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Zusammenfassung

Die vorliegende Arbeit widmet sich den verschiedenen moglichen Arten, im Mehrdi-
mensionalen reell analytisch zu definieren und deren Zusammenhang mit der Eigen-
schaft (DN). Das Ziel ist es zu ermitteln, unter welchen Bedingungen die verschiede-
nen Begriffe reell analytischer Abbildungen zusammenfallen. Ungliicklicherweise
reicht dazu die Eigenschaft (DN) alleine nicht aus.

Der erste Teil des Werkes dient der Einfithrung in die verwendete Notation und
der benotigten Grundlagen. Kapitel 1 widmet sich grundlegenden Eigenschaften
lokalkonvexer Rdume und (beschrénkter) stetiger linearer Abbildungen zwischen
diesen. Kapitel 2 fiihrt induktive und projektive Limiten lokalkonvexer Raume ein.
Das letzte einleitende Kapitel befasst sich mit der Charakterisierung des Raumes
holomorpher Funktionen.

Die nédchsten beiden Kapitel liefern wichtige nicht elementare Ergebnisse fiir
die priméren Aussagen der Arbeit. Kapitel 4 befasst sich mit der Grothendieck-
Ko6the-Silva Dualitat, einer Charakterisierung des Dualraums des Fréchet Raumes
H(U). Kapitel 5 fiihrt den Raum der schnell fallenden Folgen ein und geht auf den
Zusammenhang mit der Nuklearitat ein.

Im folgenden Teil wurden die unabdingbaren Ideen und Methoden zur Losung
der grundlegenden Fragestellung zusammengefasst. Wahrend Kapitel 6 reell ana-
lytische Funktionen (von R nach R) behandelt, erweitert Kapitel 7 die Betrachtung
auf reell analytische Abbildungen von R in einen lokalkonvexen Raum FE. Schliellich
geht Kapitel 8 auf Folgenraume und exakte Sequenzen von Folgenraumen ein.

Kapitel 9 zeigt die Korrelation zwischen Folgenraumen und der Eigenschaft (£2).
Insbesonders ist ein Fréchet Raum mit der Eigenschaft () isomorph zu einem
Quotientenraum von ¢! (I)®s (fiir geeignetes I).

Die Kapitel 10 bis 12 widmen sich den Bedingungen an Fréchet Raume, unter
denen jede stetige lineare Abbildung beschrankt ist. Fiir die Resultate muss en-
tweder der Definitions- oder der Zielraum ein Folgenraum sein. Diese Einschrankung
wird allerdings im néchsten Kapitel behoben. Kapitel 13 liefert diese wichtigen
Zwischenresultate, die fiir sich alleine betrachtet werden koénnen. So etwa die
Verallgemeinerung des Hauptresultats von Kapitel 9, C¥(R, F') = C¥(R, F) and
H,(B,F)= H(B,F) (unter dort spezifizierten Voraussetzungen).

Das letzte Kapitel zeigt schliefSlich die folgenden beide Sétze: Einen Fréchet
Raum F hat die Eigenschaft (DN) genau dann, wenn C¥(E, F') = C¥(E, F) fir alle
nuklearen Fréchet Raume E beziehungsweise Fréchet-Schwarz Raume mit Eigen-
schaft (Q) gilt. Und zweitens, dass fiir Fréchet Raume F mit Eigenschaft (LBso)
CY(E,F)=C{(E,F) fir alle reellen Fréchet Rdume E gilt.

Im Appendix finden sich jene technischen Details, die den Aufbau der Ar-
beit unnotig beschwert héatten. Appendix A liefert alle in der Arbeit verwendeten



dquivalenten Beschreibungen der Eigenschaften (DN) und (£2). AuBlerdem werden
die Implikationen zwischen den Eigenschaften bewiesen. Appendix B ist ein Exkurs.
Er liefert eine Verallgemeinerung eines Satzes aus Kapitel 11 zusammen mit der Be-
weisskizze. Leider konnte der Beweis nicht in allen Details gegeben werden und
wurde deshalb aus dem Hauptteil genommen. Appendix C listet die grundlegenden
Satze der Funktionalanalysis auf, die hier verwendet wurden.



Abstract

This work is about real analytic curves, their different definitions, and the property
(DN). My aim is to give a complete record under which conditions the different
notions of real analytic mappings coincide. Unfortunately, the property (DN) is
not sufficient to accomplish this.

It is traditional to start books with an introductory chapter. I dedicated three
chapters to introduce the notation and the basic principles needed thereafter. While
Chapter 1 lays down the basic qualities of locally convex spaces and the (bounded)
continuous linear mappings between them, Chapter 2 focuses on projective and in-
ductive limits of locally convex spaces. Chapter 3 introduces holomorphic functions
and characterises the space of holomorphic functions.

The next two chapters reproduce non-trivial findings which are essential later
on. Chapter 4 proves the Grothendieck-Ko6the-Silva duality, a characterisation of the
dual space of the Fréchet space H(U). In Chapter 5 the space of rapidly decreasing
sequences is introduced and the connection to nuclear spaces is laid down.

In the following three chapters I have collected the indispensable ideas and tools
necessary for the main findings. While in Chapter 6 real analytic functions (from R
to R) are set forth, Chapter 7 expands the range to real analytic curves (from R to
a locally convex space E). Chapter 8 takes a step back and revisits sequence spaces
and exact sequences of sequence spaces are considered for later use.

In Chapter 9 the correlation between quotients of sequence spaces and the prop-
erty () is laid down. Notably, a Fréchet space with property (£2) is isomorphic to
a quotient space of ¢1(I)&@s (for suited I).

The Chapters 10 to 12 present conditions for Fréchet spaces under which every
continuous linear map is bounded. The results require a sequence space as either the
domain or the co-domain, but this restriction will be relieved in the next chapter. As
the name suggests, Chapter 13 lists those results that are noteworthy on their own,
such as a generalisation of the main statement from chapter 9, C¥(R, F') = C¢ (R, F)
and H,(B,F) = H(B,F). (Note that I have not mentioned here the prerequisite
conditions.)

Chapter 14 finally states the two main findings: That for a Fréchet space F' with
property (DN) we have C¥(E, F') = C¥(E, F) for all either nuclear Fréchet spaces
or (F'S)-spaces E with property (€). And alternatively, that for a Fréchet space F
with property (LBs) we get C¥(E, F) = CY(E, F) for all real Fréchet spaces E.

In order to avoid polluting the main work with lengthy technical details, I have
transferred those chunks of knowledge into the Appendices. In Appendix A equiv-
alent descriptions of the properties (DN) and () are presented in any case for
the mentioned instances. Additionally the dependencies/implications among the
properties are offered. Appendix B contains an excursion; a more general form of



a theorem from chapter 11 is presented together with an outline of its proof. Un-
fortunately, I was not able to give a complete proof and hence didn’t include it in
the main part of the work. Appendix C collects the well-known theorems which are
referred to in the prior chapters.
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Chapter 1

Locally Convex Spaces

Definition 1.1 A vector space FE is said to be a locally convex topological vector
space, or simply locally convex space, if it is a topological space and has a family
of semi-norms such that a net (x,),e7 in E with index set I converges to z if and
only if ||z, — z||, = 0 for all semi-norms ||.||, in this family.

An arbitrary family of semi-norms on a vector space E determines a unique

topology on F, given by the condition of the preceding paragraph. This topology
is called the locally convex topology.

Definition 1.2 A locally convex topology defined by the family of semi-norms is
called Hausdorff if it satisfies the norm condition

lzllp =0Vl = ==0.

All locally convex spaces are considered Hausdorff unless explicitly otherwise
stated.

Definition 1.3 Let E be a locally convex space. A subset K is called precompact
if for every neighbourhood U of 0 there exists a finite set F' with K C U + F.

Lemma 1.4 ([Kri02], 6.14 Lemma) Let E be a Fréchet space and A a subset of E.
A is precompact if and only if there exists a sequence (Ty)nen converging to 0, such
that A is contained in the closed convex hull of the sequence.

Proof. Let (Uy,)nen be a neighbourhood basis of 0 consisting of absolutely convex
closed subsets of a Fréchet space E such that 2U,,+; C U, and Uy = E. We now
contrive a sequence (A )nen of precompact subsets and finite sets F,, C A,, for all
n € N. Let Ag := A and A, already be conceived. Then there exists a finite set
F, C A, with A, C F, + Q%Un. We now put

1
Api1 = (A, — F,) N =—T,.

27’L
This set is precompact. Let xg,41,...,Tk,,, be the Elements of 2"F,. Since we
have
1 1
Fn g An g 27Un g FUn—l

and (zp,)nen converges to 0. Now choose a € A = Ay C Fy+ 2%Uo. Then there exist
ag € Fy and ug € Uy such that a = ag 4+ ug. Since a —ag = ug € (Ag — Fp) N 2%Uo =

1
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Ay C Fy + 2%U1, there exist a1 € F1 and u; € Uy such that a = ZKn a; + %un
Since (un )nen converges to 0, Y . a; converges to a. Now there exist k; < k(i) < ki1
such that a; = %ﬁ%(i)- If we put Ay = % and otherwise 0, then a = ), \jx; is
contained in the closed convex hull of the x;.

Conversely, we show that the closed absolutely convex hull @ of a precompact
subset B is itself precompact. Therefore let B be precompact and put V := %U ,
where U is a closed and absolutely convex subset in E. Then, by definition, there

exists a finite set M such that B C M + V and hence
(B) C (M) +V,

since (M) is precompact as the continuous image of the unit ball in ¢! (M). Again
by definition, we have a finite set M; with (M) C M; + V. Finally we get

(B) CM;+2V C M +2V+V CM+U,

hence (B) being precompact. O

Definition 1.5 Let E be a locally convex space, A an absolutely convex subset of
E. We define the Minkowski functional ||.||4 : span(A) — R as

|z]|a :==1inf{\>0:2 € \A}.

If additionally span(A) = E, then ||.|| 4 is a semi-norm on E.
If A is bounded in E, then ||.||4 is a norm on span(A).

Definition 1.6 Let E be a locally convex space and B a closed absolutely convex
bounded subset. The linear span of B in F equipped with the Minkowski functional
of B as its norm is denoted by Ep.

In general, Fp is a normed space but if F is sequentially complete, Fp is a
Banach space.

Remark 1.7 If not otherwise stated, sequences of scalars will be in F, being one
of the scalar fields R or C.

Lemma 1.8 For each m € N let limy,eN ptn,m = 0. Then there exists a monotonous
sequence (Ap)nen with lim,eny Ay, = 0 such that

{M;\an :nEN}

1s bounded for each m € N.

Proof. For k € N put

1
ng = max{k,sup{n:fl m <k :|pnm| > k‘}}’

i.e. k|pinm| <1 for m <k and n > ng. Then ny P oo monotonously. Now define
—00

Ap 1= % for np <n < ngyq. Clearly A, e 0. Furthermore, for each m we have
| thn,m|
An

provided n is so large that n,, < n and hence k with ny < n < ngyq satisfies
m < k. OJ

= k‘ﬂn,m’ <1



Lemma 1.9 Let E be a Fréchet space. For each absolutely conver compact subset
B of E we can find an absolutely conver compact subset By of E such that B is
compact in Ep, .

Proof. By 1.4 there exists a sequence (x,, )pen converging to 0 € E with B contained
in the closed absolutely convex hull of the sequence. By 1.8, there exists a sequence
(tin)neny — oo such that y, := ppa, still converges to 0. We put B; := ((yn)nen)-
Therefore B is an absolutely convex bounded subset of E and (2, )ney — 0 € Ep,,
since ||y | B, = #in Ergo B is compact in Ep, . O

Definition 1.10 Let E and F be two locally convex spaces, then we put
L(E,F):={A:FE — F: Ais linear and continuous}
and L(F) := L(E,E).
Furthermore we define
LB(E,F):={A € L(E,F): Ais bounded on some neighbourhood of 0}
and LB(F):= LB(E,E).

Remark 1.11 For E and F' being two normed spaces with closed unit balls U and
V', the topology of L(E, F') is obtained from the norm

|T| :=inf {0 >0:T(U) C oV}
for T € L(E, F). ||.|| is called operator norm on L(E, F).

Remark 1.12 Let E and F' be two locally convex spaces then for every element
T € LB(E, F) the following assertions hold:

(i) There exists a neighbourhood U of 0 in E such that T'(U) is bounded in F'.

(ii) There exists a neighbourhood U of 0 in E and a bounded absolutely convex
subset B C F such that T'(U) C B.

(iii) There exists a bounded absolutely convex subset B C F' such that the map
Tp : E — Fp exists and is continuous.

(iv) For every linear map L : E — F there exists a bounded subset B C F' and a
neighbourhood U of 0 in E such that T'(U) C B.

Thus we have shown that

LB(E,F) =|JL(E, Fp)
B

where B runs through all bounded absolutely convex subsets of F'.

Definition 1.13 Let X and Y be locally convex spaces. A linear mapping T :
X — Y is said to be compact if T maps a neighbourhood V of 0 in X to a relatively
compact set in Y.

In this case, an arbitrary neighbourhood W of 0 in Y absorbs the bounded set
T(V),i.e. [0,p]T(V) C W for some p > 0. And so T~'(W) absorbs V. Hence, T is
continuous.

Let A: X; — X and B : Y — Y] be continuous linear mappings. Then A~!(V)
is a neighbourhood of 0 in X3, and B(T(V)) is a relatively compact set in Y7, and
so the product BT A is also compact.
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Lemma 1.14 ([Kom99|, Lemma 1.2) Let X and Y be locally convex spaces. A
linear mapping T : X — Y is compact if and only if there is a Banach space N such
that T can be decomposed into the product of two continuous linear mappings

x LN By,

where the image To(B) of the unit ball B in N is compact. Moreover, if T is
injective, then 11 and T can be chosen to be injective.

Proof. Sufficiency is clear.

If T' is compact, then T maps an absolutely convex neighbourhood V of 0 in X
into a compact set B = T'(V'), where the right hand side denotes the closure in Y.
Let NV be the normed space generated by B with B as its unit ball. Then a Cauchy
sequence in N converges under the weak topology in Y, and hence converges also
in N, i.e. N is a Banach space. Letting 71 : X — N be the mapping included by T,
and T : N — Y be the embedding mapping, we obtain the desired decomposition.[]

Lemma 1.15 ([Kom99], Lemma 1.3) Let Y be a linear subspace of a locally convex
space X. If V' is an absolutely convex neighbourhood of O in Y, then there is an
absolutely convex neighbourhood U of 0 in X such that V =UNY. IfY is closed,
then for any xo € X\Y, the neighbourhood U may be chosen such that z¢ ¢ U.

Proof. Since V is a neighbourhood of 0 in the relative topology, there is a neigh-
bourhood W of 0 in X such that W NY C V. Without loss of generality, we may
assume that V and W are absolutely convex. Let U be the convex hull of the union
of V and W. Since V and W are absolutely convex, U consists of all elements u
which can be expressed as u = Av + (1 — Nw, withv e V, w e W and 0 < A < 1.
Consequently, U NY is the convex hull of the union of V and W NY, and hence
coincides with V. On the other hand, U is a neighbourhood of 0 in X since it
contains W, and it is also clear that U is absolutely convex.

If Y is closed, we can choose W so small such that the canonical image of W in
the Hausdorff space X'\Y does not contain the canonical image of x. Then the set
U constructed above does not contain xg. ]



Chapter 2

Projective and Inductive Limits
of Locally Convex Spaces

Note that in exception to the rest of this work, locally convex spaces are not neces-
sarily Hausdorff in this chapter.

The statements in this chapter can be found in any profound book on functional
analysis, e.g. [MV92], [K6t69a] or [Jar81].

Definition 2.1 Let {uq : X — X,},c4 be a family of linear mappings of a vector
space X into locally convex spaces X,. Then there exists the weakest locally convex
topology on X under which all u, are continuous. This topology is called the
projective locally convex topology relative to the system (X, uq)aca- If po is a
family of semi-norms defining the topology of an X, then

9 = {llua()llpa : @ € A, [l llpa € o}

is a family of semi-norms defining the projective locally convex topology. This
topology is not necessarily Hausdorff.

If X = J]X4 is a vector space represented as the product of locally convex
spaces X, and if u, : X — X, are the canonical projections, then the projective
locally convex topology is called the product locally convex topology, and the product
space X endowed with this topology is called the product of locally convex spaces
Xao-

Furthermore, if X is a linear subspace of a locally convex space Y, and if u :
X — Y is the inclusion, then the weakest locally convex topology under which u is
continuous is no other than the relative topology on X as a subspace of Y.

If the projective locally convex topology is Hausdorff, then it is a combination
of the above two special cases in the following sense: Define

u: X — H4Xa cu(z) = (ua(x))aca;

then w is an injection because of the assumption that X is Hausdorff. The projec-
tive locally convex topology on X is then the same as the relative topology on X
identified with a linear subspace of [],c 4 Xo under u. Conversely, if the mapping
u defined above is injective, then the projective locally convex topology on X is
Hausdorft.
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On the other hand, projective limits of locally convex spaces are defined as
follows. Let A be a directed set and suppose that for each a € A a locally convex
space X, is specified together with continuous linear mappings u, 5 : X0 — Xp
defined for all pairs (a, 3) with o > 3, and satisfying ua = ugy © Ua,3 Whenever
a,B,v € Aand a > 3 > ~. Such a system (Xq, uq ) is called a projective system of
locally convex spaces. Then, we define the projective limit of locally convex spaces
X, to be the projective limit

liLnXa = {(l'a) € H Xo: ua,ﬁ(l‘a) = J"ﬁ}
acA acA

of vector spaces X, equipped with the weakest locally convex topology under which
the canonical mappings ug : @ae A Xo — X, defined by (z,,) — z, are continuous.

Suppose that (Xq,uq,3) and (Ya,ve,8) are projective systems of locally convex
spaces with the same directed set A as their index set. If a continuous linear
mapping Ti, : Xo — Y, is given for each «a, and satisfies v, g o T, = Tgou, g for all
« > 3, then a continuous linear mapping 7" : liinae 1 Xa— lilnae 4 Ya is defined by
T(zq) = (Taxa), which we call the projective limit of the mappings Tj.

Let (X4, € A) be a projective system of locally convex spaces. If «: A — A
is an order-preserving mapping of a directed set A with a cofinal image «(A) in A,
then the projective system (Y), A € A) defined by Y) = Xa(n) is called a subsystem
of the original projective system. In this case, it is easy to verify that

lim Yy = lim X,
P —
AEA acA

in the sense of a canonical isomorphism.
It follows from the continuity of u, g that liina

of HaeA X..

cA X, is a closed linear subspace

Remark 2.2 If X, are complete (respectively quasi-complete or sequentially com-
plete), then the projective limit @ae 4 Xa s also complete (respectively quasi-
complete or sequentially complete).

If the directed set A is the set N of natural numbers, we only have to specify
continuous linear mappings ;11 : X;+1 — X; for all j € N. The other mappings
are determined as compositions of those mappings. In this case, we often denote
the projective system by the diagram:

X, X, B2 Xy — L — X Y (1)
If all X; are Banach spaces, then the projective limit liLnjeN X is complete and
metrizable as a locally convex space whose topology is defined by a countable family
of semi-norms.
The projective limit of a sequence of Banach spaces X; is a Fréchet space.
Conversely, every Fréchet space can be expressed as the projective limit of a sequence
of Banach spaces.

Definition 2.3 An arbitrary locally convex space X is isomorphic to a dense linear
subspace of a projective limit liilae 4 X, of Banach spaces. Moreover, if we can



choose a projective system such that for any o > 3, un 3 : Xo — Xg are not only
continuous but also compact, then X is said to be a Schwartz space.
A Fréchet space, which is also a Schwartz space is called an (F'S)-space for short.

Remark 2.4 A locally convex space X is an (F'S)-space if and only if it can be
expressed as the projective limit of a sequence of Banach spaces X; such that every
ujt+1; : Xj+1 — Xj in (1) is compact.

Closed linear subspaces and quotient spaces of (F'S)-spaces are (F'S)-spaces.
Products [[;cy X; and projective limits @jeN X of a countable number of (F'S)-

spaces are also (F'S)-spaces.

Definition 2.5 Let X be a vector space and {u, : Xo — X} .4 be a family of
linear mappings from locally convex spaces X,. Then the strongest locally convex
topology on X under which all u, are continuous is called the (generalised) induc-
tive locally convex topology of the system (X, uq)aca. A semi-norm |||, on X is
continuous under this locally convex topology if and only if ||ua||, is a continuous
semi-norm on X, for every o € A. However, this locally convex topology is not
necessarily Hausdorff even if {us(X,) : o € A} generates X. We remark also that
it is, in general, different from the inductive limit topology as a topological space,
that is, the strongest topology under which all u,, are continuous.

Definition 2.6 Let X = @4 Xa be a vector space which is expressed as a direct
sum of locally convex spaces X, and let u, : X4, — X be the canonical injections.
Then the inductive locally convex topology on X is called the locally convex direct
sum topology and the direct sum X equipped with this topology is called the direct
sum of the locally convex spaces X,. If g, is the family of all continuous semi-norms
on X, then the locally convex direct sum topology is the locally convex topology
defined by all semi-norms of the form

HxaHp = Z Hxa”P(w

a€cA

where ps € po. In particular, a locally convex direct sum topology is Hausdorff.
The quotient topology on a quotient space X/Y of a locally convex space X
is also the inductive locally convex topology relative to the canonical projection
X - X/Y.
If {ua(Xo) : @ € A} generates X then the general inductive locally convex topol-
ogy relative to a system (Xg,uq)aca 1S @ combination of the above two classes.
Namely, in this case, the mapping

u: @ Xo — X with u(®z,) = Z Ua(To)

acA acA

is surjective, and X may be regarded as a quotient space of the direct sum @ 4 Xa-
The inductive locally convex topology on X is then identified with the quotient
topology of the locally convex direct sum topology.

Definition 2.7 Let {X,},c4 be a family of locally convex spaces with a directed

set A as its index set and {ua,g: Xo — X}, 5 be a family of continuous linear
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mappings satisfying ua, = ug 0 Uq,g Whenever o, 3,7 € A and a < 8 <. Then
the inductive limit of the vector spaces X, is the quotient space

lim X, = ) Xa/ ~, (2)
acA acA

where ~ is the linear subspace generated by all elements whose entry at the index
a is x4 € X,, the entry at the index (3 is —uqa g(24) for a pair o < 3, and all other
entries are 0. We define the canonical mapping u, : Xo — h_n)lae N X, to be the
mapping which sends z,, € X, to the equivalence class containing the element whose
entry at the index a is z, and 0 elsewhere. The inductive limit li_n)lae N X, equipped
with the strongest locally convex topology under which all canonical mappings are
continuous is called the inductive limit of locally convex spaces X,. As can be seen
from (2), this is the same as a quotient space of the direct sum of locally convex
spaces. However, in this case, the continuity of u, g does not, in general, imply that
the linear subspace ~ is closed, and so the inductive locally convex topology is not
necessarily Hausdorff.

Definition 2.8 Let X be a locally convex space and V' a subspace of X. If for
every © € X there exists an p, > 0 such that [0, p;]x C V, then V is called an
absorbent subset of X. If V is an absolutely convex, closed and absorbent subset of
X, then V is called a barrel in X.

A locally convex space X is called barrelled, if every barrel in X is a neigh-
bourhood of 0. Furthermore, a locally convex space is called quasi-barrelled if every
barrel which absorbs every bounded subset is a neighbourhood of 0. Trivially, every
barrelled space is quasi-barrelled and every sequentially complete quasi-barrelled
space is barrelled.

Strengthening the condition on quasi-barrelled spaces, a locally convex space
is called bornological if every semi-norm is continuous provided that it is bounded
on each bounded set. It is called ultrabornological if every semi-norm is continuous
provided that it is bounded on each Banach disc.

Remark 2.9 If the locally convex spaces X, are barrelled (respectively quasi-
barrelled or bornological) for all & € A, then the inductive limit hi>nae N Xq is
also barrelled (respective quasi-barrelled or bornological).

Definition 2.10 An inductive system of a sequence of locally convex spaces can
be expressed by the diagram

X 2 X B Xy — X 2 (3)

If ujji1 : X; — Xj4q is an isomorphism onto its image for all j, then the

sequence is called a strict inductive sequence. In this case, each X; may be identified

with a linear subspace of X1 under the isomorphism u; 11, and the inductive limit
X can be regarded as the union X = UjEN Xj.

Remark 2.11 If (3) is a strict inductive sequence of locally convex spaces, then
the canonical mapping u; : X; — mjeN X is an isomorphism onto its image for
every j. In particular, the inductive limit lii>nj€N X is Hausdorff.



If, in addition, the image u; j1+1(X;) is a closed linear subspace of X for every
J, then the canonical image u;(X;) in li_n)1jeN X is a closed linear subspace for every
j. Moreover, every bounded set B in h_rr)ljeN X is the image u;(Bj) of a bounded
set Bj in X; for some j.

Definition 2.12 A locally convex space X is said to be an (LF')-space if it can
be expressed as the strict inductive limit of a sequence of Fréchet spaces X;. In
particular, if all X; are (F'S)-spaces, then X is said to be an (LF'S)-space.

Remark 2.13 We now consider the case where the mappings u; ;11 in the inductive
sequence (3) are compact linear injections. Then, by 1.14, we can find Banach spaces
Y; between X; and X and injections v; j;1 : ¥; — Yj41 such that the diagram

Xi u1,2 Xb u2,3 .X3
\ i /U”\ Y2 /”2’3\ N
commutes and that the image vjj+1(Bj) of the unit ball B; in Yj is compact in

Y1 for every j. Clearly we have the canonical isomorphism h—n>1jeN X; = h—n>1jeN Y;

including the topology.

Definition 2.14 If a locally convex space E has a sequence of B; of bounded sets
with the property that every bounded set in E is contained in some Bj, then the
strong topology of E’ is defined by a countable number of semi-norms

pi(2') = pa,(2)
and so the strong dual E’ is metrizable. A countable quasi-barrelled space satisfying
this property is called a (DF)-space.

The strong dual of a (DF)-space is a Fréchet space. On the other hand, the
strong dual of a metrizable locally convex space is a (DF')-space.

Definition 2.15 If a locally convex space X is expressed as above as an inductive
limit of a sequence of locally convex spaces with compact injections u; j41, we say
that X is a (DF'S)-space.

Without further explanation, please accept that these spaces are reflexive (DF)-
spaces.

Definition 2.16 Let Y = li_maeA X,. Then Y can be expressed as a limit of a
projective system (X4)aeca in which the image u, : @aeA X, — X, is dense for
all @ € A. Such a projective system is said to be reduced.

Remark 2.17 If (X, )aca is a reduced projective system of locally convex spaces,
then the dual of its projective limit is, as a vector space, canonically isomorphic to
the inductive limit of the duals X/, of X,

!/
<lln Xa> = h_H)lX(IX
acA acA

Moreover, the weak topology on li_moéE 1 X, coincides with the projective limit topol-
ogy of the weak topologies of the X,.
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Remark 2.18 Let (X,)qca be a reduced projective system of locally convex spaces
Xq. If for each o there exists a 8 > « such that ug, maps every bounded set into
a relatively weakly compact set, then @a X, is semi-reflexive, and there is a

natural isomorphism

€A

/
. . /
(@1 Xa) = h_n}(on)ﬂ‘
acA 8 acA

Remark 2.19 As for the dual of an inductive limit of locally convex spaces, there
is a canonical isomorphism as vector spaces

!/
(ﬁg Xa) = lim Xj,.
acA acA

If every bounded set in lﬂla X, is the image of a bounded set in some X,,

then we have the natural isomorphism where the spaces considered are locally convex
spaces

/
(h_r)n on) = lln (Xa)/g-
acA 8 acA

Remark 2.20 The strong dual of an (F'S)-space is a (DFS)-space. The strong
dual of a (DF'S)-space is an (F'S)-space.

Since these spaces are reflexive and bornological, it follows also that they are
complete as the strong dual of bornological spaces.

Remark 2.21 Closed linear subspaces and quotient spaces of (DF'S)-spaces are

also (DFS)-spaces. Countable direct sums ;. X; and inductive limits li_n)ljeN X;

of sequences of (DF'S)-spaces are (DF'S)-spaces.



Chapter 3

Holomorphic Functions

Definition 3.1 Let V' be an open set in the complex plane C. We denote by H (V)
the vector space of all holomorphic functions on V.

The space H(V') is usually endowed with the topology of uniform convergence
on compact sets; i.e. the locally convex topology determined by the family of semi-
norms

[6llx = sup{[o(2)] : z € K},

as K runs through the family of all compact sets in V. In practice, choose a
sequence K7 C Ko C ... C V of compact sets K; with K; compact in Kj; such
that UjeN K; = V. Then, the topology of H(V) is determined by the sequence of
semi-norms ||.||k, since every compact set in V' is contained in some Kj.

Definition 3.2 For a compact set K in C, we denote by Ho(K) the vector space
of all continuous functions on K which are holomorphic in the interior of K. This
is a Banach space with the norm

16l e (x) = sup [p(2)]-
zeK

Remark 3.3 By the definition of the topology of H(V'), we have the isomorphisms

H(V) = lim He(K) = lim He(Kj)
Kcv jeN

as locally convex spaces (note that here K runs through all compact subsets of V
and (K;)jen be a sequence of compact sets like in the definition). The restriction
mappings Ho (K1) — Hc(Kj) are compact by Montel’s theorem (the classical
result of complex analysis will work in this settings). Thus H (V') can be expressed
as the projective limit of a sequence of Banach spaces with compact linear mappings.

Hence the vector space H (V') of all holomorphic functions on an open set V- C C
is an (F'S)-space under the topology of uniform convergence on compact sets.

Definition 3.4 Let M be a topological, N a locally convex space, and let A C M
be an arbitrary subset. We consider all continuous mappings f : Uy — N, where
Uy is some open neighbourhood of A in M. Then we put f ~4 g if there is some
open neighbourhood V' of A with f |y= g |y. This defines an equivalence relation
on the set of functions considered. The equivalence class of a function f is called
the germ of f (along A) and we denote it by [f].

11
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Analogously, we can consider germs of smooth, holomorphic or real analytic
mappings, sufficiently nice M provided.

Definition 3.5 For a compact subset K C C, we denote by H(K) the vector space
of all germs of holomorphic functions on a neighbourhood V of K. In other words,
we have
H(K) = lim H(V) (1)
VDK
in the sense of the inductive limit relative to the direct set of all open neighbourhoods
V of K. Here, we may take only relative compact open neighbourhoods V', and then
H (V) may be replaced by Hco (V).
Furthermore, if we choose a sequence of compact sets K1 O Ko O ... D K
such that ﬂjGN K; = K, where K; are closed subsets with non-empty interior, K;
compact in K;_1, and each connected component of the interior of K; intersects K,

then we have the representation

H(K) = lim Ho(Kj), (2)
jeN

where the restriction mappings Ho(K;) — Ho(Kj4+1) are compact linear injections.
Such a sequence of compact neighbourhoods can be constructed as follows. Assum-
ing that K; has already been constructed, choose, for each = € K, a closed disc D,
of radius less than 1/j, with centre at z, and contained in the interior of K. Since
K is compact, there is a finite number of D, whose interiors cover K. Then let
K1 be the union of these D,.

The space H(K) is endowed with the locally convex topology as the inductive
limit (1) of locally convex spaces H(V'). This topology coincides with the inductive
limit locally convex topology defined by (2) because (1) and (2) are equivalent
inductive limits.

Remark 3.6 Let K C C be a compact set. Then, the space H(K) equipped with
the above inductive limit locally convex topology is a (DF'S)-space.

A sequence (¢;);en in H(K) converges if and only if the ¢; are represented by
holomorphic functions defined on a common open set V' O K and the representatives
converge uniformly on V.

A set B C H(K) is bounded if and only if there is a common neighbourhood
V' O K such that each ¢ € B is represented by a holomorphic function on V' which
is uniformly bounded on V.

A (linear) mapping f from H(K) into a locally convex space X is continuous if
and only if for each convergent sequence (¢;)jen — ¢, f(¢;) converges to f(¢).

If H(K) is represented as in (2), the mapping Ho(K;) — Hc(K) is injective, so
that ¢ € H(K) and its representative holomorphic function in Hc(K;) are in one
to one correspondence.

Definition 3.7 We introduce some standard notations.

C(R™F) = {f:R™ —TF: fis continuous}
CYR™F) := {f:R™ —F: f exists and is continuous}

C*[R™F) = {f:R™—=F: fissmooth}
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Alternatively,
C®(R™,F) := [ | C'(R™,F).
€N
Let K C R™ be a compact subset of R™.

Ck[R™F):={f € C"(R™,F) : supp(f) € K}
Furthermore, we define

L 00 (oM . 2\n| p(k)
S = {fEC’ (R ’F)'Tﬁ‘f&%’é ((1+|\x|| )| f (x)|) <ooVn€N}.
And finally
DR™F):= |J CR[R™F)
KCR™

as K runs through all compact subsets of R™ and

Di(R™,F) := {f € D(R™,F) : supp(f) € K} = 3¢ (R™F).

Definition 3.8 Let U C C be an open subset. By H>°(U) we denote the space of
bounded holomorphic functions.
Equipped with the supremum norm, H*°(U) is a Banach space.

Definition 3.9 Let U C C be open, E a locally convex space and let E’ denote its
dual. A function f: U — FE is called weakly holomorphic if for every ' € E’

Zof:U—C

is holomorphic in the usual sense.
By H, (U, E) we denote the space of weakly holomorphic functions from U into
E.

Definition 3.10 A subset U of a vector space E over C is said to be finitely open
if UN F is open in the FKuclidean topology of F for each finite dimensional subspace
Fof E.

Definition 3.11 Let U be a finitely open subset of a vector space E over C and F
a locally convex space. A function f : U — F' is Gdteaux holomorphic if for each
e U,veEFE and ¢ € F' the C valued function of one complex variable

A= (po f)(§+ )

is holomorphic on some neighbourhood of 0 in C. We let Hg (U, F') denote the set
of all Gateaux holomorphic mappings from U into F' and write Hg(U) in place of
Hq(U,C).
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Definition 3.12 Let U be an open subset of a Fréchet space E and F' a locally
convex space. A function f : U — F is called holomorphic if f is continuous and
Gateaux holomorphic on U.

We let H(U, F') denote the set of all holomorphic mappings from U into F' and
write H(U) in place of H(U,C).

Now let B be a compact subset in a Fréchet space E and F' a locally convex
space. By the standard notation H (B, F') denotes the space of germs of holomorphic
functions on B with values in F' equipped with the inductive limit topology.

Recall that f € H(B,F) if there exists a neighbourhood V of B in FE and a

~

holomorphic function f:V — F whose germ on B is f.

Definition 3.13 Let U and V denote open subsets of Banach spaces £ and F,
respectively, and suppose f : U x V — C. The function f is called separately
holomorphic if for each x € U the function f, : y € V — f(z,y) is holomorphic and
for each y € V the function f¥:x € U — f(x,y) is holomorphic.



Chapter 4

The Grothendieck Kothe Silva
Duality

Lemma 4.1 ([Kri02], first Lemma in 4.6) Let E be a one dimensional locally convex
space and a € E, a # 0, then the mapping f : F — E :t — at is an isomorphism of
locally convex spaces.

Proof. Since {a} is a basis of the vector space E, f is bijective and every linear
isomorphism f : F — E looks like this with a := f(1). Because the scalar multi-
plication is continuous, so is f. Using that F is separated there exists a semi-norm
I|.llq with ||a|lq > 1. Then

latlq

lallq

|f at)] = [t =

< llat]lq,

hence |f~!| < |.|l;- Therefore f~1 is continuous. O

Lemma 4.2 (Continuous linear functionals) ([Jar81], Proposition 2.3.4 or cf.
[Kri02], second Lemma in 4.6) Let E be a locally convex space and f : E — F a
non-trivial linear functional on E. The following statements are equivalent:

(i) f is continuous.
(ii) |f| s a continuous semi-norm.
(iii) ker(f) is closed.

Proof. (i) = (ii) is clear, since |.| is a continuous norm on F.

(ii) = (iii) follows from the fact that ker(f) = ker(|f]).

(iii) = (i) Since f is non-trivial, it maps F onto F. ker(f) is closed by hypothesis,
hence E/ker(f) is a locally convex space, too. Since f [xer(s)= 0, f factorizes over
the according quotient map 7 : E — E/ker(f) to a linear map f: E/ker(f) — F.
Because f is onto, so is f. Moreover, f is one to one since 0 = f(n(x)) = f(z), hence
¢ € ker(f) and therefore 7(z) = 0. By 4.1 f is an isomorphism of locally convex
spaces. Finally f = f o is continuous as composition of continuous mappings.

Now let f be non-continuous, i.e. ker(f) not closed and a € ker(f)\ker(f).
Without loss of generality, let f(a) = 1. The map f ker(f)xF — E : (z,t) — x+at
is continuous, linear and bijective, since E — ker(f) x F:y — (y — af(y), f(y)) is
clearly the right-inverse to f. The image of f is in ker(f), hence it is all of E. O

15
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Remark 4.3 In the following, we will denote by Cy, the complex manifold CU{co}
also known as the Riemannian sphere. By R := RU{oo} = S! we denote the closure
of R in Cy. And by D we denote the unit disk in F.

Lemma 4.4 ([Con90], II1.8.2 or [Kri02], 7.18 Sublemma) If 1 is a complex-valued
reqular Borel measure on a compact subset K of C, then

ftw) = [ 2142

z—w
is holomorphic on Coo\K, and fi(co) = 0.
Proof. To show that i is holomorphic on Co\ K, let w,wy € C\K and note that

mw—ﬁmw:/‘ dp(2)
K (2 —

w — wWo w)(z —wo)

As w — wy, 5 converges uniformly for z in K, so that i has a

(z—w)(z—wo) - (z—wo)

derivative at wp and
di, [ di(z)
dw (wo) = /K (z —wp)?’

So 11 is holomorphic on C\K. To show that it is holomorphic at infinity, note that
i — 0 as z — oo, so infinity is a removable singularity. U

Theorem 4.5 ([Con90], IV.4.1 or [Kri02], 7.18) Let X be completely regular. If
L:C(X) — C is a continuous linear functional, then there is a compact set K and
a regular Borel measure p on K such that L(f) = [} fdu for every f in C(X).
Conversely, each such measure defines an element of C(X)'.

Proof. By C.6, each measure u supported on a compact set K defines an element
of C(X)'. In fact, if L(f) = [} fdu, then

[LCAOT < Ml ¢ Moo

and so L is continuous.
Now assume L € C(X)'. There are compact sets K7, ..., K, and positive num-
bers aq, ..., a, such that

LN <Y agllf 1y lloe

Jj=1

(see 4.2). Let K = J;_; Kj and o = max {a; : 1 < j < n}. Then

LAY allf Ik lloo
j=1

Hence if f € C(X) and f |g= 0, then L(f) = 0.
Define F': C(K) — F as follows. If g € C(K), let g be any continuous extension
of g to X and put F'(g) = L(g). To check that F' is well defined, suppose that g; and



g2 are both extensions of g to X. Then g — g2 = 0 on K, and hence L(g1) = L(g2).
Thus F is well defined.

Since L is a continuous linear functional and the restriction to K is surjective,
F:C(K)—Fis linear. If g € C(K) and § is an extension on C'(X), then

[F(9)l = IL(G)] < allg |x llo = allgll;

where the norm is the norm of C(X). By C.6 there is a measure p on K such that
F(g) = [, g9dp. If f € C(X), then g = f |ge C(K) and so

L(f) = F(g) = /K fdu.

Theorem 4.6 (GKS-duality) ([Con90], IV.4.2) L € H(D)' if and only if there is
an v < 1 and a unique function g holomorphic on Coo\rD with g(co) = 0 such that

U =g [ S (1)

for every f in H(D), where y(t) = pelt,0 <t <27, andr < p < 1.

Proof. Let g be given and define L as in (1). If K = {2z € C: |z| = p}, then

1 27

LN = 5=

2ri

e e pea] < 5T i ol i o2
0 i
Soif ¢ = pllg [ [l then [L(f)| < ¢[|f |k [loo and L € H(D)',

Now assume that L € H(D)'. The theorem of Hahn-Banach C.2 implies there
is an F' in C(D)’ such that F' |gp)= L. By 4.5 there is a compact set K contained
in D and a measure o on K such that L(f) = [} fdu for every f in H(D). Define
g: Coo\K — C by g(c0) := 0 and

w—z

o(z) = — /K L du(w)

for z € C\K. By 4.4, g is holomorphic on C,,\K. Let p < 1 such that K C pD. If
y(t) = pe't,0 <t < 2, then Cauchy’s integral formula implies

RION

2711 Vz—w

flw) =
for |w| < p; in particular, this is true for w € K. Thus,

L) = [ fwdntw
- /(;T Qﬂ/j;gi)ei:?l)e“dt) dp(w)
= £ [ e ( /. peif_wdu(w) dt

- 27r1/f
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To prove the uniqueness of g, we show that from f7 fg=0for all fe H(D) it
follows that g = 0. We set f(z) :=

:/g(ﬂf)
v* T

dz = 271
) 42 = 2mi g(a),

the latter from Cauchy’s integral theorem (see 4.9). O

Definition 4.7 Let U C C be open. A 1-chain is a formal linear combination
c:= 3, kjcj of curves ¢; : [0,1] — U with coefficients k; € Z. The set of all 1-chains
forms an Abelian group regarding the component-wise addition. The boundary dc
of a 1-chain is a 0-chain, i.e. a formal linear combination of points defined by
dc =3 kj(cj(1) —¢;j(0)). A l-chain is called a cycle if dc = 0. That is, if all ¢;
are closed curves. The set of all cycles is a subset of the 1-chains.

The integral for 1-forms w on 1-cycles ¢ is defined as

/szzzj:kj/cjw

the index is defined respectively as

Zk3271rl/ w—z
for all z ¢ ¢([0,1]) := U, ¢; ([0,1]).

Definition 4.8 Let U C C be open. A 1l-cycle ¢ is called 0-homologous in U, if
n(c,z) = 0 holds for all z ¢ U.

Two cycles ¢; and ¢y are called homologous in U, if n(c1, z) = n(cg, z) holds for
all z ¢ U. The 0-homologous cycles form a subgroup of the 0-cycles.

The quotient group H;(U,Z) is called 1st homology group of U with quotients
in Z.

Theorem 4.9 (Integral theorem and integral formula of Cauchy) LetU C
C be open, f : U — F holomorphic. For arbitrary cycles c¢1 and co homologous in

U
/Cl f(z)dz = / f(2)dz

holds. For a 0-homologous cycle ¢ in U

L [fw) .

ori w—z

f(z)n(e,2) =
holds for all z € U\im(c).
Reference. A proof can be found in [Kri03], Theorem 9.21.

Lemma 4.10 (Jordan-System) Let U C C be open and K C U compact. Then

there exists a 1-cycle ¢ = Zj ¢; of smooth closed curves cj in U\K with pairwise
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disjoint images such that n(c,z) € {0,1} for all z ¢ im(c). We define the inside
and the outside of ¢ by

inn(c) = {z ¢ im(c):n(c,z) =1}
out(c) = {z ¢ im(c):n(c,z) =0}

respectively.
Then K C inn(c) C U or equivalently C\U C out(c) € C\K. This is named
Jordan-System.

Reference. A proof can be found in [Kri03], Lemma 9.22.

Theorem 4.11 (GKS-duality) ([Kri02], 7.19) Let U C C be open. The dual
space of the Fréchet space H(U) can be identified with Ho(Coo\U), the space of the
germs of holomorphic functions f on Coo\U with f(co) = 0.

Proof. Let [g] € Ho(Cx\U), i.e. g holomorphic on a neighbourhood W of Coo\U.
Without loss of generality, let the boundary of W be parameterisable by finitely
many C'-curves c. Resulting,

nh =3 o [ Ty
% <k

defines a linear functional on C(U) O H(U). This definition depends only on the
germ [g] of g following from Cauchy’s integral theorem 4.9.

Conversely let p € H(U) and according to C.2 p € C(U,C)’. From C(K,C) C
C(U,C) for a compact subset K C U we get C(U,C) C C(K,C). Thus the
support of p is a compact subset K C U, i.e. p € C(K,C)". Due to 4.4 the map

~

i Coo\K — C is holomorphic and according to Cauchy’s integral formula 4.9
I f(w)
u(f) = _;27(1# <Z—>/Ck w_zdw>
_ n 1 f(C(tl)) N
o ; i’ (21: () — 2° (M\LI)
n 1 1 |
S ; 2mi z; Jelt)n <c(tz)—z) c (ti)| 1]
) _;%i/%f(w)ﬂ (ZH OJ—Z> e
1 ~
= 2o / F(w)ii(w)de
k Cl

with f € H(U) holds. Therefore p is given by an ”inner product” with g €
Hy(Cxo\K). O
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Chapter 5

Nuclear Spaces

Definition 5.1 For two arbitrary normed spaces F and F', A,(E,F) for n € N
denotes the collection of all mappings A € L(F,F) whose range is at most n-
dimensional.

For an arbitrary mapping T' € L(E, F) we designate

an(T) :=inf {||T — Al|: A€ A,(E, F)}
as the n-th approrimation number of T. Clearly, we always have

HTH = ao(T) > Oél(T) >...>0.

Theorem 5.2 ([Pie72], 8.1.2 Proposition 5) Let E, F' and G be normed spaces. For
two mappings T € L(E,F) and S € L(F,G) we have

Anim(ST) < an(S)am (T).

Proof. For an arbitrary positive number o we determine mappings B € A,,(E, F)
and A € A, (F,G) with
IT =Bl < am(T) + 0o

and
IS — Al < an(S) +o.

Then since A(T — B) + SB € Ay ym(E,G), we have the estimate

anym(ST) < ||ST — A(T — B) — SB||

= [[(S—=A)(T-DB)|
< [IS=AJT - B
< (an(S) + 0)(am(T) + o),
from which we get the required inequality by taking the limit as ¢ — 0. Il

Definition 5.3 Let £ and F' be normed spaces and p a positive number. We
consider the collection IP(E, F') of all mappings T € L(E, F') for which

Z an(T)P < oo.

neN

Clearly, [P(E, F') is a linear space (cf. [Pie72], 8.2.2).

21
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1/p
= (Z an(T)p>

we define on [P(E, F') a real valued function with the following properties

(i) p(T) =0,

Definition 5.4 By

(i

i) from ,(T") = 0 it follows that 7' =0,
(iii) for all numbers A we have o,(AT) = |A|op(T'), and
)

(iv) for some number o, > 1 we have the inequality
Qp(S +T) < op(0p(5) + Qp(T))
for S,T € IP(E,F).

On the basis of the properties stated above, p,(T) will be designated as a quasi-
norm. We obtain a metric topology on [P(E, F') by using the sets

UcT) ={S€lP(E,F):0,(S—T) < ¢}
with € > 0 as a fundamental system of neighbourhoods of the mapping 7.

Theorem 5.5 ([Pie72], 8.2.7) For E, F and G three normed spaces, T € IP(E, F),
and S € l4(F,G) it follows that ST € I*(E,G) with

1 1

1
s p oq

Proof. By applying the generalised Holder inequality (cf. e.g. [Kri02], 2.3)

1/s 1/p 1/q
(Z |fnnn\8> < (Z |5n|P> (Z |nn\Q>
neN neN neN

and 5.2 we get the estimate

1/s
0s(ST) = (Zan(ST)S>

neN

1/s
(2 > agn(ST)s>

neN

IA

VAN VAN
N
}l\')
— 2]
1 s
Qﬁ
3

A2

£
N——

=

Q
Av
(] B
Q

3
N——

=

3

Therefore the product ST belongs to I*(E,G). O
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Definition 5.6 Let E be a locally convex space and E’ its topological dual. Further
let AC E and B C E’ be two subsets. Then by

A°={d' e B': |2/(z)| < 1,Vz € A}
respectively
B°:={z € E:|d(z) <1,va' € B}

we define the polar of A respectively B.
By A°° := (A°)° we denote the bi-polar of A. Obviously, we have A C A®°.

Lemma 5.7 ([Pie72], 8.4.1 Lemma 1) Let E be a normed space and U its closed unit
ball. For each n-dimensional linear subspace F' of E there are elements x1,...,x, €
F and linear forms ai,...,an € E' with |zi|lv = 1, |lakllve = 1 and ag(x;) = ;i ,
where 0; ), denotes the Kronecker delta. Then we have

x = Z ai(zr)z;
i=1
forallx € F.

Proof. We consider an arbitrary system of linearly independent elements y1, ..., yn
in F' and set

5(b1,...,bn) :=|det (bg(ys))|

for b1,...,b, € U°. Then ¢ is a continuous function on the compact n-fold topolog-
ical product of the weakly compact unit ball U° of E’. Consequently, there must
exist elements ay, ..., a, € U° for which d(ay, ..., a,) takes the maximum &y, which
certainly must be greater than 0, since expanding y1, ...,y to a basis and getting
the dual basis by, ..., b, yields §(by,...,b,) = 1.

If the elements x1,...,x, € F are the uniquely determined elements of the
solution set of the system of equations

n
> aily)r; = ui

j=1

for i =1,...,n, we then have
a(zj) = G-

Since

> aj (i)bi() = bi(wi)
j=1
for by,...,b, € U°, we get

dai,...,ap)|det (bg(z;))| = 0(b1,...,by)

from the multiplication of determinants. Therefore, the inequality

|det (bx(z;))| < 1
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holds for by,...,b, € U°. If for fixed i we set by = aj with k # ¢ and b; = b € U°,
we then obtain
|b(z;)] <1

for b € U° or ||z;]|y < 1. Since ||a;||ye < 1 holds by hypothesis, it follows from
1= ai(zi) < ||zillolladlloe,
that ||z;||o = 1 and ||a;[[ge = 1.

Since the elements z1,...,x, form a linearly independent basis in F' we can
write each element x € F' uniquely as a linear combination

n
T = Z &ix;.
i=1

Here we have .
ar(z) = &Gag(xi) = &
i=1
and hence the desired result. OJ

Lemma 5.8 ([Pie72], 8.4.1 Lemma 2) Let E and F be two normed spaces and U,
V' the closed unit balls in E respectively F. Fach mapping T € A,(E,F) can be
represented in the form

n
Ty = Z Aiai(x)y;
i=1
with linear forms a; € U° and elements y; € V' so that the inequality
[Adl < 7]
holds for the numbers A\;, 1 < i < n.

Proof. For the n-dimensional range of T' we determine elements y; € range(T") and
linear forms b; € F’ with the properties presented in 5.7. The identity

n
Tx = ZT/bi(l')yi
i=1
then holds for x € E and we have
X = [T'bilue > 0.
Finally, if we set

T'b;
a; =
(2 )\’L I

we get the representation
n
Tz = Z Aiai (%)Y
i=1

for the mapping T'. Moreover, we have a; € U°, y; € V and |\;| < ||T]]. O
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Theorem 5.9 ([Pie72], 8.4.2) Let E, F' be normed spaces with closed unit balls U
and V. Each mapping T € IP(E, F) with 0 < p <1 can be represented as

Tx = Z Anan(z)yn

neN

with linear forms a, € U° and elements y, € V, such that the inequality

1/p
(Z w) < 2237y (T)

neN
holds for the numbers A, n € N.
Proof. For n € N we determine the mappings A,, € Aon_o(F, F) with
[T = An|| < 209no(T)

and set
Bn = An+1 — An

Then the statements
d, = dim(range(B,)) < 2"*2

and
[Bull < T — Anll + [|T — Aptall < dagn_o(T)

are valid. Consequently, we have
dp|| Bl < 22p+”+2a2n_2(T)p.

Since the sequence (a;,(T)),,, decreases monotonically, the inequality

2n—2
S e oM< Y an@P = Y an(T)F = o, (T)
neN neENm=2n-1_1 meN

holds. Therefore, the estimate
> dul|ByllP < 2% (TP
neN

is valid.
Using 5.8 we write the mappings B, in the form

dn
Bux =) A'aj(x)y;

=1

where af € U°, y?* € V and |A\}| < ||B,|| for any given n. Consequently, we have

dn
DD NP S Y dallBall? < 2%, (TP

neN =1 neN

Our assertion is thus proved because for all x € E the identity

dn
To= lm Appz=y Buw= > Mal(@)y}
neN neN =1

is true. O
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Definition 5.10 Let F and F' be two arbitrary normed spaces with closed unit
balls U and V. A mapping T € L(FE, F) is called nuclear if there are continuous
linear forms a, € E’ and elements y,, € F with

> llanllvollynlly < oo

neN

such that 7" has the form

Tx = Z an(x)yn

neN

for z € F.
For each nuclear mapping T we set

v(T) = inf {Z HanHUOHynHV} :

neN

where the infimum is taken over all possible representations of 7.

Lemma 5.11 ([Pie72], 8.4.3) Let E and F be two normed spaces. Every mapping
T € (*(E, F) is nuclear and we have v(T) < 2501(T).

Proof. This is an immediate consequence of 5.9 and definition 5.10. O

Definition 5.12 A locally convex space FE is called nuclear if for any convex bal-
anced neighbourhood V of 0 there exists another convex balanced neighbourhood
U C V of 0 such that the canonical mapping from Ey onto Ey is nuclear.

We designate as dual nuclear all locally convex spaces whose strong topological
dual is nuclear.

Definition 5.13 A sequence of numbers ()\;);en is called rapidly decreasing if the
sequences of numbers ((i + l)k)\i)i ¢ 18 bounded for all k£ € N.

By a small computation, we can conclude that if (\;);en is a rapidly decreasing
sequence of numbers the inequality

> i+ DR < o0
1€N

holds for all £ € N and p > 0.
The space of the rapidly decreasing sequences is denoted by s (see 8.4).

Definition 5.14 For two normed spaces E and F' we consider the collection s(E, F)
of all mappings T' € L(E, F') for which the inequality

Z an(T)? < 0

neN

holds for every positive number p, and we say that these mappings are of type s.
We have
s(B,F) = I"(E,F)

p>0

and therefore s(E, F') is a linear space.
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Remark 5.15 Let E and F be two normed spaces. A mapping T' € L(E, F) is of
type s if and only if the sequence of its approximation numbers is rapidly decreasing.

Theorem 5.16 ([Pie72], 8.5.6) Let E and F be two normed spaces with closed
unit balls U and V. A mapping T € L(E,F) is of type s if and only if it can be
represented in the form

Ty = Z /\nan(x)yn

neN

with linear forms a, € U°, elements y, € V and a rapidly decreasing sequence of
numbers (Ap)neN-

Proof. First we prove necessity. If T is a mapping in s(F, F), we determine the
mappings A, € A,(F, F) with

1T = An|| < 200(T)
for n € N. Then the statements
d,, := dim(range(B,)) < 2n+1
and
[Bnll < dan(T)

are valid for the mappings
By = An+1 — Ay,

and we have

D dnl|Bull €247 (04 1)an(T)P < o0
neN neN

for all p > 0. Using 5.8, we put the mapping B, in the form

dn
Bux =) A'aj(x)y;

=1

where af € U°, y' € V and |A\?| < ||B,||. Consequently, we have

dn
SOSTP <Y dullBall? < o0

neN =1 neN

for all p > 0, and for all x € E the identity

dn,
Tr= lim Ajppiz= Z Bpr = Z Z Ala (z)y;'
mmee neN neN i=1

holds. We have thus shown that the mapping 7" can be represented as
Tr = Z A G () Ym,
meN
with linear forms a,, € U° and elements y,, € V such that for each integer m the

inequality Z
[Am|P < o0
meN
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holds. Since we can always reorder N such that [Ag| > |A1| > ... > 0, the sequence
(Am)men is rapidly decreasing.

Now to sufficiency. We consider a mapping 7' € L(E, F') which can be repre-
sented in the given way. Since the mapping A with

n—1
Az = Z A ()Y,
m=0
for x € E belongs to A, (FE, F), we have

an(T) < T - Al < Z [ Aml.

m=n

Consequently, for all p between 0 and 1, the inequality

an(T) < (Z w) <3 Pl

m=n

is valid, and we get the estimate

Y an@P <D D Pl =) (mA+ 1) Al < oo

neN neNm=n meN

Therefore T is of type s. O

Theorem 5.17 ([Pie72], 8.6.1) A locally convez space E is nuclear if and only if
for some, hence each, positive number p the following statement is valid.

For each neighbourhood U of 0 in E there is a neighbourhood V' of 0 in E with
V C U such that the canonical mapping from Ey onto Ey is of type [P.

Proof. To prove necessity, we determine for an arbitrary neighbourhood U = Uj
of 0 neighbourhoods Uy, ...,Uy, of 0 with Uy, C ... C U; C Uy such that the
canonical mappings Ey, — Fy, , are absolutely summing, and set V' = Uy,. Then
the mapping Fy — Ey equals

Ly, — By, , — ... — Ey, — Ey,

and is of type I/™ by 5.5, because we can combine each pair of consecutive mappings
in the sequence to obtain a mapping of type [°.

If p is an arbitrary positive number, we choose n greater than 1/p. Then the
canonical mapping Fy — Ey is of type [P.

We now prove sufficiency. If the stated assertion is satisfied for some posi-
tive number p, we determine for a neighbourhood U = Uy of 0 neighbourhoods
Ui,...,Us, of 0 with Uy, C ... C Uy C Uy such that the canonical mappings
Ey, — Ey, , are of type [P. Here, the natural number n is assumed to be greater
than p. We now set V = U,,. Then the mapping Fy — Ey equals

bty, - Ey, , — ... — Ey, — Ey,

and is of type [P/ by 5.5. But since p/n < 1, By — Ey must be nuclear by 5.11.00
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Theorem 5.18 ([Pie72], 8.6.6) For a nuclear or dual nuclear locally convex space
E, all canonical mappings E4 — Ey with A bounded in E and U a neighbourhood
of 0 in E are of type s.

Proof. If V is an arbitrary neighbourhood of 0 in £ with V' C U we have
Es— Eyv — Eyp.

On the basis of 5.17 we can, in the case of a nuclear space, choose V' in such a way
that Ey — Ey is of type [P for an arbitrary positive number p. Consequently (see
5.14), the canonical mapping F4 — Ey must be of type s.

The proof of our assertion for dual nuclear locally convex spaces proceeds in the
same way if we write the canonical mapping F4 — Ey in the form

Eqs— Eg — Epy

with a bounded set B in E. O
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Chapter 6

Real Analytic Functions

Definition 6.1 A function f, with domain U C R open and range F, is called real
analytic at a € U if the function f may be represented by a convergent power series

fl@) =) aj(x—a)
=0

on some interval of positive radius centred at «. The function is said to be real
analytic on V C U if it is real analytic at each o € V.

The linear space of all real analytic functions f : R — C will be denoted by
C“(R).

Now we want to provide a topology on C*(R). But there is no elementary
topology at hand which results in a complete linear Fréchet space. The next obvious
thing to do is to consider inductive and projective limit topologies.

Definition 6.2 Let A be an arbitrary subset of a complex analytic manifold V.
By Hp (V) we denote lim ., lim _ . H(U) as U runs through all open neigh-
bourhoods of K and K runs through all compact subsets of A in V.
And by Hr 4(V) we denote lim H(U), as U runs through all open neigh-

—UDA
bourhoods of A in V.

Lemma 6.3 ([Mar63], Proposition 1.1) Let V' be a complex analytic manifold. Ev-
ery element of H(V) can be represented by a measure with compact support, i.e.
there exists a measure p with compact support such that for all ¢ € H(V') we have

(T, ) = /V b

Proof. This is an application of the theorem of Hahn-Banach C.2. More precisely,
the map pu — T'(p) is a topological vector homomorphism from C(V)’, equipped
with its strong dual topology, to H(V). One easily can verify that C(V)" is an
(LF)-space. As we know, H(V)' is itself an (LF')-space and hence the application

p — T'(p) which is surjective by C.3, is a homomorphism. O

Lemma 6.4 ([Mar63], Proposition 1.2) If A is a compact or open subset of a com-
plex analytic manifold V', then we have Hr o(V)' = Hpa(V)'.

31
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Proof. The injection from Hj 4(V') to Hp a(V') being continuous, it follows imme-
diately that Hp o(V)' € Hra(V)'.

If A is compact we have by definition Hp (V) = Hya(V). If A is an open
subset of V, by definition we have H; 4(V) = H(A). If T € H(A)', by 6.3 there
exists a measure with compact support K included in A and pr such that for all
¢ € H(A) we have

(T, ) = /A ddur.

Hence T is continuous on H(A) through the inductive topology on Hg(V), in
consequence belonging to Hp 4(V')'. O

Since we now know that the two possible approaches to equip the space of real
analytic functions with a topology coincide, we are free to choose.

Remark 6.5 The topology we will use is given by the following equality

C“(R) := lim lim H(U),
— ==
KCRUDK

as K runs through all compact subsets of R and U runs over all open neighbourhoods
of K in Cy,. We can consider only sequences of K’s and U’s and we usually put

C¥(R) = lim H([—N,N]) = lim lim H(Uy,0).
NeN NeNneN

where Uy, := [N, N] + 1D.
The inductive topology on C*(R) will be denoted by

C¢ (R) = lim H(U),
UDR

as U runs through all open neighbourhoods of R in C.

Theorem 6.6 ([BD98], Proposition 4 (1)) A subset B C C*(R) is bounded if and
only if for every compact interval I in R there is an n € N such that

(1)
C = sup{|¢ (z)

il nt

:¢€B,x€[,i€N}<oo.

Proof. If B is bounded, for every compact interval I C R the set B is bounded in
H(I) = h_r)nneN H*>® (I + %]D) Since this inductive limit is regular, there are n € N
and M > 0 such that each ¢ € B can be extended to a

¢ e H®(I + lD)
n

with
sup |¢(z)] < M.
ZEI‘F%D

By the Cauchy inequalities, for x € I and i € N, we have

¢(i)(x) -
il (2n); < |f|13;in lp(x + 2)] < M.
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Conversely, we fix a compact interval I in R and select n satisfying the prereq-
uisite. Define

5= Y 260 (@)(z — )’

=0

~

forxel zel+ % C C. Since ¢ is real analytic,
¢ H™(I + iD)
2n

is well defined and extends ¢ with norm less or equal to C'. Thus B is bounded in

C“(R). O

Theorem 6.7 ([Mar66], Proposition 1.2 and Proposition 1.7) The strong dual space
C¥(R)j; coincides topologically with lim H([-N, N])j and it is a complete nu-
clear (LF')-space. Both C*(R) and its strong dual C*(R)j; are reflexive.

Proof. Since C¥(R) is a complete Schwartz space, C""(]R)’ﬂ is ultrabornological by
C.8.

The topology of the dual space C¥ (R)IB is weaker than the inductive limit topol-
ogy of lim  _H([=N,N])j; i.e. the map from lim _ H([-N,N])j to C“(R)j is
continuous and hence has a closed graph. By Runge’s theorem (cf. [Kri02], 7.18)
the projective limit lim o ([-N, N]) is a reduced projective system and we can
apply 2.17 to obtain that lim _ H([-N,N]); = C*(R)j is a bijection. There-
fore the inverse exists and has a closed graph. Since C“(R)j is ultrabornological,
by Grothendieck’s closed graph theorem the inverse is continuous too. Hence the
spaces must coincide.

Since C*(R) is ultrabornological, C*(R)j; = L(C*(R),R) and hence the strong
dual is complete.

The nuclearity of H(Cx\[—N, N]) implies the reflexivity and nuclearity of both
C“(R) and C¥(R)j via 4.11. O

Theorem 6.8 ([BD98], Proposition 4 (2)) Let 0, be the Dirac functional associated
to x which is given by 6,(p) = @(x). The linear span H of the set {d, : x € R} is a
sequentially dense subset of C“(R)j.

Proof. Fix u € C*(R)j5. By 6.7 there is N € N with u € H([-N, N])j. The linear
span Hy of {d; : @ € [N, N]} is dense in H([-N, N])j, because it is clearly weak-
star dense and H([—N, N]) is a reflexive nuclear (DF)-space. Since H([—N, N])j
is a Fréchet space, we can find a sequence (u;);en in Hy, hence in H, such that

the sequence converges to u € H([—N, N])j;. Therefore (u;)jen converges to u €
CY(R)j. O

Theorem 6.9 ([BD98], Proposition 3) The space C¥(R) is isomorphic to a projec-

tive limit of a sequence of spaces isomorphic to H(D) and C“(]R)’ﬁ is isomorphic to
an inductive limit of a sequence of spaces isomorphic to H(D).

Proof. First consider the composition operator with the map

0 : D — Co\[-N, N] : o(z) ::];[(z—i—i), (1)
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which yields the following isomorphisms
H(Coo\[-N, N]) =~ H(D) ~ H(Coo\D).

From the GKS-duality 4.11 we have H([-N, N])j ~ H(Co\[-N, N]) which, by
(1), is isomorphic to H(Cs\D). Applying the GKS-duality again gives

H(Coo\D) = H(D)}.

Utilising the reflexivity of H (]D))’ﬂ to use the bi-polar theorem, we get
H([-N,N]) = H(D).
The conclusion for C“(R)j; follows from the GKS-duality 4.11 to get
H([=N,N])3 ~ H(Csx\[-N,N])
and 6.7. g

Lemma 6.10 Let I C R be an open interval and p € C“(R)%. If I # R suppose

supp(u) = {0}. Assume that for some r : C — RT with @ — 0 for |x| — oo u
satisfies

(%)
1S(2)| < 7(|z|) Vz € C with ji(z) =0,

where i denotes the Fourier transform of u.

(E) For all x € R exists t € C such that

o —t| < r(z) and |i(t)] = e

(8.10) For every x € iRy exists t € C such that
=t < r(@) and |i(t)] > eHoO—O)

where G := (supp(p)) denotes the conver hull of supp(p) and Hg(z) =
sup {S(&z) : £ € G}.

Then T, : C*(I — G) — C¥(I) has a continuous right inverse, where T), is the
convolution operator given by T,,(f)(x) := (y, f(x —y)).

Reference. The proof can be found in [Lan94], 3.2 Lemma.

Theorem 6.11 ([BD98], Proposition 5) The space of the periodic real analytic
functions Cs (R) is complemented in C¥(R).

Proof. Let p := 6 —6_r. Then T,,(f)(z) = (p* f)(z) = f(z —7) f(x + m) and
hence C%, (R) = ker(7},). Now we apply 6.10 to I = R and constant r = 1. We have
fo="Tr(0) =T (0) : 2+ €™ — e~ 1™ = 2isin(rz) and 4~1(0) = Z. Thus the first
condition is satisfied.
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We have supp(p) = {m, —7}, hence G = [-m, 7] and I — G = R. Furthermore
Hg(z) = m|S(2)|. Note that

iz +iy) = [eted) - i)
= |e ™(cos(mx) + isin(mx)) — ™Y (cos(mx) — isin(nx))]
> e ™|cos(mzx) +isin(nz)| — ™| cos(mz) — isin(mz)|
— oY _ ™Y

= —sinh(my).

Hence, the two other conditions are satisfied.

Now let o : C¥(R) — C*(R) be a continuous linear right inverse for T}, given by
6.10. Then g := 1—00T), has image in ker(7},), since T;,0q = T;,—T,000T), = 0, and
is a left-inverse for the inclusion of ker(7,) in C*°(R), since q |xer(7;,)=1 — 0= 1.00

Theorem 6.12 The space C5.(R) of 2m periodic real analytic functions is isomor-

phic to H(D).

Proof. Cs_(R) is isomorphic to the space of real analytic functions on the unit circle.

By using the Laurent series representation, this is isomorphic to H(D) x H(Cy\D) =
H(D) x H(D).

Now we identify H (D) with A;(a) by [MV92] 29.4.(3), following from 27.27,
27.25 and 27.16.(1) for which the isomorphism Aj(a) x Aj(a) = Aj(a) (for shift-
stable «) holds by [MV92] §29, example 3(b). From the GKS-duality 4.11 we obtain

H(D) x H(D) =2 H(D). Finally, take the duals. O

Theorem 6.13 C“(R)j has a complemented subspace isomorphic to H(D).

Proof. By 6.12 C*(R) has a complemented subspace isomorphic to H(D). Taking
the duals and applying the GKS-duality 4.11 gives the desired result. ]



36

CHAPTER 6. REAL ANALYTIC FUNCTIONS



Chapter 7

Real Analytic Curves

Definition 7.1 Let E be a locally convex space. A curve ¢: R — E is called real
analytic if l o ¢ : R — R is real analytic for all [ € F'.
By C¥(R, E)) we denote the space of all real analytic curves from R to E.

Definition 7.2 Let E be a locally convex space. A curve ¢ : R — FE is called
topologically real analytic if ¢ is locally given by a power series converging with
respect to the locally convex topology.

By C{¥(R, E') we denote the space of all topologically real analytic curves from
R to E.

Definition 7.3 Let E be a locally convex space. A curve ¢ : R — FE is called
bornologically real analytic if ¢ factors locally over a topologically real analytic curve
into Ep for some bounded absolutely convex set B C E.

By Cy¥ (R, E) we denote the space of all bornologically real analytic curves from
R to E.

Theorem 7.4 ([BD98], Proposition 10.(2)) Let E be a complete locally convex
space, f : R — E be given. The following assertions are equivalent.

(i) feCYR,E).

(ii) f € C¥(R, E) and for every compact interval I C R there is an n € N such
that for all continuous semi-norms ||.||, on E

TRIOA .

sup sup i

zel ieN

Proof. (i) = (ii) By hypothesis, for all € I there exists an 7 > 0 depending on z

such that for all A > 0 with || < 2r the power series ), %hz converges. Put

Ur(z) ={yeR:|ly—z| <r}.

Then {U,(x): x € I} is an open covering of I. Hence there exists a p > 0, called
Lebesgue-number, such that for every subset A with a diameter less than p there

37
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exists an x € I such that A C U,(x). Therefore for all x € I the Taylor series
converges for |h| < §. Using Cauchy’s integral formula, we get

(m)
L) / 27r(zf(z)n+1h”dz — 9w flla
Y

n! —w)

where 7 is a circle with radius h around w. Applying |||, proves the statement.

(ii) = (i) Let n be as in the hypothesis and || < 7 < L. Then Y, %hz
converges uniformly and absolutely for |h| < r and € I. In fact, consider
1/

> <3 || om

1€EN i€N
The right side converges absolutely, since

159 ()l
1! nt

is bounded. g

Lemma 7.5 ([K6t69a], 29.1.(5)) Let E be a locally convex and metrizable space
and (Bp)nen a sequence of bounded subsets of E. Then there exist positive scalars
Pn,1 € N such that UneN PnBn is also bounded.

Proof. If Vi D V5 D -+ is a base of absolutely convex neighbourhoods of 0 in F,
and if p, B, C V,, then {J,;~,, pnBn C Vi, for each m € N, and hence Unen PnBn is
bounded. O

Theorem 7.6 ([BD98], Proposition 12) If F' is a Fréchet space, then the spaces
C{ (R, F) and C¢ (R, F') coincide.

Proof. First we observe that every f € C¢(R, F) is locally a bornologically real
analytic function for an arbitrary locally convex space F. Indeed, from 7.4, for an
arbitrary compact interval I C R, we get n € N such that

(@)
C::{f_ (x) :xe[,iEN}

il nt

is bounded in F'. We denote by B the closed absolutely convex hull of C. Then it
is easy to see that for all x € I and a suitable

Zf )(t — )’ (1)

for all t € |z — e, + ¢[, and the series converges in Fp.

To conclude, we fix f € C¥(R, F') and we assume that F' is a Fréchet space. For
each n € N there are a closed absolutely convex bounded subset B, of F' and an
en, > 0 such that for all z € [—n,n] equation (1) holds for € = £, and the series
converges in Fp, . By 7.5 in metrizable spaces there is for each sequence of bounded
sets another bounded set absorbing all the sets in the sequence. Hence there is a
closed absolutely convex bounded set B C F' and A, > 0 such that B, C A\, B for
all n € N. Thus, for all z € R, the series in (1) converges in Fp with a positive
radius of convergence. O
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Theorem 7.7 ([BD98], Lemma 14) If f € C¥(R, E), then for every compact in-
terval I C R and every continuous semi-norm ||.||, on E there is an n € N such

that
sup {

In particular,

(uo ) ()

il nt

1W@N§Hﬂ%u€£ﬂi€NﬁE]}<o&

B:={uo f:|u(z)| < ||z]lp,u € E'}

is bounded in C¥(R) for all continuous semi-norms ||.||, on E.

Proof. Since f is smooth, u o f is smooth for all bounded u : £ — R and satisfies
(uo £)D(t) = u(f¥(t)). Furthermore, by hypothesis we have |u(z)| < ||z, Hence
it suffices to show

FO(x)

iln?

u(@)| < |jzllp,ue Eie Nt el p <oo
q

sup ‘

—

for f : R — E/ker(||.||4). The range being a Banach-space, we can apply [KM97]
9.6. to ensure that f € CY(R, E).
From 7.4, for an arbitrary compact interval I C R, we get n € N such that

(@)
{f @:teLieN}
il nt

is bounded in E. Hence we have

u<{];<;->§>:tef,ieN}>:{W:tel’m}.

This proves the hypothesis, since the right hand side is bounded as the image of a
bounded set under a bounded map.
Inserting (u o f) into 6.6 assures that the set B is bounded in C¥(R). O

Theorem 7.8 ([BD98], Theorem 16) Let E be a sequentially complete locally con-
vex space. The spaces C¥(R, E) and C¥(R)QE = L(C¥(R)j, E) are algebraically
isomorphic in a canonical way.

Moreover, this isomorphism maps C¢’ (R, E) onto LB(C“(R)j, E).

Proof. We define
A:R— C°R)j: Az) := ds.

/
Since go A = g for all g € C¥(R) = (C“(R)b) , we have A € C“(R, C¥(R)j). This
clearly implies that the map

¢ : L(C*(R)3, E) — CY(R, E) : (W) :==Wo A

is well-defined and linear (see [KM90], 1.9).
We put
H :=span ({0, : = € R}) € C*(R)j,
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and endow it with the topology induced by C¥ (R)Qg For f € C¥(R, E) we denote
by

O(f): H = E:9(f)(6) == f(=),
for all x € R. We check that 1(f) is continuous. Fix a continuous semi-norm ||.||,
on FE. By 7.7 and 6.6,

B = {uof: lu(z)| < ||z||p,u e E’}
is bounded in C“(R). If y € H belongs to the polar B° taken in C“(R)j; we have

sup [u(¥(f)(w)l = sup [{y,uc f)] <1
lu(@)|<|l=llp lu(@)|<llzllp

By 6.8, H is sequentially dense in C“’(R)’ﬁ. Since F is sequentially complete, there
is the unique continuous extension ¥(f) : C“(R)j; — E. Clearly, ¢(f) € C*(R)®E.
Furthermore 1 : C*(R, E) — C*(R)®FE is well-defined and linear. Now, both ¢ o)
and 1 o ¢ coincide with the identity in the corresponding space. Therefore both
are linear isomorphisms. Observe that (1) o ¢)(W) = W has to be checked only on
{0z : @ € R} for each W € L(C¥(R)j;, E).

To see the second part, observe that f € Cy(R, E) if and only if f € C¥(R, Ep)
for some closed absolutely convex bounded subset B of EZ. By the proof given above,
for the Banach space Epg,

¥(f) € L(C*(R)s, Ep) € LB(C*(R), E).
Conversely, if W € LB(C*(R)j, E) there is a B with
W e L(C“(R)j, Ep).

Thus ¢(W) € C¥(R, Eg) C C¥(R, E). 0
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Sequence Spaces

Definition 8.1 Let M be a set, a : M — F with a(t) > 1 for all t € M. We set
A®(M,a) = {x : M — T |zl := sup |z(t)|a(t)® < oo Vk}
teM

and

A(M,a) = {az M —F: |z = Z lz(t)]a(t) < oo Vk} .

teM

Remark 8.2 Equipped with the respective semi-norms |||, & € N, A>°(M,a) and
A (M, a) are Fréchet spaces, since for each semi-norm k the mapping By — Eji1
is compact and hence the spaces are projective limits of Fréchet spaces.

Remark 8.3 In definition 8.1, put M = N (here N is meant explicitly without 0)
log(n)

and a(n) = e, where 0 < a,, < apy, for all n € N and sup,,ey — —

Then

=:q < 0.

AN, (% )nen) = AT(N, (€7 )nen) =i Aoc(@)
is called power series space of infinite type. A () is nuclear (see [MV92], 29.6.(1)).

Remark 8.4 If we put M = N and a(n) = n in the definition 8.1, then
A®(N, (n)nen) = AN, (n)pen) =: s

is the space of rapidly decreasing sequences. It is the special case a,, = log(n + 1)
of 8.3.

Remark 8.5 For M = I x N, where [ is an arbitrary non-empty set and a(i,n) =
e with a as in 8.3 we get the following isomorphisms in a canonical way (see
[Vog85], 1. Example (3)).

AZ(I XN, (e")iernen) = (1)@ (a)
AMI x N, (e*)icrnen) = C(I)@A(a)

12

Because of the nuclearity of A () the tensor products ®. and &, coincide. There-
fore we can write in this case & for both.

41
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Theorem 8.6 ([Vog85], Proposition 1.1) Let I be an infinite index set and (au)nen
. . . ant1 ., . .

an increasing sequence with sup,cy e =1 p < o0, Then the following isomor-

phisms hold:

(XD BN () = 2°(1)®s,
MDA () = (HID)&s.

Proof. By 8.5 it suffices to identify the spaces A (M, a) and A°°(M,b) (respectively
AY(M,a) and AY(M,b)) where M = I x N and a(i, k) := e, b(i, k) := k. We give
the isomorphism by means of a bijection of M onto itself.

We put ng = 0, ny := [ke®]| and my, := ng —nyg_q for all k € N. For every k € N
the set I can be written as a disjoint union of subsets Iy, ;, j € I with |I; ;| = my.
We put Iy, j = {irj,:p=1,...,my} and define

¢(ik7j,ua k) = (.77 nE + N)

for iy, € Iy ;. Furthermore put ¢ := sup,cy loiin). Then ¢ is a bijection of M
onto itself with the following properties

b(p(i k) = np+p < npyr < (B+1)e+1 < elat)art1 < ela+1)pay
< (ali, k)P,
. 1 ooy o1 4
b(p(i k) = nk+#2nk25(nk+1)256k256k
1
2 5(1('6., k)

Hence the map x — x o ¢ defines an isomorphism of A*° (M, a) onto A>°(M,b)
(respectively A'(M,a) onto AY(M,b)). O

Definition 8.7 A sequence (e,)nen of elements in a locally convex space F is called
basis if for each element x € E there is a uniquely determined sequence of numbers
(&€n)nen such that

m
r = lim g Enen.
m—0o0
n=0

For each basis the correspondence x — &, defines linear forms f,, on E with
&m = (z, fm). Here we have

<€n7 fm> = 5n,m

for n,m € N.

Definition 8.8 We say that a basis (e, )nen of a locally convex space E is equicon-
tinuous if for each zero neighbourhood U there exists a zero neighbourhood V for
which the inequalities

| (@, fo) lllenllo < llzllv

are valid for all x € E and all n € N. In particular, all linear forms f,, are continuous.

Remark 8.9 Each basis in a Fréchet space is equicontinuous (c.f. [Pie72], 10.1.2.
Theorem).
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Definition 8.10 We call an equicontinuous basis (e, )nen absolute if for each zero
neighbourhood U there is a zero neighbourhood V' for which the inequalities

Dl fu) llleally < llzllv

neN

hold for all z € E. Then for all elements z € E we have the identity

T = Z (x, fn) en,

neN

where the series on the right hand side is absolutely summable.

Theorem 8.11 ([Pie72], 10.1.4. Theorem) Each complete locally convezx space E
with an absolute basis (en)nen can be identified with a sequence space A.

Proof. We set
P={(lenlly)nen : U € U(E)}
where U(E) denotes the set of zero neighbourhoods in E. We now construct the

associated sequence space A, whose locally convex topology is obtained from the
semi-norms

1En)nenlly = D 1nl llenlly

neN

with U € U(E). Since, by hypothesis, there is for each zero neighbourhood U €
U(FE) a zero neighbourhood V' € U(FE) with

1, fodnenlly = D e )l lzllo < llzllv

neN

for all x € E, the expression

Az = ((z, ) Jnen

defines a one to one continuous linear mapping from F into A. Since all families
(€nen)neny With (&,)nen € A in E are absolutely summable, we can set

T = Z Enen.

neN

But then the relation Az = (&,)nen is valid and we have shown that A is also a
mapping onto A. Finally, the continuity of the inverse mapping A~! follows from
the inequality

1D nenllv < D léal leally = I Ennenlly

neN neN
which is valid for (&,)neny € A and U € U(E). O
Remark 8.12 Since the unit vectors e, := (0pm)men form an absolute basis in

every sequence space A, we get from 8.11 that the collection of all complete locally
convex spaces in which there is an absolute basis coincides with the collection of all
sequence spaces.
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Remark 8.13 ([Pie72], 10.3.4. - 10.3.9.) In the nuclear locally convex space S the
Hermitian functions

20d 2
he(t) = €22 (")

form a basis. See [Jar81], 14.8.5.(d)

Remark 8.14 In the nuclear locally convex space D|_y ) the transformed Hermi-

tian functions -
9:(t) = hy (tan (51))

form a basis since the correspondence

1~ [ (n (39))]

is an isomorphism between the spaces § and D|_y 1.

Lemma 8.15 The nuclear locally convexr spaces C'[Ofl 1],7)[_1,1] and S can all be

identified with the nuclear sequence space s. In other words we have
sE Oy =Dy =8

Outline of the proof. Using the transformation in 8.11 we immediately get the de-
sired result.

Reference. A complete proof is given in [MV92], 29.5.(2)-(4).

Theorem 8.16 (Borel’s theorem) ([KM97]) If (ak)ken is an arbitrary sequence
of real numbers, then there exists a smooth function F such that F(k)(O) = ai for
all k € N.

Proof. Let ¢ € C'*° with
0 : |z|>1
o=

1
lz| < 5

and let i
b, =k + Z |ak|
m=0

The function
o0

F(zx):= Z %:vkgb(bkx)
m=0
has the required properties. Only finitely many terms of the series are nonzero
on any closed interval [c,d] not containing the origin, since ¢(byz) vanishes for
|x| > é, a quantity which converges to 0. Thus F is smooth in a neighbourhood
of any nonzero x, and we have to show that it is equally regular at the origin. We
form the derivatives. If  is not 0 these are given by the convergent series

o n la ) .
F(z) = k) (b b
kzzog)(n—ﬁ!ﬂ (k = 5)! ek
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and we shall show that this series of continuous functions converges uniformly on
the real axis using the Weierstrafl M-test.

Let M, = max;<, \\¢(j)||oo and suppose k > n + 1. Since only terms for which
|z|br, < 1 will contribute to the sum we have

lag|[zF=00 7 < Jag bRk < ortR <1

Accordingly
o0 n n'ak k.fj ( 7) i o0 1
E E — — 2" (bpx)b | < E 2" M, —.
— i\ 4l — i\l k —_n)!

Hence the sum of the terms is given for which k£ > n + 1 is bounded by

o0
1
n — n
k=n

Since the series giving F(™ converges uniformly on the axis, that function may
be extended to = 0 in such a way that it becomes continuous and F"~1)  if
so extended, is differentiable at the origin and its derivative is F(™)(0). But this
number is just a,. O

Definition 8.17 By w we denote the space of all sequences (sometimes referred to
as ).

Lemma 8.18 ([Vog85|, Lemma 1.4 or [Vog77a], Lemma 1.6 or [Vog77b], Lemma
3.1) There exists an exact sequence

0—s—>s5—>w—0.

Proof. Let

A:Diyg—w:gp— (¢(0),¢'(0),....).
Then according to 8.16 A is surjective. The kernel of A is isomorphic to Dj_; g X
Dyp,1)- Since Digyp can be isomorphically mapped to D|_y j) for all @ < b then by
8.15 we have Dy, ) = s for all a < b. Furthermore we have s X s = s and hence the
exact sequence

0— ID[fl,O] X D[O,l} — ,D[fl,l} —w—0

leads to an exact sequence

0—s5s—>s—>w—0.

Lemma 8.19 Let E, F and G be Fréchet spaces, A € L(E,F) and B € L(F,Q).
The sequence

0—EeELrta—o
1s exact if and only if the dual sequence

0—a A g o

15 exact.
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Reference. The proof can be found in [MV92] 26.4.

Lemma 8.20 (Canonical Resolution) ([Vog85], Lemma 1.5, [MV92], 26.14 Def-
inition and following) Let E be a Fréchet space. There is an eract sequence, called
canonical resolution

OHELHE;LHE;—)O
keN keN

defined by w(x) := (m(z)), where w1 E — Ey, is the canonical dense mapping and
by o ((xk)k) = (Tk — Tht1,6(Tht1));, where T © M1 = mp with [Tkl < 1.

Proof. Clearly, erNE; is a Fréchet space. From the continuity of 73 and 7411
and the properties of the product topology we get as a consequence the continuity
of m and 0. By 8.19, it suffices to prove the hypothesis for the dual exact sequence

/ /
0—><HE;> L(Hﬁ) L E 0.

keN keN

We recall that
!
—~ —/
(%) -
keN keN
with
y(@) = yr(r)

keN

— o~
for y € ey Ex and x € [[ oy Er- If we put

Uy ={ze€E:|z| <1},

—/ —/
then 7 : B, — E’ is an isometric bijection between Ej and Eb;? as can be seen
from the following diagram
T o —~
E—>F,
0

Ly
R

lo

since [y omy, € Eb;? if and only if I; o7y, |y, is bounded, which it is, as the conjunction

of bounded functions. On the other hand, if I3 is bounded on Uy we have [y |ker(ﬂk):
—/ —/

0 hence there exists an [; € Fj . We therefore identify E; with E{]IS. Hence, for

—~
Y € @y Er we have

™' (y) = Z Yk

keN

and
o'(y) = (Yk — Yk—1)keN
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with yg := 0. From this, we immediately get that 7’ is onto and o’ is one to one.
—
Clearly, 7’ o ¢/ = 0 and therefore o’ (@keN Ek) C ker(n’). To prove kern’ C

o’ (@keN E\k/), choose a y € ker(n’). Then

k
ni=m=> v
=1

keN

is in [Jen E\k/. If y, = 0 for all k£ > m, we have

k m
M= y=> yi=7(y) =0,
j=1 j=1

—/
Hence, n € @y Er and obviously we have /() = (yx)ken = ¥- O
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Chapter 9

The Property (£2)

Definition 9.1 Let F' be a Fréchet space with a topology defined by an increasing
system of semi-norms (||.||x)xen. We say that F has property () if for every p there
exists a ¢ such that for all k£ there exists a C > 0 and we have
2
[ullp, < Cllully, llullw,

for u € F'.

Recall that ||u||y, = sup{|u(z)|: 2z € Uy} € [0,00] where Uy is the unit ball
in F, ie. Uy :={x € F: | x| <1}. These ||.||y, are not to be confused with the
continuous semi-norms on F.

Lemma 9.2 ([Vog85], Lemma 1.3 and [Vog77b], Theorem 2.3) If
0—E—F-5A(M,a)—0

is an ezact sequence of Fréchet spaces, E having property () and A'(M,a) be-
ing nuclear, then the sequence splits, i.e. the mapping q¢ : F — AY(M,a) has a
continuous right inverse.

Proof. For sake of simplicity, we only consider the case A'(M,a) = s. We assume
that E is a subspace of F' and let Wi O Wj1 be a basis of absolutely convex
neighbourhoods of 0 in F'. Then we define inductively Vj as a neighbourhood basis
of 0 in E by

Vi =WirNE,

such that .
Vie Cr% Vi + ;qu (1)

for all k € N and r > 2 by using property (€2) in an equivalent form derived from
A.10 (ii”’) and with appropriate v, € N. Note that in the iteration step k — 1 we
can choose Vi, freely (by property (£2)) but we must take care that for V4,q the
conditions are met in respect to the next iteration step.

If e; is the j-th unit vector in s, then, using the canonical norms,

Iz llk = ¥l
j

49
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and we have |le;||x = j*. By the open mapping theorem C.15, q(W}) C s is open.
Hence, for every k there exists an ng € N and a C, > 1 with

{a+ all, <1} € Cra(Wi).

Using
R eC q(W )

we find a sequence (df) jen in F' such that
df € Crj™ Wi,

q(df) = ¢;

for all j € N. We can assume that ngy < ngi1, Cx < Ciy1 and that

(ke + Dnggr < npyo,
C’:k+12(k+1)Vk+1 < Ck‘—i—l

for all k € N.
Multiplying equation (1) with 2C},j™+! and choosing r = 2¥+1Cyj"+1 we obtain

20,1V, C 20t ety g 97hy

C
C Chryrf ™2 Vi1 + 27"V (2)

Since
df*t = df € 2041 Wi N B = 20" 1 Vi,

we can choose inductively a sequence (af) ren in F in the following way

af € Cij" 1V,

then d;?H _ dé? + aé‘-‘ € 2Cyj™+1V} and according to (2) we can find af“ c
Cry17™2 Vi 41 such that d?“ —db ok — e 2hy
We define

RY :=d} — df € 203" Wy,
then we have

k+l S Q_ka_l

k+1 _ pk _ gk+1 _ gk |k _
RMY — RE = df ! — df + af - o

for all 5,k € N. It follows that
lim R? = R;

k—o00

exists and R; € 205"+ W}, + Wi_1 C 3Cp " +1W}._1. So we can define

R(l‘) = Z ZL‘jRj
J
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for x := (z;);en € s and with ||R(z)||; denoting the semi-norm on F' belonging to
Wi, respectively ||z||; the canonical norm on s, we obtain

||R(33)||k—1 < 3016”‘7:””1@“'
Therefore R € L(s, F') and, because
1 ky _ 13 ky _
q(Rj) = lim ¢(Rj) = lim q(dj) = e;,
we get g o R =id. O

Theorem 9.3 ([Vog85], Lemma 3.1) Let E be a Fréchet space equipped with an
increasing fundamental system of semi-norms. If E has property () and {z; : i € I}
is dense in E, then E is isomorphic to a quotient space of {*(I)®s.

Proof. The case of a finite index set [ is trivial. So let I be infinite. From 8.20 we
use the canonical resolution

O—>E—>HE7€—>HE;—>O
keN keN

We choose a Banach space F' such that every EZ is isomorphic to a complemented
subspace of F' and such that F' has a dense subset of a cardinality less than that of

I, eg.
F = {x = (wi)i € [] Br: 2l =" ol < oo} .

keN keN

For any k let F} be a topological complement of l/?; in F, ie.
F=FE,aF,.

The direct sum of the canonical resolution above with the exact sequence

0—>O—>HFk£>HFk—>0
keN keN

Hm@nﬁznm@&:ﬂ

keN keN keN

can, by utilising

be considered as an exact sequence
0—FE—FN 2, PN .

We now consider the continuous linear mapping
(MI) — F: Z)‘iei — Z)\Zfl
il icl

for (Ai)ier € C*(I), ie. >ocr|Ail < oo, {e; 1 i € I} the canonical basis in ¢!(I) and
{fi€e F:iel,|fill <1} dense in the unit ball of F. This map is clearly onto, since
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for each y € F there exists an f;, such that ||y — f;,|| < 2 and an f;, such that
ly — fio — 3 fir || < %; iteration leads to

n

1

k=0

< 1
— 2n+1'

Therefore we have an exact sequence
0—-K—=01I)—F—0

where the kernel K is a Banach space which has a dense subset of cardinality
|J| < |I| and hence has a map ¢!(J) — K which is onto.
According to 8.18

0—s—>s5s—>w—20

is an exact sequence. We tensor it with the previous one considered as a column
and obtain the following commutative diagram with exact rows and columns

0

Consider the quotient space
(C(D@s) / (1 ((D)&s) B 1z (Ks))
which, by the second isomorphism theorem, equals

({(D@s/n ((H(I)@s)) [ (K®s/n (K&s)) = (04(T))

This results in an exact sequence

((1(D&s) @ (K&s) 22 1M (Dos 25 FN - 0.

We denote by N the kernel of ¢go. Thus N is a quotient of (81(1)@)5) @ (K@s).
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We now consider the following diagram

0 0
0 E N BN 0
id p1 q2
Lo
0 E H—— ({(I)&s —=0
N ") N
0 0
where
H={(z,y) € F" x (({(D&s) : a1(w) = () |
and

pi(z,y) =z, p2(z,y) =y.
Using 9.2 with A'(I x N, (n); nerxn) = £1(I)@s (see 8.5 and 8.6) we know that the
second row splits and we obtain from the first column the first row of the following
diagram. The right column is the same as before. The rest of the diagram is
constructed as in the previous one.

0 0
0 N H FN 0
id
0 N G HI®s —=0
N——=N
0 0

Since N is a quotient of ((}(I)®s) @& (K&®s) = (¢*(I) ® K) ®s and hence of
(¢1(I) @ ¢*(J)) @s which is isomorphic to A'(M, a) for suited M and a (see 8.5 and
8.6), N has property (€2). Therefore the second row splits and we obtain from the

first column
0O—-—N—-G—H-—=0

which can be written as
0—-N—=Na& (('(I)®s) = Ea (('(I)®s) — 0.
Hence E is a quotient of N @ (¢*(I)®s) and therefore of
(M) e Keat'(I) ®s.



o4 CHAPTER 9. THE PROPERTY (Q)

We have chosen K such that it contains a dense subset of cardinality |.J|. Hence
it is a quotient of £!(I). I is infinite, so we have £}(I) @ ¢*(1) @ ¢*(I) = ¢}(I) and
therefore E is a quotient of ¢1(I)®s. O

Theorem 9.4 Let E be a Fréchet space. E has property (Q) if and only if H(K)'
has property () for some non-empty (respectively all) compact sets K in E.

Reference. The proof can be found in [KD97], Theorem 1.
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The Property (DN)

Definition 10.1 Let E be a metrizable locally convex space with the topology
defined by an increasing system of semi-norms |[|.||; < [|.|l2 < .... We say that E
has property (DN) if there exists a semi-norm ||.|| on E such that for all & € N there
exist a p € N and a C' > 0 with

C
I-le < il ==l et

for all » > 0.

Clearly, the property (DN) does solely depend on the topology and not on the
system of semi-norms. From the postulated inequality it follows that ||.|| has to be
a norm.

Remark 10.2 Let E be a metrizable locally convex space with property (DN).
Then every subspace of F has the property (DN). This follows directly from the
definition.

Lemma 10.3 ([Vog77al, 1.2. Bemerkung) The space of rapidly decreasing se-
quences s has property (DN).

Proof. We check, whether for an element x of s the conditions of the property
(DN) are met. Let ||z||x = Z;’iljk]xj] and [[z| = 3772, |v;]. We then get for
i <7< o+ 1)

Jo 00
.k .k
lelle = S Mo+ S el
J=1 Jj=jo+1
< ol + Go + 1) 7R @ 2k
1
< rilell + Ll

Thus we have proved the inequality for » > 1 and p = k. The case 0 < r < 1 is
obvious. O

Definition 10.4 Let E and F be arbitrary Fréchet spaces, each equipped with an
ascending fundamental system of continuous semi-norms. For each A € L(E, F') we
define

[Alln i := sup {[[Azln : [|z[lx <1} € RU{oo}.

Where applicable, we use this as a semi-norm on L(FE, F).

55
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Lemma 10.5 ([Vog83], 1.1) Let E and F be Fréchet spaces equipped with ascend-
ing fundamental systems of continuous semi-norms. The following assertions are
equivalent.

(i) L(E,F) = LB(E,F).

(ii) For each sequence (km)men in N there exists a ko € N such that for every
n € N exist ng € N and C > 0 with

[Allngy <€ max || A,
m=1,...,n9

for all Ae L(E,F).
Proof. We define to a given sequence (kp,)men
G:={Ae€ L(E,F):||Allmk, <ooVmeN}.
This is in a natural sense a Fréchet space. For each m we set
Hy, ={Ae€ L(E,F): ||Alnk, <ooVneN}.

Hy,, is also in a natural sense a Fréchet space. We have Hy, C Hy . forallm € N
with continuous injection. By hypothesis we get

G | Hp,.

meN

All occurring spaces are continuously embedded in LB(FE, F). From C.5 we get
the existence of a kg such that £ C Hy, and such that the embedding £ C Hy, is
continuous. For all n therefore exist ng and C such that

[Allng <€ max || Al g,
m=1,...,n9

Conversely, let A € L(E, F'). From the continuity of A we get that for all m € N
exists a k(m) such that

Therefore we can choose a sequence (km)men in N such that ||Al|,, 5, < co. By
hypothesis

.....

Hence there exists a k € N such that for all n € N
[ Alln% < o0

holds. This is equivalent to
|Az|, < oo

for all ||z||x <1 and n € N or, in other words, A({z : |||z < 1}) is bounded. Since
{z: ||z||x < 1} is a neighbourhood of 0 and its image under A is bounded, A itself
is bounded. g

Definition 10.6 Let A = (a;k)(j,x)enxn be a matrix with the following properties
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(i) ajr >0 forall j,k €N,
(ii) for all j € N there exists a k € N with a;; > 0 and
(iii) ajr < ajp41 for all j,k € N.

Then A is called Kothe matriz. We define

N(A) = {§= (Ennen : 8l = S §lase < oo k],
X2(A) = {€= (&a)nen : €]k = sup; [§lajx < oo Yk} .

Remark 10.7 Equipped with their canonical semi-norms .||z, A(A4) and A\ (A)
are Fréchet spaces. First, put N := {j € N:a;; # 0}. Then for every k € N we
get a linear function fj : A'(A4) — ¢1(N;) and since for every ¢ € A\(A) we have
l€lle < Nl€llkr1, the map from £}(Ngiq1) to ¢1(Ny) is continuous and linear. The
ill((ljk)) _belir;ng Ba;zz?\}; spa]:_(‘:.es ind A(A) beipg émbedc'led into [Tpen ¢ (Nk), 1We g(?t

= lim, ). Finally, as the projective limit of Banach spaces, A\*(A) is
a Fréchet space.

In the nuclear case we have A!(A) = \*°(A). For details see [MV92], 28.16.

Remark 10.8 Interesting special cases are AL(a) := A (A), respectively A>°(a) :=
)\OO(A) with ajf = ﬂzj, and o = (O[j)jeN7 Qg _N) oo monotonously and limgepy Pk =
j€

r monotonously, pr > 0 for k € N with 0 < r < oo.

The spaces solely depend on « and r, not on the choice of (py)xen. For a fixed a
all spaces AL(a) (respectively A%(a)) with r < oo are isomorphic. Therefore only
the cases r = 1, 0o are of further interest.

Remark 10.9 The equivalence of the definitions of Al («) respectively A ()
in 8.1 and 10.6 is obvious via Al((e%*%);ren) = AL(N, (e29),en) respectively
A ((e279)ken) = AX(N, (€2* )nen).

Definition 10.10 Let (o) en be a sequence with a; S monotonously. The
je

condition sup, % < 00, called shift-stability, is equivalent to Al(a) = F @ Al(a)

respectively A (a) = F @ A ().

Lemma 10.11 ([Vog83|, 1.3) Let B be a Kdéthe matriz, F' a Fréchet space. The
following assertions are equivalent.

(i) L(\Y(B), F) = LB(\!(B), F).

(ii) For each sequence (km)men in N there exists a ko € N such that for every
n € N exist ng € N and C > 0 with

[ [ (2
<C
bjky —  m=Lono bk,

(1)

forallj e N and x € F.
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Proof. The first implication follows from the corresponding implication in 10.5 as
we apply (ii) to A: & — f; - o with € F and fj(€) := & for £ = (&n)nen € AM(B).
Conversely let A € L(E, F). Then A is of the form

Ag = Z l’]fj
J

with 2; = Ae;, where e; = (6;.)ven is the 5% unit vector in A}(B). There exists a
sequence (Km)men and a family of constants {C, },, oy With

[25]lm < Cmllejllkm = Cmbj ko (2)

for all m € N. We get for arbitrary n an ng and a C' such that

e 5]
S“p<b] Zb',ko\ﬁj\=§g§ ) (1€ ] kg

JEN \ biko /5 bjiko

IN

| Al

IN

Zi|lm
Csup< max HJH) 1] ko

jeN \m=1,...n0 bjg

‘77m
< (C max Om) 1€l
m=1,...,n9

where the second inequality follows from (1) and the third from (2). Hence A is
bounded. O

Proposition 10.12 ([Vog83|, 1.4) The following assertions are equivalent.
(i) L(E,A*(A)) = LB(E,A*(4)).

(ii) For each sequence (km)men of integers exists a ko € N, such that for each
n € N exist ng € N and C > 0 such that

anllyllv, <€ max  ajmllylo,,
forallj €N andy e FE'.

Proof. This proof is similar to the proof of 10.11. Again, let e; = (J;,)ven be the
j™ unit vector in A'(B). One direction can be obtained by inserting 4 = ¢; ® y
into 10.5 for all j € N and all y € E'.

The other direction follows also from 10.5 by

[Azlln < supajnlly;llo,, [1<]lk
JeN

IN

¢ max (supaj,n\lyj\uko> [1lko
1o\ jeN

m:17"'7

where y; = f; o A. This implies

[Allng, <C max |[[Allmk,,
m=1,...,no

and thus proves the assertion. O



59

Remark 10.13 That the sequence of integers in 10.12.(ii) can be chosen to be
the identity is equivalent to the condition that 10.12.(ii) holds for each system of
semi-norms on F.

Theorem 10.14 ([Vog83], 2.1) Let B := (5;)jen be a shift-stable sequence. The
following assertions are equivalent.

(1) L(AL(B), F) = LB(AL(), F).
(ii) F has the property (DN).

Here follows (i) from (ii) without assumptions on 3.

Proof. We apply 10.11(ii) on the sequence (k;, := m)mnen and receive a kg € N such
that for all n € N there exists an ng € N and a C' > 0 with

2]lne™ 0% < C  max ||z|le=m (3)
m=1,...,ng
for all z € F and for all j € N. Thereby lim,,cy pr, = 1 monotonously, p,, > 0,
m € N denotes an arbitrary but fixed sequence (of radii). Therefore we have replaced
A1(j3) by the isomorphic space AL(3).

We can suppose that ng > n, ko and from (3) we get

|z|lne %% < C max ||z|me ™5
m=1,...,ng

< C max |z|[mePmd
m=kog,...,ng
= CmaX{Hkaov ||xH7l067pk0+1ﬂj} '

For a fixed x we choose a j € N with

|zl|ne~PRoPitt < Cllllk, < ||2|lne~ k0"
if there is such a j. Following, we get

Iz]ln < C|lx|n,etProPro+1)Bs

Pho+1~Pkg
< Cllzfnge "o

d
< CHZEHHO <0Hx“ko> ’

[

(=prBi+1)

where d = ’%;;7;%. With D = C1*+4 we obtain
0

d d
]l < D/l l2lln, - (4)

If no such j exists, we get
[l < CeProlt |z,

and by increasing D (such that D > C%e%* A1) (4) also holds. Hence

d d
[2]ln < Dllzllnllzlli, < Dllzllno [k,
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which is equivalent to property (DN) by A.5 (iv).

Conversely, to the given sequence (kn,)men We put oy, := p,, and by the prop-
erty (DN) (here used in the form A.5 (iv)) we can choose my € N and d € N such
that for all n € N there exists an ng € N with my < ng and a D > 0 with

d d
2]l < Dl ]|y -
Then we choose a kg > ky,, such that

L — pry
pko — Omyg

<d.

For z € F and j € N we get either
|z ]lne™ P20 < ]| mge o

or
|2]lmg < el7mo =Pk ||

In the second case
2|5+ < De®mo=rk)Bi || || |z,

By hypothesis d(omy — pro) < pro =1 < pro — Pkng and we get
2]l < D||]|ng et~ kno )%
In any case we get

|z[lne P*% < D max |z|me PmP
m=1,...,no

and by 10.11(ii) finish the proof. O



Chapter 11

The Property (LB*)

Definition 11.1 Let F be a Fréchet space equipped with a topology defined by an

increasing system of semi-norms. We say that F' has the property (LB°) if for every

strict monotonous sequence (pp)neny With py, —2 and for every p there exists a
ne

q > p such that for all ng € N there exists an Ny > ng and a C' > 0 such that for
all u € I’ there exists an m with ng < m < Ny such that

lullg =™ < Cllull, [l
Theorem 11.2 ([Vog83], Satz 5.2) Let E be a Fréchet space and o = (o) jen a
shift-stable sequence. The following assertions are equivalent.
() L(E,AZ(a)) = LB(E, AZ(a)).
(ii) E has the property (LB).
Here follows (i) from (ii) without prerequisite on c.

Proof. Let pn, — 2 be a given monotonous sequence and without loss of generality
me

let p = 1 in the property (LB>). We apply 10.12(ii) to the spaces E and A, the
latter equipped with the norms ||{||;m = sup;ey [§5]e”™%. By 10.12 we get a ko € N
such that for all n € N exists an ng € N and a C > 0 with

Py, <C max ey, 1)

3ty

for y € F'. Contemplating on n > kg, we pick a jo such that for 7 > jy
CePrn=1% < efn® (2)

holds. Hence we have
e’ yllo,, > Ce’ |yllv,,,

for kg < m <n — 1 and therefore (1) transforms into

Ml SO R @ WO 3)

Either we can choose a j > jo (in order to exploit (2)) with

elPn=ProD% =t yll < Clyllo, (4)
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and
Cllyll, < ePr=rro=D%]ly| g, (5)

which holds since ePho-1"ta; > ePm® for m < ko and ||y|ly, > |yllv,, for m > 1.
We suppose that the maximum is assumed on the right hand side of (3) at m. Then
by (5) m > n and we get

lyll,, < Celrm=P%y|y,
Pm —Pn _ .
S Cespn,pko_l(pn Pko—l)O‘JleyHUm
Iyllos \*
Ylu
< Clyllv,, (C 1) , (6)

1Yl

where d 1= s Pm2lr with s = sup; a(fjfl and (6) follows from (4). This can be
n 0—

written as
d d
Hyllzlio < Dllyllv,. Iyl »

where D := C%! and d < (¥> pPm- We have m € {n,..., Ny}, since from

Pn—Pky—1
m < ko follows

Celbm =P |ly||y,, < CemPr=rro=D% [yl < ||yl

which is a contradiction.
Otherwise we have

6(pn*pk071)ajo”y|](]k0 < Cllyllu,

which leads to

1+d d
Il < Nyl lyld,
d
< Nyl (Ceerami=mon) g,
d
= Dlyllu, Iyl

In both cases we have dky Vn € N dNy, C' > 0 Im with n < m < Ny such that

1
g™ < Cll-lo 11

i.e. property (LB).

Conversely, note that the property (LB) does not depend on a special system
of semi-norms. We therefore can, by 10.13, assume without loss of generality (k,, :=
m)men in 10.12(ii). Let AZ(a) be endowed with the norms

1€]ln := sup [€5]e" .
JEN

We choose a sequence (pm)men With limg,, . 22 = 0 and insert it and p = 1 into
(LB>). We receive a ¢ and for each given n. an n. and aC with the desired

property.
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If, for the verification of 10.12(ii), there is a given n., we choose n., such that
pm(n —1) < m —n for m > ng,. For y € E’ there exists, by property (LB*), an
m € N with n., < m < ng such that

14+pm m
1yl "™ < Cllylle, [1yll7; -
0

Then either
" yllu, < eV lyllo,

or
1+pm m
lwly, ™ < Cliyllw, lvlio;
< Ollyllo,,llyligy, efm e
< m—n)o;

Clyllo,, IylIE;: e
holds. In both cases

lylluy, < C max "yl

This finishes the proof. O

Definition 11.3 A smooth function h on an open set U C C is called harmonic if
Ah = g%}zf =0onU.
A function u defined on an open set U C C and with values in RU {—o0} is
called upper-semi-continuous if the set {z € C : u(z) < s} is open for every s € R.
An upper-semi-continuous function u : U — RU{—o0} is called sub-harmonic if
for every compact K C U and every continuous function h on K, which is harmonic
in the interior of K and with h > u on the boundary 0K of K, we have u < h in

K.

Definition 11.4 An upper-semi-continuous function ¢ : £ — R is called pluri-sub-
harmonic if ¢ is sub-harmonic on every complex line in F.

Definition 11.5 A subset B C FE is said to be pluripolar if there exists a pluri-
sub-harmonic function ¢ on E such that ¢ # —oc0 and ¢ |p= —c.

Theorem 11.6 Let D be a domain in C*, E a compact non-pluripolar subset of
D and F a compact non-pluripolar subset in C™. Then every separately analytic
function f defined on (D x F)U (E x C™) has an analytic extension on D x C™.

Reference. The proof can be found in [VZ83], Théoréme 4.1.

Definition 11.7 Let F' be a Fréchet space with a topology defined by an increasing

system of semi-norms. We say that F' has property () if for every p there exists a
q such that for all k exists a C > 0 and we have

112, < Cll-lw ]Il
We say that F' has property (Q p) if for every p exist ¢ and C' > 0 such that
2
Iz, < Cll-sll-llu,

where ||u||p := sup {|u(z)| : = € B} for u € F".
Note that in the definition of (2p), by choosing ¢ sufficiently large, we may
assume that C' = 1.
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Definition 11.8 Let K be a compact subset in a complex Fréchet space E. We
say that K is a set of uniqueness if for all f € H(K) with f |x= 0 follows that

fF=o.

Lemma 11.9 ([Lan00], Lemma 2.2) Let E be a nuclear Fréchet space and B a
balanced convex compact subset in E. Suppose that E has property (Qp). Then B
s a set of uniqueness.

Proof. Let E have property (2p). Hence, for every 2’ € E" with 2’ |gpan(py= 0 we
have Vp dq, C > 0 such that

0 < |l'l|Z, < Clla’l|ll"llu, = 0.

Which means ||2'||y, = 0 and since ' is linear and {z : g(z) < 1} is absorbent, we
get ' = 0. From the theorem of Hahn-Banach C.2 we conclude that span(B) is
dense in E.

Now given f € H(B) with f |p= 0, consider the Taylor expansion of f at 0 € B
in a balanced convex neighbourhood W of B in E

f@)=> Puf(x)

n>0

for x € W, where
1 f(Az)

0 )\n—i-l

271 |\ = >
forx € E.
Since P, f are homogeneous polynomials of degree n and P,f |p= 0, it follows
that Py f |span(sy= 0. By the continuity of P,f and by span(B) = E, we have
P,f =0for n>0. Thus f =0 in W and hence B is a set of uniqueness. O

Theorem 11.10 ([Lan00], Theorem 2.1) Let E be a nuclear Fréchet space and B
a balanced conver compact subset in E. Assume that E has (Stg). Then H(B)); has
property (LB*>).

Proof. By 11.2 it suffices to show that every continuous linear map T : H(B)' —
H(C) is compact.
Consider the function f: B — H(C) defined by

f(@)(A) = T(6:)(N)

for ¥ € B, A € C, where 0, € H(B)j is the Dirac functional associated to  which
is given by
590(90) = Qo(x)a
with ¢ € H(B). It follows that f is weakly holomorphic, because T'(u) € H(B)" =
H(B). By Grothendieck’s factorisation theorem C.5, this yields that f : B —
H°(2D), where D is the open unit disc in C, is extended to a holomorphic function
f on a neighbourhood W of B in E.
Let g: (B x C)U (W x D) — C given by

[ fle)A) : weB, AeC
“%M_{fmu):xemxem‘
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Obviously, g is separately holomorphic. We denote by F the family of all non-
empty finite dimensional subspaces P of Eg. For each P € F consider

gp =49 ’((Bmp)xc)u((vvmp)xﬁ) :

Since BN P is the unit ball in P and D is not polar, by 11.6, gp is uniquely extended
to a holomorphic gp on (W N P) x C. The uniqueness implies that the family
{gp} pcr defines a Gateaux holomorphic function g on (W N ER) x C. On the other
hand, since g is holomorphic on (WNEg) xD, 11.6 implies that § is holomorphic on
(WNEpg)xC. Consider the holomorphic function g : (WNEgR) — H(C) associated
to g. We prove that g can be extended to a bounded holomorphic function on a
neighbourhood of B with values in H(C).

Let {[.lly}, ey and {[|[lx}ren be two fundamental systems of semi-norms of E
and H(C) respectively. Since H(C) has (DN) we have Jp Vq,d > 0 3k, C > 0 such
that |1+ < [ [ll-I2.

Note that by replacing k& by some k' > k, we always may assume that C' = 1.
Choose « such that U, C W and

M(a,p) :==sup{||g(z)|l, : z € Uy N Ep} < 0.

Let wq be the canonical map from E into E,, the Banach space associated to ||.||q
and
A:=wq |Eg: EB — Eq.

Since FE is nuclear, without loss of generality we may assume that Ep and F, are
Hilbert spaces. Then, by 5.18 and 5.16, A can be written in the form

Alz) =) Nyj(a)z

Jz1

where A := ()j);en is a rapidly decreasing sequence with A\; > 0 for j > 1, (y;)jen
is a complete orthonormal system in (Ep)*, and (2;)jen an orthonormal system in
E,.

Since

A <y]) =2j € wa(Ua)
Aj

for all 5 > 1, we have

for all j > 1.
It follows that

for all m > 1, where p; = j% and 0 > 0 are chosen such that

o.]
weE By iu=Y &z, & <py ¥i>1p CwalUa)
j=1
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and

1
5Zj7 <1.
§>1

We put (zg, 2)
and

as the scalar product in E,. Then \/(zx,2), =1 for all k > 1

«

A" {2k 2)o l5 = sup [ {2, A(2)), |
Jeli<1

= sup <zk, Z )\jyj(a:)Zj>
ll=lI<1 j N

= sup | (zr, Aeyk(®)2k), |
llell<1
= A (7)
for all £ > 1. Recall that by the Bessel inequality |yx(z)| < ||z||. Now put
Pr = w;; <Zk, Z>a ) (8)
and choose (3 such that
30 >0 |, < CllIsl-lv.- (9)

For (8 sufficiently large, we can choose C = 1.
From (7), (8) and (9) we have

lorllE, = llwa (21, 2)a 17, < I1A* (21, 2)q IBI 2, 2 o < A

for all £k > 1. Hence for all kK > 1 we get

1
lekllu, < Af-
Let
h == wpg.
Since M(a,p) < oo and A(Uy N Ep) is dense in wq(Uy), h is holomorphically

factorized through A : U, N Eg — U, by h (/]; — H(C),, where [/]; denotes the
unit ball in F,. This may be illustrated by the following diagram.

Uo N Ep —2—~ H(C)

For each m = (mq,...,my,0,...) € M, with
M = {m = (m;)jen : m; # 0 only for finitely many j € N},

we put

~

o) [ [ e
am = ; . dp
2mi _ _ _ mt1
lp1l=p1 Jp2|=p2 lon|=tin p
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where
pm-‘rl — p71711+1p£n2+1 len'i‘l’
dp = dppdpn—1...dp1,
then

M
ol < 282 v €

From the relation

k
E:%%GUMU%VkZL
1 7Y

we deduce that

On the other hand, by Cauchy’s theorem 4.9, we get

. 1" il(plzl + 4 przn)
Ay = T e o] dp
1 lp1]=A1p1 /| p2|=Xape lon|=Anpn p

It follows that

B Wpg (A yJ) I\NY)
Gm = <27r1> /p1| =\ /p2| ,\m . /pnl =Anpin >‘m+1( )m+1 ’
() o B )
A™ A\ 21 01]=p1 |0 |=pin fm +1

= wp(bm)
where
%:isz
We have
Iomlla < s i € 1, ¥ =
where

N(q) ==sup{ [|h(@)llg: 2= &Gy, 1§ < py Vi > 15 < oo,
j=1

because the set
oo
v =Y &Gyl <py Vi1
=1

is compact in Ep.
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Since H(C) has the property (DN), for every ¢ > p and d := % there exists a
k > q and a C' > 0 such that
15T < ClL k-,

where 0 < § < 1 is chosen such that
d(1 —296)

g =——>0.
2(14+d)(0 4+ d)
We may assume C' = 1 again. Then
[e.e]
.
S = 3 " ball [T lles
meM j=1
< > bl [Ty
meM j=1
= > bl A
meM
= > bl A bl
meM
- (1-1)d Am(t_ig
< N(q)'N(k)1#dM(a,p) 1+ r’" -
m t+1;§+(1—t2d>
meM n 1 1+d
. 1-t (1-t)d m)\m<t7ﬁ>
< N(g)'N(k)#aM(a,p) 1+ —
meM
Since \ € s, the sequence (§> is in ¢! and hence for R := 2oi>1 <§) we have
J = J
N
2R>R>
Hj

for j > 1. This implies

0 A L
<SuP{2R,uj} < 5

We have

oo
S = Z?’mllbmlquH@jII?g
j=1

meM
1t (1-t)d A€
< N@'NR)TM(a,p) T Y ( )
meM M
1t a-t)d £ 1
= N()'N(k)FiM(a,p) 4 [[ —p
1 —
j=1 145
< 0o0.

Hence the form

w— Y b [ [ (5(2))™

meM  j>1
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defines a bounded holomorphic function 71\1 on 6Ug with § = ﬁ such that 71\1 lsusnB=
g lsusna, ie. a(z)()\) =g(z,A) for z € 6Uz N B and X € D. Since span(B) = E, by
considering the Taylor expansion of E()()\) —g(.,A) in z € span(B) at 0 € B, we
get a(z)()\) = g(z,\) for z € Uz N B and X € D.

Consider the separately holomorphic function h; on (§Ugx C)U(W xD), induced
by }/lI and g. As we have seen at the begin/n\ing of the proof, h; is holomorphically

extended to a function h; on W x C. Let hy : W — H(C) denote the holomorphic
function associated to hj. Since B is convex, balanced and the equality (h; —
) lsusnp= 0 holds, from the Taylor expansion of (h1 — g) |p at 0 € B it follows

that/\le ’B: g ‘B.
hq is locally bounded. Thus, by shrinking W, without loss of generality, we may

assume that hq(W) is bounded. Define the continuous linear map S : H®(W)" —
H(C) as

S = (J)
for p € H>®(W)" and A € C. We have

T Zajdz]. \) = ZajT((smj)()\):Zajf(xj)()\)
j=1 Jj=1 Jj=1

= Yyl = 3 agh ()N
= =1

= > ;S0\ =5[> ajia
j=1 i=1

for x1,x9,...,xm € B and a1, a9,...,ay, € C.
On the other hand, since B is a set of uniqueness and H (B) is reflexive, it follows
that S =T'. Hence T is compact. O
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Chapter 12

The Property (LBxo)

Definition 12.1 Let F be a Fréchet space with the topology defined by an increas-
ing system of semi-norms.
We say that F' has property (LBy) if for every sequence (pp,)nen with p, > 0

for all n € N and p, — 00 there exists a p € N such that for all ¢ € N there exist
ne

no € N and C > 0 such that for all x € F there exists an m with ¢ < m < ng and
that
zllgt? < Clla||mllllp™

holds.

Lemma 12.2 A Fréchet space F' has the property (LBs) if and only if for every
sequence (pp)nen with p, > 0 for n € N and p, — oo there exists a p € N such

ne
that for all ¢ € N there exists an ng € N with ng > q and a C > 0 such that we have

1
lelly <€ max (st el + el )

qg<m<ng m
forx € F,ry>0,--- 1y, > 0.

Proof. We give an indirect proof. Therefore assume that F' has property (LBx)
but for all ¢ € N there exists an ng € N with ng > ¢ and a C' > 0 such that we have

1
m Pm
||35Hq > ngmagxno <Tm ||CC||m r Hpr)

m

forze F,ry>0,---,7ry, > 0. It follows that for all m with ¢ < m < ng we have

1
lelly > € (arhaln+ -l

m

1+ 1 Pm
> C—L" (g ) o || 30

m

which is the minimum of the right hand side with respect to r,,. This implies
]lg**m > Dla|lm]| |5

which leads to the desired contradiction.

71
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Conversely, assume that for all m with ¢ < m < ng we have
|5 Tm > Cll|lmllz]5m.

Or in other words
1 1 Pm

llg > CTom [l [|]lp ™ -

Then the right hand side from above can be seen as the minimum of

1
el + — ]y
m

with respect to ry,. Finally, we get

1
> P —
lell > € (bl + el

m

which concludes in the contradiction. O

Proposition 12.3 Let F' be a Fréchet space with property (LBso). Then (Fy,,)j5
also has property (LBo).

Proof. By 12.2 we have that a Fréchet space F' has the property (LBy) if and only
if for every sequence (pp)nen with p, > 0 for n € N and p, — there exists a
€

n
p € N such that for all ¢ € N there exists an ny € N with ng > ¢ and a C > 0 such
that we have

1
v,2¢ <T;§{"UmﬁrUp)

g<m<ng m

for ry > 0,---, 7y, > 0. Applying the bi-polar theorem we get
o Pm TTO 1 o
voco( |J rorUn + —Up
q<m<no mn

for appropriate D > 0. Here the angle brackets denote the absolutely convex hull
of the inner expression.
Let u € (F,,)3- Then

lullvg = sup{|u(y) :y € Uy}
Pm TTO 1 o
< sup |u(y)| ryeD U m Um + rUp
g<m<no m
1
< D max <70 sup |u(y)| + — sup |u(y)]
g<m<no yeUg, Tm yeuy
1
_ Pm _
— D max {rtolulus + lulog |
Hence (F,,)j; has property (LBx). O

Theorem 12.4 ([Vog83], 3.2 Satz) Let (8;);en be a shift-stable sequence and F a
Fréchet space. The following assertions are equivalent.
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(1) L(AL(B), F) = LB(AL (), F).
(ii) F has property (LBx).

Here follows (i) from (ii) without prerequisite on 3.

Proof. Let (pm)men be a given monotonous sequence. Then we can choose a strictly
monotonous sequence (0 )meN, Om — 00 with
me

lim 2™ —o.
m—00 O,

Let further AL (3) be equipped with the semi-norms

1€l =D 1&51e™.

jeN

We apply 10.12(ii) on the sequence (ky, := m)men and get a kg € N such that for
all n € N exists an ng € N and a C > 0 with

lzllne™%% < C max ||z||me " (1)

Ly

for all x € F and j € N. Henceforward we contemplate only on n > kg. We pick a
Jo, such that for j > jo we have

Celoro =k +1)8i < 1,
Resulting, (1) transforms into

||| e k0P < O max ||| e~
m=1,...,ko,n+1,....,ng

With fixed x we choose a j > jo with
|z lne™ 041 < Cllz]lgy < l|z]lne™ 0"

if there exists such a j. In this case the maximum is taken at n < m < ng and we
get

IN

[E4| Ol e Fo=m)P%s

om—0oy

Cllallme 70\ 0%

d
Cllalln (i)

IN

IN

l.e.
]l < D]l l]|m, (2)

Om—0
where d := Z2-%%0 and D := C1t+4,
POk

If there is no such j, we have

|zl < CeoPio|| |4,
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and hence (2) with an eventually bigger D.

For a fixed n/, we apply the above to n > n’ such that for m > n we have

Om — O,
d:uzpm
DOk

and we get an m with n’ < n < m < ng such that
1+ m m m
2l < fllly o < Dl |2 m-

Conversely, note that the property (LBs) does not depend on a special system
of semi-norms. We therefore can assume (ky, := m)men in 10.12(ii) without loss of
generality. Let A% () be endowed with the norms ||| := >,y ICER

We choose a sequence (p, := m)men and insert this into the hypothesis of
10.12(ii). Hence, we receive a k with the desired properties. If we put kg = k + 1
and find to any fixed n a desired ng > k and a D. Let = € F. Then either

z|lne= 0% < e
or, for suitable n < m < ng,
Izl *™ < DYl |z lm < De™™% |72l
holds. In the second case we have
(e ™% < |zl < Djalme™™.
In any case we have

|z|[ne 0% < D max |@|me ™.
m=1,...,ng

This proves the conversion. ]

Corollary 12.5 Let I be a fized index set and F' a Fréchet space. Then the follow-
ing assertions are equivalent.

(i) L(M(I)®s, F) = LB({*(I)®s, F).

(ii) F has property (LBx).

Outline of the proof. 1t is easily seen that this is a straight forward generalisation
of 12.4, since the necessary double indexing doesn’t interfere with that proof nor
the proof of 10.12.
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Intermediate Results

Lemma 13.1 ([Vog85|, Lemma 1.3 and [Vog77al, Satz 1.5) Let F' and E be Fréchet
spaces and assume that E has property (DN) and A (M, a) is nuclear. Then the

exact sequence
0—A®(M,a) = F 5 E—0

splits.

Proof. For the sake of simplicity, we only consider the case A®°(M,a) = s. Let
further be s a subspace of F. We now prove that s is continuously projected into
F| i.e. there exists a subspace H of F' such that F' = s@® H. Thus ¢ |g is a bijection
and hence has an inverse.

Let f; € s’ with fj(z) = z; for = (z1,22,...). For each k € N {jkfj 1j € N}
is equicontinuous. By Hahn-Banach C.2 we can extend f; to f]k € E’ for each k € N
such that { j* fJ’.c :j€eN } is equicontinuous, thus contained in Up for a suitable

neighbourhood Uy of 0 € E. We can assume that Ug1q, C Uy, for all k € N.
If we put

k k k
g =1 =1

then gf € s° C I’ and we get
{jkgéC 1j € N} C 2U; 1 Ns° =: By.

Since s° = E’ and FE has property (DN ), there exists a bounded set B C s° which
satisfies the conditions of A.4 for a fixed fundamental system of bounded sets in s°.
Without loss of generality we then can assume that

—k—2

B CrB+ Bit1
for all 7 > 0 and k € N. In particular we have for r = j27%~1 and by multiplication
with 25

2j7"Bp € jTM27F B 4 i B (1)

We now choose for fixed j gradually a sequence a® with a® € j=*B, C s°.

J J
Hereby put a? =0. If a?“ € j7*Bj41 is chosen, we have

g;»“ + a? € 2j_kBk.

75
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Hence by (1) there exists an a?“ € 7% 1B, such that
gy +af €2"j7"B.

If we put

we get for k£ > 1

Ghl gk = gk aht b e o hjRtip C ok,
Hence (qb;?)keN converges in F’'. We put
= lim
¢j = Hm @5

For k> n by ¢/ = fi*! — o™ € 3j7"Uy,, we have

n¢j _] q[)nJrlJr Z n 1/+1 ¢;/) €3U:{+2+2_n3.
v=n-+1

Therewith j7¢; € 3U5 | +27"B, i.e. {j"¢; : j € N} is equicontinuous in F".
By ¢ — (¢jz)jen we define a continuous linear mapping ¢ : F' — s. For x € s
we have

(62); = 65(2) = lim_f5(z) - ak(2) = fi(2) = 2,

where from af € s follows aé‘?(az) = 0 for x € s and ff |s= fj. Therefore ¢ is a

continuous projection from F' to s. ]

Proposition 13.2 ([Vog83], 6.1 Satz) Let M be a set and let a be a function on
M with a(t) > 1 for all t € M. Recall that

(M, a) = {f & BVl = sup £()ale)t < oo vk € N}-

A Fréchet space F has property (DN) if and only if there exists a space A*°(M,a)
such that F is isomorphic to a subspace of A*°(M,a).

Proof. Let By C By C ... a fundamental system of equicontinuous sets in F’, I a
set such that By C I for all £ € N. Then F' can in a natural way be embedded into
(e (n)™.

By tensoring the exact sequence 0 — s — s — w — 0 with {*°(I) we get the
exact sequence

0 — s&I®(I) — s@I®() — (1®UI))OY =0

where (1°(D)N = (F&I(I))" = FN&I®(I) = wi(I) or, since s@I®(I) =
A>®(M,a) with M =N x I, a(n,i) := n we have

0 — A®(M,a) — A (M, a) —L (1)Y= 0.
If F is embedded in (1°°(1))N and F is the preimage of F under ¢, we get
0— A®(M,a) - F— F —0.

By 13.1 the sequence splits if and only if F' has property (DN). We therefore get
the embedding F' C F' C A®(M, a).
Since A*°(M, a) obviously has property (DN), the converse follows from 10.2.00
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Theorem 13.3 ([Vog83], 6.2 Satz) Let E and F' be Fréchet spaces. If E has prop-
erty (LB*°) and F property (DN), then

L(E,F) = LB(E,F).

Proof. 1t is obvious that 10.12 still holds if we replace A>*°(A) by A*°(M,a). And
11.2 holds if we replace A («) by A*°(M,a). Hence we have

L(E,A*(M,a)) = LB(E,A®(M,a)).
By 13.2 F' is a closed subspace of a A* (M, a). O

Theorem 13.4 ([BD98], Theorem 18) A Fréchet space F' has the property (DN)
if and only if CY(R, F) = C¢(R, F).

Proof. The following assertion holds by 7.6 and 7.8: C¥(R, F') = C¥(R, F) if and
only if
L(C*(R)}, F) = LB(C*(R)}, F).

First, let us assume F' to have property (DN). By 6.9, C¥(R)j; = lim o Gn,
where Gy, is isomorphic to H(D) for each n € N. Given h € L(C¥(R)j, F), we
can apply 10.14 to get, for each n € N, a neighbourhood U,, C G, of 0 such that
h(U,) is bounded in F'. Since F' is metrizable, we can find a sequence of positive
constants (A, )nen such that |J, ey Anh(Un) is bounded. Then the absolutely convex
hull of (J,,cyy AnUn, which is a neighbourhood of 0 in C“(R)%, is mapped by h into
a bounded set in F'

Conversely, assume that this identity holds. By 6.12, there is a quotient map
q: C“(R)5 — H(D) and hence we have

L(H(D, F)) = LB(H(D), F).

It is easily seen that H (D) is linearly homeomorphic to Al(8) (cf. [Jar81], 2.10.10),
hence we can directly apply 10.14. As a result, F' has the property (DN). O

Lemma 13.5 ([HKO00], Lemma 2.2) Every compact set B in a Fréchet space E for
which H(B)’ﬁ has property (LB*) is a set of uniqueness.

Proof. Let {V;,}, cn be a decreasing neighbourhood basis of B in E. Given f € H(B)
with f |p=0, choose p > 1 such that f € H*(V,). For each n > p put

en = || flln =sup{|f(2)] : 2z € Vi }.
Then the sequence (en)nen converges to 0. By hypothesis H(B)j; has property

(LB*°). Employing this with (pn =4 /log Ei) N P oo we have 3¢ Vng 3Ny >
"/ ne ne
ng, Cpy > 0Vm >0 3k, :ng < kyy < Np:

1+
7™ g™ < Cog 1™ i L™ 12"

which yields
Ltplm — v m
£l < Cog |l LF 115
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Now choose a k with ng < k < Nj such that
card {m : kp, = k} = 0.

Then putting C),, = 1 without loss of generality as m — oo we get

1 Pk

1llg < AN 0

This leads to ) o
(€)% (&) T =0

as k — oo, particularly, the limit exists.
Hence f |y,= 0. U

Lemma 13.6 ([HK00], Lemma 2.3) Let F' be a Fréchet space having property
(DN). Then (Fy,)5 has property (DN).

Proof. Let (Up)nen be a decreasing neighbourhood basis of 0 € F. Since F has
property (DN) by A.4, there exists a bounded absolutely convex set B C F’ such
that for every k € N there exist a p € N and a C' > 0 with

o C o
Uk QTB+?Uk+p

for all » > 0.
For u € (F,,)5 and r > 0 we have

ullye = sup {Ju(z)] : 2" € Ug}
C
< sup {\U(w'ﬂ o' €rB+ TU1?+p}
C
< rsup{Ju(e)] o’ € B+ Dsup {Julal)] ol € Uiy }
+p’

C
= rlulls + llullog

Hence (FY

bor

)3 has property (DN). O
Theorem 13.7 ([HKO00], Theorem 2.1) Let F' be a Fréchet space. Then
H,(B,F)=H(B,F)

holds for every compact set B in a Fréchet space E for which H(B)’ﬂ has property
(LB*) if and only if F' has property (DN).

Proof. We first prove the sufficiency. It suffices to show that H, (B, F') C H(B, F).
Let f € H,(B,F). By hypothesis F' has property (DN) and H(B)IB property
(LB®). Since B is a compact subset in the Fréchet space E, by 13.5 it is a set of
uniqueness. Hence, we can consider the linear map

f i Fo — H(B)

given by
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for 2’ € F__, where @ is a holomorphic extension of 2’o f to some neighbourhood
of B in E. Still by the uniqueness of B using C.4 it follows that f has closed graph.
On the other hand, F{_ is an inductive limit of Banach spaces, H(B) is an (LF)-
space, so by Grothendieck’s closed graph theorem f is continuous. Since f maps
bounded subsets of F{__to bounded subsets of H(B), the dual map

fH(BYg — (o
is also continuous. By hypothesis H(B)j has property (LB°) and by 13.6 (F},,)j
has property (DN ). From 13.3 it follows that there exists a bounded subset L C
H(B) such that f*(L°) is a bounded subset of (F},,)j;, where L° denotes the polar

N s} /
of L in H(B)j;. Hence, (f* (LO)) is a neighbourhood of 0 € ((F{mr)%)ﬁ. Put

W= (f* (L°)> NF,..
Then W is a neighbourhood of 0 € F{_.. We have

f(W) C L°° N H(B)
where L°° is the bi-polar of L. However, L°° N H(B) is the closure of the absolutely
convex envelope of L and hence it is a bounded subset of H(B). This shows that
f(W) is bounded in H(B). By Grothendieck’s factorisation theorem C.5 and since
B is a set of uniqueness, there exists a neighbourhood U of B in F such that f(W)

is contained and bounded in H(U). From the absorption of W it follows that
f(Fhor) S HU).

Now we can define a holomorphic function
9:U — (Fo)5s

given by

9(2)(@') = f(2')(2)
for z € U, o' € F{ ..

We see that g(2)(2) = f(2')(2) = f(2)(2) for every z € B, 2/ € F'. This yields
g |p= f and since B is a set of uniqueness, g(U) C F.

To prove the necessity, by 13.3 it suffices to show that every continuous linear
map T from H (D) to F is bounded on a neighbourhood of 0 € H(D). Consider
T': Fy — H(D)j = H(D). Since T'(2') € H(D) for all 2’ € Fj, we can define a
map f:D — (F/

bor

)23 given by
f(2) (@) = 0.(T"(a"))

for 2’ € F[’i,7 z € D, where 8, is the Dirac functional defined by z.

From the weak continuity of 7" and ¢, we infer that f(z) is o(F’, F')-continuous
and, hence, f(z) € F. Moreover, f € H,(D, F). Since H(ﬁ)/’g has property (LB>)
it follows that f € H(D, F'). Thus there exists a neighbourhood V of D and we can
consider f € H(V,F). Now we can choose an open subset V; which is compact in
V such that DV; C V. Hence f |y, is bounded in F and also B := f(V}). It is easy
to see that 7" is bounded on B°, since 7"(B°) C V°. Put C = T'(B°) C H(ﬁ)’ﬁ
and U := C° with D C U C V;. Then U is a neighbourhood of 0 € H(D) and
T(U) C B°° is bounded in F. O
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Chapter 14

The Main Theorems

Definition 14.1 Let E and F be locally convex spaces. A mapping f : E — F
is called real analytic, denoted by C¥(E, F) if f is real analytic along real analytic
curves and smooth along smooth curves, i.e. foce C¥(R,F) for all c € C¥(R, E)
and foce C®(R,F) for all ce C®(R, E).

Analogously, a mapping f : £ — F is called topologically real analytic if foc €
CY(R,F) for all c € C¥(R, E).

At last, f : E — Fis called bornologically real analytic if f oc € C{(R, F) for
all ce CP(R, E).
Lemma 14.2 ([Vog82], Theorem 1.4) Let E be an (F'S)-space with property ().
Then there exists a bounded (hence a relatively compact) subset B such that E has

property (Qp).

Proof. By A.10 (iii”’), the property (2) of E' can be written in the following way.
For all p and p with 0 < p < 1 there exists a ¢ such that for all k exists a C > 0
and we have

C
Uq - T“Uk + ﬂUp

for 7 > 0. Or equivalently, for all z € U, exists a y € U, and a z € U, such that

x=rty+ z.

rl-n
This means, for every x € U, there exists a y € Uy, and a z € U, such that

C C C

Iz =yl = =2l = =5 12llp < —

which is equivalent to

min {||z — "yl : y € Uy} <

rl-n
for all x € U,. This can be rewritten as
= sup {min {||z — r"y|l, : y € Up} : z € U} < C.

81
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Now we replace p by § and r by r2, multiply with %, and obtain (strictly speaking
we also get new C and U, but this has no effect to our calculation)

1 1
~C > ()" 2sup {min{\lx — ey, iy € Uk} ‘T € Uq}
T

,
= ' Hsup {min{||lz —rtyll, :y € Up} : 2 € U,}.

Hence for each k we have
e(r, k) :=r' #sup {min {||z — r*y|l, : y € Up} : 2 € Uy} — 0

for r — oo. Thus for all k € N exists an r, such that for all » > 7, we have
e(r,k) < % Without loss of generality we may assume k < rp < rp+1. Now let
k(n) := max {k : r, <n} < co. Then £(n), defined by

1

e(n) :=¢e(n,k(n)) < o)

converges to 0 since 7,y < n. Furthermore k(n) — oo, since otherwise there
n—oo
would exist a bound K and thus rx4q > n for infinitely many n, ergo € — 0, i.e.

e(n)

Uq g n“Uk(n) + m

U,.

Since E' is an (F'S)-space, we find finite sets Z, C Uy ,) with Uy, C Z, + @Up
and hence

egn
Uq - n“Uk(n)—‘rnE_iUp
e(n) e(n)
C (n“Zn + Y Up> + = U,
2
K+ ‘i@Up.

Let B be the absolutely convex hull of |J,cyZj. Then B is bounded since it is
contained in the absolutely convex hull of Uy ) UU,,, Zj and k(n) — oo. Resulting
we have

2e(n)
m
U, € nt'Z,+ o Up
2|le | o
I
C n*B+ e Up.

Note that without loss of generality we may assume ¢ > p, i.e. U, C U,, and hence
for0<r<1

1
Uq g Up g 'I"MB + Up g 'I"MB + T/J,Up
r
Finally, if n <7 <mn 4+ 1 then we have
c

Uy € n'B+ .Uy
1-p
L n+1 C
g r B + ( n ’r’]-_l"/ P
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thus for C' > max {4||¢||0, 1} we have

C

rl-n

U, Cr'B+ Up

for all » > 0. O

Corollary 14.3 Let E be an (F'S)-space with property (). Then there exists a
bounded (hence a relatively compact) subset B such that E has property (Qp).

Reference. The proof goes along the same lines as 14.2, as cited in [DMV84], Propo-
sition 3b. In this case we put 5§ as the 4 in the hypothesis and get y = 1 in the
result.

Theorem 14.4 ([HKO02|, Theorem A) Let F' be a Fréchet space. Then the following
assertions are equivalent.

(i) F has property (DN).

(ii) C(E,F) = CP(E, F) for every real nuclear Fréchet space E having property
(€).

(iii) C¥(E,F) = C¢(E,F) for every real (FS)-space E having property () and
an absolute basis {e;} ;- ;.

Proof. The implications (ii) = (i) and (iii) = (i) are proven in 13.4 by choosing
E =R

First we prove (i) = (ii). Let E, F be as in the statement of the theorem.
By 14.3 there exists an absolutely convex compact subset L C E such that E has
property (Qp). It follows that E has the property (Qp) for all absolutely convex
compact subsets B with L C B. Hence, so does F ® C and by 11.9 B is a set of
uniqueness in £ ® C.

Thus we can define the linear map Sp : F{__ — H(B) by

bor
Sp(u) =uof

for f € C¥(E,F) and u € F]__, where u/o\f is the unique holomorphic extension of
uo f to a neighbourhood of B in F®C. Again using the uniqueness of B, by C.4, we
deduce that Sp has a closed graph and, hence, it is continuous by Grothendieck’s
closed graph theorem C.3. Now by 11.10 H(B)j; has property (LB*) and by 13.6
(Fpor)s has property (DN). Then 13.3 implies that Sp is bounded on a neighbour-
hood of 0 € F{ .. We deduce from 13.7 that there exists a convex neighbourhood
Wp of Bin F® C and a holomorphic function

fB:Wp—F

such that .
fele=1flB-

Put W as the union of all W where B is an absolutely convex compact subset of
FE with L C B and define the function

f:W—F
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given by

f ‘WB: IB-
Now we show that the function f is correctly defined in this way and, hence, is
holomorphic on the interior of W in £ @ C. Indeed, let B and C' be absolutely
convex compact subsets of E with L C B,C. Then fp, fc are holomorphic on

Wp N We. On the other hand, L € BN C then E has property (2pn¢) and, at the
same time,

f5 IBre= f |BnC -

Now using the uniqueness of B N C, noticing that W N W is connected and
BNC CWpgnNWe, we deduce that

I8 warwe= fc lwynwe -

It remains to check that the interior of W is contained in E and hence, f € C¥(E, F).
Assume, for the sake of obtaining a contradiction, that there exists o € F and a
sequence {(:rn + iyn)neN} C E ® C converging to x¢ but x, +iy, ¢ W for n > 1.
Put

B := {({(#n)nen, To, (Yn)nen} U L)

as the closed convex hull of the mentioned elements. Since E is a Fréchet space,
by 1.9 there exists an absolutely convex compact set B; C E containing B such
that B is compact in Ep,. Then B; is an absolutely convex compact subset of
E with L C By and Wp, is a neighbourhood of {z¢} x {0} in F ® C. Hence
{zn +iyn} € Wp, CW for sufficiently large n. This is a contradiction.

(i) = (iii) Let E be as in the hypothesis an (F'S)-space with property (Q). Then
by 14.3 there exists an absolutely convex compact subset L C E such that E has
property (7). Next, let B an absolutely convex compact subset and {e;} i>1 the
absolute basis of E. Putting

B := <B uLu(J ||e;\|Lej>

Jj=1

we get that E has also the property (€25). Then by B.1 H(B)’ﬁ has property (LB).
From here on, the proof of the implication (i) = (iii) is analogous to the proof of
(i) = (ii). O

Remark 14.5 Let E be a real Fréchet space and B an absolutely convex compact
set in E. Then B is a set of uniqueness for H(B ® C) in Ep ® C.

Theorem 14.6 ([HK02|, Theorem B) Let F' be a Fréchet space having property
(LBs) then
C¥(E,F)=C¢(E,F)

holds for all real Fréchet spaces E.

Proof. (i) By B(E) we denote the family of all absolutely convex compact subsets
of E. Then by 1.9, for each B € B(E) we can find a B; € B(E) such that B is
compact in Ep,. Let F(Bj) be the family of separable closed subspaces of Ep, and
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let M € F(Bj) be given. Choose a sequence (), ey in M converging to 0 € M
such that its span is dense in M. Put

BM:<BmM U{a:M}>

n>1

The convex hull of |J,,~, {x% } is compact, since (z)),¢n is a sequence converging
to 0. Then B, is absolutely convex compact in M.

Furthermore, Bjs is the set of uniqueness for holomorphic functions on neigh-
bourhoods of Bj; in M ® C. Indeed, let f be a holomorphic function on a neigh-
bourhood Wg of By in M ® C such that f |p,,= 0. Then for each x € Bjs and
¢ € span {(zM),en} we have

F)(6) — tim 11O~ @)

t—0 t

=0

because t€ € By for sufficiently small ¢ € R. Hence f/(z)(u) = 0 for all u € M and
it implies that f/(z)(z) = 0 for all z € M ® C. Thus f’ = 0 on B);. Replacing f
by f' we get f” =0 on By and continuing this process we deduce that £ = 0
on By for all n € N. Using the Taylor expansion of f we derive that f =0 on a
neighbourhood of Bj; in M ® C.

(ii) The uniqueness of By in M ® C allows us to define the linear map

—

f:FéorHH(BM):f(u)ZUOf

where u/o\f denotes the holomorphic extension of uo f to a neighbourhood of Bj; in
M®C and H (Bjy) is the space of germs of holomorphic functions on neighbourhoods
of By in M ®C. Again using the uniqueness of By; in M ® C we deduce that f has
a closed graph and, by Grothendieck’s closed graph theorem, it is continuous. Since
M is a Banach space, it clearly has property (©2) and hence by 9.4 H (BM)’ﬁ has
property (€2). From 9.3 there exists an index set I such that H(B)j is isomorphic
to a quotient of ¢1(I)@s. On the other hand, if F has property (LBs) then by
12.3 (Ft/Jor)/ also has property (LBs). By 12.5 we derive that every continuous
linear map from ¢'(I)®s and, hence, from H(Bwm)j to (Fy,,)5 is bounded on a
neighbourhood of 0 € H(Byy)' 3~ Now as in the argument of 14.4 there exists a convex
neighbourhood Wy, of By in M ® C and a holomorphic function fas : Wy — F
such that

o |By=f B -

Recall that E,, ® C = M ® C where Ep,, ® C denotes the complexification of Ep,,
and Ep,, denotes the Banach space induced by By in Ep,. Put

Wg = J{Wn : M € F(B1)}
and define the function fB Wp — F which is given by

B lwy= fu

First we check that fg is correctly defined in this way. Let M, M be in F (B1).
Without loss of generality we may consider that M; C Ms. In the same notations
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By, € By, and, hence, By, ® C — By, ® C. Then Wy, N Wy, 2 By, N By, =
By, and is an open subset in Ep,, @ C. At the same time

Sy |Bay = |Bay = ot By -

By 14.5 this implies that

fMl |WA{10WM2: fM2 |WN[10WM2 .

Next we show that B is contained in the interior of Wp in Ep, ® C.

Assume, for the sake of seeking a contradiction, that there would exist an zg € B
and a sequence (z, := Tp, + 1Yn)nen in Ep, ® C converging to zo but z, ¢ Wp for
n > 1. Let

M := span {(:Bn)nENa (yn)TLGNa ZL‘()}.

Then M € F(By) and {(zn)nen} € M @ C with 2z, — zp in M ® C. Notice that
xzog € Wy implies {(zn)n>nen} € Wiy € Wp for n sufficiently large. This is a
contradiction.

Since fB is holomorphic on one Wjy; € Wp, it is Gateaux holomorphic on the
interior of Wg. Let {(zn)nen, 20} € Wp and z, — zp. Put

M := span {(xn)neN, (Yn)neN, o, Yo }-

Then M € F(B;) and let By, defined by

By = <(B N M) U {(xn)neNv (yn)neNa Zo, y0}>7

be the convex hull of the mentioned sets. Notice that the sequences (z,)nen and
(yn)nen as well as the elements xg, yo are contained in Wy, and x,, — 2o, yn — Yo-
Hence far(zn,yn) — fam(zo,y0). Thus fp(zn) — fp(20) and consequently, fp is
holomorphic on the interior of Wp.

(iii) By (ii) for each B € B(E) we can extend f |p to a holomorphic function
fB on a convex neighbourhood W in Ep, ® C where B; € B(E), B C B; and B is
compact in Ep,. Again put

w= ) ws.
BeB(E)

Then W C E® C and we can find the function f : W — FE given by
flw=Is.

As in (ii), the function f defined in this way is a holomorphic extension of f to the
interior of W, a neighbourhood of £ in £ ® C. Hence, f € CY(E, F). O



Appendix A

On equivalent descriptions of
the Properties

Lemma A.1 The following implication holds, the reverse implication does not.
(LBw) = (DN)

Proof. The implication is obvious.
The reverse implication does not hold, since if it would, by 12.4, the identity
mapping would be compact in AL (3). O

Theorem A.2 (Characterisation of the property (DN)) Let E be a Fréchet
space with an increasing fundamental system of semi-norms. The following charac-
terisations of the property (DN) are equivalent.

(i) There exists a continuous semi-norm |.|| on E such that for all k € N there
erists a p € N and a C > 0 with

C
-l < el 4 — N lletp
T
for all r > 0.

(ii) There exists a continuous semi-norm ||.| on E such that for all k € N there
exists a p € N and a C > 0 with

1117 < CI-llep-
(iii) There exists a system of semi-norms such that for all k € N
0 < Ml

(iv) There exists a bounded, absolutely convex set B in E' such that for every k € N
there exists a p € N and a C' > 0 with

B, CrB+ *CBk+p
r
for all r > 0.
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(v) There exists a continuous semi-norm |.|| on E such that for all k € N there
exists a p € N and a C > 0 such that

2
1-lle < CI--llp-
(vi) There ezists a continuous semi-norm ||.|| on E such that for all k € N and all
wowith 0 < p < 1 there exists a p € N and a C' > 0 with
Ik < CII#I1 11
(vii) There exists a continuous semi-norm ||.| and a d > 0 such that for all k € N
exists a p € N and a C > 0 such that

d d
< I

Outline of the proof. In A.3, the equivalence of the items (i) to (iii) is proven. The
proof of the equivalence of (i) and (iv) is given in A.4. Finally, A.5 shows the
equivalence of (i) and (v) to (vii).

Lemma A.3 ([Vog77al, 2.1. Satz) Let E be a Fréchet space. Then the following
assertions are equivalent.

(i) There exists a continuous semi-norm ||.| on E such that for all k € N there
erists a p € N and a C > 0 with

C
I-le < wll- =l T

for all r > 0.

(ii) There exists a continuous semi-norm ||.|| on E such that for all k € N there
exists a p € N and a C > 0 with

I1E < CI- -
(iii) There exists a system of semi-norms such that for all k € N
1E < o=t 1T

Proof. (i) « (ii) Calculating the minimum of r||.|| + £||.| |4+, With respect to r > 0,

we get
I Il + *CH | = 2\/CH (1B
Irn>15l " p IREP e

Hence, [|.[[ < AC|.[lg[l-llx-+p-

(ii) = (iii) If [|.[|7 < C||-|[|-|lx+p holds, we can assume without loss of generality
that ||.]| < ||.||x for all & € N (as a continuous semi-norm, .|| < ||.||z, for some
ko € N and it suffices to show (iii) for all k£ > ko). By hypothesis, we have

IE < Crll-N-lkp < Crl-Mill- N1+,

hence
[k < Crll-llktp =2 [I-le+1
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which leads to ||.[|2 < ||-lk=1 ||-|lk+1-
(iii) = (ii) From ||.||Z < ||/lx=1 ||-|lk+1 we obtain that all ||.||x are norms and for
x # 0 from
llle  _ l2lrrs

[zllk—1 = Nzl
we get for all k the inequality
2k
]| H [l < 11 lzll; lllow
llzllo 2 [llli—1 2o Nzl llllx
and hence
(17 < [lzllofl| 2
for all £ € N. O

Lemma A.4 ([Vog77a], Lemma 1.4) Let E be a Fréchet space and By C By C
be a fundamental system of absolutely convex bounded sets in E'. Then the following
assertions are equivalent.

(i) There exists a continuous semi-norm ||.| on E such that for all k € N there
exists a p € N and a C > 0 with

C
-le < el F+ -l

for all r > 0.

(iv) There exists a bounded, absolutely convez set B in E' such that for every k € N
there exists a p € N and a C' > 0 with

C
B, CrB+ fB],H_p
r
for allr > 0.

Proof. From ||.|[; < 7[l.|[ + € ||.[|5+p we get

1
52U N 55 Ukts € Uk,

with
U:={z:|z| <1}.

By taking the polars we get
(¢} ] 20 [¢]
Uk‘ g 2TU + TU]C_;'_p.
To show the other direction, we put
Bk = U,s,

where
U = {z: ||lzl[x <1},
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since the condition does not depend on the choice of the fundamental system. If the
condition is satisfied, there exists a bounded set B and for each k € N there exists
ap€ Nand a C > 0 such that

(¢} C (¢}
Uk’ g TB + 7Uk’+p
for all ¥ > 0. Therefore a y € U, can be written as y = rb + %u with b € B,
u € U,S+p, ie.
C C
[y(@)] < rlp(z)] + —fu(@)| < 7llz] + 2]
for all € E. From this follows (i) by ||z| = supyep [b(2)]. O

Lemma A.5 ([MV92], Lemma 29.10) Let E be a Fréchet space with an increasing
fundamental system of semi-norms. The following assertions are equivalent.

(ii) There exists a continuous semi-norm ||.|| on E such that for all k € N there
erists a p € N and a C > 0 with

11 < CHMlp-

(v) There exists a continuous semi-norm ||.| on E such that for all k € N there
erists a p € N and a C > 0 such that

1IE < ClN1p-

(vi) There ezists a continuous semi-norm ||.|| on E such that for all k € N and all
wowith 0 < p < 1 there exists a p € N and a C' > 0 with

-le < CILIF=#11-15-

(vii) There exists a continuous semi-norm ||.|| on E and a d > 0 such that for all
k € N exists ap € N and a C' > 0 such that

I < CIN-
Proof. (ii) < (v) This is obvious.

(v) = (vi) In (v), fix k € N with |.[lx < [l.|. Put n; := k and apply (v)
iteratively to get n,41 > n, and a C, with

117, < Coll-M-llna-
Since ||.|| is a norm, we have for all m € N
~1
(Hlk)m < mH [l
I L7y
m—1
<

H_ Cy ||'Hnu+1

m—1
T Cy) -l
o ) U

N

IN
X\
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1
If we put D,, := (HT:_Ol C’l,> ™. we get

1 E
1k < D11 )1

Finally, if 0 < u < 1 is given, we choose m € N with % < p and get the desired
inequality.

(vi) = (v) Take = 1 and the square of the equation in (vi). The equivalence
is now obvious.

(vi) = (vii) This follows directly by putting ?16[ = u.

(vii) = (v) With fixed d > 0, by hypothesis we have that for all k£ there ex-
ists a p such that H.||,1€+d < C|||%||.l,- Reinserting k into the hypothesis yields
Ak VK Fp’ 3C" > 0 such that HH}j‘d < C'I1€)|.]l7- Combining these statements

leads to:

d
IR <
_d
< (1) Ly
o
+
< & (CIIL) ™ 1l
S
< CeT 5 Ly
d d2 1424
< Cle| ),

where in the last step p’ = p is assumed. Thus the inequality can be transformed
into

1442 A\ T d
e T < (€0 T T
. —d_ 11:72%1 d2 d . . . .
Now putting D := (C’C 1+d> and d’ := 955 < § gives (iv) by induction also
for some d < 1. Hence also for d = 1. O

Lemma A.6 The following chain of implications holds.

() = () = (LB®) = (2)
Proof. The implication () = (Q) is obvious.
Now we prove (2) = (LB*°). In the definition of (LB), namely for every
monotonous sequence (pn)neny With py, 0 and for all p there exists a ¢ > p such
ne

that for all ng exists an Ng > ng and a C > 0 such that for all u € F’ exists an m
with ng < m < Ny such that

lullg =P < Cllullp, ™,

choose Ny such that py, > d and put N = Ny for all u € F'.
Finally to prove (LB*) = (), we fix a sequence, e.g. (p, = n)nen and observe
that we get
lullsF™ < Cllullo,, llull°

which is property (Q2) for k = ng and d = Np. O



92 APPENDIX A. PROPERTY EQUIVALENCE

Remark A.7 None of the reverse implications hold, as can be seen in [Vog83], the
remark after proposition 5.3.

Lemma A.8 Let k,p >0 and a,b > 0. Then

1 b
lnf <'I"ak —+ bp> = 763; + 7 k‘aibpzr%b .
r>0 r aa+b baer

Proof. The minimum of 7%k + r~%p in respect to r is assumed at

1
b a+b
Pmin 1= Min (r“k + r_bp> = (p)
r>0 ak

as can be seen from (r“k: —i—r_bp), = ar® 'k — brt"1lp = pol (ak — bpr_(“+b)).
Evaluation gives
bp bp\
k ak

(=)™ p
b akb abkbpa %%

= T
ab %H b %H)

bb> (k pa)

b a
— aa+bba+b +aa+bbu+b) ka+bpa+b

r%k +1r~ p > ek + rmmp =

- ((a+ b)aa+bba+b> ka+s pats

The infimum is attained if p, k > 0, since r% + r~%p — oo for r — 0 if k£ > 0 and
for 1 — oo if p > 0. The statement is valid if p, k = 0 as well.

Note that 1 < (a + b)aat5ba¥t < 2 for all a,b > 0. O

Lemma A.9 (Interpolation Inequalities) Let E be a Fréchet space with an in-
creasing system of semi-norms, U; = {x : ||z||; < 1}, a,b > 0 and p := aL—l—b' Then
the following statements are equivalent.

(i) 3C1
[ loy < Callllg, II- [

(Z’L) 302 Vr
a 1
s < Ca (71 + %l
(i) 3CL Vr
a 1
Ilen < Gl + 5ll-les

(i”) 30U r

1
o < 7°ll-llo + C2 5 - llvs
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(iii) 3Cs Vr
1
Uy CCs (Tan + rbU2>

(ZZZ’) E|Cé vr
1
U, C Cé’l“an + *bUQ
T

(iii”) HC{{ Vr
1
Ui CrtUy + C§/7U2
r

Proof. (i) < (ii) This follows directly by A.8 with C1 = Ca(a + b)aa;ﬁiba%.
_1
(ii) & (i’) Put r = C, *7’. Then

b
I-loy, < Cor| g + Cor |||l
1 \¢ _1 0\
- o (O) e (cw’) Ml

a 1+§ —b
= "l + G o,
b
Finally, put C}) = 021+”.
(iii) < (iii”) Analogous to the equivalence above.
1

(ii) & (ii”) Put r = C¢7'. Then

—b
low < Cor®|l g + Cor ™|l

1 \¢% 1\
= a () I+ (Shr) e

1+¢ a —b
= G " w7 Il

. 148

Finally, put C4§ = C, °.

(iii) < (iii”) Analogous to the equivalence above.

(i) = (iil) From ||.|z, < Co (7|l + lI-llv,) follows for o’ € E’g

sup o/ = Ca (1 sup )]+ sup |e(0)])
xzelU; zelUp zeUs

= Cy sup |2'(z)],
ralUp+r—bUs

and by the bi-polar theorem we get

U, C CQ(’I““UO + ’I“ibUg),

where the closure is taken in respect to ||.||op. Finally, by choosing C5 > C5, we have
U, C CQ(TaU(] + T‘beQ) C (5 (T‘an + T‘_bUQ).
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(ili) = (ii) Clearly, the U;’s are absolutely convex sets and by hypothesis we
have Uy C Uy + Us. Then for all 2’ € E’ we have

2|, = sup{|z’(w1)]:w € Ui}
< sup {|2(uo + u2)| : uo € Up,ug € Us}
= |2 llvg+vs
< sup {|2(uo)| + |2’ (uz)| : uo € Uy, ug € Us}
= sup {|2'(uo)| : wo € Up} + sup {|2'(uz)| : ug € Us}
= |2'llue + I%"lu,
since |2/ (ug + u2)| < |2/ (ug)| + |2' (u2)|. O

Theorem A.10 (Characterisation of the property () Let F be a Fréchet
space. The following characterisations of the property () are equivalent.

(i) ¥p 3¢ Yk 3C >0
112, < Cll-lzl-lo, -

(i) 3d >0 Vp Iq Vk 3C >0

15 < Cll-llo 111,
(ii) Yd > 0 ¥p 3¢ Vk 3C > 0

15 < Cllllw 111,
(i) 3p:0<pu<1Vp3qVk3IC >0

1—
I, < CILIE, 115

respectively
1—
o, < Cllllg, M1z, -

(i55’) ¥ p:0<pu<1Vp3qVk3IC >0
1—
v, < ClNG -0, "

respectively
1—
Illu, < Cl-lg 001, -

(i”) ¥p 3¢ Yk 3C >0 Vr >0
1
Mo, < € rllloe + -l ) -
(i5”) Ja,b >0 Vp ¢ Yk IC >0 Vr >0

1
I, <€ (#1L1us + 5110 )
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(113”) Ya,b >0 Vp 3¢ Vk 3C >0 Vr >0
a 1
Mo, = C{rl-llow + -l ) -
(1”’) ¥p 3¢ Yk 3C >0 Vr >0
1
Uq - C <TUk + TU;,) .
(127°) 3a,b>0Vp ¢ Vk 3C >0 Vr >0
a 1
Ung TUk"‘ﬁUp .
(i13”’) Ya,b > 0 Vp 3¢ Vk 3C >0 Vr >0
a 1
UQQC’ rUk—i_ﬁUp .
(1577) 3p:0< pu<1Vp3IgVk 3IC >0Vr >0
cC|r 1
U, C r Uk+ﬂUp

respectively

_ 1
U,ccC (rl U + WUp) .

(i15”7) Yu:0 < pu<1Vp IqVkIC >0Vr>0

1
U,CC (r“Uk + 5 Up>

respectively

_ 1
U, cC <1“1 *UL + TMUP> :

Proof. (i) = (ii) Put d:=1
(ii) = (iii) For fixed d from (ii) we derive the assertion for every d’ > d since
o, \? o, \
clearly |-, < Cll-lo, (172) < Clllus (172)

By hypothesis, 3d > 0 Vp 3¢ Vk 3C > 0 such that ||||(1]Jgd < C|||]Uk\|||dUp and
Vg 3¢’ VK’ 3C” such that ||| < C'Nl o, H||g‘l]q Combining these two statements,

!

we get Vp Jq,q¢' Vk, k' 3C,C’

d d
g < Cllllo I,
d
d\ 1+d
= Ol (I15:)
X
d +
< oy, (ClIwLIE,) ™



96 APPENDIX A. PROPERTY EQUIVALENCE

Putting k = k' and evaluating the expressions, we get Vq 3¢’ V& 3C,C’

1+d / 114;;-2; ffd
<CCM
11157 -l M-l

This leads to Vg 3¢’ Yk 3C, C’

11+2(fi d 11+2Cfi ﬁigdd
(L1 < (c'erm) T Ly, (1. i)
simplified as
1442 _d?
1"
-, = < LMl
Thus we have proved (iii) also for d’ := 1 +2 Ao <4

By induction, for any given d’ > 0 we can find an n € N such that 5 < d’ for
the d from the hypothesis. In this way, every d’ > 0 can be reached.

(iii) = (ii) Trivial.

(ii) & (ii’) For p = ﬁ we have

d d 1-
gt < Cll g, < o, < CLIE I,

respectively for py = #‘ld we get

d
Hlgs? < CllllwlIE, < Hlo, < Cllli Iz,

iii) < (iii”) Analogous to the equivalence above.

ii") < (ii”) and (iii’) < (iii”) Follow directly from A.9 (i) < (ii).

ii””) and (iii”) < (iii”’) Follow directly from A.9 (ii) < (iii).

(i”) = (ii”) and (iii”’) = (i”’) = (ii”’) Trivial. O



Appendix B

An equivalent result to
Proposition 11.10

Theorem B.1 ([HKO00], Proposition 3.4) Let E be an (F'S)-space with an absolute
basis. If E has the property () then there exists a balanced convexr compact subset
B of E such that H(B)j; has property (LB>).

Outline of the proof. Let {e; : j > 1} be an absolute basis for £. From the hypoth-
esis, by 14.3 there exists a balanced convex compact set B; in F such that

¥p 3g,d > 0,0 >0: |.|I5H < Ol l|s. 111, (1)

On the other hand, since {e;},, is an absolute basis it follows that (He;H By ej>
= Jj=1

converges to 0 € E. Put

B <31U U {||e;»||Blej}>

Jj=1

as the closure of the convex hull of the union of B; and the sequence.

Now we prove that H(B)j has property (LB*). In order to prove this, by 11.2
it suffices to show that every continuous linear map 7" : H(B)j — H(C) is bounded
on a neighbourhood of 0 € H(B)j. Let

T: H(B)’g — H(C)
be given. Consider the function
f:B— H(C)

defined by
f(x)(A) =T(6)(N)

for ¥ € B, A € C, where 6, € H(B)j is the Dirac functional associated to x which
is given by d,(¢) = ¢(x), with ¢ € H(B). We claim that f is weakly holomorphic.
Indeed, since E is an (F'S)-space, so is H(B)j, by [BM77] 7(a), and hence it is
reflexive. Now let u € H(C)j then poT € (H(B)j); = H(B) which gives a
holomorphic extension of po f. For each s > 0 let R* : H(C) — H>(2sD) be the

97
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restriction map where D is the unit disc in C. Recall that H*°(2sD) is a Banach
space and hence in order for a function to be holomorphic it suffices that it is weakly
holomorphic and we can consider the function h® := R® o f which hereby extends
to a bounded holomorphic function h* : V¥ — H*(2sD) on a neighbourhood V* of
B in E. Take p > 1 such that B + U, C V! where U, := {x € E : ||z||, < 1} and
(Qp,) holds for E with this p. Let

Vi:=B+ Up
and define the function
g:(BxC)u(Vp xD) —C

as follows
fx)(A) : zeB, AeC

g(x,)\)—{ ﬁ(:ﬁ)()\) c xeV, AeD

Obviously, g is separately holomorphic (see 3.13). Let F denote the family of
all finite dimensional subspaces P of Ep, the Banach space induced by B. Put

9P = 9 |(BnP)xC)u((vinP)xD) -

BN P and D have non-empty interiors in V; N P and C respectively and hence
are not pluripolar. By 11.6, gp extends uniquely to a holomorphic function gp on
(VinP) x C. Since ViNEg = U{ViNP:PcF} the family {gp}p.r defines
a Gateaux holomorphic function g on (V4 N Ep) x C. On the other hand, g is
holomorphic on {z € B : ||z||p < 1} x D and ¢, by Zorn’s Lemma, is holomorphic
on (V1 N ER) x C, where V; N Ep is equipped with the topology of Ep.

Now we prove that g can be extended holomorphically to g1 on W x C, a
neighbourhood of B x C in E x C such that g;(W x rD) is bounded for r > 0. Let
q¢>p, d>0, C >0 be chosen such that (Qp,) holds (see (1)).

Since B = <B1 UUjs1 {He;HBlej}> we have

i1l llejlls <1

for j > 1. From the condition (Qp,) in (1) we have

1 1+d C
lejlq lejllslle;
1

Now let § = % (Cﬁe>_ . Given r > 0, d > 0 we can find s, D > 0 such that

lo]l;** < Dllo]lsllol1{ 3)

for 0 € H(C), where
loflx = sup {lo(2)] - [2] <k}

Write the Taylor expansion of g : V) N Ep — H(C), the function associated to
§:(VinEp) xC —Cat0c Egp

g(x) =) Pug(x)
n=0
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where

1 g(tx, \)

forz e ViNnEp, A eC.
Since h® is holomorphic at 0 € E for every s > 0, we infer that P,g(.)(\) is

continuous on F for every \. Let Fn\g be the symmetric n-linear form associated
with P,g. We have

Sipgw sy, Y e Ol

n>0 n>0j1,....jn>1 Hejl ”q e ”ejan
X|Png(€j1,..-,€jn)()\)|- (4)

Using (2), (3) and (4) we get

1 n
DrraCtrile] (z)|llejllq - €}, (@)lllej llq

> Paglx)(N)] <

1 1 —d_ —d_
n>0 n20 1,21 [legy [ 57 leg, || 5 legy lp™ - - e llp ™
_ IR 1
><||Png(€j17"'7€jn)H31+d||Png(€j1a'"7ejn)H11+d
< DTS 0T | Pagl B | Pagl o 2|1
< > T IPglls s 1 Pagling” llzllg
n>0 ’
1 L a4 n.n"
< D““d||9||113+xds]])||9||(1];imZC“’dmfw
n>0 ’
< o0

for z € 60U, and || < r.

Thus § is extended holomorphically to (6U,xC)U(V; xD). By the same argument
as above g is extended holomorphically to g; on V; x C. Consider g1 : Vi — H(C)
associated with g;. By the same argument as above it follows that ¢; is locally
bounded. Hence there exists a neighbourhood W of B in Vj such that ¢;(W) is
bounded. Define a continuous linear map S : H>*(W) — H(C) as

S(p)(A) = p(evaog).

Put 0 : B — H(B)j with 6(x)(¢) = ¢(z), © € B, ¢ € H(B). Since (1) holds for
By it holds for B, i.e. E has property (Qp). This shows that B is a set of uniqueness

and we infer that span(d(B)) is weakly dense in H (B)j;. Because H(B)j is reflexive,
span(d(B)) is dense in H(B)j5. Now we have

T Xde | () =D NTE)N) =Y Aif(2,)
j=1 j=1 j=1

=3 NGz A) =D NS0)N) =S [ D> Ao | (V)
j=1 j=1 j=1

for A € C.
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Hence S | B),= T. Now reflect on the restriction map
res : H*(W) — H(B).

Since res is continuous, it maps the unit ball U of H*°(W) to a bounded set res(U).
The polar res(U)° is a neighbourhood of 0 € H(B)j. Since res(U)° C res*(U°) and
Tores* =S, T (res(U)°) is bounded in S(U°). Thus H(B)j has property (LB*).



Appendix C

Some Well-Known Theorems

Theorem C.1 Suppose that E is a locally convex space with the topology defined by
a family of semi-norms. A linear functional or a semi-norm ||.||q on E is continuous

if and only if there are a finite number of semi-norms |.|p.,...,|.||p, and real
numbers Ay, ..., A\, such that

2llg < All2llpys s Anllzllp,
forallz € E.

Reference. A proof can be found in [Kom99], Proposition 1.1.

Theorem C.2 (Hahn-Banach) Suppose that q(x) is a positive homogeneous sub-
additive function on a real vector space E. If a linear functional I(z), defined on a
linear subspace F', satisfies

I(2) < ql2) ¥z € F,

then I(z) can be extended to a linear functional u defined on the whole of E, which
satisfies
u(z) < g(x) Vz € E.

If E is a locally conver space and q(x) is continuous at 0, then u is also contin-
UOUS.

Reference. A proof can be found in [K6t69al, 17.3.

Theorem C.3 (Grothendieck’s closed graph theorem) Let E and F' be two
separated locally convex spaces, E equipped with a topology less fine than that of an
(LF)-space and F ultrabornological.

(i) BEwvery continuous linear application from E to F is a homomorphism.

(ii) For a linear application from F' to E to be continuous, it suffices that it has a
closed graph.

Reference. The original proof can be found in [Gro55].

Remark C.4 In order to show that the graph of an application f : E — F'is closed,
one often verifies that for a sequence (z;)pen in E with the limits = lim,ey 2y,

and y = lim,en f(x,) one gets y = f(x).
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Theorem C.5 (Grothendieck’s factorisation theorem) ([MV92], 24.33 or cf.
[Grobb)], I) Let E be a separated locally convex space, F a Fréchet space, (F;)ien
a sequence of Fréchet spaces, u a linear continuous map from F to E and for all
i € N be u; a linear continuous map from F; to E. Assume that u(F) C |J, wi(F3).
Then exists an index i such that u(F) C w;(F};), and u; is onto. There is a linear
continuous map v from F to F; such that u = u; o v.

Proof. Letu: F — E, u; : F; — FE asin the hypothesis above. For all 7, define H; :=
{(z,y) € F x F; : u(x) = u;(y)}. Since they are closed subspaces of (a product of)
Fréchet space(s), they are also Fréchet spaces. For all i, let p; : F' x F; — F denote
the projection to the first entry. We get p;(H;) = {z € F : u(x) € u;(F;)} by the
following computation

zepi(H;) < z,y) € Hi:z=pi(z,y) ==z
& J(z,y) € Fx Fy:u(r) =ui(y) and z ==
& Jy e Fulz) =ui(y)
& eF zeu (uly))
& zeu N u(F)).

By hypothesis we get F' = |J, p;(H;) and by C.15 also F' = p;(H;), i.e. u(F) = u;(F3).
Suppose that u; is bijective, thereby for all x € F there exists a unique y € F; such
that u;(y) = u(x), i.e. (z,y) € H;. This y depends obviously linearly on x, even
y = v(z). The map =z — v(x) : F — F; is continuous by Grothendieck’s closed
graph theorem since its graph H; is closed. O

Theorem C.6 (Riesz’ representation theorem) Let u be a continuous linear
functional on C(E), where E is a compact space. Then there exists a unique reqular
Borel measure p on E such that

ul(f) = /E Fd

for all f € C(E).

1 s positive if and only if u is positive. Moreover, the map u — p establishes
an isometric isomorphism of C(E)" onto the space of the reqular Borel measures on
E.

Reference. A proof can be found in [Jar81], 7.6.1 or in [K6t69al, 17.7.4 for E a real
interval.

Definition C.7 Let FE be a Hausdorff locally convex space. F is called a Schwartz
space if for every balanced, closed convex neighbourhood U of 0 in E there exists
a neighbourhood V' of 0 in F such that for every a > 0 the set V' can be covered
by finitely many translates of aU, i.e. there are x1,...,z, € V such that V C

Uiz (zi + U).
Theorem C.8 Let E be a complete Schwartz space. Then E' is ultrabornological.

Reference. The original proof can be found in [Sch57a]. A modern version in
[MV92], 24.23.
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Theorem C.9 IfU is an open subset of a locally convex space E and F' is a normed
linear space then f € Hg(U, F') is holomorphic if and only if it is locally bounded.

Reference. A proof can be found in [Din99], Proposition 3.7.

Lemma C.10 The quotient space of a metrizable locally convexr space L over a
closed subspace M is metrizable, and if L is complete then L/M is complete.

Reference. A proof can be found in [Sch71], 1.6.3.

Lemma C.11 ([Sch71], II1.2) Let L and M be metrizable locally convez spaces (e.g.
Fréchet spaces with |z| := ), .y 2%1%%”) We denote by U, :=={x € L : |z| <r}
and U, := {y € M : |y| < p} the closed balls of centre 0 and radius r,p. Let L be

complete and let u be a continuous linear map of L into M satisfying

Vr>03p=p(r)>0:uU,) DU, (1)
Then w(Uy) > U, for each t > r.

Proof. Let r and t be fixed, ¢t > r > 0 and denote by (r,)nen & sequence of positive
real numbers such that 1 =7 and )~ | r, =t. Let (pn)nen be a null sequence of

positive numbers such that p; = p and for each n € N, p,, satisfies w(U,,) D U,,.
For each y € U,, we must establish the existence of z € U; with u(z) =y.
We define inductively a sequence (zy,)nen such that for all n > 1

|xn - xn—1| <7, (2)
[u(zn) =yl < ppta- (3)
Set g = 0 and assume that for £k > 1 x1,x9,...,rr_1 have been selected to satisfy

(2) and (3). By (1), the set u(xp_; + Uy, ) is dense with respect to u(xy_1) + Up,.
From (3) we conclude that y € u(xy_1) + Up,; thus there exists x, satisfying |z —
rp—1] < g and |u(zy) — y| < prya.

Since Y o7 | ry converges, (z,)nen is a Cauchy sequence in the complete space
L and thus converges to some z € L. Clearly, |z| < ¢, and u(z) = y follows from the
continuity of v and (3), since (pn)nen Was chosen to be a null sequence. O

Definition C.12 Let L and M be locally convex spaces. A continuous linear map
u: L — M is called homomorphism if for each open subset G C L the image u(G)
is an open subset of u(L) for the topology induced by M.

Examples of homomorphisms are for any subspace H of L the canonical quotient
map v : L — L/H and the canonical imbedding u : H — L.

Lemma C.13 ([Sch71], III.1.2.a/b) Let L and M be locally convex spaces and let
u: L — M be a continuous linear map. With the aid of the canonical quotient map
@ and the canonical embedding ¥ we can decompose u into

L %5 L/t (0) 2 u(L) 25 M,

where ug s a bijective map and called the associated map with u.
Then the following assertions are equivalent.
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(i) w is a homomorphism.

(ii) For every neighbourhood base U of 0 in L, u(U) is a neighbourhood base of 0
in u(L).

(iii) The map ug associated with u is an isomorphism.

Proof. Since u is open, every element of u(i{) is a neighbourhood of 0, and w (i) is
a base at 0 in u(L) since u is continuous.
Since ¢(U) is a neighbourhood base of 0 in L/u~1(0) for any neighbourhood
base of 0 in L, ug has the second property and is consequently an isomorphism.
Since ¢ and wug are continuous and open, so is u = 1 o ug o ¢, and hence is a
homomorphism. O

Remark C.14 A Baire space is, by definition, a topological space in which every
non-empty open subset is not meager. This implies that every locally convex space
L over F which is non-meager (of second category) in itself, is a Baire space. Other-
wise, there would exist a meager, non-empty, open subset of L and hence a meager
neighbourhood U of 0. Since L is a countable union of homothetic images of U
(hence of meager subsets), we arrive at a contradiction.

Theorem C.15 (Open mapping theorem) ([Sch71], I11.2.1) Let L, M be com-
plete metrizable locally convex spaces and let u be a continuous linear map of L with
range dense in M. Then either u(L) is meager (of first category) in M, or else
u(L) = M and u is a homomorphism.

Proof. Suppose that u(L) is not meager in M. We continue to use the notation
of C.11. The family {S,},, is a neighbourhood of 0 in L. For fixed r, let U :=
Sy, V = S%; then V 4+ V C U and u(L) = |J,~, nu(V), since V is absorbent, i.e.
for every x € L there exists p, > 0 such that [0, p,]z C V. Since, by assumption,
u(L) is a Baire space, there exists an n € N such that nu(V') has an interior point.
Hence u(V') has an interior point. Now

u(V)+u(V) Cu(V)+u(V)=uV+V)Cu(U)

and thus w(U) is a neighbourhood of 0 in u(L), since 0 is an interior point to
u(V) +u(V). Hence there exists a p > 0 such that u(L) NS, C u(S,+.) for every
e > 0. Thus {u(S) : t > 0} is a neighbourhood base of 0 in u(L), hence by C.13,
u is a homomorphism. The quotient space of a complete metrizable locally convex
space over a closed subspace is itself complete and metrizable. Therefore ug is an
isomorphism of the space L/u~!(0) onto u(L). Again from C.13 it follows that

u(L) =M. O
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