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ZUSAMMENFASSUNG 
 

Die Diplomarbeit beschreibt die am häufigsten verwendeten Modelle und Methoden für die 
Bewertung von europäischen und amerikanischen Standardoptionen, sowie einige der 
bekanntesten exotischen Optionen. Diese Modelle bilden die Basis zur Entwicklung und 
Realisierung von Webservices welche die Bewertung durchführen. 

 

Im ersten Abschnitt wird der Begriff Option definiert, und das Modell für Vermögenswerte, 
welches die Basis bildet, umrissen. Der nächste Teil ist der fundamentalen partiellen 
Differenzialgleichung und deren Ableitung gewidmet, die die Entwicklung aller Derivate 
beschreibt, deren Profit von einem einzelnen zugrunde liegenden Vermögenswert abhängt. 
Danach werden die binomialen und trinomialen Modelle von Vermögensgegenständen 
beschrieben und die effiziente Bewertung von europäischen beziehungsweise amerikanischen 
Optionen anhand von binomialen und trinomialen Bäumen gezeigt. Als nächstes wird die 
Konstruktion von trinomialen Bäumen im Einklang mit den Marktpreisen europäischer 
Standardoptionen und deren Nutzung zur Bewertung von pfadabhängigen exotischen 
Optionen, wie Barrier- oder Lookback-Optionen, dargestellt. 

Der zweite Abschnitt befaßt sich mit Webservices und einer Definition des Begriffs 
Webservice. Es folgt eine ausführliche Beschreibung der Architektur für Webservices aus 
Anwendersicht sowie der notwendigen Interaktionen und Werkzeuge. Danach wird ein 
grundlegender Ansatz für die Entwicklung von Webservices aus Entwicklersicht von 
Dienstanbietern und Dienstanwendern beschrieben. Dieser erklärt den Lebenszyklus, die 
Operatoren, sowie die Interaktionen und Anwendungen, die notwendig sind, um Webservices 
im Allgemeinen zu realisieren. 

Der dritte Abschnitt zeigt die Anwendung dieser allgemeinen Konzepte und Werkzeuge unter 
Verwendung der Java™-Technologie. Der Prozess der Entwicklung und der Implementierung 
der Webservices für die Preiskalkulation wird erklärt und mittels kurzer Code-Beispiele 
verdeutlicht. Abschließend werden Beispiele dieser Webservices zur Optionsbewertung mit 
ihren Ergebnisbäumen bzw. –gittern angeführt. 
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ABSTRACT 
 

This diploma thesis describes the most commonly used models and methods for pricing 
standard European and American options, as well as some of the best known exotic options. 
These models are the base to develop and implement Web Services that manage the 
valuations. 

 

In the first part the term option is defined and the model for asset prices forming the basis is 
outlined. The fundamental partial differential equation is derived that describes the evolution 
of all derivatives whose payoff depends on a single underlying asset. Then the binomial and 
the trinomial models of asset prices are described and it is shown, how European and 
American derivatives can be priced efficiently in binomial and trinomial trees, respectively. 
Also, it is described how trinomial trees can be constructed to be consistent with the market 
prices of standard European options and shown how they can be used to price exotic path-
dependent options such as barrier or look-back options. 

The second part introduces Web Services and the term Web Service is defined. A detailed 
description of the architecture for Web Services from the operator perspective, as well as 
interactions and artifacts is given. Then a basic approach for developing Web Services from 
the point of view of the developer of service providers and service requestors is described. It 
explains the development lifecycle, operators, interactions and application development 
patterns necessary to implement Web Services in general. 

In the third part the development approach relates these common concepts and tools to their 
application using Java™ technology. The process of creating and implementing the pricing 
Web Services is explained and short code samples are given where necessary. Finally, 
valuation examples of the pricing Web Service implementation are shown with their output 
trees or lattices, respectively. 
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NOTATION 
 

Symbol Description 

t  time 

K  strike or exercise price of option 

T  maturity date of option 

usually current date will be 0 and so T will also be time to maturity 

S  asset price 

µ  drift of S 

σ  volatility of S  

usually instantaneous standard deviation of returns 

r  instantaneous continuously compounded interest rate 

δ    continuous dividend yield on an asset 

τ  time discrete cash dividend paid 

C()  European call price 

P()  European put price 

E[]  expectation operator 

dS  infinitesimal increment in asset S 

dt  infinitesimal increment of time 

dz  infinitesimal increment in a standard Wiener process during dt 

x  natural logarithm of S (ln(S)) 

v  risk neutral drift of x 

Δt  small increment of time 

Δx  small increment in x 

u  size of proportional upward move of stochastic variable, or  

  subscript indicating upward move of a stochastic variable 

d  size of proportional downward move of stochastic variable, or  

  subscript indicating upward move of a stochastic variable 

III 



m  subscript indicating a central move of a stochastic variable 

p  probability of transition in a tree 

  subscripted by u, m and d to indicate the direction of the transition 

N  number of time steps in tree 

Nj  number of nodes above and below current level of asset price 

N(x)  Standard cumulative normal distribution function evaluated at x 

i  time step index 

j, k  usually a state variable level index 

H  barrier level 

Xrebate  cash rebate associated with barrier option 

Q  state price 

Fi,j,k  path dependent variable value k at node i, j 

ni,j  number of path dependent variable values at node i, j 

exp()  ex 

IV 
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1 Options Introduction 

1.1 Genesis and History 
The year 1973 is often called the birth of options. With the establishment of the 
Chicago Board of Options Exchange (CBOE) and the introduction of options traded 
to stock exchange, a central institution for the trade with standardized options was 
present for the first time. Additionally the option clearing corporation which was 
founded in the same year served as intermediary between the contracting parties in the 
option business. 

However, options are much older and have a long and well documented history. 
Already the ancient Greeks knew about options and how to make their money with 
options. Thus Malkiel and Quandt [1] report of a philosopher named Thales, who 
earned a fortune with option contracts on the use of olive presses. In addition, in 
Amsterdam around 1600, both call and put options on tulip bulb were traded [2]. The 
first mention of options in the United States dates back to the year 1792 at the same 
time as the New York Stock Exchange was established [3]. In Austria futures and 
options are traded on the ‘Österreichische Termin-und Optionenbörse’ (OTOB). 

1.2 Options Definition 
Options are one of the main types of derivatives which are financial instruments 
whose values depend on the value of the underlying. 

‘In finance, the underlying of a derivative is an asset, basket of assets, index, or even 
another derivative such that the cash flows of the (former) derivative depend on the 
value of this underlying. There must be an independent way to observe this value to 
avoid conflicts of interest’ [4]. 

An asset is a probable future economic benefit obtained or controlled by a person or 
company as a result of a past transaction or event [5]. 

 

In order to be able to make a valuation from standardized options and exotic options, 
it is essential to understand their nature. 

The definition of an option is: 

‘Options are financial instruments that convey the right, but not the obligation, 
to engage in a future transaction on some underlying security, or in a futures 
contract’ [6]. 

It is upon the option holder's choice to exercise the option, whether the party who sold 
the option must fulfill the terms of the contract. 

 

Call options provide the right to buy a specified quantity of an asset at a set strike 
price at some date on or before expiration.  

Put options provide the right to sell a specified quantity of an asset at a set strike price 
at some date on or before expiration.  

It can be seen from this definition that the price of an option is thus affected by a 
number of factors: 
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• The present price of the underlying asset. 

• The strike price. 

• The time up to the maturity (expiration date). 

• The volatility or standard deviation of the underlying asset. 

• The interest rate. 

 

1.3 Classification 
As a classification for the bulk of different options generally the style of an option is 
used, which is usually defined by the dates on which the option may be exercised. 

Therefore the following style categories exist: 

• European options - may be exercised only on maturity (expiration date). 

• American options - may be exercised on any trading day on or before 
expiration date. 

• Bermudan options - may be exercised only on fixed dates on or before 
expiration date. 

• Barrier options – require that the underlying asset must reach some trigger 
level before the exercise can occur. 

 

Additionally the payoff of the option is used for categorization. 

For example European and American options - as well as others where the payoff is 
calculated similarly - are referred to as ‘vanilla options’. Options where the payoff is 
calculated differently are categorized as ‘exotic options’. Exotic options can pose 
challenging problems in valuation and hedging. 
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2 Black-Scholes World 
One of the most important sizes in evaluation models for options is the underlying. 
Independently of all other parameters the price of the asset to which the option refers, 
finally determines the value of the option mainly. However, a substantial basic 
assumption of a multiplicity of option evaluation models is that the exact value of the 
underlying does not let itself predict - not even by historical course time series or 
existing evaluation models [7]. However conclusions on the average value and the 
variance of course changes can be made by evaluation models or by means of these 
historical course time series. Thus a probability distribution of future asset values can 
be calculated. 

2.1 Black-Scholes Model 
Almost all option evaluation models are based on a simple model for price 
movements of the underlying, i.e. the random walk1. 

The model looks as follows:  

At time t the asset has the value S. Within a small time interval dt it changes the value 
at S to S + dS (see Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

That results in a relative profit of dS/S for the appropriate period. If an average value 
from all relative yields during a longer time period is calculated, the average growth 
rate2 μ of the asset is obtained, also known as drift or trend.  

                                                 
1 The random walk hypothesis is a financial theory stating that stock market prices evolve according to 
a random walk and thus the prices of the stock market cannot be predicted (Wikipedia, 2008). 
2 In simple models μ is assumed to be constant, or a function of S and t in more complex models. 

t 

S 

dt 

dS 

Figure 2.1: Development of an Underlying During Time 
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Moreover random changes in the price of the asset must be considered due to external 
effects - e.g. unexpected messages. This happens via a random number dz which is 
weighted by means of volatility σ - i.e. the standard deviation [7].  

A Wiener3 process dz has the following key properties: 

• dz is normally distributed with mean zero and variance dt or standard 
deviation √dt 

• the values of dz over two different, non-overlapping increments of time are 
independent 

 

If these two components are joined the stochastic differential equation is formed. 

 

dzdt
S

dS
σ+μ=        (2.1)  

 

It mathematically describes the model for the asset price. The right side of the 
equation contains a deterministic part μ dt and a part determined by the randomness 
of σ dz. 

 

However, (2.1) does not describe a single deterministic path for example of a share. In 
fact many different evolvements, that are time series, can be generated with formula 
(2.1), where each item represents a possible future course path. From these different 
evolvements interesting and important information is gained concerning the 
probability of the distribution of the share quotation at a specific time. As a result 
skewed and bell-shaped probability density functions are obtained, as in Figure 2.2. 

 

 

 
Figure 2.2: Probability Density Function of the Random Walk 

 
                                                 
3 The random variable, or equivalently the change dz, is called a Wiener or Brownian motion process. 
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If the share price obeys the model described by (2.1), the probability density function 
of the random walk is log-normally distributed. 

 

The discrete model of the random walk works very well for quite large time intervals. 
However, if used in the material life, the discrete, mathematical model is changed in 
to a continuous model where the size of the time interval converges towards zero - 
dt→0.  

2.2 Derivation of the Black-Scholes Partial Differential 
Equation 

The transformed mathematical model by means of Itô's lemma4 appears as follows: 

 

dz
S
fSdt

t
f

S
fS

S
fSdf

∂
∂

σ+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

σ+
∂
∂

μ=
²

²²²2
1   (2.2) 

 

This formula represents a substantial part during the derivation of the Black-Scholes 
option valuation formula [8]. 

Starting point for the development of the Black-Scholes formula is the assumption 
that there is an option, whose value C depends only on two sizes - i.e. the course of 
the underlying S and the time t. At this time it is not yet necessary to specify whether 
the option is a call or a put [7]. In accordance with the formula (2.2) deduced above 
the random walk, which the option C follows, can be defined as 

 

dz
S
CSdt

t
C

S
CS

S
CSdC

∂
∂

σ+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

σ+
∂
∂

μ=
²

²²²2
1   (2.3) 

 

In a further step a portfolio is designed, composed of an option C and a not yet 
specified quantity - Δ - of the underlying. The value of this portfolio is  

 

SC Δ−=Π         (2.4) 

 

And the change within one time period is 

 

dSdCd Δ−=Π        (2.5) 

 
                                                 
4 In mathematics, Itô's lemma is used in Itô stochastic analysis to find the differential of a function of a 
particular type of stochastic process. 
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The random walk of this portfolio obeys the following equation: 

 

dt
S
CSdtS

t
C

S
CS

S
CSd ⎟

⎠
⎞

⎜
⎝
⎛ Δ−

∂
∂

σ+⎟
⎠
⎞

⎜
⎝
⎛ Δμ−

∂
∂

+
∂
∂

σ+
∂
∂

μ=Π
²

²²²2
1  (2.6) 

 

If Δ - which is not yet specified - is replaced with,  

 

S
C

∂
∂

=Δ          (2.7) 

in the above formula (2.6) the random component dz can be eliminated and the 
equation simplifies to 

 

dt
S
CS

t
Cd ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

σ+
∂
∂

=Π
²

²²²2
1       (2.8) 

 

Investing amount Π into a portfolio without risk would gain a profit of rΠdt within 
one time period dt. 

If the right side of equation (2.8) would be larger than the gained profit of the 
portfolio without risk, an investor or arbitrageur could make a guaranteed profit 
without risk by borrowing an amount Π and invest in the portfolio. The profit would 
be larger than the costs of borrowing.  

Also in the contrary case the arbitrageur could make a guaranteed profit without risk 
by selling the portfolio from formula (2.8) and investing amount Π in the bank. The 
market forces of supply and demand as well as arbitrageurs ensure that there is no 
profit without risk or only very briefly. Hence the profit from the portfolio without 
risk and the portfolio from formula (2.8) must be equal or approximately equal. 
Mathematically that means  

 

dt
S
CS

t
Cdtr ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

σ+
∂
∂

=Π
²

²²²2
1      (2.9) 

 

By replacing formula (2.4) and formula (2.7) and a division through dt we finally get 
the Black-Scholes partial differential equation: 

 

0
²

²²²2
1 =−

∂
∂

+
∂
∂

σ+
∂
∂ rC

S
CrS

S
CS

t
C     (2.10) 
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All derivatives which depend only on the price of the underlying S and the time t, 
must comply with this very general formula. Therefore this equation is suitable also 
for options which look at first sight complicated, for example exotic options. 

 

The following assumptions5 are the basis to derive the equation [7]: 

• The price of the asset is log-normally distributed. 
• The risk-free interest rate r and the volatility σ are well-known functions 

depending on the time over the lifecycle of the option  
• there are no transaction costs for hedging the portfolio  
• the underlying asset does not pay a dividend during the lifecycle of the 

option  
• there are no arbitrage opportunities  
• the trade of the underlying asset takes place continuously  
• short selling is permitted and the asset is arbitrarily divisible  

 

2.3 Black-Scholes Formula 
While partial differential Black-Scholes equation was derived in chapter 2.2, this 
chapter shows how to solve the equation. In order to get a clear solution, the 
boundaries and final conditions must be defined in a first step. 

 

For a European call with a current value of C (S, t), a strike price K and an expiration 
date T the final condition at time t = T is 

 

( ) ( 0,max, KSTSC −= )       (2.11) 

This final condition corresponds to the pay-off profile at the expiry date and is well-
known with accuracy. 

For the boundary conditions the two extreme cases are examined, if the price of the 
underlying becomes zero, S = 0, and that value grows infinitely, S→∞. If the price of 
the underlying becomes zero, S = 0, the formula (2.11) shows that also dS is always 
zero and therefore the value of the underlying itself can never change. Therefore if S 
= 0 the option is worthless, even in the long run. Thus, the first lower boundary 
condition is 

 

( ) 0,0 =tC         (2.12) 

If the value of the asset rises immensely it becomes more likely that the option is 
exercised and the height of the exercise price becomes less important. Therefore, if 
S→∞ the value of the option converges to the value of the underlying. Thus, the 
second upper boundary condition is 

                                                 
5 Some of these assumptions can be dismissed by modifications in the model. 
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( ) ∞→≈ Sif, StSC       (2.13)  

 

Figure 2.3 illustrates the conditions (2.11), (2.12) and (2.13) resulting in the shaded 
area of possible option values. 

 

 
Figure 2.3: Boundary Conditions for a European call option 

 

With these conditions - (2.11), (2.12) and (2.13) - the partial differential equation can 
be solved and the well-known Black-Scholes formula6 for a European call option is 
obtained [8]: 

 

( ) ( ) ( ) ( )21, dNeKdNStSC tTr −−−=    (2.14) 

where 

( ) ∫
∞−

−
=

x dyy
exN

2

2
1

2
1
π       (2.15) 

( ) ( ) ( )
tT

tTrKS
d

−
−++

=
σ

σ 2
2
1

1
/log     (2.16) 

( ) ( ) ( )
tT

tTrKS
d

−
−−+

=
σ

σ 2
2
1

2
/log  = d1 – tT −σ   (2.17) 

                                                 
6 See [8] for the exact derivation. 
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For a European put option with the value P (S, t) the final condition is again identical 
to the pay-off profile at expiration date: 

 

( ) ( 0,max, SKTSP −= )       (2.18)  

 

For the boundary condition again the two extreme cases S = 0 and S→∞ are 
considered. As already mentioned above the value of S remains always zero in the 
case S = 0. Therefore the pay-off of the put option at time T, the exercise price K, is 
accurately determined. In order to compute the value of the put option at time t, the 
exercise price K must be discounted only. Thus, the first upper boundary condition 
results as the present cash value of the exercise price K  

 

( ) ( )tTreKtP −−=,0        (2.19) 

 

In the second case where S→∞, the exercise of the put option is very unlikely and 
thus the option gets worthless. The lower boundary condition is 

 

( ) ∞→→ StSP wenn0,      (2.20) 

 

Figure 2.4 illustrates the conditions (2.18), (2.19) and (2.20) resulting in the shaded 
area of possible option values. 

 

 

S 

P 

K  
Figure 2.4: Boundary Conditions for a European put option 
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With these conditions - (2.18), (2.19) and (2.20) - the partial differential equation can 
be solved and obtains the well-known Black-Scholes7 formula for a European put 
option [8]. 

 

( ) ( ) ( ) ( )12, dNSdNeKtSP tTr −−−= −−    (2.21) 

where 

( ) ∫
∞−

−
=

x dyy
exN

2

2
1

2
1
π       (2.22) 

( ) ( ) ( )
tT

tTrKS
d

−
−++

=
σ

σ 2
2
1

1
/log      (2.23) 

( ) ( ) ( )
tT

tTrKSd
−

−−+
=

σ
σ 2

2
1

2
/log = d1 – tT −σ   (2.24) 

 

2.4 Numerical Techniques 
Due to their simplicity the Black-Scholes formulas are widely used by market 
participants. However, they are only applicable for standard European call and put 
options and not for pricing something more complicated such as American 
options.8 

In order to value American-style options with their early exercise opportunities 
numerical techniques such as binomial and trinomial trees and finite difference 
methods must be used [7]. 

 

For exotic options especially path-dependent options, of which look-backs and 
barriers are probably the best known, again much more computationally intensive 
numerical techniques have to be applied. The pay-off of these options at maturity is 
some known function of the path that the asset takes before the maturity date, 
which can be hardly put in to a single valuation formula. 

                                                 
7 See [8] for the exact derivation. 
8 To some extent the Black-Scholes formulae can be also adapted for pricing of other than standard 
options which reduces accuracy. 
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3 Binomial Model 
One of the most common and best known numerical techniques for valuing 
options is the binomial model, especially for American-style options.  

While European call or put options can be valued by using the Black-Scholes 
formula, for American call or put options the analytical approach is not applicable. 
Also for options on assets that pay dividends where the price of these options has 
no closed-form solution, numerical procedures must be used to solve the Black-
Scholes partial differential equation. 

Since early exercise of American options can be optimal depending on the level of 
the underlying asset, the binomial model allows handling this matter. Furthermore 
several extensions to price more complex options such as exotic options are possible. 

3.1 Basics of the Binomial Model 
In the binomial model the underlying asset price is expected to follow a binomial 
process. That means that the asset price can only change to one of two possible 
values at any time and so the asset price has a binomial distribution. During a time 
period Δt a considered asset with a current price of S can move - following a 
multiplicative binomial process - up to a new level uS or down to a new level dS. 
The average behavior and volatility of the asset are specified by the parameters u 
and d. Furthermore at the end of the time period Δt a considered call option on this 
asset matures, which also is shown in Figure 3.1. These are the first two branches 
of a binomial tree starting from its root - representing today - and evolving out in 
time by one time step [8] and [10]. 

 

 

 
Figure 3.1: Simple Binomial Model of a Call Option and its Underlying Asset 

 

Similar to the Black-Scholes model, a riskless portfolio can be set up consisting of 
Δ units of the underlying asset and a short position of one call option. The value of 
the portfolio needs to be the same regardless of whether the asset price goes up or 
down over the period Δt: 

 

dSCuSC du Δ+−=Δ+−        (3.1) 

 

Rearranging the equation to: 
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Sdu
CC du

)( −
−

=Δ          (3.2) 

 

Since this portfolio is riskless it must earn the riskless rate of interest r 
(continuously compounded). 

 

)()( SCeuSC tr
u Δ+−=Δ+− Δ        (3.3) 

 

Substituting from equation (3.2) into equation (3.3) for Δ and rearranging for the 
call price at the start of the period C, gets 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
+

−
−

=
ΔΔ

Δ−
d

tr

u

tr
tr C

du
euC

du
deeC       (3.4) 

 

Defining 

 

du
dep

tr

−
−

=
Δ

 

 

and substituting into equation (3.4) for p, the following simpler form is achieved: 

 

))1(( du
tr CppCeC −+= Δ−        (3.5) 

 

The above formula (3.5) shows the pricing of a call option with one period to 
maturity. For the valuation of a put option just the pay-off condition has to be 
changed, meaning the values of Cu and Cd for a put. 

 

Cu = max(0, K - uS) 

Cd = max(0, K - dS) 

 

Note  that the actual probabilities of the stock moving up or down are never used in 
deriving the option price, just as for the Black-Scholes model. This fact implies that 
the option price is independent of the expected return of the stock and therefore 
independent of the risk preferences of investors. This allows to interpret p and (1-p) 
as risk-neutral probabilities and equation (3.4) as taking discounted expectations of 
future pay-offs under the risk-neutral probabilities. Calculating the risk-neutral 
probabilities directly from the asset price is quite simple - as assumed the return is 
the riskless rate. 
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Analogous to equation (3.5) the expected value of the underlying asset S at the end of 
the time period Δt can be written as 

 

)1()( pdSuSpSE t −+=Δ  

 

Rearranging the equation to 

 

dSduSpSE t +−=Δ )()(  

 

Substituting p 

 

du
dep

tr

−
−

=
Δ

 

 

in to the above formula, reduces to 

 
tr

t SeSE Δ
Δ =)(          (3.6) 

 

Up to now the binomial model has comprised just one time step but it can be 
expanded to use more steps [11]. 

 

In Figure 3.2 the appropriate binomial tree for an option which matures in four 
periods of time is shown [9]. Each state in the tree is a node with two labels named i 
which indicates the number of time steps and j for the number of upward movements 
of the asset price, both measured from the beginning. So the asset price at node (i, 
j) is Sij=Suidi-j and the option price is going to be Cij. For the lowest node at every 
time step j is always zero. Generally it is assumed that the Nth time step corresponds 
to the maturity date of the option. When all SN,j values are computed the value of the 
option at the maturity date is simply the known pay-off, e.g. for a call option 

 

),0max( ,, KSC jNjN −=        (3.7) 
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Figure 3.2: Four-step Binomial Tree for an Underlying Asset 

 

As with the one period example the value of the option at any node in the tree 
before maturity is the discounted expected future value. The generalized formula is 
defined as 

 

))1(( ,11,1, jiji
tr

ji CppCeC +++
Δ− −+=       (3.8) 

 

To compute the value of the option at every node at time step N-1 the equations (3.7) 
and (3.8) can be used. Reapplying equation (3.8) working backwards through the 
tree, the value of the option at every node in the tree can be computed. 

  

The valuation of a European put option is quite straight forward, just the pay-off 
structure at maturity (Nth time step) changes to the known formula. 

 

),0max( ,, jNjN SKC −=        (3.9) 

  

The backward calculation remains the same as for the European call option, using 
equation (3.8) 

 

Due to the fact that American style options can be exercised not only at the 
maturity date but at every time step, the computation has to include the possibility 
of early exercise. Thus at every node there has to be a comparison between the 
value of the option if exercised and the value if not exercised. The option value at 
that node is then the greater of the two. For example an American put option 

 

)),)1((max( ,,11,1, jijiji
tr

ji SKCppCeC −−+= +++
Δ−

    (3.10) 
 

See chapter 12.6.1 for pricing examples. 
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3.2 Generalization of the Binomial Model 
When constructing a binomial tree the behavior of the real asset price should be 
represented [8]. In order to reach this the parameters u, d and p should be chosen 
to match the mean and variance of the underlying asset during the time interval Δt. 
In the risk-neutral world the expected return from a stock is the risk-free rate r. 
Thus the expected value of the asset price at the end of the time interval Δt is 

 

SdppSuSe tr )1( −+=Δ        (3.11) 

 

or 

 

dppue tr )1( −+=Δ         (3.12) 

 

The variance of the proportional change in the asset price for interval Δt is σ2 Δt. 
Therefore it follows 

 

[ ] tdppudppu Δ=−+−−+ 2222 )1()1( σ      (3.13) 

 

This can be reduced to  

 

teuddue trtr Δ=−−+ ΔΔ 22)( σ        (3.14) 

 

by substituting from equation (3.12) for p (in a stochastic process the variance of a 
variable X defines as E(X²) – [E(X)]² ). 

 

For the three parameters p, u, and d two conditions – equation (3.12) & (3.13) 
have been set. The third condition used is 

 

d
u 1

=           (3.15) 

 

From these three conditions the values for the parameters are given by 

 

du
dap

−
−

=          (3.16) 

teu Δ= σ          (3.17) 
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ted Δ−= σ          (3.18) 

 

where 

 
trea Δ=          (3.19) 

 

to construct an appropriate binomial tree in a risk-neutral world. 

 

The only problem with this formulation is that the approximation is only good over 
a small time interval. You cannot freely choose arbitrarily large time steps. To 
obtain a more general and flexible formulation the model is reformulated in terms 
of the natural logarithm of the asset price (x = ln(S)).  

The natural logarithm of the asset price under GBM is normally distributed with a 
constant mean and variance. Applying Itô's lemma the continuous time risk-neutral 
process for x can be shown to be 

 

²
2
1

σν

σν

−=

+=

r

dzdtdx
         (3.20) 

 

Figure 3.3 shows the discrete time binomial model for x.  

The variable x can either go up with a probability of pu to a level of x + Δxu or 
down with a probability of pd = 1 - pu to a level of x + Δxd. This is known as the 
additive binomial process. 

 

  x+∆xupu

x+∆xd

∆t

pd

x

 
Figure 3.3: Simple Binomial Model of the Natural Logarithm of an Asset 

 

Equating the mean and variance of the binomial process for x with the mean and 
variance of the continuous time process over the time interval Δt leads to: 

 

²²²²²²][
][

ttxpxpx
txpxpx

dduu

dduu

Δ+Δ=Δ+Δ=ΔΕ
Δ=Δ+Δ=ΔΕ

νσ
ν

     (3.21) 
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As known pu + pd = 1 or pd = 1 - pu just trivially substitute and obtain two equations 
in three unknowns.  

 

The third condition is to set the jump sizes to be equal, which leads to 

 

²²²²²
)()(

ttxpxp
txpxp

du

du

Δ+Δ=Δ+Δ
Δ=Δ−+Δ

νσ
ν

      (3.22) 

 

and gives 

 

x
tp

ttx

u Δ
Δ

+=

Δ+Δ=Δ
ν

νσ

2
1

2
1

²²²
        (3.23) 

 

The disadvantage of this method is that its convergence is quite complicated. 
Moreover unsatisfying is that the error can actually increase with an increase in 
the number of time steps. The finite difference methods can solve this problem. 

3.3 Additive Binomial Model 
The structure of the general additive binomial model is similar to that of the 
multiplicative model [9]. As before the nodes in the tree are identified by a pair of 
indices (i,j), where j = 0,1,...,i. So every node is i periods in the future and the 
asset has made j upwards moves to reach that node. Therefore the price of the 
underlying at node (i,j) is  

 

))(exp()exp( ,, dujiji xjixjxxS Δ−+Δ+==      (3.24) 

 

After constructing the tree (see Figure 3.4) the value of the option at the maturity 
date can be calculated at the Nth time step. Working backwards through the tree each 
option price Ci,j at every node is given by 

 
)( 1,1,1, +++

Δ− Δ+Δ= jidjiu
tr

ji CxCxeC       (3.25) 
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Figure 3.4: General Additive Binomial Tree 

 

See chapter 12.6.2 for pricing examples. 

3.3.1 Pricing Underlying Asset Paying a Continuous Dividend Yield 
If the underlying asset for the construction of a binomial tree is a stock or a stock 
index that pay dividends the model has to be adapted. 

In the case of a continuous dividend yield - which is mainly used for options on 
stock indices – the valuation is quite straight forward. In order to take into account 
the continuous dividend yield, just replace r by (r - δ) wherever it appears in the 
formulas9. For the variables Δx, pu and v the general additive formula with equal 
jump sizes changes to 

 

²
2
1

2
1

2
1

²²²

σδν

ν
νσ

−−=

Δ
Δ

+=

Δ+Δ=Δ

r

x
tp

ttx

u         (3.27) 

 

Processing of the valuation is therefore the same as with an underlying asset which 
pays no dividend: 

1. Constructing the tree and calculating the asset prices at each node  
2. Valuating the several option prices at maturity date 
3. Working backwards through the tree to calculate the price of the option 

today (T=0) 

                                                 
9 Just as the stochastic differential equation changes to 

SdzSdtrdS σδ +−= )(        (3.26) 

in the Black-Scholes world. 
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3.3.2 Pricing Underlying Asset Paying a Known Discrete Cash 
Dividend 

In the common case of a known cash dividend on the asset the situation becomes 
more difficult. Then the binomial tree gets non-recombining for nodes after the ex-
dividend date. Figure 3.5 shows a binomial tree for an asset paying a cash amount D 
at a time τ where the condition kΔt < τ < (k+1)Δt is satisfied. 

 

 
Figure 3.5: Binomial Tree with Adjustment for a Known Discrete Cash Dividend 

 

For the time prior to the dividend date the tree nodes remain unchanged. 
Otherwise the value of the asset at node (i,j) becomes 

 

DxxS du −ΔΔ )exp()exp( jij −        (3.28) 

 

The number of nodes increases dramatically - at time (k+m)Δt there are m(k+1) 
nodes rather than k+m+1. 

To handle this problem and obtain a recombining tree a particular assumption 
about the volatility of the asset price is made. It is supposed that the asset price 

 has two components. The uncertain part that is,  and the certain part that is 

the present value of the future dividend stream. The value of  is given by 

tS tS
~

~

tS
 

tt SS =
~

  when   t > τ        (3.29) 

 

and 

 

)( tr
tt DeSS −−−= τ

~
 when  t ≤ τ      (3.30) 
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The volatility of  is defined as  and assumed to be constant. The binomial tree 
parameters pu, pd, ΔXu, Δxd are calculated in the usual way, but with 

tS
~ ~

σ
σ  replaced by 

. The binomial tree is constructed in the same way as before, where the value of 
the asset is  

~
σ

 

)(
~

)exp()exp( trji
d

j
ut DexxS −−− +ΔΔ τ  when t = iΔt < τ  

 

and 

 

ji
d

j
ut xxS −ΔΔ )exp()exp(

~
 when t = iΔt > τ. 

 

See chapter 12.6.2.3 for a pricing example. 

3.4 Binomial Model and Path-Dependent Options 
Path-dependence with options explains how the payoff structure of such an option is 
limited or affected by the evolvement of the stock price of an underlying asset in 
course of time, even though past stock prices may no longer be relevant. So in this 
context path-dependence is used to mean simply ‘history matters’ e.g. the asset price 
on a fixing date or was the asset price above or below a specific level during an 
observation period (barrier option). 

The binomial tree modeling even some exotic options - e.g. path-dependent options 
especially barrier options - can be priced using this method. Barrier options differ 
from standard options by a predetermined level H, the barrier level. If the asset 
price falls below or rises above the barrier the option knocks out and pays off 
nothing, or knocks in and starts to exist. 

Due to the problems with accuracy, convergence and the simplicity of the tree 
structure binomial trees are not ideal. However, the simple tree structure gives the 
basic idea how to price those options. 

Figure 3.6 gives an example how to price an American down-and-out call option 
and shows following three paths of the development of the asset price:  

• Path 1 does not go below the barrier level and finishes above the strike 
price and therefore pays off. 

• Path 2 does not go below the barrier level, but finishes below the strike 
price and therefore pays off zero. 

• Path 3 goes below the barrier and therefore pays off nothing even though it 
finishes above the strike price. 
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The pricing of this option in a binomial tree is similar to the early exercise 
problematic. At every node the value of the underlying asset must be compared to the 
barrier level H and if it is triggered - below the barrier - the option price at this node 
is set to zero. 

 

See chapter 12.6.2.4 for a pricing example. 

St 

S0 

K 

H 

t0  tn-1       tn       tn+1        T   t

Path 1 

Path 2 

Path 3 

Different Asset Paths Down-and-Out Call Option1Figure 3.6: Different Asset Paths for a Down-and-Out Call Option 
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4 Trinomial Trees and Finite Difference Models 
The binomial model showed some inefficiency regarding accuracy and 
convergence. To obtain more significant option prices the binomial model can be 
further adapted to a trinomial and implied tree structure respectively (based on [9]). 

4.1 Trinomial Tree Model 
The risk-neutral model of an underlying asset paying a continuous dividend yield 
has the following stochastic differential equation 

 
SdzSdtrdS σδ +−= )(        (4.1) 

 

Again it is more convenient to work in terms of x = ln(S) which leads to 

 

dzdtdx σν +=  

 

where            (4.2) 

²
2
1 σδν −−= r  

 

Figure 4.1 shows a trinomial model of an asset which, over a small time interval Δt, 
can go up by Δx - the space step - stay the same or go down by Δx, with the 
probabilities pu, pm and pd respectively10.  

 

x+∆x

pu

x-∆x

∆t

pd

x pm x

 
Figure 4.1: Simple Trinomial Tree Model of an Underlying Asset 

 

                                                 
10 Δx cannot be chosen independently of Δt and a good choice is tx Δ=Δ 3σ . 
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The relationship between the continuous time process and the trinomial process of 
the drift and volatility parameters stated by Δx, pu, pm and pd are shown in the 
following formulas:  

 

txppxpx dmu Δ=Δ−++Δ=ΔΕ ν)()0()(][     (4.3) 

²²²²)()0(²)(²][ ttxppxpx dmu Δ+Δ=Δ++Δ=ΔΕ νσ     (4.4) 

1=++ dmu ppp         (4.5) 

 

Solving equations (4.3) to (4.5) gives 
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²

²²²
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1

       (4.8) 

 

The one step trinomial model as shown in Figure 4.1 can be extended to form a 
complete trinomial tree (Figure 4.2) where i represents the time step and j represents 
the level of the asset price relative to the initial asset price. Thus at a certain node (i 
j) there is t=iΔt , and Si,j = S exp(jΔx) and the option price is Ci,j. The values of the 
option at maturity (T = NΔt) is given by the known pay-off, for example for a call 
option 

 

),0max( ,, KSC jNjN −=        (4.9) 
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Figure 4.2: Structure of the Trinomial Tree 

 
Again we can compute option values as discounted expectations in a risk-neutral 
world. The option values of earlier nodes are computed by discounting their 
predecessors with the corresponding probabilities. 

 

)( 1,1,11,1, −++++
Δ− ++= jidjimjiu

tr
ji CpCpCpeC      (4.10) 

 

Although much more data has to be computed within a trinomial tree it shows 
advantages over the binomial tree:  

• much better approximation to the continuous time process for the same 
number of time steps  

• easy to work with because of its more regular lattice and higher flexibility 
• comfortable extension to time-varying drift and volatility parameters 

 

See chapter 12.6.3.1 for a pricing example. 

4.2 Finite Difference Models 

4.2.1 Explicit Finite Difference Models 
A related model approach to solve the problem of option valuation, that takes the 
advantages of a trinomial tree into account, are finite difference methods. The idea 
behind is simplifying the Black-Scholes partial differential equation (4.11) by 
replacing the partial differentials with finite differences [12] and [13]. 
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Again it is more convenient to work in terms of x = ln(S) which leads to 
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Figure 4.3: Lattice for Finite Difference Approach 

 

An approximation in equation (4.12) is used to obtain the explicit finite difference 
method – for ∂C/∂t a forward difference is used and for ∂²C/∂x² and ∂C/∂x central 
differences are used. Therefore, the terms of the lattice are 
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which can be rearranged to 

 

1,1,11,1, −++++ ++= jidjimjiuji CpCpCpC       (4.14) 



Trinomial Trees and Finite Difference Models 
 

26 
 

⎟
⎠
⎞

⎜
⎝
⎛

Δ
+

Δ
Δ=

xx
tpu 2²2

² νσ
       (4.15) 

tr
x

tpm Δ−
Δ

Δ−=
²
²1 σ

        (4.16) 

⎟
⎠
⎞

⎜
⎝
⎛

Δ
−

Δ
Δ=

xx
tpd 2²2

² νσ
       (4.17) 

 

Equation (4.14) is equivalent to the discounted expectations approach. This can 
be demonstrated by taking a slightly different approximation (to the partial 
differential equation) for the value at node (i,j) rather than (i+1,j) in the last term 
of equation (4.13) 
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Which can be rewritten as 
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, where 1/(1+rΔt) is an approximation of 1/erΔt. Therefore the explicit finite 
difference method is equivalent to approximating the diffusion process by a discrete 
trinomial process.  

The relationship between the lattice values in equation (4.14) is shown in Figure 
4.4. 

 



Trinomial Trees and Finite Difference Models

 

 27 
 

 
Figure 4.4: Structure of the Explicit Finite Difference Model 

 

See chapter 12.6.3.2 for pricing examples. 

 

Because the accuracy of this method is O(Δx2 + Δt) the error can be halved when 
Δx2 + Δt is halved. Therefore the time step must be halved, but the space step only 
needs to be reduced by a factor of 21 . 

 

To ensure stability and convergence of the finite difference method the 
following conditions must be fulfilled: 

• the probabilities pu, pm and pd have to be positive 
• the condition tx Δ≥Δ 3σ has to be satisfied 
• the convergence condition, that is the discretization error – i.e. the 

difference between the exact solution of the partial differential equation and 
the solution of the finite difference equation – must tend to zero as space 
and time steps tend to zero  

• the stability condition, that is the round-off error – i.e. the difference 
between the solution of the finite difference equation and the numerically 
computed solution – must be small and remain bounded 

4.2.2 Implicit Finite Difference Models 
Again it is more convenient to work in terms of x = ln(S) which leads as before to 
the well know Black-Scholes partial differential equation. 
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Transforming the equation (4.12) by replacing the space derivatives with central 
differences at time step i rather than at i+1 gives 
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Which can be rearranged to 

 

jijidjimjiu CCpCpCp ,11,,1, +−+ =++       (4.24) 
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The relationship between the lattice values is shown in Figure 4.5. 

The equation (4.24) for each node (i,j) with j = -Nj+1,..., Nj-1 cannot be solved 
individually for the option values at time step i. Therefore they must be considered, 
together with the boundary conditions, 

 

UNiNi jj
CC λ=−

−1,,         (4.28) 

LNiNi jj
CC λ=− −− + ,, 1         (4.29) 

 

to be a system of 2Nj+1 linear equations which implicitly determine the 2Nj+1 
option values at time step i. The boundary condition parameters λU and λL are 
determined by the type of option being valued, for example for a call we have  
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Figure 4.5: Structure of the Implicit Finite Difference Model 

 

The equation set has a special structure which is called tri-diagonal. Each equation 
has two variables in common with the equation above and below. When writing 
the equation set in matrix form the tri-diagonal structure can clearly be seen: 

 

1 -1 0 … … … 0  Ci,Nj  λU 

pu pm pd 0 … … 0  Ci,Nj-1  Ci+1,Nj-1 

0 pu pm pd 0 … 0  Ci,Nj-2  Ci+1,Nj-2 

… … … … … … …  … = … 

0 … 0 pu pm pd 0  Ci,-Nj+2  Ci+1,-Nj+2 

0 … … 0 pu pm pd  Ci,-Nj+1  Ci+1,-Nj+1 

0 … … … 0 1 -1  Ci,-Nj  λL 
 

Figure 4.6: Matrix Form of Tri-Diagonal Equation Set 

 

Solving this tri-diagonal matrix equation can be done very efficiently. Beginning 
with the boundary condition equation j = -Nj this equation is rewritten to obtain 
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Substituting (j = -Nj+1) into the equation above  
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is obtained, which can be rearranged to 
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Thus the original equation with three unknowns has become equation (4.34) 
with only two unknowns.  

Equation (4.34) can be rewritten to   
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Substituting (j = -Nj+2) into the equation for  
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(the added subscripts to the p's indicate the application to the equation for j = -
Nj+1). 

This process of substitution can be repeated all the way up to j = Nj-1 obtaining: 
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Using equation (4.35) and the boundary condition equation for j = Nj 

 

UNiNi jj
CC λ=−
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can be solved for both Ci,Nj and Ci,Nj-1. To obtain Ci,Nj-2  the next equation down for 
j = Nj-2 and Ci,Nj-1 are used. This process called back-substitution can be repeated 
all the way down to j = -Nj, thus solving the complete tri-diagonal system of 
equations (Figure 4.6). 

 

See chapter 12.6.3.3 for a pricing example. 

 

While the accuracy of the implicit finite difference method has the same order as the 
explicit finite difference method - O(Δx2+Δt) - more importantly, it is 
unconditionally stable and convergent. Thus gives more freedom to trade-off 
accuracy for speed by decreasing the time steps because there is no need to worry 
about a stability and convergence condition. The values of pu, pm and pd can no 
longer be interpreted as probabilities, pu and pd will typically be negative while pm 
will be greater than one. But, it can be proofed that the implicit finite difference 
approximation is equivalent to a generalized discrete stochastic process where the 
asset price may jump to every node in the lattice at the next time step. 

4.2.3 Crank-Nicolson Finite Difference Models 
A further refinement of the implicit finite difference method is the Crank-Nicolson 
method. It replaces the space and time derivatives with finite differences centered at 
an imaginary time step at (i+1/2) and is also called a fully centered method. The 
Crank-Nicolson finite difference equation looks as follows: 
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Which can be rearranged to 
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The right-hand side of equation (4.40) consists of known option values and the known 
constant coefficients pu, pm, pd and can therefore be considered a known constant. 
Together with the boundary conditions, 
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the set of equations (4.40) – (4.43) for j = -Nj+1,...,Nj-1 build again a tri-diagonal 
system of equations. The solution of these equations can be efficiently done very 
similar to the implicit finite difference method above.  

 

The relationship between the lattice values in equation (4.40) is illustrated in Figure 
4.7. 

 

 
Figure 4.7: Structure of the Crank-Nicolson Finite Difference Model 

 

The accuracy of the Crank-Nicolson method is 
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and is unconditionally stable and convergent. However, this method converges 
much faster than the implicit or explicit finite difference methods.  

Again, the values of pu, pm and pd can no longer be interpreted as probabilities, pu 
and pd will typically be negative while pm will be greater than one. But, it can be 
proofed that the Crank-Nicolson finite difference approximation is equivalent to a 
generalized discrete stochastic process where the asset price may jump to every 
node in the lattice at the next time step.  

 

See chapter 12.6.3.4 for a pricing example. 
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5 Implied Trees and Exotic Options 
The methods discussed so far are only applicable for standard options and some 
specific exotic options such as down-and-out. Furthermore the market’s expectation 
of the future in terms of market prices of standard European options is not covered 
as all parameters are time constant.  

Generalizing the binomial and trinomial trees by making previously constant 
parameters (such as the probabilities) time dependent and implying these time-
dependent parameters is the idea behind implied trees. In this way it is recognized 
that the real market is incomplete without the standard options and so the standard 
options should be treated as fundamental securities which prices are observed in 
the market (based on [9]). 

5.1 Basics of the Implied Tree Model 
The structure of the implied trinomial tree will be very similar to that of the constant 
coefficient trinomial tree.  

Here, at each node there is a state price Qij
11, which is interpolated and/or 

extrapolated market data to obtain the required strike and maturity needed. 
Furthermore instead of a single set of transition probabilities pu, pm and pd a 
different set of transition probabilities pu,i,j, pm,i,j, and pd,i,j for every node (i j) is used. 
The value of an option at node (i,j) will be Ci,j as before, and time step N will 
correspond to the maturity date.  

This has the following advantages without complicating the tree-building procedure: 

• the time steps Δti can be different  
• the asset price levels can vary with the time step 
• convenient modeling of the tree ensuring that time steps fall on key dates 

required for the exotic options 
 

                                                 
11 See Black-Scholes chapter for the derivation of state prices. 
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Figure 5.1: Structure of the Implied Trinomial Tree 

 

5.2 Implied State Prices 
The state prices for the nodes at time step N in the tree should be computed such 
that they are consistent with the market prices of standard European call and put 
options. Consider the highest node in the tree (N,N) at time step N. The price of an 
European call with strike price SN,N-1 - asset price at the next node down -, and with 
a maturity date at time step N is 

 

NNNNNNNN QSStNSc ,1,,1, )(),( −− −=Δ       (5.1) 

 

because for all the nodes below (N,N) the pay-off of the call option is zero. Equation 
(5.1) can be rewritten to give the state price Q N,N  at node (N,N) in terms of the 
known call price, asset price and strike price. The price of an European option with 
a strike price equal to the asset price SN,N-2 at node (N,N-2), is given by 
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The only unknown in equation (5.2) is QN,N-1  since QN,N  was previously computed. 
Working down the nodes at time step N to the middle of the tree computing the 
state prices the option price, for node (N,j), is given by 
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where everything is known except QN,J. From the bottom node of the tree working 
upwards to the central node of the tree this procedure can be started using put 
option prices, because of the iterative nature of the calculations numerical errors 
can build up in the state prices using call prices. This method can be applied to 
every time step in the tree. 

 

5.3 Implied Transition Probabilities 
From the calculated state prices at every node in the tree, where the local no-
arbitrage relationships must hold, the transition probabilities are obtained. 
Assuming that the transition probabilities for all the nodes above node (i,j) are 
already computed, the transition probabilities for node (i,j) can be computed 
according to the following conditions:  
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The first condition requires that the transition probabilities sum up to one. 

 

1,,,,,, =++ jiujimjid ppp        (5.5) 

 

The second condition is that the asset price at node (i,j) has to be equal to its local 
discounted expected value over the next time step. 
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Finally, the forward evolution equation for the state price at node (i+1,j+1) is: 
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Given the transition probabilities for all the nodes above (i,j) equation (5.7) can be 
rewritten to: 
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As well for pm,i,j and pd,i,j 
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The relationship diagram between the state prices and transition probabilities is 
shown in Figure 5.2. 

 

 
Figure 5.2: State Prices and Transition Probabilities 

 

For the highest node (i,i) at time step i, and for node (i,i-1) equation (5.8) reduces to 
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and 
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using equations (5.9) and (5.10) to obtain pm,i,j and pd,i,j respectively pm,i,i-1 and pd,i,i-1. 

 

Starting at the top of the tree the transition probabilities can be solved in an iterative 
manner working downwards. Again to avoid numerical errors for the lower part of 
the tree the process is stopped at the central node. For the lower half of the tree pd,i,j 
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is directly obtained from the forward evolution of the state prices, and then pm,i,j and 
pu,i,j are obtained by solving the remaining two equations simultaneously. 

 

Therefore, equations (5.8) – (5.12) become 
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To ensure that the transition probabilities remain positive it is necessary that the 
explicit finite difference method stability condition (Δx > σ tΔ3 ) is satisfied at 
every node.  

 

])²[(²][²]var[ xxtx local ΔΕ−ΔΕ=Δ=Δ σ      (5.18) 

 

A simple and robust way to meet this condition is to set the space step as follows: 

 

tx Δ=Δ 3maxσ         (5.19) 

 

Where σmax is the maximum implied volatility from the standard options to which 
the tree is being fitted. 

 

See chapter 12.6.4.1 for a pricing example. 

5.4 Exotic Options and Implied Trees 
Plain Vanilla options share certain characteristics such as one underlying asset or the 
fact that the payoff depends only on the underlying asset at maturity. Further they are 
defined as a call option or a put option and the payoff is determined as the difference 
between the asset price and the strike price. 
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The particular feature of exotic options is to soften the restrictions of vanilla options. 
So the payoff additionally can be dependent of the average asset price on different 
fixing dates (asian option). In another case the payoff is dependent on whether the 
asset price was above or below a specific level during an observation period (barrier 
option). Here the path taken by these exotic options is of prime importance and 
therefore they are called path-dependent options. Also it is possible that the payoff is 
determined on the weighted average of several underlying assets (basket option) or 
the option is not predefined as a call or put option (chooser option). A vast number of 
other exotic options exist which are not categorized in to an own community. 

5.4.1 Pricing Barrier Options 
The difference between standard options and barrier options is that they appear or 
disappear only if the underlying asset price hits a predetermined level - H - the 
barrier [14]. 

There are three parameters to be defined: 

• barrier level:  defines if the barrier is below or above the current  
asset price - down or up 

• barrier condition:   defines whether the option disappears or appears  
when the barrier is crossed - out or in 

• option type:   as for standard options - call or put  
 

A down-and-out call option for example, has the pay-off of a standard call option 
except if the underlying asset price goes down below the barrier level H then the 
option disappears and pays nothing. The pay-off of a down and out call can be 
expressed as follows: 
 

HSST
tmt

KS
>

−
),...,min( 1

),0max(  

 

In Table 5.1 all 8 possible parameter combinations are listed with a mathematical 
definition of their pay-off. 

Name pay-off 

Down and out call max(0,ST - K) | min(St1 …. Stm)>H 

Up and out call max(0,ST - K) | max(St1 …. Stm)<H 

Down and in call max(0,ST - K) | min(St1 …. Stm)≤H 

Up and in call max(0,ST - K) | max(St1 …. Stm)≥H 

Down and out put max(0,K - ST) | min(St1 …. Stm)>H 

Up and out put max(0,K - ST) | max(St1 …. Stm)<H 

Down and in put max(0,K - ST) | min(St1 …. Stm)≤H 

Up and in put max(0,K - ST) | max(St1 …. Stm)≥H 
where |condition is the indicator function which has value one if 

condition is true and zero otherwise 
 

Table 5.1: Different Barrier Options 
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An example of three possible developments of the underlying asset price for an 
American down-and-out call option is given in Figure 3.6 – chapter ‘The Binomial 
Model’. 

 

Barrier options are generally cheaper than standard options because of the 
possibility that the option disappears or never appears. As the asset price becomes 
very low relative to the strike price the chances of it finishing in the money are very 
low, while with a standard option the buyer still pays for this chance. A standard 
variation on the barrier family are barrier options which pay a predetermined cash 
rebate (Xrebate) if an "out" option disappears or an "in" option never appears. 

The procedure for calculating the barrier option price is quite similar to the pricing 
of standard options except that the barrier boundary condition is added. For a down-
and-out call option this means, when stepping back through the tree at every node 
where the underlying asset price is below the barrier the option price is set equal to 
the rebate amount - which may be zero [9]. 

 

See chapter 12.6.4.2 for a pricing example. 

 

5.4.2 Pricing Look-Back Options 
The difference between standard options and look-back options is that either the final 
asset price or the strike price is set equal to the minimum or maximum asset price 
observed on one of a set of predetermined fixing dates, ti; i = 1,..., m [15]. 

There are two parameters to be defined: 

• look-back condition: defines whether the asset price or the strike  
price is replaced  - fixed strike or floating strike 

• option type:   as for standard options - call or put  
 

In Table 5.2 all 4 possible parameter combinations are listed with a mathematical 
definition of their pay-off. 

 

Name pay-off 

Fixed strike look-back call max(0,max(St1 …. Stm)-K) 

Fixed strike look-back put max(0,K-min(St1 …. Stm)) 

Floating strike look-back call max(0, ST -min(St1 …. Stm)) 

Floating strike look-back put max(0,max(St1 …. Stm)- ST) 
 

Table 5.2: Different Look-Back Options 

 

A fixed strike call option for example, has the pay-off of a standard call option, except 
that the asset price at the maturity date is replaced by the maximum asset price that 
occurred over the set of fixings specified.  
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Figure 5.3 illustrates two possible paths of the underlying asset price:  

• Path 1: the maximum level of the asset price at the fixing dates occurs at 
fixing date t1 - this is below the strike price K and so the pay-off at T is zero.  

• Path 2:  the maximum occurs at fixing date t3, - is above the strike price and 
so the pay-off is St3-K even though the path finishes below the  strike 
price. 

 

For the floating strike look-backs, if the maturity date is a fixing date then they are 
not really options since they will always be exercised. That is the worst pay-off that 
can occur is zero if the price at maturity is the maximum or minimum of the 
observed prices. 

Look-back options thus allow the holder to buy or sell the underlying asset for the 
best of the observed prices.  

 

St 

K 
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Path 1 
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Figure 5.3: Fixed Strike Look-back Call Option Example Paths 

 

Because of their path dependency the pricing of look-back options in trees is 
complicated. This means, the value of the look-back option at any node in the tree 
depends on the current maximum or minimum asset price, which in turn depends 
on the path the asset price took to reach that node. As there can be many different 
paths through a tree to a particular node (see Figure 5.4) the look-back option can 
have many different values at a particular node [9]. 
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Figure 5.4: Different Paths to the same Node in a Trinomial Tree 

 

To compute the price of a look-back option in a tree all the possible values of the 
maximum or minimum at each node must be considered. In general, the number of 
paths which reach a given node increases exponentially with the number of time 
steps to that node. Fortunately the number of maximum or minimum asset prices 
only increases linearly with the number of time steps, but this still increases 
significantly the amount of computation required.  

 
The procedure is quite similar as for standard options. Step back through the tree in 
the usual way except that at every node the range - i.e. the minimum and 
maximum - of the possible maxima which can occur for every node in the tree 
must be determined first. This means, at every node the minimum and maximum 
possible maximum asset prices which could have occurred for all paths which reach 
the node are stored. Then choose an appropriate set of values of the maximum 
between the minimum and maximum possible for each node - the nodes which lie 
on the upper and lower edges of the tree have only one path passing through them, 
and therefore there will be only one maximum. The largest range of values will 
occur in the central section of the tree. Therefore the number of values considered 
should increase linearly with the number of time steps but also decrease linearly 
from the central nodes of the tree down to one at the edges of the tree. 

 

Let ni,j be the number of values stored at node (i,j) and Fi,j,k , k=1,..., ni,j be the 
values of the maximum, where Fi,j,1 is the minimum and Fi,j, njj  is the maximum. 
Figure 5.5 illustrates the structure of the nodes.  
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Qi+1,j+1 pu,i+1,j+1     
  pm,i+1,j+1   
  pd,i+1,j+1     

Fi+1,j+1,1 Fi+1,j+1,2 ... Fi+1,j+1,n 
Ci+1,j+1,1 Ci+1,j+1,2 ... Ci+1,j+1,n 

Qi,j pu,i,j     Qi+1,j pu,i+1,j     
  pm,i,j     pm,i+1,j   
  pd,i,j       pd,i+1,j     

Fi,j,1 Fi,j,2 ... Fi,j,n Fi+1,j,1 Fi+1,j,2 ... Fi+1,j,n 
Ci,j,1 Ci,j,2 ... Ci,j,n Ci+1,j,1 Ci+1,j,2 ... Ci+1,j,n 

Qi+1,j-1 pu,i+1,j-1     
  pm,i+1,j-1   
  pd,i+1,j-1     

Fi+1,j-1,1 Fi+1,j-1,2 ... Fi+1,j-1,n 
Ci+1,j-1,1 Ci+1,j-1,2 ... Ci+1,j-1,n 

 
Figure 5.5: Structures of Nodes for the Valuation of a Path-Dependent Option 

 

If ni,j is given by 
 

))((1, jabsin ji −+= α        (5.20) 

 

where α is typically between one and five, ni,j will always be one at the edges of 
the tree (j=i and j=-i) and 1+αi in the centre of the tree. Thus, α can be increased 
to improve the accuracy of the approximation by considering more values of the 
maximum, whilst keeping the computational effort required under control.  

 

In order to find the range of values of the maximum step forward through the tree 
from i=0 to i=N. Having found the range of maxima for all nodes up to time step 
i-1, then for any node (i,j) the minimum maximum must be the greater of the 
minimum maximum of the lowest node at time step i-1 with a branch to the current 
node and the asset price at the current node: 

 

),max( 1,,11,, jjiji SFF
i−=        (5.21) 

 

where node (i-1,ji) is the lowest node with a branch to node (i,j). Similarly, the 
maximum maximum must be the greater of the maximum maximum of the highest 
node at time step i-1 with a branch to the current node and the asset price at the 
current node: 
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),max( ,,1,, jnjinji SFF
u−=        (5.22) 

 

where node (i-1,ju) is the highest node with a branch to node (i,j). 

A uniform spread for the set of ni,j values of the maximum over the range found at 
each node (i,j) is given by 
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The value of the option at maturity at every node and for every value of the 
maximum can be set, once all the values of the maximum at every node have been 
computed. 

 

nkNNjKFC kjikjN ,...,1,,...,),,0max( ,,,, =−=−=     (5.24) 

 

Finally, again step back through the tree computing discounted expectations and 
applying the early exercise condition at every node and for every value of the 
maximum 

 

)( ,1,1,,,,1,,,1,1,,,, djijidmjijimujijiu
tr

kji CpCpCpeC i
−++++

Δ− ++=    (5.25) 

 

where Ci+1,j+1,u, Ci+1,j,m, Ci+1,j-1,d, are the values of the option at time step i+1, given 
the current maximum, for upward, middle and downward branches of the asset.  

For the middle and downward branches the maximum will remain the same, it 
cannot be changed by the asset price decreasing. 

 

kjimji FF ,,,,1 =+    kjidji FF ,,,1,1 =−+       (5.26) 

 

For the upward branch the maximum is the greater of the current maximum and 
the asset price at the upward branch node 

 

),max( 1,,,1,1 +++ = jkjiuji SFF        (5.27) 

 

The maxima Fi+1,j+1,u Fi+1,j,m Fi+1,j-1,d and therefore also the option values Ci+1,j+1,u, 
Ci+1,j,m Ci+1,j-1,d will not, in general, be stored at the upward, middle and downward 
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nodes and therefore must be obtained by interpolation. For example using linear 
interpolation having 
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where ki and ku are such that 

 

ui kjiujikji FFF ,1,1,1,1,1,1 ++++++ ≤≤    and   .1+= iu kk  

 

That is, the two maxima which lie closest to either side of Fi+1,j+1,u are found and a 
linear interpolation between these is done to obtain an estimate for Ci+l,j+1,u and 
similarly for Ci+1,j,m and Ci+1,j-1,d. This will always be possible because at every 
node the minimum and maximum possible values of the maximum are stored. 
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6 Web Services 

6.1 Web Services Introduction 
Web services are expected to revolutionize our life in the same way as the Internet has 
during the past decade or so. The key is that Web services provide a common protocol 
that Web applications can use to connect to each other over the Internet. 

As a result of Web services the integration of applications is more easily and quickly 
than ever before. This integration takes places at a higher level in the protocol stack 
and is based on messages. The core issue of these messages is the emphasis of service 
semantics and less network protocol semantics which enables the possibility of loose 
integration of functions. These are ideal characteristics to connect business functions 
across the Web either between enterprises as well as within enterprises. 

Web services are a technology for deploying and providing access to business 
functions over the Internet. There are several development platforms, tools, and kits to 
help building Web services [16]. 

6.2 Overview of Java Web Services 
From a software architect's point of view, a Web service can be considered as a 
service-oriented architecture, which consists of a collection of services that 
communicate with each other (and end-user clients) through well-defined interfaces. 
One advantage of service-oriented architecture is that it allows the development of 
loosely coupled applications that can be distributed and accessed, from any client, 
across the network [17]. 

6.3 Web Services Definition 
A Web service is ‘a software system designed to support interoperable machine-
to-machine interaction over a network’ (W3C) [18]. 

A Web service is ‘an interface that describes a collection of operations that are 
network-accessible through standardized XML messaging’ (IBM) [19]. 

‘Web Services are self-describing components that can discover and engage 
other Web services or applications to complete complex tasks over the Internet’ 
(SUN) [20]. 

The main advantage of Web services is that they are built on existing industry 
standards. Web services are application components that are designed to support 
interoperable machine-to-machine interaction over a network. This interoperability is 
gained through a set of XML-based open standards, such as the Simple Object Access 
Protocol (SOAP), the Web Services Description Language (WSDL), and Universal 
Description, Discovery, and Integration (UDDI). These standards provide a common 
and interoperable approach for defining, publishing, and using Web services. 

For example, the services are described in Extensible Markup Language (XML) and 
are communicated over the Hypertext Transfer Protocol (HTTP). This union is one 
way to form the new industry standard called Simple Object Access Protocol (SOAP). 
Publication of Web services is done via two standards, the Universal Description, 
Discovery, and Integration (UDDI), and Discovery (DISCO). 
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6.4 Web Services Properties 
The Web service interface hides the complexity of the service implementation. 

This fact provides the following advantages for the service: 

• Independent usage (hardware/software platform, programming language) 

• Loosely coupled 

• Component oriented 

• All terrain implementations 
 

The Web service description takes place through standardized formal XML 
messaging. 

The content of the Web service description covers the following information details: 

• Interaction with the service. 

• Message formats which detail the operation. 

• Transport protocols. 

• Location of the service. 
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7 Web Services Model 
The Web service model is based on interactions between three operators - service 
provider, service requestor and service registry. The interactions include the, 
publish, find and bind operations. Together, the interactions and operators handle the 
Web services artifacts - the Web service software module and the Web service 
description (see Figure 7.1) [21]. 
 

 
Figure 7.1: Interactions, Operators and Artifacts 

 

A typical scenario would consist of the following steps: 
1. The service provider hosts the service software module (implementation of a 

Web service). 

2. The service provider defines a service description for the Web service. 

3. The service provider publishes the service description to the service requestor 
and/or service registry. 

4. The service requestor uses a find operation to retrieve the service description. 

5. The service requestor uses the service description to bind with the service 
provider. 

6. Finally, the service requestor invokes or interacts with the Web service 
implementation. 
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Figure 7.2: Web Services Model 

 

7.1 Operators of the Web Services Model 
Following operators are involved in the Web service model: 

• Service provider is the owner of the service and the author of the Web service 
description. This operator (platform) hosts access to the service.  

• Service requestor is any kind of business with certain functions which want 
to be satisfied or an application that is invoking or initiating an interaction 
with the service. So the service requestor can be anyone using a browser or a 
program without a user interface, for example another Web service. 

• Service registry is a searchable data base where service providers publish 
their service descriptions. Service requestors can find services and obtain 
binding information from the service descriptions. Also other sources besides 
a service registry, such as a local file, FTP site, Web site or Discovery of Web 
services (DISCO) can obtain a service description. This means that the service 
registry is an optional operator in the Web service model (e.g. if the service 
requestor has the service description there is no need for the service registry). 

 

7.2 Interactions of the Web Services Model 
The following three elementary interactions must take place for an application to 
consume the Web service:  

1. Publish the service description(s). 

2. Find the service description(s). 

3. Bind or invoke the service(s) based on the service description(s). 
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In detail, these interactions are: 

• Publish. A service description is only accessible, when it is published so that 
the service requestor can find it. The location where the service description is 
published depends on the requirements of the application. 

• Find. In the find operation, the service requestor retrieves a service 
description directly from the service provider or queries the service registry 
(see below) for the type of service required. This operation can occur in two 
different lifecycle phases - at design time to retrieve the service's interface 
description for program development, and at runtime to retrieve the service's 
binding and location description for invocation. 

• Bind. In the bind operation the service requestor invokes or initiates an 
interaction with the service at runtime. Therefore it uses the binding details in 
the service description to localize, contact and invoke the service. 

 

7.3 Artifacts of the Web Services Model 
The Web service model contains the following artifacts: 

• Service. A service is a software module deployed on a network-accessible 
platform to be invoked by or to interact with a service requestor. It is also 
possible that the service acts as a requestor, by referring to other Web services 
in its implementation. 

• Service Description. The service description contains the details of the 
interface and implementation of the service, including data types, operations, 
binding information and network location. The service description is published 
either to a service requestor or to a service registry. 
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8 Web Services Architecture 
This section handles the role of service description in the Web services architecture 
and service publication techniques supporting static as well as dynamic12 Web 
services applications. Regarding to service publication, the mechanism of service 
discovery is shortly discussed as well [22]. 

8.1 Web Services Protocol Stack 
To review the Web services architecture at first, a detailed look at a conceptual stack 
for Web services is taken. Included are the layers for choosing the network protocol, 
XML-based messaging and extended basic XML messaging with a service 
description. 

In order to perform the three Web services operations publish, find and bind a Web 
services stack must incorporate standards at each level. Figure 8.1 shows a conceptual 
Web services protocol stack with the standards that apply at the corresponding layer. 
The lower layers provide capabilities that upper layers build on, whereas the vertical 
bars represent enterprise-class infrastructure requirements that must be fulfilled [19]. 

 

 
Figure 8.1: Web Services Protocol Stack 

 

8.2 Network Layer 
The base layer of the Web services stack is the network layer. Web services that are 
publicly available on the Internet are generally described in XML and are 
communicated over the existing HTTP infrastructure. Because of its omnipresence, 
HTTP can be seen as the quasi standard network protocol but also supported are the 

                                                 
12 Depending on the Web services lifecycle when binding takes place - before runtime (static) or during 
runtime (dynamic). 
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Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), e-mail, and so 
on. 

8.3 XML-Based Messaging Layer - SOAP 
SOAP once stood for ‘Simple Object Access Protocol’ but was considered to be 
misleading and therefore this acronym was dropped with Version 1.2. SOAP is a 
simple XML-based protocol to exchange structured data between network 
applications, normally using HTTP. SOAP therefore is the standard enveloping and 
exchanging transport mechanism embedding document-centric messages and remote 
procedure calls (RPC’s) using XML [23]. 

This protocol is chosen as the XML messaging protocol for several reasons: 

• SOAP is simple and extensible - an HTTP message within an XML envelope. 

• SOAP messages support publishing, finding and binding Web services 
operations. 

• SOAP embraces message extensions like headers and standard coding 
mechanism of operations or functions, to satisfy compliance with standards at 
every level. 

• SOAP can be used in combination with a variety of network protocols such as 
HTTP, SMTP, FTP (see above). 

 

8.3.1 SOAP message structure 
The structure of a SOAP message with/out attachment can be seen in Figure 8.2. 
SOAP consists of three parts: 

• The envelope that defines a framework, describing what is in a message. 

• A set of coding rules to express the instances of application-specific data 
types. 

• Conventions to represent remote procedure calls and responses. 
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Figure 8.2: SOAP Message Structure with/out Attachment 

 

8.3.2 SOAP message example 

In this example, a GetStockPrice request is sent to a server. The request has a 
StockName parameter, and a Price parameter will be returned in the response. 
The namespace for the function is defined in ‘http://www.example.org/stock’ address 
[24]. 

SOAP request message: 
<?xml version="1.0"?> 
<soap:Envelope 
xmlns:soap="http://www.w3.org/2001/12/soap-envelope" 
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding"> 
 
  <soap:Body xmlns:m="http://www.example.org/stock"> 
    <m:GetStockPrice> 
      <m:StockName>IBM</m:StockName> 
    </m:GetStockPrice> 
  </soap:Body> 
 
</soap:Envelope> 
 

SOAP response message: 
<?xml version="1.0"?> 
<soap:Envelope 
xmlns:soap="http://www.w3.org/2001/12/soap-envelope" 
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding"> 
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  <soap:Body xmlns:m="http://www.example.org/stock"> 
    <m:GetStockPriceResponse> 
      <m:Price>34.5</m:Price> 
    </m:GetStockPriceResponse> 
  </soap:Body> 
 
</soap:Envelope> 
 

8.3.3 XML Based Messaging using SOAP 
The main requirements for a network node to operate as service requestor or provider 
are the capability to communicate over an accessible network and the capability to 
build and/or parse SOAP messages. Usually, a Web application server running SOAP 
performs these functions. As an alternative, a programming language-specific runtime 
library can be used that encapsulates these functions within an API. Figure 8.3 shows 
how SOAP (XML-based messaging) and network protocols (HTTP, FTP,...) builds 
the base of the Web services architecture [25]. 

Figure 8.3: XML Based Messaging using SOAP 

 

Typical scenario – Application integration using SOAP: 

1. The service requestor's application creates a SOAP message. Together with 
the network address of the service provider, the service requestor passes this 
message to the local SOAP infrastructure (e.g., the SOAP client). The SOAP 
client runtime uses an underlying network protocol (e.g. HTTP) to transmit the 
SOAP message over the network. 

2. The SOAP message is delivered to the service provider's SOAP runtime (e.g. 
SOAP server). The SOAP server converts the XML message into 
programming language-specific objects if required by the application and 
routes the request to the service provider's Web service. 

3. The Web service processes the request message and formulates a response, of 
course also a SOAP message. The response is passed to the local SOAP 
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runtime specifying the service requestor as its destination, where the SOAP 
message response is sent to the service requestor. 

4. Finally the response message is received by the networking infrastructure on 
the service requestor's node, where it is routed through the SOAP 
infrastructure. Optionally the XML message is converted into objects of the 
target programming language. The response message is then passed to the 
application. 

 

Neither the requestor nor the provider must be aware of the other's underlying 
platform, programming language, or distributed object model (if any). The service 
description combined with the underlying SOAP infrastructure hides these details 
apart from the service requestor's application and the service provider's Web service. 

8.4 Service Description Layer 

8.4.1 From XML Messaging to Web Services 
A stack of description documents defines the service description layer. This stack is 
the minimum standard service description necessary to support interoperable Web 
services. The Web services architecture uses the Web Services Description Language 
(WSDL) standard for XML-based service description. 

WSDL defines the interface and mechanics of service interaction. WSDL is an XML 
document for describing Web services as a set of endpoints operating on messages 
containing either document-oriented or procedure-oriented (RPC) content. The 
operations and messages are described abstractly, and then bound both to a concrete 
network protocol and message format in order to define an endpoint. WSDL is 
extensible to allow the description of endpoints and messages, regardless of message 
formats and network protocols used in the communication. 

Additional description is necessary to specify high level aspects of the Web service. 
The WSDL document can be complemented in order to describe the business context, 
quality of service (QOS) and service-to-service relationships. For example, the 
business context is described using UDDI data structures in addition to the WSDL 
document [22]. 

Because a Web service is defined as being network-accessible via the Web service 
stack and represented by a service description, the lower three layers are required to 
provide or use any Web service (see Figure 8.1). 

The simplest stack consists of: 

1. HTTP for the network layer, 

2. SOAP for the XML messaging layer and 

3. WSDL for the service description layer. 

 

This is the interoperable base stack that all inter-enterprise, or public, Web services 
should support. 
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8.4.2 Basic Web Service Description 
Using WSDL in the Web services architecture divides the basic service description 
into two parts - the service interface and the service implementation. Its advantage is 
that each part can be defined separately and independently, and reused by other parts. 

 

 
Figure 8.4: Basic Web Service Description 

 

A service interface definition is a reusable service definition that can be referenced 
and instantiated by multiple service implementation definitions. The service interface 
contains WSDL elements that embed the reusable fragment of the service description 
(Figure 8.4): 

• The WSDL:types elements describes the use of complex data types within the 
message. 

• The WSDL:message element is used to define the input and output parameters 
of an operation. It specifies which XML data types determine diverse parts of 
a message.  

• The WSDL:portType element defines the operations of the Web service. Like 
an operation as a method signature in a programming language it defines the 
XML messages that can appear in the input and output data flows. 

• The WSDL:binding element describes protocol, data format, security and other 
attributes of a specific service interface. 

 

The WSDL document that describes how a particular service interface is implemented 
by a service provider is the service implementation definition. A Web service is 
modeled as a WSDL:service element, which contains a collection of WSDL:port 
elements (usually one). A port associates an endpoint, for instance a network address 
location or URL, with a WSDL:binding element from a service interface definition 
(Figure 8.4). 

Together this pair makes up a basic WSDL definition of the service containing 
sufficient information to describe to the service requestor how to invoke and interact 
with the Web service. Other information about the service provider's endpoint is 
provided by the complete Web service description of the service [26]. 

8.4.3 Full WSDL Syntax 
The full WSDL 1.2 syntax as described in the W3C working draft is listed below [27]. 
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<wsdl:definitions name="nmtoken"? targetNamespace="uri"> 
    <import namespace="uri" location="uri"/> * 
    <wsdl:documentation .... /> ? 
    <wsdl:types> ? 
        <wsdl:documentation .... /> ? 
        <xsd:schema .... /> * 
    </wsdl:types> 
    <wsdl:message name="ncname"> * 
        <wsdl:documentation .... /> ? 
        <part name="ncname" element="qname"? type="qname"?/> * 
    </wsdl:message> 
    <wsdl:portType name="ncname"> * 
        <wsdl:documentation .... /> ? 
        <wsdl:operation name="ncname"> * 
            <wsdl:documentation .... /> ? 
            <wsdl:input message="qname"> ? 
                <wsdl:documentation .... /> ? 
            </wsdl:input> 
            <wsdl:output message="qname"> ? 
                <wsdl:documentation .... /> ? 
            </wsdl:output> 
            <wsdl:fault name="ncname" message="qname"> * 
                <wsdl:documentation .... /> ? 
            </wsdl:fault> 
        </wsdl:operation> 
    </wsdl:portType> 
    <wsdl:serviceType name="ncname"> * 
        <wsdl:portType name="qname"/> + 
    </wsdl:serviceType> 
    <wsdl:binding name="ncname" type="qname"> * 
        <wsdl:documentation .... /> ? 
        <-- binding details --> * 
        <wsdl:operation name="ncname"> * 
            <wsdl:documentation .... /> ? 
            <-- binding details --> * 
            <wsdl:input> ? 
                <wsdl:documentation .... /> ? 
                <-- binding details --> 
            </wsdl:input> 
            <wsdl:output> ? 
                <wsdl:documentation .... /> ? 
                <-- binding details --> * 
            </wsdl:output> 
            <wsdl:fault name="ncname"> * 
                <wsdl:documentation .... /> ? 
                <-- binding details --> * 
            </wsdl:fault> 
        </wsdl:operation> 
    </wsdl:binding> 
    <wsdl:service name="ncname" serviceType="qname"> * 
        <wsdl:documentation .... /> ? 
        <wsdl:port name="ncname" binding="qname"> * 
            <wsdl:documentation .... /> ? 
            <-- address details --> 
        </wsdl:port> 
    </wsdl:service> 
</wsdl:definitions> 
 

A concrete example for a Web service description is given in chapter 12.3. 
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8.4.4 Complete Web Service Description 
The complete Web service description answers questions about: 

• The business and type of business hosting the service. 

• The products associated with the service. 

• The associated categories in various company and product systems. 

• The provided keywords so that it is easier to find the service. 

• Other aspects of the service such as Quality of Service or Security. 
 

Finally, the top layer in the service description stack is the agreement description 
using UDDI. An agreement description represents a simple coordination of Web 
service invocations between two business partners to complete a multi-step business 
interaction.  

 

 
Figure 8.5: Complete Web Service Description 

 

The service endpoint description adds further semantics to the service description that 
apply to a particular implementation of the service. Security attributes can define the 
access policy to the Web service. Quality of Service attributes will specify 
performance-oriented service capabilities, for example, to respond within a certain 
period of time. UDDI (Universal Description, Discovery, and Integration) therefore 
provides a mechanism for holding descriptions of Web services which is not covered 
more detailed. 
As an example, the coordination of roles such as buyer and seller within a purchasing 
protocol which outlines the requirements that each role must fulfill. For example, the 
seller must have Web services that receive request for quote (RFQ) messages, 
purchase order (PO) messages and payment messages. The buyer role must have Web 
services that receive quotes (RFQ response messages), invoice messages and account 
summary messages. This simple coordination of Web services into business roles is 
essential for establishing multistep, service-oriented interactions between business 
partners. 
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8.5 Publication and Discovery of Service Descriptions 
Any action that makes a WSDL document available to a service requestor qualifies as 
service publication.  
A service description can be published using a variety of mechanisms. The simplest 
scenario is the service provider sending a WSDL document directly to a service 
requestor what is called direct publication. Direct publication, ideally via e-mail, is 
useful for statically bound applications. Alternatively, the service provider can publish 
the WSDL document describing the service to a private UDDI registry or UDDI 
operator node. 

 

Any mechanism that allows the service requestor to gain access to the service 
description and make it available to the application at runtime qualifies as service 
discovery. 

The simplest scenario of discovery is static discovery where the service requestor 
retrieves a WSDL document from a local file. This is usually the WSDL document 
obtained through a direct publish or a previous find operation.  
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9 Web Services Development Lifecycle 
A typical end-to-end lifecycle scenario would start with the creation and publication 
of a service interface (build), proceed to the creation and deployment of the Web 
service (deploy), move on to the publication of the service implementation definition 
and end with the invocation of the Web service by the service requestor (run). 

The development lifecycle includes the following phases:  

• build  

• deploy 

• run 

• manage 
 

Each Web service operator – service registry, service provider and service requestor – 
has specific requirements for each element of the development lifecycle. 

9.1 Build Phase 
The build lifecycle phase involves development and testing of the Web services 
implementation. Further it includes the definition of the service interface description 
and the definition of the service implementation description. Locating an existing 
service interface definition is also a build-time task. 

The Web services implementations can be provided by creating new Web services, 
transforming existing applications into Web services, or composing new Web services 
from other Web services and applications. 

There are some similarities between a Web service development approach and object-
oriented programming. Both use concepts such as encapsulation, interface inheritance 
and dynamic binding. This means that object-oriented design methodologies can be 
applied to Web services design, but it is not required to design a Web service. 

9.2 Deploy Phase 
The tasks of the deploy phase of the development lifecycle include the publication of 
the service interface and service implementation definition, deployment of the 
runtime code for the Web service as well as integration with back-end legacy systems. 

9.3 Run Phase 
During the run lifecycle phase, the Web service is fully deployed and operational. In 
this state, a service requestor can find the service definition and invoke all defined 
service operations. The runtime functions include static and dynamic binding, service 
interactions as a function of Simple Object Access Protocol (SOAP) messaging and 
interactions with legacy systems. 

9.4 Manage Phase 
The manage lifecycle phase covers continual management and administration of the 
Web service application. Security, availability, performance, quality of service and 



Web Services Development Lifecycle

 

 61 
 

business processes must all be addressed. This document focuses on the development 
of Web services and does not cover this phase of the lifecycle. 
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10 Developing Web Services 
This section describes the Web service lifecycle for each operator: service registry, 
service provider and service requestor. 

10.1 Service Registry 
Development and deployment of a service registry is not covered, because it is a 
passive participant. It is assumed that the registry has been built and deployed before 
it is selected for use by the service provider or service requestor. 

10.2 Service Provider 
The service provider in this context is software. To develop a Web service there exist 
four basic scenarios to implement a service provider. Which scenario is used for the 
implementation is based on the creation of a new service interface and application. 
Table 10.1 provides an overview of these development scenarios [28]. 

 

 New Service Interface Existing Service Interface 

New Web Service Green field Top-down 

Existing Application Bottom-up Meet-in-the-middle 
 

Table 10.1: Basic Scenarios for Service Provider Implementation 

 

10.2.1 Green Field Scenario 
The green field scenario for developing Web services describes how a new service 
interface will be created for a new Web service, as shown in Table 10.1. The Web 
service is created first and then the service interface definition is generated, so both 
are owned by the service provider. 
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Figure 10.1: Green Field Scenario 

 

10.2.1.1 Build Phase 
1. Develop the new Web service. 

Design and implement the application that represents the Web service, and 
verify that all of its interfaces work correctly. 

2. Define a new service interface. 

The next step is to generate the service interface definition from the 
implementation of the service. The service interface should not be generated 
until the Web service development is complete because the interface must 
match the exact implementation of the service. 

10.2.1.2 Deploy Phase 
1. Publish the service interface definition before the service is deployed. 

The service interface definition is used by a service requestor to determine 
how to bind to the service. 

2. Deploy the Web service. 

Deploy the runtime code and any deployment meta data (e.g. the deployment 
descriptor to deploy a SOAP service) that is required to run the service. After 
a service has been deployed, it is ready to be used by a service requestor. 

3. Create the service implementation definition. 

Depending on how and where the service was deployed the service 
implementation definition should be created, because it can contain references 
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to more than one version of the deployed Web service. This allows the service 
provider to implement different levels of service for service requestors. 

4. Publish the service implementation definition. 

After the service implementation definition is published, a service requestor 
can find the service definition and use it to bind to the Web service. Therefore 
the service implementation definition contains the definition of the network-
accessible endpoint or endpoints. 

10.2.1.3 Run Phase 
Run the Web service. 

The runtime environment for the Web service consists of the platform on 
which it was deployed to run. If the Web service is a servlet, then it runs in the 
context of a Web application server. If the Web service is a SOAP service, 
then it runs in the context of a SOAP server. 

 

10.2.2 Top-Down Scenario 
The top-down scenario is where a new Web service can be developed matching to an 
existing service interface, see also Table 10.1. Figure 10.2 shows, that the service 
provider must find the service interface, implement the interface contained in this 
definition, and then deploy the new Web service. Only the service implementation is 
owned by the service provider. 

 

 
Figure 10.2: Top-Down Scenario 
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10.2.2.1 Build Phase 
1. Find the service interface. 

Locate the service interface that will be implemented by the Web service by 
searching the service registry or an industry specification registry. 

2. Generate the service implementation template. 

An implementation template of the Web service is generated by using the 
service interface definition. The template contains all of the methods and 
parameters that must be implemented by the Web service to comply with the 
service interface. 

3. Develop the new Web service. 

10.2.2.2 Deploy Phase 
The only difference here, compared to the green field scenario, is that the service 
interface has already been published by another operator. 

1. Deploy the Web service. 

2. Create the service implementation definition. 

3. Publish the service implementation definition. 

10.2.2.3 Run Phase 
Run the Web service. 
The runtime environment for the Web service consists of the platform on 
which it was deployed to run. 
 

10.2.3 Bottom-Up Scenario 
As shown in Table 10.1 the bottom-up scenario creates a new service interface for an 
existing application. The application can be implemented as an Enterprise Java 
Bean™ (EJB), Java Bean, servlet, C++ or Java class file, or Component Object Model 
(COM) class. The service interface is derived from the application's API, as Figure 
10.3 shows. 
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Figure 10.3: Bottom-Up Scenario 

 

10.2.3.1 Build Phase 
Generate the service interface. 

The service interface is generated from the implementation of the application 
that represents the Web service. 

10.2.3.2 Deploy Phase 
1. Deploy the Web service. 

2. Create the service implementation definition. 

3. Publish the service interface definition. 

The service interface definition must be published before the service 
implementation definition can be published. 

4. Publish the service implementation definition. 

10.2.3.3 Run Phase 
Run the Web service. 
The runtime environment for the Web service consists of the platform on 
which it was deployed to run. 

 

10.2.4 Meet-in-the-Middle Scenario 
When a service interface and an application implementing the Web service already 
exist the meet-in-the-middle scenario is used, as shown in Table 10.1. 
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The main task here is to map the existing application interfaces to those defined in the 
service interface definition. This can be done by creating a wrapper for the 
application that uses the service interface definition. The wrapper contains an 
implementation that maps the service interface into the existing application interface. 
Figure 10.4 shows the mapping process. 

 

 
Figure 10.4: Meet-in-the-Middle Scenario 

 

10.2.4.1 Build Phase 
The first two build steps are similar as those for the top-down scenario. 

1. Find the service interface. 

Locate the service interface that will be implemented by the Web service by 
searching the service registry or an industry specification registry. 

2. Generate the service implementation template. 

3. Develop the service wrapper. 

The service wrapper is designed and implemented by using the service 
implementation template created in the previous step. 

10.2.4.2 Deploy Phase 
The deployment steps for the meet-in-the-middle scenario are similar to those of the 
bottom-up scenario the only difference is that the service interface definition is 
already published. 

1. Deploy the Web service. 

2. Create the service implementation definition. 
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3. Publish the service implementation definition. 

10.2.4.3 Run Phase 
Run the Web service. 
The runtime environment for the Web service consists of the platform on 
which it was deployed to run. 

 

10.3 Service Requestor 
The service requestor passes through the same lifecycle as the service provider, but 
the requestor performs different tasks during each phase. The build time tasks for the 
service requestor are dictated based on the method for binding to a Web service. 

From the service interface a service proxy or stub is generated which contains all of 
the code that is required to access and invoke a Web service. For example, if the Web 
service is a SOAP service, the service proxy will contain all of the SOAP client code 
that is required to invoke a method on the SOAP service. 

As Table 10.2 shows, there are three methods for binding to a specific service. Static 
binding is used only at build time, whereas dynamic binding can be used either at 
build time or runtime. Static binding cannot be used at runtime, because it requires all 
of the information needed to bind to a service at build time [28]. 

 

 Static Binding Dynamic Binding 

Build Static binding Build-time dynamic binding 

Run [not applicable] Runtime dynamic binding 
 

Table 10.2: Methods for Service Requestor Binding 

 

10.3.1 Static Binding 
When there is only one service implementation that will be used at runtime a service 
requestor will use static binding (see Figure 10.5). The static binding is done at build 
time by locating the service implementation definition for the single Web service. The 
service implementation definition contains a reference to the service interface, which 
will be used to generate the service proxy code. The service proxy contains a 
complete implementation of the client application that can be used by the service 
requestor to invoke Web service operations. 
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Figure 10.5: Static Binding 

 

10.3.1.1 Build Phase 
1. Find the service implementation definition. 

At build time, the service requestor must find the service implementation 
definition for the Web service which contains a reference to the service 
interface definition, and the location where the service can be accessed. 

2. Generate the service proxy. 

Both, the service interface definition and the service location information are 
used to generate the service proxy implementation. The service proxy will try 
to access the Web service always at the same location and will match with the 
service interface. 

3. Test the service proxy. 

To verify that the service proxy can interact correctly with the specified Web 
service, it should be tested. 

10.3.1.2 Deploy Phase 
Deploy the service proxy. 

After testing, it is deployed with the client application in the client runtime 
environment. 

10.3.1.3 Run Phase 
Invoke the Web service. 
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Run the requestor application which will invoke the Web service via the 
service proxy. 

 

10.3.2 Build-Time Dynamic Binding 
This binding method is used when a service requestor wants to use a specific type of 
Web service, but the implementation is not known until runtime or it can change at 
runtime. The type of service is defined in a service interface definition. 

 

 
Figure 10.6: Build-Time Dynamic Binding 

 

10.3.2.1 Build Phase 
1. Find the service interface definition. 

First the service interface definition for the type of service that will be used by 
the service requestor must be found. The service interface contains only the 
abstract definition of the Web service operations. 

2. Generate the generic service proxy. 

The service interface definition is used to generate a generic service proxy 
which can be used to access any implementation of the service interface. 
Unlike the service proxy generated for static binding, this proxy will not 
contain knowledge of a specific service implementation. So the generic 
service proxy will contain code to locate a service implementation by 
searching a service registry. 

3. Test the service proxy. 
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Just find an implementation of the service interface for testing. 

10.3.2.2 Deploy Phase 
Deploy the service proxy. 

If the service proxy passed testing and works correctly it should be deployed 
within the runtime environment. This process can also include the deployment 
of the requestor application that will use the service proxy. The application 
must have access to the service registry that will be searched for an 
implementation of the service interface. 

10.3.2.3 Run Phase 
1. Find the Service implementation definition. 

An implementation of the service must be located in the service registry 
before the service proxy can invoke a service. 

2. Invoke the Web service. 

After a service implementation has been found, the service proxy can be used 
to invoke the Web service.  

 

10.3.3 Runtime Dynamic Binding 
Runtime dynamic binding is similar to build-time dynamic binding the only 
difference is that the service interface is found at runtime. A service interface is used 
to generate a general service proxy interface that can be used to invoke any 
implementation of the service interface. Generally this binding method would be used 
with a user interface, because machine-to-machine interactions cannot be absolutely 
dynamic. 

10.3.3.1 Build Phase 
Build the service requestor application. 

The service requestor application is built using a dynamic binding runtime 
interface. This interface is used to find a service implementation, and then 
retrieve the service interface associated with the service implementation. 

10.3.3.2 Deploy Phase 
Deploy the service requestor application. 

The service requestor application is deployed so that it will run and use the 
Web service runtime environment. 

10.3.3.3 Run Phase 
1. Find the service implementation definition. 

To find a service implementation definition the service requestor application 
uses runtime environment. Different methods can be used to locate a service 
implementation in a service registry. It can be found by first locating a 
business or type of business, and then determining the services offered by 
those businesses. The service implementation could also be located by 
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searching for a classification of service, or by first locating a type of service 
(or service interface). If the service interface is target of a search operation, 
then it is used to locate the implementations of service interface. 

2. Generate and deploy the service proxy. 

The service proxy code that will be used to invoke the service is generated 
using the service interface associated with the service implementation. After 
the code generation, it is compiled and made available in the runtime 
environment. 

3. Invoke the Web service. 

The generated service proxy code is used to invoke the Web service. 
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11 Web Services and Java Technology 

11.1 Web Service Tools - Java 2 Platform 
A set of several developing platforms, tools, and kits can be used to help build these 
scenarios. Development tools automate various aspects of Web service development 
simplifying design, deployment and integration [17] and [29]. 

The Java 2 Platform, Enterprise Edition (J2EE) version 1.4 provides comprehensive 
support for Web services. Existing J2EE components can be easily exposed as Web 
services. 

The following implementations use the tools provided with the J2EE environment for 
several reasons:  

• Interoperability 
Web services are integrated through the JAX-RPC 1.1 API, which can be used 
to develop service endpoints based on SOAP. JAX-RPC 1.1 provides 
interoperability with Web services based on the Web Services Description 
Language (WSDL) and Simple Object Access Protocol (SOAP).  

• Portability 

J2EE 1.4 supports the WS-I Basic Profile to ensure that Web services are 
portable not only across J2EE implementations, but are also interoperable with 
any Web service developed, using any platform that conforms to the WS-I 
standards. 

• Scalability 

J2EE containers provide transaction support, database connections, life cycle 
management, and other services that are scalable and require no code from 
application developers. 

• Reliability 

• No single-vendor lock-in 
 

11.2 J2EE 1.4 SDK 
The J2EE 1.4 SDK gives access to several tools, including wscompile, which takes 
the service definition interface and generates the client-side stubs or server-side 
skeletons, or a WSDL description for the provided interface [30]. 

The J2EE 1.4 SDK includes the following tools: 

• J2EE 1.4 Application Server 

• Java 2 Platform, Standard Edition (J2SE) 1.4.2_01 

• J2EE Samples 

• Sun ONE Message Queue 

• PointBase Database Server 
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11.3 JSR 109 - Implementing Enterprise Web Services 
The process of developing and deploying Web services is coupled with the runtime 
system. The JSR 109 specification promotes building portable and interoperable Web 
services in the J2EE 1.4 environment. JSR 109 leverages J2EE technologies to 
provide an industry standard for developing and deploying Web services on the J2EE 
platform, and it provides a service architecture that is familiar to J2EE developers 
[31]. This specification outlines the lifecycle of Web services to include:  

• Development: Standardizes the Web services programming model as well as 
the deployment descriptors. 

• Deployment: Describes the deployment actions expected of a J2EE 1.4 
container. 

• Service publication: Specifies how the WSDL is made available to clients. 

• Service consumption: Standardizes the client deployment descriptors. 
 

11.4 J2EE Web Services 
JAX-RPC is a Java API for XML-based Remote Procedure Calls (RPC’s). An RPC is 
represented using an XML-based protocol such as SOAP, which defines an envelope 
structure, encoding rules, and convention for representing RPC calls and responses, 
which are transmitted as SOAP messages over HTTP [29] and [32]. 

See also Figure 8.2 chapter Web Services Architecture. 

 

The advantage of JAX-RPC is that it hides the complexity of SOAP messages from 
the developer. 

Here how it works: 

The developer specifies the remote procedures (Web services) that can be invoked by 
remote clients in a Java programming language interface; the developer implements 
the interface. The client view of a Web service is a set of methods that perform 
business logic on behalf of the client. A client accesses a Web service using a Service 
Endpoint Interface as defined by JAX-RPC. Client developers create the client - a 
proxy or a local object that represents the remote service that is automatically 
generated - and then simply invoke the methods on the proxy. Generating or parsing 
SOAP messages is all taken care of by the JAX-RPC runtime system. 

Note that J2EE Web services can be invoked by any Web service client, and any J2EE 
Web service client can invoke any Web service.  

Figure 11.1 shows how a Java client communicates with a Java Web service in the 
J2EE 1.4 platform. J2EE applications can use Web services published by other 
providers, regardless of how they are implemented. In the case of non-Java 
technology-based clients and services, the Figure would change slightly. 
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Figure 11.1: A Java Client Calling a J2EE Web Service 

 

Note that a Web service client never accesses a service directly; it does so through the 
container. This is a good thing, since it allows a Web service to benefit from the 
added functionality that the container provides -- such as security, enhanced logging, 
and quality-of-service guarantees. 

11.5 Working with JAX-RPC 
When working with JAX-RPC, remember that it maps Java types to XML/WSDL 
definitions. Knowing all the details of these mappings is not needed, but you should 
be aware that not all J2SE classes can be used as method parameters or return types in 
JAX-RPC [32]. 

JAX-RPC supports the following primitive data types: 

• boolean  

• byte  

• double  

• float  

• int  

• long  

• short 

• string 

• array 

 

In addition, it supports the following wrapper and utility classes: 

• java.lang.Boolean 

• java.lang.Byte 

• java.lang.Double 
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• java.lang.Float 

• java.lang.Integer 

• java.lang.Long 

• java.lang.Short 

• java.lang.String 

• java.math.BigDecimal 

• java.math.BigInteger 

• java.net.URI 

• java.util.Calendar 

• java.util.Date 

 

JAX-RPC also supports something called a value type, which is a class that can be 
passed between a client and a service as a parameter or return value.  

A value type must follow these rules: 

• It must have a public default constructor. 

• It must not implement java.rmi.Remote. 

• Its fields must be JAX-RPC supported types. 

• Also, a public field cannot be final or transient, and a non-public 
field must have corresponding getter and setter methods. 

 

11.6 Creating a Web Service 
Building an XML-RPC style Web service using the J2EE 1.4 platform involves the 
following five steps [29] and [31]: 

1. Design and code the Web service endpoint interface. 

2. Implement the service endpoint interface. 

3. Write a configuration file. 

4. Generate the necessary mapping files. 

5. Packaging the service in a WAR file and deploy it using the deployment tool. 

11.6.1 Design and Code the Service Endpoint Interface 
The first step in creating a Web service is to design and code its endpoint interface, in 
which you declare the methods that a Web service remote client may invoke on the 
service.  

Developing such an interface, must ensure that:  

• It extends the java.rmi.Remote interface. 
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• It does not have constant declarations such as public static final. 

• Its methods throw the java.rmi.RemoteException or one of its 
subclasses. 

• Its method parameters and return data types are supported JAX-RPC types. 
 

11.6.2 Implement the Service Endpoint Interface 
The next step is to implement the interface and compile the .java files to generate 
the .class files. 

Here the respective command: 
prompt> javac -d build *.java 

See chapter 12.1.2 for an example. 

11.6.3 Write a Configuration File 
The next step is to define a configuration file to be passed to the wscompile tool.  

This file tells wscompile to create a WSDL file with the following information:  

• The service name. 

• The WSDL namespace. 

• The package where the classes for the service are specified. 

• The service endpoint interface. 

 

See chapter 12.2for an example. 

11.6.4 Generate the Necessary Mapping Files 
Now, use the wscompile tool to generate the necessary files. 

Consider the following command:  
prompt> wscompile -define -mapping build/mapping.xml -d 
build -nd build -classpath build config.xml  

This command, which reads the config.xml file created earlier, creates the 
*.wsdl file and mapping.xml.  

The command line options or flags are:  

-define: instructs the tool to read the service endpoint interface and create a WSDL 
file. 

-mapping: specifies the mapping file and where it should be written. 

-d and -nd: specifies where to place generated output files and non-class output 
files. 

Now a Web service that is ready to be packaged and deployed has been built.  
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The WSDL file, generated by the wscompile tool, provides an XML description 
(based on WSDL) of the service that clients can invoke. To understand the details of 
the file you need some knowledge of WSDL.  

See chapter 12.3 for an example. 

The mapping file, mapping.xml, generated by the wscompile tool follows the 
JSR 109 standard for Java  WSDL mappings. The structure of the JAX-RPC 
mapping file matches closely with the structure of the WSDL file - note the 
relationship between Java packages and XML namespaces. Each service offered is 
represented as a service-interface-mapping element. This element contains 
the mapping for the fully qualified class name of the service interface, WSDL service 
names, and WSDL port names. In addition, the JAX-RPC mapping file provides 
mappings for WSDL bindings, WSDL port types, WSDL messages, and so on. 

11.6.5 Packaging and Deploying the Service 
A JAX-RPC Web service is a Web component, in J2EE terminology, and hence you 
can use deploytool to package and generate all the necessary configuration files, 
and to deploy the service. 

Behind the scenes, a JAX-RPC Web service is implemented as a servlet. Because a 
servlet is a Web component, you run the New Web Component wizard of the 
deployment tool utility to package the service. 

During this process the wizard performs the following tasks:  

• Creating the Web application deployment descriptor. 

• Creating a WAR file. 

• Adding the deployment descriptor and service files to the WAR file. 

 

See chapter 12.4 for an example. 

11.7 Creating a Web Service Client 
A client invokes a Web service in the same way as it invokes a method locally. 

11.7.1 Types of Web Service Clients 
There are the following three types of Web service clients:  

• Static Stub: A Java class that is statically bound to a service endpoint 
interface. A stub, or a client proxy object, defines all the methods that the 
service endpoint interface defines. Therefore, the client can invoke methods of 
a Web service directly via the stub. The advantage of this is that it is simple 
and easy to code. The disadvantage is that the slightest change of Web service 
definition lead to the stub being useless and this means the stub must be 
regenerated. Use the static stub technique if you know that the Web service is 
stable and is not going to change its definition. A static stub is tied to the 
implementation which means, it is implementation-specific. 

• Dynamic Proxy: Supports a service endpoint interface dynamically at 
runtime. Here, no stub code generation is required. A proxy is obtained at 
runtime and requires a service endpoint interface to be instantiated. As for 
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invocation, it is invoked in the same way as a stub. This is useful for testing 
Web services that may change their definitions. The dynamic proxy needs to 
be re-instantiated but not re-generated as is the case with stub. 

• Dynamic Invocation Interface (DII): Defines javax.xml.rpc.Call 
object instance for dynamic invocation. Unlike a stub or proxy, it must be 
configured before it can be used. A client needs to provide: operation name, 
parameter names, types, modes, and port type. As you can tell, much more 
coding is involved here. The major benefit is that since Call is not bound to 
anything, there is no impact of changes on the client side whenever the Web 
service definition changes. 

 

11.7.2 Browser-Based Client 
Finally, develop a Web client in which the Web service is invoked from a browser-
based form (Java Server Page). For the implementation the static stub client method is 
used. The client calls the method through a stub, or a local object that acts as a client 
proxy to the remote service. It is called a static stub because the stub is generated 
before runtime by the wscompile tool. 

Consider the following steps: 

1. Before developing the Java client itself, you need to write a configuration file 
(in XML) that describes the location of the WSDL file. 

The URL in the configuration file identifies the location of the WSDL file. If 
you try this URL, you'd see the appropriate WSDL service file, assuming the 
Web service is deployed. 

See chapter 12.5.1 for an example. 

2. Once you have written the configuration file, you are ready to generate client 
stubs, using the following command:  
prompt> wscompile -gen:client -d build -classpath 
build config-wsdl.xml  

This commands reads the *.wsdl (the location of which is specified in the 
config-wsdl.xml), then generates files based on the information in the 
WSDL file and on the command-line flags.  

The -gen:client instructs wscompile to generate the stubs, as well as 
other runtime files needed such as serializers and value types.  

3. The next step is to write the Web client as a servlet or a Java Server Pages 
technology page (JSP). 

See chapter 12.5.2 for an example. 

4. The last step is to package and deploy the Web client as a JSP Web 
component using the deploytool. The specified URL is to be used to 
access the service. 

 

See chapter 12.5.3 for an example. 
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12 Pricing Web Service 
The idea behind this Web service is to implement the presented models in the J2EE 
1.4 platform and to use it for the valuation of options [29], [33] and [34]. 

12.1 Service Endpoint Interface 

12.1.1 Designing 
Due to the variety of models different services with partly dependencies among each 
other exist. Here the power of Web services is demonstrated by one service using or 
better supporting the other with its valuation results. 

In Figure 12.1 the conceptual design of the Pricing Web service is given. 

 

 
Figure 12.1 UML Diagram of the Pricing Web Service 

 

12.1.2 Coding and Implementing 
The interface file named Verfahren.java looks as follows: 
package pricing; 
 
import java.lang.*; 
import java.rmi.Remote; 
import java.rmi.RemoteException; 
 
 
public interface Verfahren extends Remote  
{ 
public abstract Lattice pricing(Instrument inst) throws 
RemoteException; 
} 
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12.2 Configuring 
To describe the name of the service, its namespace, the package name and the name 
of the interface a configuration file is necessary.  

This file named config.xml has the following look: 
<?xml version="1.0" encoding="UTF-8"?> 
<configuration 
  xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config"> 
  <service 
 name="BS" 
 targetNamespace="urn:Foo" 
 typeNamespace="urn:Foo" 
 packageName="pricing"> 
 <interface name="pricing.Verfahren"/> 
  </service> 
</configuration> 
 

12.3 Mapping 
The WSDL file, generated by the wscompile tool, provides an XML description of 
the service that clients can invoke and looks as follows: 
<?xml version="1.0" encoding="UTF-8"?> 
 
<definitions name="BS" targetNamespace="urn:Foo" xmlns:tns="urn:Foo" 
xmlns="http://schemas.xmlsoap.org/wsdl/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"> 
  <types> 
    <schema targetNamespace="urn:Foo" xmlns:tns="urn:Foo" 
xmlns:soap11-enc="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns="http://www.w3.org/2001/XMLSchema"> 
      <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/> 
      <complexType name="Instrument"> 
        <sequence> 
          <element name="alpha" type="double"/> 
          <element name="derivativ" type="tns:Derivativ"/> 
          <element name="dx" type="double"/> 
          <element name="underlying" 
type="tns:Underlying"/></sequence></complexType> 
      <complexType name="Derivativ"> 
        <sequence> 
          <element name="b" type="double"/> 
          <element name="barrier" type="boolean"/> 
          <element name="barrierCondition" 
type="tns:BarrierCondition"/> 
          <element name="barrierDirection" 
type="tns:BarrierDirection"/> 
          <element name="k" type="double"/> 
          <element name="n" type="double"/> 
          <element name="optionType" type="tns:OptionType"/> 
          <element name="optionn" type="tns:Optionn"/> 
          <element name="reb" type="double"/> 
          <element name="t" type="double"/></sequence></complexType> 
      <complexType name="BarrierCondition"> 
        <sequence> 
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          <element name="value" type="int"/></sequence></complexType> 
      <complexType name="BarrierDirection"> 
        <sequence> 
          <element name="value" type="int"/></sequence></complexType> 
      <complexType name="OptionType"> 
        <sequence> 
          <element name="value" type="int"/></sequence></complexType> 
      <complexType name="Optionn"> 
        <sequence> 
          <element name="value" type="int"/></sequence></complexType> 
      <complexType name="Underlying"> 
        <sequence> 
          <element name="div" type="double"/> 
          <element name="payDiv" type="boolean"/> 
          <element name="r" type="double"/> 
          <element name="s" type="double"/> 
          <element name="sig" 
type="double"/></sequence></complexType> 
      <complexType name="Lattice"> 
        <sequence> 
          <element name="m" type="int"/> 
          <element name="n" type="int"/> 
          <element name="results" 
type="tns:ArrayOfArrayOfNode"/></sequence></complexType> 
      <complexType name="ArrayOfArrayOfNode"> 
        <complexContent> 
          <restriction base="soap11-enc:Array"> 
            <attribute ref="soap11-enc:arrayType" 
wsdl:arrayType="tns:ArrayOfNode[]"/></restriction></complexContent></
complexType> 
      <complexType name="ArrayOfNode"> 
        <complexContent> 
          <restriction base="soap11-enc:Array"> 
            <attribute ref="soap11-enc:arrayType" 
wsdl:arrayType="tns:Node[]"/></restriction></complexContent></complex
Type> 
      <complexType name="Node"> 
        <sequence> 
          <element name="empty" type="boolean"/> 
          <element name="values" 
type="tns:ArrayOfdouble"/></sequence></complexType> 
      <complexType name="ArrayOfdouble"> 
        <complexContent> 
          <restriction base="soap11-enc:Array"> 
            <attribute ref="soap11-enc:arrayType" 
wsdl:arrayType="double[]"/></restriction></complexContent></complexTy
pe></schema></types> 
  <message name="Verfahren_pricing"> 
    <part name="Instrument_1" type="tns:Instrument"/></message> 
  <message name="Verfahren_pricingResponse"> 
    <part name="result" type="tns:Lattice"/></message> 
  <portType name="Verfahren"> 
    <operation name="pricing" parameterOrder="Instrument_1"> 
      <input message="tns:Verfahren_pricing"/> 
      <output 
message="tns:Verfahren_pricingResponse"/></operation></portType> 
  <binding name="VerfahrenBinding" type="tns:Verfahren"> 
    <soap:binding transport="http://schemas.xmlsoap.org/soap/http" 
style="rpc"/> 
    <operation name="pricing"> 
      <soap:operation soapAction=""/> 
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      <input> 
        <soap:body 
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
use="encoded" namespace="urn:Foo"/></input> 
      <output> 
        <soap:body 
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
use="encoded" namespace="urn:Foo"/></output></operation></binding> 
  <service name="BS"> 
    <port name="VerfahrenPort" binding="tns:VerfahrenBinding"> 
      <soap:address 
location="REPLACE_WITH_ACTUAL_URL"/></port></service></definitions> 
 

12.4 Packaging and Deploying 
To package and generate all the necessary configuration files within a *.war Web 
application archive, deploytool is used. 

 

 
Figure 12.2 Deployment Tool - Packaging the Pricing Web Service 

 

Finally deploytool is used to deploy the service. 
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Figure 12.3: Deployment Tool – Deploying the Pricing Web Service 

 

12.5  Web Client 

12.5.1 Configuring and Generating Client Stubs 
To describe the location of the service WSDL file and package name a configuration 
file is necessary. 

This file named config-wsdl.xml has the following look: 
<?xml version="1.0" encoding="UTF-8"?> 
<configuration 
  xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config"> 
  <wsdl location="http://localhost:8080/bs-service/bs?WSDL" 
       packageName="pricing"/> 
</configuration> 
 

12.5.2 Coding the Java Server Page 
The next step is to write the Web client as a Java Server Pages technology page (JSP). 

This page with the form to enter the input variables for the Pricing Web Service has 
the following look: 
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Figure 12.4: Web Client Java Server Page 

 

12.5.3 Packaging and Deploying 
To package the Web client as a JSP Web component and generate all the necessary 
configuration files within a *.war Web application archive, deploytool is used 
again. The specified URL is to be used to access the service. 

12.6 Pricing Web Service Examples 

12.6.1 Multiplicative Binomial Model 

12.6.1.1 Pricing a European Call Option with Multiplicative Binomial Tree 
Pricing a at-the-money European call option with one-year maturity and a current 
asset price of 100. The binomial tree has four time steps and up and down 
proportional jumps of 1.1 and 0.9091 respectively. The continuously compounded 
interest rate is assumed to be 4 per cent per annum -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, u = 1.1, and d = 1/u = 0.9091.  

Figure 12.5 illustrates the numerical results, where nodes in the tree are 
represented by the boxes in which the upper value is the asset price and the lower 
value is the option price. 

 

Pre-computing the constants: 
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Computing the asset prices at maturity:  

At node (4,0)  

 

3013.689091.0100 4
0,4 =×=×= NdSS  

 

At node (4,3)  

 

00.121
9091.0

1.11002,43,4 =×=×=
d
uSS  

 

Computing the option values at maturity: 

At node (4,3) 

 

00.21)00.10000.121,0max(),0max( 3,43,4 =−=−= KSC  

 

Performing discounted expectations back through the tree:  

For node (3,3)  

 

095.3400.21)5288.01(41.465288.0(99.0))1(( 3,44,43,3 =×−+××=×−+××= CpCpdiscC
 

For node (0,0) - today -  

 

1115.9014.3)5288.01(7171.145288.0(99.0))1(( 0,11,10,0 =×−+××=×−+××= CpCpdiscC
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Figure 12.5: Pricing a European Call Option with Multiplicative Binomial Tree (JSP) 

 

12.6.1.2 Pricing an American Put Option with Multiplicative Binomial 
Tree 

Pricing an at-the-money American put option with one-year maturity and a current 
asset price of 100. The binomial tree has four time steps and up and down 
proportional jumps of 1.1 and 0.9091 respectively. The continuously compounded 
interest rate is assumed to be 4 per cent per annum -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, u = 1.1, and d = 1/u = 0.9091.  

Figure 12.6 illustrates the numerical results, where nodes in the tree are 
represented by the boxes in which the upper value is the asset price and the lower 
value is the option price. 

 

Pre-computing the constants: 
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Computing the asset prices at maturity:  

At node (4,0)  

 

3013.689091.0100 4
0,4 =×=×= NdSS  

 

at node (4,3)  
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00.121
9091.0

1.11002,43,4 =×=×=
d
uSS  

 

Computing the option values at maturity: 

At node (4,1) 

 

3554.17)6446.8200.100,0max(),0max( 1,41,4 =−=−= SKC  

 

Performing discounted expectations back through the tree:  

For node (3,1)  

 

0909.9)9091.9000.100,0959.8max())),)1((max(( 1,31,42,41,3 =−=−×−+××= SKCpCpdiscC
 

For node (0,0) - today -  

 

848.5)00.10000.100,848.5max())),)1((max(( 0,00,11,10,0 =−=−×−+××= SKCpCpdiscC
 

 
Figure 12.6: Pricing an American Put Option with Multiplicative Binomial Tree (JSP) 

 

12.6.2 Additive Binomial Model 

12.6.2.1 Pricing a European Call Option with Additive Binomial Tree 
Pricing a at-the-money European call option with one-year maturity and a current 
asset price of 100 and volatility of 20 per cent. The continuously compounded 
interest rate is assumed to be 4 per cent per annum and the binomial tree has four 
time steps -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, sig = 0.20.  



Pricing Web Service

 

 89 
 

Figure 12.7 illustrates the numerical results, where nodes in the tree are 
represented by the boxes in which the upper value is the asset price and the lower 
value is the option price. 

 

Pre-computing the constants: 
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Computing the asset prices at maturity:  

At node (4,0)  

 

9985.66100 )1001.0(4*
0,4 =×=×= −×Δ eeSS dxN  

 

At node (4,1)  

 

8526.819985.66 ))1001.0(1001.0()(
0,41,4 =×=×= −−Δ−Δ eeSS du xx  

 

Computing the option values at maturity: 

At node (4,3) 

 

1708.22)1001708.122,0max(),0max( 3,43,4 =−=−= KSC  

 

Performing discounted expectations back through the tree:  

For node (3,2)  

 

5232.11)0.0475.01708.22525.0(99.0)( 2,43,42,3 =×+××=×+××= CpCpdiscC du  
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For node (0,0) - today -  

 

4503.9)1128.3475.03659.15525.0(99.0)( 0,11,10,0 =×+××=×+××= CpCpdiscC du  

 

 
Figure 12.7: Pricing a European Call Option with Additive Binomial Tree (JSP) 

 

12.6.2.2 Pricing an American Put Option with Additive Binomial Tree 
Pricing an at-the-money American put option with one-year maturity and a current 
asset price of 100 and volatility of 20 per cent. The continuously compounded 
interest rate is assumed to be 4 per cent per annum and the binomial tree has four 
time steps -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, sig = 0.20.  

Figure 12.8 illustrates the numerical results, where nodes in the tree are 
represented by the boxes in which the upper value is the asset price and the lower 
value is the option price. 

 

Pre-computing the constants: 
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Computing the asset prices at maturity:  

At node (4,0)  

 

9985.66100 )1001.0(4*
0,4 =×=×= −×Δ eeSS dxN  

 

At node (4,1)  

 

8526.819985.66 ))1001.0(1001.0()(
0,41,4 =×=×= −−Δ−Δ eeSS du xx  

 

Computing the option values at maturity: 

At node (4,1) 

 

1474.18)8526.81100,0max(),0max( 1,41,4 =−=−= SKC  

 

Performing discounted expectations back through the tree:  

For node (3,1)  

 

5338.81474.1847025.00.051975.01,42,41,3 =×+×=×+×= CdpdCdpuC  

 

Computing the asset price 
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4724.90
9047.0
8526.811,4

1,3 ===
edxd
S

S  

 

Applying the early exercise test 

 

5276.9)4724.9000.100,5338.8max(),max( 1,31,31,3 =−=−= SKCC  

 

For node (0,0) - today -  

 

2045.6)100100),8637.1047025.01074.251975.0max((),max( 0,00,00,0 =−×+×=−= SKCC
 

 
Figure 12.8: Pricing an American Put Option with Additive Binomial Tree (JSP) 

 

12.6.2.3 Pricing an American Put Option with a Known Discrete Cash 
Dividend 

Pricing an at-the-money American put option with one-year maturity and a current 
asset price of 100 and volatility of 20 per cent. The continuously compounded 
interest rate is assumed to be 4 per cent per annum and the binomial tree has four 
time steps. The asset pays a discrete cash dividend of 3 after six months -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, D = 3, τ = 0.5.  

Figure 12.9 illustrates the numerical results, where nodes in the tree are 
represented by the boxes in which the upper value is the asset price and the lower 
value is the option price. 

 

Pre-computing the constants: 
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Computing the asset prices at maturity:  

At node (4,0)  

 

0248.65)0.3100()( )1001.0(45.004.0
0,4 =×−=×−= −××−Δ××− eeeeDSS dxNr τ  

 

At node (4,2)  

 

0594.972216.14457.791,42,4 =×=×= edxudSS  

 

Computing the option values at maturity: 

At node (4,1) 

 

5543.20)4457.79100,0max(),0max( 1,41,4 =−=−= SKC  

 

Performing discounted expectations back through the tree:  

For node (3,0)  

 

1285.279716.3447025.05543.2051975.00,41,40,3 =×+×=×+×= CdpdCdpuC  

 

Computing the asset price 
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8764.71
9047.0
0248.650,4

0,3 ===
edxd
S

S  

 

Applying the early exercise test 

 

1236.28)8764.71100,1285.27max(),max( 0,30,30,3 =−=−= SKCC  

 

For node (0,0) - today -  

 

8757.70196.1347025.03719.351975.00,11,10,0 =×+×=×+×= CdpdCdpuC  

 

Computing the asset price 

 

0322.10000.3
9047.0
812.87 )25.05.0(04.0)(0,1

0,0 =×+=×+= −−−− eeD
edxd
S

S tr τ  

 

Applying the early exercise test 

 

8757.7)0322.100100,8757.7max(),max( 0,00,00,0 =−=−= SKCC  

 

 
Figure 12.9: Pricing an American Put Option with a Known Discrete Cash Dividend (JSP) 
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12.6.2.4 Pricing an American Down-and-Out Call Option with Additive 
Binomial Tree 

Pricing an at-the-money American down-and-out call option with one-year maturity 
and a current asset price of 100 and volatility of 20 per cent. The barrier is set at 
110, the continuously compounded interest rate is assumed to be 4 per cent per 
annum and the binomial tree has four time steps -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, H = 110.  

Figure 12.10 illustrates the numerical results, where nodes in the tree are 
represented by the boxes in which the upper value is the asset price and the lower 
value is the option price. 

 

Pre-computing the constants: 
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Computing the asset prices at maturity:  

At node (4,0)  

 

9985.66100 )1001.0(4
0,4 =×=×= −×Δ× eeSS dxN  

 

At node (4,2)  

 

00.1008526.81 ))1001.0(1001.0()(
1,42,4 =×=×= −−Δ−Δ eeSS du xx  
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Computing the option values at maturity: 

At node (4,3) S4,3 > H and therefore 

 

1708.22)1001708.122,0max(),0max( 3,43,4 =−=−= KSC  

 

Performing discounted expectations back through the tree and applying the barrier 
condition:  

At node (0,0) S0,0 < H and therefore 

 

0.00,0 =C  

 
Figure 12.10: Pricing an American Down-and-Out Call Option with Additive Binomial Tree 

(JSP) 

 

12.6.3 Trinomial and Finite Difference Models 

12.6.3.1 Pricing a European Call Option in a Trinomial Tree 
Pricing a at-the-money European call option with one-year maturity and a current 
asset price of 100 and volatility of 20 per cent. The continuously compounded 
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous 
dividend yield of 3 per cent per annum, the trinomial tree has four time steps 
and the space step is 0.2 -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, δ = 0.03, Δx = 0.2.  

Figure 12.11 illustrates the numerical results, where nodes in the tree are 
represented by the boxes in which the upper value is the asset price and the lower 
value is the option price. 

 

Pre-computing the constants: 
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Computing the asset prices at maturity:  

At node (4, 4)  

 

9329.44100 2.04
4,4 =×=×= ×−Δ×−

− eeSS xN  

 

At node (4,3)  

 

8812.542214.19329.444,43,4 =×=×= −− edxSS  

 

Computing the option values at maturity: 

At node (4,2)  

 

1825.49)00.1001825.149,0max(),0max( 2,42,4 =−=−= KSC  

 

Performing discounted expectations back through the tree:  

 

2227.22)0.0119.01403.227498.01825.491312.0(99.0
)( 0,41,42,41,3

=×+×+××

=×+×+××= CpCpCpdiscC dmu  

 

At node (0,0) - today - 

 

3314.7)7626.0119.00761.67498.01332.231312.0(99.0
)( 0,11,12,10,0

=×+×+××

=×+×+××= CpCpCpdiscC dmu  
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Figure 12.11: Pricing a European Call Option in a Trinomial Tree (JSP) 

 

12.6.3.2 Pricing a European Call Option by Explicit Finite Difference 
Model 

Pricing a at-the-money European call option with one-year maturity and a current 
asset price of 100 and volatility of 20 per cent. The continuously compounded 
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous 
dividend yield of 3 per cent per annum, the trinomial tree has four time steps 
and the space step is 0.2 -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, δ = 0.03, Δx = 0.2.  

Figure 12.12 illustrates the numerical results, where nodes in the lattice are 
represented by the boxes in which the upper value is the asset price and the lower 
value is the option price. 

 

Pre-computing the constants: 
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Computing the asset prices at maturity:  

At node (4,-4)  

 

9329.44100 2.04
4,4 =×=×= ×−Δ×−

− eeSS xN  

 

At node (4,-2)  

 

032.672214.18812.543,42,4 =×=×= −− edxSS  

 

Computing the option values at maturity: 

At node (4,2)  

 

1825.49)00.1001825.149,0max(),0max( 2,42,4 =−=−= KSC  

 

Performing discounted expectations back through the tree:  

At node (3,1) 

  

2242.22)0.01189.01403.2275.01825.491311.0)( 0,41,42,41,3 =×+×+×=×+×+×= CpCpCpC dmu

 

At node (0,0) - today - 

 

3793.7)7755.01189.01195.675.01505.231311.0)( 1,10,11,10,0 =×+×+×=×+×+×= −CpCpCpC dmu

 

 

 
Figure 12.12: Pricing a European Call Option by Explicit Finite Difference Model (JSP) 
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12.6.3.3 Pricing an American Put Option by Explicit Finite Difference 
Model 

Pricing an at-the-money American put option with one-year maturity and a current 
asset price of 100 and volatility of 20 per cent. The continuously compounded 
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous 
dividend yield of 3 per cent per annum, the trinomial tree has four time steps 
and the space step is 0.2 -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, δ = 0.03, Δx = 0.2.  

Figure 12.13 illustrates the numerical results, where nodes in the lattice are 
represented by the boxes in which the upper value is the asset price and the lower 
value is the option price. 
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Computing the asset prices at maturity:  

 

8812.54100 2.04
3,4 =×=×= ×−Δ×−

− eeSS xN  

 

At node (4,-2)  

 

032.672214.18812.543,42,4 =×=×= −− edxSS  

 

Computing the option values at maturity: 

At node (4,-2)  
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968.32)032.6700.100,0max(),0max( 2,42,4 =−=−= −− SKC  

 

Performing discounted expectations back through the tree:  

At node (3,-1) 

 

1269.18)968.321189.01269.1875.00.01311.02,41,40,41,3 =×+×+×=×+×+×= −−− CpCpCpC dmu

 

Applying the early exercise test: 

 

1269.18)8731.81100,942.16max(),max( 1,21,21,2 =−=−= −−− SKCC  

 

At node (0,0) - today - 

 

5399.6)2326.181189.04796.575.07744.01311.01,10,11,10,0 =×+×+×=×+×+×= −CpCpCpC dmu

 

Applying the early exercise test: 

 

5399.6)100100,5399.6max(),max( 0,00,00,0 =−=−= SKCC  

 

 

 
Figure 12.13: Pricing an American Put Option by Explicit Finite Difference Model (JSP) 
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12.6.3.4 Pricing an American Put Option by Implicit Finite Difference 
Model 

Pricing an at-the-money American put option with one-year maturity and a current 
asset price of 100 and volatility of 20 per cent. The continuously compounded 
interest rate is assumed to be 4 per cent per annum, the asset pays a continuous 
dividend yield of 3 per cent per annum, the trinomial tree has four time steps 
and the space step is 0.2 -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, δ = 0.03, Δx = 0.2.  

Figure 12.14 illustrates the numerical results, where nodes in the lattice are 
represented by the boxes in which the upper value is the asset price and the lower 
value is the option price. 
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Computing the asset prices at maturity:  

At node (4,-3)  

 

8812.54100 2.04
3,4 =×=×= ×−Δ×−

− eeSS xN  

 

At node (4,-2)  

 

032.672214.18812.543,42,4 =×=×= −− edxSS  

 

Computing the option values at maturity: 

At node (4,-2)  
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968.32)032.6700.100,0max(),0max( 2,42,4 =−=−= −− SKC  

 

Performing discounted expectations back through the tree and solving the tri-
diagonal system of equations:  

At node (2,-2) the upper diagonal is eliminated: 

 

4127.34))8812.54032.67()1(()1189.0(9680.32´
1411.1)1189.0(26.1´

2,42

2,

=−×−×−+=×+=

=−+=+=

−−

−

Ld

dmm

pCp
ppp

λ
 

 

At node (2,-1)  

 

7126.211411.1/)1189.0(4127.341269.18´´

2463.11411.1/)1189.0()1311.0(26.1´
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At node (3,-1) back substituting: 

 

6203.172463.1/)8885.1)1311.0(7126.21(
´

´

1,

0,31
1,3 =×−−=

−
=

−

−
−

m

u

p
Cpp

C  

 

Applying the early exercise test: 

 

1269.18)8731.81100,6203,17max(),max( 1,31,31,3 =−=−= −−− SKCC  
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Figure 12.14: Pricing an American Put Option by Implicit Finite Difference Model (JSP) 

 

12.6.3.5 Pricing an American Put Option by Crank-Nicolson Finite 
Difference Model 

Figure 12.15 gives a numerical example similar to the implicit finite difference 
model. The calculations are virtually identical to those for the implicit finite 
difference method. 

 

 
Figure 12.15: Pricing an American Put Option by Crank-Nicolson Finite Difference Model (JSP) 

 

12.6.4 Implied Trinomial Tree Model 

12.6.4.1 Pricing Implied Trinomial Tree State Prices and Transition 
Probabilities 

Pricing state prices with one-year maturity and a current asset price of 100 and 
volatility of 20 per cent. The space step is chosen to be 0.2524 so that the explicit 
finite difference method stability condition is satisfied. The continuously 
compounded interest rate is assumed to be 4 per cent per annum and the trinomial 
tree has four time steps -  
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i.e. T = 1, S = 100, r = 0.04, N = 4, Δx = 0.2524.  

Figure 12.16 illustrates the numerical results, where nodes in the tree are 
represented by the boxes in which the upper left value is the state price and the 
lower left value is the asset price. The right hand side values represent the transition 
probabilities. 

 

Pre-computing the constants: 
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Computing the asset prices at maturity:  

At node (4,-4)  

 

4365.36100 2524.04
4,4 =×=×= ×−Δ×−

− eeSS xN  

 

At node (4,-3)  

 

8978.462871.14365.364,43,4 =×=×= −− edxSS  

 

Computing the state prices for each time step beginning with the upper half of the 
tree and then for the lower half of the tree: 

At node (3,3)  

 

( )( ) ( )
( )( ) ( )

01370045609407011
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At node (3,-1)  
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Figure 12.16: Pricing Implied Trinomial Tree State Prices and Transition Probabilities (JSP) 

 

12.6.4.2 Pricing an American Down-and-Out Call Option by Implied 
Trinomial Tree Model 

Pricing an at-the-money American down-and-out call option with one-year maturity 
and a current asset price of 100 and volatility of 20 per cent. The barrier is set at 
110, the continuously compounded interest rate is assumed to be 4 per cent per 
annum. The implied trinomial tree is similar to the example above with four 
time steps and a space step of 0.2524. -  

i.e. K = 100, T = 1, S = 100, r = 0.04, N = 4, σ = 0.20, H = 110, Xrebate = 1, Δx = 
0.2524.  

Figure 12.17 illustrates the numerical results, where nodes in the tree are 
represented by the boxes in which the upper left value is the state price and the 
lower left value is the option price. The right hand side values represent the 
transition probabilities. 

 

Pre-computing the constants: 
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Computing the option values at maturity: 

At node (4,-1) S4,-1 < H, 77.6934 < 110 and therefore 

 

11,4 ==− rebateXC  

 

At node (4,1) S4,1 > H, 128.7111 > 110 and therefore 

 

7111.28)1007111.128,0max(),0max( 1,41,4 =−=−= KSC  

 

Performing discounted expectations back through the tree and applying the barrier 
condition:  

At node (1,1) S1,1 > H, 128.7111 > 100 and therefore 

 

( )
( ) 6837.31)1007111.128,10298.07422.30912.06465.670582.099.0max(

),max( 1,10,21,1,1,21,1,2,21,1,1,1

=−×+×+×

=−×+×+××= KSCpCpCpdiscC dmu  

 

At node (0,0) - today -S0,0 < H and therefore 

 

10,0 == rebateXC  

 

 
Figure 12.17: Pricing an American Down-and-Out Call Option by Implied Trinomial Tree Model 

(JSP) 
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