




Abstract

The linear response function, which describes the change in the electron density induced by
a change in the external potential, is the basis for a broad variety of applications. Three of
these are addressed in the present thesis. In the first part, optical spectra of metallic surfaces
are investigated. Quasiparticle energies, i.e., energies required to add or remove an electron
from a system, are evaluated for selected metals in the second part. The final part of this
thesis is devoted to an improved description of the ground-state electron correlation energy.

In the first part, the linear response function is used to evaluate optical properties of
metallic surfaces. In recent years, reflectance difference (RD) spectroscopy has provided a
sensitive experimental method to detect changes in the surface structure and morphology.
The interpretation of the resulting spectra, which are linked to the anisotropy of the surface
dielectric tensor, however, is often difficult. In the present thesis, we simulate RD spectra for
the bare, as well as oxygen and carbon monoxide covered, Cu(110) surface, and assign features
in these spectra to the corresponding optical transitions. A good qualitative agreement
between our RD spectra and the experimental data is found.

Density functional theory (DFT) gives only access to the ground state energy. Quasi-
particle energies should, however, be addressed within many body perturbation theory. In
the second part of this thesis, we investigate quasiparticle energies for the transition metals
Cu, Ag, Fe, and Ni using the Green’s function based GW approximation, where the screened
Coulomb interaction W is linked to the linear response function.

The fundamental limitation of density function theory is the approximation of the exchange-
correlation energy. An exact expression for the exchange-correlation energy can be found by
the adiabatic-connection fluctuation-dissipation theorem (ACFDT), linking the linear re-
sponse function to the electron correlation energy. This expression has been implemented
in the Vienna Ab-initio Simulation Package (VASP). Technical issues and ACFDT results
obtained for molecules and extended systems, are addressed in the third and last part of this
thesis. Although we make use of the random phase approximation (RPA), we find that the
correct long-range van der Waals interaction for rare gas solids is reproduced and geometrical
properties for insulators, semiconductors, and metals are in very good agreement with exper-
iment. Atomization energies, however, are not significantly improved compared to standard
DFT functionals like PBE.
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Zusammenfassung

Die Polarisationsfunktion, welche die lineare Dichteänderung durch eine kleine Änderung
des äußeren Potentials beschreibt, ist die Grundlage zur Berechnung der unterschiedlichsten
physikalischen Größen. Drei davon werden im Rahmen dieser Dissertation untersucht. Zuerst
werden optische Spektren von metallischen Oberflächen berechnet. Im zweiten Teil werden
für ausgewählte Metalle Quasiteilchenenergien berechnet, also diejenigen Energien, welche
benötigt werden, um ein Elektron aus dem System zu entfernen bzw. hinzuzufügen. Der
dritte Teil ist schließlich einer verbesserten Beschreibung der elektronischen Korrelationsen-
ergie gewidmet.

Im ersten Teil dieser Dissertation werden optische Spektren von metallischen Oberflächen
mit Hilfe der Polarisationsfunktion berechnet. In den letzten Jahren erwies sich die reflectance
difference (RD) Spektroskopie als eine experimentelle Methode, die sehr empfindlich auf
Änderungen der Oberflächenstruktur reagiert. Eine Interpretation der RD Spektren, welche
auf die Anisotropie des dielektrischen Oberflächentensors zurückgehen, ist allerdings oftmals
schwierig. Um eine Interpretation zu erleichtern, berechnen wir die RD Spektren sowohl für
die reine, als auch für die Sauerstoff und Kohlenmonoxid bedeckte Cu(110) Oberfläche. Die
berechneten Daten stimmen gut mit den experimentellen Werten überein und erlauben eine
genaue Analyse der Spektren in Bezug auf die zugrunde liegenden optischen Übergänge.

Die Dichtefunktionaltheorie erlaubt allein die Bestimmung der Grundzustandsenergie.
Zur Berechnung der Quasiteilchenenergien muss jedoch die Vielteilchenstörungstheorie heran-
gezogen werden. Im zweiten Teil dieser Dissertation werden Quasiteilchenenergien für die
Übergangsmetalle Cu, Ag, Fe und Ni berechnet. Dabei wird die auf der Greensfunktion
basierende GW Näherung verwendet, wobei W, die abgeschirmte Coulombwechselwirkung,
von der Polarisationsfunktion abhängt.

Das Fehlen einer exakten Beschreibung der Austausch- und Korrelationsenergie ist die
fundamentale Schwachstelle der Dichtefunktionaltheorie. Ein exakter Ausdruck dieser En-
ergie kann allerdings mit Hilfe des adiabatic-connection fluctuation-dissipation Theorems
(ACFDT) aufgestellt werden. Dabei wird die Korrelationsenergie in Abhängigkeit von der
Polarisationsfunktion dargestellt. Routinen zur Berechnung der ACFDT Korrelationsenergie
wurden im Vienna Ab-Initio Simulation Package (VASP) implementiert. Details zur Im-
plementierung und Ergebnisse für molekulare und ausgedehnte Systeme werden im dritten
und letzten Teil dieser Dissertation behandelt. Obwohl die ACFDT Korrelationsenergie nur
näherungsweise mit Hilfe der random phase approximation (RPA) berechnen wird, wird die
langreichweitige van der Waals Wechselwirkung für Edelgaskristalle richtig wiedergegeben,
und die ACFDT Geometrien von Isolatoren, Halbleitern und Metallen stimmen sehr gut mit
den experimentellen Werten überein.
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Part I

Theory
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The non-relativistic Schrödinger equation for N electrons moving in an external potential
vext considering decoupling of ionic and electronic degrees of freedom (Born-Oppenheimer
approximation) is given as:


− h̄2

2m

N∑

i=1

∇2
ri

+
1

2

∑

i6=j

e2

|ri − rj|
+
∑

i

vext(xi, {R}) + Eion({R})


Ψ({x}) =

= E({R})Ψ({x}), (1)

where the electron energy is parametric depending on the ionic coordinates {R} and x = (r, s)
denotes both electron positions and spins. In the further discussion we will consider ”spinless”
electrons. Furthermore, we neglect the Eion term, which describes the electrostatic interaction
between the positive ions and which is constant for a fixed ionic configuration. The electronic
Hamiltonian then reads:

Ĥ = − h̄2

2m

N∑
i=1
∇2

ri
+ 1

2

∑
i6=j

e2

|ri−rj |
+

∑
i
vext(ri)

= T̂ + V̂ee + V̂ext.

(2)

Instead of solving this eigenvalue problem, the ground state energy EGS can be obtained by
minimizing

〈Ψ|Ĥ |Ψ〉 under the constraint 〈Ψ|Ψ〉 = 1. (3)

Such a minimization over the space of many-electron wavefunctions

Ψ({r}) = Ψ(r1, r2, . . . , rN ) (4)

is only possible for system containing a few electrons. For a larger number of electrons, the
complexity of the electron problem becomes intractable due to the large number of degrees of
freedom involved. It is therefore desirable to search for quantities of lower dimension which
define the ground state energy uniquely. One possible quantity is the electron density

n(r) = N

∫
d3r2 d

3r3 . . . d
3rN Ψ∗(r, r2, . . . , rN )Ψ(r, r2, . . . , rN ) (5)

which can also be written as

n(r) = 〈Ψ|n̂(r)|Ψ〉 with the density operator n̂(r) =
N∑

i

δ(r− ri). (6)

The density n(r) describes the probability to find an electron at place r, if all other electrons
are located at any place, and it, therefore, contains much less information than the full
many-body wavefunction Ψ({r}). It is not straightforward that the ground state energy can
be expressed as a quantity solely depending on the density. This can only be the case if
different external potentials inevitably result in different densities for a N electron system.
The validity of this requirement has been first proven by Hohenberg and Kohn [1] in 1964.
A more general proof was provided by Levy in 1979 [2]. On these foundations all methods
summarized under the name ”density functional theories” are based. We will later come back
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to the theorem of Hohenberg and Kohn and to its practical realization as proposed by Kohn
and Sham [3].

But also for the straightforward evaluation of the ground state energy, the entire many-
body wavefunction is not required. Three parts contribute to the electronic energy

E = 〈Ψ|T̂ |Ψ〉 + 〈Ψ|V̂ee|Ψ〉 + 〈Ψ|V̂ext|Ψ〉
kinetic energy e-e interaction external potential.

(7)

The energy resulting from the external potential, 〈Ψ|V̂ext|Ψ〉, is given as

〈Ψ|V̂ext|Ψ〉 =

N∑

i=1

∫
d3r1 . . . d

3rN Ψ∗(r1, r2, . . . , rN ) vext(ri)Ψ(r1, r2, . . . , rN ) =

= N

∫
d3r d3r2 . . . d

3rN Ψ∗(r, r2, . . . , rN ) vext(r)Ψ(r, r2, . . . , rN ) =

=

∫
d3r vext(r)n(r) (8)

and is consequently only depending on the electron density n(r). The kinetic energy is also
a ”one-electron” quantity:

〈Ψ|T̂ |Ψ〉 = −
h̄2

2m

N∑

i=1

∫
d3r1d

3r2 . . . d
3rN Ψ∗(r1, r2, . . . , rN )∇2

ri
Ψ(r1, r2, . . . , rN ) =

= −
Nh̄2

2m

∫
d3r′ d3r d3r2 . . . d

3rN δ(r − r′)Ψ∗(r′, r2, . . . , rN )∇2
r Ψ(r, r2, . . . , rN )

= −
h̄2

2m

∫
d3r′d3r δ(r − r′)∇2

r γ(r, r
′) = −

h̄2

2m

∫
d3r

[
∇2

r γ(r, r
′)
]
r′=r

(9)

where γ(r, r′) is the one-particle density matrix:

γ(r, r′) = N

∫
d3r2 d

3r3 . . . d
3rN Ψ∗(r′, r2, . . . , rN )Ψ(r, r2, . . . , rN ). (10)

The remaining term, the electron-electron interaction, links the coordinates of every two
electrons:

〈Ψ|V̂ee|Ψ〉 =
1

2

∑

i6=j

∫
d3r1d

3r2 . . . d
3rN Ψ∗(r1, r2, . . . , rN )

e2

|ri − rj |
Ψ(r1, r2, . . . , rN ) =

=
N(N − 1)

2

∫
d3r1d

3r2
e2

|r1 − r2|

∫
d3r3 . . . d

3rN Ψ∗(r1, r2, . . . , rN )Ψ(r1, r2, . . . , rN ) =

=
e2

2

∫
d3r1d

3r2
n2(r1, r2)

|r1 − r2|
(11)

where n2(r1, r2) is the pair density which can be defined as the trace of the two-electron
density matrix, n2(r1, r2) = Γ(r1, r2; r1, r2):

Γ(r1, r2; r
′
1, r

′
2) = N(N − 1)

∫
d3r3 . . . d

3rNΨ∗(r1, r2, . . . , rN )Ψ(r′1, r
′
2, . . . , rN ). (12)
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If the classical electrostatic energy (Hartree-Term)

EH =
e2

2

∫
d3r d3r′

n(r)n(r′)

|r− r′|
(13)

is subtracted from 〈Ψ|V̂ee|Ψ〉 and the exchange-correlation hole nxc(r1, r2) is introduced

nxc(r1, r2) =
n2(r1, r2)

n(r1)
− n(r2) (14)

the total energy of the electronic system reads

E = −
h̄2

2m

∫
d3r

[
∇2

rγ(r
′, r)
]
r′=r

+
e2

2

∫
d3r d3r′

n(r)n(r′)

|r− r′|
+

+
e2

2

∫
d3r d3r′

n(r)nxc(r, r
′)

|r− r′|
+

∫
d3r vext(r)n(r). (15)

This suggests that there should be ways to calculate the energy without considering the
whole many-body wavefunction. Besides the already mentioned density functional theories
(DFT), methods based on the pair density n2(r1, r2) and the two-electron density matrix
Γ(r1, r2; r

′
1, r

′
2) have been considered. Whereas in DFT the exact density dependent form for

the kinetic energy term and the electron-electron interaction is not known, theories based
on the pair density lack an exact expression for the kinetic energy term only (see e.g., [4]).
Introducing the two-electron density matrix Γ(r1, r2; r

′
1, r

′
2) lifts this problem, but the N -

representability problem (which conditions must a two-electron density matrix obey to be
derived from a many-body wavefunction) comes to the fore (e.g., [5]).



Chapter 1

Density functional theory

1.1 Theorem of Hohenberg-Kohn

The term density functional theory (DFT) refers to all methods that express the ground-state
energy as a functional of the electronic density n(r). The validity of such an approach was
first proven by Hohenberg and Kohn in 1964 [1] and later generalized by Levy [2]. Hohenberg
and Kohn introduced the energy functional

EHK [n] := F [n] +

∫
d3r n(r) v(r) F [n] := min

Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉 (1.1)

and proved that

1. F [n] is a unique functional of the density n(r) i.e., for an N electron system, there do
not exist two ground state wavefunctions Ψ1 6= Ψ2 (potentials v1 6= v2) resulting in the
same density n(r).

2.
EHK [n] ≥ EGS

The energy functional EHK obeys a variational principle and always results in energies
larger or equal to the ground state energy EGS .

3.
EHK [nGS] = EGS

The energy functional EHK reaches the ground state energy at the ground state density
nGS .

1.2 Kohn-Sham density functional theory

The Hohenberg-Kohn (HK) theorem provides a theoretical justification for the construction
of an energy functional that depends on the electron density only, but it does not provide a
concrete expression for the energy functional F [n] = minΨ→n〈Ψ|T̂+V̂ee|Ψ〉. Actually, density
functionals as the Thomas-Fermi functional [6, 7] have been used before the HK theorem.
In the Thomas-Fermi functional three terms are considered: the classical electron-electron

5



6 CHAPTER 1. DENSITY FUNCTIONAL THEORY

repulsion (Hartree term), the energy resulting from the external potential, and a kinetic
energy term, which is approximated in a local density approximation by the kinetic energy
of the homogenous electron gas ∝ n1/3. This approximation allowed an exact mathematical
treatment of the resulting integral equation, but it could also be shown [8, 9] that binding of
atoms to form molecules and solids can not be described within Thomas-Fermi theory.

In 1965, Kohn and Sham [3] proposed a different approximation for the functional F [n]
that maps the problem of a system of interacting particles onto a system of independent
electrons with the same density n(r) moving in an effective local potential that mimics
the influence of the other electrons. The energy of an electron system [Eq. (7)] can be
reformulated to

E[n] = Ts[n] + EH [n] + Exc[n] + Eext[n] with

Exc[n] := 〈ΨMB|T̂ |ΨMB〉 − Ts[n] + 〈ΨMB |V̂ee|ΨMB〉 − EH [n]. (1.2)

The wavefunction of the true, interacting, system is thereby denoted as ΨMB, whereas the
wavefunction of the reference system of independent particles is a Slater determinant built
from one-electron wavefunctions {ψn}. The independent particle kinetic energy Ts[n] =
−h̄2/2m

∑
n(occ)〈ψn|∇2|ψn〉 thereby depends only implicitely on the electron density

n(r) = 2
∑

n(occ)

|ψn(r)|2 (1.3)

via the one-electron wavefunctions ψn. By introducing the Hartree potential

vH [n](r) = e2
∫
d3r′

n(r′)

|r− r′|
(1.4)

and the (abstract) µxc[n](r) energy density per particle, the energy can also be written as

E[n] = Ts[n] +

∫
d3r n(r)

[
1

2
vH [n](r) + µxc[n](r) + vext(r)

]

︸ ︷︷ ︸
(1.5)

vKS[n](r).

The ground state energy EGS can be found by minimizing Eq. (1.5) with respect to the
density n(r) or solving the so called Kohn-Sham equations:

(
−
h̄2

2m
∇2 + vKS[n](r) +

∫
d3r n(r)

δvKS [n]

δn(r′)

)
ψn = ǫnψn

m (1.6)(
−
h̄2

2m
∇2 + vH [n](r) + vxc[n](r) + vext(r)︸ ︷︷ ︸

)
ψn = ǫnψn,

veff [n](r)

where the exchange correlation potential vxc[n](r) is defined as:

vxc[n](r) =
δExc[n]

δn(r)
. (1.7)
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Due to the dependence of the KS Hamiltonian on the density and thus on the wavefunc-
tions themselves, Eq. (1.6) have to be solved selfconsistently. By introducing the occupation
function fn,

fn =
{ 1 if state n is occupied

0 if state n is unoccupied,
(1.8)

the ground state energy EGS can be written as

EGS = 2
∑

n

fnǫn − EH [nGS]−

∫
d3r nGS(r) vxc[nGS ](r) + Exc[nGS ] (1.9)

with the ground state density

nGS(r) = 2
∑

n

fn|ψn(r)|2 (1.10)

given by the wavefunctions solving Eq. (1.6).

By applying the Kohn-Sham density functional theory, the ground state energy and
ground state density can thus be calculated by solving a set of one-electron Schrödinger equa-
tions. However, the exchange-correlation energy functional Exc[n] or the exchange-correlation
potential, respectively, have to be approximated. The earliest approach has been the so called
local density approximation (LDA) [3], which assumes that the exchange-correlation energy
can be locally approximated by the exchange-correlation energy density of the homogeneous
electron gas ǫunif

xc [n] (energy per particle) at the respective density:

Exc[n(r)] =

∫
d3r n(r) ǫunif

xc [n]. (1.11)

The exchange-correlation energy of the homogenous electron gas has been calculated by
Ceperley and Alder for a set of densities using quantum Monte Carlo methods [10]. The
parametrisation of these energies suggested by Perdew and Wang [11] will be used in the
following.

The LDA assumes that the exchange correlation energy of an inhomogenous system can
be approximated at each point by the energy of a homogenous electron gas. In the more
sophisticated generalized gradient approximation (GGA) not only the density but also the
variation of the density, the density gradient, is considered for the calculation of the exchange-
correlation energy

EGGA
xc [n] =

∫
d3r f(n,∇n). (1.12)

GGA functionals can be either constructed as to fulfill (some) exact conditions, or by fitting
to energies calculated on a higher level of theory or experimental values. The GGA introduced
by Perdew, Burke, and Ernzerhof (PBE) [12], which is used in the present work, belongs to
the first class of GGAs.
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1.3 DFT in practice

In the present section, we will briefly describe how the Kohn-Sham equations are solved in
the Vienna ab-initio simulation package (VASP) used throughout this thesis. More details
about the plane wave approach can be found e.g., in the review of Payne et al. [13]. The
PAW method is discussed in Ref. [14] and with respect to the VASP code in Ref. [15].

1.3.1 Plane waves

For the actual solution of the Kohn-Sham equations the wavefunctions are usually expanded
in a basis set. In our case, this basis set consists of plane waves. For a periodic system,
each wavefunction can be written as a Bloch function ψnk(r) = unk(r) eikr where unk(r)
exhibits the same periodicity as the system itself and can therefore be expanded with respect
to reciprocal lattice vectors G: unk(r) =

∑
G cnk(G) eiGr. The wave vector k lies within the

first Brillouin zone. In practice, a finite grid of k-points, in the form of e.g., a Monkhorst-Pack
grid [16], is used for the sampling of the Brillouin zone. Applying the concept of periodicity
on the Kohn-Sham equations, they split up into Nk (number of k-points) equations, which
can be solved separately. For finite or aperiodic systems the concept of periodicity is certainly
artificial. But these systems can be treated within the supercell approach where the respective
systems are placed in large three-dimensional supercells in order to avoid interactions between
the repeated images.

Due to the plane wave approach it is costly to describe strongly localized electrons with
rapid oscillations, such as electrons close to the core. They require a large number of plane
waves in the expansion of the cell periodic function

unk(r) =

|k+G|2/2<Ecut∑

G

cnk(G) eiGr (1.13)

and consequently a large value for the plane wave energy cutoff Ecut, slowing the DFT
calculations drastically. To circumvent this problem, we do not consider the KS equations for
energetically deeper lying electrons, core electrons, (frozen core approximation) and describe
the remaining electrons, valence electrons, within the projector augmented-wave method
(PAW) [14, 15].

1.3.2 Projector augmented wave method

The main idea of the PAW method is to divide space into two regions: the augmentation
region Ωa (atom-centered spheres) and the interstitional region ΩI between these spheres.
Within the augmentation regions Ωa the all-electron (AE) wavefunction |ψnk〉 of state n and
k-point k can be expanded with respect to a set for AE partial-waves |φi〉

|ψnk〉 =
∑

i

ci,nk |φi〉 in Ωa. (1.14)

The AE partial waves are solutions to the all-electron KS-DFT equation for a spherical
reference atom of type N situated at the atomic site R for different angular momentum
numbers L = l,m and reference energies ǫαl. The index i is an abbreviation for R, N , L,
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Figure 1.1: Wavefunction/density representation in the projector augmented-wave method.

and the index of the reference energy α. The radial part of the solution can be split off and
by means of the spherical harmonics Ylm the AE partial-wave can be written as:

〈r|φi〉 = φi(r) = Ylm( ̂r−R)φNlα(|r−R|). (1.15)

Additionally pseudo (PS) partial waves

〈r|φ̃i〉 = φ̃i(r) = Ylm( ̂r−R) φ̃Nlα(|r−R|) (1.16)

are generated, which are smooth functions inside the augmentation-spheres and match the
AE partial-waves outside Ωa. This is achieved by expanding φ̃Nlα(r) with respect to Bessel
functions jl(qr). For more details see [15] Sec. IV B.

Pseudo wavefunctions |ψ̃nk〉 represented using plane waves are finally introduced. These
are defined as:

|ψ̃nk〉 =
∑

i ci,nk |φ̃i〉 in Ωa

|ψ̃nk〉 = |ψnk〉 inΩI .

(1.17)

The representation of the PS wavefunction |ψ̃nk〉 requires only a modest number of plane
waves because the AE partial waves |φi〉 with their rapid oscillations near the atomic core re-
gion Ωa are replaced by the smooth PS partial waves |φ̃i〉. By introducing projector functions
|p̃i〉 that are dual to the PS partial waves

〈p̃i|φ̃j〉 = δij , (1.18)

the coefficients ci,nk can be obtained by

〈p̃i|ψ̃nk〉 =
∑

j

cj,nk 〈p̃i|φ̃j〉 = ci,nk. (1.19)

Combining Eq. (1.14) and Eq. (1.17), the AE wavefunction |ψnk〉 can be written as:

|ψnk〉 = |ψ̃nk〉+
∑

i

〈p̃i|ψ̃nk〉 |φi〉 −
∑

i

〈p̃i|ψ̃nk〉 |φ̃i〉. (1.20)
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This splitting of the AE wavefunction is visualized schematically in Fig. 1.1. The AE wave-
function |ψnk〉 with large oscillations (slashed spheres) in Ωa is described by a PS wavefunc-
tion |ψ̃nk〉 which is smooth in the entire space and corresponds to the AE wavefunction in the
interstitional region ΩI . It is expanded with respect to a plane-wave basis set. To correct for
the PS error an AE on-site term is added inside the augmentation regions Ωa. Contributions
already accounted for by the PS wavefunctions are finally expressed by PS partial waves and
subtracted. The same separation as for the wavefunctions approximately holds also for the
density

n(r) =
∑

nk

fnk 〈ψnk|r〉 〈r|ψnk〉, (1.21)

which can be written as

n(r) =
∑

nk

fnk 〈ψ̃nk|r〉 〈r|ψ̃nk〉 +
∑

ij

ρij〈φi|r〉 〈r|φj〉 −
∑

ij

ρij〈φ̃i|r〉 〈r|φ̃j〉 =

= ñ(r) + n1(r) − ñ1(r)

with

ρij =
∑

nk

fnk 〈ψ̃nk|p̃i〉 〈p̃j |ψ̃nk〉 =
∑

nk

fnk c
∗
i,nk cj,nk. (1.22)

The pseudo density ñ(r) is thereby described on a regular grid spanning the entire supercell
volume. A Fast Fourier Transform is used to switch between the plane wave coefficient ci,nk

and the real space representation of the PS wavefunction ψ̃nk(r). The plane wave grid on
which the PS wavefunction is thereby evaluated in real space is closely related to the regular
grid. The on-site PS and AE densities ñ1(r) and n1(r) are represented on radial grids in the
augmentation spheres Ωa centered around the ions. The separation into terms arising from
contributions represented on regular and radial grids holds (approximately) also for the total
energy, if one introduces the compensation charge density n̂(r) (see [15] Sec. II B, C). The
compensation charge density n̂ is added to the PS charge density ñ(r) in order to restore the
AE monopole and multipoles up to a certain angular momentum number L. Consequently,
n̂ has to fulfill the requirement:

∫

Ωa(Ri)

(
n1 − ñ1 − n̂

)
|r−Ri|

l Y ∗
L ( ̂r−Ri) d

3r = 0. (1.23)

The compensation charge n̂ should therefore reproduce the multipoles of the augmentation
charge density Qij

n1(r)− ñ1(r) =
∑

ij

ρij Qij(r) Qij(r) = φ∗i (r)φj(r)− φ̃
∗
i (r)φ̃j(r), (1.24)

but at the same time its shape has to be smoother than the one of the fast varying Qij(r),
because it has to be represented on a regular grid in order to add it to the PS charge density.
By introducing the moments of the augmentation charge

qL
ij =

∫

Ωa(Ri)
Qij(r) |r−Ri|

l Y ∗
L ( ̂r−Ri) d

3r, (1.25)
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the compensation charge density can be expressed as

n̂ =
∑

ij

ρij Q̂
L
ij(r) Q̂L

ij(r) = qL
ij gl(|r−R|)YL( ̂r−R), (1.26)

where gl(|r−R|) is a smooth function which a l-moment of one. For more details about the
construction of gl(|r−R|) see [15] Sec. IV D.



Chapter 2

Optical properties within linear
response theory

2.1 Time-dependent density functional theory

Time-dependent density functional theory (TDDFT) aims at mapping the time-dependent
Schrödinger equation

i
∂

∂t
Ψ(t) = ĤΨ(t) (2.1)

onto an effective one-electron problem, as density functional theory does for the static
Schrödinger equation. In 1984, Runge and Gross [17] proved that, for a given initial state, a
one-to-one correspondence exists between the time-dependent density n(r, t) and the time-
dependent external potential vext(r, t). The Runge-Gross theorem is the fundament of
TDDFT as the Hohenberg-Kohn theorem [1] is the justification for (static) DFT. Analo-
gous to static DFT, time-dependent Kohn-Sham equations can be introduced, which map
the problem of interacting electrons moving in a time-dependent external potential vext onto
a system of independent electrons moving in a time-dependent effective potential veff . The
resulting time-dependent Kohn-Sham equations take the form:

i
∂ψn(r, t)

∂t
=

[
−
h̄2

2m
∇2 + veff [n](r, t)

]
ψn(r, t) n(r, t) = 2

∑

n(occ)

|ψn(r, t)|2. (2.2)

The effective potential veff can be split into the external potential, the (via the density)
time-dependent Hartree potential, and the exchange-correlation potential

veff [n](r, t) = vext(r, t) + vH [n](r, t) + vxc[n](r, t). (2.3)

The time-dependent Hartree potential is defined as

vH [n](r, t) = e2
∫
d3r′

n(r′, t)

|r− r′|
. (2.4)

The time-dependent exchange-correlation potential vxc is a quantity that depends on the
history of the density n(r, t) and the initial interacting many-electron and Kohn-Sham wave-
functions. In the following we will only consider the influence of a weak external potential

12
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(linear response regime), but a detailed overview on TDDFT and various applications can
be found in Ref. [18].

2.2 Linear response theory

Both in the calculation of the reflectance difference spectra (part II of this thesis) and in
the improved description of the DFT exchange-correlation energy (part IV) we have to eval-
uate the response of the material to an external perturbation. If this perturbation is weak
compared to the internal electric fields caused by the ions, as usually in spectroscopic exper-
iments, the induced change in the density can be described within perturbation theory as
linearly dependent on the applied perturbation.

The key quantity of linear response theory is the response function χ(r, r′, t− t′), which
describes the change of the density δn at (r, t) if the external potential undergoes a small
change δvext at (r′, t′).

δn(r, t) =

∫
dt′
∫
d3r′ χ(r, r′, t− t′) δvext(r

′, t′) (2.5)

χ(r, r′, t− t′) =
δn(r, t)

δvext(r′, t′)
. (2.6)

Within the Kohn-Sham formulation it is easier to calculate the Kohn-Sham (KS) response
function χKS(r, r′, t − t′), which describes the response of the KS system to a small change
of the effective Kohn-Sham potential veff [n]:

δn(r, t) =

∫
dt′
∫
d3r′ χKS(r, r′, t− t′) δveff (r′, t′) (2.7)

χKS(r, r′, t− t′) =
δn(r, t)

δveff (r′, t′)
. (2.8)

The requirement that the change of the density δn(r, t) is the same in both descriptions links
the response function of the interacting system χ(r, r′, t − t′) to the KS response function
χKS(r, r′, t − t′). In order to write this relation explicitely, we introduce the exchange-
correlation kernel fxc

vxc[nGS + δn](r, t) = vxc[nGS](r) +

∫
dt′
∫
d3r′ fxc[nGS ](r, r′, t− t′) δn(r′, t′) (2.9)

fxc[nGS](r, r′, t− t′) =
δvxc(r, t)

δn(r′, t′)

∣∣∣
n=nGS

, (2.10)

which is defined as the derivative of the time-dependent exchange-correlation potential with
respect to the time-dependent density evaluated at the ground state density nGS. By requir-
ing that Eq. (2.5) and Eq. (2.7) are the same, the link between χ and χKS is given as [see
Eq. (2.3)]:
∫
dt′
∫
d3r′ χ(r, r′, t− t′) δvext(r

′, t′) =

=

∫
dt′
∫
d3r′ χKS(r, r′, t− t′)

{
δvext(r

′, t′) + δvH(r′, t′) + δvxc(r
′, t′)

}
. (2.11)
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Applying the chain rule on δvH and δvxc,

δvH(r′, t′) =

∫
dt1 dt2

∫
d3r1 d

3r2
δvH(r′, t′)

δn(r1, t1)

δn(r1, t1)

δvext(r2, t2)
δvext(r2, t2) (2.12)

=

∫
dt1 dt2

∫
d3r1 d

3r2
1

|r1 − r′|
χ(r1, r2, t1 − t2) δvext(r2, t2)

δvxc(r
′, t′) =

∫
dt1 dt2

∫
d3r1 d

3r2
δvxc(r

′, t′)

δn(r1, t1)

δn(r1, t1)

δvext(r2, t2)
δvext(r2, t2) = (2.13)

=

∫
dt1 dt2

∫
d3r1 d

3r2 fxc(r
′, r1, t

′ − t1)χ(r1, r2, t1 − t2) δvext(r2, t2),

changing the names of the integration variables, and going to frequency space finally leads
to the relationship:

χ(r, r′, ω) = χKS(r, r′, ω) +

+

∫
d3r1 d

3r2 χ
KS(r, r1, ω)

(
e2

|r1 − r2|
+ fxc(r1, r2, ω)

)
χ(r2, r

′, ω). (2.14)

This relationship is generally referred to as Dyson equation. For the evaluation of the response
function of an interacting electron system the response function of the respective Kohn-
Sham system is calculated and afterwards the interacting response function is estimated
by applying the Dyson equation with some approximated exchange-correlation kernel. The
easiest approximation for fxc is to ignore the effect of the exchange-correlation at all (fxc = 0).
This simplification is called random phase approximation (RPA) or Hartree approximation
(because only the Hartree term δvH contributes).

Following the derivation of Pines and Nozière [19] (see also [20]), an explicit formula for the
response to an external (time-dependent) potential δv(r, t), leading to a small perturbation
in the Hamiltonian

δĤ(t) = eηt
N∑

i=1

δv(ri, t) 0 < η ≪ 1, (2.15)

can be found. The factor eηt is introduced to guarantee an adiabatic, slow switching from the
unperturbed Hamiltonian for t → −∞ ( eηt = 0) to 1 for t = 0. With the density operator
n̂(r) =

∑N
i=1 δ(r− ri), the perturbation can be written in frequency space as

δĤ(t) =

∫
d3r

∫
dω

2π
e−iω̌t δv(r, ω) n̂(r) ω̌ := ω + iη. (2.16)

If |Ψ0
0〉 and E0

0 are the ground state wavefunction and ground state energy of the stationary
Schrödinger equation Ĥ0|Ψ0

j〉 = Ej|Ψ0
j 〉, where Ĥ0 is the unperturbed Hamiltonian, the

solution of the (unperturbed) time-dependent Schrödinger equation is given as

|Ψ0(t)〉 = e−iE0t |Ψ0
0〉. (2.17)

Introducing the time-dependent perturbation δĤ(t), the Schrödinger equation reads:

i
∂|Ψ(t)〉

∂t
=
(
Ĥ0 + δĤ(t)

)
|Ψ(t)〉. (2.18)
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Within first-order perturbation theory, |Ψ(t)〉 can be written as

|Ψ(t)〉 = e−iE0t |Ψ0
0〉︸ ︷︷ ︸+

∑

j 6=0

aj(t) e
−iEjt |Ψ0

j〉. (2.19)

|Ψ0(t)〉

It can be described as the unperturbed time-dependent solution |Ψ0(t)〉 plus an admix-
ture of components resulting from excited states of the unperturbed Schrödinger equation
e−iEjt |Ψ0

j 〉. The time-dependent coefficients are given by:

aj(t) = −i

∫ t

−∞
dt′ eiω0j t′ 〈Ψ0

j |δĤ(t′)|Ψ0
0〉 =

= −i

∫
d3r′

∫
dω

2π

∫ t

−∞
dt′ ei(ω0j−ω̌)t′ δv(r′, ω)〈Ψ0

j |n̂(r′)|Ψ0
0〉 = (2.20)

= −

∫
d3r′

∫
dω

2π
δv(r′, ω) 〈Ψ0

j |n̂(r′)|Ψ0
0〉
ei(ω0j−ω̌)t

ω0j − ω̌
,

where ω0j denotes the difference between the energy of an exited state and the ground state,
ω0j = Ej −E0. The change of the density resulting from the time-dependent perturbation

nind(r, t) = δn(r, t) = 〈Ψ(t)|n̂(r)|Ψ(t)〉 − 〈Ψ0(t)|n̂(r)|Ψ0(t)〉 (2.21)

can be written as

nind(r, t) =
∑

j 6=0

[
aj(t) 〈Ψ

0
0|n̂(r)|Ψ0

j 〉 e
−iω0j t + a∗j(t) 〈Ψ

0
j |n̂(r)|Ψ0

0 〉e
iω0jt

]
=(2.20)

= −

∫
d3r′

∫
dω

2π
δv(r′, ω) e−iω̌t ×

×
∑

j 6=0

( 〈Ψ0
j |n̂(r′)|Ψ0

0〉 〈Ψ
0
0|n̂(r)|Ψ0

j 〉

ω0j − ω̌
+
〈Ψ0

0|n̂(r′)|Ψ0
j〉 〈Ψ

0
j |n̂(r)|Ψ0

0〉

ω0j + ω̌

)
, (2.22)

if terms proportional to the square of |Ψ(t)〉 − |Ψ0(t)〉 are neglected. The induced density in
frequency space becomes

nind(r, ω) = −

∫
d3r′ δv(r′, ω) ×

×
∑

j 6=0

( 〈Ψ0
j |n̂(r′)|Ψ0

0〉〈Ψ
0
0|n̂(r)|Ψ0

j 〉

ω0j − ω̌
+
〈Ψ0

0|n̂(r′)|Ψ0
j〉〈Ψ

0
j |n̂(r)|Ψ0

0〉

ω0j + ω̌

)
. (2.23)

The change of the density nind = δn with respect to the change of the potential δv induced
by the external perturbation is exactly the response function

δn(r, ω)

δv(r′, ω)
= χ(r, r′, ω) =

= −
∑

j 6=0

(〈Ψ0
j |n̂(r′)|Ψ0

0〉〈Ψ
0
0|n̂(r)|Ψ0

j 〉

ω0j − ω̌
+
〈Ψ0

0|n̂(r′)|Ψ0
j 〉〈Ψ

0
j |n̂(r)|Ψ0

0〉

ω0j + ω̌

)
. (2.24)
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For a system of non-interacting electrons (and the KS system can be considered as a system
of independent electrons moving in an effective potential), the ground state wavefunction Ψ0

0

can be written as a product of one-particle wavefunctions ψn (or as a Slater determinant,
respectively):

Ψ0
0(r1, r2, . . . , rN/2) = ψ1(r1)ψ2(r2) . . . ψn(ri) . . . ψN/2(rN/2), (2.25)

where the functions {ψ1 . . . ψN/2} are the N/2 lowest solutions of the one-particle Schrödinger
equation (or KS equation). Orthonormality holds for the one-particle wavefunctions ψn. An
excited state of the system can be generated by ”moving” one electron from an occupied
state to an unoccupied state generating the excited wavefunction

Ψ0
j(r1, r2, . . . , rN/2) = ψ1(r1)ψ2(r2) . . . ψm(ri) . . . ψN/2(rN/2) m > N/2. (2.26)

For the system of independent electrons, the expression 〈Ψ0
0|n̂(r)|Ψ0

j 〉 then reads
∑

k

〈ψ1(r1) . . . ψn(ri) . . . ψN/2(rN/2)|δ(r − rk)|ψ1(r1) . . . ψm(ri) . . . ψN/2(rN/2)〉 =

= ψ∗
n(r)ψm(r). (2.27)

The difference of the ground-state energy and the energy of the excited state, ω0j = Ej −
E0, can be described as the difference between one-electron energies ωnm = ǫm − ǫn. The
independent particle response function of the KS system is consequently given as

χKS(r, r′, ω) = −
∑

n
occ

∑

m
uocc

2

(
ψ∗

m(r′)ψn(r′)ψ∗
n(r)ψm(r)

ǫm − ǫn − ω̌
+
ψ∗

n(r′)ψm(r′)ψ∗
m(r)ψn(r)

ǫm − ǫn + ω̌

)

or (2.28)

χKS(r, r′, ω) = −
∑

n
all

∑

m
all

2fn(1− fm)×

×

(
ψ∗

m(r′)ψn(r′)ψ∗
n(r)ψm(r)

ǫm − ǫn − ω̌
+
ψ∗

n(r′)ψm(r′)ψ∗
m(r)ψn(r)

ǫm − ǫn + ω̌

)
,

where fn is 1 for occupied and 0 for unoccupied states.
As we will consider the response function of a periodic crystal, the Fourier transform of

Eq. (2.28), χ(q,q′, ω), is more convenient for our purpose. Due to the invariance of the real
space response function with respect to a shift by a lattice vector χ(r+R, r′ +R) = χ(r, r′),
it can be shown that χ(q,q′, ω) is only nonzero if q and q′ differ by a reciprocal lattice vector
G. Consequently, one can replace q → q + G and q′ → q + G′, with q lying within the
first Brillouin zone. According to the Bloch theorem, the sum over states in Eq. (2.28) can
be replaced by a sum over states and k-points (n → nk and m → mk′) where k lies within
the first Brillouin zone. Combining all this, the response function in momentum space can
be written as

χKS
G,G′(q, ω) = (2.29)

= −
1

V

∑

nk

∑

mk′

2 fnk (1− fmk′)
( 〈ψmk′ |ei(q+G)r|ψnk〉〈ψnk|e

−i(q+G′)r′ |ψmk′〉

ǫmk′ − ǫnk − ω̌
+

+
〈ψnk|e

i(q+G)r|ψmk′〉〈ψmk′ |e−i(q+G′)r′ |ψnk〉

ǫmk′ − ǫnk + ω̌

)
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where

〈ψmk′ |ei(q+G)r|ψnk〉 ≡

∫

V
d3r ψ∗

mk′(r) ei(q+G)r ψnk(r) =

=

∫

V
d3r u∗mk′(r) e−ik′r ei(q+G)r eikr unk(r) (2.30)

is calculated as an integral over the unit cell with volume V. The relationship between the
induced density nind = δn and the change in the potential δv is consequently given as:

δn(q + G, ω) =
∑

G′

χG,G′(q, ω) δv(q + G′, ω). (2.31)

By changing the summation index in the second term (nk→ mk′, mk′ → nk) the response
function can also be written as

χKS
G,G′(q, ω) =

1

V

∑

nk

∑

mk′

2 (fmk′ − fnk)×

×
〈ψmk′ |ei(q+G)r|ψnk〉〈ψnk|e

−i(q+G′)r′ |ψmk′〉

ǫmk′ − ǫnk − ω̌
. (2.32)

Due to the translational invariance of the crystal only terms k′ = k+q are allowed as can be
seen by performing the integration in Eq. (2.30) over a supercell shifted by a lattice vector
R. The response function finally reads (see also Ref. [21]):

χKS
G,G′(q, ω) =

1

V

∑

nm;k

2 (fmk+q − fnk)×

×
〈ψmk+q|e

i(q+G)r|ψnk〉〈ψnk|e
−i(q+G′)r′ |ψmk+q〉

ǫmk+q − ǫnk − ω̌
. (2.33)

From Eq. (2.33) it is evident that transitions between states that are either both filled or both
empty do not contribute to the response function, because the difference in the occupation
number, fmk+q − fnk, is zero for these cases.

Sometimes the response function in Eq. (2.33) is written in a slightly different form
and we will in the following briefly sketch the intermediate steps for the derivation of this
reformulation. First, the term 〈ψmk+q|e

i(q+G)r|ψnk〉 can be expressed as 〈umk+q|e
iGr|unk〉.

This can be seen from combining the definition given in Eq. (2.30) and the fact that k′ = k+q.
Furthermore, expression Eq. (2.33) can be split into two terms

∑
nm;k 2fmk+q−

∑
nm;k 2fnk.

By changing the summation index in the first sum n↔ m, and performing the Brillouin zone
integration over −k − q instead of k (this corresponds to k + q → −k and k → −k − q),
Eq. (2.33) reads:

χKS
G,G′(q, ω) =

1

V

∑

nm;k

2 fn(−k)

〈un(−k)|e
iGr|um(−k−q)〉〈um(−k−q)|e

−iG′r′ |un(−k)〉

ǫn(−k) − ǫm(−k−q) − ω̌
−

−
1

V

∑

nm;k

2 fnk

〈umk+q|e
iGr|unk〉〈unk|e

−iG′r′ |umk+q〉

ǫmk+q − ǫnk − ω̌
. (2.34)
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Both, the one-particle energy and the occupation function, are symmetric with respect to
the crystal momentum k, so that ǫ−k = ǫk and f−k = fk. For the cell periodic part of the
wavefunction, u−k = u∗k holds. By means of these relations the response function can be
alternatively written as

χKS
G,G′(q, ω) = −

1

V

∑

nm;k

2 fnk 〈umk+q|e
iGr|unk〉〈unk|e

−iG′r′ |umk+q〉 ×

×

(
1

ǫmk+q − ǫnk − ω̌
+

1

ǫmk+q − ǫnk + ω̌

)
, (2.35)

where ω̌ has been defined in Eq. (2.16) as ω̌ = ω + iη.

2.3 Dielectric function - macroscopic continuum considera-

tions

The macroscopic dielectric function ε couples the total electric field E in a material to the
external electric field Eext:

E = ε−1 Eext. (2.36)

In general, ε is a 3×3 Cartesian tensor. For a (macroscopic) homogenous material, Eq. (2.36)
is a product in momentum and frequency space. If the external electric field is caused by
stationary external charges, the electric field can be described as a gradient of an electric
potential (longitudinal case), E = ∇φ, and the relation between these potentials and the
underlying charge densities is given by the Poisson equation: νφ = ên with the Coulomb-
kernel ν = 4πe2/q2. The mechanical potential v acting on the electrons is simply φ times the
unit charge ê. In momentum space and in the long-wavelength limit Eq. (2.36) can therefore
be reformulated as:

vtot = ε−1 vext, (2.37)

where vext is the potential caused by the external charge density next, whereas vtot = vext+vind

is the total, ”screened” potential generated by the external plus the induced charge density
nind. For weak external fields (linear response regime) one assumes that the induced charge
is proportional to the external or the total potential, respectively:

nind = χvext (χ= reducible polarizability) (2.38)

nind = P vtot (P= irreducible polarizability). (2.39)

The dielectric function ε and its inverse ε−1 can then be expressed as:

ε−1 =
vtot
vext

=
vext + vind

vext
= 1 + ν

nind

vext
= 1 + ν χ (2.40)

ε =
vext

vtot
=
vtot − vind

vtot
= 1− ν

nind

vtot
= 1− νP. (2.41)

Additionally a relation between the reducible and irreducible polarizability can be established:

1 = ε ε−1 = (1− ν P ) (1 + ν χ) = 1− ν P + ν χ− ν P ν χ = 1− ν(χ− P − Pνχ)→

χ = P + P ν χ (2.42)
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The relation between χ and P has the form of a Dyson equation and is similar to the relation
between χ and χKS which has been established in Eq. (2.14). According to Eq. (2.40) and
Eq. (2.41) the dielectric function can thus be calculated if the response of the system to a
change in the external or total potential is known.

A more detailed derivation will be given in Sec. 2.5. But first we will briefly describe
the relation between the macroscopic and the microscopic dielectric function, both times
following closely Ref. [20].

2.4 Macroscopic and microscopic quantities

In the present work, we will calculate the response function and the dielectric function for a
periodic system. For a periodic system, the response function is homogenous on a coarse scale
and the total macroscopic electric field follows the periodicity of the external perturbation,
but the microscopic total electric field additionally exhibits rapid oscillations on the scale of
the primitive cell. Therefore, the distinction between the macroscopic and the microscopic
dielectric function becomes important. More details can be found in Ref. [20]. The dielectric
function can be more formally written as:

E(r, ω) =

∫
d3r′ ε−1

mac(r− r′, ω)Eext(r
′, ω). (2.43)

Here E and Eext are the total and the external macroscopic electric fields that are connected
by the macroscopic dielectric function εmac. Because the material is homogenous from a
macroscopic point of view, the dielectric function depends only on the difference of the
positions. The microscopic total electric field e(r, t) has large oscillations on the atomic
scale. The corresponding microscopic dielectric function ε(r, t) fulfills:

e(r, ω) =

∫
d3r′ ε−1(r, r′, ω)Eext(r

′, ω). (2.44)

Because the macroscopic dielectric function only depends on the position difference, Eq. (2.43)
transfered to momentum space is simply

E(q, ω) = ε−1
mac(q, ω)Eext(q, ω). (2.45)

The microscopic dielectric function is only invariant under translations by a lattice vector

ε(r, r′, ω) =

∫
d3q′

(2π)3
d3q′′

(2π)3
eiq

′r ε(q′,q′′, ω) e−iq′′r′ =

=

∫
d3q′

(2π)3
d3q′′

(2π)3
eiq

′(r+R) ε(q′,q′′, ω)e−iq′′(r′+R) = ε(r + R, r′ + R, ω) (2.46)

so that the difference between q′ and q′′ has to be a reciprocal lattice vector. By setting
q′ = q + G and q′′ = q + G′, one may write:

e(q + G, ω) =
∑

G′

ε−1(q + G,q + G′, ω)Eext(q + G′, ω) =

=
∑

G′

ε−1
G,G′(q, ω)Eext(q + G′, ω). (2.47)
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The microscopic dielectric function is the quantity directly accessible in ab-initio calculations.
In order to evaluate the macroscopic dielectric function we link the macroscopic electric field
to the microscopic one:

E(R, ω) =
1

V

∫

V (R)
d3r e(r, ω) (2.48)

where V (R) indicates integration over the unit cell at (around) R. By Fourier transforming
the microscopic electric field, the macroscopic electric field can be expressed as:

E(R, ω) =
∑

G

∫

BZ

d3q

(2π)3
e(q + G, ω)

1

V

∫

V (R)
d3r ei(q+G)r. (2.49)

If one assumes that the external field varies on a much larger length scale than the atomic
distances (q≪ Gmin), the term eiqr can be placed in front of the unit cell integral:

E(R, ω) =
∑

G

∫

BZ

d3q

(2π)3
e(q + G, ω) eiqR 1

V

∫

V (R)
d3r eiGr =

∫

BZ

d3q

(2π)3
eiqR e(q, ω).(2.50)

On the other hand,

E(R, ω) =
∑

G

∫

BZ

d3q

(2π)3
ei(q+G)R E(q + G, ω). (2.51)

Comparison between Eq. (2.50) and Eq. (2.51) shows that the relationship between macro-
scopic and microscopic total electric field is

E(q + G, ω) = e(q, ω) δG,0. (2.52)

Because the external field Eext is macroscopic,

Eext(q + G, ω) = Eext(q, ω) δG,0, (2.53)

the relation between the macroscopic total and external field can be written as

E(q, ω) = e(q, ω) =
∑

G′

ε−1
0G′(q, ω)Eext(q, ω) δG′,0 = ε−1

00 (q, ω)Eext(q, ω). (2.54)

Combining Eq. (2.54) and Eq. (2.45) the relation between microscopic and macroscopic di-
electric function is given as:

ε−1
mac(q, ω) = ε−1

00 (q, ω)

εmac(q, ω) =
(
ε−1
00 (q, ω)

)−1
. (2.55)

The macroscopic dielectric function is therefore obtained by inverting the microscopic dielec-
tric function with respect to G,G′, taking the head (G = G′ = 0) of the resulting matrix
and inverting this 3 × 3 tensor. The fact that slowly varying external fields cause rapid
oscillations on the macroscopic scale and the resulting effect on the macroscopic dielectric
function are called local field effects. Only for materials that are also homogenous on the
microscopic scale (like the homogenous electron gas), the off-diagonal elements of ε−1

G,G′ are
zero and no local field effects are present:

εmac(q, ω) = ε00(q, ω). (2.56)

In many cases, the microscopic dielectric function is calculated by Eq. (2.56). This approxi-
mation is usually referred to as ”neglect of local field effects”.
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2.5 Longitudinal dielectric function

In Sec. 2.3 it has been sketched how to calculated the microscopic dielectric function. Here we
show in more detail how the longitudinal dielectric function can be calculated. A longitudinal
electric field E is parallel to the wave vector q. Related to this property is the requirement
that rotE = 0, and, as a consequence, E can be described as a gradient field resulting from
a scalar potential E = ∇φ, and ê∇E = 4πe2n [e2 = ê2/(4πε0)]. The potential caused by
the longitudinal electric field is given as v = êφ. Longitudinal fields result from only slowly
moving charges. Transversal electric fields, as e.g., electromagnetic waves in vacuum, obey
divE = 0 and the wave vector is perpendicular to the field vector. Nevertheless, for slowly
varying fields (q→ 0) the longitudinal and transversal components of the dielectric function
become equal (see Ref. [22] for a derivation of the transversal dielectric function). Considering
Eq. (2.47) and replacing the electric fields by the densities through the Poisson equation

i êqE(q) = 4πe2n(q) (2.57)

we obtain a direct relation between external and induced charge densities

next(q + G) =
∑

G′

(q + G) ε(q + G,q + G′)
(
q + G′

) next(q + G′) + nind(q + G′)

(q + G′)2
. (2.58)

In the present work we will concentrate on the longitudinal dielectric function εLL, which links
the longitudinal component of the external electric field to the longitudinal component of the
total electric field. For a longitudinal electric field the Poisson equation reads i ê |q| |EL(q)| =
4πe2n(q) and Eq. (2.58) becomes:

next(q + G) =
∑

G′

|q + G|εLL(q + G,q + G′)|q + G′|
next(q + G′) + nind(q + G′)

(q + G′)2
. (2.59)

In the following, we will denote the longitudinal part of the dielectric function εLL simply as
ε. By multiplying with the inverse of the dielectric function and using the Poisson equation
next(q + G) = (q + G)2vext(q + G)/(4πe2) [the Coulomb kernel νG,G′(q) is defined as
4πe2/(q + G)2δG,G′ ], the external density can be written as

∑

G′

[
ε−1(q + G,q + G′)− δG,G′

] |q + G| |q + G′|

4πe2
vext(q + G′) = nind(q + G). (2.60)

Taking the derivative with respect to the Fourier component vext(q + G′), the inverse of the
microscopic (symmetric1) dielectric function can be expressed as:

ε−1
G,G′(q, ω) := ε−1(q + G,q + G′, ω) = δG,G′ +

4πe2

|q + G||q + G′|

∂ nind(q + G, ω)

∂ vext(q + G′, ω)
. (2.61)

1There exists a slightly different definition of the longitudinal dielectric function (as e.g., used by Adler
[22] and Wiser [23]) where the term 4πe2/(|q + G||q + G′|) in Eq. (2.61) is replaced by the Coulomb kernel
νG,G′(q); in contrast to the present definition the dielectric function is then not symmetric anymore with
respect to G, G′
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By similar manipulations one finds that:

εG,G′(q, ω) := ε(q + G,q + G′, ω) = δG,G′ −
4πe2

|q + G||q + G′|

∂ nind(q + G, ω)

∂ vtot(q + G′, ω)
. (2.62)

These formulas have been written in a simplified way in Eq. (2.40) and Eq. (2.41). The
reducible polarizability (also density-density response function) χ and the irreducible polar-
izability (also screened response function) P are defined as

∂ nind(q + G, ω)

∂ vext(q + G′, ω)
=: χG,G′(q, ω)

∂ nind(q + G, ω)

∂ vtot(q + G′, ω)
=: PG,G′(q, ω). (2.63)

With νs
G,G′(q) := 4πe2

|q+G||q+G′| , the dielectric function and its inverse become:

ε−1
G,G′(q, ω) = δG,G′ + νs

G,G′(q)χG,G′(q, ω) (2.64)

εG,G′(q, ω) = δG,G′ − νs
G,G′(q)PG,G′(q, ω). (2.65)

By combining the last two equations, one finds that the density-density response function χ
and the screened response function P are connected by a Dyson like equation:

χG,G′(q, ω) = PG,G′(q, ω) +
∑

G1G2

PG,G1
(q, ω) νs

G1,G2
(q)χG2,G′(q, ω). (2.66)

In this section we have derived an expression for the longitudinal dielectric function (fol-
lowing closely the procedure in [20]) depending on the momentum transfer q caused by a
perturbation with frequency ω and spatial periodicity q. The transversal component of the
dielectric function is e.g., derived in the work by Adler [22].

2.6 Approximations

Because neither χ nor P are known for a general system, an approximation has to be consid-
ered in order to calculated the dielectric function. The quantity accessible in DFT calculations
is the independent particle response function χKS as defined in Eq. (2.33), which describes
the response of a system of independent electrons moving in an effective potential to a change
in this potential.

Two approximations for the calculation of the longitudinal dielectric function seem straight-
forward: On the one hand, χ could be replaced by χKS in Eq. (2.64), which is equivalent to
the assumption that the system responds to a change of the external potential like a system of
independent particles. On the other hand, the screened response function P can be replaced
by the KS response function χKS in Eq. (2.65). This procedure, which is called random
phase approximation (RPA) or Hartree approximation, has been shown to be more accurate
because it mimics the true reaction of the system as an independent particle response to the
screened potential, which guarantees that the electron-electron interaction is taken at least
partly into account. Within the random phase approximation, the dielectric function is given
as

ǫRPA
G,G′(q, ω) = δG,G′ − νs

G,G′(q)χKS
G,G′(q, ω). (2.67)
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An equation similar to Eq. (2.66) has been already established for the density response to
an external potential χ and the independent particle response to the effective KS potential
χKS in Eq. (2.14). Translated to momentum space Eq. (2.14) reads

χG,G′(q, ω) = χKS
G,G′(q, ω) +

+
∑

G1G2

χKS
G,G1

(q, ω)
(
νs
G1,G2

(q) + fxc,G1G2
(q, ω)

)
χG2,G′(q, ω). (2.68)

The term random phase approximation is also used if one neglects the exchange-correlation
kernel fxc(q, ω) in Eq. (2.68).

If going beyond the RPA, the dielectric function is evaluated from Eq. (2.65) and the
irreducible polarizability P is calculated using the relation1

PG,G′(q, ω) = χKS
G,G′(q, ω) +

∑

G1G2

χKS
G,G1

(q, ω) fxc,G1G2
(q, ω)PG2,G′(q, ω). (2.69)

An accurate description of the screened response function and consequently the dielectric
function therefore relies on a reasonable approximation for the exchange-correlation kernel
fxc. The most widely used approximation for the exchange-correlation kernel (beside the
random phase approximation) is the adiabatic local density approximation (ALDA), which
is also called time-dependent local density approximation, where the exchange-correlation
kernel fxc is approximated by a frequency independent, local expression

fALDA
xc (r1, r2) = δ(r1 − r2)

∂vLDA
xc (n)

∂n(r1)
. (2.70)

For localized systems, the ALDA seems to provide reasonable results (see e.g. Ref. [24]), but
it does not improve the description of the long-wavelength limit (q→ 0) of the macroscopic
dielectric function in extended systems. One possibility to calculate the macroscopic dielectric
function is to evaluate the head of the inverse of the microscopic dielectric function as given
in Eq. (2.64), and the required reducible polarizability χ by Eq. (2.68). It can be shown that
the ALDA exchange-correlation kernel approaches a finite value as q→ 0, while the Coulomb
kernel diverges as 1/|q|2. The influence of the exchange-correlation kernel thus vanishes in
the long-wavelength limit for the ALDA, which is known to be incorrect (e.g. excitonic effects
are not accounted for).

2.7 Calculation of optical properties

In this section the calculation of the response function and the dielectric function in the
VASP code will be addressed. Both the response function and the dielectric function are
represented in reciprocal space and the projector augmented-wave method (PAW) is used.

1Eq. (2.66), Eq. (2.68), and Eq. (2.69) can be formulated in a more convenient way by multiplying the
equations from the right and the left by the inverse of the contributing response functions. The equations
then read: P−1 = χ−1 + ν [Eq. (2.66)], (χKS)−1 = χ−1 + (ν + fxc) [Eq. (2.68)], (χKS)−1 = P−1 + fxc

[Eq. (2.69)]. These equations can be easily derived by the relations between the external, total, induced, and
effective KS potential.
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The present summary follows closely the publication by Gajdoš et al. [21] and Shishkin et
al. [25].

In part II of this thesis, the dielectric function of surfaces will be calculated. If one
assumes that the response to the screened external perturbation, P , equals the independent
particle response function χKS as given in Eq. (2.35), namely if one applies the random phase
approximation, the dielectric function is given by [see Eq. (2.67)]:

εG,G′(q, ω) = εRPA
G,G′(q, ω) = δG,G′ −

4πe2

|G + q||G′ + q|
χKS

G,G′(q, ω). (2.71)

For the reflectance difference spectra the long-wavelength macroscopic dielectric function
ε∞(q̂, ω) = 1/(limq→0 ε

−1
0,0(q, ω)), which describes the response of a material to a perturbation

with slow spatial variations, has to be calculated. We will, in the following, neglect local field
effects (see section 2.5) and will evaluate the macroscopic dielectric function directly from
the head of the microscopic dielectric function:

εmac(q̂, ω) ≈ lim
q→0

ε00(q, ω) = 1− lim
q→0

4πe2

q2
χKS

0,0 (q, ω). (2.72)

Within these approximations the imaginary part of the dielectric function (ε = ε(1) + iε(2)),
the absorption spectrum ε(2)(ω), can be evaluated as a sum over δ-like peaks (Lorentzian
peaks with width η, respectively) at transition energies ω = ǫmk − ǫnk, which are weighted
by the transition probability |〈umk+q|unk〉|

2:

ε(2)(q̂, ω) =
4π2e2

V
lim
q→0

1

q2

∑

nm
k

2 fnk |〈umk+q|unk〉|
2 ×

×[δ(ǫmk − ǫnk − ω)− δ(ǫmk − ǫnk + ω)]. (2.73)

While q→ 0, the dielectric function ε(2) still depends on the direction of q, described by the
unit vector q̂ = q/|q|. One can introduce the dielectric tensor εαβ by setting:

ε(2)(q̂, ω) =:
∑

α,β

q̂α ε
(2)
αβ(q̂, ω) q̂β . (2.74)

The imaginary part of the dielectric function is then fully described by the Cartesian tensor
εαβ

ε
(2)
α,β(q̂, ω) =

4π2e2

V
lim
q→0

1

q2

∑

nm
k

2 fnk 〈umk+eαq|unk〉〈unk|umk+eβq〉 ×

×[δ(ǫmk − ǫnk − ω)− δ(ǫmk − ǫnk + ω)]. (2.75)

Often, only interband transitions (n 6= m) are considered in Eq. (2.75). For metals, where
partially occupied states exist, also transitions within one band are possible. These tran-
sitions, referred to as intraband transitions, are discussed in more detail at the end of this
section. For metals, they lead to the so called Drude term, which is responsible for the large
metallic screening at small frequencies and small wavevectors q and is determined by the
intraband plasma frequency.
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The calculation of the real part of the dielectric function ε(1) is performed by a Hilbert
transformation:

ε(1)(ω) = 1 +
2

π
P

∫ ∞

0

ε(2)(ω′)ω′

ω′2 − ω2
dω′, (2.76)

resulting in

ε(1)(q̂, ω) = 1 +
4πe2

V
lim
q→0

1

q2

∑

nm
k

2 fnk |〈umk+q|unk〉|
2 ×

×

(
1

ǫmk − ǫnk − ω
+

1

ǫmk − ǫnk + ω

)
, (2.77)

or in tensor form

ε
(1)
αβ(q̂, ω) = 1 +

4πe2

V
lim
q→0

1

q2

∑

nm
k

2 fnk 〈umk+eαq|unk〉〈unk|umk+eβq〉 ×

×

(
1

ǫmk − ǫnk − ω
+

1

ǫmk − ǫnk + ω

)
. (2.78)

2.7.1 PAW response function

For the calculation of the response function as given in Eq. (2.33) and Eq. (2.35), the tran-
sition probabilities

〈umk+q|e
iGr|unk〉 =

∫

V
d3reiGr u∗mk+q(r)unk(r) =

∫

V
d3ei(G+q)r ψ∗

mk+q(r)ψnk(r) = 〈ψmk+q|e
i(G+q)r|ψnk〉 (2.79)

have to be evaluated. For this reason, we introduce B (instead of the index m we write n′ in
order to avoid confusion with the magnetic quantum number m which will be used later):

Bn′k+q,nk(r) = eiqr ψ∗
n′k+q(r)ψnk(r). (2.80)

In the PAW method, the all-electron (AE) wavefunction |ψnk〉 is separated into a pseudo
(PS) wavefunction |ψ̃nk〉 and on-site terms expanded into AE partial waves |φi〉 and PS
partial waves |φ̃i〉 as introduced in subsection 1.3.2 [see Eq. (1.20)]. Here the k-dependent
projector functions |p̃ik〉, as used in VASP,

|p̃ik〉 = e−ik(r−Ri)|p̃i〉. (2.81)

are additionally defined where Ri is the position of the ion i. The coefficient of the expansion
with respect to AE and PS partial waves is consequently given by

〈p̃i|ψ̃nk〉 = eikRi 〈p̃ik|ũnk〉. (2.82)
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Within the PAW framework B can be written as

Bn′k+q,nk(r) = ũ∗n′k+q(r)ũnk(r) +

+
∑

ij

〈ũn′k+q|p̃ik+q〉 〈p̃jk|ũnk〉 e
iq(r−Ri)

[
φ∗i (r)φj(r)− φ̃

∗
i (r)φ̃j(r)

]
(2.83)

where we have used that the PS wavefunction |ψ̃nk〉 equals
∑

i〈pi|ψ̃nk〉|φ̃i〉 inside Ωa. The
first part of Eq. (2.83) is a relatively smooth function and is represented on a regular, plane
wave grid. The second term in Eq. (2.83) exhibits rapid oscillations because it is related
to the difference between AE and PS partial waves Qij(r) = φ∗i (r)φj(r) − φ̃∗i (r)φ̃j(r). It is
usually described on a radial grid around the ions. A transformation of this term to the
regular grid would require a very dense plane wave grid or a very high plane wave cutoff,
respectively. For the head (G + q → 0 and G′ + q → 0) and the wings (G + q → 0 or
G′ +q→ 0) of the dielectric function, the on-site terms are correctly taken into account (see
Sec. 2.7.2). For the body of the polarizability some approximations to Eq. (2.83) have to be
applied:
By default B is approximated by

Bn′k+q,nk(r) = ũ∗n′k+q(r)ũnk(r) +
∑

ij,lm

〈ũn′k+q|p̃ik+q〉 〈p̃jk|ũnk〉 e
iq(r−Ri) Q̂lm

ij (r). (2.84)

where Q̂lm
ij (r) [see Eq. (1.26)] and Qij(r) have the same monopole/multipole moments lm

but their shapes do not coincide. Per construction, Q̂lm
ij (r) is smooth and can be easily

represented on a regular grid. This construction allows the accurate calculation of electro-
static (Hartree) energies, but it does not suffice to obtain very accurate dielectric functions
εG,G′(q, ω). A more sophisticated treatment of the augmentation charges is possible by try-
ing to conserve the Fourier development of the charge density at small Fourier components
q. In this case, not only the correct moments but also the shape of the augmentation charge
Qij(r) is approximatively reproduced. For each momentum number (lm) accessible:

m = mi +mj, l = |li − lj |, |li − lj |+ 2, . . . , li + lj (2.85)

an additional function ∆Qlm
ij (r) = ∆gij

l (|r−R|)YL( ̂r−R) is introduced. The radial function

∆gij
l (r) is written as a sum of spherical Bessel functions

∆gij
l (r) =

∑

i

jl(qi r)αij . (2.86)

The coefficients are chosen such that the multipole lm vanishes and that the Bessel transform
of ∆gij

l (r) is the same as the Bessel transform of Qij(r)− Q̂ij(r) at q = 6 Å−1 (70 eV). In a
calculation such an improved describtion of the response function can be selected by setting
LMAXFOCKAE in the INCAR file. The value of LMAXFOCKAE specifies the maximal
angular momentum number l up to which this correction is applied. As values up to li+lj can
occur, LMAXFOCKAE should be chosen larger if partial waves with high angular momentum
numbers exist. With the LMAXFOCKAE correction B is approximated as

Bn′k+q,nk(r) = ũ∗n′k+q(r)ũnk(r) +

+
∑

ij,lm

〈ũn′k+q|p̃ik+q〉 〈p̃jk|ũnk〉 e
iq(r−Ri)

(
Q̂lm

ij (r) + ∆Qlm
ij (r)

)
. (2.87)
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For both, GW calculations (part III) and the evaluation of the RPA-ACFDT correlation
energy (part IV), setting LMAXFOCKAE leads to noticeable changes in the resulting spectra
and energies and therefore will, except for test calculations, be set throughout the following
sections.

2.7.2 Long-wavelength dielectric function

For the head (G + q andG′ + q→ 0) and the wings (G + q orG′ + q→ 0) of the dielectric
function (and νχ) the direct multiplication of the response function with the Coulomb kernel
leads to a division by zero. Due to this reason, the behavior of 〈un′k+q|e

iGr|unk〉 for G = 0
and q→ 0 will be expanded with respect to q in the following. More details concerning the
implementation in VASP can be found again in Ref. [21]. For the calculation of

lim
q→0
〈Ψn′k+q|e

iqr|Ψnk〉 = lim
q→0

∫

V
d3r Bn′k+q,nk(r), (2.88)

the phase factor eiq(r−Ri) in Eq. (2.83) can be expanded to first order in q:

eiq(r−Ri) = 1 + iq(r−Ri) + O(q2). (2.89)

This leads to

lim
q→0
〈Ψn′k+q|e

iqr|Ψnk〉 = 〈ũn′k+q|ũnk〉+
∑

ij

〈ũn′k+q|p̃ik+q〉qij〈p̃jk|ũnk〉+ (2.90)

+iq
∑

ij

〈ũn′k+q|p̃ik+q〉~τij〈p̃jk|ũnk〉, (2.91)

where qij and ~τij are short notations for the difference of the norm and the dipole moments
of the AE and PS partial waves:

qij =

∫

Ωa

[
φ∗i (r)φj(r)− φ̃

∗
i (r)φ̃j(r)

]
d3r (2.92)

~τij =

∫

Ωa

(r−Ri)
[
φ∗i (r)φj(r)− φ̃

∗
i (r)φ̃j(r)

]
d3r. (2.93)

In a next step, ũnk(r) is expanded for small values of the momentum q:

ũnk+q(r) = ũnk(r) + q∇kũnk(r) + O(q2). (2.94)

For the k-dependent projector functions p̃ik [see Eq. (2.81) and Eq. (2.89)] one obtains:

|p̃ik+q〉 = [1− iq(r−Ri)] |p̃ik〉+ O(q2). (2.95)

Applying these two expansions we find:

lim
q→0
〈Ψn′k+q|e

iqr|Ψnk〉 = 〈un′k(r)|


1 +

∑

ij

|p̃ik〉qij〈p̃jk|


 |unk(r)〉+ |q|〈q̂~βn′k|ũnk〉, (2.96)
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with

|~βnk〉 =


1 +

∑

ij

|p̃ik〉qij〈p̃jk|


 |∇kũnk〉+

i


∑

ij

|p̃ik〉qij〈p̃jk|(r−Ri)


 |ũnk〉 − i

∑

ij

|p̃ik〉~τij〈p̃jk|ũnk〉. (2.97)

Due to the orthogonality relation between the PS wavefunctions (see Sec. III A in [15]), the
first term on the right hand side of Eq. (2.96) is zero so that the final expression becomes:

lim
q→0
〈Ψn′k+q|e

iqr|Ψnk〉 = |q|〈q̂~βn′k|ũnk〉, (2.98)

and is consequently linear in |q|. Because always a product of two terms like Eq. (2.98)
occurs, the 1/q2 term resulting from the Coulomb kernel is canceled. The derivative of the
cell periodic part of the PS wavefunctions |∇kũnk〉 is calculated using first-order perturbation
theory. For more details see Section II F in Ref. [21].

2.8 Intraband transitions and the plasma frequency

In the previous section, the calculation of the long-wavelength dielectric function was dis-
cussed. But only interband transitions, i.e., transitions between different bands n 6= m have
been considered. For semiconductors and insulators this accounts for all possible transitions,
because every band is either fully occupied (f = 1) or fully unoccupied (f = 0) and therefore
transitions within one band do not occur.

For metallic systems there exists a non-vanishing probability that an electron is excited
from one state below the Fermi level to a state above the Fermi level both belonging to one
and the same band. These transitions are called intraband transitions and lead to the so
called Drude term for the long-wavelength limit.

The calculation of intraband contributions for q 6= 0 does not lead to any complications
and the same treatment as discussed in the previous section can be applied. But for the
long-wavelength limit q → 0, the head of the dielectric function G = G′ = 0 (which equals
the macroscopic dielectric function if local field effects are neglected)

ε
(1)
intra(q̂, ω) =

4πe2

V
lim
q→0

1

q2

∑

n,k

2 fnk |〈unk+q|unk〉|
2 ×

×

(
1

ǫnk+q − ǫnk − ω
+

1

ǫnk+q − ǫnk + ω

)
(2.99)

becomes indefinite because 1/q2 →∞ and at the same time the term in parenthesis goes to
zero (−1/ω + 1/ω → 0). To avoid this indefiniteness, all quantities depending on q will be
expanded around q = 0. For the transition probability 〈unk+q|unk〉 one finds that

〈unk+q|unk〉 = 〈unk|unk〉+ q 〈∇kunk|unk〉+ O(q2) = 1 + O(q2), (2.100)
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because ∇kunk is orthogonal to unk and 〈unk|unk〉 = 1. Using ∆ωk;q = ǫnk+q − ǫnk and
considering ∆ωk;q ≪ ω the term in parenthesis in Eq. (2.99) can be approximated as

1

∆ωk;q − ω
+

1

∆ωk;q + ω
= (2.101)

=
1

ω

(
−

(
1 +

∆ωk;q

ω

)
+

(
1−

∆ωk;q

ω

)
+ O(

∆ω2
k;q

ω2
)

)
≈ −

2∆ωk;q

ω2
. (2.102)

A Taylor expansion of ∆ωk;q gives

∆ωk;q = ǫnk+q − ǫnk = q∇kǫnk +
1

2
q2∇2

kǫnk + O(q3). (2.103)

Only terms symmetric in k contribute to the k-point sum in Eq. (2.99), so that the term
∇kǫnk can be neglected. By inserting the expanded terms in Eq. (2.99), the head of the
long-wavelength intraband dielectric function becomes:

ε
(1)
intra(q̂, ω) = −

1

ω2

4πe2

V

∑

n,k

2 fnk∇
2
k ǫnk, (2.104)

or in tensor form:

ε
(1)
α,β
intra

(ω) = −
1

ω2

4πe2

V

∑

n,k

2 fnk

∂2ǫnk

∂kα∂kβ
. (2.105)

The real part of the intraband dielectric function, therefore, only depends on the frequency
of the incident light ω and on the energy dispersion. The material specific prefactor is called
plasma frequency (tensor) and is defined as:

ω̄2
αβ :=

4πe2

V

∑

nk

2 fnk

∂2ǫnk

∂kα∂kβ
. (2.106)

Using this definition, the real part of the intraband dielectric function is given as:

ε
(1)
α,β
intra

(ω) = −
ω̄2

αβ

ω2
. (2.107)

In practice, the expression Eq. (2.106) for the plasma frequency is not that convenient to
calculate, because it includes second derivatives of the energy. Therefore, we make use of
the Green’s theorem for periodic functions (see e.g. Ref. [26]) which states that for u(k) and
v(k) being periodic functions in reciprocal space:

∫

BZ
d3k u(k)∇v(k) = −

∫

BZ
d3k v(k)∇u(k) (2.108)

∫

BZ
d3k u(k)∇2v(k) =

∫

BZ
d3k v(k)∇2u(k). (2.109)
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As special cases one finds:
∫

BZ
d3k u(k)∇2v(k) = −

∫

BZ
d3k∇u(k)∇v(k) (2.110)

∫

BZ
d3k∇2u(k) = 0. (2.111)

If we set fnk = f(ǫn(k)) to u(k) and ǫnk = ǫn(k) to v(k), we can reformulate Eq. (2.106) by
considering:
∫

BZ
d3k f(ǫn(k))∇2ǫn(k) =(2.110) −

∫

BZ
d3k

∂f(ǫn(k))

∂k
∇ǫ(k) = (2.112)

=

∫

BZ
d3k

(
−
∂f(ǫn)

∂ǫn

)
(∇ǫ(k))2

and write

ω̄2
αβ = −

4πe2

V

∑

nk

2
∂f(ǫn)

∂ǫn

(
eα
∂ǫn(k)

∂k

)(
eβ
∂ǫn(k)

∂k

)
. (2.113)

Due to relation Eq. (2.111) it can be furthermore shown that fully occupied bands to not
contribute to the plasma frequency. We can see this also from Eq. (2.113), if we consider
that the occupation function f has a non-vanishing derivative only in the case of partially
filled bands. It is also evident that contributions from fully occupied bands vanish because
we presently consider only intraband transitions and excitations within a fully occupied band
are not possible. Instead of

∑
n,k in Eq. (2.113) we can thus safely write

∑
n−pf,k (pf =

partial filled bands).
In the case of an ideal, free Fermi gas, the plasma frequency is a scalar and Eq. (2.106)

and Eq. (2.113) reduce to the Drude plasma frequency

ω̄2
Drude =

4πe2n h̄2

m
, (2.114)

and the strength of the optical response thus only depends on the electron density n. Gen-
erally, the plasma frequency of every metal can be written in a Drude like form

ω̄2
αβ =

4πe2n h̄2

m∗
αβ

(2.115)

by introducing the tensor m∗
αβ

1

m∗
αβ

=
1

N h̄2

∑

nk

2 fnk

∂2ǫnk

∂kα∂kβ
. (2.116)

and setting N to the number of valence electrons per unit cell volume. Often the factor
m∗/m is quoted instead of the plasma frequency ω̄. The quantity defined in Eq. (2.116) is
referred to as optical or effective mass, but should not be mixed up with the effective mass
tensor:

1

Mαβ
=

1

h̄2

∂2ǫ(k)

∂kα∂kβ
. (2.117)
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The equality only holds, if the tensor defined in Eq. (2.117) does not depend on k, which is
the case for a quadratic dependence of ǫ on the crystal momentum k.

In the following, the relation between the real plasma frequency of a material (calculated
within the independent particle approach) and the corresponding Drude plasma frequency
will be discussed in more detail. By using second order perturbation theory, the second
derivative of the energy can be evaluated by:

1

2

∂2ǫnk

∂k2
=
∑

m6=n

|〈umk|H
1|unk〉|

2

ǫnk − ǫmk

+ 〈umk|H
2|unk〉. (2.118)

with

H1 =
∂H

∂k
H2 =

1

2

∂2H

∂k2
(2.119)

and unk and ǫnk being the unperturbed wavefunctions and eigenenergies. The Hamiltonian
H(k) for the cell periodic wave function is given as:

H(k) = −
h̄2

2m
(∇+ ik)2 + V (r), (2.120)

if we assume a local potential V (r). In the PAW method the expressions become more
complicated (see also [21]), but this will not be discussed here. With the Hamiltonian in
Eq. (2.120) the second derivative of the one-electron energy can be approximately written
as:

∂2ǫnk

∂kα ∂kβ
=

2h̄4

m2

∑

m6=n

〈umk|(kα − i∇α)|unk〉〈unk|(kβ − i∇β)|umk〉

ǫnk − ǫmk

+
h̄2

m
〈unk|unk〉. (2.121)

Assuming α being a principle axes and making use of 〈unk|unk〉 = 1 the tensor element ω̄αα

can be expressed as:

ω̄2
αα =

8πe2h̄4

V m2

∑

n−pf k

∑

m6=n

2 fnk

|〈umk|(kα − i∇α)|unk〉|
2

ǫnk − ǫmk

︸ ︷︷ ︸
+

4πe2nval h̄
2

m︸ ︷︷ ︸

= −A + ω̄2
Drude(nval). (2.122)

The independent particle plasma frequency ω̄2
αα therefore equals the Drude plasma frequency,

ω̄2
Drude, minus a correction term A. The correction term A is positive, because for every pair

of occupied states n = i and m = j also the pair n = j and m = i appears in the sum
in Eq. (2.122), and the corresponding terms are equally large but have opposite signs. The
only contributing terms are transitions from occupied bands n to unoccupied bands m, so
that ǫnk − ǫmk < 0 and consequently A > 0. The independent particle plasma frequency is
therefore always smaller than the corresponding Drude like one. Because all contributions
from fully occupied bands vanish, one can also consider the sum over all bands in Eq. (2.122):

ω̄2
αα =

8πe2h̄4

V m2

∑

nk

∑

m6=n

2 fnk

|〈umk|(kα − i∇α)|unk〉|
2

ǫnk − ǫmk

︸ ︷︷ ︸
+

4πe2nall h̄
2

m︸ ︷︷ ︸

= −Aall + ω̄2
Drude(nall). (2.123)
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This result will be used later for relating the interband and the intraband dielectric functions
by the so called f -sum rule.

The imaginary part of the intraband dielectric function ε(2) is obtained by a Kramers-
Kronig transformation:

ε
(2)
α,β
intra

= −π ω̄2
αα

∂δ(ω)

∂ω
(2.124)

and has therefore non-vanishing elements only in the vicinity of ω = 0. As electron-electron
and electron-phonon scattering are neglected in the present theoretical approach, the ex-
perimental absorption due to intraband excitations is non-vanishing also for ω > 0. By
introducing the relaxation time τ , which in a semi-classical model gives the average time
between collisions, the real and imaginary part of the intraband dielectric function can be
written as:

ε(1)(ω) = 1−
ω̄2τ2

1 + ω2τ2
(2.125)

ε(2)(ω) = ω̄2τ/(ω(1 + ω2τ2)). (2.126)

So far, we have always considered the head (G = G′ = 0) of the long-wavelength dielec-
tric function. The body (G 6= 0 and G′ 6= 0) and the wing (G = 0 or G′ = 0) of the
long-wavelength intraband dielectric function are both zero. For the wing, the part result-
ing from the Coulomb kernel, 1/q2, is replaced by 1/(|q||G + q|) and |〈unk+q|unk〉|

2 by
〈unk+q|unk〉〈unk|e

iGr|unk+q〉 in Eq. (2.99). For sufficiently small frequencies ω the eigenen-
ergy term stays the same as in Eq. (2.103), and depends quadratically on q. Because neither
〈unk+q|unk〉 nor 〈unk|e

iGr|unk+q〉 approach zero the wing vanishes like q2/q = q. The body
decays as q2, which can be shown by analogous considerations.

2.9 f-sum rule and interband transitions at small energies

The f -sum rule states that
∫ ∞

0
dω ω ε(2)(ω) =

∫ ∞

0
dω ω [ε

(2)
inter(ω) + ε

(2)
intra(ω)] =

2π2e2nall

m
=
π

2
ω̄2

Drude(nall) (2.127)

and thereby couples the interband and intraband dielectric function. In order to prove
Eq. (2.127) we consider the interband dielectric function as defined in Eq. (2.73) and rewrite
the expression |〈umk+q|unk〉|

2 using perturbation theory. In a first step, the term umk+q is
Taylor expanded

umk+q = umk + q∇kumk + O(q2) (2.128)

and using the orthogonality of wavefunctions umk and unk, 〈umk+q|unk〉 becomes

〈umk+q|unk〉 ≈ q〈∇k umk|unk〉. (2.129)

The scalar product 〈∇k umk|unk〉 is within first order perturbation theory given by

〈∇k umk|unk〉 =
〈umk|∇kH|unk〉

ǫmk − ǫnk

. (2.130)
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Assuming the same local Hamiltonian as in Eq. (2.120), the long-wavelength interband di-
electric function can be expressed as [see Eq. (2.75)]:

ε
(2)
inter(ω) =

4π2e2

h̄2V

h̄4

m2

∑

nk

∑

m6=n

2fnk

|〈umk|(k + i∇)|unk〉|
2

|ǫmk − ǫnk|2
×

×[δ(ǫmk − ǫnk − ω)− δ(ǫmk − ǫnk + ω)]. (2.131)

Integration of ω ε
(2)
inter(ω) from zero to infinity results in

∫ ∞

0
dω ω ε

(2)
inter(ω) =

4π2e2

h̄2V

h̄4

m2

∑

nk

∑

m6=n

2 fnk

|〈umk|(k + i∇)|unk〉|
2

|ǫmk − ǫnk|2
(ǫmk − ǫnk) =

=
4π2e2

h̄2V

h̄4

m2

∑

nk

∑

m6=n

2 fnk

|〈umk|(k + i∇)|unk〉|
2

ǫmk − ǫnk

=
π

2
Aall (2.132)

where Aall already occurred as part of the intraband plasma frequency in Eq. (2.123). Com-
bining Eq. (2.124) and Eq. (2.123) results in

∫ ∞

0
dω ω ε

(2)
intra(ω) =

π

2
ω̄2 = −

π

2
Aall +

π

2
ω̄2

Drude(nall). (2.133)

and consequently
∫ ∞

0
dω ω ε(2)(ω) =

π

2
Aall +

(
−
π

2
Aall +

π

2
ω̄2

Drude(nall)
)

=
π

2
ω̄2

Drude(nall). (2.134)

For the proof of the f -sum rule we have made use of the locality of the external potential
entering the Hamiltonian. If the PAW method is used, the f -sum rule does not (exactly)
hold anymore.

The concepts used for the proof of the f -sum rule remain relevant when discussing in-
terband transitions between states with small energy differences. Whereas the f -sum rule
only states that the integrated intraband and interband dielectric function sums up to a
fixed value, for interband transitions between bands with small energy differences it can be
furthermore shown that the intra- and interband dielectric functions themselves are coupled
to each other. We start from the real part of the interband dielectric function:

ε
(1)
inter(ω) = 1 +

4πe2

V
lim
q→0

1

q2

∑

nk

∑

m6=n

2 fnk |〈umk+q|unk〉|
2 ×

×

(
1

ǫmk − ǫnk − ω
+

1

ǫmk − ǫnk + ω

)
. (2.135)

We now consider interband transitions between states near the Fermi edge with small energy
differences. The contributing states are given the indices n′ and m′. For frequencies much
larger than the energy difference (∆ǫ = ǫm′k− ǫn′k ≪ ω) the eigenenergy term in Eq. (2.135)
can be expanded [see Eq. (2.101)]. The transition probability |〈um′k+q|un′k〉|

2 is reformulated
using perturbation theory [Eq. (2.129)] so that the interband dielectric function for small
transition energies ǫm′k − ǫn′k reads:

ε
(1)
inter

∆ǫ≪ω

(ω) = 1−
1

ω2

8πe2

h̄2V

h̄4

m2
2 fn′k

|〈um′k|(k + i∇)|un′k〉|
2

ǫm′k − ǫn′k

= 1−
An′m′

ω2
. (2.136)
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The interband dielectric function resulting from transitions between states with small energy
differences therefore exhibit the same behavior as the intraband dielectric function with a
squared ”plasma frequency” of An′m′

. Because the intraband plasma frequency is

ε
(1)
intra(ω) = −

ω̄2
Drude(nall)−A

all

ω2
(2.137)

and An′m′

is one contribution to Aall, interband transitions between bands with small energy
differences result in a reduction of the intraband plasma frequency with respect to the Drude
plasma frequency. This is in essence a consequence of the f -sum rule.



Chapter 3

Total energies from linear response
theory

In most density functional theory calculations, the exchange-correlation energy Exc is ap-
proximated within the LDA [Eq. (1.11)] or GGA [Eq. (1.12)] (e.g., using the PBE exchange-
correlation functional). This results in a fast method for calculating ground state properties
for a large variety of systems. Nevertheless, LDA and PBE can not provide chemical accuracy
(0.05 eV) for atomization energies, and bond lengths are too small in LDA (≈ 1−2%) and
too large in PBE (≈ 1%). Negative ions are not or much too weakly bound within LDA and
PBE which is related to the wrong asymptotic behavior of the exchange potential caused by
the (semi)local approximation. Furthermore, long-range correlation effects, as the van der
Waals interaction between distant fragments, are neither included in the LDA nor GGA de-
scription. This can be easily seen from the fact that for both, LDA and PBE, no correlation
contributions arise from two fragments with non-overlapping densities. The introduction of
functionals that partly include exact exchange (e.g., PBE0) can not cure this failure in the
description of the long-range contribution to the correlation energy.

This has initiated efforts to find a more fundamental expression for the (exchange)-
correlation energy than given by the LDA, GGA, or hybrid functionals. In this chapter,
we will introduce the adiabatic connection dissipation-fluctuation theorem (ACFDT). This
theorem provides a possibility to calculate the energy of an interacting electron system (and
especially the complicated part of this energy, the correlation energy) by the knowledge of the
answer of this system to an external perturbation as described by the response function of
the system. The knowledge of the response function as provided within TDDFT, therefore,
also includes an access to the total energy of a system and an improved approximation of
the DFT exchange-correlation energy. In the TDDFT context, Refs. [27, 28, 29] (late 1970s)
are cited as the original ACFDT papers. Nevertheless, this approach is closely connected to
total energy calculation within many-body perturbation theory (MBPT) going back to the
work by Pines and Nozières [19] and to coupled cluster theory routinely used by quantum
chemists [30].
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3.1 Adiabatic connection dissipation-fluctuation theorem

In the Kohn-Sham density functional theory (see section 1.2) the problem of interacting
electrons is mapped onto a system of non-interacting electrons moving in an effective (local)
potential. In the Hamiltonian assigned to the KS system, therefore, the electron-electron in-
teraction operator is set to zero, and a modified external potential is introduced such that the
KS density and energy correspond to the one of the fully interacting system. The aim of the
adiabatic connection fluctuation-dissipation theorem (ACFDT) is to find an exact expression
for the exchange-correlation energy Exc by smoothly switching the electron-electron interac-
tion from 0 (KS system) to 1 (fully interacting system). In subsection 3.1.1, it will be shown
that the exchange-correlation energy can be expressed as an integral over the expectation
value of the electron-electron interaction when going from the non-interacting KS system to
the fully interacting system. The expectation value can be related to the response function
of the corresponding system as will be derived in subsection 3.1.2. The results of TDDFT
can be used to evaluate the response function of the interacting system. In the present case,
we apply the random phase approximation (RPA) and the expression of the RPA correlation
energy will be reported in Sec. 3.2.

3.1.1 Adiabatic connection

In this subsection, we will discuss how to find an expression for the exchange-correlation
energy by introducing a set of systems interacting via the Hamiltonian

Ĥ(λ) = T̂ + V̂ (λ) + λ V̂ee. (3.1)

The coupling constant λ thereby determines the strength of the electron-electron interaction
V̂ee =

∑
i<j e

2/|ri − rj |. The local potential vλ(r) underlying the operator V̂ (λ) =
∑

i vλ(ri)
is chosen as to keep the groundstate density of the λ system at the same value as the density
of the fully interacting system. For λ = 1, the fully interacting Hamiltonian Ĥ(1) is recovered
and by considering V̂ (1) =

∑
i vext(ri), the ground state energy is given by

E = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 = 〈Ψ(1)|T̂ + V̂ee + V̂ (1)|Ψ(1)〉 = 〈Ψ(1)|T̂ + V̂ee|Ψ(1)〉 +Eext, (3.2)

with the (fully) interacting ground state wavefunction Ψ(1). For λ = 0, Ĥ(0) becomes the
KS Hamiltonian and Ψ(0) the KS wavefunction, a single Slater determinant. The respective
local potential is V̂ (0) =

∑
i vKS(ri) [see Eq. (1.5)]. The energy of the KS system can be

expressed as

E = 〈Ψ(0)|Ĥ(0)|Ψ(0)〉 = 〈Ψ(0)|T̂ + V̂ (0)|Ψ(0)〉 = Ts + EH + Eext + Exc. (3.3)

By combining Eq. (3.2) and Eq. (3.3), the Hartree and exchange-correlation energy can
therefore be written as

EH +Exc = E − Eext − Ts =

= 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 − 〈Ψ(1)|V̂ (1)|Ψ(1)〉 − 〈Ψ(0)|Ĥ(0)|Ψ(0)〉 + 〈Ψ(0)|V̂ (0)|Ψ(0)〉 =

=

∫ 1

0
dλ

d

dλ

(
〈Ψ(λ)|Ĥ(λ)|Ψ(λ)〉 − 〈Ψ(λ)|V̂ (λ)|Ψ(λ)〉

)
. (3.4)
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Because Ψ(λ) is an eigenstate of Ĥ(λ) one can make use of the Hellmann-Feynmann theorem
and rewrite the first integrand of Eq. (3.4) as

d

dλ
〈Ψ(λ)|Ĥ(λ)|Ψ(λ)〉 = 〈Ψ(λ)|

dĤ(λ)

dλ
|Ψ(λ)〉 = 〈Ψ(λ)|V̂ee|Ψ(λ)〉 + 〈Ψ(λ)|

dV̂ (λ)

dλ
|Ψ(λ)〉. (3.5)

Because n(r) does not depend on λ the second part of the integrand in Eq. (3.4) can be
reformed to

d

dλ
〈Ψ(λ)|V̂ (λ)|Ψ(λ)〉 =

d

dλ

∫
d3r n(r) vλ(r) =

=

∫
d3r n(r)

dvλ(r)

dλ
= 〈Ψ(λ)|

dV̂ (λ)

dλ
|Ψ(λ)〉. (3.6)

Inserting Eq. (3.5) and Eq. (3.6) in Eq. (3.4) results in a Hartree-exchange-correlation energy,
which is given as a coupling constant integral over the expectation value of the electron-
electron Coulomb interaction V̂ee:

EHxc =

∫ 1

0
dλ 〈Ψ(λ)|V̂ee|Ψ(λ)〉. (3.7)

A main achievement is that this expression circumvents any reference to the kinetic energy
operator, and thus the need for an explicit construction of the one-particle density matrix
[Eq. (10)] is entirely avoided.

3.1.2 Fluctuation-dissipation theorem

The fluctuation-dissipation theorem [31] states that the response of a system to a small ex-
ternal perturbation described by the linear response properties of the system is the same as
its response to a spontaneous fluctuation. The fluctuation-dissipation theorem is a general
one and has many examples in thermodynamics. In our case, the fluctuation is a density fluc-
tuation within the system, and the external perturbation a small time-dependent additional
potential that creates a density response described by the density-density response function
χ [as e.g., introduced in Eq. (2.23)]. After applying the fluctuation-dissipation theorem, the
exchange-correlation energy can be written as (see proof below):

Exc = −
e2

2

∫ 1

0
dλ

∫
d3r d3r′

1

|r− r′|

{
n(r) δ(r − r′) +

1

π

∫ ∞

0
dω χλ(r, r′, iω)

}
, (3.8)

where χλ is the response function of the system interacting via the scaled electron-electron
interaction λV̂ee and moving in the local potential given by the operator V̂ (λ).

In the following, we derive the density fluctuation-dissipation theorem in a similar way
as Dobson in Ref. [34]. If one rewrites the expectation value of the Coulomb operator in
Eq. (3.7) making use of the pair density [see Eq. (11)]

〈Ψ(λ)|V̂ee|Ψ(λ)〉 =
e2

2

∫
d3r d3r′

n2,λ(r, r′)

|r− r′|
, (3.9)
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the Hartree-exchange-correlation energy reads:

EHxc =
e2

2

∫ 1

0
dλ

∫
d3r d3r′

n2,λ(r, r′)

|r− r′|
. (3.10)

The pair density can be expressed via the density operator n̂(r) =
∑

i δ(r− ri) as

n2,λ(r, r′) = 〈Ψ(λ)|
∑

ij,i6=j

δ(r − ri)δ(r
′ − rj)|Ψ(λ)〉 =

= 〈Ψ(λ)|
∑

ij

δ(r− ri)δ(r
′ − rj)|Ψ(λ)〉 − δ(r− r′)〈Ψ(λ)|

∑

i

δ(r − ri)|Ψ(λ)〉 =

= 〈Ψ(λ)|n̂(r) n̂(r′)|Ψ(λ)〉 − n(r) δ(r − r′). (3.11)

In order to evaluate the expectation value of the product n̂(r) n̂(r′) for an arbitrary system
we consider the following expression containing the density-density response function χ at
imaginary frequencies:

∫ ∞

0
dω
[
χ(r, r′, iω) + χ(r′, r, iω)

]
. (3.12)

An expression for the response function χ has been derived in Sec. 2.2 and we will make
use of Eq. (2.24) ( replacing ω̌ → iω) but use the shorter notation |0〉 for the ground state
wavefunction |Ψ0

0〉 and |J〉 for the excited state |Ψ0
j〉. The difference in eigenenergies Ej −E0

will be further denoted as ω0j. The integrand of Eq. (3.12) can then be written as

−
∑

J 6=0

{
〈0|n̂(r)|J〉〈J |n̂(r′)|0〉 + 〈0|n̂(r′)|J〉〈J |n̂(r)|0〉

} ( 1

ω0j − iω
+

1

ω0j + iω

)
. (3.13)

The only frequency dependent term is the expression in parenthesis, which can be reformed
to 2ω0j/(ω

2
0j + ω2). Performing the frequency integration results in a factor π/2 so that

Eq. (3.12) becomes:

∫ ∞

0
dω
[
χ(r, r′, iω) + χ(r′, r, iω)

]
=

= −π
∑

J

{
〈0|n̂(r)|J〉〈J |n̂(r′)|0〉 + 〈0|n̂(r′)|J〉〈J |n̂(r)|0〉

}
+

+π
{
〈0|n̂(r)|0〉〈0|n̂(r′)|0〉+ 〈0|n̂(r′)|0〉〈0|n̂(r)|0〉

}
. (3.14)

Here we have included the J = 0 term in the sum and subtracted it afterwards. The states
|J〉 form a complete basis set (

∑
J |J〉〈J | = 1) so that Eq. (3.14) can be rewritten as:

∫ ∞

0
dω
(
χ(r, r′, iω) + χ(r′, r, iω)

)
=

= −π
{
〈0|n̂(r) n̂(r′)|0〉 + 〈0|n̂(r′) n̂(r)|0〉

}
+ 2π n(r)n(r′). (3.15)

where we have used that 〈0|n̂(r)|0〉 = n(r). This relation holds for all systems and by
replacing |0〉 by |Ψ(λ)〉 and χ by χλ (describing the density change to the change of the
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potential vλ) we can write Eq. (3.10) as:

EHxc =
e2

2

∫ 1

0
dλ

∫
d3r d3r′

1

|r− r′|
×

×

[
n(r)n(r′)−

{
1

π

∫ ∞

0
χλ(r, r′, iω) dω

}
− n(r) δ(r − r′)

]
. (3.16)

The first term is simply the Hartree energy as given in Eq. (13), so that Eq. (3.8) has been
proven.

In many cases, the ACFDT exchange-correlation energy is written in a slightly different
form. For this purpose, one considers the λ integrand of Eq. (3.8) for the KS case λ = 0
(χKS = χ0):

−
e2

2

∫
d3r d3r′

1

|r− r′|

{
n(r) δ(r − r′) +

1

π

∫ ∞

0
dω χKS(r, r′, iω)

}
. (3.17)

The response function χKS is the independent-particle response function as given in Eq. (2.28)
(here for imaginary frequencies). By a similar procedure as applied in Eq. (3.12) and
Eq. (3.13) we can write

−
e2

2π

∫
d3r d3r′

1

|r− r′|

∫ ∞

0
dω χKS(r, r′, iω) =

=
e2

2π

∑

n
occ

∑

m
uocc

2

∫
d3r d3r′

ψ∗
m(r′)ψn(r′)ψ∗

n(r)ψm(r)

|r− r′|

∫ ∞

0
dω

(
2ωnm

ω2
nm + ω2

)
=

=
e2

2

∑

n
occ

∑

m
uocc

2

∫
d3r d3r′

ψ∗
m(r′)ψn(r′)ψ∗

n(r)ψm(r)

|r− r′|
, (3.18)

where n is summed over occupied and m over unoccupied states. By making use of
∑

m

ψ∗
m(r′)ψm(r) = δ(r − r′) and n(r) =

∑

n
occ

2ψ∗
n(r)ψn(r), (3.19)

the first term in Eq. (3.17) is given by

−
e2

2

∫
d3r d3r′

n(r) δ(r − r′)

|r− r′|
= −

e2

2

∑

n
occ

∑

m

2

∫
d3r d3r′

ψ∗
m(r′)ψn(r′)ψ∗

n(r)ψm(r)

|r− r′|
. (3.20)

Combining Eq. (3.18) and Eq. (3.20), Eq. (3.17) becomes:

−
e2

2

∑

n
occ

∑

m
occ

2

∫
d3r d3r′

ψ∗
m(r′)ψn(r′)ψ∗

n(r)ψm(r)

|r− r′|
= Ex[{ψKS}], (3.21)

which is the exchange energy evaluated for DFT wavefunctions. The exchange-correlation
energy described in Eq. (3.8) can thus also be written as:

Exc = Ex[{ψKS}]−

−

∫ 1

0
dλ

∫
d3r

∫
d3r′

e2

|r− r′|

∫ ∞

0

dω

2π

{
χλ(r, r′, iω) − χKS(r, r′, iω)

}

︸ ︷︷ ︸
. (3.22)

Ec
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In reciprocal space the correlation energy per unit cell is given as:

Ec = −

∫ 1

0
dλ

∫ ∞

0

dω

2π

∑

q∈BZ

∑

G

4π e2

|q + G|2

{
χλ

G,G(q, iω) − χKS
G,G(q, iω)

}
(3.23)

= −

∫ 1

0
dλ

∫ ∞

0

dω

2π
Tr
{
ν
[
χλ(iω)− χKS(iω)

]}
(3.24)

with the trace defined as

Tr{AB} =
∑

q∈BZ

∑

G,G′

AG,G′BG′,G (3.25)

and the Coulomb kernel given as νG,G′(q) = 4π e2/|G + q|2 δG,G′ . Due to the fact that the
real space Coulomb kernel depends only on the difference |r− r′|, νG,G′ ∝ δG,G′ .

3.2 Random phase approximation

Eq. (3.22) is exact, in principle, as long as one can evaluate the response function of the
interacting electron system χλ. The response function of the λ interacting system, χλ, and
of the KS system of independent electrons, χKS, are linked by the Dyson equation

χλ(r, r′, iω) = χKS(r, r′, iω) +

+

∫
d3r1 d

3r2 χ
KS(r, r1, iω)

(
λ e2

|r1 − r2|
+ fλ

xc(r1, r2, iω)

)
χλ(r2, r

′, iω), (3.26)

which in reciprocal space reads:

χλ
G,G′(q, iω) = χKS

G,G′(q, iω) +

+
∑

G1G2

χKS
G,G1

(q, iω)

(
4πe2 λ

|q + G1|2
δG1,G2

+ fλ
xc,G1,G2

(q, iω)

)
χλ

G2,G′(q, iω). (3.27)

Similar relations have already been introduced in Eq. (2.14) and Eq. (2.69), but now the
exchange-correlation kernel fxc additionally depends on the coupling constant λ. It can be
shown [35] that the λ dependent exchange-correlation kernel obeys the scaling relation

fλ
xc[n](r, r′, ω) = λ2 fxc[n

′](λr, λr′, ω/λ2) with n′(r) = λ−3 n(r/λ), (3.28)

so that for any approximation of the fully interacting exchange-correlation kernel, fxc, also
the one depending on the coupling constant λ, fλ

xc, can be evaluated. Throughout this
work we use the random phase approximation (RPA), which has already been introduced in
Sec. 2.6, and thus set the exchange-correlation kernel to zero (fxc = 0). The relation between
χλ and χKS in the RPA is given by

χRPA,λ(r, r′, iω) = χKS(r, r′, iω) +

+

∫
d3r1 d

3r2 χ
KS(r, r1, iω)

λ e2

|r1 − r2|
χRPA,λ(r2, r

′, iω). (3.29)
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or in reciprocal space

χRPA,λ
G,G′ (q, iω) = χKS

G,G′(q, iω) +
∑

G1

χKS
G,G1

(q, iω)
4πe2 λ

|q + G1|2
χRPA,λ

G1,G′ (q, iω). (3.30)

In the following we will omit the index RPA and the use of the RPA is implicitly assumed.
By rearranging Eq. (3.30), the RPA response of the interacting system can be written as

χλ
G,G′(q, iω) =

∑

G1

(
1− λχKS ν

)−1

G,G1

χKS
G1,G′(q, iω). (3.31)

For the RPA, the λ integration in Eq. (3.24) can be avoided by making use of the fact that

Tr{νχλ} = −
∂

∂λ
Tr{ln[1− λχKS ν]}. (3.32)

Eq. (3.32) can be shown straightforwardly by considering

−
∂

∂λ

∑

G

ln[1− λχKS ν]G,G =
∑

G

∑

G1,G2

(
1− λχKSν

)−1

G,G1

χKS
G1,G2

νG2,G =

=
∑

G,G1

(
1− λχKSν(q)

)−1

G,G1

χKS
G1G

νG,G =
∑

G

νG,G χλ
G,G. (3.33)

The λ-integration of the first term in Eq. (3.24) can then be written as

−

∫ 1

0
dλ

[
∂

∂λ
Tr{ln[1− λχKS ν]}

]
= −Tr{ln[1− χKS ν]}, (3.34)

and the RPA correlation energy finally is given as

Ec =

∫ ∞

0

dω

2π
Tr
{
ln[1− χKS ν] + χKS ν

}
=

=

∫ ∞

0

dω

2π

∑

q∈BZ

∑

G

{(
ln[1− χKS(q, iω) ν(q)]

)
G,G

+ νG,G(q)χKS
G,G(q, iω)

}
(3.35)

and no numerical λ integration has to be considered. If one introduces an exchange-correlation
kernel different from zero, this is not the case anymore.

3.3 Calculating the RPA correlation energy in practice

The total ACFDT energy in the RPA is given by

E = Ts[{ψ
KS}] + EH [n] + Ex[{ψKS}] + ERPA

c [χKS] = EHF [{ψKS}] + ERPA
c , (3.36)

where the first three terms represent the Hartree-Fock energy expression evaluated for the
KS wavefunctions and the second term the RPA correlation energy as given in Eq. (3.35). In
principle, the energy functional should be evaluated at the ”true” Kohn-Sham wavefunctions
and eigenenergies fulfilling:

HKS ψ
KS
n (r) = ǫn ψ

KS
n (r) vxc(r) = δExc[n]/δn(r). (3.37)
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A derivation for the compatible RPA exchange-correlation potential can be found in the work
of Niquet et al. [36], but the practical introduction of selfconsistency is very demanding.
Therefore, it is common to evaluate Eq. (3.36) at the PBE, LDA, or some hybrid functional
(e.g., PBE0) wavefunctions and eigenenergies. In the present work, we usually use PBE
wavefunctions and eigenenergies as an input, but tests applying LDA values will also be
presented. More details concerning the evaluation of the Hartree-Fock Hamiltonian in VASP
can be found in Ref. [37].

The evaluation of the correlation energy is the most demanding part in Eq. (3.36). In
the following, we will discuss the calculation of Ec and the computational cost involved in
more detail. In the practical implementation we closely follow the expression Eq. (3.35) for
the evaluation of the correlation energy. Thereby the term1

Tr{ln[1−AB]} =
∑

i

(ln[1−AB])ii :=
∑

G

(
ln[1− χKS ν]

)
G,G

(3.38)

has to be calculated. The logarithm of a matrix can be written as

ln[1−AB]ij = −(AB)ij −
1

2

∑

k

(AB)ik(AB)kj −
1

3

∑

kl

(AB)ik(AB)kl(AB)kj − . . . (3.39)

and the trace

Tr{ln[1−AB]} = −Tr{AB} −
1

2
Tr{ABAB} −

1

3
Tr{ABABAB} − . . . (3.40)

For later considerations it is useful to replace χKSν by the symmetric expression ν1/2χKSν1/2,
which does not change the trace in Eq. (3.38). This can easily be shown by using

Tr{ABC} = Tr{CAB} (3.41)

or

Tr{χKSν} = Tr{χKSν1/2ν1/2} = Tr{ν1/2χKSν1/2}. (3.42)

Applying the same transformation to expression Eq. (3.40) one finds

Tr{ln[1− χKSν] + χKSν} = Tr{ln[1− ν1/2χKSν1/2]}+ Tr{ν1/2χKSν1/2}. (3.43)

Because S := ν1/2χKSν1/2 is hermitian, it can be diagonalized yielding real eigenvalues di

and an orthogonal (unitary) matrix of eigenvectors Cij :

∑

kl

C−1
ik SklClj = dii δij , (3.44)

and due to Eq. (3.40) and Eq. (3.41)

Tr{ln[1− χKSν]}+ Tr{χKSν} =
∑

i

ln (1− dii) + dii. (3.45)

1Here Tr denotes simply the sum over diagonal matrix elements, and no q integration is taken into account
as has been done in the definition Eq. (3.32)
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Consequently, in order to evaluate Eq. (3.35) two steps have to be performed (for the moment

ignoring the frequency integration): The term ν
1/2
G,G(q)χKS

G,G′(q) ν
1/2
G′,G′(q) has to be set up

for all q-points (Nq) and reciprocal lattice vectors G and G′. The number of reciprocal
lattice vectors Nχ

PW is determined by |G + q|2/2 < Eχ
cut, where Eχ

cut is chosen by setting
ENCUTGW (eV) in the INCAR file. Considering Eq. (2.33) the total cost for this step
scales like NqNkNoccNuocc(N

χ
PW )2 where Nocc and Nuocc are the number of occupied and

unoccupied bands, respectively. On the other hand, ν
1/2
G,G(q)χKS

G,G′(q) ν
1/2
G′,G′(q) has to be

diagonalized with respect to G,G′ for all q-points in order to evaluate the eigenenergies and
consequently the trace given by Eq. (3.45). This step scales like Nq (Nχ

PW )3. Both steps scale
like V 3 for a fixed number of k-points and electrons, which makes the evaluation of the RPA
correlation energies for molecules and atoms expensive, because in this case rather large unit
cells have to be employed.

As will be shown in section 10.1, the correlation energy slowly converges with the rank
of the response function and Eχ

cut, respectively. But in many cases, the correlation energy
(difference) for sufficiently large values of Eχ

cut behaves as

Ec(E
χ
cut) = E∞

c +
A

(Eχ
cut)

3/2
. (3.46)

For the homogenous electron gas this behaviour is exactly observed, and it also holds for
correlation energy differences of abitrary systems. For simple systems without deep lying
core states it is even approximatively observed for the correlation energy itself. For RPA
correlation energy calculations, 8 values of Eχ

cut are automatically chosen starting from the
value ENCUTGW in the INCAR file and decreasing in steps of 5%. For each value of Eχ

cut,
the correlation energy Ec(E

χ
cut) is calculated and the extrapolated value E∞

c using Eq. (3.46)
is determined. In contrast to a set of full calculations, each time setting ENCUTGW to a
different value in the INCAR file, this procedure saves the cost to set up the response function
in each of the calculations. This is especially useful for small volumes or calculations using
many k-points where the cost for setting up of the response function exceeds the cost for
the diagonalization by far. The frequency integration is rather straightforward and will be
discussed in Sec. 10.2.



Chapter 4

GW quasiparticle energies

Density functional theory provides a good description of ground state properties by mapping
the problem of interacting electrons onto a KS system of independent particles moving in an
effective potential caused by the other electrons. For the calculation of (inverse) photoemis-
sion spectra, the energy to add or remove an electron to or from a system is required. For
a system of non-interacting electrons, these energies correspond to the one-electron energies.
For a system of interacting electrons, the KS system can be used to calculate the ground
state energy, but no theorem links the KS one-electron energies to the electron addition and
removal energies. Instead, a system of quasiparticles that interact via the non-local and
energy-dependent self-energy Σ should be considered. The fundament of the resulting quasi-
particle equations is provided by many-body perturbation theory. In the widely used GW
approximation, the self-energy operator is described as a product of the Green’s (G) function
and the screened Coulomb kernel W = ε−1 ν. Especially for the description of band gaps,
which are generally underestimated in KS-DFT, the GW approximation leads to drastically
improved results. E.g., for Si, LDA yields a band gap of 0.6 eV, whereas GW gives a band
gap around 1.15 eV close to the experimentally observed gap of 1.25 eV.

In the following, a brief overview on the Green’s function approach and the quasiparticle
equations will be given. In Sec. 4.2 the actual evaluation of the quasiparticle equations will
be outlined with a focus on the implementation of the GW routines in the VASP code [25].
More details about many-body perturbation theory and applications are provided in the
reviews Refs. [38, 39, 40] where Ref. [39] focuses specifically on the comparison of many-body
perturbation theory and time-dependent density functional theory.

In part III of this thesis, GW calculations for the transition metals Cu, Ag, Fe, and Ni
will be presented. Former calculations by Marini et al. for Cu [41] and Ag [42] yielded a
good agreement between GW quasiparticle energies and experimental photoemission data,
whereas our results suggest that this was most likely fortuitous and related to the pseudopo-
tential approximation used in Ref. [41] and Ref. [42]. For Ni [43], previous GW calculations
have shown that the large LDA exchange splitting could not be corrected, which we found
confirmed in the present study. Furthermore, d bands might not be as well described as sp
like states as suggested by a recent work of Louie et al. [44].

44
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4.1 The GW approximation

The Green’s function G(x,x′, t, t′), which is the fundamental quantity of many-body per-
turbation theory, describes the probability of finding an electron with spin ξ at time t and
position r, if another electron with spin ξ′ is added (or removed) at position r′ at time
t′. It can be shown that the poles of the Green’s function describe the energies needed to
add/remove an electron from the system and that the imaginary part of the Green’s function
- the spectral function - is proportional to the photoemission spectrum. For a system of non-
interacting electrons moving in the external potential v(x), the energies to add or remove an
electron are given by the eigenenergies of

[T + v(x)] ψn = ǫn ψn T + v(x) =: H0(x), (4.1)

with the kinetic energy operator T = −(h̄2/2m)∇2, and the corresponding Green’s function
GH (Hartree Green’s function) becomes

G−1
H (x,x′, ω) = δ(x − x′)

[
ω −H0] GH(x,x′, ω

)
=
∑

n

ψn(x)ψ∗
n(x′)

ω − ǫn + i η sgn(ǫn − µ)
, (4.2)

where η is a positive infinitesimal and µ is the Fermi energy of the system. The spectral
function of a non-interacting system, therefore, consists of δ-like functions at the one-electron
energies ǫn. For a system of interacting electrons, the perturbation caused by the addition
or removal of an electron is screened and the sharp independent particle peaks in the spec-
tral function are replaced by quasiparticle (QP) peaks with finite widths. Additionally, the
weights of the QP peaks are reduced and further structures, satellites, appear at other ener-
gies. The relation between the non-interacting Green’s function GH and the Green’s function
of the interacting system G is given by the Dyson equation

G−1(x,x′, ω) = G−1
H (x,x′, ω)− Σ(x,x′, ω), (4.3)

where the self-energy operator Σ includes the many-body effects due to exchange and cor-
relation. The poles of the interacting Green’s function can be found by solving the QP
equation:

H0(x)ψQP
n (x) +

∫
dx′ Σ(x,x′, EQP

n )ψQP
n (x′) = EQP

n ψQP
n (x) (4.4)

where the QP energies are complex quantities describing the position (ReEQP
n ) and width

(ImEQP
n ) of the QP peaks.

The relation between the Green’s function G, the self-energy Σ, the irreducible polarizability
P (see Sec. 2.5), the screened Coulomb interaction W = ǫ−1 ν, and the so-called vertex



46 CHAPTER 4. GW QUASIPARTICLE ENERGIES

function Γ, is given by Hedin’s equations [(xi, ti)=:i]:

P (12) = −i

∫
d(34)G(13)G(41+) Γ(342) (4.5)

W (12) = ν(12) +

∫
d(34)W (13)P (34) ν(42) (4.6)

Σ(12) = i

∫
d(34)G(14+)W (13) Γ(423) (4.7)

Γ(123) = δ(12) δ(13) +

∫
d(4567)

δΣ(12)

δG(45)
G(46)G(75) Γ(673) (4.8)

G(12) = GKS(12) +

∫
d(34)GKS(13)Σ(34)G(42). (4.9)

The Dyson equation for the relation between the interacting and non-interacting Green’s
function, Eq. (4.3), is thereby rephrased in Eq. (4.9) for the case that the KS-DFT system
is taken as the reference system, as usually done in practical calculations. Hedin’s equations
should in principle be solved selfconsistently, but this is involved. The most common approx-
imation to simplify this approach is the so-called GW approximation. The vertex corrections
are thereby excluded which corresponds to setting Γ(123) = δ(12) δ(13) in Eq. (4.8). Conse-
quently, the irreducible polarizability [see Eq. (4.5)] is described by P (12) = −iG(12)G(21+),
which equals the RPA approximation and the neglect of electron-hole interactions. The self-
energy, finally, is approximated by

Σ(12) = iG(12+)W (12), (4.10)

explaining the name of the ”GW” approximation.

4.2 Solving the quasiparticle equation

The QP equations for a periodic crystal can be written as:

(T + vext + vH) ψQP
nk (r) +

∫
d3r′ Σ(r, r′, EQP

nk )ψQP
nk (r′) = EQP

nk ψ
QP
nk (r). (4.11)

Normally, the wavefunctions are taken from a KS calculation (ψnk instead of ψQP
nk

) and are
not updated throughout the calculations. Self-consistency with respect to the wavefunctions
can nevertheless be introduced (see the scQPGW method described in Refs. [45, 46, 47]).
Additionally, Eq. (4.11) is solved only on the real axis, i.e., imposing the constraint that
EQP

nk is real. If the DFT wavefunctions are considered, the quasiparticle energies equal the
solution of

EQP
nk

= Re[〈ψnk|T + vext + vH + Σ(EQP
nk

)|ψnk〉]. (4.12)

An iterative solution to Eq. (4.12) can be found by

EN+1
nk = Re[〈ψnk|T + vext + vH + Σ(EN+1

nk )|ψnk〉] = (4.13)

= Re[〈ψnk|T + vext + vH + Σ(EN
nk)|ψnk〉] + (EN+1

nk − EN
nk)Re[〈ψnk|

∂Σ(ω)

∂ω

∣∣∣
w=EN

nk

|ψnk〉],
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i.e., by linearizing Σ(EN+1
nk

) around Σ(EN
nk). The superscript QP has and will be omitted in

the following. By introducing the normalization factor Z that accounts for the fact that the
weights of the QP peaks are reduced at the cost of emerging satellites

ZN
nk =

(
1− Re[〈ψnk|

∂Σ(ω)

∂ω

∣∣∣
w=EN

nk

|ψnk〉]

)−1

, (4.14)

the QP energies can be approximated as

EN+1
nk

= EN
nk + ZN

nk Re[〈ψnk|T + vext + vH + Σ(EN
nk)|ψnk〉 − E

N
nk]. (4.15)

Several degrees of selfconsistency can be distinguished depending on how the expectation
value of the self-energy operator [see also Eq. (4.10)]

Σ(ω)nk,nk = 〈ψnk|Σ(EN
nk)|ψnk〉 = (4.16)

=
i

2πV

∑

q,G,G′

∑

n′

2

∫ ∞

0
dω′Wq(G,G′, ω′) 〈ψnk|e

i(G+q)r|ψn′k+q〉〈ψn′k+q|e
−i(G′+q)r′ |ψnk〉

×

(
1

ω + ω′ − ǫn′k+q + i η sgn[ǫn′k+q − µ]
+

1

ω − ω′ − ǫn′k+q + i η sgn[ǫn′k+q − µ]

)

is calculated. In the most common approximation, G0W0, only one iteration step of Eq. (4.15)
is performed and DFT eigenenergies are chosen as a starting point. The dielectric function for
the evaluation of the screened Coulomb interaction W is calculated using DFT eigenvalues.
In the GW0 approximation, several circles of Eq. (4.15) are considered and the eigenvalues
in Eq. (4.16) are approximated by EN

nk of the previous iteration. The dielectric function ǫ,
which enters the screened Coulomb kernel W , is thereby fixed at the DFT level. Finally,
W in Eq. (4.16) can also be updated in each iteration. The GW calculations presented in
part III of this thesis have mostly been performed applying the G0W0 approximation, but in
selected cases G [eigenvalues in Eq. (4.16)] has been updated as well.

In the following, we will discuss how to evaluate Eq. (4.16) in more detail. In Eq. (4.16)
the screened Coulomb kernel Wq(G,G′, ω) enters. For large frequencies ω or large wave
vectors G the dielectric function ǫ becomes 1 and Wq(G,G′, ω) approaches the unscreened
Coulomb kernel νq(G,G′). In order to make the frequency integration well behaved, the
screened Coulomb kernel W in Eq. (4.16) is replaced by

W̄q(G,G′, ω) = Wq(G,G′, ω)− νq(G,G′) (4.17)

and the resulting quantity, Σ̄nk,nk(ω), is calculated. The total self-energy Σnk,nk(ω) is ob-
tained by

Σnk,nk(ω) = Σ̄nk,nk(ω)−
∑

n′k′

2fn′k′ e2
∫
d3r d3r′

ψ∗
nk(r)ψn′k′(r)ψ∗

n′k′(r′)ψnk(r′)

|r− r′|
︸ ︷︷ ︸

.

〈ψnk|vx|ψnk〉 (4.18)

The second term on the right side of Eq. (4.18) stems from replacing the screened by the
unscreened Coulomb kernel ν in Eq. (4.16), and it equals the non-local exchange potential
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vx(r, r′) evaluated for the state ψnk, 〈ψnk|vx|ψnk〉. The determination of this term within the
PAW framework is discussed in Refs. [37, 140]. For the evaluation of the one-center terms of
the self-energy, the screened Coulomb kernel is replaced by the bare Coulomb kernel ν and the
one-center terms are thus approximated by the Hartree-Fock expression. This approximation
is expected to lead to relatively small errors, since differences in the pseudo wave function
and the AE wave function are only present for large vectors G and the dielectric function is
close to 1 for these cases.

The sum over states n′ in Eq. (4.16) and Eq. (4.18) is only performed for states which
are treated as valence. But although we make use of the frozen-core approximation, the
core-valence interaction (n′ describing a core state) can be approximatively calculated within
the PAW framework. In order to evaluate the core-valence interaction, we again assume that
the screened Coulomb kernel W can be replaced by the bare Coulomb kernel ν and evaluate
the core-valence interaction by the Hartree-Fock exchange contribution. As the core states
are confined in the spheres around the atoms, it is sufficient to calculate the one-center term

〈ψnk|v
(1)
x core−val|ψnk〉 = −

∑

ij,c

2 e2 〈ψ̃nk|p̃i〉 〈p̃j |ψ̃nk〉

∫
d3r d3r′

φ∗i (r)φc(r)φ
∗
c(r

′)φj(r
′)

|r− r|
, (4.19)

where ψc(r) are core-electron orbitals c, centered on the same atom as the partial waves and
projectors with the indices i and j. For deriving Eq. (4.19), the second term on the right side
of Eq. (4.18) is considered and the projection of the pseudo wave function onto AE partial
waves Eq. (1.20) is performed.

More details about the GW implementation in VASP are summarized in Refs. [25, 48, 47].
Terms like 〈ψn′k+q|e

−i(G′+q)r′ |ψnk〉, which are required for the calculation of the self energy
and the dielectric function, can be treated within the same approximations as discussed
in subsection 2.7. Approximately restoring the AE charge density on a plane wave grid by
setting LMAXFOCKAE will effect the QP energies of the considered metals, as will be shown
in part III of this thesis.



Part II

Reflectance difference spectra
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Reflectance difference (RD) spectroscopy (also reflectance anisotropy (RA) spectroscopy)
measures the difference in reflectance ∆r = rx− ry between two orthogonal directions in the
surface plane (x,y) for normal incident light:

∆r

r̄
=

2(rx − ry)

rx + ry
. (4.20)

The first RD/RA spectrometer was developed by Aspnes and co-workers [49, 50]. The in-
cident light, which is chosen to be linearly polarized in an 45◦ angle with respect to the x
and the y-direction, becomes elliptically polarized when reflected, if the material responds
anisotropically to light polarized along the x- and y-direction. By measuring the polarization
state for different wavelengths λ, one has access to the frequency dependent RD spectrum.
It is easier to measure the real part of the reflectance difference, Re(∆r/r̄), which in the fol-
lowing will be referred to as the actual RD signal. For more details about the experimental
setup, we refer e.g., to Ref. [51].

RD spectroscopy is surface sensitive, if the bulk exhibits no optical anisotropy. This is
e.g., the case for surfaces of fcc or bcc bulk structures. The anisotropy can arise from the bare
surface itself. Examples are the (110) surface or facetted surfaces. But also adsorbate induced
structures can give rise to an anisotropic optical response. The RD spectrum is determined
by the optical response of the surface, and therefore linked to surface electronic transitions.
Also small changes in the surface structure lead to a change in the electronic structure and
consequently to a change in the RD spectrum. This makes RD spectroscopy a very sensitive
probe for the surface region. Nevertheless, an interpretation of the RD spectrum with respect
to the underlying electronic transitions and consequently an assignment of a RD spectrum to
a specific surface geometry is not straightforward. First-principles calculations of the surface
optical response and the resulting RD spectrum can provide a more detailed understanding.
How to calculate the RD spectra from first-principles and which approximations have to be
made will be the subject of the next chapter, but at this point it is already emphasised that
all calculations are performed in the DFT and independent particle approximation, since
more involved calculations (GW + Bethe-Salpeter) are not routinely possible for metallic
surfaces.

In this part of my thesis, I will present RD spectra for the bare and adsorbate cov-
ered Cu(110) surface. The Cu(110) surface represents a good starting point for the cal-
culation of RD spectra for several reasons, as it has been experimentally studied in detail
[52, 53, 54, 55, 56, 57, 58]. Additionally, theoretical work exists in the literature which al-
lows straightforward comparison [59, 60, 61]. In the last section of this part, the electronic
structure of all considered surfaces will be discussed and the resulting RD spectra will be
analyzed with respect to important electronic transitions.



Chapter 5

Calculating reflectance difference
spectra

In order to calculate the RD spectrum theoretically, it has to be described by quantities that
are directly and easily accessible using first-principles methods. Since the dielectric function
ε determines the material’s response to light completely, a relationship between the RD signal
and the difference of the (macroscopic) dielectric function ∆ε = εxx−εyy is expected to hold.

5.1 Three-phase model

For the situation considered in an RD experiment, namely a thin film with an anisotropic
optical response between an isotropic bulk and a transparent environment (here: vacuum),
such a relationship can be derived under the assumption that the thickness d of the anisotropic
film is much smaller than the wavelength λ of the incident light. Within the three-phase
model [62] the reflectance anisotropy is approximately given as1

∆r

r̄
= −

4πid

λ

∆ε

εb − 1
= −

2idω

c

∆ε

εb − 1
, (5.1)

where ω and c are the frequency of the incident light and the vacuum light velocity, re-
spectively. The surface dielectric anisotropy (SDA) ∆ε = εxx − εyy and the bulk dielectric
function εb are complex quantities. In the following we will give a short outline how this
formula can be derived. We use the convention that

1. the time phase of the electromagnetic wave is chosen negative, the space phase positive:
E(r, t) = E0e

−i(ωt−kr). This is in contrast to the convention used in most optical
textbooks.

2. complex numbers are defined as: z = x+ iy, in contrast to the convention z = x− iy
often employed in optics textbooks.

The permeability µ is set to 1.

1In some/most publications [54, 53, 51] these formula are given without a minus. The minus is due to the
negative space phase used in the present work: E(r, t) = E0e

−i(ωt−kx)

51
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We first introduce the Fresnel coefficient of a three-phase model [63], then apply the thin
film approximation [62] and finally express the reflectance difference in terms of the dielectric
function [Eq. (5.1)]. Before considering the reflectance of a three-phase model, we summerize
the Fresnel formulas for the reflection and transmission coefficients of light at an interface
between two materials. The reflectance r (transmission t) coefficient is defined as the ratio
between the amplitude of the reflected (transmitted) and the incident wave. Depending on
the polarization direction of the incident light, different relations are found for light polarized
parallel (p) or normal (n) to the plane of incidence:

rn
12 =

n1 cosα− n2 cos β

n1 cosα+ n2 cos β
(5.2)

tn12 =
2n1 cosα

n1 cosα+ n2 cos β
(5.3)

rp
12 =

n1 cos β − n2 cosα

n1 cos β + n2 cosα
(5.4)

tp12 =
2n1 cosα

n1 cos β + n2 cosα
. (5.5)

The (complex) refraction index of the initial and final material are referred to as n1 and
n2, the angle of incidence and refraction as α and β, respectively. In the present case, we
only consider normal incidence so that α = β = 0 and consequently no distinction between
parallel and normal Fresnel coefficients exists:

r12 =
n1 − n2

n1 + n2
(5.6)

t12 =
2n1

n1 + n2
. (5.7)

The reflectance for a three-phase model r123 can be expressed by reflectance and transmission
coefficients of the phase 1 - phase 2 and the phase 2 - phase 3 interface, respectively. The

n2

n3

n1

r12

t12

t12t21

t12

r23 t12r23

r23

t21r23r21

Figure 5.1: Schematic view of the three-phase model. Although we consider normal incidence, a
non-zero incidence angle is chosen for reasons of clarity. The sum over the all (multi-)scattered wave
components results in the total amplitude of the reflected wave. r21 and r23 denote the reflectance
coefficients when going from phase 2 to phase 1 and phase 3, respectively. The transmission coefficients
t12 and t21 describe the transmission from phase 1 to phase 2, and from phase 2 to phase 1, respectively.
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procedure is schematically sketched in Fig. 5.1. If one considers (again assuming normal
incidence), that the amplitude of a wave propagating inside a medium behaves as

A(z) = A0 e
2πizn2/λ, (5.8)

the wave undergoes a change of e2iβ with β = 2 dπ n2/λ, when going from one side of the
thin film and back again.2 The total amplitude of the reflected wave Ar therefore is given
by:

Ar = r12A0 + t21 r23 t12 e
2iβA0 + t21 r23 r21 e

2iβr23 t12 e
2iβA0 +

+ t21 r23 r21 e
2iβr23 r21 e

2iβr23 t12 e
2iβA0 + . . . . (5.9)

The reflectance coefficient of the three-phase model r123 = Ar/A0 consequently becomes:

r123 = r12 + t21 r23 t12 e
2iβ
(
1 + r21 r23 e

2iβ + (r21 r23 e
2iβ)2 + (r21 r23 e

2iβ)3 + . . .
)
. (5.10)

By writing the sum of the geometrical series explicitely and replacing r21 by −r12, r123
becomes:

r123 = r12 +
t21 r23 t12 e

2iβ

1 + r12 r23 e2iβ
. (5.11)

This expression can be transformed by applying Eq. (5.6) and Eq. (5.7)3:

r123 =
r12 + r23 e

2iβ

1 + r12 r23 e2iβ
. (5.12)

For d→ 0, the reflectance coefficient r13 has to be restored, so that

r13 =
r12 + r23

1 + r12 r23
. (5.13)

Until now, we have derived the reflectance of a three-phase model in terms of the reflectance
of two phases each. In order to obtain an explicit formula depending on the dielectric function
ε = n2, we assume that the thickness of the film, d, is much smaller than the wavelength λ
of the incident light. As we will calculate the RD spectrum for light with energies ranging
from 1 to 5 eV (corresponding to λ ≈ 1250 nm and ≈ 250 nm) and consider surface regions
of a few nm thickness, this assumption is reasonable. For the thin film case, the exponential
function can be expanded and by neglecting terms of order O(d2/λ2) one finds:

r123 =
r12 + r23 (1 + 2iβ)

1 + r12 r23 (1 + 2iβ)
. (5.14)

Additionally, we consider the ratio between the reflectance of a three-phase model r123 and
the reflectance for d→ 0, r13:

r123
r13

=
1 + 2iβ [r23/(r12 + r23)]

1 + 2iβ [r12 r23/(1 + r12 r23)]
. (5.15)

2If the space phase is chosen negative, as done in most optics text books, e2iβ is replaced by e−2iβ

3see also Heavens [63]. Again: different space phase.
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Expansion of the denominator with respect to d/λ and again neglecting terms of higher order
in d/λ, the ratio becomes

r123
r13

= 1 + 2 i β

[
r23 (1− r212)

(r12 + r23)(1 + r12 r23)

]
. (5.16)

Using the Fresnel formulas given in Eq. (5.6) and Eq. (5.7), we obtain:

r123
r13

= 1 + 2 i β

(
n1 n2

n2
2

)(
n2

2 − n
2
3

n2
1 − n

2
3

)
= 1 + 2 i β

(
n1 n2

n2
2

)(
ε2 − ε3
ε1 − ε3

)
. (5.17)

Replacing β by 2 dπ n2/λ the ratio becomes4

r123
r13

= 1 +
4πidn1

λ

(
ε2 − ε3
ε1 − ε3

)
. (5.18)

If we consider the first phase to be vacuum, than ε1 = 1 and n1 = 1. Additionally, we
assume the bulk dielectric function (corresponding to ε3) to be isotropic and set ε3 = εb.
The anisotropic dielectric tensor of the thin film ε2 will be referred to as εij . Instead of r123
we write ri for the reflectance of light polarized in the (principle) direction i:

ri
r13

= 1 +
4πid

λ

(
εii − εb
1− εb

)
(5.19)

The reflectance difference is then given by:

2
rx − ry
rx + ry

= 2

[
rx
r13
−
ry
r13

]
/

[
rx
r13

+
ry
r13

]
=

=

[
4πid

λ

(
εxx − εyy

1− εb

)]
/

[
1 +

2πid

λ

(
εxx + εyy − 2εb

1− εb

)]
(5.20)

Applying again d/λ≪ 1, one finds:

∆r

r̄
= −

4πid

λ

εxx − εyy

εb − 1
(5.21)

proving Eq. (5.1).

Sometimes, the RD signal is not described via the reflectance r, but by considering the
reflectivity R (see e.g., [64]), which describes the ratio between the squared amplitues of the
incident and reflected waves. Applying the relation R = |r|2 and neglect terms of higher
order in d/λ the relative difference of reflectivities becomes:

∆R

R̄
= −

8πd

λ
Im

[
εxx − εyy

εb − 1

]
(5.22)

and consequently ∆R/R̄ = −2Re[∆r/r̄].

4see also [62]. Different sign due to different space phase convention
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By writing real and imaginary parts explicitely, εb = ε
(1)
b +i ε

(2)
b and ∆ε = ∆ε(1) +i∆ε(2),

the imaginary and real part of the RD signal are given by:

Re

[
∆r

r̄

]
=

4πd

λ

(
∆ε(2) (ε

(1)
b − 1)−∆ε(1) ε

(2)
b

(ε
(1)
b − 1)2 + (ε

(2)
b )2

)
(5.23)

Im

[
∆r

r̄

]
= −

4πd

λ

(
∆ε(2) ε

(2)
b + ∆ε(1) (ε

(1)
b − 1)

(ε
(1)
b − 1)2 + (ε

(2)
b )2

)
. (5.24)

Thanks to the three-phase model, first-principles calculations of the reflectance anisotropy
are possible, if one has access to the frequency dependent surface and bulk dielectric function.
The surface dielectric anisotropy ∆ε of the thin film, the surface region, is thereby calculated
by modeling the surface as a slab consisting of several atomic layers. Following the derivation
carefully, it becomes clear that the only relevant quantity is d∆ε = d (εxx − εyy), which is a
surface intrinsic property. As long as the depth, where the dielectric function is modified is
small compared to the wavelength, the derivation is accurate. Also note, that ε is proportional
to the polarizability per volume element [see Eq. (2.75)]. Thus d∆ε describes the difference
of the polarizability per surface area and is a well defined microscopic surface quantity.
In the independent particle approximation (see below) one simply needs to normalize the
polarizability χKS to the surface area [1/A instead of 1/V ] to determine d∆ε.

5.2 Calculation of the dielectric function

By considering the three-phase model, we have obtained an expression for the reflectance
difference spectrum which depends on the dielectric function of the bulk and the (anisotropic)
optical response of the surface. Because we are interested in the interaction of light and matter
at optical wavelengths, the long-wavelength limit (q→ 0) is assumed in the following.

In an ab-initio calculation of the dielectric function several steps of increasing accuracy,
but also complexity, can be considered. A detailed overview about different ways to calculate
the dielectric function and the relation between these methods can be found in [65]:

1. The dielectric function is calculated within the independent particle (IP) approximation
on top of KS-DFT eigenenergies and wavefunctions. The dielectric tensor is then given
by Eq. (2.75).

2. Instead of the KS-DFT eigenenergies, quasiparticle energies calculated within Green’s
function theory are used for the evaluation of the dielectric function. Normally, the
G0W0 approximation is applied, and the quasiparticle energies are calculated as per-
turbation to the KS-DFT energies. The dielectric function is again derived within the
IP approximation, but the KS-DFT eigenenergies are now replaced by quasiparticle
energies.

3. Local field effects are included.

4. The inclusion of electron-hole interactions is realized by solving the Bethe-Salpeter
equation. In the framework of Green’s function theory this can be described as the
inclusion of vertex corrections in the description of the dielectric function.
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Because calculations of surface optical properties are involved, most RD spectra of semicon-
ductors and insulators (e.g., [66, 67, 68, 69, 70, 71]) and all theoretical RD spectra of metals
[59, 60, 61, 72, 73, 74, 75] have been obtained applying the first and simplest approximation,
so far. For exemplary semiconductor surfaces, as e.g., InP(001)-(2 × 4) and GaAs(110), also
calculations employing the more involved independent quasiparticle approach exist [76, 67]
(step 2) resulting in an improved, but not perfect alignment with experiment. Local field
effects (step 3) and electron-hole interactions (step 4) have e.g., been included for the model
Si(110):H surface [77, 78, 79]. While the inclusion of local field effects has only a minor
influence on the Si(110):H RD spectrum, the inclusion of electron-hole interactions via the
solution of the Bethe-Salpeter equation improves the correspondence with the experimental
spectrum. The Si(111)-(2×1) [80] and Ge(111)-(2×1) [81] surfaces are two further examples
where electron-hole interactions have been considered in the evaluation of the RD spectrum.

For the calculation of the bare and adsorbate covered Cu(110) RD spectra presented
in the following sections, we used the independent particle approximation applied on top
of KS-DFT wavefunctions and eigenenergies (step 1). As a dense k-point grid and a large
number of slab layers are required to obtain convergence of the RD signal, even at this level
of simplification, RD calculations for metallic surfaces are involved.

Nevertheless, two of the approximations applied for the calculation of the dielectric func-
tion, namely the neglect of local field effects (step 3) and the electron-hole interaction (step
4), are most likely more reliable for metals than for semiconductors. As calculations by
Marini and co-workers [82] have shown, local field effects are negligible for the macroscopic
dielectric function of bulk Cu. The reason for this can be found in the relatively homoge-
nous screening in metals. The electron-hole interaction, on the other side, can be seen as an
electrostatic interaction between a negative (electron) and positive (hole) charged particle
screened by the dielectric function of the material. For metals the screening is large, so that
excitonic effects should not be as important as for semiconductors and insulators.

Consequently, the approximation of the excitation energies by one-electron eigenenergies
obtained from KS-DFT remains the most important one. Not considering electron-hole
interactions, the use of KS-DFT eigenenergies will in particular result in a (not necessarily
uniform) shift of theoretical and experimental RD features whenever the calculated band
structure does not match the measured photo emission (PE)/ inverse photo emission (IPE)
spectrum.

Within the applied approximations, the imaginary part of the dielectric function ε(2) is
calculated via Eq. (2.73). The real part ε(1) is evaluated by a Kramers-Kronig transformation
[Eq. (2.76)]. The wavefunctions and eigenenergies stem from KS-DFT calculations using the
GGA-PBE approximation for the exchange-correlation potential. The theoretical lattice con-
stant (3.638 Å) was used for the bulk calculations. For the surfaces, symmetric slabs with up
to 25 layers have been considered and the topmost 6 substrate layers and adsorbate positions
have been relaxed prior to the optical calculations. More details on the geometrical prop-
erties of the bare Cu(110), the oxygen induced Cu(110)-(2 × 1)O added-row reconstruction,
and the carbon monoxide covered Cu(110)-(2 × 1)CO and Cu(110)-(3 × 1)CO surfaces will
be given in Sec. 7.1. The intraband contributions to the dielectric functions are included by
calculating the intraband plasma tensor [Eq. (2.113)]. We found that an ab-initio treatment
of the anisotropic surface plasma frequency is essential in order to reduce the strong thickness
dependence due to band crossings near the Fermi-surface (see Sec. 2.9). The RD spectrum
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was finally evaluated by applying Eq. (5.1).
For the interpretation of the resulting RD spectra in Sec. 7.3, we analyzed RD contri-

butions arising from specific k-point and energy regions. Important contributions to the
theoretical spectra could consequently be traced back to transitions between specific elec-
tronic states. The agreement between experimental and theoretical RD spectra is not always
perfect, but the characteristic line-shapes could be qualitatively reproduced for all surfaces.



Chapter 6

Optical properties of bulk systems

6.1 Plasma frequencies

For metals, the long-wavelength dielectric function at small frequencies is dominated by in-
traband transitions. In the independent particle approximation the real part of the dielectric
function exhibits a −ω̄2/ω2 decay [Eq. (2.107)], where ω̄ is the intraband plasma frequency
[Eq. (2.113)]. This term is often referred to as Drude like term. In general, the plasma fre-
quency is a tensor, but for the cubic metals considered in this chapter, it reduces to a scalar
quantity. For the anisotropic surfaces treated in chapter 7, this is not the case anymore.

The intraband plasma frequency is calculated from a surface integral [see Eq. (2.113)].
In order to generate a sufficient number of k-points in the vicinity of the Fermi surface,
a very dense k-point mesh is required, so that the intraband plasma frequency converges
significantly slower with the number of k-points than quantities which are evaluated from an
integral over the Brillouin zone volume (like energy and density). Faster convergence with
the number of k-points can be reached, if the smearing width σ for the determination of the
one electron occupancies

f(ǫn) =
1

1 + e
ǫn−µ

σ

(6.1)

is chosen larger (in practice often Gaussian broadening or, as in the present case, a Methfessel-
Paxton broadening is chosen). In Tab 6.1, we report the copper plasma frequency (at the
experimental volume) for different sets of k-points and smearing widths. The k-point grid
has been generated using the Monkhorst-Pack scheme and for the broadening a Methfessel-
Paxton method of first order with a smearing width σ has been applied.

For a relatively modest 16 × 16 × 16 k-point grid, a standard smearing width of 0.2 eV
leads to an error of 0.5 eV in the intraband plasma frequency, whereas a 32 × 32 × 32 grid
gives effectively converged plasma frequencies for all considered widths. For larger cells,
where such dense k-point grids may not be practicable anymore, a large value of σ ≈ 0.4 eV
seems to be a good compromise.

The same trend as is observed for copper has also been found for the other metals con-
sidered in this chapter. The plasma frequencies ω̄ obtained for a 32 k-point grid and σ = 0.2
eV are summarized in Tab. 6.2. Additionally the number of electrons in partially filled bands
is given. If the band structure of a metal does not deviate too much from the free-electron
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Table 6.1: Convergence test for the plasma frequency (in eV) of copper. The dependence on the
smearing width σ (in eV) and the number of k-points is shown.

σ/k-points 16 24 32

0.1 7.7 9.7 9.0
0.2 8.6 9.2 9.1
0.3 8.9 9.0 9.1
0.4 9.0 9.1 9.1

gas, the plasma frequency ω̄ should be close to the Drude plasma frequency ω̄Drude [see
Eq. (2.114)] obtained for the corresponding electron density. For the transition metals, the
number of electrons in partially filled bands is not straightforwardly determined, so that the
comparison with a Drude plasma frequency is not meaningful. Consequently, also the ratio
between the relative mass m∗ and the electron mass m can not be calculated. Furthermore,
comparison between the theoretical (intraband) plasma frequency and the experimental one
is not straightforward for transition metals, because interband transitions at small frequen-
cies cause also a decay ∝ −1/ω2 [see Eq. (2.136)] and it is not possible to disentangle the
effect of interband and intraband transitions in the measured dielectric functions. In the case
of Ca and Al, where interband transitions at small frequencies are also present, the authors of
Ref. [83] and Ref. [84] aimed explicitely on subtracting the effect of the interband transitions.

In most experimental articles cited in Tab. 6.2, either the plasma frequency or the mass
ratio are given. The missing quantity was added using the experimental volume in Tab. 6.2
for the calculation of the corresponding Drude frequency or the effective mass, respectively.
The complemented value is set in parenthesis. Overall, the agreement between theoretical
and experimental plasma frequencies is quite good. Only for Ca, the difference between
the theoretical plasma frequency of 4.3 eV and the experimental one (5.7 eV) is significant.
Apart from possible inadequacies of the one-electron picture, this might simply be due to a
contaminated probe in the experiment. The theoretical intraband plasma frequencies of Cu
[82] and Ag [42] have also been calculated by Marini and co-workers. They find a plasma
frequency of 9.27 eV and 9.48 eV for Cu and Ag, respectively. Our values are slightly smaller
which might be a consequence of the fact that Marini et al. used an LDA exchange-correlation
functional, whereas we apply the PBE throughout the present chapter. But possibly, the
discrepancy is also related to their pseudopotential description.

6.2 Dielectric function of bulk copper

In this section, I will present the frequency dependent dielectric function of copper. We make
use of the IP approximation so that the imaginary part of the macroscopic dielectric function
is described by Eq. (2.75). The real part of the dielectric function [Eq. (2.78)] is obtained by
a Hilbert transformation.

Additionally, I will address some technical issues concerning the convergence of the fre-
quency dependent dielectric function with respect to the number of bands, the k-point grid
and the parameters chosen in the Hilbert transformation. The results will give guidance
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Table 6.2: Theoretical intraband plasma frequencies ω̄ for some representative metals calculated
at the experimental volume. Besides the Drude plasma frequency ω̄Drude = (4πe2n/m)(1/2) (eV),
which is directly calculated from the number of valence electrons and the experimental volume, the
calculated plasma frequency ω̄ = (4πe2n/m∗)(1/2) (eV) and the ratio Meff = m∗/m are presented.
In the last two columns experimental values are shown. Values in brackets correspond to derived
numbers. For the transition metals, the definition of the number of valence electrons is questionable
and no disentanglement between intraband and interband transitions is possible, so that only the
calculated intraband plasma frequencies are shown.
a [85]; b [86]; c [87]; d [88]; e [84]; f [83]

exp. V [Å3] valence ω̄Drude ω̄ Meff ω̄-exp Meff -exp

Li 21.02 1 8.1 6.5 1.6 (6.4)a 1.6a

Na 37.71 1 6.0 5.9 1.1 (5.7)a 1.1a

Cu 11.69 1 10.9 9.1 1.4 (8.9)b, 8.8c, 8.9d 1.5b (1.6)c, (1.5)d

Ag 16.84 1 9.0 9.2 1.0 (9.2)b, 8.9d 1.0b, (1.0)d

Au 16.96 1 9.0 9.0 1.0 (9.1)b, 8.7d 1.0b, (1.1)d

Ca 43.44 2 8.0 4.3 3.4 (5.7)e 2.0e

Al 16.39 3 15.9 12.6 1.6 12.3c, 12.5f (1.7)c, (1.6)f

Rh 13.70 10.1
Pd 14.61 7.4
Pt 15.09 8.8

to the settings that guarantee (technically) converged reflectance difference spectra for the
surface dielectric function. Specific tests for the surface dielectric function with respect to
the number of layers and the thickness of the vacuum will be presented in a later chapter.

Finally, we compare our dielectric function to experimental spectra and to an older theo-
retical work by Marini and co-workers [82]. The origin of the deviations between experiment
and our calculations is traced back to the difference of experimental photo-emission measure-
ments and DFT band structure calculations, or slightly different band structures compared
to Ref. [82]. The following calculations have been performed at the theoretical PBE lattice
constant of 3.638 Å (exp. 3.605 Å). Therefore the plasma frequency differs slightly from the
one presented in the previous section and becomes 8.92 eV instead of 9.1 eV.

6.2.1 Bands

If one does not explicitely define the number of bands, this quantity is set to half of the
number of electrons plus some additional bands in a conventional (VASP) DFT calculation.
For the primitive copper cell with 11 electrons e.g., 9 bands would be chosen. For the
imaginary part of the dielectric function this is sufficient, because bands up to 8.9 eV are
included, so that frequencies of interest (max. 8 eV) are accounted for. The real part of
the dielectric function, however, requires the integration of the imaginary dielectric function
over the whole frequency space via the Hilbert transformation. A smaller number of bands
implies that the imaginary dielectric function becomes zero at smaller frequencies introducing
errors in the frequency dependent real dielectric function and reducing the static dielectric
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function. The required number of bands for a well converged real dielectric function up to a
frequency of 8 eV was determined by choosing 12, 16, 20, 24, and 32 bands and comparing
the corresponding real dielectric functions. All curves looked very similar, and even for 12
bands the value of the interband contribution to the static dielectric function differs only by
0.1 compared to the value obtained for 32 bands. For 16 bands, the error decreases to 0.05,
which is accurate enough for the present purpose. Based on this fact, we chose the number
of bands to be 1.5 times the number of electrons in all following bulk and surface optical
calculations.

6.2.2 k-point convergence
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Figure 6.1: Comparison of the imaginary dielectric function obtained for different k-point grids (thin
lines) with the result for (40× 40× 40) k-points (bold line).

The dependence of the dielectric function on the number of k-points is an important issue,
if well converged spectra should be obtained. Because the transition strengths might depend
critical on the position in k-space, the dielectric function converges slower than e.g., the
charge density, and a coarse k-point sampling introduces additional features in the dielectric
function. The choice of the smearing method and the applied smearing width is also closely
linked to the k-point convergence. We used a Gaussian smearing for the optical calculations
throughout this work. In the pre-run in which we determined the charge density, a Methfessel-
Paxton smearing as normally used for metals was applied. In principle, this method could
also be used for the optical calculations, but it can result in (small) negative values of the
imaginary dielectric function which we tried to avoid. Concerning the chosen smearing width,
it is generally observed that larger widths lead to faster k-point convergence, but at the same
time all features are broadened. We found that σ = 0.2 eV is a reasonable compromise.
In Fig. 6.1 the imaginary dielectric function for different k-point grids are compared to the
”converged” spectrum obtained for 40×40×40 k-points (corresponds to 5740 k-points in the
IBZ). For the 8× 8× 8 k-point grid the artificial features due to the coarse k-point sampling
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are significant. Only for 24× 24× 24 k-points (= 1300 k-points IBZ), the dielectric function
becomes smooth and approaches the converged result. The dielectric function calculated by
Marini and coworkers [82], which we will compare to in Fig. 6.4 (left), was obtained utilizing
3000 k-points in the IBZ and a smearing width of 0.2 eV.

6.2.3 Hilbert transformation
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Figure 6.2: Imaginary (left) and real part of the interband dielectric function for different smearing
parameters η used in the Hilbert transformation. The initial imaginary dielectric function is plotted
using a bold line.

The real part of the dielectric function is obtained via a Hilbert transformation. Originally
also the imaginary dielectric function was recalculated in VASP by applying

εαβ(ω) = 1 +
2

π

∫ ∞

0

ε
(2)
αβ(ω′) (ω′ − iη)

(ω′ − iη)2 − ω2
dω′. (6.2)

for a small value of η. The integration is performed applying a simple rectangle formula
with supporting points defined by the maximal frequency (OMEGAMAX) and the number
of frequency points (NEDOS). The quantity η (CSHIFT) causes a smoothening of the spectra
and is set to 0.1 eV by default. In Fig. 6.2 the imaginary (left) and real (right) part of the
dielectric function obtained by Eq. (6.2) using different values of η are shown.

For the final calculation of the real dielectric function we use a small η (CSHIFT = 0.02
eV). The maximal frequency is throughout this work chosen to be 100 eV, and the number
of frequency points set to the (very) large number of 20 000 frequencies. The imaginary part
of the dielectric function is not recalculated applying Eq. (6.2).
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6.2.4 Final form of bulk dielectric function and comparison

In Fig. 6.3, the imaginary and real dielectric function are compared to two experimental
spectra. The calculation was performed using a 40 × 40 × 40 k-point grid and a smearing
width of 0.2 eV. For the theoretical intraband dielectric function, the relaxation time was set
to τ =∞ [corresponding to Eq. (2.107) and Eq. (2.124)]. For the real part, this should give
an intraband contribution that does not differ too much from the experimental one, if the
plasma frequencies are the same. As the imaginary part of the intraband dielectric function
is zero for ω 6= 0, theory does not capture the characteristic rise towards small frequencies as
present for the experimental absorption spectrum (a lifetime broadening effect).
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Figure 6.3: Real and imaginary part of the copper dielectric function. The theoretical spectrum
is compared to the experimental data by Johnson and Christy [86] and Stahrenberg et al. [89].
The intraband part of the real dielectric function is accounted for by adding [Eq. (2.107)] with the
theoretical plasma frequency of ω̄ = 8.92 eV.

Agreement between the theoretical and the experimental dielectric function is good, if one
considers the overall shape of the dielectric function. The experimental spectra themselves
differ concerning the height of the feature at about 5 eV. Stahrenberg et al. [89] attribute this
to an oxygen contamination of the sample used by Johnson and Christy [86], which would
strengthen the agreement of experiment and theory further. Absolute energy positions of
specific features, however, are not exactly reproduced by theory. We find that the absorption
sets in at an energy of about 1.5 eV which is about 0.5 eV lower than in experiment. Also
the peak at 4.5 eV is about 0.3 eV red-shifted. This implies that the theoretical spectrum is
overall slightly red-shifted compared to experiment, as usually observed for DFT.

For analyzing single features in the theoretical (IPA) dielectric function, the one-electron
band structure of the respective material is of relevance. To the absorption spectrum, only
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Figure 6.4: Left: Absorption spectrum for bulk copper. Our spectrum is compared to the theoretical
dielectric function by Marini et al. [82] and the experimental spectra by Johnson and Christy [86] and
Stahrenberg et al. [89]. Right: Band structure of bulk copper. The energies obtained in the present
work are compared to other theoretical results by Marini et al. [82] and to photo emission data [90].

transitions between bands with an energy difference corresponding to the considered fre-
quency contribute, and this enables to trace an absorption peak back to its original electronic
transition. The transitions underlying the ”true” (experimental) spectrum correspond to ex-
citations between quasiparticle states if excitonic effects are neglected. If the quasiparticle
energies (or experimental (inverse) photo emission data) and the one-electron band structure
are equal, the theoretical and experimental dielectric function should be the same. On the
other hand, deviations between the theoretical band structure and photoemission data can
explain differences of the theoretical spectrum and the measured one. The same holds for
spectra stemming from different theoretical band structures. In Fig. 6.4 (right) the theoreti-
cal band structures of Marini et al. [82] and experimental photoemission data [90] are shown
together with our results. The comparison of the band structure calculated by Marini et al.
and our one-electron energies shows that Marini’s spectrum is slightly expanded away from
the Fermi energy. As they apply the LDA exchange-correlation potential, it might be possible
that they use the LDA volume, which is smaller than the experimental one and therefore
leads to an increase of the bandwidth. Both theoretical spectra, nevertheless, give too large
d-band widths and the onset for d-bands is shifted upwards from −2 eV in experiment to
−1.5 eV in the theoretical band structures.

Before considering the effect of these deviations on the absorption spectrum, we interpret
our spectrum with respect to the underlying transitions. Therefore we have decomposed the
imaginary part of the dielectric functions (here: 24×24×24 k-point calculation) into contri-
butions arising from specific energy ranges (see Fig. 6.5). The initial part of the absorption
spectrum arises from transitions between (flat) d-bands at energies between −1.5 eV and
−4.0 eV and the Fermi surface. The form of this initial part is very similar to the d-band
density of states when changing the energy sign. A large joined density of states is obtained
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Figure 6.5: Contributions to the absorption spectrum arising from different energy regions below the
Fermi energy.

for a low lying d-band (between −4.0 eV and −5.0 eV) and the s/p-like band crossing the
Fermi surface resulting in the second larger feature at about 5 eV. An additional contribu-
tion at slightly smaller energies arises from excitations from bands at the Fermi-energy to an
unoccupied s band. A more detailed assignment of absorption features and band structure
can e.g., be found in Ref. [89].

In Fig. 6.4 (left side), our absorption spectrum is compared to the one obtained by Marini
and co-workers [82] and again to experimental data. The early onset of both theoretical
spectra can now be explained by the too high energies of the top-most d-bands. The reason
for the different energy position of the second maximum in the theoretical spectra is twofold.
On the one hand, Marini’s unoccupied bands are shifted to higher energies, so that also the
transitions from the Fermi sphere to these bands are blue-shifted. On the other side, low
lying d-bands have smaller energies than in our band structure, thus again resulting in a
larger frequency. Additionally to the various energy shifts, both Marini’s and our spectrum
overestimate the dielectric function. For the RD spectra this error cancels out, because there
we consider only the relative difference in the reflectance. Finally, we should emphasize that
we have neglected local field effects in this section and we will use this approximation also
for the surface calculations. Test calculations have shown that, at least for the Cu bulk, this
simplification is justified. The same calculations have also been considered by Marini et al.
and the respective spectra can be found in Ref. [82].



Chapter 7

Optical calculations for Cu(110)
surfaces

In this chapter, we will present reflectance difference spectra for the bare, the oxygen, and
the carbon monoxide covered Cu(110) surface. The Cu(110) surface has been one of the first
metallic surfaces studied with RD spectroscopy [52] and has evoked numerous experimental
studies since [53, 54, 55, 56, 57, 58]. Additionally the electronic structure of the bare and
oxygen covered Cu(110) surface is well studied by (inverse) photoemission spectroscopy [92,
93, 94, 95], thus allowing an easy check of the validity of the theoretical one-electron band
structure. This makes the bare Cu(110) and its adsorbate covered surfaces a good test case
for surface optical calculations. RD spectra have already been evaluated for the bare [59, 60]
and carbon-monoxide covered [61] Cu(110) surface by Monachesi and coworkers. Their linear
muffin tin orbital (LMTO) calculations were based on the independent particle approximation
for the (surface) dielectric function, as is the case in the present work. The RD spectra of
Monachesi et al. shared some features with the experimental spectra, but due to their small
number of slab layers (11 layers) the overall agreement with experiment was modest.

In the following section, we first give a brief overview of the geometry of the bare Cu(110),
the Cu(110)-(2×1)O, the Cu(110)-(2×1)CO, and the Cu(110)-(3×1)CO surface. Afterwards,
convergence tests for the surface optical response with respect to the number of k-points, the
vacuum layer thickness, and the number of slab layers will be presented. Finally, the RD
spectra of the considered surface structure are shown in Sec. 7.3 and interpreted with respect
to the theoretical band structure presented in Sec. 7.3.1.

7.1 Geometry of surfaces

In this section, a brief overview of the considered surface structures will be given. Fig. 7.1
shows the bare Cu(110) surface in top view. Here and in the following sections the [11̄0],
[001], and [110] direction will be referred to as x-, y-, and z-direction, respectively. The
anisotropy of the bare (110) surface arises from the different distance of surface atoms in x-
and y- direction (2.572 Å along the x-direction, 3.638 Å along the y-direction). For the bare
Cu(110) surface the distance of the two topmost layers d12 is 1.16 Å, which is −10 % smaller
than the bulk layer distance of 1.286 Å. For the second and third layer, the layer distance
d23 is increased by 4.5 %.
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Figure 7.1: Tow view onto the bare Cu(110) surface. In the following the [11̄0] and [001] direction
will be referred to as x- and y- direction respectively.
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Figure 7.2: Cu(110)-(2× 1)O added-row reconstruction in top (left) and side (right) view. Oxygen
atoms are drawn as black circles, Cu atoms forming the linear chains with the oxygen atoms are
shown in grey, Cu atoms in the first and second Cu(110) layer are white and light grey, respectively.

In Fig. 7.2 the Cu(110)-(2× 1)O added-row reconstruction is shown in top (left) and side
(right) view. This structure is formed of Cu-O-Cu rows along the y-direction, with oxygen
atoms situated in short bridge sites and additional Cu atoms in hollow sites. The oxygen
atom is situated slightly higher than the added-row Cu atom. The distance between the
added-row Cu atom and the top most Cu(110) layer amounts to 1.42 Å. Due to the presence
of the Cu-O-Cu rows the distances between the first and second Cu(110) layer comes closer
to the bulk distance d12 = 1.24 Å for the Cu atom directly below the Cu-O-Cu rows and
1.27 Å for the other Cu atom. More details about the geometry of the Cu(110)-(2 × 1)O
added-row reconstruction and a comparison with experimental values can be found in [96]
and [97].

The Cu(110)-(2×1)CO and Cu(110)-(3×1)CO surface are shown in Fig. 7.3 and Fig. 7.4,
respectively. Experimentally, CO is found to adsorb on the top site with a C-Cu distance
of 1.87 Å and a C-O bond length of 1.11 Å for the Cu(110)-(2 × 1)CO geometry (see e.g.,
[98]). Because the theoretical geometry of the (2 × 1)CO and (3 × 1)CO structure is very
similar, we will concentrate on the Cu(110)-(2 × 1)CO atomic positions. We find that the
CO molecule is situated 1.84 Å above the Cu(110) surface with a C-O bond length of 1.16
Å. The distance between the Cu atom directly below the CO molecule and the next Cu layer
is with 1.29 Å exactly the same as the bulk like distance of 1.286 Å(increased compared to
the bare surface). For the copper atom between the CO adsorbates the layer distance is 1.15
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Figure 7.3: Cu(110)-(2× 1)CO surface in top (left) and side (right) view. Cu atoms in the first and
second Cu(110) layer are shown using white and light grey balls, oxygen atoms are shown using black
and carbon atoms using dark grey balls.
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Figure 7.4: Cu(110)-(3× 1)CO surface in top (left) and side (right) view.

Å and therefore very similar to the bare Cu(110) surface (1.16 Å).

7.2 Convergence tests

The reflectance difference spectrum is calculated according to Eq. (5.1) as

∆r

r̄
= −

2idω

c

εxx − εyy

εb − 1
.

The quantity which is easier accessible in experiment - and simply referred to as RD spectrum
in the following - is the real part [Eq. (5.23)]:

Re

[
∆r

r̄

]
=

2ωd

c

(
∆ε(2)(ε

(1)
b − 1)−∆ε(1)ε

(2)
b

(ε
(1)
b − 1)2 + (ε

(2)
b )2

)
. (7.1)

with εb = ε
(1)
b + i ε

(2)
b and ∆ε = ∆ε(1) + i∆ε(2). Because the RD spectrum depends on both,

the imaginary and real part of the surface and bulk dielectric function, a direct interpretation
of single features is not always straightforward. In many cases it is easier to consider the
surface dielectric anisotropy (SDA) ∆ε = εxx − εyy that underlies the RD spectrum. Its
imaginary part directly tells whether light polarized along the x- or y- direction is stronger
absorbed at a specific frequency ω. For small frequencies, where the imaginary part of the

bulk dielectric function is small compared to the real part ε
(2)
b ≪ |(ε

(1)
b −1)| the RD spectrum
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can be approximately written as:

Re

[
∆r

r̄

]
≈

2πωd

c

∆ε(2)

(ε
(1)
b − 1)

, (7.2)

so that for ∆ε(2) < 0 (stronger absorption in y-direction) the RD spectrum becomes positive
(stronger reflectance in x-direction) and vice versa.

Technically, converged RD spectra can only be achieved, if the surface dielectric anisotropy
or the surface dielectric function, respectively, is well converged. As for the bulk dielectric
function, the k-point sampling has to be tested. Additionally, since the surface is modeled
as repeated slabs separated by vacuum regions, the dependence of the dielectric function on
the thickness of the vacuum and on the number of slab layers has to be analyzed.

7.2.1 Vacuum
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Figure 7.5: In the left and middle panel, the imaginary surface dielectric component ε
(2)
xx of a 8

layer bare Cu(110) slab, once without correct scaling (left), once scaled by z/d (middle) is shown
for different thicknesses of the vacuum regions. On the very right, a schematic view of the slab
representation is shown.

In the optical routines, the dielectric function is obtained by dividing the sum over tran-
sitions by the volume of the supercell [see Eq. (2.75)]. This makes the dielectric function
an intrinsic quantity and independent of a cell replication. In the case of a surface optical
calculation, however, the dielectric function is averaged over both the slab and the vacuum
region (see schematic in the very right panel of Fig. 7.5), thus resulting in a too small value
of the dielectric function. On the left hand side of Fig. 7.5, the imaginary dielectric function
ε2xx for an 8 layer slab is shown for different vacuum thicknesses as normally calculated by
the optics routines. In the middle panel of Fig. 7.5, the same spectra scaled by z/d are plot-
ted. The convergence with the vacuum thickness is already obtained for 8 Å, if the correct
rescaling is performed.

For the final calculations, a distance of about 13 Å between the Cu slabs has been
chosen to guarantee that the opposite surfaces do not influence each other. In summary, the
convergence with the thickness of the vacuum region is fast and well controlled.
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7.2.2 k-points

As for the bulk (see Fig. 6.1), the calculation of the surface dielectric tensor requires a dense
k-point grid in order to avoid spurious oscillations in the spectra, whereas converged values
for geometries and charge densities are already obtained for a much coarser Brillouin zone
sampling. Only at 40 × 24 × 1 k-points for a (1 × 1) geometry [20 × 24 × 1 for (2 × 1) and
12 × 24 × 1 for (3 × 1)], these oscillations become negligible. Unfortunately, such a dense
k-point grid exceeds the memory limits especially if a large number of slab layers is used
in the representation of the surface. Therefore, we divide the Brillouin zone into sub-grids
and evaluate the corresponding contributions to the dielectric function at each segment of
the sub-grid separately. As the contributions to the dielectric function arising from different
k-points are independent from each other, the sum over all these parts results in the correct
dielectric function. This procedure furthermore allows to attribute features in the SDA and
consequently in the RD spectrum to transitions from specific k-point regions.

In summary, the calculation of the RD spectrum of a specific surface proceeds in the
following steps. A symmetric slab representation of the surface is set up (using usually 23-25
layers) and the outermost 6 Cu layers and the adsorbates are allowed to relax. This step is
performed for a coarser k-point grid of e.g., 20× 12× 1 k-points for the (1× 1) cell. For the
optical calculation, the charge density of this pre-run is read in, and, in a non-self consistent
manner, the wavefunctions, their derivatives, and finally the contributions to the dielectric
function are evaluated for one k-point region. The Fermi energy is thereby fixed to the value
obtained in the pre-run. In a final step, the total dielectric function is obtained by averaging
over all partial dielectric functions.

7.2.3 Interband transitions at small frequencies

In the following, we will emphasize the importance of including the ab-initio surface in-
traband dielectric function in the evaluation of the SDA and the RD spectrum. The reason
for this is not that experiments suggest an anisotropic surface plasma tensor, but that in-
terband transitions at small frequencies strongly effect the theoretical dielectric anisotropy.

For metals, there is no lower boundary for interband transition frequencies because of the
lack of a bandgap between occupied and unoccupied states. Such small frequency interband
excitations normally occur at bands that cross near the Fermi sphere. Although not present
for bulk Cu, these interband transitions have been subject of previous publications [99, 100]
for Al bulk and occur for all Cu(110) surfaces. As an example, the band structure of the bare
Cu(110) surface is plotted in Fig. 7.6 between two high symmetry k-points for a 23 and a 24
layer slab. The strength of the small frequency interband contributions critically depends on
the position of the band crossings relative to the Fermi level, and thus is strongly affected by
the number of slab layers (see Fig. 7.6) and the k-point positions. Furthermore, this depen-
dence is anisotropic with respect to the polarization state of the incident light. In Sec. 2.9,
I have shown that interband transitions at small energies lead to a real dielectric function
which has the same form as the intraband dielectric function and depends on the (square of
the) interband plasma frequency ω̄2

inter. At the same time, second order perturbation theory
shows that such small interband transitions lead to a reduction of the (square of the) intra-
band plasma frequency ω̄2

intra by ω̄2
inter (see Sec. 2.8 and Sec. 2.9). As the strength of the small

frequency interband transitions is sensitive to the number of layers, to the chosen k-point
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Figure 7.6: The band structure between the Γ̄ and Ȳ high symmetry k-point is shown for the bare
Cu(110) surface modeled by a 23 and 24 layer slab. Black circles indicate two surface states.
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dielectric function is shown in bold. The dashed line shows the error introduced by neglecting the
intraband contributions.
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grid, and furthermore is anisotropic for light polarized along the x- and the y-direction, the
difference of the real interband SDA ∆εinter = εinter

xx − εinter
yy exhibits a spurious −∆ω̄2

inter/ω
2

behavior with ∆ω̄2
inter = ω̄2,xx

inter− ω̄
2,yy
inter. This behavior can be corrected by consistently includ-

ing both the interband and the intraband dielectric function in the calculation of the SDA,
because large contributions by small frequency interband transitions imply a lowering in the
corresponding component of the intraband plasma frequency.

As an example, we discuss the bare Cu(110) 23 and 24 layer SDA spectrum in more
detail. In Fig. 7.7 the real part of the SDA arising only from interband excitations is plotted
using a thin solid line. For both, the 23 and 24 layer calculations, a −∆ω̄2

inter/ω
2 decay

is superimposed on the spectra. This decay is stronger for 24 layers because here ∆ω̄2
inter

is significantly larger than for 23 layers. Interband transitions at small frequencies lead to
a reduction of the intraband plasma frequency. The intraband plasma frequency element
ω̄xx

intra and ω̄yy
intra are 7.2 eV and 6.7 eV for 23 layers, and 7.2 eV and 6.3 eV for 24 layers,

respectively. For both, 23 and 24 layers, the plasma frequency component ω̄yy
intra is smaller

than ω̄xx
intra, related to the larger amount of small frequency interband transitions for the y-

direction. Additionally the difference between the intraband plasma frequency components
is larger for 24 layers than for 23 layers. The inclusion of the intraband dielectric function
in the evaluation of the real SDA spectrum leads to an additional term (ω̄2,xx

intra − ω̄
2,yy
intra)/ω

2.
The resulting SDA is shown as a thick line in Fig. 7.7, the correction term introduced by the
intraband dielectric function is plotted by a dashed line. Including intraband and interband
terms consistently improves the agreement between the 23 and the 24 layer SDA spectra.

7.2.4 Number of layers

In the present case, we approximate a surface of macroscopic thickness as a slab consisting of
only a few atomic layers. The first and most important requirement on the slab representation
is that surface states that contribute to the RD spectrum are reproduced. Taking the surface
states of the bare surface at the Ȳ -point as an example, we find that they are present already
for a slabs with 12 layers. In Fig. 7.6 these surface states are highlighted with black dots for
23 and 24 layers, and we see that the onset energy and dispersion is the same for both cases.

The second kind of states from or to which optical transitions can occur are bulk like
bands. In the surface Brillouin zone they fill up energy-momentum areas that correspond to
a projection of the three-dimensional bulk band structure onto the two-dimensional surface
Brillouin zone. While these areas are continously populated for a (semi)infinite surface, only
a discretized number of bands are present, if one models the surface by a slab consisting
of a few layers. This discretized representation of the bulk-like band structure can be also
observed in Fig. 7.6. While the energy areas of the bulk bands are the same for 23 and 24
layers, the bulk bands become denser for 24 layers and change their energy position slightly.
Connected to these energy shifts with increasing layers are small oscillations in the dielectric
function and consequently in the RD spectrum. Therefore, RD spectra are slightly different
even for layer numbers as large as 23 and 24, as can be seen in Fig. 7.8. The strong peak at
about 2 eV is due to a surface state to surface state transition and is therefore not affected
by the discretized bulk bands. In the higher energy region the spurious oscillations due to
the finite slab thickness become evident. For the case of Cu(110), we have shown in Ref. [97]
that the onset positions of the sp-like bands are roughly alternating for slabs with one layer
difference. Transitions between localized bands or surface states and sp-like bands, therefore,
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Figure 7.8: RD spectrum evaluated for a 23 and 24 layers slab and the average of these two spectra.

show alternating onsets for slabs with one layer difference. These artifacts, arising from the
coarse spacing of bulk-like bands, can be reduced by averaging over spectra obtained for slabs
with one layer difference.

In order to minimize the effect of the finite slab thickness and of the resulting coarse
spacing of the bulk-like bands, we have performed RD calculations applying 23, 24, and 25
layers for every surface structure investigated. The final RD spectrum is obtained by first
averaging over the spectra for 23 and 24, and 24 and 25 layers, and finally averaging over
these results. This procedure reduces most of the finite size effects, although one should
be aware that the interpretation of every small signature in the RD spectrum might not be
sensible.

7.3 RDS spectra and interpretation

The goal of our calculations is to interprete the theoretical RD spectra with respect to tran-
sitions between electronic states. As we make use of the independent particle approximation
a straightforward assignment of features in the imaginary dielectric function to transitions
between one-electron states is possible and consequently also signatures in the real part of
the dielectric function and the reflectance difference spectrum can be traced back to special
excitations. For the assignment of states, we can make use of the fact that the independent
particle dielectric function is obtained as a sum over specific k-point regions (as discussed
before), and that we can therefore evaluate the RD spectrum for each k-point region sep-
arately. Additionally, the dielectric function can be analyzed with respect to the energy of
the initial state, which provides together with the frequency of a specific feature information
about the states contributing to this signal. For the Cu bulk, such an assignment was shown
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in Fig. 6.5. Combining these two techniques, an interpretation of the dielectric function is
possible. An assignment of RD features is slightly more complicated because not only the
difference between the imaginary dielectric function for x- and y- polarized light, but also the
difference in the real part contribute. These contributions are multiplied by the imaginary
and real part of the bulk dielectric function and everything is finally divided by the norm of
the bulk dielectric function, so that the origin of RD feature is more obscure than for the
imaginary dielectric function.

While an assignment of a transition with respect to the energy of the initial band and the
k-point region is in principle unique, it is nevertheless useful to consider selection rules and
general properties of the band structure to disentangle possible transitions where the direct
method only provides information about regions of energy and k-points.

In a first step, one can assume that transition probabilities are unity for all possible
(= energetically allowed) excitations [see Eq. (2.75)], and that the dielectric function only
depends on the number of states available. In this approximation the contribution to the
dielectric function from transitions between the occupied band v to the unoccupied band c
is proportional to the corresponding joint density of states:

Jcv(ǫ) =

∫

BZ

2dk

(2π)3
δ[ǫc(k) − ǫv(k)− ǫ]. (7.3)

Employing the properties of the δ-function, the density of states can be rewritten as a surface
integral

Jcv(ǫ) =
2

(2π)3

∫

ǫc−ǫv=ǫ

dS

|∇k[ǫc(k)− ǫv(k)]|
. (7.4)

Large contributions to the dielectric function therefore stem from ”flat” bands

∇k ǫc(k) = ∇k ǫv(k) = 0, (7.5)

occuring frequently at high symmetry points of the Brillouin zone. Also if two bands are
parallel

∇k ǫc(k)−∇k ǫv(k) = 0, (7.6)

large contributions to the dielectric function can be expected.
In the previous consideration, the transition probabilities were not explicitely taken into

account. For crystalline systems, group theory can be used to decide if transitions between
bands at specific k-points are allowed according to their symmetry. For fcc and bcc bulk
lattices, such dipole transition tables can e.g., be found in Ref. [101]. For the interpretation
of the dielectric function of the bare and the adsorbate covered Cu(110) surfaces we consider
the transition probabilities in an atomic like picture. To this end, the wavefunctions are
projected onto atomic orbitals and transitions analyzed in terms of elementary atomic dipole
selection rules. Such a procedure was e.g., applied by Smith [102] for the interpretation
of the imaginary dielectric function of the Cu(111) and Cu(100) surface calculated with a
simple semiempirical Hamiltonian. For electric dipole transitions the angular momentum
number has to fulfill ∆l = ±1 (atomic dipole selection rule). Additionally, parity selection
rules allow only electron excitations between states with different parity with respect to the
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Table 7.1: Parity of atomic orbitals with respect to the x, y, and z direction. Positive parity (+);
Negative parity (−).

parity

f(−x, y, z) = ±f(x, y, z) f(x,−y, z) = ±f(x, y, z) f(x, y,−z) = ±f(x, y, z)

s + + +
px − + +
py + − +
pz + + −
dxy − − +
dyz + − −
dzx − + −
dz2 + + +

dx2−y2 + + +

polarization-direction of the incident light. A transitions between e.g., s and d bands would
be forbidden because of the dipole selection rule. The parity selection rules allows e.g.,
s → px, px → dx2−y2(dz2), py → dxy transitions for light polarized along the x-direction,
whereas e.g., s → py, py → dx2−y2(dz2), px → dxy transition are accessible by y-polarized
light. In Tab. 7.3 the parity of atomic states is summarized for the x, y, and z direction.

7.3.1 Band Structure

In this subsection, the band structure for the bare, and the oxygen and carbon-monoxide
covered Cu(110) surface is discussed. The band structure or respectively its deviation from
experiment is an important indicator, whether the one-electron KS results are sufficiently
reliable for the description of the optical response. If discrepancies between the photoemission
energies and the theoretical one-particle energies exist, they will lead to energy shifts of
features in the dielectric function. If the experimental and the theoretical band structure
agree at least qualitatively, errors in the relative energy position of the theoretical RD spectra
can be traced back to these shifts in the band structure and comparison between RD and
experimental photoemission data is still possible.

In Fig. 7.9, the band structure of the bare Cu(110) surface, in Fig. 7.10 the band struc-
ture of the oxygen induced Cu(110)-(2× 1)O reconstruction (top) and the carbon-monoxide
covered Cu(110)-(2×1)CO (bottom) are shown. The very same band structures for the bare
and the adsorbate covered Cu(110) surfaces have already been presented in Refs. [91, 105]
and have been discussed in more detail there.

The most significant feature in the band structure of the bare Cu(110) surface are the
surface states at the Ȳ point. The deeper lying, occupied, surface states at −0.5 eV (ex-
periment: −0.4 eV [92]) has predominantly py character, the second surface state at 1.5 eV
(experimental: 1.8 eV [93]) s and pz character. The corresponding surface states at the X̄
point are both unoccupied. The width of the d-bands is overestimated as it is for the Cu bulk
case. While the onset of the d-bands at −4 eV is almost identical for theory and experiments,
the theoretical bandwidth is with 2.5 eV about 0.5 eV larger than suggested by the angle
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Figure 7.9: Band structure of the bare Cu(110) surface (24 layer slab) for lines between high sym-
metry points of the surface Brillouin zone.

resolved ultraviolet photoemission spectroscopy (ARUPS) measurements [95].

The band structure of the Cu(110)-(2×1)O added-row reconstruction is dominated by the
features arising from the strongly bonded Cu-O-Cu rows aligned along the y-direction. The
pronounced one-dimensional character of these rows can be seen from the strong dispersion
of the O py state along the y-direction, whereas no dispersion appears along the x-direction.
The O py antibonding counterpart can be observed at the Ȳ point as a weak resonance 0.5 eV
above the Fermi level. While the O py states hybridize with the Cu s, Cu dx2−z2 , and Cu dz2

states at the Ȳ point, the O px and O pz states interact with the Cu dxy and Cu dyz states,
respectively. The Ȳ surface states of the bare Cu(110) surface have been destroyed by the
Cu(110)-(2 × 1)O surface reconstruction. In Fig. 7.11 a schematic overview of the energies
observed in experiment and theory is provided. In the comparison the oxygen p-states and
the Cu d-bands are shown. The bonding O p states have the same order in experiment and
theory, the theoretical energies for the O py (−7.8 eV), O pz (−6.0 eV), and O px (−5.5 eV)
are equal or slightly larger than the measured ones (−7.8, −6.5, −6.1 eV). The character of
the O p states above the Cu d bands has not been unambiguously determined in experiment.
Only the position of the antibonding px state was confirmed at an energy of −1.2 eV (present
work: −0.7 eV). The other two bands, of either py, or pz type were reported at −0.2 eV,
and −1.4 eV. Our calculations suggest a O pz derived state at −1.0 eV and a O py related
(unoccupied) state at 0.5 eV.

The band structure of the carbon-monoxide covered Cu(110)-(2× 1)CO surface is shown
in the bottom of Fig. 7.10. The signals arising from the carbon-monoxide are highlighted and
labeled according to the CO molecular orbitals. The dispersion of the 5σ and 1π states at
roughly −7.0 eV is small, only the 5σ orbital hybridizes. The antibonding 2π∗ state is located
at an energy of about 2 eV and distinctly visible between the Γ̄ and X̄ ′ point. In contrast to
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Figure 7.10: Band structure of the Cu(110)-(2×1)O (top) and Cu(110)-(2×1)CO surface (bottom).
A 12 layer slab was used. Because of the doubled extension of the (2 × 1) cell, the Brillouin zone is
folded back along the x direction, and the number of bands is doubled compared to the bare surface.

the Cu(110)-(2×1)O added-row reconstruction, the CO adsorption does not entirely destroy
the characteristic surface states of the bare substrate. A Cu s like band can be found in the
vicinity of the Ȳ point with an onset of about 3 eV, 1.5 eV above the corresponding surface
state of the bare surface.

All in all, DFT describes the band structure of all three considered surfaces reasonably
well. While the principle structure is reproduced, absolute energies sometimes exhibit sizeable
errors, especially the Cu d-bandwidth is significantly overestimated. As a general trend,
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Figure 7.11: This figure schematically shows the experimental ([103] and [95]) and the ab-initio
evaluated band structure for the Cu(110)-(2× 1)O surface.

theoretical energies are shifted towards the Fermi energy, so that the energy of occupied
bands is slightly too large, those of the unoccupied bands slightly too small.

7.3.2 Reflectance difference spectra

The final theoretical RD spectra for the bare, the oxygen, and the carbon-monoxide covered
Cu(110) surface are shown in Fig. 7.12 together with the experimental data measured by
Zeppenfeld et al. [55]. Theory succeeds in predicting the general features of all Cu(110)
surfaces, but the frequencies of features are generally shifted to smaller values. This is a
consequence of the beforehand discussed deviation between measured photoemission and
KS-DFT eigenenergies, where the latter are shifted towards the Fermi level.

For the bare Cu(110) surface, the prominent maximum at about 2 eV is reproduced by
the present calculations. Also the RD at higher frequencies, with the characteristic double
minimum structure between 3 and 4 eV is obtained within the present theoretical approach.
For the (2×1)O added-row reconstruction, the large bare Cu(110) peak at 2 eV is significantly
reduced, in accordance with the experimental findings. The minimum at about 3.8 eV is still
present, although broadened compared to the measured RD signal. This might be related
to spurious contributions due to the finite slab size, which could not be properly averaged
out. For the carbon-monoxide covered Cu(110)-(2 × 1)CO surface the change from positive
to negative RD values at small frequencies and the following rise of the RD spectrum is
correctly reproduced by the present calculations. Only the minimum at about 3.8 eV is too
deep. This discrepancy between theory and experiment is lifted in the case of the (3× 1)CO
geometry. The reason for the very deep minimum in the Cu(110)-(2×1)CO spectrum lies in a
transition involving a surface state. Since other experimental data exist that predict a much
deeper minimum for the Cu(110)-(2×1)CO surface [52] than found by Zeppenfeld et al. [55],
the discrepancy between the experimental data presented in [55] and our calculations might
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Figure 7.12: RD spectra for the bare, the oxygen induced Cu(110)-(2×1)O added-row reconstruction,
the carbon-monoxide covered Cu(110)-(2 × 1)CO and Cu(110)-(3 × 1)CO surface. The theoretical
spectra (left) are compared to the experimental results [55].

be related to a non-perfectly ordered experimental surface structure. On the other hand, an
imprecise theoretical description of the relative position of the surface state can not be ruled
out.

In the following, we will derive the origin of the main RD features by analyzing the energy
and k-point origin of specific transitions. For the bare Cu(110) surface (see Fig. 7.13) the
most prominent features of the RD spectrum is the large maximum at energies of about
2 eV and the double minimum structure at larger frequencies, where the second minimum
occurs for all Cu(110) surfaces independently of the present adsorbate. The large maximum
at about 2 eV was assumed to be connected to the characteristic bare Cu(110) surface states
at the Ȳ point [52, 53, 58, 59, 60]. We find that transitions between the occupied surface
state with py character and the unoccupied surface state with s character are indeed the
main source for this strong absorption for y-polarized light. But in addition to this surface
state − surface state transition, the final shape of this peak is determined by transitions
from dxy like bands at the top of the Cu d-bands to px states at the Fermi level near the X̄
point (positive RD contribution), and transitions to py like states between the Γ and Y point
(negative RD contribution). In total these transitions result in a small positive RD shoulder
at about 2 eV, as already proposed by Sun et al. [58]

The RD minimum at about 3.8 eV, which occurs for all Cu(110) surfaces studied in
the present work, is not related to specific surface states but arises from the anisotropy of
the Cu(110) surface itself. The origin of this minimum lies in transitions in the vicinity
of the S̄ point from px and py like states at the Fermi energy to an unoccupied s-band at
about 3.8 eV. Due to the fact that the surface contribution of px like orbitals is significantly
stronger, the net absorption strength is larger (by about a factor of 2) for light polarized
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Figure 7.13: RD spectrum of the bare Cu(110) surface. Significant contributions are explicitely
indicated.
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Figure 7.14: RD spectrum of the oxygen induced Cu(110)-(2× 1)O added-row reconstruction and
significant contributions to it.

along the x direction. The reason for this minimum is therefore not the different energy
onset for the transitions from px and py states as proposed by Zeppenfeld et al. [54], but the
difference in the absorption strength for these bands with different symmetry. Because the
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Figure 7.15: RD spectrum of the carbon monoxide covered Cu(110)-(2×1)CO surface and significant
contributions to it.

contributing bands do not change with adsorption, the minimum at about 3.8 eV is present
for all considered surfaces.

The last feature not yet explained for the bare Cu(110) surface is the second minimum
at about 3 eV. It is another signature of the unoccupied surface state at the Ȳ point, with
the initial state of dxz character situated at the top of the Cu d-bands. The transition
probabilities are not vanishing, due to the s and pz character of the unoccupied surface
state.

For both, the (2 × 1)O and (2 × 1)CO surface, the large maximum at 2 eV vanishes,
to be replaced by a much smaller positive RD signal for the (2 × 1)O, and even a negative
signature for the (2×1)CO surface. While for the (2×1)O surface states associated with the
adsorbed oxygen are responsible for the RD form at small frequencies, as will be shown later,
the (2×1)CO surface seems not to be influenced by specific transitions but by a general shift
of the dielectric function for light polarized along x- and y- direction. This shift amounts to
about +0.08 eV for y polarized light, so that the absorption in x-direction sets in slightly
earlier causing the negative sign of the RD spectrum. Such a behavior can be explained by
a derivative model [104]. For the (2 × 1)O surface, this shift is overlaid by transitions to
the unoccupied O py state at about 0.5 eV, with additional Cu dx2−y2 , Cu dz2, and Cu pz

character. Three different contributions can be observed: transitions from the O pz state
at −1.0 eV to the O py state (positive RD contribution), transitions from Cu py like states
at energies between −1.5 and −1.0 eV to the O py state (positive RD contribution), and
transitions from Cu dxz states slightly above the Cu d-bands (≈ −1.5 eV) to the O py state
(negative RD contribution). The last contribution gives rise to the small minimum at about
2 eV.
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The Cu(110)-(2× 1)O and Cu(110)-(2× 1)CO RD spectra at higher frequencies are both
dominated by the minimum at 3.8 eV described above. For the Cu(110)-(2 × 1)CO surface,
this minimum is additionally deepened compared to the other surfaces. We found that this
deepened minimum results from an additional transition between Cu-py bulklike states to a
(2×1)CO Ȳ surface state at about 3 eV. This state has the same character as the unoccupied
surface state of the bare Cu(110) surface (s-type), but is situated at a larger energy (3 eV
compared to 1.5 eV for the bare surface), resulting in an absorption peak for y-polarized
light at about 3.4 eV. In the RD, this feature manifests itself as a minimum around 3.7 eV.
The negative sign of the RD contribution results from the increased importance of the real
part of the surface dielectric anisotropy, as the imaginary part of the bulk dielectric function
becomes larger than the respective real one.

The deviations between theoretical and experimental RD spectra concerning the depth
of the minimum at 3.8 eV is lifted for the case of the Cu(110)-(3 × 1)CO surface. The
depth of the minimum is now in agreement with the experimental data (see Ref. [55] and
Fig. 7.12). Experiments suggest that the minimum at about 3.8 eV is very sensitive to surface
defects and the roughness of the surface. The neglect of these contributions in the theoretical
description of the RD (2 × 1)CO spectrum, respectively, a quenching of the surface states
by the roughened surface in experiments, might lead to the deviation for the depth of the
minimum.



Chapter 8

Conclusions and Summary

This part of my thesis has been focused on the calculation of the reflectance difference spectra
for the bare Cu(110), the oxygen covered Cu(110)-(2×1)O, and the carbon-monoxide covered
Cu(110)-(2 × 1)CO and Cu(110)-(3 × 1)CO surfaces. The Cu(110) substrate was chosen
because it is among the best studied metallic surfaces using RD spectroscopy and numerous
of these measurements have been performed by our collaborators Peter Zeppenfeld and co-
workers at the University of Linz [54, 55, 56, 57, 58].

The evaluation of the reflectance difference spectrum requires the (anisotropic) dielectric
function of the considered surface as well as the optical response of the bulk material. Be-
sides giving the RD spectrum, the present calculations were therefore also among the first
applications of the PAW optical routines within the VASP code [21] for bulk metals as well
as for the optical response of surfaces. For the correct description of the dielectric function of
metallic systems, the expression for the intraband plasma frequency has been implemented
in the VASP code, and was tested for various metallic systems in Sec. 6.1. The relationship
between intraband transitions and interband transitions at small frequencies has been em-
phasized in subsection 7.2.3, and convergence tests for the surface dielectric function have
been outlined in Sec. 7.2.

As the RD spectrum depends on the real and imaginary part of the bulk and surface
dielectric function in a non-trivial way, the interpretation of the experimental RD spectra
with respect to specific transitions is not straightforward. Therefore, an ab-initio calcula-
tion of the RD spectrum and the interpretation of this spectrum in terms of the underlying
electronic transitions is of interest. In the independent particle approximation, which we
used to describe the dielectric function, light can only be absorbed, if the frequency of the
light corresponds to the energy difference between two one-electron eigenenergies. Agree-
ment with experiment can only be expected if the one-electron eigenenergies correspond
to the quasi-particle energies as measured in (inverse) photoemission spectroscopy. Band
structure calculations for all considered Cu(110) surfaces and the comparison to experiment
have been presented in subsection 7.3.1. We find that bulk like bands, surface states, and
adsorbate associated features are in qualitative agreement with the experimental findings,
although the theoretical one-particle energies are generally shifted towards the Fermi energy
resulting in red-shifted dielectric functions and RD spectra. As we have shown in Sec. 9.1,
GW calculations would improve the Cu bandstructure in some aspects, but unfortunately
large scale calculations for enough k-points are yet not possible using GW due to the large
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computational effort included.
For all Cu(110) surfaces, independent on the specific adsorbate, Zeppenfeld and co-

workers find an RD minimum at an energy of about 4.4 eV. This feature, situated at 3.8 eV
in the theoretical spectra, can be explained by transitions from p-like states near the Fermi
energy to an unoccupied bulk-like s state at the S̄ point. Due to the surface anisotropy, the
px character is stronger at this high symmetry point favoring absorption for light polarized
along the x-direction. For the bare Cu(110) surface, the importance of the surface states
for the RD could be confirmed. In the case of the oxygen covered surface, oxygen associ-
ated states are responsible for the RD maximum and the subsequent minimum in the low
frequency range (1.5−2.5 eV). A surface state is found to be the reason for the deepened 3.8
eV minimum of the theoretical Cu(110)-(2×1)CO structure, not present in the experimental
spectrum. We think that this discrepancy might be related to a quenching of the surface
state by disorder in the experimental setup.

For the Cu(110) bare, oxygen and carbon-monoxide covered surfaces, we find that the
independent particle approximation provides a reasonable description of the surface optical
response. The main features of the experimental RD spectra are reproduced but shifted to
smaller energies. The RD spectra have been published in Ref. [105].



Part III

GW calculations
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Chapter 9

Quasiparticle energies for metals

In the third part of my thesis, I will present GW quasiparticle calculations for d-metals, the
noble metals Cu, Ag, and the magnetic transitions metals Fe and Ni. Our results will be com-
pared to previous calculations by other groups. An introduction to GW and to the evaluation
of quasiparticle energies has been given in chapter 4. More details about the implementation
of the GW routines in VASP and quasiparticle energies for semiconductors and insulators
can be found in Refs. [25, 48]. The difference between semiconductors/insulators and metals
is the existence of partially filled bands in the case of metals. This implies two important
differences for the quasiparticle calculations of semiconductor/insulators and metals: First,
the k-point convergence of the total quasiparticle energies is slower than for insulators, be-
cause it involves the calculation of the Fermi energy, which converges slowly with the number
of k-points. Secondly, intraband transitions contribute to the dielectric function ε(q). For
the long-wavelength limit q → 0, the intraband contribution is determined by the plasma
frequency [Eq. (2.113)]. In order to take the long-wavelength intraband contributions into
account, we evaluate the plasma frequency and add the corresponding Drude term to the
interband dielectric function. If one does not include the Drude term, one neglects important
contributions at the Γ point and thus a large number of q-points would be required.

In all quasiparticle calculations presented in this chapter we have used GW potentials.
As a larger number of unoccupied bands are required for the GW calculations (and also for
the ACFDT calculations presented in part IV of this thesis), it is important that the PAW
pseudopotentials describe also the scattering properties of empty states accurately. Therefore
special GW potentials are generated which reproduce the scattering properties of a spherical
reference atom up to ≈ 10 Ry exactly. Details concerning the PAW potentials used in this
chapter are summerized in Tab. 9.1.

9.1 Noble metals - Cu and Ag

In the following we will present G0W0 quasiparticle energies for the noble metals Cu and
Ag. Both Cu and Ag crystallize in an fcc structure with an experimental lattice constant
of 3.615 Å and 4.086 Å, respectively. The d-bands are fully occupied with the highest DFT
d-states1 found at −1.56 eV and −2.74 eV for Cu and Ag, respectively, which is about 0.5

1The band structures obtained applying the LDA or the PBE exchange-correlation potential are very
similar for the noble metals.
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Table 9.1: PAW potentials used in the present section. Cutoff radii rl
c applied for the generation

of the pseudo partial waves with angular quantum number l are denoted in a.u. The number of
partial waves and projectors is specified. The energy cutoff Ecut refers to the one specified in the
POTCAR file. In the third column, the states treated as valence are indicated. The local potentials
have been generated by replacing the AE potential by a soft pseudopotential within the cutoff radius
rloc (a.u.) specified in the fourth column. For Ag, the pseudopotential for the 4f state was used as
local potential. For more details, see Ref. [15].

name valence local rl
c (a.u.) Ecut

s p d f (eV)

Cu Cu GW 4s 3d 1.5 2×2.2 2×2.2 2×1.9 417
Cu-3p Cu pv GW 3p 4s 3d 1.5 2×2.2 2×1.5 2×1.9 467
Ag Ag GW 5s 4d 4f 2×2.5 2×2.6 2×2.4 250
Ag-f Ag f GW 5s 4d 1.4 2×2.5 2×2.6 2×2.4 2×2.6 250
Fe Fe GW 4s 3d 1.7 2×2.3 2×2.3 2×2.1 321
Fe-3p Fe pv GW 3p 4s 3d 1.6 2×2.3 2×1.7 2×2.0 365
Fe-3p3s Fe sv GW 3s 3p 4s 3d 0.7 1.3 2×1.8 2×1.6 2×1.9 443
Ni Ni GW 4s 3d 1.7 2×2.3 2×2.3 2×2.0 357
Ni-3p Ni pv GW 3p 4s 3d 1.3 2×2.1 2×1.7 2×2.0 368

eV and 1.2 eV higher than the experimental onset. For a comparison of the experimental
and theoretical band structure of Cu see Fig. 6.3.

Previous calculations by Marini et al. suggested that G0W0 improves the agreement
between the experimental and theoretical d-band position for both Cu [41] and Ag [42] sig-
nificantly. But those calculations were performed using pseudopotentials, an approximation
which suffers from an inaccurate representation of the valence wavefunctions in the core re-
gion and the neglect of core-valence interactions (see Ref. [25] Sec. II F). As a consequence,
keeping the Cu 3s and 3p electrons in the pseudopotential calculations in the core e.g., moved
the highest occupied d-bands above the Fermi level, as reported in Ref. [41]. Such a drastic
error (> 2 eV) is not expected for the PAW method since we calculate the core-valence in-
teraction on the HF level (see Sec. 4.2) but the influence of the deeper lying 3p states will
be nevertheless tested for Cu. For Ag, the inclusion of f -projectors for the representation of
the unoccupied Ag f -states at ≈11 eV above the Fermi level is considered.

Besides the applied potentials, the k-point dependence, the influence of the number of un-
occupied bands, the dependence on η for the evaluation of the dielectric function (Lorentzian
broadening), the maximal rank of the response function determined by ENCUTGW, and the
maximal angular momentum number LMAXFOCKAE up to which the true charge density
is reconstructed on the plane wave grid have been tested.

The present G0W0 calculations have been performed at the experimental lattice constants.
The LDA was used for the evaluation of the DFT eigenenergies, which are considered as the
starting point for the G0W0 correction. The DFT-LDA band structures of Cu (left) and
Ag (right) are shown in Fig. 9.1 and states at high-symmetry points are labeled. For the
initial DFT calculations a Methfessel-Paxton Fermi integration of first order with a smearing
width of 0.4 eV was used, if not otherwise mentioned. The use of the tetrahedron method is
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Table 9.2: k-point dependence of the Cu G0W0 quasiparticle energies. The Fermi energy is evaluated
by the tetrahedron method and the quasiparticle energies are specified with respect to the Fermi energy
EF .

x× x× x k-point 4 6 8 10 12

Γ1 -9.66 -9.58 -9.50 -9.49 -9.45
Γ25′ -3.03 -3.02 -2.98 -2.97 -2.96
Γ12 -2.31 -2.27 -2.24 -2.24 -2.22
L1 -4.93 -4.93 -4.92 -4.89 -4.88
L3 -3.07 -3.04 -3.01 -3.01 -3.00
L3 -1.74 -1.71 -1.68 -1.67 -1.65
L2′ -1.43 -1.35 -1.30 -1.28 -1.25
L∗

1 3.74 3.80 3.87 3.90 3.91
X1 -4.68 -4.62 -4.65 -4.66 -4.65
X3 -4.24 -4.22 -4.21 -4.22 -4.21
X2 -1.77 -1.74 -1.71 -1.72 -1.70
X5 -1.59 -1.55 -1.52 -1.52 -1.51
X′∗

4 1.17 1.23 1.29 1.32 1.35

Γ12-Γ25 0.73 0.75 0.74 0.73 0.74
X5-X3 2.66 2.67 2.69 2.70 2.71
X5-X1 3.09 3.07 3.13 3.14 3.14
L3-L3 1.33 1.33 1.33 1.33 1.34
L3-L1 3.19 3.22 3.24 3.22 3.22
X5-X2 0.18 0.19 0.19 0.20 0.19

Fermi energy 5.36 5.33 5.28 5.25 5.23

not possible yet, because the intraband plasma frequency and hence the intraband dielectric
function is not evaluated for this setting, which would result in a slower k-point convergence
of the G0W0 results. The energy cutoff for the representation of the plane waves was chosen
to be 400 eV for Cu and 350 eV for Ag. Tests have shown that an energy cutoff of 250 eV
would not change the results for Ag significantly. The results are therefore essentially fully
converged with respect to the plane wave energy cutoff. The energy cutoff determining the
rank of the response function ENCUTGW was set to 200 eV, which gives well converged
results for Ag and Cu.

We will first focus on the convergence tests performed for Cu. The conclusions can, in
most cases, be transferred to the case of Ag as well. It is known that the convergence of
G0W0 quasiparticle energies with the number of empty bands is very slow. We find that for
55 additional unoccupied bands, errors are smaller than 0.02 eV, which is enough for the
present purpose. Another important test concerns the number of required k-points because
an increase of this quantity enlarges the computational time drastically. For insulators and
semiconductors a Γ-centered 4 × 4 × 4 k-point grid has shown [25] to result already in rea-
sonable quasiparticle energies. For metals, the convergence might be slower due to partially
occupied states at the Fermi energy. In Tab. 9.2 both, absolute quasiparticle energies and
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Figure 9.1: DFT band structure of Cu (left) and Ag (right) and assignment of bands at high-
symmetry k-points.
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Figure 9.2: Cu quasiparticle DOS evaluated for different maximal angular momentum numbers
LMAXFOCKAE up to which the exact wavefunction is restored on the plane wave grid. The energies
stem from a 8×8×8 k-points calculation for the Cu GW potential. The positions of the first maxima
(≈ 0.3 eV difference) are highlighted by vertical lines.

energy differences at high symmetry Brillouin zone points, are presented for various k-point
grids. The k-point convergence is slightly dependent on the considered band, with slower
convergence for the Γ1, L2′ , L∗

1, and the X′∗
4 state. The k-point induced errors are somewhat

smaller for d-bands and especially the energy differences are well reproduced already for a
4× 4× 4 k-point grid (errors < 0.05 eV). The Fermi energy evaluated using the tetrahedron



90 CHAPTER 9. QUASIPARTICLE ENERGIES FOR METALS

method seems to converge faster than the Fermi energy obtained applying the Methfessel-
Paxton smearing, so that we use the tetrahedron method for the evaluation of the G0W0

Fermi energy throughout this work. But it should be kept in mind, that even applying the
tetrahedron method the Fermi energy for a 8 × 8 × 8 k-point grid (both for DFT and GW)
is not better converged than ≈ 0.06 eV. Differences between 12 × 12 × 12 and 10 × 10 × 10
results are however well below 50 meV, for most energies below 20 meV, which suffices for
the present purpose.

Further tests show that the G0W0 quasiparticle energies are hardly affected by choosing
the smearing width 0.2 or 0.4 eV in the initial DFT calculation. Furthermore, reducing the
imaginary shift η for the evaluation of the self energy and the polarizability from 0.1 eV to
0.01 eV leads to almost no change in the quasiparticle energies. Only the X1 state is shifted
upwards by 0.06 eV. The largest effect on the quasiparticle energies, nevertheless, is caused
by the introduction or the neglect, respectively, of LMAXFOCKAE. By setting LMAX-
FOCKAE to an angular momentum number l, all components of the difference between AE
and PS partial densities up to this momentum are reconstructed on a plane wave grid and
consequently the form of the AE density is approximately reconstructed (see Sec. 2.7). In
Fig. 9.2 the Cu G0W0 density of states obtained neglecting the AE reconstruction (LM −1),
and results for increasing values of LMAXFOCKAE are shown. If the form of the AE den-
sity is not recovered, the topmost d-bands start at lower energies (the first maximum of the
d-bands is highlighted by a vertical line) resulting in a reduction of the bandwidth from 3.3
eV with LMAXFOCKAE = 4 to 3.0 eV for LMAXFOCKAE = −1. Although the position
of the d-bands agrees better with experiment if LMAXFOCKAE = −1, this is an artefact
of the crude approximation of the exact charge density. Interestingly, the results stemming
from setting the maximal angular momentum to 1 or 4 do not differ much. For the heavier
Ag, the difference between considering the AE reconstruction or not is much smaller than
for Cu. The reason for these observations is that the exact Cu 3d wavefunctions are spatially
strongly contracted, and VASP usually only attempts to restore the moments of the charge
density without any consideration of the exact shape of the 3d wavefunctions. This causes an
overestimation of the 3d-3d screened exchange interaction. By restoring the correct spatial
charge distribution on the plane wave grid, the screened exchange interaction is well approx-
imated. These issues are less critical for 4d states, which are spatially less contracted, thus
the Ag results are less dependent on LMAXFOCKAE.

In Tab. 9.3 the Cu G0W0 quasiparticle energies obtained for two different Cu potentials,
one without, one with the 3p electrons included in the valence, are shown. A 12 × 12 × 12
k-point grid and LMAXFOCKAE = 4 were applied. Additionally, the energies calculated by
Marini et al. [41] employing a pseudopotential plane wave code and by Zhukov et al. [106]
using the full potential LMTO approximation are presented. We first note that LDA results
are little changed by the choice of the PAW potential, whereas the GW results depend on the
treatment of the 3p electrons. The most significant error in the DFT one-electron energies
is the wrong description of the absolute position and the bandwidth of the d-states. The
highest d-band (see X5 state) is located at −1.56 eV in LDA, whereas experiments suggest
−2.01 eV, a difference of 0.45 eV. The error in the low energy d onset (see X1) is smaller
(0.2 eV), so that, as a consequence, the bandwidth (in Tab. 9.3 in italic letters) is 3.42 eV
in DFT versus 3.17 eV in experiment. Unfortunately, our G0W0 results can not correct this
behavior and the uppermost d-bands are shifted to even slightly higher energies (about 0.1
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Table 9.3: Cu G0W0 quasiparticle energies evaluated for two different potentials and a 12× 12× 12
k-point grid. The results are compared to the pseudopotential plane wave (PPW) values obtained
by Marini et al. Ref. [41] and the full potential linear muffin-tin orbital (FP-LMTO) calculations by
Zhukov et al. [106]. Experimental data are taken from Ref. [90], if not otherwise stated.

LDA LDA G0W0 G0W0 G0W0 G0W0 Exp.
Cu Cu-3p Cu Cu-3p [41] [106]

Γ1 -9.43 -9.47 -9.45 -9.68 -9.24 -9.35 -8.60
Γ25′ -3.11 -3.12 -2.96 -2.94 -3.41 -3.17 -3.59
Γ12 -2.27 -2.27 -2.22 -2.19 -2.81 -2.36 -2.78
L1 -5.19 -5.20 -4.88 -4.99 -5.07 -5.20 -5.16
L3 -3.16 -3.15 -3.00 -2.98 -3.50 -3.21 -3.62
L3 -1.73 -1.70 -1.65 -1.61 -2.24 -1.78 -2.25
L2′ -1.05 -1.08 -1.25 -1.33 -0.57 -0.92 -0.85
L∗

1 3.65 3.64 3.91 3.81 4.19 3.86 4.10
X1 -4.98 -4.98 -4.65 -4.74 -4.94 -5.00 -5.18
X3 -4.54 -4.53 -4.21 -4.25 -4.53 -4.55 -4.80
X2 -1.74 -1.71 -1.70 -1.65 -2.30 [107]
X5 -1.59 -1.56 -1.51 -1.45 -2.04 -1.63 -2.01
X′∗

4 1.42 1.39 1.35 1.29 2.3 [108]

Γ12-Γ25 0.84 0.85 0.74 0.76 0.60 0.81 0.81
X5-X3 2.95 2.97 2.71 2.80 2.49 2.92 2.79
X5-X1 3.39 3.42 3.14 3.29 2.90 3.37 3.17
L3-L3 1.43 1.45 1.34 1.38 1.26 1.43 1.37
L3-L1 3.46 3.50 3.22 3.39 2.83 3.42 2.91

eV). Together with an upward shift of the lower d-states the G0W0 bandwidth (3.29 eV) is
in better agreement with experiment (3.17 eV), but the entire d-band is shifted to too high
energies. In contrast to our data, the quasiparticle d-band energies obtained by Marini et al.
[41] undergo a drastic shift to lower energies resulting in a good agreement with experiment.
This might be a fortuitous effect of the errors introduced by the pseudopotential method,
which is supported by our observations for LMAXFOCKAE = −1. Additionally, another
calculation [106] performed using a full potential LMTO method could also not confirm the
d-band onset calculated by Marini et al.

Beside G0W0, Marini et al. [109] have performed GW0 calculations where the eigenener-
gies entering the Green’s functions were updated in each quasiparticle iteration [see Eq. (4.15)]
but the polarization and consequently the screened Coulomb interaction W were kept fixed.
They observed, that with each iteration, the energy difference between d-bands becomes
smaller and the bandwidth decreases from 2.90 eV, to 2.31 eV, to 1.92 eV, and this does
not yet seem to be the converged value. In order to check this result, we also performed
GW0 calculations applying a 8 × 8 × 8 k-point grid. The results are presented in Tab. 9.4
together with the energy differences by Marini et al. [109] (in bold letters). While we observe
a slight decrease of the energy differences by updating the Green’s function, the effect is by
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Table 9.4: GW0 quasiparticle energies for Cu. The Cu potential without 3p electrons and a 8×8×8
k-point grid is applied. Our data are compared to the results of Marini et al. [109]. Their quasiparticle
energies are written in bold letters.

G0W0 G0W0 G1W0 G1W0 G2W0 G2W0 exp.[90]

Γ12-Γ25′ 0.74 0.60 0.71 0.38 0.71 0.23 0.81
X5-X3 2.69 2.49 2.65 1.99 2.64 1.65 2.79
X5-X1 3.13 2.90 3.11 2.31 3.11 1.92 3.17
L3-L3 1.33 1.26 1.30 1.03 1.29 0.90 1.37
L3-L1 3.24 2.83 3.21 2.13 3.20 1.65 2.91
L∗

1-L2′ 5.18 4.76 5.22 4.78 5.22 3.77 4.95

far not as strong as in Ref. [109]. Furthermore, from the second iteration on (we performed 6
iterations - not all shown in Tab. 9.4), our energy differences do not change anymore. From
our point of view this suggests that the code of Marini contained a severe bug, making the
previous results indeed very disputable. In Tab. 9.5 the quasiparticle energies obtained for
Ag are summarized. For Ag, the unoccupied f -states were included by introducing f partial
waves and f -projectors in the generation of the PAW potentials. The DFT failure for the
description of the Ag d-bands follows the same trend as for Cu, but the discrepancy between
theory and experiment is even larger. Now both the upper and lower edge of the bands are
significantly shifted to too high energies, 1.2 eV for the upper edge, and 0.9 eV for the lower
edge. The theoretical bandwidth is consequently 0.3 eV larger than the experimental one (3.7
eV vs. 3.40 eV). As in the case of Cu, our G0W0 d-states are still lying too high, but at least
a shift in the right direction is observed. The X5 state (upper d-band edge) is downshifted
by ≈ 0.6 eV, the X1 state (lower d-band edge) by 0.3 eV, reducing the LDA bandwidth from
3.7 eV to 3.44 eV. The introduction of the f -projector thereby contributes almost 0.3 eV
shift for the X5 state and generally decreases the d-band energies. Again pseudopotential
calculations [42] result in a much better agreement with the experiments, probably due to
errors in the description of the wavefunctions.

In summary, for both Cu and Ag, G0W0 results in a better description of the d-bandwidth,
but in both cases the d-bands are located too high in energy, 0.65 eV in the case of Ag and
0.56 eV in the case of Cu. A similar behavior was observed by Miyake et al. [44] for the
semicore d-states in ZnS. Experimentally, the d-band of this material is observed at an energy
of about −9.0 eV, whereas LDA predicts the lowest d-state to be located at −6.42 eV. While
G0W0 leads to a decrease in energy (to −7.17 eV) it is still far from the experimental value.
Interestingly, also if the G0W0 starts from LDA+U results, which can bring the d-bands in
agreement with experiment, the quasiparticle G0W0 energies shift upwards in energy back
to −7.82 eV.

9.2 Ferromagnets: Fe, Ni

In this section, quasiparticle energies for ferromagnetic Fe and Ni will be presented. Fe
crystallizes in a bcc structure with a lattice constant of 2.866 Å and has a magnetic moment
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Table 9.5: Ag G0W0 quasiparticle energies evaluated for various potentials and a 10×10×10 k-point
grid. The results are compared to the pseudopotential plane wave (PPW) values obtained by Marini
et al. [42]. If not otherwise mentioned, experimental data are taken from Ref. [42] which are based
on the energies averaged over different experimental data presented in Ref. [110].

Method LDA LDA G0W0 G0W0 G0W0 Exp.
Potential Ag Ag-f proj. Ag Ag-f proj. PPW [42]

Γ1 -7.89 -7.90 -7.99 -7.85
Γ25′ -4.83 -4.82 -5.07 -5.28 -5.75 -6.06
Γ12 -3.77 -3.76 -4.08 -4.34 -4.81 -4.95
L1 -6.45 -6.45 -6.61 -6.69 -7.11 -7.09
L3 -4.84 -4.84 -5.11 -5.32 -5.79 -6.14
L3 -2.97 -2.95 -3.25 -3.54 -3.94 -4.15
L2′ -0.49 -0.50 -0.56 -0.35 -0.20 [112]
L∗

1 3.50 3.50 3.82 3.71 3.8 [111]
X1 -6.47 -6.47 -6.66 -6.76 -7.23 -7.37
X3 -6.34 -6.33 -6.50 -6.64 -7.11 -7.32
X2 -2.99 -2.98 -3.31 -3.60 -4.01 -4.53
X5 -2.76 -2.74 -3.02 -3.32 -3.72 -3.97
X′∗

4 1.48 1.48 1.56 1.76 2.10 [111]

Γ12-Γ25 1.06 1.06 0.99 0.95 0.94 1.11
X5-X3 3.58 3.59 3.49 3.32 3.39 3.35
X5-X1 3.72 3.73 3.65 3.44 3.51 3.40
L3-L3 1.88 1.88 1.87 1.78 1.85 1.99
L3-L1 3.48 3.49 3.36 3.15 3.17 2.94

of 2.13 µB. Ni possesses an fcc structure with a lattice constant of 3.524 Å and the exchange
splitting is significantly smaller than for Fe leading to an experimental magnetic moment of
0.57 µB. The band structures for Fe (left) and Ni (right) are shown in Fig. 9.3. Previous
calculations by Aryasetiwan [43] showed that the G0W0 quasiparticle energies of Ni are in
quite good agreement with experiments, but that the exchange splitting was not reduced
compared to the too large LDA value. For both, Fe and Ni, the influence of the 3p states
has been tested. A plane wave energy cutoff of 350 eV was used throughout all calculations.
While ENCUTGW was set to 200 eV for Cu and Ag, we found that this reduction leads to
slight errors in the quasiparticle energies for Fe and Ni, so that ENCUTGW was set to the
plane wave energy cutoff. The initial DFT calculation has again been performed applying
a smearing width of 0.4 eV, and η was set to 0.1 eV. Changing the width from 0.4 eV to
0.2 eV, and the shift η from 0.1 to 0.01 eV had again hardly any effect on the quasiparticle
energies.

As for Cu, the largest effect on the quasiparticle energies was the one caused by the
reconstruction of the AE charge density triggered by setting LMAXFOCKAE. In Fig. 9.4 the
quasiparticle density of states for Fe (left) and Ni (right) obtained by setting LMAXFOCKAE
to 4 (reconstruction of the AE charge density up to an angular momentum of 4) or not
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Figure 9.3: DFT band structure for Fe (left) and Ni (right) and assignment of bands at high-symmetry
k-points.
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Figure 9.4: Quasiparticle G0W0 density of states for Fe (left) and Ni (right) choosing either LMAX-
FOCKAE (LM) is 4 which corresponds to a reconstruction of the AE charge density on the plane
wave grid up to an angular momentum number l = 4 or setting LMAXFOCKAE not at all (LM −1).

restoring the AE charge density at all (LMAXFOCKAE = −1), are shown. In both cases,
Fe and Ni, the correction of the charge density results in a smaller exchange splitting.

In Tab. 9.6 the G0W0 quasiparticle energies for Fe are collected. For Fe, the agreement
between LDA one-particle energies and experiment is satisfactory. The largest error concerns
the up and down component of the H12 state (0.8 eV for H12↑, 0.5 eV for H12↓), but all other
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Table 9.6: Fe G0W0 quasiparticle energies for different potentials. A 10× 10× 10 k-point grid has
been applied. The experimental values have been measured by Turner et al. [113], if not otherwise
quoted.

Method LDA G0W0 G0W0 G0W0 Exp.
Potential Fe Fe-3p Fe-3p3s

〈Γ1↑↓〉 -8.13 -8.60 -9.20 -9.07 -8.15
Γ25′↑ -2.19 -2.01 -2.17 -2.26 -2.35 -2.55 [115]
Γ12↑ -0.91 -0.96 -1.03 -1.09 -0.78 -1.2 [114]
Γ25′↓ -0.40 -0.13 -0.21 -0.23 -0.27 -0.41 [115]
Γ∗

12↓ 1.36 1.50 1.64 1.79 1.5 [116]

H12↑ -4.55 -4.15 -4.52 -4.69 -3.80
H12↓ -2.98 -2.65 -2.90 -2.96 -2.50
H∗

25↑ 0.14 0.14 0.18 0.17 0.12 [116]

H∗
25↓ 2.18 2.20 2.40 2.54 1.9 [116]

N1↑ -4.72 -4.46 -4.86 -4.96 -4.50
N2↑ -3.24 -2.91 -3.18 -3.30 -3.00
N1↑ -0.89 -0.91 -0.98 -1.03 -0.70 -1.02 [115]
N4↑ -0.73 -0.77 -0.82 -0.86 -0.70
N1↓ -3.50 -3.26 -3.64 -3.67 -3.60
N2↓ -1.60 -1.26 -1.42 -1.48 -1.40
N∗

3↑ 0.40 0.37 0.44 0.45 0.4 [116]

Exchange splitting
Γ25′ 1.80 1.87 1.96 2.03 2.08
H12 1.57 1.50 1.62 1.73 1.30
N2 1.63 1.65 1.76 1.82 1.60

d-band positions are well described already on the LDA level. Also the exchange splitting are
only slightly overestimated within LDA. G0W0 leads to relatively modest corrections to the
LDA one-particle energies and consequently does not give huge deviations from experiment.
Interestingly, the introduction of the 3p electrons in the valence predominantly and strongly
effects the deeper lying d-states H12 and N1, and shifts the G0W0 energies obtained without
3p electrons (which are in good agreement with experiment) back to the DFT values. As
we find that the influence of the 3p electrons is largest for Fe, we also tested a potential
in which both, 3p and 3s electrons are treated as valence. Although the difference between
the quasiparticle energies obtained from the Fe-3p and the Fe-3p3s potential is significantly
smaller than between the energies from the Fe and the Fe-3p potential, the change in the
energies amount still up to 0.17 eV for the H12↑ state. The magnetic moment, which is 2.17
µB for the LDA, becomes 2.21 µB applying G0W0 no matter which potential has been used
and is thus larger than the experimental value of 2.13 µB.

For Ni the agreement of the G0W0 quasiparticle energies and experiment worsens drasti-
cally. In Fig. 9.7 the quasiparticle energies for Ni are presented. Due to the small exchange
splitting in Ni the distinction of experimental up and down components is not possible for
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Table 9.7: Ni G0W0 quasiparticle energies for different potentials. A 10× 10× k-point grid has been
chosen. The theoretical quasiparticle energies of Aryasetiawan [43] have been obtained applying the
full potential linear augmented plane wave method (FP-LAPW). The experimental values have been
measured by Eberhardt et al. [118], if not otherwise quoted.

Method LDA G0W0 G0W0 G0W0 Exp.
Potential Ni Ni-3p [43]

〈Γ1↑↓〉 -8.99 -9.63 -9.96 -9.0 -8.8
Γ25′↑ -2.34 -2.34 -2.41 -1.7
Γ25′↓ -1.75 -1.60 -1.66 -1.1 〈 -1.1 〉
Γ12↑ -1.18 -1.37 -1.39 -0.9
Γ12↓ -0.65 -0.64 -0.65 -0.3 〈 -0.4 〉
L1↑ -4.78 -4.74 -4.91 -4.3
L1↓ -4.43 -4.35 -4.51 -4.0 〈 -3.6 〉
L3↑ -2.33 -2.33 -2.39 -1.9
L3↓ -1.81 -1.64 -1.69 -1.3 〈 -1.3 〉
L2′↑ -0.29 -1.18 -1.22 -1.3
L2′↓ -0.28 -1.17 -1.21 -1.3 〈 -1.0 〉
L3↑ -0.49 -0.76 -0.75 −0.2
L∗

3↓ 0.12 0.17 0.18 0.16

X1↑ -4.58 -4.47 -4.62 -4.3
X1↓ -4.26 -4.06 -4.21 -3.9 〈 -3.3 〉
X3↑ -4.11 -3.92 -4.01 -3.5
X3↓ -3.62 -3.33 -3.44 -2.9 〈 -2.8 〉
X2↑ -0.44 -0.75 -0.75 -0.5 -0.24 [117]
X2↓ 0.10 0.12 0.13 0.2 -0.04 [117]
X5↑ -0.33 -0.62 -0.59 -0.11 [117]
X∗

5↓ 0.34 0.35 0.39 0.22 [117]

Exchange splitting
L3 0.61 0.93 0.94 0.36
X2 0.54 0.87 0.88 0.7 0.20
Γ12↑ 0.52 0.73 0.74 0.6

most of the states. Therefore the averaged values are given. For all occupied bands, except
the L2′ state, LDA predicts too low energies. The error, in some cases, is as large as 1
eV. Applying the G0W0 correction does scarcely change the positions of the d-bands, only
the L2′ band moves nearer to experiment and the Γ1 state further away. Additionally, the
exchange splitting is enlarged and deviates strongly from experiment. The inclusion of the
3p electrons in the valence, as for Fe, influences mostly the deep lying d-states (L1 and X1).
The fact that G0W0 hardly changes the position of the d-bands is especially unsatisfactory
because early calculations by Aryasetiwan applying the full potential linearized augmented
plane-wave method (no pseudopotentials) suggested that G0W0 results in an improved de-
scription of the d-band positions. I think that further tests will be necessary to clarify our
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results for Ni.
For the ferromagnets Fe and Ni, our G0W0 calculations have lead to relatively small

changes of the LDA one-particle energies. As the LDA description is rather good for Fe and
exhibits large errors in the case of Ni, the same holds for the G0W0 results. The inclusion of
the 3p states in the valence mainly influences the position of the d-bands at low energies. We
believe that the observed errors in the d-bands for all four considered materials is a result
of the spurious selfinteractions in the GW approximation. This causes an upshift of the d
bands for Cu and Ag (0.6 eV error) and pronounced errors for Ni and Fe, where GW predicts
too large band-widths and overestimated the exchange splitting. Only the inclusion of vertex
corrections in Σ (i.e., Σ = iGWΓ) would lift this problem, but such calculations are currently
not possible.





Part IV

Total energies from ACFDT
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Although the ACFDT formalism was introduced more than 30 years ago [27, 28, 29], and
similar approaches within many-body perturbation theory (see e.g., [19]) are even older, the
calculation of (RPA)-ACFDT energies has for a long time been restricted to model systems
such as jellium bulk [132] and jellium slabs and surfaces [29, 119, 120]. The reason for this
”delay” is the large computational cost to calculate the response function for an arbitrary
system. First RPA calculations for molecules have been presented by Furche in 2001 [121].
Other RPA calculations for molecules [122, 123, 124, 125, 126, 127] and solids [128, 129, 130]
followed shortly afterwards. Although the RPA (setting fxc = 0) accounts for long-range
correlation effects such as the van der Waals interaction, molecules have been shown to be
standardly too weakly bonded with a mean absolute error similar to the one found for DFT-
PBE. Absolute correlation energies, on the other hand, are throughout too large if the RPA
is applied (see e.q., Ref. [35] for the homogenous electron gas). An improvement should be
expected if an appropriate exchange-correlation kernel is introduced for the calculation of the
response function of the interacting system. Such attempts have, so far, been only applied to
molecular systems [122, 125, 126] [with the exception of the homogenous electron gas (HEG)].
In all molecular calculations, fxc was chosen to be independent of the frequency (static
- or adiabatic - approximation). An extensive study of atomization energies obtained for
exchange-correlation kernels of the form fxc(r, r

′) = δ2Exc/δn(r)δn(r′) derived from different
approximations to the exchange-correlation energy (LDA, PBE, BP86, B3LYP, PBE0) has
been performed in Ref. [126]. The authors found that improvement over the RPA can only
be obtained if the exchange-correlation kernel is non-local (as it is in the case of B3LYP
and PBE0). Similar tests for solids have not been performed so far, but calculations for the
homogenous electron gas [35] suggest that the non-locality of the fxc is important also in the
case of solids.

As the RPA does not fulfill the homogenous electron gas limit a different route to an
improvement was supposed by Kurth and Perdew [131]. They included an additional cor-
rection term to the RPA correlation energy, ∆Ec, which is introduced in a LDA like way:
∆Ec = ELDA

c − ELDA−RPA
c , where ELDA

c is the standard LDA correlation energy based on
the exact correlation energy for the homogenous electron gas and ELDA−RPA

c an LDA term
based on the RPA energy of the homogenous electron gas. This method is referred to as
RPA+ and results in the correct correlation energy for the HEG per definition. The com-
putational cost to calculate the correction term is negligible compared to the RPA energy
evaluation. Unfortunately, the RPA+ does not provide an improvement over RPA atomiza-
tion energies [121], although Fuchs et al. [122] report that absolute correlation energies are
improved. Lattice constants and bulk moduli are almost the same for RPA and RPA+ [130].

In this part of my thesis I will present results obtained within the ACFDT formalism,
which has been introduced in chapter 3. Throughout the present work we will make use of the
RPA for the evaluation of the density-density response function of the interacting system. In
chapter 10, we will discuss technical issues concerning the calculation of the RPA correlation
energy in more detail. In chapter 11, RPA energies for molecules (Sec. 11.1), rare gas solids
(Sec. 11.2), and extended insulating, semiconducting, and metallic systems (Sec. 11.5) will
be discussed. For the extended systems, besides the lattice constants and bulk moduli, also
the RPA atomization energies are evaluated. Atomization energies of extended systems have,
to the best of our knowledge, not been performed before. This is connected to the difficulty
to evaluate atomic energies within a plane wave basis code.



Chapter 10

Implementation of the ACFDT
routines

The total RPA energy is given as a sum of the Hartree-Fock energy evaluated for the KS-DFT
wavefunctions (in the following simply referred to as HF energy), and the RPA correlation
energy [see Eq. (3.36)]:

E = Ts[{ψ
KS}] + EH [n] +Ex[{ψKS}] + ERPA

c [{ψKS , ǫKS}] = EHF [{ψKS}] + ERPA
c .

As we will use the RPA throughout this work, we disregard the index RPA and abreviate
the RPA correlation energy as Ec. The RPA correlation energy Ec is obtained by evaluating
Eq. (3.35):

Ec =

∫ ∞

0

dω

2π

∑

q∈BZ

∑

G

{(
ln[1− χKS(q, iω) ν(q)]

)
G,G

+ νG,G(q)χKS
G,G(q, iω)

}
.

Three steps are required for the calculation of the total RPA energy:

(i) Hartree-Fock energy: The Hartree-Fock energy EHF is evaluated for the KS wavefunc-
tions determined in a DFT calculation. A high energy cutoff Ecut and dense k-point grids
are required for accurate Hartree-Fock energies. Therefore, the settings for the Hartree-Fock
calculation might differ from the respective values applied in the evaluation of the RPA cor-
relation energy.

(ii) Pre-run for RPA correlation energy: For the evaluation of the RPA correlation energy,
the KS-DFT wavefunctions and eigenenergies of a large number of unoccupied states are
required. In this pre-run, all NPW (number of plane wave) solutions of the KS eigenvalue
problem are evaluated by an exact diagonalization of the NPW × NPW Hamilton matrix
HG,G′ . The number of plane waves is related to the energy cutoff Ecut by the constraint
|G + k|2/2 < Ecut. For a fixed energy cutoff Ecut, the number of plane waves NPW is pro-
portional to the volume of the real space cell V , so that this step can become demanding for
large volumes V . The importance of unoccupied bands also requires special care for the con-
struction of the PAW potentials. For the calculation of the RPA correlation energies so called
GW potentials have been constructed that describe scattering properties very accurately up
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to ≈ 10 Ry. Furthermore, a d-projector has been introduced for the third row elements,
and a f -projector for Ag. These states, while unoccupied, are not too high in energy and
therefore contribute to the response function χKS.

(iii) RPA correlation energy: The response function χKS
G,G′(q, iω) is calculated from the wave-

functions and eigenenergies evaluated in the previous step and the RPA correlation energy is
determined via Eq. (3.35). Some details concerning the evaluation of this expression have al-
ready been discussed in Sec. 3.3. What remains to be analyzed is the dependence of the RPA
correlation energy on the rank of the response function χKS

G,G′ . The sum over reciprocal lattice
vectors in Eq. (3.35) has to be truncated at some maximal vector Gcut, which is determined
by the relation |G + q|2/2 < Eχ

cut. The dependence of the correlation energy on the energy
cutoff Eχ

cut will be discussed in Sec. 10.1. Besides the summation over reciprocal lattice vec-
tors, the evaluation of the correlation energy requires an integration along the frequency axis.
In Sec. 10.2 different frequency integration schemes will be discussed and convergence tests
with respect to the number of frequency points will be presented. Sec. 10.3 deals with the
calculation of RPA correlation energies for metals. For metals the long-wavelength (q = 0)
response function χ (or more precisely νχ) also contains contributions arising from intraband
transitions. In Sec. 10.3 several ways will be considered, how to include the intraband term
for the evaluation of the correlation energy.

10.1 Dependence on dimension of the response function

For the calculation of the RPA correlation energy, the dependence on the rank of the response
function or the energy cutoff Eχ

cut, respectively, is among the most critical issues. The energy
cutoff Eχ

cut determines at which point the sum over reciprocal lattice vectors in Eq. (3.35) is
truncated, and the convergence of the correlation energy with the maximal considered lattice
vector turns out to be very slow. This slow convergence is not unique to plane wave basis
set codes. If the RPA correlation energy is calculated using a local basis set the highest
angular momentum quantum number in the atomic basis set determines the convergence of
the correlation energy (see Furche [121]).

The calculation of the fully converged correlation energy is not possible, because an
increase in Eχ

cut implies that also the energy cutoff for the plane wave expansion, Ecut, and
the number of bands have to be increased. As a consequence, such calculations will become
intractable. On the other hand, if an analytic dependence of the correlation energy on Eχ

cut

were known, it would be enough to evaluate the correlation energy for smaller values of Eχ
cut

and extrapolate the correlation energies according to this dependence. In the following, we
will derive the Eχ

cut dependence of the RPA correlation energy for the homogenous electron
gas (HEG). Under the assumption that the ”correlation error” introduced by the neglect of
high energy components in the response function behaves similar for the homogenous electron
gas and an inhomogeneous system, the determined Eχ

cut dependence can also be applied to
any other material.

The correlation energy for the HEG, as for any other system, can be evaluated from
the difference between the interacting and the independent-particle response function [see
Eq. (3.24)], which are coupled by the Dyson equation [Eq. (3.29) if the RPA is applied].
With the independent-particle response function of the HEG, the Lindhard function χLind,
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Figure 10.1: Dependence of the HEG RPA correlation energy ǫc(q) on the maximal q value, Gχ
cut, up

to which the q integration is performed. For sufficiently large values of Gχ
cut, the error introduced by

truncating the q integration behaves like 1/(Gχ
cut)

3 (solid lines). Presented are energies with respect
to the extrapolated value ǫ∞c which is reached for Gχ

cut →∞.

the RPA correlation energy per particle can be expressed as:

ǫc = −
1

4π3n

∫ ∞

0
dq q2

∫ 1

0
dλ

∫ ∞

0
dω ν(q)

[χLind(q, iω)]2 λ ν(q)

1− λ ν(q)χLind(q, iω)
, (10.1)

with the Coulomb kernel ν(q) = 4π/q2. The Lindhard function is given by [132]:

χLind(q, iω) = (10.2)

=
kF

2π2

{
Q2 − u2 − 1

4Q
ln
u2 + (Q+ 1)2

u2 + (Q− 1)2
− 1 + u arctan

1 +Q

u
+ u arctan

1−Q

u

}

with

Q =
q

2kF
u =

w

qkF
k3

F = 3π2n.

In practice, the integration over q has to be truncated at some value Gχ
cut. We estimate the

error introduced by this truncation by calculating

ǫc(G
χ
cut) = −

1

4π3n

∫ Gχ
cut

0
dq q2

∫ 1

0
dλ

∫ ∞

0
dω ν(q)

[χLind(q, iω)]2 λ ν(q)

1− χLind(q, iω)λ ν(q)
. (10.3)

for values of Gχ
cut ranging from 1 to 10 a.u. Additionally, we evaluate ǫc(G

χ
cut) for different

densities or Wigner Seitz radii rs = (3/4πn)1/3 of the HEG, respectively. The frequency
integration was performed by applying a Gauss-Legendre integration with 36 supporting
points and assuming an exponential decay with respect to the frequency. The maximal
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frequency was chosen to be 20 a.u. For the q integration an equidistant grid was used
and the distance between two q points fixed to 10−3. Such a dense grid is only required
to reproduce the correct integration for small q points, which is in principle not important
when investigating the dependence on Gχ

cut, but we additionally want to evaluate the absolute
correlation energies ǫc(rs) and compare them to published data. The integration over λ was
performed on a grid with 200 points.
For all considered densities we find the following dependence for the correlation energy

ǫc(G
χ
cut) = ǫ∞c +

A

(Gχ
cut)

3
= ǫ∞c +

A′

(Eχ
cut)

3/2
, (10.4)

for sufficiently large values of Gχ
cut. The higher the density of the HEG, the larger the energy

from which on Eq. (10.4) holds. In the VASP calculation, not |Gχ
cut|, but the energy cutoff

Eχ
cut is specified, which determines |Gχ

cut| via |Gχ
cut + q|2/2 < Eχ

cut.

In Fig. 10.1, the errors in the correlation energies ǫc(G
χ
cut)−ǫ

∞
c for three different densities

rs = 1.0, 2.0, and 3.0 a.u. are shown. The value ǫ∞c is evaluated by applying Eq. (10.4) and
the fits are plotted using solid lines. The HEG RPA correlation energies ǫ∞c obtained by
extrapolation are −78.9, −61.9, and −52.6 mH for rs = 1.0, 2.0, and 3.0 a.u., respectively.
The corresponding values calculated by von Barth and Hedin [132] are −78.7 mH, −61.7 mH,
and −52.7 mH. Differences between our correlation energies and the one evaluated in [132]
probably stem from the region of small q values, where we have not tried to achieve perfectly
converged values.

To this point, we have found that the correlation energy of the HEG exhibits a 1/(Eχ
cut)

3/2

dependence. In the next paragraph we will take a closer look at the Eχ
cut dependence of the

total and the relative correlation energies for realistic systems. For the H2, N2, and O2

molecules which will be discussed in detail in section 11.1, we find that the 1/(Eχ
cut)

3/2

behavior is well reproduced, both for absolute and relative correlation energies. Also for the
rare gas solids which will be the topic of section 11.2, the correlation energy nicely follows a
1/(Eχ

cut)
3/2 dependence.

In section 11.5, lattice constants, bulk moduli, and atomization energies evaluated for
representative bulk systems will be presented. For many of the considered systems as e.g.,
SiC, Na, Al, . . . , the 1/(Eχ

cut)
3/2 behavior is given already for the total bulk correlation

energies. This is not the case, if the correlation energy is calculated applying potentials for
which electrons from deeper lying shells are treated as valence. Such potentials have been
generated for Mg (used for MgO), Na (NaCl, NaF), Li (LiF), and Si (Si). The fact that
we do not observe the HEG behavior for the energies Eχ

cut considered for these materials,
does not imply that it cannot be reached for higher energies. As we have seen in Fig. 10.1
for the HEG, the q-value from which on the correlation energy follows the 1/q3 behavior
depends on the density. If we e.g., calculate the correlation energy for Si bulk using a
potential including 2s2p3s3p electrons in the valence (Si2 potential) the density increases
from 4 electrons/atom in the standard 3s3p (Si1) potential to 12 electrons/atom. Besides the
fact, that the 1/(Eχ

cut)
3/2 dependence is not exactly fulfilled if deeper lying electronic states

are treated as valence, the difference between the correlation energy at the largest considered
Eχ

cut and the extrapolated value is significantly larger than for the standard potentials. But
if the correlation contribution to the atomization energies, namely the difference between the
bulk correlation energy and the atomic correlation energy is considered, the dependence on
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Figure 10.2: Dependence of the correlation energy on the energy cutoff Eχ
cut for Si. The correlation

energy (plotted versus 1/(Eχ
cut)

3/2) for the bulk (green triangles) and the atom (pink squares) is
presented. Two different Si potentials were considered: fits for the Si2 potential (2s2p3s3p electrons)
are shown in red, fits for the standard, Si1, potential (3s3p electron) are blue.

Eχ
cut becomes (i) weaker, because the dependence for atom and bulk cancel to a large degree

(ii) and the 1/(Eχ
cut)

3/2 dependence is almost recovered.

As an example we will discuss the Si correlation energies obtained from the Si1 (3s3p
electrons as valence) and the Si2 (2s2p3s3p electrons) potential. In Fig. 10.2 the correlation
energies of bulk Si (green triangles) and of the Si atom (pink squares) are plotted versus
the energy cutoff Eχ

cut. A 1/(Eχ
cut)

3/2 scale is chosen, and consequently the relation given in
Eq. (3.46) and Eq. (10.4) is fulfilled, if the correlation energies for different Eχ

cut lie all on one
straight line. The largest value of Eχ

cut is 200 eV and the 1/(Eχ
cut)

3/2 fit is only performed
for the largest two values of the energy cutoff in order to best visualize the deviation from
the correct behavior. The red lines represent the fits for the Si2 correlation energies, the blue
lines for the Si1 correlation energies. All energies are plotted with respect to E∞

c obtained
from these fits. Two main differences can be observed for the correlation energies of the Si1
and the Si2 potentials. First, the Si2 correlation energies, both for the bulk and the atom,
show a much stronger dependence on the energy cutoff Eχ

cut than the Si1 energies. Second,
the 1/(Eχ

cut)
3/2 dependence is perfectly fulfilled, if the Si1 potential is applied, but not if

the Si2 potential is used. But, we find that the difference ∆Ec = [Ec(bulk) − Ec(atom)]
converges significantly faster and does not deviate from the 1/(Eχ

cut)
3/2 behavior. We have

calculated the bulk and atomic correlation energies for different energy cutoffs. Because
the 1/(Eχ

cut)
3/2 behavior is not fulfilled for the Si2 correlation energies of the bulk and the

atom, the extrapolated correlation energies depend on the extrapolation range. For the bulk
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correlation energy we find an extrapolated correlation energy of −17.437 eV for the Eχ
cut

range [140,200] eV, −19.016 eV for [215,300] eV, and −19.386 eV for [250,350] eV. But
because the extrapolated correlation energies of both the bulk and the atom show a very
similar dependence on the extrapolation range, the difference ∆Ec is −1.522 eV for [140,200]
eV, −1.509 eV for [215,300] eV, and −1.508 eV [250,350] eV, and it is therefore possible
to obtained well converged atomization energies even if the individual contributions to the
energy are not completely converged.

For the lattice constant and bulk moduli determined in section 11.5, we find that values
with and without 1/(Eχ

cut)
3/2 extrapolation can differ significantly (by up to 1.5% in the

volume), whereas the dependence on the specific interpolation range is small, also for systems
where the 1/(Eχ

cut)
3/2 dependence is not strictly fulfilled.

In the latest VASP version the correlation energy is standardly evaluated for 8 cutoff
energies Eχ

cut starting with the value of ENCUTGW set in the INCAR file and decreasing in
steps of 5 % of ENCUTGW. The extrapolated correlation energy is written to the OUTCAR
file together with the correlation energies at the single values of Eχ

cut.

10.2 Frequency integration

We calculate the correlation energy from the linear response function at imaginary frequen-
cies. The response function χ(iω) is a smooth function of the frequency and the frequency
integration therefore does not constitute a fundamental problem. As the number of fre-
quency points enters the computational time linearly, an optimal choice for the frequency
grid is nevertheless desirable.

All integration schemes presented in the following are based on a Gauss-Legendre inte-
gration. The weights and supporting points for a Gauss-Legendre integration in the interval
[0,1] are tabulated in VASP for up to 64 supporting points. According to the Gauss-Legendre
integration scheme, the integral of a polynomial of degree 2N − 1 is exactly determined by a
N -point sum

∫ 1

0
f(x) dx =

N∑

i

wi f(xi), (10.5)

where wi and xi are the Gauss-Legendre weights and supporting points, respectively. For
the frequency integration as present in the evaluation of the correlation energy, an integral
of the type

Ec =

∫ ∞

0
g(ω) dω (10.6)

has to be calculated. The integrand g(ω) = ln(1 − νχ) + νχ exhibits an exponential decay
over a wide range of frequencies1. In order to make use of Eq. (10.5), a weighting function

1If only one single transitions contributes to the response function χ(iω), the frequency dependence of the
response function is proportional to ∆ǫ/(∆ǫ2 + ω2), ∆ǫ being the energy difference between the contributing
states [consider Eq. (2.35) for imaginary frequencies]. For large frequencies, the correlation energy thus decays
∝ 1/ω4. Nevertheless, fast convergence is found by assuming an exponential decay.
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v(ω) is introduced in Eq. (10.6), which exhibits a similar energy dependence as g(ω):

∫ ∞

0
g(ω) dω =

∫ ∞

0

[
g(ω)

v(ω)

]
v(ω) dω. (10.7)

In order to rewrite the integral in Eq. (10.7) into an integral of the form given in Eq. (10.5),
we perform the following transformation of variables:

dx = v(ω) dω → x =

∫ ω

0
v(ω′) dω′ + c . (10.8)

The constant c is thereby chosen as to obtain an integration interval [0,1] for an integration
over x. Eq. (10.7) can then be written as

∫ 1

0

[
g(ω(x))

v(ω(x))

]
dx =(10.8)

∫ 1

0
g(ω(x))

[
dω

dx

]
dx =(10.5)

N∑

i

wi g(ω(xi))

[
dω

dx

]
(xi). (10.9)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

 0.0

 0  5  10  15  20  25  30  35  40

co
rr

el
at

io
n 

en
er

gy
 w

ith
ou

t f
re

qu
en

cy
 in

te
gr

at
io

n

frequency (eV)

F
Ar
H
O

Figure 10.3: Correlation contribution before applying the frequency integration (arbitrary scale).
Shown are the results for the H, O, F, and Ar atom. The smaller the fundamental gap of the system,
the more structure in the small energy range is observed.

For the ACFDT frequency integration, several integration schemes have been imple-
mented, which differ in the chosen weighting functions v(ω). These schemes can be addressed
by setting OMEGAGRID in the INCAR file. Possible values are OMEGAGRID = 4, 40,
41, and 44. Additionally, the number of supporting points (NOMEGA) and the value of the
maximal frequency ωmax (OMEGATL in eV) have to be specified. The basic (but not stan-
dard) integration routine is called by setting OMEGAGRID = 41 and determines frequency
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Table 10.1: Lattice constant a0, bulk modulus B0, and energy error ∆E0 of bulk Si as obtained
for a different number of frequency points and for different integration schemes. For the method
OMEGAGRID = 40, two different values for the smallest frequency point are presented.

NOMEGA OMEGAGRID SIGMA a0 (Å) B0 (GPa) ∆E0 (meV)

8 41 5.438 99.4 -233
12 41 5.437 93.0 -19
16 41 5.433 94.2 1

8 44 5.433 94.4 -2
12 44 5.433 94.5 -1
16 44 5.433 94.5 0

8 40 0.2 5.437 93.6 -10
12 40 0.2 5.433 94.5 0
16 40 0.2 5.433 94.5 0

8 40 0.05 5.438 92.7 8
12 40 0.05 5.433 94.6 0
16 40 0.05 5.433 94.5 0

points by using an exponential weighting function, so that

v(ω) = αe−αω (10.10)

x(ω) = 1− e−αω

ω(x) = −
1

α
ln(1− x)

dω

dx
=

1

α

1

1− x
.

For 12 frequency points, which is the standard choice for the number of frequency points
in the present work, this integration scheme provides well converged correlation energies, if
the band gaps are not too small. For small gap systems or metals, the resulting number of
small frequency supporting points might not be enough. In order to illustrate this, g(ω) is
shown for several atoms in Fig. 10.3. Whereas the integrand exhibits not much structure
for small frequencies in the case of the H and the Ar atom, a strong increase of |g(ω)| at
small frequencies is observed for the F and O atom. The extra small frequency structure for
the F and O atom is related to excitations between states with small energy differences. A
coarse frequency grid for small energies neglects these contributions alltogether. Therefore
an integration scheme that provides a higher frequency density at small frequencies has been
introduced. It is called by setting OMEGAGRID = 44 and is defined as

v(ω) =
α

B
ω(1/B−1)e−αω1/B

(10.11)

x(ω) = 1− e−αω1/B

ω(x) =
1

α
[− ln(1− x)]B

dω

dx
=

B

α
[− ln(1− x)](B−1) 1

1− x
.
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Finally, a third kind of integration scheme was introduced, which guarantees a denser fre-
quency grid at smaller frequencies than provided by OMEGAGRID = 41, but yields a similar
behavior for large frequencies. By choosing OMEGAGRID = 4 or 40, the frequency points
are determined according to

ω(x) = −
1

α
ln
[
(1− b)(1 − x) + b(1− x)2

]
(10.12)

dω

dx
=

1

α

(1− b) + 2 b (1 − x)

(1− b) (1− x) + b (1− x)2
. (10.13)

This integration scheme occurs in two flavors. For OMEGAGRID = 4, which is the standard
setting for ACFDT calculations, a fixed value is chosen for b, for OMEGAGRID = 40, the
smallest frequency is set to the value of SIGMA provided in the INCAR file2. Numerous
tests have confirmed that OMEGAGRID = 4 or OMEGAGRID = 40 provide a very good
compromise between the number of frequency points and the accuracy of the frequency
integration.

One of the systems for which the convergence with the number of frequency points is
especially slow is bulk Si. In table 10.1 the Si equilibrium lattice constant a0, the bulk
modulus B0, and the energy error ∆E0 obtained from different integration schemes and
different number of frequency points are summarized. A 4×4×4 k-point grid has been used.
For all, but the simple exponential Gauss-Legendre integration (OMEGAGRID = 41), 12
frequency points provide well converged lattice constants, bulk moduli and total energies.

10.3 k-point convergence and Γ-point correction for metals

Although metals do not represent a fundamental problem for (RPA-)ACFDT calculations,
they require more attention with respect to the k-point convergence than semiconductors
and insulators. In fact, already the sampling of the metallic Fermi surface in standard DFT
calculations requires a denser k-point grid. Here the k-point grid affects the precision in
two ways, first because χ(q) is only evaluated using a finite set of k-points, second because
χ(q) is only summed over a finite grid of q-points. These two grids, the k-point grid used
in the calculation of χ(q) and the q-point grid used in the final evaluation of the correlation
energy, are independent from each other, but they will be chosen identical throughout this
work. A second difficulty arises for metals from the existence of intraband transitions within
one partially-filled band crossing the Fermi level. These contributions to χ(q) ν(q) are rou-
tinely calculated for q 6= 0 , but for the long-wavelength limit q → 0, a direct evaluation of
these terms leads to an indefinite expression (see Sec. 2.8). This indefiniteness in the long-
wavelength intraband term of νχ can however be lifted and the intraband contributions (or
Drude term) can be expressed via the plasma frequency ω̄ [see Eq. (2.106)]. In the following,
we will discuss the influence of the Drude term on the correlation energy for the example of
the homogenous electron gas (HEG) and present different ways how to include the intraband
long-wavelength contribution.

2If ISMEAR is set ≥ 0 in the INCAR, the one-electron levels are broadened or smeared. The parameter
SIGMA controls the width of the broadening function. It is reasonable to expect that the user will chose
values corresponding roughly to the smallest excitation energies in the system under consideration.
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Figure 10.4: Correlation energy (eV) of the homogenous electron gas at a density rs = 2.5 a.u. Empty
squares denote the energy without including the Drude term. Circles represent energies obtained when
incorporating the Drude term as defined in Method A, and filled squares are values obtained from
applying Method B.

In the first approximation, we do not include the Drude term in the description of the
response function at all. The response function, therefore, lacks contributions at the Γ
point that arise from the long-wavelength intraband transitions. Consequently, the absolute
correlation energy is expected to be too small. The error introduced by the neglect of the
long-wavelength intraband contributions (or Drude contributions) depends on the number
of q-points, because the relative weight of the Γ point to the Brillouin zone sum becomes
negligible for a sufficiently dense q-point grid. But a very dense q-point grid is not a feasible
option, if one considers the large computational costs for the ACFDT correlation energies,
so that the correct (or approximated) inclusion of the long-wavelength intraband, or Drude
term, is highly desirable. In Fig. 10.4 the q-(and k-point) dependence of the HEG correlation
energy is shown for different methods applied for the inclusion of the Drude contribution. The
correlation energy without considering the Drude term at all is shown using empty squares.
The DFT energies (solid line) are also given for comparison. As expected, the absolute
correlation energy increases for a larger number of k-points, because the error introduced by
the neglect of the Drude term at the Γ point is of less consequence if a denser k-point grid is
applied for the Brillouin zone integration.

In the following, we will consider two different methods to include the Drude term in or
after the calculation of the RPA-ACFDT correlation energy. In the first approach (referred
to as Method A), the expression χ(q)ν(q) is directly complemented by the Drude term

χKS
G,G′(q, iω)νG,G′(q) → χKS

G,G′(q, iω)νG,G′(q) +
ω̄2

αβ

ω2
δG,G′δ(q) =: ε̄Γ(q, iω), (10.14)
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where the plasma frequency tensor is given by Eq. (2.106). If we performed a q-integration
over the Brillouin zone, Eq. (10.14) would result in an exact expression for the correlation
energy. But as we approximate the Brillouin zone integration as a sum over discrete q-
points and since we consequently replace the integral over the Γ-centered volume V (Γ) by
the integrand evaluated at the Γ-point times V (Γ), i.e.,

V

(2π)3

∫

V (Γ)

d3q {ln
[
1− ε̄Γ(q, iω)

]
+ ε̄Γ(q, iω)} →

V

(2π)3
V (Γ) {ln

[
1− ε̄Γ(0, iω)

]
+ ε̄Γ(0, iω)}, (10.15)

method A strongly overestimates the contribution caused by the Drude term. The absolute
correlation energies evaluated applying method A will therefore be too large, especially for a
coarse q-point grid which results in large volumes V (Γ). This can be also seen from Fig. 10.4,
where correlation energies obtained from Method A are given by empty circles.

A second, denser q′-point grid could be introduced around the Γ point in order to allow
a better numerical integration for small values of q. But this would still require an increased
number of χKS

G,G′(q, iω) νG,G′(q) evaluations. We proceed along this line, but replace the

KS response function χKS of the considered system by the independent-particle response
function of the HEG, the Lindhard function χLind(q) [see Eq. (10.2)]. The density of the
HEG, n∗, is thereby chosen as to obey the free electron relation for the plasma frequency
calculated for the respective system (Method B):

ω̄2 =
4πe2n∗h̄2

m
. (10.16)

For metals with high, cubic symmetry, this is well defined since ω̄ := ω̄xx = ω̄yy = ω̄zz. For
low symmetry systems, one could consider the density corresponding to ω̄2 = Tr[ω̄2

α,β]/3.

The evaluation of the respective correlation correction EΓ
c

EΓ
c =

V

(2π)3

∫

V (Γ)

d3q

∫ ∞

0
dω
{
ln
[
1− χLind(q, iω; ω̄)ν(q)

]
+ χLind(q, iω; ω̄)ν(q)

}
(10.17)

can be performed numerically and independently of the actual RPA calculations. The cor-
rection calculated from Eq. (10.17) is then simply added to the RPA correlation energy
obtained without inclusion of the Drude term. More technical details about the integration
of Eq. (10.17) will be discussed in the next subsection. In Fig. 10.4 the correlation energies
calculated from Method B are shown using black squares. The convergence with respect to
the number of q-points is now significantly improved compared to the correlation energies
without considering the Drude term (empty squares).

10.3.1 Γ-point corrections: Technical details

The Γ-point correction EΓ
c is evaluated by summing over

EΓ
c (qi) :=

∫ ∞

0
dω
{
ln
[
1− χLind(qi, iω; ω̄) ν(qi)

]
+ χLind(qi, iω; ω̄) ν(qi)

}
(10.18)
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Table 10.2: Tests for different frequency integration schemes at a fixed q′ value of 0.005 Å−1.
OMEGAGRID = 4 refers to a Gauss-Legendre integration, which is exact for an exponential de-
caying function; OMEGAGRID = 40 introduces a denser grid for smaller frequencies and allows to
chose a minimal frequency ωmin (see Sec. 10.2).

T1 T2 T3 T4 T5

OMEGAGRID 4 4 40 40 40
nr. of ω 64 24 24 24 48
ωmin - - 0.03 0.003 0.003

ωmax

80 -16.12103 -15.78955 -16.16447 -16.12142 -16.12102
200 -16.12010 -11.29112 -16.16799 -16.11489 -16.12103
400 -16.18106 -6.59418 -16.17142 -16.10677 -16.12103
800 -15.59202 -3.41346 -16.17724 -16.31622 -16.12101

for a set of q′-points. The q′-point grid for the numerical integration is chosen to be a
Monkhorst-Pack grid centered around the Γ point and is constrained to the volume around
the Γ point, V (Γ). To select the q′-points a minimum image convention or Wigner-Seitz like
construction is used so that the points q′ are always closer to Γ than to any other q-point
used to sample the Brillouin zone. In this section, tests concerning the frequency integration
from ω = 0 to ω = ∞ are presented. Furthermore, the convergence with the number of q′

points is analyzed.
For the calculation of EΓ

c , Eq. (10.18) has to be evaluated for small q′ values. But
χLind(q′, iω; ω̄) ν(q′) is numerical unstable for small values of q′ (especially for large frequen-
cies). Small values of q′ can either occur if the number of q′ points in V (Γ) is large and/or
a sizable real-space cell and consequently a small Γ-point volume V (Γ) is present. The
instability is due to the term

(Q2 − u2 − 1) ln
u2 + (Q+ 1)2

u2 + (Q− 1)2
(10.19)

in the Lindhard function [Eq. (10.2)], because the ln term approaches 0 for large ω and
small q′ and at the same time the term in front of the ln diverges. This instability becomes
significant for q′ < 0.005 Å−1. We therefore expand this term for small values of q′ and
replace Eq. (10.19) by

4Q(Q2 − u2 − 1)

u2 + 1 +Q2
. (10.20)

Next we test different frequency integration schemes (see section 10.2), number of frequency
points, and maximal and minimal frequencies ωmax and ωmin. The tests are performed for
q′ = 0.005 Å−1 because the frequency integration is most demanding for small q′ values.
The results are shown in Table 10.2. Let us consider the results obtained by the last test,
T5, first. It has been performed with the integration scheme OMEGAGRID = 40, which
results in a high density of points in the small frequency regime, and a total of 48 frequency
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Table 10.3: Γ-point corrections for different q-point grids depending on the number of q′-points used
in the integration over the Γ-point volume. All values are given in meV(!).

q-points (n) → 4 6 8 12 16
q′-points ↓

(12× 12× 12) -159.374 -79.691 -47.602 -22.484 -13.042

(24× 24× 24) -159.291 -79.647 -47.576 -22.472 -13.035

(36× 36× 36) -159.276 -79.639 -47.571 -22.470 -13.034

points. The smallest frequency, ωmin, was set to 0.003 eV. In this case, the same value is
obtained no matter how large the maximal frequency ωmax is chosen. That indicates that in
the present case no contribution arises from frequencies larger than 80 eV and that enough
frequency points are present in the small frequency region. If the very same settings, but 24
instead of 48 ω-points are used (T4), the small frequency range is not sampled well enough,
if ωmax is chosen too large. If we additionally change the minimal frequency ωmin from 0.003
eV to 0.03 eV (T3), we recognise that the small frequency sampling is not accurate anymore,
reflected by the change from −16.121 eV in the case of ωmin = 0.003 eV to −16.164 eV for
ωmin = 0.03 eV. All calculations up to this point have been performed with the integration
scheme OMEGAGRID = 40. If we use OMEGAGRID = 4, which introduces a coarser
integration grid for small frequencies, we find that 24 frequency points (T2) lead to results
far from the correct values. And even for 64 points a correct sampling of the small frequency
range is not guaranteed anymore for large values of ωmax.

Now that we have tested the frequency integration, we can finally evaluate EΓ
c and analyze

the dependence on the number of q′-points. We consider an fcc cell and a plasma frequency
of ω̄ = 122 eV. For the frequency integration, OMEGAGRID = 40 and 48 frequency points
are considered. The maximal and minimal frequency points were placed at 0.003 and 80
eV (corresponding to test T5 shown above). The correction EΓ

c is calculated for a grid of
n× n× n (n =4, 6, 8, 12, and 16) q-points and consequently different volumes V (Γ) around
the Γ point. It is expected that the convergence with the number of q′ points is slower for a
small number of q points, because then the smallest q′ value is larger and therefore important
contributions near the Γ-point are neglected. In Tab. 10.3, the Γ-point correction EΓ

c (meV)
for different q and q′-point grids is shown. Even for the coarsest q-point grid, 4 × 4 × 4,
the difference between a (12 × 12 × 12) and (24 × 24 × 24) q′-point grid amounts only to
84× 10−6 eV. For 8× 8× 8 q-points it reduces to 26× 10−6 eV to finally become 7× 10−6 eV
for 16 × 16 × 16 q-points. Compared to the error of the correlation energy without Γ-point
corrections, all these small changes in the energy can confidently be neglected. Concerning
the dependence of the Γ-point correction on the number of q-points, we found that EΓ

c scales
approximately like 1/n7/4, where n is the number of q-points along one direction.



Chapter 11

Application of the ACFDT

11.1 Molecules - H2, O2, N2

The following calculations of the H2, O2, and N2 atomization energies provide a test for our
implementation of the RPA-ACFDT routines. Our results will be compared to the ones ob-
tained by Furche [121] using a local basis set code. His RPA routines have been implemented
in the Møller-Plesset (MP2) module MPGRAD [133] of the program TURBOMOLE [134]
and a cc-pVXZ (correlation consistent polarized valence electron X zeta) basis set was ap-
plied. Similar to the slow convergence of our correlation energies with the maximal reciprocal
lattice vector determined by Eχ

cut (see section 10.1), Furche’s correlation energies exhibit a

ERPA
c (X) = ERPA

c (∞) +A/X3 (11.1)

dependence on the maximal angular momentum X used for the construction of the basis set.
If we compare to his correlation energies, we always refer to his extrapolated values.

For a test set of 12 molecules including e.g., results for HF, CO, CO2, H2O, Furche
found that the RPA leads to a general underestimation of the atomization energy ∆E =∑
E(atom) − E(mol). The RPA atomization energies for H2, N2, O2, F2, and Si2 (errors

smaller than 9 kcal/mol ≈ 0.4 eV) are improved compared to the DFT-PBE results. For
the other molecules, PBE atomization energies are closer to experiment. The Hartree-Fock
atomization energies ∆EHF =

∑
EHF (atom) − EHF (mol) are in all cases much too small,

deviating from the experimental energies by 25 kcal/mol1≈ 1.1 eV for H2, 117 kcal/mol ≈
5.1 eV for N2, and 155 kcal/mol ≈ 6.7 eV for CO2.

In the present work, we focus on the atomization energies for H2, O2, and N2. The bond
length is fixed to the experimental value (0.7413 Å for H2, 1.208 Å for O2, and 1.098 Å
for N2). The generalized gradient approximation by Perdew, Burke, and Ernzerhof (PBE)
[12] was used for the representation of the exchange-correlation energy in the calculation of
the KS-DFT eigenenergies and wavefunctions. In order to achieve very accurate results for
oxygen and nitrogen, we applied different potentials for the evaluation of the HF energy, EHF ,
and the RPA correlation energy, Ec. For the calculation of the Hartree-Fock energy, EHF ,
potentials with small core-radii have been considered. For the RPA correlation energy, where
unoccupied states have to be correctly represented, GW potentials that describe scattering

11 kcal/mol = 43.364 meV

114
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Table 11.1: Cutoff radii rc for the PAW potentials. For nitrogen and oxygen, different potentials have
been applied for the evaluation of DFT and HF energies and the calculation of the RPA correlation
energy, Ec. If the cutoff radii differ for specific quantum numbers, they are specified for each channel
using subscripts.

rc (a.u.) rc (a.u.)
valence (PBE, HF) RPA

H 1s 1.1 1.1
N 2s 2p 1.1 1.2s 1.5pd

O 2s 2p 1.1 1.2s 1.5pd

properties very accurately up to ≈ 10 Ry, have been applied. The core radii rc for these two
types of PAW potentials are summarized in Tab. 11.1. The energy cutoff was chosen as high
as Ecut = 1000 eV for the DFT-PBE and HF calculations. A supercell with a side-length of
10 Å resulted in converged atomization energies (i.e., an error smaller than 0.05 kcal/mol).

For the evaluation of the RPA-ACFDT correlation energy, an energy cutoff of Ecut =
600 eV was sufficient. As described in section 10.1, the convergence with the dimension of
the response function (determined by the energy Eχ

cut) is improved by extrapolating to the
known 1/(Eχ

cut)
(3/2) dependence. For the molecular calculations, the extrapolated values were

obtained from a fit to the correlation energies using Eχ
cut = 300 and 350 eV. The frequency

integration was carefully tested. Errors smaller than 3 meV can be achieved, if 16 frequency
points, a maximal frequency of 800 eV, and the integration scheme OMEGAGRID = 44 (see
section 10.2) is applied.

The convergence of the correlation energy difference with respect to the lateral extension
of the supercell is relatively fast. For sufficiently large volumes, the correlation contribution
to the atomization energy shows a 1/V 2 dependence due to spurious, stabilizing van der
Waals interactions between repeated images. The deviation between the correlation energy
difference, ∆Ec = Ec(mol) − 2Ec(atom), when evaluated for the largest applied volume (a
7.2 × 6 × 6 Å box), and when using an 1/V 2 extrapolation, is 0.8 kcal/mol ≈ 30 meV for
N2 and 0.3 kcal/mol ≈ 10 meV for O2.

Before finally presenting the values for the atomization energies, we will briefly comment
on the influence of two quantities. The first quantity is ENCUTFOCK and determines
the energy cutoff for the FFT grid used to Fourier transform the cell periodic part of the
exchange density φa(r)φi(r) (see subsection 2.7.1 and Ref. [21]). In principle, the charge
density contains Fourier components up to 2 times the number of plane wave components
Gcut. The full 2×Gcut grid is considered if ENCUTFOCK is not set (ENCUTFOCK = −1).
If ENCUTFOCK = 0, a fast Fourier transformation box that just contains all required plane
waves is used. The error introduced for the correlation energy by choosing ENCUTFOCK =
0 is smaller than 1 meV and consequently negligible for all three systems considered .

The second quantity is related to the proper treatment of the shape of the exact AE
charge density in the calculation of the response function. This point has been discussed
in more detail in Sec. 2.7.1. The parameter that defines the quality of the charge density
is LMAXFOCKAE. The integer value assigned to this parameter determines up to which
angular momentum number the AE charge density is reconstructed on the plane wave grid.
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Table 11.2: Correlation energy difference (kcal/mol) for a 6.6 × 5.5 × 5.5 Å cell. The influence of
the quality of the charge density on the plane wave grid determined by LMAXFOCKAE (= LM), and
the change introduced by the extrapolation with respect to Eχ

cut are shown for H2, O2, and N2.

H2 O2 N2

Eχ
cut LM=−1 LM=2 LM=−1 LM=2 LM=−1 LM=2

350 -23.3 -23.5 -84.5 -86.6 -103.5 -107.1
extra. -24.6 -24.9 -86.1 -88.3 -109.3 -113.7

It should be typically chosen to be twice the number of the highest angular momentum in
the PAW projectors. In this case, we only compare LMAXFOCKAE = 2 to calculations
with no corrections at all. The correlation energy differences ∆Ec = Ec(mol) − 2Ec(atom)
evaluated for LMAXFOCKAE = 2 and LMAXFOCKAE = −1 are shown in the Tab. 11.2.
Additionally, the values with and without extrapolation with respect to Eχ

cut are given. The
correlation energy differences have been determined for a 6.6 × 5.5 × 5.5 Å cell. For all
three considered molecules, the reconstruction of the AE charge density on the plane wave
grid (LMAXFOCKAE = 2) leads to a sizeable effect. Especially for O2 and N2, absolute
correlation energy differences without setting LMAXFOCKAE = 2 are far too small. The
error introduced by not including the LMAXFOCKAE correction amounts to as much as
2.2 kcal/mol ≈ 0.1 eV for O2 and 4.4 kcal/mol ≈ 0.2 eV for N2. For the evaluation of total
energies, the reconstruction of the AE charge density on the plane wave grid is therefore
necessary.
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Table 11.3: Atomization energies (kcal/mol) for H2, N2, and O2 from standard DFT-PBE calcula-
tions (PBE) and from ACFDT calculations applying the RPA (RPA). Additionally the contribution
to the total ACFDT atomization energy from ACFDT correlation (corr.) and from the HF energy
(HF) are shown. The experimental values (Exp.) are taken from [121].

PBE HF corr. RPA Exp.

H2 present 105 84 25 109 109
[121] 105 84 25 109

N2 present 244 111 113 224 228
[121] 244 111 112 223

O2 present 143 25 88 113 121
[121] 144 25 88 113

In Tab. 11.3 the DFT-PBE (PBE), Hartree-Fock (HF), RPA correlation energy (corr.),
and the total energy obtained within the RPA-ACFDT formalism (RPA) are summarized
and compared to the results of Furche [121]. The correlation energies were obtained for a 7.2
× 6 × 6 Å cell. The energy was extrapolated according to a 1/(Eχ

cut)
(3/2) dependence for

Eχ
cut = 300 and 350 eV. On-site corrections were included by choosing LMAXFOCKAE =

2. Obviously Furche’s results agree very well with ours. For the standard DFT calculations,
the atomization energy shows only a small deviation for the O2 molecule. The HF energies
(more exactly: the Hartree-Fock energy evaluated for DFT-PBE wavefunctions) resulting
from the plane wave (present work) and the local basis set (Furche) approach agree within 1
kcal/mol. Also the RPA-ACFDT correlation energies are close to each other. The difference
for N2 is reduced by applying the 1/V 2 volume extrapolation. While the N2 correlation energy
difference amounts to −113.3 kcal/mol for the 7.2 × 6 × 6 Å cell, the 1/V 2 extrapolated value
is −112.5 kcal/mol and comes closer to the result of Furche (112 kcal/mol). For all molecules
considered here, the RPA provides better agreement with experiment than the DFT-PBE
results. But this is not the case for all molecules considered by Furche, as discussed at the
beginning of this section.

Finally, we show the dependence of the correlation energy ∆Ec on the energy cutoff Eχ
cut

(Fig. 11.1, left) and the volume dependence of the extrapolated values (Fig. 11.1, right).
Here, the volume is denoted by the longer side of the supercell, which lies along the binding
direction of the molecule (e.g. 7.2 Å cell for the 7.2 × 6.0 × 6.0 Å cell).

11.2 Rare-gas solids - Ne, Ar, Kr

The rare gas solids are the standard example of extended systems bonded only by weak
dispersion forces. As the rare gas atoms possess a closed-shell electronic configuration, they
do not exhibit any covalent interactions. The nature of their binding is only due to the
van der Waals interaction, which exhibits the typical −1/R6 behavior for sufficiently large
distances. The source of the attractive van der Waals interaction is the energy gained by
the interaction of fluctuating dipoles. While the rare gas atoms have no permanent dipole
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moment, quantum fluctuations introduce an instantaneous dipole moment. In a qualitative
picture of two atoms at a distance R, the dipole moment on atom 1, p1, results in an electric
field E ∝ p1/R

3. The electric field introduces a dipole moment on atom 2, p2, which is
proportional to the electric field p2 ∝ E(R) ∝ p1/R

3. The energy of a dipole moment in an
electric field is given by V = −p2E which, in total, results in a potential V ∝ −p1p2/R

6.
How strongly an atom can be polarized by an electric field depends on its polarizability.
Consequently, this quantity enters the van der Waals potential as a prefactor.

The nature of the van der Waals interaction is non-local, because it describes the reaction
of an atom at position r to the density fluctuations of a second atom at position r′. Such
a correlation contribution is not captured in any local (LDA) or semilocal (GGA) approxi-
mation of the correlation energy as normally used in DFT calculations (see also Ref. [32]).
This failure of standard DFT becomes evident in the description of rare gas molecules and
solids, where LDA strongly overbinds, while GGA underbinds. Other prominent examples
are graphite and h-BN, for which GGA does not provide an interlayer binding between the
graphene and h-BN sheets at all, while LDA binds only because of a spurious cancellation of
errors in the description of the exchange and correlation energy. Therefore, it is common to

include the van der Waals potential as an additional energy contribution ∝ C
(ab)
6 /R6

(ab), and

to sum over all pairs of atoms (a, b) present in the system (see e.g., [135]). In order to avoid
strong interactions at very small distances, the 1/R6 potential is damped for small values of
R. This approach thus resembles the introduction of a Lennard-Jones potential:

Vab(Rab) =
Cab

12

R12
ab

−
Cab

6

R6
ab

(11.2)

The coefficient C6 can be calculated from the ab-initio atomic polarizability.

Beside the difficulties of determining the damping factor and the correct calculation of
the atomic polarizability, a fundamental problem lies in the assumption that the correct R
dependence of the correlation can be obtained by summing over terms of the form given in
Eq. (11.2). While the summation over the 1/R6 terms gives the correct energy behavior in
leading order of 1/R (not necessarily the correct prefactors) for an insulating system, it can
be shown [32, 33] that for metals not even the correct long-range behavior can be reproduced.
Thus, this semi-empirical treatment can not be the proper solution for the description of van
der Waals bonded systems.

The ACFDT formulism provides an exact (non-local) expression for the correlation energy,
and therefore naturally also includes the van der Waals interaction. Even within the RPA,
it has been shown [34] that the correct long-range 1/R6 behavior for two atoms (respectively
the correct dependence on the distance R for any system) can be reproduced. Only the
coefficients are altered by the RPA approximation, so that e.g., the C6 coefficients describing
the interaction between two distant atoms are determined by the RPA atomic polarizabilities
instead of the exact ones.

In this chapter, we will present RPA cohesive energies for the fcc rare-gas crystals of Ne,
Ar, and Kr. The applied potentials were generated as to guarantee good scattering properties
for the isolated atoms for up to ≈ 10 Ry. The parameters of these potentials are summarized
in Tab. 11.4. For the Hartree-Fock energy, EHF , a 12× 12× 12 k-point grid was used. This
dense k-point grid was necessary in order to obtain convergence on the meV level. For the
RPA correlation energies, a 6× 6× 6 k-point grid already leads to relatively smooth energy-
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Figure 11.2: Left: RPA correlation energy based on LDA (circles) and PBE (squares) wavefunctions
and eigenenergies. The correlation energy is plotted over 1/V 2. The energies are given with respect
to the (extrapolated) correlation energy of the isolated atom. Right: Kr RPA cohesive energy (meV)
and contributions arising from the HF part EHF and the correlation energy Ec only. Energies based
on DFT-LDA wavefunctions are given by circles, values based on DFT-PBE by squares.

Table 11.4: Cutoff radii rc for the rare gas PAW potentials. For the rare gas solids the same potentials
have been used for the HF contribution EHF and for the evaluation of the correlation energy Ec.

valence rc (a.u.) Ecut (HF) Ecut (corr.)

Ne 2s 2p 1.4s 1.8pd 900 650
Ar 3s 3p 1.5s 1.9pd 390 390
Kr 4s 4p 1.8s 2.3pd 340 340

volume curves. The extrapolation to Eχ
cut →∞ was performed using the correlation energies

obtained at Eχ
cut = 300, 275, 250, and 225 eV for Ne and for 225, 200, and 175 eV for Ar. It

is noted that the choice of the Eχ
cut values and the extrapolation is automated in the current

version of VASP.

For the evaluation of the cohesive energy, the Hartree-Fock and the RPA correlation
energy of the isolated atom are required. The atomic Hartree-Fock energy contribution was
calculated directly. Very large supercells would have been required to obtain RPA correlation
energies of an accuracy in the meV range. This step was circumvented by extrapolating the
correlation energy of the fcc solid according to a 1/V 2 ∝ 1/R6 behavior and taking the
extrapolated value as the correlation energy of an isolated atom. The validity of such a
procedure is demonstrated in Fig. 11.2 (left panel). The correlation energy is plotted over
1/V 2, so that all points lie on a straight line, if the correct 1/R6 dependence is fulfilled. For
all three considered rare gas solids the 1/V 2 dependence holds already for volumes as small
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Table 11.5: C6 (eVÅ6) coefficients for the noble gas solids, where C6 determines the strength of
the long-range C6/R

6 interaction (R is the nearest neighbor distance). This value equals twice the
slopes of the curves shown in Fig. 11.2, left panel. The “experimental” values are estimated by
fitting the experimental zero-point corrected equilibrium energies and equilibrium volumes [136] to a
Lennard-Jones pair potential.

Exp. LDA PBE

Ne 47 62 53
Ar 455 512 484
Kr 895 1030 980

as 30 Å3 for both LDA or PBE wavefunctions and eigenenergies. The slope of the correlation
energy versus 1/V 2 corresponds to half the coefficient C6, which determines the van der
Waals energy contributions C6/R

6, R being the nearest neighbor distance in the fcc crystal.
The corresponding values are given in Tab. 11.5 for Ne, Ar, and Kr. The ”experimental”
reference values were obtained by fitting the zero-point corrected equilibrium energies and
volumes taken from [136] to a Lennard-Jones potential. The ”experimental” and theoretical
values for C6 agree rather satisfactorily, particularly in the GGA-PBE case. The slight
overestimation of the coefficient is related to the fact that RPA polarizabilities evaluated
from LDA and PBE wavefunctions and eigenenergies are normally overestimated, more so
for the LDA than for the PBE case. Whether LDA or PBE wavefunctions and eigenenergies
are used as input for the RPA energy, does not only effect the RPA correlation energy. In
Fig. 11.2, right panel, the total RPA energy of the Kr crystal is split into the contribution
arising from the Hartree-Fock and the correlation energy. For the correlation energy, we have
already seen in the left panel that using LDA wavefunctions and eigenenergies yields a larger
absolute value for the correlation energy. This goes hand in hand with the fact that the LDA
polarizability is larger than the PBE one (see Tab. 11.5). For the Hartree-Fock contribution,
however, PBE wavefunctions result in smaller energies so that in total PBE wavefunctions
give smaller RPA cohesive energies for the rare gas solids than LDA ones.

In Fig. 11.3, the cohesive energies are shown for all three considered rare gas solids.
Besides the standard DFT results (solid line: LDA, dashed line: PBE) the RPA-ACFDT
energies are plotted as obtained using LDA (circles) and PBE (squares) wavefunctions and
eigenenergies as input. The experimental lattice constants and cohesive energies (corrected by
zero point contributions) as taken from Ref. [136] are plotted using diamonds. In Tab. 11.6,
the equilibrium properties are summarized. Besides the lattice constants and cohesive en-
ergies obtained from DFT LDA and PBE calculations, the RPA values resulting from LDA
and PBE input are given. Additional to our data, the CCSD(T) values from Ref. [136] are
specified. The experimental reference data are taken from Ref. [136]. The DFT lattice con-
stants of the rare gas solids follow the general LDA and PBE trend, respectively: LDA-DFT
lattice constants are too small, PBE-DFT lattice constants too large. The LDA error be-
comes slightly smaller for the heavier rare gas atoms, while the opposite trend is observed for
PBE. The performance of the RPA for the calculation of the lattice constants is significantly
better, and for DFT-PBE wavefunctions and eigenenergies, the errors of the RPA lattice
constant is 3.4, 1.3, and 1.6 % for Ne, Ar, and Kr, respectively, compared to −10.3 % error
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Figure 11.3: Cohesive energy (meV) as a function of the primitive cell volume for the fcc noble gas
crystals Ne, Ar, and Kr. Besides the cohesive energies obtained from the RPA-ACFDT calculations
based on LDA (circles) and PBE (squares) wavefunctions and eigenenergies, standard DFT results
within the LDA (solid line) and PBE (dashed line) are shown. The experimental values (without
zero-point energy) are given by black diamonds.
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Table 11.6: Equilibrium lattice constants and cohesive energies of the noble gas fcc crystals Ne, Ar,
and Kr. The DFT results are compared to RPA-ACFDT values and experiment. The zero-point
energy is neglected and the experimental lattice constants are extrapolated to zero temperature (see
Ref. [136]).

DFT- ACFDT- DFT- ACFDT- Exp. Ref. [136]
LDA LDA PBE PBE

lattice constant (Å)
Ne 3.9 4.7 4.6 4.5 4.35 4.314
Ar 4.9 5.4 6.0 5.3 5.23 5.284
Kr 5.3 5.8 6.4 5.7 5.61 5.670

absolute value of cohesive energy (meV)
Ne 83 11 20 17 27.3 26.44
Ar 140 59 22 83 88.9 82.81
Kr 165 88 25 112 122.5 114.44

in the Ne LDA lattice constant, or 14.1 % for the Kr PBE values.

In summary, for the cohesive energies, DFT overbinds in the case of the LDA, and un-
derbinds for PBE. The error introduced by the LDA is about −50 meV for all three rare
gas solids, while the PBE error increased from 7 meV for Ne, to 67 meV for Ar, to 100
meV for Kr. Also with respect to the cohesive energies, the RPA results in an improved
description compared to both LDA and PBE. With the exception of Ne, where PBE-DFT is
closer to experiment, RPA gives better agreement with experiment. If PBE wavefunctions
and eigenenergies are used as input for the RPA energies, the error never exceeds 11 meV.
For Ar and Kr, the RPA-PBE lattice constants and cohesive energies are very close to the
CCSD(T) values reported by Paulus et al. [136].

For the rare gas crystals of Ne, Ar, and Kr we found that the RPA provides an improved
description of lattice constants and cohesive energies compared to DFT based on the LDA or
PBE. Additionally, RPA correctly accounts for the 1/R6 dependence, and the corresponding
coefficients are well described within the RPA.

11.3 Homogenous electron gas

Because the correct RPA-ACFDT correlation energies for the homogenous electron gas are
known (see e.g., Ref. [11, 132]), the HEG represents the ideal test system for RPA calculations
of metallic systems. In this section, we will mainly focus on the k-point convergence of the
RPA correlation energy, a topic that has already been addressed in section 10.3. Additionally,
we will aim at a comparison between calculated RPA correlation energies and values presented
in the literature.

The RPA correlation energies have been calculated applying energy cutoffs of Ecut =250
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eV and Eχ
cut =150 eV. For the frequency integration, method OMEGAGRID = 40 (see

Sec. 10.2) with 24 supporting points and a minimal and maximal frequency of 0.05 eV and
200 eV has been applied. Changing the energy cutoffs to 350/150 and 450/250 changes the
correlation energies by less than 1 meV. The same holds if the maximal frequency is increased
to 800 eV and the number of supporting points to 64.
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Figure 11.4: Difference between correlation energies calculated for different k-(and q)-point grids
and the values stemming from the RPA parameterization by Perdew and Wang [11]. Both, results
obtained with and without the Γ-point correction are shown.

The convergence of the RPA-ACFDT energy with the number of q-points is determined
by the correct treatment of the small-q integrand. In Method B described in section 10.3,
the intraband contributions from the vicinity of the Γ point are calculated by a numerical
integration over the HEG expression. If applied to the HEG, this method is exact provided
that the numerical integration is accurate enough. The remaining error stems from errors in
the k-point sampling of the Brillouin zone, when evaluating the response function χ(q).

In Fig. 11.4 the differences between our correlation energies and the values obtained from
the parameterization of Perdew and Wang [11] for different k(q-)point grids and densities are
shown. Both, the errors with and without the applied Γ-point corrections, are displayed. The
k-point error without applying the Γ-point correction is significantly larger, and especially
the correlation energy for large densities (small Wigner-Seitz radii) is underestimated. Ap-
plying the Γ-point correction, the k-point error and the dependence on the densities is much
reduced. For all k-point values starting from 6×6×6 k-points and for all densities, the error
applying Γ-point correlations is smaller than 20 meV. This large improvement compared to
the uncorrected correlation energies highlights the importance of including the Drude term
for metals.

For the data presented in Fig. 11.4 the extrapolation to Eχ
cut →∞ has been applied (see

Sec. 10.1). In Fig. 11.5, the 16 k-point correlation energies for a response function energy
cutoff of Eχ

cut = 150 eV (black squares) are shown together with the extrapolated energies
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with (empty circles) and without (empty squares) applying the Γ-point correction. Evidently,
the Eχ

cut extrapolation is essential in order to obtain accurate correlation energies.

The number of points used in the frequency integration (NOMEGA) could play a more
important role for metals than for semiconductors due to the existence of small frequency
transitions. Although the Drude term is treated separately (as done in Method B), a dense q-
point grid will lead to small q-point transitions and consequently small intraband excitations.
Nevertheless, we found that the frequency integration is unproblematic, at least in the case
of the HEG. If the integration scheme OMEGAGRID = 4 is used (see Sec. 10.2), converged
energies are obtained already for 16 frequency points. We therefore observe that the intraband
contributions are well manageable. Only if band crossings occur near the Fermi surface, as
for Al and the transition metals, faster convergence is obtained if extremely small frequency
points are not considered (see next section).
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Figure 11.5: Influence of the Eχ
cut extrapolation and of the Γ-point correction on the HEG

RPA correlation energy.

Finally we address the reproducibility of published data with our implementation of
the RPA energy in VASP. Published data for the HEG RPA correlation energy [132] were
calculated numerically by evaluating Eq. (10.1). Here, we compare to the parameterization
of the HEG RPA correlation energies as provided by Perdew and Wang [11]. Our calculations
have been performed for densities corresponding to Wigner-Seitz radii between 1.75 and 3.0.
The energy cutoff Ecut was chosen to be 250 eV and for the response function plane wave
components with an energy of up to Eχ

cut = 150 eV were considered. The Eχ
cut extrapolation

was performed as described in Sec 10.1. The final RPA correlation energies (empty circles
in Fig. 11.5) stem from a 16 k-point calculation and the Γ point correction was applied. For
the frequency integration the scheme OMEGAGRID = 40 was employed and the smallest
frequency was chosen to be SIGMA = 0.05 eV. For all considered densities the difference
between our calculated RPA correlation energies and the literature values [11] is smaller
than 9 meV.
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11.4 Metals - Na, Al, Cu, Rh, Pd

In this section, RPA calculations of the metals Na, Cu, Al, Rh, and Pd will be presented.
We will focus on the convergence of the lattice constant, the bulk modulus, and the total
energy with respect to the k-point grid used in the evaluation of the HF energy and the
RPA-ACFDT correlation energy. Additionally, the influence of the Γ-point correction (=
inclusion of the Drude term) for the RPA correlation energy (see Sec. 10.3) is investigated
for all five metals. We have applied the same energy cutoffs Ecut and Eχ

cut as specified in
Tab. 11.9. The parameters of the frequency integration, the integration method, the number
of frequency points, and the maximal/minimal frequency are also summarized in Tab. 11.9.
For Na, we used a PAW potential that treats only the 3s electrons as valence, referred to as
Na1 potential in section 11.5.

In the previous section, the RPA correlation energy of the homogenous electron gas (HEG)
has been calculated and the inclusion of the Γ-point corrections was found to significantly
improve the k-point convergence. As sodium can be considered to be a nearly free electron
like metal, the Na bcc crystal represents the first step from the HEG to a real metallic system.
The total energy (EHF + Ec) of the Na bcc crystal is shown in Fig. 11.6. Three different
cases are considered: In the top panel, the RPA correlation energy is not corrected for by
the Γ-point contributions and the HF energy is always evaluated using a 16×16×16 k-point
grid. In the middle panel, the HF part is treated as before, but the Γ-point correction is
added to the RPA correlation energy. In the bottom panel, the HF part is calculated using
the same k-point grid as employed for the correlation energy, and the Γ-point correction is
applied. The lattice constants, bulk moduli, and total energies of Na and the other metals
are summarized in Tab. 11.7. If no Γ-point correction is added and a 16 × 16 × 16 k-point
grid is considered for the HF energy (top panel of Fig. 11.6), the energy error is dominated
by errors in the correlation energy. The general form of the Na energy versus volume curve
is basically maintained for all chosen k-point grids, with a slight overestimation of the lattice
constant for coarser grids. The absolute value of the correlation energy is too small for a
6×6×6 k-point grid (by ≈ 70 meV) and continously increases towards a denser k-point grid.
Adding the Γ-point correction (middle panel of Fig. 11.6), leads to a significant improvement
of the energy convergence (30 meV error for 6×6×6 k-points, < 10 meV for more k-points.)
The k-point error for the lattice constants also decreases. If the HF energy is evaluated
at a 16 × 16 × 16 grid, and Γ-point corrections are applied for the correlation energy, the
lattice constant stemming from the 8× 8× 8 k-point correlation energy differs only by 0.05
% from the converged result. The error in the total energy only amounts to 7 meV. Much
slower convergence of the lattice constants and energies is obtained, if the same k-point
grid is applied for the HF and the correlation energy. The resulting energy-volume curves
are presented in the bottom panel of Fig. 11.6. The difference between the 8 × 8 × 8 and
16 × 16 × 16 k-point lattice constants now amounts to 0.2 % and the total energy varies by
25 meV.

For Cu, the lattice constants and total energies calculated with and without Γ-point
correction and different k-point settings for the HF part are summarized in Tab. 11.7. In
contrast to Na, both the valence s-electron and the d-electrons contribute to the correlation
energy of the Cu fcc crystal. As a consequence, the Drude like contribution around the
Γ-point is not as dominant as in the case of Na. Even without considering the Γ-point
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Table 11.7: Lattice constants a0(Å), bulk moduli B0 (GPa), and energies E0 (eV) for Na, Cu, Al, Rh,
and Pd evaluated for different k-point grids applied for the RPA correlation energy. Values obtained if
including or not including Γ-point corrections for the correlation energy are presented. Furthermore,
both values resulting from using the same k-point grid for the HF and the correlation energy [HF(←)]
and a denser k-point grid for the HF energy are shown.

Na

k-point HF(16kp)/no Γ HF(16kp)/Γ HF(←)/Γ
grid a0 B0 E0 a0 B0 E0 a0 B0 E0

8× 8× 8 4.262 7.45 -2.990 4.256 7.53 -3.021 4.264 7.37 -3.003
10× 10× 10 4.258 7.48 -3.004 4.254 7.54 -3.024 4.257 7.46 -3.014
12× 12× 12 4.258 7.48 -3.011 4.255 7.52 -3.026 4.264 7.41 -3.022
14× 14× 14 4.257 7.52 -3.017 4.255 7.55 -3.028 4.256 7.57 -3.029
16× 16× 16 4.255 7.54 -3.020 4.254 7.56 -3.028 4.254 7.56 -3.028

Cu

k-point HF(16kp)/no Γ HF(16kp)/Γ HF(←)/Γ
grid a0 B0 E0 a0 B0 E0 a0 B0 E0

6× 6× 6 3.606 146 -18.261 3.605 146 -18.320 3.604 149 -18.276
8× 8× 8 3.599 153 -18.256 3.598 153 -18.291 3.620 164 -18.291

10× 10× 10 3.602 154 -18.265 3.601 154 -18.289 3.604 145 -18.278
12× 12× 12 3.601 157 -18.268 3.601 157 -18.285 3.592 157 -18.292

Al

k-point HF(20kp)/no Γ HF(20kp)/Γ HF(←)/Γ
grid a0 B0 E0 a0 B0 E0 a0 B0 E0

6× 6× 6 4.031 65.9 -10.087 4.042 64.3 -10.195 4.078 60.0 -10.457
8× 8× 8 4.036 68.8 -10.191 4.042 67.7 -10.255 4.052 87.3 -10.342

10× 10× 10 4.027 73.4 -10.239 4.031 72.5 -10.281 4.021 65.7 -10.267
12× 12× 12 4.033 74.5 -10.225 4.035 74.1 -10.255 4.053 79.0 -10.295
14× 14× 14 4.033 75.0 -10.250 4.035 74.8 -10.272 4.019 76.8 -10.269
16× 16× 16 4.032 75.6 -10.247 4.034 75.5 -10.264 4.036 78.6 -10.289

Rh

k-point HF(16kp)/no Γ HF(16kp)/Γ HF(←)/Γ
grid a0 B0 E0 a0 B0 E0 a0 B0 E0

8× 8× 8 3.799 259 -31.211 3.797 261 -31.246 3.810 250 -31.147
10× 10× 10 3.806 258 -31.250 3.805 259 -31.273 3.813 249 -31.159
12× 12× 12 3.813 255 -31.298 3.812 256 -31.314 3.815 252 -31.261
16× 16× 16 3.810 254 -31.230 3.810 254 -31.239 3.810 254 -31.239

Pd

k-point HF(16kp)/no Γ HF(16kp)/Γ HF(←)/Γ
grid a0 B0 E0 a0 B0 E0 a0 B0 E0

8× 8× 8 3.874 186 -26.780 3.871 187 -26.807 3.896 180 -26.910
10× 10× 10 3.888 193 -26.835 3.887 193 -26.853 3.873 185 -26.922
12× 12× 12 3.868 229 -26.885 3.867 230 -26.898 3.869 229 -26.867
16× 16× 16 3.873 200 -26.846 3.872 200 -26.854 3.872 200 -26.854
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Figure 11.6: Total energy of the Na bcc crystal determined with (middle and bottom) and without
(top) Γ-point corrections. The HF energy evaluated at 16 k-points was used (top and middle), or the
same k-point set as for the correlation energy was applied for the HF calculations (bottom).
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correction, both the lattice constant and the total energy converge fast with the number of
k-points. On the contrary, the Γ-point contribution overcorrects the 6× 6× 6 k-point result
by almost 30 meV. If the number of k-points is chosen the same for the calculation of the
HF and the RPA correlation energy, the k-point convergence of both, the lattice constant
and the total energy, is slower than if evaluating the HF energy at a denser k-point grid.
Especially the k-point dependence of the lattice constant becomes significantly stronger.
As for Na, k-point converged Cu lattice constants (error < 0.08 %), bulk moduli (error <
2.5 %), and total energies (error < 7 meV) can be already obtained using a 8 × 8 × 8 k-
point grid for the determination of the RPA correlation energy. The HF energies, however,
have to be evaluated applying a denser k-point grid. The k-point convergence of the Ag
lattice constant, bulk modulus, and total energy is very similar to the one of Cu, and is
therefore not explicitely addressed in this section. So far, we have considered bulk systems
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Figure 11.7: RPA energy for Al. Γ-point corrections have been applied for the correlation energy
and the HF energy has been evaluated using a 20× 20× 20 k-point grid.

with only one valence band crossing the Fermi level. If band crossings occur near the Fermi
surface, transitions with very small excitation energies are possible. As the strength of these
transitions depends strongly on the location of the band crossings with respect to the Fermi
surface, the contributions to the correlation energy can change significantly, if the volume of
the cell is altered. Additionally, the influence of the band crossings sensitively depends on the
chosen k-point grid and the relative distance between the band crossing and the considered
k-points.

As a test case for a simple metal that exhibits such band crossings we have chosen fcc Al.
In Fig. 11.7 the energy dependence on the volume of the cell is shown. A 20×20×20 k-point
grid is used for the HF energy and Γ-point corrections are added to the RPA correlation
energy. Lattice constants and energies obtained from fits to the curves presented in Fig. 11.7
are summarized in Tab. 11.7. In contrast to Na (and also Cu), where all energy-volume
curves shared the same general form, now some curves show spurious kinks. The 10×10×10
k-point curve, e.g., exhibits a stronger increase starting at a volume of 17 Å3 followed by
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a kink at 19 Å3. A similar behavior can be observed for the 8 × 8 × 8 k-point grid. The
kinks in these energy-volume curves are large enough to question if fits to the 8× 8× 8 and
10 × 10 × 10 k-point curves are meaningful at all. Furthermore, the k-point convergence of
the Al HF energies is especially slow. If the same k-point grids are applied for the HF and
the correlation energy, the lattice constant changes by 0.4 % for different k-point grids and
the error in the energy is also significantly larger than for a dense HF k-point grid.

Finally, we consider the convergence of lattice constants and total energies for the transi-
tion metals Rh and Pd. Both metals have only partially filled 3d states and due to the large
number of d bands near the Fermi level the effect caused by band crossings is even stronger
than for Al. The k-point convergence is indeed harder to achieve for Rh and Pd than for
all other metals considered so far. For Al, we have found that the energy volume curve can
exhibit spurious kinks for specific k-point grids, but the k-point convergence of the lattice
constant, the bulk modulus, and the total energy was nevertheless reasonable fast. For the
transition metals, the lattice constants undergo larger variations for different k-point grids
than was the case for the other considered metals, and for Pd a 12 × 12 × 12 k-point grid
leads to a significantly altered shape of the energy-volume curve with a bulk modulus which
is 13 % off the values obtained for the other k-point settings. Also the k-point convergence
of the Rh and Pd total energy is slower than for the other considered metals. If the HF
energy is evaluated applying a dense k-point mesh, the energy difference for using a 8× 8× 8
or 12 × 12 × 12 k-point grid for the evaluation of the correlation energy amounts to 70 and
90 meV for Rh and Pd, respectively. The same difference is only 5 meV for Na and 6 meV
for Cu. In contrast to the other metals, the k-point dependence of the total energy is not
worsened, if the HF energy is evaluated applying the same k-point grid as used for the RPA
correlation energy.

The spurious influence of transitions between states with small energy differences can be
somewhat diminished by avoiding to evaluate the response function for very small frequencies.
This can be done by choosing the first supporting point for the frequency integration relatively
large. To this end, the frequency integration scheme OMEGAGRID = 40 (see Sec. 10.2) has
been applied which allows to set the smallest frequency by SIGMA. We found that SIGMA
= 0.2 eV reduces the effect of the small energy transitions and at the same time seems to
capture most of the ”desirable” part of the correlation energy.

We have found that for both, Na and Cu, the k-point convergence of the lattice constant,
the bulk modulus, and the total energy is unproblematic. For Al, band crossings near the
Fermi energy can lead to spurious contributions to the correlation energy for specific cell
volumes and k-point grids. For these three metals, it is not recommended to use the same
k-point grid for the HF and the correlation energy, because the HF contributions seem to
converge significantly slower with the number of k-points than the correlation energy. From
Tab. 11.7 it is clear that a convergence to 10 meV in the energy and 0.1 % in the lattice
constant can be obtained for Na, Cu, and Al. For the transitions metals Rh and Pd, the
k-point convergence is slower, which is related to the large number of band crossings near
the Fermi surface caused by the high density of 3d states near the Fermi level. Errors, also
for dense k-point grids, still amount to 0.2 % in the lattice constant and 20 meV in the total
energy.
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Table 11.8: PAW potentials used in the present section. Cutoff radii rl
c applied for the generation of

the partial waves with angular quantum number l are denoted in a.u. The number of partial waves
and projectors is specified. The energy cutoff Ecut refers to the one specified in the POTCAR file, the
energy cutoffs applied in the HF and RPA calculations are given in Tab. 11.9. In the third column,
the states treated as valence are indicated. As local potential a pseudopotential was generated for the
states indicated in the column ”local”. For some elements (Li, Cu, Rh, Pd, Ag2), the local potential
was generated by replacing the AE potential by a soft potential within the cutoff radius rloc (a.u.),
which, in these cases, is provided in the ”local” column. For more details see Ref. [15].

name valence local rl
c (a.u.) Ecut

s p d f (eV)

Li Li sv GW 1s 2s 1.0 3×1.2 2×1.5 433
B B GW 2s 2p 3d 2×1.5 2×1.7 319
C C GW 2s 2p 3d 2×1.2 2×1.5 414
O O GW 2s 2p 3d 2×1.2 2×1.5 414
F F d GW 2s 2p 4f 3×1.1 2×1.4 2×1.4 487
Na1 Na d GW 3s 4f 2×2.5 2×3.0 2×2.5 82
Na2 Na sv GW 2s 2p 3s 4f 3×1.6 2×2.0 2×2.2 260
Al Al d GW 3s 3p 4f 2×1.9 2×1.9 2×1.9 241
Si1 Si d GW 3s 3p 4f 1.5 1.9 2×1.9 2×1.9 246
Si2 Si sv GW 2s 2p 3s 3p 4f 2×1.2 1.4 3×1.5 2×1.6 475
P P d GW 3s 3p 4f 2×1.9 2×1.9 2×2.0 255
Cl Cl d GW 3s 3p 4f 2×1.7 2×1.9 2×1.9 262
Cu Cu GW 4s 3d 1.5 2×2.2 2×2.2 2×1.9 417
Rh Rh f GW 5s 4d 1.6 2×2.4 2×2.8 2×2.4 2×2.6 247
Pd Pd f GW 5s 4d 1.6 2×2.4 2.4 2.6 2×2.4 2×2.6 250
Ag1 Ag GW 5s 4d 4f 2×2.5 2×2.6 2×2.4 250
Ag2 Ag f GW 5s 4d 1.4 2×2.5 2×2.6 2×2.4 2×2.6 250

11.5 Solids

In this section, RPA-ACFDT lattice constants, bulk moduli, and atomization energies of
representative insulators, semiconductors, and metals will be presented. The considered
materials range from covalently bonded systems like C and Si to strongly ionic ones (NaF,
NaCl), from simple sp-metals (Na, Al) to the d-metals Cu, Ag, Rh and Pd.

For the calculation of the RPA-ACFDT correlation energy the formulism introduced in
chapter 3 is applied. More technical details have been addressed in chapter 10 and have
already been discussed for practical applications in Sec. 11.1 (molecules) and Sec. 11.2 (rare
gas solids). Convergence tests for metals have been the topic of Sec. 11.3 and Sec. 11.4 and will
not be considered here anymore. Correlation energies for metals are evaluated by including
the Γ-point correction (Method B in section 10.3) and the HF energy part is calculated at
a dense k-point grid (denser than for the correlation energy). The theoretical (DFT-PBE,
DFT-LDA, HF, RPA-ACFDT) equilibrium volume (V0), bulk moduli (B0), and bulk energy
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Table 11.9: Settings for HF and RPA-ACFDT correlation calculations. The (different) energy cutoffs
Ecut (eV) and k-point grids (Γ-centered kp × kp × kp) used for HF and ACFDT calculations are la-
beled withHF and AC, respectively. The last three columns give the value of LMAXFOCKAE (short:
LM), the frequency grid (number of frequency points - NOMEGA / maximal frequency OMEGATL),
and the method used for the frequency integration. Convergence tests employing different energy cut-
offs (or LMAXFOCKAE for the case of AlP) are referred to as calculation (1) and (2). The potentials
are labeled as in Tab. 11.8.

name structure EHF
cut kpHF EAC

cut kpAC LM ω method

C A4 (diamond) 700 12 460/250 8 2 16/800 40(0.10)
Si1C B3 (zinc blende) 500 12 460/250 6 2 16/800 4
Si1 A4 (diamond) 500 12 360/200 8 2 16/500 40(0.10)
Si2 A4 (diamond) 700 8 500/200 6 4 16/800 40(0.05)
BP B3 (zinc blende) 360 10 360/200 6 2 12/800 4

AlP (1) B3 (zinc blende) 360 10 360/200 6 2 12/800 4
AlP (2) B3 (zinc blende) 360 10 360/200 6 4 12/800 4
MgO B1 (NaCl) 900 8 460/250 6 2 12/800 4

LiF (1) B1 (NaCl) 900 8 600/350 6 2 12/800 4
LiF (2) B1 (NaCl) 900 8 460/250 6 2 12/800 4
Na2F B1 (NaCl) 800 8 460/250 6 2 12/800 4
Na2Cl B1 (NaCl) 460 8 460/250 6 2 12/800 4

Na1 A2 (bcc) 200 16 200/120 16 2 12/800 40(0.4)
Na2 A2 (bcc) 600 14 360/200 10 2 16/800 40(0.4)
Al A1 (fcc) 360 20 300/200 16 2 16/800 40(0.4)
Cu A1 (fcc) 600 16 460/250 12 4 16/800 40(0.2)

Ag1 (1) A1 (fcc) 460 16 460/250 10 4 16/800 40(0.2)
Ag1 (2) A1 (fcc) 460 16 300/200 12 4 16/800 40(0.2)

Ag2 A1 (fcc) 460 16 300/200 12 4 16/700 40(0.2)
Rh A1 (fcc) 360 16 300/200 16 4 16/700 40(0.2)
Pd A1 (fcc) 360 16 300/200 16 4 16/700 40(0.2)

(E0) are obtained by evaluating the total energies at seven volume points centered around
the experimental volume and differing by 5 % each. A Birch-Murnaghan equation of states
is fitted to these energies and volumes:

E(V ) = E0 +
9V0B0

16

{[
(V0/V )

2
3 − 1

]3
B′

0 +
[
(V0/V )

2
3 − 1

]2 [
6− 4 (V0/V )

2
3

]}
. (11.3)

If the theoretical volume is far from the experimental one, as is e.g., the case for the HF
values for metals, additional volume points are introduced. In the following we aim at an
(technical) accuracy of 0.3 % for the volume (≈ 0.1 % in the lattice constant) and of about
3% for the bulk modulus. In Tab. 11.8, the potentials applied in this section are presented.
The states treated as valence, the type of the local potential, and the cutoff radii used for the
construction of the pseudized partial waves and the projectors are summarized. Additional,
the energy cutoff Ecut specified in the POTCAR files is denoted. The actual energy cutoffs
applied in calculation of the HF and RPA correlation energy are summarized in Tab. 11.9.
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Throughout this section, special GW potentials are used. These potentials are constructed
as to describe the scattering properties of a spherical atom accurately up to an energy of ≈ 10
Ry and therefore are also suited to represent unoccupied states properly. Due to the inclusion
of unoccupied states in the ACFDT formalism, d-projectors have been introduced for the row
3 elements (Na, Al, Si, P), where the 3d states, while unoccupied, are situated very close
to the Fermi energy. Due to the same reason, a Ag2 potential including f -projectors has
been constructed. The potential without f -projectors is referred to as Ag1 potential. f -
projectors are also added for Rh and Pd. For two cases, Si and Na, the effect introduced by
treating deeper lying electrons as valence has been tested. In the standard Si potential, Si1,
all electrons, but the 3s and 3p electrons, are kept fixed in the core. For the Si2 potential the
2s and 2p electrons have been included in the valence. Both potentials have already occurred
in Sec. 10.1 where the dependence on Eχ

cut has been discussed. Both potentials, Si1 and Si2,
result in very similar lattice constants and bulk moduli, as will be shown later. Thus, the
frozen core approximation seems also to be valid for the calculation of correlation energies.
For Na the situation is slightly more complex. Here two potentials, Na1 and Na2, have been
constructed, with the 3s (Na1) and 2s2p3s (Na2) electrons in the valence, respectively. For
NaF and NaCl the inclusion of the 2s and 2p electrons is necessary already on the DFT
level since the F 2s and the Cl 3s states are close to the Na 2p states. The Na2 potential is
therefore used in all calculations of these materials. For the Na bulk, significant differences
between the lattice constant and the bulk modulus are obtained using the Na1 and Na2

potential, respectively. This difference will be discussed in more detail later.

Tab. 11.9 lists the materials for which RPA-ACFDT energies have been calculated in this
section. Besides the considered structures, k-point grids, and energy cutoffs for the HF energy
and for the RPA correlation energy are summarized. In most cases, the number of k-points
and the energy cutoff are not the same for the HF and the RPA-ACFDT calculations. Since
the calculation of the HF energy requires a denser k-point grid and a larger energy cutoff,
we have found that an independent choice of the k-point grid and energy cutoff Ecut for the
HF and the correlation energy is advantageous. For the evaluation of the correlation energy
additional parameters have to be considered. Beside the energy cutoff Ecut, the maximal
dimension of the response function as determined by Eχ

cut is relevant. In Tab. 11.9 this
quantity is specified together with the energy cutoff Ecut used in the ACFDT calculations:
Ecut/E

χ
cut. In the next column the maximal angular momentum number LMAXFOCKAE

(LM) up to which the exact all-electron charge density is reconstructed for the evaluation
of the response function is summarized. The last two columns list the parameters used in
the frequency integration. The number of frequency points and the maximal frequency as
well as the frequency integration method (see Sec. 10.2) are specified. The settings used for
the evaluation of the HF and the RPA correlation energy have been extensively tested. The
k-point numbers and the value of the energy cutoff cited in Tab. 11.9 guarantee atomization
energies that are technical converged to ≈ 20 meV (volume convergence of atomic energies
excluded). For the evaluation of converged lattice constants and bulk moduli generally coarser
k-point grids can be applied.

For some systems, lattice constants, bulk moduli, and atomization energies obtained using
different technical parameters will be presented. For AlP results using LMAXFOCKAE =
2 and 4 will be presented, for LiF and Ag1 the influence of different energy cutoffs will be
considered. The different calculations are referred to as calculation (1) and (2).
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Table 11.10: Lattice constants in Å. Values in parenthesis are deviations from the experimental
lattice constant in percent. Bold letters refer to data obtained from DFT-LDA wavefunctions and
eigenenergies. In all other cases DFT-PBE input has been used. Theoretical lattice constants are not
corrected for zero-point vibrations or finite temperature effects. All experimental data (except for
AlP [138]) have been taken from Ref. [139] (and correspond to the ones cited in Ref. [37, 140, 141]).

name PBE LDA HF RPA Exp.

C 3.569 (0.1) 3.534 (−0.9) 3.540 (−0.8) 3.572 (0.1) 3.567
C LDA eigenen. and wavefunc. 3.540 (−0.8) 3.574 (0.2) 3.567

Si1C 4.378 (0.5) 4.332 (−0.6) 4.351 (−0.2) 4.366 (0.2) 4.358
Si1 5.466 (0.7) 5.404 (−0.5) 5.482 (1.0) 5.431 (0.0) 5.430
Si1 LDA eigenen. and wavefun. 5.479 (0.9) 5.432 (0.0) 5.430
Si2 5.480 (0.9) 5.405 (−0.5) 5.497 (1.2) 5.435 (0.1) 5.430
BP 4.546 (0.2) 4.493 (−1.0) 4.566 (0.6) 4.536 (−0.0) 4.538

AlP (1) 5.501 (0.9) 5.435 (−0.3) 5.514 (1.2) 5.468 (0.3) 5.451
AlP (2) 5.501 (0.9) 5.435 (−0.3) 5.514 (1.2) 5.471 (0.4) 5.451
MgO 4.259 (1.2) 4.169 (−0.9) 4.173 (−0.8) 4.225 (0.4) 4.207

LiF (1) 4.069 (1.5) 3.913 (−2.4) 3.991 (−0.5) 3.998 (−0.3) 4.010
LiF (2) 4.069 (1.5) 3.913 (−2.4) 3.991 (−0.5) 4.004 (−0.1) 4.010
Na2F 4.707 (2.1) 4.511 (−2.1) 4.614 (0.1) 4.625 (0.3) 4.609
Na2Cl 5.697 (1.8) 5.469 (−2.3) 5.778 (3.3) 5.588 (−0.1) 5.595

Na1 4.183 (−1.0) 4.051 (−4.1) 4.453 (5.4) 4.254 (0.7) 4.225
Na2 4.196 (−0.7) 4.056 (−4.0) 4.494 (6.4) 4.182 (−1.0) 4.225
Al 4.035 (0.1) 3.983 (−1.2) 4.104 (1.8) 4.034 (0.1) 4.032
Cu 3.634 (0.9) 3.523 (−2.2) 3.968 (10.1) 3.601 (−0.1) 3.603

Ag1 (1) 4.146 (1.9) 4.003 (−1.6) 4.504 (10.7) 4.097 (0.7) 4.069
Ag1 (2) 4.146 (1.9) 4.003 (−1.6) 4.504 (10.7) 4.096 (0.7) 4.069

Ag2 4.146 (1.9) 4.002 (−1.6) 4.507 (10.8) 4.089 (0.5) 4.069
Rh 3.824 (0.7) 3.753 (−1.2) 3.748 (−1.3) 3.810 (0.3) 3.798
Pd 3.935 (1.4) 3.830 (−1.3) 3.972 (2.3) 3.872 (−0.2) 3.881

11.5.1 Lattice constants and bulk moduli

In this subsection, structural properties arising from RPA-ACFDT energies are presented.
Lattice constants (Tab. 11.10) and bulk moduli (Tab. 11.11) have been obtained by fitting the
energy for different volume points to the Birch-Murnaghan equation of states. In addition to
the RPA values, lattice constants and bulk moduli from DFT-LDA and DFT-PBE energies
and from HF energies are presented. The HF energies stem from an evaluation of the HF
energy expression for DFT wavefunctions. The (total) RPA energies equal the sum of these
HF energies and the RPA correlation energy. If not otherwise mentioned, HF energies and
RPA correlation energies are calculated from DFT-PBE wavefunctions and eigenenergies.
Results from test calculations employing DFT-LDA input are highlighted by bold letters.
In addition to the absolute values of the lattice constants and the bulk moduli, the errors
(%) with respect to the experimental values are given in parenthesis. Before discussing the
results in detail, the settings required in order to obtain accurate geometrical properties



134 CHAPTER 11. APPLICATION OF THE ACFDT

should be considered. For metals this topic has already been discussed in Sec. 11.4, so that
we will here focus only on semiconductors and insulators. In Tab. 11.9 the settings for the k-
point grid and for the energy cutoff used for the present calculations have been summarized.
These dense k-point grids and large energy cutoffs have been applied to obtain accurate
atomization energies (no Si2 atomization energies have been calculated). In most cases, less
effort is required for the geometrical properties. As an example we consider the Si and C
lattice constants and bulk moduli for different settings. For the Si lattice constant and bulk
modulus presented in Tab. 11.10 and Tab. 11.11, a 12 × 12 × 12 (8 × 8 × 8) k-point grid
and an energy cutoff of 500 eV (360 eV) have been applied for the calculation of the HF
(RPA correlation) energy. In fact, very accurate HF values (5.481 Å, 108 GPa) are already
obtained for a 6× 6× 6 k-point grid and an energy cutoff of 360 eV. But the reduction from
the 12 to the 6 k-point grid leads to an error of almost 60 meV in the total HF energy. For
an 8× 8× 8 grid the error has reduced to slightly over 20 meV. Also for the RPA correlation
energy, a reduction of the k-point grid (from 8 to 6) and reduction of the energy cutoff (from
360 eV to 300 eV) results in almost the same RPA lattice constant and bulk modulus. The
effect of the k-point reduction on the energy is smaller than for the HF part and amounts
to ≈ 10 meV. For diamond, the same behavior as for Si can be observed for the HF related
quantities. Again, a reduction of the HF k-point grid from 12× 12× 12 to 6× 6× 6 does not
alter the lattice constant and the bulk modulus, but the total HF energy is reduced by almost
60 meV. For the RPA correlation energy of diamond, the 8 × 8 × 8 k-point grid could be
reduced to 6× 6× 6 without changing to the energy. Like for Si and C, the HF k-point grids
can be savely reduced for all insulators and semiconductors, if only geometrical properties
are of interest. For all considered semiconductors and insulators (Si being the exception) a
4 × 4× 4 grid for the RPA correlation energy results in accurate lattice constants and bulk
moduli.

We now focus on the lattice constants and bulk moduli summarized in Tab. 11.10 and
Tab. 11.11. The systems are grouped by their bonding type, ranging from covalent to ionic
to metallic and within each group the systems are arranged according to their atomic weight.
The relative errors of the theoretical lattice constants for semiconductors/insulators and
metals are visualized in Fig. 11.8 and Fig. 11.9. The DFT lattice constants and bulk moduli
follow the general PBE and LDA trend: Lattice constants are too small if the LDA is
applied, whereas PBE normally overestimates the equilibrium volume. Accordingly, LDA
predicts too large bulk moduli, and PBE too small ones. The only system that deviates
from this trend is Na. Here both PBE and LDA underestimate the lattice constant and
predict a too large bulk modulus. The DFT-PBE and DFT-LDA errors become larger when
moving from covalent to ionic systems. The largest error in the lattice constant occurs for
the sodiumhalogenides, where DFT-PBE yields a deviation of 2.1 % for NaF and DFT-LDA
−2.3 % for NaCl. In the next step, the equilibrium geometries stemming from HF energies,
and thus neglecting correlation effects altogether, will be considered . The lattice constants
as obtained from the HF energy expression evaluated for DFT(-PBE) wavefunctions are
listed in Tab. 11.10 (HF). The presented HF lattice constants are not only of interest for a
comparison to the RPA lattice constants but are also interesting per se. In fact, only few data
on HF energies for solids can be found in the literature. Although RPA-ACFDT calculations
for solids require the evaluation of the HF energy for periodic systems, and although such
RPA-ACFDT calculations have been presented before [128, 129, 130] (performed using the
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Table 11.11: Bulk Moduli in GPa. Values in parenthesis are deviations from the experimental
bulk modulus in percent. Bold letters refer to data obtained from DFT-LDA wavefunctions and
eigenenergies. In all other cases DFT-PBE input has been used. Theoretical lattice constants are not
corrected for zero-point vibrations or finite temperature effects. All experimental data (except for
AlP [142]) have been taken from Ref. [139] (and correspond to the one cited in Ref. [37, 140, 141]).

name PBE LDA HF RPA Exp

C 434 (−2) 465 (5) 512 (16) 442 (−0) 443
C LDA eigenen. and wavefun. 509 (15) 439 (−1) 443

Si1C 212 (−6) 229 ( 2) 253 (12) 223 (−1) 225
Si1 89 (−11) 97 (−3) 108 (9) 99 (−0) 99.2
Si1 LDA eigenen. and wavefun. 108 (9) 98 (−1) 99.2
Si2 87 (−12) 96 (−3) 105 (6) 95 (−4) 99.2
BP 161 (−2) 175 (6) 181 (9) 170 (3) 165

AlP (1) 83 (−4) 90 (5) 100 (16) 93 (8) 86a

AlP (2) 83 (−4) 90 (5) 100 (16) 92 (6) 86a

MgO 149 (−10) 173 (5) 196 (19) 168 (2) 165
LiF (1) 68 (−3) 87 (24) 80 (15) 76 (9) 69.8a

LiF (2) 68 (−3) 87 (24) 80 (15) 79 (14) 69.8a

Na2F 45 (−12) 61 (19) 54 (4) 53 (3) 51.4
Na2Cl 24 (−11) 32 (20) 22 (−15) 29 (8) 26.6

Na1 8.0 (7) 9.4 (25) 5.6 (−25) 7.6 (1) 7.5
Na2 7.9 (5) 9.1 (21) 5.4 (−27) 8.4 (12) 7.5
Al 77 (−3) 84 (6) 61 (−24) 75 (−5) 79
Cu 138 (−3) 186 (31) 32 (−77) 157 (11) 142

Ag1 (1) 90 (−17) 138 (27) 26 (−76) 107 (−2) 109
Ag1 (2) 90 (−17) 138 (27) 26 (−76) 105 (−3) 109

Ag2 90 (−17) 138 (27) 27 (−75) 101 (−7) 109
Rh 255 (−5) 317 (18) 318 (18) 254 (−6) 269
Pd 162 (−17) 226 (16) 112 (−43) 200 (3) 195

a experimental bulk moduli obtained from different measurements can exhibit sizable dif-
ferences. For AlP in Ref. [142] a second value of 93.1 GPa is cited. The experimental
bulk moduli for LiF is stated to be as large as 76.9 GPa in Ref. [143].

ABINIT/SELF-code in Ref. [129, 130]), we have not found any publication presenting HF
energies, lattice constants, and bulk moduli evaluated with this code. To the best of our
knowledge, the only code routinely used to calculate HF lattice constants, bulk moduli, and
atomization energies for solids is the CRYSTAL code, which relies on Gaussian-type basis
functions. But achieving convergence of HF energies (lattice constants and bulk moduli)
applying a Gaussian basis set seems to be difficult [145]. Furthermore, the use of the same
basis set for the solid and the reference atom leads to fairly large basis set superposition
errors. In order to fulfill the different requirements for the basis set of the solid and the
reference atom, counterpoise corrections can be applied to the energy of the reference atoms.
More details and the effect of these counterpoise corrections (applied to metallic systems)
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Table 11.12: HF and DFT-LDA lattice constants (Å) from the present work and from literature. The
HF lattice constants in the second column stem from non-selfconsistent (NSC) HF energies evaluated
from PBE wavefunctions and correspond to the values shown in Tab. 11.10. In the next column,
lattice constants obtained from self-consistent (SC) HF calculations are summerized. The core-valence
interaction is thereby evaluated for HF core wavefunctions. All previous HF lattice constants have
been obtained from the CRYSTAL code, which uses Gaussian orbitals. The importance of the chosen
basis set and treatment of counterpoise corrections can be seen by comparing b1,b2 and f1,f2 data.

name HF lattice constants (Å) LDA lattice constants (Å)
NSC SC literature present literature

C 3.540 3.552 3.577b1 3.574b2 3.58d 3.534 3.544a 3.56d

SiC 4.351 4.372 4.438b1 4.390b2 4.332 4.351a

Si 5.482 5.512 5.558b1 5.501b2 5.49d 5.404 5.426a 5.40d

BP 4.566 4.588 4.656b1 4.598b2 4.5836e 4.493
AlP 5.514 5.546 5.598b1 5.553b2 5.55d 5.5348e 5.435 5.47d

MgO 4.173 4.197 4.21d 4.169 4.156a 4.18d

LiF 3.991 4.003 4.02c 3.913 3.904a

NaF 4.614 4.63c 4.511 4.505a

NaCl 5.778 5.80c 5.79d 5.469 5.471a 5.48d

Na 4.494 4.42f1 4.57f2 4.051 4.049a 4.05f

Al 4.104 3.983 4.008a

Cu 3.968 3.89f1 4.06f2 3.523 3.530a 3.52f

Ag 4.507 4.38f1 4.49f2 4.003 3.997a 4.01f

a [144] GAUSSIAN code, Gaussian type orbitals
b [145] CRYSTAL code, Gaussian type orbitals, b1 6-21G basis set, b2 6-21G* basis

set
c [146] CRYSTAL
d [147] CRYSTAL
e [148] CRYSTAL
f [149] CRYSTAL, f1 no counterpoise corrections, f2 counterpoise corrections

can be found in Ref. [149]. Our HF lattice constants therefore provide the first summary of
HF lattice constants and atomization energies for solids obtained using a plane wave basis
set code, or more precisely, the lattice constants and atomization energies stemming from a
non-selfconsistent evaluation of the HF energy for DFT wavefunctions. In order to estimate
the effect of selfconsistency, we calculated the selfconsistent HF lattice constants and bulk
moduli for C, Si, and MgO. Our self-consistent HF values stem from a frozen core Hartree-
Fock calculation, and the core-valence exchange interaction is evaluated using AE DFT-PBE
core wavefunctions. This limitation can be lifted and it is possible to recalculate the core-
valence interactions using AE HF core wavefunctions. The respective lattice constants have
been evaluated by Martijn Marsman [150]. The HF lattice constant and bulk modulus
calculated from the selfconsistent HF case are 3.546 Å and 501 GPa for diamond, if the core-
valence interaction is evaluated using AE PBE-wavefunctions. This amounts to a change
of +0.2 % in the lattice constant and of −2 % in the bulk modulus with respect to our



138 CHAPTER 11. APPLICATION OF THE ACFDT

non-selfconsistent HF values. If the core states stem from a HF reference calculation, the
selfconsistent HF lattice constant further increases to 3.552 Å (+0.3 % compared to the non-
selfconsistend HF value). For Si and MgO, the selfconsistent HF lattice constants become
5.493 Å (+0.2 %) and 4.187 Å (+0.3%), the bulk moduli 105 GPa (−3 %) and 185 GPa
(−6 %), if the core-valence interaction is recalculated using PBE core wavefunctions. Using
HF core wavefunctions enhances the difference, and the selfconsistent HF lattice constants
become 5.512 Å (+0.5 %) and 4.197 Å (+0.6%) for Si and MgO, respectively. Also for the
other considered materials, selfconsistency leads to an increase of the HF lattice constant
(see Tab. 11.12). If the core-valence interaction is recalculated using HF core wavefunctions,
the corresponding lattice constants are 0.3 % to 0.6 % larger than the values stemming
from non-selfconsistent HF calculations based on PBE wavefunctions. In Tab. 11.12, our HF
lattice constants are compared to values obtained using the CRYSTAL code. In addition,
selfconsistent HF lattice constants recalculating the core-valence interaction with HF core
wavefunctions as evaluated by Martijn Marsman are presented. Even on the level of DFT-
LDA, lattice constants obtained using a local and a plane wave basis set can differ by ≈ 0.4
%. For most considered systems, the plane wave LDA lattice constants are smaller than the
ones evaluated using Gaussian type orbitals. It is evident that HF lattice constants evaluated
using CRYSTAL show large deviations for different basis sets applied. In Ref. [145], lattice
constants have been calculated for C, SiC, Si, BP, and AlP using the CRYSTAL code. The
results, labeled with b1 and b2 in Tab. 11.12, have been obtained for two different local basis
sets, 6-21G and 6-21G*, where the latter includes polarization functions. For SiC, Si, BP,
and AlP, the difference between the HF lattice constants obtained from the 6-21G and 6-
21G* basis set amounts to ≈ 1%. If we take the 6-21G* lattice constant as a reference, the
difference between our self-consistent lattice constants and the CRYSTAL values is 0.6 %
for diamond and <0.4 % for the other materials, which is smaller than the error observed
for different local basis sets. For metallic systems, the basis set superposition error plays an
important role. The inclusion of counterpoise corrections leads to a change of up to 4 % (Cu)
in the lattice constant. The difference between the counterpoise corrected lattice constants
from Ref. [145] and our (non-selfconsistent) HF values is 1.5 % for Na, 2.3 % for Cu, and
−0.4 % for Ag.

For semiconductors and insulators (see Fig. 11.8), the HF lattice constants (errors in
green) are not worse than DFT-LDA (black) and DFT-PBE (blue). As a general trend,
too small lattice constants are obtained for the lighter systems and too large ones for solids
formed of heavier atoms. An illustrative example are the alkali halides LiF, NaF, and NaCl
where the error in the lattice constant increases from −0.5 to 0.1 to 3.3 %. The same trend
as observed in the present work was also found by Prencipe and coworkers [147] (see values
in Tab. 11.12), who performed HF calculations for alkali halides. They ascribed the increase
in the HF lattice constant when going from F to Cl to two effects: first, due to the lack of
correlation, the HF ions are too large. Secondly, dispersion forces (which are neglected if only
the HF contribution is considered) are proportional to the polarization of the atoms and the
polarization is again larger for heavier atoms. The neglect of the attractive polarization effects
therefore leads to an increase of the lattice constant with the atomic mass. For the presently
considered semiconductors and insulators the HF bulk moduli are normally too large. The
only exception from this trend is NaCl, where the bulk modulus is underestimated by −15
%.
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Almost all HF lattice constants (bulk moduli) presented in Tab. 11.10 (Tab. 11.11) have
been evaluated on top of DFT-PBE wavefunctions. Only for C and Si, values resulting from
DFT-LDA input are shown as well (bold numbers). The effect of the different exchange-
correlation potential is very small. Another test concerns the effect introduced if deeper
lying states are included in the valence. For two materials, Si and Na, such potentials have
been generated and are referred to as Si2 and Na2. For Si, the effect resulting from the
increased number of valence electrons amounts to a change of +0.3 % in the lattice constant.
For Na, the difference in the lattice constant related to the use of either the Na1 or Na2

potential is with an 1.0 % change significantly larger. The magnitude of this change is too
large to be related to an insufficient k-point grid or energy cutoff, it has to be related to the
choice of the potentials. One reason why the inclusion of 2s and 2p electrons results in larger
deviations for Na than for Si can be found in the energetic vicinity of these states to the
outer shell states for the case of Na. While the 2s and 2p states are situated −133 eV and
−90 eV below the Fermi energy for Si, they are only −53 eV and −25 eV below the Fermi
energy for Na. Thus the inclusion of these states is more important for the description of
Na. In Fig. 11.10 and Fig. 11.11 the HF energy for Si and Na, respectively, are shown on
the left hand side. We will return to the inclusion of deeper lying states when discussing the
influence of the RPA correlation energy on the equilibrium volume of Si and Na.

In contrast to the case of semiconductors and insulators, where HF provides a reasonable
estimate for the lattice constants and (to a lesser extend) for the bulk moduli, HF fails
dramatically for the description of metals. For all considered metals, except for Rh, the HF
lattice constants are too large with errors being up to ≈ 6 % for Na and 10 % for Cu and
Ag. The bulk moduli, which have been overestimated for almost all considered insulators
and semiconductors, are now severely underestimated (again with the exception of Rh). The
errors in the HF lattice constants and bulk moduli are most severe for the free-electron
like metals Na, Cu, and Ag. For Al, and especially for the transition metals Rh and Pd,
where the covalent contribution to the binding is significantly stronger, HF yields closer
agreement to experiment. In the case of Rh, HF even underestimates the lattice constant,
and overestimates the bulk modulus.

We finally focus on the RPA lattice constants and bulk moduli (errors are given in red
in Fig. 11.8 and Fig. 11.9). The inclusion of correlation effects drastically improves the
geometrical properties of the metallic systems compared to HF. For sodium, the error in the
lattice constant is reduced from over 6 % to under 1 % (mind the relative large deviations
of values obtained using the Na1 and Na2 potential). For the noble metals Cu and Ag, the
relative errors are −0.1 % for Cu and 0.5 % for Ag compared to a 10 % mismatch in the HF
case. A similar improvement is observed for the bulk moduli. For the semiconductors and
insulators, the quality of the RPA lattice constants is even better than for the metals, with a
maximal error of 0.4 % for AlP and MgO, although the improvement compared to the already
relative good HF values is not as impressive. In contrast to the DFT lattice constants, which
exhibit increasing errors when the ionic character of the material prevails, and the HF values,
for which the error depends on the atomic weight, the RPA lattice constants give constantly
good results for covalent, ionic, and metallic systems and show no dependence on the weight.
The RPA bulk moduli tend to exceed the experimental values. All in all, we find that the
RPA provides a very good description of geometrical properties for metals, semiconductors,
and insulators.
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Some tests of the computational settings for the RPA calculations are also provided in
Tab. 11.10 and Tab. 11.11. First, the influence on the exchange-correlation potential used
for the calculation of the DFT wavefunctions and eigenenergies has been tested for C and
Si, where RPA lattice constants obtained from DFT-LDA (bold) are shown together with
results from DFT-PBE. For the RPA lattice constant, the deviations are small, 0.06 % for
C and 0.02 % for Si. Also the bulk moduli do not differ by more than 1 %. Another test
concerns the energy cutoffs Ecut/E

χ
cut used in the calculation of the RPA correlation energy.

Lattice constants obtained for different energy cutoffs have been analyzed for LiF and Ag
(Ag1 potential). LiF constitutes the material with the highest requirement on the energy
cutoff that is considered in the present work. For this material the increase from 460/250
eV to 600/350 eV for Ecut/E

χ
cut still leads to a change of 0.15 % in the lattice constant

and 4 % in the bulk modulus. Additionally, the 460/250 eV correlation energies exhibit a
considerable roughness with the volume, which is almost smoothed out for 600/350 eV. For
Ag, where the large cutoff of 460/250 eV was chosen for test reasons only, a reduction to
300/200 eV hardly changes the lattice constant and bulk modulus. This test also confirms
that reliable geometrical properties can already be obtained if the absolute RPA energies
are not converged with the energy cutoff Ecut, as this is the case for LiF and Ag. A similar
test for the atomization energies will be the topic of the next section. The influence of
the inclusion of deeper lying (core) electrons in the valence has already been discussed for
the HF lattice constants and bulk moduli. In Fig. 11.10 and Fig. 11.11 the contributions
solely stemming from the HF and the RPA correlation energy (left hand side), as well as the
total RPA correlation energy arising from the sum of these contributions (right hand side),
are presented for Si and Na, respectively. Results obtained using both - potentials including
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Figure 11.10: On the left hand side, the HF energy (green) and the RPA correlation energy (black)
evaluated for the Si1 potential (valence: 3s3p) and Si2 potential (valence: 2s2p3s3p) are shown. The
HF energy is given with respect to the energy minimum, the RPA correlation energy with respect to
the energy for the smallest volume. On the right hand side, total RPA energies are shown for the two
potentials.
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Figure 11.11: On the left hand side, the HF energy (green) and the RPA correlation energy (black)
evaluated for the Na1 potential (valence: 3s) and Na2 potential (valence: 2s2p3s) are shown. Addi-
tionally, the correlation energy evaluated from the Na2 potential, but omitting the contributions of
the 2s2p states, is presented. The HF energy is given with respect to the energy minimum, the RPA
correlation energy with respect to the energy for the smallest volume. On the right side, the total
RPA energy is shown for the two potentials.

only the outermost electrons (Si1 and Na1) and potentials treating also the 2s and 2p states
as valence (Si2 and Na2) - are compared. Again, the influence of the different potentials is
smaller for Si than for Na. For Si, the difference in the RPA lattice constants obtained from
the Si1 and Si2 potentials amounts only to 0.07 %, and thus is smaller than the difference in
the HF lattice constant (0.3 %). The slope of the correlation energy is stronger for the Si2
than for Si1 potential, the difference in the HF lattice constants is counterbalanced, and the
final volume over total RPA energy curves are almost the same for Si1 and Si2. For Na, the
effect of the 2s and 2p states is stronger and the Na2 HF lattice constant is 1 % larger than
the Na1 one. The addition of the RPA correlation energy does not diminish this difference,
but, on the contrary, leads to an overcorrection and the Na2 lattice constant is now −1.7
% smaller than the Na1 one. In order to isolate the source of this large discrepancy and
to eliminate the possibility of an inaccurate construction of the potentials, we calculate the
correlation energy stemming from the Na2 potential, but exclude the contributions arising
from the 2s and 2p states. The resulting energies are shown on the left hand side of Fig. 11.11.
The difference between the Na2 correlation energy excluding the 2s and 2p electrons and the
Na1 correlation energy is minimal. Thus the large deviation between the Na1 and Na2 lattice
constant is not due to an inappropriateness of the potentials, but stems from the correlation
contributions arising from the polarizability of the core states which obviously can not be
neglected for Na.

Finally, some comments on the choice of the maximal angular momentum number up
to which the AE charge density (determined by LMAXFOCKAE = LM in Tab. 11.10 and
Tab. 11.11) is recovered are in place. For AlP, geometrical properties (and later atomization
energies) have been calculated for LMAXFOCKAE = 2, 4. Additionally, the number of points
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at which the AE charge density is reconstructed was raised from 1 for LMAXFOCKAE =
2 to 2 for LMAXFOCKAE = 4. For these two settings, the lattice constants deviate by a
modest 0.05 %, the bulk moduli by 1 %, although the total energy for AlP is changed by ≈
0.1 eV. For AlP these changes can be traced back to the increase of the number of fitting
points from 1 to 2 rather than to the increase of LMAXFOCKAE from 2 to 4. For most
materials (including e.g., C and Si) reliable lattice constants and bulk moduli can be already
obtained if LMAXFOCKAE is not set at all. But exceptions exist: For MgO, for example,
the lattice constant is underestimated by almost 0.4 % if LMAXFOCKAE is not set and it
therefore seems reasonable to normally make use of this correction.

Table 11.13: Lattice constants for Si and NaCl. Our LDA and RPA values are compared to the
results obtained by Marini et al. [130]. Only lattice constants obtained by evaluating the HF plus
LDA correlation energy (HF+LDAcorr)have been presented in Ref. [130].

Si lattice constants (Å) NaCl lattice constants (Å)
method Ref. [130] present diff. method Ref. [130] present diff.

DFT-LDA 5.382 5.404 −0.4 % DFT-LDA 5.535 5.469 1.2 %
HF+LDAcorr 5.334 5.397 −1.2 % HF+LDAcorr 5.503 5.671 −3.0 %

RPA 5.361a 5.431 −1.4 % RPA 5.503a 5.588 −1.5 %
exp. 5.430 5.430 exp. 5.595 5.595

a The values in Ref. [130] are RPA+ values. As stated in [130], the authors claim that their
RPA and RPA+ lattice constants are very similar.

RPA calculations for (realistic) periodic systems are relatively rare. Geometrical prop-
erties have been reported for h-BN [41] and Si and NaCl [130]. These values have been
calculated using a plane wave basis set and pseudopotentials. We summerize the Si and
NaCl lattice constants obtained by Marini et al. [130] in Tab. 11.13 and compare their val-
ues to our results. Unfortunately, no (pure) HF lattice constants have been published by
Marini et al. Therefore, we have performed HF+ LDA-correlation calculations for which the
respective values have been given in Ref. [130] (there denoted as EXX/LDA). Additionally,
the RPA+ [131] was used for the calculation of the energies in [130], but the influence on
the lattice constant is believed to be small. The agreement between our data and the lattice
constants as calculated by Marini et al. is unfortunately rather poor, interestingly already
on the DFT-LDA level for NaCl. For Si, the DFT-LDA values are still close, but both the
HF+LDA and RPA values deviate by more than 1 %. For NaCl, the disagreement of Marini’s
and our value is even larger. Starting with an error of 1.2 % in the DFT-LDA lattice con-
stant, the error increases to −3.0 % for the HF-LDA values and finally becomes −1.5 % for
the RPA lattice constant. The reason for the HF and the RPA discrepancies might be related
to the use of pseudopotentials in Ref. [130]. We found that it is not easy to construct good
potentials for the HF calculations and these problems will become especially important if
one does not deal with AE but pseudo-wavefunctions. Also for the RPA correlation part, it
seems to be important, at least for some materials, to deal with the true wavefunction (see
the results for LMAXFOCKAE).

In this subsection we have presented lattice constants and bulk moduli obtained from
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(non-selfconsistent) HF calculations and from the evaluation of the RPA correlation energy.
The agreement of the HF equilibrium properties with experiment is not too bad in the case
of semiconductors and insulators, but lattice constants are vastly overestimated for metals.
The RPA gives lattice constants which are drastically improved for metals, and it also yields
satisfactory equilibrium distances for semiconductors and insulators.

11.5.2 Atomization energies

In the previous subsection, we have concentrated on the RPA equilibrium properties. Now
the atomization energies calculated from HF and RPA energies will be considered. The at-
omization energy describes the energy which is required to split a material into its fragments:

∆E = −

(
Ebulk −

∑

i

Eatomi

)
. (11.4)

In contrast to the sign convention which we used in Sec. 11.2 for the cohesive energy, larger
atomization energies mean stronger binding and vice verse.

In order to calculate the atomization energy, the energy of the isolated atom has to be
evaluated. For the RPA correlation energies this step is involved, because the calculation of
the correlation energy scales like V3 with the volume of the supercell V, and it is necessary
to use supercells with an extension of at least 8× 8× 8 Å. Due to the large number of plane
waves that can easily exceed 10.000 even the DFT prerun with the large number of empty
bands (= number of plane waves) can become tedious. For atoms with large atomic radii,
like Li and Na, Mg, and Cu and Ag, the volume convergence of both the DFT energy and
the RPA correlation energy is especially slow. Additionally, these elements are described by
potentials with high energy cutoffs, which are required because electrons from lower shells are
included (Li, Na, Mg) or because d-electrons (Cu, Ag) are present. This further complicates
the calculation of the correlation energy. Therefore, the correlation energies for these atoms
exhibit relatively large error bars and consequently RPA atomization energies can not be
specified with an accuracy better than 50 meV for NaCl and NaF, 40 meV for LiF, and 20
meV for Ag and Cu. In Tab. 11.14 atomization energies calculated using DFT-PBE, DFT-
LDA, HF, and ACFDT-RPA are summarized. All atomization energies are given per atom
(e.g, for AlP, energy/atom = 1/2 × energy/unit cell) and the deviation from experiment
(in parenthesis) is given in eV/atom. Fig. 11.12 and Fig. 11.13 visualize these errors for
semiconductors and insulators, and for metals, respectively. Negative errors indicate that
the method underbinds the material, positive errors indicate overbinding. The HF and RPA
atomization energies all have been calculated using PBE wavefunctions. The use of the LDA
wavefunctions and eigenenergies for the atomic calculations turned out to be problematic, a
point to which we will return later.

DFT-PBE describes the atomization energies well, although it does not reach chemical
accuracy (≈ 40 meV). The error introduced by the PBE approximation can be positive (e.g.,
C) or negative (e.g., Ag). The largest errors for the considered set of materials are 0.35 eV
for C and −0.43 eV for Ag, the average absolute error is 0.15 eV. The errors of the DFT-
LDA atomization energies are for all considered systems larger than for DFT-PBE and a too
strong tendency towards forming a 3D solid is observed. In average, the atomization energy
is by 0.76 eV (17 %) too large.
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Table 11.14: Atomization energies (eV/atom). Values in parenthesis are absolute deviations from
experiment in eV/atom. DFT-PBE wavefunctions and eigenenergies have been used as input for the
HF and RPA-ACFDT calculations. If not otherwise stated the experimental atomization energies are
taken from [140]. Errors are normally calculated with respect to the energies reported in [140].

name PBE LDA HF ACFDT Exp

C 7.72 (0.35) 9.01 (1.64) 5.19 (−2.18) 7.02 (−0.36) 7.35 [147]; 7.37
7.35 [147]; 7.37

Si1C 6.40 (0.06) 7.45 (1.11) 4.36 (−1.98) 6.03 (−0.31) 6.34
Si1 4.55 (−0.08) 5.34 (0.71) 2.82 (−1.81) 4.39 (−0.24) 4.68 [147]; 4.63
BP 5.28 (0.24) 6.29 (1.25) 3.23 (−1.82) 4.96 (−0.08) 5.04

AlP (1) 4.09 (−0.07) 4.87 (0.71) 2.53 (−1.63) 4.07 (−0.09) 4.163 [147]
AlP (2) 4.09 (−0.07) 4.87 (0.71) 2.53 (−1.63) 4.06 (−0.10) 4.163 [147]
MgO 4.98 (−0.17) 5.88 (0.73) 3.47 (−1.68) 4.90 (−0.25) 5.15

4.92 (−0.23) 5.15
LiF (1) 4.33 (−0.07) 4.94 (0.54) 3.25 (−1.15) 4.18 (−0.22) 4.40

4.22 (−0.18) 4.40
LiF (2) 4.33 (−0.07) 4.94 (0.54) 3.25 (−1.15) 4.20 (−0.20) 4.40

4.25 (−0.15) 4.40
Na2F 3.82 (−0.09) 4.38 (0.48) 2.79 (−1.11) 3.74 (−0.16) 3.90

3.79 (−0.11) 3.90
Na2Cl 3.10 (−0.21) 3.50 (0.19) 2.54 (−0.78) 3.14 (−0.17) 3.31

3.17 (−0.14) 3.31

Na1 1.09 (−0.04) 1.26 (0.13) 0.22 (−0.89) 0.98 (−0.16) 1.13
Na2 1.08 (−0.04) 1.26 (0.13) 0.23 (−0.89) 0.98 (−0.16) 1.13

1.03 (−0.10) 1.13
Al 3.44 (0.05) 4.04 (0.65) 1.33 (−2.06) 3.21 (−0.18) 3.39
Cu 3.48 (−0.13) 4.55 (1.06) 0.03 (−3.46) 3.42 (−0.07) 3.49

Ag (1) 2.52 (−0.43) 3.64 (0.69) 0.52 (−2.43) 2.68 (−0.27) 2.95
Ag (2) 2.52 (−0.43) 3.64 (0.69) 0.52 (−2.43) 2.68 (−0.27) 2.95
Ag2 2.58 (−0.43) 3.64 (0.69) 0.52 (−2.43) 2.63 (−0.32) 2.95

2.65 (−0.30) 2.95

The HF atomization energies are always too small, thus the energy gain due to the crys-
tal formation is always underestimated. The same trend was already observed for molecular
atomization energies in section 11.1 (see Tab. 11.3). The reason that HF misses important
contributions to the atomization energy can be explained with the simple example of the H2

molecule. For the isolated H atom, the HF approximation is exact because no correlation
effects have to be considered for the description of one single electron. In the case of the
H2 molecule with its two electrons, the HF energy is underestimating the binding energy,
since the correlation energy is entirely neglected in the HF case: i.e., inclusion of additional
Slater determinantes to the single reference HF wavefunction will lower the energy. The HF
atomization energy of H2 is therefore too small. For solids, the error introduced by the HF
approximation ranges from −2.18 eV for diamond to −0.78 eV for NaCl. Relative errors for
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Figure 11.12: Absolut error (eV/atom) of the atomization energy of semiconductors and insulators.
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semiconductors and insulators lie between 20 and 40 % of the total atomization energy. For
the metallic systems errors are considerably larger, going up to −3.46 eV/atom and 99 %
of the total atomization energy for the case of Cu. For all metals considered in the present
work, the HF error is never smaller than 60 % of the experimental atomization energy, which
manifests the importance of correlation contributions to the metallic binding. In Tab. 11.15

Table 11.15: HF atomization energies from the literature compared to the present work. Our HF
energies have not been calculated selfconsistently, but stem from the evaluation of the HF energy
using DFT wavefunctions.

HF atomization energies (eV/atom)
C Si AlP LiF NaF NaCl

present 5.19 2.82 2.53 3.25 2.79 2.54
literature 5.42a 3.06a 2.71a 3.45b 2.97b 2.69b

5.37c 3.09c

a Ref. [147]
b Ref. [151]
c Ref. [152]

our HF atomization energies are compared to energies obtained using the CRYSTAL code.
No one-to-one comparison is possible, because our atomic and bulk energies do not stem from
selfconsistent HF calculations, but from the evaluation of the HF energy using DFT wave-
functions. Nevertheless, the literature values are fairly well reproduced in the present work.
Furthermore, the CRYSTAL atomization energies, similar to the CRYSTAL lattice constants,
are very sensitive to the Gaussian basis set used (see Ref. [145]). Generally, the literature
values are larger than our atomization energies with a typical difference of ≈ 0.2 eV. This
could be related to basis set superposition errors that always yield too large binding energies
for the solid. If atomization energies are calculated from RPA-ACFDT energies, correlation
energy contributions are included. As can be seen in Tab. 11.14 visualized in Fig. 11.12
(semiconductors and insulators) and Fig. 11.13 (metals), RPA-ACFDT atomization energies
recover the largest part of the experimental atomization energies. The error bars introduced
by the slow volume convergence of the Li, Na2, and Mg atom are visualized in Fig. 11.12 and
Fig. 11.13 by empty areas with red borders. In Tab. 11.14 both maximal and minimal values
for the corresponding atomization energies are specified. For all materials considered in this
section, the RPA atomization energy is slightly too small and the crystals are therefore too
weakly bonded. This relative preference for the atomic state has already been observed for
molecular systems in Sec. 11.1 and for the rare gas solids in Sec. 11.2. For the N2 and the
O2 molecule, the error introduced by the RPA is −0.2 eV and −0.3 eV, respectively. The
RPA atomization energies of the bulk systems exhibit similar errors as the molecular ones
presented in Sec. 11.1. Nevertheless, for semiconductors and insulators, at least 95 % of the
atomization energy are recovered by the RPA. Absolute errors range from −0.36 eV for C to
−0.08 eV for BP. The improvement over the HF atomization energies is best visualized in
Fig. 11.14, where bars representing the absolute atomization energies obtained from HF and
RPA are put on top of each other and are compared to the experimental results. In green the
contribution to the atomization energy arising from the HF energy is given. The remaining
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red area displays the part of the atomization energy which is related to the RPA correlation
energy.

For two of the considered metals, Na and Ag, the fraction of the atomization energy
which is recovered by the RPA is with 90 % slightly smaller than that for the insulators
and semiconductors. But for the considered metals, the correlation energy accounts for 80
% of the atomization energy, so that an error in the correlation energy effects the quality of
the total energy most. An interesting example is Cu, where HF alone leads to hardly any
binding at all. In this case more than 99 % of the atomization energy seem to be due to
correlation effects and the RPA describes most of it. Although the RPA leads to a significant
improvement over HF atomization energies, chemical accuracy is not reached. The mean
absolute error is with 0.16− 0.18 eV even larger than for DFT-PBE (0.14 eV).

Finally, we like to comment on the difference of RPA atomization energies calculated us-
ing DFT-LDA and DFT-PBE wavefunctions and eigenenergies. For the lattice constants and
bulk moduli presented in the former subsection, we have shown for C and Si that the actual
approximation to the exchange-correlation energy in the initial DFT run hardly effects the
geometrical properties. We do not calculate the RPA correlation energy selfconsistently by
generating an RPA exchange-correlation potential and updating wavefunctions and eigenen-
ergies. It is therefore reassuring that the result is not that sensitive to the actual input (LDA
or PBE wavefunctions and eigenenergies). Naturally, one would also hope that the atomiza-
tion energies do not change much if either LDA or PBE wavefunctions are used. In Ref. [127],
RPA atomization energies have been evaluated for the H2, Li2, LiH, and the N2 molecule and
very similar results have been found for both LDA and PBE applied for the calculation of the
DFT wavefunctions. We have tested the influence of the exchange-correlation potential used
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in the KS-DFT calculations on the atomization energies of bulk Si and C, and the O2 and N2

molecule. The most significant difference between LDA and GGA (here PBE) eigenenergies
of atoms and molecules is the strong tendency of the LDA to yield symmetric atoms, i.e.,
to distribute electrons equally over px, py, and pz orbitals, thus giving non-integer occupan-
cies for the one-electron orbitals. For elements with subshells that are neither half nor fully
filled (like it is the case for B, C, O, F, Al, Si, S, Cl) this results in very small energy gaps
between the highest occupied and lowest unoccupied state. For heavier atoms the splitting
becomes even smaller and for some cases the eigenenergies are degenerated. For Si, e.g., the
LDA leads to a solution where all spin-up 3p states are equally occupied by 2/3 electrons
per state. The PBE lifts this degeneracy and the gap between occupied and unoccupied 3p
states becomes ≈ 0.25 eV. A similar behavior is observed for C (LDA one-electron gap: 0.06
eV, PBE gap: 0.54 eV) and O (LDA one-electron gap: 0.26 eV, PBE gap: 1.14 eV). If the
highest occupied and the lowest unoccupied band differ by the spin or the angular quantum
number (like it is the case for H, He, Li, Be, N, Ne, . . . ) both the LDA and PBE one-electron
gaps are considerably larger and the relative difference introduced by the use of LDA or PBE
is significantly smaller.

How does this difference between LDA and PBE eigenstates effect the HF atomization
energy? For the evaluation of the HF expression only the KS-DFT wavefunctions are required,
and the HF atomization energy for LDA and PBE wavefunctions should therefore only depend
on the difference in the corresponding wavefunctions and not on the different description of
the eigenenergies. In fact, we find that the HF energy is additionally very sensitive to the
existence or non-existence of partially filled states. For the Si atom, the LDA solution consists
of three partially filled 3p spin-up states. Due to the energy degeneracy of these states, the
total atomic energy does not change, if 2 of these states are fully occupied and 1 is entirely
unoccupied. Although the LDA energy is not changed by this ”trick”, the consequence on
the Si HF energy is significant. For the Si atom with the partially filled states, the HF energy
becomes −4.91 eV, whereas for the Si atom with integer occupancies the energy decreases to
−7.66 eV (which is comparable to the HF energy for PBE wavefunctions). This highlights
the importance of avoiding partial occupancies for atoms if non-selfconsistent HF energies
are evaluated. The difference of HF atomization energies determined from LDA or PBE
wavefunctions is of the order of 10 meV if all states possess integer occupancies. For the Si
and C bulk, the difference between the LDA and PBE HF atomization energy is 20 and 25
meV/atom, respectively, under the assumption that integer occupation number are chosen
for the Si atom. For the molecular test systems, O2 and N2, the difference is found to be 10
and 20 meV/molecule, respectively. We thus conclude, that the results are indeed insensitive
to the KS potential, as long as integer occupancies are enforced for atoms.

As we have seen, the effect introduced by the different wavefunctions (LDA or PBE) is
relatively small. For the evaluation of the RPA correlation energy both KS-DFT eigenenergies
and wavefunctions are required, thus the tendency of the LDA to underestimate the energy
difference between occupied and unoccupied bands comes into play. For bulk C (diamond)
we find that the RPA-PBE atomization energy, which is 7.02 eV, differs by almost 0.3 eV
from the RPA-LDA energy of 6.74 eV. The difference stems from the significantly larger
absolute value of the correlation energy for the LDA C atom than for the PBE C atom. We
ascribe this difference to the small one-electron gap between the highest occupied and the
lowest unoccupied 2p spin-up state and to the large relative deviation between LDA and PBE
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for this quantity. To test this assumption we calculate the RPA correlation energy from the
symmetric LDA and PBE solutions of the C atom. The spin-up 2p states are then partially
occupied with 2/3 electrons for both LDA and PBE and the next fully unoccupied states are
the spin-down 2p states. The symmetrized and symmetry-broken PBE correlation energy
(−4.73 eV and −5.18 eV) differ by 0.45 eV, but they are much closer than the corresponding
HF energies (symmetrized: −7.97 eV, symmetry-broken: −12.43 eV). Using the symmetrized
RPA correlation energy (and symmetry-broken HF energy), the diamond atomization energy
becomes 7.45 eV for both LDA and PBE wavefunctions. Analogous to the case of diamond,
a relatively large difference of 0.4 eV is found for the O2 atomization energy calculated from
LDA and PBE wavefunctions. The O atom, like the C atom, has a partly filled 2p spin
component explaining this difference. For the N2 molecule the 2p subshell is half-filled and
the energy between the highest occupied (spin-up) and lowest unoccupied (spin-down) state
is comparable large. The N2 RPA atomization energies stemming from LDA and PBE input
thus only differ by 10 meV, which confirms the result by Dahlen et al. [127]. All other
molecules studied in this reference (H2, Li2, LiH) consist of ”unproblematic” atoms with a
half-filled s subshell, and the effect of LDA or PBE input is expected to be small.



Chapter 12

Conclusions and Summary

This part of my thesis has been dedicated to the calculation of correlation energies on the
basis of the adiabatic connection fluctuation-dissipation theorem (ACFDT). The ACFDT
has already been introduced in chapter 3. Here we have focused on more technical issues
concerning the implementation of the ACFDT routines (chapter 10) and on the results, which
have been obtained within the random phase approximation (RPA) (chapter 11).

Having discussed the technical aspects, which are required to obtain converged RPA
correlation energies in chapter 10, chapter 11 focuses on the application of the ACFDT
formalism. First of all, RPA atomization energies were calculated for a set of molecules − H2,
O2, and N2 (Sec. 11.1). These energies have previously been evaluated by Furche [121] using
a local basis set code and it was therefore possible to compare to already published data. The
agreement of Furche’s and our results is excellent, which proves that using a plane wave basis
set we are able to calculated RPA correlation energies even for strongly localized electrons.
But, as the computational cost for the determination of RPA correlation energies scales
like V 3 if plane waves are applied, calculations utilizing large supercells are computationally
demanding. For the considered molecules the RPA predicts better atomization energies than
DFT-PBE, but shows a tendency to underbind.

For many molecules considered by Furche [121] DFT-PBE provides a good, and some-
times better description than RPA. But for van der Waals (vdW) bonded systems, like the
rare gas solids, DFT possesses a fundamental shortcoming, if the correlation energy is ap-
proximated using local or semilocal functionals. Van der Waals (dispersion) forces can be
ascribed to the interaction of fluctuating dipoles. The long-range part of this contribution to
the correlation energy leads to an attractive interaction for fragments with non-overlapping
densities and is therefore not correctly described in a (semi)local description e.g., in the LDA
or GGA-PBE. As the RPA correlation energy is based on the non-local response function,
the vdW interaction is an integral part of the RPA correlation energy. This makes the rare
gas solids Ne, Ar, and Kr, which are the topic of Sec. 11.2, interesting test systems for the
performance of the RPA. Indeed, for all three solids we find that the correct long-range vdW
−1/R6 behavior is fulfilled and the prefactors are within 10 % of experiment. The lattice con-
stants and cohesive energies, while not in perfect agreement with experiment, are improved
compared to the DFT-LDA and DFT-PBE values. The RPA results for the molecules and
the rare gas solids have been published in Ref. [153].

In Sec. 11.3 and Sec. 11.4 we focused on metallic systems. The RPA correlation energy
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for the homogenous electron gas has been evaluated in Sec. 11.3 and is in agreement with
published data with an error of less than 10 meV. The k-point convergence of the lattice
constants and the energies was tested for metals in Sec. 11.4. By the introduction of the
intraband contributions, the convergence of the energy was improved, especially for Na.
While the k-point convergence for Na and Cu was satisfactory, Al exhibits spurious jumps
in the energy at specific volumes and for specific k-point grids, which are related to the
existence of bands that cross near the Fermi surface. The influence of these spurious jumps
becomes even stronger for the transition metals Rh and Pd. Although the existence of
band crossings near the Fermi energy can make the calculation of RPA correlation energies
for metals particularly difficult, reasonable convergence could be achieved for all considered
metals.

In Sec. 11.5 we applied the RPA formulism to a larger set of materials, ranging from
insulators, semiconductors to metals, and from covalent to ionic bonded systems. Published
data for RPA lattice constants only exist for Na [128], NaCl [130], and Si [130, 128] and are
too sparse and furthermore afflicted by the use of pseudopotentials to reveal trends. We have
bridged this gap. In this section, we calculated the RPA lattice constants, the bulk moduli,
and the atomization energies. In order to assess the influence of the correlation energy,
the respective quantities were also determined for the Hartree-Fock (HF) energy evaluated
for DFT wavefunctions. Lattice constants and bulk moduli obtained from the HF energies
are reasonable as long as semiconductors and insulators are considered, implying that these
systems are well described by a single Slater determinant. For HF, the mean absolute relative
error of the lattice constants of semiconductors and insulators is with 0.92 % slightly smaller
than for DFT-PBE (0.99 %). For metals, however, geometrical properties based on the HF
energies are far from the experimental ones. For Cu and Ag, where the error is largest, the
lattice constant is overestimated by more than 10 %, and the error in the bulk modulus is
almost 80 %. The mean absolute relative error for the six considered metals amounts to 5.45
% compared to 0.93 % error obtained from DFT-PBE calculations. The RPA, on the other
hand, describes the equilibrium volume very well for semiconductors, insulators, and metals.
The mean absolute relative error of the lattice constants of all 15 considered systems amounts
to 0.27 % and the RPA lattice constants are consequently much closer to experiment than
the DFT-PBE (0.97 %) and HF (2.73 %) ones are. For metals, the improvement compared
to the HF results is most impressive (RPA mean absolute relative error: 0.36 %) and for
Cu and Ag, which have been particularly badly described using HF, the error in the lattice
constants is now smaller than 0.5 % and the bulk modulus is within 9 % of experiment.
The fact that the RPA provides lattice constants and bulk moduli in good agreement with
experiment indicates that the energy dependence on the volume is well reproduced, although
it is well known that the absolute RPA correlation energy is almost 30 % too large.

Energetic differences have been tested by calculating the RPA atomization energies for 13
systems (no atomization energies have been evaluated for Rh and Pd). Atomization energies
for bulk systems (except for jellium, and jellium surfaces) have not been published before,
because RPA calculations for atoms are demanding, if a plane wave basis set is applied. For
some atoms, such as Li, Na, and Mg, we have been unable to obtain correlation energies
with an accuracy better than 40 meV. Nevertheless, general trends for the RPA atomization
energies could be obtained. If correlation effects are totally neglected, and the HF energies
are used to calculate the atomization energies, important contributions to the binding are
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missing. For insulators and semiconductors, the HF atomization energy in average amounts
to ≈ 70 % of the experimental atomization energy. For Al, HF contributes 40 % to the
experimental atomization energy, while for Na, Cu, and Ag less than 20 % of the total
binding energy are recovered. This emphasizes the importance of the correlation for the
metallic binding. If the RPA correlation energy is included, in average 96 % and at least 94
% of the total atomization energy is reproduced for insulators and semiconductors. For the
metals, where HF has performed so poorly, an agreement of at least 90 % with experiment
is obtained. Although RPA is able to reduce the HF error, the mean absolute error in
the atomization energy is with 0.19 eV/atom slightly larger than the DFT-PBE one (0.14
eV/atom). This is certainly disappointing, but we believe that the error is predominantly in
the energies of the atoms, and that methods for correcting this error can be found.
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Phys. 124, 154709 (2006), J. Chem. Phys. 125, 249901 (2006).



BIBLIOGRAPHY 159

[141] J. Paier, M. Marsman, G. Kresse, J. Chem. Phys. 127, 024103 (2007).

[142] Landolt-Börnstein, New Series, Group III, edited by O. Madelung, U. Rössler and M.
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