (Choi et al. 1998) and more recently also in-

vivo at the mid-streak stage of gastrulation in the ventral mesoderm of the developing mouse 

embryo (Huber et al. 2004). Despite these findings, formal proof of the hemangioblast 

hypothesis is still missing, since this would require direct demonstration of a single cell 
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(hemangioblast) dividing asymmetrically and giving rise to both, hematopoietic stem cells as 

well as endothelial stem cells in-vivo. Nevertheless one can conclude that the first cellular 

commitment towards a hematopoietic fate starts in the ventral mesoderm briefly after the 

initiation of gastrulation (for a review see Murry and Keller 2008).  

 The first wave (“primitive”) of embryonic blood formation takes place in the yolk sac 

(Figure 1) between embryonic days E7.25–E9.0 (Wong et al. 1986; Palis et al. 1999). 

Immature primitive erythroid cells rapidly gather into so-called blood islands, and become 

enveloped by endothelial cells (Haar and Ackermann 1971; Ferkowicz and Yoder 2005) enter 

the circulation and support proper tissue oxygenation of the rapidly growing embryo (Wong 

et al. 1986). In contrast to adult-type erythroid cells, primitive red blood cells retain their 

nucleus longer and express adult-type as well as embryonic globin chains. The second wave 

of embryonic blood formation in the yolk sac between E8.25 and E10.5 generates erythroid 

progenitors which colonize the fetal liver (Figure 1) at E9.5 and initiate adult-type 

(“definitive”) erythropoiesis, which readily displaces primitive erythropoiesis (Palis et al. 

1999; for a review see (Palis 2008). Of note, primitive erythroid cells are present in the 

embryo already prior to the development of fetal hematopoietic stem cells, which become the 

source of all blood lineages throughout later stages of embryogenesis.  

It is well established that the aorta-gonad-mesonephros (AGM) region (Figure 1), 

which is composed of the dorsal aorta, its surrounding mesenchyme and the urogenital ridges 

is a source for definitive HSCs (Muller et al. 1994; Cumano et al. 1996; Medvinsky and 

Dzierzak 1996). It was suggested that so-called “hemogenic endothelial cells” at the ventral 

wall of the dorsal aorta bud off HSCs (North et al. 1999; North et al. 2002). HSC activity is 

technically defined by their capability to reconstitute an entire hematopoietic system of a 

recipient upon transplantation, and single cell suspensions of E11 AGM cells indeed 

displayed significant HSC engraftment activity in adult recipients (Muller et al. 1994).  

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Sites of embryonic and fetal hematopoiesis. Hematopoiesis first occurs in the 
yolk sac (YS) blood islands and later at the aorta-gonad-mesonephros (AGM) region, placenta 
and fetal liver (FL). YS blood islands are visualized by knockin of a lacZ-reporter into the 
Gata-1 locus. AGM and FL are visualized by knockin of a lacZ-reporter into the Runx-1 locus. 
(adapted from Orkin & Zon, - Cell 2008)
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Additional HSC activity was detected in the placenta of mouse embryos suggesting 

the placenta as additional niche, in which fetal HSCs could develop (Gekas et al. 2005; 

Ottersbach and Dzierzak 2005; Figure 2). Until recently, however it had remained unclear 

whether the placenta only provided a suitable microenvironment to support expansion of 

AGM derived HSCs flushed to the placenta via the circulation, or if it was also a site of 

genuine de novo HSC-genesis. This question was recently clarified by an elegant study 

utilizing mice deficient for the Na+/Ca2+ exchanger Ncx1 (Rhodes et al. 2008), which lack 

heartbeat and hence are not able to establish blood circulation (Koushik et al. 2001). 

Interestingly, Ncx1-/- mice exhibited fetal HSCs (defined as CD41+ Runx1+ cells) in the large 

vessels of the placenta, although at reduced numbers compared to controls (Rhodes et al. 

2008). These findings established the placenta as a site of de novo HSC-genesis, as well as a 

supportive niche for AGM derived fetal HSCs.  

The AGM region has been widely viewed as the principal site for HSC production 

during vertebrate development. Accordingly, the yolk sac has often been demoted to a inferior 

position, despite older experiments which had suggested it as a source for HSCs. Whole 

cultures of E7.5 embryos from which the yolk sac was removed (the exclusive site of 

hematopoiesis by this time), showed complete absence of hematopoietic cells in the fetal liver 

after several days in culture (Moore and Metcalf 1970). This indicated the exclusive presence 

of definitive hematopoietic stem/progenitor cells in the yolk sac. More recent work further 

strengthened this notion by using mice expressing tamoxifen-inducible Cre recombinase 

under the regulation of the Runx1 promoter (Samokhvalov et al. 2007), to activate the 

expression of a floxed-stop-lacZ reportergene at the time of interest. Administration of 

tamoxifen to pregnant female mice at a particular developmental window permitted to follow 

the fate of cells expressing Runx1 at the time of hormone treatment. At E7.5 Runx1 is 

exclusively expressed in the yolk sac. Tamoxifen-treatment of embryos at this time resulted in 

permanent staining of adult hematopoietic cells, suggesting the presence of definitive 

hematopoietic stem cells in the yolk sac (Samokhvalov et al. 2007). The authors interpreted 

the data to argue for the yolk sac as a site of HSC-formation prior to the AGM. Although 

several other studies also suggested HSCs to originate in the yolk sac (Moore and Metcalf 

1970; Weissman et al. 1978), direct evidence is still elusive. As already mentioned, HSCs are 

defined by their capacity to reconstitute the hematopoietic system of myeloablated adult 

recipients. Yolk sac progenitors however can only contribute to adult hematopoiesis if 

injected directly into the fetal liver of newborn mice (Yoder et al. 1997). From these findings, 

one might conclude, that yolk sac contains mesodermal precursor cells, committed to become 
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hematopoietic stem cells after migration to the AGM, placenta or fetal liver, but no 

transplantable genuine HSCs. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Following their de novo generation in the (yolk sac), dorsal aorta and placenta, nascent 

fetal HSCs colonize the developing fetal liver which henceforward serves as the main organ 

of HSC expansion and differentiation from E11.5 until birth (Figure 2). It is generally 

accepted that the fetal liver is no site of de novo HSC formation but rather acts as niche 

supporting the massive HSC expansion required prior to the seeding of the adult 

hematopoietic organs, the bone marrow, spleen and thymus (Orkin and Zon 2008). 

Accordingly, fetal HSCs residing in the fetal liver differ substantially from adult-type HSCs 

in the bone marrow with respect to their cell cycle status. Whereas adult-type HSCs are 

primarily in the G0- phase of the cell cycle under homeostatic conditions (Passegue et al. 

2005; Passegue and Wagers 2006; Warren and Rossi 2008), fetal HSCs are massively cycling 

to produce sufficient cells to inoculate the adult hematopoietic organs (Bowie et al. 2006; 

Kim et al. 2007). Around birth, fetal HSCs colonize the bone marrow and expand in numbers 

 

Figure 2: Development of the hematopoietic system of the mouse. Hematopoietic stem cells (HSCs) are derived from 
ventral mesoderm. Sequential sites of hematopoiesis during development include the yolk sac, the aorta-gonad-
mesonephros (AGM) region, the fetal liver, placenta, and finally the bone marrow. The properties of HSCs in each site 
differ, presumably reflecting diverse niches that support HSC expansion and/or differentiation and intrinsic characteristics 
of HSCs at each stage. The hemangioblast of the yolk sac is proposed to give rise to both blood and endothelial cells 
(ECs). The next region of hematopoiesis is the AGM. It has been proposed that the AGM forms hemogenic ECs in the 
ventral wall of the aorta that give rise to HSCs. Significant numbers of HSCs are also found in mouse placenta. Placental 
HSCs could arise through de novo generation or colonization upon circulation, or both. The relative contribution of each of 
the above sites to the final pool of adult HSCs remains largely unknown. Subsequent definitive hematopoiesis involves 
colonization of fetal liver, thymus, spleen, and ultimately the bone marrow. In definitive hematopoiesis, long-term HSCs 
(LT-HSCs) give rise to short-term HSCs (ST-HSCs). ST-HSCs produce common myeloid progenitors (CMPs) and 
common lymphoid progenitors (CLPs). CLPs are the source of committed precursors of B and T lymphocytes, whereas 
CMPs give rise to megakaryocyte/erythroid progenitors (MEPs) and granulocyte/macrophage progenitors (GMPs). GMPs 
give rise to the committed precursors of mast cells, eosinophils,neutrophils, and macrophages. (adapted from Cell 
SnapShot: Hematopoiesis by Orkin & Zon 2008)
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for about another 4 weeks (Bowie et al. 2006; Kim et al. 2007). Quiescently residing in their 

niche in the bone marrow of adult long bones, adult type HSCs divide only infrequently but 

continue to give rise to all hematopoietic lineages through out a lifetime. 

 Starting with commitment of cells in the ventral mesoderm towards a hematopoietic 

fate, the journey of the developing hematopoietic stem cell is a very complex trip, with 

various pit stops probably required for proper maturation, in the (yolk sac), AGM region, 

placenta and fetal liver until finally settling down in the adult bone marrow around birth 

(Figure 2).  

 
 

1.1.2 Early hematopoietic lineage commitment and differentiation 
 

All adult hematopoietic cells are derived from the hematopoietic stem cell. The 

immunophenotypic identification and subsequent purification of hematopoietic stem cells 

(Spangrude et al. 1988) opened the door for drawing a hierarchical lineage map based on the 

existence of isolatable, increasingly lineage-restricted progenitors. 

The complete multipotent activity of mouse bone marrow resides within a small 

population of cells which according to their immuno-phenotype, can be defined as negative 

(or low) for all hematopoietic lineage markers (lin-) and double positive for Sca-1 and c-Kit 

(LSK; Ikuta and Weissman 1992). Using additional cell surface markers the LSK-fraction 

could be broken down further into (i) long-term repopulating hematopoietic stem cells (LT-

HSCs; cell surface marker combinations to highly enrich for LT-HSCs are shown in Figure 

3), the only cell population capable of long-term multi-lineage reconstitution, (ii) into a rather 

heterogeneous population of so-called short-term repopulating hematopoietic stem cells (ST-

HSC) and (iii) multipotent progenitors (MPP; Osawa et al. 1996; Randall et al. 1996). 

Transplantation of purified ST-HSCs or MPP into myeloablated hosts results in multilineage 

reconstitution, although only for several weeks. There were attempts to define functional 

differences between ST-HSCs and MPPs, which came up with minor differences in 

magnitude and duration of engraftment (Morrison and Weissman 1994; Morrison et al. 1997). 

So far, however no clear-cut phenotypic or functional characterization of the ST-HSC versus 

MPP could be achived, therefore discrimination between ST-HSC and MPP remains arbitrary. 
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The MPP was thought to give rise to lymphoid lineage-committed progenitors 

(common lymphoid progenitor, CLP; Kondo et al. 1997) as well as myeloid lineage-

committed progenitors (common myeloid progenitor, CMP; Akashi et al. 2000; Figure 4A). 

This classical text-book view remained broadly accepted since all mature blood cells were 

assigned either to the lymphoid or the myeloid lineage. The former was comprised of B-, T- 

and NK-cells, and the latter consisted of granulocytes, monocytes, erythrocytes, 

megakaryocytes and mast cells. While the CLP was demonstrated to directly give rise to B- 

and T-cell progenitors (Kondo et al. 1997), the CMP was shown to differentiate into a 

megakaryocyte/erythroid progenitor (MEP) or a granulocyte/monocyte progenitor (GMP), 

which then could give rise to unilineage committed progenitors with either megakaryocytic, 

erythroid or myeloid fates (Akashi et al. 2000; Traver et al. 2001; Figure 4A).  

This traditional symmetric, view of hematopoietic lineage commitment became 

increasingly challenged over the last years. Using mice expressing GFP under control of the 

Rag1 (recombination activating gene 1) promoter, Ingrashi and colleagues described a 

fraction of LSK cells (~5%) expressing GFP (Igarashi et al. 2001; Igarashi et al. 2002). This 

population was shown to display potent T-, B-, and NK-cell potential with only weak myeloid 

colony-forming activity, and thus was named early lymphocyte precursor (ELP). 

Interestingly, ELPs reside within the MPP population, upstream of the CLP. The concept of 

the CLP giving rise to B- and T- cell progenitors was further challenged by the finding that 

the predominant thymus seeding cells do not resemble the characteristics of a CLP but are 

 
 

Figure 3: Cell surface stainings of the murine LSK compartment. In bone marrow, all HSC activity is found 
within the lineage-negative (orange box: negative for antigens found on mature blood cells including B220, Mac1, 
Gr-1, Il7Rα, Ter119, CD3, CD4, CD8) and ScaIhigh and c-kithigh fractions (small green box). Because only ~1 in 30  
LSK cells is a long-term multilineage reconstituting HSC, additional cell surface markers are used to enrich for 
HSCs as illustrated in the expanded green box. These include positive cell surface markers such as Thy1.1, CD105 
(Endoglin), and CD150 (Slamf1), in addition to negative markers like CD34, CD48, and flk2.  (adapted from 
Bryder et al. – Am J Pathol 2006) 
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more similar to earlier hematopoietic progenitors, probably the ELP (Bhandoola et al. 2007). 

The ELP was then suggested to give rise to an early T-cell progenitor (ETP), which then 

progresses through T-cell maturation during its migration through the thymus (Petrie and 

Zuniga-Pflucker 2007). Two recent studies further contributed to the now obligate 

reconsideration of the classical lineage tree by demonstrating, that ETPs still retained robust 

myeloid differentiation potential in vivo (Bell and Bhandoola 2008; Wada et al. 2008). 

All these observations pointed towards an unexpected heterogeneity within the MPP 

compartment and proposed that lineage commitment could take place prior to the CLP and 

CMP stages. Thorough analyses of the MPP compartment revealed that Flt3hi (Fms-like 

tyrosine kinase 3, also known as Flk2) MPPs completely lacked the potential to differentiate 

into megakaryocytic or erythroid cells (MegE), while retaining robust myelo/lymphoid 

reconstituting capability (Adolfsson et al. 2005; Figure 4B). The characterization of this 

population, termed lymphoid-primed multipotent progenitor (LMPP), was quite surprising 

since it had been widely accepted that myeloid and erythroid lineages descended from a 

common ancestral cell - the CMP. In contrast, Forsberg and colleagues claimed that 

Flt3hi(Flk2hi) MPPs still exhibited low but reproducible MegE differentiation potential 

(Forsberg et al. 2006). Whether or not the LMPP has MegE potential is still a matter of 

ongoing discussion. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Map of early adult hematopoiesis 
A Model proposed by Kondo et al. (1997) & Akashi et al. (2000) 
B Model proposed by Adolfson et al. (2005) 
C Model proposed by Pronk et al. (2007) 
D Model proposed by Arinobu et al. (2007) 
(adapted from C. Murre - Cell Stem Cell 2007)
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 In a further attempt to clarify the developmental paths of hematopoietic progenitors, 

Pronk and co-workers employed a set of new cell surface markers (i.e. CD150, CD105, 

CD41), not used before to characterize progenitor populations (Pronk et al. 2007). Combining 

results from transplantation, in vitro methylcellulose as well as clonal lineage marker 

expression experiments, a novel set of intermediate progenitors was outlined. It displayed a 

range cells with granulocyte/monocyte, erythroid and megakaryocyte potential (i.e. Pre-

MegE; Pre-CFU-E; MkP; Pre-GM; GMP; Figure 4C), contributing to the increasing 

complexity of the hematopoietic lineage tree. 

 In a similar approach, Arinobu and colleagues combined classical cell surface marker 

straining for hematopoietic progenitors with reporter mice expressing GFP or dsRed under the 

control of the endogenous GATA-1 or Pu.1 promoter (Arinobu et al. 2007). The zinc finger 

transcription factor GATA-1 is strictly required for erythroid and megakaryocyte 

development (Fujiwara et al. 1996), while the Ets-family transcription factor Pu.1 is essential 

to promote granulocyte/macrophage and lymphoid development (Scott et al. 1994). On the 

one hand a subpopulation of MPPs with high expression of Pu.1 exhibiting both, lymphoid 

and granulocyte/macrophage but no Meg/E differentiation potential, reminiscent to the LMPP 

(Figure 4D). On the other hand, hematopoietic progenitors expressing substantial levels of 

GATA-1 developed into CMPs. In brief, Arinobou and co-workers suggested that 

macrophages and granulocytes could develop from both, LMPPs or CMPs. 

This does not seem to be the end of the story yet. Apparently, there are many roads 

that can be taken towards one or the other cell fate, important however is to find and 

characterize the highways. Another interesting question is whether or not these highways are 

true one-way routes. Two recent studies provided compelling evidence that the direction of 

differentiation routes may not be irreversible. Over-expression of the myeloid transcription 

factors C/EBPα (CAAT/enhancer binding protein α) or Pu.1 in fully committed pre-T-cells 

resulted in trans-differentiation into genuine macrophages in the case of C/EBP alpha and into 

myeloid dendritic cells with Pu.1 (Laiosa et al. 2006). In a similar study, Cobaleda and co-

workers demonstrated that deletion of Pax5 in mature peripheral B-cells permitted retro-

differentiation into an early, uncommitted progenitor, which could then be differentiated into 

functional mature T-cells in vivo (Cobaleda et al. 2007). 
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1.2 Erythropoiesis 
 
Erythropoiesis (derived from ancient greek: erythros - red; poiesis – to make) is the 

maturation of red blood cells (erythrocytes). Adult humans possess 2-3x1013 erythrocytes 

under homeostatic conditions, which translates into 4-6x106 cells per microliter blood. Adult 

erythrocytes are generated in the bone marrow of the long bones at a rate of 2x106 cells per 

second. The diameter of an adult red blood cell is 5-6µm, and comprises on average 270x106 

molecules of hemoglobin carrying 4 heme groups for oxygen transport. Thus a single 

erythrocyte can transport up to 109 O2 (oxygen) molecules. The principal task of red blood 

cells is to transport oxygen from the lung to peripheral tissues. Therefore mammalian 

erythrocytes have evolved as biconcave discs to optimize the cell shape for the exchange of 

oxygen with its surroundings and also to render them flexible to make them fit even through 

the smallest capillaries, where they release their cargo. 

1.2.1 Ontogeny of erythropoiesis 
 
Primitive erythropoiesis starts with the formation of mesodermal cells, which migrate through 

the primitive streak and contribute to the emergence of yolk sac and placenta. Soon after the 

onset of gastrulation (approx. E7.25), immature primitive erythroid cells rapidly group in the 

yolk sac into structures termed blood islands. These islands become enveloped by endothelial 

cells, which also form the initial vascular plexus of the yolk sac (Ferkowicz and Yoder 2005; 

Murry and Keller 2008). Circulation of immature primitive erythroblasts (EryP) in the mouse 

yolk sac begins at E8.25 soon after the first embryonic heartbeat (McGrath et al. 2003; Lucitti 

et al. 2007). During the following 8 days primitive erythroid cells undergo certain maturation 

steps, comprising a limited number of cell divisions, accumulation of embryonic and adult-

type hemoglobin, gradual decrease in cell size, nuclear condensation, and ultimately 

enucleation (Fantoni et al. 1969; Kingsley et al. 2004; Fraser et al. 2007; Figure 5). 

Concomitantly with enucleation of primitive erythroblasts, a transient population of very 

small “cells” with a rim of εγ-globin positive cytoplasm can be found in the circulation of 

mouse embryos. These “cells” where named pyrenocytes (from ancient greek: pyren – pit of a 

stone fruit) and actually represent the extruded nuclei of primitive late stage erythroblasts 

(McGrath et al. 2008). 
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Partially concurrent with the first wave of primitive erythropoiesis in the yolk sac, 

between E7.25-E9.0, a second wave of adult-type erythroid progenitors (Blast Forming Unit-

Erythroid; BFU-E) emerges and expands in the yolk sac between E8.25-E10.5. Although 

primitive erythroid cells sufficiently fulfill critical functions for the early developing embryo, 

the rapidly growing fetus requires more erythrocytes to catch up with the increasing demand 

for oxygen (Palis et al. 1999). Around E9.5, adult-type erythroid progenitors derived from the 

yolk sac as well as fetal HSCs derived from the AGM region and/or placenta colonize the 

developing fetal liver, which remains the prime organ of erythropoiesis until birth (Palis 2008; 

Figure 5; see also Figure 1). Soon after, BFU-Es and the more mature CFU-Es (Colony 

Forming Unit-Erythroid) proliferate exponentially for several days, concomitantly 

differentiating into mature erythrocytes (Kurata et al. 1998). Around birth, a third wave of 

definitive erythroid progenitors colonizes the newly formed bone marrow, the lifelong major 

site of adult mammalian erythropoiesis (Palis 2008; Figure 5). 

 

1.2.2 Erythroid versus myeloid lineage commitment 
 
As early hematopoietic progenitors leave their multipotential state, they undergo distinct 

lineage choices, frequently governed by cross-antagonizing transcription factors with different 

sets of differentiation promoting target genes simultaneously blocking each others activity 

 
 

Figure 5: Ontogeny of erythroid cells in the mammalian embryo (see text for details) 
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(Loose and Patient 2006; Swiers et al. 2006; Loose et al. 2007). In the classical hierarchical 

model of hematopoiesis as outlined above it was thought that a binary decision at the level of 

a common myeloid progenitor predestined progenitor cells either towards 

megakaryocyte/erythroid (MEP) or granulocyte/monocyte (GMP) differentiation (Akashi et 

al. 2000; Figure 6; see also Figure 4A). This decision is governed by the mutual antagonistic 

relationship between GATA-1 and PU.1.  

GATA-1 plays a central role in erythroid development and was first identified by its 

ability to bind functionally important sequences in the locus control region of globin genes 

(Evans and Felsenfeld 1989; Martin et al. 1989). GATA-1 knock out mice die during mid-

gestation from severe anemia due to erythroid maturation arrest at the proerythroblast stage 

(Fujiwara et al. 1996). Pu.1 is essential for granulocytic, monocytic as well as lymphoid 

development (Hromas et al. 1993; Scott et al. 1994; McKercher et al. 1996). Elevated levels 

of GATA-1 in the CMP drive differentiation into the megakaryocytic/erythroid lineage 

whereas higher expression of Pu.1 promotes development of myeloid cells (Liew et al. 2006; 

Figure 6).  
 

 

 

 

 

 

 

 

 

 

At the molecular level, GATA-1 suppresses myeloid differentiation by binding to the 

Ets domain of Pu.1, thereby blocking its DNA binding activity as well as interfering with its 

interaction with c-Jun, resulting in loss of Pu.1 target gene expression (Loose and Patient 

2006; Loose et al. 2007). Conversely the Ets domain of Pu.1 binds the C-terminal zinc finger 

of GATA-1 thus antagonizing GATA-1 DNA binding (Rekhtman et al. 1999; Liew et al. 

2006). Pu.1 also inhibits the CBP/p300-mediated acetylation of GATA-1, which is required 

for proper GATA-1 chromatin occupancy in vivo (Hong et al. 2002; Lamonica et al. 2006). 

Furthermore it was suggested that Pu.1-mediated inhibition of erythropoiesis involves 

recruitment of a co-repressor complex consisting of retinoblastoma protein (pRb), a histone 

methyltransferase (Suv39H) and binding of heterochromatin protein 1a (HP1a), resulting in a 

 
 

Figure 6: Erythroid versus myeloid lineage specification. 
(adapted from Orkin & Zon, - Cell 2008) 
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repressed chromatin state of certain GATA-1 target genes (Rekhtman et al. 2003; Stopka et al. 

2005). 

1.2.3 Erythroid differentiation 
 

The next lineage determining switch on the way to a red cell takes place at the level of the 

MEP, in which again transcriptional cross-antagonism between transcription factors EKLF 

(erythroid Kruppel-like factor; Miller and Bieker 1993) and the Ets family member Fli-1 

(friend leukemia virus integration-1; Ben-David et al. 1990) govern the development of either 

becoming BFU-E or BFU-meg (Burst Forming Unit-megakaryocyte; Starck et al. 2003; 

Figure 7). EKLF is crucial for erythropoiesis, in particular as it is required for transcription of 

the adult β-globin gene (Nuez et al. 1995; Perkins et al. 1995), but is also involved in the 

expression of heme biosynthesis genes (Drissen et al. 2005; Hodge et al. 2006). Fli-1 has been 

shown to repress the activity of EKLF on the β-globin promoter (Starck et al. 2003). This 

prevents the expression of additional genes important in terminal erythroid maturation and 

favors differentiation towards a megakaryocytic fate. Vice versa EKLF suppresses the activity 

of Fli-1 on the megakaryocyte glycoprotein IX (GPIX) promoter, further underscoring the 

functional cross antagonism between EKLF and Fli-1. Summing up, higher expression levels 

of EKLF favor erythroid differentiation whereas elevated Fli-1 levels favor megakaryocytic 

maturation. 

 

 

 

 

 

 

 

 

 

 Persistent expression of EKLF and GATA-1 in MEPs leads to differentiation into 

BFU-Es, which represent the first unilineage-committed progenitors of the erythroid lineage. 

BFU-Es give rise to approximately 500 red cells in semisolid culture medium within 6-10 

days (Iscove and Sieber 1975). Developmentally, BFU-Es are followed by the more mature 

CFU-Es (Stephenson et al. 1971), which form colonies of 8-32 red cells in colony assays 

within  2-3 days. The formation of CFU-Es and all subsequent maturation steps are strictly 

 
 

Figure 7: Erythroid versus megakaryocytic lineage choice. 
(adapted from Orkin & Zon, - Cell 2008)
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dependent on the glycohormone erythropoietin (Epo; see below). CFU-Es are followed by the 

erythroblasts, which sequentially form pro-erythroblasts, basophilic erythroblasts, 

polychromatic erythroblasts and orthochromatic erythroblasts (Figure 8). All these cell types 

can be distinguished morphologically as they undergo changes characteristic of terminal 

erythropoiesis, i.e. hemoglobin accumulation, cell size decrease and chromatin condensation. 

The final step of red cell maturation is the extrusion of the highly condensed nucleus, which 

gives rise to enucleated reticulocytes (Figure 8; Palis and Segel 1998). Reticulocytes enter the 

bloodstream, where it takes them about one more day to finish maturation into bi-concave-

shaped erythrocytes.  
 

 

 

 

 

 

 

 

 

 

 Terminal erythropoiesis occurs in highly specialized microenviromental niches known 

as erythroblastic islands (Bessis 1958), found in fetal liver, bone marrow and spleen. They 

consist of a central macrophage encircled by maturing erythroid cells (Figure 9; Chasis and 

Mohandas 2008). In human bone marrow the number of erythroblasts per island ranges from 

5-30 cells (Lee et al. 1988). Erythroblastic islands are in general localized throughout the 

whole bone marrow, but approximately 50% of all islands are close to sinusoids, i.e. 

fenestrated capillary-like blood vessels (Yokoyama et al. 2003). It is speculated that these 

islands are not stationary elements but migrate towards sinusoids to release mature 

reticulocytes into circulation (Yokoyama et al. 2003). This view is strengthened by the 

observation that erythroblastic islands close to sinusoids bear more mature erythroid cells than 

their distant counterparts.  

 
 

Figure 8: Terminal steps of erythroid differentiation.  
Erythroid maturation progresses from left to right. 

(adapted from Rad A. - Wikipedia Commons 2006) 
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During definitive erythropoiesis, erythroblasts express various adhesion molecules, 

mediating erythroblast/erythroblast or erythroblast/macrophage interactions as well as 

attachment to extracellular matrix components like fibronectin or laminin (Chasis and 

Mohandas 2008). The first cell adhesion molecule identified on erythroblasts as well as on 

macrophages was Emp (erythroblast macrophage protein; Hanspal and Hanspal 1994). It 

mediates erythroblast/macrophage binding via homophilic interactions (Hanspal and Hanspal 

1994). Inhibition of this interaction using an anti-Emp antibody leads to a decrease in 

proliferation, maturation, enucleation and even an increase in apoptosis (Hanspal et al. 1998). 

In accordance, Emp knock out-mice display severe anemia and die perinatally (Soni et al. 

2006). 

Besides acting as anchor for developing erythroblasts and providing survival or 

differentiation-promoting signals, the central macrophage has been implicated in 

phagocytosing the expelled nucleus of terminally maturing erythroblasts (Yoshida et al. 2005; 

Figure 9). Immediate phagocytosis of extruded nuclei seems to be a protective mechanism, as 

suggested by a study using DNase II knock out mice (Kawane et al. 2001). In wild type mice 

ingested nuclear DNA of expelled nuclei is quickly degraded by central macrophages, 

whereas the DNA degradation defects of DNase II knock out macrophages resulted in 

significantly fewer central macrophages and severe anemia (Kawane et al. 2001). Recently 

Leimberg and collegues proposed a new function for central macrophages. They suggested a 

direct transport of iron from macrophages to erythroblasts (Leimberg et al. 2008). Under 

 
 

Figure 9: Illustration of an erythroblastic island. Early-stage 
erythroblasts are depicted as large cells with centrally located nuclei; 
more mature erythroblasts are shown as smaller cells containing nuclei 
located adjacent to plasma membranes. Expelled nuclei are 
phagocytosed by the central macrophage. Reticulocytes are illustrated 
multi-lobulated cells, which are initially attached to the macrophage 
surface and later detach. (adapted from Chassis et al. – Blood 2008) 
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transferrin-free culture conditions iron-loaded ferritin synthesized by central macrophages 

was exocytosed and taken up by the attached erythroblasts. Subsequently, iron was released 

from ferritin and contributed to heme synthesis of the erythroblast (Leimberg et al. 2008). 

Taken together the interaction between erythroblasts and macrophages is important for 

survival, maturation and potentially even iron metabolism of red cells. 

 

1.2.4 EpoR signaling in erythroid cells 
 

Whereas early erythroid lineage commitment is controlled by numerous transcription 

factors and their binding partners (e.g. GATA-1; EKLF; Cantor and Orkin 2002), late stage 

differentiation from CFU-Es to mature erythrocytes is strictly regulated by Epo (for a review 

see Richmond et al. 2005). Epo is the crucial regulator of red blood cell production and 

merges survival, differentiation and proliferation signals essential for erythroid cell 

development in fetal liver, bone marrow or spleen (Richmond et al. 2005). Epo is produced in 

the kidney where its synthesis is regulated by oxygen tension via the action of hypoxia 

inducible factor-2α (HIF-2α; Gruber et al. 2007). Under normoxic conditions, HIF-2α is 

hydroxylated by a prolyl-hydroxylase which results in its recognition by von-Hippel–Lindau 

(VHL) factor and ensuing degradation. Under reduced oxygen or iron concentrations, HIF-2α 

is stabilized, functions as transcription factor and drives expression of Epo (Zhu et al. 2002).  

 The erythropoietin receptor (EpoR) is a member of the cytokine receptor super-family 

(D'Andrea et al. 1989), primarily expressed on developing erythroid progenitors and to a 

lesser extant, on (cardio)myocytes, cortical neurons, ovary and breast epithelia (Richmond et 

al. 2005). Recently, EpoR receptor activity in hepatocytes was demonstrated to suppress 

expression of the iron metabolism controlling hormone hepcidin (see below; Pinto et al. 

2008). EpoR is thought to subsist in a latent dimeric-state even prior to ligand binding 

(Wojchowski et al. 2006) but undergoes conformational changes upon Epo binding that 

activate the pre-associated, tyrosine kinase Janus Kinase 2 (Jak2; Witthuhn et al. 1993). 

Thereupon Jak2 and potentially other cytoplasmic tyrosine kinases phosphorylate several 

tyrosine residues in the cytoplasmic domain of EpoR dimers that act as docking site for the 

transcription factor Signal transducer and activator of transcription 5 (Stat5; Wakao et al. 

1994), which in turn is also activated via Jak2-mediated tyrosine phosphorylation (Wakao et 

al. 1995; Quelle et al. 1996; Figure 10). [For a detailed review of Stat5 functions in 

hematopoiesis please see section 1.4]. Activating phosphorylation of Stat1 and Stat3 by 
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EpoR/Jak2 has also been reported (Kirito et al. 2002; Kirito et al. 2002; Halupa et al. 2005), 

but the relevance in erythropoiesis is less well understood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Alongside with the prominent Stat5-activation, Epo/EpoR also activates extracellular 

regulated kinase 1/2 (Erk1/2; Menon et al. 2006), Jun kinase (Jnk), mitogen-activated protein 

kinase (MAPK) p38 (Nagata et al. 1998) and phophatidylinositol 3 kinase (PI 3-kinase;  Miura 

et al. 1994). 

 Many growth factors and cytokines activate the small G-protein Ras (Rat sarcoma) by 

recruiting Grb2-Sos (growth factor receptor-bound protein 2 / Son of sevenless) to their 

receptors. The complex of Grb2/Sos is recruited to the EpoR where Grb2 either binds directly 

to Y464 (Barber et al. 1997) or indirectly via association with SHIP-1 (SH2-containing 

inositol 5-phophatase-1; Mason et al. 2000). Epo/EpoR induced Ras activation stimulates the 

canonical MAPK signaling cascade resulting in activation of Erk1/2 and is believed to be 

important for the contribution of Epo-signaling to proliferation (Haq et al. 2002).  

 Epo induced activation of Jnk and p38 has been demonstrated in several cases 

(Wojchowski et al. 1999; Jacobs-Helber et al. 2000; Haq et al. 2002), but the modes of 

activation and functions in erythropoiesis are still elusive. Nevertheless mice devoid of the 

 
 

Figure 10: Jak-Stat signaling induced by Epo. Phosphorylated tyrosine residues are illustrated 
as yellow asterisks. Stat5 tyrosine binding sites Y343 and Y401 are highlighted in red. Inactive 
Stat5 dimers bind to phosphorylated tyrosines 343 and/or 401 of the EpoR (1), become 
phosphorylated by Jak2 (2) leading to conformational rearrangements resulting in active Stat5 
dimers (3), which translocate to the nucleus (4) to activate their respective target genes.  
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p38 isoform p38α, die due to severe fetal anemia putatively as a result of reduced Epo 

expression (Tamura et al. 2000). 

 Epo stimulation activates PI 3-kinase signaling either by recruiting the p85 regulatory 

subunit directly to EpoR Y479 or indirectly via GRB2-associated proteins 1 or 2 (Gab1, 

Gab2), or insulin-receptor substrate 2 (IRS2; Wojchowski et al. 1999). Since mice deficient 

for p85 showed strongly reduced BFU-E as well as CFU-E numbers, it was reasoned that PI 

3-kinase signaling was required for cell survival in erythroid cells (Bao et al. 1999; 

Huddleston et al. 2003). PI 3-kinase activates Protein kinase B (PKB)/Akt which in turn 

modulates the activity of its downstream target substrate, the transcription factor forkhead box 

O3A (Foxo3a) which appears to have important functions in erythropoiesis (Kashii et al. 

2000; Bouscary et al. 2003; Bakker et al. 2007). Foxo3a activity is negatively regulated by 

phosphorylation (Huang and Tindall 2007). The levels of active non-phosphorylated Foxo3a 

increase during erythroid maturation, which results in cell cycle exit and terminal 

differentiation (Bakker et al. 2004). This is in agreement with the cyclin-dependent kinase 

inhibitor p27Kip1 being a target gene of Foxo3a. Activation of PI 3-K signaling in primary 

human erythroblasts reduced expression levels of p27Kip1 (Bouscary et al. 2003). Mice devoid 

of Foxo3a are anemic and display elevated reticulocyte counts, indicative for compromised 

erythropoiesis (Castrillon et al. 2003). A recent study also suggested a protective role of 

Foxo3a in erythroid cells against reactive oxygen species that might be byproducts of heme 

synthesis (Marinkovic et al. 2007).  

The Src-family kinase Lyn, and the Tec-family kinase Btk have also been shown to be 

substrates of Epo signaling. Lyn-deficient erythroblasts express reduced levels of GATA-1, 

EKLF and Stat5 compared to wild-type cells and display increased extramedullary 

hematopoiesis in the spleen and develop anemia with age (Ingley et al., 2005). Btk is 

activated following Epo stimulation. Erythroid cells from mice lacking Btk display enhanced 

erythroid differentiation when cultured in media supporting self-renewal. Erythroblasts 

lacking Btk show lowered levels of EpoR-, Jak2-, and Stat5 phosphorylation upon exposure 

to Epo (Schmidt et al. 2004). The exact position of Src- and Tec-family kinases in the EpoR 

signal transduction network is still elusive, but present data suggest that Jak2 and Lyn are 

upstream of Btk and that the latter might be required to integrate signaling inputs converging 

from EpoR and stem cell factor (SCF)-induced c-Kit activation (von Lindern et al. 2004). 
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1.3 Iron metabolism 
 
Iron metabolism can basically be subsumed as the sum of all chemical/enzymatic reactions 

maintaining iron homeostasis (balance between iron uptake and loss) of a life form. Iron (Fe; 

latin: ferrum) is essential for life, due to its unique ability to serve as electron donor as well as 

electron acceptor. For this particular reason however, free cellular iron is toxic since it 

catalyzes the conversion of hydrogen peroxide into free radicals (Fenton´s reaction). Free 

radicals cause severe cell damage, eventually leading to cell death. To prevent such kind of 

damage all life forms have evolved cytochromes that coordinately bind iron to limit its 

harmful abilities but still allow cells to utilize its specific functions for their benefit. One 

prominent example is the electron transport during oxidative phosphorylation in the 

respiratory chain. In vertebrates however, the most abundant iron-chelating molecule is heme. 

Heme is the prosthetic group of myoglobin or hemoglobin consisting of one iron atom in the 

center of the porphyrin ring. As major protein of erythrocytes, hemoglobin transports oxygen 

from the lung to all peripheral tissues.  

 

1.3.1 Cellular iron homeostasis 
 

Cellular iron homeostasis requires tight control of intestinal iron uptake, transport in blood, 

(temporal) intracellular storage as well as export towards cells with particular demand for the 

metal. To exert these duties, vertebrates have evolved a number of highly specialized 

mechanisms. In contrast to previous sections describing timelines and conditions around 

mouse hematopoiesis, the following chapters on regulation of iron metabolism apply to 

mouse and human systems similarly.  

Extracellular iron circulates in blood plasma bound to transferrin (Tf; Schade and 

Caroline 1946), which keeps iron in “solution” and nonreactive. Mammalian Tf molecules 

have two similar iron-binding lobes each capable of holding one iron atom (Cheng et al. 

2004). Tf delivers iron to respective cell surface receptors termed transferrin receptor (TfR-1, 

also known as CD71). TfR-1 is present on every proliferating cell and of course more 

abundantly on developing erythroid progenitors, due to their tremendous requirement for iron 

to enable efficient heme synthesis. TfR-1 binds diferric transferrin and internalizes it through 

receptor-mediated endocytosis. The resulting endosomes become acidified through proton 

influx, entailing conformational changes in Tf as well as TfR-1, leading to the liberation of 

ferric iron atoms (Fe3+). After reduction via the endosomal ferrireductase STEAP3 ferrous 
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iron (Fe2+) is released from the endosome via divalent metal transporter 1 (DMT1; Fleming 

et al. 1997; Gunshin et al. 1997; Fleming et al. 1998). Endosomes containing apo-Tf and TfR-

1 are subsequently recycled to the cell surface, resulting in release of Tf back into the 

circulation. This process became a paradigm in cell biology termed transferrin cycle (Figure 

11; Dautry-Varsat 1986; Aisen 2004; Hentze et al. 2004; Andrews 2008). The immediate fate 

of iron freed from the endosome is still not well understood. In erythroid progenitors however 

the bulk of iron is used for heme synthesis. Since the first one and last three steps of heme 

biosynthesis take place in the lumen of mitochondria (Ajioka et al. 2006), including the final 

insertion of iron into protoporphyrin IX by ferrochelatase (Ajioka et al. 2006), iron must pass 

through the mitochondrial membrane. This transport is mediated via the mitochondrial iron 

importer mitoferrin (Shaw et al. 2006). Excess cytosolic iron is stored in a cage-like 

heteropolymer consisting of 24 subunits of H- (heavy or heart) and L- (light or liver) ferritin 

(Figure 11), which can hold up to 4500 iron atoms as insoluble Fe(OH)3, or hemosiderin, for 

permanent detoxification (Harrison et al. 1967). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intracellular iron homeostasis is maintained via an elegant post-transcriptional 

regulatory feedback mechanism. In the late 1980s several groups independently described 

highly conserved regions in the 5´untranslated regions (UTRs) of both the H- and L-ferritin 

mRNAs (Aziz and Munro 1987; Hentze et al. 1987) and the 3´UTR of TfR-1 mRNA (Mullner 

and Kuhn 1988). Thermodynamic predictions indicated that these sequences should form 

stable RNA hairpins which soon were experimentally verified and termed iron responsive 

 
Figure 11: The transferrin cycle (see text for details) 

(adapted from Domenico et al. – Nat. Rev. Mol. Cell Biology 2008) 
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elements (IREs; Casey et al. 1988). Shortly thereafter, cytoplasmic proteins, called iron 

regulatory proteins (IRPs) recognizing and specifically binding to IREs were described 

(Hentze et al. 1987; Caughman et al. 1988; Leibold and Munro 1988; Mullner et al. 1989). In 

terms of regulating TfR-1 transcript levels IRP-1+2 were shown to bind TfR-1 mRNA IREs 

with high affinity under low intracellular iron concentrations (Figure 12). This binding 

selectively stabilizes the TfR-1 mRNA, ensuring elevated cell surface expression and iron 

uptake (Hentze et al. 2004; Pantopoulos 2004; Rouault 2006). On the contrary, intracellular 

iron excess structurally converted IRP-1 to cytosolic aconitase (catalyzing isomerization of 

citrate to iso-citrate) (Haile et al. 1992), while IRP-2 was degraded by proteasome (Guo et al. 

1995). Thus, both proteins no longer bound to IREs, resulting in strongly reduced TfR-1 

mRNA stability, reduced cell surface expression, and diminished Tf-iron uptake (Koeller et 

al. 1989; Mullner et al. 1989; Binder et al. 1994; Figure 12). For H-&L-ferritin mRNAs the 

situation is completely opposite since the ferritin IREs are located upstream of the start codon 

for protein translation. IRP binding under low iron sterically blocks recruitment of the small 

ribosomal subunit thus abrogating translation initiation (Muckenthaler et al. 1998). High iron 

conditions reverse this translational repression and lead to accumulation of ferritin subunits to 

provide sufficient iron storage / detoxification capacity. Other mRNAs coding for important 

molecules in iron metabolism have been shown to have either 5´IREs (e.g. ferroportin, 

erythroid iso-form of aminolevulinic acid synthase) or 3´IREs (e.g. DMT1; Leipuviene and 

Theil 2007) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12: Regulation of TfR-1 mRNA stability. In iron replete cells, IRP-1 is converted into cytosolic aconitase 
(catalyzes isomerization of citrate to iso-citrate in the citric acid cycle and exhibits no mRNA binding affinity; yellow 
asterisk) and IRP-2 is degraded. Therefore both cannot bind to IREs in the 3´UTR of TfR-1 mRNA. Free unprotected 
IREs in turn enhance degradation rates of TfR-1 mRNA, resulting in reduced iron uptake. In iron depleted cells, IRP-
1+2 bind to the respective IREs, thereby stabilizing TfR-1 mRNA, resulting in increased iron uptake. 
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1.3.2 Systemic iron homeostasis 
 
Systemic iron homeostasis is the control of iron balance throughout the entire body. This 

includes mechanisms governing intestinal iron uptake or mobilization of liver / macrophage 

iron stores to satisfy erythropoietic needs. Since (i) iron enters the body exclusively through 

the diet, and since (ii) there is no regulated excretion of iron through liver or kidney, iron 

balance must be primarily regulated at the level of intestinal absorption. Human duodenal 

enterocytes approximately absorb 1–2mg dietary iron per day employing a plasma-membrane 

form of DMT-1 in a tightly controlled intake process. Subsequently they convey iron to blood 

plasma by transcytosis using ferroportin, where it becomes immediately bound by apo-Tf and 

delivered mainly to liver and other peripheral tissues.  

Effete erythrocytes are phagocytosed by macrophages of the reticuloendothelial 

system, which degrade hemoglobin and recycle iron back into plasma via ferroportin the only 

known mammalian iron exporter yet (Abboud and Haile 2000; Donovan et al. 2000; McKie et 

al. 2000) or directly deliver it to the liver at a combined rate of approximately 20–30 mg day 

per day. If dietary iron is absorbed or released into plasma at levels exceeding organismal 

demand, excess, non-transferrin-bound iron is deposited in the liver parenchyma (Figure 13; 

Hentze et al. 2004; Andrews 2008; De Domenico et al. 2008), which under pathological 

conditions like hemochromatosis can lead to eventual organ damage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: The iron cycle (see text for details) 

(adapted from Domenico et al. – Nat. Rev. Mol. Cell Biology 2008) 
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More precisely, iron absorption commences in the proximal side of the duodenum, in 

which enterocytes are arranged in villi, projecting into the intestinal lumen to maximize the 

absorption area (Figure 14). Most dietary non-heme iron is in the ferric (Fe3+) state and 

therefore must be reduced prior to entry into enterocytes. This reduction is performed by a 

ferrireductase called DCYTB (also known as CYBRD1) on the apical surface of the duodenal 

mucosa (Gunshin et al. 2005). Fe2+ subsequently enters the enterocytes via the intestinal 

isoform of DMT1 (Hubert and Hentze 2002; Lam-Yuk-Tseung et al. 2005). Once inside the 

cells, a small portion of Fe2+ is employed for metabolism or storage whereas the largest part is 

exported into plasma via basolateral ferroportin. In conjunction with ferroportin-mediated 

export, a multicopper-ferroxidase called hephaestin oxidizes Fe2+ to ferric iron, which 

thereupon is loaded to apo-Tf in the plasma, turning the iron cycle (Figures 13 & 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Systemic iron homeostasis requires accurate control of intestinal iron absorption, 

effective iron utilization for erythropoiesis, efficient iron recycling of senescent erythrocytes 

and controlled storage of iron by macrophages and hepatocytes. Whereas erythroid iron usage 

is primarily determined by the iron uptake-efficiency of the transferrin cycle, intestinal 

absorption, iron recycling and iron storage are controlled systematically and in a coordinated 

manner. A specific hormone termed hepcidin (Krause et al. 2000; Park et al. 2001; Pigeon et 

al. 2001), orchestrates the fine-tuning of systemic iron balance. Hepcidin is produced by the 

 
Figure 14: Intestinal iron absorption. Ferric iron (Fe(III)) in 
the diet is converted to ferrous iron (Fe(II)) by DCYTB on the 
apical surface of enterocytes. Fe(II) is then transported into 
enterocytes through DMT1. Fe(II) in enterocytes can be 
incorporated into the cytosolic iron-storage molecule ferritin or 
can be transported across the basolateral surface of enterocytes 
into the plasma by ferroportin. Fe(II) is subsequently converted to 
Fe(III), by hephaestin (adapted from Domenico et al. – Nat. Rev. 
Mol. Cell Biology 2008) 
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liver in response to high serum iron conditions, is secreted into plasma and binds to 

ferroportin on the basolateral side of enterocytes as well as to ferroportin on macrophages, 

triggering internalization and ubiquitin-mediated degradation of ferroportin (Nemeth et al. 

2004; De Domenico et al. 2007), resulting in a net reduction of serum iron levels, i.e. lowered 

transferrin saturation (Figure 15).  

 

 

 

 

 

 

 

 

 
 

Regulation of hepcidin expression primarily occurs at the level of transcription and is 

modulated by anemia, hypoxia, inflammation and the status of iron stores (Nicolas et al. 

2002). Under normal conditions, basal hepcidin expression is enabled via a bone 

morphogenetic protein (BMP)/SMAD pathway in conjunction with a membrane protein 

called hemojuvelin acting as a BMP-co-receptor (Wang et al. 2005; Babitt et al. 2006). Of 

note mutations in either, hepcidin or hemojuvelin lead to severe iron overload diseases such 

as juveline hemochromatosis (Roetto et al. 2003; Papanikolaou et al. 2004). Hepcidin also 

exhibits anti-microbial function: Since all invasive microorganisms require iron for 

proliferation, inflammatory cytokines such as interleukin-6 induce hepcidin expression in a 

Stat3-dependant manner, resulting in reduced plasma iron abundance (Wrighting and 

Andrews 2006) and thus contributing to the innate immune response.  

Hepcidin levels are also down regulated in cases such as hypoxia of compromised 

erythropoiesis. Hypoxia decreases hepcidin expression, resulting in increased iron export into 

plasma (Nicolas et al. 2002). Under normoxic conditions, hydroxylation of HIF-1/2 results in 

recognition by, VHL-factor, targeting it for degradation. In the absence of oxygen or iron, 

however, stabilized HIF proteins function as transcription factors suppressing hepcidin 

expression (Yoon et al. 2006; Peyssonnaux et al. 2007). Finally, also Epo can repress hepcidin 

function (Pinto et al. 2008): Elevated Epo levels, frequently being a response to compromised 

erythropoiesis result in activation of the transcription factor C/EBPα that transcriptionally 

represses the hepcidin gene in hepatocytes (Pinto et al. 2008).  

 
Figure 15: Hepcidin’s mode of action. Hepcidin targets ferroportin in enterocytes as well as 
macrophages, triggering its internalization and lysosomal degradation. (adapted from Andrews N. – 
Blood 2008) 
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[Besides multiple other pathologies involving human iron metabolism the following section introduces one 
particular condition with relevance to the work presented in chapter 3.1.1] 

1.3.3 Iron deficiency anemia 
 
Iron deficiency anemia is a major public health problem, with estimated 3 billion people 

affected worldwide. The symptoms of iron deficiency anemia are pallor (due to reduced 

oxyhemoglobin in skin), fatigue, weakness and hair-loss; in severe cases even dyspnea 

(breathing problems). Paradoxically also behavioral symptoms such as obsessive food 

cravings (pica) or lightheadness have been described (Cook 1994). The disease usually 

progresses rather slowly and therefore remains often unrecognized. Anemia might be 

diagnosed by its symptoms, but is most frequently detected by routine blood tests, which 

generally include a complete blood count (CBC). Characteristics of anemia are low 

hemoglobin (HGB) or hematocrit (HCT) values. Hypochromic microcytic anemia (iron 

deficiency anemia) in particular is specifically characterized by reduction in the values of 

mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular 

hemoglobin concentration (MCHC), paired with morphological changes of erythrocytes in 

peripheral blood smears (larger central pallor; Guyatt et al. 1990). Serum ferritin levels are 

also implicated as a sensitive test to diagnose iron deficiency anemia (Guyatt et al. 1990). 

Iron deficiency anemia is subdivided into acquired- or genetic-iron deficiency anemia. 

The vast majority of iron deficiencies are acquired, due to blood loss, insufficient dietary iron 

uptake or both in conjunction (Brady 2007). If diagnosed, acquired iron deficiency, can 

usually be corrected by iron supplementation in form of FeSO4 or ferrous gluconate.  

In human several rare genetic alterations in genes involved in iron metabolism have 

been reported and linked to iron deficiency anemias. Mutations in the genes encoding DMT1 

(SLC11A2) or glutaredoxin 5 (GLRX5) are associated with autosomal recessive hypochromic, 

microcytic anemia (Camaschella et al. 2007). The patients display common alterations in 

erythroid morphology and CBC, but also exhibit hepatic iron overload, which is not fully 

understood (Mims et al. 2005; Priwitzerova et al. 2005; Beaumont et al. 2006; Iolascon et al. 

2006; Lam-Yuk-Tseung et al. 2006). Another iron deficiency disorder called 

hypotransferrinemia has been reported which bears mutations in the Tf gene itself. The 

altered Tf structure interferes with iron delivery to erythroid progenitors and results in a 

massive accumulation of intestinal iron (Heilmeyer et al. 1961; Goya et al. 1972). Deficiency 

of the plasma protein ceruloplasmin was also reported to result in iron deficiency anemia. 

This mutation leads to the loss of ceruloplasmin’s ferroxidase activity required to mobilize 

stored iron (Harris et al. 1995). 
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1.4 Stat5 in hematopoietic homeostasis and disease 
 

A modified version of the following section of the Introduction has also been submitted for 

publication as book chapter in “JAK STAT Pathway in disease”, edited by Anastasis Stephanou and 

published by Landes Bioscience 2008 (http://www.eurekah.com/chapter/4038). 
 

Katrin Friedbichler, Marc A. Kerenyi, Ernst W. Müllner and Richard Moriggl 

1.4.1 Stat5 in hematopoietic stem cells and progenitors 
 
Tissues with high cell turnover require pluripotent stem cells to maintain life-long organ 

homeostasis. In case of the hematopoietic system, hematopoietic stem cells (HSCs) residing 

in the bone marrow are able to ensure permanent production of all mature blood lineages 

(Weissman 2000). HSCs can be highly enriched by sorting for the cell surface marker 

combination lineage-Sca-1+c-Kit+ (LSK; Figure 16). HSCs eventually give rise to multi-

lineage progenitors, restricted to either the myeloid (common myeloid progenitor; CMP; 

(Akashi et al. 2000) or lymphoid compartment (common lymphoid progenitor; CLP; Kondo 

et al. 1997; Figure 16). Among other factors, stem cell factor (SCF), thrombopoietin (Tpo), 

interleukin (IL)-3, Flt-3-ligand (Flt-3L) and their receptors c-kit, c-mpl, IL-3R and Flt-3 have 

been implicated to support proliferation and survival of LSKs or multi-lineage progenitors 

(Blank et al. 2008). The receptors mentioned all share the crucial downstream effector 

transcription factors Stat5a and Stat5b (Stat5). 

First results on the function of Stat5 in HSCs and multi-lineage progenitors were 

compromised by the original hypomorphic Stat5 knock out (Teglund et al. 1998). Later 

studies revealed that these animals still expressed significant levels of N-terminally truncated 

Stat5 proteins (Sexl et al. 2000; Cui et al. 2004; Hoelbl et al. 2006; Yao et al. 2006; Engblom 

et al. 2007; Yao et al. 2007; Kornfeld et al. 2008). Therefore, the corresponding animals can 

rather be regarded as knock-in mice for mutant Stat5 proteins with loss of the N-terminal 

domain. Today, the “old” animal model is referred to as Stat5ΔN/ΔN mouse (Teglund et al. 

1998). In 2004, “true null protein” Stat5 knock out mice (Stat5-/-) became available (Cui et al. 

2004), in which the complete locus for Stat5a and Stat5b was flanked with loxP sites allowing 

a 110 kb deletion upon Cre recombinase action, either in whole animals or specific tissues 

(Hoelbl et al. 2006; Yao et al. 2006; Yao et al. 2007). 
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Although most work addressing the role of Stat5 in HSCs and multi-lineage 

progenitors was performed with Stat5ΔN/ΔN mice, interesting results were obtained and in 

general phenotypes were aggravated in fully Stat5-deficient mice (Bunting et al. 2002; Yao et 

al. 2006; Bunting 2007; Li et al. 2007). Stat5ΔN/ΔN HSCs displayed impaired re-population 

capability in both serial as well as competitive reconstitution assays (Bunting et al. 2002; 

Snow et al. 2002). Impaired re-population was neither due to reduced HSC numbers nor due 

to defects in homing, as revealed by direct quantitation experiments (Bunting et al. 2002; 

Snow et al. 2002). This already suggested that Stat5 is rather supporting self-renewal of HSCs 

than survival or homing. The interpretation was strengthened by competitive reconstitution 

assays comparing engrafting capability of each, wt, Stat5ΔN/ΔN, and Stat5-/- fetal liver cells, 

demonstrating a more drastic re-population defect of Stat5-/- compared with Stat5ΔN/ΔN HSCs 

(Li et al. 2007). Analysis of the Stat5ΔN/ΔN multi-lineage progenitor compartment revealed a 

massive reduction in progenitor numbers, as judged by spleen colony-forming units (CFU-S) 

assays: Stat5ΔN/ΔN multi-lineage progenitors gave rise to fewer and smaller CFU-S (Bunting et 

al. 2002; Snow et al. 2002). Furthermore, flow cytometry for the apoptosis marker AnnexinV 

displayed increased cell death of Stat5ΔN/ΔN lin-Sca1- progenitors (Snow et al. 2002). Thus, 

Stat5 apparently has an important function in survival of lineage-restricted progenitors. 

Whether the loss of Stat5 affects CMPs, CLPs, or both has not yet been analyzed in 

murine models. Future studies should address this important question, since it has 

consequences for lymphoid or myeloid hyper- versus hypo-proliferation and potential side 

effects of eventual future therapies targeting Stat5. For example, lentivirus-mediated RNA 

interference against Stat5 in human CD34+CD38- cells derived from umbilical cord blood 

(resembling murine LSK cells) revealed a 3.25-fold reduction in stem cell number and a 3.9-

fold reduction in progenitor cell abundance as determined by long-term culture-initiating cell 

assays and colony-forming cell assays, respectively (Scherr et al. 2006; Schepers et al. 2007). 

Taken together, data from both, mouse and human, demonstrate that Stat5 is an important 

positive regulator for hematopoietic stem / progenitor cell fitness. 
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Figure 16: Simplified schematic diagram of the linear hierarchy of hematopoietic cells. Cytokines and growth 
factors denoted in this illustration are all implicated in activation of Stat5 and to either promote survival, proliferation or 
differentiation of their respective cell types they have been allocated to. Long-term reconstituting hematopoietic stem 
cells (LT-HSCs) divide to give a phenocopy of themselves (self-renewal) and a more committed ST-HSC (short-term 
reconstituting hematopoietic stem cell). ST-HSCs give rise to multi-potent progenitors (MPPs). These 3 cell populations 
are subsumed as “LSK” cells (boxed cells) according to their cell surface marker phenotype (lineage- sca-1+ c-kit+). 
Multipotent progenitor cells produce the lineage specific common lymphoid progenitor (CLP), which differentiates into 
all mature lymphoid cells, as well as the common myeloid progenitor (CMP), which differentiates into the 
megakaryocytic-erythroid progenitor (MEP) as well as the granulocytic-monocytic progenitor (GMP). The MEP and the 
GMP give rise to all mature cells of the erythroid and myeloid lineage.  
 
Abbreviations: CFU-E (colony forming unit erythroid) DC (dendritic cell) EPO (erythropoietin), GM-CSF (granulocyte-
macrophage colony stimulating factor), IL (interleukin), MCP (mast cell progenitor), SCF (stem cell factor), TPO 
(thrombopoietin), TSLP (thymic stromal lymphopoietin) 
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1.4.2 Stat5 in erythropoiesis and myelopoiesis 
 
Stat5ΔN/ΔN mouse embryos were described to be anemic which was attributed to increased 

apoptosis of erythroid progenitor cells in the fetal liver, due to decreased expression of the 

anti-apoptotic gene Bcl-xL (Socolovsky et al. 1999). This phenotype could be completely 

rescued by ectopic expression of Bcl-xL (Dolznig et al. 2006) in vitro. Adult Stat5ΔN/ΔN mice 

showed no overt erythroid defects during steady state erythropoiesis. However, under 

erythrolytic stress induced by phenylhydrazine, Stat5ΔN/ΔN mice exhibited a massive delay in 

erythroid recovery (Socolovsky et al. 2001). 

Complete deletion of both Stat5 genes did not reveal abnormalities in early embryo 

development but lead to significant deviations from expected Mendelian ratios in later stages 

of embryogenesis. More importantly and in contrast to Stat5ΔN/ΔN mice, Stat5-/- animals died 

between E16.5-birth (Cui et al. 2004; Kerenyi et al. 2008), except for 1-2% (instead of 25%) 

of survivors on an Sv129 x C57Bl/6 mixed background. Puzzling but quite common in Jak-

Stat-Socs knock out mouse model systems, loss of Stat5 genes caused elevated expression and 

tyrosine phosphorylation of Stat1 and Stat3 in Stat5-/- fetal liver-derived hematopoietic 

progenitors (MAK, RM, and EWM, unpublished), suggesting compensatory mechanisms 

(Murray 2007). The few surviving mice died around 5 weeks, likely due to l severe 

autoimmunity caused by a lack of regulatory T-cells (Hoelbl et al. 2006; Yao et al. 2007). The 

vast majority of Stat5-deficient embryos developed severe erythroid defects, particularly on 

pure genetic backgrounds such as C57Bl/6 or Balb/c. They displayed reduced hematocrits, 

massive anemia and defects in erythroid iron metabolism (Kerenyi et al. 2008; Zhu et al. 

2008). The pivotal role of Stat5 in erythropoiesis was further supported by recent findings: (i) 

Persistent activation of Stat5 in Jak2-/- as well as EpoR-/- fetal liver-derived erythroid 

progenitors could significantly restore BFU-E and CFU-E colony formation in vitro and 

erythropoiesis in vivo upon transplantation of cells into irradiated recipients (Grebien et al. 

2008). (ii) Gene knock out mouse studies displayed a complete failure of erythroid 

engraftment upon transplantation of Jak2-/- (Neubauer et al. 1998; Parganas et al. 1998), 

EpoR-/- (Wu et al. 1995) or Stat5-/- fetal liver cells into lethally irradiated wt mice (Li et al. 

2007). 

Stat5 is also a key molecule for myelopoiesis (reviewed in Coffer et al. 2000). 

Compared to wt, Stat5ΔN/ΔN bone marrow formed less than 50% of myeloid colonies in 

response to IL-3, GM-CSF, SCF, or Flt-3L factor combinations in vitro (Teglund et al. 1998; 

Bunting et al. 2002). Moreover, Stat5ΔN/ΔN mice displayed thrombocytopenia, due to defective 
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TPO signaling (Bradley et al. 2002; Bunting et al. 2002; Snow et al. 2002). These data were 

corroborated by observations on increased apoptosis of Stat5ΔN/ΔN bone marrow cells 

undergoing IL-3- or GM-CSF-induced myeloid differentiation in suspension cultures 

(Kieslinger et al. 2000). Apoptosis of Stat5-deficient myeloblasts was attributed to loss of 

Bcl-xL expression, reminiscent of the erythroid situation (Kieslinger et al. 2000). Stat5ΔN/ΔN 

bone marrow cells also failed to develop into Th2 cytokine-producing eosinophilic 

granulocytes in response to IL-5 (Zhu et al. 2004). In line, ectopic expression of a dominant-

negative Stat5 variant (Stat5Δ750; Moriggl et al. 1996) in human CD34+ cord blood cells 

blocked eosinophil differentiation (Buitenhuis et al. 2003). New studies on complete Stat5 

deletion revealed a role of Stat5 in G-CSF signaling and for development of inflammatory M2 

macrophages (Xiao et al. 2008). Interestingly, Stat5 can also act as negative regulator of 

granulopoiesis: Stat5ΔN/ΔN mice displayed mild neutrophilia but had a 25-fold increase in 

serum G-CSF levels (Fievez et al. 2007). This was attributed to negative feedback of Stat5 on 

the G-CSF promoter in liver endothelial cells. Finally a recent study also demonstrated an 

essential role for Stat5 in myeloid leukemia induced by truncated a G-CSF receptor (Liu et al. 

2008).  

In addition, Stat5 is also essential for mast cell development. Stat5ΔN/ΔN mice display 

massively reduced mast cell numbers, due to aberrant expression of Bcl-2, Bcl-xL, cyclin A2 

and B1 (Shelburne et al. 2003). Stat5 is not only important for mast cell survival and -

proliferation but was even implicated to play a role in their effector function, as it was 

activated upon IgE cross-linkage (Barnstein et al. 2006). Accordingly, Stat5ΔN/ΔN mast cells 

displayed defects in degranulation and leukotrien B4 production (Barnstein et al. 2006). Mast 

cells from Stat5-/- fetal livers were even more severely affected in cytokine-dependent 

proliferation but could be efficiently rescued with both, wt or Stat5aΔN/ΔN (Li et al. 2007). 

 

1.4.3 Stat5 in lymphopoiesis 
 
Stat5 is activated by all lymphoid cytokines that use the common gamma chain (IL-2, IL-4, 

IL-7, IL-9, IL-15 and IL-21) and exerts important functions in lymphopoiesis such as 

regulation of proliferation, survival and differentiation (Figure 16). 

B-cell development is strictly dependent on IL-7-signaling, as evident from IL-7 or IL-

7 receptor (IL-7Rα) knock out mice, which completely lack mature B-cells due to a 

differentiation block at the pre-pro B-cell stage (Kikuchi et al. 2005). Since Stat5 is efficiently 
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activated by IL-7 (Foxwell et al. 1995; van der Plas et al. 1996; Goetz et al. 2004), it was 

anticipated that Stat5-deficiency would display similar defects. Interestingly, expression of a 

constitutively active Stat5b allele complemented B-cell development in IL-7Rα−/− mice 

(Goetz et al. 2005). Unexpectedly, Stat5ΔN/ΔN mice did produce mature peripheral B-cells, 

although in reduced numbers. This was originally attributed to an incomplete block at the 

stage of early pro B-cell differentiation (Sexl et al. 2000). These results were extended by 

recent studies using complete Stat5 knock out mice (Hoelbl et al. 2006; Yao et al. 2006) and 

by in vivo experiments employing B-cell specific deletion of Stat5 (CD19cre; Dai et al. 2007). 

IL-7 stimulation of immature lymphocytes also led to a robust Stat3 activation, which might 

explain why IL-7- or IL-7Rα-deficiency had a more drastic phenotype. Thus, the exact 

function of Stat5 downstream of IL-7 is still under debate. It is not clear whether Stat5 solely 

promotes B-cell survival or if it is also required for lineage commitment. But the fact that 

increased apoptosis of in IL-7Rα-deficient B-cells could not be overcome by expression of a 

Bcl-xL transgene (Goetz et al. 2005), argued for a developmental role of Stat5. Since Bcl-xL is 

not expressed in wt B-cells, one should keep in mind that other antiapoptotic genes such as 

Mcl-1, which has been described to be important for survival of lymphocytes (Opferman et al. 

2003), might be able to overcome this defect. Several studies nevertheless implicated Stat5 in 

transcriptional control of EBF-1 and/or Pax-5, (Hirokawa et al. 2003; Goetz et al. 2005; Dai 

et al. 2007) both necessary for B-cell development. Stat5-/- B-cell progenitors, however, do 

only partially phenocopy the defects of IL-7-, IL-7Rα−, Pax-5- or EBF-1-deficient mice in 

VDJ-immunoglobulin rearrangement or the surprising capacity of B-cells to retrodifferentiate 

to T lymphocytes (Cobaleda et al. 2007; Cobaleda et al. 2007). Apparently, B cell 

commitment and the regulation of Pax5 is a more complex scenario, which does not solely 

depend on linear cytokine-transcription factor regulation like IL-7-IL-7R-Jak1/3-Stat5. Hence 

Stat5 might induce only genes important for survival and proliferation downstream of IL-7Rα 

without a direct function in B-cell lineage determination. 

Considering the importance of IL-2, IL-4, and IL-7 in T-cell development, analysis of 

the T-lymphocyte compartment in Stat5ΔN/ΔN mice revealed a surprisingly mild phenotype. 

There was a slight reduction of peripheral CD8+ T-cells accompanied by a lack of functional 

NK cells(Moriggl et al. 1999). CD4+ and CD8+ T-cells failed to proliferate in response to IL-2 

or IL-4 even in combination with full T-cell receptor activation and co-stimulation (Moriggl 

et al. 1999; Moriggl et al. 1999). Typical activation-specific genes like D-type cyclins, c-myc, 

Pim-1, Socs1-3, or Bcl-xL were not induced and the T-cells remained arrested in G1, although 

IFN-gamma production was normal (Moriggl et al. 1999; Moriggl et al. 1999; Gatzka et al. 
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2006). Interestingly, Stat5ΔN/ΔN T-cells displayed an activated/memory phenotype (CD44high 

CD62Llow; Moriggl et al. 1999), suggesting a disturbed negative regulation. Consequently, the 

mice developed autoimmune disease accompanied by reduction of peripheral CD4+CD25+ 

regulatory T-cells (Treg); at that time FoxP3 was not yet known as a Treg specific marker 

(Antov et al. 2003; Snow et al. 2003; Kang et al. 2004). Given the necessity of (Stat5-

mediated) IL-2 signaling in Treg development and maintenance, it was reasoned that Stat5 

might not be needed for Treg development but rather for maintenance (Antov et al. 2003; 

Snow et al. 2003). And since IL-2 signaling activated not only Jak/Stat signaling but also Ras-

MAPK and PI3-K, in consequence the latter pathways were considered to be required for Treg 

development. 

Likewise as for B-cells, analysis of mice harboring the complete Stat5 knock out 

revealed more drastic T-cell phenotypes. While CD8+ as well as CD4-CD8-γδTCR+ T-cell 

numbers were strongly reduced, CD4+CD25+FoxP3+ Tregs were completely absent (Hoelbl et 

al. 2006; Yao et al. 2006; Yao et al. 2007), similar results were also seen in conditional 

Stat5flLckCre mice. Furthermore, FoxP3, which is necessary and sufficient for polarization of 

naïve CD4+ T-cells to fully functional regulatory T-cells, was identified as a direct 

transcriptional target of Stat5 (Zorn et al. 2006; Burchill et al. 2007; Yao et al. 2007). These 

findings finally demonstrated that Stat5 was indeed required for Treg maintenance as well as 

for their development and polarization. 

Recently, it was proposed that differentiation of naïve CD4+ T-cells towards the T-

helper-17 (Th17) lineage concomitantly antagonizes T-cell polarization towards 

CD4+CD25+FoxP3+ Tregs, and vice versa (Bettelli et al. 2006). In line with this, mice with T-

cell specific Stat5 deletion (using Stat5fl/flCD4Cre) were almost completely devoid of Tregs but 

actually did exhibit increased numbers of Th17 cells (Laurence et al. 2007; Yao et al. 2007). In 

contrast, conditional deletion of Stat3, which has no effect on regulatory T-lymphocyte 

abundance, led to loss of Th17 cells. These studies convincingly established the intrinsic 

requirements for Stat5 in polarization towards the Treg- and Stat3 towards the Th17 helper cell 

lineage (Laurence et al. 2007; Yao et al. 2007), and a reciprocal relationship between Stat3 

and Stat5 during T-cell development. Finally, Stat5 was also demonstrated to play a role for 

T-helper cell lineage commitment, since it suppresses Th1 differentiation and controls Th2 

cytokine production (Cote-Sierra et al. 2004; Takatori et al. 2005). 
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1.4.4 Stat5 as a master regulator of hematopoietic cancers? 
 
So far, Stat5 has been described as master regulator of hematopoiesis, but to which extent is 

elevated Stat5 signaling critically associated with leukemia or lymphoma formation? 

Persistent activation of Stat5 indeed has been observed in a broad spectrum of human 

hematologic malignancies, including chronic myelogenous leukemia (CML), 

erythroleukemia, acute lymphocytic leukemia (ALL), myelo-proliferative diseases (MPDs) 

like polycythemia vera, thrombocytopenia, idiopathic myelofibrosis, or mastocytosis. 

Moreover, several studies reported that distinct types of T- and B-cell lymphomas were 

associated with persistent Stat5 activity (Joliot et al. 2006; Nagy et al. 2006; Martini et al. 

2008; Table 1). Introduction of Stat5 gain-of-function mutants by retroviral integration and 

transplant models or massive over-expression of wt Stat5a and Stat5b genes (Tsuruyama et al. 

2002; Kelly et al. 2003; Bessette et al. 2008) in transgenic mouse models demonstrated that 

Stat5 can promote factor-independent proliferation (Grebien et al. 2008) and tumor initiation 

in virtually all hematopoietic cell types (Moriggl et al. 2005). Thus, by standard definition, P-

Y-Stat5 can be viewed as an onco-protein. Importantly, several studies with human leukemic 

cells have shown that Stat5 is also involved in tumor cell maintenance, a feature described as 

oncogene dependence (Weinstein 2002; Ye et al. 2006; Schepers et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 1: Stat5 activation in hematopoietic malignancies 
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Constitutive activation of Stat5 can occur either due to activating mutations or 

chromosomal translocations in genes of upstream kinases, generating fusion tyrosine kinases, 

which are particularly frequent in leukemias. Alternatively, persistent Stat5 activation can 

also be associated with amplification of essential upstream signaling components such as 

growth factors or cytokines, or over-expression of their cognate receptor (Figure 17). The 

ensuing amplification of Stat5 signaling drives cells into sustained proliferation, protects 

against apoptotic signals, leads to evasion from the immune system and finally can render 

cells almost immortal. All these processes of course do not only depend on persistent 

activation of the Jak-Stat pathway alone, but are associated with additional oncogene 

mutations and amplifications or silencing of tumor suppressors. Only the combined action of 

activated oncogenes and silenced tumor suppressors and likely in synergy with P-Y-Stat5, 

causes tumor development. It is still a challenge for future studies to identify disease specific 

combinations of these players, since most work so far focused either on Stat5 alone or the 

most common genetic modifications. Generally, activation of Stat5 by mutations in upstream 

tyrosine kinases is mainly associated with increased proliferation or survival of hematopoietic 

cells. This is of course mainly due to activation of Stat5 target genes (Schuringa et al. 2004; 

Gatzka et al. 2006). These can be either involved in cell cycle progression (e.g. IL-2Rα, D-

type cyclins, c-Myc, oncostatin M, IL-7Rα, IL-3Rβ, ALS, IGF-1, Pim kinases, epidermal 

growth factor-receptor, prolactin receptor), survival (e.g. A1, Mcl-1, Bcl-2, Bcl-xL, survivin), 

negative feedback inhibition of tyrosine kinase signaling pathways (e.g. CIS, Socs1-3), 

lymphocyte function (e.g. FoxP3, CD25, TCRγ/δ rearrangement region, perforin, 

lymphotoxin-α, Pax5, EBF, Glut1) or co-factor regulation (e.g. Cited2). 

 

1.4.5 Stat5 and transforming tyrosine kinases activated by chromosomal rearrangements 
 
De-regulated tyrosine kinase activity promoting leukemogenesis frequently results from 

chromosomal breakage-and-reunion events causing gene fusions. Several examples involving 

translocated tyrosine kinases are known to result in activation of Stat5 (Figure 17a). The 

probably most prominent and best studied Stat5 activating fusion kinase is Bcr-Abl, the 

protein product of the Philadelphia chromosome (Ph+ t(9;22); Shtivelman et al. 1985), which 

is responsible for >90% of CML, 25-30% of adult and 2-10% of childhood ALL (Hermans et 

al. 1987), and rare cases of AML. The reciprocal t(9;22) translocation involves different exon 

sets of the bcr gene (breakpoint cluster region; (Groffen et al. 1984) fused to a common 

subset of exons from the abl gene, generating two alternative chimeric oncogene products – 
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p190 and p210 (Chan et al. 1987; Lichty et al. 1998). p210 is responsible for CML, whereas 

p190 results almost exclusively in adult ALL, and very rarely causes AML. The first exon of 

bcr, retained in both isoforms, appears essential for constitutive activation of the Abl tyrosine 

kinase, which leads to factor-independent proliferation and transformation of hematopoietic 

cells (Ilaria and Van Etten 1996). Carlesso and co-workers were the first to demonstrate 

persistent Stat5 activity in human Ph+ CML cell lines (Carlesso et al. 1996). Additional 

studies provided further evidence that Stat5 is indeed essential for transformation and 

leukemogenesis (de Groot et al. 1999; Sillaber et al. 2000; Hoelbl et al. 2006; Scherr et al. 

2006). The mechanism of Stat5 activation by Bcr-Abl was described either as direct, without 

requirement for phosphorylation via Jak kinases (Carlesso et al. 1996; Ilaria and Van Etten 

1996) or indirect, involving tyrosine phosphorylation by Jak2 (Samanta et al. 2006) or Src-

family kinases (Nieborowska-Skorska et al. 1999). One prominent example of a target gene 

exhibiting increased expression levels along the Bcr-Abl-Stat5 axis is the anti-apoptotic gene 

Bcl-XL, whose relevance for hematopoietic development is well documented (de Groot et al. 

1999; Nieborowska-Skorska et al. 1999; Gesbert and Griffin 2000; Donato et al. 2001). 

Therapy of CML is based on inhibition of Bcr-Abl kinase activity. Inhibitors like 

Imatinib-mesylate (Gleevec) or the newer compounds Dasatinib and Nilotinib cause efficient 

inhibition of CML progression, in close association with suppressed Stat5 activity. This in 

turn leads to a reduction in expression of genes like Rad51, D-type cyclins, c-Myc, Mcl-1 or 

Bcl-XL, resulting in selective apoptosis of Bcr-Abl expressing cells (Druker et al. 1996; 

Nieborowska-Skorska et al. 1999; Horita et al. 2000; Skorski 2002; Aichberger et al. 2006). 

The relevance of Stat5 in Bcr-Abl induced leukemia progression was underscored by animal 

studies demonstrating that even the absence of Stat5a alone (Ye et al. 2006) or the absence 

one allele of Stat5a/b (Stat5+/-) already reduced the incidence of CML, while Stat5-/- fetal liver 

cells were even completely resistant to transformation (Hoelbl et al. 2006). Cain and co-

workers obtained similar results, supporting a dosage effect of Stat5 (Cain et al. 2007). 

Also members of the Jak kinase-family (comprising Jak1-3 and Tyk2), which are the 

“classical” upstream regulators of Stat activity, can be affected by chromosomal 

rearrangements leading to aberrant signaling. Such translocations are rare but were reported in 

human leukemias, suggesting a direct Jak-Stat-mediated leukemic process. The leukemia-

associated Tel(Etv6)-Jak2 fusion protein is formed by fusion of the oligomerization domain of 

the Ets-family transcription factor (Tel) to the catalytic domain of Jak2 (Lacronique et al. 

1997). Tel-domain-mediated oligomerization then leads to constitutive tyrosine kinase 

activity (Schwaller et al. 1998; Ho et al. 1999), resulting in constitutive Stat activation 
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(Schwaller et al. 1998; Carron et al. 2000). In vitro, persistent activation of the Jak-Stat 

pathway by a Tel-Jak2 fusion protein rendered murine hematopoietic IL-3-dependent Ba/F3 

cells growth factor-independent (Lacronique et al. 2000), which was abrogated upon 

expression of dominant-negative Stat5a (Lacronique et al. 2000). In vivo, Tel-Jak2 transgenic 

mice developed T-cell leukemia, in association with constitutive activation of Stat5 and Stat1 

(Carron et al. 2000). Also the involvement of Stat5 activation, induced by Tel-Jak2, in the 

development of myelo- and lympho-proliferative disease could be demonstrated in a murine 

transplant model (Schwaller et al. 2000).  

 

1.4.6 Mutated or amplified Jak kinases affecting Stat5 activity  
 
Enhanced Stat5 activation has been observed in clonal myelo-proliferative disorders like 

polycythemia vera (PV), essential thrombocythemia (ET), and idiopathic myelofibrosis (IM; 

James et al. 2005; Aboudola et al. 2007). These diseases originate from multipotent 

progenitors capable of giving rise to erythroid and as well as myeloid cells. A high proportion 

of patients were found to carry a dominant gain-of-function mutation (Jak2-V617F) in the 

negative regulatory Jak-homology-2 (JH2) domain of Jak2 (Baxter et al. 2005; James et al. 

2005; Kralovics et al. 2005; Levine et al. 2005; Tefferi et al. 2005; Levine et al. 2007; 

Morgan and Gilliland 2008). This mutation was associated with constitutive phosphorylation 

of Jak2 and ensuing activation of Stat5 (Baxter et al. 2005; James et al. 2005; Kralovics et al. 

2005; Levine et al. 2005; Figure 17c). Constitutive tyrosine phosphorylation activity of Jak2 

promoted cytokine hypersensitivity (particularly towards Epo; Ugo et al. 2004; Veselovska et 

al. 2008) and induced erythrocytosis in a mouse model (Bumm et al. 2006; Lacout et al. 2006; 

Wernig et al. 2006; Zaleskas et al. 2006). Mice expressing Jak2-V617F under its endogenous 

promoter exhibited differential expansion of hematopoietic lineages, depending on both, 

presence and abundance of mutated Jak2 (Tiedt et al. 2007; Shide et al. 2008). PV patients 

with the Jak2-V617F mutation showed an increased number of hematopoietic stem cells with 

aberrant erythroid potential in peripheral blood. This phenotype was potently inhibited by the 

Jak2 inhibitors AG490 (Jamieson et al. 2006) or by the specific Jak2-V617F inhibitor 

TG101358 (Wernig et al. 2008). 

 An additional Jak2 gain-of-function mutant (K539L) was described in patients with 

Jak2-V617F-negative PV or idiopathic erythrocytosis. In Ba/F3 cells expressing murine Epo-

R, the K539L mutation increased phosphorylation of Jak2 and ERK1/2, when compared with 

cells transduced by wt Jak2 or Jak2-V617F, rendering the cells growth factor-independent 
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(Scott et al. 2007). In mice, Jak2-K539L also led to a myelo-proliferative phenotype, 

including erythrocytosis (Scott et al. 2007). Furthermore, Jak2-V617F and another Jak2 

mutation (K607N; in the pseudo-kinase domain) were also observed in a subset of AML 

patients (Lee et al. 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.7 Mutated growth factor receptors in Jak-Stat signaling 
 
Amplification, over-expression, or somatic mutations of the class III receptor tyrosine kinases 

(RTKs) Flt-3, c-Kit, FMS, and PDGF-R can result in increased receptor signaling, eventually 

leading to tumorigenesis (Figure 17b+e). Especially the activation loops of these RTKs form 

a hotspot for activating mutations, due to common structural characteristics.  

 Mutations in Flt-3 represent a common genetic lesion in AML but are rare in adult ALL 

(Armstrong et al. 2004). Activation of Flt-3 due to internal duplications in the juxta-

 

Figure 17: Mutations and expression change leading to persistent Stat activation. Persistent activation of STAT5 

has been observed in a broad spectrum of human hematologic malignancies. It may be attributed to (a) translocations 

generating fusion tyrosine kinases, (b) activating mutations in growth factor receptors, (c) activating mutations in 

upstream kinases, or alternatively be due to an amplification of a signaling component such as (d) autocrine growth 

factor production or (e) receptor over-expression. This leads to hyper-activation of Stat5 downstream targets resulting in 

increased cell proliferation, cell survival, or reduced apoptosis. Multiple phosphorylated Stat5 proteins can form dimers 

or oligomers on DNA molecules. Moreover, secondary post-translational modifications (e.g. P-Ser/P-Thr), different 
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membrane domain, the most frequent and best characterized type of mutation, is found in 20-

25% of AML patients (Nakao et al. 1996; Kottaridis et al. 2001; Meshinchi et al. 2001). Point 

and deletion mutations in the activation loop of the protein tyrosine kinase domain were 

described in ~7% of AML cases (Abu-Duhier et al. 2001; Yamamoto et al. 2001). Flt-3 

internal-tandem-duplication mutations (Flt-3-ITD) cluster in the juxta-membrane domain. 

These alterations cause constitutive activation of the receptor, which becomes phosphorylated 

independent of ligand binding, and transforms hematopoietic cell lines to growth factor-

independent proliferation. Aberrant signals emerging from Flt-3-ITD include activation of 

Stat5 (Zhang et al. 2000; Bunting et al. 2007), and repression of myeloid transcription factors 

Pu.1 and C/EBP-α. The mechanism of Stat5 activation by Flt-3-ITD is independent of Src- or 

Jak kinases as Stat5 was shown to be a direct target of Flt-3 (Zhang et al. 2000; Choudhary et 

al. 2007). Although Flt-3-ITD was sufficient to induce MPD in a murine bone marrow 

transplant model, the AML phenotype observed in humans could not be recapitulated (Kelly 

et al. 2002).  

 c-Kit (also designated CD117), the RTK for stem cell factor, is required for normal 

hematopoiesis, melanogenesis, and gametogenesis (Ikuta et al. 1992; Besmer et al. 1993). 

Point mutations in this receptor were described to result in ligand-independent tyrosine kinase 

activity and auto-phosphorylation, which in turn lead to stimulation of downstream signaling 

pathways and uncontrolled cell proliferation. Consequently, mutations in the c-Kit gene are 

known to induce mast cell leukemia and AML. They cluster in two distinct regions, the juxta-

membrane domain and the activation loop. Activating point mutations in c-Kit, mainly 

D816V (Fritsche-Polanz et al. 2001; Valent et al. 2003; Wimazal et al. 2004; Horny et al. 

2007), have been also linked to systemic mastocytosis (Furitsu et al. 1993). Mastocytosis is 

often transient and limited in children but persistent or progressive in adults. Occurrence of 

somatic c-Kit mutations correlates with severity of disease. They are found in a high number 

of adult sporadic mastocytosis patients as well as in children at risk for extensive or persistent 

disease (Longley et al. 1999). One explanation for increased mast cell numbers in tissues of 

patients with mastocytosis is offered by enhanced chemotaxis of CD117-positive cells derived 

from CD34/CD117 double-positive precursors (Taylor et al. 2001). Harir and co-workers 

demonstrated that also a gain-of-function mutant of Stat5 could promote mast cell disease in 

mouse bone marrow transplant models (Harir et al. 2008). 
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1.4.8 Amplified Signals 
 
Excessive production of cytokines, amplification of their receptor, as well as autocrine 

cytokine stimulation, are additional mechanisms to cause hyper-activation of downstream 

signal transducers (Figure 17d&e). Several heterozygous mutations in the Epo-R with 

increased sensitivity towards Epo were described to result in strong activation of Jak2 & Stat5 

(Watowich et al. 1999) and ensuing autosomal-dominant erythrocytosis-1 (ECYT-1; de la 

Chapelle et al. 1993; Kralovics et al. 1997). The majority of ECYT-1 Epo-R mutants lacked 

the C-terminal negative regulatory domain (Kralovics et al. 1997). The potential for such 

truncations in the pathogenesis of human erythroleukemia was also revealed by 

characterization of a 3´-end deletion in the Epo-R gene of a cell line over-expressing Epo-R 

and proliferating in response to Epo (Ward et al. 1992). Also a point mutation in the mouse 

Epo-R gene resulted in constitutive activation, leading to erythrocytosis and splenomegaly 

(Longmore and Lodish 1991). In some AML patients, wt c-Kit as well as non-mutated Flt-3 

was found over-expressed and activated. For Flt-3, there was also in vitro evidence that an 

autocrine loop promotes growth and survival of AML blasts (Zheng et al. 2004). 

 

1.4.9 Constitutively activated mutants of Stat5 inducing transformation 
 
Stat5 is activated by various onco-proteins with tyrosine kinase activity and its involvement in 

tyrosine kinase-mediated leukemogenesis is known to be crucial. Direct evidence that 

constitutive activation of Stat5 by itself can be sufficient to cause cell transformation was 

obtained by analysis of the Stat5 mutants Stat5-1*6 (Onishi et al. 1998) and cS5F (Moriggl et 

al. 2005). These constitutively active variants were capable of inducing MPD and multi-

lineage leukemia in transplanted mice (Schwaller et al. 2000; Moriggl et al. 2005; Harir et al. 

2007). Moreover, cS5F relieved cytokine-dependence and prolonged the persistence of Stat5 

signaling in response to growth factors or cytokines (Harir et al. 2007; Grebien et al. 2008). 

Interestingly, constitutively active Stat5a-1*6 could promote senescence in fibroblasts, similar 

to oncogenic Ras (Mallette et al. 2007; Mallette et al. 2007). A potential role of cS5F in 

senescence is currently under investigation (G. Ferbeyre, personal communication). 
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1.5 Stat5 as target for diagnosis and treatment of hematopoietic disorders 
 
As pointed out above, expression and activity of Stat5 genes and proteins could be of 

substantial diagnostic value, e.g. in CML. Quantitative analyses of Stat5 mRNA, protein and 

activity levels, however, have been neglected so far although they influence the response to 

cytokines, growth factors or aberrant tyrosine kinases. Determination of P-Y-Stat5 activity 

status is no standard procedure in current clinical leukemia staging, despite the availability of 

suitable immuno-staining protocols with monoclonal antibodies (Nevalainen et al. 2004; Harir 

et al. 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18: Strategies for targeting Stat5 for anti-leukemia therapy. The increasing understanding of the pathways 

leading to persistent Stat5 activation provides important insights into the potential therapeutic use of inhibitor compounds. 

There are several steps in the activation pathway of Stat5, which could potentially serve as direct or indirect targets for 

therapeutic intervention. These include (1) cytokine or growth factor depletion, (2) blocking cytokine receptors by receptor 

antagonists or antibodies (3) inhibition of Jak or fusion tyrosine kinases, (4) direct interference with Stat function by 

blocking receptor recruitment via the SH2-interaction domain (5) blocking Stat transcription by anti-sense molecules, (6) 

inhibition of serine kinases, (7) inhibition of the transcriptional activity of Stat5 by the use of small molecules that interfere 

with DNA binding such as decoy oligonucleotides, (8) functionally inactive dominant negative Stats, (9) small molecular 

weight inhibitors that bind directly to Stat transcription factors, or (10) targeting negative regulators of Stats.  
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1.5.1 Implications of Stat5 inhibition for leukemia intervention 
 
In many manuscripts dealing with research on Stat5, discussion sections frequently end with 

the claim that Stat5 is a candidate for chemotherapy intervention in leukemia treatment. 

Indeed, there might be several steps in the activation pathway of Stat5, which could 

potentially serve as direct or indirect targets for therapeutic intervention (Figure 18). 

Unfortunately, as not to trip over the rope of oversimplification, at least three important 

aspects need clarification before Stat5 can be considered as a potential drug target.  

First of all, Stat5 must be shown to actually drive the malignant behavior of leukemic 

cells. It is essential to demonstrate that Stat5 is not only sufficient for tumor initiation but also 

required for leukemia maintenance. As mentioned below, genetic analyses of leukemia 

models could help to address that issue in the future; at present no detailed studies are 

available. 

Second, selective targeting of Stat5 proteins by pharmacological intervention must be 

feasible. Among the seven Stat-family members, Stat5a and b are the two most closely 

related; differences are restricted to the C-terminal trans-activation domain. Thus, targeting 

could aim at the corresponding regions of either both or individual Stat5 proteins. ATP 

binding pockets of kinases are commonly smaller than transcription factor protein-protein or 

protein-DNA interaction surfaces. This might exacerbate targeting of the latter with small 

molecular weight compounds. Of note, there are several reports documenting successful 

inhibition of e.g. Stat3, Gli-1, or TCF-4 transcription factors with small molecules (Lauth et 

al. 2007). These mostly mimic amino acid surfaces and interfere with their binding properties 

(Tan et al. 2006; Huang et al. 2007). Like for Gli-1, micro-RNAs could also provide an 

alternative approach, given that limitations of RNA stability and cell-specific delivery can be 

overcome (Tsuda et al. 2006). 

Third, inhibition of Stat5 must not exhibit deadly side effects on non-transformed 

cells. Unfortunately, this is not the case: Stat5-deficient mice are completely devoid of mature 

B-lymphocytes, NK-cells, γδ−T-cells and regulatory CD4+CD25+ FoxP3+ T-cells. While the 

loss of mature B- and NK- cells leads to severe impairment of the immune system, loss of 

regulatory T-cells results in severe autoimmune reactions from the remaining immune system. 

Furthermore, Stat5-deficiency results in strong impairment of fetal erythropoiesis, although 

adult red cell formation may be less affected. Together, there might be a therapeutic window 

for use of Stat5 inhibitors but care will be needed to determine to which extent Stat5 activity 

may be reduced for tackling leukemia without causing unacceptable side affects. 
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Lets consider the best-studied example, which would be CML and the therapeutic 

potential of targeting Stat5 in this particular disease. The sensitivity of CML to the Bcr-Abl 

tyrosine kinase inhibitors used in conventional chemotherapy is due to Bcr-Abl oncogene 

addiction (Weinstein 2002). Interestingly, Pimozide, a known chemotherapeutic agent, was 

identified to block P-Y-Stat5 activity in synergy with Bcr-Abl kinase inhibitors (Nelson et al., 

Abstract 2953, ASH meeting, Atlanta 2007). The detailed mechanism of Pimozide action, 

however, remains puzzling. Ongoing research in animal models tries to resolve the question 

whether Jak2 and/or Stat5 are only required for the initial transformation phase of Bcr-Abl 

induced CML or if these molecules are also needed for the maintenance of fully progressed 

CML. These considerations entail genetic evaluations of the therapeutic potential of targeting 

Stat5a/b proteins. Technically, these studies should be based on mice bearing floxed Stat5 or 

floxed Jak2 alleles intercrossed with mice carrying inducible Cre recombinase. Analysis of 

the disease phenotype of CML mouse models after Cre-mediated deletion of Stat5 or Jak2 

might impact on decisions for future therapeutic intervention strategies converging on the Jak-

Stat pathway. 
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2 Aims of this work 

 
 
The principal objective of this thesis was to scrutinize the functions of Stat5 in erythropoiesis, 

lymphopoiesis and leukemia. As outlined in the introduction, the prominent transcription 

factor Stat5 can be activated by a plethora of cytokines and growth factors, but most of the 

previous work concerning the consequences of Stat5 ablation in hematopoiesis was performed 

using genetically modified mice retaining a hypomorphic Stat5 allele, still expressing N-

terminally truncated Stat5 and therefore presenting incomplete cellular and organismal 

phenotypes. My thesis contributed to the clarification of Stat5 function in erythropoiesis, 

lymphopoiesis and leukemia by characterizing the hematopoietic phenotypes of mice 

completely devoid of Stat5 at the genetic, cell biological and molecular level. 

 

This thesis comprises four core pieces of work: 

 

 

(i) Stat5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1 

(published in Blood, 2008 August; Epub ahead of print) 

 

(ii) Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2 

(published in Blood, 2008 May 1;111(9):4511-22) 

 

(iii) Clarifying the role of Stat5 in lymphoid development and Abelson-induced 

transformation 

(published in Blood, 2006 Jun 15;107(12):4898-906) 

 

(iv) Nonredundant roles for Stat5a/b in directly regulating Foxp3 

(published in Blood, 2007 May 15;109(10):4368-75) 

 
 
 

[For a detailed list of all publications please see the Results section] 
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(i) Stat5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1 

 
Marc A. Kerenyi; Florian Grebien; Helmuth Gehart; Manfred Schifrer; Matthias Artaker; 

Boris Kovacic; Hartmut Beug; Richard Moriggl and Ernst W. Müllner 

 
(published in Blood, 2008 August; Epub ahead of print) 

 
This publication describes for the first time a detailed characterization of the erythroid 

phenotype of mice completely devoid of Stat5. Analysis of these mice revealed that these 

animals suffer from hypochromic microcytic anemia due to reduced expression of the anti-

apoptotic proteins Bcl-xL and Mcl-1 resulting in increased apoptosis. Further more we 

demonstrate that cellular iron uptake was compromised since transferrin receptor-1 (TfR-1) 

cell surface levels were decreased >2-fold on erythroid cells of Stat5-/- animals. This reduction 

was attributed to reduced transcription of TfR-1 mRNA and diminished expression of iron 

regulatory protein 2 (IRP-2), the major regulator of TfR-1 mRNA stability in erythroid cells. 

Both genes were demonstrated to be direct transcriptional targets of Stat5. This established an 

unexpected mechanistic link between EpoR/Jak/Stat signaling and iron metabolism, processes 

absolutely essential for erythropoiesis and life. 

 
 (ii) Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2 

 
Florian Grebien, Marc A. Kerenyi, Boris Kovacic, Thomas Kolbe, Verena Becker, Helmut 

Dolznig, Klaus Pfeffer, Ursula Klingmüller, Mathias Müller, Hartmut Beug,  

Ernst W. Müllner and Richard Moriggl 

 

(published in Blood, 2008 May 1;111(9):4511-22) 
 

This publication demonstrates for the first time that activated Stat5 is sufficient to enable 

erythropoiesis in Jak2- EpoR- deficient erythroid cells. Using a constitutive active mutant of 

Stat5a (cS5) we show that persistent activation of Stat5a substitutes for external Epo signaling 

in WT, Jak2-/-
 and EpoR-/-

 cells. Moreover, Jak2-/-
 fetal liver cells expressing cS5 contributed 

to erythropoiesis in vivo upon transplantation up to 6 month. Additionally we outlined that 

Jak2 plays a role in SCF-induced c-Kit signaling and that cS5 can be activated via c-Kit in 

erythroid cells. 
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(iii) Clarifying the role of Stat5 in lymphoid development and Abelson-induced 

transformation 

 
Andrea Hoelbl, Boris Kovacic, Marc A. Kerenyi, Olivia Simma, Wolfgang Warsch,  

Yongzhi Cui, Hartmut Beug, Lothar Hennighausen, Richard Moriggl, and Veronika Sexl 

 

(published in Blood, 2006 Jun 15;107(12):4898-906) 

 
This piece of work demonstrates the essential function of Stat5 in lymphopoiesis. We 

analyzed and compared lymphoid compartments of Stat5-/-, Stat5ΔN/ΔN and wt mice. Stat5-/- as 

well as Stat5fl/fl lck-cre transgenic animals mice nearly lacked all CD8+ T lymphocytes in 

contrast to Stat5ΔN/ΔN mice. While γδ T-cell receptor–positive cells were expressed at normal 

levels in Stat5ΔN/ΔN mice, they were completely absent in Stat5-/- animals. Moreover, B-cell 

maturation was abrogated at the pre–pro-B-cell stage in Stat5-/- mice, whereas Stat5ΔN/ΔN B-

lymphoid cells developed to pro-B-cell stage. Most strikingly, however was the observation 

that Stat5-/- cells were resistant to leukemic transformation in methylcellulose assays as well 

as to leukemia development in vivo, induced by Abelson oncogenes.  

 
(iv) Nonredundant roles for Stat5a/b in directly regulating Foxp3 

 
Zhengju Yao, Yuka Kanno, Marc A. Kerenyi, Geoffrey Stephens, Lydia Duran, Wendy T. 

Watford, Arian Laurence, Gertraud W. Robinson, Ethan M. Shevach, Richard Moriggl, 

Lothar Hennighausen, Changyou Wu and John J. O’Shea 

 

(published in Blood, 2007 May 15;109(10):4368-75) 

 
This work demonstrates that Stat5 is strictly required for regulatory T-cell (Treg) development. 

Regulatory T-cells are pivotal to confine immune responses. The importance of Stat5 versus 

Stat3 in Treg development was unclear. Using mice bearing a complete deletion of the Stat5a/b 

locus (Stat5-/-) we observed a dramatic reduction in CD4+CD25+Foxp3+ regulatory T-cells. 

Furthermore we could show that Stat5 is required for induction of Foxp3 expression and 

bound directly to the Foxp3 gene in vivo. Conversely, reduction of Stat3 in T-cells did not 

alter the numbers of regulatory T-cells in the thymus or spleen. Interestingly, we discovered 

that Stat3 was required for IL-6–dependent down-regulation of Foxp3. Therefore, we 

concluded that Stat5 has an essential role in regulating regulatory T-cells and that Stat3 and 

Stat5 appear to have opposing roles in the regulation of Foxp3. 
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3 Results 

Publications are sorted in chronologically descending order from 2008 - 2006 
 

3.1 Original articles 
 

3.1.1 Stat5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1 
 
 
 
 

Marc A. Kerenyi1#; Florian Grebien1#*; Helmuth Gehart1; Manfred Schifrer1; Matthias 

Artaker1; Boris Kovacic2; Hartmut Beug2; Richard Moriggl3 and Ernst W. Müllner1& 

 

 

 
1Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of  

  Vienna, 1030 Vienna, Austria 
2Research Institute of Molecular Pathology, 1030 Vienna, Austria 
3Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria 

*present address: CeMM – Research Center for Molecular Medicine of the Austrian Academy  

  of Sciences, 1090 Vienna, Austria 
#Equal contribution 
&Corresponding author 
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3.1.2 Oncogenic Kit controls neoplastic mast cell growth through a Stat5/PI 3-
kinase signaling cascade  
 
 
 
 

Noria Harir
1,§

, Cédric Boudot
1,§

, Katrin Friedbichler
2
, Karoline Sonneck

3
, Rudin Kondo

3
, 

Séverine Martin-Lannerée
4,5

, Lukas Kenner
2,6

, Marc A. Kerenyi
7
, Saliha Yahiaoui

1
, Valérie 

Gouilleux-Gruart
1
, Jean Gondry

8
, Laurence Bénit

4,5
, Isabelle Dusanter-Fourt

4,5
, Kaïss 

Lassoued
1
, Peter Valent

3
, Richard Moriggl

2,*
 and Fabrice Gouilleux

1,*
 

 
 
 
1
Institut National de la Santé et de la Recherche Médicale (EMI 351), Faculté de Médecine,  

 Université de Picardie J. Verne, Amiens, France;
  

2
Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.;  

3
Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical  

  University of Vienna, Austria;  
4
Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.;  

5
Inserm, U567, Paris, France;  

6
Department of Pathology, Medical University of Vienna, Vienna, Austria.  

7
Max F. Perutz Laboratories, Department of Medical Biochemistry, Division of Molecular  

 Biology, Medical University of Vienna, Vienna, Austria;  
8
Centre Gynécologie-Obstétrique, Centre Hospitalier Universitaire, Amiens, France.  

§
These two authors contributed equally to this work  
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3.1.3 Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2 
 
 
 
 

Florian Grebien1, Marc A. Kerenyi1, Boris Kovacic2, Thomas Kolbe3,4, Verena Becker5, 

Helmut Dolznig6, Klaus Pfeffer7, Ursula Klingmüller5, Mathias Müller3,8, Hartmut Beug2, 

Ernst W. Müllner1,10 and Richard Moriggl9,10 

 

 

 
1Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of  

 Vienna, 1030 Vienna, Austria 
2Research Institute of Molecular Pathology, 1030 Vienna, Austria 
3Biomodels Austria, Veterinary University Vienna, 1210 Vienna, Austria 
4Dept. Agrobiotechnology, IFA-Tulln, Biotechnology in Animal Production, 

 University of Natural Resources and Applied Life Sciences, 1180 Vienna, Austria 
5German Cancer Research Center, 69120 Heidelberg, Germany 
6Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090  

 Vienna, Austria 
7Institute of Medical Microbiology, Heinrich-Heine University, 40225 Duesseldorf, Germany 
8Institute of Animal Breeding and Genetics, Veterinary University Vienna, 1210 Vienna,  

 Austria 
9Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria 
10Corresponding authors. These authors contributed equally to the work. 
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3.1.4 Nonredundant roles for Stat5a/b in directly regulating Foxp3 
 
 
 
 
Zhengju Yao1,2, ,Yuka Kanno1, Marc A. Kerenyi4, Geoffrey Stephens5, Lydia Durant1, Wendy 

T. Watford1, Arian Laurence1, Gertraud W. Robinson6, Ethan M. Shevach5, Richard Moriggl3, 

Lothar Hennighausen6, Changyou Wu2 and John J. O’Shea1 

 
 
 
1Molecular   Immunology   and   Inflammation   Branch,  National  Institute  of  Arthritis  and 

  Musculoskeletal and Skin Diseases , National Institutes of Health (NIH), Bethesda, MD;  
2Department of Immunology, Zhongshan Medical School, Sun Yat-Sen University, China; 
3Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria;  
4Max F. Perutz  Laboratories,  Department  of  Medical  Biochemistry,  Medical University of  
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