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Abstract

The island of Kythnos lies in the Western Cyclades, a group of islands south of Athens

(Greece). The Cycladic islands are characterized by Miocene extension, which overprints

earlier thrust and extrusion tectonics.

Geological and structural investigations on southwestern Kythnos have revealed a hith-

erto undescribed major normal fault zone. A dominant feature of this large SW-dipping

extensional shear zone is a several meters thick layer of an extremely �ne-grained marble

ultramylonite, along with an up to half a meter thick ultracataclasite.

Lithologies on Kythnos are mostly metasedimentary rocks, such as chlorite-epidote

schists and albite-chlorite-mica schists intercalated with marble horizons. Furthermore,

there are isolated outcrops of metagabbroic rocks.

The schists and marbles show intense ductile deformation, with penetrative schistosity

and mineral lineation. Several folding phases, especially in the gneisses and mylonitic

marbles, can be observed. Generally, this appears as large-scale isoclinal subhorizontal

folding, overprinted by upright folds. Isolated lenses of metabasites, enveloped within

layers of talc-schists, are present within the greenschist-facies footwall rocks. These

metagabbroic rocks preserve an original magmatic microstructure and appear largely

undeformed.

Ductile to brittle deformation produced calcite mylonites and calcite to quartzite cata-

clasites. The brittle overprint is pronounced in open fractures and joints associated with

ore deposition.

Shear sense indicators within the shear zone, predominantly scc'-fabrics and clast ge-

ometries, point to top to SSW-directed kinematics. This evidence of SSW-directed

extensional kinematics is in accordance with the neighboring Western Cycladic islands.

Whole-rock chemistry of the metabasites allows these lithologies to be classi�ed in re-

spect of their original composition. Mineral chemistry investigations on ferromanganoan

metasediments enables characterization and a comparison with similar lithologies on ad-

jacent islands.

A detailed description of the tectonometamorphic history of Kythnos gives insight into

the regional geodynamics in the Aegean Sea and to exhumation processes in general.

5



Zusammenfassung

Die in den westlichen Kykladen liegende griechische Insel Kythnos ist geprägt von Exten-

sionsbewegungen miozänen Alters, die eine ältere Kompressions- und Extrusionsphase

überprägen. Strukturgeologische Untersuchungen im südwestlichen Bereich der Insel

Kythnos zeigen eine bisher unbeschriebene Abschiebung. Die groÿe, nach SW einfall-

ende, Störungszone wird durch mehrere Meter mächtige, extrem feinkörnige ultramyloni-

tische Marmore und bis zu einem halben Meter mächtige Ultrakataklasite charakterisiert.

Die lithologischen Einheiten auf Kythnos bestehen überwiegend aus einer metased-

imtären Abfolge, die sich aus Chlorit-Epidot-Schiefern und Albit-Chlorit-Glimmerschiefern

mit dazwischengeschalteten Marmorlagen zusammensetzt. Untergeordnet erscheinen

auch metagabbroische Gesteine.

Schiefer- und Marmorlagen zeigen eine intensive duktile Deformation, die in einer pen-

etrativen Foliation und Minerallineation bemerkbar ist. Weiters können mehrere Fal-

tungsphasen beobachtet werden. Diese bestehen vorwiegend aus einer subhorizontal

Isoklinalverfaltung, welche durch eine aufrechte Faltung überprägt wird. Linsenförmige,

von Talkschiefern umgebene, Metabasitkörper erscheinen hingegen wenig deformiert,

denn diese Einheiten weisen noch Relikte eines primär magmatischen Gefüges auf.

Deformation im spröd-duktilen Übergang zeichnet sich durch die Ausbildung von kalzi-

tischen Marmorultramyloniten und kalzitisch- bis quarzitischen Kataklasiten aus. Eine

spröde Deformationsphase wird von o�enen und teils durch Erz verfüllten Klüften gekennze-

ichnet.

Schersinnindikatoren entlang der Abschiebung, vorwiegend scc'-Gefüge und Klastgeome-

trien, weisen auf eine nach SSW gerichtete Bewegung hin. Die Bewegungsrichtung lässt

sich mit ähnlichen Geometrien auf den benachbarten Inseln vergleichen.

Eine Betrachtung des Gesamtgesteinschemismus der Metabasite erlaubt eine Klassi-

�zierung und Zuordnung dieser Gesteine. Die Bestimmung der Zusammensetzung einzel-

ner Mineralphasen aus Fe-Mn-reichen Metasedimenten ermöglicht deren Charakterisierung

und einen Vergleich mit ähnlichen Lithologien auf benachbarten Inseln.

Einer ausführliche Beschreibung der tektonischen und kinematischen Geschichte der

Scherzone auf Kythnos leistet daher ein Beitrag sowohl zur Erfassung der regionalen

geodynamischen Situation im Ägäischen Raum, als auch für das Verständis von Ex-

humationsprozessen im Allgemeinen.
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1 Introduction

Work on Kythnos started within the framework of a project focusing on pilot studies

in the Western Cyclades. Within the Austrian Science Fund project ACCEL (Aegean

Core Complexes along an Extended Lithosphere) information on the development of the

regional geodynamic setting within the Aegean was sought by studying the structural

and geological inventory of the western Cycladic islands of Kea, Kythnos and Serifos.

The geodynamic history of the Aegean was previously based primarily on the numerous

investigations from Eastern and Northern Cyclades. Studies on the eastern Cycladic

islands of Syros, Naxos, Ios, Tinos and Andros and Mykonos provide evidence for an ex-

tensional setting with exhumation along low-angle normal faults (Okrusch and Bröcker,

1990; Lee and Lister, 1992; Lister et al., 1984). Low-grade metamorphic rocks were

placed in direct contact with high-grade rocks by the evolution of metamorphic core

complexes. Crustal-scale detachment faults along which highly metamorphic lithologies

were exhumed were found to take place on north- and southward dipping fault planes,

showing top to the N and NNE-directed kinematics.

Subsequent investigations of the island of Serifos by the means of three diploma theses

(Iglseder, 2005; Zámolyi, 2006; Rambousek, 2007) led to the recognition of a metamor-

phic core complex associated with at least two S-directed detachment shear zones, a

higher and a lower grade. Furthermore, exhumation and extension were accompanied

by granodioritic plutonism. A major detachment-type shear zone is also proposed by

ACCEL for the island of Kea, on which non-metamorphic klippen were mapped (Davis,

1972). Detailed studies by further three diploma theses by Voit (2008), M. Müller and

M. Rockenschaub, extensive mapping by A.H.N. Rice and ongoing work by C. Iglseder

unveiled major ductile to brittle low-angle normal faults in the northern and southern

areas of the island.

The discovery of major extensional faulting on the islands of Serifos and Kea led to the

assumption that there ought to be evidence of this tectonic activity also on Kythnos.

A preliminary scouting excursion by B. Grasemann, D. Schneider and E. Draganits un-

earthed an ultramylonitic marble shear zone in the extreme south of the island. As a

result two more masters' theses were initiated in the course of which G. Laner and I took

a closer look at the deformation history on South Kythnos at Agios Dimitrios. Next

to detailed mapping of the area, the work focused on �uid-rock interactions within the

shear zone and the relation between the extensional faulting and lenses of metabasic
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lithologies.

Detailed investigations along the major shear zones have now led to both a better un-

derstanding of the regional plate tectonic and geodynamic setting and have shed light

on the exhumation processes along ductile to brittle shear zones. The manner in which

exhumation takes place on low-angle normal faults is not yet completely understood,

as the formation of brittle faults with low initial dips cannot be mechanically explained

(Axen, 2007). It is therefore highly interesting to observe which mechanisms are at work

during the formation of low-angle normal fault zones.
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2 Geological Setting

2.1 Overview of the Geology of Greece

The geology of Greece is dominated by the nappes of the Hellenides, an Alpine-Himalayan

orogenic belt that provides a link between the Balkan to the North and Turkey to the

East (Jacobshagen, 1986). The Hellenide orogen developed over several tectonic cycles,

which took place from the Late Paleozoic up to the present. The orogen includes ophi-

olites, Upper Mesozoic and Tertiary �ysches, and Cenozoic molasse basins. Repeated

events of metamorphism and related granite intrusions are also a main element of the

Hellenides. The orogen is made up of large nappes building a fold-and-thrust belt prop-

agating toward the foreland. Orogenesis involved convergence and nappe tectonics of

several zones with distinct facies successions, (Argand, 1924; Clément et al., 2000).

The evolution of the Hellenides is associated with the closing of the Tethyan ocean,

which in turn is concordant with the opening of the central Atlantic ocean in the Late

Jurassic. The opening of the Atlantic initiated the convergence of Africa and Europe

and thus Alpine deformation. The Hellenides are thought to have formed from several

microplates between Apulia (Adriatic microplate) and Rhodopia (Jacobshagen, 1994),

for which the Moesian platform represents the stable hinterland.

The Hellenides can be divided into several zones according to their paleogeographic po-

sition in respect to the passive continental margin of the Neotethys during the Mesozoic.

Further division is made regarding depositional environment, facies, magmatic evolution

and tectonic position. This enables a distinction between the Western Hellenic nappes,

Central Hellenic nappes, Median Crystalline Belt (see 2.2) and Interhellenic nappes (Fig.

1). These nappes are usually separated by ophiolitic remnants indicating the develop-

ment of oceanic crust.

Whereas in mainland Greece much of the orogenic nappe stacks are preserved, the

Aegean region has been a�ected by extension tectonics (Gautier et al., 2001; Lister

et al., 1984). Both syn- and post-orogenic extension have led to the exhumation of

deeper crustal material, characterized by high-pressure metamorphic rocks. Synoro-

genic (with ongoing thrusting further south) extension in the Cyclades and the adjacent

Menderes and Lycian nappes in Turkey, commenced during the Eocene and led to the

partial exhumation of eclogites and blueschists (Sokoutis et al., 1993; Jolivet et al., 2003).

During the Oligocene and early Miocene (24�20 Ma) the Cycladic region was dominated
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by post-orogenic extension in a back-arc setting leading to the �nal exhumation of high-

pressure metamorphic rocks (Gautier and Brun, 1994).

The subduction, synorogenic extension and back-arc extension subsequently migrated

southwards. The stretching direction points toward NNE, and involves extension of ap-

proximately 580 km since the Mid-Eocene (45 Ma) (Brun and Faccenna, 2008).

2.2 The Attic Cycladic Crystalline Complex

The Attic Cycladic Crystalline Complex is part of the Median Crystalline Belt of the

Central Hellenides and can be divided into three main tectonic units (Fig. 2). The

basal unit shows pre-Alpine metamorphism and represents the continental basement of

the Crystalline Complex. It is made up mostly of ortho- and paragneisses formed by

Hercynian high temperature metamorphism and relics of Caledonian intrusives. Lime-

stone layers and metabauxites also form part of the basal unit. The intermediary unit

is marked by multiphase metamorphic overprint and progressive deformation. Charac-

teristic for the intermediate unit are marble layers, metapelites, metasediments (�ysch),

metamorphic equivalents of volcanic sequences and metamorphic slices of ophiolites.

The Upper Unit of the Attic Cycladic Crystalline consists of a basal ophiolitic mélange

and overlying remnants of an ophiolite nappe. Within the mélange there are Permo-

Triassic limestones, greenschists, granitoid intrusions and crystalline slices a�ected by

Upper Cretaceous low pressure, high temperature metamorphism. These are overlain

by a partial ophiolite sequence consisting of serpentinites, and non-metamorphic Creta-

ceous limestones and Oligo- to Miocene molasse sediments (Okrusch and Bröcker, 1990;

Dürr, 1986). The Upper Unit sequences crop out as klippen and show no evidence of

metamorphism.

The Attic Cycladic Crystalline Complex has been subjected to numerous deformation

events. The timescale of metamorphism ranges from Variscan (M0) up to recent (M4).

The �rst metamorphic phase (M0) is observable in the pre-alpine continental basement.

These are mainly Variscan gneisses cropping out on the islands of Naxos, Ios, Paros,

Sikinos and Syros. During the following metamorphic phase (M1) in the Cretaceous

(100�70 Ma) (Bröcker and Pidgeon, 2007) to Eocene (50�40 Ma) (Okrusch and Bröcker,

1990) high pressure - low temperature conditions were reached. Metamorphism took

place at eclogite to blueschist facies conditions at 14 kbar and 500 +/- 30 ◦C (Putlitz
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Figure 1: Major geological units in Greece. In the Ionian Sea the island of Zakynthos and parts of

Kefalonia and Lefkada belong to the Pre-Apulian Zone, which represents an undeformed part of the

Adriatic plate. Further to the East follow the nappes of the Hellenides, beginning with the External

Hellenides which include the Ionian, Gavrovo-Tripolitza, Pindos and Plattenkalk zones. The Attico-

Cycladic massif and its continuation to the Menderes massif are the major elements of the Central

Hellenides. The Internal Hellenides are composed of the Sub-Pelagonian, Pelagonian, and Vardar zones

in Greece and the Ankara-Izmir and Sakarya zones in Turkey. Further toward Bulgaria follow the

Rhodopes and the Paleozoic foreland. Modi�ed after Barr et al. (1999); Ring et al. (1999); Schmid

et al. (2008).
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et al., 2000). The high-pressure rocks in the Aegean are a product of subduction-related

metamorphism (Ring and Layer, 2003). Blueschist-facies rocks crop out on Andros,

northern Tinos, Syros (eclogites), Sifnos, Kythnos, N-Serifos, Milos, Ios, Amorgos, and

southeastern Naxos (van der Maar and Jansen, 1983). Retrograde medium pressure -

medium temperature metamorphic conditions (M2) date back to the Oligocene-Miocene

(30�20 Ma) (Schliestedt et al., 1994). On Syros, Ios, Serifos, Kythnos, Kea, Andros,

Tinos and Paros lithologies showing greenschist-facies conditions predominate. On the

island of Naxos amphibolite-facies rocks can be observed (Avigad, 1998). The metamor-

phic stages M1 and M2 can further be subdivided into numerous separate events (Forster

and Lister, 2005). On Lavrio, Ikaria, Mykonos, Delos, Tinos, Serifos, Naxos and Keros

granitic to granodioritic intrusions during the Miocene (15�8 Ma) (Altherr and Siebel,

2007) induced local low pressure contact metamorphism (M3). The �nal overprint (M4)

is related to volcanic activity linked to subduction or deeper mantle processes and lasts

from 5 Ma ago up to now. Active volcanism can be observed along the South Aegean

Volcanic Arc which lies between the Saronic Gulf and Nisyros and includes the islands

of Aegina, Methana, Milos, Kimolos, Santorini, Antiparos, Kos, and Nisyros (Fytikas

et al., 1984).

2.3 Geodynamic Setting

The Aegean region can be regarded as a microplate, which is surrounded by the African

plate to the south, the Eurasian plate to the north, the Apulian plate to the northwest

and the Anatolian plate to the northeast. Surface displacement data show the Aegean

microplate moving 3�4 cm/year SSW-wards relative to stable Eurasia and 1 cm/year

northwards relative to Africa, resulting in an overall convergence rate of 4�5 cm/year

for the Aegean region (McClusky et al., 2000). To the south of the Aegean microplate

lies the Hellenic trench and the Mediterranean ridge, at which subduction localized 30�

25 Ma ago (Jolivet and Faccenna, 2000). To the northeast lies the North Anatolian

Fault, which accommodates the westwards movement of the Anatolian plate (Fig. 3).

The modern North Anatolian Fault nucleated in central Anatolia in the Eocene, approx-

imately at 15 Ma (Gautier et al., 2001), has propagated to the northern Aegean Sea and

now moves at 2�3 cm/year (McClusky et al., 2000; Clarke et al., 1998; Hollenstein et al.,

2008).
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Figure 2: Major units of the Cyclades (modi�ed after Iglseder et al. (in press)). The majority of

the Cycladic islands and some areas of the Greek mainland around Lavrio consist of metamorphic

rocks associated with the Median Crystalline Belt. The Lower Unit of the ACC crops out on Lavrio,

Syros, Paros, Ios and Sikinos. Lithologies of Attic Cycladic Upper Unit are often associated with a

detachment-type tectonic contact and can be found on Andros, Tinos, Paros and Naxos. There are

also isolated occurrences of External and Internal Hellenides (Pelagonian Zone). Intrusion of Miocene

granites and granodiorites occur on Lavrio, Serifos, Tinos, Mykonos, Ikaria, Naxos and Paros. The

southern islands (Milos, Thira) are dominated by Pliocene to recent volcanic activity. Kinematics of

displacement directions show bilateral symmetry: whereas on the Northern and the Eastern Cyclades

movement is NNE-directed, the Western Cyclades show evidence of SSW-directed kinematics.
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The Aegean region is the most seismically active region in Europe (Fig. 4). The dis-

tribution of earthquake hypocentres shows numerous shallow earthquakes which are

concentrated around the Hellenic trench at the presumed active plate boundary. Along

with deeper earthquakes they de�ne a Wadati-Benio� zone dipping 30◦ toward the north

and northeast up to a depth of about 150�200 km (Papazachos et al., 2000). Along with

tomographic studies (e.g. Spakman et al. (1988)), the Wadati-Benio� zone marks the

African plate subducting beneath the European plate. As a result of slab retreat asso-

ciated with back-arc extension, rigid extrusion of Anatolia and post-orogenic collapse of

an overthickened crust, the Aegean microplate is subjected to extension tectonics (Jo-

livet, 2001; Bohnho� et al., 2001).

Furthermore, the Aegean region shows mean lithospheric thickness values of 24�30 km

(Makris, 1978; Li et al., 2003; Tirel et al., 2004), which, together with high heat �ow

values and a shallow Moho depth (Makris and Stobbe, 1984; Endrun et al., 2005), can

be interpreted as a thinned continental crust. Thinning of the continental crust is put

down to gravitational collapse of the orogen during the Oligocene and middle Miocene,

induced by the southwards of the subducting African slab.

The subduction zone at the Hellenic Arc is associated with calc-alkaline volcanism, es-

pecially prominent at the islands of Milos, Santorini and Kos (Fytikas et al., 1984). The

composition of the volcanic material suggests a mantle source contaminated by lower

crustal material (Pe-Piper and Piper, 2006).

Both the southward rollback by a retreating of the subduction zone at the Hellenic trench

and the lateral extrusion of Anatolia led to widespread extension within the Aegean. Ex-

tension is associated with plutonism and low-angle detachment faulting (Lister et al.,

1984).

In the Eastern Cyclades metamorphic core complexes exhumed Miocene metamorphic

rocks along N- to NE-directed low-angle normal faults (Lister et al., 1984; Jolivet and

Faccenna, 2000). South-directed kinematics involving metamorphic core complex for-

mation has been observed in the Western Cyclades on the island of Serifos (Grasemann

et al., 2004; Iglseder et al., 2006). On Kea exhumation occurs along a large-scale ductile-

brittle shear zone involving low-angle normal faulting (Voit, 2008; Iglseder et al., 2008).
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Figure 3: Summary of faulting in the Eastern Mediterranean region by Taymaz et al. (2007).

NAF = North Anatolian Fault.
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Figure 4: Seismicity with magnitudes for M >3 of the Eastern Mediterranean region and sur-

roundings as reported by USGS during the years 1973�2007. Map after Taymaz et al.

(2007).
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3 Kythnos Island

The Greek island of Kythnos lies in the Aegean Sea southeast of the capital Athens. It

is part of the Cycladic archipelago and lies between the islands of Serifos in the south

and Kea in the north. The island comprises 100 km2 and shows a N-S elongation (22 km

N-S versus 5 km E-W). Topographically, Kythnos is dominated by two major ridges

striking NNE-SSW. The smaller northern one has its highest elevation at Kakavolo with

356 m, while the longer southern ridge has its highest point on Pro�tis Ilias at 325 m.

Separating these two major ridges is a large �at-lying area at approximately 100 m

elevation around the main town of Kythnos.

Earliest signs of settlement on Kythnos island, which are dated to the Mesolithic period

(10 000 to 8 000 years BP) have been found in the north at Maroulos (near Loutra).

During the 12th century BC the tribe of the Dryopians settled on Kythnos Island as a

consequence of being displaced by the Doric tribes from Evvia. It was the Dryopian

tribes that gave the island its name, as the root 'kyth' or 'keyftho' relates to a hidden

dark place in Phoenician or Dryopian language. This interpretation of the name arraigns

to some physical attribute of the island such as shadowy forests, deep valleys, caves or

mines. In due course the name changed to Thermia, adhering to the thermal springs in

the island's north.

Major early Bronze Age smelting sites were found on the east coast near Skouries, which

led to the conclusion that the island of Kythnos must have been a major supplier of

copper and iron throughout the Bronze Age. The highly organized smelting site was one

of the earliest of such industrial smelting sites in the whole Aegean region (Alram-Stern,

2004). Copper ore was extracted from surrounding areas on the east coast around Agios

Ioannis and near Zhogaki and Milyes (east and south of Driopida, respectively). The

copper mineralization on Kythnos is generally weak and consists mostly of malachite

found within quartz veins or iron oxides (Zacharias et al., 2006). These iron oxides

represent the main mineralization on the island. Additional ore was imported from

Sifnos for copper production in Skouries (Gale and Stos-Gale, 1984) as the copper ores

on Kythnos were of limited extent. The low supply of ore led to Lavrion taking over the

role as main copper supplier to the Cyclades by the start of the Lower Cycladic Period

(Gale and Stos-Gale, 1984). Major changes took place in the 13th century AD when

the Venetians built the settlement of Kastro in the North, which was later invaded by

the Turks. In 1830 Kythnos became a member of the Greek Union, with �shing and
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agriculture providing the main sources of income on the island. Between the beginning of

the 20th century and the Second World War the mining of iron ore once again provided a

further income source. After a decline in the 60s and 70s, when the island was e�ectively

desolate, only recently tourism has led Kythnos to prosperity. Currently, there are 1500

permanent residents on the island.

3.1 Previous Works

In the past Kythnos Island has received little attention from geologists. Preliminary

geological observations were made by Fiedler (1841) and Philippson (1901) during their

travels throughout the Greek islands. The �rst and so far only extensive mapping was

conducted by J.B. De Smeth during the years 1972�1973 and published as the geological

map of Kythnos Island by the Greek National Institute of Geological and Mineral Re-

searches (IGME) in 1975 (Fig. 6). The diploma theses by M. Carl and V. Bartsch and a

subsequent publication by Schliestedt et al. (1994) provide a detailed petrographic de-

scription of major lithologies and an estimation of a P-T-path of greenschist-facies rocks.

In 2003 A.I. Chrysanthaki and E.M.M. Baltatzis published geochemical investigations on

ferromanganoan metasediments from the Panagia Kanala area on the southeastern coast

and the Episkopi area in the west. A summary of the structural evolution of Kythnos

island has been provided by the recent publication by Keiter et al. (2008). Furthermore,

the thermal springs in Loutra are been subject of several investigations (e.g. Loehnert

(1988); Augustithis (1976); Lambrakis and Kallergis (2005)). Pre-historic �nds from the

north of the island (e.g. Gale and Stos-Gale (1984)) and Bronze Age copper smelting

sites (e.g. Alram-Stern (2004)) have received archaeological attention and have been

described in detail.

3.2 Mapping Area

The focus of this work lies in the southernmost part of Kythnos Island, near the bay of

Agios Dimitrios (Fig. 5). The mapping area includes the settlements of Agios Dimitrios,

Karavokyris and Petroussa. The bay area around Agios Dimitrios is �at-lying, the area

further south is dominated by two ridges up to 100 m in elevation running from west to

east. They are divided by a steep valley marked by a perennial stream. The coastline

in the southern area of Kythnos is rugged and uneven. A small island lies o�shore of a

promontory north of the town of Agios Dimitrios.

18



Figure 5: Quickbird satellite image of the southernmost region of Kythnos Island. The settle-

ment in the bay is known as Agios Dimitrios. Coordinates are given in UTM Northing

and Easting.
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3.3 Lithostratigraphy

Kythnos Island is mainly made up of metasedimentary rocks, predominately epidote-

chlorite-schists, albite-chlorite-mica schists intercalated with marbles - and a meta-

gabbroic unit (DeSmeth, 1975), (Fig. 6).

Evidence greenschist facies metamorphism is prevalent throughout the island. Relics

of an earlier high pressure metamorphism, such as glaucophane minerals and pseudo-

morphs of jadeite and garnet (Bartsch, 1993; Schliestedt et al., 1994), and the widespread

greenschist facies overprint place lithologies on Kythnos into the Intermediate Unit (as

in Dürr (1986)) of the Attic Cycladic Crystalline belt.

White mica K-Ar dating constrain the greenschist facies metamorphism at around 26 -

20 Ma (Schliestedt et al., 1994), which corresponds with Oligocene to Miocene ages of

similar rocks on other Cycladic islands (Bröcker et al., 2004).

Apart from the abundant greenschists and marbles, there are occurrences of ferromanga-

noan metasediment layers, as described by Chrysanthaki and Baltatzis (2003), in which

garnets and sodium-rich amphiboles are present. Additionally, small lenses of metabasic

lithologies crop out. The boudin-like lenses of metagabbroic rocks are commonly en-

veloped in layers of serpentinitic talc-schists with asbestos veins.

Above layers of epidote-, chlorite-, and albite-schists with intercalated marble follows

a conspicuously �ne-grained calcitic marble mylonite. This layer is found to be up to

10 m thick. In other areas of the island, this structurally higher position is occupied by

coarser-grained impure marble.

Adjacent to this ultramylonitic marble are various cataclastic layers, ranging in defor-

mation grade from protocataclasites to ultracataclasites. Both the underlying marble

and the overlying quartzite act as protoliths. Within the cataclasites, a variation of com-

ponent composition from only marble clasts to only quartzitic clasts can be observed.

The structurally uppermost unit is a strongly brecciated and hydrothermally altered

quartzite (Fig. 7).

Outside the mapping area (e.g. near Kanala), there are outcrops of garnet-magnetite-

amphibole quartzites, which occupy a similar structural position within the greenschists

as the tourmaline-epidote gneisses. Furthermore, a massive layer of coarse-grained mar-

ble crops out in morphologically higher-lying areas, especially in the north.
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Figure 6: Geological Map of Kythnos Island, modi�ed after DeSmeth (1975).
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Figure 7: Lithostratigraphic columns by DeSmeth (1975) (left), Schliestedt et al. (1994) (mid-

dle) and own (right). Q.al stands for quarternary alluvium, Marble 1 is a yellow-brown

marble, Marble 2 a blue-grey marble, mg a metagabbroic unit, MUM an ultramy-

lonitic marble.
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3.3.1 Metabasic Rocks

Within the epidote schists, isolated lenses of metabasic lithologies can be found. Only

a small number of outcrops are described: near the town of Kanala, Episkopi and Agios

Dimitrios. The metamorphic gabbroic rocks cropping out at Agios Dimitrios have a

boudin-like lensoid shape of approximately ten by two meters. They are marked by con-

spicuous rounded weathering forms (Fig. 10) and are enveloped by layers of serpentine-

talc schists. The metabasic rocks show relics of an original magmatic fabric, from which

pyroxene crystals weather out.

The mineral assemblage includes brown amphibole, magnetite, orthopyroxene, albite,

sodium amphibole, calcite, and chlorite. One sample (from Kanala) shows large areas

of serpentinization, in which antigorite and chrysotile are found both as �ne-grained in-

tergrowth with tremolite and as pseudomorphs after olivine (Fig. 10). Round inclusions

within amphibole and pyroxene crystals (Fig. 8) may also have been olivine crystals, now

altered to tremolite (within the brown hornblende) and serpentine. Amphibole crystals

show marginal alteration from brown hornblende to pale tremolite (Fig. 9). Needles of

blue amphibole occur both within the matrix and also as inclusions in feldspar crystals.

The metabasic rocks appear massive, showing little to no foliation planes, nor can any

evidence of folding or deformation be observed.

3.3.2 Greenschists

Chlorite-sericite-actinolithe-epidote-albite-schists to -gneisses are ubiquitous on Kythnos

island. Some portions of these rocks show pervasive growth of calcite between mineral

grains, possibly as a result of hydrothermal overprint with carbonate-rich �uids.

The main minerals composing the greenschist are chlorite, sericite, actinolite, epidote,

quartz, calcite and albite. The greenschist facies rocks are partially highly �ne-grained,

showing strong foliation, and generally show subhorizontal dip. Other portions are

more massive and contain larger amounts of quartz and feldspar and less phyllosilicates.

Conspicuous large epidote crystals weather out on foliation planes and de�ne a lineation

toward NNE (Fig. 11). Some epidote crystals show relics of an older internal foliation

(Fig. 23).
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Figure 8: Thin section of metabasite in normal (top) and crossed (bottom) polarized Nicols',

unoriented sample. Fine-grained intergrowth of tremolite and serpentine minerals.

Large orthopyroxene crystals are partially resorbed and show serpentinized rounded

inclusions. Amphiboles show needle-like growth on the margins of the pyroxenes.
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Figure 9: Thin section of metabasite in normal (top) and crossed (bottom) polarized Nicols',

unoriented sample. Large crystals of brown hornblende show characteristic cleavage

pattern and a tremolite fringe. Opaque Fe-oxide phases are ubiquitous.
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Figure 10: Serpentine (chrysotile/antigorite) pseudomorphs, possibly after olivine (top). Out-

crop of metabasic rocks showing rounded weathering forms and original magmatic

fabric (bottom).
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Figure 11: Large epidote crystals weathering out on foliation plane (left). Greenschist with

kinked foliation plane (right).

3.3.3 Ferromanganoan Metasediments

Ferromanganoan metasediments, or riebeckite-spessartine-magnetite gneisses, crop out

as dark, strongly foliated rocks. The mineral assemblage is composed of spessartine,

magnetite, �riebeckite�, quartz, albite, muscovite, chlorite, and minor amounts of titan-

ite, titano-magnetite, apatite and rutile.

These dark, black rocks are clearly foliated (mylonitic foliation) and show an alternation

between lighter, quartz-rich and darker, magnetite-rich layers. Mineral lineation is de-

�ned by the preferential orientation of amphibole needles and strikes shallowly toward

NE. Mica minerals and some elongated magnetite grains grow along the foliation plane,

whereas garnet and magnetite act as clasts. Syntectonic Ab-blastesis indicates top to

SSW-directed shear (Fig. 12).

The garnet-magnetite-amphibole quartzite samples were obtained at a location near

Kanala (W-Kythnos) and are also described from Flambouriana on the eastern coast

(Chrysanthaki and Baltatzis, 2003).

Tourmaline-Epidote Gneisses At a similar lithostratigraphic position as the garnet-

amphibole-gneisses, tourmaline-epidote-gneisses can be found at a small outcrop on the

northern side of Agios Dimitrios bay. The tourmalinites occur within the chlorite-epidote

schists and overlie the metabasitic rocks. The lithology appears dark and distinctly fo-

liated. The foliation is produced by an alternation between quartz-rich and tourmaline-

epidote-rich layers (Fig. 13). Orientation of mica minerals and chlorite create a schistos-
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Figure 12: Thin section of amphibole-spessartine gneiss viewed in normal (top) and crossed

(bottom) polarized light. Crossite, spessartine and rutile crystals de�ne a foliation

within an albite blast. Quartz grows syntectonically onto a magnetite crystal. The

matrix surrounding the feldspar blast consists mainly of blue amphiboles, mica and

�nely dispersed garnets.
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ity along subhorizontal planes, on which elongated tourmaline crystals de�ne a SE-NW

lineation. Crenulation lineation is parallel to the mineral lineation and dips toward the

NE at a shallow angle.

The mineral assemblage is made up of tourmaline (dravite�schoerl), epidote, magnetite,

quartz, chlorite, actinolite, and muscovite.

3.3.4 Mylonitic Marble

The mylonitic marble appears as a distinct lithology in the landscape as it weathers out

as an approximately 3�5 m thick layer. It is blue-grey in color and is often associated with

folded gneiss layers (Fig. 14). Quartz grains on foliation planes de�ne a shallow NNE-

dipping lineation. Minor amounts of sericite are aligned with the mylonitic foliation.

Beds of the marble dip toward the NW over NE to SE at a low angle, de�ning a dome-

shaped structure. The mylonitic marble shows intense subhorizontal isoclinal folding

on all scales. In the thin section, the average grain size of the calcite crystals can be

determined as lying between 50 and 100 µm. However, a large grain-size variation can

be observed, especially pronounced in a mylonitic foliation with extremely �ne-grained

to coarser-grained bands of calcite crystals (Fig. 14). Larger calcite crystals exhibit

twinning both as thin twin layers and thick twin bands. Quartz occurs as clasts showing

top to S-directed shear. Especially remarkable is the fact that some quartz clasts appear

to be internally broken instead of acting as rigid clasts within a marble matrix.

3.3.5 Albite-Gneiss

Directly overlying the blue-grey mylonitic marble is an approximately 5 m thick layer of

albite-rich gneiss. Layers of albite-gneiss are also often intercalated with the mylonitic

marble. These layers within the marble are generally strongly folded, mostly as sub-

horizontal isoclinal folds. Further to the south, gneissic layers appear more chaotically

folded.

The gneiss is principally composed of quartz, albite, chlorite, calcite, and sericite. Chlo-

rite and sericite minerals de�ne the foliation plane, which is overgrown by albite-blastesis.

Major amounts of calcite mineral growth can be observed between the mineral grains

and replacing feldspar crystals (Fig. 15).
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Figure 13: Thin section of a tourmaline-bearing quartzite viewed in normal (top) and crossed

(bottom) polarized light. Idiomorphic tourmaline crystals appear green to brown

when observed parallel to c-axis and light pink to yellow when observed perpendic-

ular to c-axis. Along with epidote crystals and opaque Fe-oxides, tourmalines occur

dispersed in a quartz-rich matrix.
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Figure 14: Thin section of mylonitic marble viewed in crossed polarized light. Within the

marble folded gneiss layers are commonly found (top). Layers of more and less

�ne-grained calcite crystals de�ne a mylonitic foliation (bottom).
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Figure 15: Foliated, folded gneiss (top) and thin section picture of albite-gneiss in crossed po-

larized light (bottom) showing ubiquitous growth of calcite crystals due to overprint

by carbonate-rich �uids.
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3.3.6 Carbonate-rich Albite-Chlorite-Sericite Schist

Major amounts of schistous material surround the mylonitic marble and gneiss layers.

Additionally, isolated lenses of phyllite also occur overlying the ultramylonitic marbles.

The mineral assemblage consists primarily of quartz, albite, chlorite, calcite, and sericite.

In contrast to the greenschists, these rocks contain no epidote. Large feldspar crystals

are twinned and show poikiloblastic microstructure. The chlorite-schists show distinct

foliation (Fig. 16) and mineral lineation (dipping shallowly toward NE). Isoclinal folds,

kink bands and sc-fabrics can be observed within this lithology.

Figure 16: Brittle fault o�setting foliation planes of albite-chlorite-schists. Here the albite-

chlorite-schists are overlain by epidote-schists (top right).

3.3.7 Impure Marble

Between the chlorite schist and the ultramylonitic marble layer lies a lithology that con-

sists mainly of calcite, quartz, feldspar and chlorite. It can be described as a carbonate-

rich gneiss, or as an impure marble. On a hand-piece scale, strongly elongated quartz-

lenses can be seen (Fig. 17). Larger broken-up quartz, feldspar and Fe-oxide grains act
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as clasts between foliated chlorite, �ne-grained calcite and quartzite. Calcite is ubiq-

uitous, but concentrated in layers. A strong, probably protomylonitic, foliation can be

observed and is made up of bands of �ne-grained quartz and mica. Calcite is often found

interspersed between quartz grain boundaries.

3.3.8 Ultramylonitic Marble

Ultra �ne-grained mylonitic marbles present a conspicuous horizon. The marble shows

a distinct layering with bands of pink to yellow and grey-blue coloring. In thin section-

scale a mylonitic layering of coarser- and �ner-grained areas can be observed (Fig. 18).

The average calcite grain size lies at approximately 10 µm. There is, however, a markable

variation in grain size so that certain mylonitic layers are composed of calcite crystals

whose size lies below the resolution of the optical microscope. Grain size reduction may

have been the consequence of deformation at a temperature lower than necessary for

dynamic recrystallization. Fluid activity might have enabled movement at low temper-

atures by further reducing fault friction.

The ultramylonite consists almost purely of calcite, with only occasional occurrence of

small quartz clasts (Fig. 18). Larger clasts are usually made up of calcite crystals. There

is only a very rare occurrence of mica. Additionally, the mylonitic layers are cross-cut

and o�set by coarser-grained calcite veins.

Two species of ultramylonitic marble can be distinguished, which vary in respect of color

and position. Whereas the pink- to yellow-colored marbles (Fig. 19) are found to be

dipping steeply to the SW, the blue-white marbles show a more shallow angle of dip and

are found farther away from the underlying impure marbles.

In certain areas the ultramylonitic marble is also partially overprinted by Fe-rich �uids.

This alteration replaces the calcite with an Fe-rich phase, but preserves the quartz clasts

and the foliation.

3.3.9 Cataclasites

Cataclastic faults can be observed throughout the southernmost area of Kythnos Island.

Especially remarkable, however, is a several decimeters thick zone of cataclasites directly

overlying the ultramylonitic marble. Directly adjacent to the ultramylonite, the cata-

clastic components are almost solely of marble origin. With increasing distance to the
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Figure 17: Fine-grained impure marble with large amounts of gneissic-quartzitic lenses. Out-

crop picture (top) and thin section image (bottom).
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Figure 18: Thin section image of ultramylonitic marble viewed in crossed polarized light. A

banding with more or less �ne-grained calcite crystals can be determined. Broken-

up quartz components act as clasts and dispersed small quartz crystals and mica

pervade the marble. Large calcite crystals grow in extension gashes.
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Figure 19: Outcrops of ultramylonitic marble show �ne banding and variations in color from

pink to yellow (top) to blue (bottom). Occasional inclusions of quartz weather out

(right).
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ultra�ne-grained marble, components show a larger variation in composition and include

polycrystalline quartz, gneissic material, and components altered by Fe-rich �uids. In

some samples larger components are enveloped in a thin calcite fringe (Fig. 20).

The shape and size of the grains di�er remarkably, both within and throughout the sam-

ples. Whereas quartz grains are most often angular to subangular, marble components

also show rounded shapes.

Figure 20: Thin section of cataclasite viewed in crossed polarized light. Components are poly-

crystalline quartz, calcite and calcite overprinted with Fe-oxides. Some quartz com-

ponents are enveloped in a rim of �ne-grained calcite.

3.3.10 Protocataclastic Quartzites

The southernmost area of Kythnos Island is dominated by strongly brecciated, leached

and hydrothermally altered quartzitic rocks. The protocataclastic quartzites crop out

only on the southernmost areas of Kythnos Island and were originally described as car-

bonatized volcanic rocks (DeSmeth, 1975). The rocks are composed mainly of quartz,

and contain minor amounts of calcite and muscovite. Some areas show massive hy-
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drothermal overprint �uids depositing Fe-oxides and -hydroxides (primarily goethite

and hematite).

The degree of deformation and alteration varies throughout the outcrops. Some areas

appear as massive quartzites, showing quartz grain boundary triple junctions with 60◦

angles, a feature commonly put down to statical recrystallization, a process which could

imply posttectonic annealing. Mica minerals seem to be concentrated in bands and

show a preferred orientation which may point to an original foliation direction (Fig. 21).

Locally, the quartz-rich rocks are deformed to ultracataclasites (Fig. 30) and strongly

overprinted by Fe-rich �uids.

39



Figure 21: Thin section of quartzite viewed in crossed polarized light (top) showing foam struc-

ture and possible foliation de�ned by white mica. Outcrop picture of strongly frac-

tured quartz-rich rock (bottom).
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3.4 Deformation History

3.4.1 Foliation and Lineation

Deformation is most pronounced in a penetrative schistosity, which is most obvious

in phyllite units, showing prominent foliation planes. Most planes of schistosity are

found to be dipping shallowly to the NNE in more northern areas and to the SSW in the

southernmost regions. This results in an overall dome-shaped structure with the foliation

planes dipping in an outward direction (Fig. 22). In proximity to the ultramylonitic

marbles, the foliation planes show a steeper southward dip. The schistosity is commonly

overprinted by various folding stages.

Mineral and stretching lineations are found to strike rather consistently toward NNE to

NE (Fig. 22). Additionally to the persistent NNE-directed lineation, subordinately a

SSW direction can also be observed. From the lower-lying strata to the higher ones a

drift in lineation direction from NE to NNE can be observed. In the tourmaline-epidote-

gneiss both a mineral and crenulation lineation can be observed. Isolated lenses of

metabasic rocks show mineral lineation, de�ned by a preferred orientation of amphibole

crystals, also dipping toward NNE.

Figure 22: Schmidt's equal area plot of the lower hemisphere showing foliation planes dipping

to the NW, N and NE at a low angle (left). Lineations of all types (stretching and

crenulation lineation) strike consistently in a NE-SW direction (right).
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Figure 23: Thin section of greenschist viewed in crossed polarized light. The boudinaged epidote

crystal in the center shows remnants of an older, folded, foliation direction and is

part of a younger stretching lineation. Younger foliation is also formed by preferred

orientation of mica.

42



Figure 24: Subhorizontal isoclinal folding of a gneiss layer in the marble mylonite. The limb be-

tween the two fold hinges has been sheared through, giving evidence for extensional

shear postdating isoclinal folding.
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3.4.2 Folding

At least two di�erent folding phases can be observed on southern Kythnos (Fig. 25).

Especially schists and marbles show widespread isoclinal folding along subhorizontal ax-

ial planes and southwest-vergent fold axes. Second order z-, s- and m-fold geometries

indicate a larger-scaled isoclinal folding. Isoclinal folds with subhorizontal axial planes,

but NW-SE trending fold axes also occur subordinately.

Map-scale open folding is produced as the strata, which lie mostly horizontal through-

out the island, dip more steeply to the south in the southernmost regions. This open

folding is depicted in the cross-sections drawn by De Smeth (1975). Parallel to the open

folding, buckle and thrust folds with a subvertical axial plane can be observed in the

ultramylonitic marble. Refold structures are widespread and can be observed when a

subhorizontal fold axial plane is overprinted by subvertical axial plane (Figs. 26 and

27).

Figure 25: Two principal folding directions as seen in the Schmidt's equal area plot of the lower

hemisphere show subhorizontal isoclinal folding with shallow dipping fold axes (left)

and upright open folding with fold axes dipping NNE-SSW at a low angle (right).
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3.4.3 Boudinage

Boudinages and pinch-and-swell structures of gneiss layers are common within the my-

lonitic marble (Fig. 28). Layers of gneiss are thinned out in a direction that is consistent

with NE-SW-directed extension. On thin section-scale boudinages appear most often in

clasts (of magnetite or quartz) within the marbles.

Furthermore, boudinaged epidote crystals in the epidote schist produce a stretching

lineation.

3.4.4 Shear Sense Indicators and Mineral Grain Deformation

The rocks of the greenschist-marble unit, which show penetrative schistosity, exhibit

scc'-fabrics (Fig. 29) and shear bands both in outcrop- as in thin section-scale. These

shear sense indicators point to a general top to SSW-directed deformation. Within the

marble layers, quartz and gneiss porphyroclasts also show clast geometries consistent

with top to SSW-directed kinematics.

3.4.5 Marble-Ultramylonite Shear Zone

A conspicuous element of the southeastern tip of Kythnos Island is an up to 5 m massive

layer of an extremely �ne-grained marble. The ultramylonitic marble shows a signi�cant

tectonically reduced (in contrast to the coarser yellow-grey marble) grain size produced

by dynamic recrystallization. This calcitic marble shows mylonitic foliation consisting

of mm- to cm-wide bands of calcite crystals with varying grain sizes (Fig. 18).

The ultramylonite is associated with cataclasite layers cutting steeply toward the SW

and discordantly through the existing structures. An up to a meter massive layer of

ultracataclastic material represents a boundary between the ultramylonitic marble and

an adjacent highly brecciated quartzitic lithology. The ultracataclasites show major

variations regarding composition and degree of cataclasis, which enable a distinction

between di�erent generations (Fig. 30). Directly in contact with the ultramylonite, the

cataclastic components appear to be predominantly calcitic, whereas within the quartzite

almost no calcitic material can be observed. However, most components within the

cataclasites are polycrystalline quartz grains, calcites, marbles overprinted by iron-rich

�uids (Fig. 20). More marble-rich cataclasites show substantial amounts of rounded

grains and grains with a thin �ne-grained calcitic rim around the components.
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Figure 27: Refolded gneiss layer within epidote schists. The �rst folding stage is along a SE-

dipping axial plane and a SW-NE-directed fold axis, which is overprinted by a second

folding stage with a subvertical axial plane and a SE-NW-directed fold axis.
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Figure 28: Boudins of gneissic material in mylonitic marble indicating NE-SW extension.
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Figure 29: Top to SW-directed movement observed in a shear band in a chlorite-schist exhibiting

scc'-fabric (top) and in a δ-clast within Qtz- and mica-rich marble (bottom).
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Figure 30: Quartzitic cataclasite with angular quartz components (top). Hydrothermally al-

tered ultramylonitic marble showing cataclastic deformation (bottom).
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3.4.6 Brittle-Ductile Deformation

The pre-existing structures within the greenschist-marble unit and the ultramylonitic

marble are further overprinted by NW-SE-directed shortening perpendicular to direc-

tion of extension, which led to the folding of the ultramylonitic marble layer into an

antiform. Within the marble ultramylonite, buckle folds and fault bend folds (Fig. 31)

give evidence for this compressional event with a subvertical axial plane and a NE-SW-

directed fold axis.

3.4.7 Brittle Deformation

Numerous joints and faults document brittle deformation phases. Vein generations can

be distinguished according to their orientation and �lling and cross-cutting relationships

enable a relative age estimation. These veins are commonly �lled with quartz, calcite,

Fe-oxides and -hydroxides and baryte crystals. The direction of the �nal stages of brittle

fault generation which are documented on fault planes (Fig. 32) indicate that the whole

area under investigation was subjected to normal faulting due to further NE-SW directed

extension, both on shallow-dipping SSW-NNE fault planes with down-dip movement and

a conjugated high-angle fault system indicating a principal compression direction from

the NW and SE and corresponding NE-SW extension.
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Figure 31: Fault bend fold (top) and buckle fold (bottom) in ultramylonitic marble showing

shortening perpendicular to main SSW-NNE extension direction.
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Figure 32: Angelier lower hemisphere plots of brittle fault planes. Conjugate high-angle fault

system (left) and shallow dipping brittle fault planes (right) indicating SW-NE ex-

tension.

3.4.8 Summary of Deformation History

Lithologies on Kythnos have been a�ected by various stages of ductile and brittle de-

formation. The �rst deformation phase (D1) is marked by a NE-SW-trending lineation

and a top to SW-directed sense of shear. Evidence of D1 is pronounced in lower-lying

strata of epidote-schists. Subsequent deformation (D2) is characterized by a rotation

of the lineation direction toward the N, with mineral lineation trending NNE-SSW,

while shear sense is directed top to SSW. These deformation stages show widespread

greenschist-facies overprint. Ductile deformation resulted in the development of schis-

tosity and mineral lineation, such as in elongated quartz and feldspar crystals. This

occurred alongside subhorizontal isoclinal folding followed by upright open folding.

Under the brittle-ductile transition and post-metamorphic brittle conditions, faulting

is dominated by an NNE-SSW-directed extensional regime. During the brittle-ductile

transition, fabrics with SSW-directed sense of shear were formed. Further exhumation

led to localization of strain �rst in mylonites, then in cataclasites. The shear zone is

characterized by major grain size reduction of calcite crystals and by the brittle be-

haviour of quartz grains within the ultra�ne-grained mylonitic marble. Signi�cant grain

size reduction is a common characteristic of shear zones and provides a means of re-
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Figure 33: Large-scale normal fault dipping toward SW at the southern end of Kythnos Is-

land. The brittle fault is associated with hydrothermal activity leading to iron ore

deposition.
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ducing friction. Brittle deformation of quartz grains indicate temperatures lower than

270◦C, the minimum temperature for crystal plasticity of quartz (Voll, 1976).

A �nal brittle overprint is evident in veins and open joints. Extension gashes were formed

during various generations, which can be subdivided according to their orientation and

the material with which they are �lled. The orientation of major brittle structures is

consistent with ongoing SSW-NNE-directed extension.

Altogether, the structures on Kythnos Island give insight into deformation events at

various stages of exhumation through the middle and upper crust.
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3.5 Geochemical and Microprobe Investigations

The whole-rock and mineral chemistry of the metabasic rocks and the ferromanganoan

metasediments were investigated to provide a comparison with previously published data

on this material. The whole-rock composition of the metabasites allow an estimation

of the depositional environment and gives information on the possible connection with

ophiolitic slices found throughout the Cyclades. For the ferromanganoan metasediments

the measurement of the composition of garnet and amphibole was thought to con�ne

metamorphic conditions and to allow comparison of the mineral chemistry of similar

lithologies on other Cycladic islands.

Microprobe investigations were carried out on the Cameca SX 100 at the Department

of Lithospheric Research at the University of Vienna. A beam current of 20 nA and

a voltage of 15 kV were used. A defocused ion beam was used for measurements of

amphiboles, due to their high sodium content. With the electron microprobe, compos-

tions of garnet, amphibole, chlorite, epidote and tourmaline were determined from the

ferromanganoan metasediments and tourmalinites.

Whole-rock chemistry of major, minor and trace elements was performed on three sam-

ples of metabasic rocks from di�erent localities. The major and some minor elements

were measured using optical emission spectroscopy (ICP-OES), atomic absorption spec-

troscopy (F-AAS) and X-ray �uorescence (XRF). Further minor and trace elements were

measured by mass spectrometry (ICP-MS). All analyses were carried out at the Univer-

sity of Vienna. The powdered rock samples were used directly for XRF measurements

and volatile detection. For measurement using spectrometry the powdered samples were

dissolved in either a) a mixture of hydro�uoric acid and nitric acid, or b) with Li-borate

(for Si detection).

The atomic emission spectroscopy with excitation by plasma (ICP-OES) was carried out

on the �Optima 5300DV�. The analytical setup for the spectrometry involved a dwell

time of 10 ms, 50 sweeps and one replicate. From the sample 250 mg were dissolved in

250 ml solution, from which the trace elements (Ba, Be, Co, Cr, Cu, Li, Nb, Ni, Pb, Rb,

Sr, V, Zn, Zr) were measured. For the major elements (Si, Fe, Al, Ca, Mg, Na, K, Mn,

Ti, Ba, Sr, Zr) this solution was diluted to 1/10 of the original concentration.

The mass spectrometer (ICP-MS) is of the type �Elan 6100�, and uses inductively cou-

pled plasma (gaseous Ar) for ionization.

Measurements with X-ray �uorescence were carried with a wavelength-dispersive �uo-
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rescence spectrometer, PHILIPS PW2400, using a powdered, heated and compressed

rock sample.

The elements Na, K, Cu and Zn were additionally measured by atomic absorption spec-

troscopy, using a �ame for thermal excitation.

Loss of ignition (LOI) was determined gravimetrically by heating 5 g of sample at 1000◦C

for a duration of 5 h. The LOI includes carbonates, which are lost as carbon dioxide, crys-

tal bound water, non-carbonate carbon and sulfur. The actual composition of the LOI

was measured on Elemental Analyser Elementar VarioMacro, which analyzes CHNS+O

by combustion of liquid and solid samples at 1150◦C.

Analytical errors generally lie between 5�10 % but depend on method used and the

respective concentration of the element measured. The quality and further the error of

the analyses was determined by comparison with internal standards. The precision and

thus the error of a single measurement can be approximated by the deviation of the

measured standard value from the known standard composition.

3.5.1 Whole Rock Chemistry

Measured element concentrations Concentrations of major elements were measured

by ICP-OES (Si, Al, Fe, Ca, Mg, K, Ti, Mn, P), F-AAS (Na, K) and XRF (Si, Al, Fe,

Ca, Mg, Na, K, Ti, Mn, P). LOI was measured gravimetrically, the detailed composition

of which was determined by CHNS elemental analyser. Minor and trace elements were

measured by ICP-OES (Ba, Co, Cr, Cu, Li, Ni, Pb, Rb, Sr, Zn, Zr), F-AAS (Cu, Zn) and

ICP-MS (Ba, Co, Cr, Cs, Cu, Ge, Li, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Tl, V, Zn). Rare Earth

Elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U) were

measured by ICP-MS. Mean values are given in tables 1 to 3 and are placed alongside

previous measurements from lithologies on Kythnos. Ki704 was described in the �eld

as a magnetite-bearing metabasic rock and was sampled south of Agios Dimitrios (Fig.

35).

The sample Ki709 is taken from the same locality but appeared lighter coloured and

showed relictic magmatic fabric. Ki713 originates from the North of Agios Dimitrios

and was much darker in appearance, but showed the same magmatic fabric. Data from

Carl (1993) are also from the Agios Dimitrios area, whereas data by Chrysanthaki and

Baltatzis (2003) is from samples taken in the area around Kanala.
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Figure 35: Locations of the samples used for analysis of whole rock chemistry. Sample Ki713

was taken from an outcrop north of Agios Dimitrios, whereas Ki704 and Ki709 were

found south of the bay.

Table 1: Summary of major and minor element composition. 1own data. 2data from Carl

(1993). 3data from Chrysanthaki and Baltatzis (2003).
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Table 2: Summary of trace element composition. 1own data. 2data from Carl (1993). 3data

from Chrysanthaki and Baltatzis (2003).

Table 3: Summary of Rare Earth Element content. 1own data. 2data from Carl (1993). 3data

from Chrysanthaki and Baltatzis (2003).
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Interpretation of whole rock chemistry The three samples measured show a great

variety in major and trace element composition. Especially major di�erences in sil-

ica content indicate that samples are from both felsic and basic lithologies. However,

they all show compositions within the range of meta-ultrabasites to metabasites and

metasediments. A large variability in the amount of Mg, Al and the alkaline elements

Na and K can be seen. Variation in the Ca content is probably due to di�ering degrees

of overprint with carbonate-rich �uids. This is supported by the fact that also the LOI

(composed primarily of CO2 and minor amounts of H2O) shows similar strong variation,

which correlates with Ca content. Additionally, the samples with highest amount of

carbonate also show the highest contents of Sr and Rb. Even though samples Ki704,

Ki709 and Ki704 show varying amounts of carbonate content, a comparative amount

of non-carbonate CaO remains (approximately 4 %Ox) for all samples. This can be

correlated with �eld observations that overprint with carbonate-rich �uids can be found

in widespread areas.

Conspicuous are signi�cant amounts of heavy metals in the sample with very low silica

content (Ki713). Especially remarkable are the extremely high amounts of Cr and Ni,

which can be taken as an indicator for an originally ultrabasic source rock. Obviously

enriched are also Pb, Co and As. The rare earth elements seem to be distributed rather

homogeneously.

Altogether this indicates that only sample Ki713 is from a truly metabasitic lithology,

showing characteristic low silica and high Mg and heavy metal content. The other sam-

ples, however, show either a strong overprint or should be placed within the greenschist

facies assemblage. Therefore, as only one sample of a metabasite was measured, conclu-

sions drawn from the whole rock chemistry can only be tentative and for a representative

analysis further investigations would be necessary.

3.5.2 Mineral Chemistry

The mineral chemistry composition of garnets, amphiboles, tourmalines and mica was

measured in ferromanganoan metasediments and tourmalinites. Samples of ferromanganoan

metasediments were taken from central Kythnos and northern Kea. Tourmalinite sam-

ples are from southern Kythnos. Representative analyses for mineral composition are

given in the appendix. Mineral formulas were calculated using an MS Excel c© spread-

sheet by Tindle and Webb (1994).
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Garnet compositions Garnets are relatively small (with a diameter of up to 50 µm)

and are dispersed throughout the foliation. They occur alongside amphiboles, quartz,

magnetite, apatite and as inclusions therein (Fig. 36). Showing a high MnO-content

around 30%, they are commonly classi�ed as spessartines. The garnet crystals appear

to be rather homogeneous so that no compositional variation from core to rim could be

observed.

Amphibole composition Amphiboles occur as large elongated crystals within the foli-

ation of the ferromanganoan metasediments and within extension gashes. The alkali-am-

phiboles can be classi�ed as crossites and magnesio-riebeckites. In a Fe3+/(Fe3++Alvi)

versus Mg/(Mg+Fe2+) diagram two distinct compositional groups can be identi�ed

(Fig. 39). Apart from alkali-amphiboles also Ca-amphiboles (actinolites) and Na-Ca-

amphiboles (winchites) can be found. Within the amphibole crystals, compositional

variation can be seen in an increase in CaO-content and decrease in Al2O3 from core

to rim. The compositional variation from core to rim can also be seen as a progression

from a crossite to a (Mg-)riebeckite mineral chemistry.

Epidote composition Compositions of epidote crystals were measured in the tour-

maline quartzite rock. They show idiomorphic growth and lie within foliation planes.

Epidote minerals show hardly any compositional variation. They have a high pistacite

component and are thus rich in Fe3+, indicating an oxidizing environment. The formula

calculated is as follows: Ca2Al2(Fe
3+
0,87Mn0,07)Si3O12OH.

Tourmaline composition Tourmaline crystals show idiomorphic growth and are aligned

within the foliation. Minerals are up to 100 µm in diameter and up to a few mm long.

They show poikiloblastic cores, in which the inclusions are most commonly made up of

the surrounding minerals quartz and magnetite (Fig. 40). A compositional zonation can

be observed in which rims show higher Fe content and lower Al than the core. Mineral

formula calculations (by A. Ertl. Mg was assigned to the Z-site by using calculations of

Bloodaxe et al. (1999). Fe3+ was calculated using the method from Lynch and Ortega

(1997)) show the rims to be schoerls with the following mineral formula:
X(Na0.91Ca0.04K0.01�0.04)

Y (Fe2+
1.48Fe

3+
0.54Mg0.81Ti

4+
0.06Mn2+

0.01�0.10)
Z(Al5.26Mg0.74)(BO3)3[Si6O18](OH)3[O, (OH)]

XMg = 0.43 ; X-site vacancy = 0.04
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Figure 36: Back-scattered electron imagine of a ferromanganoan metasediment. High back

scattering idiomorphic minerals are magnetite and garnet. A layering of amphibole

and quartz + albite layers can be observed (top). Garnet and magnetite grow in

both these layers. Magnetite is present both within the foliation and as idiomorphic

crystals. Amphibole crystals show distinct zoning (bottom).
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Figure 37: Ternary composition diagram for garnet (after Win et al. (2007)). All samples from

Kythnos and Kea show more or less compositional similarities.

Figure 38: Thin section image of amphibole-rich rock viewed in crossed polarized light.
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Figure 39: Classi�cation diagram of alkali-amphiboles according to Leake (1978). Measured

amphiboles plot in the crossite and the magnesio-riebeckite �eld.

Tourmaline cores are depleted in Fe and can be classi�ed as (Fe-rich) Dravites with

following formula:
X(Na0.88Ca0.01�0.11)

Y (Mg1.32Fe
2+
1.23Al0.21Fe

3+
0.06Ti

4+
0.02Mn2+

0.01�0.15)
Z(Al5.54Mg0.46)(BO3)3[Si6O18](OH)3[O, (OH)]

XMg = 0.58 ; X-site vacancy = 0.11

Interpretation of Mineral Chemistry Data The very distinct mineralogical compo-

sition shows little variation throughout the samples. This facilitates a comparison with

lithologically similar units on other islands.

Astonishing is the fact that garnets from ferromanganoan metasediments contain almost

identical amounts of spessartine. Composition of the amphiboles show an analogous

similarity, with all sodic amphiboles plotting in the riebeckite-crossite �elds. Along the

macroscopic likeness it can be deduced that these layers are of the same origin and pos-

sibly even de�ne a distinct marker horizon within the lithostratigraphic section.

Ferromanganoan metasediments, such as piemontite-spessartine-quartzites, spessartine-

quartzites and Na-pyroxene-quartzites are described within greenschist facies rocks on
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Figure 40: Back scattered electron imagine of tourmaline-magnetite-quartzite. The dark matrix

is composed of quartz, within the foliation lie elongated tourmaline, epidote and

magnetite crystals. These occur as inclusions within larger chlorite porphyrobalsts

(bottom).
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the eastern Cycladic island of Andros. These rocks show the garnets to be also mainly

abundant in spessartine (XSps = 0.80�0.92) and the amphiboles Mg-rich crossites to

Mg-riebeckites (Reinecke et al., 1985).

Spessartine-rich garnets are typical for low-grade metamorphism in the lower green-

schists facies, at �300◦C, 1�2 kbar (Theye et al., 1996), or 0.5 kbar and 370◦C (Hsu,

1968). As garnets in natural rocks, which preferentially incorporate Mn in the form

of spessartine component, are formed at signi�cantly lower temperatures than pure al-

mandine, which �rst appears in metapelites at around 450◦C (Bucher and Frey, 1994).

Garnet in which spessartine is the principal component is commonly been observed in

the lower greenschist facies (quartz-albite-chlorite subfacies) (Schiller and Taylor, 1965),

and thus spessartine-quartzites in general are commonly low-grade metamorphic rocks,

often found in strati�ed form (Schiller and Taylor, 1965). They often appear in close as-

sociation with hydrothermal ore deposits, tourmalinites and Zn- and Ba-rich rock types,

as described in an occurrence in the Chilenean Andes by Willner et al. (2001). This

is astonishing as such association is also found on Kythnos, on which ferromanganoan

metasediments occupy a similar lithostratigraphic position as tourmalinites and both are

found in the vicinity of an area showing widespread hydrothermal overprint involving

ore deposition and baryte mineralization. Even though the ore formation is con�ned to

veins and brittle faulting, the source rock might have been part of the original deposi-

tional sequence and the ores remobilized during metamorphic or hydrothermal activity.

According to Chrysanthaki and Baltatzis (2003) the protolith of these sediments was

part of an ocean-�oor sequence with hydrothermal activity which provided Fe, Mn and

trace elements. More detailed characterization of the composition of these spessartine-

riebeckite-magnetite lithologies on Kythnos and Kea could further constrain the depo-

sitional environment and the metamorphic history of the metasediments.

This distinct lithology represents a prominent marker horizon in the Western Cyclades

and provides a linking element for the islands of Kythnos and Kea. Their lithostrati-

graphic position in respect to to the shear zone gives evidence for crustal linkage and

far-reaching acting of low-angle normal faults on a crustal scale.
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4 Discussion

A revised geological map and lithostratigraphic column of the southern Kythnos emerged

as a product of recent structural and petrological investigations on Kythnos. The

remapped area shows that the southern area of Kythnos at Agios Dimitrios is dominated

by a major extensional shear zone that caused the development of �ne-grained marbles

and cataclasites. This small dynamically recrystallized grain size indicates high di�er-

ential stress and low temperature around the brittle/ductile transition zone (at around

300◦C). The extreme thinning and mylonitic foliation points to large displacement values

involving high shear strain. The grain size reduction of the mylonitic marble and the

partially rounded components in the ultracataclasite may have provided the means for

reducing the apparent fault friction enabling movement along an angle lower than the

typical 60◦ (Anderson et al., 1977). Additionally, �uid involvement may have been an

important factor involved in friction reduction.

The structure of the fault zone can be correlated to similar major extensional shear

zones in the Aegean region, such as major low-angle normal fault detachments on the

neighboring islands of Kea and Serifos. However, due to a widespread shortening compo-

nent perpendicular to the stretching direction, the shear zone in S-Kythnos is bent and

buckled, thus showing a range of dip angles. Furthermore, the shear zone includes two

distinct ultramylonite horizons, one of which shows a steeper, the other a more shallow

dip. To be classi�ed as a low-angle normal fault, the fault zone should have exhibited a

dip lower than 30◦ (Axen, 2007).

The ultramylonite and cataclasite shear zone gives evidence for movement along low-

angle fault planes (on some marble mylonite horizons) and high-angle brittle faults,

which develop as cataclastic layers and fractures. Ductile movement on mylonite planes

and brittle deformation producing cataclasites depict the evolution of the shear zone from

the lower to the upper crust. Brittle faults cutting through the mylonitic fault planes

show them to be younger. Quartzitic lithologies overlying the ultramylonite shear zone

show various degrees of deformation from protocataclasites to rock portions giving evi-

dence for static recrystallization, indicating that strain localized in weaker layers.

Stretching lineation and shear sense indicators show top to the SSW-directed kinemat-

ics. This is consistent with deformation direction on the adjacent islands of Kea and

Serifos and provides a deviating direction to the previously described top the N to NE

direction on the Eastern and Northern Cyclades.
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Throughout the Cyclades, lenses of serpentinitic and metagabbroic lithologies can be

found in proximity to crustal shear zones. On southern Serifos serpentinite lenses are

regarded as the uppermost unit (Petrakakis et al., in press), whereas on Kea (Voit, 2008)

they are found near the base of the ultramylonite shear zone. Further northeast, on the

islands of Andros (Papanikolaou, 1978) and Tinos (Melidonis, 1980; Katzir et al., 1996),

metabasitic lithologies are found in close proximity to the detachment contact between

the Cycladic Middle and Upper Unit. On Syros serpentinite lenses and meta-ophiolitic

blocks occur in two structural positions; associated with a low angle normal fault zone

(Trotet et al., 2001), and as lenses within the greenschist facies Cycladic Intermediate

Unit (Hecht, 1984). On Kythnos outcrops of serpentinites and metabasites are situated

within the core of a large-scale open fold, lithostratigraphically below the blue-grey my-

lonitic marble and within the epidote-schists. Their proximity to the normal fault zone

exposed at Agios Dimitrios indicates that these lithologies are an integral part of the

shear zone. The fact that relics of the magmatic fabric are still preserved locally, and

the lack of structural overprint related to the deformation of the fault zone imply that

these elements acted as rigid blocks within the shear zone. This is further supported

by the fact that the metabasite blocks are enveloped in serpentine-talc-schists, a weaker

lithology, which could have accommodated deformation.

According to Schliestedt et al. (1994) the metabasic lithologies show a di�erent thermal

and pressure evolution to the surrounding rocks. In contrast to the greenschists, the

metagabbroic rocks show no evidence of a high pressure history, equivalent to the M1

metamorphic event. This low degree metamorphic overprint matched with the Upper-

most Unit of the Attic Cycladic Crystalline, thus leading to the belief that these metaba-

sic lithologies have to be assigned to the aforementioned Uppermost Unit, placing them

on the top of the lithotectonostratigraphic column. However, their structural position on

Kythnos contradicts this general positioning scheme, because no major fault separating

these metabasic lenses from the surrounding greenschists can be observed. Addition-

ally, on Kythnos laterally continuous marble mylonite layers can be found between the

metagabbroic lenses and the shear zone. Therefore, it is proposed that the metagab-

broic lithologies on Kythnos are singular ophiolitic blocks that can not be ascribed to a

di�erent tectonic unit and must have a common deformation and metamorphic history

with the surrounding greenschist facies lithologies.
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5 Conclusions

1. Kythnos island represents a major extensional SSW-directed shear zone.

2. The shear zone on Kythnos is characterized by highly strained rocks such as an

extremely �ne-grained ultramylonitic marble and cataclasites.

3. Stretching and mineral lineations of all lithologies plunge NNE or SSW. Shear

sense indicators of structures formed during ductile and brittle conditions indicate

general top-to-SSW kinematics.

4. Reduced grain size and broken quartz grains indicate that the shear zone was

active at low temperatures.

5. Comparison with major low-angle shear zones on the neighboring islands of Kea

and Serifos allows an analogous placement of the Kythnos shear zone, which prob-

ably evolved as a low-angle normal fault, but buckled under syn-extensional short-

ening.

6. Greenschists and marbles show evidence of major folding. A �rst folding stage

involved subhorizontal axial planes and led to widespread isoclinal folding. A later

folding phase is concordant with shortening perpendicular to the main extension

direction and involves subvertical axial planes. Fold axes are generally parallel to

mineral and stretching lineations and plunge in a NNE-SSW direction.

7. High �uid activity of carbonate-rich composition overprints most major lithologies.

Localized depostion of ferric oxide and baryte along brittle faults can be observed.

8. Metagabbroic units are found in proximity to the shear zone and are an integral

part of the Intermediate Unit of the Attic Cycladic Crystalline.

9. The preservation of an original magmatic microstructure can be ascribed to the

metabasites acting as rigid blocks within surrounding weaker serpentine-talc-schists.

10. Whole-rock chemistry of assumed metagabbros show that only minor parts are of

metabasic composition. These lithologies are marked by low SiO2, Al2O3 and CaO

content and high amounts of Fe2O3 and MgO. Also large heavy metal, Ni and Cr,

concentrations mark the metabasic lithologies.
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11. Mineral chemistry in ferromanganoan metasediments shows garnets with a high

spessartine component and amphiboles plotting in crossite to magnesio-riebeckite

�eld.

12. The composition of garnets and amphiboles in ferromanganoan metasediments on

Kea and Kythnos show striking similarities. Therefore, this lithology could be

used as a marker horizon throughout the Cyclades.
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Geological Map
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Geochemical Data

Table 4: Summary of chemical analyses of major, minor and trace element for all three samples

from Kythnos.
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Microprobe Data

Table 5: Representative examples of garnet composition. Mineral formula calculated for 12 O.
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Table 7: Representative examples of chlorite (left) and epidote (right) composition. Mineral

formula calculation based on 28 O for chlorite, and on 12 O for epidote.
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