
DESIGN AND IMPLEMENTATION OF A

DATASPACE MODEL FOR E-SCIENCE

APPLICATIONS

eingereicht von:

Adnan Muslimovic

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Magister rerum socialium oeconomicarumque

Magister der Sozial- und Wirtschaftswissenschaften

(Mag.rer.soc.oec.)

Studienrichtung: Wirtschaftsinformatik

Studienkennzahl: A175

Begutachter: Univ.-Prof. Dr. Peter Brezany

Wien, im November 2008

Ich versichere:

• dass ich die Diplomarbeit selbstständig verfasst, andere als die angegebenen Quellen

und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient

habe.

• dass ich diese Diplomarbeit bisher weder im In- noch im Ausland (einer Beurteilung

bzw. einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit

vorgelegt habe.

• dass diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt.

Wien, im November 2008 Adnan Muslimovic

Abstract

Modern collaborations in science are very often based on large scale linking of

databases that were not expected to be used together when they were originally

developed. Within the distributed database community, database integration ap-

proaches traditionally focus on structural heterogeneity. However, in many scientific

applications, there is additionally a strong demand to solve problems of semantic

heterogeneity.

The heterogeneous and distributed mix of various data sources nowadays requires

intelligent management systems in order to provide an unified view over such a

data. The research challenge motivating the work on this Thesis is faced by the

vision of dataspaces which main idea is to abstract from the underlying data source

structures by providing a system managing various and heterogeneous data as single

information data source. The dataspace concepts are presented as a vision, how-

ever their implementation in e-Science application environments opens new research

challenges, especially, in distributed dynamic environments, like scientific grids.

The main effort of this work is to provide an integrated view over data being col-

lected in scientific collaborations through e-Science life cycles. These life cycles

represent a process of collecting data for significant analysis by introducing a hierar-

chical and iterative model, which includes several different activities. Each activity

contains a number of tasks gathering information from multiple heterogeneous data

resources that are organized as participants in scientific dataspaces. The e-Science

Life Cycle Dataspace model is presented as ontology specified in the Web Ontology

Language, which allows building semantically rich relationships among e-Science life

cycle iterations and its participating data elements.

To my parents.

Contents

Abstract iii

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Methods . 2

1.3 Organization of the Thesis . 2

1.4 Results . 3

2 Basics On Ontology Languages 4

2.1 Introduction . 4

2.2 Semantic Web . 6

2.3 XML . 7

2.3.1 Introduction . 7

2.3.2 Basic Concepts . 8

2.4 RDF . 10

2.4.1 Introduction . 10

2.4.2 Basic Concepts . 11

2.5 The OWL Language . 14

2.5.1 Intoduction . 14

2.5.2 The species of OWL . 14

2.5.3 Header . 16

2.5.4 Classes . 17

2.5.5 Properties . 18

2.5.6 Property Restrictions . 20

2.5.7 Property Characteristics . 22

2.5.8 Class Operators . 23

CONTENTS vi

2.5.9 Enumerations . 24

2.5.10 Individuals . 24

2.6 SPARQL . 25

2.6.1 Introduction . 25

2.6.2 Basic Concepts . 26

3 Related Work 30

3.1 Introduction . 30

3.2 Dataspaces . 30

3.3 iMeMex A Personal Dataspace Management System 32

3.3.1 Introduction . 32

3.3.2 iMeMex Architecture . 32

3.3.3 iMeMex Data Model - iDM 34

3.3.4 iTrails: Pay-as-you-go Information Integration in Dataspaces . 35

3.3.5 Conclusion . 38

3.4 Storage Resource Broker . 38

3.4.1 Introduction . 38

3.4.2 SRB Features . 39

3.4.3 System Architecture . 41

3.4.4 The SRB Client . 43

3.5 iRODS - integrated Rule-Oriented Data Systems 45

3.5.1 Introduction . 45

3.5.2 Basic Concepts . 45

3.5.3 Rule Oriented Programming 46

3.5.4 iRODS Architecture . 47

3.5.5 Components of an iRODS System 48

3.6 IBM WebShepre Information Integrator 49

3.6.1 Introduction . 49

3.6.2 Overview . 50

3.6.3 WebSphere Information Integrator functions and objects . . . 52

3.6.4 Replication . 54

3.7 Google Desktop Search . 56

3.8 Phlat & Windows Desktop Search . 56

3.8.1 Introduction . 56

3.8.2 Design Principles . 58

3.8.3 Architecture . 58

3.9 Chimera - A Virtual Data System . 59

3.9.1 Introduction . 59

CONTENTS vii

3.9.2 Chimera Architecture . 60

3.10 myExperiment . 61

3.10.1 Introduction . 61

3.10.2 Basic Concepts . 62

3.11 Conclusions . 63

3.12 Summary . 65

4 e-Science Life Cycle Data Model 67

4.1 Introduction . 67

4.2 e-Science Life Cycle Activities . 69

4.3 Life Cycle Metamodel . 70

4.4 Environment of the e-Science Life Cycle 72

4.5 Search and Query Scientific Dataspaces 74

4.6 GridMiner Knowledge Discovery System enhanced by the e-Science

Life Cycle Model . 75

5 e-Science Life Cycle Implementation 81

5.1 Introduction . 81

5.2 Methodologies for Ontology Creation 82

5.3 Life Cycle Ontology Classes . 85

5.4 Life Cycle Ontology Properties . 93

6 e-Science Life Cycle Concept Evaluation 97

6.1 Introduction . 97

6.2 Generic Application Scenario . 97

6.3 Concrete Use-Case Scenario . 102

6.3.1 Introduction . 102

6.3.2 Life Cycle Ontology Individuals (A Case Study) 102

6.3.3 Querying the e-Science Life Cycle Ontology 107

7 Conclusions and Future Work 111

7.1 Conclusions . 111

7.2 Future Work . 112

A The e-Science Life Cycle Ontology 113

B Zusammenfassung 142

C Lebenslauf 143

CONTENTS viii

Bibliography 144

List of Figures

2.1 An ontology hierarchy . 5

2.2 A layered approach of the Semantic Web [BL00] 6

2.3 A simple RDF graph . 11

2.4 An RDF graph with some personal information 12

3.1 A dataspace system components [FHM05] 31

3.2 The iMeMex architecture [DS06] . 33

3.3 iDM represents heterogeneous personal information as a single re-

source view graph [Dit06] . 35

3.4 Important resource view classes to represent files&folders, relations,

XML, data streams, and RSS [DS06] 36

3.5 A dataspace consisting of four heterogeneous data sources [SDK+07] . 37

3.6 SRB architecture [BMRW98] . 39

3.7 The SRB process model [BMRW98] 41

3.8 MySRB view of a data collection [fEe07a] 44

3.9 The architecture of the iRODS system [RWMS06] 48

3.10 WebSphere Information Integrator data federation using wrapper [ACD04] 50

3.11 WebSphere Information Integrator components [ACD04] 51

3.12 Supported data sources [ACD04] . 54

3.13 Replication architecture [BAB03] . 55

3.14 Q replication [Asc03] . 55

3.15 The Google Desktop interface . 57

3.16 The Phlat interface . 59

3.17 Chimera architecture [FVWZ02] . 60

3.18 The myExperiment UI [oMoS08] . 63

4.1 Data management community - dataspace research 67

4.2 The e-Science life cycles . 69

4.3 Abstraction layers of scientific dataspaces (PD - primary data, DD -

derived data, BD - background data) 71

LIST OF FIGURES x

4.4 Environment of the e-Science life cycle 73

4.5 GridMiner knowledge discovery system enhanced by the life cycle model 76

4.6 High-level e-Science ontology architecture model interacting with the

GridMiner system . 78

4.7 The GridMiner components enhanced by the dataspace components 80

5.1 e-Science life cycle - activity relation 85

5.2 e-Science life cycle - publication mode 88

5.3 e-Science life cycle - participants . 90

5.4 e-Science life cycle - general view . 92

6.1 Project dataspaces - life cycle reuse 99

6.2 Project dataspaces state diagram . 101

6.3 Protege open SPARQL query panel results example 1 108

6.4 Protege open SPARQL query panel results example 2 109

6.5 Protege open SPARQL query panel results example 3 109

6.6 Protege open SPARQL query panel results example 4 110

List of Tables

2.1 SPARQL results table form . 27

3.1 Dataspace paradigms comparison matrix 65

3.1 Dataspace paradigms comparison matrix 66

5.1 Object properties . 94

5.1 Object properties . 95

5.2 Data type properties . 96

Chapter 1

Introduction

1.1 Motivation

Scientific data are being collected to a great extent in various research domains.

They are stored on multiple national sites in various databases. Scientific collabora-

tions are targeting to provide access to these primary data by the means of e-Science

applications. Through portals scientists are able to undertake these data for signif-

icant analyses in the context of their interest. The output of these analyses aims at

defining a large number of predictions and might provoke further experimentation,

which in turn may take days or weeks, depending on computational and human

resources available. However, the resulting data – called derived data – that have

arisen from the research task represents valuable information not only to the acting

research group, but also to other groups with respect to other research areas.

Main objective is to link those derived data with their corresponding primary data

by providing semantically rich relationships. Further, to make both relationships

and data available within a space of data for people from various groups of orga-

nizations who might have use of it and who want to collaborate by the means of

virtual organizations in the context of e-Science.

The success of such a dataspace will be highly dependent on the power of the used

relationship concept as well as its flexibility. Rich relationships between the par-

ticipants are going to be the backbone of such a system, with the basic necessity

to support semi-automatically creation of them as well as their improvements and

maintenance.

The development of a suitable relationship model customizable towards various ap-

plication needs is therefore an important issue, to be challenged by the e-Science

life cycle data model, which proposes a hierarchical and iterative metamodel pro-

viding a life cycle view of scientific data showing what ideally should happen to

1.2 Objectives and Methods 2

data in e-Science environments. The e-Science life cycle model is implemented as

a ontology, whose major role is to describe and semantically enrich the existing

relationship among primary and derived data sets in e-Science applications. This

is the basis for elaboration of intelligent and more powerful paradigms for the cre-

ation, representation and advanced searching of relationships among participants of

a dataspace.

1.2 Objectives and Methods

The main objective of this work is to design and implement an intelligent relation-

ship model for scientific data sources using OWL Web Ontology Language. This

model is proposed as the e-Science Life Cycle Ontology and its core idea is to sup-

port scientific research work by providing an unified view over primary and derived

data used in scientific environments by the means of an e-Science application which

enables scientific collaborations and sharing of scientific knowledge.

This profound knowledge about scientific e-Science experiments, consolidated within

instances of the ontology will highly contribute to the development of high produc-

tivity e-Science frameworks.

1.3 Organization of the Thesis

The outcome of this work - Design and Implementation of a Dataspace Model for

e-Science Applications - is described in this document and organized as following.

The beginning Chapter 1 of the Thesis introduces the most basic paradigms and

concepts with regard to e-Science applications and Dataspace paradigms providing

an insight into defined goals and achieved results. Chapter 2 describes the basic

concepts of Semantic Web while regarding the most important ontology languages

used for knowledge representation. In Section 2.6 the basic SPARQL Protocol and

RDF Query Language concepts are illustrated.

Chapter 3 deals with the most important key dataspace concepts introduced in

Section 3.2 and their realization by the data management community including fol-

lowing sections: In Section 3.3 the personal Dataspace management project iMeMex

is described. Section 3.4 describes the Storage Resource Broker and in Section 3.5

its extended system called iRODS is described. In Section 3.6 we describe features

and functionality of IBM WebSphere Information Integrator. Sections 3.7 and 3.8

cover data management systems of smaller scale. In Section 3.11 the related work

is discussed in comparison with e-Science life cycle data model, and Section 3.12

1.4 Results 3

provides an overview of all described systems by the means of an comparison matrix

regarding Dataspace relevant paradigms.

Chapter 4 describes the e-Science Life Cycle data model and focuses on a ontology

based data management solution for e-Science applications. Chapter 5 deals with

the main e-Science Life Cycle Ontology concepts. We discuss the implementation

issues and present the the main methodologies for ontology creation. The e-Science

Life Cycle Ontology is evaluated in Chapter 6 using SPARQL query language. And

finally, the Thesis is concluded in Chapter 7.

1.4 Results

With the help of the e-Science life cycle ontology, it is made possible for scientists

to describe, execute and share their e-Science experiments with other researchers in

an efficient manner. While searching the dataspace for performed scientific experi-

ments in the form of life cycle iterations, a scientist can explore relationships among

published results and generated data sets answering specific questions.

We present an ontology based relationship model with strong regard on the key

dataspace concept, providing intelligent creation, representation, and searching of

semantically rich relationships among primary and derived data sets in e-Science

applications.

With this in mind, it will be easier for research groups to engage collaboration, pro-

vide knowledge transfers within collaborations and among different research groups

with respect to different research areas. In conclusion, the e-Science life cycle meta-

model is likely to unify the process of publishing primary, derived, and background

data sets as well as the their interconnection and make it easy for scientists to reg-

ister, describe and execute new e-Science experiments and for users to find, explore

and understand these applied experiments.

Chapter 2

Basics On Ontology Languages

2.1 Introduction

The term ontology originates from a subfield of philosophy, where it is associated

with the nature or subjects of existence and gives this particular field of metaphysics

its name. [Wik08b] The concern of this branch of metaphysics is the identification

of all kinds of existing things and their descriptions. The things and specific objects

that made up the world can be categorized into groups which are represented through

abstract classes sharing common properties with each other. This can be seen as

the main application of a typical ontology [Wik08a].

The definition of the term Ontology in context of computer science is according

to T.R. Gruber from Standford University [AvH04]: ”a description of the concepts

and relationships that can exist for an agent or a community of agents.”, which

was later refined by R. Studer [Gru08]: ”An ontology is an explicit and formal

specification of a conceptualization.”

The main commitment designing Ontologies is to share knowledge about formal

concepts of domain models and the relationships among these concepts. In general,

an ontology consists of a finite set of concepts or objects having characteristic prop-

erties and existing relationships among these objects. If we take a university as an

ontology example we can identify some important concepts, which are staff mem-

bers including faculty members, professor, assistant or administrative stuff, then

students, lectures, and courses. All of these concepts or classes can be represented

in a hierarchical way through the concepts of subtypes or subclasses featuring the

properties or relationships which describe the way the classes are related to each

other as illustrated in Figure 2.1.

For example a property lectures can describe one specific relation between the

objects professor and course. Further, ontologies may have restrictions which for

2.1 Introduction 5

example define that only staff members may give a lecture on particular course.

Figure 2.1: An ontology hierarchy

In the context of the Web, the ontologies are very useful for organization and

navigation through the information of web sites providing a share of knowledge

about specific domain models, which provides the main foundation for the Semantic

Web [FHvH+01]. The most important formal languages used to built ontologies in

the Web are the following:

• XML [BPSM+06]- provides basically a serialized syntax for structured docu-

ments allowing developers to use self defined extensions.

• XML Shema [FW04] - is a language for defining restrictions on the structure

of XML documents.

• RDF [Bec04]- defines a simple data model for representing relations among

objects providing very simple semantic information, which can be formalized

and represented using XML sytax.

• RDF Schema [BG04] - introduces a description language for creating proper-

ties and classes for RDF objects. Further, it allows definition of ranges and

domains for described properties.

• OWL [BvHH+04] - is a description language that has much richer vocabulary

then RDF or XML. Specific relationships between classes (e.g., subSlassOf,

disjointhWith), property restrictions (e.g., allValuesFrom), cardinality con-

straints, data types and annotations can be defined enriching semantic possi-

bilities.

2.2 Semantic Web 6

2.2 Semantic Web

The Semantic Web is provided by The World Wide Web Consortium (W3C), the

main international standardization for the Web, and it is based upon a vision of

knowledge exchange introduced by Tim Berners-Lee, the person who founded the

WWW in the late 80s. The core idea of the Semantic Web is to structure the infor-

mation in such a way as to provide a semantic approach to information and make

it more understandable for machines [Web08].

Most of the today’s web information, such as text, audio or video, is formalized in

an unstructured way, which makes it difficult for machines to query and understand

the semantics of information. Therefore it has become essential to create a frame-

work, which defines semantic relationships among data and so allows more advanced

knowledge management systems [Pal01].

Tim Berners-Lee developed and introduced a layered approach as shown in Fig-

ure 2.2 [BL00] to the Semantic Web and its languages. The idea is to establish a

standardized approach for development of the Semantic Web [FHvH+01].

Figure 2.2: A layered approach of the Semantic Web [BL00]

XML, a language that allows writing structured Web documents, can be found

at the bottom of the layered structure supporting user-defined extensions [Ame01].

The Syntax of RDF is based on XML and it is located above the XML layer. RDF

provides a simple relationship data model for creating structured statements about

Web resources. RDF Schema goes one step further and and builds a hierarchical

model for describing the structure of this Web resources, their relationships, data

2.3 XML 7

types, and domain and range restrictions. RDF Schema can be seen as a simple

language for writing ontologies. The ontology layer provides a way of defining more

semantic relationships and is a extension of the RDF Schema. The logic layer uses

a vocabulary of the ontology in order to expose implicit ontological language by

making logical conclusions, which can be executed and proved by the Proof layer

located above the logic layer. Finally, the trust layer, sitting on the top of the

semantic web layered structure is dedicated to the quality and trust of the provided

services and information by using certificated digital signatures [KM01].

2.3 XML

2.3.1 Introduction

XML stands for Extensible Markup Language, and allows developers to use self-

defined extensions or tags in order to describe data objects forming structured XML

documents understandable for machines [Wik08d]. XML is recommended by the

W3C (World Wide Web Consortium), and is used for data exchange between appli-

cations on the web. It was developed as an extension of the Standard Generalized

Markup Language (SGML). If we take a simple example of a Web page that contains

some particular information on books represented as a XML document [BPSM+06],

this information might look as follows:

<book>

<title>Ontological Engineering</title>

<author>A. Gomez-Perez</author>

<author>M. Fernandez-Lopez</author>

<author>O. Gorcho</author>

<publisher>Springer</publisher>

<year>2004</year>

<ISBN>1852335513</ISBN>

</book>

We can see from this representation that the content is provided with semantic

information about what role the tags play. For every opening tag there must exist a

closing tag referring together to one element. The structure of the document defines

the relation of the elements to each other.

2.3 XML 8

2.3.2 Basic Concepts

An XML document may contain a prolog, consisting of an XML declaration and an

optional reference to external structuring documents:

<?xml version="1.0" encoding="UTF-8"?>

The version and the information about which character encoding is used are defined.

a reference to an external document may look as follows:

<!DOCTYPE person SYSTEM "person.dtd">

The local file called ”person.dtd” contains the information about the structure of

the document. The file might also be a reference to a URL. These, so called subsets,

may be referenced using a SYSTEM and/or a PUBLIC label.

XML comments are defined as follows:

<!-- This is a comment. -->

XML documents are syntactically correct if they are well-formed [BHLT06]. This

requires some syntax rules which are defined as follows:

• ”there is only one root element in the XML document”

<book> ... </book>

• ”each element must be enclosed between an opening and a corresponding closing

tag”.

• ”each attribute name within an element must have an unique name.”

<person name="Jimi" phone="659999"/>

• ”xml elements have to be properly nested, they may not overlap” as seen in the

example below, meaning that ”the tags have to be closed in the correct order.”

<title>Ontological Engineering<author>O. Gorcho</title></author>

• ”all xml element and tag names has to be permissible”

2.3 XML 9

XML documents are valid if they are well-formed [BPSM+06], which implies that

the document has to conform to semantic rules described above. The structure of

XML documents can be defined in two ways: XML Schema, which offers constraints

extensions on the document and mainly data type definitions, and DTDs, allowing

a number of restrictions on the document.

DTD (Document Type Declaration) components can be defined separately in an

external DTD file or included in the XML document itself. An external definition

allows a usage of the same DTD file across several XML documents, and is therefor

more efficient. Let’s look at a simple DTD Example desribing some attributes of

university professor shown below:

<!ELEMENT staff (professor*)>

<!ELEMENT professor (name, phone, institute, researchArea, gender?)>

<!ELEMENT name (\# PCDATA)>

<!ELEMENT phone (\# PCDATA)>

<!ELEMENT institute (\# PCDATA)>

<!ELEMENT researchArea (\# PCDATA)>

<!ELEMENT gender (\# PCDATA)>

<!ATTLIST person}

id ID \# REQUIRED

address CDATA \# REQUIRED

projectLeader IDREF \# IMPLIED

This DTD defines which element types can be used in an XML document. The

elements: name, phone, institute, and researchArea belong to the element profes-

sor and have to be specified in this particular order. The element professor is an

instance of the element staff, and may contain any number of professor elements

which is denoted using * parameter. Using the parameter ? we can indicate that

the specification of element gender is optional. # PCDATA (parsed character data)

is the only element data type and may contain any content.

Additionally to the definition of elements, a attribute list can be defined includ-

ing: attribute name, attribute type and attribute values. ID is associated with an

unique name which can be used across the entire XML document. CDATA indicates

a string, a sequence of characters. IDREF references to another element with the

same value having the same ID attribute as the IDREF. These attribute types are

the most important ones.

The value types give the information if the attribute is # REQUIRED within an

2.4 RDF 10

element or its appearance is # IMPLIED, meaning optional.

XML Schema

XML Schema [TBMM04] provides much richer language then DTD, and is based

on XML syntax. It allows reuse and refine of already created schemas and types

while restricting or extending already available types and schemas. In comparison

to DTD, which only have string as data types [BPM04], XML schema offers a set of

data types that can be used for XML documents. Here is a list of some of the most

important bulit-in data types :

• numeric, such as integer, byte, long float, decimal, short

• string, such as string, ID, IDREF, CDATA, Langugae

• data types for date and time, such as time, Date , Month, Year

2.4 RDF

2.4.1 Introduction

As we have already seen XML is mostly used as a language for data exchange

among applications where the application itself is concerned about how to interpret

the semantics of the tags used in an XML documents. The RDF (Resource Descrip-

tion Framework) is basically an abstract data model based on XML syntax that is

able to define statements about resources in the form of so called triple expressions

[MM04]. These triples consists of an object, a predicate, and a subject. For example

if we would use RDF triples to represent the statement saying that professor teaches

courses, professor would represent a subject, teaches a predicate, and courses would

indicate an object.

The idea of RDF language in the first place was to represent meta data about re-

sources in the WWW such as web page meta information about the author, title,

date of creation, and so on. Each RDF resource or object can have different values

describing the relation between the resources. These relationships, also called prop-

erties, are described in a mechanism called RDF Schema defining which vocabulary

is used for RDF data model.

RDF identifies the resources (objects) and the properties of these objects using URIs

which can be represented as nodes in a graph structure for better understanding.

In order to make RDF documents accessible and processable for machines RDF

2.4 RDF 11

uses XML syntax provided by the tag rdf:RDF [Bec04]. These XML elements that

represent RDF documents contain certain descriptions rdf:Description on resources.

2.4.2 Basic Concepts

As already mentioned RDF resources use URIs (URI references) to identify simple

statements, called RFD triples. Let’s say we have following statements:

http://www.RDFexample.ac.at/index.html has a an owner whose name is Peter Mayer

and http://www.RDFexample.ac.at/index.html has a date of creation whose value is

September 17, 2008 illustrated as an RDF graph in the figure below:

Figure 2.3: A simple RDF graph

We have a following RDF triple statement including:

• a subject - http://www.RDFexample.ac.at/index.html that is represented as

an URI reference and illustrated as a node of the RDF graph model

• a predicate - http://purl.org/dc/elemets/1.1/creator which also uses an URI

as reference and an arc in the RDF model representation.

http://purl.org/dc/elemets/1.1/ contains a Dublin Core Metadata vocabulary

that provides a set of defined property elements describing the objects, which

was initially developed at the the Metadata Workshop in Dublin, in March

1995.

• a object - http://www.RDFexample.ac.at/staffid/4711, represented as an URI

reference and a node in the RDF graph model.

The URI reference http://www.RDFexample.ac.at/terms/creationTime uses a string

to represent a property value. We see from this that RDF objects (references) may

contain either URIs (illustrated as ellipses) or constant character strings (illustrated

as boxes in the RDF graph), also called literas, as property values. Because URI

2.4 RDF 12

references can result in long lines, a QName (XML qualified name) can be speci-

fied containing a prefix followed by the namespace URI, which might look as follows:

prefix RDFex :, namespace URI: http://www.RDFexample.ac.at/

prefix terms : namespace URI: http://www.RDFexample.ac.at/terms

prefix staff : namespace URI: http://www.RDFexample.ac.at/staff

prefix dc:, namespace URI: http://purl.org/dc/elements/1.1/

Using the newly created prefixes RDFex, terms, staff, and dc, we could also write

the above discussed statements in the following triple (subject, predicate, object)

notation.

RDFex:index.html - dc:creator - staff:4711

RDFex:index.html - terms:creationTime ”September 17, 2008”

Adding further personal information to our RDF graph would result in following

graph structure.

Figure 2.4: An RDF graph with some personal information

As mentioned before, RDF documents use XML sytax [Bec04] for writing ma-

chine accessible and processable RDF models formalized in RDF/XML spezification.

A concrete RDF/XML implementation of the RDF graph illustrated in Figure 2.4

might look as shown in the example below.

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

2.4 RDF 13

xmlns:terms="http://RDFexample.ac.at/staffid/">

<rdf:Description rdf:about="

http://www.RDFexample.ac.at/index.html">

<terms:creationTime>September 17, 2008</terms:creationTime>

dc:creator rdf:resource="

http://www.RDFexample.ac.at/staffid/4711"/>

</rdf:Description>

</rdf:Description rdf:resource="

http://www.RDFexample.ac.at/staffid/4711"/>

<terms:name>Peter Mayer</terms:name>

<terms:phone>06504711</terms:phone>

<terms:email>mayer@RDFexample.ac.at</terms:email>

<terms:age>27</terms:age>

</rdf:Description>

</rdf:RDF>

The example begins with the XML declaration specifying the xml version. Furter, an

rdf:RDF element is defined followed by the XML namespaces specifying the prefixes

for URI identification. The use of rdf:Description tag describes the RDF statement

and additionally defines the resource by using the tag about. Finally, property values

and the corresponding URI resources are defined.

RDF Schema, also called RDF vocabulary, describes a set of classes and properties

that are used to specify the statements about the recourses, and the their relation-

ships. The prefix rdfs identifies the namespace of the RDF Schema [BG04] and it is

specified by the URI reference http://www.w3.org/2000/01/rdf-schema#. Here are

some of the most important classes and properties defined in the RDF Vocabulary

Description Langugae.

• rdfs:class - classes can be seen as a set of elements representing the recourses,

having individuals (instances) that belong to these classes. resources can be

declared as instances of classes called rdfs:class.

• rdfs:resource - all classes defined in RDF are derived from the class rdfs:resource.

Every object described in RDF is a resource and represents an instance of this

class.

• rdfs:property - describes the relation between the defined classes.

• rdfs:subPropertyOf - used to indicate the relation of properties to each other,

one property being an instance of another.

2.5 The OWL Language 14

• rdfs:subClassOf - used to indicate the relation of classes to each other, one

class representing an instance of another.

• rdfs:domain - a property can have a domain specification, meaning a restriction

to classes of resources defining which resource can be defined as a subject.

• rdfs:range - a property can have a range specification, meaning a restriction

to classes of resources defining which resource can be defined as an object.

2.5 The OWL Language

2.5.1 Intoduction

As we have seen in the previous chapter RDF an RDF Schema provide a formal

model for describing the structure of Web documents. The semantic expressiveness

of XML documents provided by the RDF schema is mostly limited to a class and

property hierarchy with the ability to define domains and ranges of these properties.

Some important features for representing the ontological knowledge are missing in

the RDF Schema:

• The range property defined in RDF Schema cannot be restricted just to some

particular classes. We cannot specify that for example only professor can be

a project leader, while assistants and students are project members.

• In RDF Schema we can only declare a subclass relationship. For example, a

paper is a subclass of publication, but not that for example a class article is

disjoint from a class paper.

• Cardinality restrictions, such as a restriction specifying that a course is taught

by at least one professor cannot be expressed using RDF Schema.

Therefor a need for more expressive language for Semantic Web that is processable

and understandable by applications has led to a development of the OWL Web

Ontology Language.

2.5.2 The species of OWL

W3C Web Ontology Working Group defines tree different OWL sublanguages, which

are OWL Lite, OWL DL, and OWL Full. Each of these sublanguages provide certain

level of expressiveness and reasoning support for different user requirements, OWL

Full being the most expressive one, followed by OWl Dl and OWl Lite [Wik08c].

2.5 The OWL Language 15

OWl Lite

OWL Lite has the simplest syntax and it supports a primitive classification hi-

erarchy and some basic constraints. Cardinality constraints defined in OWL Lite

are restricted to cardinality values of 0 and 1. The idea of OWL Lite is to provide

an easy implementation by providing only a subset of constructs available in OWL

language. It is a sublanguage of OWL DL and [MvH04] ”every legal OWL Lite

Ontology is also a legal OWL DL Ontology.”

OWl DL

OWL DL (Description Logic) is an extension of OWL Lite and provides restric-

tions about how OWL and RDF constructors are used, including all constructs of

OWL language. For example, one class itself cannot be an instance of another

class, while it may be a subclass of different classes. Classes cannot be defined as

properties or individuals at the same time neither the properties can be individuals.

OWL DL offers efficient reasoning and complete computational features supported

by Description Logics perfoming consistency checks. There is a certain lack of com-

patibility with RDF, meaning that RDF documents mostly need some extensions

or restrictions to be legal OWL DL documents, whereas [AvH04] ”every legal OWL

DL Document is a legal RDF document.”

OWl Full

OWL Full offers the most expressiveness and is an extension of OWL DL using

all primitives of the OWL language with the disadvantage of no computational

guaranties. The language has become very powerfull and complex so that no effi-

cient reasoning can be supported. OWL Full allows combination of all primitives

(classes, properties, individuals) in different ways with RDF and RDF Schema. A

class declared in OWL Full can for example simultaneously be seen as a collection of

individuals and as an individual itself. The syntax and semantics of OWL Full are

completely compatible with RDF, implying that [AvH04] ”a legal RDF document is

also a legal OWL document and any valid RDF Schema conclusion is also a valid

OWL Conclusion”.

Which OWL sublangugae ontology developers will choose depends on construct

2.5 The OWL Language 16

expressiveness provided by the sublanguages, and user requirements in order to suit

their needs. OWL Full will not be able to offer a complete reasoning features, but

it may be more powerful if mixing the primitives with RDF Schema facilities in

comparison with OWL DL language, which allows more effective reasoning support.

There is a strict compatibility distinction between OWL Full, OWL DL, and OWL

Lite [MvH04]:

”Every legal OWL Lite ontology is a legal OWL DL ontology.”

”Every legal OWL DL ontology is a legal OWL Full ontology.”

”Every valid OWL Lite conclusion is a valid OWL DL conclusion.”

”Every valid OWL DL conclusion is a valid OWL Full conclusion.”

Owl language is based on RDF syntax, whereas instance declaration and RDF

descriptions including typing information is the same as in RDF. Some of the

most important OWL construct facilities, such as owl:class, owl:ObjectProperty,

and owl:DatatypeProperty are derived from rdfs:resource and rdfs:class constructs.

2.5.3 Header

An OWL document begins usually with a declaration of namespaces. These RDF

documents are also called OWL ontologies using the root element rdf:RDF as an

opening tag. Here we declare a number of namespaces:

<rdf:RDF

xmlns:owl="http://www.w3.org/2002/07/owl\#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema\#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema\#"

Everything starting with the prefix owl uses the vocabulary of OWL, and is related

to the namespace reference ”http://www.w3.org/2002/07/owl#”. The other prefixes

rdf (RDF syntax), xsd (XML Schema), and rdfs (RDF Schema) also refer to their

namespace declaration references each providing the needed vocabulary.

DOCTYPE, a document type declaration, uses entities to declare ontology defini-

tions in order to avoid writing long URLs as illustrated bellow.

<!DOCTYPE rdf:RDF [

<!ENTITY prof "http://gridminer.org/university/professor\#">

<!ENTITY institute "http://gridminer.org/university/institute\#">]

2.5 The OWL Language 17

The declaration of the Ontology definition consists of the ENTITY attribute, the

abbreviations, and the long URL reference for which the newly defined abbreviation

can be used.

In the OWL document we can for example use the entity declaration ”&prof;Fischer”

as abbreviation for ”http://gridminer.org/university/professor#Fischer”. Addition-

ally a set of assertions can be included, provided by the owl:Ontology element, which

may include other ontologies, version controls and comments:

<owl:Ontology rdf:about="">

<rdfs:comment>A collection of assertions example</rdfs:comment>

<owl:priorVersion

rdf:resource="http://gridminer.org/university/institute"/>

<owl:imports

rdf:resource="http://gridminer.org/university/professor"/>

<rdfs:label>Institute Ontology</rdfs:label>

</owl:Ontology>

When importing other ontologies we have to consider that for each used namespace

there will be an import element providing all the assertions of included ontology.

Note that owl:import is a transitive property [AvH04]: ”if ontology A imports on-

tology B, and ontology B imports ontology C, then ontology A also imports ontology

C.”

2.5.4 Classes

Classes are the most basic abstraction concept in OWL used to group similar re-

sources together. Every OWL class provides a set of instances extending the class

with so called individuals [BvHH+04]. We define OWL classes using the owl:class

Element in conjunction with the attribute rdf:ID, which is used to specify the name

of the class:

<owl:Class rdf:ID="institute"/>

<owl:Class rdf:ID="professor"/>

Every OWL class, defined by a user, is a subclass of a predefined class owl:Thing

and therefor each individual is member of this class. Another predefined class

owl:nothing is defined as the empty class, thus [reference]every class is a superclass

of owl:nothing. The newly created classes institute and professor can be referenced

within an OWL documnets using a # identifier followed by the name of the class:

#professor and #institute. These classes can also be referenced by other ontologies

2.5 The OWL Language 18

using the URI reference of the ontology and the name of the class, which might look

as follows:

http://gridminer.org/university/instituteOntology.owl\#professor

The more specific construct to group similar resources together is the element

rdfs:subClassOf. If A is a subclass of B, then every instance of A is also an in-

stance of B [BvHH+04]. The rdfs:subClassOf is also transitive [BvHH+04]: If X is

a subclass of Y and Y a subclass of Z then X is a subclass of Z. Here is a simple

example of a subclass construct in OWL:

<owl:Class rdf:ID="lecturer">

<rdfs:subClassOf rdf:resource="\#professor" />

</owl:Class>

The statement subClassOf creates a necessary relation meaning that an individual

also needs to be a lecturer in order to be a professor.

Using the owl:equivalentClass element we can define that classes are equivalent link-

ing them together. Classes declared es equivalent contain the same set of individuals:

<owl:Class rdf:about="staff">

<equivalentClass rdf:resource="\#faculty"/>

</owl:Class>

We can also say that a class is disjoint from one or more other classes using the

owl:disjointWith statement, which indicates that these classes do not share any

individuals.

<owl:Class rdf:about="\#paper">

<owl:disjointWith rdf:resource="\#thesis"/>

<owl:disjointWith rdf:resource="\#book"/>

</owl:Class>

2.5.5 Properties

In OWl we distinguish between two types [SWM04] of properties.

• Object property - describes the relation between objects or instances of classes.

An example for object property would be a isLeaderOf property indicating

that an instance of a class professor isLeaderOf an instance of a class project

2.5 The OWL Language 19

• Data type Property - describes the relation between objects and data type

values. Examples of data type properties are name, phone, and email etc.

OWL does not provide any predefined data types, but it allows XML Schema

data types.

A datatype property declaration may look as illustrated below:

<owl:DatatypeProperty rdf:ID="publicationDate">

<rdfs:domain rdf:resource="\#paper"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema\#date"/>

</owl:DatatypeProperty>

In this example we define a datatype property publicationDate which describes a

relation between an individual and a XML Schema datatype, in this case date. An

example of a object property may look as follows:

<owl:ObjectProperty rdf:ID="isLeaderOf">

<rdfs:domain rdf:resource="\#professor"/>

<rdfs:range rdf:resource="\#project"/>

</owl:ObjectProperty>

A declaration of a object or data type property alone, does not imply which individ-

uals are related to each other. By the use of range and domain statements we can

define which classes are related to each other. A restriction domain indicates that

the subject of such declared property has to belong to related instance of a class,

which means that the property domain of isLeaderOf is restricted to individuals of

the class professor. A range statement indicates that the objects of the property

range has to belong to a instance of defined class, which means that the property

range is restricted to individuals of the class project.

Owl also allows as to define ”inverse properties”, which interchanges a direction

of a range and domain relation. professor (declared as domain axiom) isLeaderOf

a project (declared as range axiom) can be specified as an inverse property rela-

tion saying that a project (declared as domain axiom) hasProjectLeader professor

(declared as range axiom):

<owl:ObjectProperty rdf:ID="hasProjectLeader">

<rdfs:domain rdf:resource="\#project" />

<rdfs:range rdf:resource="\#professor" />

<owl:inverseOf rdf:resource="\#isLeaderOf">

</owl:ObjectProperty>

2.5 The OWL Language 20

In OWL we can define equivalence of properties through the use of owl:equivalentProperty

construct. The next example shows two equivalent properties, which have the same

domain and range values.

<owl:ObjectProperty rdf:ID="hasAdvisor">

<owl:equivalentProperty rdf:resource="\#hasProjectLeader">

</owl:ObjectProperty>

2.5.6 Property Restrictions

Property restrictions in OWL allows us to describe certain conditions about in-

stances of a particular class, which means to put constraints on ranges of properties.

In OWL we distinguish between value constraints and cardinality constraints.

Value Constraints

Suppose we would like to specify that thesis requires to be approved by professors

only. An example illustrating that restriction might look as follows.

<owl:Class rdf:about="\#thesis>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="\#isApprovedBy"/>

<owl:allValuesFrom rdf:resource="\#professor" />

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The owl:allValuesFrom statement specifies the values of the class that can be mem-

bers of the property declared using owl:onProperty, which means that the property

isApprovedBy can only take values of the class professor. The fact that owl:Restriction

is suited within the rdfs:subClassOf statement illustrates that owl:Restriction is a

subclass of owl:class, an anonymous OWL class, used to describe a class [BvHH+04].

By using owl:someValuesFromstatement, we could also define that at least one value

of the specified property has to reference to a individual of a particular class. We

can for example specify that an university assistant has at least one research area:

<owl:Class rdf:about="\#assistant>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="\#researches"/>

2.5 The OWL Language 21

<owl:someValuesFrom rdf:resource="\#reasearchArea"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class> \\

With owl:hasValue we can specify which set of individuals depending on the property

values are members of a specified class. We can for example define that thesis are

written in english, wheras english is representing an individual. At least one value

english of the property isWrittenIn is representing a member of the class thesis :

<owl:Class rdf:about="\#thesis>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="\#isWrittenIn"/>

<owl:hasValue rdf:resource="\#english"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Cardinality Constraints

The constraint owl:minCardinality specifies that all individuals of a class must at

least have a certain number of individuals specified in a property value. In the

following example we say that a research area is researched by at least one individual.

<owl:Class rdf:about="\#researchArea>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="\#isResearchedBv"/>

<owl:minCardinality rdf:datatype="\&xsd;nonNegativeInteger">1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

The data type nonNegativeInteger used to specify a property value is referred to

XML Schema datatypes by using the xsd namespace. Additionally, we can also

define a owl:maxCardinality value, which specifies the number of property values

individuals of a class may contain at most. Let’s assume that, for purpose of this

example, a research group may have at most twenty researchers:

2.5 The OWL Language 22

<owl:Class rdf:about="\#researchGroup>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="\#hasResearcher"/>

<owl:maxCardinality rdf:datatype="\&xsd;nonNegativeInteger">20

</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

2.5.7 Property Characteristics

There are some characteristic properties in OWL, such as owl:TransitiveProperty,

owl:Inv- erseFunctionalProperty, owl:FunctionalProperty, and owl:SymmetricProperty,

which can be specified directly.

owl:FunctionalProperty is declared as a subclass of rdf:property class and can be

applied on both datatype and object properties. This property definition may con-

tain one value for each object at most. In the following example we specify that a

postgraduate student has at most one professor as supervisor.

<owl:ObjectProperty rdf:ID="hasSupervisor">

<rdf:type rdf:resource="\&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="\#postgraduateStudent"/>

<rdfs:range rdf:resource="\#professor"/>

</owl:ObjectProperty>

owl:InverseFunctionalProperty is declared as a subclass of owl:ObjectProperty class

and can not be applied on datatype properties in OWL DL. This property definition

specifies that different instances can not contain the same values. We might specify

that a person has one country of origin only.

<owl:InverseFunctionalProperty rdf:ID="coutryOfOrigin">

<rdfs:domain rdf:resource="\#person"/>

<rdfs:range rdf:resource="\#coutry"/>

</owl:InverseFunctionalProperty>

owl:TransitiveProperty is declared as a subclass of owl:ObjectProperty class and it

provides a property definition which specifies a transitive relation between objects.

Let’s assume that if groupX, groupY and groupZ are research groups, and groupZ is

a subgroup of groupY, and groupY ist subgroup of groupX, then the OWL reasoner

2.5 The OWL Language 23

is able to resolve that groupZ is also a subgroup of groupX, which is illustated in

the next example:

<owl:TransitiveProperty rdf:ID="subReasearchgroupOf">

<rdfs:domain rdf:resource="\#researchGroup"/>

<rdfs:range rdf:resource="\#researchGroup"/>

</owl:InverseFunctionalProperty>

owl:SymmetricProperty is also declared as a subclass of owl:ObjectProperty class

and it is defined as follows [BvHH+04]:”if the pair (x,y) is an instance of P, then

the pair (y,x) is also an instance of P. We might specify a symmetric property as

shown below. Domain and range properties have the same value:

<owl:SymmetricProperty rdf:ID="InCollaborationWith">

<rdfs:domain rdf:resource="\#researchGroup"/>

<rdfs:range rdf:resource="\#researchGroup"/>

</owl:InverseFunctionalProperty>

2.5.8 Class Operators

OWL allows a use of union, intersection, and complement class operators that rep-

resent the logic AND, OR, and NOT operators.

intersectionOf is used to create a intersection of instances of two classes. Let’s

assume we specify all the individuals of the class professor that are members of a

researchGroup and intersect this class with reaserchGroupAdvisor to give a advisor

of a research group:

<owl:Class rdf:ID="researchGroupAdvisor">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="\#professor"/>

<owl:Restriction>

<owl:onProperty rdf:resource="\#isMemberOf"/>

<owl:hasValue rdf:resource="\#researchGroup"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

owl:unionOf is used to create a union of instances of two classes. Suppose, we define

a new class linking the individuals of two classes together:

2.5 The OWL Language 24

<owl:Class rdf:ID="student">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="\#postgraduateStudent"/>

<owl:Class rdf:about="\#undergraduateStudent"/>

</owl:unionOf>

</owl:Class>

owl:complementOf is used to specify a set of individuals that are complement of

individuals of an other class. The class postgraduateStudent contain all the instances

that are not members of the class undergraduateStudent

<owl:Class rdf:ID="postgraduateStudent">

<owl:complementOf>

<owl:Class rdf:about="\#undergraduateStudent"/>

</owl: complementOf>

</owl:Class>

2.5.9 Enumerations

An enumeration statement is defined using an owl:oneOf property element. It lists a

set of individuals of a defined class containing exactly these instances of a class. The

representation uses the rdf:parseType=”Collection” construct to list the individuals:

<owl:Class rdf:ID="season">

<owl:oneOf rdf:parseType="Collection">

<season rdf:about="\#spring"/>

<season rdf:about="\#summer"/>

<season rdf:about="\#autumn"/>

<season rdf:about="\#winter"/>

</owl:oneOf>

</owl:Class>

2.5.10 Individuals

Individuals are instances (members) of classes and in OWL they are defined using

a RDF statement:

<professor rdf:ID="4711"/>

We can also use the rdf:type property to declare an equivalent instance as illustrated

above:

2.6 SPARQL 25

<owl:Thing rdf:about="\#4711">

<rdf:type rdf:resource="\#professor"/>

</owl:Thing>

Because of the fact that same or different individuals can be referenced in various

ways while having different names or notations, OWL offers tree constructs for

specifying individual identity: owl:sameAs, owl:differentFrom, and owl:AllDifferent.

owl:sameAs links two individuals together stating that these two individuals are

identical while having the same URI reference. Such statements can be applied for

ontology mappings when different notations refer to same individual. An example

might look as follows:

<course rdf:ID="pid1147">

<owl:sameAs rdf:resource="\#pnr1147"/>

</course>\\

owl:differentFrom indicated that two individuals are not identical while having dif-

ferent URI references. Here is a simple example to illustrate this statement:

<professor rdf:ID="4711">

<owl:differntFrom rdf:resource="1147"/>

</course>

For a large number of different individuals OWL provides a owl:AllDifferent state-

ment. Therefore OWL defines a special property owl:distinctMembers in order to

establish links among different individuals:

<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<professor rdf:about="\#4711">

<professor rdf:about="\#1147">

<professor rdf:about="\#4117">

</owl:distinctMembers>

</owl:AllDifferent>

2.6 SPARQL

2.6.1 Introduction

SPARQL stands for SPARQL Protocol and RDF Query Language and it is devel-

oped by the RDF (DAWG) Data Access Working Group. It introduces a RDF query

2.6 SPARQL 26

language, which is officially recommended by the W3C (World Wide Web Consor-

tium). SPARQL query language can be used for any data on which RDF mappings

can be applied and it provides tree different specifications:

• The query language specification [PS08] - specifies the semantic and syntax

definitions of the language.

• SPARQL Query Results XML Format [BB08] - it provides a result represen-

tation format for SPARQL queries, which is described in XML.

• SPARQL Data Access Protocol for RDF [CFT08] - defines simple protocols in

order to transfer SPARQL queries to a processor implementing a query service.

There are several implementation of SPARQL language facilities. Here is a list of

some of the most important tools.

• ARQ - a JENA query engine

• Pellet - is an OWL DL reasoner, implemented in JAVA, that has SPARQL

query support.

• Rasqal - is a RDF query library, which is open source and can handle SPARQL

und RDQL gueries.

• RDF::Query - is a Perl implementation, which also handles SPARQL und

RDQL language gueries.

• twinql - is a Lisp implementation for SPARQL query language.

There are some important SPARQL language objectives and constructs that are still

not available or under active development, which are: a support for modifications

(update and insert facilities) on RDF data, a COUNT and AVG statements, and a

use of a select statement within an other selection [nw08].

2.6.2 Basic Concepts

SPARQL builds upon the RDF triple statement construct, which consists of a sub-

ject, a predicate, and an object, whereas each triple statement can represent a vari-

able [PS08]. The next example illustrates how to query the names of all professors

from a professor ontology. Let’s assume we have a professor ontology containing

some basic personal information. A SPARQL query might look as follows:

2.6 SPARQL 27

PREFIX prof: <"http://gridminer.org/university/professor\#">

SELECT ?name

FROM <http://gridminer.org/university/professor.owl>

WHERE { ?professor prof:name ?name. }

First we declare a prefix prof which refers to certain URI, specifying a namespace.

The newly created prefix can be used anywhere in the query as a abbreviation for

the URI reference. The select statement consists the data variables that will be

returned in the query result. The statement from provides an instance, represented

as URI, of the data being queried. In the where clause we use a triple construct

representing the graph pattern of the data.

The SPARQL results are represented in a table form, whereas every row represents

one query answer. Each variable used in the select statement represents a column

in the result table. Suppose, we have tree individuals, the query result may look as

illustrated in the table below:

row Name

1 Jimi

2 John

3 Scott

Table 2.1: SPARQL Results Table Form

In the following example we select the name, age and email of all individuals in

the professor ontology. Additionally to prefix declaration specifying a namespace in

the example above, we can use s BASE statement in order to provide one further

abbreviation by defining BASE ¡http://gridminer.org/university/professor/¿ and so

avoid long URIs.

BASE <http://gridminer.org/university/professor/>

PREFIX prof: <professor\#>

SELECT ?name ?age ?email

FROM <professor.owl>

WHERE {

?professor prof:name ?name.

?professor prof:age ?age.

?professor prof:email ?email.

FILTER(?age > 30)

2.6 SPARQL 28

}

As shown in the example above we can specify a FILTER to return only those indi-

viduals who are older than thirty. For each variable declared in the select statement

we have to use one separate pattern establishing a graph pattern. Only those pro-

fessor instances that match all tree variables will be returned as a result, otherwise

the triple pattern is not conformed. The variables that are not specified in a where

statement can not be selected and will not be returned in the result. The query

processor has to attach every variable to an RDF triple graph pattern [Dod05].

Instead of listing the variables in the select statement we could also use the * pa-

rameter to query all the variables while delegating the order of the columns to the

query processor.

Suppose, we add a new variable middleName to our select clause. Because some

professors may not have a middle name and we already know that all the variables

has to be bound to an existing triple pattern in order to be returned, we will have

to specify the new pattern as optional :

BASE <http://gridminer.org/university/professor/>

PREFIX prof: <professor\#>

SELECT ?name ?age ?email ?mName

FROM <professor.owl>

WHERE {

?professor prof:name ?name.

?professor prof:age ?age.

?professor prof:email ?email.

OPTIONAL {?professor prof:middleName ?mName.

}

If we for example wish to query for all professors who lectures in German as well

as in English, we could use an UNION expression to query for both languages. An

example may look like this:

BASE <http://gridminer.org/university/professor/>

PREFIX prof: <professor\#>

SELECT ?name ?id

FROM <professor.owl>

WHERE{

?professor prof:name ?name.

?professor prof:id ?id.

?professor prof:langugae prof:english.

2.6 SPARQL 29

}UNION {

?professor prof:name ?name.

?professor prof:id ?id.

?professor prof:langugae prof:german.

}

ORDER BY ?name

LIMIT 15

OFFSET 15

the returned result can be ordered by any selected variable using the ORDER BY

clause as illustrated above. DESC and ASC (default) expressions can also be at-

tached to the variable changing the order of the result:

ORDER BY DESC(?name)

In addition to specifying the order of the results we may wish to subdivide the

returned results into pages by giving the number of displayed results. This can be

achieved by using a OFFSET, and LIMIT expressions, as illustrated above.

As already mentioned SPARQL query results can be returned using the SPARQL

Query Results XML Format to display the results as an XML or RDF format.

Chapter 3

Related Work

3.1 Introduction

This chapter aims in identifying what are the most important key dataspace paradigms

and further how these are realized by the data management community. It also aims

in identifying bottlenecks of proposed and implemented approached as well as in pro-

viding more appropriate solutions concerning some Dataspace paradigms. It has a

strong impact on the e-Science Life Cycle Ontology future work, which is to develop

key Dataspace paradigms within a Dataspace management system for large scale

proposes.

3.2 Dataspaces

The idea of Dataspaces was firstly introduced by Franklin et al. [FHM05] in 2005.

It is represented in a visionary way describing data management on a higher ab-

straction level. A dataspace consists of a set of participants and a set of relation-

ships among participants [FHM05]. A participant can be any element containing

data in some way. Relationships describe how two participants are related to each

other. Relationships can be expressed by single word-relationships, such as replica-

of, related-to, view-of, etc. In the extreme example they can be semantic mappings

of database schemas. The challenge is to raise up the level at which data is managed

[Hal05]. Systems providing the required services over dataspaces are considered to

be Dataspace Support Platforms (DSSPs) [HFM06]. In [EBT06] such a system is

defined as ”a set of software programs that controls the organization, storage and

retrieval of data in a dataspace. It also handles the security and integrity of the

dataspace.”

The most important components [FHM05] of a dataspace system are illustrated in

3.2 Dataspaces 31

the Figure below:

Figure 3.1: A dataspace system components [FHM05]

Catalog

The catalog provides the entire information about all the data sources acting as

participants in a dataspace. It manages not only the metadata information about

the participants, but also how they are related to each other. The catalog should

offer a browsing feature allowing to explore the content of a dataspace. Additionally

a relationship modeler should be implemented in order to allow a user to generate

semantic relationships between participating data sources.

Search and Query

A dataspace system should be aware of query facilities with no regard to the under-

lying data structure of the dataspace participants. Simple keyword queries, as well

as more advanced querying should be supported. All participant metadata managed

by a Catalog could be included into query statement definitions in order to provide

more sophisticated query results.

Local Store and Index

All participants should be indexed in order to provide more intelligent and efficient

query answers. Further it should enable efficient data query results without actual-

ity going into data resource itself.

3.3 iMeMex A Personal Dataspace Management System 32

Discovery

This component helps discover the participants and their relations stored in a datas-

pace. It keeps track of participant relationships management, monitoring the evo-

lution of the participants and their relations to each other.

Administration

The administration component should offer a central management instance being

responsible for authentication, access rights, permissions, and further management

facilities regarding synchronization of the dataspace components.

3.3 iMeMex A Personal Dataspace Management

System

3.3.1 Introduction

In 1945, Vannevar Bush developed the theoretical proto-hypertext computer system,

a vision of a personal information management system named memex (memory ex-

tender), which influenced the development of the Personal Computer, hypertext and

the World Wide Web [Bus45]. The memex would offer an individual to browse and

share personal information with other individuals, all integrated into a large desk.

This vision has influenced iMeMex, ”a unified solution to personal information man-

agement” [BDG+07]. Nowadays thousands of files of different formats are stored in

the local file systems and in many remote data sources, such as network drivers, email

and web servers. This results in a heterogeneous and distributed mix of personal

information. iMeMex is a software platform which handles the Personal Dataspace

of an individual. Personal Dataspace contains all the personal information stored

by one certain user [BDG+07].

iMeMex allows data management functionalities such as querying, updating,

performing backup and recovery operations. Further, iMeMex provides a solution

to close the gap between the structure of the information inside files and the outside

structure of the information provided by the files&folders hierarchies. Key to this

approach is to represent all available data using a single graph data model [Dit06].

3.3 iMeMex A Personal Dataspace Management System 33

3.3.2 iMeMex Architecture

iMeMex is a software platform that manages the whole personal Dataspace of a

user by providing an own data model called iMeMex Data Model (iDM) and a

new query language called iMeMex Query Language (iQL). The idea is to represent

unstructured, semi-structured and structured data inside a single model. Resource

Views represent data elements within the iDM and allow to be linked to each other

in directed graph structures. iMeMex includes two important sublayer: iQL Query

Processor and Resource View Manager. The main task of the iQL Query Processor

is parsing iQL queries and creating concepts how to query them. The Resource View

Manager (RVM) includes four major components: Data Source Proxy, Content2iDM

Converters, Replica&Indexes Module and Synchronization Manager [DS06].

The core idea of iMeMex, influenced by the vision presented in [FHM05], intro-

duces a logical layer that provides an abstraction from underlying substructure and

data sources such as file systems, email servers, network shares, iPods, RSS feeds,

etc. The logical layer is called Resource View Layer and is shown in Figure 3.2

within the iMeMex architecture.

Figure 3.2: The iMeMex architecture [DS06]

The Data Source Proxy is connected to the various types of subsystems. It

implies a set of Data Source Plugins that are used for data representation from the

different subsystem types in the form of iDM graph structure. Currently iMeMex

provides a plugin set for file systems, IMAP email servers and RSS feeds. The

Content2iDM Converter additionally converts the content information extracted

3.3 iMeMex A Personal Dataspace Management System 34

from the data source proxy component into iDM graph structure establishing further

information provided by the structure of the iDM subgraphs. iMeMex offers at the

moment converters for XML and LaTex.

The Replica&Indexes Module contains a Resource View Catalog wheras all re-

source views are registered within that catalog. For each resource view component

this module offers an option to create a replica and/or an index of the data source.

A Replica component is responsible for creating copies of data resources within the

RVM and could be used for replication of all resource views which were extracted

from remote data sources. Because of the trade-off between the distributed data

that has to be queried and then shipped versus local data the iMeMex system must

consider various strategies while creating replicas. The main task of the Index mod-

ule is to create particular data structures in order to improve the look-up times. An

created index of the resource views can not retrieve the original content information

of the components that were deployed while creating the index, and therefor the

replication itself is not provided by the indexing task.

The Synchronization Manager provides a persistent update function for all reg-

istered data sources. After the registration of the new data source in the RVM, the

Synchronization Manager analyzes the data content of the data source and provides

the information about the definition of created resource views to the Replica&Indexes

Module. The Synchronization Manager scans permanently the data sources, regis-

tered by the RVM layer, checking for updates while synchronizing the catalog with

the generated indexes and replicas.

3.3.3 iMeMex Data Model - iDM

iDM is used as a representation model for all kind of data including unstructured,

semi-structured and structured data within a basic graph model establishing re-

source views that are linked to each other forming directed graph structure. If we

look at the personal information of an individual nowadays we can identify a mix of

heterogeneous data consisting of emails, XML documents, LATEX recourses, word

documents, pictures, music and video files, address books, and so on. This personal

information is usually found in various file systems, distributed machines, stored

in variable file formats. The core idea of the iMeMex approach is to represent all

available personal information within a structure of a single graph model. This ap-

proach allows querying the stored information in such a manner which can not be

accomplished with state-of-the-art tools managing personal information nowadays.

Figure 3.3 illustrates how iMeMex maps heterogeneous personal data into a single

resource view graph.

3.3 iMeMex A Personal Dataspace Management System 35

Figure 3.3: iDM represents heterogeneous personal information as a single resource
view graph [Dit06]

One of the main issues developing iMeMex is to design iMeMex Query Language

(iQL), because the iMeMex developers claim that the XPath and XQuery languages

are too complex to use to query personal information systems. The IQL language

requires on the one hand only a minimal learning effort and provides on the other

hand more advanced users the same range of functionalities to pose more sophisti-

cated queries. iQL includes features important for a Personal Dataspace Manage-

ment System, offering update support, keyword search, more sophisticated querying,

structured information within a graph model using a single language [Dit06]. A re-

source view Vi is defined [DS06] as a ”4-tuple (ηi, τi, ξi, µi)”, representing a name,

tuple, content, and group component.

Resource Views are linked to each other forming directed graph structure. Fur-

ther, a resource view class C is defined [DS06] ”as a set of formal restrictions on the

τi, ξi, µi and ηi components of all views”. Resource View Classes provide a mech-

anism that enables an easy data integration avoiding the more complex common

schema integration from various data models into iDM graph structure. Not all

Resource Views have to belong to a certain Resource View Class Figure 3.4 shows

important Resource View Classes.

3.3 iMeMex A Personal Dataspace Management System 36

Figure 3.4: Important resource view classes to represent files&folders, relations,
XML, data streams, and RSS [DS06]

3.3.4 iTrails: Pay-as-you-go Information Integration in Datas-

paces

There are two different approaches in order to query a set of heterogeneous data,

the schema-first and no-schema approach. The schema-first approach (SFA) implies

semantic integration over data sources in order to execute sophisticated queries

over these data and receive precise answers. In order to accomplish an integrated

view over recent created data sets SFA implementor has to provide exact mappings

between every source schema of integrating data sources.

The no-schema approach (NSA) handles all data sources in its original source

schema without having to map corresponding data sources, and perform information

integration in order to provide an unified view over the data. Keyword search and

basic structure queries are supported providing all needed information over those

data sources [SDK+07].

The main idea of the iTrails approach is to enrich the already structured data

with further information about possible relations between existing data and already

executed queries adding so called hints (trails) to the no-schema approach. The new

created trails that represent the semantic information among data allows more intel-

ligent answers while approaching schema-first aproach in a ”pay-as-you-go” [FHM05]

fashion. Figure 3.5 shows a Dataspace consisting of four data sources.

3.3 iMeMex A Personal Dataspace Management System 37

Figure 3.5: A dataspace consisting of four heterogeneous data sources [SDK+07]

iDM graph model represents the data included in the data source. Let’s as-

sume that a user wants to query all yesterday modified or added pdf documents.

Depending on the data source schema and different attribute names used for each

data source a user would have to specify separate and complex queries for each

data source to evaluate the term “yesterday”. The main goal is to provide a way

that allows specifying the same query for every data source by simply using the

pdf yesterday expression. The iTrails approach provides additional trails (hints)

information across the generated graph model creating relations and enriching the

knowledge over the integrated data in order to achieve this main goal. While per-

forming queries iTrails is able to implement and define new hints while gradually

improving the result quality of afterwards executed queries. The iTrails technique

intents on modeling relations among data by providing additional semantic infor-

mation in “pay-as-you-go“ manner allowing the Dataspace to grow.

iTrails search queries can provide further semantic information including query ex-

pansions and a use of dictionaries, such as Wordnet [RMC07], automatically creating

iTrails hints expressing for example the relation between auto and car by specifying

a new trail. iTrails can also be used as an data integration tool by integrating medi-

ated data sources, for example hidden web-databases, participating in the dataspace.

There are four basic concepts defining a set of trail:

3.4 Storage Resource Broker 38

• (1) trails definition using a drag&drop frontend

• (2) trails created based on a feedback of a user

• (3) trails (semi-) automatically created from content

• (4) trail defined from collections provided by shared web platforms

Not only the definition of the trail itself but also a quality of a certain trail can be

modeled defining a probability value:

”0 ≤ p ≤ 1”

3.3.5 Conclusion

Personal Information Management has become a key necessity of almost everybody.

At the same time, it has become clear that what is missing is a unified approach to

create physical and logical data independence to enable a personal Dataspace.

The iMeMex Personal Dataspace Management System introduces a logical layer

on top of the data sources that provides a mechanism for managing personal logical

and physical information. iMeMex addresses some major research challenges. First,

a definition of iDM, an unified data model, which represents the mix of heterogeneous

data identified in personal Dataspaces as a hierarchical graph structure. Second, a

query language, called iQL offering efficient querying on the iDM data model. These

research issues are the main exploration part of the iMeMex Personal Dataspace

Management System future work.

3.4 Storage Resource Broker

3.4.1 Introduction

SRB is a middleware developed by The San Diego Supercomputer Center (SDSC)

[BMRW98] which allows accessing heterogeneous distributed data including, filesys-

tems, database systems and archival storage systems. SRB uses a metadata catalog

service, MCAT, to provide a means to organize data in a ”collection- oriented view”.

MCAT provides a set of APIs which allows attribute-based access to data collections

and items and provides an execution of distributed applications in order to establish

data access at every storage site of the distributed environment. The API offers

the capability to information discovery, identification of required data collection,

3.4 Storage Resource Broker 39

and selection and data retrieval of various distributed data sources which may be

located in WAN networks.

3.4.2 SRB Features

The data resource access which is managed by the SRB MCAT catalog is provided

by the use of attribute names of the data sets independent from the physical file

location, maintaining a location transparency.

The data sets collected by the SRB include descriptive as well as system metadata.

Descriptive metadata represents the contents, whereas system metadata enables

”location and access control information” [RWM03a] for collected data sets. Data

recorded using the SRB is arranged as a hierarchy of collections and sub-collections,

whereas data sets arranged by the same collection can be distributed across hetero-

geneous storage environments.

The SRB can organize data access to archival resources such as ”HPSS, UniTree and

ADSM, file systems such as the Unix File System, NT File System and Mac OSX

File System and databases such as Oracle, DB2, and Sybase” [RWM03a]. Further,

it offers a logical representation for storage system description, digital file items, and

data sets and supports characteristic facilities, which can be applied in ” digital li-

braries, persistent archive systems and collection management systems” [RWM03a].

A replicated data, the authentication information on access control of items and

data sets is managed by the SRB facilities. The SRB system offers search capabil-

ities based on the user-defined metadata, which can be saved as a collection or a

object. Figure 3.6 shows an overview of the architecture of SRB.

Tickets Tickets is a mechanism for managing data read access. A user can grant

a ticket permission to other users, or group of users, on that data items or collection

they have control privilege. These tickets are only allowed for a certain period of

time or for a specified usage number to limit the number of allowed access opera-

tions.

There are two different types of users in MCAT: registered and unregistered users.

For registered users the required metadata is already provided by the MCAT. Un-

registered users act as guests in the MCAT Catalog. Both types of users can issue

tickets. Unregistered users need a special request while connecting to the SRB server

whereas their range of functions is limited to read data for which they have issued

a ticket.

3.4 Storage Resource Broker 40

Figure 3.6: SRB architecture [BMRW98]

Physical Storage Resources (PSRs) and Logical Storage Resources (LSRs)

Depending on the data source, PSR is defined as [BMRW98]:

• ”For storage resources with file system interfaces: a PSR is the (hostname,

pathname) combination, representing a certain directory path on a certain

host.”

• ”For storage resources with database system interfaces: a PSR is the (host-

name, database id, table id) triple, representing a host, a database on that host,

and a table within that database.”

A group of declared PSRs, which for example can be a table in an Oracle database,

directory path in HPSS or AIX filesystem, are joined together forming a single logical

storage resource (LSR). Client APIs provide references to LSRs.

A replication of a data set which is linked to the logical storage resource (LSR) is

performed replicating each PSR. Data items are represented as collections, which

is accomplished by the use of LSRs, whereas every data set can be read by any

corresponding PSRs [BMRW98].

Access to distributed data resources is provided by a federation of SRB servers,

that manage a distinct set of PSRs, and allows SRB server to act as clients to each

3.4 Storage Resource Broker 41

other. This enables a client application to access distributed data, even if there is

no direct connection between application and the controlling SRB server.

Authentication The SRB communications protocol provides a set of different

authentications. Password information used as authentication is managed by the

MCAT. Adopted from the SEA Systems, SRB implements data encryption and au-

thentication of users, which is provided by a RSA mechanism called a public-private

key. The update facilities performed on metadata and storage resources are executed

by SRB MCAT Catalog system, which can be specified by the user while generating

a data set or a collection. Logging operations can be turned off while accessing an

object.

Figure 3.7 illustrates the steps of a client-server connection process. First, client

sends a connect request to the SRB Master. After authentication process done by

the SRB Agent, using the SEA library, the SRB Master returns the connection re-

spond to the client. Each client connection is managed by a distinct SRB Agent.

Figure 3.7: The SRB process model [BMRW98]

3.4.3 System Architecture

The core system architecture of the SRB middleware application builds upon two

processes, one representing a SRB Master daemon and the other a SRB Agent,

whereas each Agent references a corresponding Master. Each of them is identified by

a hostname and a port number, while being responsible for a particular set of PSRs.

3.4 Storage Resource Broker 42

The LSR and PSR system metadata is managed by the MCAT service, whereas the

SRB Agent frequently connects the MCAT sending a request for metadata in order

to provide the Agent with needed information for client communication.

The Metadata Catalog (MCAT) The MCAT is a catalog service providing a

facilities for storing information by the SRB system. SRB distinguishes between

two kinds of data: internal system data (system management requirements) and

application data (data items). As already mentioned MCAT provides an attribute-

based access to data collections and items, which can be used to identify the data

resources rather by a logical attribute name referencing a location of the data itself.

Additionally, some other important operations such as a control of the access man-

agement, hierarchical organization and content information of data collections, and

the ticket system contain metadata that are handled by the MCAT catalog.

The SRB Server The SRB Server is in constant communication with the clients

receiving their requests and sending responses after they have collected the requested

information on data sets provided by the MCAT service.

SRB represents a federated server system [RWM+03b], whereas every SRB server is

responsible for a particular group of storage resources. The implementation of the

federated SRB server offers following advantages [RWM+03b]:

• ”Location transparency” - the data can be provided by connecting from one

federated SRB Server to another server using a logical attribute name or the

item and data collections.

• ”Improved reliability and availability” - the federated servers manages the data

replication being performed on various hosts and storage systems in order to

provide efficient load facilities.

• ”Logistical and administrative reasons” - while using one single authentica-

tion environment, the storage systems can be proceeded on distributed hosts

implementing different security mechanism.

• ”Fault tolerance” - if one of the storage systems is not available, the global

identifier is aware of other available replicas, while automatically linking to

them.

• ”Integrated data access” - the data access is provided the same way locally as

it is for distributed resources establishing an integrated access to distributed

data environments.

3.4 Storage Resource Broker 43

• ”Persistence” - the replicated data elements on different storage systems are

represented by their logical attribute names providing the same data item

properties and so maintain an unique access management.

3.4.4 The SRB Client

The SRB Client offers an user tool that allows communication by sending user

requests to SRB Servers. Main Client implementations are:

• Windows GUI named InQ that offers a file-manager-like interface providing

an easy way for users to manage their data stored on SRB. InQ facilitates

various management operations such as traditional drag-and-drop operations

for a transfer of files, a supports authentication tools managing the access,

data replication, metadata management etc [fEe07b].

• A web based Client, named MySRB [RWM+03b]. My SRB is described within

the next Section.

MySRB - a web-based interface to the SRB MySRB is a web-based interface

that allows secure access and share of distributed data collections and data items

stored in the SRB. Files can be organized in a hierarchical way provided by the data

collection and items structure referring to a logical attribute notation representing

the physical resources.

MySRB supports three basic facilities [RWM+03b]:

• ”collection and file management” - facilities to collect, delete and create data,

further operations to ingest, reload, registration, replication, and data move-

ment, authentication. Versioning and Locking Operations are a part of a future

work.

• ”metadata handling” - facilities to ingest, copy, extract, maintain, update, and

delete and standardized metadata, which can be derived from element defini-

tions such as the Dublin Core, or based on other Semantic Web definitions.

• ”access and display of files and metadata” - facilities to browse files organized

as data items and data collections and operations to query all kind of metadata

such as the system and user metadata.

MySRB bulids upon the secure protocol (https) using the 128-bit authentication,

provided by RSA. Every session is attached to one particular time limit (max limit

3.4 Storage Resource Broker 44

are 60 minutes) and each of the MySRB sessions is provided by a key, which is unique.

The web-browser interface for MySRB is used to display metadata about the

data items and collections queried by the user, shown in Figure 3.8. When opening

a file, the information about the attributes and the content of the data sources is

displayed in the main window as illustrated in the Figure below. Another MySRB

interface is used to visualize the information about different kind of metadata such

as the information about attribute values and their properties, and metadata defined

by users.

Figure 3.8: MySRB view of a data collection [fEe07a]

User can organize the attached their files by adding them to already declared

collections or by defining a new sub-collection. All files are referenced by their logical

name representing the actual source, which can be a file, filesystem, or a database,

managed by the SRB. The replicated files use the same logical representation of the

underlying data source.

The MySRB application offers a variety of facilities for manipulation of various types

of metadata and data collections recorded in the SRB system.

3.5 iRODS - integrated Rule-Oriented Data Systems 45

In MySRB we distinguish between five different kinds of metadata [RWM+03b]:

• ”system-defined metadata” - managed by the SRB, all system metadata can

be viewed and used for queries by any user.

• ”user-defined metadata and type-oriented (domain-oriented) metadata” - only

those users who own a permission on created data collections may define meta-

data.

• ”file-based metadata” - can not be used for queries, contains object metadata

in a file.

• ”annotations and commentary metadata” - these metadata can be declared by

anybody who owns a object read permission.

3.5 iRODS - integrated Rule-Oriented Data Sys-

tems

3.5.1 Introduction

iRODS (integrated Rule-Oriented Data Systems) is ”a second generation data grid

software” [iRG08b] developed by the SDSC Storage Resource Broker team and col-

laborators. It provides a standardized view and access to distributed data sources

across WLAN networks.

The Storage Resource Broker (SRB) system that was introduced in the previous

chapter, offers a logical abstraction concept of data collections and data sets pro-

vided by the use of logical attribute names that are independent from the physical

file location, establishing a location transparency for clients communicating with

SRB servers. iRODS bulids upon SRB abstraction concept by providing further

data management abstraction. This abstraction process is named policy abstrac-

tion [RWMS06].

3.5.2 Basic Concepts

iRODS implements a RULE Engine, which is responsible for rule interpretation in

order to evaluate how to reply to different client requests. iRODS is open source

under a BSD-type license.

The present SRB facilities do not provide easy data management facilities for

manipulation of created data sets and data collections. Let’s assume we have a user

3.5 iRODS - integrated Rule-Oriented Data Systems 46

who would like to define a facilities that certain data collections are persistent so

that no one, not even the creator of the particular data item can perform delete

operations on such data sets, whereas other files should not be affected. This type

of operation are very challenging to implemented using current SRB facilities. An-

other interesting feature that might be difficult to provide addressing present SRB

operations is a implementation of access control facilities for more sensitive data.

A additional example could be a replication of already created collection items across

various storage systems, which also requires complex implementation methods using

the SRB [iRG08a].

iRODS system can be classified as a middleware application implementing adap-

tive features. The adaptive middleware architecture (AMA), which is the core of the

iRODS system, can be modified and adapted by users in order to accomplish their

tasks with no need to perform complex code implementations.

iRODs approach uses Rule Oriented Programming (ROP) for achieving adaptive

middleware architecture [iRG06b]. All operations that are accomplished using the

iRODS system are proceeded as rules in the iRODS rule engine. These rules are

initialized by application calls, while controlling the performed operations.

3.5.3 Rule Oriented Programming

Rule-oriented programming provides user facilities for modifying and controlling

the operation functionality of a certain process without relaying on the system or

application developers. ROP provides ” small, well-defined operations that perform

a certain task” called Micro services [iRG06b], which are defined by system and

application programmers.

While executing the rules user can change the task operations by applying micro-

services or my modifying already implemented code provided by micro-services.

Different micro-services can be linked together in order to provide a higher level

facilities in form of actions. Each action might be executed in various manner

containing a certain number of micro-services. An action provides a particular task

name, describing the executed operation, whereas the micro-services indicate the

corresponding task.

There are two mechanisms for finding the best set of micro-services used for an

action [iRG06b]:

• ”condition” - provides permission control facilities, which can be applied on

3.5 iRODS - integrated Rule-Oriented Data Systems 47

any micro-service. This mechanism introduces the so called ”(action, condi-

tion, chain)-triplet” [iRG06b], which implements a ”rule” in ROP system.

• ”priority” - this approach is responsible for controlling and testing the order

of an executed rule. These rules that have low number will be executed first.

Each time a set of micro-services is attached to a new action and afterwards

performed, the system calls the corresponding rule service. If there is a failure

while executing micro-services, meaning that the corresponding action could not be

performed, the next rule with lower number is executed.

3.5.4 iRODS Architecture

Main facilities of the iRods architecture consists of [RWMS06]:

• Data grid architecture - provides a client-server application and shared data

sources.

• A database system - managing the data properties and operation which can

be applied on them.

• A rule system - rules executing management.

The iRODS Rule System The iRods Rule Engine is implemented on each iRods

server and it represents the core of the iRODS Rule System. Depending on the ex-

ecuted rule and its function, a set of micro-services grouped as an action can be

executed by the rule engine.

In iRODS we distinguish between two kinds of rule classes [iRG06a]:

• System Level rules - are server side rules, which are responsible for system

management facilities. Examples for such policies are: authentication and ac-

cess control, data management operations such as representation, replication,

data extraction, data replacement and distribution, automotive service logging

and auditing operations.

• User Level rules - are client side rules, which are executed using the irule

command or the rcExecMyRule API. Users can send a request to a server

asking to execute a particular set of micro-services. All data items are stored

on various iRODS servers where requested operations can be performed.

3.5 iRODS - integrated Rule-Oriented Data Systems 48

The Rule Execution server can queue and execute rules attached to actions, which

are performed in the background controlled by the Delayed Execution Service. Such

actions, which consist of different micro-service operations, which are queued and

executed afterwards, are for example checksum operations and data replication.

The architecture of the iRODs system is illustrated in Figure 3.9.

Figure 3.9: The architecture of the iRODS system [RWMS06]

3.5.5 Components of an iRODS System

Virtualization

Every data collection or data source communicating with the iRODS system is

represented by its logical name, which is independent from the physical location of

the data source itself. The Metadata Catalog manages the data associated with the

virtual representation of the logical names [iRG08b].

Data Transport

iRODS Data can be transfered among distributed storage systems in different man-

ner. The files being moved from one system to another can be divided into smaller

files and so separately transfered (bulk method) or at once (parallel method). The

system choses the method depending on the size of the file [iRG08b].

Metadata Catalog

3.6 IBM WebShepre Information Integrator 49

The iRODS metadata catalog is called iCAT. It offers facilities for metadata man-

agement. It handles system and user-defined metadata, and abstract physical-to-

logical name mappings. The iRODS V1.0 iCAT can be implemented using various

databases [iRG08b].

The Rule Engine

The Rule Engine implements a set of rules which are attached to executed actions

that contains a set of micro-services. Any executed task triggers a rule [iRG08b].

The Execution Engine

Micro-service are controlled by the execution engine and any iRODS server. A set of

micro-services grouped into actions can also be executed remotely, wheres the result

are returned after the action has been performed [iRG08b].

The Scheduler

iRODS system provides a scheduler which can delay task execution. The iCAT

handles schedule activity [iRG08b].

Messaging System

Message System is part of the iRODS future work.

3.6 IBM WebShepre Information Integrator

3.6.1 Introduction

WebSphere Information Integrator, formerly known as DB2 Information Integrator

enables applications to access distributed heterogeneous data resources such as DB2

UDB, Oracle, and Sybase, and data resources which do not build upon relational

data models such as text files and unstructured documents. Further it provides

access to XML related sources and documents, and data being accessed using Web

Service application.

WebSphere Information Integrator manages metadata of the corresponding data

sources using a unified metadata catalog [Erf05], which is provided by a federation

of DB2 UDB database engine.

The federated server system provided by the Information Integrator offers transpar-

ent object virtualisation while acting as a virtual database. The distributed objects

are organized in a table-like manner consisting of:

• ”A DB2 instance” - represents an instance of a federated server.

• ”A federated database” - one particular database operate as a federated database

for different relational and non-relational data resources.

3.6 IBM WebShepre Information Integrator 50

• ”data sources” - a number of data sources itself representing the distributed

objects.

• ”Client applications” - remote applications and users access server databases

requesting for different data objects, which are identified by their logical nick-

names referenced by the clients.

A information integrator federated system provides software components named

wrappers which communicate with various data resources. A so called wrapper mod-

ule provide various wrapper implementations for each data source, offering data ac-

cess facilities used by federated servers in order to establish connection to these data

sources, execute different operations and fetch desired data elements as illustrated

in Figure 3.10 below. Each wrapper represents data using a table-like structure

[ACD04].

Figure 3.10: WebSphere Information Integrator data federation using wrapper
[ACD04]

3.6.2 Overview

Federated databases act as one single database for client application and users con-

necting to the database. It implements a metadata catalog identifying and managing

the metadata information about data source and their properties, which is used for

3.6 IBM WebShepre Information Integrator 51

querying the data sources. Because the data sources are organized as relational

tables providing a unified view over such a data, the federated server is able to ex-

ecute SQL queries as if querying a single data source. Non-relational data sources

can be mapped to relational data structures allowing unified SQL querying, even if

the non-relational sources do not offer SQL facilities [BAB03].

WebSphere Information Integrator has four major components [ACD04] shown

in Figure 3.11:

• ”The relational wrappers” - implements various wrappers for relational database

access such as Sybase, Microsoft SQL Server, Oracle, ODBC, and Teradata

data sources.

• ”Non-relational wrappers ” - implements various wrappers for mapping non-

relational data sources, such as XML files, various research files from different

domains such as chemistry, biology and genetics.

• ”Global catalog” - handles the whole federated system metadata information,

including the data items information (operations, tables, attributes) provided

by the federated system, metadata information about wrapper module imple-

mentations, logical nickname representations, and the information about the

data sources itself.

• ”DB2 Net Search Extender” - provides search mechanism executing SQL queries

across various files and documents using automatically updated index data,

which are loaded into memory providing effective query results.

The global catalog provides nickname, index, and attribute information of dis-

tributed data sources [ACD04]. This metadata information handled by the global

catalog is used by the WebSphere query optimizer to execute SQL queries.

3.6.3 WebSphere Information Integrator functions and ob-

jects

Four of the following Information Integrator components must be defined in order

to provide data access to the Federated Server [BAB03]:

• Wrappers - provide data access modules which store information about various

data sources and their protocols. Additionally the properties and characteris-

tics of distributed data sources are recorded.

3.6 IBM WebShepre Information Integrator 52

Figure 3.11: WebSphere Information Integrator components [ACD04]

• Servers - wrappers provide data access to particular sources store at servers,

whereas each server is identified by a DLL statement, which refers to one

certain data source.

• Nicknames - provide logical abstraction of data sources, mapping the data to

local table. Each data source is identified by one unique nickname used by a

server for executing SQL queries.

• User mapping - user access ID information on server-side is mapped to a

password and data source ID used for further connections.

• Data type mappings - data types are mapped to DB2 data types in order to

query data, whereas the wrappers defines the mapping facilities.

• Function mappings - the wrappers implement also special DB2 mapping facil-

ities.

• Global catalog - handles the whole federated system metadata information,

including the data source information (attributes and operations), metadata

information about wrapper module implementations, logical nickname repre-

sentations, and the information about the data sources and mapping functions.

3.6 IBM WebShepre Information Integrator 53

Federated Server Each DB2 server having a running WebSphere Information

Integrator on it represents a federated server, which can be implemented on Unix,

Linux and Windows operating systems. Client applications have integrated data

access across distributed data sources, which are handled as one unified data source,

having transparent format, location and executed operations. The WebSphere In-

formation Integrator provides facilities for manipulation of XML sources and doc-

uments. The query results can be usual sql statements or XML documents, which

can be mapped into XML Schema. Federated Servers can be accessed through

usual database or service clients, which if preformed remotely are named pushdown

operations.

The data source registration on the WebSphere Information Integrator is pro-

vided using following steps [BAB03]:

• registration of the wrapper module - each wrapper is registered in the database

providing the data source access information.

• data source-server definition - each data source need to be declared as server

of the federated system.

• the authentication information - registration of the remote authentication fa-

cilities provided by user mappings

• the federated system connection - the SQL query statements should be directly

executable on each data source.

• definition of data type mappings - additional mapping definitions should be

provided if required to be applied on particular data sources.

• nickname and table identification - each data source refers to a corresponding

nickname, which identifies the data sources.

There is additional nickname metadata information, named column options, de-

scribing data source column objects, which can provide federated servers with further

information. This metadata used by wrappers indicates how the column data should

be handled.

Each data source contains a set of index information declared as the index specifi-

cation. Each time a new nickname is registered, the metadata global catalog saves

information about index specification of data sources adding corresponding table

information about the sources.

3.6 IBM WebShepre Information Integrator 54

Wrapper Wrappers offer a module library named wrapper module, providing ac-

cess information about data sources which communicate with federated servers. For

each date source different wrapper is implemented.

A wrapper consists of following operations [BAB03]:

• Federated object registration - the object property information is registered by

the a wrapper.

• Communication with the data source - the entire wrapper-data source commu-

nication information is managed by a wrapper.

• Services and operations - a wrapper provides various operation facilities of

different types of data sources. These operation might be query statements,

update facilities, data manipulation operations, transactions, etc. [ACD04].

• Data modeling - wrappers support various mappings of data sources into a

table representation managed by the federated server engine [ACD04].

WebSphere Information Integrator provides access to data sources illustrated in

Figure 3.12 below.

Figure 3.12: Supported data sources [ACD04]

3.6.4 Replication

With the release of WebSphere Information Integrator 8.2, IBM has introduced a

function called queue replication, also known as Q replication.

The data transfer across various relational data sources is provided by the replication

server, which might be used as a source and as well as destination replication server.

Examples for such servers are DB2, Oracle, SQL Microsoft and Sybase server, etc.

[BAB03].

The replication architecture is shown in Figure 3.13:

3.6 IBM WebShepre Information Integrator 55

Figure 3.13: Replication architecture [BAB03]

Q replication builds upon message queue mechanism in order to manage repli-

cation facilities by transporting data changes across replicated data source. Q repli-

cation is made of two components, Q Capture and Q Apply. The role of Q Capture

is to persistently perform database checks on recovery log, and generate messages,

which provide performed data changes. Those messages are afterwards loaded into

one or more MQ queues, as illustrated in Figure 3.14.

Figure 3.14: Q replication [Asc03]

There are three types of Q Replication [Asc03]:

• unidirectional replication - the replication is done across WebSphere MQ queues

from source to target table.

• bidirectional replication - the replication is performed across changes in table

copies on two servers in any direction.

3.7 Google Desktop Search 56

• peer-to-peer replication - the replication is performed across changes in table

copies on two or more different servers, and is often used for data synchroni-

sation.

3.7 Google Desktop Search

Google desktop search is a freeware desktop search tool propagated by Google. It

features a Google-like Web interface that offers an easy way to search for personal

information.

The tool provides a keyword search mechanism over a variety of personal resources

including emails, file directories, video and music files, photos, viewed Web pages,

and more [Inc08] by indexing the supported data types. It generates file and other

relevant user data copies every time a user views the data allowing the user to access

the stored information afterwards. As a result, a user can access and find needed

information even after it has been deleted.

The Google Desktop tool is running a local Web server which listens to port 4664.

The application handles only local request in order to provide more security [AAS07].

Figure 3.15 shows the Google desktop search interface.

3.8 Phlat & Windows Desktop Search

3.8.1 Introduction

Phlat is a search system for personal data providing an user interface that enables a

label facilities for personal data management such as file directories, personal audio

and video files, email, and more.

A basic keyword search in conjunction with a specification of particular properties

of saved personal information provide effective search results. Additionally, users

can define personal information metadata, which describes the stored data more in

detail and helps achieve better results of desired information.

3.8.2 Design Principles

The Phlat design introduces several core principles [CRDS06].

• ”Unify text entry and filtering” - a user can perform a query statement by

using a filter, a keyword, or both.

3.8 Phlat & Windows Desktop Search 57

Figure 3.15: The Google Desktop interface

3.8 Phlat & Windows Desktop Search 58

• ”Current search criteria has to be persistently visible” - all used filter, keywords

and the order of returned search results, while performing searches, has to

maintain visible for users at any time.

• ”Provide rapid query iteration” - effective search results and sophisticated

result updates should be provided.

• ”Allow iteration based on recognition” - the applied results should provide a

reuse facilities to explore the result more in detail.

• ”Allow for abstraction across property values” - a user should be able to per-

form a unified query on various personal information independent of the un-

derlying data types.

• ”User Interface has to support both tagging and filtering” - one unified interface

design should provide filter and tag facilities.

• ”Integration with file system/email operations” - common data manipulation

facilities such as copy/paste, drag and drop should be supported by the user

interface.

3.8.3 Architecture

Phlat is implemented in Microsoft Visual C# and builds upon the Windows Desktop

Search engine. All user personal information such as file directories, emails, audio

and video files, including the Web related information such as caches are indexed.

Further a declaration of user-defined metadata of the stored personal information

enriches the index and provide more sophisticated search results.

User Interface The Phlat UI consists of 3 main areas [CRDS06] as illustrated in

Figure 3.16:

Query Area

Query Area provides the basic information about the search and query properties,

indicating a status and a quality of the results. Various property filters can be

attached to any query affecting the displayed results.

Filter Area

Filter Area consists of six filters: ”Tags, Saved Queries, Path, People, Date, and

Type”. Every filter displays its property value, filtering the provided query results.

3.9 Chimera - A Virtual Data System 59

Figure 3.16: The Phlat interface

Filter area provides various types of filter abstractions, which can be associated with

particular data elements more sophisticated search results.

Results Area

The result are shown as a table-like view, displaying the properties above the actual

results. The results can be ordered by each property represented by a column,

consisting of the query result, the path directory of shown results, and additional

tags. User may browse through displayed search results and use them for defining

new queries.

3.9 Chimera - A Virtual Data System

3.9.1 Introduction

Chimera is a virtual data system, which provides a workflow management tool. It

mainly consists of a Virtual Data Catalog, used for derived process organization and

a Virtual Data Language Interpreter (VDL), which understands user requests and is

able to execute SQL statements on generated data sets. VDL is location transparent,

storing the workflow related definitions in the Virtual Data Catalog. The main idea

is to provide semantic information about how a data set is derived from various

data sources and which operations were performed on such data, uncovering the

3.9 Chimera - A Virtual Data System 60

relationships among these data sets. The virtual data system offers different data

management facilities which can be executed on generated data sets, such as data

replication, restore or redefine operations over already defined data items. Chimera

virtual data catalog represents and manages all processes and operation as well as

their characteristics applied on derived data.

3.9.2 Chimera Architecture

As already mentioned the core of chimera architecture consists of two main compo-

nents, which is illustrated in Figure 3.17:

• VDC - a Virtual Data Catalog - ”implements the Chimera virtual data schema.”

and

• VDL - a Virtual Data Language Interpreter - interprets user requests and

application calls into operations VDC operations.

Figure 3.17: Chimera architecture [FVWZ02]

Virtual Data Language acts as a interface between application calls and chimera

operations. It provides facilities for common database definitions and query dec-

larations, which can be performed over databases. Virtual data applications, as

illustrated in the Figure can use Chimera information in conjunction with compo-

nents implemented within a Data Grid in order to deploy application requests.

3.10 myExperiment 61

Query results can be represented in a direct graph structure specifying the virtual

relations among data. The most important ”entities of interest” in Chimera are:

• a tranformation - indicates a program execution information by describing the

attributes of the execution process and its properties, such as a program name,

location, version, etc.

• a derivation - indicates a transformation execution information by describing

the data set information being related to performed transformations, such as

data set name, execution time, property values, etc.

• a data object - indicates a item name generated by a derivation process, repre-

senting a logical file name (LFN) abstracting from a actual location of a file.

Any data object is associated with a set of metadata describing the object.

The information about a derivation or transformation process can be provided by a

user or generated form different assess interfaces. A logical transformation is iden-

tified by its unique name, the namespace defining the range of the name, and a

number of the transformation version. It might include several derivations, repre-

senting various transformation parameter values.

The VDL defines two data derivation operations: TR (transformation), generates a

object and DV (derivation), generates a invocation, which are stored in the virtual

data catalog, when executed by the language interpreter.

The virtual data language builds upon SQL langugae and provides SQL query ex-

pressions over transformations and derivations by using different metadata describ-

ing logical file names, transformation and derivation names, application names, etc.

3.10 myExperiment

3.10.1 Introduction

myExperiment provides a Virtual Research Platform for workflow management in e-

Science applications, allowing scientist to easy the collaborative work and exchange

their knowledge more efficiently. It enables scientist to view workflows from other

scientist or research groups as well as publish their own research results in form

of workflows. myExperiment is implmented as a Web site and it is available at

www.myexperiment.org [GR07]. The two main myExperiment components are users

and contributors, representing the workflow objects that can be organized using

myEperiment platform. Each user has access to a private section, containing a

3.10 myExperiment 62

users personal information and a public section, containing the information user

share with other scientists. There are several types of contributions [Cru08]:

• Workflows - represent the main object in myExperiment. Statistic information

about workflows such as view and download count is recorded.

• Groups - users can create and join groups, which have title and description

information. All groups are declared as public.

• Packs - are a set of objects or contributions.

• files - various files can be saved in myExperiment.

• Experiments - workflows are invoked within experiments. Every experiment

includes a description, a name, and a an executed job, whereas each job can

have a different running status.

• Site announcements - managed by site administrator.

• Ownership - contributions can be shared depending on the type definition,

which can be public , friend or group.

myExperiment offers user authentication facilities provided by OAuth. It is gener-

ally a protocol service, which allows users to specify and register keys and attach

privileges to them.

3.10.2 Basic Concepts

As already mentioned, all object in myExperiment are represented as contributions,

whereas all relevant metadata is recorded by the system. The object resources itself

are also known as contributables, such as files, workflows and packs. myExperiment

distinguishes between two different levels of object abstraction: high-level (some of

the contribution metadata is not displayed) and low-level abstraction (all recorded

metadata can be viewed). It further defines following structural constraints for

[Ale08]:

• contributions - represents an object and may have one contributable abtrac-

tion, providing following resource details: contributor id and type, date, at-

tached permissions, and number of views and downloads.

• contributables - unique abstraction name of one contribution. only files, work-

flows and packs may appear as contributables.

3.11 Conclusions 63

• contributors - can own many contributions, and specify permissions and policy

definitions.

Contribution tables consists of types and ids while using contribution ids to specify

relations between contributables and contributors.

myExperiment also supports resource versioning, recording all resource versions,

which indicates how a particular resource (current myExperiment implementation

allows only workflow versioning) was deployed over a period of time.

Figure 3.18 illustrates the myExperiment UI. The main page of the Web site provides

Figure 3.18: The myExperiment UI [oMoS08]

basic information on which facilities myExeriment offers to its users. In addition,

further project and documentation information can be explored.

3.11 Conclusions

So far dataspace paradigms have been mainly considered in terms of personal in-

formation management. In [FHM05] the concepts of dataspaces are introduced in a

visionary way providing the most important key concepts designing e-Science Life

Cycle Ontology with regards to data management of a heterogeneous data sources

represented as participants in a dataspace while being described by an intelligent

relationship model.

3.12 Summary 64

Influenced by this vision a personal dataspace management system with an own data

model, abstracting from underlying substructures of data sources, and a new query

language is presented in [BDG+07]. However, this system is limited to personal

information management only, handling data of an individual while not considering

dataspace management facilities for large scale proposes.

Other projects like iRods [RWMS06], SRB [BMRW98], and the IBM’s commercial

product Websphere Information Integrator [BAB03] have considered some dataspace

concepts such as a metadata catalog and a logical name abstraction concepts in their

architecture; however the key dataspace paradigm, which is to provide semantically

rich relationships among heterogeneous data elements represented as participants,

is not taken into consideration. A first approach towards realization of dataspaces

regarding the Grid is given in [EBT06].

Chimera [FVWZ02] provides a virtual data system, which offers a workflow manage-

ment tool. The main idea is to provide semantic information about how a data set

is derived from various data sources and which operations were performed on such

data, uncovering the relationships among these data sets. This approach, compared

to the e-Science Life Cycle Data Model, is more data set oriented managing the

workflow information, while the Life Cycle View aims on describing the entire rela-

tionship information while performing scientific applications, including information

on researchers, research goal specifications, data preparation tasks, data analysis

tasks, and produced results which can be published for further discovery and exper-

imentation.

myExperiment [GR07] provides a Virtual Research Platform for workflow manage-

ment in e-Science applications, allowing scientist to easy the collaborative work and

exchange their knowledge more efficiently. It enables scientist to view workflows

from other scientist or research groups as well as publish their own research re-

sults. However, the main work here is focused on knowledge exchange in form of

workflows with no regards of tracking down background data source information

associated with scientific experiments.

Both systems, Chimera and myExperiment are targeting to model relationships from

primary and derived data through collecting provenance data of executed workflows.

However, dataspace search and query features are not tightly focused.

3.12 Summary

The following table shows a comparison matrix of the above described systems and

tools with regard to key-Dataspace Paradigms:

3.12 Summary 65

DS

Pradigms

iMemex SRB iRODS IBMII GDS Phlat Chi myExp

Semantic In-

tegration

x

advanced

querying

x x

enriching

keyword

x

property

search

x

Semantic re-

lationships

x

Browse by

relationship

Update

Mechanism

x x x x x x x x

full control of

the data

x x x x x

Automatically

updates

Schema first

no schema

Ranking

query results

x x

RDF

OWL

Meta data

Catalog

x x x x x x

Own data

model

x

keyword

search

x x x x x x x

large scale

Dataspaces

x x x x

security

issues

x x x x x x x

Table 3.1: Dataspace paradigms comparison matrix

3.12 Summary 66

DS

Pradigms

iMemex SRB iRODS IBMII GDS Phlat Chi myExp

Managing

sub-

Dataspaces

Role man-

agement

x x x x

User groups x x x x x x

Registration

wizard

x x

Data Statis-

tics

Learning fea-

tures

Autonomic

features

Own query

language

x x x

Table 3.1: Dataspace paradigms comparison matrix

Chapter 4

e-Science Life Cycle Data Model

4.1 Introduction

A great challenge currently faced by the data management community is to rise up

the level of abstraction at which data is managed. Today we have well integrated

data base management systems such as the widely used RDMS, which offer rich data

management features for a single data source. However there is a lack of something

when it comes to the need of managing different heterogeneous and distributed data

sources.

The concept of Dataspaces visionary introduced by Franklin et al. [HFM06] gave

Figure 4.1: Data management community - dataspace research

rise to new data management challenges and influenced various database-oriented

data management and personal data management approaches, for example such as

4.1 Introduction 68

iMemex [BDG+07], however is so far not considered for data management in ad-

vanced scientific applications.

The e-Science Life Cycle Ontology can be seen as an application range extension of

the common data management applications by introducing the dataspace concepts

in the context of e-Science as illustrated in Figure 4.1. It provides an ontology based

dataspace model for data being collected in scientific collaborations uncovering the

relationships among primary and derived data in scientific experiments.

In order to elaborate how dataspace concepts can support e-Science, we have in-

vestigated what happen, or better what should ideally happen to data in e-Science

applications. The result of this investigation is an iterative and hierarchical meta-

model with five main activities, represented in Figure 4.2, which is defined as fol-

lowing: The e-Science life cycle - a domain independent ontology-based iterative

metamodel, tracing semantics about procedures in e-Science applications. It consists

of five main activities grouped into iterations and organized as instances of the e-

Science life cycle ontology, which are feeding a dataspace, allowing it to evolve and

grow into a valuable, intelligent, and semantically rich space of scientific data. First

we provide an overview of these activities and then in Section 4.2 a more detailed

discussion.

At the beginning of the life cycle targeted goals are specified, followed that a data

preparation step including pre-processing and integration tasks is fulfilled. Further

appropriate data analysis tasks are selected and applied on the prepared dataset

of the previous step. Finally achieved results are processed and published, which

might provoke further experimentation and consequentially specification of new goals

within the next iteration of the life cycle. The outcome of this is a space of primary

and derived data with semantically rich relationships among each other providing

(a) easy determining of what data exists and where it resides, (b) searching the

dataspace for answers to specific questions, (c) discovering interesting new data sets

and patterns, and (d) assisted and automated publishing of primary and derived

data.

Each activity in the life cycle shown in Figure 4.2 includes a number of tasks that

again can contain a couple of subtasks. For instance, the activity Prepare Data cov-

ers, on a lower level of abstraction, a data integration task gathering data from mul-

tiple heterogeneous data resources that are participating within an e-Infrastructure.

This task consists of several steps that are organized into a workflow, which again is

represented at different levels of abstraction - from a graphical high level abstraction

4.2 e-Science Life Cycle Activities 69

representation down to a more detailed specific workflow language representation,

which is further used to enact the workflow.

Figure 4.2: The e-Science life cycles

4.2 e-Science Life Cycle Activities

1 Specify Goals - Scientists specify their research goals for a concrete experiment,

which is one iteration of the entire life cycle. This is the starting activity in the

life cycle. A textual description of the objectives, user name, corresponding

user group, research domain and other optional fields like a selection of and/or

references to an ontology representing the concrete domain is organized by this

activity.

2 Prepare Data - Once the objectives for this life cycle are either specified or

selected from a published life cycle that was executed in the past, the life

cycle goes on with the data preparation activity. Here it is specified which

data sources are used in this life cycle in order to produce the final input

dataset, by the data integration process. For example, the resource URI,

name, and a reference to the OGSA-DAI [M. 07] is the de facto standard for

data access and integration for relational and xml data as well as file resources.

Resource File is recorded. The final dataset as well as the input data sets are

4.3 Life Cycle Metamodel 70

acting as participants in the dataspace and are referenced with an unique id.

Additionally, the user specifies a short textual description and optionally some

keywords of the produced data set.

3 Select Appropriate Tasks - In this activity the data analysis tasks and to be

applied on the prepared dataset are selected. In e-Science applications it is

mostly the case that various analytical tasks, for instance the widely used

data mining techniques, are executed successively. The selected tasks, which

are available as Web and Grid services, are organized into workflows. For

each service, its name and optionally a reference to an ontology describing the

service more precisely is captured. Also for the created workflow, its name,

a short textual description, and a reference to the document specifying the

workflow are recorded.

4 Run Tasks - In this activity the composed workflow will be started, monitored

and executed. A report showing a brief summary of the executed services

and their output is produced. The output of the analytical services used is

represented in the Predictive Model Markup Language (PMML) [Dat08] which

is a standard for representing statistical and data mining models. PMML

documents represent derived data sets, thus they are managed as participants

of the scientific dataspace and considered as resources by this activity.

5 Process and Publish Results - This is the most important activity in order to

allow the underlying dataspace to evolve and grow into a valuable, powerful,

semantically rich space of scientific data. Based on the settings of the user, one

automatically publishes the results of the data mining tasks, represented in

PMML as well as all semantical information captured in the previous activities.

Different publishing modes allow to restrict access to selected collaborations,

user groups, or research domains.

4.3 Life Cycle Metamodel

Ontological knowledge is sharable, understandable to machines, and supports the

enrichment of data sources and relationships at the semantic level. Therefore we

have developed the e-Science life cycle ontology, which organizes the concepts and

coherences of the above described e-Science life cycle activities. Strong regard was

put on considering input (primary) and output (derived) data sets as well as relevant

background data (e.g. domain ontologies, data statistics, OGSA-DAI resource files,

workflow descriptions, etc.) for modeling an intelligent relationship paradigm.

4.3 Life Cycle Metamodel 71

At first, supported by the ontology, a metamodel independent from the various

e-Science domains is set up. Then this metamodel is applied to describe domain-

specific iterations of the e-Science life cycle, which describe the relationship among

data participating within the scientific dataspace, illustrated as different abstraction

layers in Figure 4.3.

Figure 4.3: Abstraction layers of scientific dataspaces (PD - primary data, DD -
derived data, BD - background data)

One iteration of the e-Science life cycle has, in short, a goal specification, a set of

input data (primary data), a set of output data (derived data), a set of background

data, and a set of activities describing what has been done to the input data sets in

order to produce the output data sets. These data sets are populating the scientific

dataspace, enriched with semantic relationships among each other, described by its

4.4 Environment of the e-Science Life Cycle 72

corresponding life cycle iteration. We can see from this, that the dataspace is evolv-

ing with an increasing number of life cycles.

This profound knowledge about iterations of the e-Science life cycle, consolidated

within instances of the ontology represents an intelligent relationship model for

scientific dataspaces, because it provides (a) creation, (b) representation, and (c)

searching of semantically rich relationships among dataspace participants. Realiza-

tion of a scientific dataspace paradigm will highly contribute to the development of

high productivity e-Science frameworks.

With the help of the e-Science life cycle ontology, it is made possible for scientists to

describe, execute and share their e-Science experiments with others in an efficient

manner. Further, it is feasible to search for published instances of the life cycle or

even for instances of single activities of the life cycle. In such a way, a scientist could

search for all published goal specifications corresponding to his research domain, by

searching for a given domain name. The dataspace will then provide not only the

published instances of the activity, but also the complete instance of the e-Science

life cycle, including the inputs of other activities and its corresponding results. In

addition, it will give hints about similar life cycle iterations by using the semanti-

cally rich relationships described by the ontology.

With this in mind, it will be easier for research groups to engage collaboration, pro-

vide knowledge transfers within collaborations and among different research groups

with respect to different research areas. In conclusion, the e-Science life cycle meta-

model is likely to unify the process of publishing primary, derived, and background

data sets as well as the their interconnection and make it easy for scientists to

register, describe and execute new e-Science experiments and for users to find, ex-

plore and understand these applied experiments. The e-Science life cycle ontology

is available at http://www.gridminer.org/e-sciencelifecycle/.

4.4 Environment of the e-Science Life Cycle

Scientific dataspaces will be set up to serve a special subject, which is on one hand to

semantically enrich the relationship of primary and derived data in e-Science appli-

cations and on the other hand to integrate e-Science understandings into iterations

of the life cycle model allowing scientists to understand the objectives of applied

e-Science life cycles. Figure 4.4 shows the environment of e-Science life cycle. In

particular there is a set of participants participating to one ore more activities of

4.4 Environment of the e-Science Life Cycle 73

the e-Science life cycle.

Figure 4.4: Environment of the e-Science life cycle

Each activity feeds the dataspace with new participants, as for example the

activity Specify Goals adds new domain ontologies, the activity Prepare Data adds

new final input data sets as well as OGSA-DAI resource files, and the activity Select

Appropriate Tasks adds new workflow description documents, while the activity Run

Tasks adds new PMML documents describing the data mining model applied, and

finally the activity Process and Publish Results adds new documents visualizing the

achieved data mining outputs. All these participants belong to at least one or more

e-Science life cycles, expressed as instances of the ontology describing its relationship

and interconnection to a great extend.

Each iteration of the life cycle metamodel will produce a new instance of the

ontology. Based on the publishing mode, set by the scientist who accomplished the

life cycle, the whole instance will automatically be published into the dataspace

and thus is available to other users of a wider collaboration with respect to other

4.5 Search and Query Scientific Dataspaces 74

research areas. We distinguish between four publication modes, (1) free access,

(2) research domain, (3) collaboration, and (4) research group. Users will have

access to sets of participants available in the scientific dataspace, depending on

their assigned role. By this, the concept of managing sub-dataspaces is realized. A

sub-dataspace contains a subset of participants and a subset of relationships of the

overall dataspace. There can be sub-dataspaces setup for different domains, then

for different research collaborations and even for single research groups. e-Science

experiments that were published using the free access mode, will participate in the

overall dataspace, thus its participants and the life cycle instances are accessible

for every one having access to the scientific dataspace. In order to access data of

a specific life cycle iteration, that was published using the research group mode, it

will be necessary to be member of that specific research group, as the data will be

participating only in the corresponding sub-dataspace.

4.5 Search and Query Scientific Dataspaces

Based on our unified e-Science metamodel, search and query services can be pro-

vided for all the participants of the scientific dataspace. Hence, it is possible to

forward a keyword query to all participants, which has the aim to identify relevant

data sets. However, each query submitted to the scientific dataspace, will receive

not only the matching data but also data of its followed e-Science activities. For

instance it will be possible to receive what mining task were applied on a discovered

dataset, the concrete workflow, the workflow report, the results presented in PMML

and its corresponding visualizations.

Using SPARQL query language for RDF [PS08] and semantically rich described

e-Science life cycles, consolidated within instances of the ontology, keeping rela-

tionships among each other, the dataspace is able to provide answers to specific

questions, such as the following:

A ”I have found some interesting data, but I need to know exactly what correc-

tions were applied before I can trust it.”

B ”I have detected a model error and want to know which derived data products

need to be recomputed.”

C ”I want to apply a NIGM-analysis on meridian HE GU. If the results already

exist, I’ll save hours of computation.”

4.6 GridMiner Knowledge Discovery System enhanced by the e-Science
Life Cycle Model 75

D ”Is there any experiment done on meridian BA XIE”

Through portals and advanced user interface scientists are supported with the

needed tools, which enable users to express search queries visually and in an simple

way. The output is simply SPARQL, which allows to query instances of an ontology

efficiently. This is part of our ongoing work, currently under investigation. However,

the basis for intelligent dataspaces for e-Science is developed and have cleared the

way towards developing high-productivity e-Science frameworks.

4.6 GridMiner Knowledge Discovery System en-

hanced by the e-Science Life Cycle Model

GridMiner [TBW+08] is a knowledge discovery system on the grid, which was devel-

oped at the University of Vienna. Several different services, integrated within the

GridMiner architecture, such as data integration, data selection, data transforma-

tion, data mining, pattern evolution and knowledge presentation interact together

providing an service-oriented grid application.

The e-Science Life Cycle Ontology can be applied on this knowledge discovery pro-

cess creating semantic relationships among participating data elements representing

the primary and derived data in e-Science applications and integrating e-Science

understandings into iterations of the life cycle model.

Knowledge discovery in databases is an interactive process which provides useful

and understandable pattern identification of data. GridMiner project defines sev-

eral different phases of knowledge discovery organized as service-oriented scientific

workflows [TBJ08]. Figure 4.5 illustrates the GridMiner knowledge discovery refer-

ence model enhanced by the e-Science Life Cycle components. In the following we

will discuss how the particular knowledge discovery phases can be supported by the

e-Science life Cycle Model.

Scientific problem identification

The Scientists identifies in this initial phase the main goals and requirements for

their research problems. In the Specify Goals activity of the life cycle model we cap-

ture all goal and objective specification related information provided by the user.

Data quality understanding

This phase is concerned with data quality identification issues, introducing the rele-

vant data sets to the user. The interesting data subsets, data statistics and possible

4.6 GridMiner Knowledge Discovery System enhanced by the e-Science
Life Cycle Model 76

Figure 4.5: GridMiner knowledge discovery system enhanced by the life cycle model

4.6 GridMiner Knowledge Discovery System enhanced by the e-Science
Life Cycle Model 77

quality problem reports can be organized as background data of the life cycle datas-

pace model.

Data pre-processing

Data pre-processing represent the main phase of knowledge discovery process. The

main goal here is to clean the data producing an improved data set which is recorded

by the Prepare Data life cycle activity, while also specifying which data sources are

used in order to produce the final input dataset of the data integration. For more

information about which data source relevant information is recorded in detail we

refer to Section 4.2

Data Mining

This phase is concerned with data analysis tasks applied on the prepared dataset,

which are organized as workflows. Various data mining methods such as association

rules, classification or regression are executed in order to analyze the prepared data

sets. The valuable workflow and data mining related information is organized by

the Prepare Data life cycle activity.

Evaluation

This phase deals with representation of the discovered information. Various visual-

ization techniques are used for representing the results which act as participants in a

dataspace. This information is managed by the Run Task activity and is referred as

the derived data of the life cycle ontology. The output of the analytical services used

is represented in the Predictive Model Markup Language (PMML) [Dat08] which is

a standard for representing statistical and data mining models.

Knowledge deployment

Idea of analytical data mining processes is to increase the knowledge and further

share the achieved results. Finally achieved results are processed and published,

which might provoke further experimentation and consequentially specification of

new goals within the next iteration of the life cycle.

The following Figure 4.6 illustrates a high-level architecture model of the e-Science

Life Cycle Ontology interacting with the GridMiner system. The architecture con-

sists of two main components: the GridMiner System implementing a number of

services and the e-Science Ontology which is integrated into a Dataspace Frame-

work. Some of the Ontology activities are supported by the GridMiner Services as

described above. A DataSpace UI provides a user environment allowing a user to

communicate with a dataspace.

GridMiner implements a number of various services and interfaces which are used in

4.6 GridMiner Knowledge Discovery System enhanced by the e-Science
Life Cycle Model 78

Figure 4.6: High-level e-Science ontology architecture model interacting with the
GridMiner system

the Knowledge Discovery Process. Figure 4.7 provides an overview of these services

enhanced by the Dataspace components [KHB04], which are briefly describe below:

GridMiner Dynamic Service Control (GMDSCE) This service is concerned

with workflow execution for a particular knowledge discovery process.

GridMiner Mediation Service (GMMS) This service provides a unified virtual

data source by integrating heterogeneous distributed data sources.

GridMiner Information Service (GMIS) Information services provide informa-

tion on resources which can be found within a grid system.

GridMiner Resource Broker (GMRB) Resource Broker is responsible for re-

quest and resource matchmaking.

GridMiner OLAP/Cube Service (GMCMS) This service generates OLAP

Cubes from various data sources.

GridMiner Transformation Service (GMDT) Certain data has to be trans-

formed before appropriate data mining techniques can be applied on it, which is the

main task of this service.

GridMiner Preprocessing Service (GMPPS) These services deals with task

which are executed before the main data mining processes.

GridMiner DataMining Service (GMDMS) This service represents the main

component of the GridMiner system and provides information about all data mining

methods and techniques.

GridMiner OLAP Mining Service (GMOMS) OLAP Mining service facili-

tates data mining services which can be applied on cubes.

4.6 GridMiner Knowledge Discovery System enhanced by the e-Science
Life Cycle Model 79

Dataspace Components

Dataspace Participants. Dataspace consists of primary, derived and background

data, which act as participants of a dataspace.

Dataspace Access Service. Dataspace Access Service manages the user and par-

ticipant information regarding the dataspace access.

Dataspace Registration Service. This service provides user and participant reg-

istration information.

Dataspace Catalog Service Catalog service summarize a dataspace participant

meta information. It provides the entire information about all the data sources act-

ing as participants in a dataspace.

Dataspace Relationship Service. This Service manages the information how

dataspace participants are related to each other while keeping track of all participant

relationships management information, monitoring the evolution of the participant

relationships and their creators.

Life Cycle Ontology Repository Service. The Ontology Repository records all

life cycle related information that is generated while executing life cycle iterations

like life cycle ids, corresponding activities, involved scientists, produced outputs,

etc.

Dataspace Presentation Service. The results of scientific experiments performed

as life cycle iterations are presented in a dataspace allowing a user to explore the

content of published information.

Dataspace SPARQL Service. This service allows SPARQL query execution on

executed life cycle iterations organized as ontology instances.

Dataspace Publication Service. The life cycle iteration results and its corre-

sponding participant information is published by a certain publication mode, which

is covered by the Publication Service.

4.6 GridMiner Knowledge Discovery System enhanced by the e-Science
Life Cycle Model 80

Figure 4.7: The GridMiner components enhanced by the dataspace components

Chapter 5

e-Science Life Cycle

Implementation

5.1 Introduction

The most important issue building the Life Cycle Ontology was to capture and

uncover the e-Science Life Cycle knowledge by identifying the key concepts and re-

lationships described in the previous chapter. The identification of general abstract

terms related to defined Life Cycle concepts such as the participants including pri-

mary data, background data, and derived data, then life cycle activities, research

domain and researcher, was a initial point in defining the classes and their relations

to each other as main ontology concepts. The more specific concepts describing for

example the life cycle activities more in detail such as data preparation activity,

which background data it uses, and what kind of output data it produces, were

identified next. Required semantic relationships between identified concepts were

declared providing a higher complexity level while appropriate notation indicating

the relation role between classes was identified. There was great emphasis on defining

authentication concepts based on a publish mode of a particular life cycle provided

by a scientist who executed the corresponding life cycle. While going more into de-

tail defining specific ontology concepts, a certain rework was occasionally required

in order to guarantee the consistency of the ontology. Finally, ontology use case

scenarios and applications were applied to identify further classes and relations pro-

viding more knowledge about the ontology. The ontology was created using Protege

OWL Plugin 3.3.1 [fBIR08].

5.2 Methodologies for Ontology Creation 82

5.2 Methodologies for Ontology Creation

The goal of this section is to present the main methodologies for ontology creation.

A methodology is defined by IEEE [IEE08] as ”a comprehensive, integrated series

of techniques or methods creating a general system theory of how a class of though-

intensive work ought be performed” [GPFLC04]. The ontology development process

deals with identifying the most crucial activities which are performed while creating

ontologies. There are three main Types of activities [GPFLC04]:

• Ontology management activities - task identification, arrangement, and execu-

tion time is managed by this activity including a control and quality facilities

for performed tasks.

• Ontology development oriented activities - describes the most important issues

considering ontology development such as the ontology environment, referring

to how and where the ontology will be used, the ontology specification, con-

ceptualization, formalization and implementation, addressing the main devel-

opment steps, and finally the ontology application.

• Ontology support activities - includes a knowledge discovery, evaluation and

documentation process while building ontologies.

In the following we present some of the most important methodologies building on-

tologies:

Unschold and King’s method

In 1995 Unshold and King introduced the first method for creating ontologies. The

main process includes four building steps, which are:

• Purpose identification - specification of the relevant application domain terms,

goals, ontology purpose and user identification.

• Ontology building process - key concepts identification and term relationships

of the specified domain, textual descriptions and definitions of classes and re-

lationships is provided. We distinguish here between three different concept

strategies in order to build an ontology: (1) the bottom-up strategy - first the

specific concepts such as a dataSet or workflowDocumenet are identified and

then a more general abstraction is modeled grouping the concepts for example

into derivedData participants of a dataspace. As a result we receive a more

detailed concepts while increasing a inconsistency risk while requiring more

rework. (2) the top-down strategy - first an abstract concept is modeled and

5.2 Methodologies for Ontology Creation 83

then a specification of this model. This results in a less consistent model,

requiring greater rework and more effort. (3) the middle-out strategy - this

approach specifies the core concepts and basic classes first which for example

are represented trough different participant categories such as backgroundData,

primaryData and derivedData, Then, we specify the concepts on the top such

as participant and concepts on the bottom such as workflowDocument repre-

senting a particular derived data output document.

• Evaluation - the ontology is evaluated using appropriate application environ-

ments.

• Documentation - the notation, concepts and their relationships should are

documented.

Grüninger and Fox’s Methodology

in 1995 Grünninger and Fox proposed a formal building and evaluation concept

designing ontologies. The core methodology processes are: (1) scenario identifica-

tion - the ontology development is application scenario related, providing solutions

and a formal knowledge model of the classes and relationships which will be used

while building ontology. (2) informal competency question elaboration - represent

the informal questions, expressed in natural language, that should be answered us-

ing the implemented ontology. (3) terminology specification - using the extracted

content and knowledge of a ontology, one can identify the terminology indicating the

concepts and their relations. (4) formal specification of competency questions using

formal terminology - the informal questions, expressed in natural language, are for-

mally represented. (5) axioms specification using first order logic - term definition

of a ontology using axioms, and (6) completeness theorem specification - condition

definition providing the complete answers to the competency questions.

METHONTOLOGY

Methontology was introduced in 1997 by the Ontology Group at Universidad Po-

litecnia de Madrid, allowing building knowledge level ontologies. The core task

processes while creating ontologies using Methonology are: (1) glossary of terms

specification - term definition of the relevant domain of interest is specified, in-

cluding concepts, instances, properties representing the relationships among the

concepts, textual descriptions, synonyms, etc. (2) concept taxonomy specification -

after the terms are identified, a concept taxonomy is specified providing a hierarchy

model definition. Each of the in Unschold and King’s method introduced strategies

5.2 Methodologies for Ontology Creation 84

(top-down, bottom-up, middle-out) can be applied here. (3) ad hoc binary rela-

tion diagram specification - the relationships among concepts are defined specifying

the domains and ranges of each relation. (4) the concept dictionary specification -

property and relationship specification describing the previous generated taxonomy

concepts, including all domain related concepts, their instances and relationships.

(5) detailed specification of the ad hoc binary relations - detailed description of the

concept dictionary in form of a relation table representing the Object Properties.

(6) detailed attribute specification - all attributes specified in the concept dictionary

are described in detail, including the name, the value types, domain and ranges, rep-

resenting the Data Type Properties. (7) detailed class attribute definition - all class

attributes specified in the concept dictionary are described related to the class they

belong to. (8) detailed constants definition - each constant specified in the term

glossary is described. (9)formal axiom definition - formal axiom table, including

the logical expressions, description, name, corresponding concepts and attributes,

is generated. (10) rule definition - ontology rule definition, including the name,

description, expression describing the rule, concepts and relations. (11) instance

definition - instance specification, including the name, the concept the instance be-

long to and the attribute values.

On-To-Knowledge

The main goal of the On-To Knowledge approach is concerned with knowledge

management improvement in large and distributed areas. Ontologies created using

On-To-Knowledge are strongly application dependent, specifying the ontology goals

with respect to usage application. Therefor this particular methodology was used

to develop the e-Science Life Cycle Ontology.

In the following we are going to illustrate and describe the main On-To-knowledge

methodology processes applied on the e-Science Life Cycle Ontology:

• Feasibility study - concept investigation and elaboration process describing the

model and application usage. Goals specification, e-Science Life Cycle Data

Model design, textual descriptions and specifications. Concept and relation-

ship analysis, users involved, data source environment specification. Solution

targeting, usage scenarios analysis.

• Kickof - the ontology requirements are specified targeting the main concepts

such as the participants, activity outputs, main activity tasks, more detailed

domain and goal identification, ontology design models with respect to data

sources involved, use cases and user role definitions, including the concepts

5.3 Life Cycle Ontology Classes 85

and relationships identification.

• Refinement - the abstract concepts and relationships specified in the previous

precesses are modeled and formalized using the Web Ontology Language.

• Evaluation - this process demonstrates the usage of the implemented ontology

applied on generated instances of the domain of interest. In this case SPARQL

query language is used to extract the ontology knowledge.

• Maintenance - this process describes the maintenance role management.

5.3 Life Cycle Ontology Classes

First of all we are going to identified all Life Cycle Ontology classes and property

restrictions applied one these classes, which provide the most basic abstraction con-

cept in OWL. Every OWL class, defined by a user, is a subclass of a predefined class

owl:Thing and therefor each individual is member of this class.

Life Cycle represents a central ontology class instance containing five main activities

as shown in Figure 5.1 below. The concrete OWL implementation looks as follows:

Figure 5.1: e-Science life cycle - activity relation

<owl:Class rdf:about="#lifeCycle">

5.3 Life Cycle Ontology Classes 86

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasTaskExecution"/>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasTaskSelection"/>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasResultPublishing"/>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasGoalSpecification"/>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDataPreparation"/>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

5.3 Life Cycle Ontology Classes 87

<owl:Restriction>

<owl:onProperty rdf:resource="#isExecutedBy"/>

<owl:allValuesFrom rdf:resource="#Scientist"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isPublishedBy"/>

<owl:someValuesFrom rdf:resource="#publicationMode"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

We define a class lifeCycle as a subclass of a predefined class owl:Thing. A constraint

owl:maxCardinality defines a value, which specifies the number of property values

individuals of a class may contain at most, in this case a lifeCycle may contain at

most one value of each of the declared properties: hasGoalSpecification, hasDat-

aPreparation, hasTaskExecution, hasTaskSelection, hasResultPublishing, which refer

to the five main life cycle activities. Further we specify that the class lifeCycle may

only be executed by scientist, and that each lifeCycle is published by a particular

publication mode. Figure 5.2 gives a more detailed illustration of a publication mode.

A concrete OWL implementation of the publication mode looks as follows:

<owl:Class rdf:about="#publicationMode">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasPublicationMode"/>

<owl:someValuesFrom rdf:resource="#colllaboration"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasPublicationMode"/>

<owl:someValuesFrom rdf:resource="#researchDomain"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

5.3 Life Cycle Ontology Classes 88

Figure 5.2: e-Science life cycle - publication mode

<owl:Restriction>

<owl:onProperty rdf:resource="#hasPublicationMode"/>

<owl:someValuesFrom rdf:resource="#person"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasPublicationMode"/>

<owl:someValuesFrom rdf:resource="#researchGroup"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Life cycles may be published into the dataspace and thus is available to other users

of a wider collaboration with respect to other research areas. We distinguish be-

tween four publication modes, (1) free access, represented by a class person, meaning

that anybody may view the published results (2) research domain, represented by a

researchDomain class, while restricting the results to certain domains , (3) collabo-

ration, represented by a collaboration class with restrictions to particular collabora-

tions, and (4) research group, restricting the published life cycles to some particular

5.3 Life Cycle Ontology Classes 89

research groups. Figure 5.2 provides further relationships indicating that a class sci-

entist is derived from the class person while being member of some research groups

and belonging to certain research domains. This information is coded in OWL as

shown below:

<owl:Class rdf:about="#scientist">

<rdfs:subClassOf rdf:resource="#person"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isMemberOf"/>

<owl:someValuesFrom rdf:resource="#researchGroup"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#execute"/>

<owl:someValuesFrom rdf:resource="#lifeCycle"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#belongsToDomain"/>

<owl:someValuesFrom rdf:resource="#researchDomain"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Each activity feeds the dataspace with new participants, which are categorized into

tree different participant subgroups: background data, primary data and derived

data. The concepts identifying the different participant subgroups are illustrated in

Figure 5.3, and defined as subclasses of the class participant. All these participants

belong to at least one or more e-Science life cycles. The classes domainOntology,

dataStatistics, dataMiningOntology, resourceFile, and workflowDescription are sub-

classes of a class backgroundData, and represent a data which is referenced while

executing life cycle iterations. On the right of Figure 5.3 we can see which output

is produced while executing which life cycle activities. Each referenced background

data and every generated output is added as a participant into a dataspace. For

example the activity goalSpecification adds new domain ontologies, the activity dat-

aPreparation adds new data sets, which are generated using primaryData as well as

5.3 Life Cycle Ontology Classes 90

Figure 5.3: e-Science life cycle - participants

5.3 Life Cycle Ontology Classes 91

OGSA-DAI resourceFile.The activity taskSelection adds new workflowDescription

documents, while the activity taskExecution adds new pmmlDocuments describing

the data mining model applied, and finally the activity resultPublishing adds new

documents visualizing the achieved data mining outputs. As shown in Figure 5.3

the activity taskSelection implements a usesWorkflow property linking to a class

workflow indicating that the activity consists of several steps that are organized as

workflows using different data mining services.

A concrete OWL implementation of the dataPreparation activity considering the

different participants involved is coded as follows:

<owl:Class rdf:about="#dataPreparation">

<rdfs:subClassOf rdf:resource="#activity"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasOGSADaiResourceFile"/>

<owl:someValuesFrom rdf:resource="#resourceFile"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDataSet"/>

<owl:someValuesFrom rdf:resource="#dataSet"/>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#goalSpecification"/>

<owl:disjointWith rdf:resource="#resultPublishing"/>

<owl:disjointWith rdf:resource="#taskExecution"/>

<owl:disjointWith rdf:resource="#taskSelection"/>

</owl:Class>

Additionally we define that a class dataPreparation is disjoint from other activity

classes using the owl:disjointWith statement, which indicates that these classes do

not share any individuals. Figure 5.4 provides a general view on the ontology il-

lustrating how the implemented life cycle concepts are related to each other. We

can see the a class descriptionData is used to describe some life cycle activities,

workflows, services, and research domains. For each class implementing the class

descriptionData a user can specify some keywords, descriptions and a description

name. Student is a subclass of a class person and is only able to view performed life

5.3 Life Cycle Ontology Classes 92

Figure 5.4: e-Science life cycle - general view

5.4 Life Cycle Ontology Properties 93

cycles, but not to execute them. Different research groups can be in collaboration

with each other and so form collaborations.

5.4 Life Cycle Ontology Properties

A declaration of a object or data type property alone, does not imply which individ-

uals are related to each other. By the use of range and domain statements we can

define which classes are related to each other. A restriction domain indicates that

the subject of such declared property has to belong to related instance of a class.

For example a property domain of execute is restricted to individuals of the class

scientist. A range statement indicates that the objects of the property range has

to belong to a instance of defined class, which means that the property range is re-

stricted to individuals of the class lifeCycle, which is illustrated below as a concrete

OWL implementation:

<owl:ObjectProperty rdf:about="#execute">

<rdfs:range rdf:resource="#lifeCycle"/>

<rdfs:domain rdf:resource="#scientist"/>

</owl:ObjectProperty>

A definition of a isExecutedBy object property includes a ”inverse property” dec-

laration using the already defined execute property, interchanging a direction of a

range and domain relation, indicating that life cycles are executed by scientists.

<owl:ObjectProperty rdf:about="#isExecutedBy">

<owl:inverseOf rdf:resource="#execute"/>

<rdfs:domain rdf:resource="#lifeCycle"/>

<rdfs:range rdf:resource="#scientist"/>

</owl:ObjectProperty>

Lets look at a definition of the hasDescriptionData object property. It also includes

a defined ”inverse properties” describes, which interchanges a direction of a range

and domain relation of the hasDescriptionData property. We use an owl:unionOf

statement to create a union of instances of the classes listed inside of the statement,

restricting the property only to individuals of these classes. The property range is

restricted to individuals of a class descriptionData.

<owl:ObjectProperty rdf:about="#hasDescriptionData">

<owl:inverseOf rdf:resource="#describes"/>

<rdfs:range rdf:resource="#descriptionData"/>

5.4 Life Cycle Ontology Properties 94

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<rdf:Description rdf:about="#dataPreparation"/>

<rdf:Description rdf:about="#goalSpecification"/>

<rdf:Description rdf:about="#researchDomain"/>

<rdf:Description rdf:about="#researchGroup"/>

<rdf:Description rdf:about="#service"/>

<rdf:Description rdf:about="#taskExecution"/>

<rdf:Description rdf:about="#workflow"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

In the next example we declare a hasGoalSpecification object property defining that

individuals of a class lifeCycle belong to instances of a class goalSpecification. Fur-

ther we declare a owl:FunctionalProperty as a subclass of rdf:property. This property

definition may contain one value for each object at most, which means that one par-

ticular life cycle instance may include only one individual of a class goalSpecification.

<owl:ObjectProperty rdf:about="#hasGoalSpecification">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:range rdf:resource="#goalSpecification"/>

<rdfs:domain rdf:resource="#lifeCycle"/>

</owl:ObjectProperty>

The following table summarizes all defined object properties and their restrictions:

Object Property Range Domain inverse Property

hasPrimaryData dataResource dataSet usedToGenerate

belongsToDomain researchDomain scientist isDomainOf

hasCollaborativeGroup researchGroup collaboration inCollaborationWith

hasDataPreparation dataPreparation lifeCycle

hasDataSet dataSet dataPreparation isDataSetOf

execute scientist lifeCycle isExecutedBy

hasGoalSpecification goalSpecification lifeCycle

hasMembers scientist researchGroup isMemberOf

Table 5.1: Object properties

5.4 Life Cycle Ontology Properties 95

Object Property Range Domain inverse Property

hasOGSADaiResourceFile resourceFile dataPreparation isResourceFileOf

hasPMMLDocument pmmlDocument taskExecution isPMMLDocumentOf

hasReferenceTo domainOntology goalSpecification

hasReportFile reportFile taskExecution isReportFileOf

hasResultPublishing resultPublishing lifeCycle

hasServiceOntology serviceOntology service isServiceOntologyOf

hasTaskExecution taskExecution lifeCycle

hasTaskSelection taskSelection lifeCycle

hasVisualisation visualisation resultPublishing isVisualisationOf

hasVisualisation visualisation taskExecution isVisualisationOf

hasWorkflow workflow taskSelection isWorkflowOf

hasWorkflowDocument workflowDokument taskSelection isWorkflowDocumentOf

isPublishedBy publicationMode lifeCycle isPublicationModeOf

isUsedFor workflow service usesService

isResourceFileOf dataPreparation resourceFile

usedToGenerate dataSet dataResource

Table 5.1: Object properties

The following example illustrates some of the data type properties which are re-

stricted to individuals of the class person. The concrete OWL implementation of

the firstName, homepage, email, and age object properties looks as follows:

<owl:DatatypeProperty rdf:about="#firstName">

<rdfs:domain rdf:resource="#person"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#homepage">

<rdfs:domain rdf:resource="#person"/>

<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#email">

<rdfs:domain rdf:resource="#person"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#age">

<rdfs:domain rdf:resource="#person"/>

5.4 Life Cycle Ontology Properties 96

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

The following table summarizes all defined data type properties and their restric-

tions:

Data Type Property Domain Range

firstName person &xsd;string

lastName person &xsd;string

age person &xsd;integer

homepage scientist &xsd;string

birthDate person &xsd;date

country person &xsd;string

state person &xsd;string

phone scientist &xsd;string

email scientist &xsd;string

title scientist &xsd;string

keywords descriptionData &xsd;string

description descriptionData &xsd;string

name descriptionData &xsd;string

pmmlReference pmmlDocument &xsd;anyURI

reportURL reportFile &xsd;anyURI

resourceURI dataResource &xsd;anyURI

serviceOntologyReference serviceOntology &xsd;anyURI

visualisationReference visualisation &xsd;anyURI

visualisationType visualisation &xsd;anyURI

resourceFileDescription resourcefile &xsd;string

resourceFileReference resourceFile &xsd;anyURI

workflowReference workflow &xsd;anyURI

workflowName workflow &xsd;string

Table 5.2: Data type properties

Chapter 6

e-Science Life Cycle Concept

Evaluation

6.1 Introduction

This chapter deals with the evaluation of the e-Science Life Cycle concept. First of

all we are going to look at project related dataspaces and their executed life cycle

iterations within a generic application scenario. We will focus on how a project state

evolves within a dataspace system and illustrate each state within a project state

diagram. Then, we will concentrate on a concrete application scenario located in the

field of Traditional Chinese Medicine (TCM) and evaluate the application results

using the SPARQL query language.

6.2 Generic Application Scenario

Let’s assume we have a dataspace (DS) setup for a specific domain with different

subdataspaces defined for various research studies and each representing a separate

project. Each of these projects has a number of executed life cycle iterations rep-

resented as instances of these life cycles and creating a project related dataspace.

Once a certain project dataspace is initialized, specifying a general setup model for

life cycle iterations, each additional life cycle is defined as an instance of this generic

life cycle.

Suppose a Project 1 is setup by a certain research group executing one life cycle

iteration and so defining an initial generic life cycle instance. All further scientific

experiments executed within this particular project are based upon this life cycle

setup for all participating project members. Each performed life cycle activity in-

cluding the corresponding primary and derived data are related to this particular

6.2 Generic Application Scenario 98

life cycle instance. These instances are organized using the life cycle ontology where

all project related relationships are captured and saved.

The members of each project can highly profit from this kind of organized rela-

tionship information allowing an easy reuse of life cycle activities and an intelligent

discovery of already generated datasets and their corresponding published results.

Through an increasing number of executed life cycles, the dataspace is able to grow

into a large space of well-organized and inter-connected information, which can eas-

ily be queried and reused.

Life cycles, which are created within Project 2 can for example include different

activities of executed life cycles from Project 1 and so create research collaborations

which are based upon overlapping reuse of activities and their corresponding pri-

mary and derived data as illustrated in Figure 6.1. These research collaborations

can contain various number of research groups which can be involved in different

projects while working in related domain applications thus operating on the same

primary data. In order to reuse already executed life cycles, their produced data

sets and derived data, such as for example workflow and PMML documents, report

files or applied visualizations, the data has to be published within a dataspace and

further be accessible for a particular research member or research group.

Assume we have a set of existing Projects, P = (P1,P2,..,Pn) where Pi ∈ DS and

Projects are entering and leaving this set. For each Project Pi we define several

basic constraints:

• each Project Pi has at least one generic Life Cycle LCg that is executed by

one certain scientist.

• each Project Pi contains a set of primary and derived data acting as partici-

pants in a dataspace.

• each Project Pi has at least one research group working on it.

• each Project Pi that has overlapping reuse of activities must be published in

a dataspace.

After a project is generated and its results are published in a dataspace, the project

owner can anytime reset the publication mode applied on the executed project and

even remove the project from the dataspace. In this case, all executed life cycle

iterations and their corresponding dataspace participants are deleted.

Figure 6.2 shows a dataspace project state diagram describing how a project state

6.2 Generic Application Scenario 99

Figure 6.1: Project dataspaces - life cycle reuse

6.2 Generic Application Scenario 100

evolves within a dataspace system representing the life cycle instances modeled in

the ontology and data elements acting as participants in a dataspace.

In the following we will discuss each Project state at a given time instance tj:

• t0 - a dataspace is initialized, indicating the initial state of the ontology while

having no life cycle instances recorded yet.

• t1 - project P1 is setup and the generic Life Cycle LCg for P1 is initialized.

• t2 - first LC instance of the project P1 is defined and created executing the

life cycle activities and producing several derived data outputs acting as par-

ticipants in a dataspace.

• t3 - second LC instance of the project P1 is defined and created. Additional

life cycle results are recorded and published as new participants of a dataspace.

Further instance relationships are defined indicating possible relations among

published results.

• t4 - project P2 is setup and the generic Life Cycle LCg for P2 is initialized. As

we can see in Figure, the Ontology already contains two executed LC instances

which can be queried and reused for purposes of project P2 experiments.

• t5 - first LC instance of the project P2 is defined and created. New dataspace

participants are generated by LC1 of P2 and inserted into the P2DS.

• t6 - second LC instance of the project P2 is defined and created. Again new

dataspace participants are generated by LC2 of P2 and inserted into the P2DS.

If e.g. LC2 of P2 reuses some activities (and consequently its corresponding

DS participants) of previously executed LC then these shared participants are

linked.

• t7 - after a number of created Projects including several executed life cycles

a dataspace has evolved into a space of primary and derived data with se-

mantically rich relationships among each other which can easily be queried for

answers to specific questions.

• t8 - for any life cycle instance Pn LCn definition of Project Pn we capture

its activities as instances of the e-Science Life Cycle Ontology and publish the

experiment results as participants of a dataspace.

6.2 Generic Application Scenario 101

Figure 6.2: Project dataspaces state diagram

6.3 Concrete Use-Case Scenario 102

6.3 Concrete Use-Case Scenario

6.3.1 Introduction

A first application highly profiting from the above described life cycle of scientific

data is located in the field of Traditional Chinese Medicine (TCM). According to

the basic TCM theory, the human body has 14 acupuncture meridians, which are

a secret to our biological and medical knowledge. The China-Austria Data Grid

project [CAD07], which includes nine different research groups in China and Aus-

tria is devoted to meridian measurements using various measurement techniques

while collecting huge amount of meridian data. In order to use this large amount

of valuable information, it is necessary to make available a space of data with se-

mantically rich relationships accessible for other research groups targeting different

research areas.

In the following we will exemplify the relevant data elements and resources identified

while performing e-Science life cycle iterations on the the above introduced applica-

tion. Additionally, the SPARQL query results will be evaluated using Protege Open

SPARQL Query Panel.

6.3.2 Life Cycle Ontology Individuals (A Case Study)

1 Specify Goals Example - The following information is recorded by this activity

for the sample iteration. For each instance we show how the information is

modeled and represented in the e-Science Life Cycle Ontology.

– Goal specification name: goalSpecification NIGM

<hasGoalSpecification rdf:resource="#goalSpecification_NIGM"/>

– a scientist username: CADGrid-researcher3

<scientist rdf:about="#CADGrid-researcher3"></scientist>

– a research group he or she is member of: CADGrid-buct.edu.cn

<researchGroup rdf:about="#CADGrid-buct.edu.cn">

<hasMembers rdf:resource="#CADGrid-researcher3"/>

</researchGroup>

– description of objectives, including a name of the description data de-

scriptionData gS NIGM

6.3 Concrete Use-Case Scenario 103

– keywords such as The Non-Invasive Blood Glucose Measurement (NIGM)

and NIGM measurement techniques

– a textual description: The Non-Invasive Blood Glucose Measurement

(NIGM) method offers a novel promising non-invasive technology for

measuring patient’s data. In order to be accepted by general medical com-

munity, the quality of provided results will have to be verified in extensive

clinical trials following well defined protocol. The main aim of this exper-

iment is to specify medical conditions under which values of blood glucose

obtained through the NIGM method are as reliable as data provided by

the invasive measurement techniques that are currently the only standard

used and accepted by western medicine [EHL+08].

<descriptionData rdf:about="#descriptionData_gS_NIGM">

<keywords xml:lang="en">NIGM</keywords>

<Name xml:lang="en">

The Non-Invasive Blood Glucose Measurement (NIGM)

</Name>

<keywords xml:lang="en">blood glucose</keywords>

<description xml:lang="en">

he Non-Invasive Blood Glucose Measurement (NIGM)

method

</description>

<keywords xml:lang="en"

>measurement techniques</keywords>

<describes rdf:resource="#goalSpecification_NIGM"/>

</descriptionData>

– Additionally, we save a name of the executed life cycle NIGM CADGrid 001.

<scientist rdf:about="#CADGrid-researcher3">

<execute rdf:resource="#NIGM_CADGrid_001"/>

</scientist>

We further save

2 Prepare Data Example - In this experiment there is no need for data integra-

tion, thus the final input data set is simply the deployed OGSA-DAI resource.

The following information is recorded by this activity.

– Data preparation name: dataPreparation NIGM

6.3 Concrete Use-Case Scenario 104

<hasDataPreparation rdf:resource="#dataPreparation_NIGM"/>

– Resource name: CADGrid-MMDB1

<resourceFile rdf:about="#CADGrid-MMDB1">

<isResourceFileOf rdf:resource="#dataPreparation_NIGM"/>

</resourceFile>

– OGSA-DAI resource file location: http://.../CADGrid-MMDB1.ResourceFile

<resourceFile rdf:about="#CADGrid-MMDB1">

<resourceFileReference rdf:datatype="&xsd;anyURI">

http://.../CADGrid-MMDB1

</resourceFileReference>

</resourceFile>

– Resource description: Within various experiments on diabetes patients

the CADGrid research team has collected large amount of meridian mea-

surement data and corresponding blood glucose values. The experiments

were applied on 300 diabetic patients, conducted in the Dong Fang hos-

pital, Beijing, China. For each patient 50 meridian measurements and

equally many measures were applied using the conventional invasive blood

glucose method. Meridian measurements are represented as value pairs,

the input signal value, and the output signal value. One meridian mea-

surement generates around 1000 to 10000 value pairs [EHL+08].

<resourceFile rdf:about="#CADGrid-MMDB1">

<resourceFileDescription rdf:datatype="&xsd;string"

>The experiments were applied on 300 diabetic patients..

</resourceFileDescription>

</resourceFile>

Background data resources participating in this example application are pro-

viding information about the patient’s health condition and the meridian on

which the measurement was performed. They are considered as background

data resources within a dataspace.

3 Select Appropriate Tasks Example - In this example selected tasks are orga-

nized within the NIGM workflow, which consists of the following algorithms,

deployed as CADGrid services: (1) System Identification, (2) Kalman Filter-

ing, (3) Wavelet Transformation, (4) Fast Fourier Transformation, (5) Com-

bination Service, and finally (6) Back Propagation Neural Network. The Fol-

lowing information is captured.

6.3 Concrete Use-Case Scenario 105

– Task selection name: NIGM Inst23

<hasTaskSelection rdf:resource="#taskSelection_NIGM"/>

– Workflow name: NIGM Inst23 and the above mentioned CADGrid ser-

vices.

<workflow rdf:about="#NIGM_workflow">

<usesService rdf:resource="#CADGrid_service_S_Identif"/>

<usesService rdf:resource="#CADGrid_service_Kalman_F"/>

<usesService rdf:resource="#CADGrid_service_Wavelet_T"/>

<usesService rdf:resource="#CADGrid_service_F_Fourier"/>

<usesService rdf:resource="#CADGrid_service_C_Service"/>

<usesService rdf:resource="#CADGrid_service_NN"/>

<isWorkflowOf rdf:resource="#taskSelection_NIGM"/>

</workflow>

– Workflow description: The NIGM workflow processes a compute intensive

signal phase and followed that sets up a neural network, which can be

used for computing humans blood glucose values. Input data sets are

on one side meridian measurements, collected using a specially developed

instrument and on the other side blood glucose values measured using

the conventional method.

<workflow rdf:about="#NIGM_workflow">

<hasDescriptionData rdf:resource="#Workflow_NIGM_Inst23"/>

</workflow>

<descriptionData rdf:about="#Workflow_NIGM_Inst23">

<Name rdf:datatype="&xsd;string">NIGM_Inst23</Name>

<keywords rdf:datatype="&xsd;string"

>blood glucose values</keywords>

<keywords rdf:datatype="&xsd;string"

>intensive signal processing</keywords>

<keywords rdf:datatype="&xsd;string"

>meridian measurements</keywords>

<description xml:lang="en"

>Runs a compute intensive signal processing phase...

<usesService rdf:resource="#CADGrid_service_001"/>

<describes rdf:resource="#NIGM_workflow"/>

</descriptionData>

6.3 Concrete Use-Case Scenario 106

– Workflow reference: http://.../NIGM Inst23.gwa

<workflow rdf:about="#NIGM_workflow">

<workflowReference rdf:datatype="&xsd;anyURI">

http://.../NIGM_Inst23.gwa

</workflowReference>

</workflow>

4 Run Tasks Example - We record the PMML document representing the output

of the neural network model set up by the NIGM workflow and its correspond-

ing visualization document, all considered as derived data. The information

is captured as follows:

– Task execution name: taskExecution NIGM

<hasTaskExecution rdf:resource="#taskExecution_NIGM"/>

– PMML Document: pmmlDocument NIGM

<pmmlDocument rdf:about="#pmmlDocument_NIGM">

<pmmlReference rdf:datatype="&xsd;anyURI"></pmmlReference>

<isPMMLDocumentOf rdf:resource="#taskExecution_NIGM"/>

</pmmlDocument>

– NIGM visualisation: NIGM visualisation

<visualisation rdf:about="#NIGM_visualisation">

<visualisationType rdf:datatype="&xsd;string">

PMLL Visualisation</visualisationType>

<visualisationReference rdf:datatype="&xsd;anyURI">

http://lela.par.univie.ac.at/cadgrid/

CADGrid_OutputModel_NN.svg

</visualisationReference>

<isVisualisationOf rdf:resource="#taskExecution_NIGM"/>

</visualisation>

5 Process and Publish Results Example - A publish mode is dedicated to each

output, based on which the outputs are published into a dataspace. Finally

a publication mode of the executed Life Cycle is generated, restricting the

published results to one particular research group CADGrid-buct.edu.cn. We

capture the information as follows:

– Task execution name: resultPublishing NIGM

6.3 Concrete Use-Case Scenario 107

<hasResultPublishing rdf:resource="#resultPublishing_NIGM"/>

– Publication mode: NIGM publicationMode

<publicationMode rdf:about="#NIGM_publicationMode">

<hasPublicationMode rdf:resource="#CADGrid-buct.edu.cn"/>

<isPublicationModeOf rdf:resource="#NIGM_CADGrid_001"/>

</publicationMode>

The information captured by this life cycle represents the relationship among its

participating data resources (primary, derived, and background data). It also covers

the objectives specified for this experiment. Finally the data is published in the

dataspace, thus is available for further data mining studies aiming at further im-

provements in diabetic care and meridian theory resulting in higher patient comfort.

6.3.3 Querying the e-Science Life Cycle Ontology

Using SPARQL query language and semantically rich described e-Science life cycles

we can explore the knowledge captured in the e-Science Life Cycle Ontology. Search

and query services can be provided for all the participating data elements of the

scientific dataspace identifying relevant data. Each query submitted to the scientific

dataspace, will receive not only the matching data but also data of its correspond-

ing e-science activities allowing a user to explore the query results more in detail,

discovering which mining task were applied on a particular dataset, the concrete

workflow, the workflow report, the results presented in PMML and its correspond-

ing visualizations.

In the following we will illustrate some concrete SPARQL query examples:

SPARQL Query Example 1

Let’s assume a user would like to list all life cycles having NIGM workflows ap-

plied on them while performing task selection activity and the scientists they were

executed by. A concrete SPARQL query might look as follows:

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?lifeCycle ?taskSelection ?scientist ?workflowName

WHERE {

?lifeCycle owl:hasTaskSelection ?taskSelection.

?lifeCycle owl:isExecutedBy ?scientist.

?taskSelection owl:hasWorkflow ?workflow.

6.3 Concrete Use-Case Scenario 108

?workflow owl:workflowName ?workflowName.

FILTER regex(?workflowName, "nigm", "i")

}

A list of results is displayed in Figure 6.3 above:

Figure 6.3: Protege open SPARQL query panel results example 1

The select statement consists of ?lifeCycle ?taskSelection ?scientist ?workflowName

data variables that are returned in the query result. The SPARQL results are rep-

resented in a table form, whereas every row represents one query answer and each

variable used in the select statement represents a column in the result table. We

match all workflow names containing the case-sensitive expression NIGM, indicated

by ”i”.

SPARQL Query Example 2

Further, let’s say a user wants to apply a NIGM-analysis on meridian HE GU. If the

results already exist, he or she could save hours of computation. We might specify

a following query to provide a answer to this particular question:

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?lifeCycle ?goalSpecification ?keywords ?visualisation

WHERE {

?lifeCycle owl:hasGoalSpecification ?goalSpecification.

?goalSpecification owl:hasDescriptionData ?descriptionData.

?lifeCycle owl:hasTaskExecution ?taskExecution.

?visualisation owl:isVisualisationOf ?taskExecution.

?descriptionData owl:keywords ?keywords.

FILTER regex(?keywords, "meridian HE GU", "i")

}

The result of the above specified query are displayed in Figure 6.4:

6.3 Concrete Use-Case Scenario 109

Figure 6.4: Protege open SPARQL query panel results example 2

As we can see a user has found some already published visualizations on meridian

HE GU, which can be now explored more in detail discovering the corresponding

life cycle iteration, workflows, applied services, produced outputs, etc.

SPARQL Query Example 3

Suppose we need to know which date sets were used while performing particular life

cycle iterations executed by a scientist called Mayer, and which research groups he

is member of. A corresponding SPARQL statement may look as follows:

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?lifeCycle ?dataSet ?scientist ?lastName ?researchGroup

WHERE {

?lifeCycle owl:isExecutedBy ?scientist.

?dataSet owl:isDataSetOf ?dataPreperation.

?scientist owl:isMemberOf ?researchGroup.

?lifeCycle owl:hasTaskExecution ?taskExecution.

?scientist owl:lastName ?lastName.

FILTER regex(?lastName, "mayer", "i")

}

The results of the above defined query are displayed in Figure 6.5:

Figure 6.5: Protege open SPARQL query panel results example 3

A shown in the figure the query results provide information about particular data

sets executed by a certain scientist. Additionally, we display a scientist unique id,

6.3 Concrete Use-Case Scenario 110

last name and the scientists research group. Having found the needed information, a

user can for instance further explore what mining task were applied on a discovered

dataset, the concrete workflow, the workflow report, the results presented in PMML

and its corresponding visualizations.

SPARQL Query Example 4

Let’s assume we have found some interesting results published in a dataspace but

have no access to the published data so as to explore the details of the executed

life cycles. We can search for publication mode information of published results in

order to receive a access permission:

PREFIX owl: <http://localhost/LifeCycleOntology.owl#>

SELECT ?lifeCycle ?scientist ?visualisation ?publicationMode

WHERE {

?lifeCycle owl:isExecutedBy ?scientist.

?taskExecution owl:hasVisualisation ?visualisation.

?lifeCycle owl:isPublishedBy ?publicationMode.

?visualisation owl:visualisationName ?visualisationName.

FILTER regex(?visualisationName, "nigm", "i")

}

The results of the above defined query are displayed in Figure 6.6:

Figure 6.6: Protege open SPARQL query panel results example 4

Knowing the particular life cycle iteration information and the corresponding pub-

lication mode, a user can either ask for permission or become a member of the

particular research group, the life cycle is restricted to, in order to receive access to

needed results, which act as participants in a data space.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The e-Science Life Cycle Dataspace model represents a novel methodology and as-

sociated informatics to support the interaction among specific research groups by

the means of advanced scientific data management for e-Science applications.

Key contributions are: (1) a hierarchical and iterative metamodel providing a life

cycle view of scientific data showing what ideally should happen to data in e-Science

applications, while they are processed, is presented generally and by the means of

one pilot e-Science application. (2) The e-Science life cycle ontology, organizing the

concepts and coherences of e-Science life cycle activities as classes and properties, is

developed. (3) The dataspace paradigm presented in [FHM05] is further developed

by considering its major research challenge “managing relationships among partic-

ipants” in order to explicitly support the existing relationship among primary and

derived data in scientific collaborations.

The intelligence of the proposed e-Science life cycle model lies in its capability as

customizable relationship model for scientific dataspaces, as it covers the creation,

representation and searching of semantically rich relationships among participants

of a dataspace. It enables researchers to find not only relevant primary data in

connection with its derived data, but also lot of semantics about what was initially

done with the data, such as which data preprocessing methods have been applied,

which data mining and analysis models have been used, which result visualizations

are available etc. Further it points to relevant background and ontological data,

such as descriptions of applied services, models, research domains etc.

All these information is meant to be the semantically rich relationship among pri-

mary and derived data described by the e-Science life cycle ontology. Additionally

7.2 Future Work 112

scientists will retrieve information about the goals specified, which domain it cor-

responds, and whom to contact in case of interest for engaging collaborations, in

short, users will understand for what reason a specific e-Science life cycle was applied.

7.2 Future Work

The development of advanced scientific portals and interfaces collecting the needed

information modeled as Life Cycle Ontology is the main part of the ongoing fu-

ture work, which is currently under investigation. A Scientific Dataspace Manager

should be provided in order to manage the relevant research information given by

a scientist while creating new life cycle iterations. Therefor, we identify several

different user interfaces such as a Dataspace Registration Tool, managing all user

registration information, then a Scientific Life Cycle Manager, which we believe will

allow creation, execution, and modification facilities of defined life cycle iterations.

Further, we think it will be necessary to provide an e-Science Dataspace Life Cycle

Explorer, which should enable users to express search queries visually by browsing

the dataspace while supported by required interfaces.

However, the basis for intelligent dataspaces for e-Science is developed and has

cleared the way towards developing high-productivity e-Science frameworks.

Appendix A

The e-Science Life Cycle Ontology

<?xml version="1.0"?>

<rdf:RDF

xmlns:p3="http://localhost/LifeCycleOntology.owl.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns="http://localhost/LifeCycleOntology.owl#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://localhost/LifeCycleOntology.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="visualisation">

<rdfs:subClassOf>

<owl:Class rdf:ID="derivedData"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="workflowDokument">

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:ID="taskSelection"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isWorkflowDocumentOf"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

114

<rdfs:subClassOf>

<owl:Class rdf:ID="backgroundData"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="participant"/>

<owl:Class rdf:about="#backgroundData">

<rdfs:subClassOf rdf:resource="#participant"/>

</owl:Class>

<owl:Class rdf:ID="resourceFile">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isResourceFileOf"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:ID="dataPreparation"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#backgroundData"/>

</owl:Class>

<owl:Class rdf:ID="domainOntology">

<rdfs:subClassOf rdf:resource="#backgroundData"/>

</owl:Class>

<owl:Class rdf:ID="subWorkflow">

<rdfs:subClassOf>

<owl:Class rdf:ID="workflow"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="dataMiningOntology">

<rdfs:subClassOf rdf:resource="#backgroundData"/>

</owl:Class>

<owl:Class rdf:ID="student">

<rdfs:subClassOf>

<owl:Class rdf:ID="person"/>

</rdfs:subClassOf>

</owl:Class>

115

<owl:Class rdf:ID="goalSpecification">

<owl:disjointWith>

<owl:Class rdf:about="#dataPreparation"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="resultPublishing"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="taskExecution"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#taskSelection"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasDescriptionData"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:ID="descriptionData"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasReferenceTo"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#domainOntology"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:ID="activity"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#taskSelection">

<rdfs:subClassOf>

116

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:about="#workflow"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasWorkflow"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasWorkflowDocument"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#workflowDokument"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#activity"/>

<owl:disjointWith>

<owl:Class rdf:about="#dataPreparation"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#goalSpecification"/>

<owl:disjointWith>

<owl:Class rdf:about="#resultPublishing"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#taskExecution"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:ID="lifeCycle">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:FunctionalProperty rdf:ID="hasGoalSpecification"/>

</owl:onProperty>

<owl:maxCardinality rdf:datatype="

http://www.w3.org/2001/XMLSchema#int"

117

>1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:maxCardinality rdf:datatype="

http://www.w3.org/2001/XMLSchema#int"

>1</owl:maxCardinality>

<owl:onProperty>

<owl:FunctionalProperty rdf:ID="hasDataPreparation"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:FunctionalProperty rdf:ID="hasTaskSelection"/>

</owl:onProperty>

<owl:maxCardinality rdf:datatype="

http://www.w3.org/2001/XMLSchema#int"

>1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:FunctionalProperty rdf:ID="hasTaskExecution"/>

</owl:onProperty>

<owl:maxCardinality rdf:datatype="

http://www.w3.org/2001/XMLSchema#int"

>1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:FunctionalProperty rdf:ID="hasResultPublishing"/>

118

</owl:onProperty>

<owl:maxCardinality rdf:datatype="

http://www.w3.org/2001/XMLSchema#int"

>1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="

http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:allValuesFrom>

<owl:Class rdf:ID="scientist"/>

</owl:allValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isExecutedBy"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:ID="publicationMode"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isPublishedBy"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="researchDomain">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDescriptionData"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:about="#descriptionData"/>

119

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="

http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#domainOntology"/>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasDomainOntologyReference"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:about="#scientist"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isDomainOf"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="serviceType">

<rdfs:subClassOf>

<owl:Class rdf:ID="service"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#taskExecution">

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:ID="pmmlDocument"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasPMMLDocument"/>

120

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#visualisation"/>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasVisualisation"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#goalSpecification"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:ID="reportFile"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasReportFile"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:about="#descriptionData"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDescriptionData"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#resultPublishing"/>

</owl:disjointWith>

<rdfs:subClassOf rdf:resource="#activity"/>

<owl:disjointWith rdf:resource="#taskSelection"/>

121

<owl:disjointWith>

<owl:Class rdf:about="#dataPreparation"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#reportFile">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isReportFileOf"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#taskExecution"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="#derivedData"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#pmmlDocument">

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#taskExecution"/>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isPMMLDocumentOf"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="#derivedData"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#derivedData">

<rdfs:subClassOf rdf:resource="#participant"/>

</owl:Class>

<owl:Class rdf:ID="dataSet">

<rdfs:subClassOf rdf:resource="#derivedData"/>

<rdfs:subClassOf>

<owl:Restriction>

122

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasPrimaryData"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:ID="dataResource"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isDataSetOf"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:about="#dataPreparation"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#dataResource">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="usedToGenerate"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#dataSet"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#participant"/>

</owl:Class>

<owl:Class rdf:ID="dataStatictics">

<rdfs:subClassOf rdf:resource="#backgroundData"/>

</owl:Class>

<owl:Class rdf:about="#descriptionData">

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#taskExecution"/>

123

<owl:onProperty>

<owl:ObjectProperty rdf:ID="describes"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#describes"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:about="#service"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:ID="researchGroup"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#describes"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#describes"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:about="#workflow"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

124

<owl:someValuesFrom>

<owl:Class rdf:about="#dataPreparation"/>

</owl:someValuesFrom>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#describes"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#describes"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#goalSpecification"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#researchDomain"/>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#describes"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="

http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>

<owl:Class rdf:about="#publicationMode">

<rdfs:subClassOf rdf:resource="

http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasPublicationMode"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:about="#researchGroup"/>

125

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasPublicationMode"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:ID="colllaboration"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasPublicationMode"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#researchDomain"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#person"/>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasPublicationMode"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#scientist">

<rdfs:subClassOf rdf:resource="#person"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom>

<owl:Class rdf:about="#researchGroup"/>

</owl:someValuesFrom>

126

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isMemberOf"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#lifeCycle"/>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="execute"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="belongsToDomain"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#researchDomain"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="serviceOntology">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isServiceOntologyOf"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:about="#service"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#backgroundData"/>

</owl:Class>

<owl:Class rdf:about="#workflow">

<rdfs:subClassOf>

127

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#taskSelection"/>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isWorkflowOf"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#descriptionData"/>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDescriptionData"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="

http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="usesService"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:about="#service"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#dataPreparation">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDescriptionData"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#descriptionData"/>

</owl:Restriction>

</rdfs:subClassOf>

128

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasOGSADaiResourceFile"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#resourceFile"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#dataSet"/>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasDataSet"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#activity"/>

<owl:disjointWith rdf:resource="#goalSpecification"/>

<owl:disjointWith>

<owl:Class rdf:about="#resultPublishing"/>

</owl:disjointWith>

<owl:disjointWith rdf:resource="#taskExecution"/>

<owl:disjointWith rdf:resource="#taskSelection"/>

</owl:Class>

<owl:Class rdf:about="#resultPublishing">

<owl:disjointWith rdf:resource="#dataPreparation"/>

<owl:disjointWith rdf:resource="#goalSpecification"/>

<owl:disjointWith rdf:resource="#taskExecution"/>

<owl:disjointWith rdf:resource="#taskSelection"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#visualisation"/>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasVisualisation"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

129

<rdfs:subClassOf rdf:resource="#activity"/>

</owl:Class>

<owl:Class rdf:about="#colllaboration">

<rdfs:subClassOf rdf:resource="

http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasCollaborativeGroup"/>

</owl:onProperty>

<owl:someValuesFrom>

<owl:Class rdf:about="#researchGroup"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#service">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDescriptionData"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#descriptionData"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="

http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#workflow"/>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="isUsedFor"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#researchGroup">

130

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasDescriptionData"/>

</owl:onProperty>

<owl:someValuesFrom rdf:resource="#descriptionData"/>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="

http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:someValuesFrom rdf:resource="#colllaboration"/>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="inCollaborationWith"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="subDomain">

<rdfs:subClassOf rdf:resource="#researchDomain"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="isUsedBy"/>

<owl:ObjectProperty rdf:ID="hasOutput"/>

<owl:ObjectProperty rdf:about="#hasWorkflow">

<rdfs:domain rdf:resource="#taskSelection"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#isWorkflowOf"/>

</owl:inverseOf>

<rdfs:range rdf:resource="#workflow"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasMembers">

<rdfs:range rdf:resource="#scientist"/>

<rdfs:domain rdf:resource="#researchGroup"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#isMemberOf"/>

</owl:inverseOf>

131

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isServiceOntologyOf">

<owl:inverseOf>

<owl:ObjectProperty rdf:ID="hasServiceOntology"/>

</owl:inverseOf>

<rdfs:range rdf:resource="#service"/>

<rdfs:domain rdf:resource="#serviceOntology"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isDerivedFrom"/>

<owl:ObjectProperty rdf:ID="containsActivity"/>

<owl:ObjectProperty rdf:ID="usesPublishMode">

<owl:inverseOf>

<owl:ObjectProperty rdf:ID="hasPublishMode"/>

</owl:inverseOf>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#usesService">

<rdfs:range rdf:resource="#service"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#isUsedFor"/>

</owl:inverseOf>

<rdfs:domain rdf:resource="#workflow"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasReferenceTo">

<rdfs:range rdf:resource="#domainOntology"/>

<rdfs:domain rdf:resource="#goalSpecification"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isMemberOf">

<rdfs:domain rdf:resource="#scientist"/>

<rdfs:range rdf:resource="#researchGroup"/>

<owl:inverseOf rdf:resource="#hasMembers"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPublishMode">

<owl:inverseOf rdf:resource="#usesPublishMode"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isResourceFileOf">

<rdfs:range rdf:resource="#dataPreparation"/>

<owl:inverseOf>

132

<owl:ObjectProperty rdf:about="#hasOGSADaiResourceFile"/>

</owl:inverseOf>

<rdfs:domain rdf:resource="#resourceFile"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasVisualisation">

<owl:inverseOf>

<owl:ObjectProperty rdf:ID="isVisualisationOf"/>

</owl:inverseOf>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#resultPublishing"/>

<owl:Class rdf:about="#taskExecution"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="#visualisation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#execute">

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#isExecutedBy"/>

</owl:inverseOf>

<rdfs:domain rdf:resource="#scientist"/>

<rdfs:range rdf:resource="#lifeCycle"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isReportFileOf">

<rdfs:domain rdf:resource="#reportFile"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#hasReportFile"/>

</owl:inverseOf>

<rdfs:range rdf:resource="#taskExecution"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isPublishedBy">

<rdfs:domain rdf:resource="#lifeCycle"/>

<rdfs:range rdf:resource="#publicationMode"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:ID="isPublicationModeOf"/>

133

</owl:inverseOf>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPublicationMode">

<rdfs:domain rdf:resource="#publicationMode"/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#researchDomain"/>

<owl:Class rdf:about="#researchGroup"/>

<owl:Class rdf:about="#colllaboration"/>

<owl:Class rdf:about="#person"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#usedToGenerate">

<rdfs:range rdf:resource="#dataSet"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#hasPrimaryData"/>

</owl:inverseOf>

<rdfs:domain rdf:resource="#dataResource"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="isOutputOf"/>

<owl:ObjectProperty rdf:about="#isWorkflowOf">

<rdfs:domain rdf:resource="#workflow"/>

<owl:inverseOf rdf:resource="#hasWorkflow"/>

<rdfs:range rdf:resource="#taskSelection"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="setsRestriction"/>

<owl:ObjectProperty rdf:about="#isDataSetOf">

<rdfs:range rdf:resource="#dataPreparation"/>

<rdfs:domain rdf:resource="#dataSet"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#hasDataSet"/>

</owl:inverseOf>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isVisualisationOf">

134

<rdfs:domain rdf:resource="#visualisation"/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#resultPublishing"/>

<owl:Class rdf:about="#taskExecution"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

<owl:inverseOf rdf:resource="#hasVisualisation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="include"/>

<owl:ObjectProperty rdf:about="#isExecutedBy">

<rdfs:range rdf:resource="#scientist"/>

<owl:inverseOf rdf:resource="#execute"/>

<rdfs:domain rdf:resource="#lifeCycle"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasResearchDomain"/>

<owl:ObjectProperty rdf:ID="belongsToActivity"/>

<owl:ObjectProperty rdf:about="#isUsedFor">

<rdfs:domain rdf:resource="#service"/>

<owl:inverseOf rdf:resource="#usesService"/>

<rdfs:range rdf:resource="#workflow"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasCollaborativeGroup">

<rdfs:range rdf:resource="#researchGroup"/>

<rdfs:domain rdf:resource="#colllaboration"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#inCollaborationWith"/>

</owl:inverseOf>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDataSet">

<rdfs:domain rdf:resource="#dataPreparation"/>

<rdfs:range rdf:resource="#dataSet"/>

<owl:inverseOf rdf:resource="#isDataSetOf"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasWorkflowDocument">

135

<rdfs:domain rdf:resource="#taskSelection"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#isWorkflowDocumentOf"/>

</owl:inverseOf>

<rdfs:range rdf:resource="#workflowDokument"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasReport"/>

<owl:ObjectProperty rdf:ID="isSetBy"/>

<owl:ObjectProperty rdf:ID="hasPmmlReference"/>

<owl:ObjectProperty rdf:about="#hasReportFile">

<owl:inverseOf rdf:resource="#isReportFileOf"/>

<rdfs:domain rdf:resource="#taskExecution"/>

<rdfs:range rdf:resource="#reportFile"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasServiceOntology">

<owl:inverseOf rdf:resource="#isServiceOntologyOf"/>

<rdfs:domain rdf:resource="#service"/>

<rdfs:range rdf:resource="#serviceOntology"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPrimaryData">

<rdfs:domain rdf:resource="#dataSet"/>

<rdfs:range rdf:resource="#dataResource"/>

<owl:inverseOf rdf:resource="#usedToGenerate"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isWorkflowDocumentOf">

<rdfs:domain rdf:resource="#workflowDokument"/>

<rdfs:range rdf:resource="#taskSelection"/>

<owl:inverseOf rdf:resource="#hasWorkflowDocument"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPMMLDocument">

<rdfs:range rdf:resource="#pmmlDocument"/>

<rdfs:domain rdf:resource="#taskExecution"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#isPMMLDocumentOf"/>

</owl:inverseOf>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasOGSADaiResourceFile">

136

<rdfs:range rdf:resource="#resourceFile"/>

<rdfs:domain rdf:resource="#dataPreparation"/>

<owl:inverseOf rdf:resource="#isResourceFileOf"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasBackgroundData"/>

<owl:ObjectProperty rdf:ID="hasRestriction"/>

<owl:ObjectProperty rdf:about="#isDomainOf">

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#belongsToDomain"/>

</owl:inverseOf>

<rdfs:range rdf:resource="#scientist"/>

<rdfs:domain rdf:resource="#researchDomain"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#belongsToDomain">

<rdfs:domain rdf:resource="#scientist"/>

<owl:inverseOf rdf:resource="#isDomainOf"/>

<rdfs:range rdf:resource="#researchDomain"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isPublicationModeOf">

<rdfs:range rdf:resource="#lifeCycle"/>

<rdfs:domain rdf:resource="#publicationMode"/>

<owl:inverseOf rdf:resource="#isPublishedBy"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#isPMMLDocumentOf">

<owl:inverseOf rdf:resource="#hasPMMLDocument"/>

<rdfs:range rdf:resource="#taskExecution"/>

<rdfs:domain rdf:resource="#pmmlDocument"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#describes">

<rdfs:domain rdf:resource="#descriptionData"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#hasDescriptionData"/>

</owl:inverseOf>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#dataPreparation"/>

137

<owl:Class rdf:about="#researchDomain"/>

<owl:Class rdf:about="#goalSpecification"/>

<owl:Class rdf:about="#workflow"/>

<owl:Class rdf:about="#service"/>

<owl:Class rdf:about="#researchGroup"/>

<owl:Class rdf:about="#taskExecution"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#inCollaborationWith">

<rdfs:domain rdf:resource="#researchGroup"/>

<owl:inverseOf rdf:resource="#hasCollaborativeGroup"/>

<rdfs:range rdf:resource="#colllaboration"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="worksIn"/>

<owl:ObjectProperty rdf:about="#hasDescriptionData">

<rdfs:range rdf:resource="#descriptionData"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#goalSpecification"/>

<owl:Class rdf:about="#researchDomain"/>

<owl:Class rdf:about="#dataPreparation"/>

<owl:Class rdf:about="#workflow"/>

<owl:Class rdf:about="#service"/>

<owl:Class rdf:about="#researchGroup"/>

<owl:Class rdf:about="#taskExecution"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<owl:inverseOf rdf:resource="#describes"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="description">

<rdfs:domain rdf:resource="#descriptionData"/>

<rdfs:range rdf:resource="

http://www.w3.org/2001/XMLSchema#string"/>

138

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="dataSourceName">

<rdfs:domain rdf:resource="#dataResource"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="serviceOntologyReference">

<rdfs:domain rdf:resource="#serviceOntology"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="state">

<rdfs:domain rdf:resource="#person"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="resourceFileReference">

<rdfs:domain rdf:resource="#resourceFile"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="lastName">

<rdfs:domain rdf:resource="#person"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="reportURL">

<rdfs:domain rdf:resource="#reportFile"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="visualisationName">

<rdfs:domain rdf:resource="#visualisation"/>

<rdfs:range rdf:resource="

http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="workflowReference">

<rdfs:domain rdf:resource="#workflow"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="age">

<rdfs:domain rdf:resource="#person"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="pmmlReference">

<rdfs:domain rdf:resource="#pmmlDocument"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="phone">

<rdfs:domain rdf:resource="#scientist"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="resourceURI">

139

<rdfs:domain rdf:resource="#dataResource"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="resourceFileDescription">

<rdfs:domain rdf:resource="#resourceFile"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="birthDate">

<rdfs:domain rdf:resource="#person"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="firstName">

<rdfs:domain rdf:resource="#person"/>

<rdfs:range rdf:resource="

http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="homepage">

<rdfs:domain rdf:resource="#person"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="title">

<rdfs:domain rdf:resource="#person"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="email">

<rdfs:domain rdf:resource="#person"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="visualisationReference">

<rdfs:domain rdf:resource="#visualisation"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Name">

<rdfs:domain rdf:resource="#descriptionData"/>

<rdfs:range rdf:resource="

http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="keywords">

<rdfs:range rdf:resource="

http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#descriptionData"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="workflowName">

<rdfs:range rdf:resource="

140

http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#workflow"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="visualisationType">

<rdfs:domain rdf:resource="#visualisation"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="country"/>

<owl:FunctionalProperty rdf:about="#hasResultPublishing">

<rdfs:domain rdf:resource="#lifeCycle"/>

<rdf:type rdf:resource="

http://www.w3.org/2002/07/owl#ObjectProperty"/>

<rdfs:range rdf:resource="#resultPublishing"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#hasTaskExecution">

<rdfs:range rdf:resource="#taskExecution"/>

<rdfs:domain rdf:resource="#lifeCycle"/>

<rdf:type rdf:resource="

http://www.w3.org/2002/07/owl#ObjectProperty"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#hasGoalSpecification">

<rdfs:range rdf:resource="#goalSpecification"/>

<rdf:type rdf:resource="

http://www.w3.org/2002/07/owl#ObjectProperty"/>

<rdfs:domain rdf:resource="#lifeCycle"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#hasTaskSelection">

<rdfs:range rdf:resource="#taskSelection"/>

<rdfs:domain rdf:resource="#lifeCycle"/>

<rdf:type rdf:resource="

http://www.w3.org/2002/07/owl#ObjectProperty"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#hasDataPreparation">

<rdf:type rdf:resource="

http://www.w3.org/2002/07/owl#ObjectProperty"/>

<rdfs:domain rdf:resource="#lifeCycle"/>

<rdfs:range rdf:resource="#dataPreparation"/>

</owl:FunctionalProperty>

141

</rdf:RDF>

Appendix B

Zusammenfassung

Wissenschaftliche Daten stammen aus verschiedenen Wissens- und Forschungsge-

bieten, wobei durch die Sammlung dieser Daten große Datenbestände entstehen.

Diese oft heterogenen und geographisch verteilten Datenmengen befinden sich auf

verschiedenen Serversystemen und werden im Forschungsbereich der e-Science unter

dem Begriff primary data zusammengefasst.

Forscher aus der ganzen Welt verwenden diese rohen Daten im Zuge vieler wis-

senschaftlicher Applikationen für ihre Forschungsexperimente und Analysen um sig-

nifikantes Wissen aus erzielten Forschungsergebnissen zu gewinnen. Der Output

dieser Datenanalysen und Experimente, auch derived data genannt, ist das Ergeb-

nis vieler rechenintensiver Prozesse und Aktivitäten, deren Organisation, für eine

kooperative Weiterforschung innerhalb der beteiligten Forschungsgruppen und das

Wiederverwenden der erzielten Ergebnisse, von enormer Bedeutung ist.

Das Hauptziel dieser Arbeit ist es, die Beziehungen zwischen den oben genan-

nten primary und derived data in Form einer Ontologie zu beschreiben und somit

ein intelligentes Datenmodell, welches ein typisches Forschungsscenario in der wis-

senschaftlichen Wissensgewinnung darstellt, definiert. Dieses Datenmodell repräsen-

tiert einen sogenannten Dataspace, welcher aus einer Menge von forschungsrelevan-

ten Datenelementen (Participants) und ihren Beziehung (Relationships) besteht und

somit eine einheitliche Sicht auf diese Menge von heterogenen Daten ermöglicht.

Die Grundlage dieser Ontologie, welche in OWL (Ontology Web Language) imple-

mentiert wurde, ist das sogenannte e-Science Life Cycle Dataspace Model, welches

aus fünf verschiedenen Aktivitäten, dargestellt in Form eines e-Science Lebenszyk-

lus, besteht. Dieser Lebenszyklus beschreibt den Datenerfassungsprozess innerhalb

eines wissenschaftlichen Forschungsscenarios, ausgehend von der einfachen Zielset-

zung bis hin zur Datenintegration und Ergebnispublikation.

Appendix C

Lebenslauf

Persönliche Daten:

Name: Muslimovic Adnan

Geburtsdatum: 17.09.1977

Geburtsort: Prijedor, Bosnien und Herzegowina

Adresse: 1160 Wien, Blumberggasse 20/13

Staatsangehörigkeit: Bosnien

Familienstand: ledig

Tel: 0650/9903450

E-mail: a9903450@unet.univie.ac.at

Ausbildung:

1984-92 Volks-/Hauptschule, Prijedor

seit Okt.1992 in Österreich

1992-93 HS 5, Linz

1993-99 BORG, Honauerstraße 24, 4020 Linz

Informatikzweig, Reifeprüfung (15.06.99)

1999-08 Wirtschaftsinformatikstudium an der Universität Wien

Besondere Kenntnisse und Fähigkeiten:

Deutsch: fließend

Bosnisch, Kroatisch, Serbisch: fließend

Englisch: in Wort und Schrift

Programmiersprachen: C++, JAVA, Delphi

EDV bzw. Betriebssysteme: MS Office, Windows, Linux

Bibliography

[AAS07] Yair Amit, Danny Allan, and Adi Sharabani, Overtaking google desktop

- a security analysis, Watchfire Whitepaper, 2007. 56

[ACD04] Nagrai Alur, YunJung Chang, and Barry Devlin, Information aggrega-

tion and data integration with db2 information integrator, IBM Red-

book, 2004. 50, 51, 52, 54

[Ale08] S. Aleksejevs, Contribution model, http://wiki.myexperiment.org/inde-

x.php/Developer:Contribution Model, 2008. 62

[Ame01] The Scientific American, The semantic web, http://www.sciam.com/

article.cfm?id=the-semantic-web&page=3, 2001. 6

[Asc03] John Aschoff, Websphere information integrator q replication, IBM

Technical Article, 2003. 54, 55

[AvH04] G. Antoniou and F. van Harmelen., A semantic web primer, The MIT

Press Cambridge, 2004. 4, 15, 17

[BAB03] Paolo Bruni, Francis Arnaudies, and Amanda Bennett, Data federation

with ibm db2 information integrator v8.1, IBM Redbook, 2003. 50, 52,

53, 54, 55, 64

[BB08] D. Beckett and J. Broekstra, Sparql query results xml format,

http://www.w3.org/TR/rdf-sparql-XMLres/, 2008. 26

[BDG+07] Lukas Blunschi, Jens-Peter Dittrich, Olivier René Girard, Shant Ki-

rakos Karakashian, and Marcos Antonio Vaz Salles, A dataspace

odyssey: The imemex personal dataspace management system, CIDR

2007, Third Biennial Conference on Innovative Data Systems Research,

January 2007, pp. 114–119. 32, 64, 68

[Bec04] Dave Beckett, Rdf/xml syntax specification (revised), http://www.

w3.org/TR/rdf-syntax-grammar/, 2004. 5, 11, 12

BIBLIOGRAPHY 145

[BG04] D. Brickley and R.V. Guha, Rdf vocabulary description language 1.0:

Rdf schema, http://www.w3.org/TR/rdf-schema/, 2004. 5, 13

[BHLT06] T. Bray, D. Hollander, A. Layman, and R. Tobin, Namespaces in xml

1.0, http://www.w3.org/TR/REC-xml-names/, 2006. 8

[BL00] Tim Berners-Lee, A layered approach of semantic web, http://

www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html, 2000. 6

[BMRW98] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and Michael Wan,

The sdsc storage resource broker, Proceedings of the 1998 conference of

the Centre for Advanced Studies on Collaborative research (CASCON

’98), 1998, p. 5. 38, 39, 40, 41, 64

[BPM04] P. V. Biron, K. Permanente, and A. Malhotra, Xml schema part

2: Datatypes second edition, http://www.w3.org/TR/2004/REC-

xmlschema-2-20041028/datatypes.html, 2004. 10

[BPSM+06] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and

F. Yergeau, Extensible markup language (xml) 1.0 (fourth edition),

http://www.w3.org/TR/xml/, 2006. 5, 7, 9

[Bus45] Vannevar Bush, As we may think, Atlantic Monthly, http://

www.theatlantic.com/doc/194507/bush/, July 1945. 32

[BvHH+04] S. Bechhofer, F. van Harmelen, J. Hendlerand, I. Horrocks, D. L.

McGuinness, P. F. Patel-Schneider, and L. A. Stein, Owl web ontology

language reference, http://www.w3.org/TR/owl-ref/, 2004. 5, 17, 18,

20, 23

[CAD07] CADGrid, The China-Austria Data Grid project, http://www.par. uni-

vie.ac.at/project/cadgrid, 2007. 102

[CFT08] K. G. Clark, L. Feigenbaum, and E. Torres, Sparql protocol for rdf,

http://www.w3.org/TR/rdf-sparql-protocol/, 2008. 26

[CRDS06] E. Cutrell, D.C. Robbins, S.T Dumais, and R Sarin, Fast, flexible fil-

tering with phlat - personal search and organization made easy, In pro-

ceedings of international conference for human-computer interaction,

CHI 2006, 2006. 58

[Cru08] D. Cruickshank, myexperiment entities, http://wiki.myexperiment.org,

2008. 62

BIBLIOGRAPHY 146

[Dat08] Data Mining Group, The Predictive Model Markup Language (PMML),

http://www.dmg.org/v3-2/, July 2008. 70, 77

[Dit06] Jens-Peter Dittrich, imemex: A platform for personal dataspace man-

agement, In Proceedings of the 2nd SIGIR Workshop on Personal In-

formation Management (PIM 2006), August 2006. 32, 35

[Dod05] L. Dodds, Introducing sparql: Querying the semantic web,

www.xml.com/pub/a/2005/11/16/introducing-sparql-querying-

semantic-web-tutorial.html, 2005. 28

[DS06] Jens-Peter Dittrich and Marcos Antonio Vaz Salles, idm: a unified and

versatile data model for personal dataspace management, VLDB ’06:

Proceedings of the 32nd international conference on Very large data

bases, 2006, pp. 367–378. 33, 35, 36

[EBT06] Ibrahim Elsayed, Peter Brezany, and A Min Tjoa, Towards realization

of dataspaces, Proceedings of International Conference on Database

and Expert Systems Applications (DEXA), 2006. 30, 64

[EHL+08] I. Elsayed, J. Han, T. Liu, A. Wöhrer, F. A. Khan, and P. Brezany,

Grid-enabled non-invasive blood glucose measurement, Springer Berlin,

2008. 103, 104

[Erf05] Farnaz Erfan, Maintain federated data using websphere information

integrator autonomic monitoring tools, IBM, 2005. 49

[fBIR08] Stanford Center for Biomedical Informatics Research, Protege owl plu-

gin 3.3.1, http://protege.stanford.edu/, 2008. 81

[fEe07a] National Institute for Environmental eScience, The niees wiki

for grid information, http://gridinfo.niees.ac.uk/index.php/ Stor-

age Resource Brocker, 2007. 44

[fEe07b] , The niees wiki for grid information, http://gridinfo.niees.

ac.uk/index.php/InQ, 2007. 43

[FHM05] M. Franklin, A. Halevy, and D. Maier, From databases to dataspaces:

A new abstraction for information management, ACM SIGMOD, De-

cember 2005. 30, 31, 33, 36, 63, 111

BIBLIOGRAPHY 147

[FHvH+01] D. Fensel, I. Horrocks, F. van Harmelen, D. Mcguiness, P., and Patel-

Schneider, Oil: An ontology infrastructure for semantic web, IEEE

Inteligent Systems, 2001. 5, 6

[FVWZ02] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, Chimera: Avirtual data

system for representing, querying, and automating data derivation,

14th International Conference on Scientific and Statistical Database

Management, 2002. 60, 64

[FW04] D. C. Fallside and P. Walmsley, Xml schema part 0: Primer second

edition, http://www.w3.org/TR/xmlschema-0/, 2004. 5

[GPFLC04] A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho, Ontological en-

gineering, Springer, 2004. 82

[GR07] C. Goble and D. De Roure, myexperiment: Social networking for

workflow-using e-scientists, Proceedings of the 2nd workshop on Work-

flows in support of large-scale science, Monterey, California, USA.,

2007. 62, 64

[Gru08] Tom Gruber, What is an ontology?, http://www-ksl.stanford.edu/kst/

what-is-an-ontology.html, 2008. 4

[Hal05] Alon Halevy, Why your data won’t mix, Queue 3 (2005), 50–58. 30

[HFM06] A. Halevy, M. Franklin, and D. Maier, Principles of dataspace systems,

Proceedings of the ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems (PODS), December 2006. 30, 67

[IEE08] IEEE, The world’s leading professional association for the advancement

of technology, http://www.ieee.org, 2008. 82

[Inc08] Google Inc., Google desktop features, http://desktop.google.com/en/

features.html, 2008. 56

[iRG06a] iRODS Research Group, The irods rule system, https://

www.irods.org/ index.php/The iRODS Rule System, 2006. 47

[iRG06b] , Rule-oriented programming, https://www.irods.org/, 2006. 46

[iRG08a] , Introduction to irods, https://www.irods.org/index.php/Intro

duction to iRODS, 2008. 46

[iRG08b] , irods v1.0, https://www.irods.org/, 2008. 45, 48, 49

BIBLIOGRAPHY 148

[KHB04] G. Kickinger, J. Hofer, and P. Brezany, Grid knowledge discovery sys-

tem processes and an architecture for their composition, IASTED Con-

ference, 2004. 78

[KM01] Marja-Riitta Koivunen and Eric Miller, W3c semantic web activity,

http://www.w3.org/2001/12/semweb-fin/w3csw, 2001. 7

[M. 07] M. Antonioletti et al, OGSA-DAI 3.0 - the whats and the whys, Pro-

ceedings of the UK e-Science All Hands Meeting, September 2007. 69

[MM04] F. Manola and E. Miller, Rdf primer, http://www.w3.org/TR/rdf-

primer/, 2004. 10

[MvH04] D. L. McGuinness and F. van Harmelen, Owl web ontology language

overview, http://www.w3.org/TR/owl-features/, 2004. 15, 16

[nw08] n2 wiki, Sparql, http://n2.talis.com/wiki/SPARQL intro, 2008. 26

[oMoS08] The University of Manchester and University of Southampton, myex-

periment main page, http://www.myexperiment.org/, 2008. 63

[Pal01] Sean B. Palmer, The semantic web, an introduction, http:// in-

fomesh.net/2001/swintro/, 2001. 6

[PS08] E. Prud’hommeaux and A. Seaborne, Sparql query language for rdf,

http://www.w3.org/TR/rdf-sparql-query/, 2008. 25, 26, 74

[RMC07] Joseph Rosenzweig, Rada Mihalcea, and Andras Cso-

mai, A machine-readable thesaurus and semantic network,

http://lit.csci.unt.edu/ wordnet/, 2007. 37

[RWM03a] A. Rajasekar, M. Wan, and R.W. Moore, Mysrb and srb - components

of a data grid, San Diego Supercomputer Center, University of Cali-

fornia at San Diego, 2003. 39

[RWM+03b] A. Rajasekar, M. Wan, R.W. Moore, W. Schroeder, G. Kremenek,

A. Jagatheesan, C. Cowart, B. Zhu, S.Y Chen, and R. Olschanowsky,

Storage resource broker - managing distributed data in a grid, Com-

puter Society of India Journal, 2003. 42, 43, 44

[RWMS06] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder, A prototype rule-

based distributed data management system, HPDC workshop on ”Next

Generation Distributed Data Management, 2006. 45, 47, 48, 64

BIBLIOGRAPHY 149

[SDK+07] Marcos Antonio Vaz Salles, Jens-Peter Dittrich, Shant Kirakos

Karakashian, Olivier René Girard, and Lukas Blunschi, itrails: pay-

as-you-go information integration in dataspaces, Proceedings of the

33rd international conference on Very large data bases (VLDB 2007),

2007, pp. 663–674. 36, 37

[SWM04] M. K. Smith, C. Welty, and D. L. McGuinness, Owl web ontology

language guide, http://www.w3.org/TR/owl-guide/, 2004. 18

[TBJ08] A Min Tjoa, P. Brezany, and I. Janciak, Gridminer: An advanced

support for e-science analytics, http://www.gridminer.org, 2008. 75

[TBMM04] H. S. Thompson, D. Beech, M. Maloney, and N. Mendel-

sohn, Xml schema part 1: Structures second edition, http://

www.w3.org/TR/2004/REC-xmlschema-1-20041028/ structures.html,

2004. 10

[TBW+08] A Min Tjoa, P. Brezany, A. Wöhrer, I. Janciak, and I. Elsayed,

Gridminer - intelligent grid solutions, http://www.gridminer.org/ in-

dex.php, 2008. 75

[Web08] W3C Semantic Web, W3c semantic web faq, http://www.w3.org/

RDF/FAQ, 2008. 6

[Wik08a] Wikipedia, Ontology (information science), http://en.wikipedia.org/

wiki/Ontology, 2008. 4

[Wik08b] , Ontology language, http://en.wikipedia.org/wiki/Ontology la-

nguage, 2008. 4

[Wik08c] , Owl - web ontology language, http://en.wikipedia.org/wiki/

Web Ontology Language, 2008. 14

[Wik08d] , Xml, http://en.wikipedia.org/wiki/XML, 2008. 7

	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives and Methods
	Organization of the Thesis
	Results

	Basics On Ontology Languages
	Introduction
	Semantic Web
	XML
	Introduction
	Basic Concepts

	RDF
	Introduction
	Basic Concepts

	The OWL Language
	Intoduction
	The species of OWL
	Header
	Classes
	Properties
	Property Restrictions
	Property Characteristics
	Class Operators
	Enumerations
	Individuals

	SPARQL
	Introduction
	Basic Concepts

	Related Work
	Introduction
	Dataspaces
	iMeMex A Personal Dataspace Management System
	Introduction
	iMeMex Architecture
	iMeMex Data Model - iDM
	iTrails: Pay-as-you-go Information Integration in Dataspaces
	Conclusion

	Storage Resource Broker
	Introduction
	SRB Features
	System Architecture
	The SRB Client

	iRODS - integrated Rule-Oriented Data Systems
	Introduction
	Basic Concepts
	Rule Oriented Programming
	iRODS Architecture
	Components of an iRODS System

	IBM WebShepre Information Integrator
	Introduction
	Overview
	WebSphere Information Integrator functions and objects
	Replication

	Google Desktop Search
	Phlat & Windows Desktop Search
	Introduction
	Design Principles
	Architecture

	Chimera - A Virtual Data System
	Introduction
	Chimera Architecture

	myExperiment
	Introduction
	Basic Concepts

	Conclusions
	Summary

	e-Science Life Cycle Data Model
	Introduction
	e-Science Life Cycle Activities
	Life Cycle Metamodel
	Environment of the e-Science Life Cycle
	Search and Query Scientific Dataspaces
	GridMiner Knowledge Discovery System enhanced by the e-Science Life Cycle Model

	e-Science Life Cycle Implementation
	Introduction
	Methodologies for Ontology Creation
	Life Cycle Ontology Classes
	Life Cycle Ontology Properties

	e-Science Life Cycle Concept Evaluation
	Introduction
	Generic Application Scenario
	Concrete Use-Case Scenario
	Introduction
	Life Cycle Ontology Individuals (A Case Study)
	Querying the e-Science Life Cycle Ontology

	Conclusions and Future Work
	Conclusions
	Future Work

	The e-Science Life Cycle Ontology
	Zusammenfassung
	Lebenslauf
	Bibliography

