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Summary. Conditional Acceptability Mappings quantify the degree of desirability of ran-

dom variables modeling �nancial returns, accounting for available non-trivial information.

They are de�ned as mappings from spaces Lp (Ω,F , µ) to spaces Lp′ (Ω,F1, µ), where the

σ−algebra F1 ⊆ F describes the available information. Additionally, such mappings have

to be concave, translation-equivariant and monotonically increasing.

Based on the order characteristics (in particular the order completeness) of Lp (Ω,F , µ)-

spaces, superdi�erentials and concave conjugates for conditional acceptability mappings

are de�ned and analyzed. The novelty of this work is that the almost sure partial order

is consequently used for this purpose, which results in simpler de�nitions and proofs, but

also accounts for all requirements concerning continuity, integrability and measurability

of the supergradients and conjugates.

Furthermore, the results about conditional mappings are used to show properties of mul-

tiperiod acceptability functionals that are based on conditional acceptability mappings,

such as SEC-functionals and acceptability compositions. A chain rule for superdi�erentials

as well as the conjugate of multiperiod functionals and their properties are derived.
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CHAPTER 1

Introduction

Most economic decisions are a�ected by uncertainty and risk. Historically, insurance �rms

were the �rst institutions to deal with risk in a mathematical way - mainly by pooling

individual risks and referring to the laws of large numbers. Although evidently existent,

risk was neglected in economic theory until the mid 20th century. At this time Von

Neumann and Morgenstern [34] raised the idea of expected utility which was enhanced by

Arrow and Pratt [4, 26]. On the other hand Markowitz [15] developed the idea of using

quadratic optimization in the �eld of portfolio selection - using the standard deviation of

returns as a risk measure and mean returns as a measure of pro�t. The idea of optimizing

a tradeo� between these antagonistic objectives - which results in the construction of an

e�cient frontier - was very fruitful in the following decades, where a lot of alternative risk

and acceptability measures were developed.

While at the beginning - because of limited computational capacities - these methods were

more or less a matter of theory, the revolution in computer technology made it possible

to cheaply use quantitative methods in practical �nancial management [16].

Generally all kinds of risks and their quanti�cation and management, were a key issue in

the rapid development of modern �nance and �nancial mathematics. Another in�uence

came from the literature on derivative pricing, beginning with Black and Scholes [8] and

Merton [17].

While all of these ideas had their origin in �nance and corporate �nance, the idea of

measuring and managing risk has recently entered all areas of business like supply chains,

telecommunication, electricity and general energy management.

Another input into the development of risk-management came directly from practical

considerations: In the last decades most countries enacted laws constraining banks and

insurance companies to hold a substantial amount of risk capital. Initially - until the

recent past - such prescriptions were very crude, de�ning minimum requirements as a

certain percentage of assets or other suitable reference �gures from �nancial statements.
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In Europe these requirements accompanied the process of liberalization in the �nancial

sector, replacing the more direct in�uence of the state under the old regime.

The last step in this process - for the time being - is the activities well known as �Basel II�

for banks and as �Solvency II� for insurance companies: One of the so called �pillars� of

this regulatory system requires - under the name of �Value at Risk� - the usage of quantiles

of the loss distribution to measure the required risk capital.

Quantiles were well known for a long time in statistics. Also it should be noted that in

principle Markowitz based his theory - for the special case of Gaussian distributions - on

this concept. Nevertheless it is clear that the introduction of Value at Risk was a great

advance for the regulatory system. Value at Risk is easy to understand and communicate

and also seems easy to calculate. Although the latter point is not true for the general case,

a lot of work has been done in the last years to make more and more di�cult stochastic

models tractable for calculation.

The main drawback of Value at Risk lies in the fact that for the general case it has a

lot of problematic mathematical properties, making it di�cult to control by a structured

optimization procedure. This was stated by Artzner et al. in their seminal papers [6, 5].

Since then a lot of work has been done on risk measures that calculate required risk capital

and have nice mathematical properties under a variety of theoretical and practical aspects.

A recent example is [14].

Initially the focus was on coherent risk functionals, based on subadditivity and positive ho-

mogeneity. Föllmer and Schied [10] and Frittelli and Rosazza [11] independently weakened

these axiomatic assumptions, using convexity instead. This in turn opened the possibility

to use the whole arsenal of convex analysis: Based on the work of Moreau and Rockafellar

([18], [27, 30]), Ruszczy«ski and Shapiro [33], P�ug and Römisch [22, 23] and others

were able to formulate and prove a lot of results about risk and acceptability functionals.

A key role in this process - as a basic example - was played by the average (or conditional)

value at risk [29] .

Coherent risk measures remain an important �eld of study, but new types of functionals

for the valuation of random variables in �nance also have been developed in the last years:

• acceptability functionals - which can be seen as negative coherent risk measures,

but lacking positive homogeneity

• deviation risk functionals, generalizing the properties of the standard deviation

in the context of convex analysis.

10



While there seems to be agreement in principle about how to handle one-period functionals

that valuate random variables by assigning a real number, much less agreement exists

regarding the valuation of (multiperiod) stochastic processes. Here, an important building

block seems to be the notion of conditional acceptability or risk mappings.

Such mappings evaluate a random outcome at the end of a time period relative to the

information available at the beginning of the period. Such an evaluation generally will

result not in a real number, but in another random variable and is in principle a mapping

between two random spaces. In addition these mappings will be de�ned in a similar way

to acceptability or risk functionals: It is important that they have nice mathematical

properties like monotonicity and concavity or convexity etc.

There is consensus in the literature on how to de�ne such mappings, but - as we will

discuss in chapter 4 - there are di�erent views about how to de�ne and use their conjugate

mappings. In the following work we will consequently use the almost sure partial order

and the associated notion of an in�mum for this purpose.

This approach seems to be totally new in the context of conditional risk and acceptability

mappings and therefore we will recapitulate some important concepts from probability,

order theory and nonsmooth analysis in the �rst part, to construct a �rm ground for

the following study of conditional mappings in the second part. In particular we use the

properties of Lp (Ω,F , µ)-spaces as Banach lattices and some helpful characteristics of the

p-norms for showing that Lp (Ω,F , µ)-spaces are order complete. This fact makes the

almost sure in�mum a reasonable concept for de�ning conjugates.

Our approach combines the following bene�ts, while each of the previously discussed

concepts has some weaknesses in these �elds:

• There is a simple, clear and general concept regarding the spaces involved. In

particular we do not require that all random variables are essentially bounded.

• There is a close connection between supergradients and the conjugate represen-

tation.

• The approach is based on sound mathematical principles and accounts for all re-

quirements regarding continuity, integrability and measurability of supergradients

and conjugate mappings. In particular, there are clear requirements for the dual

variables involved, ensuring that the linear mappings used map into the correct

random spaces.
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• Most results - even for the applications in the multiperiod case - can be proved

in a relatively simple manner.

As a starting point we will - mainly following [23] - characterize deviation risk and accept-

ability functionals in the following sections and compare them with coherent risk measures.

This is done in an informal way, stating only the main facts necessary to understand the

similarities and dissimilarities with conditional mappings in part two of this work. One

main focus will be the notion of a dual or conjugate representation of such functionals.

1.1. Single Period Deviation Risk and Acceptability

While the term �risk measure� is widely used in economics and in the practical area, from

now on in this work we will avoid the terms �risk measure� or �acceptability measure�: In

mathematics measures are a topic of measure theory and are related to sets, while risk

and acceptability are related to random variables. Instead we will speak of acceptability

or risk functionals.

A probability functional is an extended real valued function de�ned on some random space,

or on a suitable subset of a random space. Examples are well known functionals like the

expectation, the median, value at risk, average (or �conditional�) value at risk, variance

etc. If the value of a probability functional depends only on the distribution of the random

variable under consideration, it is called version-independent. Such functionals could also

be de�ned on spaces of distribution functions. In this context they are well known under

the name of statistical parameters.

If a functional is interpreted in the sense that higher values are preferable to lower values

it is called an acceptability-type functional. Acceptability functionals are acceptability type

functionals with some additional properties:

Definition 1.1.1. (acceptability) A real valued functional A, de�ned on a linear space

Y of random variables on (Ω,F ,P) is called an acceptability functional, if the following

properties are true for all Y ∈ Y :

(A1) Translation Equivariance . A(Y + c) = A(Y ) + c holds a.s. for all constants c.

(A2) Concavity . A (λ ·X + (1− λ) · Y ) ≥ λ · A (X) + (1−λ) ·A (Y ) holds for λ ∈ [0, 1].

(A3) Monotonicity . X ≤ Y a.s.⇒ A(X) ≤ A(Y ).
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Another relevant property is positive homogeneity and strictness: An acceptability func-

tional is called positively homogeneous, if it satis�es the condition A(λY ) = λ · A(Y ) for

all λ ≥ 0. It is called strict, if A(Y ) ≤ E (Y ) holds.

The second important group of probability functionals are deviation type functionals.

While the prototype for acceptability type functionals could be expectation, standard

deviation is the ideal model for deviation risk functionals. In principle such functionals

measure the risk of a deviation from some target value.

Definition 1.1.2. (deviation risk) A real valued functional D de�ned on a linear space

Y of random variables on (Ω,F ,P) is called a deviation risk functional, if the following

properties hold for all Y ∈ Y :

(D1) Translation Invariance . D(Y + c) = D(Y ) holds a.s. for all constants c.

(D2) Convexity . D (λ ·X + (1− λ) · Y ) ≤ λ · D (X) + (1−λ) ·D (Y ) holds for λ ∈ [0, 1].

(D3) Monotonicity . X ≤ Y a.s.⇒ E (X)−D (X) ≤ E (Y )−D (Y ) .

From this de�nitions it follows that D is a deviation risk functional if and only if the

functional E (X)−D (X) is an acceptability functional. In this work the focus will be on

acceptability: Although most of the results about acceptability functionals could easily

be reformulated for deviation risk functionals, we will not do so for the sake of avoiding

redundancy.

Again it is possible to de�ne some additional properties: positive homogeneity for deviation

risk functionals means that D(λY ) = λ · D(Y ) holds for all λ ≥ 0. On the other hand

a deviation risk functional is called strict if it satis�es D(X) ≥ 0 for any X. Typical

examples are the standard deviation or the lower partial moments.

A lot of interesting probability functionals are not continuous, but as we shall see it is

crucial that they are at least semicontinuous: A convex functional is lower semicontinuous

(l.s.c.) if its epigraph is a closed set. A concave functional is upper semicontinuous (u.s.c.)

if its hypograph is a closed set.

As mentioned above, the �rst axiomatic treatment of risk functionals was Artzner et al.

[5]. The key notion of this approach was coherence:

Definition 1.1.3. (coherence) A real valued functional ρ de�ned on a linear space Y of

random variables on (Ω,F ,P) is called a coherent risk (capital) functional, if the following

properties are valid for all Y ∈ Y :
13



(R1) Translation Antivariance . ρ(Y + c) = ρ(Y )− c holds for all constants c.

(R2) Convexity . ρ (λ ·X + (1− λ) · Y ) ≤ λ · ρ (X) + (1− λ) · ρ (Y ) holds for λ ∈ [0, 1].

(R3) Pointwise Antimonotonicity . X ≤ Y a.s.⇒ ρ (X) ≥ ρ (Y ) .

(R4) Positive Homogeneity.ρ(λY ) = λ · ρ(Y ) for λ ≥ 0.

Remark. In the original paper [5] subadditivity was used instead of convexity, which is

equivalent due to homogeneity.

Coherent risk functionals valuate risk in terms of a risk reserve, necessary to make the dis-

tribution of a risk acceptable. This is the reason why they must be translation-antivariant.

In addition it is clear that coherent risk functionals are risk functionals in the sense that

lower values are preferable to higher values.

A prototype would be Value at Risk. Unfortunately it is not convex if we consider distri-

butions other than just Gaussian.

Although the axiomatic de�nition of coherent risk functionals is older than the de�nition

of acceptability functionals we prefer to use the latter:

ρ is a coherent risk functional if and only if A = −ρ is a positively homogeneous acceptabil-

ity functional. This means that the class of coherent risk functionals can be reconstructed

by a subset of the class of acceptability functionals. Coherence requires positive homo-

geneity but in fact there are important acceptability functionals that are not positively

homogeneous.

Additionally: if we later on deal with conditional and multi-period mappings, translation-

equivariance will be easier to handle than translation antivariance.

Another important group of acceptability type probability functionals is well known and

widely used in economic theory under the name of expected utility. Such functionals are

given by E (U(X)), where U is an utility function. As a functional operating on random

variables X expected utility generally is not an acceptability functional, because it lacks

translation equivariance if the utility function is not linear. At least expected utility

is concave, if the utility function is concave . If the utility is monotone, the expected

utility is monotone with respect to �rst order stochastic dominance. If the utility is both

monotonic and concave, the functional is monotone with respect to second order stochastic

dominance1.

1[23], Proposition 2.59
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1.2. Dual Representation of Acceptability functionals

In the following we consider acceptability functionals as de�ned on a linear space of random

variables. If we use a Lp (Ω,F , µ)-space as domain-space, for each p the dual space can be

identi�ed with the space Lq (Ω,F , µ), where 1
p

+ 1
q

= 1 holds. The dual pairing between

elements X of the space and elements Y of its dual is given by the expectation2 E (X · Y ).

From the Fenchel-Moreau-Rockafellar Theorem3 it follows that concave u.s.c. functionals

can be represented in the following way:

(1.2.1) A (X) = inf
Z∈Lq(Ω,F ,µ)

{E (X · Z)−A∗ (Z)} ,

where A∗ (Z) = infX∈Lp(Ω,F ,µ) {E (X · Z)−A (X)} is the concave conjugate or Fenchel-

Moreau conjugate of the functional A. Basically this means that the functional equals its

biconjugate.

An alternative representation is given byA (X) = infZ∈Lq(Ω,F ,µ) {E (X · Z)−A∗ (Z) : Z ∈ ZA}.
ZA denotes the set of random variables from the dual space where A∗ (Z) is �nite.

The notion of conjugates has its origin in the Legendre-transform of a convex real function

f(x), which is a widely used concept in physics:

f ∗(p) = max
x
{p · x− f(x)}

For di�erentiable f it is easy to see that x is a maximizer if p = df(x)
dx

. While the normal

representation of a function is given by a set of points (the graph) the conjugate represents

the function by a set of tangent lines, speci�ed by their slope and intercept.

The conjugate of a probability functional is a generalization of this idea: u.s.c. accept-

ability functionals can be represented by sets of tangent hyperplanes for the hypograph.

These hyperplanes are de�ned by their intercept and their normal vectors, given by the

supergradients of the functional.

The connection to the superdi�erential of a functional is only one interesting feature of

conjugates: It is also remarkable that most of the crucial properties of a functional can be

derived from its dual representation.

For example by inserting into the conjugate representation it can easily be seen that a

functional A is translation- equivariant if E (Z) = 1 for all Z ∈ ZA and it is monotonic if

2For more details see section 2.1.
3See [28], Theorem 5
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all Z ∈ ZA are nonnegative. Positive homogeneity follows from A∗ (Z) ≡ 0. There are also

su�cient conditions for version independence and monotonicity with respect to stochastic

dominance4. Moreover, under some additional assumptions these properties are not only

su�cient but also necessary5.

Using translation equivariance and monotonicity, any proper u.s.c. acceptability functional

A has the representation6

(1.2.2) A (X) = inf
Z∈Lq(Ω,F ,µ)

{E (X · Z)−A∗ (Z) : E (Z) = 1, Z ≥ 0}

In addition, if A can be represented by 1.2.2, then it must be an u.s.c acceptability

functional.

One of the simplest examples for an acceptability functional is the average value-at-risk

AV@Rα(X) =
1

α

∫ α

0

G−1
X (u)du,

where GX(u) is the c.d.f. of the random variable X.

This acceptability functional is also known under the name of conditional value-at-risk or

tail value-at-risk. Its conjugate representation is given as follows7

Proposition 1.2.1. (AV@R: dual properties) The dual representation of the average

value-at-risk is given by AV@Rα(X)=inf
{
E (X · Z) : E (Z) = 1, 0 ≤ Z ≤ 1

α

}
.

In the rest of this work we will generalize the concepts of this introduction and develop the

notion of conditional acceptability mappings. Those are mappings between Lp (Ω,F , µ)-

spaces based on di�erent σ -algebras, representing nontrivial information available. We

will de�ne and analyze them and also try to generalize the dual properties of probability

functionals as much as possible to the case of acceptability mappings.

1.3. Outline

This dissertation is composed of �ve chapters and can broadly be divided into two parts:

Chapter one gave a short introduction into the problem and recapitulates the most crucial

results about unconditional acceptability functionals in an informal manner. The �rst main

4[23], Theorem 2.30
5[23], Theorem 2.31
6[23], Corollary 2.32
7[23], Theorem 2.34 (ii)
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part contains two chapters that lay the mathematical fundamentals for the discussion of

conditional acceptability mappings. The second part - consisting of chapters 4 and 5 -

�rst of all analyzes conditional mappings and their properties based on the notions and

results of part one. The other main theme in part two is the application of conditional

acceptability mappings for constructing multi-period acceptability functionals.

Chapter 2 treats useful properties of Lp (Ω,F , µ)-spaces, the standard partial order for

these spaces and the implications for de�ning an in�mum for sets in such spaces. Such

in�ma will be used later to de�ne conjugate mappings.

Chapter 3 gives an overview of the main analytical results about mappings between par-

tially ordered vector spaces. These de�nitions and theorems will be used as a basis for

de�ning supergradients and conjugate mappings in part two.

In Chapter 4 concave (conditional) mappings between Lp (Ω,F , µ)-spaces as well as their

supergradients and conjugate mappings are de�ned. Moreover we prove some basic propo-

sitions about conditional acceptability mappings.

Chapter 5 gives an introduction to multi-period acceptability functionals and analyzes two

types of multi-period functionals that are based on conditional acceptability mappings:

SEC-functionals and acceptability compositions. In particular acceptability compositions,

their supergradients and conjugates are studied in more detail.
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Part 1

Fundamentals





CHAPTER 2

Lp (Ω,F , µ)-Spaces as Partially Ordered Vector Spaces

This chapter reviews the theoretical foundations for the study of conditional acceptability

mappings in chapter 4. Such mappings operate between spaces of random variables. The

natural function spaces for dealing with random variables are the Lp (Ω,F , µ)-spaces. In

section 2.1 we will brie�y recall fundamental properties of such Banach-spaces and discuss

how they are useful in the context of our investigation.

We abstain from dealing with the subject of Banach spaces in chapter 1, which just ggives

an informal overview of single period acceptability functionals. Nevertheless it should

be noted that Lp (Ω,F , µ)-spaces are indispensable for a mathematically sound analysis

even in this case. The role of Lp (Ω,F , µ)-spaces in the theory of risk and acceptability

functionals is well known and was presented e.g. by Ruszczy«ski [33] and P�ug and

Römisch [23] .

Section 2.2 brings a second theme into the discussion: Acceptability functionals map into

the real line - although their domain is some Lp (Ω,F , µ)-space. For real numbers it is

absolutely clear how to order them and how to understand inequalities. Further, using

inequalities we can de�ne sub- and supergradients of functionals in the usual way, sketched

in chapter 1. It is also possible to de�ne conjugate functionals based on the notion of an

in�mum. This can be done in a meaningful way, because order completeness is an axiom

for the real numbers: the existence of in�ma and suprema is guaranteed for bounded sets

of real numbers.

These properties of real numbers are not guaranteed automatically for random variables.

The notion of an Lp (Ω,F , µ)-space alone is not su�cient for this, an adequate partial

order is needed. In Section 2.2 we will analyze the almost sure order - which is the most

natural partial order for Lp (Ω,F , µ)-spaces.

Basically, we will follow [3], showing that it is possible to use meaningful inequalities in

Lp (Ω,F , µ)-spaces and that Lp (Ω,F , µ)-spaces are order complete with respect to the

almost sure order. After all, this will allow the de�nition of the in�mum and supremum,
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both playing a key role in the investigation of conditional mappings, in particular for

de�ning their conjugates.

2.1. Lp (Ω,F , µ)-Spaces: Basic Properties

Consider �rst measure spaces (Ω,F , µ), where Ω is a state space, F a σ−Algebra and µ

a measure. In the context of risk-management of course we are interested particularly in

the special case of probability spaces, where µ is a probability measure. Therefore, in the

following we will use the language of probability theory, though many results remain valid

for general measure spaces. Random variables are measurable real functions on Ω and the

space of all random variables can be regarded as a vector space.

Recall now that two random variables are equivalent if they are equal µ−almost surely.

The p-norm of a random variable X(ω) is de�ned by the integral

‖X ‖p =

(∫
|X(ω)|p dµ(ω)

) 1
p

,

where 1 ≤ p < ∞. This integral depends only on the equivalence class of the random

variableX. The space Lp (Ω,F , µ) can now be de�ned as a collection of equivalence classes

of random variables for which the p-norm is �nite. Although the distinction between

random variables and equivalence classes can be neglected for many purposes, it will turn

out to be critical when we want to de�ne the in�mum of a set in a space Lp (Ω,F , µ).

In the context of probability spaces the above integral is an expectation and we will write

‖X ‖p = E (|X|p)
1
p ,

as is conventional in probability theory. For example, a space L1 (Ω,F , µ) is just the

collection of all µ−integrable random variables, measurable with respect to the σ−Algebra
F .

For p =∞ the norm is de�ned as the essential supremum of the absolute value and a space

L∞ (Ω,F , µ) contains all essentially bounded random variables de�ned on the probability

space (Ω,F , µ).

As we will see, Lp (Ω,F , µ)- spaces with 1 ≤ p ≤ ∞ have many favorable properties: All

of them are Banach spaces. In fact it will be clear in the next section that they are also

Banach lattices. A special case are L2 (Ω,F , µ)-spaces, which are Hilbert spaces.
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A key role in convex analysis for Lp (Ω,F , µ)- spaces is played by the elements of their

dual spaces. They can be used to de�ne subgradients as well as conjugate functionals and

mappings and we will make use of them very frequently in later chapters. The (topological)

dual space of a vector space E is given by the space of continuous linear functionals,

mapping from E into R. For the case of Lp (Ω,F , µ)- spaces it turns out that their dual

spaces can be represented in a very meaningful way: The elements of the dual space can

be identi�ed with the elements of a certain Lq (Ω,F , µ)- space .

Theorem 2.1.1. (F. Riesz) If 1 < p, q <∞ are exponents such that 1
p

+ 1
q

= 1 (conjugate

exponents), then the integral

HZ(X) =

∫
X(ω) · Z(ω)dµ(ω)

de�nes a continuous linear functional on Lp (Ω,F , µ) for each Z ∈ Lq (Ω,F , µ).

Moreover the norm dual of Lp (Ω,F , µ) can be identi�ed with the space Lq (Ω,F , µ) itself1.

If L1 (Ω,F , µ) is a σ−�nite measure space then the norm dual of L1 (Ω,F , µ) can be

identi�ed with the space L∞ (Ω,F , µ).

Proof. For a stricter formulation and proofs see theorems 13.26 and 13.28 in [3] and

theorems 31.16, 37.9 and 37.11 in [2]. �

As mentioned above we want to concentrate on probability spaces. This means that the

continuous linear functionals are given by the expectations E (X · Z) and can be identi�ed

with random variables Z ∈ Lq (Ω,F , µ). Furthermore, because probability spaces are

always σ−�nite the representation of dual spaces by Lq (Ω,F , µ) will work for 1 ≤ p, q ≤
∞.

It is possible to interpret the dual function Z(ω) as the Radon-derivative of a signed mea-

sure ν(A) =
∫
A
Z(ω)dµ(ω). Z(ω) then de�nes a change of measures and the expectation

E (X · Z) is the expectation of X under the new signed measure ν.

In the theory of acceptability functionals unconditional expectation su�ces for de�ning

supergradients and conjugates. While in the unconditional case we have mappings from

some Lp (Ω,F , µ)- space into the real line, conditional mappings operate between two

spaces Lp (Ω,F , µ) and Lp′ (Ω,F1, µ). If we want to de�ne supergradients and concave

conjugates, we need continuous linear mappings between these spaces. It turns out that

1The mapping Z 7→ HZ(·) is a lattice isometry from Lq (Ω,F , µ) onto L′p (Ω,F , µ).
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this role is played by the conditional expectations E (X · Z|F), where Z is an element of

the dual space Lq (Ω,F , µ): Theorem 2.1.1 can be generalized in the following way.

Corollary 2.1.2. If 1 < p, q < ∞ are exponents such that 1
p

+ 1
q

= 1 (conjugate expo-

nents), then for all Z ∈ Lq (Ω,F , µ) the mapping EZ(•) : Lp (Ω,F , µ)→ L1 (Ω,F1, µ)

EZ(X) = E (X · Z|F)

is a continuous linear mapping.

Proof. The linearity of conditional expectation is clear. Assume now that Z ∈
Lq (Ω,F , µ) . The dual space contains those Z, for which E (• · Z) is a continuous map-

ping. That means that if the sequence Xn converges to X in the p-norm, the sequence

E (Xn · Z) will converge to E (X · Z), or E ((Xn −X) · Z)→ 0 if n→ 0.

As |•| is convex we can apply Jensen's inequality and get

E (|E ((Xn −X) · Z|F)|) ≤ E (E (|(Xn −X) · Z| |F)) = E (|(Xn −X) · Z|) .

Hölder's inequality then gives

E (|(Xn −X) · Z|) = ‖(Xn −X) · Z‖1 ≤ ‖Xn −X‖p · ‖Z‖q

As Xn converges to X in the p-norm and Z is q-integrable, it follows that also ‖Xn −X‖p ·
‖Z‖q → 0. Because of this the integral E (|E ((Xn −X) · Z|F)|) will also converge to zero
and the conditional expectation EZ(X) is a continuous mapping. �

Corollary 2.1.2 guarantees that the conditional mapping E (X · Z|F) is continuous as a

mapping into L1 (Ω,F1, µ) under reasonable requirements on the dual variable Z. Later

we will need more, namely conditional expectations E (X · Z|F), together with some re-

strictions on Z that guarantee the conditional expectation to be a continuous mapping

into some space Lp′ (Ω,F1, µ).

Such restricted conditional expectations are de�ned in chapter 4 and will be used to de�ne

supergradients and conjugates of conditional mappings. This approach ensures that the

results regarding nonsmooth analysis for general mappings in chapter 3 will be applicable.

2.2. Lp (Ω,F , µ)-Spaces as Banach Lattices

As said above, the spaces Lp (Ω,F , µ) are collections of equivalence classes of measurable

functions: The equivalence relation is de�ned by the relation �equal with probability one�.
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In this context we can understand all equalities in the almost sure sense. Furthermore,

the natural partial order for Lp (Ω,F , µ)-spaces is based on inequalities that hold almost

everywhere.

If we use this partial order we will see that Lp (Ω,F , µ)-spaces are order complete Riesz

spaces with the pointwise algebraic and lattice operations. Moreover it is well known that

for 1 ≤ p ≤ ∞ all the Lp (Ω,F , µ)-spaces are in fact Banach lattices.

A critical precondition for de�ning something like conjugate mappings is the notion and

the existence of in�ma. Basically order completeness is needed for using the in�mum of

sets in Lp (Ω,F , µ)-spaces in a reasonable way. This will also enable us to de�ne Fenchel-

Moreau conjugates for concave mappings between Lp (Ω,F , µ)-spaces and use them for

the analysis of conditional acceptability mappings.

Definition 2.2.1. (ordered vector space) An ordered vector space V is a vector space

with an order relation ≥ that is compatible with the algebraic structure of V in the

following sense:

a) x ≥ y ⇒ x+ z ≥ y + z for any z ∈ V

b) x ≥ y ⇒ α · x ≥ α · y for each α ≥ 0

It should be noted that it is not necessary that the order in de�nition 2.2.1 is a total order

- a partial order relation (re�exive, antisymmetric and transitive) is su�cient. For x ≥ y

we will also say informally: �x dominates y�.

From de�nition 2.2.1 it is clear that in an ordered vector space V , the set {x ∈ V : x ≥ 0}
is a pointed convex cone. This cone is called the positive (or non-negative) cone of V ,

denoted V +.

The next step is to de�ne the in�mum and the supremum for pairs of elements of a vector

space:

Definition 2.2.2. (in�mum of a pair) An element z ∈ V is the in�mum z = inf {x, y}
of the pair of elements x, y ∈ V if

a) z is a lower bound of the set {x, y}- that means: x ≥ z and y ≥ z.

b) z is the largest such bound: i.e. x ≥ u and y ≥ u imply z ≥ u.

The supremum of two elements is de�ned similarly, replacing ≥ by ≤.
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We denote the in�mum and the supremum of two elements by inf {x, y} = x ∧ y and

sup {x, y} = x ∨ y. The functions ∨ and ∧ are called �lattice operators� on V .

Based on the lattice operators we can de�ne lattices and Riesz spaces in the following way:

Definition 2.2.3. (lattice) A partially ordered set (V,≥) is a lattice if each pair of

elements x, y ∈ V has a supremum and an in�mum in V .

From this de�nition it is clear that in a lattice every �nite nonempty set has a supremum

and an in�mum. We can write inf {x1, . . . , xn} =
n∧
i=1

xi and sup {x1, . . . , xn} =
n∨
i=1

xi.

Definition 2.2.4. (Riesz space) An ordered vector space (V,≥) that is also a lattice is

called Riesz space or vector lattice.

Although Riesz spaces are based only on a partial order, there are many a�nities between

Riesz spaces and the real numbers. For instance it is possible to de�ne the positive part

x+, the negative part x− and the absolute value |x| of a vector x in a Riesz space.

x+ = x ∨ 0(2.2.1)

x− = x ∧ 0(2.2.2)

|x| = x ∨ (−x)(2.2.3)

In this context the typical equations x = x+ − x− and |x| = x+ + x− both hold.

A subset A of a Riesz space V is called order bounded from above if there exists a vector

u ∈ V that dominates each element of A. The subset is called order bounded from below

if there is a vector v ∈ V that is dominated by each element of A. The subset A is called

order bounded if it is both order bounded from below and above.

Definition 2.2.5. (in�mum, supremum) An element u of a Riesz space (V,≥) is the

in�mum of a nonempty subset A ⊆ V if

a) l is a lower bound of the set A: a ≥ l for all a ∈ A

b) a ≥ v for all a ∈ A implies l ≥ v.

Again the supremum of the set is de�ned similarly, replacing ≥ by ≤.

It is clear that any subset of a Riesz space has at most one supremum and one in�mum.

If the set is not bounded in one of the directions the in�mum, the supremum or both do
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not exist. The critical question is whether there exists an in�mum if the set is bounded

below and whether there exists a supremum if it is bounded above. For the real numbers

this is ensured by the completeness axiom: any bounded subset of real numbers has both

an in�mum and a supremum. For Riesz spaces in general this is not mandatory.

Definition 2.2.6. (order completeness)

A Riesz space is order complete (Dedekind complete) if every nonempty subset that is

order bounded from below has an in�mum.

Equivalently the space is order complete if every nonempty subset that is order bounded

from above has a supremum. Also, any order bounded subset will have both in�mum and

supremum.

A potential characteristic of Riesz spaces, used later on to assure order completeness for

Lp (Ω,F , µ)-spaces is the Archimedean property, de�ned as follows:

Definition 2.2.7. A Riesz space (V,≥) is Archimedean if whenever 0 ≤ nx ≤ y for all

n ∈ N and some y ∈ V +, then x = 0.

It should be noted that every order complete Riesz space is Archimedean 2 , but generally

the converse is not true.

There are even more analogies between real numbers and the elements of Riesz spaces.

If we look at identities and inequalities using the lattice operators ∨ and ∧, positive and
negative parts and the absolute value we have the following proposition:

Proposition 2.2.8. Every lattice identity that is true for real numbers is also true in

every Archimedean Riesz space.

If a lattice inequality is true for real numbers, then it is true in any Riesz space.

Proof. See Theorem 8.6 and Corollary 8.7 in [3]. �

That means that in Riesz spaces inequalities like |x+ y| ≤ |x| + |y|, |αx| ≤ |α| |x| will
hold exactly as for real numbers.

In arguing that Lp (Ω,F , µ)-spaces are order complete Riesz spaces, we have to go even

deeper into mathematical details. Not only the order relation but also some special prop-

erties of the norms (p-norms) involved play a crucial role.

2See Lemma 8.4 in [3].
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Definition 2.2.9. (lattice norm) If a norm ‖·‖ has the property that |x| ≥ |y| implies

‖x‖ ≥ ‖y‖ it is called a lattice norm.

Basically a lattice norm preserves the order given by the order relation≥ and builds the

link between general normed (Banach) spaces and ordered (Riesz) spaces.

Definition 2.2.10. (Banach lattice) A Riesz space equipped with a lattice norm is called

a normed Riesz space. A (Cauchy-)complete normed Riesz space is called a Banach

lattice.

It is a crucial fact that a normed Riesz space is a Banach lattice if and only if every

increasing positive Cauchy sequence is norm convergent3.

An important connection between the topological and the order structure of Banach lat-

tices is called the �order continuity of the norm�:

A decreasing net is a net {xα}α∈D - de�ned on some directed set (D,≥) - with α1 ≥
α2 =⇒ xα1 ≤ xα2 and an increasing net is a net with α1 ≥ α2 =⇒ xα1 ≥ xα2 . We use the

notation xα ↓ x to indicate that {xα}α∈D is a decreasing net and x is its in�mum. Just as

well xα ↑ x means an increasing net with supremum x. We can also formulate this in the

following way: xα ↑ x means that
∨
xα = x and xα ↓ x means that

∧
xα = x .

If there are two nets {yα}α∈D and {zα}α∈D with yα ≤ xα ≤ zα and both yα ↑ x and zα ↓ x,
we say that xα order converges to x, i.e. xα

o−→ x.

Definition 2.2.11. (order continuity) A lattice (semi)norm ‖·‖ on a Riesz space is order

continuous if xα ↓ 0 implies ‖xα‖ ↓ 0.

Remark. An equivalent characterization of order continuity is the following: ‖·‖ is an
order continuous lattice (semi)norm if and only if 0 ≤ xα ↑ x implies ‖xα − x‖ ↓ 0.

Basically this means that an order continuous norm ensures that order convergence implies

norm convergence.

Under very general conditions Banach lattices with order continuous norm are order com-

plete. This will enable us to use in�ma in a meaningful way in later chapters. In particular

we will be able to de�ne conjugate mappings for mappings between Lp (Ω,F , µ)-spaces.

First we need the following Lemma4:

3See Theorem 9.3 in [3]
4Lemma 12.8 from [1]
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Lemma 2.2.12. If 0 ≤ xα ↑≤ x holds in an Archimedean Riesz space E, then the set

D = {y ∈ E : ∀α : xα ≤ y} is directed downward and y − xα ↓y,α 0.

Proof. Clearly, the set D is directed downward. Let u be such that 0 ≤ u ≤ y − xα
holds for all α and y ∈ D. Then xα ≤ y − u holds for all α and from this it follows that

y − u ∈ D for all y ∈ D. By induction it can be shown that y − n · u ∈ D for all y ∈ D
and all n ∈ N. In particular - because x ∈ D - we have 0 ≤ xα ≤ x − n · u and hence

0 ≤ n · u ≤ x.

Since E is Archimedean, it follows that u = 0 and therefore y − xα ↓y,α 0. �

Now it is possible to state a fundamental result regarding order completeness of Banach

lattices5:

Proposition 2.2.13. An Archimedean Banach lattice E with order continuous norm is

order complete.

Proof. Let {xα} be a nonnegative increasing, order bounded net in E: 0 ≤ xα ↑≤ x.

By Lemma 2.2.12 there exists a net {yλ} ⊆ E with yλ − xα ↓ 0. Because E has order

continuous norm it follows that ‖yλ − xα‖ ↓ 0. That means that for each ε > 0 there exist

α0,λ0 such that ‖yλ − xα‖ < ε holds for all λ ≥ λ0 and α ≥ α0.

Using the inequality ‖xα − xβ‖ ≤ ‖xα − yλ‖ + ‖xβ − yλ‖ we see that ‖xα − xβ‖ < 2 · ε
holds for all α, β ≥ α0. Hence {xα} is a norm Cauchy net.

Because E is complete it also contains the limit of {xα}, which we will denote by y.

So y − xα ↓y,α 0 implies xα ↑ y, y is the supremum of {xα} and therefore E is order

complete. �

If we want to use the concepts of order theory in the context of Lp (Ω,F , µ)-spaces, we

�rst have to de�ne an order relation. This can be done in a natural way using the concept

of almost sure inequalities:

Definition 2.2.14. (almost sure order) The partial order X ≥ Y for elements of a (prob-

ability) space Lp (Ω,F , µ) is given by the relation

X ≥ Y ⇔ µ ({ω ∈ Ω : X(ω) < Y (ω)}) = 0.

We will also write this relation as X ≥ Y a.s. .

5See Theorem 12.9 in [1]. Our statement is in principle contained in the proof ((1) ⇒ (2)), but we
emphasize the necessity of the archimedean property.
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Remark. In the following we will often use the simple notation X ≥ Y . So any inequality

between random variables should be understood in the almost sure sense given by de�nition

2.2.14, whether a.s. is stated explicitly or not. Also equations between random variables

generally must be understood to hold in the almost sure sense.

With this ordering each Lp (Ω,F , µ) is a Riesz space, and the p-norm is an order continuous

norm. Order convergence is synonymous with µ-almost everywhere convergence. Moreover

for 1 ≤ p ≤ ∞ a Lp (Ω,F , µ) is also a Banach lattice. This is the assertion of the following

famous theorem6:

Theorem 2.2.15. (Riesz-Fischer) For 1 ≤ p ≤ ∞ any Riesz space Lp (Ω,F , µ) equipped

with the p-norm is a Banach Lattice.

Proof. We give the proof for 1 ≤ p < ∞. Basically we have to show that every

increasing positive Cauchy sequence is norm convergent.

Let 0 ≤ Xn ↑ be a Cauchy sequence in Lp (Ω,F , µ). Then there exists some M > 0 such

that 0 ≤
∫

(Xn(ω))p dµ(ω)=‖Xn‖p ↑≤ M . By the monotone convergence theorem there

exists a random variable 0 ≤ X ∈ L1 (Ω,F , µ) such that Xp
n ↑ X a.s.. then 0 ≤ Y =

X
1
p ∈ Lp (Ω,F , µ). From the Lebesgue Dominated Convergence theorem ‖Xn − Y ‖p → 0

follows. �

The in�mum in the context of Lp (Ω,F ,P)-spaces is de�ned as a special case of de�nition

2.2.5 in the following way:

Definition 2.2.16. (in�mum) Let V = Lp (Ω,F ,P) be a random space and ≥ the almost

sure order from de�nition 2.2.14. A random variableX0 ∈ V is the in�mum of a nonempty

subset A ⊆ V , if

a) X0 is a lower bound of the set A, i.e. Y ≥ X0 a.s. for all Y ∈ A

b) Y ≥ Z for all Y ∈ A implies X0 ≥ Z a.s.

We denote the in�mum of A as inf A.

Again the supremum of the set is de�ned similarly, replacing ≥ by ≤.

It is critical to remember that the elements of Lp (Ω,F , µ)-spaces are equivalence-classes

of random variables and not concrete random variables: A pointwise in�mum, operating

on an uncountable set of concrete measurable random variables would not make much
6See Theorem 13.5 in [3]
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sense, because such an in�mum easily could be not measurable: Take for example an

uncountable set of measurable random functions which are equal to one for each ω ∈ Ω

and equal to zero for a single ω , di�erent for each function. The pointwise minimum of

such a set would be a function that equals one for ω ∈ Ω where all the individual functions

are equal to one and that equals zero where any of the individual functions is equal to

zero. Although the individual functions are measurable, it will be possible to construct the

zeros in a way such that the set of zero points is not contained in the relevant σ-algebra

F . That means that the in�mum will not be measurable.

The usage of representatives avoids this problem, resulting in measurable in�ma for mea-

surable representants. Because all the individual functions equal one almost everywhere,

they are members of the same equivalence class, represented by the same random variable

and their in�mum will be represented also by a function that is one almost everywhere.

The correct approach is therefore to use representants at �rst and switch over to concrete

individual random functions only after taking the in�mum.

Given this de�nition it is time to address the issue of order completeness for Lp (Ω,F , µ)-

spaces. Although there are fundamental di�erences between L∞-spaces and Lp-spaces

with �nite p - for instance the ∞-norm is not order continuous - it turns out that in both

cases we have order complete spaces. To show order completeness we use proposition

2.2.13. The �rst question is, whether Lp-spaces have the Archimedean property:

Lemma 2.2.17. For 1 ≤ p ≤ ∞ any Riesz space Lp (Ω,F , µ) equipped with the p-norm is

an Archimedean Banach Lattice.

Proof. Lp (Ω,F , µ) is an Banach lattice by theorem 2.2.15. ConsiderX ∈ Lp (Ω,F , µ)

with 0 ≤ n · X ≤ Y for all n ∈ N and some 0 < Y ∈ Lp (Ω,F , µ). Assume now that

X(ω) > 0 for ω ∈ A, A being some set with positive probability. Taking (lattice) norms

we get 0 ≤ n ·
(∫

X(ω)pdµ(ω)
)1/p ≤

(∫
Y (ω)pdµ(ω)

)1/p
. Because X(ω) = 0 for ω ∈ Ω \A

and X(ω) > 0 for ω ∈ A it follows that
(∫

X(ω)pdµ(ω)
)1/p

> 0. But that would mean

that R is not Archimedean, which is not the case. Hence A must have zero probability.

That shows that Lp (Ω,F , µ) -spaces must also be Archimedean7. �

Theorem 2.2.18. (order completeness) The Banach lattices Lp (Ω,F , µ) are order com-

plete.

7See Theorem 13.7 in [3].
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Proof. We will give the proof for 1 ≤ p <∞. All spaces Lp (Ω,F , µ) are Archimedean

Banach lattices by lemma 2.2.17. Furthermore, p-norms are order continuous for 1 ≤ p <

∞:

Assume Xα ↓ 0 in Lp (Ω,F , µ) and let
∫
|Xα|p dµ ↓ s. We have to show that s = 0.

Select a sequence of indices {αn} with αn+1 ≥ αn and
∫
|Xαn|

p dµ ↓ s. Let now |Xαn|
p ↓

X ≥ 0 and �x some index α. For each n there exists some index βn such that βn ≥ α and

βn ≥ αn and βn+1 ≥ βn for all n.

If |Xβn|
p ↓ Y ≥ 0, then X ≥ Y and

∫
|X|p dµ =

∫
|Y |p dµ, hence X = Y . This means that

X = Y ≤ |Xβn|
p ≤ |Xα|p must hold. Because of Xα ↓ 0 we infer that X ↓ 0. Therefore∫

|Xαn|
p dµ ↓ 0 and hence limn→∞

∫
|Xα|p dµ = 0.

Together - using proposition 2.2.13 - it follows that the spaces Lp (Ω,F , µ) are order

complete. �

From theorem 2.2.18 it is clear that it makes sense to use the supremum or in�mum with

respect to the almost sure ordering ≥ in the context of Lp-spaces in a similar way as

the supremum or in�mum of real numbers. Summing up the argument goes as follows:

Lp (Ω,F , µ)-spaces are Banach lattices by theorem 2.2.15 and have order continuous norm

by theorem 2.2.18. Therefore - because Banach lattices with order continuous norm are

order complete by proposition 2.2.13, Lp (Ω,F , µ)-spaces are order complete.

The in�mum for Lp (Ω,F ,P)-spaces has the useful property that the sequence of condi-

tional expectation and in�mum can be interchanged if the in�mum is attained:

Proposition 2.2.19. Let S ⊂ Lp (Ω,F ,P) be an order bounded set of random variables.

Then

inf {E (X|F) : X ∈ S} = E (inf {X : X ∈ S} |F)

holds almost surely, if inf S = inf {X : X ∈ S} ∈ S.

Proof. The in�mum of the set S is a lower bound of S: inf {X : X ∈ S} ≤ X for

all X ∈ S. From the monotonicity of conditional expectation it follows that

E (inf {X : X ∈ S} |F) ≤ E (X|F)

for allX ∈ S. This means that E (inf {X : X ∈ S} |F) is a lower bound for {E (X|F) : X ∈ S}.
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Because {E (X|F) : X ∈ S} is order bounded from below, the in�mum for this set must

exist. Let us denote it by Y = inf {E (X|F) : X ∈ S} and assume that it is di�erent from

E (inf {X : X ∈ S} |F).

To be the in�mum of {E (X|F) : X ∈ S}, �rst of all Y must be a lower bound: Y ≤
E (X|F) for all X ∈ S. But then, Y ≤ E (inf {X : X ∈ S} |F) must hold, because

inf {X : X ∈ S} ∈ S. Second Y has to be the greatest lower bound of {E (X|F) : X ∈ S},
and as E (inf {X : X ∈ S} |F) is a lower bound, this also means that

Y ≥ E (inf {X : X ∈ S} |F)

.

Together this results in Y = E (inf {X : X ∈ S} |F), which contradicts the assumption

that Y is a lower bound, di�erent from E (inf {X : X ∈ S} |F). �
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CHAPTER 3

Nonsmooth Convex Analysis on Partially Ordered Vector Spaces

This chapter reviews relevant results from Papageorgiou [21]. We concentrate on those

theorems that are most useful for our study of supergradients and concave conjugates of

conditional acceptability mappings below and want to lay a solid basis for the concepts and

de�nitions of chapter 4. On the other hand we will neglect a lot of theorems - for instance

all propositions about Gateaux di�erentiability, Lipschitz-continuity and quasiconcavity.

In his original work Papageorgiou writes in terms of convex mappings and subgradients and

we will follow this convention in this chapter. Later on in chapter 4 we will give in detail

all relevant de�nitions for the case of concave mappings between Lp (Ω,F , µ)-spaces: They

are a special case of the theory developed by Papageorgiou and basically whether concavity

or convexity is used is only a matter of sign - of course altering the role of concepts like

properness and semicontinuity. While in the convex case the notion of subdi�erentials is

the relevant concept for local approximation, in the concave case this role will be taken by

the superdi�erential. This said it should be kept in mind that statements about convex

mappings can easily be translated into propositions about concave mappings, which we

will do implicitly later on.

Finally it should be noted that in chapter 3 we follow the original notation of Papageorgiou

as closely as possible, while in chapter 4 we will use the usual notation of probability theory

again. The main di�erence will be that in chapter 3 X and Y denote spaces, whereas in

chapter 4 capital letters will denote random variables. Moreover Papageorgiou denotes

linear mappings by A(•), whilst in Lp (Ω,F , µ)-spaces the linear mappings are given by

the conditional expectations E (• · Z|F) with Z from the dual space.

3.1. Basic Assumptions

Papageorgiou considers proper convex mappings between spaces X and Y , having the

following properties:

• X and Y are Hausdor� topological vector spaces and locally convex.
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• Y is normal for its topology, which means that any disjoint closed sets E, F can

be separated by neighborhoods.

• Y is partially ordered based on a proper convex cone. Moreover Y is order

complete.

• Order completeness and some additional conditions ensure that order conver-

gence1 and relative uniform convergence are equal.

• For Y an extended space Y = Y ∪ {+∞,−∞} is de�ned, where +∞,−∞ are a

greatest and a smallest element with respect to the order.

These conditions are applicable in the case of Lp (Ω,F , µ) spaces with 1 ≤ p ≤ ∞:

They are normed and metric spaces hence also Hausdor�, normal and locally convex. As

we have seen in section 2.2, they are order complete with their natural order based on

the cone of almost sure nonnegative random variables. For such Lp (Ω,F , µ)-spaces order

convergence is equivalent to µ-a.e. convergence. Also the so called diagonal property2 holds

and together with order completeness this ensures the equivalence of order convergence

and relative uniform convergence for Lp (Ω,F , µ) spaces. It is also possible to extend them

by in�nite values, which we will do in chapter 4.

Convexity, properness and the e�ective domain are de�ned in the usual way:

Definition 3.1.1. (convexity) A mapping f : X → Y is called convex if and only if

f(λx+ (1− λ)z) ≤ λf(x) + (1− λ)f(z) for 0 ≤ λ ≤ 1.

The e�ective domain of a convex mapping f is given by dom f = {x ∈ X : f(x) < +∞}

A convex mapping f is called proper if dom f 6= ∅ and it does not take the value −∞.

3.2. Subgradients

Papageorgiou distinguishes between algebraic subdi�erentials and topological subdi�eren-

tials. When we analyze conditional mappings in chapter 4, we will concentrate on the

1A sequence {xn}n∈N converges relatively uniformly to x if and only if there is an element z ∈ K+
Y such

that |xn − x| ≤ λnz, where λn ∈ R+ and λn ↓ 0.
2A vector lattice Y is said to have the diagonal property if whenever
1. {xnm}n,m∈N ⊆ Y

2. xnm

o
→ xn ∀n∈ N

3. xn

o
→ x

then there is a diagonal subsequence {xnmn
}n∈Nwhich order converges to x.
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latter notion, which is based on continuous linear mappings. Nevertheless the more gen-

eral algebraic subdi�erential is a useful tool for proving the existence of the topological

subgradient in proposition 3.2.2 below.

Definition 3.2.1. (subdi�erential, superdi�erential) Let f : X → Y be a convex map-

ping. The set

∂αf(x0) := {A ∈ L (X, Y ) : A(x− x0) ≤ f(x)− f(x0), ∀x ∈ domf} ,

where L (X, Y ) are the linear mappings between X and Y , is called the algebraic subdif-

ferential of f at x0.

Similarly the set

∂f(x0) := {A ∈ L (X, Y ) : A(x− x0) ≤ f(x)− f(x0), ∀x ∈ domf} ,

where L (X, Y ) denotes the space of continuous linear mappings between X and Y is called

the (topological) subdi�erential of f at x0.

The elements of ∂αf(x0) and ∂f(x0) are called the algebraic subgradients and the subgradients

of f at x0.

Algebraic and topological superdi�erentials can be de�ned easily by replacing ≤ by ≥.

Concerning our analysis of conditional mappings, one of the key assertions in [21] is the

following:

Proposition 3.2.2. If Y is normal and f is continuous at some x0 ∈ dom f then ∂αf(x) =

∂f(x) for all x ∈ X. Under these conditions ∂f(x0) 6= ∅ holds for all x ∈ int dom f .

Proof. For a complete proof see lemma 3.2 in [21].

The idea of the proof is the following: Generally ∂αf(x) ⊇ ∂f(x) holds and for all x ∈
int dom f : ∂αf(x) 6= ∅. Subsequently it can be shown that any A ∈ ∂αf(x) is continuous

at x0 and therefore - by linearity - A ∈ L (X, Y ), which is equivalent to exact equality:

∂αf(x) = ∂f(x).

From this proposition - and from the fact that ∂αf(x) 6= ∅ for all x ∈ int dom f - it can

be concluded that ∂f(x0) 6= ∅ for all x ∈ int dom f . �

Based on this general notion of subgradients, some rules of subdi�erential calculus are de-

veloped in the following. First there is a generalization of the Moreau-Rockafellar formula

for the gradient of a sum of functions:
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Proposition 3.2.3. If Y is a normal space and f1, f2 : X → Y are convex mappings with

f1 continuous at some x0 ∈ dom f2 then

∂ (f1(x) + f2(x)) = ∂f1(x) + ∂f2(x) ∀x ∈ X

holds.

Proof. See theorem 4.1 in [21]. �

Remark. In general, only ∂ (f1(x) + f2(x)) ⊇ ∂f1(x) + ∂f2(x) ∀x ∈ X holds.

Papageorgiou also gives a chain rule for the concatenation g ◦ f under some technical

assumptions. This chain rule is based on a chain rule for the concatenation of an a�ne

mapping with a convex mapping:

Proposition 3.2.4. Let A ∈ L (X, Y ) with im A = Y (A is surjective) and consider the

a�ne mapping α(x) = Ax + y for some (�xed) y ∈ Y . Additionally let f : Y → Z be a

convex mapping. Then for f ◦ α : X → Z the following chain-rule holds:

∂ (f ◦ α) (x) =
⋃

R∈∂f(α(x))

R ◦A ∀x ∈ X

Proof. See theorem 4.2 from [21]. �

Proposition 3.2.5. Let now f : X → Y be a convex mapping and g : Y → Z be a

convex monotonic increasing mapping with g(±∞) = ±∞. If f is continuous for some

x0 ∈ (dom f)αiwithin the algebraic interior3 and g is completely continuous4 at f(x0) then

the subdi�erential for the concatenation g ◦ f is given by

∂ (g ◦ f)(x) =
⋃

A∈∂g(f(x))

∂ (A ◦ f)(x) ∀x ∈ (dom f)αi

.

Proof. This is theorem 4.3 from [21]. �

3αi means the algebraic interior: Consider A to be a convex set. We say that v ∈ A lies in the

algebraic interior of A if for any straight line l passing through v and the point v lies in the interior of
the intersection A ∩ l. The set of all points that lie in the algebraic interior of A is called the algebraic

interior (A)αiof A.
4A bounded linear mapping f : X → Y - where X,Y are Banach spaces - is called completely contin-

uous if, for every weakly convergent sequence (xn) from X, the sequence (f(xn)) is norm-convergent in
Y .
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Unfortunately there is no way to use those propositions in our context, where acceptability

mappings will not be necessarily completely continuous and in most cases not even linear

at all. Theorem 5.2.5 - which gives a chain rule for conditional mappings - will not make

any assumptions about complete continuity: We will derive a chain rule for nested accept-

ability mappings, based on monotonicity and convexity, which are necessary attributes of

acceptability mappings.

3.3. Fenchel-Moreau Conjugates

A basic notion for duality theory is lower semicontinuity. Papageorgiou de�nes it as

follows:

Definition 3.3.1. (lower and upper semicontinuity) Let f : X → Y be a mapping where

dom f is closed in X. If f is �nite at x ∈ X then it is said to be lower semicontinuous

(l.s.c.) at x0 if and only if for every y ∈ intK+
Y there is a neighborhood U of x0 in X such

that f(z) + y − f(x0) ∈ intK+
Y for every z ∈ U . If f(x0) = −∞ then f is l.s.c. at x0.

A mapping f is said to be upper semicontinuous (u.s.c.) at x0 if and only if −f is l.s.c.

at x0.

Later on we will de�ne upper semicontinuity (and lower semicontinuity) in a similar man-

ner for the special case of Lp (Ω,F , µ)-spaces. It should be noted that if a mapping is both

l.s.c. and u.s.c. at a point x0 then it is continuous at this point. Moreover if a mapping

is �nite and continuous at some point then it is both l.s.c. and u.s.c..5

In partially ordered vector spaces convex conjugates - which Papageorgiou calls Fenchel

transforms - are de�ned in the following way:

Definition 3.3.2. (Fenchel Transform, convex conjugate) Let f : X → Y be a mapping.

Then the Fenchel transform is de�ned to be the mapping f ∗ : L (X, Y )→ Y given by

f ∗(A) = sup {A(x)− f(x) : x ∈ dom f} .

We will also call Fenchel transforms �convex conjugates� and later de�ne and use �concave

conjugates� in the context of Lp (Ω,F , µ)-spaces for the analysis of acceptability mappings,

which are concave. Convex conjugates are suprema over the function A(x)−f(x), which is

5see Theorem 5.3 and 5.4 from [21].

39



convex both in x and in A. Then the conjugate f ∗ is convex under very weak conditions6,

which are ful�lled for Lp (Ω,F , µ)-spaces.

It is also possible to iterate the process of conjugation and de�ne the Fenchel transform

of the Fenchel transform or biconjugate as follows:

Definition 3.3.3. (convex biconjugate) Let f : X → Y be a mapping, f ∗ its Fenchel

transform. Then the convex biconjugate is de�ned to be the mapping f ∗ : L (L (X, Y ) , Y )→
Y

f ∗∗(x) = sup {A(x)− f ∗(A) : A ∈ dom f ∗} .

Again this will be a convex function under very weak conditions.

Generally X is only a subspace of L (L (X, Y ) , Y ). So a function ι :X → L (L (X, Y ) , Y )

with [ι(x)] (A) = A(x) is used to restrict f ∗∗ on ι(x) and denote the restricted version

f ∗∗(ι(x)) again by f ∗∗(x).

For us, the main result about conjugates, which we will use in chapter 4 is the following:

Proposition 3.3.4. In general, f ∗∗(x) ≤ f(x) holds for any x. Moreover if ∂f(x) 6= ∅,
then the equation f ∗∗(x) = f(x) holds.

Proof. See lemma 5.4 and proposition 5.8 in [21]. �

There remains the question of when an in�mum is attained, being in fact a minimum.

Luckily it is possible to give a su�cient condition using the terms and de�nitions of the

current section:

Proposition 3.3.5. If f : K → Ȳ is a convex, lower semicontinuous mapping where

K ⊆ X is a compact set and Im f is order complete then f attains its in�mum on K.

Proof. This is theorem 5.2 from [21]. �

In our context this would mean that not only the Lp−space into which the operator maps

must be order complete, but also the closure of the image set of the mapping must be an

order complete subset of the Lp−space under consideration. Further, the e�ective domain

of the mapping would have to be a compact set.

6see Proposition 5.7 in [21].
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But compactness is hard to achieve in in�nite dimensional spaces like Lp (Ω,F , µ)-spaces.

For this reason we will base our considerations about when the in�mum for the conju-

gate mappings is attained not on proposition 3.3.5 but on the close relationship between

subgradients and convex conjugates given by proposition 3.3.4.
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Part 2

Conditional Acceptability Mappings and

Multi-Period Acceptability Functionals





CHAPTER 4

Conditional Acceptability Mappings

Acceptability functionals evaluate in terms of a real number, how favorable a random

variable (or distribution) - representing �nancial return - is. Basically they are modeled

as functions, mapping from a Lp (Ω,F , µ)−space into R. The valuation is done at the

beginning of a single period, assuming that there is no nontrivial information available that

could be used for calculating the acceptability. A natural generalization of such functionals

are conditional risk and acceptability mappings. Also measuring the acceptability of a

random variable connected to a single period, in principle such mappings assume that

there is additional nontrivial information available at the beginning of the period under

consideration.

Mathematically, information is expressed in terms of σ−algebras and so we can say

that unconditional acceptability functionals measure acceptability relative to the trivial

σ−Algebra {∅,Ω}, while conditional acceptability mappings calculate acceptability rela-

tive to some σ−Algebra F1 ⊃{∅,Ω}. This means: conditional acceptability mappings are

mappings from Lp (Ω,F , µ) into Lp′ (Ω,F1, µ), resulting not in a real number but in a

random variable.

Conditional risk and acceptability mappings were de�ned and analyzed by Detlefsen [9],

Ruszczy«ski [32] and P�ug and Römisch [23]. By their de�ning axioms such mappings

have some reasonable properties closely related to the properties of acceptability function-

als from de�nition 1.1.1.

Conditional mappings can be useful in di�erent ways:

• If they have the property that more information results in a higher acceptabil-

ity (information monotonicity) one can compare the acceptability of a random

variable under di�erent information sets using the natural partial order (≥ a.s.)

45



from section 2.21. As stated before we will use the notation ≥ without explicitly

stating that it is meant in the almost sure sense.

• They can be used to track how the (conditional) acceptability of a future random

variable changes over time, as additional information becomes available. Such

sequences of acceptability mappings are called dynamic acceptability functionals

([23]).

• In the context of random processes they can be used to de�ne multi-period accept-

ability functionals, measuring the desirability of a sequence of random variables

relative to some �ltration. We will study some possibilities in chapter 5.

The above authors analyzed conditional mappings in very di�erent ways: While Detlefsen

and Scandolo use the essential in�mum for de�ning conjugate functionals2- which is feasible

only for spaces L∞ (Ω,F , µ), Ruszczy«ski and Shapiro base their analysis on pointwise

arguments, neglecting the question of measurability of in�ma in Lp−spaces. They de�ne

the (convex) conjugate - dependent on individual ω ∈ Ω - as sup {E (YZ)−A (Y )} (ω).

But the pointwise supremum of an uncountable set of measurable random variables easily

could be not measurable oneself.

Generalizing the de�nition of conditional expectation, P�ug and Römisch use a trick

from probability theory and get a representation theorem for conditional acceptability

mappings3: For any u.s.c. conditional acceptability mapping A (Y |F1) and for every

Y ∈ Lp (Ω,F , µ) and B ∈ F1 the conjugate of the restricted expectation E (A (Y |F1) · 1B)

can be written as

E (A (Y |F1) · 1B) = inf
Z∈Lq(Ω,F ,µ)

{E (Y · Z)− AB(Z) : Z ≥ 0, E (Z|F1) = 1B} ,

where AB(Z) = inf
Y ∈Lp(Ω,F ,µ)

{E (YZ)− E (A (Y |F1) · 1B)}.

This meets the concerns for measurability and allows to use the full duality theory for

real valued functionals and in this way P�ug and Römisch are able to derive some crucial

propositions. However such a representation is an implicit one, which sometimes makes

the reasoning more complicated.

1Such a direct comparison is di�erent from the usual value of information (see e.g. P�ug and Römisch [23]
p 177) which takes into account the possible actions of optimizing agents with di�erent decision spaces,
relative to their information sets.
2This approach was also recently used in [13].
3See theorem 2.5.1 in [23].
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In the following, another notion of in�mum will be used. Based on the results derived

in section 2.2 - especially the order completeness of Lp−spaces - we will use the in�mum
with respect to the almost sure order4 to de�ne conjugate mappings in a very natural way.

It is crucial to remember that this de�nition is based on equivalence classes of random

variables and not on individual random variables.

Moreover, it is also possible to de�ne sub- and supergradients based on the almost sure

order. These de�nitions will be used to derive propositions about acceptability function-

als, their conjugates and supergradients, generalizing the usual results for real valued

functionals.

In this context conditional acceptability mappings map into a partially ordered vector

space. That means that the usual arguments for dealing with subgradients and conjugates

- based on functional separability - break down. It will not be possible to rely on separating

hyperplane theorems any more. Furthermore, nonsmooth convex analysis was already

generalized in the past to work on partially ordered vector spaces. We will base our

arguments on the work of N. Papageorgiou [21], which was summarized in chapter 3.

4.1. De�nition and Basic Properties

We saw that acceptability functionals A(Y ) are mappings between a function space of

random variables and the real line. If an acceptability functional is version independent,

we can also understand it as a mapping A{FY } between the distribution functions of the

random variables under consideration and the real line. But then it also makes sense to

apply the acceptability functionals on some conditional distributions, which can be written

as A
{
FY |X

}
.

More generally, conditional acceptability mappings are a special class of operators, map-

ping from one function space Lp (Ω,F ,P) into another space Lp′ (Ω,F1,P) with F1 ⊆ F
and 1 ≤ p′ ≤ p. We can think of the σ−Algebra F as the information available at the

end of a time period under consideration and of F1 as the information available at the

beginning.

Again we will adjoin a greatest element +∞ and a smallest element −∞ to each vector

space that contains the image of a mapping. The greatest element can be interpreted as

a random variable that takes the value +∞ with probability one. The extended space

4see de�nition 2.2.16
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Lp (Ω,F1,P)∪ {+∞,−∞} will be denoted as Lp (Ω,F1,P) in the following. The domain

space is modeled by a space of ordinary random variables with values in R.

In this context we should also modify slightly the de�nition of bounded sets.

Definition 4.1.1. (boundedness) A set S in Lp (Ω,F ,P) is called bounded below if

there exists an element X ∈ Lp (Ω,F ,P) with X ≤ Y for all Y ∈ Lp (Ω,F ,P) and

X > −∞ a.s..

A set S in Lp (Ω,F ,P) is called bounded above if there exists an elementX ∈ Lp (Ω,F ,P)

with X ≥ Y for all Y ∈ Lp (Ω,F ,P) and X < +∞ a.s..

A set S in Lp (Ω,F ,P) is called bounded if it is bounded both below and above.

As usual in the case of functionals we will also concentrate on proper mappings in the

following:

Definition 4.1.2. (properness and e�ective domain) The e�ective domain of a con-

cave mapping A (·|F1) : Lp (Ω,F ,P) → Lp′ (Ω,F1,P) is given by the set dom f =

{X ∈ Lp (Ω,F ,P) : A (X|F1) > −∞ a.s.}

A concave mapping A (·|F1) : Lp (Ω,F ,P) → Lp′ (Ω,F1,P) is called proper if the

e�ective domain is nonempty and the mapping does not take the value +∞.

Remark. In section 3 we de�ned convex mappings and the appropriate notions of proper-

ness and e�ective domain. The reason for the di�erences in sign is that generally we want

to minimize convex functions while we want to maximize concave functions. Because the

domain of a conditional mapping is understood as its e�ective domain it is possible to

restrict it by some conditions, including some implicit restrictions (e.g. A (X|F1) = −∞
if E (X|F1) ≤ a). Proposition 4.2.3 will remain applicable in this case.

While it is not feasible to de�ne conditional acceptability mappings in a similar way as the

conditional expectation, following ([23, 33]) it is possible to de�ne their critical features

in an axiomatic way. The properties of acceptability functionals have their counterpart in

the following de�nition for conditional acceptability mappings.

Definition 4.1.3. (conditional acceptability mapping)

A proper mapping A (·|F1) : Lp (Ω,F ,P) → Lp′ (Ω,F1,P) is called conditional accept-

ability mapping with observable information F1 if the following conditions are satis�ed for

all X, Y ∈ Lp (Ω,F ,P), Y1 ∈ Lp′ (Ω,F1,P):
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(CA1) Predictable Translation Equivariance . A(Y + Y1|F1) = A(Y |F1) + Y1 holds

a.s. for every Y ∈ Lp (Ω,F ,P) and Y1 ∈ Lp′ (Ω,F1,P).

(CA2) Concavity . A (λ ·X + (1− λ) · Y |F1) ≥ λ · A (X|F1) + (1 − λ) · A (Y |F1) holds

a.s. for λ ∈ [0, 1].

(CA3) Monotonicity . X ≤ Y a.s.⇒ A(X|F1) ≤ A(Y |F1) a.s.

Notation 4.1.4. Sometimes we will write AF1 (·) or even A1 (·) for A (·|F1).

Mappings from Lp (Ω,F ,P) → Lp′ (Ω,F1,P) without the properties of conditional ac-

ceptability mappings we will call conditional mappings. If they are at least monotonic we

will call them acceptability type conditional mappings. A conditional mapping A is called

positive homogeneous, if for every λ > 0 the condition AF1 (λ ·X) = λ · AF1 (X) holds.

Although conditional acceptability functionals are de�ned in an �axiomatic� way com-

pletely independent from conditional expectation, it is clear that conditional expectation

is a prototype for de�nition 4.1.3: The conditional expectation is a conditional acceptabil-

ity mapping ful�lling (CA1) - (CA3). Additionally it is positive homogeneous and upper

semicontinuous.

Remark. We have de�ned acceptability mappings in an abstract, axiomatic way and

this will be very useful in the following for analyzing general properties of conditional

acceptability mappings and some multi-period functionals based on conditional mappings.

However in practical application we would use a special case of conditional mappings:

If random variables are represented by their distribution function, we can apply version

independent single period acceptability functionals on conditional distribution functions

to account for conditional information.

As stated above, information in terms of σ−Algebras is a key point for conditional accept-
ability mappings and will be of interest also for the multi-period acceptability functionals

de�ned below. In de�nition 4.1.3 the mapping is de�ned with respect to a �xed σ−Algebra.
We might be interested in �generic� acceptability mappings, where the same �calculation

principle� is applied to map into similar random spaces with di�erent σ−Algebras. As a
result a second form of monotonicity is relevant: Information monotonicity guarantees that

a �ner σ−Algebra, representing better information, will result in a higher acceptability.

Definition 4.1.5. (Information Monotonicity) Let C = (A (·|Fi))i∈I be a collection of

acceptability mappings from a space Lp (Ω,F ,P) into di�erent spaces Lp′ (Ω,Fi,P) with
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Fi ⊆ F and p′ ≤ p. We will call the collection information monotonic if for any

A (·|Fi) ,A (·|Fj) ∈ C the implication

Fi ⊆ Fj ∪N ⇒ A (·|Fi) ≤ A (·|Fj) ,

where N denotes the set of P−null sets in F , holds for any X ∈ Lp (Ω,F ,P).

We will not distinguish between an actual mapping and a collection of mappings into

di�erent spaces in the following. That means that we always assume that for a meaningful

acceptability mapping there is a de�nition or calculation rule that allows it to be calculated

for di�erent image spaces.

For information monotonic mapping we can evaluate the e�ect of additional information

just by using the relevant norm:

Definition 4.1.6. (increase in acceptability) Let C = (A (·|Fi))i∈I an information mono-

tonic collection of acceptability mappings into the spaces Lp′ (Ω,Fi,P), which are sub-

spaces of Lp (Ω,F ,P). Then for given data X the increase in acceptability between

Fi and Fj with Fi ⊇ Fj is given by the distance

‖A (X|Fi)−A (X|Fj)‖p′ .

4.2. Superdi�erentials and Concave Conjugates of Conditional Acceptability

Mappings

In the following let A (·|F1) : Lp (Ω,F ,P)→ Lp′ (Ω,F1,P) with F1 ⊆ F be a conditional

acceptability mapping. Because such functionals are concave in the almost sure sense it

is possible to de�ne supergradients and concave conjugates in the usual way, but taking

care of the fact that A (·|F1) is a random variable and not a real number. This feasible if

we use the almost sure order and the results from section 2.2 and chapter 3.

From de�nitions 3.2.1 and 3.3.2 we see that continuous linear mappings Lp (Ω,F ,P) →
Lp′ (Ω,F1,P) are needed to de�ne supergradients and conjugates for mappings between

Lp (Ω,F ,P) → Lp′ (Ω,F1,P). While continuity and linearity is guaranteed by corollary

2.1.2 if conditional expectations E (• · Z|F1) with Z ∈ Lq (Ω,F ,P) are used, it is not

clear generally, that such mappings also map into the correct spaces Lp′ (Ω,F1,P), which

is required if we want to de�ne supergradients and conjugates mappings for acceptability

mappings into Lp′ (Ω,F ,P).
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For this reason we have to restrict the set of possible Z by the condition Z ∈ Ls (Ω,F ,P)

with s = p·p′
p−p′ .

Theorem 4.2.1. For p < ∞ the conditional expectations X 7→ E (X · Z|F1) with ar-

guments X ∈ Lp (Ω,F ,P) and dual variable Z ∈ Ls (Ω,F ,P) ⊆ Lq (Ω,F ,P) are lin-

ear, continuous and map into Lp′ (Ω,F ,P), if s ≥ p·p′
p−p′ . For mappings Lp (Ω,F ,P) →

Lp′ (Ω,F ,P) with p = ∞ the conditional expectations above have these properties, if

Z ∈ Lp′ (Ω,F ,P).

Proof. Linearity of a conditional expectation E (• · Z|F1) is clear.

Moreover Z are dual variables such that E (• · Z|F1) maps into Lp′ (Ω,F ,P), if Z ∈
Lq (Ω,F ,P) ∩ {Y : X · Y ∈ Lp′ (Ω,F1,P) ,∀X ∈ Lp (Ω,F1,P)}. This means that X · Z
must be p′-integrable.

For s = p·p′
p−p′ , which is equivalent to 1

p
+ 1

s
= 1

p′
a generalized Hölder inequality can be

used5:

‖X · Z‖p′ ≤ ‖X‖p · ‖Z‖s .

As X is p-integrable by assumption this means that X · Z will be p′ integrable if Z is

s-integrable.

For p = ∞ one could also remember that the product X · Z is p′ integrable if X is

∞−integrable and X is p′-integrable. This also holds for p′ =∞ .

To ensure continuity as a mapping into Lp′ (Ω,F ,P), assume now that Xn converges to

X in the p-norm, which means that ‖Xn −X‖p → 0, as n→∞. Because |•| is convex we

5To see this for p < ∞ de�ne r1 = p
p−p′ and r2 = p

p′ . It easily can be seen that r1 and r2 are Hölder

conjugates. Therefore we can apply Hölder's inequality:∥∥∥|X|p′ · |Z|p′∥∥∥
1
≤
∥∥∥|X|p′∥∥∥

r2
·
∥∥∥|Z|p′∥∥∥

r1
,

which is equivalent to
‖X · Z‖p′ ≤ ‖X‖p′·r2 · ‖Z‖p′·r1 .

But p′ · r2 = p and r1 · p′ = s, because of s = p·p′
p−p′ and the de�nitions of r1 and r2. Together this gives

‖X · Z‖p′ ≤ ‖X‖p · ‖Z‖s .

For p =∞we have 1
s = 1

p′ . Using this fact and separating the essential supremum of X, we get

‖X · Z‖p′ ≤ ‖X‖∞ · ‖Z‖s .
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can apply Jensen's inequality and get

(4.2.1)

E
(
|E ((Xn −X) · Z|F)|p

′
)
≤ E

(
E
(
|(Xn −X) · Z|p

′
|F
))

= E
(
|(Xn −X) · Z|p

′
)
.

From this - using the generalized Hölder inequality again - we have

‖E ((Xn −X) · Z|F)‖p′ ≤ ‖(Xn −X) · Z‖p′ ≤ ‖(Xn −X)‖p · ‖Z‖s .

If Z is s-integrable and Xn converges to X in the p-norm, it follows that E (Xn · Z|F)

converges to E (X · Z|F).

�

Example. For mappings Lp (Ω,F ,P) → L1 (Ω,F1,P) the Z must be from the natural

dual space Lq (Ω,F ,P) because q = s in this cases. Until now the main focus in literature

was on mappings Lp (Ω,F ,P)→ Lp (Ω,F1,P). From theorem 4.2.1 we see that the dual

variables must be from L∞ (Ω,F ,P) in this case. This is a strong restriction and coincides

with the natural dual only for the case p = 1.

With this preparations it is possible to de�ne superdi�erentials and conjugates as follows:

Definition 4.2.2. (Superdi�erential, Subdi�erential) The superdi�erential of a proper

concave conditional mappingA (·|F1) : Lp (Ω,F ,P)→ Lp′ (Ω,F1,P) atX0 ∈ Lp (Ω,F ,P)

is given by the set

∂A (X0|F1) =

= {Z ∈ Ls (Ω,F ,P) : A (X|F1) ≤ A (X0|F1) + E ((X −X0) · Z|F1) , ∀X ∈ domA} ,

where 1
p

+ 1
s

= 1
p′
.

The subdi�erential of a proper convex conditional mappingD (·|F1) atX0 ∈ Lp (Ω,F ,P)

is given by the set

∂D (X0|F1) =

= {Z ∈ Ls (Ω,F ,P) : A (X|F1) ≥ A (X0|F1) + E ((X −X0) · Z|F1) ,∀X ∈ domA} ,

where1
p

+ 1
s

= 1
p′
.

The elements of super- and subdi�erentials are called super - and subgradients.
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Remark. We use the same symbol for super- and subdi�erential, assuming that it will be

clear from the context whether the concave or the convex version is relevant. In particular

we will concentrate on concave mappings and their supergradients exclusively for the rest

of the text.

In terms of chapter 3 our de�nition refers to topological superdi�erentials for the special

case of Lp (Ω,F ,P)- spaces. We neglect algebraic di�erentials here, which would be based

on the expectation using any random variable - even outside the natural dual space.

Using de�nition 4.2.2 and based on the order properties of Lp (Ω,F ,P) spaces from section

2.2, there are a lot of similarities between supergradients of functionals and supergradients

of conditional mappings. In particular, as in the case of real functionals the superdi�er-

ential will exist for a broad range of concave mappings at least at the interior of their

domains. Of course, at the boundary it is easily possible that the superdi�erential is

empty.

Proposition 4.2.3. If a concave mapping A (·|F1) : Lp (Ω,F ,P) → Lp′ (Ω,F1,P) is

continuous at some point X̂ ∈ domA then ∂A (X|F1) 6= ∅ for all X ∈ int domA.

Proof. Lp-spaces are metric spaces hence they are normal spaces, which basically

means that disjoint closed sets can be separated by neighborhoods. Using this fact as a

premise we can apply proposition 3.2.2, restated for supergradients6. �

Proposition 4.2.4. A conditional acceptability mapping A : Lp (Ω,F ,P)→ Lp′ (Ω,F1,P)

is continuous if it is locally bounded at some element X0 ∈ Lp (Ω,F ,P).

Proof. See [20], theorem 4. �

From chapter 3 we know that there are a lot of rules for generalized subdi�erential calculus

very similar to ordinary subdi�erential calculus, including a rule for sums of mappings7

and a chain rule8.

As a next step we will develop a theory of duality for conditional acceptability mappings

which is based on concave Fenchel conjugates. First we have to de�ne semicontinuity for

conditional mappings.

6Another way would be to base the argument on theorem 4 in [19].
7Theorem 4.1 from [21]
8Theorem 4.3 from [21]
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Definition 4.2.5. (upper semicontinuity) A conditional mapping A (·|F1) with closed

domain is called continuous from above or upper semicontinuous (u.s.c.) at X0, if

and only if for every ε > 0 a.s. there exists a neighborhood U of X0 such that A (X|F1) ≤
A (X0|F1) + ε a.s. for all X ∈ U or if A (X0|F1) = +∞.

A mapping A (·|F1) is called lower semicontinuous (l.s.c.) at a point X0 if −A (·|F1) is

u.s.c. at the point X0.

If the mapping is l.s.c. (u.s.c.) at each point in its domain it is called l.s.c. (u.s.c.).

It should be noted again that a mapping is continuous if it is both lower and upper

semicontinuous9.

Now it is possible to de�ne concave conjugates for conditional mappings in a straightfor-

ward way using the generalized in�mum and supremum from section 5.22.2.

It should be remembered that such a de�nition is meaningful only because Lp (Ω,F ,P)−
spaces are order complete.

Definition 4.2.6. (concave conjugate, biconjugate) The concave conjugate of a map-

ping A (·|F1) : Lp (Ω,F ,P) → Lp′ (Ω,F1,P) is given by a mapping A∗ : Ls (Ω,F ,P) →
Lp′ (Ω,F1,P) with 1

p
+ 1

s
= 1

p′
:

A∗ (Z|F1) = inf
X∈Lp(Ω,F ,P)

{E (X · Z|F1)−A (X|F1)} .

The concave biconjugate is a mapping A∗∗ : Lp (Ω,F ,P)→ Lp′ (Ω,F1,P) de�ned by

A∗∗ (X|F1) = inf
Z∈Ls(Ω,F ,P)

{E (X · Z|F1)−A∗ (Z|F1)} .

Remark. The domain of the biconjugate mapping should be random variables from

Lp (Ω,F ,P), such that E (X · Z|F1) ∈ Lp′ (Ω,F1,P) holds for any Z ∈ Ls (Ω,F ,P).

But Ls (Ω,F ,P) was constructed in a way such that E (X · Z|F1) ∈ Lp′ (Ω,F1,P) for any

X ∈ Lp (Ω,F ,P) and so we can consider the whole space Lp (Ω,F ,P) as the �dual� of

the restricted dual Ls (Ω,F ,P).

Conjugates and biconjugates for conditional (deviation) risk10 functionals can be de�ned

as convex conjugates in similar manner using the almost sure version of the supremum.

9Theorem 5.3 in [21].
10See [23] for a concise treatment of deviation risk functionals and the generalization to conditional risk
mappings.
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Because we concentrate exclusively on concave mappings, we will often just use �conjugate�

instead of �concave conjugate�.

In section 2.2 we agreed the convention to set the in�mum equal to −∞ if a set is not

bounded below. If there are arguments Z that lead to an unbounded set in the calculation

of the conjugate, this dual variable will not be selected when the bidual is calculated.

Alternatively we can use the e�ective domain of the conjugate to restrict the feasible set

for the calculation of the biconjugate:

A∗∗ (X|F1) = inf
Z
{E (X · Z|F1)−A∗ (Z|F1) : Z ∈ domA∗} .

Based on de�nition 4.2.6 we can generalize the main results for (unconditional) accept-

ability functionals and get similar statements for conditional acceptability mappings. The

main di�erence is again that the relations are valid in the almost sure sense.

The equality of mapping and bidual mapping (Fenchel-Moreau-Rockafellar theorem) can

not easily be proved for concave/convex mappings in a way similar to the case of con-

cave/convex functionals. This would require some kind of separation theorems based on

almost sure separating hyperplanes.

Anyway, we will be able to identify a proper, concave mapping with its bidual at points

where the subdi�erential is nonempty. So again the term �supergradient-representation�

is justi�able for the biconjugate.

Theorem 4.2.7. Let A (·|F1) be a proper, concave mapping. Then for all X ∈ Lp (Ω,F ,P),

Z ∈ Ls (Ω,F ,P),

(4.2.2) A (X|F1) ≤ E (X · Z|F1)−A∗ (Z|F1) ,

holds.

Moreover if ∂A (X0|F1) 6= ∅ then

(4.2.3) A (X0|F1) = A∗∗ (X0|F1)

In this case the in�mum is attained and

(4.2.4) A (X|F1) = E (X · Z|F1)−A∗ (Z|F1) a.s.⇔ Z ∈ ∂A (X|F1) .

55



If in addition A is continuous at some point inside domA equality 4.2.3 holds for each

point in int domA∗.

Proof. The inequality follows directly from the de�nition of conjugates for conditional

mappings: As A∗ (Z|F1) := inf
X
{E (X · Z|F1)−A (X|F1)} it follows that A∗ (Z|F1) ≤

E (X · Z|F1)−A (X|F1) a.s. or A (X|F1) ≤ E (X · Z|F1)−A∗ (Z|F1).

The second assertion is theorem 5.8 from Papageorgiou [21], cited in proposition 3.3.4

above.

The equation A (X|F1) = E (X · Z|F1) − A∗ (Z|F1) holds almost sure if and only if

A (X|F1) + E (Y · Z|F1) − A (Y |F1) ≥ E (X · Z|F1) holds almost sure for any Y ∈
Lp (Ω,F ,P).

a) Assume A (X|F1) = E (X · Z|F1)−A∗ (Z|F1) a.s.. Then we have

A (X|F1) + E (Y · Z|F1)−A (Y |F1) ≥ A (X|F1) + inf
Z
{E (Y · Z|F1)−A (Y |F1)}

= A (X|F1) +A∗ (Z|F1) .

Using the assumption we get for all Y

A (X|F1) + E (Y · Z|F1)−A (Y |F1) ≥ E (X · Z|F1) .

b) For the other direction assume A (X|F1)+E (Y · Z|F1)−A (Y |F1) ≥ E (X · Z|F1) a.s. .

Remember that this inequality should hold for all Y - which means that E (Y · Z|F1) −
A (Y |F1) has a lower bound. Then the in�mum exists and it follows that

A (X|F1) + inf
Z
{E (Y · Z|F1)−A (Y |F1)} ≥ E (X · Z|F1)

or

A (X|F1) +A∗ (Z|F1) ≥ E (X · Z|F1)

Together with inequality 4.2.2 the equation A (X|F1) +A∗ (Z|F1) = E (X · Z|F1) follows.

Moreover A (X|F1) + E (Y · Z|F1) − A (Y |F1) ≥ E (X · Z|F1)a.s. holds if and only if

A (Y |F1) ≤ A (X|F1) + E ((Y −X) · Z|F1) or Z ∈ ∂A (X|F1) holds.

From this equivalence together with inequality 4.2.2 equation 4.2.4 is proved for proper

concave mappings.

The last statement follows from proposition 4.2.3. �
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Remark. It is also possible to give conditions under which A (X|F1) = A∗∗ (X|F1) on

the whole space Lp (Ω,F ,P). This is stated by theorem 5.9 in Papageorgiou[21].

Because acceptability mappings are proper concave u.s.c., theorem 4.2.7 can be applied.

Again - as for the unconditional case - we can characterize the dual representation of

conditional acceptability mappings more precisely, identifying the set AA.

Theorem 4.2.8. Assume that the conditions of proposition 4.2.3 or proposition 4.2.4 are

ful�lled. Then a concave conditional mapping A (·|F1) : Lp (Ω,F ,P) → Lp′ (Ω,F1,P) is

an acceptability mapping if and only if the dual representation

A (X|F1) = inf
Z∈Ls(Ω,F ,P)

{E (X · Z|F1)−A∗ (Z|F1) : Z ≥ 0; E (Z|F1) = 1 a.s., Z ∈ Z}

holds for each point in int domA. The set Z represents additional constraints on Z, re-

stricting e.g. the conjugate A∗to be �nite.

Proof. By theorem 4.2.7 , because A is concave and continuous at some point in

domA we have for each point in int domA:

A (X|F1) = inf
Z
{E (X · Z|F1)−A∗ (Z|F1)} = E (X · Z|F1)−A∗ (Z|F1)

where Z is a supergradient.

If E (Z|F1) = 1 a.s. we have for a F1-measurable X1

A (X +X1|F1) = E ((X +X1) · Z|F1)−A∗ (Z|F1)

= E (X · Z|F1) + E (X1 · Z|F1)−A∗ (Z|F1)

= E (X · Z|F1) +X1 · E (Z|F1)−A∗ (Z|F1)

= E (X · Z|F1) +X1 −A∗ (Z|F1)

= A (X|F1) +X1

almost sure.

On the other hand let E (Z|F1) 6= 1 on a set S with positive probability. Then we have

A (X|F1) +X1 = E (X · Z|F1) +X1 −A∗ (Z|F1)

6= E (X · Z|F1) +X1 · E (Z|F1)−A∗ (Z|F1)

= A (X +X1|F1)

on this set. This would contradict the assumption of predictable translation equivariance.
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Assume now that Z ≥ 0 holds a.s. and let Y be a random variable in the cone of almost

sure nonnegative random variables: Y ≥ 0 a.s.. Then for any random variable X we have

X + Y ≥ X. Because Y and Z both are nonnegative it follows that E (Y · Z|F1) ≥ 0.

Using again theorem 4.2.7 we get

A (X + Y |F1) = E ((X + Y ) · Z|F1)−A∗ (Z|F1)

= E (X · Z|F1) + E (Y · Z|F1)−A∗ (Z|F1)

≥ E (X · Z|F1)−A∗ (Z|F1)

≥ inf
Z
{E (X · Z|F1)−A∗ (Z|F1)}

= A (X|F1)

For the other direction assume now that Z < 0 on a set S with positive probability, or

E (Y · Z|F1) < 0 on this set. Then we have

A (X|F1) = E (X · Z|F1)−A∗ (Z|F1)

> E (X · Z|F1) + E (Y · Z|F1)−A∗ (Z|F1)

≥ inf
Z
{E (X · Z|F1) + E (Y · Z|F1)−A∗ (Z|F1)}

= A (X + Y |F1)

on the set S.

But this would mean that the mapping can not be monotonic. �

Theorem 4.2.8 can also be used to de�ne acceptability mappings and we want to close the

chapter with a simple example for this, generalizing the AV@R to the conditional AV@R.

In doing so we use the dual results from theorem 1.2.1.

Definition 4.2.9. (Conditional Average Value-at-Risk ) The conditional average value

at risk is de�ned as a mapping AV@Rα(•|F1) : Lp (Ω,F ,P)→ L1 (Ω,F1,P) by a gener-

alized LP:

AV@Rα(X|F1) = inf
Z

{
E (X · Z|F1) : 0 ≤ Z ≤ 1

α
a.s., E (Z|F1) = 1 a.s., Z ∈ Lq (Ω,F ,P)

}
The �dual variables� Z in this de�nition are bounded almost surely and therefore they also

are in L∞ (Ω,F ,P). This means that the conditional AV@Rα maps the space Lp (Ω,F1,P)

into itself. Furthermore, the conditional AV@R is the in�mum of linear mappings, hence

concave.
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Corollary 4.2.10. The AV@Rα is a continuous mapping and the superdi�erential is a

nonempty set for any X ∈ Lp (Ω,F ,P).

Proof. Because of theorem 4.2.1 the AV@Rα is continuous. Then from proposition

4.2.3 the nonemptyness of the mapping follows. �

Because the conditional AV@Rα is continuous it follows from theorem 4.2.8 that the

mapping is monotonic and predictable translation-equivariant.
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CHAPTER 5

Multi-Period Acceptability Functionals

Until now we have considered acceptability functionals and conditional mappings for ran-

dom variables, both of them connected to a single period. Acceptability functionals express

the desirability of a random variable in terms of a characteristic real number, based on the

assumption that no nontrivial information is available. Conditional mappings take into

account that there could be some additional information about a random variable at some

point of time and result not in a real number but in a random variable.

In this chapter these concepts are applied to a multi-period setup. In doing so we have

to look at stochastic processes {Xt(ω) : t ∈ S} where S is some index set. We stick

to a �nite framework and assume the set S to be a set of discrete points of time, e.g.

S = {0, 1, . . . , T}. In economic applications such a process could represent �ow quantities

like cash �ows as well as stock quantities like reserves or �rm values.

In principle such �stochastic processes� with �nite index sets can be considered as random

vectors (X1, . . . , XT ) ∈ Lp1 (Ω,F ,P) × . . . × LpT
(Ω,F ,P). Functionals A (X1, . . . , XT ) ,

mapping random vectors into the real line could be de�ned easily and the whole theory of

subgradients and conjugate functionals is applicable, if we only take into account that the

dual pairing for random vectors is given by
T∑
t=1

E (Xt · Zt) where the Zt are dual to the Xt.

Therefore at �rst glance there seems to be little di�erence between the case of one period

acceptability functionals and the multi-period functionals de�ned in this chapter: Is it not

su�cient to just de�ne a multi-period functional as A (X1, . . . , XT )?

In the last chapter we already saw that information plays a key role for conditional map-

pings. This is the case even more for multi-period functionals: A famous example by

Philippe Artzner illustrates the role of information for the valuation of multi-period risk

or acceptability.

Example. A fair coin is tossed three times. Two payo� functions are given:

A) One unit is paid at the end, if head was shown at least two times.
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B) One unit is paid at the end, if head was shown at the last throw.

It is easy to verify that both payo� functions have the same (multivariate) distribution.

But for case A) the �nal payo� can in some scenarios be predicted earlier than for payo�

function B). That means: the information structure is not the same for both games and

A) should be preferable to B).

Basically the total risk of a process is independent of any decision regarding risk manage-

ment. If it is possible to take some action - like hedging, insurance or pooling risks - the

risk can be reduced to some level depending on the information available. This remaining

part of the risk is called intrinsic risk. Because we have in view the application of risk

functionals for optimization, intrinsic risk is the appropriate risk-concept and we have to

analyze risk functionals that depend on the available information1.

In probability theory the evolution of information is modeled by �ltrations and meaningful

acceptability measures should re�ect relevant di�erences in information structure. The

�rst section of the chapter will deal with the basic properties of multi-period acceptability

functionals, and the role of information is one of the key themes here. The terminology

will be based mainly on [23], chap. 3 and on [24].

P�ug and Römisch ([23]) de�ne di�erent types of multi-periodic acceptability functionals:

Separable functionals as sums of univariate acceptability functionals; the value of informa-

tion of a multi-stage decision problem; compositions of conditional acceptability mappings

and polyhedral multi-period acceptability functionals.

We do not want to discuss all of these approaches in depth or contribute any new ap-

proach. Instead we just apply the results of the last chapters to those already known types

of multi-period functionals that use conditional acceptability measures as their building

blocks. Unfortunately by now there is no generally accepted way of combining conditional

mappings to acceptability (type) functionals. It seems that there is the need for future

research on this issue. In the last two sections of the chapter we discuss two constructions

for multi-period acceptability (type) functionals and their properties, using the results of

chapter 4.

Compositions of conditional acceptability mappings are investigated �rst. Such functionals

were de�ned by Ruszczy«ski and Shapiro ([31, 32]) and are constructed by applying

1([23], p 133)
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conditional acceptability mappings and acceptability functionals at each period under

consideration: they are given by

CA (Y ; [A0(·),A1(·), . . . ,At−1(·)]; F) := A0 (Y1 +A1 (Y2 +A2 (Y3 + ...AT−1 (YT )))) .

Because of their nested structure we will also call such mappings �nested mappings�.

In the last section the simple case of sums
T∑
t=1

E (A (Xt|Ft−1)) are discussed. Such function-

als are special cases of separable multi-period functionals and are called separable expected

conditional (SEC) functionals ([23]). They are much easier to handle than composed

functionals, but take into consideration only one conditional mapping for each period.

5.1. Multi-Period Acceptability Functionals - Basic De�nitions

Multi-period functionals are mappings from spaces ×Tt=1Lp (Ω,Ft,P) into the extended

real line R. Such spaces endowed with a p-norm ‖X‖p =
T∑
t=1

E (|Xt|p)
1
p , 1 ≤ p ≤ ∞ are

Banach spaces.

Basically the idea of multi-period functionals is, to jointly valuate a random vector X =

(X1, . . . , XT )′ together with an information structure which represents the gain in infor-

mation over time, by a real number. The development of information is modeled by

�ltrations: A �ltration F = (F0,F1, . . . ,FT ) is an increasing sequence of σ−Algebras Ft,
where Ft ⊆ Ft+1. F0 represents the trivial σ−Algebra F0 = {Ω, ∅}.

It is possible to de�ne multi-period acceptability functionals as generalization of single-

period acceptability functionals with the additional requirement of information monotonic-

ity in the following way:

Definition 5.1.1. (Multi-Period Acceptability Functional) We will call a multi-period

functional A (X; F) multi-period acceptability functional, if it is proper and satis�es

(MA0) Information Monotonicity: If Ft ⊆ F
′
t for all t, then

A (X; F) ≤ A
(
X; F ′

)
(MA1) Predictable Translation Equivariance: For all periods t

A (X1, . . . , Xt + C,XT ; F) = A (X1, . . . , Xt, XT ; F) + E (C)

holds, if C is a Ft−1−measurable function.

63



(MA2) Concavity: The mapping X 7→ A (X; F) is concave.

(MA3) Monotonicity: Xt ≤ X
′
t a.s.for all t implies A (X; F) ≤ A

(
X
′
; F
)

The condition (MA1) is very strong and it is not easy to construct acceptability mea-

sures that ful�ll it. Therefore a couple of weaker conditions have been formulated in the

literature ([7, 35, 12]). A reasonable condition is weak translation-equivariance:

(MA1') Weak Translation Equivariance:

A (X1, . . . , Xt + c,XT ; F) = A (X1, . . . , Xt, XT ; F) + c

for all constants c.

We will also refer to functionals that ful�ll (MA0), (MA1'), (MA2), (MA3) and (MA4) as

weak multi-period acceptability functionals.

Similar to the case of one-period functionals there are additional properties of multi-period

acceptability functionals that can be interesting:

Definition 5.1.2. (positive homogeneity) A multi-period (weak) acceptability functional

A (X; F) is positively homogeneous, if

(MA4) A (λ ·X1, . . . , λ ·Xt, λ ·XT ; F) = λ · A (X1, . . . , Xt, XT ; F) holds for all λ > 0.

A multi-period (weak) acceptability is strict, if it satis�es

(MA5) A (X1, . . . , Xt, XT ; F) ≤
T∑
t=1

E (Xt).

The dual space of a space×Tt=1Lp (Ω,Ft,P) can be identi�ed with the space×Tt=1Lq (Ω,Ft,P),

where 1
p

+ 1
q

= 1 and the dual pairing between elements of these spaces is given by

〈X,Z〉 =
T∑
t=1

E (XtZt). If A (X; F)is a functional mapping from ×Tt=1Lq (Ω,Ft,P) to the

extended real line R̄, it is possible to de�ne conjugate and biconjugate functionals in the

usual way, similar to the case of single-period functionals.

Definition 5.1.3. (concave conjugate) The (concave) conjugate of an multi-period

functional A (X; F) is given by

A∗ (Z; F) = inf
{
〈X,Z〉 − A (X; F) : X ∈ ×Tt=1Lp (Ω,Ft,P)

}
.

The (concave) biconjugate is given by

A∗∗ (X; F) = inf
{
〈X,Z〉 − A∗ (Z; F) : Z ∈ ×Tt=1Lq (Ω,Ft,P)

}
.
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If A (X; F) is proper, concave and upper semicontinuous the generalization of the Fenchel-

Moreau-Rockafellar theorem2 ensures that the dual representation

A (X; F) = A∗∗ (X; F)

holds.

This fact can be used to extract the representation for the special case of (weak) multi-

period acceptability functionals.

Proposition 5.1.4. Let A (•; F) be an upper semicontinuous multi-period acceptability

functional. Then the representation

(5.1.1) A (X; F) = inf
Z

{
T∑
t=1

E (Xt · Zt)−A∗ (Z; F) : Zt ≥ 0; E (Zt|Ft−1) = 1

}

holds for any X ∈ ×Tt=1Lp (Ω,Ft,P).

Conversely - if A (•; F)can be represented by a dual representation 5.1.1 and the conjugate

A∗ is proper, then A is proper, upper semicontinuous and satis�es (MA0)-(MA3).

Proof. This is theorem 3.20 from [23]. �

Proposition 5.1.5. Let A (•; F) be an upper semicontinuous multi-period functional sat-

isfying (MA1'), (MA2) and (MA3). Then the representation

(5.1.2) A (X; F) = inf
Z

{
T∑
t=1

E (Xt · Zt)−A∗ (Z; F) : Zt ≥ 0; E (Zt) = 1

}

holds for every X ∈ ×Tt=1Lp (Ω,Ft,P).

Conversely - if A (•; F) can be represented by a dual representation 5.1.2 and the conjugate

A∗ is proper, then A is proper, upper semicontinuous and satis�es (MA1'),(MA2) and

(MA3).

Proof. This is theorem 3.21 from [23]. �

It should be noted that theorem 5.1.5 does not say anything about information monotonic-

ity (MA0), so this property must be veri�ed separately for a given functional, to assess

the weak multiperiod acceptability property.

2[28], Theorem 5
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5.2. Acceptability Compositions

In calculating the expected present value of some discounted cash-�ows {Xi}i∈{1,...,T}over
time, in some algorithms it is useful procedure to do the evaluation in a recursive manner,

going back from the last period to the �rst one, using the projection property of conditional

expectation:

E (E (Xt|Ft−1) |Ft−2) = E (Xt|Ft−2) ,

if Ft−2 ⊆ Ft−1.

First E(XT |FT−1) is calculated, then E(XT−1 +E(XT |FT−1)|FT−2) = E(XT−1 +XT |FT−2).

This procedure can be iterated backwards until the unconditional expectation for the �rst

period can be calculated: E(X1 + E(
T∑
t=2

Xt|F1)) = E(
T∑
t=1

Xt).

Although the projection property generally does not hold for conditional acceptability

mappings, the principle of composition can be used to de�ne multi-period acceptability

functionals. This idea was used �rst by Ruszczy«ski in [31, 33].

If acceptability mappings should be nested it is necessary to ensure that at each step the

mapping is done into the right subspace:

Definition 5.2.1. Let p̄ be a sequence of real numbers p̄ = (p0 ≤ p1 ≤ . . . ≤ pT ), with 1 ≤
pt ≤ ∞. We will call a sequence of mappings {At (·)}t∈{0,...,T−1} p̄−integrability adapted
if At−1 (·) maps from Lpt (Ω,Ft,P) into Lpt−1 (Ω,Ft−1,P) for all t ∈ {1, . . . , T − 1}.

For a concise de�nition, initially we de�ne nested conditional mappings as compositions

of future acceptability mappings, relative to a starting period. If an unconditional accept-

ability functional is applied to a nested conditional mapping the result is an acceptability

composition:

Definition 5.2.2. (acceptability composition) Let A0 (·) be an acceptability functional

and {At}t∈{1,...,T} a collection of p̄−integrability adapted conditional acceptability map-

pings. Moreover let Y = {Yt}t∈{1,...,T} be a sequence of random variables adapted to a

�ltration F . Then we de�ne nested conditional acceptability functionals CAt for
time-points t recursively as
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CAt (Yt+1, ..., YT ; [At(·), . . . ,AT−1(·)]; F) :=


0, if t ≥ T

At (Yt+1 + CAt+1 (Yt+2, ..., YT )) , otherwise

.

.

An acceptability composition is an (unconditional) multi-period acceptability func-

tional de�ned as

CA (Y ; [A0(·),A1(·), . . . ,AT−1(·)]; F) := CA0 (Y ; [A0(·),A1(·), . . . ,AT−1(·)]; F) ,

where A0(·) is an (unconditional) acceptability functional.

Sometimes we will write the composition informally as

CA (Y ; [A0(·),A1(·), . . . ,At−1(·)]; F) := A0 (Y1 +A1 (Y2 +A2 (Y3 + ...AT−1 (YT )))) .

If the �ltration and the acceptability functionals are clear from the context we may write

CA (Y ) for the composition and CAt (Y ) for the nested functional. Using the components

of Y explicitly we also may write CA (Y1, . . . , YT ).

Because of the monotonicity of conditional properties it is possible to state a chain rule

for the supergradient of compositions of acceptability functionals. Such a supergradient

is determined by the supergradients of the individual conditional acceptability functionals

and the supergradient of the unconditional acceptability functional under consideration.

We do the formulation in two steps, proving the following lemma �rst:

Lemma 5.2.3. Let {At}t∈{1,...,T−1} be a collection of p̄−integrability adapted conditional

acceptability functionals with T ≥ 2 . Given supergradients

Z̄T ∈ ∂AT−1(XT )

and

Z̄k ∈ ∂Ak−1(Xk + CAk (Xk+1, ..., XT ))

for k ∈ {t0 + 1, ..., T}, a supergradient for the nested conditional acceptability functional

CAt0 (·; [At0(·), , . . . ,AT−1(·)]; F) at the base points Xt0+1, ..., XT is given by a (T−t)-tupel
W = (Wt0+1, ...,WT ) with

Wt0+1 ≡ Z̄t0+1

and
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Wk+1 = Wk · Z̄k+1

for t0 < k ≤ T − 1.

Proof. We use backward induction to prove the result:

For t = T − 1 we have CAT−1 (XT ; [AT−1(·)]) = AT−1 (XT ) and Z̄T is a supergradient by

the premises of the lemma.

Assume now that the proposition is shown for all t ≥ t0. Then subgradients for

CAt0 (Yt0+1, ..., YT ; [At0(·), ...,AT−1(·)]) are given by (Wt0+1, ...,WT ). That means:

CAt0 (Xt0+1 + Yt0+1, . . . , XT + YT ) ≤

CAt0 (Xt0+1, . . . , XT ) + E
(
Yt0+1 · Z̄t0+1|Ft0

)
+ . . .+E

(
YT · Z̄T · Z̄T−1 · . . . · Z̄t0+1|Ft0

)
Because of monotonicity we have for t0 − 1:

CAt0−1 (Xt0 + Yt0 , Xt0+1 + Yt0+1, . . . , XT + YT ) =

= At0−1 (Xt0 + Yt0 + CAt0 (Xt0+1 + Yt0+1, . . . , XT + YT ))

≤ At0−1

(
Xt0 + CAt0 (Xt0+1, . . . , XT ) + Yt0 + E

(
Yt0+1 · Z̄t0+1|Ft0

)
+ . . .+ E

(
YT ·

T∏
t=t0+1

Z̄t|Ft0

))

As Z̄t0 is a supergradient of At0−1 at Xt0 + CAt0 (Xt0+1, . . . , XT ) it follows that

CAt0−1 (Xt0 + Yt0 , Xt0+1 + Yt0+1, . . . , XT + YT ) ≤

≤ At0−1 (Xt0 + CAt0 (Xt0+1, . . . , XT )) +

+ E

(
Z̄t0 ·

[
Yt0 + E

(
Yt0+1 · Z̄t0+1|Ft0

)
+ . . .+E

(
YT ·

T∏
t=t0+1

Z̄t|Ft0

)]
|Ft0−1

)
=

= CAt0−1 (Xt0 , Xt0+1, . . . , XT ) + E
(
Yt0 · Z̄t0|Ft0−1

)
+ E

(
Yt0+1 · Z̄t0+1 · Z̄t0|Ft0−1

)
+ . . .

+ E
(
YT · Z̄T · Z̄T−1 · . . . · Z̄t0+1 · Z̄t0 |Ft0−1

)
It should be noted that because the mappings are integrability adapted and the Z̄t are

supergradients, the conditional expectations E
(
Xt · Z̄t|Ft−1

)
are also pt−1-integrable by

theorem 4.2.1. This means all the (conditional) expectations involved in each nesting-step

are pt-integrable.
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Because we made no restriction on T it was shown by backward induction that W =

(Wt+1, ...,WT ) as de�ned above is a supergradient for CAt (·) for any t ≤ T . �

Interestingly the supergradients Wt in Lemma 5.2.3 above are martingales. This is shown

in the following corollary:

Corollary 5.2.4. Let {At}t∈{1,...,T}be a collection of u.s.c. p̄−integrability adapted condi-
tional acceptability mappings again. Then the process {Wt}t∈{t0+1,...,T} of the supergradients

de�ned in Lemma 5.2.3 is a martingale.

Proof. From theorem 4.2.8 we know E
(
Z̄t|Ft−1

)
= 1 because of predictable transla-

tion equivariance. Moreover as the process Wt is adapted to Ft, Wt−1 is Ft−1-measurable.

Therefore

E (Wt|Ft−1) = E
(
Wt−1 · Z̄t|Ft−1

)
= Wt−1 · E

(
Z̄t|Ft−1

)
= Wt−1

holds. �

Using Lemma 5.2.3, the chain rule for compositions can be formulated in the following

theorem:

Theorem 5.2.5. Let A (·) be an acceptability functional and {At−t}t∈{1,...,T}, T ≥ 2 a

collection of integrability adapted conditional acceptability functionals. Choose supergradi-

ents Z̄T ∈ ∂AT−1(·)|XT
and Z̄t ∈ ∂At−1(·)|Xt+CAt(Xt+1,...,XT ) for t ∈ {0, ..., T − 1}. Then a

supergradient for the acceptability composition CA (·; [A0(·),A1(·), . . . ,AT−1(·)]; F) at the

base points X1, ..., XT is given by a T -tuple W = (W1, ...,WT ) with

W1 ≡ Z1

and

Wt+1 = Wt · Z̄t+1.

Proof. From Lemma 5.2.3 it follows that the composition of the integrability adapted

acceptability functionals {At}t∈{1,...,T} has a supergradient given by W 1 = (W2, ...,WT ).

Applying the same argument as above, using monotonicity and the de�nition of subgra-

dients this time for the unconditional acceptability functional A0 we get

CA0 (X1 + Y1, X2 + Y2, . . . , XT + YT ) = A0 (X1 + Y1 + CA1 (X2 + Y2, . . . , XT + YT ))
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≤ A0

(
X1 + CA1 (X2, . . . , XT ) + Y1 + E

(
Y2 · Z̄2|F1

)
+ . . .+E

(
YT · Z̄T · Z̄T−1 · . . . · Z̄2|F1

))
and therefore

CA0 (X1 + Y1, X2 + Y2, . . . , XT + YT ) ≤

≤ A0 (X1 + CA1 (X2, . . . , XT )) +

+ E
(
Z̄1 ·

[
Y1 + E

(
Y2 · Z̄2|F1

)
+ . . .+E

(
YT · Z̄T · Z̄T−1 · . . . · Z̄2|F1

)])
= CA0 (X1, X2, . . . , XT )+E

(
Y1 · Z̄1

)
+E

(
Y2 · Z̄2 · Z̄1

)
+. . .+E

(
YT · Z̄T · Z̄T−1 · . . . · Z̄2 · Z̄1

)
�

Remark. The critical conditions for theorem 5.2.5 are monotonicity and concavity. While

concavity assures that something like a supergradient makes sense, by monotonicity in-

equalities for later periods can be translated into inequalities for earlier periods. Transla-

tion equivariance is not a necessary condition for theorem 5.2.5, so it could be stated for

concave monotonic conditional acceptability mappings.

As pointed out before, we abstain from using theorem 4.3 in Papageorgiou [21], which is

valid for completely continuous operators. Nevertheless at least continuity of the operators

at some point inside the domain would - in the light of theorem 4.2.3 - be a useful additional

property, assuring the existence of subgradients in the interior of the domain.

So far we have characterized supergradients of an acceptability composition. Using the-

orem 4.2.8 we can also calculate the dual representation of the composition using the

concave conjugate functions of the constituent conditional mappings.

Theorem 5.2.6. Under the assumptions of theorem 5.2.5 an acceptability composition can

be represented by

(5.2.1) CA0 (X1, X2, . . . , XT ) =

inf
Z1,...,ZT

{
T∑
t=1

E (Xt ·Mt)−A∗0 (Z1)−
T−1∑
t=1

E (A∗t (Zt+1) ·Mt) : Z ∈ Z

}

with Z = {Z| ∀t : M1 = Z1; Mt+1 = Mt · Zt;; Zt ≥ 0; E (Zt|Ft−1) = 1, Zt ∈ Zt} being a

subset of the dual space.
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Proof. Theorem 4.2.8 can be used recursively to replace the conditional mapping At
in the de�nition of conditional acceptability mappings (de�nition 5.2.2 ). In this way the

theorem can be proved by backward induction. Here we will only show one step in this

procedure:

By theorem 4.2.8 and because the At are conditional acceptability mappings by theorem

4.2.8 we have

AT−2 (YT−1) = inf
ZT−1

{
ET−2 (YT−1 · ZT−1)−A∗T−2 (ZT−1) : ZT−1 ≥ 0; ET−2 (ZT−1) = 1

}
.

This holds also for time t = 0, where the appropriate σ-Algebra becomes the trivial σ-

Algebra and the mapping, its dual and the expectation can be understood as unconditional.

If we apply these identities to the de�nition of acceptability compositions we get :

AT−2 (XT−1 +AT−1 (XT )) = inf
ZT−1

{
ET−2 ([XT−1 +AT−1 (XT )] · ZT−1)−A∗T−2 (ZT−1)

}
= inf
ZT−1

{
ET−2

([
XT−1 + inf

ZT

{
ET−1 (YT · ZT |FT−1)−A∗T−1 (ZT )

}]
· ZT−1

)
−A∗T−2 (ZT−1)

}
= inf
ZT−1

{
ET−2 (XT−1 · ZT−1) + ET−2

(
inf
ZT

{
ET−1 (YT · ZT )−A∗T−1 (ZT )

}
· ZT−1

)
−A∗T−2 (ZT−1)

}

We know a supergradient Z̄T of AT−1 (XT ) by assumption and this supergradient is also a

minimizer of
{
ET−1 (YT · ZT |FT−1)−A∗T−1 (ZT )

}
by theorem 4.2.7. Because of monotonic-

ity all the Zt are nonnegative and hence Z̄T is also a minimizer of
[
ET−1 (YT · ZT )−A∗T−1 (ZT )

]
·

ZT−1. Therefore we can interchange in�mum and conditional expectation by proposition

2.2.19.

AT−2 (XT−1 +AT−1 (XT )) =

= inf
ZT−1

{
ET−2 (XT−1 · ZT−1) + inf

ZT

{
ET−2

([
ET−1 (YT · ZT )−A∗T−1 (ZT )

]
· ZT−1

)}
−A∗T−2 (ZT−1)

}
= inf
ZT−1,ZT

{
ET−2 (XT−1 · ZT−1) + ET−2

([
ET−1 (YT · ZT )−A∗T−1 (ZT )

]
· ZT−1

)
−A∗T−2 (ZT−1)

}
= inf
ZT−1,ZT

{
ET−2 (XT−1 · ZT−1) + ET−2 (YT · ZT · ZT−1)− ET−2

(
A∗T−1 (ZT ) · ZT−1

)
−A∗T−2 (ZT−1)

}

All the in�ma in this derivation must be understood with respect to the constraints ZT ≥

0 ∧ E (ZT |F1) = 1 and ZT−1 ≥ 0 ∧ E (ZT−1|F1) = 1.
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In this derivation we make use of proposition 2.2.19. This is possible because the inner

in�mum, representing a conjugate mapping must be attained if the superdi�erential is not

empty - which is the case, since we know the supergradients by assumption.

Iterating these steps and de�ning the variable Mt as M1 = Z1 and Mt+1 = Mt · Zt+1 we

get the statement of the theorem. �

Evidently there is a tight connection between theorems 5.2.6 and 5.2.5: The Zt can be

interpreted as supergradients of the conditional mappings At and then - in the light of

theorem 5.2.5 - the Mt constitute a supergradient of the composition. So the equation

CA0 (X1, X2, . . . , XT ) =

inf
Z1,...,ZT

{
T∑
t=1

E (Xt ·Mt)−A∗0 (Z1)−
∑T−1

t=1 E (A∗t (Zt+1) ·Mt) : Z ∈ Z

}

basically gives the conjugate representation of the composition and the mapping A∗0 (Z1)+∑T
t=1 E (A∗t (Zt+1) ·Mt) is its conjugate CA∗0. We only have to eliminate the Zt from the

equation.

This can be done easily, if we assume Zt 6= 0a.s. for all t- leading to the inequality Zt > 0,

which means that all the mappings and functionals are strictly monotonic. In this case

the Zt can be easily replaced by Zt = Mt

Mt−1
. Using this substitution on equation 5.2.6, we

get

(5.2.2) CA0 (X1, X2, . . . , XT ) =

inf
M1,M2,...,MT

{
T∑
t=1

E (Xt ·Mt)−A∗0 (M1)−
T∑
t=1

E
(
A∗t
(
Mt+1

Mt

)
·Mt

)
: Mt ∈M

}
,

with

M =

{
Mt|Mt > 0; E

(
Mt

Mt−1

|Ft−1

)
= 1

}
.

Here the conjugate of the composition is given by A∗0 (M1) +
∑T

t=1 E
(
A∗t
(
Mt+1

Mt

)
·Mt

)
.
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If the Zt(ω) can be zero on some set Q with positive probability, equation 5.2.1 can be

rewritten in the following way:

(5.2.3) CA0 (X1, X2, . . . , XT ) =

inf
M1,M2,...,MT

{
T∑
t=1

E (Xt ·Mt)−A∗0 (M1)−
T∑
t=1

ψ(Mt,Mt+1) : Mt ∈M′

}
,

where

M′ = {M |Mt ≥ 0; E (Mt|Ft−1) = Mt−1}

and

ψ(Mt,Mt+1) = sup
Zt+1

{E (A∗t (Zt+1) ·Mt) : Mt+1 = Mt · Zt+1, Zt+1 ∈ Zt} .

M′ restricts the processMt to be a nonnegative martingale and the functions ψ(Mt,Mt+1)

are de�ned for them:

If we would assume a set of ω where Mt−1 equals zero and Mt is positive, there must

be another set with positive probability, where Mt is negative - otherwise the martingale

restriction E (Mt|Ft−1) = Mt−1 can not be ful�lled. But for a nonnegative martingale such

a set must have probability zero.

It follows that 5.2.1 or 5.2.3 are in fact the dual representations of acceptability composi-

tions and A∗0 (M1) +
∑T

t=1 ψ(Mt,Mt+1) is the associated conjugate mapping.

We formulate this result as a corollary:

Corollary 5.2.7. Under the assumptions of theorem 5.2.5 and withM′ and ψ(Mt,Mt+1)

de�ned as above, the supergradient representation of an acceptability composition is given

by

CA0 (X1, X2, . . . , XT ) =

inf
M1,M2,...,MT

{
T∑
t=1

E (Xt ·Mt)−A∗0 (M1)−
∑T

t=1 ψ(Mt,Mt+1) : Mt ∈M′

}
,

withM′ = {Mt|Mt ≥ 0; E (Mt|Ft−1) = Mt−1} .

Proof. Using the arguments above this follows from theorem 5.2.6 . �
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It is easy to see that any acceptability composition must be concave and monotonic: As a

nesting of monotonic concave mappings it must be concave itself and it is monotonic be-

cause of the inequalities Mt ≥ 0 a.s. for all t. Furthermore, a composition of information

monotonic acceptability mappings will have the property of (multi-period) information

monotonicity: This is assured by the information monotonicity of each conditional map-

ping and the monotonicity of the unconditional functional together with the monotonicity

of each mapping and functional.

It should be noted that acceptability compositions are not translation-equivariant: The

equation E (Mt|Ft−1) = Mt−1 states that the process of dual variables is a martingale, but

without additional assumptions there is no way to get the equation E (Mt|Ft−1) = 1 which

would be required for translation equivariance . However from M0 = 1 and E (Mt|Ft−1) =

Mt−1 at least the equation E (Mt) = 1 follows, which - by theorem 5.1.5 - is the criterion

for weak translation equivariance.

We state these results as a corollary:

Corollary 5.2.8. An acceptability composition is a concave (MA2), monotonic (MA3)

multi-period functional, but generally not an acceptability functional. Only weak trans-

lation equivariance (MA1') holds. If the conditional mappings involved are information

monotonic, the composition will be information monotonic (M0) as well. Under this con-

dition an acceptability composition is a weak multi-period acceptability functional and also

proper and upper semicontinuous.

Proof. See the argumentation above. Properness and upper semicontinuity follows

from 5.1.5. An alternative proof for (MA1'), (MA2) and (MA3), which is independent of

the dual representation 5.2.2 is given in [23], theorem 3.33. �

Example 5.2.9. Based on theorem 5.2.7 the nested average value at risk - constructed by

nesting conditional AV@Rαs for the later periods with an unconditional AV@Rαfor the

�rst period - has the following representation:

nAV@Rα(X; F) =

inf
M1,M2,...,MT

{
T∑
t=1

E (Xt ·Mt) : 0 ≤Mt ≤ 1
α
·Mt−1, E (Mt|Ft−1) = Mt−1,M0 = 1

}
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5.3. Separable Expected Conditional Functionals

A seemingly obvious way for de�ning multi-period functionals consists of applying single-

period functionals to the random variables Xt of the process under consideration and sum

up the results:

A (X; F) =
T∑
t=1

A[t] (Xt)

Such multi-period functionals are called separable functionals. If the single-period func-

tionals used are concave, the resulting separable functional - as a weighted sum of concave

functionals with nonnegative, nonzero weights - is also concave (MA2). Also it is easily

seen that separable functionals are weakly translation-equivariant (MA1') and monotonic

(MA3) if this is also true for all their constituents.

Unfortunately it is not automatically guaranteed that a multi-period functional is infor-

mation monotonic for arbitrary single period acceptability functionals. That means that

generally such multi-period functionals are not weak acceptability functionals without

additional measures to assure this property. For example sums of expectations or sums

of AV@Rs as well as sums of other typical single-period functionals are not information

monotonic.

It is clear why this problem arises: If a multi-period functional should be information

monotonic, the constituent single-period functionals must account for the information

structure. But normal single-period functionals only rely on the information available at

the beginning - namely the trivial σ-Algebra. Any information that might become known

after the beginning is not relevant for them.

Happily there is a way for de�ning separable functionals that account for information

in the right way: As we have seen above, information monotonicity is also an issue for

conditional acceptability mappings (4.1.5). So, a better way of constructing multi-period

functionals consists in taking sums of expectations of conditional acceptability mappings.

Such functionals are called separable expected conditional (SEC, [23], p 145).

Definition 5.3.1. (SEC-functional) A multi-period acceptability functional is called sep-

arable expected conditional (SEC) if it is of the form

A (X; F) =
T∑
t=1

E
(
A[t] (Xt|Ft−1)

)
,
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where the A[t] (•|Ft−1) are conditional u.s.c. acceptability mappings.

The most important and best known SEC-functional is the multi-period average value at

risk ([25])
T∑
t=1

E (AV@Rα (Xt|Ft−1)).

SEC-functionals are weak multi-period acceptability functionals: As separable functionals

they ful�ll (MA1'), (MA2) and (MA3) and are information monotonic, if their constituent

conditional mappings are information monotonic.

A multi-period functional A is separable if and only if its dual is separable, and it is SEC

if and only if its dual is SEC (proposition 3.27 in [23]). That means that the concave

conjugate of a SEC-functional can be represented in the form

A∗ (Z; F) =
T∑
t=1

E
(
A[t]∗ (Zt|Ft−1)

)
.

Building on the chain-rule from theorem 5.2.5 we can characterize the supergradients of

SEC-functionals:

Theorem 5.3.2. Let A (X; F) =
T∑
t=1

E
(
A[t] (Xt|Ft−1)

)
be a SEC-functional and Z =(

Z1, . . . , ZT

)
a vector of supergradients of the constituent conditional acceptability map-

pings A[t]. Then Z is a supergradient of the SEC-functional.

Proof. Each summand E
(
A[t] (Xt|Ft−1)

)
can be interpreted as an acceptability com-

position, with no action between the beginning and period t. The conjugate of the expecta-

tion equals zero at one and is unbounded elsewhere. That means that the (super)gradient

of the expectation must be one (almost sure). Supergradients for the conditional accept-

ability mappings A[t] are given by Zt.

Applying theorem 5.2.5 we see that for each t the product Zt · 1 = Zt must be a su-

pergradient of the associated acceptability composition E
(
A[t] (Xt|Ft−1)

)
, which means

that

E
(
A[t] (Xt + Yt|Ft−1)

)
≤ E

(
A[t] (Xt|Ft−1)

)
+ E

(
Yt · Zt

)
.

Summing over all t we get

T∑
t=1

E
(
A[t] (Xt + Yt|Ft−1)

)
≤

T∑
t=1

E
(
A[t] (Xt|Ft−1)

)
+

T∑
t=1

E
(
Yt · Zt

)
,
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or

A (X + Y ; F) ≤ A (X; F) +
T∑
t=1

E
(
Yt · Zt

)
.

This shows that Z is a supergradient for the whole SEC-functional. �

Remark. Because the constituents of a SEC functional are conditional acceptability

mappings, the restrictions on the supergradients Zt from theorem 4.2.8 - Zt ≥ 0 and

E
(
Zt|Ft−1

)
= 1 - hold.

5.4. Concluding Remarks

Acceptability compositions have some nice features e.g. the intuitive nesting structure,

similar to the case of nested conditional expectations, the martingale property of their

supergradients and information monotonicity. Additionally they are at least weak ac-

ceptability functionals. The main drawback comes from the requirement of integrability

adaptedness - especially for the general case: It is tedious to keep track of which map-

ping goes into which space at which period and what is the related allowed space for the

supergradients.

Of course there are possibilities for simpli�cation: First of all it is possible to use con-

ditional mappings Lp (Ω,Ft,P) → Lp (Ω,Ft−1,P). This seems to be the usual idea in

literature [23, 24, 32]. But it might not not be easy to �nd such conditional mappings

for p > 1.

So the most common special case are mappings L1 (Ω,Ft,P) → L1 (Ω,Ft−1,P) like the

nested AV@R above.

On the other hand we have seen that SEC-functionals have the same favorable properties

as acceptability compositions, while their construction seems to be a lot easier. Also the

requirements on the mappings involved and their supergradients are more modest. This

is because the expectation will always work, as long as the conditional mappings used for

each period at least map into L1 (Ω,Ft−1,P).

Interestingly there is a connection between SEC-functionals and acceptability composi-

tions: Assume that we apply any conditional acceptability mappings on a process, pro-

jecting the process back one period. On this �projected� process we apply an acceptability

composition, using conditional expectations as the conditional acceptability mappings and

expectation as the unconditional functional. What we then get is a SEC-functional.
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This leads to a possible generalization of SEC -functionals: Apply conditional acceptability

mappings on the process, projecting one period back and then apply any acceptability

compositions with mappings L1 (Ω,Ft,P) → L1 (Ω,Ft−1,P). One option would be again

the nested AV@R.

Such a functional is not separable any longer. On the other hand

• Those aspects of risk that are connected with higher moments can be accounted for

by the conditional mapping at the �rst step, which would not the case for simple

acceptability composition that use exclusively mappings into L1 (Ω,Ft−1,P).

• The functional is simpler than a general acceptability composition.

• It is more informative than a SEC-functional, because for each period the whole

evolvement of available information up to that period is used to measure the

acceptability.

Finally the analysis of such and other possible multi-period acceptability functionals -

based on conditional mappings - should be the subject of further research.
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Anhang





Zusammenfassung

Conditional Acceptability Mappings beschreiben die Akzeptanz von Zufallsvariablen be-

dingt auf die verfügbare nichttriviale Information. Sie können als Abbildungen von Räu-

men Lp (Ω,F , µ) nach Räumen Lp′ (Ω,F1, µ) modelliert werden, wobei die σ−Algebra
F1 die zur Bewertung verfügbare Information beschreibt. Zusätzlich wird von derartigen

Abbildungen Konkavität, Translationsequivarianz und Monotonie gefordert.

Basierend auf den Ordnungseigenschaften - insbesondere der Ordnungsvollständigkeit -

von Lp (Ω,F , µ)-Räumen, die als Banachverbände interpretierbar sind, werden das Su-

perdi�erential und die Fenchel-Moreau Konjugierte von konkaven bedingten Abbildungen

de�niert, sowie deren Eigenschaften untersucht. Die konsequente Nutzung der fast sicheren

Halbordnung zu diesem Zweck ist neu in der Literatur und vereinfacht im Folgenden Ar-

gumentation und Beweisführung bei gleichzeitiger Rücksichtnahme auf alle Bedenken hin-

sichtlich Stetigkeit, Integrierbarkeit und Meÿbarkeit der resultierenden Supergradienten

und Konjugierten.

Abschlieÿend werden die Ergebnisse über bedingte Abbildungen herangezogen, um Aus-

sagen über jene bisher in der Literatur beschriebenen Ansätze für mehrperiodige Akzep-

tanzmaÿe zu gewinnen, die sich in ihrer Konstruktion auf Conditional Acceptability Map-

pings stützen: SEC-Funktionale und verkettete Acceptability Mappings. Insbesondere

wird für letztere eine Kettenregel für das Superdi�erential, sowie eine einfache Darstel-

lung der konjugierten Abbildung hergeleitet.
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Abstract

Conditional Acceptability Mappings quantify the degree of desirability of random variables

modeling �nancial returns, accounting for available, non-trivial information. They are

de�ned as mappings from spaces Lp (Ω,F , µ) to spaces Lp′ (Ω,F1, µ), where the σ−algebra
F1 ⊆ F describes the available information. Additionally, such mappings have to be

concave, translation- equivariant and monotonically increasing.

Based on the order characteristics (in particular the order completeness) of Lp (Ω,F , µ)-

spaces, superdi�erentials and concave conjugates for conditional acceptability mappings

are de�ned and analyzed. The novelty of this work is that the almost sure partial order

is consequently used for this purpose, which results in simpler de�nitions and proofs, but

also accounts for all requirements concerning continuity, integrability and measurability

of the supergradients and conjugates.

Furthermore, the results about conditional mappings are used to show properties of mul-

tiperiod acceptability functionals that are based on conditional acceptability mappings,

such as SEC-functionals and acceptability compositions. A chain rule for superdi�erentials

as well as the conjugate of multiperiod functionals and their properties are derived.
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