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1 Abstract 

CD147 belongs to the family of type I transmembrane immunoglobulin 

(Ig) like glycoproteins and is upregulated upon T cell activation1. Several 

findings point to role of CD147 as negative regulator of T cell activation2-4. 

In line with these findings, previous studies in Prof. Stockinger’s 

laboratory revealed that CD147 knockdown T cells exhibit higher 

interleukin-2 (IL-2) production and a T helper 1 (Th1) cytokine bias. 

Here I analyzed which structural determinants of CD147 are 

responsible for CD147 antagonistic function on T cell stimulation. By 

reconstituting CD147 silenced Jurkat T cells with small interfering RNA 

(siRNA) resistant CD147 deletion and swap mutants, we could show that 

the extracellular and the transmembrane domain of CD147 cooperated to 

decrease the IL-2 promoter activity upon T cell stimulation. This effect 

was at least partially due to negative regulation of the nuclear factor of 

activated T cells (NFAT). Further experiments revealed that also the 

activation of nuclear factor k B (NF-kB) and the activity of the focal 

adhesion kinase (FAK) was influenced by CD147. 

The fact that the CD147 mutant lacking the cytoplasmic domain 

could inhibit the IL-2 promoter activity indicated that CD147 exerts its 

function via another transmembrane protein. Therefore, we analyzed the 

contribution of potential interaction partners of CD147 to the regulation of 

the IL-2 promoter activity. The surface expression level of the CD147 of 

CD435 and CD986,7, and surprisingly also of the co-stimulatory molecule 

CD28, was found to be upregulated upon CD147 silencing. Therefore, 

silenced T cells for CD28, CD43 and CD98 were generated and were 

tested for the IL-2 promoter activity. CD28 and CD98, but not CD43 

silenced cells, displayed decreased transcriptional activity of the IL-2 

promoter, making the deregulation of these molecules a likely cause for 

the enhanced IL-2 production in the CD147 knockdown cells. We 

speculate that CD147 might affect the function of these receptors during T 

cell activation, thereby dampening the immune response. 
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2 Zusammenfassung 

CD147 gehört zur Familie der Typ I transmembranen Immunglobulin (Ig) 

ähnlichen Glykoproteine, und wird bei der T-Zell Aktivierung 

hochreguliert1. Einige Entdeckungen deuten darauf hin, dass CD147 die T-

Zell Aktivierung negativ reguliert2-4. Passend dazu zeigten 

vorangegangene Experimente in Prof. Stockinger’s Labor, dass CD147 

Knockdown T-Zellen erhöht Interleukin-2 (IL-2) produzieren, und eine 

Tendenz zur T-Helfer 1 (Th1) Zytokin-Antwort aufweisen. 

In dieser Studie untersuchte ich, welche strukturelle Determinanten 

von CD147 die antagonistische Funktion von CD147 in der T-Zell 

Aktivierung ausführen. Mittels Rekonstituierung von CD147 Knockdown 

Jurkat T-Zellen mit siRNA resistenten CD147 Deletions- und Swap-

Mutanten, stellten wir fest, dass die extrazelluläre und die transmembrane 

Domäne von CD147 kooperieren, um die IL-2 Promotor Aktivität infolge 

der T-Zell Aktivierung zu verringern. Dieser Effekt war zumindest teilweise 

von der negativen Regulation des „nuklearen Faktor aktivierter T-Zellen“ 

(NFAT) abhängig. Weitere Experimente zeigten, dass auch die Aktivität 

des „nuklearen Faktors k B“ (NF-kB) und die Aktivität der „fokalen 

Adhäsionskinase“ (FAK) durch CD147 beeinflusst werden. 

Da die CD147 Mutante ohne cytoplasmatischer Domäne die IL-2 

Promotor Aktivität verringern konnte, übt CD147 seine Funktion 

vermutlich über ein anderes Transmembranprotein aus. Deshalb wurde 

der Beitrag potenzieller CD147 Interaktionspartner zur Regulation der IL-2 

Promotor Aktivität analysiert. Die Oberflächenexpression von CD435 und 

CD986,7, und überraschender Weise auch die des co-stimulatorischen 

Moleküls CD28, war in CD147 Knockdown Zellen erhöht. Deshalb wurden 

CD28, CD43 und CD98 Knockdown Zellen hergestellt, und deren IL-2 

Promotor Aktivität getestet. CD28 und CD98, nicht aber CD43, Knockdown 

Zellen wiesen eine verringerte transkriptionelle Aktivität des IL-2 

Promotors auf. Daher könnte die Deregulation dieser Moleküle für die 

verstärkte IL-2 Produktion in CD147 Knockdown verantwortlich sein. Wir 
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spekulieren, dass CD147 die Funktion dieser Transmembranproteine 

während der T-Zell Aktivierung beeinflusst und dabei die Immunantwort 

verringert. 
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3 Introduction 

The adaptive immune system is a tightly regulated, swiftly alternating 

system to defend vertebrates against pathogens by highly evolved antigen 

specificity of its mediators. The major players executing an adaptive 

immune response are the B and T cells. The B cells secrete antibodies 

upon stimulation, and thereby mediate adaptive humoral responses 

against extracellular pathogens. The T cells can be further categorized into 

cytotoxic T cells and T helper cells (Th1, Th2, Th17 and regulatory T 

(Treg) cells). Complementary to the B cells, the cytotoxic T cells conduct 

cellular mediated immune responses against intracellular pathogens by 

directly interacting with infected cells, leading them into cell death. 

Depending on the T helper cell population evolving after antigen 

presentation, either humoral or cell mediated, or even down regulation of 

immune responses will be evoked by a distinct “cytokine cocktail” 

 

 
Figure 1: T helper cell subsets. 

Figure was modified from Beth Israel Diaconess Medical Center homepage 

(http://www.bidmc.harvard.edu/display.asp?node_id=8815)  
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(Figure 1). This highly intelligent adaptive mechanism is necessary for the 

body to react in the right way with a specialized set of cells to pathogens. 

The T helper cells are responsible for stimulating either humoral (Th2 

mediated) or cell mediated (Th1 mediated) adaptive immune responses. 

Fascinatingly, the different populations of T helper cells evolve through 

different cytokine exposure, secreted from antigen presenting cells during 

antigen presentation in secondary lymphoid organs8. Additionally, the 

affinity of the presented antigen to the T cell receptor takes influence in 

the development of T helper cells into the different T helper cell subsets9. 

 

3.1 Th1 cells 

Upon development in the thymus, the naïve CD4+ T helper cells travel to 

various secondary lymphoid organs where they are awaiting antigen 

presentation. As mentioned before, depending on the properties of the 

pathogen, the antigen presenting cell is secreting special cytokines into 

the immunological synapse. In case of intracellular pathogens, the APC 

will secrete interleukin-12 (IL-12) during cross-presentation of the antigen 

via major histocompatibility complex II (MHCII) to the naïve CD4+ T cells. 

The secreted IL-12 binds to its receptor on T helper cells to modulate T 

cell receptor mediated activation and cytokine expression. Complex 

signaling events, that will be described later, lead to interferon-γ (IFN-γ) 

and IL-2 production, inducing positive feedback loops necessary for Th1 

differentiation. Due to the IFN-γ and IL-12 dependent differentiation, Th1 

cells display high levels of IFN and IL-12 receptors on their surface. 

Finally, differentiated and activated effector Th1 cells arise, which secrete 

IFN-γ, IL-2, tumor necrosis factor (TNF) and leukotrienes to enforce 

cytotoxic T cell function, enhance macrophage mediated cytotoxicity and 

phagocytosis and will further stimulate naïve Th precursor cells to become 

Th1 cells8. 
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3.2 Signaling pathways leading to Th1 cytokine production IFN-γ 

and IL-2 in T cells 

3.2.1 Interferon-γ 

The IFN-γ production in T cells is triggered by concerted stimulation of the 

signal transducer and activator of transcription (STAT) pathway by IL-12, 

T cell receptor (TCR) mediated signaling cascades via MHCII presented 

antigen and the costimulatory molecule CD288. The TCR/CD3 mediated 

signaling pathways will be discussed in detail later. Interleukin-12 

crosslinks the two IL-12 receptor chains IL-12Rβ1 and IL-12Rβ2, which 

leads to tyrosine phosphorylation of the receptor associated kinases Janus 

kinase 2 (Jak2) and tyrosine kinase 2 (Tyk2). These two kinases 

phosphorylate the IL-12 receptor, creating src homology 2 (SH2) domain 

binding sites10. 

 

 

 

 
Figure 2: Activation of IFN-γ promoter in Th precursor cells. A) STAT mediated 

commitment to Th1 development11. B) Transcription factors binding to IFN-γ promoter8. 

A 

B 
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Thereafter, STAT4, associated with the SH2 domains of IL-12R, will be 

tyrosine phosphorylated by Jak2 and Tyk212 (Figure 2a). An alternate 

mechanism leading to STAT4 tyrosine phosphorylation and activation can 

be induced by type 1 interferons mediated by STAT213,14. For 

transcriptional activity, STAT4 needs to get phosphorylated on a serine 

residue via a mitogen activated kinase kinase 6 (MKK6)/p38 dependent 

pathway15 leading to expression of IFN-γ and several other genes e.g. Ets  

related molecule (ERM) transcription factor16,17. Via a positive feedback 

loop, IFN-γ signaling leads to the activation of the Brahma/SW12-related 

gene (Brg) chromatin remodeling enzyme and thereby changes DNA 

accessibility for the transcription factors STAT1, interferon regulatory 

factor 1 (IRF1) and p300 by histone modifications18-20. STAT1, for instance 

will lead to T box expressed in T cells (T-bet) activation, that triggers – 

supported by NFAT or inhibited by GATA binding protein 3 (GATA-3) - the 

transcription of many other genes as IL-2Rβ, IL-12R, chemokine (C-C 

motif) ligand 3 (CCL3), chemokine (CXC motif) receptor 3 (CXCR3), IL-2 

and even IFN-γ11,21-24. Thereby, the activation of the STAT pathway via IL-

12 and TCR mediated signaling pathways leading to the activation of Fos, 

cJun, activating transcription factor 2 (ATF-2) and NF-κB. The coordinated 

binding of the transcription factors to the IFN-γ promoter, elicits IFN-γ 

expression, see Figure 2b. 

 

3.2.2 Interleukin-2 

Interleukin-2 (IL-2) is a cytokine that is predominantly secreted by CD4+ 

naïve T cells and by Th1 effector cells upon stimulation via the T cell 

receptor and the CD28 costimulatory molecule8. It induces proliferation of 

effector T cells leading to clonal expansion, and was recently reported to 

be involved in peripheral Treg cell generation, maintenance and survival25. 

Depending on T cell activity and maturity, the IL-2 production and 

secretion in response to stimulation is differentially regulated. On the one 

hand, this is caused by developmentally regulated chromatin remodeling 
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affecting IL-2 promoter accessibility26. On the other hand, the activation 

pattern of IL-2 transcription factors can be modulated upon differential 

expression of e.g. stimulatory or inhibitory coreceptors, as CD28, inducible 

T cell costimulatory (ICOS), lymphocyte function-associated antigen 1 

(LFA-1), cytotoxic T lymphocyte antigen 4 (CTLA-4), CD7, programmed 

death 1 (PD-1) or very late antigen 4 (VLA-4)27,28. 

The most prominent transcription factors necessary for IL-2 promoter 

activation are the inducible transcription factors cNFAT, NF-κB and 

activator protein 1 (AP-1) consisting of Fos, cJun and the constitutive 

factor octamer binding transcription factor 1 (Oct-1)8,26-28. Recently also 

p300/ CREB binding protein (CBP) was found to bind to the IL-2 promoter. 

By association with Fos at Fos binding sites p300/CBP act as coactivator 

for Fos29. T cell receptor/CD3 mediated signaling pathways - modulated by 

signals from coreceptors - activate all three inducible transcription factors 

for IL-2 expression, as well as Oct-1 and p300/CBP, see  

Figure 3. 

 

Upon interaction with MHCII presented antigen, TCRζ chains, cluster with 

TCR α and β chains, CD3ε,γ and δ chains, CD4 and other coreceptors to 

form peripheral microclusters. Thereby the lymphocyte specific protein 

tyrosine kinase (Lck) gets localized to its site of action, to phosphorylate 

the immunoreceptor tyrosine-based activation motifs (ITAMs)27,30. From 

today’s point of view, Lck, attached to CD4, is activated by 

dephosphorylation of an inhibitory phospho-tyrosine residue through 

developmentally regulated transmembrane-phosphatase CD4527,31,32. The 

Lck-phosphorylated ITAMs serve as docking sites for the SH2 binding 

protein zeta-chain-associated protein kinase 70 (ZAP70) that becomes 

phosphorylated and thereby activated. Active Zap70 induces several 

targets such as the scaffold proteins SH2 domain-containing leukocyte 

protein of 76 kDa (SLP-76) and linker for activation of T cells (LAT). These 

adaptor proteins then recruit kinases, G-proteins and guanidine exchange 

factors27. At this point, the TCR signaling gets strongly amplified and 
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further integrated with enhancing or inhibitory signals from costimulatory 

receptors. The costimulatory receptors LFA-1 or CD28, for instance, 

mainly trigger phosphoinositol or diacylglycerol mediated signaling 

pathways by recruitment and activation of phospholipases 33-36. 

 

There are three main signaling routes transducing the events from the 

membrane to the nucleus, leading to IL-2 promoter activation. The signals 

are forwarded either by increased cytosolic calcium leading to NFAT 

activation, by the mitogen activated (MAP) kinase pathways leading to AP-

1 activation or by activation of NF-κB27, see  

Figure 3. 

 
Figure 3: Transcription factors binding to IL-2 promoter 

This picture was taken from Cell Signaling Technology and was slightly modified. 
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By activation of phospholipases C or D (PLC, PLD) via LFA-1 or the T cell 

receptor, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG)33 are 

generated. DAG serves as binding site for the protein kinase C (PKC) that 

will be discussed later. 

Via IP3 operated calcium channels, calcium can be released from the 

endoplasmatic reticulum (ER) to cytosol, which is necessary to mediate 

calcium dependent mechanisms in the cytosol. Additionally, elevated 

cytosolic calcium levels lead to the opening of calcium release activated 

calcium (CRAC) channels at the plasma membrane, which will further 

increase and prolong intracellular Ca2+ levels during TCR stimulation. Upon 

calcium binding, calmodulin changes its conformation and thus can 

activate the phosphatase calcineurin. Thereafter NFAT is dephosphorylated 

by calcineurin and can enter the nucleus to bind to the IL-2 promoter27. 

The activation of the extracellular signal-regulated kinase (ERK) MAP 

kinase pathway is initiated directly at the TCR/CD3 supramolecular 

signaling cluster. ZAP70 phosphorylates LAT, thereby a SH2 binding site 

for the growth factor receptor-bound protein 2 (Grb-2) is created. RAS, 

recruited to the membrane and is activated via the guanidine exchange 

factor son of sevenless (SOS) that associates with Grb-2. Via a 

phosphorylation cascade of MAP kinases Ras triggers ERK 

phosphorylation, which can then translocate to the nucleus to further 

phosphorylate Elk. The phosphorylated transcription factor Elk will then 

activate Fos transcription, a component of the AP1 transcription factor. 

Upon recruitment to the microclusters via phosphorylated SLP76, the 

guanidine exchange factor Vav activates rho GTPases. The rho GTPases 

induce cytoskeletal rearrangement and the stress activated protein 

kinases p38 and the cJun N-terminal kinase (JNK). After activating 

phosphorylation, p38 induces Fos expression and JNK increases the 

activity of cJun. Fos and cJun heterodimerize to form the AP-1 

transcription factor and bind to the IL-2 promoter. Additionally, JNK37 and 

p3838 are capable to activate ATF-2 by phosphorylation. ATF-2 
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heterodimerizes with either cAMP-response-element binding protein 

(CREB) to bind to ATF/CRE motifs or with cJun to bind to AP-1 motifs and 

can thereby modulate the IL-2 production29,39. 

During T cell activation CD28 crosslinking generates an SH2 binding 

motif40 for phosphoinositol-3-kinases (PI3K). The major function of PI3K is 

to create phosphatidylinositols at the plasma membrane, which is 

essential for the recruitment and activation of phosphoinosite-dependent 

protein kinase-1 (PDK-1). PDK-1 and DAG in turn recruits the protein 

kinase C (PKC) and a complex containing the caspase recruitment domain 

membrane-associated guanylate kinase 1 (Carma1), the B cell lymphoma 

10 (Bcl10) and the mucosa associated lymphoid tissue lymphoma 

translocation protein 1 (MALT1) The Carma1/Bcl10/MALT1 complex induce 

the E3 ligase activity of TNF receptor-associated factor 6 (TRAF-6)41. 

TRAF-6 ubiquitinates and thereby activates the NF-κB essential modifier 

(NEMO), the regulatory subunit of the IκB kinase (IKK)42. IKK is then 

phosphorylating the inhibitor of NF-κB (IκB) and leads to IκB’s proteolytic 

degradation. Upon IκB degradation, NF-κB is proteolytically processed to 

yield active NF-κB fragments that dimerize with Rel proteins, translocate 

to the nucleus and bind to the IL-2 promoter27,43,44. 

By coordinated binding of the major IL-2 transcription factors cNFAT, AP-1 

(Fos/cJun) and NF-κB the IL-2 expression can be stimulated. 

 

3.3 Immunoglobulin family member CD147 

The type I Ig-like protein CD147 is a 45-65kDa transmembrane 

glycoprotein – also known as emmprin, hbasigin, HAb18G or M6 - with 

strongly conserved orthologues in other species called neurothelin, OX-47, 

gp42, basigin, CE9, 5A11, or HT745. CD147, is known for its important role 

in activation of the matrix metalloproteinase (MMP) system46-51 and its 

interaction with cyclophilins7,52-56, integrins7,57-59, monocarboxylate 

transporters (MCTs)60-63 and amino acid transporters6,7,58. CD147 is 
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expressed in various tissues and can be upregulated upon T cell 

activation1. 

3.3.1 Evidence for CD147 influencing T cell activation 

There are several indications, that CD147 has an impact on T cell 

activation. First, Kasinrerk et al. (1992)1 showed that CD147 is 

upregulated upon stimulation of naïve lymphocytes, a finding that was 

later supported by microarray data64. Interestingly T cells from CD147 

knockout (KO) mice were found to be hyperproliferative. By investigating 

the effect of CD147 monoclonal antibodies (mAb) on T cell proliferation, 

Koch et al (1999)3 identified one CD147 antibody with antiproliferative 

capacity on human T cells. This CD147 antibody, called MEM-M6/6 is 

directed to an epitope within the membrane proximal Ig domain (D2), in 

contrast to the non-inhibitory CD147 antibodies which are directed to the 

N-terminal Ig domain (D1)3. 

The same antibody was capable of changing the lipid raft composition of 

human T cells4. Furthermore, LFA-1 mediated adhesion of leukocytes was 

shown by Khunkaewla et al. (2008) to be regulated by CD43 and CD1475. 

Interestingly LFA-1 and the ras related G-Protein Rap1 were suggested to 

reciprocally modulate adhesion and T cell receptor signaling34. 

 

To elucidate the mechanism underlying CD147’s regulatory function, 

previous studies in Prof. Stockinger’s laboratory already focused on the 

impact of CD147 on cytokine production in human T cells. A stable 

knockdown of CD147 was generated in Jurkat T cell line and was analyzed 

for its cytokine production. Thereby it was found, that CD147 inhibits IL-2 

expression and exerts a negative regulatory effect on Th1 cytokine 

production (IFN-γ), as shown in Figure 4. 

These previous findings lead to the idea that CD147 might serve as a 

mediator of negative feedback regulation during the T cell activation. 
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Figure 4: Phenotype of CD147 knockdown Jurkat T cell line. A) Analysis of CD147 

silencing efficiency. The upper panel shows flow cytometric analysis of CD147 surface 

expression (pink: CD147 knockdown, black: sh-control cells, gray (filled): isotype 

control). Total CD147 expression is shown in the lower panel by Western blot analysis of 

CD147. CD29 was stained as loading control. B) The IL-2 and IFN-γ production upon 

CD147 silencing was assessed by ELISA. 

 

3.3.2 CD147 expression, structure, modification and localization 

The CD147 gene consists of 7 exons stretching over a length of 7.5kb65. 

CD147 is transcriptionally regulated by the selective promoter factor 1 

(Sp1), inducing its expression, and by pinin (pnn), inhibiting its 

expression66,67. After T cell activation, CD147 was reported to be 

upregulated1. 

By alternative splicing, four different transcript isoforms of 618 to 1158bp 

in size are generated in man. Three transcripts give rise to CD147 protein 

isoforms 1, 2 and 4, while the transcript isoform 3 is degraded by 

nonsense mediated decay mechanism. The longest protein isoform is the 

isoform 1, which is exclusively expressed in the retina68 and consists of 
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385 amino acids. The protein isoform 4 is the shortest CD147 isoform, 

consisting of 205 amino acids and having a different N-terminus than 

isoform 1. The CD147 isoform 2 comprises 269 amino acids and lacks the 

sequence of one exon, without differing in the N- and C-termini from 

isoform 1. Isoform 2 is the isoform investigated in this study. The N-

terminal 200(-300) amino acids of CD147 are exposed extracellulary. 

Depending on the isoform, the extracellular domain contains two (isoform 

2, 4) to three (isoform 1) Ig like domains68. Recently, the crystal structure 

of CD147’s extracellular domain (isoform 2) was described. The N-

terminal Ig C2-set domain was shown to be flexibly linked (116.4° to 

163.0°) to the membrane proximal Ig I-set domain69. The I-set domain is 

similar, but shorter than V-set domains, which were also found in CTLA-

469,70. Homophilic interactions were found to take place in a C2-C2 or C2-I 

mode69. 

The transmembrane domain was calculated to be composed of a 18-23 

amino acids containing helix, somewhere between the residue 206-22955. 

The presence of a highly conserved glutamic acid residue and a leucine 

zipper motive in the CD147’s hydrophobic transmembrane region, points 

to a possible interaction site with various transmembrane proteins71,72. 

The cytoplasmic domain is made up of 40 C-terminal amino acids. 

In the Golgi apparatus CD147 becomes glycosylated by N-coupling to the 

asparagine residues 44 in the membrane proximal Ig domain. and 152 

and 186 in the distal Ig domain. CD147 has two glycosylation states: the 

low glycosylated (LG) form with high mannose type carbohydrate 

catalyzed by α-mannosidase-II, and the high glycosylated (HG) form with 

complex type carbohydrate performed by β1,6-N-

acetylglucosaminyltransferase V. In fibroblasts, the regulation of CD147’s 

glycosylation was shown to be regulated by caveolin73. As lymphocytes 

lack caveolin, the glycosylation of CD147 has to be regulated in another 

way. 
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The mechanism, how CD147 is transported to the cell surface, was 

suggested to be caveolin, cyclophilin and/or MCT dependent. 

Caveolin was shown to affect the ratio between LG- and HG-CD147 at the 

surface. It was shown to bind LG-CD147’s membrane proximal Ig domain 

(D2). Thereby it inhibits the further glycosylation of LG-CD147 to HG-

CD147. Furthermore, it was hypothesized, that caveolin shuttles LG-

CD147 but not HG-CD147 to the surface73. 

Because CD147 surface expression is highly sensitive to cyclosporine A 

and to a mutation in proline 211 of CD147, it was suggested, that CD147 

interacts with cyclophilins via residue 211 for its surface expression. It 

was shown that Cylcophilin60 co-precipitates with CD147 and thus might 

be responsible for its surface expression54,55. It was further hypothesized, 

but not proven yet, that the translocation of CD147 to the plasma 

membrane needs the peptidyl-prolyl isomerase activity of cyclophilin6074. 

Additionally, the transport of CD147 and MCT’s to the plasma membrane 

was shown to depend on CD147’s conserved glutamic acid residue 218 in 

the transmembrane domain63. 

CD147 was shown to be released from the cell surface either by 

proteolytic cleavage or by microvesicle shedding and subsequent release 

during microvesicular degradation75,76 

 

3.3.3 Interaction partners and functions of CD147 

3.3.3.1 CD147 influencing proteolytic processes 

First, homophilic interactions both in cis and in trans were shown for 

CD147. The CD147 isoform 1, the rare 3 Ig-like domain isoform of CD147 

expressed exclusively in the retina, showed high similarity to neuroplastin 

p65 and could interact homophilic via its extracellular part68. Isolated, 

immobilized CD147 D1 extracellular domain was found to induce adhesion 

of CD147 transfected COS cells, supporting a homo- or heterophilic 

interaction in trans48. To exert its inhibitory effect on T cell activation, 

CD147 has to dimerize or to cluster3,77. 
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Clustering of CD147 on cancer cells was shown to stimulate matrix metallo 

proteinase MMP-1 and MMP-2 expression on stromal fibroblasts46 via a 

p38 MAP kinase47, phospholipase A2 and 5’ lipoxygenase mediated 

pathway50. It was found, that CD147 N-terminal Ig domain and its 

glycosylation are necessary for MMP induction48,49. These findings make 

CD147 a prominent MMP activator and thus CD147 is also called 

EMMPRIN, the extracellular matrix metallo proteinase inducer. Monocyte 

associated MMPs, induced upon adhesion to fibronectin, were shown to be 

necessary for transmigration through activated endothelium78. Therefore, 

CD147 upregulation upon T cell stimulation might enable T cells to 

transmigrate the endothelium, to reach infected areas. 

Interestingly, CD147 was reported to be an integral component of the γ-

secretase complex, negatively modulating presilin-1 proteolytic activity79. 

The γ-secretase was recently shown to process CD43 sialoglycoprotein80, 

an interaction partner of CD1475. CD43 was reported to enforce T cell 

receptor stimulation by interaction with guanidine exchange factor Vav 

and tyrosine kinase Fyn via its cytoplasmic domain. This leads to the 

activation of PKC and subsequent Casitas B-lineage lymphoma b (Cbl-b) 

activation and increased cytosolic calcium concentration81-84. Upon 

removal of CD43’s extracellular domain by metallo proteinases, the CD43 

fragment is further processed to a transmembrane and a cytoplasmic 

fragment. The cytoplasmic fragment, harboring a nuclear localization 

signal (NLS), translocates to the nucleus and binds to β-catenin to 

increase β-catenin mediated gene expression e.g. c-Myc and CyclinD180,85. 

 

3.3.3.2 CD147’s function as receptor 

As already mentioned before, CD147 was shown to interact with 

cyclophilins for different purposes. 

First, the transport of CD147 from the Golgi apparatus to the plasma 

membrane is dependent on the interaction with cylcophillin60. 

Cyclophilin60, localized in the lumen of endoplasmatic reticulum, has 
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access to CD147’s proline 21154,55, binds to CD147 and serves as its 

chaperone. 

Second, CD147 was suggested to act as a signaling receptor for 

extracellular cyclophilinA and B, thereby mediating chemotaxis86. When 

CD147 is glycosylated, cyclophilinA can bind to proline 180 and glycine 

181 residues in CD147’s extracellular domain. Thereby cyclophilin’s 

peptidylproline cis–trans-isomerase activity was shown to be necessary for 

triggering the ERK MAP kinase pathway through CD14756. CyclophilinB 

was shown to promote CD147-Syndecan-1 association followed by 

induction of the ERK MAP kinase pathway53. Recently, cyclophilinB was 

reported to trigger integrin mediated adhesion via a CD147, CD98 and β1 

integrin complex, as will be discussed later7,87. 

Third, an infection with the HIV virus, displaying cyclophilinA on its 

surface, can be facilitated by a cyclophilinA/CD147 dependent 

mechanism52. Interestingly, this mechanism was shown to be independent 

from the ERK MAP kinase signaling pathway88. 

 

3.3.3.3 CD147’s role in metabolism 

The translocation of the monocarboxylate transporters (MCT-1 and MCT-

4), from the perinuclear regions to the plasma membrane was shown to 

be highly dependent on their interaction with CD147. This interaction 

takes place via CD147’s transmembranous glutamic acid residue 218 and 

MCT’s transmembranous arginine residue61,63. Thereby CD147 might play 

a crucial role in the proper localization of MCT-1 and MCT-4. Additionally, 

CD147 was also found in the mitochondrial reticulum to interact with MCT-

1 and cytochrome oxidase (COX) in a rat skeletal muscle cell line62. Cells 

that are metabolically active, highly producing lactate, have to upregulate 

monocarboxylate transporter to export lactate from the cell89,90. 

Interestingly, increased lactose concentration in T cells was shown to 

deregulate the cytotoxic T cell function and cytokine expression91. 
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It was suggested, that CD147 and MCTs are components of a greater 

complex composed of CD98, the large amino acid transporter type 1 light 

chain (Lat-1), the ASC-system amino acid transporter-2 (ASCT2) and the 

epithelial cell adhesion molecule (EpCam). CD147 was found to interact 

via its N-terminal Ig domain (D1) with the extracellular domain of CD98, 

the heavy chain of the amino acid transporter. Further it was shown, that 

the CD98 expression positively correlates with CD147 expression and with 

cell proliferation in fibroblasts6. Therefore, the CD147-CD98 complex plays 

an important role in energy metabolism. 

 

3.3.3.4 Impact of CD147 on cytoskeleton and membrane dynamics 

Apart from the energy metabolism, the CD147–CD98 complex plays a role 

in cell adhesion, when associated with β1-integrins. This complex was 

shown to mediate cyclophilinB mediated adhesion to fibronectin a in T cell 

line7,58,92. On the one hand, crosslinking of CD98 stimulates the 

PI3K/protein kinase B (PKB) pathway via the transmembrane domain of 

integrin β17,93,94. Besides, crosslinking of CD98 promoted anchorage 

independent growth. On the other hand, cyclophilinB, as mentioned 

above, triggers CD147-Syndecan-1 association, which leads to the 

induction of the ERK MAP kinase pathway53. This interplay of cyclophilin B 

and CD147, CD98 and β1-integrins in a complex gives rise to integrin 

mediated signaling by activation of the PI3K and PKC-δ pathways7. 

Generally, β1-integrin signaling depends on phosphorylation of the β1-

integrin cytoplasmic tail and subsequent FAK activation by 

autophosphorylation95. β1 integrins were shown to trigger TCR 

costimulation by activation of Crk-associated substrate like protein (CasL) 

via FAK96,97. It was shown that CD147 also interacts directly with β1-

integrins associated with α3 and α6 light chains49,57. So far its thought, 

that CD147 does not directly interact with β2-integrins, although CD147 

has an impact on LFA-1 (CD11α/CD18) activity5,98. Recently, Khunkaewla 

et al. (2008)5 showed that CD147 stimulates adhesion through LFA-1 by 
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association with CD43, thereby blocking the CD43 inhibitory effect on LFA-

1 mediated adhesion5. 

Lately CD147 was shown to inhibit the NFAT activity by influencing Vav-

1/Rac-1 dependent signaling pathway. It was suggested that the 

cytoplasmic domain of CD147 leads to changes in JNK and the p21 

activated kinase (PAK) activity downstream of the Vav-1/Rac-1 signaling 

pathway99. 

 

Further interaction partners of CD147, such as caveolin-1, annexin II or 

enigma, point to an important role of CD147 in membrane dynamics and 

cytoskeletal rearrangements.  

Caveolin is a component of membrane invaginations called caveolae, 

which can give rise to vesicles to perform endocytosis. Caveolin-1 was 

shown to interact with low but not with high glycosylated forms of CD147. 

This interaction was shown to be glycerol dependent and was found in an 

intermediate sucrose density fraction. Caveolin-1 is thought to shuttle LG-

CD147 from the Golgi apparatus to the plasma membrane. By inhibiting 

glycosylation of LG-CD147 to HG-CD147, caveolin-1 diminishes surface 

expression and clustering of HG-CD147 accompanied by decreased 

induction of MMPs49,73. Surprisingly, yet no impact of CD147 on caveolae 

formation was observed. 

Moreover, it was reported, that CD147’s activity can be regulated by 

annexin II100. Annexins are phospholipid and calcium binding proteins that 

are known to regulate membrane dynamics and rearrangement of the 

actin cytoskeleton 101-103. 

Enigma, a PDZ and LIM containing scaffold protein, was found by yeast to 

hybrid screen to interact with CD147. The enigma protein family binds 

protein kinases via its LIM domains and targets them to actin binding 

proteins by association with its PDZ domain104-106. Interestingly, the 

enigma family member Z-band alternatively spliced PDZ motif (ZASP) 

protein was reported to be necessary for the proper assembly of functional 

integrin adhesion sites107. 
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3.3.3.5 Role of CD147 in cell death and proliferation 

As already mentioned above, Lymphocytes from CD147 KO mice were 

hyperproliferative2, pointing to an antiproliferative effect of CD147. The 

CD147 extracellular domain presented on phage surfaces induced 

apoptosis selectively in a monocytic cell line and thus supports a pro-

apoptotic function in trans108. 

In contrast, endogenous CD147 was shown to inhibit anoikis in cancer 

cells by a hyaluronan dependent mechanism. CD147 was shown to 

stimulate hyaluronan production, leading to increased phosphorylation of 

FAK, PKB and ERK and the pro-apoptotic protein Bcl associated death 

promoter (BAD)109. Further hyaluronan was shown to trigger ErbB2 

mediated anti-apoptotic signaling via interaction with CD44110. In a 

separate study CD147 inhibited anoikis by reducing expression of pro-

apoptotic Bcl-2 interacting mediator of cell death (Bim)111. Thus, CD147 

plays an important role in anchorage independent growth in cancer cells. 

 

3.3.4 CD147’s role in pathology 

3.3.4.6 Cancer 

Cancer is a collective of cells exhibiting deregulated properties in growth 

and tissue remodeling, leading to a dysfunction of the affected organs. As 

the cancer grows, it will get short of oxygen leading to hypoxic conditions. 

Under these conditions, cells produce hypoxia-inducible factor (HIF-1), 

which mediates the expression of MCT and vascular endothelial growth 

factor (VEGF)112. MCTs export the product of anaerobic glycolysis, lactate, 

out of the cells and VEGF induces angiogenesis. 

Cancerous cells display CD147 upregulation, which correlates with tumor 

aggressiveness113,114 and is probably linked to MCT expression. CD147 

was also shown to positively influence tumor angiogenesis and the 

metastatic potential of cancer cells. Thereby, CD147 was found to induce 

tumor angiogenesis by stimulating VEGF production in an MMP dependent 
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manner100,115. Furthermore, the induction of MMPs by CD147 on cancer 

associated fibroblasts47,48 was shown to support the invasive properties of 

cancer cells48,116. Additionally cancer cell invasive potential is further 

increased by CD147 mediated anchorage independent growth. Thereby 

CD147, as mentioned before, triggers integrin-like signaling and inhibits 

components of apoptotic pathway109-111. These functions make CD147 a 

key-mediator in tumor formation and progression. 

 

3.3.4.7 Autoimmune diseases 

Systemic lupus erythematosus (SLE) is an autoimmune disease based on 

hyper reactive lymphocytes and increased autoantibody production 

against nuclear components. It’s typical characteristics are inflammatory 

lesions in the joints, skin, kidneys and the nervous system117. Recently, 

SLE patients were found to express CD147 to a higher level in CD3+ cells 

in contrast to healthy donors. Peripheral blood mononuclear cells (PBMCs) 

of SLE patients displayed increased activity upon treatment with the 

CD147 antibody MEM-M6/1 in combination with CD28 and CD3 antibodies. 

Additionally, MMP-9 production was upregulated in SLE patients. Thus 

CD147 was suggested to play a role in systemic lupus erythematosus by 

mediating TCR signaling and MMP-9 production118. 

 

3.3.4.8 Alzheimer’s disease 

Alzheimer’s disease is characterized as a cognitive decline that can lead to 

dementia. This characteristics result from neuronal cell death caused by 

non degradable β-amyloid plagues and neurofibrillary tangles from Tau 

protein. Interestingly, CD147 knockout mice showed similar deficits in 

spatial learning and memory as found in Alzheimer mouse model119,120. 

First, it was suggested, that the amount of extracellular β-amyloid is 

regulated by clearance mechanisms through proteinases and 

peptidases121. Later, data came up, that CD147 directly interacts with and 
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thereby inhibits γ-secretase complex activity, in HELA cells79,122,123. 

Recently, CD147’s regulatory function in β-amyloid plaque formation was 

clearly formulated new. The γ-secretase activity, measured by the 

formation of the intracellular cleavage fragment, was shown to be 

independent from CD147 expression level. Instead, β-amyloid stability 

was found to be decreased in supernatants of CD147 overexpressing cells. 

Thus, this results support the earlier hypothesis that CD147’s MMP 

inducing function is mediating β-amyloid degradation124,125. 

Furthermore, it was found, that the CD147/α6β1-integrin complex 

stimulates microglia cell activation upon β-amyloid peptide binding126. 

 

3.3.4.9 Heart disease 

As described earlier, CD147’s most prominent function is the induction of 

MMPs. MMPs were shown to be important for the breakdown of collagen in 

the extracellular matrix surrounding the vessels. Thereby, CD147 is 

thought to mediate the turnover of collagen, thus inhibiting accumulation 

of collagen in deposits, leading to hypertension. 

However, exactly this feature of CD147 can lead to congestive heart 

failure. Deregulated degradation of collagen in the left ventricle leads to 

loss of organization of the cardiomyocytes along the collagen matrix, 

leading to dysfunctional pumping of the heart127. 

Second, MMPs produced by cardiovascular cells were also shown to cause 

acute myocardial infarction, also known as heart attack128. Increased 

CD147 expression on monocytes was found to trigger MMP production by 

cardiovascular smooth muscle cells. Thereby MMPs are thought to destroy 

atherosclerotic plaques leading to leakage in the hearts blood supply. 
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3.3.4.10 Stroke 

As mentioned before, MMPs have an important role in the clearance of 

collagen deposits, decreasing the possibility of vessel occlusion. Still 

occlusions occur within the vessels leading to loss of oxygen supply of 

affected tissues. Under hypoxic conditions, cells upregulate MCTs to 

export the anaerobic glycolysis product lactate. The surface expression of 

CD147 correlates with that of MCTs, as CD147 is necessary for the 

transport of MCTs from the Golgi apparatus to the plasma membrane. The 

upregulation of CD147 induces MMP activity that was shown to degrade 

extracellular matrix. Thereby CD147 mediated MMP induction further 

increases the damage of the brain tissue upon vessel occlusion129,130. 
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3.4 Aim of the study 

In this study, I aimed to elucidate the molecular mechanism(s) involved in 

the negative regulatory function of CD147 during T cell activation: 

 

First, to determine the immunomodulatory subdomain of CD147, several 

siRNA resistant swap and deletion mutants of CD147 were tested for their 

impact on cytokine expression upon T cell stimulation. 

Second, I wanted to studied potential lateral or intracellular interaction 

partners. Thus, I silenced these potential interaction partners and 

analyzed the cytokine response of the silenced T cells. Further, I wanted 

to figure out, which signaling pathway linked to cytokine expression could 

be affected by CD147. Therefore, I biochemically analyzed signaling 

components influencing the IL-2 promoter activity down-stream of the 

TCR and CD147’s interaction partners in CD147 silenced Jurkat T cells. 

With the help of co-immunoprecipitation, I wanted to prove the interaction 

of CD147 and its interaction partner(s). 

 

The final goal of the study was to characterize the mechanism underlying 

CD147 function to find new drug targets for therapeutic modulation of the 

adaptive immune response. 
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4 Material and Methods 

4.1 Antibodies 

The following monoclonal mouse antibodies were kindly provided by Dr. 

Vaclav Horejsi (Institute of Molecular Genetics, Academy of Sciences of 

the Czech Republic, Prague, Czech Republic): AFP-01 to alpha-fetoprotein, 

MEM-83 to CD11α, MEM-154 to CD16, MEM-48 to CD18, MEM-101A to 

CD29, MEM-59 to CD43, MEM-156 to CD98 and MEM-M6/1, MEM-M6/3 

and MEM-M6/4 to CD147. The mouse antibodies clone Leu28 to CD28 and 

clone 5 to annexin II were purchased from BD Biosciences Pharmingen 

(Franklin Lakes, NJ, USA). The polyclonal rabbit antibodies specific for 

phospho-Lck (Tyr416), phospho-Lck (Tyr505), phospho-Akt (Thr308), 

phospho-Akt (Ser473), phospho-GSK3β (Ser9), p44/42 (=ERK1/2), 

phospho-p44/42 (Thr202/Tyr204), phospho-Raf (Ser296), phospho-Raf 

(Ser259), phospho-Raf (Ser338), cRaf, phospho-SAPK/JNK 

(Thr183/Tyr185), phospho-p38 (Thr180/Tyr182), phospho-GSK-beta 

(Ser9), phospho-PAK1 (Thr423) PAK2 (Thr402), phospho-PDK1 (Ser241), 

FAK, α/β-Tubulin, as well as the monoclonal phospho-IκB (Ser32) (clone 

14D4), phospho-NF-κB (Ser536) (clone93 H1) and Zap70 (clone 99F2) 

were purchased from Cell Signaling (Danvers, MA, USA). The monoclonal 

mouse antibody specific for NFATc2 (clone 4G6-G5) was from Santa Cruz 

Biotechnology (Santa Cruz, California, USA). The polyclonal rabbit 

antibody against phospho-FAK (Tyr397) was obtained from Invitrogen 

(Inchinnan Business Park, Paisley, UK). The polyclonal rabbit antibody 

against phospho-paxillin (Tyr118), the clone2A7 to FAK and the clone 

HB1.1 to CD29 were purchased from Millipore (Billerica, MA, USA). The 

monoclonal mouse antibody α-Flag (Clone M2), the polyclonal rabbit 

antibody α-actin and the goat α-mouse IgG antibody were purchased from 

Sigma (St. Luis, MO, USA). The Lck antibody Lck-01 was from Abcam 

(Cambridge, MA, USA). For blocking of Fc-Receptors, Beriglobin from 

Aventis Behring (King of Prussia, PA, USA) was used. 
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The following antibody fluorophor conjugates were used for analysis by 

flow cytometry: goat α-mouse IgG+IgM (H+L) FITC labeled conjugate 

from “An der Grub” (Kaumberg, Lower Austria, Austria) and APC-

conjugated AffiniPure F(ab’)2 fragment goat α-mouse IgG + IgM (H+L) 

conjugate from Jackson Immuno Research (West Grove, PA, USA) and 

directly labeled conjugates α-IL-2-APC (MQ1-17H12) and IgG2a-APC from 

eBioscience (San Diego, CA, USA). 

Secondary antibodies used for chemiluminescence were horseradish 

peroxidase (HRPO)-labeled IgG antibody conjugates goat α-rabbit-HRPO 

(Biorad, Hercules, CA, USA) and goat α-mouse-HRPO (Sigma, St. Luis, MI, 

USA). For analysis of immunoblotting by “Odyssey - infrared imaging 

system” (Li-cor Bioscience, Lincoln, Nebraska, USA) the following 

secondary fluorophore-labeled IgG antibody conjugates were used: Alexa 

Fluor 680 labeled goat α-mouse antibody (Invitrogen, Paisley PA4 9RF, 

UK), IRDye 800CW conjugated goat α-rabbit antibody (LI-COR Bioscience, 

Lincoln, Nebraska, USA). 

4.2 Reagents 

Complete protease inhibitor cocktail tablets were purchased from Roche 

(Basel, Germany). Imidoester crosslinker dimethyl 3,3’-

dithiobipropionimidate 2 HCl (DTBP) was from Pierce (Rockford, IL, USA). 

Benzonase nuclease (≥250 units/µL), polybrene (hexadimethrine 

bromide), chloroquine diphosphate salt, puromycin dihydrochloride from 

S. alboniger, phorbol 12-myristate 13-acetate (PMA), ionomycin calcium 

salt (Iono) from S. conglobatus, brefeldin-A and monensin sodium was 

purchased from Sigma (USA). Staphylococcal Enterotoxin E (SEE) was 

from Toxin Technology (Sarasota, FL, USA) and albumin fraction V was 

purchased from Roth (Karlsruhe, Baden-Württemberg, Germany). 
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4.3 Cells 

The leukemia human Jurkat T cell lines, Jurkat E6.1, Jurkat IL-2-luciferase 

and Jurkat J14 SLP-76-Flag (kind gift of Oreste Acuto, Sir William Dunn 

School of Pathology, Oxford, UK) and the lymphoma human Raji B cell line 

were maintained in RPMI-1640 supplemented with 10% FCS, 5% 

glutamine, 5% penicillin & streptomycin (stock: 10.000IE/ml, 10mg/ml, 

respectively). Phoenix cells, a derivative of the human embryonic kidney 

cell line 293, were maintained in DMEM with 10% FCS, 5% glutamine, 5% 

penicillin & streptomycin. 

4.4 Cryopreservation of cells 

Stocks were prepared in medium with 30% FCS and 10% DMSO. They 

were then slowly frozen at -20°C for 4-10h, afterwards placed at - 80°C 

for 1 days and then stored in liquid nitrogen. If needed, cells were thawed 

by slowly adding prewarmed 10ml medium. After centrifugation and 

aspiration of the DMSO-containing freezing-buffer, cells were then 

incubated in 10ml medium in a standing 25cm² tissue culture flask. After 

1 day, the medium was changed. 

4.5 Plasmids 

4.5.1 Lentiviral vectors 

pLKO-CD147_333 (‘siCD147’), pLKO-CD98hc (‘siCD98’), pLKO-CD28p 

(‘siCD28’), pLKO-CD43 (‘siCD43’) containing short hairpin RNA (shRNA) 

construct specific for human CD147, CD98, CD28 and CD43 with 

puromycin resistance, were generated in Prof. Stockinger’s laboratory. 

pLKO-puro_ntCtr (‘siControl’), the non-target shRNA construct, 5bp 

mismatches to any known human and mouse gene, with puromycin 

resistance was from RZPD (Mountain View, CA, USA). 

psPAX, the lentiviral packaging plasmid and pMD2.G, the envelope (VSV) 

was purchased from Addgene (Cambridge, MA, USA) 
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4.5.2 Retroviral vectors 

Several CD147 deletion mutants or tagged CD147 forms were cloned into 

the retroviral pBMN-I-GFP vector backbone: 

- full length CD147 with mutated wobble bases in siRNA postion 333 

making it siRNA resistant (pBMN-I-CD147m) 

- cytoplasmic tail deleted CD147, siRNA resistant (pBMN-I-CD147m-dcyt), 

- CD16 extracellular domain, CD147 transmembrane and cytoplasmic 

domain chimera (pBMN-I-16:147TC), 

- CD16 extracellular domain, CD7 transmembrane domain, CD147 

cytoplasmic domain chimera (pBMN-I-16:7T:147c), 

- CD147 extracellular domain, CD7 transmembrane domain chimera 

(pBMN-I-147:7t), 

- full length CD147, siRNA resistant, N-terminal Flag-tagged (pBMN-I-

Flag-CD147), 

- full length CD147, siRNA resistant, C-terminal Flag-tagged (pBMN-I-

CD147-Flag), 

pgag-pol, the retroviral packaging plasmid without env and pMD2.G the 

envelope plasmid were from Addgene (Cambridge, MA, USA). 

4.6 Plasmid preparation 

To make the E.coli strain DH5alpha competent for transformation the KCM 

method was performed. Therefore, DH5alpha were cultured overnight in 

500ml LB to an OD600 of 0.5. Then the bacteria were chilled for 2’ in an 

ice bath. After centrifugation for 10 at 4000g and 4°C, cells were 

resuspended in 50ml ice cold TSS (10% v/v PEG, 5% v/v DMSO, 20mM 

MgSO4 in LB Medium, pH 6.5), aliquoted into prechilled eppendorf tubes 

and snap frozen in liquid nitrogen. The aliquots were stored at -80°C. 

Competent DH5alpha (KCM method) were transformed with plasmids 

needed for virus production. Thus 100µl competent bacteria were 

incubated with the plasmids (10-100ng) and 100µl 1x KCM Buffer (0.1M 

KCl, 0.03M CaCl2, 0.05M MgCl2) for 10’ on ice and for 10’ on room 

temperature. For recovery, the bacteria were shaken for 1h at 37°C in 
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500µl LB-media. Afterwards 100µl bacteria were plated on a LB/Amp plate 

and incubated at 37°C. Single colonies were used to inoculate 5ml 

LB/Amp and prepare an overnight culture. Then 400 µl of the pre-culture 

were used to inoculate 200ml LB/Amp in a 1 l Erlenmeyer flask. After 

culturing over night, the bacteria were harvested and the plasmids were 

isolated by ‘Genopure Plasmid Maxi Kit’ (Roche, Basel, Germany) 

according to the manufacturers ‘procedure for high copy number 

plasmids’. 

4.7 Virus production 

The day before transfection, Phoenix cells were split in 10cm tissue culture 

plates at 3.5x106 cells per plate. The next day Phoenix cells were 

transfected with three different plasmid vectors: 

a) plasmid containing the expression cassette (siRNA, CD147 deletion 

mutants,…) for transduction, 

b) plasmid coding for envelope proteins, 

c) plasmid coding for replication and packaging proteins. 

For transfection of one 10cm dish of cells with lentiviral plasmids, 10µg 

pLKO-puro1, 5µg pMD2.G and 7.5µg psPAX2 were used. For the 

transfection with retroviral plasmids 10µg pBMN-I-GFP, 9µg pgag-pol and 

3µg pMD2.G were applied. The plasmids were added to 1ml of 250mM 

CaCl2. To generate precipitates 1ml 2xHBS was added drop wise to the 

DNA mixture while bubbling with a Pasteur pipette using a pipette boy. 

Bubbling was continued for additional 15’’. To neutralize lysosomal DNases 

to avoid DNA degradation, 25µM chloroquine was added to the cells 5’ 

before transfection. Then the transfection mixture was added to the 

Phoenix cells trying to disseminate the drops all over the 10cm tissue 

culture plate. The plates were shaken carefully before placing back to 

37°C. The precipitates were checked under the microscope 30’ after 

addition of transfection mix. The medium was exchanged 4h later by 5ml 

fresh medium. 
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The virus containing supernatant was harvested after 36-48h. The 

supernatant was centrifuged for 5’ at 300g at 4°C and afterwards filtered 

(pore size 0.45µm). The virus containing supernatants either were used 

immediately or were aliquoted and stored at -80°C. 

4.8 Infection 

The cells (3-6 x 106/well in 0.5ml in 6-well plate) were incubated with the 

same volume of virus suspension and with polybrene (10µg/ml) over night 

at 37°C. The next day the cells were washed and transferred to a 25cm² 

tissue culture flask. Upon infection with lentivirus, the cells were selected 

for siRNA expressing cells for 2 days by addition of 1µg/ml puromycin. 

Afterwards, cells were transferred to 75cm2 tissue culture flask and used 

for experiments from day 7 to day 10 post infection, after confirmation of 

silencing or expression of CD147 deletion and swap mutants by flow 

cytometry. 

4.9 Immunofluorescence analysis and flow cytometry 

4.9.1 Cell surface staining 

During the cell surface staining procedure every step was carried out on 

ice. Cells were first washed with ice cold staining buffer (1xPBS, 1%BSA, 

0.02% sodium azide) and then, 1-3x105 cells were incubated for 30’ with 

25µl staining buffer containing 2% Beriglobin for blocking Fc-receptors. 

For the staining, 25µl of this cell suspension (1-3x105) were transferred to 

a well of a 96-well plate (V-bottom). Then primary antibodies in staining 

buffer were added to a final concentration of 10µg/ml. After 30’ 

incubation, cells were washed once with staining buffer and incubated with 

FITC-labeled secondary α-mouse antibodies (concentration determined by 

titration) for 30’. Afterwards cells were washed 3 times with staining 

buffer and resuspended in 40µl staining buffer for flow cytometry analysis 

with LSRII from BD Bioscience Pharmingen (Franklin Lakes, NJ, USA). 
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4.9.2 Intracellular staining 

Jurkat NFAT-luc cells were stimulated for 5h with PMA/Iono (10ng/ml, 

1µM). After 2.5h of stimulation, 1.5µM monensin was added to the cells to 

stop cytokine secretion. After 5h stimulation, the cells were washed twice 

with PBS on ice and fixed with 4% PFA for 15’ at room temperature. 

Afterwards, cells were washed again and permeabilized with PBS/0.1% 

saponin for 15’ at room temperature. Then the cells were blocked with 

staining buffer (PBS/0.1%Saponin/5%FCS) for 5’. Upon blocking, the cells 

were transferred to a 96-well v-bottom plate (25µl/well) and stained with 

α-IL-2-APC (5µg/ml antibody conjugate in staining buffer). Afterwards, 

the cells were washed with and resuspended in staining buffer for flow 

cytometry analysis with LSRII from BD Bioscience Pharmingen (Franklin 

Lakes, NJ, USA). 

4.10 Preparation of cell lysates 

The cells were washed with washing buffer (20mM Tris-HCl, 150mM NaCl, 

5mM EDTA) and centrifuged for 5’ at 300g. The cell pellet was lysed in 

Lämmli-Buffer and shock frozen in liquid nitrogen. The lysates were then 

either stored at -20°C or used directly for further analysis. 

4.11 SDS-PAGE 

If reducing conditions were needed 1.5% β-mercaptoethanol was added to 

lysates. Samples were boiled for 5’ at 95°C and loaded on 7.5 - 10% 

polyacrylamide gels. Electrophoresis was performed at 120V in 

PerfectBlueTMDoppelgelsystem Twin ExW S (PEQLAB Biotechnologie GmbH, 

Germany). The polyacrylamide gels were either silver stained or used for 

Western blot analysis. 

4.12 Silver staining 

‘SilverSNAP Stain for Spectrometry Kit’ from Pierce (Rockford, IL, USA) 

was used for silver staining of the gels. 
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4.13 Western blot analysis 

Polyacrylamide gel was semi-dry blotted in Western blot buffer (25mM 

Tris base, 200mM glycine, 20% methanol) to Immobilon-P or Immobilon-

Fl transfer membranes (pore size 0.45µm) from Millipore (Billerica, MA, 

USA). Blotting was performed for 1h with constant current (2mA/cm2 gel) 

in PerfectBlueTMSemi-Dry-Electroblotter ‘SEDEC M’ from PEQLAB 

Biotechnologie (Erlangen, Germany). Afterwards, the membranes were 

blocked for 1h with 5% w/v non-fat dry milk in TBST (20mM Tris base, 

150mM NaCl, pH7.6, 0.5‰ Tween 20) containing sodium-orthovanadate 

to avoid dephosphorylation of the proteins. Then they were incubated 

overnight with primary antibodies with 2.5% milk in TBST at 4°C. All 

primary antibodies were diluted 1:1000 in 2.5% milk in TBST, with 

exception of the α-cNFAT antibody, that was diluted 1:500 and α-actin 

antibody was used in a 1:2000 dilution. The next day membranes were 

washed 4 times for 5’ with TBST and were incubated with HRPO or 

fluorescence-labeled secondary antibodies in 2.5% milk in TBST for 1h at 

room temperature. Afterwards, the membranes were washed 6 times for 

5’ and were either treated with luminol and were exposed to films or were 

analyzed by “Odyssey - infrared imaging system” from Li-cor Bioscience 

(Lincoln, Nebraska, USA). Upon stripping the membrane, it was blocked 

and reprobed for other proteins. 

4.14 Stripping at low pH 

The membrane was stripped for 30’ with pH-Strip-Buffer (5,84g NaCl, 

7,59 glycine, up to 0.5L, pH2.5) and was afterwards washed 4x10’ with 

TBST. 
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4.15 Luciferase reporter gene assay 

For this assay the ‘Luciferase Reporter Gene Assay, high sensitivity -

chemiluminescent assay for the quantitative determination of firefly 

luciferase activity in transfected cells’ from Roche (Basel, Germany) was 

used. 

Jurkat IL-2-luciferase cells (2x105 cells/well) were stimulated with 

PMA/Iono (10ng/ml, 1µM) for 7h or with SEE pulsed Raji B cells (2x105 

cells/well) for 7h and 24h in a 96-well plate. Raji B cells were pulsed with 

100ng/ml SEE for 2h, washed twice and were then added to the T cells. 

After stimulation, the cells were lysed with lysis buffer on ice for at least 

30’. Debris was spun down under 16000g at 4°C and 100µl lysate was 

transferred to a special 96-well plate (for luminescence reader) on ice. 

Luciferase assay reagent (10µl/well) was added and mixed properly by 

rocking the plate. Luminescence was measured by liquid scintillation and 

luminescence reader Microbeta 1450 from Wallac (Turku, Finnland). 

To normalize the samples, the protein concentration was determined by 

using a Bradford assay from Biorad (Hercules, CA, USA). Extinction was 

measured at 595nm. 

4.16 Immunoprecipitation 

First, a 96-well ELISA plate was coated with 10µg/ml goat α-mouse 

antibody for 2h at 37°C in PBS (pH 8.7). Then the plate was washed twice 

with PBS. Then eight wells each were incubated with one of the following 

antibodies (5µg/ml of α-AFP, α-Lck, α-FAK, or CD29 antibodies or with 

10µg/ml of CD147 antibodies) for 2h at 37°C in PBS (pH8.7). Afterwards, 

the plate was washed twice, was blocked with PBS/1%BSA for 1h at 37°C. 

Jurkat IL-2-luciferase cells were washed once with PBS and 9x107 were 

incubated with or without 500µg/ml of the crosslinker DTBP in PBS (pH8) 

for 30’ at 4°C. Afterwards, the cells were washed once with PBS and once 

with 0.1M SPB pH 7.4. The cells were lysed in lysis buffer (4.5x107/ml) 

with detergent and inhibitors (0.02M SPB, 1% NP-40, 1x Complete, 1mM 
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orthovanadate, 50mM NaF, 2µl/ml benzonase) for 30’ at 4°C. Upon lysis 

the cell debris was spun down, 100µl aliquots of lysates were stored at -

20°C and 50µl/well were transferred to the coated plates. The plate was 

shaken over night at 4°C. The next day the plate was washed 2-3 times 

and precipitate was eluted with 10µl Lämmli-buffer/well at 95°C. 

4.17 Flag Immunoprecipitation 

Twenty million cells were stimulated in 3ml RPMI/10%FCS with PMA/Iono 

(10ng/ml, 1µM) for 0’ and 5’ and then washed once with washing buffer 

(20mM Tris, 150mM NaCl, 5mM EDTA). The cells were lysed for 30’ in lysis 

buffer (2x107/ml) with detergent & inhibitors (1%NP40, 1x Complete, 

1mM orthovanadate, 50mM NaF, 20mM Tris, 150mM NaCl, 2mM EDTA) at 

4°C. In the meanwhile, 50µl Flag-beads/2x107 cells (α-Flag m2 affinity 

gel, monoclonal IgG1) from Sigma (St. Luis, MO, USA) were washed 4 

times with lysis buffer and once with lysis buffer with detergent & 

inhibitors. From the lysates, 100µl aliquots were stored at -20°C and the 

rest was kept in rotation with the beads for 1h at 4°C. Afterwards, 100µl 

aliquots from supernatant were stored at -20°C and the beads were 

washed twice with lysis buffer with detergent and inhibitors. Precipitate 

was eluted in two steps with 100µl elution buffer (50mM glycine in PBS 

pH2.7, 0.65% Tween-20, 1x Complete) for 5’ at room temperature. 
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5 Results 

5.1 Searching for the domain(s) of CD147 involved in negative 

regulation of T cell activation 

We aimed to define the functional structure of CD147 antagonizing T cell 

stimulation with the help of 5 differently composed deletion and swap 

mutants of CD147 (Figure 5) generated by Dr. Wolfgang Paster. 

 

siRNA resistant mutant

CD147 siRNA CD147 siRNA

 

  B 

CD147 constructs Description Name 

 
siRNA resistant form of CD147 CD147etc 

 
siRNA resistant, cytoplasmic deletion 
mutant of CD147 

CD147et 

 
CD16 extracellular domain / CD147 
transmembrane and cytoplasmic 
domain swap mutant 

CD16e/CD147tc 

 
CD16 extracellular domain / CD147 
transmembrane and CD7 cytoplasmic 
domain swap mutant 

CD16e/CD7t/C
D147t 

 
siRNA resistant CD147 extracellular 
domain / CD7 transmembrane domain 
swap mutant 

CD147e/CD7t 

 

Figure 5: CD147 constructs resistant to short hairpin RNA. A) CD147 constructs 

were resistant to siRNA due to mutations of three wobble bases in the siRNA targeted 

sequence without changing the amino acid sequence. (Whither RNAi? (Nature Cell 

Biology 5, 489 - 490 (2003)). B) Composition of CD147 constructs used for 

overexpression and reconstitution experiments. 

A 
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The constructs, were composed of CD147 domains combined with CD16 

extracellular and CD7 transmembrane domains (swap mutants). The CD7 

transmembrane domain was used to localize CD147 intra- or extracellular 

domains to the cell membrane. CD7 belongs to the superfamily of the 

immunoglobulins and is expressed upon T cell stimulation. Similar to 

CD147, it is excluded from lipid rafts, and is therefore an ideal 

transmembrane domain substitute, to achieve a physiologically relevant 

localization of the CD147 constructs in the cell membrane131. The 

extracellular domain of CD16, a Fc-receptor not expressed in Jurkat T 

cells, was used to make the CD147 transmembrane and cytoplasmic 

domain constructs detectable by flow cytometry upon cell surface staining. 

The expression level of all CD147 constructs, was also visualized by 

internal ribosome entry site (IRES) mediated expression of green 

fluorescent protein (GFP), which could be analyzed by flow cytometry in 

addition. 

 

5.1.1 Overexpression of CD147 deletion and swap mutants 

In a first approach, the expression level of the CD147 constructs was 

determined. Therefore, the full length CD147, a CD147 cytoplasmic 

deletion mutant and a CD147 extracellular domain/CD7 transmembrane 

swap mutant were overexpressed in Jurkat IL-2-luciferase cells. For this 

purpose, retroviruses were generated to transduce the CD147 constructs 

stably into the Jurkat cells. The Jurkat IL-2-luciferase cells were once, 

twice or thrice infected, to define optimal condition - where the cell 

viability is still unaffected and the construct expression level is the 

highest. Cell viability after infection was estimated by light microscopy and 

analyzed by flow cytometry using 7-AAD staining. To examine the 

construct expression levels, the cells were analyzed by flow cytometry or 

by Western blot (Figure 6). The analysis by flow cytometry revealed that 

the CD147 construct expression level could be increased by repeated 

infection from 30% up to 75% GFP positive cells. 
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Figure 6: Overexpression of CD147 constructs A) Jurkat IL-2-luciferase cells, once 

to thrice transduced with CD147 constructs, were analyzed for their GFP expression and 

CD147 expression upon cell surface staining with MEM-M6/1. B) Cell lysates were 

investigated for CD147 expression level by non-reducing immunoblotting using CD147 

mAb MEM-M6/1 and detection by chemiluminescence. 
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Interestingly, CD147 constructs containing the CD147 transmembrane 

domain could not be overexpressed on the cell surface in contrast to the 

swap mutant containing the substitute transmembrane domain from CD7 

(Figure 6a). Moreover, we could show by Western blot analysis that the 

overexpressed CD147 constructs accumulated in the unglycosylated or low 

glycosylated form corresponding to a molecular weight of about 30kDa in 

size. Only the CD147e/CD7t construct, which appeared overexpressed at 

the cell surface accumulated also in the fully glycosylated form (Figure 

6b). The substitution of the CD147 transmembrane domain by the CD7 

transmembrane domain resulted in further glycosylation of the 

CD147e/CD7t, as the intensity of the 40-60kDa immunoreactive band for 

HG-CD147 increased with the level of overexpression. These results are in 

part consistent with the data published by Pushkarsky et al. (2005)54 and 

Yurchenko et al. (2005)55 in so far, that the transmembrane domain of 

CD147 might regulate the surface expression. Interestingly, according to 

our data the transmembrane domain might be crucial for regulation of the 

grade of glycosylation and not the extracellular domain, as was presented 

by Tang et al. (2004)73. Probably, CD147’s transmembrane domain 

determines the glycosylation of CD147’s extracellular domain and thereby 

its surface expression. 

 

5.1.2 Clones overexpressing CD147 deletion mutants 

To increase the probability for our CD147 deletion and swap mutants to 

become expressed at the plasma membrane, the expression level had to 

be further increased. Therefore, Jurkat IL-2-luciferase cells were freshly 

transduced with empty vector, CD147etc, CD147et, CD16e/CD147tc and 

CD16e/CD7t/CD147c. The cells were sorted for high GFP expression level 

and then clones were generated by single cell culturing. Upon flow 

cytometry analysis, two clones per CD147 construct displaying the highest 

GFP expression were selected for further analysis.  
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isotype control

CD16

CD147

GF
P

pBMN CD147etc CD147et CD16e/
CD147tc

CD16e/CD7t/
CD147c

Clone 1

Clone 2

Clone 1

Clone 2

Clone 1

Clone 2

 

Figure 7: CD147 constructs clones. Analysis by flow cytometry of CD147 construct 

clones by GFP expression (y-axis) and surface expression of the deletion and swap 

mutants of CD147 construct clones by cell surface staining using mAbs MEM-154 to CD16 

and MEM-M6/1 to CD147 (x-axis). 
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The clones were investigated by flow cytometry for CD147 and CD16 

surface expression and again for GFP expression level (Figure 7). 

Surprisingly, one clone, CD16e/CD7t/CD147c_1, lost its GFP expression 

completely. All other clones still displayed high GFP and thereby high 

CD147 construct expression. By cell surface staining for CD16 

extracellular domain, we could proof the expression of CD16 / CD147 

swap mutants at the plasma membrane. However, the CD16 staining for 

construct CD16e/CD147tc was much higher than for the construct 

CD16e/CD7t/CD147c. Interestingly, the expression of the construct 

CD16e/CD147tc containing the CD147 transmembrane domain led to a 

decrease of endogenous CD147. The expression of the construct 

CD16e/CD7t/CD147c, lacking CD147 transmembrane domain, had no 

effect on endogenous CD147 surface expression level. This implies that 

the CD147 expression level at the plasma membrane is tightly regulated 

by the CD147 transmembrane domain. 

 

To test the effect of the constructs on the IL-2 promoter activity, the 

clones were stimulated for 20 hours with PMA and ionomycin and analyzed 

by reporter gene assay (Figure 8). Since silencing of CD147 caused an 

increased IL-2 promoter activity (Figure 4), the overexpression of the full 

length CD147 was expected to have the contrary effect decreasing the IL-

2 promoter activity. Indeed, the overexpression of the full-length CD147 

construct inhibited the IL-2 promoter activity by 60% in the clone 

CD147etc_1. Surprisingly, the clone 2 expressing full length CD147 

showed a 100% increase in the IL-2 promoter. Possibly the clone 2 

contained more luciferase reporter gene copies than the other clones, 

which resulted in a stronger luciferase expression upon T cell stimulation. 

The CD147 construct lacking the cytoplasmic domain was still potent to 

reduce the IL-2 promoter activity by 60% to 80% in the clones 

CD147et_1 and CD147et_2. 
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The constructs containing the CD147 cytoplasmic domain alone or in 

combination with the CD147 transmembrane domain showed similar or 

even higher IL-2 promoter activity as clones containing the empty vector. 
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Figure 8: IL-2 promoter activity in Jurkat IL-2-luciferase clones transduced with 

the different CD147 constructs. The cells were stimulated for 20h with PMA/ionomycin 

(10ng/ml, 1µM). The numbers 1, 2 stand for clone 1 and 2. The mean values ± SD of 

three independent experiments are shown. Lysates were analyzed for luciferase activity. 

 

5.1.3 Reconstitution with CD147 deletion and swap mutants upon 

CD147 silencing 

After analyzing the effect of the CD147 constructs upon overexpression, 

we tested the reconstitution capacity of these constructs in CD147 

silenced cells. Therefore, CD147 knock down Jurkat IL-2-luciferase cells 

were infected three times with retroviruses containing the different CD147 

constructs. From day 4 after transduction of CD147 constructs, the cells 

were analyzed by flow cytometry, as shown in Figure 9. According to the 

GFP expression level, the CD147 silenced cells could express the CD147 
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constructs to a higher degree than cells containing siControl (non-target 

siRNA). The CD147 constructs containing CD147 extracellular and 

transmembrane domain could reconstitute the normal CD147 plasma 

membrane expression level in the silenced cells. 

The construct lacking the CD147 transmembrane domain (CD147e/CD7 or 

CD16e/CD7t/CD147c) could even be highly overexpressed in silenced and 

control cells. Consistent with the data shown before, the expression of 

CD16e/CD147tc swap mutant obviously decreased the endogenous CD147 

surface expression. 
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Figure 9: Expression level of CD147 constructs in CD147 silenced and control 

cells. SiControl (red) and siCD147 (blue) Jurkat IL-2-luciferase cells containing CD147 

constructs were flow cytometrically analyzed. The cells were tested for GFP expression 

(y-axis) and for CD147 and CD16 surface expression (x-axis) upon cell surface staining 

with mAb MEM-154 to CD16 and mAb MEM-M6/1 to CD147. 
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Next, the IL-2 promoter activity was assayed by measurement of 

luciferase activity. Therefore, Jurkat IL-2-luciferase cells silenced for 

CD147 and reconstituted with CD147 constructs and non-target siRNA 

control cells overexpressing these mutant proteins were stimulated in 

separate assays for 7 to 20h. Phorbol 12-myristate 13-acetate (10ng/ml) 

combined with ionomycin (1µM) was used for stimulation over 7 hours. 

For 20h stimulation, Raji B cells were pulsed with 100ng/ml superantigen 

staphylococcal enterotoxin E (SEE) in advance. After stimulation, cells 

were lysed and the luciferase activity was measured (Figure 10a). 

Generally, CD147 silenced cells showed an increased IL-2 promoter 

activity in comparison to the control cells. However, the CD147 constructs 

containing CD147 transmembrane and extracellular domain could rescue 

the phenotype by decreasing the IL-2 promoter activity nearly to siControl 

levels. However, the constructs containing isolated extracellular, 

transmembrane or cytoplasmic domain did not affect IL-2 promoter 

activity. 

 

To proof, if this rescue in promoter activity has an impact on protein 

expression and secretion level, too, and to analyze IFN-γ expression, the 

cytokine profile in cell supernatants was analyzed by an enzyme linked 

immunosorbent assay (ELISA). Thus, the reconstituted and 

overexpressing cells were stimulated as described before. Supernatants 

were harvested and were tested for IL-2 and IFN-γ by Prof. Zlabinger’s 

laboratory (Figure 10b). The CD147 silenced cells secreted about 10 times 

more IL-2 (10ng/ml) and about 20 times more IFN-γ (200pg/ml) in 

contrast to siControl cells. Interestingly, CD147 construct lacking the 

cytoplasmic domain showed the greatest inhibitory effect by a reduction of 

IL-2 and IFN-γ protein expression to 1.25ng/ml and 73pg/ml. The full-

length CD147 construct was also capable of suppressing IL-2 and IFN-γ to 

a level of 5.7ng/ml and 150pg/ml. Surprisingly, the CD16/CD147tc 

construct had an inhibitory effect on the IFN-γ production (170pg/ml).
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Figure 10: IL-2 and IFN-γ expression level upon reconstitution with CD147 

constructs. A) Jurkat IL-2-luciferase cells, siCD147 (pink) or siControl (black), 

expressing CD147 constructs, were stimulated for 20h with Raji B cells pulsed with 

100ng/ml SEE. Cells were lysed and the luciferase activity was measured. B) The same 

cells were stimulated with PMA/ionomycin (10ng/ml, 1µM) for 7h and the supernatants 

were analyzed by ELISA for IL-2 and IFN- γ. 
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Because CD147 was recently shown by Ruiz et al. (2008)99 to regulate 

NFAT activity via its cytoplasmic domain upon overexpression, we 

investigated the effect of our constructs in a NFAT-luciferase reporter cell 

line. Therefore, CD147 silenced Jurkat NFAT-luciferase cells were 

transduced thrice with the different CD147 constructs. At day 5 after 

transduction or beyond, the cells were analyzed for the NFAT activity by a 

luciferase reporter gene assay and for the IL-2 expression level by flow 

cytometry. For the IL-2 expression analysis, the cells were stimulated for 

5h with PMA/ionomycin (10ng/ml/1µM) and were treated with monensin 

for the last 2.5h of stimulation to prevent exocytosis of IL-2. The cells 

were fixed, permeabilized and stained intracellular with APC labeled IL-2 

antibody conjugate. The stained cells were then analyzed by flow 

cytometry. In parallel, the cells were also analyzed for NFAT activity by a 

luciferase reporter gene assay upon 5h stimulation with PMA/ionomycin 

(Figure 11). 

With the help of flow cytometric analysis of the intracellular IL-2 

expression level, we could show that also in the Jurkat NFAT-luciferase 

reporter cell line CD147’s transmembrane and the extracellular domain 

exert a negative regulatory function on the IL-2 expression level. This 

effect is also visible in the dot blot depiction in Figure 11a. Especially in 

the highly GFP positive cells of the CD147 silenced cells (pink box), the 

constructs CD147etc and CD147tc decreased the IL-2 expression upon 

stimulation with PMA/ionomycin. The results from flow cytometric analysis 

are additionally depicted in a bar chart in Figure 11b, left diagram. By 

means of the luciferase reporter gene assay, we could confirm a negative 

impact of CD147 on the NFAT activity, as was published by Ruiz et. al 

(2008)99. However, introducing the transmembrane and the extracellular 

domain – and not the cytoplasmic domain, CD147 could downregulate the 

NFAT activity to the control level (black) in CD147 silenced cells (pink) 

(Figure 11b, right diagram). 
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Figure 11: Effect of CD147 deletion mutants on NFAT activity. A) Flow cytometric 

analysis of Jurkat NFAT-luciferase cells reconstituted with (pink box) and overexpressing 

(black box) CD147 deletion mutants. Cells were stimulated for 5h with PMA/ionomycin 

(10ng/ml/1µM), treated for 2.5h with 1.5µM monensin and were analyzed for GFP and 
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IL-2 upon intracellular staining with α-IL-2-APC antibody conjugate. B) The left diagram 

shows the percentage of IL-2 positive cells from flow cytometric analysis. The right 

diagram displays NFAT activity in Jurkat NFAT-luciferase cells reconstituted with (pink) 

and overexpressing (black) CD147 swap and deletion mutants upon 5h stimulation with 

PMA/ionomycin (10ng/ml/1µM) and luciferase reporter gene assay. 

 

By overexpression and by reconstitution with the CD147 constructs, we 

could show, that the combination of transmembrane and extracellular 

domain is the functional structure of CD147 regulating NFAT activity and 

thereby the IL-2 and IFN-γ expression. Further, we suggest, that the 

cytoplasmic domain attenuates CD147’s regulatory effect, as the 

cytoplasmic deletion mutant displayed greater inhibitory effects as the full 

length CD147. Moreover, we got indications that CD147 surface regulation 

and glycosylation is regulated by its transmembrane domain. 

 

5.2 Deciphering CD147 dependent signaling pathway 

5.2.1 Analysis of potential lateral interaction partners of CD147 

Due to the finding, that the regulatory capacity of CD147 on IL-2 

expression is mediated via its extracellular and transmembrane domain, 

we focused now on molecules localized in the plasma membrane. 

First, we analyzed the cell surface expression of known interaction 

partners of CD147 and molecules modulating T cell activation, such as 

CD28. Jurkat IL-2-luciferase cells were silenced for CD147 and at day 7 

post infection they were flow cytometrically analyzed for CD18, CD28, 

CD29, CD43, CD98 and CD147 cell surface expression (Figure 12). 

Interestingly, the known interaction partners of CD147 CD43 and CD98, 

and the T cell receptor signaling costimulatory receptor, CD28, were found 

to be upregulated upon CD147 silencing. In contrast, neither β1-Integrin 

CD29, another CD147 interaction partner57, nor β2-Integrin CD18, that 

was shown to be indirectly regulated by CD147 via CD435, were 

deregulated in their surface expression upon CD147 silencing. 
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Figure 12: Effect of CD147 silencing on the surface expression of potential 

CD147 interaction partners. Flow cytometric analysis of siCD147 (pink) or siControl 

(black) Jurkat IL-2-luciferase cells. The cells were cell surface stained with mAbs MEM-48 

to CD18, MEM-101A to CD29, MEM-59 to CD43, MEM-156 to CD98 and MEM-M6/1 to 

CD147. As isotype control served mAb AFP-01 to AFP. 

 

 

Observing the increased expression level upon CD147 silencing, we 

wanted to analyze the impact of CD28, CD43 and CD98 on IL-2 

expression. To figure out this question, Jurkat IL-2-luciferase cells were 

silenced for CD28, CD43 or CD98 and were analyzed for IL-2 promoter 

activity by a luciferase reporter gene assay. 

 

The silencing efficiency (Figure 13ag) differed for all three siRNA 

constructs. According to flow cytometric analysis of the cell surface 

staining, the expression level of CD98 could be decreased by 99%, CD43 

by 75% and CD28 by 50%. CD98 silenced cells exhibited strong growth 

retardation, while CD28 and CD43 silencing did not affect growth 

efficiency. The impact of CD28, CD43 and CD98 silencing on IL-2 

expression was analyzed by the luciferase reporter gene assay. The cells 

were stimulated for 20h with superantigen pulsed Raji B cells, as 

described earlier, and cell lysates were analyzed for luciferase activity 

(Figure 13b). CD28 and CD98, but not CD43, silencing significantly 

decreased the IL-2 promoter activity. The results for CD28 were expected 

as it is a known costimulator of TCR/CD3 mediated signaling, and thereby 

has an impact on the IL-2 expression132-134. Therefore, we suggest that 

the upregulated surface expression of CD28 or CD98 might be linked to 

the increased IL-2 production in CD147 silenced cells. 
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Figure 13: Effect of CD28, CD43 and CD98 silencing on IL-2 promoter activity. A) 

Jurkat IL-2 cells transduced with siCD28, siCD43, siCD98 siRNA or with non-target siRNA 

siControl were flow cytometrically analyzed at day 7 post infection for silencing efficiency. 

B) Silenced cells were stimulated for 20h with superantigen-pulsed (100ng/ml) Raji B 

cells. Luciferase activity was analyzed in the cell lysates. 
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5.2.2 Changes in phosphorylation patterns of signaling cascades leading 

to IL-2 expression upon CD147 silencing 

Because CD28 was upregulated upon CD147 silencing, we assumed that a 

CD28 supported TCR/CD3 signaling pathway might be deregulated, 

leading to an increased IL-2 production. Therefore, components of the 

TCR/CD3 downstream signaling pathway were analyzed for their activity 

with the help of phospho-specific antibodies. 

Jurkat IL-2-luciferase cells transduced with siCD147 and non-target siRNA 

control were stimulated with PMA/ionomycin (10ng/ml/1µM) for 0’, 1’, 5’, 

10’, 30’ and 60’. The lysates were electrophoretically separated on a 10% 

SDS-PAGEs and were blotted to membranes. Membranes were first 

analyzed for pRaf (Ser296), pRaf (Ser259), pRaf (Ser 338), pIκB (Ser32), 

pp44/42 (Thr202/Tyr204), pp38 (Thr38/Tyr182), pJNK (Thr183/ Tyr185), 

pAkt (Thr308), pAkt (Ser473), pGSK3β (Ser9), phospho-PDK1 (Ser241), 

phospho-IκB (Ser32), phospho-NF-κB (Ser536), pLck (Y416), pLck (Y505) 

and cNFAT. After stripping with pH 2.5, membranes were reprobed for 

ERK (p44/42), ZAP70, cRaf, Lck and actin as loading controls. Additionally 

the membranes were tested for CD147 (MEM-M6/1) and CD28 (Leu28). 

Because TCR signaling strongly depends on cytoskeleton, cytoskeletal and 

associated proteins, as pFAK (Tyr397), FAK, p-paxillin (Tyr118), annexin 

II and phospho-PAK1 (Thr423) PAK2 (Thr402) were analyzed in addition. 

Results are shown in ( 

Figure 14). 

By Western blot analysis, we could observe a slight increase in the 

phospho-specific band for pNF-κB (Ser536) in CD147 silenced cells upon 

stimulation. Therefore, CD147 might exert its inhibitory function on the 

IL-2 promoter activity via the NF-κB pathway. Further, the CD147 

knockdown cells displayed no immuno-reactive band of higher molecular 

weight for pRaf (Ser259), the specific band for inhibitory phosphorylation 

of cRaf mediated by Akt or the AMP-activated protein kinase AMPK135. 
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Figure 14: Biochemical analysis of TCR/CD3 and CD28 signaling pathways. 

Silenced and control Jurkat cells were stimulated for 0, 1, 5, 30 or 60 minutes with 

PMA/ionomycin (10ng/ml/1µM) at 37°C. Lysates were analyzed with the help of phospho-

specific antibodies by Western blotting (antibodies are described in detail in the Materials 

& Methods section). 
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In general, the MAP kinase pathways, mediated by ERK, p38 or JNK, were 

not significantly affected upon CD147 silencing. Besides, a significant 

increase of annexin II and FAK expression upon CD147 silencing was 

found. Moreover, less FAK phosphorylation on the activating 

autophosphorylation site tyrosine 397 was observed. We could also verify, 

recently published results, that PAK was stronger phosphorylated in 

CD147 silenced T cells upon stimulation99. 

However, we could not find any changes in the Akt (also called PKB) 

phosphorylation pattern, the kinase that should be responsible for the 

affected phosphorylation sites of PAK and Raf. Moreover, an additional 

target for Akt mediated inhibitory phosphorylation, the glycogen synthase 

kinase 3 β (GSK3- β), exhibited no changes in the phosphorylation 

pattern. Thus, the component responsible for these changes in Raf and 

PAK phosphorylation could not be figured out with the help of available 

phospho-specific antibodies. 

 

5.3 Find interaction partners of CD147 that could mediate changes 

in IL-2 and IFN-γ production 

Due to the changes in FAK activation and, because CD147 was already 

shown to interact with β1-integrins57, we hypothesized, that CD147 might 

modulate β1-integrin activity via its external or transmembrane domain in 

T cells. Thereby, CD147 might exert its inhibitory function on T cell 

stimulation by influencing cytoskeleton properties. 

To shed light on this hypothesis, we wanted to see, if CD29, the heavy 

chain of β1-integrins is also interacting with CD147 in T cells. Further, we 

aimed to find out how FAK is associated in this hypothetical complex. 

In a first approach, CD147, CD29 and FAK were immuno-precipitated and 

analyzed for co-precipitation. Therefore, as described in Materials and 

Methods, an ELISA plate functionalized with goat α-mouse antibody was 

indirectly coated with the following antibodies: AFP-01 to alpha-

fetoprotein, Lck-01 to Lck, Clone2A7 to FAK, Clone HB1.1 and MEM-101A 
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to CD29 and MEM-M6/1, MEM-M6/3 and MEM-M6/4 to CD147. Further, an 

immunoprecipitation for Lck was done as a positive control, because this 

Lck antibody should precipitate Lck to a high degree under these 

conditions in lysates from Jurkat T cell line. As negative control an 

immunoprecipitation for alpha-fetoprotein – just expressed in fetal cells – 

was performed. As an additional negative control, wells coated just with 

goat α-mouse antibody were used. Jurkat IL-2-luciferase cells were lysed 

in 1%NP-40 and the lysate was added to coated plates for 

immunoprecipitation. The precipitates were eluted with hot Lämmli-buffer 

and separated electrophoretically on SDS-PAGE. Proteins were transferred 

to a Immobilin-P transfer membrane and analyzed for FAK, CD29, CD147 

and Lck (Figure 15). 
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Figure 15: Co-Immunoprecipitation of CD147, CD29 and FAK. Jurkat IL-2-

luciferase cells were lysed in 1% NP-40 and different antibodies were used for 

immunoprecipitation of CD147, CD29 and FAK. AFP and goat-anti mouse antibody served 

as negative control, Lck as positive control. Immunoprecipitations were analyzed by 

Western blot with following antibodies: MEM-101A to CD29, MEM-M6/1 to CD147 and 

Lck-01 to Lck. 
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Generally, the immunoprecipitation was not efficient, but still we could 

find a small amount of immunoprecipitated CD29, CD147 and Lck. 

Interestingly, the immuno-reactive bands for CD147 upon CD147 

immunoprecipitation differed slightly in size. These slight differences in 

size of CD147 precipitate could indicate that these antibodies bind 

different glycosylation variants of CD147. Unfortunately, FAK could not be 

precipitated. We found CD29 to co-immunoprecipitate with Lck and with 

CD147, when precipitated with mAb MEM-M6/4. However, CD147 or Lck 

did not co-immunoprecipitate with CD29, possibly due to the weak 

immunoprecipitation efficiency. 

 

To increase immunoprecipitation and co-immunoprecipitation efficiency, 

we employed affinity tagging on CD147. Therefore, two variants of Flag-

tagged CD147 fusion proteins, generated by Dr. Paster, were used. The 

two constructs, where the Flag-tag (DYKDDDDK) was attached to the C- 

or N-terminus of CD147, were transduced into Jurkat IL-2-luciferase cells. 

By flow cytometric and Western blot analysis, we found that just the N-

terminally Flag-tagged CD147 fusion protein could be expressed properly. 

Therefore, Jurkat IL-2-luciferase cells expressing N-terminally Flag-tagged 

CD147, were stimulated for 0’ and 5’ with PMA/ionomycin (10ng/ml, 

1µM), lysed in 1% NP-40 and subjected to immunoprecipitation with Flag-

specific antibodies coupled to agarose beads. The pull-down experiment 

was also performed with Jurkat IL-2-luciferase cells, containing no Flag-

tagged protein and Jurkat J14 SLP76-Flag cells, expressing Flag-tagged 

SLP76, as control. Precipitated proteins were eluted under low pH and 

analyzed on SDS-PAGE by silver stain and on Western blot for CD29, 

CD147, Flag-tag and actin (Figure 16). 

The N-terminal Flag-tagged CD147, as well as SLP76-Flag, could be 

efficiently precipitated (Figure 16). The Western blot results exhibited no 

co-immunoprecipitation of CD29 with Flag-tagged CD147. Further Flag-

CD147 precipitation did not reveal any specific, significant and 

reproducible co-immunoprecipitation on the silver stained gel. 
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Figure 16: Immunoprecipitation of Flag-tagged CD147. Jurkat IL-2-luciferase (WT), 

Jurkat IL-2-luciferase Flag-CD147 (Flag-CD147) and Jurkat J14 SLP76-Flag (SLP76-Flag) 

were stimulated for 0 and 5 minutes with PMA/ionomycin (10ng/ml/1µM). The cells were 

lysed with 1% NP-40 and subjected to precipitation by α-Flag-coated beads. Precipitates 

were analyzed with M2 to Flag, MEM-M6/1 to CD147, MEM-101A to CD29 and α-actin 

antibody on a Western blot. One SDS-PAGE was silver stained. 
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6 Discussion 

During an immune response, T cells have to get activated to defend the 

body from pathogens. Upon successful defense, the T cells have to be 

inactivated again to stop the production of cytotoxic products during an 

inflammation. This tight regulation of T cells is conducted through 

costimulatory molecules such as CD28 or ICOS, and inhibitory molecules 

as PD-1 or VLA-4. As CD147 is upregulated upon T cell activation1 and as 

a reduction in CD147 expression resulted in hyperproliferation2-4 of human 

T cells and to an increased IL-2 and IFN-γ cytokine response, it was 

hypothesized, that CD147 serves as inhibitory molecule upon T cell 

stimulation. 

 

To find the immunomodulatory domain within CD147, several CD147 

deletion and swap mutants were investigated for their impact on T cell 

stimulation. By overexpression and reconstitution studies in Jurkat T cell 

line, we could show that the combination of CD147’s extracellular and 

transmembrane domain was necessary to downregulate IL-2 and IFN-γ 

expression by reducing the NFAT activity. These results are contradictory 

to the recently published data from Ruiz et al. (2008)99. In this study it 

was shown, that the myristoylated fusion protein of CD147’s cytoplasmic 

domain and GFP could suppress NFAT activity. Ruiz et al. observed this 

effect when they overexpressed Vav-1 to boost the NFAT activity. 

However, the use of a myristoyl residue to anchor the cytoplasmic domain 

to the plasma membrane might have led to dyslocalization of their 

construct. We think, that the myristoyl residue did not target this 

construct to the typical localization of CD147, which is rather outside of 

lipid rafts4. To avoid this problem we substituted the CD147 

transmembrane domain with the transmembrane domain of CD7, a 

protein, which was also found to localize outside of lipid rafts. Thereby we 

wanted to achieve a proper localization of our constructs into non-lipid raft 

regions of the plasma membrane. Further support for the 
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immunomodulatory function of CD147’s transmembrane and extracellular 

domain comes from the interaction partners of CD147. Most of CD147’s 

interactions rely on CD147’s extracellular and transmembrane domain, as 

for instance the interaction with β1-integrins, CD98 or with cyclophilins. 

All these interaction partners were shown to have an impact on TCR 

signaling, especially on cytoskeletal mechanisms. Therefore, it is highly 

probable, that CD147 transduces signals through a lateral interaction 

partner, which affects cytoskeleton and thereby decreases IL-2 promoter 

activity upon T cell stimulation. 

 

Next, we analyzed known lateral interaction partners of CD147 and TCR 

costimulatory surface molecules for their surface expression upon CD147 

silencing by flow cytometric analysis. We found an upregulated surface 

expression of CD28, CD43 and CD98 upon CD147 silencing. The enhanced 

surface staining observed by flow cytometry could result from either 

enhanced gene expression, increased epitope accessibility by changes in 

complex assembly4 or lowered turnover rates. As we also found a higher 

expression level by Western blot analysis (data shown for CD28 in  

Figure 14), it is likely, that CD147 affects the gene expression or the 

turnover rates. On the one hand, CD147 signaling might cause general 

changes in gene expression by induction of chromatin remodeling 

processes, as will be discussed later. On the other hand, the increased 

surface expression could also be linked to lower turnover rates in the 

CD147 knockdown cells. This turnover could be mediated by endocytotic 

and exocytotic136 mechanisms by e.g. annexin. Additionally proteolytic 

cleavage of surface marker by proteinases could also affect the surface 

expression of proteins. For instance, MMPs were found to act in concert 

with the y-secretase to proteolytically degrade CD4380. Interestingly, a 

cytoplasmic fragment of CD43 generated by proteolysis was shown to act 

in a Notch-like manner influencing gene expression85. By stimulating the 

MMP48 and y-secretase activity122 CD147 could mediate the turnover of 

plasma membrane molecules and additionally affect gene expression 
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To investigate the impact of CD28, CD43 and CD98 surface expression on 

the IL-2 expression, stable knockdown cells for each of these proteins 

were generated. Reporter gene assays revealed that the expression of 

CD28 and CD98, but not CD43, highly correlated with the IL-2 promoter 

activity. Because CD28 and CD98 expression positively correlated with the 

IL-2 expression, they are major candidates leading to increased IL-2 and 

IFN-γ Th1 cytokine response in the CD147 knockdown T cells. 

 

To elucidate the underlying pathway of CD147’s signal transduction, 

components downstream of the T cell receptor and of integrins, possibly 

affecting IL-2 promoter activity, were investigated. Therefore, lysates of 

CD147 silenced cells were analyzed by phospho-specific antibodies on the 

Western blot. As shown in Figure 14 we found significant changes in the 

phosphorylation patterns of NF-κB, FAK, PAK and Raf and also changes in 

the total FAK and annexin II expression. 

 

We observed enhanced phosphorylation of NF-κB at serine residue 536 

upon CD147 silencing. There are contradictory studies about the function 

of this major phosphorylation site of NF-κB upon T cell activation. Wang et 

al. (2006)137 found increased nuclear import and transcriptional activity of 

NF-κB upon serine 536 phosphorylation, while Mattioli et al. (2004)138 

observed a decreased nuclear import of pNF-κB. The study from Wang 

and colleagues suggests that CD147 inhibits transcriptional activity of NF-

κB, in addition to NFAT, to negatively regulate IL-2 promoter activity. 

However, the enhanced NF-κB phosphorylation might result also from 

increase activation stimulus without any effect on the IL-2 promoter 

activity. The intrinsic autophosphorylation site tyrosine 397 of the FAK 

showed a reduced phosphorylation in CD147 knock down cells, however, 

the total FAK expression level was increased upon CD147 silencing. This 

points to a lower β1-integrin activity, monitored by lower FAK activation. 

Preliminary data investigating β1-integrin activity by an activation epitope 

specific antibody are supporting this hypothesis. As CD147 was reported 
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to associate with CD98 and β1-integrins to form an adhesive complex7, 

the CD147 silencing could impair the assembly or function of this complex. 

We hypothesize that the loss of CD147 impairs β1 integrin mediated 

signaling. How this is related to the IL-2 promoter activity, has to be 

further elucidated. 

 

Additionally we confirmed higher PAK1 phosphorylation in CD147 silenced 

cells, as was stated by Ruiz et al. (2008)99. PAK1 is an important effector 

of Rac G-protein mediated cytokine and stress responses induced motility 

and apoptosis139. The activation of PAK1 via Rac takes place at plasma 

membrane microdomains and relies on induction of PAK1’s 

autophosphorylation on several sites140,141. Threonine 423 is a target site 

for autophosphorylation as well as phosphorylation by PDK1140,142. 

Because we could not observe any changes in the PDK1 phosphorylation 

pattern, we conclude, that the increased PAK phosphorylation was PDK1 

independent. Possibly, microdomain composition in the absence of CD147 

favors PAK localization and activation at the plasma membrane. 

Additionally, PAK-1 was shown to activate Raf by phosphorylation on 

threonine 338143. However, this phospho-specific site was not investigated 

yet in CD147 silenced cells. 

Because CD147 was previously shown to affect MAP kinase pathways56,99 

the phosphorylation patterns of p38, JNK, cRaf and ERK upon CD147 

silencing were investigated. Concerning the MAP kinase Raf we found, that 

the inhibitory phosphorylation on serine 259 disappeared in the CD147 

knockdown cells. Surprisingly we did not find any further deregulations in 

the MAP kinase pathways, and especially no effect on Raf’s downstream 

target ERK. The phosphorylation on serine 259 by Akt or AMPK leads to 

the binding of the adapter protein 14-3-3, which inhibits Raf’s function135. 

Akt was obviously unaffected by CD147, as the phosphorylation status of 

Akt on threonine 308 and on serine 473 and thereby its activity did not 

change upon CD147 silencing. Therefore, Raf is more likely to be 

phosphorylated at serine 259 by AMPK. The activation state of AMPK after 
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CD147 silencing was not tested yet. Furthermore, the 14-3-3 proteins 

should be analyzed more closely, because they might affect other 

pathways, when not bound to Raf. CD43 mediated PKC activation, for 

instance, induces Cbl-b phosphorylation and binding to 14-3-3. By this 

mechanism CD43 downregulates Cbl-b’s negative regulatory function on T 

cell receptor signaling. Additionally CD43 was shown to induce Vav 

tyrosine phosphorylation81,82. Yet, CD147 was shown to inhibit CD43’s 

effect on β2-integrin activity5. Therefore it might be possible, that CD43’s 

inhibitory function on Cbl-b can be also blocked by CD147, leading to 

increased 14-3-3 association with Raf instead of Cbl-b. Additionally CD147 

might reduce the capacity of CD43 to stimulate Vav, resulting in a 

decreased NFAT activity. This hypothesis needs further enlightenment. 

 

Next, we found annexin II, a Ca2+ and acidic phospholipid- binding protein 

to be increased in CD147 knockdown cells in contrast to control cells. The 

immunoreactive signal of annexin II decreases upon stimulation with 

PMA/ionomycin. Annexin II is known to be responsible for Ca2+ induced 

cortical actin skeleton remodeling. By that it plays an important role for 

cortical cytoskeleton architecture, membrane trafficking and can further 

influence ion fluxes across the membrane101-103. Annexin II was shown to 

interact with prohibitin144. Prohibitin affects chromatin accessibility by 

interaction with the retinoblastoma (Rb) protein, transcription factor E2F, 

a histone deacetylase and a nuclear receptor corepressor145. Thus, one 

could hypothesize, that increased annexin II upon CD147 silencing might 

induce epigenetic changes leading to a higher IL-2 expression level. This 

hypothesis would also explain the general upregulation of many other 

genes as CD28, CD43 and CD98 in CD147 silenced cells. On the other 

hand annexin II is known to be essential for enhanced pinocytosis induced 

upon hyperosmotic shock conditions146. Because our knockdown cells 

might suffer from hyperosmotic shock, due to delocalized MCT, annexin II 

might be activated and stabilized under these conditions without a direct 

interaction with CD147. This hypothesis needs further analysis by a pH-
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sensitive fluorescent dye (e.g. BCECF) and real time PCR of annexin II 

mRNA. 

 

To sum up, the investigation of TCR and integrin mediated pathways led 

to the idea, that CD147 signaling is crucially influencing cytoskeleton 

organizing components and possibly the NF-κB pathway. 

 

Finally, we wanted to enforce our hypothesis by showing direct 

interactions of CD147 with integrins or FAK. Therefore, CD147, CD29 and 

FAK were immunoprecipitated and investigated for co-

immunoprecipitations. This immunoprecipitations were not very efficient, 

but supported the idea of CD29 interaction with CD147 in T cells. To 

increase the efficiency of the IP, C- and N-terminal Flag-tagged CD147 

were expressed in Jurkat T cells for subsequent immunoprecipitation. 

Unfortunately, C-terminally tagged CD147 was not expressed properly, 

but N-terminally tagged CD147 could be highly expressed and 

immunoprecipitated. However, β1 integrin CD29 did not co-precipitate 

with the N-terminally Flag-tagged CD147. We suppose that the Flag-tag 

sterically hindered any interactions at the N-terminal Ig-domain. 
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The Model: 

To summarize the results, we found, that CD147’s immunomodulatory 

structure in T cells consists of CD147’s transmembrane and extracellular 

domain. We hypothesize that CD147 interacts laterally with other 

transmembrane proteins, to transduce it’s 

negative regulatory signals into the cell. 

Yet, we did not define this interaction 

partner. In this study, we further show 

that CD98 enhances T cell stimulation and 

is upregulated upon CD147 silencing. As 

CD98 was shown to interact with CD147’s 

extracellular domain6, CD98 might be a 

promising lateral transducer of 

immunomodulatory signals. Furthermore, 

CD98 and CD147 were shown to form a 

complex with β1-integrins7. This might 

explain the observed CD147 dependent 

phosphorylations of the cytoskeleton 

associated signaling components FAK and 

PAK. However, cyclophilins or MCTs might 

serve as signal transducer for CD147 too 

and should therefore be included in 

subsequent experiments. 

Additionally, we discovered that CD147 negatively regulates NFAT to 

inhibit IL-2 promoter activity. As our results point to a p38 and JNK MAP 

kinase independent regulation of NFAT activity, the expression levels and 

activity of calcineurin of calmodulin should be analyzed in future studies. 

Furthermore, our study shows CD147 dependent phosphorylation of NF-

κB, which probably affects NF-κB transcriptional activity on the IL-2 

promoter. With the help of a reporter gene assay one might proof this 

indication. 

Figure 17: Model of CD147 

immunomodulatory signaling. 

CD147 transduces its signals via 

lateral interaction partner X into 

the cell. By reducing NFAT activity, 

CD147 regulates the IL-2 promoter 

activity. 
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7 Abbreviations 

AFP alpha feto protein 

AMPK AMP activated protein kinase 

AP-1 activator protein 1 

APC allophycocyanine 

ASCT2 ASC-System (astroglia-rich primary cultures) amino acid transporter-

1 

ATF-2 activating transcription factor 2 

BAD Bcl associated death promoter 

Bim Bcl-2 interacting mediator 

Bcl10 B cell lymphoma 10 

Brg Brahma/SW12-related gene 

Carma1 caspase recruitment domain membrane-associated guanylate kinase 

CasL Crk associated substrate like protein 

Cbl-b Casitas B-lineage lymphoma b 

CBP CREB binding protein 

CCL3 chemokine (C-C motif) ligand 3 

CD147 cluster of differentiation 147 

COX cytochrome oxidase 

CRAC channels calcium release activated calcium channels 

CRE cAMP response element 

CREB CRE binding protein 

CTLA-4 cytotoxic T lymphocyte antigen 4 

CXCR3 chemokine (CXC motif) receptor 3 

DAG Diacylglycerol 

EpCam epithelial cell adhesion molecule 

ER endoplasmatic reticulum 

ERK extracellular signal-regulated kinase 

ERM Ets related molecule 

FAK focal adhesion kinase 

FITC fluorescein iso-thiocyanate 

GATA-3 GATA binding protein 3 

GFP green fluorescent protein 

Grb-2 growth factor receptor-bound protein 2 

GTP guanidine trisphosphate 

HG high glycosylated 

HIF-1 hypoxia-inducible factor 1 
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HRPO horse radish peroxidase 

ICOS inducible T cell costimulator 

IFN-γ interferon-γ 

Ig immunoglobulin 

IκB inhibitor of NF-κB 

IKK IκB kinase 

IL-2 interleukin-2 

IL-12 interleukin-12 

IP immunoprecipitation 

IP3 inositol 1,4,5-trisphosphate 

IRES internal ribosome entry site 

IRF1 interferon regulatory factor 

ITAMs immunoreceptro tyrosine-based activation motifs 

Jak janus kinase 

JNK cJun N-terminal kinase 

KO Knockout 

Lat-1 large amino acid transporter type 1 light chain 

LAT linker for activation of T cells 

Lck lymphocyte specific protein tyrosine kinase 

LFA-1 lymphocyte function-associated antigen-1 

LG low glycosylated 

LIM LIN-11, Isl1, MEC-3 

mAb monoclonal antibody 

MALT1 mucosa associated lymphoid tissue lymphoma translocation protein 1 

MAP kinase mitogen activated protein kinase 

MCT monocarboxylate transporter 

MHC major histocompatibility complex 

MKK mitogen activated kinase kinase 

MMP matrix metallo proteinase 

NEMO NF-kappaB essential modifier 

NFAT nuclear factor of activated T cells 

NF-κB nuclear factor k B 

NK natural killer 

NLS nuclear localization signal 

Oct-1 octamer binding transcription factor 

PAK p21 activated kinase 

PBMCs Peripheral blood mononuclear cells  

PD-1 programmed death 1 
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PDK-1 phosphoinosite-dependent protein kinase-1 

PDZ postsynaptic density 95, discs large, zonula occludens-1 

PI3K phosphoinositol-3-kinases 

PKB protein kinase B 

PKC protein kinase C 

PLC phospholipase C 

PLD phospholipase D 

PMA phorbol myristate acetate 

Pnn pinin 

Rb retinoblastoma 

SAPK stress activated protein kinase 

SEE staphylococcal enterotoxin E 

SH2 src homology 2 

shRNA small/short hairpin RNA 

siRNA small interfering RNA 

SLE systemic lupus erythematosus 

SLP76 SH2 domain-containing leukocyte protein of 76 kDa 

SOS son of sevenless 

SP1 selective promoter factor 1 

STAT signal transducer and activator of transcription 

T-bet T box expressed in T cellsTCR T cell receptor 

Th1 T helper 1 

TNF tumor necrosis factor 

TRAF-6 TNF receptor-associated factor 6 

Treg cells regulatory T cells 

Tyk tyrosine kinase 

VEGF vascular endothelial growth factor 

VLA-4 very late antigen 4 

ZAP70 zeta-chain-associated protein kinase 70 

ZASP Z-band alternatively spliced PDZ motif 
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