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ABBREVIATIONS 
 
ALL acute lymphoblastic leukemia 
BAC bacterial artificial chromosome 
BCP B-cell precursor 
BCR B-cell receptor 
CLP common lymphoid progenitor 
CML chronic myelogenous leukemia 
CMLP common myelo-lymphoid progenitor 
CMP common myeloid progenitor 
CY3 cyanine 3 
DLBCL diffuse large B-cell lymphoma 
EFS event-free survival 
ELP earliest lymphocyte progenitor 
FAB French-American-British 
FISH fluorescence in situ hybridization 
FITC fluorescein isothiocyanate 
GC B-cell germinal center B-cells 
GMP granulocyte/macrophage progenitor 
HLH helix–loop–helix 
HSC hematopoietic stem cell 
Ig immunoglobulin 
LIN linage 
LMPP lymphoid-primed multipotent progenitor 
LSK LIN- SCA1+ KIThi 
MkEP megakaryocyte/erythroid progenitor 
MPP multipotent progenitor 
RACE  rapid amplification of cDNA ends 
RT-PCR reverse-transcription polymerase chain reaction 
SAGA Spt–Ada–Gcn5 acetyltransferase 
shRNA short hairpin RNA 
SNP single nucleotide polymorphism 
SSP DNA salmon sperm DNA 
 
 



 

4 

Human and mouse gene nomenclature according to the HUGO Gene Nomenclature Committee 

(http://www.genenames.org) and the Mouse Genome Informatics (http://www.informatics.jax.org/), 

respectively. Mouse protein nomenclature according to The Universal Protein Resource (UniProt) 

(http://www.uniprot.org/uniprot).  

Human gene symbols are ITALICIZED, with all letters UPPERCASE, whereas mouse gene symbols 

are written in Italics with the first letter capitalized followed by lowercase letters. Protein designations 

are the same as the gene symbol, but NOT ITALICIZED and all letters UPPERCASE. However, to 

differentiate between human and mouse proteins they are often indicated in UPPERCASE and 

Lowercase, respectively [e.g. PAX5 (human) and Pax5 (mouse)]. 

 
Genes (human) 

ABL1 c-abl oncogene 1, receptor tyrosine kinase 
ATXN1 (SCA1) ataxin 1 
AUTS2 autism susceptibility candidate 2 
BCL11B B-cell CLL/lymphoma 11B (zinc finger protein)  
BCR breakpoint cluster region 
BDNF brain-derived neurotrophic factor 
BLNK B-cell linker 
BRD1 bromodomain containing 1  
BTG1 B-cell translocation gene 1, anti-proliferative 
C20orf112 chromosome 20 open reading frame 112 
CCR2 chemokine (C-C motif) receptor 2 
CD19 CD19 molecule 
CD22 CD22 molecule 
CD28 CD28 molecule 
CD72 CD72 molecule 
CD79A (mb-1, Igα) CD79a molecule, immunoglobulin-associated alpha 
CD79B (Igβ, B29) CD79b molecule, immunoglobulin-associated beta 
CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) 
CDKN2B cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 
CEBPA (C/EBPα) CCAAT/enhancer binding protein (C/EBP), alpha 
CR2 (CD21) complement component (3d/Epstein Barr virus) receptor 2 
CREBBP (CBP) CREB binding protein 
CSF1R (GM-CSFRα) colony stimulating factor 1 receptor 
DACH1 dachshund homolog 1 
EBF1 early B-cell factor 1 
ELN elastin 
ERG v-ets erythroblastosis virus E26 oncogene homolog (avian) 
ETS1 v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) 
ETV6 (TEL) ets variant gene 6 (TEL oncogene) 
FLT3 FMS-related tyrosine kinase 3 
FOXO1 (FKHR) forkhead box O1 
FOXP1 forkhead box P1 
GATA1 GATA binding protein 1 (globin transcription factor 1) 
GATA3 GATA binding protein 3 
HIPK1 homeodomain interacting protein kinase 1 
IGH@ (IgH) immunoglobulin heavy locus 
IGJ immunoglobulin J polypeptide, linker protein for immunoglobulin alpha 

and mu polypeptides 
IGK@ (Igκ) immunoglobulin kappa locus 
Igll1(λ5) immunoglobulin lambda-like polypeptide 1 
IKZF1 (Ikaros) IKAROS family zinc finger 1 (Ikaros) 
IKZF3 (Aiolos) IKAROS family zinc finger 3 (Aiolos) 
Il7 interleukin 7 
IL7R (IL-7Rα) interleukin 7 receptor 
IRF4 interferon regulatory factor 4 
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IRF8 interferon regulatory factor 8 
JAK2 janus kinase 2 
KIT (C-Kit, CD117) v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 
LEF1 lymphoid enhancer-binding factor 1 
LMO1 LIM domain only 1 (rhombotin 1) 
LMO2 LIM domain only 2 (rhombotin-like 1) 
MLL myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, 

Drosophila) 
MYC (c-Myc) v-myc myelocytomatosis viral oncogene homolog (avian) 
NOTCH1 Notch homolog 1, translocation-associated (Drosophila) 
NUP98 nucleoporin 98kDa 
PAX5 paired box 5 
PBX1 pre-B-cell leukemia homeobox 1 
PLCG2 (PLCγ2) phospholipase C, gamma 2 (phosphatidylinositol-specific)  
PML promyelocytic leukemia 
POM121 POM121 membrane glycoprotein 
PPARG (PPARγ1) peroxisome proliferator-activated receptor gamma 
PRDM1 (BLIMP1) PR domain containing 1, with ZNF domain 
PRKCB (PKCβ) protein kinase C, beta 
 protein: BSAP, B-cell lineage specific activator protein 
RAG1 recombination-activation gene 1 
RAG2 recombination activating gene 2 
RB1 retinoblastoma 1 
RCSD1 RCSD domain containing 1 
RUNX1 (AML1) runt-related transcription factor 1 
RUNX1T1 (ETO) runt-related transcription factor 1; translocated to, 1 (cyclin D-related) 
SCA1 stem cell antigen 1 
SCL (TAL1) T-cell acute lymphocytic leukemia 1 
SPI1 (PU.1) spleen focus forming virus (SFFV) proviral integration oncogene spi1 
SPIB Spi-B transcription factor (Spi-1/PU.1 related) 
STAT5 signal transducer and activator of transcription 5A 
TCF3 (E2A) transcription factor 3 (E2A immunoglobulin enhancer binding factors 

E12/E47) 
THY-1 (CD90) Thy-1 cell surface antigen 
TP53 (p53) tumor protein p53 
VCAM1 vascular cell-adhesion molecule 1 
VPREB1 (VpreB) pre-B lymphocyte gene 1 
WT1 Wilms tumor 1 
XBP1 X-box binding protein 1 
ZCCHC7 zinc finger, CCHC domain containing 7 
ZNF521 zinc finger protein 521 
 
 
Mouse genes & proteins 
 
Ets1 E26 avian leukemia oncogene 1, 5' domain 
 protein: Protein C-ets-1 
Igh immunoglobulin heavy chain complex 
Ikzf1 (Ikaros) IKAROS family zinc finger 1 
 protein: DNA-binding protein Ikaros 
Ikzf3 (Aiolos) IKAROS family zinc finger 3 
 protein: Zinc finger protein Aiolos 
Plcg2  phospholipase C, gamma 2 
 protein: PLCγ2 
Prkcb (Prkcb1) protein kinase C, beta 1 
 protein: PKCβ 
Sfpi1 (PU.1) SFFV proviral integration 1 
 protein: Transcription factor PU.1 
Tcfe2a (E2A, TCF3) transcription factor E2a 
 protein: Transcription factor E2-alpha 
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ABSTRACT 

PAX5, a master regulator of B-cell development, was recently shown to be involved in 

several B-cell malignancy-associated genetic alterations, such as point mutations, deletions, 

and, of particular interest in the context of my work, also gene rearrangements. In B-cell non-

Hodgkin's-Lymphoma with a t(9;14)(p13;q32), for instance, PAX5 is juxtaposed to the IGH@ 

locus, which results in an inappropriate over-expression of PAX5. In B-cell precursor acute 

lymphoblastic leukemia (BCP-ALL), on the other hand, PAX5 can fuse to several different 

partner genes such as FOXP1 (3p13), AUTS2 (7q11), ELN (7q11), ETV6 (12p13), ZNF521 

(18q11), and C20orf112 (20q11), thereby generating fusion transcripts that encode chimeric 

proteins. Therefore, the aim of this study was to screen childhood ALL samples for PAX5 

rearrangements and to determine their incidence and the types of PAX5 gene fusions in a 

systematic and population-based fashion. 

To identify all potential PAX5-affecting breakpoints, including even those that result in 

juxtaposition of PAX5 under the regulatory elements of a partner gene, a novel dual-color 

split-apart fluorescence in situ hybridization (FISH) assay with BAC clones flanking the PAX5 

gene was employed. All samples with suspicious FISH patterns were further analyzed with 

PAX5 exon-specific cosmid clones. In order to facilitate high-throughput screening, 

interphase FISH analysis was performed using an automated spot counting system 

(Metafer4-Metacyte, Metasystems). Novel fusion partners were identified by FISH, 3'- or 5'-

RACE (Rapid Amplification of cDNA ends) and the presence of specific hybrid transcripts 

was verified by RT-PCR (Reverse Transcription-PCR) and sequence analysis. 

A PAX5 rearrangement-indicating FISH pattern was observed in 10 (2.2%) of 446 children 

with de novo ALL registered in the Austrian ALL-BFM 2000 and Interfant-99 studies. Out of 

these 10 patients, one case was previously shown to harbor a PAX5-ETV6 fusion, in one the 

recently described PAX5-C20orf112 gene fusion was found and, despite all efforts, the fusion 

partner remained unidentified in another one. However, in seven cases we succeeded to 

identify six new PAX5 in-frame fusions with HIPK1 (1p13), POM121 (7q11), JAK2 (9p24), 

DACH1 (13q21), PML (15q24), or BRD1 (22q13.33). Apart from two PAX5-JAK2-positive 

cases, every other fusion gene was non-recurring. Moreover, at least in childhood ALL we 

did not find any evidence for PAX5 activating translocations. Given the large variety of 

recovered PAX5 fusion partners, our custom-made dual-color/two-step FISH screening 

approach has proven to be an appropriate and efficient tool for the reliable detection of PAX5 

gene fusions. 

The results of this study show that PAX5 rearrangements occur with a frequency of 

approximately 2.5% exclusively in BCP-ALL and fuse PAX5 to a broad range of different 

partner genes comprising transcription factors, structural proteins, and even a tyrosine 

kinase. All hypothetical fusion proteins retain at least the PAX5 paired DNA-binding domain, 
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which is joined to the C-terminal region or even the entire protein of the fusion partner. Thus, 

all PAX5 chimeric proteins are predicted to retain the ability to bind to PAX5 target genes 

suggesting that they act as aberrant transcription factors, which may antagonize intrinsic 

PAX5 transcriptional activity, and hence, may contribute to the pathogenesis of BCP-ALL. 
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CHAPTER 1 

 
1. INTRODUCTION 
 

1.1. Hematopoiesis 

Hematopoiesis, the formation of the blood cellular components, is initiated in the fetal liver 

and postnatal bone marrow and all types of blood cells derive from hematopoietic stem cells 

(HSCs). Extensive proliferation occurs during differentiation into all lineages, which comprise 

the myeloid (including macrophages, granulocytes and polymorphonuclear cells such as 

neutrophils, basophils and eosinophils), the erythroid-megakaryocyte (including erythrocyte 

and platelets derived from megakaryocytes), and the lymphoid (B-cells, T-cells, natural killer 

cells, and dendritic cells) lineage (Fig. 1) (Katsura, 2002).  

 

 

Figure 1. Hematopoietic cell classifications. Figure taken from Katsura, 2002. 
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The lineage differentiation processes during hematopoiesis are still under debate and 

currently various models are proposed, which almost all are based on experimental evidence 

of mice studies. The classic paradigm implies that blood-cell formation proceeds along an 

ordered pathway with binary decision steps, and that a single route is given for each major 

cell type. However, recent findings suggest that more dynamic alternative developmental 

pathways are generating myeloid and lymphoid cells.  

Stem cells and all early progenitors are found within the LIN- SCA1+ KIThi subset (LSK 

subset) and are defined by the capacity of self-renewal and the capability of differentiation 

into all hematopoietic cell lineages. In one of the models, HSCs are subdivided into long-term 

HSCs (Thy-1lowFlt3-), short-term HSCs (Thy-1lowFlt3+), and multipotent progenitors (MPPs) 

(Thy-1-Flt3+), which differentiate into common lymphoid progenitors (CLP) as well as 

common myeloid progenitors (CMP) that generate the granulocytic-macrophage (GM) and 

the megakaryocytic-erythroid (MegE) lineages (Fig. 2A) (Kondo et al, 1997; Akashi et al, 

2000; Laiosa et al, 2006). Short-term HSCs and MPPs sustain the full lympho-myeloid 

lineage potential of long-term HSCs, but have reduced self renewal capacity, which coincides 

with Flt3 expression. This concept implicates that the first lineage commitment step of adult 

HSCs results in an immediate and complete separation of myelopoiesis and lymphopoiesis 

(Fig. 2A) (Adolfsson et al, 2005; Welner et al, 2008).  

In contrast, Katsura and co-workers detected bipotential myeloid/T-cell (p-MT) and 

myeloid/B-cell (p-MB) progenitor stages and proposed a model, in which T- and B-cells arise 

from a multipotent myeloid/T/B-cell progenitor and are produced through intermediate p-MT 

and p-MB stages. The existence of a common myelo-lymphoid progenitor (CMLP or p-MTP) 

also indicates that the erythroid potential is shut off at an early stage before branching 

towards T and B progenitors (Katsura, 2002). Furthermore, Adolfsson et al demonstrated 

that LSK Flt3+ HSCs sustain granulocyte, monocyte, and B- and T-cell potentials but lack a 

megakaryocytic-erythroid lineage potential (lymphoid-primed multipotent progenitors, 

LMPPs) revising the generally accepted concept of hematopoiesis (Fig. 2B) (Adolfsson et al, 

2005). A summary of the currently existing models and a potential composite model as well 

as the expression of several key factors during lineage differentiation (described below) is 

shown in Figure 2. 

Although at low levels, hematopoietic multipotential progenitors (MPPs) and HSCs 

promiscuously express genes of disparate lineages. This phenomenon, which is termed 

lineage priming, suggests that the fate of immature cells is not predetermined and that 

lineage selection extinguishes alternative potentials (Miyamoto et al, 2002; Laiosa et al, 

2006; Mansson et al, 2007; Orkin & Zon, 2008). The coexistence of different transcriptional 

programs in progenitor cells, followed by the stepwise extinction of all except for one of them, 

is therefore a defining feature of the hematopoietic system (Laiosa et al, 2006). It was shown, 
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that hematopoietic progenitors as well as differentiated cells can be redirected into other 

lineages upon ectopic cytokine signaling or forced expression of lineage-specific transcription 

factors (Laiosa et al, 2006), which also challenges the model of an unidirectional 

differentiation process. 

The important transcription factors implicated in early hematopoietic development and 

formation of HSCs include GATA-1, SPI1 (PU.1), CEBPA (C/EBPα), NOTCH1, and GATA-3 

(Laiosa et al, 2006) as well as RUNX1, MLL, SCL (TAL-1), LMO2, and ETV6 (Orkin & Zon, 

2008). Moreover, many genes commonly expressed in T- and B-cells are not active in HSCs, 

thus, HSCs more closely resemble myeloid than lymphoid precursors (Laiosa et al, 2006; 

Welner et al, 2008). 

 

 

Figure 2. Models for Hematopoietic Stem Cell and Blood Lineage Commitment (Adolfsson et al, 2005). (A) 
Model supported through the identification of CMPs and CLPs (Kondo et al, 1997; Akashi et al, 2000). (B) 

Alternative model by Adolfsson et al, 2005. (C) Composite model incorporating experimental evidence for models 

(A) and (B). LT-HSC, long-term hematopoietic stem cell; ST-HSC, short-term hematopoietic stem cell; MPP, 

multipotent progenitor; LMPP, lymphoid-primed multipotent progenitor; CLP, common lymphoid progenitor; CMP, 

common myeloid progenitor; GMP, granulocyte/macrophage progenitor; MkEP, megakaryocyte/erythroid 

progenitor; B, B-cell; T, T-cell. Figure taken from Adolfsson et al, 2005. 

 

1.2. Lymphoid development 

One of the key players for initiation of lymphoid development is FLT3, which is progressively 

upregulated from long-term HSCs towards MPPs, accompanied by a loss of VCAM1 

expression. In addition to high FLT3 expression, RAG1 is activated in LMPPs characterizing 

the emergence of the earliest lymphocyte progenitors (ELPs) (Welner et al, 2008). ELPs are 

the precursors of CLPs, which give rise to B- and T-lymphocytes, natural killer cells, and 

dendritic cells. In early lymphoid development important factors are IKZF1 (Ikaros) and SPI1 
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(PU.1). Ikaros-deficient mice lack ELPs, but also alterations in the myeloid lineages have 

been observed, which might be explained by the expression of distinct Ikzf1 (Ikaros) isoforms 

in different lineages and cooperation with the lymphoid-restricted Ikaros family member 

Aiolos (Ikzf3) (Laiosa et al, 2006; Welner et al, 2008). Ikaros may activate Flt3 and repress 

CSF1R (GM-CSFRα) and, thus, promote lymphoid cell fate. In contrast, loss of SPI1 (PU.1) 

inhibits B lineage and myelomonocytic cell formation as well as T-cell and dendritic cell 

formation, and PU.1-deficient mice lack expression of IL7R (IL-7Rα) and EBF1 (Laiosa et al, 

2006).  

GATA-3 and NOTCH1 drive lymphoid progenitors versus a T lineage differentiation, whereas 

entry of CLPs into the B-cell lineage critically depends on signaling of the IL7-receptor 

(IL7R), as well as expression of the transcription factors TCF3 (E2A), EBF1 and PAX5 

(Laiosa et al, 2006). 

 

1.2.1. B-cell development and the role of PAX5 

The hallmark of B-cell development is the stepwise expression and assembly of components 

of the functional receptor for antigen, the B-cell receptor (BCR). Assembly of the pre-BCR 

requires the rearrangement of immunoglobulin heavy chain (IGH@) genes, which proceeds 

in two steps: (1) diversity (D) and joining (J) segments are assembled (D-J rearrangements), 

and (2) variable regions are joined to D-J segments to create mature V(D)J joints (Maier & 

Hagman, 2002). Additionally, the pre-BCR complex is composed of the surrogate light chains 

Igll1 (λ5) and VPREB1 (VpreB) as well as of the signal-transducing proteins CD79A (Igα) 

and CD79B (Igβ) (Schebesta et al, 2002).  

The helix-loop-helix transcription factors TCF3 (E2A) and EBF1 coordinately regulate B-cell 

specific genes, such as components of the BCR, and in the absence of TCF3 (E2A) or EBF1 

B-cell differentiation is blocked at the uncommitted pre-pro-B-cell stage (the first identifiable 

B-cell-specified progenitor stage arising from CLPs) (O'Riordan & Grosschedl, 1999; Nutt & 

Kee, 2007). Moreover, E2A-deficient CLPs and pre-pro-B-cells fail to undergo DH-JH 

rearrangements at the Igh and Vκ-Jκ recombination at the Igk (Igκ) locus (Kwon et al, 2008). 

E2A activates Ebf1, which in turn activates Pax5 and, thus, promotes the B-cell 

transcriptional program (Nutt & Kee, 2007). Furthermore, E2A is required to maintain the 

expression of Ebf1, Pax5, and the B-cell gene program in pro-B-cells, whereas it is largely 

dispensable for the formation and function of mature B-lymphocytes and plasma cells (Kwon 

et al, 2008).  

Ebf1-deficient mice lack expression of most B-cell genes including Cd79a (mb-1, Igα), 

Cd79b (Igβ, B29), Igll1(λ5), Vpreb1 (VpreB), and Rag1, and do not undergo any Igh gene 

recombinations (Lin & Grosschedl, 1995). Ebf1 is controlled through two promoters, a distal 
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(α) and a proximal (β). The Ebf1α promoter is regulated by TCF3 (E2A) and STAT5 (which is 

activated by IL7R signaling) and, intriguingly, also contains an EBF1 binding site suggesting 

an autoregulatory function for EBF1. The Ebf1β promoter is controlled by Ets1, PU.1 and 

Pax5, whose expression itself is dependent on EBF1 (Roessler et al, 2007). Thus, EBF1 

regulates its own expression directly through induction of the Ebf1α promoter and indirectly 

through upregulation of Pax5 (Nutt & Kee, 2007; Roessler et al, 2007). The synergistic 

activity of E2A and EBF1 is required for B-cell specification, and both indirectly control B-cell 

development by induction of the B-cell commitment factor Pax5 (Nutt & Kee, 2007). 

However, activation of the B-cell specific transcription program is not sufficient to commit 

early progenitors to the B-lymphoid lineage without Pax5. 

In the absence of Pax5, B-cell development is arrested at the early pro-B (pre-BI) cell stage, 

which is characterized by the expression of early B-cell markers and a markedly reduced 

frequency of VH-to-DHJH immunoglobulin rearrangements (Nutt et al, 1997). Pax5-/- pro-

B-cells are not committed to the B-lymphoid lineage yet, they can be cultivated indefinitely in 

vitro in the presence of interleukin 7 and stroma but are unable to differentiate into mature 

B-cells. Upon stimulation with the appropriate cytokines Pax5-/- pro-B-cells can be 

differentiated into a broad spectrum of hematopoietic cell types in vitro and only restoration of 

Pax5 expression suppresses the multilineage potential of these cells (Fig. 3) (Nutt et al, 

1999a). Conditional Pax5 inactivation in committed pro-B-cells reverts lineage commitment 

and results in retrodifferentiation of B-lymphocytes to an uncommitted progenitor stage (Fig. 

3), and these cells can completely restore thymocyte development in vivo in Rag2-deficient 

mice (Mikkola et al, 2002). Upon conditional Pax5 deletion in mice mature B-cells from 

peripheral lymphoid organs are capable to dedifferentiate in vivo back to early uncommitted 

progenitors in the bone marrow, which rescues T lymphopoiesis in the thymus of T-cell-

deficient mice (Cobaleda et al, 2007a). 

Stages of B-cell development, the corresponding status of V(D)J recombination, and the 

approximate points at which B-cell lymphopoiesis is arrested in mice upon deletion of key 

regulatory factors are summarized in Figure 4. 
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Figure 3. B-cell lineage commitment by Pax5 (Cobaleda et al, 2007b). Uncommitted Pax5–/– pro-B-cells are 

able to differentiate into several hematopoietic cell types. The cytokines required for in vitro differentiation are 

indicated. Conditional Pax5 deletion (∆ Pax5) results in retrodifferentiation of B-lymphocytes to an uncommitted 

progenitor cell stage. During terminal plasma cell differentiation Pax5 is phsiologically downregulated. OPGL, 

osteoprotegerin ligand (also known as RANKL or TRANCE); ST2, stromal ST2 cells; TCR, T-cell receptor. Figure 

taken from Cobaleda et al, 2007. 

 

 

Figure 4. B-cell developmental stages (Hagman & Lukin, 2005). Progressive stages of B-cell lymphopoiesis 

are shown. Cell designations are indicated below, the status of V(D)J recombination is shown within each cell 

type and characteristic cell surface markers are depicted above each cell. The approximate points at which B-cell 

lymphopoiesis is arrested in PU.1-/-, TCF3 (E2A-/-), EBF1 (EBF-/-) and Pax5-/- mice are designated above the cells. 

HSC, hematopoietic stem cell; MLP, multi-lineage progenitor; CLP, common lymphoid progenitor, Pro-B, pro-B-

cell; Pre-B, pre-B-cell. Figure taken from Hagman et al, 2005. 
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At the molecular level, Pax5 fulfills a dual role by activating B-cell-specific genes and 

simultaneously repressing lineage-inappropriate genes to initiate B-lineage differentiation 

(Nutt et al, 1999a). In this context, the Pax5 paired domain functions as bipartite DNA-

binding region, which binds to the distinct half-site of the degenerate Pax5 recognition 

sequence (Czerny et al, 1993; Garvie et al, 2001). Transcriptional regulation of Pax5 target 

genes is determined by the interaction of distinct partner proteins with the central and C-

terminal protein interaction motifs of Pax5 (Cobaleda et al, 2007b). The partial homeodomain 

associates with the TATA-binding protein of the basal transcription machinery, while the 

transactivation domain regulates gene transcription most likely by interacting with histone 

acetyltransferases such as the coactivator CREBBP (CBP) or SAGA complex. In contrast, 

corepressors of the Groucho protein family, which are part of a larger histone deacetylase 

complex, convert Pax5 from a transcriptional activator to a repressor by binding to the 

octapeptide motif (Cobaleda et al, 2007b). 

Pax5 target gene activation plays an essential role in controlling signal transduction from the 

pre-BCR and BCR, which constitute important checkpoints in B-cell development (Schebesta 

et al, 2007). Pax5 promotes VH-DJH recombination at the Igh locus (Fuxa et al, 2004), it 

activates expression of Cd79a (Igα) (Fitzsimmons et al, 1996), Cd19 (Kozmik et al, 1992; 

Nutt et al, 1998), Cr2 (Cd21) (Horcher et al, 2001), Cd72 (Ying et al, 1998; Horcher et al, 

2001), and Blnk (SLP-65) (Schebesta et al, 2002) and, thus, facilitates pre-BCR signaling. 

Comprehensive gene expression analysis identified additional Pax5-activated genes, which 

are implicated in the control of signaling from the pre-BCR on the cell surface to transcription 

in the nucleus at multiple levels (Schebesta et al, 2007). Moreover, it was shown that Pax5 

regulates genes involved in B-cell adhesion and migration, such as cell-surface receptors 

and intracellular signal transducers, which leads to a remodeling of the actin cytoskeleton. 

Pax5 also activates a number of transcription factors involved in B-cell differentiation, 

including Ikzf3 (Aiolos), Spib, Irf4, Irf8, Lef1, and Ebf1 suggesting that Pax5 activity initiates a 

downstream transcriptional cascade that reinforces the B-cell program (Schebesta et al, 

2007; Pridans et al, 2008). 

Besides the activation of B-cell specific genes Pax5 concurrently represses lineage-

inappropriate genes, which become reactivated in Pax5-/- pro-B-cells (Nutt et al, 1999a; 

Delogu et al, 2006). Global transcriptional profiling of Pax5-/- pro-B-cells identified >100 

genes repressed by Pax5 including genes implicated in cell-cell communication, cell 

adhesion, migration, nuclear processes, and cellular metabolism at B-cell commitment 

(Delogu et al, 2006). Importantly, many genes repressed by Pax5 are normally expressed in 

non-B-cell lineages, which underlines the lineage promiscuity of Pax5-/- pro-B-cells. As an 

example, Pax5 represses cell surface receptors Csf1r (M-CSFR) and Notch1, associated 

with macrophage and T-cell development, respectively, rendering committed B-lymphocytes 



Chapter 1  Introduction 

15 

unresponsive to lineage-inappropriate signals (Nutt et al, 1999a; Souabni et al, 2002; Nutt & 

Kee, 2007). Furthermore, Pax5 represses genes that are required to maintain stem cell or 

multipotent progenitor fate such as Atxn1 (Sca1) and Flt3 (Delogu et al, 2006).  

Terminal differentiation of mature B-cells into antibody-secreting cells is antigen-driven and 

represents a crucial component of the immune response. The physiological downregulation 

of Pax5 upon antigen stimulation followed by the reactivation of Pax5-repressed plasma cell-

specific genes including Xbp1, Igj, Cd28, Ccr2, and Prdm1 (Blimp1) seems to be the initial 

event in plasma cell differentiation (Delogu et al, 2006; Kallies et al, 2007). Final plasma cell 

differentiation requires the expression of functional Prdm1 (Blimp1), which represses Pax5 

and, hence, the B-cell program by a feedback mechanism (Kallies et al, 2007). 

Thus, comprehensive analysis of just a small number of key transcription factors involved in 

B-cell differentiation has revealed that the transcriptional network controlling B-cell 

specification and commitment is not a simple linear cascade but involves multiple 

combinatorial inputs and feedback loops (Nutt & Kee, 2007). 

 

1.3. Acute lymphoblastic leukemia 

Acute lymphoblastic leukemia (ALL) is the most common leukemia in children accounting for 

approximately 80% of pediatric cases (Martinez-Climent, 1997). In ALL, the B- or T-cell 

lineage can be affected, and in children the most common immunophenotype is B-cell 

precursor (BCP) ALL, followed by T-cell, and mature B-cell ALL. The group of BCP-ALL has 

a good prognosis with an event-free survival (EFS) of approximately 80% in children 

between 1-18 years, whereas in infants (children <1 year of age) the outcome is worse with 

an EFS of 28-45% (Armstrong & Look, 2005; Pieters et al, 2007). About 15% of childhood 

ALL cases are diagnosed with T-ALL and this group of patients was historically linked to a 

poor prognosis (Aifantis et al, 2008). However, owing to the application of intensive 

chemotherapy regimens, nowadays also in T-ALL cure rates of approximately 75% are 

achieved. Nevertheless, in about 25% of the patients treatment failure occurs and the 

outcome of these patients remains dismal (Goldberg et al, 2003; Einsiedel et al, 2005). 

Recurrent genetic abnormalities are a hallmark of acute leukemia and provide insights into 

the molecular mechanisms of leukemogenesis (Armstrong & Look, 2005). The most frequent 

targets of genetic alterations involved in hematological disorders are genes controlling 

transcription and tyrosine kinases (Mitelman et al, 2004). The large variety of genetic 

alterations includes point mutations and deletions, but the main genetic characteristics of 

acute leukemia are translocations and numerical chromosome imbalances resulting in hyper- 

or hypodiploidy (Fig. 5). These chromosomally defined subtypes also show distinctive 

patterns of global gene expression in microarray analysis (Greaves & Wiemels, 2003). 
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Chromosome translocations either result in inappropriate expression of an oncogene by 

juxtaposition of the entire coding sequence under constitutive activated regulatory elements 

of a partner gene or more commonly in leukemia in the formation of a chimeric fusion gene 

with novel properties. An increasing number of promiscuous genes (e.g. MLL, ETV6 or 

NUP98) that recombine with numerous different partner genes have been identified and, 

thus, the number of fusion genes exceeds the number of affected genes. So far, in ALL 1139 

balanced aberrations have been described, 155 of which are recurrent resulting in 82 distinct 

gene fusions (Mitelman et al, 2007). 

In childhood BCP-ALL the most common genetic rearrangement is the t(12;21)(p13;q22), 

which fuses ETV6 to RUNX1 and is present in about 25% of BCP-ALL cases (Fig. 5) 

(Armstrong & Look, 2005). Other commonly found chromosomal aberrations in childhood 

ALL are the t(1;19)(q23;p13)/E2A-PBX1 (TCF3-PBX1), the t(9;22)(q34;q11)/BCR-ABL1, and 

hyperdiploidy (presence of >46 chromosomes), which is often associated with a FLT3 

mutation (Fig. 5) (Armstrong & Look, 2005). Rearrangements of the MLL gene occur in up to 

80% of infant ALL and are associated with a pro-B ALL phenotype (Attarbaschi et al, 2006; 

O'Neil & Look, 2007; Pieters et al, 2007). 

 

 

Figure 5. Chromosomal abnormalities in acute lymphoblastic leukemia (Armstrong & Look, 2005). The 

relative frequencies of chromosomal aberrations found in childhood B-ALL are depicted. Figure taken from 

Armstrong & Look, 2005. 

 

Recently, pediatric ALL was further characterized by genome-wide analyses using high-

resolution SNP arrays and DNA sequencing, which uncovered that in about 40% of BCP-ALL 

genes implicated in B-cell development and differentiation are targets of mutations, deletions 

or structural rearrangements (Mullighan et al, 2007a). These genes comprised IKZF1 

(Ikaros), IKZF3 (Aiolos), LEF1, EBF1, TCF3 (E2A), and PAX5 (Kuiper et al, 2007; Mullighan 

et al, 2007a). In addition to microdeletions in transcription factors involved in B-lineage 
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development, recurrent deletion of BTG1 a negative effector of B-cell proliferation was 

observed. Moreover, other genes frequently affected by copy number losses were those 

controlling G1/S cell cycle progression (e.g. CDKN2A, CDKN2B, and RB1), and such 

deletions were detected in 54% of BCP-ALL and 86% of T-ALL, respectively (Kuiper et al, 

2007).  

Many pediatric leukemias originate in utero, which was demonstrated by sequence analysis 

of the unique genomic breakpoints of chromosomal rearrangements of concordant leukemia 

in monozygotic twins, and from screening of Guthrie cards (Fasching et al, 2000; Panzer-

Grumayer et al, 2002; Greaves & Wiemels, 2003). In contrast to BCP-ALL, analysis of 

neonatal blood spots for leukemia specific rearrangements showed that most T-ALL cases 

are more likely initiated postnatally (Fischer et al, 2007). Interestingly, the ETV6-RUNX1 and 

the RUNX1-RUNX1T1 (AML1-ETO) fusion genes could be detected 100 times more often in 

blood samples from healthy newborns as the risk of the corresponding leukemia (Mori et al, 

2002).  

In transgenic mouse models it was shown that particular fusion genes can initiate, but 

seldom complete leukemogenesis and, thus, require cooperating mutations similar to the 

Knudson two-step model for non-inheritable pediatric solid tumors (Knudson, 1992; 

Bernardin et al, 2002; Greaves & Wiemels, 2003; Tsuzuki et al, 2004). For instance, ETV6-

RUNX1 positive leukemia is often associated with additional genetic changes, such as 

deletions of the second ETV6 allele, PAX5, CDKN2A, or BTG1, which may represent one of 

the secondary rate-limiting hits in leukemogenesis (Greaves & Wiemels, 2003; Mullighan et 

al, 2007a; Tsuzuki et al, 2007). In a recent study of monochorionic twins – one twin had 

BCP-ALL while the other one was healthy – a tumor-propagating ETV6-RUNX1 positive cell 

population could be isolated from both twins. The ETV6-RUNX1 positive leukemic blasts of 

the twin diagnosed with full-blown BCP-ALL showed a deletion of the second ETV6 allele, 

whereas the ETV6-RUNX1 positive cells of the healthy twin harbored one intact copy of 

ETV6 (Hong et al, 2008). These data strongly support the notion that inactivation of the 

second unrearranged ETV6 allele indeed represents a crucial cooperating mutation (Hong et 

al, 2008). 

 

1.4. The PAX gene family in oncogenesis 

The mammalian paired box or PAX transcription factor family comprises nine members and 

is characterized by a highly conserved paired box DNA binding domain. Mouse and human 

PAX genes are classified into four paralogous groups according to the presence of two 

additional motifs, namely a conserved octapeptide and a complete or truncated 

homeodomain (Fig. 6) (Bouchard et al, 2003). Additionally, all members of the PAX gene 

family contain regions rich in proline, serine, and threonine residues (PST-rich) at the 
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C-terminal end (Fig. 6), which comprises a transactivation and an inhibitory domain, a 

characteristic feature of inducible transcription factors.  

 

 

Figure 6. Structure and classification of mammalian Pax proteins (Bouchard et al, 2003). Pax proteins are 

classified according to their protein domains. PD, paired domain; HD, homeodomain; OP, conserved octapeptide, 

TAD, transactivation domain; PST, proline-serine-threonine. Figure taken from Bouchard et al, 2003. 

 

The PAX family has been conserved throughout metazoen evolution and controls tissue 

development and differentiation processes during embryonic development including 

proliferation, stem-cell self-renewal, apoptosis, cell migration and invasion within a variety of 

cell lineages (Barr, 1997; Robson et al, 2006). The important developmental role of the PAX 

genes is further emphasized by the association of mutations with heritable murine and 

human developmental defects (Barr, 1997). Moreover, the cellular activities controlled by the 

PAX genes are also fundamental targets for the development of neoplasia (Barr, 1997). 

Therefore, the PAX genes are intriguing candidates to contribute to tumorigenesis in specific 

cell lineages, and indeed, some members of the PAX gene family have been shown to be 

involved in tumor development (Robson et al, 2006). 

PAX3 and PAX7 are expressed during early neural and myogenic development. In alveolar 

rhabdomyosarcoma (ARMS), a pediatric soft tissue tumor related to the striated muscle 

lineage, the PAX3 and PAX7 genes are fused to the FOXO1 (FKHR) gene through the 

translocations t(2;13)(q35;q14) and t(1;13)(p36;q14), respectively (Galili et al, 1993; Davis et 

al, 1994). The t(2;13)(q35;q14)/PAX3-FKHR (PAX3-FOXO1) rearrangement is the most 

prevalent finding in ARMS detected in about 70% of cases, whereas the t(1;13)(p36;q14) is 

found in a smaller subset of cases. The chimeric fusion proteins contain the PAX3/PAX7 

paired domain, the octapeptide and the homeodomain fused to the FOXO1 (FKHR) 

transcriptional activation domain. The PAX3- FOXO1 and PAX7- FOXO1 proteins function as 

transcription factors that activate genes containing a PAX3/PAX7 DNA-binding site in a more 

potent manner than the corresponding wild-type proteins (Barr, 2001). Moreover, both 

fusions are consistently overexpressed relative to the respective wild-type PAX transcripts. 
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Overexpression of the PAX7-FOXO1 fusion results mainly from in vivo amplification of the 

fusion gene, whereas in case of PAX3-FOXO1 the increase in transcriptional rate is copy 

number independent (Barr, 2001).  

Furthermore, alternative tumor-specific PAX3 and PAX7 isoforms are predominantly 

expressed in Ewing's sarcoma and in embryonal rhabdomyosarcoma, and melanoma cell 

lines, respectively (Barr et al, 1999). In squamos cell lung carcinoma PAX7 is frequently 

amplified (Racz et al, 2000) and in N-type neuroblastoma cell lines (with high N-MYC 

expression and/or amplification) two isoforms of PAX3 are expressed at abnormally high 

levels (Harris et al, 2002; Wang et al, 2008).  

PAX2 is required for kidney, eye and ear development and in the mammary glands, whereas 

PAX8 controls thyroid development, but is also expressed during kidney organogenesis 

(Bouchard et al, 2003; Robson et al, 2006). In thyroid follicular carcinomas PAX8 is fused to 

PPARG (PPARγ1) as a result of the translocation t(2;3)(q13;p25) generating a chimeric 

fusion gene that contains the paired box, octapeptide, and partial homeodomain of PAX8 

fused to the entire PPARG (PPARγ1) protein including all nuclear receptor domains (Kroll et 

al, 2000). The PAX8-PPARG (PAX8-PPARγ1) fusion is expressed at higher levels as 

endogenous PPARG (PPARγ1) and it might act in a dominant negative manner over wild-

type PPARG (PPARγ1), which is implicated in growth inhibition and promotes differentiation 

of cancer cell lines (Kroll et al, 2000). Moreover, in carcinomas of the kidney, prostate, 

breast, ovary, and in blastemal tissues in Wilms' tumor and Kaposi sarcoma unattenuated 

tumor-associated expression of PAX2 and/or PAX8 was observed (Robson et al, 2006).  

PAX5 expression is critically required for very early brain development but transcriptionally 

downregulated before birth. In astrocytoma, glioblastoma, medullablastoma, small cell lung 

cancer (neural-crest derived tumor) and N-type neuroblastoma (a malignant subset), but not 

in S-type cells (a benign subset), PAX5 is ectopically expressed during tumor development 

(Stuart et al, 1995b; Baumann Kubetzko et al, 2004; Robson et al, 2006). Moreover, it was 

shown that PAX5 expression levels correlate with or promote neoplastic tumor growth in 

astrocytoma and neuroblastoma, respectively (Stuart et al, 1995b; Baumann Kubetzko et al, 

2004). Furthermore, in astrocytoma the expression of PAX5 is inversely proportional to the 

expression of TP53 (p53), whose transcriptional activity can be repressed by binding of 

PAX5 to the TP53 (p53) promoter (Stuart et al, 1995a). 

The involvement of PAX5 in B-cell malignancies is described in section 1.5. 

PAX6, a master regulator of eye development, is frequently expressed in brain, breast and 

other cancer cell lines (Muratovska et al, 2003). However, in glioblastoma a tumor-

suppressor function for PAX6 was suggested and also in malignant astrocytic gliomas high 

levels of PAX6 expression correlate with improved prognosis (Robson et al, 2006).  
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PAX9 expression was also widely detected in cancer cell lines (Muratovska et al, 2003). On 

the other hand decreased PAX9 expression correlates with increasing malignancy of 

oesophageal carcinomas and epithelial dysplasia (Robson et al, 2006). 

In summary, PAX genes seem to exhibit a pivotal role in the oncogenesis of several tumors 

arising from those tissues, in which they exert a developmental stage-dependent function 

during embryogenesis and differentiation (Lang et al, 2007; Wang et al, 2008). Because of 

their normal function in development, it is assumed that re-expression of PAX genes in 

malignant neoplasms promotes tumor development and progression by increasing 

proliferation and motility, while inhibiting apoptosis (Baumann Kubetzko et al, 2004). 

 

1.5. PAX5 aberrations in B-cell malignancies 

1.5.1. PAX5 aberrations in lymphoma 

In non-Hodgkin lymphoma PAX5 is involved in the rare translocation t(9;14)(p13;q32) 

resulting in a juxtaposition of the intact PAX5 coding sequence to regulatory elements of the 

IGH@ locus, which leads to inappropriate PAX5 expression (Busslinger et al, 1996; Iida et 

al, 1996). The breakpoints within the PAX5 and IGH@ loci are variable and, thus, the 

deregulation of PAX5 occurs in two different ways: (1) In the KIS-1 cell line, which was 

established from a patient with diffuse large-cell lymphoma, the breakpoint at 9p13 occurs 

1.8kb upstream of exon 1A of PAX5 and juxtaposes PAX5 in a head-to-head orientation in 

close proximity to the potent IGH@ gene Eµ enhancer (Busslinger et al, 1996). Thus, 

deregulation of PAX5 transcription is caused by enhancer insertion. (2) In variant 

translocations, which were cloned from a patients with lymphoplasmacytoid lymphoma (Iida 

et al, 1996) and a splenic marginal zone lymphoma (Morrison et al, 1998), the breakpoints 

arise in the non-coding sequence and the 3' region of exon 1B of PAX5, respectively. In both 

cases the rearrangement translocates the PAX5 gene into the Sµ region of the IGH@ gene 

in a head-to-head position, which leads to replacement of the PAX5 promotors by an 

antisense promoter of the Sµ region. 

In a transgenic mouse model a Pax5 minigene was inserted into the Igh locus to mimick the 

t(9;14)(p13;q32)/PAX5-IGH@ rearrangement (Souabni et al, 2007). This knock-in mouse 

corresponds to a germline rather than a somatic mutation and therefore, curiously, the mice 

developed T-cell lymphomas. Nevertheless, this data identified Pax5 as a potent oncogene, 

in that ectopic Pax5 expression interferes with normal T-cell development and deregulated 

the T-cell transcription program (Souabni et al, 2007). Conversely, in mice experiments 

biallelic Pax5 deletion in mature B-cells resulted in the development of aggressive 

lymphoma, which were by gene expression analysis characterized as progenitor cell tumors. 
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Moreover, in respect to their expression profile of Pax5 target genes these cells were 

indistinguishable from Pax5-/- pro-B-cells (Cobaleda et al, 2007a). 

In follicular lymphoma, PAX5 and MYC are the only transcription factors consistently 

overexpressed as compared to their putative normal counterparts, germinal center B-cells 

(Husson et al, 2002). Furthermore, in diffuse large B-cell lymphoma (DLBCL) and to a lesser 

extent in Burkitt and follicular lymphomas, PAX5 showed a high frequency of somatic 

hypermutations, which cluster downstream of both transcription initiation sites, predominantly 

around exon 1B (Pasqualucci et al, 2001). Such hypermutations of PAX5 have not been 

detected in normal germinal-center B-cells, naïve B-cells and control fibroblasts and, thus, 

may cause PAX5 malfunction in these diseases (Pasqualucci et al, 2001). However, as the 

alternatively transcribed exon 1A and the second PAX5 allele mainly escape somatic 

hypermutations, the role of these hypermutations for lymphoma formation is doubtful 

(Cobaleda et al, 2007b).  

Recent work also addressed the role of PAX5 during lymphomagenesis (Cozma et al, 2007). 

It was shown that activation of Pax5 significantly upregulated components of the BCR 

signaling, such as Cd79a, Cd19, Blnk, PKCβ, and PLCγ2, and that this activation stimulated 

tumor growth. Moreover, knock down of Pax5 expression in DLBCL cell lines by sh-RNA 

decreased the growth rate of these cell lines. The contribution of Pax5 to neoplastic growth 

appears to correlate with its ability to maintain expression of BCR components. Thus, 

interference with BCR signaling downstream of Cd79a either by overexpression of Cd22 or 

by pharmacological inhibition may represent a therapeutic option (Cozma et al, 2007). 

 

1.5.2. PAX5 aberrations in acute lymphoblastic leukemia 

1.5.2.1. Deletions and Mutations 

By genome-wide SNP array analysis of childhood ALL frequent deletions of the PAX5 gene 

were detected (Kawamata et al, 2007; Kuiper et al, 2007; Mullighan et al, 2007a). Deletions 

were found in about 30% of all cases and comprised focal intragenic PAX5 deletions (13%), 

broader deletions involving PAX5 and a variable number of flanking genes (3,6%), large 9p 

deletions including the 3' portion of PAX5 (2,6%), and deletions of the whole 9p arm or 

complete loss of one chromosome 9 (9,9%) (Fig. 7) (Mullighan et al, 2007a). The focal PAX5 

deletions affect only a subset of PAX5 exons (Fig. 7) resulting in expression of internally 

deleted transcripts. These transcripts, the so-called hypermorphic alleles, encode proteins 

lacking either the PAX5 paired domain and/or transcriptional regulatory domains or lead to 

truncated mutants.  
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Figure 7. PAX5 deletions. (a) Schematic representation of PAX5 exons and corresponding domains. H, 

homeodomain-like; I, transactivation, inhibitory; O, octapeptide; PD, paired domain; TD-A, transactivation, 

activating. (b) PAX5 aberrations: hemizygous deletions, solid lines; homozygous deletions, dashed lines; 

amplification, red line. Deletions that stretch beyond the region shown are arrowed. *shows a deletion confined to 

PAX5. Figure and Legend taken from Mullighan et al, 2007. 

 

In several cases also PAX5 point mutations, which mainly comprise frameshift, splice site or 

missense mutations and clustered in exons encoding the paired domain or the transcriptional 

regulatory domains were found (Fig. 8). Mutations affecting the paired domain are suggested 

to impair the DNA-binding function of PAX5 and mutations in the transactivation domain may 

alter transcriptional regulatory functions. Indeed, an impaired function of PAX5 mutants was 

shown in luciferase-based reporter assays and a reduced DNA-binding activity for PAX5 

variants with mutations or deletions of the paired-domain was demonstrated. However, in 

leukemic blasts no correlation between PAX5 mutation status and CD19 and CD79A 

expression was observed (Mullighan et al, 2007a). 

 

 

Figure 8. PAX5 mutations detected by Mullighan et al, 2007. Location of missense (downward pointing 

arrowheads), insertion/ deletion (filled circles), frameshift (filled diamonds) and splice-site (right-pointing 

arrowhead) mutations. Figure and Legend taken from Mullighan et al, 2007. 

 

Intriguingly, the type and frequency of PAX5 aberrations varied among the genetic subtypes 

of ALL: all hypodiploid cases showed loss of one PAX5 allele and about 50% of the cases 

harbored concomitant mutations in the second PAX5 allele, whereas 28% of ETV6-RUNX1 

positive cases displayed focal mono-allelic deletions but lacked PAX5 mutations (Mullighan 
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et al, 2007a). The high frequency of PAX5 deletions in ETV6-RUNX1 BCP-ALL suggests that 

they may represent 'second hit' mutations cooperating in the pathogenesis of this leukemia 

subtype. 

In addition, recent analysis of BCR-ABL1 positive pediatric and adult ALL by SNP 

microarrays identified IKZF1 (Ikaros) deletions in >80% of cases and in about 50% deletions 

of PAX5 and CDKN2A, which mostly coincided with IKZF1 deletions (Mullighan et al, 2008). 

Strikingly, these deletions were found in BCR-ABL1 positive ALL and CML blast crisis, but 

were not detected in chronic-phase CML (Mullighan et al, 2008). Together these data 

indicate that alterations in Ikaros possibly in conjunction with haploinsufficiency of PAX5 may 

contribute to the arrested B-lymphoid maturation in BCR-ABL1 positive ALL. 

 

1.5.2.2. PAX5 fusions in ALL 

In 2001 the first chimeric PAX5 fusion gene in a case of ALL with a t(9;12)(q11;p13) resulting 

in a PAX5-ETV6 fusion was identified (Cazzaniga et al, 2001). Subsequently, it was shown 

that the PAX5-ETV6 fusion defines the cytogenetic entity dic(9;12)(p13;p13), which occurs in 

about 1% of childhood ALL (Strehl et al, 2003). The PAX5-ETV6 rearrangement fuses exon 4 

of PAX5 to exon 3 of ETV6, thus, the fusion protein contains the PAX5 DNA-binding paired 

domain and the HLH and ETS-binding domains of ETV6. The PAX5-ETV6 chimeric protein 

most likely acts as an aberrant transcription factor, probably as transcriptional repressor, 

which recruits transcriptional cofactors through the ETV6 regulatory elements (Fazio et al, 

2008). In addition, PAX5-ETV6 functions as strong competitive inhibitor of wild-type PAX5 in 

co-transfection and co-transduction experiments (Mullighan et al, 2007a).  

Six years after the first description of this PAX5 rearrangement in ALL, several other PAX5 

fusion partners were identified, namely AUTS2, C20orf112 (Kawamata et al, 2008), ELN 

(Bousquet et al, 2007), FOXP1, and ZNF521 (Mullighan et al, 2007a). All breakpoints 

described in these novel PAX5 fusions occurred within PAX5 intron 5 or downstream of it 

fusing at least the PAX5 DNA-binding paired domain to the C-terminal region or nearly the 

entire protein of the fusion partner. It is assumed, that PAX5 fusion proteins act as 

transcriptional repressors, which antagonize the PAX5 activity provided by the normal wild-

type allele (Cobaleda et al, 2007b).  
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Summary 

PAX5 encodes the B-cell lineage specific activator protein (BSAP) and is required for B-cell 

development and maintenance. In B-cell precursor acute lymphoblastic leukemia (ALL), 

PAX5 is involved in several chromosome translocations that fuse the N-terminal paired DNA-

binding domain of PAX5 with the C-terminal regulatory sequences of ETV6, FOXP1, ZNF521 

or ELN. Herein, we describe the identification of a novel recurrent t(9;15)(p13;q24) in two 

cases of childhood ALL, which results in an in-frame fusion of PAX5 to the promyelocytic 

leukemia (PML) gene. The putative PAX5-PML fusion gene encodes a chimeric protein that 

retains the paired domain, the octapeptid and the partial homeodomain of PAX5, and virtually 

the whole PML protein. The steadily increasing number of PAX5 rearrangements suggests 

that PAX5 is not only crucial for B-cell lymphopoiesis but also for the development of B-cell 

malignancies. 

 

Key Words: PAX5, PML, fusion transcript, childhood acute lymphoblastic leukemia, 

t(9;15)(p13;q24).  
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Introduction 

PAX5 is a member of the paired box (PAX) family, a group of nine highly conserved 

transcription factors that are implicated in brain development and organogenesis (Bouchard 

et al, 2003). PAX5 encodes the only PAX protein expressed within the hematopoietic system, 

the B-cell lineage specific activator protein (BSAP) that is required for B-cell commitment and 

maintenance. At the molecular level, Pax5 fulfils a dual role by activating B-cell specific 

genes and simultaneously repressing lineage-inappropriate genes (Nutt et al, 1999). 

In the bone marrow, Pax5 is exclusively expressed from the pro-B to the mature B-cell stage 

and is down regulated during terminal differentiation into plasma cells (Nutt et al, 1998). In 

the absence of Pax5 in homozygous mutant mice, B-cell development is arrested at an early 

pro-B (pre-BI) cell stage ( Urbanek et al, 1994; Nutt et al, 1999). Expression of Pax5 is also 

essential for maintaining B-cell identity as upon conditional inactivation using a CD19-driven 

Cre-loxP system that allows for tissue-specific deletion of Pax5 (Horcher et al, 2001), 

committed pro-B cells with a restricted B-lymphoid fate convert into progenitors with 

multilineage potential (Mikkola et al, 2002). Restoration of Pax5 expression suppresses the 

hematopoietic pluripotency of Pax5-/- pro-B cells while simultaneously promoting their 

development to mature B-cells. (Nutt et al, 1999) Together, these data render Pax5 as the 

critical B-lineage commitment factor (Cobaleda et al, 2007).  

Chromosomal translocations affecting PAX5 have been described in different types of B-cell 

malignancies. The t(9;14)(p13;q32) translocation, which is mainly associated with B-cell non-

Hodgkin-Lymphoma (B-NHL) results in the juxtaposition of PAX5 to the immunoglobulin 

heavy-chain (IGH@) locus, and thus, brings PAX5 under the control of potent enhancers or 

promotors from the IGH@ locus leading to elevated PAX5 expression (Busslinger et al, 

1996; Morrison et al, 1998). In B-cell precursor acute lymphoblastic leukemia (ALL) PAX5 

rearrangements involve several different partner genes including ETV6 (12p13), FOXP1 

(3p14), ZNF521 (18q11), and ELN (7q11) (Cazzaniga et al, 2001; Strehl et al, 2003; 

Bousquet et al, 2007; Mullighan et al, 2007).  

PAX5 consists of a N-terminal paired domain, which is a bipartite DNA-binding region and a 

C-terminal proline-serine-threonine-rich region that harbors a transactivation domain. The 

central region contains an octapetide capable of recruiting members of the Groucho proteins, 

a family of transcriptional corepressors that are required for many developmental processes, 

including lateral inhibition, segmentation, sex determination, dorsal/ventral pattern formation, 

terminal pattern formation and eye development (Chen & Courey, 2000; Eberhard et al, 

2000), and a partial homeodomain functioning as a protein-protein interaction motif 

(Bouchard et al, 2003). The evolutionary highly conserved paired box domain that is shared 

by all PAX genes is retained in every fusion protein involving other members of the PAX 

family, namely PAX3, PAX7, and PAX8, which are affected by tumor-specific translocations 
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in alveolar rhabdomyosarcoma and thyroid follicular carcinoma ( Kroll et al, 2000; Barr, 

2001). Each of the PAX5 chimeric genes identified so far also encodes a fusion protein that 

maintains the paired-box DNA-binding domain that is fused to the DNA-binding and 

transcriptional regulatory domains of the partner protein (Cazzaniga et al, 2001; Strehl et al, 

2003; Bousquet et al, 2007; Mullighan et al, 2007). PAX5 fusion proteins may contribute to 

leukemogenesis by acting as constitutive repressor, and thus interfering with normal PAX5 

function (Cobaleda et al, 2007). 

This study identified a novel recurrent t(9;15)(p13;q24) in two cases of childhood B-ALL, 

which results in the fusion of the 5' region of PAX5 to almost the entire promyelocytic 

leukemia (PML) gene. 
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Material and Methods 

Case History  

Patient 1, a 9-months-old infant suffering from continuous fever, otorrhoe and hepatomegaly 

was diagnosed with ALL. The bone marrow (BM) showed 99% blast cell infiltration and 63% 

in the peripheral blood (PB). Immunophenotyping was performed on BM cells by means of 

flow cytometry with a panel of monoclonal antibodies. The blast cells were positive for CD19, 

CD79a, CD10, CD22, CD34, TdT, and HLA-DR typical for B-II-ALL (common-ALL). 

Cytogenetic analysis revealed a 46,XX,add(9)(p13)[8]/46,XX[14] karyotype. The patient was 

treated according to the ALL - Berlin-Frankfurt-Münster (BFM) 2000 Interfant protocol and is 

in complete remission more than 4 years from diagnosis.  

Patient 2 was diagnosed with ALL at 19.5 months of age, following a 1-month period of 

pneumonic complaints. Immunophenotyping revealed a B-II-ALL positive for CD19, CD10, 

CD22, TdT, and HLA-DR. Treatment was performed according to the ALL-BFM 86 protocol 

(Reiter et al, 1994) and the patient achieved remisson after 40 d, but relapsed 2 years and 3 

months after diagnosis. At relapse biopsy of the testis showed infiltration with ALL blast cells 

and in the BM 45% of lymphoblasts were detected. Cytogenetic analysis showed a 

46,XY,t(9;15)(p21;q25)[12] karyotype in the testis and a 46,XY,t(9;15)(p21;q25)[3]/ 

46,XY,add(1)(p?)[3] in the BM. The patient was treated with high-dose methotrexate, but 

died of progressive disease.  

 

Conventional and molecular cytogenetics 

Cytogenetic analysis was performed using standard methods and karyotypes were described 

according to the International System for Human Cytogenetic Nomenclature (Shaffer & 

Tommerup, 2005). PAX5 rearrangements were detected using exon-specific cosmids 

cos-hPAX5-1 (exons 2-5) and cos-hPAX5-3 (exons 9-10) (Busslinger et al, 1996). In 

addition, the LSI PML-RARA dual-color, dual-fusion-translocation probe (Vysis, Downers 

Grove, IL, USA) and the BAC clone RP11-2M12 (The Sanger Institute, Cambridge, United 

Kingdom) encompassing the whole PML gene were used. To ensure analysis of abnormal 

metaphases, whole chromosome painting (WCP) probes were combined with gene-specific 

probes. The 24-color-fluorescence in situ hybridization (FISH) analysis was performed with 

the Spectra Vysion probe (Vysis, Downers Grove, IL, USA). Probes were differentially 

labeled by nick translation either with digoxigenin-11-dUTP or biotin-16-dUTP (Roche 

Diagnostics, Vienna, Austria). Slides for FISH were prepared from the methanol/acetic acid-

fixed cell suspension used for cytogenetic analysis and FISH was performed as previously 

described (Konig et al, 2002). Samples were evaluated using an Axioplan fluorescence 

microscope (Zeiss, Vienna, Austria) equipped with the appropriate filter sets. Images were 
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taken with a CCD camera (Photometrix, Tucson, AZ) using the IPLabs software (Vysis, 

Downers Grove, IL, USA). 

 

Reverse-Transcription-PCR analysis 

Total RNA was isolated from cryopreserved mononuclear cells (MNCs) of the BM obtained 

from patient 1 at diagnosis, and from methanol/acetic acid-fixed cell suspension of BM cells 

obtained from patient 2 at relapse as previously described (Strehl et al, 2001). RNA 

extraction was performed using the peqGOLD Total RNA kit (peqLab, Biotechnologie GmbH, 

Erlangen, Germany) according to the manufacturer’s recommendations. RNA was reverse 

transcribed with 200 Units Moloney-murine leukaemia virus (M-MLV) reverse transcriptase 

(Invitrogen, Lofer, Austria) and 100 pmol random hexamers (GE Healthcare, Vienna, Austria) 

at 42°C for 1 h. Reverse-transcription polymerase chain reaction (RT-PCR) were performed 

using Hot Start Taq polymerase (Qiagen, Vienna, Austria) according to the manufacturer’s 

instructions, with annealing at 61-63°C for 30 s, elongation at 72°C for 30-45 s for 30-40 

cycles. Primer sequences are listed in Table 1.  

 

Results 

Conventional and molecular cytogenetics 

Cytogenetic analysis of patient 1 showed a 46,XX,add(9)(p13). To determine the 

chromosomal origin of the extra material on 9p, 24-color FISH was performed. This analysis 

revealed a t(9;15) (Fig 1B, inset), and subsequent FISH using the PAX5 exon-specific 

cosmids detected a separation of the probes (Fig 1A) suggesting involvement of PAX5 in the 

t(9;15).  

To narrow down the precise breakpoint at 15q, FISH-based chromosome walking with 

various locus-specific BAC clones located at 15q24-25 was performed (data not shown). 

Hybridization of the PML-specific BAC RP11-2M12 in combination with a whole chromosome 

painting probe specific for chromosome 9 to ensure hybridization of aberrant metaphases 

resulted in a split signal of PML (Fig 1B) providing compelling evidence that PAX5 was fused 

to PML. Thus, the karyotype was refined as t(9;15)(p13;q24). 

In the second patient (patient 2), cytogenetic analysis revealed a similar aberration, namely a 

t(9;15)(p21;q25). Also in this case, FISH analysis using the PML-RARA and the PML-specific 

BAC probes showed disruption of PML. Subsequent hybridization with the PAX5 exon-

specific cosmids showed a deletion of the PAX5 3'-end (data not shown) indicating that this 

patient also displayed a PAX5-PML fusion, associated with a deletion of the PAX5 3'-end.  
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RT-PCR analysis 

Fusion gene-specific RT-PCR experiments using primers located in PAX5 exon 5 and PML 

exon 2 detected chimeric PAX5-PML transcripts in both patients (Fig 2A, left), but not in 

normal peripheral blood used as a negative control. Sequence analyses identified exactly the 

same in-frame fusion between PAX5 exon 6 and PML exon 2 in both patients (Fig 2B and C). 

The PML protein consists of a RING domain followed by additional zinc fingers (B-boxes) 

and an α-helical coiled-coil motif (collectively referred to as RBCC domain) (Bernardi & 

Pandolfi, 2003). Thus, the putative PAX5-PML chimeric fusion protein consists of the paired 

domain, the octapeptide and the partial homeodomain of PAX5, and almost the entire PML 

protein lacking only the 5' proline-rich region (Fig 2D). Amplification of the reciprocal 

PML-PAX5 fusion transcript using different primer combinations failed, which indicate that 

the PAX5-PML fusion is responsible for leukemogenesis. These data are in concordance 

with the deletion of the PAX5 3'-end detected in patient 2 by FISH analysis. According to the 

FISH data, the second alleles of both genes involved in the translocation were retained and 

expression of normal PAX5 and PML transcripts was verified by RT-PCR (Fig 1A, right; 

analysis was performed only for patient 1, because there was a lack of material for patient 2).  

 

Discussion 

In this study, we report the identification of a novel recurrent t(9;15)(p13;q24), which results 

in a fusion of the B-cell specific transcription factor PAX5 and the PML gene. The putative 

PAX5-PML fusion protein fuses the paired domain, the octapeptid, and the homeodomain of 

PAX5 to almost the entire PML protein. Lack of reciprocal transcripts strongly suggest that 

PAX5-PML and not PML-PAX5 is responsible for leukemogenesis. 

The second known translocation involving PML, the t(15;17)(q22;q21), fuses PML to the 

retinoic acid receptor alpha (RARA), and is the genetic hallmark of acute promyelocytic 

leukemia (APL). The PML-RARA protein functions as an aberrant retinoid receptor with 

altered DNA-binding properties as compared to wild-type RARA and acts as a constitutive 

transcriptional repressor of RARA target genes (Lo-Coco & Ammatuna, 2006). As 

approximately 20-30% of APL lack expression of the reciprocal RARA-PML, PML-RARA 

must be the chimeric protein that is critical for the development of APL (Melnick & Licht, 

1999; Lo-Coco & Ammatuna, 2006).  

PML is detected in the nucleus in multiprotein complexes termed PML nuclear bodies (NBs), 

which are implicated in the regulation of transcription, apoptosis, DNA repair, control of 

genomic stability, tumor suppression, cellular senescence, and anti-viral response (Zhong et 

al, 2000; Dellaire & Bazett-Jones, 2004). In this respect, a specific feature of PML-RARA 

positive cells is the delocalization of PML from the PML-NBs to a microspeckled nuclear 

pattern and relocalization of PML to the NBs upon ATRA treatment (Melnick & Licht, 1999) 
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In the PAX5-PML fusion protein almost the entire PML is retained, and thus the chimeric 

fusion protein might heterodimerize with normal PML resulting in impaired PML function. In 

this regard, the PML-NBs play a key role in the regulation and functional activation of a 

number of proapoptotic/tumor suppressive transcription factors (Bernardi & Pandolfi, 2003). 

Thus, one might speculate that impairment of PML by the PAX5-PML fusion may exert a 

survival advantage by interfering with cellular apoptotic programs. To date it remains elusive 

whether PAX5-PML has per se transforming potential or additional mutations are required for 

the development of overt leukemia. Thus, impairment of PML, which is known to be involved 

in genome stability (Bernardi & Pandolfi, 2003) may facilitate the accumulation of additional 

mutations. 

On the other hand, PAX5, as a master regulator of B-cell development, is indispensable for 

B-lineage commitment and continuous expression is required to maintain B-cell fate (Nutt et 

al, 2001; Mikkola et al, 2002; Busslinger 2004). A common feature of most PAX5 chimeric 

proteins described to date, is the fusion of the paired box DNA-binding domain of PAX5 with 

C-terminal regulatory sequences of a second transcription factor implicated in B-cell 

development or hematopoietic malignancy. Thus, the fusion proteins are predicted to retain 

the ability to bind to PAX5 transcriptional targets without providing normal transcriptional 

regulatory functions (Cobaleda et al, 2007; Mullighan et al, 2007). Indeed, in transient 

transfection assays PAX5-ETV6 and PAX5-FOXP1 competitively inhibit the transcriptional 

activation of wild-type PAX5 (Mullighan et al, 2007). However, no transcriptional regulatory 

function for the PAX5 partner ELN, which encodes an extracellular matrix protein that is the 

main component of elastic fibers, has been demonstrated. Nevertheless, the PAX5-ELN 

fusion protein also acts in a dominant-negative manner over PAX5 in in vitro CD19 reporter 

gene assays (Bousquet et al, 2007).Thus, it is highly likely that the PAX5-PML chimera also 

operates as an aberrant transcription factor exerting a repressor activity antagonizing normal 

PAX5 function. 

Yet, analyses of the effects of PAX5-ELN on PAX5 endogenous targets resulted in conflicting 

data, as in DG75 (Burkitt lymphoma) transfected cells, the expression of the PAX5 target 

genes BLNK, CD79A and LEF1 was downregulated, whereas CD19 and BLK remained 

unaffected. In contrast, PAX5-ELN leukemic pre-B-cells showed exactly the opposite 

expression pattern. These data suggest that, in case of PAX5 fusions, regulation of PAX5 

target gene transcription may be cellular context-dependent (Bousquet et al, 2007). 

Although PAX5 fusions seem to account for just about 2% of childhood ALL (Mullighan et al, 

2007; unpublished observation) and the functional consequences of all PAX5 chimaeric 

proteins need to be elucidated in more detail, the increasing number of PAX5-involving 

rearrangements renders this critical B-cell-specific transcription factor not only crucial for 
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normal B-cell lymphopoiesis but it may also be considered as a major player in 

leukaemogenesis. 
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Tables 

 
Table 1. Oligonucleotide Primer Sequences 
 

Primer Oligonucleotide sequence Direction Gene/Exon1 Transcript 

PAX5ex5-F1 TACTCCATCAGCGGCATCC sense PAX5/5 PAX5-PML 

PMLex2-R1 CGCACTCAAAGCACCAGAAG antisense PML/2  

PAX5ex5-F1 TACTCCATCAGCGGCATCC sense PAX5/5 PAX5 

PAX5ex7-R1 GGCCTTCATGTCGTCCAG antisense PAX5/7  

PMLex1-F1 CTCAAGGGACTCAGCCAACTG sense PML/1 PML 

PMLex2-R1 CGCACTCAAAGCACCAGAAG antisense PML/2  

1Exon nomenclature according to the Ensembl Genome Browser exon information 

(http://www.ensembl.org/).  
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Figure 1. Fluorescence in situ hybridization (FISH) analysis of patient 1.  
(A) Metaphase hybridized with exon-specific PAX5 probes cos-hPAX5-1 (red) and cos-hPAX5-3 (green) showing 

a disruption of PAX5. Arrows indicate the normal chromosome 9 (orange), the derivative chromosome 9 (red) and 

the derivative chromosome 15 (green). (B) 24-color FISH analysis showing the t(9;15) (inset). Metaphase 

analysis using probes WCP 9 (red) and RP11-2M12 (green) encompassing the whole promyelocytic leukemia 

(PML) gene and displaying a disruption of PML. The filled arrow is pointing to derivative chromosome 15, the 

arrowhead to derivative chromosome 9, and the open arrow to the normal chromosome 15.  
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Figure 2. Reverse-transcription polymerase chain reaction (RT-PCR) analysis.  

(A) RT-PCR of the PAX5-PML fusion transcript (left) and the normal PML and PAX5 alleles. M, molecular weight 

marker, 100 bp ladder; lane 1, patient 1; lane 2, patient 2; lane 3, negative control (left). lanes 1, patient 1; lanes 

2, normal control; lanes 3, negative control (right). (B) Sequence analysis of the PAX5-PML transcript showing a 

fusion of PAX5 exon 6 to PML exon 2. (C) Partial nucleotide and amino acid sequence of the PAX5-PML chimera. 

(D) Schematic representation of the PAX5 and PML wild-type proteins and the putative chimeric PAX5-PML 

protein. PD, paired domain; O, conserved octapeptide; HD, homeobox domain; TD, transactivation domain; ID, 

inhibitory domain; P, proline-rich sequence; RING, ′really interesting new gene′ finger; BBOX, B box zinc fingers; 

COILED, coiled-coil domain; NLS, nuclear localization signal; S/P-rich, serine/proline-rich region;  
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Abstract 

PAX5, a master regulator of B-cell development, was recently shown to be involved in 

several leukemia-associated rearrangements, which result in fusion genes encoding chimeric 

proteins that antagonize PAX5 transcriptional activity. In a population-based fluorescence in 

situ hybridization (FISH) screening study of 446 childhood acute lymphoblastic leukemia 

(ALL) patients we now show that PAX5 rearrangements occur at an incidence of about 2.5% 

of B-cell precursor leukemia (BCP-ALL). Identification of several novel PAX5 partner genes 

including POM121, BRD1, DACH1, HIPK1, and JAK2 brings the number of distinct PAX5 

in-frame fusions to at least twelve. Our data show that these not only comprise transcription 

factors but also structural proteins and genes involved in signal transduction, which at least 

in part have not been implicated in tumorigenesis. 

 
 
Keywords 

PAX5 rearrangements, fusion genes, FISH screening, B-cell precursor acute lymphoblastic 

leukemia
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Introduction 

The transcription factor Pax5 encodes the B-cell lineage specific activator protein (BSAP) 

and is a master regulator of B-cell development. Within the hematopoietic system, Pax5 is 

exclusively expressed in the B-lymphoid lineage and is required for progression beyond the 

pro-B cell stage.1 Pax5 is not only indispensable for B-lineage commitment, but its 

continuous expression is also essential to maintain this fate.1-3 During B-cell lineage 

commitment, Pax5 fulfils a dual role by repressing B-lineage inappropriate genes and 

simultaneously activating B-lineage–specific genes.4-6 Loss of Pax5 expression in pro-B cells 

by conditional gene inactivation arrests B-cell development at an early pro-B cell stage and 

reverts committed B-cell precursors with a restricted B-lymphoid potential to progenitors with 

self-renewal capacity and hematopoietic pluripotency.2,4 The restoration of Pax5 expression 

suppresses the multilineage potential of Pax5-/- pro-B cells while simultaneously promoting 

their differentiation to mature B-cells.4 

The essential role of Pax5 for proper B-cell development renders PAX5 also an intriguing 

candidate to be involved in B-cell neoplasia. The t(9;14)(p13;q32) found in a subset of B-cell 

non-Hodgkin's lymphoma juxtaposes the intact coding sequence of PAX5 under the control 

of the IGH@ locus, leading to inappropriate expression of PAX5.7,8 Recently, it was also 

shown that deletion, amplification, point mutation and structural rearrangements in genes 

encoding regulators of B-lymphocyte development and differentiation occur in 40% of B-

progenitor ALL.9 Amongst the affected genes, PAX5 was the most frequent target of somatic 

mutation, being altered in about 32% of the cases.9 In ALL PAX5 is involved in different 

translocations that result in fusion genes encoding chimeric proteins with novel functions. So 

far, ETV6,10,11 ELN,12 FOXP1,9 ZNF521,9 PML,13 AUTS2,14 and C20orf11214 were identified 

as PAX5 fusion partners. 

In this population-based FISH screening study of 446 consecutive childhood ALL cases, we 

determined that in B-cell precursor ALL (BCP-ALL) PAX5 rearrangements occur at an 

incidence of about 2.5%. The subsequent identification of the partner genes discovered five 

novel in-frame PAX5 fusions to HIPK1, POM121, JAK2, DACH1, and BRD1, a set of genes 

with diverse functions including not only transcription factors but also structural proteins and 

even a tyrosine kinase. 

 

Materials and Methods 

Patients 

Between June 1999 and December 2007, 486 infants and children with de novo acute 

lymphoblastic leukemia (ALL) were registered in the Austrian ALL-BFM 2000 (n=475) and 

Interfant-9915 (n=11) studies. The 486 patients also include those only registered but 
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subsequently for various reasons not treated accordingly. The patients comprised n=65 with 

T-ALL and n=414 with B-cell leukemia including all immunophenotypes: pro-B ALL (n=20), 

cALL (n=268), pre-B ALL (n=118), mature ALL (n=5); and (n=3) without specific 

classification. Further, the study included 4 biphenotypic and one NK-cell leukemia, as well 

as two ALLs, which were not analyzed in detail. Based on successful routine diagnostic 

work-up by cytogenetics, FISH and RT-PCR approaches, the n=421 ALLs (excluding only 

the n=65 T-ALL cases) consisted of 126/400 (31.5%) with high hyperdiploidy (> 50 

chromosomes), 38/400 (9.5%) with low hyperdiploidy (47-50 chromosomes), 18/400 (4.5%) 

with hypodiploidy (< 46 chromosomes) and 113/421 (26.8%) ETV6-RUNX1, 12/418 (2.9%) 

TCF3-PBX1 (E2A-PBX1), 7/421 (1.7%) BCR-ABL1, and 11/421 (2.6%) MLL positive cases. 

The entire patient cohort consisted of 272 male and 214 female patients, and the age 

distribution ranged from 0.18 – 19.3 years (median = 5.6 years). Written informed consent 

was obtained from the patients, their parents or their legal guardians that surplus material not 

required for diagnostic purposes may be used for accompanying cancer research projects. 

Out of these 486 patients from 454 (93.4%) sufficient material for FISH analysis was 

available. FISH analysis was successful in 446 (98.2%) of the analyzed cases, while in 8 

(1.8%) poor quality of the fixed cells and, thus, insufficient hybridization efficiency precluded 

unambiguous evaluation of the FISH pattern. 

 

FISH approach for the detection of PAX5 rearrangements 

PAX5 rearrangements were detected using PAX5 flanking BAC clones RP11-12P15 and 

RP11-220I1 (obtained from Pieter de Jong, BACPAC Resources, Children's Hospital and 

Research Center Oakland, CA, USA). Direct involvement of PAX5 was verified using the 

exon-specific cosmids cos-hPAX5-1 (exons 2-5) and cos-hPAX5-3 (exons 9-10)7. For 

metaphase analysis also RP11-465P6 and RP11-84P7 were applied (obtained from M. 

Rocchi, Department of Cytogenetics, University of Bari, Bari, Italy). Exact clone positions 

relative to PAX5 are illustrated in Supplementary Figure S1. 

BAC and cosmid DNA was isolated using the PSI-Clone BAC DNA Kit (emp Biotech, Berlin, 

Germany) and the QIAprep Spin Miniprep Kit (Qiagen, Vienna, Austria), respectively. BAC 

and cosmid DNA was then amplified with the TempliPhi Amplification Kit (GE Healthcare, 

Vienna, Austria) according to the manufacturer's recommendations. Slides for FISH were 

prepared from the methanol/acetic acid-fixed cell suspensions used for cytogenetic analysis 

and incubated in Nonidet P40 (Sigma-Aldrich, Vienna Austria) 0.4% / 2xSSC at 37°C for 1 

hour and then immediately dehydrated through an ascending ethanol series followed by 3 

minutes of pepsin digestion. FISH was essentially performed as previously described.16 

Metaphase images were acquired with a Zeiss Axioplan 2 Imaging fluorescence microscope 

(Zeiss, Göttingen, Germany) equipped with appropriate filter sets using a Zeiss AxioCam 
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MRm CCD camera and the Isis version 5.0 SR-6 FISH Imaging System (MetaSystems, 

Altlussheim, Germany). High-throughput automated interphase FISH spot counting was 

accomplished using the Axioplan 2 microscope coupled to the Metafer4-Metacyte system, 

Version V 3.1.122 (MetaSystems). Following automated analyses of 300-400 nuclei per 

case, each sample was manually reevaluated. Based on the analysis of normal controls and 

leukemia samples with normal PAX5 status, separation of differentially labeled clones was 

considered when the distance between the signals was > 10 pixel. 

 

Identification of PAX5 fusion partners 

PAX5 fusion partners were identified by rapid amplification of cDNA ends (RACE) or 

fluorescence in situ hybridization (FISH) analysis. 

RACE. Total RNA was extracted from mononuclear cells isolated from bone marrow using 

the PeqGOLD total RNA Kit (Peqlab Biotechnology, Erlangen, Germany) including an on 

column DNAse digestion step. 300 ng – 2 µg of total RNA were reverse transcribed using the 

AMV Reverse Transcriptase and the cDNA synthesis primer provided with the Marathon Kit 

(Takara Bio Europe/Clontech, Saint-Germain-en-Laye, France) followed by second-strand 

cDNA synthesis according to the manufacturer's instructions. Ligation of the Marathon cDNA 

Adaptor to the ds-cDNA was performed overnight at 16°C. Appropriately diluted adapter-

ligated ds-cDNA was amplified using the PAX5 gene-specific forward primer PAX5ex2-3-F1 

(5'-TCTTGGCAGGTATTATGAGACAGGAAG-3') or the reverse primer PAX5ex6-7-R1 (5'-

TGGCTGAATACTCTGTGGTCTGCTC-3') and the adaptor primer AP1 (5'-

CCATCCTAATACGACTCACTATAGGGC-3'). A nested PCR reaction was done with the 

PAX5-specific primers PAX5ex3-F2 (5'-CAGAGCGGGTGTGTGACAATGAC-3') or PAX5ex6-

R1 (5'-CTGCTGCTGTGTGAACAAGTCTCC-3') and the AP2 (5'-ACTCACTATAGGGCTC 

GAGCGGC-3') universal primer. PCRs were carried out with a T3000 thermocycler 

(Biometra, Göttingen, Germany) using the following cycling parameters: 95°C initial 

denaturation for 1 minute; 5 cycles of 94°C for 15 seconds, 72°C for 5-8 minutes; 5 cycles of 

94°C for 15 seconds, 70°C for 5-8 minutes; 25 cycles of 94°C for 15 seconds, 68°C for 5-8 

minutes.  

RACE products were cut out from the gels, extracted using the PeqGOLD Gel Extraction Kit 

(Peqlab Biotechnology) and directly sequenced or cloned into the pGEM-T Easy vector 

(Promega, Mannheim, Germany) and sequenced. Sequencing was performed by Eurofins 

MWG Operon (Ebersberg, Germany). 

FISH. The PAX5-C20orf112 fusion was detected using RP11-431F4 and RP11-465P6 (M. 

Rocchi) encompassing the complete PAX5 gene (Supplementary Figure S1) in combination 

with RP5-1184F4 (Welcome Trust Sanger Institute; http://www.sanger.ac.uk), which spans 

the C20orf112 locus. 
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Reverse Transcription-PCR Analysis 

Total RNA was reverse transcribed using 2µg of random hexamers (Amersham) and 200 

units Moloney-murine leukemia virus (M-MLV) reverse transcriptase (Invitrogen, Lofer, 

Austria) at 42°C for 60 minutes. RT-PCR reactions were carried out using Hot Start Taq 

(Qiagen): initial denaturation at 95°C for 14 minutes, 38-42 cycles at 95°C for 30 seconds, at 

60-64°C for 30 seconds, at 72°C for 30-90 seconds, followed by a final elongation at 72°C for 

7 minutes. Amplification of full length PAX5 fusion transcripts was accomplished either in one 

round or in two consecutive nested PCR reactions with Finnzymes Phusion™ Hot Start High-

Fidelity DNA Polymerase (Biozym Scientific GmbH, Vienna, Austria). All primer sequences 

and the combinations used are provided in Supplementary Table 1. PCR products were 

either cut out from the gels and extracted with the PeqGOLD Gel Extraction Kit (Peqlab 

Biotechnology) or directly purified using the QiaQuick PCR Purification kit (Qiagen) and 

sequenced by Eurofins MWG Operon. 

 

Western blotting 

Appropriate material for Western blot analysis was only available from one case with a PAX5 

rearrangement. The KIS-1 cell line served as PAX5 wild-type positive control. Protein was 

extracted with standard lyses buffer in the presence of protease inhibitor (Roche). Total 

proteins were separated by SDS-PAGE on NuPAGE 4-12% Bis-Tris gels (Invitrogen) and 

transferred to nitrocellulose membrane using the XCell SureLock and the XCell II Blot 

module (Invitrogen) according to the manufacturer's instructions. After blocking with blocking 

reagent (Roche) membranes were incubated with an anti-N-terminal PAX5 antibody 

(ab12000, Abcam, Cambrige, UK). Following incubation with a secondary antibody bands 

were visualized using the LI-COR Odyssey system (LI-COR Biosciences GmbH, Bad 

Homburg, Germany). Membrans were stripped with 1% SDS and 25 mM Glycine pH 2 and 

reincubated with anti-GAPDH antibody (6C5; Santa Cruz Biotechnology Inc., Santa Cruz, 

CA) and an appropriate secondary antibody. 

 

Gene and exon nomenclature 

The gene nomenclature throughout this manuscript follows that approved by the human 

genome nomenclature committee HUGO (http://www.genenames.org/). Nucleotide reference 

sequences used for primer design and the description of the of the novel PAX5 partner 

genes were the following: PAX5, NM_016734; HIPK1, NM_198268; POM121, NM_172020 

and OTTHUMT00000252020 POM121-001 (the reference sequence differs from the latter by 

lack of exon 4 described in Ensembl and the sequences have alternative 3' ends); JAK2, 

NM_004972; DACH1, NM_080759; BRD1, NM_014577; C20orf112, NM_080616; (National 

Center of Biotechnology Information [NCBI]). 
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Results 
 

FISH screening for PAX5 rearrangements 

Interphase FISH analysis of 446 childhood ALL samples detected FISH patterns suggestive 

for PAX5 rearrangements in 10 cases. PAX5 rearrangements were exclusively found in B-

cell precursor ALL (BCP-ALL) and, thus, the overall frequency in childhood ALL was 2.2% 

whereas the incidence in BCP-ALL was 2.6%. 

In 7 cases (1.6%) the dual-color split-apart assay with PAX5-flanking BAC clones detected a 

separation of the signals suggesting the presence of a PAX5 rearrangement. In 5 cases 

(1.1%) deletions of the 3' clone and in 15 (3.4%) of the 5' clone were observed. One single 

case displayed an additional 3' signal and further analysis confirmed a duplication 

encompassing the PAX5 3'-end and flanking sequences. 

All aberrant cases were further analyzed using PAX5 gene-specific cosmids, which proved 

the direct involvement of PAX5 in all seven cases showing a split FISH pattern with the BAC 

clones. Out of the 15 cases with a 5' BAC clone deletion 8 were ETV6-RUNX1 positive and 

were not further analyzed. One case was not analyzable, three displayed no PAX5 

aberration, and three a 5' deletion suggesting focal PAX5 deletions.9 In 2 out of the 5 cases 

with a 3' BAC clone deletion one entire copy of PAX5 was absent, whereas in three cases a 

3' internal deletion was confirmed indicating a PAX5 fusion associated with a 3' deletion. 

 

Identification of PAX5 fusion partners 

In all 10 cases that displayed a FISH pattern suggestive for the presence of a PAX5 fusion 

(Table 1) we attempted to identify the respective partner gene. In two of the cases, one each 

with a split FISH pattern and a PAX5 3' deletion we have previously identified PML13 (case 1) 

and ETV611 (case 9) as fusion partners, respectively (Table 1). To determine whether in any 

of the cases one of the known PAX5 partners was involved PAX5 fusion gene-specific FISH 

and/or RT-PCR experiments were performed first, and as soon as we were able to unravel a 

novel fusion partner all cases were retrospectively analyzed. 

 

Identification of PAX5 fusion partners in PAX5-rearranged leukemia 

In cases 2 and 4, only a minor but significant percentage of the cells (20.8% and 19.3%) 

displayed a split FISH signal pattern (Table 1). Subsequent evaluation of metaphases clearly 

showed that the PAX5-flanking probes were separated and both located on chromosome 9p 

suggesting an inversion event (Figure 1A). 

3' RACE using RNA isolated from the bone marrow obtained at relapse of case 4 resulted in 

an approximately 2 kb amplification product (data not shown) and sequence analysis 
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revealed fusion of PAX5 exon 5 to JAK2 exon 19 (Figure 1D). RT-PCR analysis of the 

diagnostic samples of both cases confirmed the presence of the same PAX5-JAK2 

transcripts (Figure 1B). Amplification of the reciprocal JAK2-PAX5 fusion showed multiple 

splice variants that either included all respective JAK2 exons or lacked exon 18 or exons 17 

and 18 (Figure 1C,E). The splice variant containing all JAK2 exons and that lacking exons 17 

and 18 resulted in open reading frames. Using primers in the respective first and last coding 

exons, both PAX5-JAK2 and JAK2-PAX5 full length transcripts could be amplified, which 

apart from the splice variants described above did not lack any other exons (Figure 3A and 

B, and data not shown). Western blot analysis revealed expression of the predicted size 

mutant PAX5 protein as well as wild type PAX5 (Figure 3D). 

The putative PAX5-JAK2 chimeric protein contains the paired domain (PD) and the 

octapeptide (OP) domain of PAX5 and the JAK homology (JH) 1 kinase domain of JAK2. The 

full length hypothetical reciprocal JAK2-PAX5 fusion protein consists of the JAK2 kinase 

domains JH2-JH7 fused to the PAX5 homeodomain (HD) and the transactivation (TA) and 

inhibitory (ID) domains (Figure 4B). The shorter JAK2-PAX5 in-frame isoform would lack the 

JH2 domain. 

In case 3, 3' RACE and direct sequencing of a PCR product revealed fusion of PAX5 exon 5 

to the noncoding region of BRD1 exon 1. Subsequent fusion gene-specific RT-PCR verified 

the data obtained by RACE (Figure 2A). PAX5 exon 5 was joined to 14 bp of the noncoding 

exon 1 of BRD1 resulting in a putative chimeric protein consisting of the PAX5 PD and the 

octapeptide domain fused to 4 miscellaneous amino acids and the entire BRD1 protein, 

which contains highly conserved domains, such as an amino-terminal plant homeodomain 

(PHD) zinc finger and a bromodomain (Figure 4C). Insufficiency of material prevented 

amplification of the full length fusion transcript, whose coding region would have an 

estimated length of 3795 bp. 

In case 5, FISH analysis clearly showed a PAX5 rearrangement (Figure 2Bi-ii) but 3' RACE 

failed to identify the PAX5 fusion partner. However, cloning and sequencing of 5' RACE 

products revealed that one clone encompassed PAX5 exon 6 fused to the noncoding exon 4 

of POM121 (data not shown). These data prompted us to perform PAX5-POM121-specific 

RT-PCR experiments and indeed PAX5-POM121 transcripts could be amplified (Figure 

2Biii). Sequence analysis showed that PAX5 exon 5 was fused to 112 bp of genomic DNA 

derived from chromosome 12 followed by POM121 exon 5 (Figure 2B) suggesting a complex 

rearrangement between chromosomes 7, 9, and 12. Exons 1-4 of POM121 are non-coding 

and the translational start codon is located in exon 5. Nevertheless the insertion of the 112 

bp genomic DNA resulted in a complete open reading frame and a putative fusion protein 

consisting of the PD and the octapeptide domain of PAX5 joined to 88 amino acids neither 

homologous to PAX5 nor POM121, and the entire POM121 protein (Figure 4D). Owing to the 
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lack of appropriate material the full length coding transcript, which would have a calculated 

size of 3867 bp could not be amplified and, thus, it remains elusive whether all exons are 

retained or different splice variants of PAX5-POM121 are expressed. 

In case 6, FISH experiments showed that the 5'-end of PAX5 was located on a der(9) 

chromosome whereas the 3'-end was translocated to 14q32 (data not shown). Further 

thorough FISH analysis confirmed the presence of complex rearrangements involving at 

least chromosomes 9, 3, 11, and 12 with insertion of chromosome 11p material into 9p (data 

not shown) indicating fusion of PAX5 with a gene located on 11p. However, though 20 BAC 

clones, which encompassed 11p13-15 were hybridized none of them showed a co-

localization with PAX5 and, thus, this strategy failed to identify any candidate gene. 

Consequently, also in this case 3' and 5' RACE was performed but despite extensive efforts 

we were unable to identify the PAX5 partner gene. 

In case 7, FISH analysis showed a split signal for the PAX5-specific clones and 1-2 

additional 5' signals (Figure 2Ci). Further FISH analysis again indicated complex aberrations 

involving several chromosomes, in particular 1p, which was translocated to 9p (data not 

shown). Cloning and sequencing of an approximately 1.8 kb 3' RACE product suggested 

involvement of the HIPK1 gene. Fusion gene-specific RT-PCR experiments with primers 

located in exons 5 and exons 9/10 of PAX5 and HIPK1, respectively, confirmed the RACE 

data (Figure 2Cii). Amplification of the fusion transcript with primers located in exons 1 and 5 

of PAX5 and at the junction of the last coding exons 15/16 of HIPK1 showed that PAX5 

exons 1-5 were consistently present, but HIPK1 C-terminal exons were alternatively spliced 

and, thus, several variants are expressed (data not shown). Reciprocal HIPK1-PAX5 

transcripts could not be detected. 

The putative PAX5-HIPK1 chimeric protein encoded by the notional full length transcript 

consists of the PD and the octapeptide domain of PAX5 fused to a part of the homeodomain-

interacting domain (ID), the Prolin-, Glutamic acid-, Serine-, Threonine-rich (PEST), and the 

tyrosine/histidine-rich (YH) domains of HIPK1 (Figure 4E).  

 

Identification of PAX5 fusion partners in cases with PAX5 3' deletions 

In three out of the 446 childhood ALL patients FISH analysis with PAX5-specific cosmid 

clones displayed 3' deletions of PAX5 also indicating the presence of PAX5 rearrangements. 

In this respect, the dic(9;12)/PAX5-ETV6 aberration results in loss of the PAX5 3'-end,11 and 

the PAX5 fusion partners FOXP1, ZNF521, AUTS2, and C20orf112 were detected based on 

array CGH data that only permit the delineation of unbalanced genetic alterations.9,14 

In case 8, fusion gene-specific FISH and RT-PCR assays for the known PAX5 

rearrangements revealed that in this case PAX5 was fused to C20orf11214 (Figure 2D). 

Sequence analysis of the PAX5-C20orf112 transcripts showed an in-frame fusion of PAX5 
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exon 8 to C20orf112 exon 12. Amplification of the full length coding chimeric transcript 

showed no alternative splicing of any of the exons (data not shown). At least in this case, the 

PAX5-C20orf112 fusion displays the most 3' breakpoint within PAX5 described so far, which 

joins almost the entire PAX5 protein including the PD, the octapeptide, the homeodomain 

(HD) and parts of the transactivation domain (TA) to the C-terminal end of C20orf112. Owing 

to the opposite transcriptional orientations of PAX5 (centromere-telomere) and C20orf112 

(telomere-centromere), the generation of a functional fusion gene requires a complex genetic 

rearrangement or the formation of a dicentric chromosome.  

In case 10, interphase FISH analysis showed deletion of the PAX5 3'-end (Figure 2Ei) and 

direct sequencing of one of several 3' RACE PCR products revealed an in-frame fusion of 

PAX5 exon 5 to DACH1 exon 5 (Figure 2Eii). Subsequent RT-PCR experiments using a 

forward primer located in exon 5 of PAX5 and a set of reverse primers in exons 5, 8, 9, and 

12 of DACH1 showed the formerly described alternative splicing of DACH1 skipping exons 4, 

5, 6, or 7 or a combination thereof.17 Fusion of PAX5 to a DACH1 isoform that was only 

detected in spleen could not be verified. Sequencing of RT-PCR products amplified with 

primers located in the first and last coding exon of the respective genes consistently showed 

the presence of PAX5 exons 1-5 and confirmed splicing of DACH1 (Figure 3C). Also in this 

case the centromere-telomere orientation of PAX5 and the opposite telomere-centromere 

transcriptional direction of DACH1 suggested a more complex rearrangement rather than a 

simple reciprocal translocation. The PAX5-DACH1 putative consensus fusion protein 

consisted of the PD and the octapeptide domain and the C-terminal conserved DD2 domain 

of DACH1 (Figure 4F). 

 

Discussion 

Using a FISH approach for the detection of PAX5 rearrangements, we performed a 

population-based screening of 446 consecutive childhood ALL cases and identified 10 

(2.6%) BCP-ALL patients with a PAX5 rearrangement. All PAX5 fusion positive cases were 

negative for the most common genetic aberrations found in childhood ALL (ETV6-RUNX1, 

BCR-ABL1, TCF3-PBX1, MLL-AF4) and, thus, in contrast to PAX5 deletions, they are most 

likely distinctive primary genetic events. 

PAX5 rearrangements were particularly associated with a common ALL phenotype. Except 

for the PAX5-POM121 positive case, all patients showed a good response to prednisone 

according to the ALL-BFM 2000 or Interfant-9915 protocol. Based on prednisone response 

and MRD risk stratification, all patients were treated with the respective therapy regimen and 

9/10 patients are in first complete remission 6-84 months from diagnosis. Only one of the two 

PAX5-JAK2 positive patients with a pre-B phenotype relapsed 2.5 years after initial diagnosis 
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but after recommencing therapy has achieved a second complete remission (Supplementary 

Table 2). 

So far, the majority of PAX5 rearrangements was detected by high-resolution single 

nucleotide polymorphism (SNP) array analysis,9,14 a technology which, however, only allows 

for the detection of unbalanced aberrations and precludes the identification of balanced 

reciprocal translocations or inversions. Therefore, we took an alternative approach and 

developed a FISH screening assay that permits the unambiguous detection of all PAX5 

rearrangements independent of their balanced or unbalanced nature, including even those 

that would result in juxtaposition of PAX5 under the regulatory elements of a partner gene as 

seen in the PAX5-IGH@ translocation.7,8 It is interesting to note that for the most PAX5 

rearrangements were found in cases with either normal or complex karyotypes, a fact that 

prevents detection by conventional cytogenetics and emphasizes their often cryptic nature. 

Further, at least in childhood ALL, we did not find any evidence for PAX5 activating 

translocations. 

Two of the ten PAX5-rearranged cases have been previously reported to harbor a PAX5-

ETV611 and a PAX5-PML13 aberration, and one showed the recently described PAX5-

C20orf112 fusion.14 However, we identified five hitherto unknown PAX5 fusion partners, 

namely HIPK1, POM121, JAK2, DACH1, and BRD1 bringing the number of distinct PAX5 

chimera to at least twelve (Table 2). Similar to all previously described PAX5 

rearrangements, the majority of the fusion transcripts encode putative novel transcription 

factors, which consist of at least the amino-terminal paired DNA-binding domain and in most 

instances also the octapeptide of PAX5, and C-terminal regulatory sequences of a second 

transcription factor. However, involvement of ELN and POM121 as structural proteins and 

the tyrosine kinase JAK2 are remarkable as neither of these genes is directly implicated in 

transcriptional regulation. 

The Janus kinase (JAK) family currently comprises four human members JAK1, JAK2, JAK3, 

and TYK2, which are receptor associated protein tyrosine kinases and are of critical 

importance for cytokine-mediated signal transduction.18,19 Somatically acquired activating 

mutations in JAK2 were recently reported to play a central role in the pathogenesis of 

myeloproliferative disorders.20 Further, JAK2 fusions with ETV6, BCR, PCM1, and SSBP2 

were described in a variety of hematopoietic malignancies.21,22 The transforming potential of 

the previously described JAK2 fusion proteins has been attributed to the cytokine-

independent constitutive activation of JAK2, mediated by motifs of the partner gene that 

serve as dimerization/oligomerization interfaces.21 For example, for the three distinct ETV6-

JAK2 fusions, which are potent activators of STAT5, transformation is strictly dependent on 

the ETV6 pointed (PNT) self-association domain.23 However, there is no evidence that the 

PAX5 domains retained in the PAX5-JAK2 protein are capable to mediate dimerization. In 
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contrast, both the DNA-binding domain and the nuclear localization signal (NLS) of PAX524 

are retained in the PAX5-JAK2 fusion protein, which is suggestive of a nuclear localization, 

whereas JAK2-PAX5 may reside in the cytoplasm. 

BRD1, BRPF1, MLLT6, and MLLT10 belong to a small evolutionary conserved family of 

putative nuclear transcription factors, which share a highly homologous cystein-rich region 

containing an amino-terminal PHD finger motif.25 Two members of this family are involved in 

myeloid leukemia-associated rearrangements, namely MLL-MLLT6 and MLL-MLLT10.26,27 

However, the respective chimeric proteins differ considerably from PAX5-BRD1 in that the 

conserved PHD domains of MLLT6 and MLLT10 are lost, whereas the entire BRD1 protein is 

fused to PAX5. Even though the actual function of BRD1 itself remains elusive, the presence 

of a PHD-bromodomain module, which is frequently found in chromatin-associated proteins, 

strongly indicates a role in chromatin remodelling and epigenetic regulation of gene 

transcription.28,29 Considering that PAX5 has the capability to activate and suppress large 

sets of genes, this potential feature of BRD1 supports the notion of the PAX5-BRD1 chimera 

to modulate transcriptional activity. 

HIPK1 belongs to the homeodomain-interacting protein kinase (HIPK) family, whose 

currently four members (HIPK1-4) are nuclear serine/threonine kinases that are primarily 

localized in the nucleus.30,31 The HIPKs were originally identified as nuclear protein kinases 

that function as corepressors for various homeodomain-containing transcription factors but 

recently were also shown to interact with other proteins involved in apoptosis and signal 

transduction in a cellular localization-dependent manner. HIPK1 physically interacts with and 

promotes phosphorylation of e.g. TP53, DAXX, EP300, and RUNX1.32-34 HIPK1 also 

regulates the nuclear export of DAXX and both proteins collaborate in transcriptional 

regulation,33 a functional aspect of HIPK1, which is further substantiated by its modulation of 

TP53 activity.34 On the other hand, in the cytoplasm HIPKs appear to transduce signals by 

death receptors and to induce MAP3K5 dependent apoptosis.35,36 Owing to the multiple 

functions of HIPK1 it is intricate to ascribe any potential specific function to the PAX5-HIPK1 

fusion protein, however, the most likely one is also transcriptional regulation. 

DACH1 is a human homologue of the Drosophila dachshund (dac) gene, which is a key 

regulator of cell fate determination during eye, leg, and brain development in the fly.37-39 

Members of the dachshund family of nuclear proteins encode highly conserved putative 

transcription factors, which contribute to the fundamental mechanisms of morphogenesis.40,41 

The DACH1 protein contains two domains (DD1, Dachbox N-domain and DD2, Dachbox 

C-domain or EYA domain), which are highly conserved from Drosophila to human.41 DACH1 

functions as a transcriptional repressor of TGF-β-signaling in breast and ovarian cancer.42,43 

DACH1 is also a physiological regulator of endogenous JUN function, inhibiting JUN and 

JUN target gene expression, as well as a CCND1 repressor.44 Although target gene 
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repression by DACH1 requires the DD1 domain it is tempting to speculate that the 

PAX5-DACH1 chimeric protein, in spite of the fact that it lacks this conserved domain, may 

act as transcriptional repressor of PAX5 activated target genes. 

PAX5 fusion partners, however, not only comprise transcription factors but also structural 

proteins such as ELN12 and POM121. POM121 is one of the two integral pore membrane 

proteins that were identified as specific components of nuclear pore complexes of higher 

eukaryotes.45 Both pore membrane proteins, NUP21046 and POM12145 have been proposed, 

although controversially discussed, to play important roles in nuclear pore complex (NPC) 

formation and anchoring the peripheral nucleoporins (NUPs) to the nuclear membrane.47,48 

The NPC is composed of multiple copies of about 30 different NUPs,49 and so far, only two 

NUPs, namely NUP9850,51 and NUP214,52-54 were found involved in leukemia-associated 

translocations, which makes POM121 only the third component of the nuclear envelope 

implicated in leukemogenesis. 

All PAX5 fusion proteins contain the PAX5 DNA-binding domain and, thus, are predicted to 

retain the ability to bind to PAX5 transcriptional targets, but no longer provide normal 

transcriptional regulatory functions.55 PAX5-ETV6, PAX5-FOXP1, and also PAX5-ELN 

indeed competitively inhibit the transcriptional activity of PAX5 suggesting that PAX5 fusions 

act as constitutive repressors to antagonize PAX5 function provided by the second, wild-type 

PAX5 allele.9,12,56 Comprehensive studies are now required to elucidate whether all PAX5 

chimera in fact operate as aberrant transcription factors that impair the finely tuned PAX5 

target gene transcriptional network. 
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Table 1. Summary of all PAX5-rearranged childhood ALL cases registered in the 

Austrian ALL-BFM 2000 and Interfant-99 studies between June 1999 and December 

2007. 

Case PAX5 
FISH pattern 

% positive 
cells PAX5 fusion Reference 

1 split 49,1 PAX5-PML Nebral et al13 

2 split 20,8 PAX5-JAK2 this work 

3 split 30,0 PAX5-BRD1 this work 

4 split 19,3 PAX5-JAK2 this work 

5 split 59,7 PAX5-POM121 this work 

6 split 45,8 PAX5-? this work 

7 split 61,7 PAX5-HIPK1 this work 

8 3' deletion 85,0 PAX5-C20orf112 this work 

9 3' deletion ND  PAX5-ETV6 Strehl et al11 

10 3' deletion 78,2 PAX5-DACH1 this work 

ND, not determined 
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Table 2. PAX5 fusion partners in B-cell precursor ALL. 

Partner gene Chr. Localization/Function Reference 

HIPK1 
homeodomain interacting protein kinase 1 1p13 nuclear (speckles) 

transcriptional regulation this work 

FOXP1 
forkhead box P1 3p13 nuclear 

transcription factor Mullighan et al9 

POM121 
POM121 membrane glycoprotein 7q11 nuclear pore membrane 

assembly of nuclear envelope this work 

ELN 
elastin 7q11 extracellular matrix, elastic fibers 

structural protein Bousquet et al12 

AUTS2 
autism susceptibility candidate 2 7q11 intracellular 

unknown Kawamata et al14 

JAK2 
Janus kinase 2 9p24 cytoplasmic 

tyrosine kinase, receptor signaling this work 

ETV6 
ets variant gene 6 (TEL oncogene) 12p13 nuclear 

transcriptional repressor 
Cazzaniga et al10 
Strehl et al11 

DACH1 
dachshund homolog 1 13q24 nuclear 

transcription factor this work 

PML 
promyelocytic leukemia 15q21 nuclear, PML bodies 

multiple functions Nebral et al13 

ZNF521 
zinc finger protein 521 18q11 nuclear 

transcription factor Mullighan et al9 

C20orf112 
chromosome 20 open reading frame 112 20q11 unknown 

unknown Kawamata et al14 

BRD1 
bromodomain containing 1 22q13 nuclear 

putative transcription factor this work 
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Figure 1. PAX5-JAK2 rearrangement. (A) FISH with BAC clones RP11-220I1 (CY3) and RP11-12P15 (FITC) 

showing a split signal. Arrows indicate the normal chromosome 9 (black) and the derivative chromsome 9 (white). 

(B) RT-PCR analysis of the PAX5-JAK2 fusion transcript. Lane 1, patient 4; lane 2, patient 2; lane 3, patient 6; 

lane 4, normal control. Case 6 was negative for the PAX5-JAK2 fusion. (C) RT-PCR analysis of the JAK2-PAX5 

transcript showing multiple splice variants. Lane 1, patient 4; lane 2, patient 2; lane 3, normal control; lane 4, 

negative control. (D-E) Sequence chromatograms of PAX5-JAK2 and JAK2-PAX5 transcripts. (D) fusion of PAX5 

exon 5 to JAK2 exon 19 and (E) JAK2 exon 18 to PAX5 exon 6. M, molecular weight marker, 100 bp ladder 

(Promega). 
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Figure 2. FISH, RT-PCR, RACE, and sequence analyses of PAX5-rearranged patients. (A) Case 3. RT-PCR 

and sequence analysis showing fusion of PAX5 exon 5 to BRD1 exon 1. Lane 1, patient 3; lane 2, normal control; 

lane 3, negative control. (B) Case 5. (Bi) Representative interphase nuclei displaying a PAX5 split signal using 

RP11-220I1 (CY3) and RP11-12P15 (FITC); (Bii) metaphase showing a PAX5 split signal using RP11-465P6 

(FITC) and RP11-84P7 located downstream of PAX5 (CY3). Arrows indicate the normal chromosome 9 (black) 

and the derivative chromosomes (white). (Biii) RT-PCR showing the PAX5-POM121 fusion transcript. Lane 1, 

patient 5; lane 2, negative control. Sequence chromatograms presenting fusion of PAX5 exon 5 to 112 bp derived 

from chromosome 12 followed by POM121 exon 5. (C) Case 7. (Ci) Representative aberrant interphase nuclei 

hybridized with RP11-220I1 (CY3) and RP11-12P15 (FITC). (Cii) RT-PCR of PAX5-HIPK1. Lane 1, patient 7; lane 

2, negative control, and sequence chromatogram showing fusion of PAX5 exon 5 to HIPK1 exon 9. (D) Case 8. 

RT-PCR and sequence chromatograms demonstrating fusion of PAX5 exon 8 to C20orf112 exon 8. Lane 1, 

patient 3; lane 2, normal control; lane 3, negative control. (E) Case 10. (Ei) Representative interphase nuclei 

hybridized with RP11-220I1 (CY3) and RP11-12P15 (FITC) displaying a PAX5 3'-end deletion and (Eii) RT-PCR 

showing PAX5-DACH1 transcripts. Lane 1, patient 10; lane 2, normal control; lane 3, negative control, and 

sequence chromatogram presenting fusion of PAX5 exon 5 to DACH1 exon 5. M, molecular weight marker, 100 

bp ladder (Promega). 
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Figure 3. Amplification of full length fusion transcripts and Western blot analysis. 
(A-C) Amplification of full length chimeric transcripts. (A) PAX5-JAK2 and (B) reciprocal JAK2-PAX5 transcripts of 

case 4. Lane 1, patient; lane 2, negative control. (Owing to the small size differences of the splice variants these 

are not distinguishable from the full lenght transcript.) (C) Case 10. PAX5-DACH1 full length fusion transcript and 

several splice variants are expressed. M, peqGOLD Ladder-Mix (Peqlab Biotechnology). (D) Western blot of 

primary leukemic blasts of case 4 using an anti-N-terminal PAX5 antibody. Lane 1, KIS-1 cell line; lane 2, 

PAX5-JAK2 positive case. Asterisk indicates the mutant PAX5-JAK2 fusion protein. GAPDH served as loading 

control. M, SeeBlue® Plus2 Pre-Stained Standard (Invitrogen), sizes in kDA are indicated. 
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Figure 4. Schematic representation of PAX5, partner wild-type and the putative chimeric PAX5 fusion 

proteins. 
Wilde-type proteins are always depicted below the PAX5 chimera. (A) PAX5 wild-type protein. PD, paired 

domain; OP, octapeptide domain; HD, homeodomain; TA, transactivation domain; I, inhibitory domain; NLS, 

nuclear localization signal. (B) PAX5-JAK2 and the reciprocal full-length JAK2-PAX5 fusion proteins. JH1-7, JAK 

homology domains 1-7. (C) BRD1 wild-type and PAX5-BRD1 fusion protein with the insertion of 4 miscellaneous 

amino acids. PHD, plant homeodomain zinc finger domain; BROMO, bromodomain; PWWP, proline-tryptophan-

tryptophan-proline motif. (D) POM121 wild-type and PAX5-POM121 fusion protein, insertion of the 88 novel 

amino acids encoded by the 112 bp of genomic DNA derived from chromosome 12 and the normally untranslated 

region of POM121 exon 5 is depicted. TRANS, potential transmembrane domain; FXFG, repetitive XFXFG 

pentapeptide motif; according to Ensembl POM121-001. (E) HIPK1 wild-type and PAX5-HIPK1 fusion protein. 

KINASE, protein kinase domain; ID, homeodomain-interacting domain; PEST, Prolin-, Glutamic acid-, Serine-, 

Threonine-rich sequence; YH, tyrosine/histidine-rich motif. (F) DACH1 wild-type and PAX5-DACH1 fusion protein. 

DD1, Dachbox N-domain; DD2, Dachbox C-domain. 
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Supplementary Table 1. Oligonucleotide Primer Sequences 

Primer Sequence Direction Gene/Exon 

PAX5ex5-F1 TACTCCATCAGCGGCATCC sense PAX5/5 

PAX5ex6-R2 CTGCTGCTGTGTGAACAAGTC antisense PAX5/6 

PAX5ex7-R1 GGCCTTCATGTCGTCCAG antisense PAX5/7 

PAX5ex10non-R1 AGTCCCTGGAGGAAGAGAGG antisense PAX5/10 

P1-PAX5ex1-F1 ATGGATTTAGAGAAAAATTATCCGACT sense PAX5/1 

P1-PAX5ex10-R1 TCAGTGACGGTCATAGGCAG antisense PAX5/10 

JAK2ex3-F1 AAGACTCTGCATGGGAATGG sense JAK2/3 

JAK2ex20-21-R1 TACGCCGACCAGCACTGTAG antisense JAK2/20-21 

JAK2-forward ACGGTCAACTGCATGAAACA sense JAK2/13 

P1-JAK2ex3-F1 ATGGGAATGGCCTGCC sense JAK2/3 

P1-JAK2ex25-R1 TCATCCAGCCATGTTATCCC antisense JAK2/25 

BRD1ex1-R4 TCTCGAAGCGGTCCATCAG antisense BRD1/1 

POM121ex13-R3 GCAGGCAGGGTAAAGGTAAATG antisense POM121/13 

POM121-ex3-4-F1 GTCCAGCCCTTCACATCCTC sense POM121/3-4 

HIPK1ex9-10-R1 CTTCCCTGCGTGAGAACTCC antisense HIPK1/9-10 

HIPK1ex15-16-R1 TGCTGGTTCTGGCTAAGATTG antisense HIPK1/15-16 

C20orf112ex8-R1 AGCAGGAAGGCAGCAGACTC antisense C20orf112/8 

DACH1ex5-R1 GTGGTTCATCTGGCTCATTGC antisense DACH1/5 

DACH1ex9-R1 GCCAACTGCTTCTCAAGTGTTTC antisense DACH1/9 

P1-DACH1ex12-R1 TCAGTACATGACAGTAGTTTTCAAATACAG antisense DACH1/12 
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Detection of Translocations by Reverse Transcription-PCR Analysis  

Fusion transcripts were amplified using the following primer combinations. 

PAX5-JAK2: PAX5ex5-F1 and JAK2ex20-21-R1. 

JAK2-PAX5: JAK2-forward and PAX5ex6-R2. 

PAX5-BRD1: PAX5ex5-F1 and BRD1ex1-R4. 

PAX5-POM121: PAX5ex5-F1 and POM121ex13-R3. 

POM121-PAX5: POM121ex3-4-F1 and PAX5ex7-R1. 

PAX5-HIPK1: PAX5ex5-F1 and HIPK1ex9-10-R1; PAX5ex5-F1 and HIPK1ex15-16-R1. 

PAX5-C20orf112: PAX5ex5-F1 and C20orf112ex8-R1. 

PAX5-DACH1: PAX5ex5-F1 and DACH1ex5-R1; PAX5ex5-F1 and DACH1ex9-R1. 
 

Detection of full length fusion transcripts by Reverse Transcription-PCR Analysis 

PAX5-DACH1: P1-PAX5ex1-F1 and P1-DACH1ex12-R1 

PAX5-JAK2: P1-PAX5ex1-F1 and P1-JAK2ex25-R1 

JAK2-PAX5: JAK2ex3-F1 and PAX5ex10non-R1; P1-JAK2ex3-F1 and P1-PAX5ex10-R1 

(nested PCR reaction) 
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Supplementary Figure S1. 
 

 

(A) PAX5 FISH screening assay. Adapted screenshot from the UCSC Genome Browser on Human March 2006 

Assembly (www.genome.ucsc.edu), which displays the localization of the used PAX5 BAC clones RP11-12P15 

and RP11-220I1, and the cosmid clones cosh-PAX5-1 and coshPAX5-3. 

 

(B) FISH clones - PAX5 locus. Adapted screenshot from the UCSC Genome Browser on Human March 2006 

Assembly (www.genome.ucsc.edu) showing approximately 800 kb of chromosomal region at 9p13.2. The utilized 

FISH clones RP11-84P7, RP11-431F4 and RP11-465P6 are depicted. 
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Supplementary Table 2. 
Clinical and immunophenotypic characteristics of the PAX5-rearranged cases. 

Case Age (yrs)/ 
Sex Phenotype Clinical 

status 
Prednisone 
response# 

MRD 
risk 

1 0.8/F cALL CR 84 mo + good ND* 

2 6.9/F cALL CR 65 mo + good IR 

3 2.2/M cALL CR 44 mo + good SR 

4 9.6/M pre-B ALL 1st CR 29 mo 
2nd CR 10 mo + 

good 
- 

IR 
 

5 2.0/M pre-B ALL CR 20 mo + poor HR 

6 3.4/M cALL CR 11 mo + good IR 

7 3.4/M cALL CR 6 mo + good IR 

8 1.8/M cALL, CD117+ CR 71 mo + good IR 

9 12.0/F cALL CR 71 mo + good IR 

10 4.8/M cALL, My+ CR 23 mo + good IR 

* Interfant-99, standard risk 
# Good prednisone response: less than 1000/µl peripheral blasts after a 7-day prephase with 

prednisone and one intrathecal dose of methotrexate on day 1 according to the ALL-BFM 

2000 or Interfant-99 protocol. 

CR, complete remission 
HR, high risk 
IR, intermediate risk  
mo, months 
MRD, minimal residual disease 
ND, not done 
SR, standard risk  
yrs, years  
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Abstract 

The presence of a dic(9;20) is a characteristic abnormality found in roughly 1.5% of 

childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Although in about 40% 

of the cases this is the sole structural rearrangement and, thus, considered as the primary 

leukemogenic event little is known about the underlying molecular genetic lesions. In order to 

determine whether PAX5 is implicated in the leukemogenesis of this genetically poorly 

characterized leukemia subtype, several cases were analyzed for their PAX5 status. Our 

studies show that dic(9;20) leukemia is consistently associated with deletion of one copy of 

PAX5 and frequent concomitant mutation of the retained allele. 
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Introduction 

Approximately 1,5% of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) 

is associated with the presence of a dic(9;20)(p13;q11).1,2 In roughly 40% of the cases the 

dic(9;20) is the sole karyotypic change suggesting that this alteration is the primary 

leukemogenic event.1,2 However, so far all efforts to delineate the gene(s) involved in this 

specific rearrangement have failed. This is mainly due to the heterogeneity of the breakpoints 

and, thus, neither a single affected gene on either chromosome nor the generation of a 

fusion gene has been observed.3,4 Owing to the fact that the dic(9;20) aberration consistently 

results in partial monosomy 9p but not always 20q1,3 the crucial gene(s) are more likely 

located at 9p. Accordingly, a dic(9;20) is frequently associated with hetero- or homozygous 

deletion of CDKN2A.1,3 

The transcription factor PAX5, located at 9p13, encodes the B-cell lineage specific activator 

protein (BSAP) and is a master regulator of B-cell development.5,6 Recently, it was shown 

that hypodiploid ALL has one null PAX5 allele and a significant proportion of cases harbor 

point mutations in the second allele.7 

Here we show that dic(9;20), leukemia in general accompanied by hypodiploidy,8 which, 

however, can be masked by nonrandom gains of chromosomes1 is associated with 

consistent loss of one PAX5 copy and frequent mutation of the retained allele.  

 

 

Patients, Material and Methods 
 

Patients 

Seven cases with de novo ALL were selected based on cytogenetic evidence of a dic(9;20)2 

(Table 1). Written informed consent that surplus material not required for diagnostic purposes 

may be used for research purposes was obtained from the patients' parents or their legal 

guardians. 

 

FISH analysis 

Samples were hybridized with: centromere-specific probes for chromosomes 9 (D9Z5; 

Oncor/Qbiogene, Heidelberg, Germany) and 20 (D20Z1; M. Rocchi, Department of 

Cytogenetics, University of Bari, Italy); PAX5 flanking BAC clones RP11-12P15 and RP11-

220I1 (Pieter de Jong, BACPAC Resources, Children's Hospital and Research Center 

Oakland, CA, USA); PAX5 exon-specific cosmids cos-hPAX5-1 (exons 2-5) and cos-hPAX5-

3 (exons 9-10);9 Vysis LSI p16 (9p21) SpectrumOrange/CEP9 Spectrum Green (Abbott 

Molecular, Vienna Austria). FISH was performed as described.10 
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PAX5 mutation analysis 

Mutations in all coding exons and flanking intronic sequences of PAX5 were identified by 

direct sequencing (Eurofins MWG Operon, Ebersberg, Germany) of PCR amplified genomic 

DNA. Primer sequences and PCR conditions are available upon request. 

 

Identification of PAX5 splice variants 

PAX5 isoforms were amplified using primers located in (i) exons 1A and 10 (PAX5ex1A-F2 

5'-CCCTGTCCATTCCATCAAGTCC-3', PAX5ex10-R1 5'-TCACCCTCAATAGGTGCCA 

TCAG-3'), (ii) exons 1A and 6 (PAX5ex1A-F2, PAX5ex6-R1 5'-CTCCCCGCATCTGCTT CC-

3'), (iii) exons 5 and 10 (PAX5ex5-F2 5'-CGGCATCCTGGGCATCAC-3', PAX5ex10-R2 5'-

CGGTCTCATGGGCTCTCTGG-3'). RT-PCR reactions were carried out using Hot Start Taq 

(Qiagen, Vienna, Austria); cycling conditions: 95°C for 14 min; 35-40 cycles at 95°C for 30 

sec, at 66°C for 30 sec, at 72°C for 2 min; 72°C for 7 min. 

 

Results and Discussion 
 

PAX5 and CDKN2A status in dic(9;20) leukemia 

FISH analysis confirmed the presence of a dic(9;20) in all 7 cases (Figure 1A) and showed 

that one PAX5 allele was consistently deleted (Figure 1B). Sequencing of all coding exons of 

the retained allele revealed mutations in PAX5 in 4/7 (57%) of the cases (Figure 1D, Table 

1). These mutations affected amongst PAX genes highly conserved residues11,12 and 

substituted either threonines with alanines (T75A, exon 3; T311A, exon 8) or proline with 

arginine (P80R, exon 3). The T75A and the P80R mutations affect the PAX5 paired DNA-

binding domain, and the P80R mutation was reported to have a significant impact on protein 

structure.7 The novel T311A substitution is located in the transactivation domain of PAX5 in 

proximity to a P321 frame-shift mutation described earlier.7,11 

Evaluation of the expression patterns of PAX5 isoforms showed that in one of the non-

mutated cases (case 7) no full-length transcript was present (Figure 1Ei and 1Eiii; lanes 7). 

All other cases expressed full-length PAX5 and different splice variants in variable patterns 

and levels (Figure 1E). Direct sequencing of several transcripts revealed that these 

corresponded mainly to the known PAX5 splice variants PAX5∆8, PAX5∆9, PAX5∆7/8, and 

PAX5∆7/8/9.13,14 Of note, in the case that harbored the T311A exon 8 mutation, the transcript 

lacking exon 8 was predominantly expressed (Figure 1Ei and 1Eiii; lanes 4). Further, a novel 

PAX5 splice variant skipping exon 2 (Figure Eii; lane 5), which so far was only described for 

murine Pax515,16 was identified.  

While multiple PAX5 isoforms were observed in B-cells of normal healthy donors14 also a 

possible association with childhood leukemia was reported.13 Further studies are required to 
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resolve whether the differential expression of PAX5 alternatively spliced transcripts is 

leukemia-associated or reflects physiological stages of B-cell development. 

FISH showed either a heterozygous (n=3), a homozygous (n=2), or a mixed pattern of homo- 

and heterozygous deletion (n=1) of CDKN2A (Figure 1Ci; Table 1). However, one sample 

(case 3) had two CDKN2A copies (Figure 1Cii). CDKN2A was lost from the dic(9;20) and the 

second signal was located on a marker chromosome (data not shown) suggesting a more 

complex rearrangements that results in a slightly different dic(9;20), nevertheless indicating 

that loss of CDKN2A is not a consistent feature of cytogenetically defined dic(9;20) leukemia. 

In conclusion, we show that dic(9;20) childhood BCP-ALL or at least a subtype of this purely 

cytogenetically defined entity is consistently associated with deletion of one PAX5 allele and 

frequent mutation of the second allele. A certain impairment of PAX5 function in combination 

with loss or mutation of other genes such as CDKN2A may play a crucial role in the 

development of this leukemia. 

 

Acknowledgements 

This work was supported by a grant of the Austrian National Bank (Project No. 12547) (to 

S.S.) and the St. Anna Kinderkrebsforschung. We thank Meinrad Busslinger (IMP, Vienna, 

Austria) for kindly providing the PAX5 cosmid probes and Maximilian-Otto Kauer for his help 

with statistical analysis. 

 

Authorship 

D.K., K.N., and M.K. performed the experiments; D.D. analyzed data; S.S. designed and 

supervised the project and wrote the manuscript. 

 

Conflict-of-interest disclosure: The authors declare no competing financial interests. 

 

 



Chapter 4  PAX5 mutations in dic(9;20) leukemia 

70 

References 

1. Forestier E, Gauffin F, Andersen MK, et al. Clinical and cytogenetic features of pediatric 
dic(9;20)(p13.2;q11.2)-positive B-cell precursor acute lymphoblastic leukemias: a Nordic series of 24 
cases and review of the literature. Genes Chromosomes Cancer. 2008;47:149-158. 

2. Clark R, Byatt SA, Bennett CF, et al. Monosomy 20 as a pointer to dicentric (9;20) in acute 
lymphoblastic leukemia. Leukemia. 2000;14:241-246. 

3. Schoumans J, Johansson B, Corcoran M, et al. Characterisation of dic(9;20)(p11-13;q11) in 
childhood B-cell precursor acute lymphoblastic leukaemia by tiling resolution array-based comparative 
genomic hybridisation reveals clustered breakpoints at 9p13.2 and 20q11.2. Br J Haematol. 
2006;135:492-499. 

4. Strefford JC, Worley H, Barber K, et al. Genome complexity in acute lymphoblastic leukemia is 
revealed by array-based comparative genomic hybridization. Oncogene. 2007;26:4306-4318. 

5. Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the guardian of B cell identity and 
function. Nat Immunol. 2007;8:463-470. 

6. Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004;22:55-
79. 

7. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute 
lymphoblastic leukaemia. Nature. 2007;446:758-764. 

8. Raimondi SC, Zhou Y, Mathew S, et al. Reassessment of the prognostic significance of 
hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer. 2003;98:2715-2722. 

9. Busslinger M, Klix N, Pfeffer P, Graninger PG, Kozmik Z. Deregulation of PAX-5 by translocation of 
the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell 
lymphoma. Proc Natl Acad Sci USA. 1996;93:6129-6134. 

10. Konig M, Reichel M, Marschalek R, Haas OA, Strehl S. A highly specific and sensitive 
fluorescence in situ hybridization assay for the detection of t(4;11)(q21;q23) and concurrent 
submicroscopic deletions in acute leukaemias. Br J Haematol. 2002;116:758-764. 

11. Dorfler P, Busslinger M. C-terminal activating and inhibitory domains determine the transactivation 
potential of BSAP (Pax-5), Pax-2 and Pax-8. Embo J. 1996;15:1971-1982. 

12. Bouchard M, Schleifer A, Eisenhaber F, Busslinger M. Evolution and function of Pax Genes. In: 
Cooper DN, ed. Encyclopedia of the Human Genome. Vol. 4: Nature Publishing Group; 2003:527-534. 

13. Sadakane Y, Zaitsu M, Nishi M, et al. Expression and production of aberrant PAX5 with deletion of 
exon 8 in B-lineage acute lymphoblastic leukaemia of children. Br J Haematol. 2007;136:297-300. 

14. Robichaud GA, Nardini M, Laflamme M, Cuperlovic-Culf M, Ouellette RJ. Human Pax-5 C-terminal 
isoforms possess distinct transactivation properties and are differentially modulated in normal and 
malignant B cells. J Biol Chem. 2004;279:49956-49963. 

15. Lowen M, Scott G, Zwollo P. Functional analyses of two alternative isoforms of the transcription 
factor Pax-5. J Biol Chem. 2001;276:42565-42574. 

16. Zwollo P, Arrieta H, Ede K, Molinder K, Desiderio S, Pollock R. The Pax-5 gene is alternatively 
spliced during B-cell development. J Biol Chem. 1997;272:10160-10168. 

 



Chapter 4  PAX5 mutations in dic(9;20) leukemia 

71 

T
a
b

le
 1

. 
C

y
to

g
e

n
e
ti

c
s

, 
F

IS
H

 a
n

d
 m

u
ta

ti
o

n
 a

n
a
ly

s
is

 o
f 

d
ic

(9
;2

0
) 

le
u

k
e

m
ia

. 

C
a
se

 
A

g
e
 (

y
rs

)/
 

S
e
x

 
P

h
e
n

o
ty

p
e
 

C
y

to
g

e
n

e
ti

c
s 

P
A

X
5

 

m
u

ta
ti

o
n

 

C
D

K
N

2
A

 

d
e
le

ti
o

n
 

1
 

1
.6

/F
 

p
re

-B
 A

L
L

 
4

7
,X

X
,d

ic
(9

;2
0

)(
p

1
1

-1
3

;q
1

1
),

+
1

0
,+

2
1

[8
]/

4
8

,i
d

e
m

,+
X

[6
]/

4
9

,i
d
em

,+
d

e
l(

X
)(

q
2

3
),

+
8

?
[2

] 
W

T
 

2
3

%
 h

e
te

ro
 

2
 

9
.9

/F
 

p
ro

-B
 A

L
L

 
4

6
,X

X
, 

d
ic

(9
;2

0
)(

p
1

3
;q

1
1

),
+

2
1

[1
7

]/
4

6
,i

d
em

,d
e
l(

2
)(

p
2

3
?
)[

3
] 

p
.P

8
0

R
 

4
0

%
 h

e
te

ro
/5

0
%

 h
o

m
o

 

3
 

9
.6

/M
 

p
re

-B
 A

L
L

 
4

6
~

4
7

,X
Y

,+
7

[4
],

d
er

(9
)d

ic
(9

;2
0

)(
p

1
1

;q
1

1
),

ad
d

(1
2

)(
q

2
4

),
-2

0
[7

],
+

2
1

,a
d

d
(2

2
)(

q
1

3
)[

c
p

1
2

] 
p

.T
3

1
1

A
 

n
o

rm
a
l 

4
 

4
.0

/F
 

p
re

-B
 A

L
L

 
4

5
,X

X
,d

ic
(9

;2
0

)(
p

1
1

;q
1

1
),

-2
0

[1
5

]/
4

5
,i

d
em

,d
e
l(

1
2

)(
p

1
2

)[
9

] 
W

T
 

9
0

%
 h

e
te

ro
 

5
 

2
.5

/F
 

p
re

-B
 A

L
L

 
4

5
,X

X
,d

ic
(9

;2
0

)(
p

1
1

-1
3

;q
1

1
)[

7
] 

p
.T

7
5

A
 

4
2

%
 h

e
te

ro
 

6
 

4
.4

/F
 

cA
L

L
 

4
5

,X
X

,d
el

(1
)(

q
3

2
),

t(
1

;1
7

)(
q

3
2

;q
2

5
),

ad
d

(2
)(

p
2

5
),

-2
0

[1
0

] 
W

T
 

6
0

%
 
h

o
m

o
 

7
 

1
4

.7
/F

 
cA

L
L

 
4

6
,X

X
,d

el
(9

)(
p

2
1

)[
1

1
]/

4
5

,i
d

e
m

,-
2

0
[5

] 
p

.P
8

0
R

 
7

4
%

 h
e
te

ro
 

c
A

L
L

, 
c
o

m
m

o
n
 A

L
L

 

W
T

, 
w

il
d

-t
y
p

e
 

h
e

te
ro

, 
h

e
te

ro
z
y
g
o

u
s
 

h
o

m
o

, 
h

o
m

o
z
y
g

o
u

s
 



Chapter 4  PAX5 mutations in dic(9;20) leukemia 

 72 

Figure 1.  
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Figure 1. Analysis of dic(9;20) leukemia.  

(A-C) FISH analysis. Images were taken using an Axioplan fluorescent microscope (Zeiss, Göttingen, Germany) 

equipped with the appropriate filter sets for DAPI, FITC, and Cy3, fitted with a Plan-Neofluar 100x/1.3 oil 

immersion objective and a CCD camera (CH250, Photometrix LTD, Tucson, AZ) using the IPLabs software 

(Vysis, Inc., Stuttgart, Germany). (A) Hybridization with chromosome 9 (Cy3) and 20 (FITC) centromere-specific 

probes showing colocalization of the signals confirming the presence of a dic(9;20); (Ai) case 3 and (Aii) case 5. 

(B) Hybridization with PAX5 exon-specific cosmid clones cos-hPAX5-1 (FITC) and cos-hPAX5-3 (Cy3). (Bi) 

Metaphase of case 7 and (Bii) representative interphase nuclei of case 4 both displaying deletion of one PAX5 

copy. (C) (Ci-ii) Hybridization with CDKN2A-specific probe LSI p16 (9p21) (SpectrumOrange)/CEP9 (Spectrum 

Green) showing the mixed pattern of hetero- and homozygous loss of CDKN2A in case 2 (Ci) and the normal 

FISH pattern observed in case 3 (Cii). (D) Mutation analysis of leukemic blast (bottom chromatograms) and 

corresponding remission samples (top chromatograms). (Di-iii) Exon 3 (encoding the C-terminal portion of the 

PAX5 paired DNA-binding domain) mutations, (Di-ii) C>G P80R and (Diii) A>G T75A. (Div) A>G T311A exon 8 

(encoding part of the PAX5 transactivation domain) mutation. (E) Expression of PAX5 splice variants. (Ei) 

Amplification of full-length PAX5 using primers located in exons 1A and 10. Lane 1, REH cell line; lane 2, case 1; 

lane 3, case 2; lane 4, case 3; lane 5, case 4; lane 7, case 6. (Eii) N-terminal isoforms amplified with primers 

located in exons 1A and 6. Lane 1, REH cell line; lane 2, case 1; lane 3, case 2; lane 4, case 3; lane 5, case 4; 

lane 6, case 5; lane 7, case 6; lane 8, case 7. (Eiii) C-terminal isoforms amplified with primers located in exons 5 

and 10. Lane 1, REH cell line; lane 2, case 1; lane 3, case 2; lane 4, case 3; lane 5, case 4; lane 6, case 5; lane 

7, case 6; lane 8, case 7; lane 9, negative control. M, molecular weight marker, 100 bp ladder (Promega, 

Mannheim, Germany).  
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CHAPTER 5 
 
5. ADDITIONAL METHODS AND RESULTS 
 

5.1. Establishment and validation of automated FISH screening 

FISH screening of large numbers of samples requires highly standardized approaches 

including reliable and robust FISH protocols, and evaluation and data management 

procedures. For automated FISH analysis, FISH signals have to be highly specific and 

homogenous, and high hybridization efficiencies have to be achieved. Thus, both the FISH 

probe and the slide preparation were adjusted to the requirements of automated analysis. 

 

TempliPhi™ DNA amplification 

For preparation of large-scale FISH probes the TempliPhi™ 100 Amplification Kit (GE 

Healthcare, Vienna, Austria) was utilized, which produces microgram quantities of DNA from 

nanogram amounts of starting material. The TempliPhi™ DNA Amplification Kit uses rolling 

circle amplification (RCA) catalyzed by bacteriophage Phi29 DNA polymerase. 

One µl (10ng/µl; quantified using the Hoefer DyNA Quant™ 200 fluorometer (GE Healthcare) 

of highly purified BAC DNA was transferred to 50µl of TempliPhi sample buffer, followed by 

denaturation at 93°C for 3min. Then 50µl of TempliPhi premix consisting of 50µl reaction 

buffer complemented with 2µl of enzyme mix were added to each denatured sample. 

Following incubation at 30°C for about 20hrs, the Phi29 DNA polymerase was heat-

inactivated at 65°C for 10min and the amplification products were stored at 4°C or -20°C until 

further usage. Amplification of cosmid DNA was essentially performed as for BAC DNA, but 

only 1/10 of the reaction volume was required and the incubation time was reduced to 

12-18hrs. However, in some instances the reaction volume was scaled-up to obtain higher 

amounts of DNA. 

The amplified DNA was precipitated with 3 volumes of 95% ethanol (VWR International 

GmbH, Vienna, Austria) and 3M Na-Acetate (VWR International GmbH), washed with 500µl 

of 70% ethanol (VWR International GmbH) and resuspended in 25-50µl of sterile water. After 

DNA amplification the quality of the BAC and cosmid DNA was checked on 2% agarose gels 

by gel electrophoreses and the DNA concentration was quantified by UV spectrophotometry.  

In general, from approximately 10ng of DNA between 3-15µg BAC or cosmid DNA was 

obtained. The amount of input material was a critical factor for the successful amplification of 

high-quality DNA. 
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Probe preparation 

In order to standardize probe preparation always 1µg of BAC or cosmid DNA was labeled by 

incorporation of digoxigenin-11-dUTP or biotin-16-dUTP (Roche Diagnostics, Vienna, 

Austria) nucleotides in a nick-translation reaction.  

The labeled DNA was ethanol (VWR International GmbH) precipitated together with COT-1 

and SSP DNA (Invitrogen GesmbH, Lofer, Austria), afterwards resuspended in hybridization 

solution [60% Formamide (VWR International GmbH), 1% Triton-X (VWR International 

GmbH), 2xSCC] and dissolved by incubation in a thermomixer at 45°C shaking at 500rpm for 

about one hour. These FISH probes were then denatured and pre-annealed to avoid cross-

hybridization with repetitive sequences and were stored at -20°C, ready for use.  

 

Sample and slide preparation 

Methanol/acetic acid fixed cell suspensions of patient samples originally used for cytogenetic 

analysis were dropped on test slides to control the cell density. To allow for automated FISH 

scanning of a slide within a reasonable time-frame (10hrs - 14hrs) and to ensure appropriate 

hybridization efficiency, the cell density had to be relatively high but individual cells clearly 

separated. To achieve equal cell densities for all patient samples each sample was fixed with 

a freshly prepared appropriate amount of cold fixative [methanol (VWR International 

GmbH):acetic acid (VWR International GmbH) = 3:1]. Three µl of the fixed cell suspensions 

were dropped on frozen 3-well slides, each sample on one individual well, and incubated in 

Nonidet P40 (Sigma-Aldrich, Vienna, Austria) 0.4% / 2xSSC at 37°C for 1hr. After 

dehydration through an ascending ethanol series followed by 3min of pepsin digestion FISH 

was essentially performed as previously described (Konig et al, 2002).  

 

Automated fluorescence in situ hybridization - Metafer4-Metacyte (Metasystems) 

For high-throughput analysis and the objective evaluation of FISH patterns a standardized 

automated spot counting system including 3-dimensional distance measurements between 

the signals captured in different color channels was used. In particular, when split-apart FISH 

probes on the genomic level are separated by a larger distance (PAX5 clones RP11-220I1 

and RP11-12P15 are separated by approximately 250kb), it is difficult to distinguish a 

separation of the probes from a mere slightly larger gap between signals (false-positives) 

dependent on the genomic distance by manual scoring (for details see 5.1.1.). 

The Metafer4-Metacyte (MetaSystems, Altlussheim, Germany) slide scanning system is 

based on a motorized Zeiss Axioplan 2 Imaging fluorescence microscope (Zeiss, Göttingen, 

Germany) equipped with a motorized slide scanning stage and a Zeiss AxioCam MRm CCD 

camera. Both the microscope and the scanning stage are controlled by the special Metafer 

software package.  
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The system automatically scans up to 8 slides, takes images in different focal planes and 

enumerates the numbers of signals per cells (Fig. 9). Further analysis is conducted on the 

acquired digital images according to preset software parameters. These parameters have to 

be defined and saved in a so-called classifier. As the system allows to define a broad 

spectrum of different parameters, it is highly flexible and can be utilized for an almost 

unlimited number of assays. However, to obtain optimal results, the system has to be trained 

and adjusted to the individual requirements of each FISH assay. 

 

 

Figure 9. Metafer4-Metacyte user interface. Screenshot of the Metafer4-Metacyte user interface, which consists 

of a menu bar for selection of the operation mode (top), an image area for live image display (upper left), the 

gallery (upper right) showing the acquired interphase nuclei, and command buttons with quick links to the most 

important functions (lower right). Further, current slide data including the scanned area and feature diagrams 

(lower part) as well as slide-specific data of one whole scan (bottom) are displayed.  

 

The classifier parameters depend on the objective lense, the cell type and the fluorochromes 

used for the detection of the FISH probe. Parameters how the system captures the image 

fields in the different color channels are set in 'Capture', e.g. an automatic exposure mode 

with a maximum integration time for ~2s and 2.9s for channels CY3 and FITC, respectively, 
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were defined, and the number and the distance of focus planes were set at 5 and 0.75µm, 

respectively (Fig. 10). Further, parameters for an automatic exposure mask and for image 

processing operations were adjusted. In the classifier group 'Cell Selection' the parameters 

define how the system selects the interphase cells to be analyzed. These parameters 

strongly depend on the cell type and have to be optimized by training. For example, values 

for minimum and maximum nucleus area were 35µm2 and 500µm2, respectively, and for the 

maximum aspect ratio 1.7 was used. This setting defines the ratio of the nucleus diameters 

along the long and short principle axis to discriminate round objects from more elongated 

ones. If a cell is accepted by the cell selection procedure, a sub-image of the cell from the 

captured field image is created, which is the basis for further processing and measurements, 

and therefore parameters for image processing operations were sparingly defined.  

 

 

Figure 10. Metafer4-Metacyte Classifier Setup. Screenshot of the 'Capture' submenu of the classifier is shown 

as an example. The parameters, which have to be defined within this group are displayed.  

 

Some of the most important parameters in our assay were set in the 'Features', in which the 

definitions for the measurements and the spot counting applied to the cell images during 

scanning are adjusted.  
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The system measures the 3-dimensional distances between spots of different colors and 

defines the 1st and the 2nd smallest distance between them (Fig. 11). The parameter for 'Spot 

Fusion Count' was set at ≤10 Pixel meaning that 2 signals of different colors are counted as 

fusion signal if the distance is ≤10 Pixel (about 1.6µm). In cells lacking a value for the 2nd 

smallest distance, for example due to a deletion event, the value for the 2nd smallest distance 

was arbitrarily set at 100 Pixel (for details see 5.1.1.). 

 

 

Figure 11. Distance Measurement. Schematic representation of a normal FISH pattern (left) showing a normal 

2nd smallest distance and an abnormal FISH pattern (right) with a larger 2nd smallest distance. 

 

The spot counting parameters also included an absolute spot area, which was set at 

0.15µm2, a minimum spot distance (1.4µm) and a relative minimum spot intensity (30%) 

within one color channel. The parameters were the same in both channels, CY3 and FITC. 

Additionally, a relative maximum spot area compared to the whole nucleus was set at 

80/1000 units and the size of the area, which should be scanned during the search process 

was defined by the number of search fields around a certain coordinate (18x18 in the PAX5 

classifier). 
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Figure 12. Metafer4-Metacyte Features Setup. As an expample, the feature list of channel 2 (FITC) of the 

submenu 'Features' is displayed with the spot counting parameters highlighted. 

 

Several parameters for the 'Gallery', and finally the output form were defined. A special 

'MetaCyte Report', which included for example information fields in terms of the analyzed 

sample and the hybridization procedure was created. Moreover, in this report histograms of 

the first and second smallest distances and display fields for a selection of the processed 

cells were displayed. 

All parameters defined in the PAX5 'Metafer4 Metacyte Classifier' are listed in the Appendix. 

 

Evaluation 

All patient samples were automatically analyzed followed by manual evaluation of each 

individual cell captured and displayed in the cell gallery. Evaluation is facilitated by options 

such as cell sorting according to different parameters, changing of signal thresholds, and 

relocation of individual cells for visual inspection. This procedure, was in particular required 

to reject false-positive cells and to correct erroneous spot counts. 
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5.1.1. Analysis of control samples 

The classifier for the PAX5 split-apart FISH assay was established using mononuclear cells 

isolated from peripheral blood of 3 healthy controls and blast cells of 2 different leukemic 

bone marrow samples that showed a normal karyotyp and a normal PAX5 status.  

Representative mononuclear cells of a control hybridized with the PAX5 split-apart FISH 

assay are shown in Figure 13A. These examples illustrate the difficulty to unambiguously 

distinguish a fusion signal from a split signal pattern by visual observation. In Figure 13B 

typical histograms of the 1st and 2nd smallest distances found in normal controls are shown. 

In 8 different hybridization experiments of 3 control samples second smallest distances 

between 0 and 28 Pixel were observed with a mean of 4,8 Pixel and a standard deviation of 

0,56. Moreover, in at least 96% of cells the 2nd smallest distances were ≤10 Pixel, thus, the 

spot fusion count parameter was set accordingly in the PAX5 classifier. 

 

 

Figure 13. Distance measurements Metafer4-Metacyte (Metasystems). (A) Representative interphase nuclei 

of a normal control hybridized with PAX5-flanking BAC clones RP11-220I1 (5'-end-specific; red) and RP11-12P15 

(3'-end-specific; green) showing a normal FISH pattern (left lower corner of each picture: total number of red and 

green signals; right lower corner: number of fusion signals) and different 1st and 2nd smallest distances (shown in 

the upper right corner of each picture). Interphase pictures were taken from the Metafer4-Metacyte cell gallery. 

(B) Representative histograms that illustrate the distribution of the 1st and 2nd smallest distances in a normal 

control. 
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The data obtained by the automated FISH analysis were summarized in a "MetaCyte Report" 

and as an example one of a normal control is shown in Figure 14.  

 

 

Figure 14. MetaCyte Report of a normal control. Summary of the results obtained by hybridization with 

PAX5-flanking BAC clones RP11-220I1 (5'-end-specific; red) and RP11-12P15 (3'-end-specific; green) to a 

control sample. The different classes of FISH patterns and the number of enumerated cells are shown: 305 

interphase nuclei were captured, 29 of them were rejected upon evaluation, and 276 were finally analyzed. R, red; 

G, green; F, fusion signal. 
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5.1.2. Validation of the FISH assay in PAX5-rearranged samples 

As positive controls the KIS-1 cell line and a patient previously identified as PAX5-rearranged 

were used to validate the FISH assay.  

The KIS-1 cell line harbors a t(9;14)(p13;q32)/PAX5-IGH@ translocation and the breakpoint 

is located upstream of PAX5 exon 1A. Cytogenetic analysis revealed further aberrations and 

a very complex karyotype with additional marker chromosomes, which is in concordance with 

published data (George et al, 2005). Representative interphase nuclei of the KIS-1 cell line 

showing a separation of the PAX5 FISH probes and 3-5 additional PAX5 3'-end-specific 

signals are depicted in Figure 15A. Examples of interphase nuclei of the PAX5-rearranged 

patient that also display a separation of the PAX5 FISH probes are shown in Figure 16A. The 

histograms of the positive controls illustrate the broader distribution of the 2nd smallest 

distances, which correspond to the separated PAX5 FISH probes (Fig 15B and 16B). 

 

Figure 15. KIS-1 cell line as positive control for the Metafer4-Metacyte automated FISH analysis and 

distance measurements. (A) Representative interphase nuclei of the KIS-1 cell line hybridized with 

PAX5-flanking BAC clones RP11-220I1 (5'-end-specific; red) and RP11-12P15 (3'-end-specific; green); (left lower 

corner of each picture: total number of red and green signals; right lower corner: number of fusion signals) with 

different 1st and 2nd smallest distances (shown in the upper right corner of each picture). Images of interphase 

nuclei were taken from the Metafer4-Metacyte cell gallery. (B) Histograms that show the distribution of the 

distances between the FISH signals. 
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Figure 16. A PAX5 rearranged patient used as positive control for the Metafer4-Metacyte automated FISH 
analysis and distance measurements. (A) Aberrant interphase nuclei hybridized with PAX5-flanking BAC 

clones RP11-220I1 (5'-end-specific; red) and RP11-12P15 (3'-end-specific; green); (left lower corner of each 

picture: total number of red and green signals; right lower corner: number of fusion signals) with different 1st and 

2nd smallest distances (shown in the upper right corner of each picture). Images of interphase nuclei were taken 

from the Metafer4-Metacyte cell gallery. (B) Histograms that show the distribution of the distances between the 

FISH signals. 

 

5.1.3. Novel PAX5 positive cases - Metafer 4 Metacyte analysis 

Ten patients showed a FISH pattern suggestive for a PAX5 rearrangement. As an example, 

the Metafer4-Metacyte Report of a representative case is shown in Figure 17. In this case, 

350 interphase nuclei were captured, 92 of these were rejected, thus, 258 were included in 

the statistical analysis, and a separation of the PAX5 FISH probes was found in 59,7% of 

cells. The corresponding distribution of the 2nd smallest distances between the FISH signals 

is also illustrated in the 'MetaCyte Report'. 
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Figure 17. Representative MetaCyte Report. The results of the automated FISH analysis using PAX5-flanking 

BAC clones RP11-220I1 (5'-end-specific; red) and RP11-12P15 (3'-end-specific; green) of a PAX5-rearranged 

case are shown. The significant aberrant FISH pattern is boxed in red. The histograms of the 1st (first diagram) 

and 2nd smallest (second diagram) distances are depicted at the bottom. R, red; G, green; F, fusion signal. 
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Distances between FISH signals in PAX5 positive patients 

In all positive patients that showed a separation of the PAX5 FISH probes the distributions of 

2nd smallest distances of the FISH signals were analyzed in detail (Table 1). All cells, in 

which the 2nd smallest distance was set to 100, e.g. cells with a deletion event, were 

excluded from this analysis. The percentage of cells that showed 2nd smallest distances >10 

Pixel representing cells with an aberrant pattern ranged from about 24-71%. The differences 

between the 2nd smallest distances of all positive patients as compared to those of normal 

controls were highly significant (p-values 10-10 - 10-58 by Student's T-test). 

 

Table 1. FISH signal distances in PAX5 positive cases  

Case 
No* 

2nd smallest 
distance 
(mean) 

2nd smallest 
distance 
(standard 
deviation) 

Distance values 
(min. - max.) 

% of cells with 
distance >10 Px 

No of 
cells 

2 8,33 4,14 1-23 23,60 212 

3 10,46 7,93 1-41 36,40 228 

4 8,11 6,86 1-46 25,10 219 

5 14,17 6,57 1-36 70,50 210 

6 12,98 8,44 2-50 53,80 182 

7 13,10 6,45 1-33 66,30 270 

*For case descriptions see Nebral et al, in press. 
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5.2. Detailed analysis of selected cases 

PAX5 rearrangements were observed either in cases with normal or complex karyotypes. In 

order to further characterize these aberrations, additional PAX5 gene-specific probes and 

clones located adjacent to PAX5 were hybridized in various combinations to metaphase 

and/or interphase nuclei (Fig. 18). Several whole chromosome painting probes, and sets of 

probes hybridizing to the potentially affected chromosome regions in the individual cases 

were also applied.  

Further, particularly, in cases with focal/partial PAX5 deletions FISH clones located in 

proximity to the PAX5 locus were used to elucidate the extent of these deletions (Fig. 18). 

The additional FISH clones are listed in Table 1 in the Appendix. 

 

 

Figure 18. FISH clones located at 9p13. Adapted screenshot from the UCSC Genome Browser on Human 

March 2006 Assembly (www.genome.ucsc.edu) with the utilized FISH clones depicted in red. The PAX5 gene is 

transcribed from centromere to telomere (5' - 3').  
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5.2.1. PAX5 rearranged cases 

Selected PAX5 positive cases were analyzed in further detail. The case numbers correspond 

to those in Chapter 3: "Incidence and diversity of PAX5 fusion genes in childhood acute 

lymphoblastic leukemia", Nebral et al, page 39. 

 

Case 5  

In this case, cytogenetic analysis showed a 46,XY,del(7)(q22q33)?,del(9)(q22?), 

del(12)(p11)[8] karyotype suggesting complex rearrangements with involvement of 

chromosomes 7, 9, and 12, but 9p13 was not affected. Thus, conventional chromosome 

banding did not provide any evidence for involvement of PAX5. However, FISH analysis 

indicated a PAX5 rearrangement and on the molecular level PAX5 exon 5 was fused to 

POM121 exon 5 with insertion of genomic material from chromosome 12 at the breakpoint. 

Subsequent hybridization of PAX5-aberrant metaphases with whole chromosome painting 

probes for chromosomes 7 and 9 confirmed involvement of these chromosomes in a 

complex at least 3-way translocation (Fig. 19B). Moreover, this analysis revealed that the 

3'-end of PAX5 was located on a der(7;9) chromosome, whereas the 5'-end was translocated 

to a der(7), most probably harboring the PAX5-POM121 fusion (Fig. 19).  

 

 

Figure 19. FISH analysis of case 5. (A) Metaphase hybridized with the PAX5 5'-end encompassing clone 

RP11-456P6 (green) and RP11-84P7 (red), located telomeric (3') of PAX5, showing a split signal pattern. (B) The 

same metaphase was analyzed with whole chromosome painting probes for chromosomes 9 (red) and 7 (green). 

Arrows indicate the normal chromosomes 9 (red) and 7 (green), the der(9) (white) and der(7) (short yellow), and 

the der(7;9) (yellow). 
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Case 6 

In case 6, about 46% of interphase nuclei showed a separation of the PAX5-flanking BAC 

clones and rearrangement of PAX5 was confirmed by hybridization with the PAX5-specific 

cosmid clones. Subsequent fusion gene-specific RT-PCR and/or FISH analysis for all known 

PAX5 partner genes did not detect any specific chimeric transcript and no abnormal FISH 

pattern (Fig. 20) was observed. All Oligonucleotide primer sequences and the FISH clones 

used for these analyses are listed in Table 2 and Table 1, respectively, in the Appendix. 

 

 

Figure 20. Examples of the fusion gene-specific FISH analysis of case 6. (A) Interphase nuclei hybridized 

with ELN 5'-end RP11-148M21 (red) and ELN 3'-end RP11-349P21 (green) specific clones displaying a normal 

FISH signal pattern. (B) Analysis of interphase nuclei with PAX5-spanning clones RP11-465P6 and RP11-431F4 

(green) in combination with AUTS2-spanning clones RP11-243F5 and RP11-88H22 (red) which showed a PAX5 

split signal and two normal signals for AUTS2.  

 

Hybridization of metaphases with whole chromosome painting probes for chromosomes 9 

and 14 showed that the PAX5 5'-end was located on a der(9) chromosome whereas the 

3'-end was translocated to 14q32 (Fig. 21A). Participation of IGH@ and BCL11B located at 

14q32 was excluded by FISH analysis. Yet, 24-color FISH suggested involvement of 

chromosomes 3, 9, 11, and 12 in complex rearrangements and further FISH analysis 

revealed translocation of chromosome 9 material to 3q (Fig. 21Aii) and 3q material to 9q (Fig. 

21B and data not shown), as well as insertion of 11p material into both 9p and 14q (Fig. 

21C). Based on these data we suspected that a novel PAX5 fusion partner was located at 

11p and in order to narrow down the potential breakpoint between LMO1 and WT1, 20 BAC 

clones (see Appendix, Table 1 and Fig. 22), which encompassed 11p13-15 were hybridized 

to metaphases in combination with PAX5-specific probes. However, although all clones were 

properly either observed on the der(9) or the der(14) chromosomes (examples are shown in 

Fig 23) neither of them showed a co-localization with PAX5 in interphase nuclei. Finally, one 

single BAC clone, RP11-52H5, located at the 5'-end of the BDNF gene, was deleted. This 

gene consists of only 2 exons but RT-PCR experiments using primers PAX5ex5-F1 and 

BDNFex2-R1 or BDNFex2-R2 did not detect any specific fusion transcripts.  



Chapter 5  Additional Methods and Results 

 89 

 

Figure 21. FISH analysis of case 6. (A) Metaphase hybridized with the PAX5 locus-specific BAC clones 

RP11-220I1 (red) and RP11-12P15 (green) (Ai) and with whole chromosome painting probes for chromosome 9 

(red) and 14 (green) (Aii). Arrows indicate the normal chromosome 9 (yellow), the der(9) (red) and the der(14) 

(green). Red arrowhead points to the der(3). (Bi) Metaphase that shows a PAX5 split signal pattern using 

PAX5-spanning clones RP11-465P6 and RP11-431F4 (green) and two normal TOP2B-specific (3p24) signals 

with clone RP11-659P16 (red). Arrows denote the normal chromosome 9 (yellow), the der(9) (red) and the 

der(14) (green). (Bii) Same metaphase as in (Bi) displaying a translocation of the 3q-subtelomere region using 

clone 196F4 (red) and normal signals for 3p with 3p-arm-specific painting probe (green). Arrows point to the 

der(9) (red) and the der(3) (green) chromosomes and the normal chromosome 3 (yellow). (Ci) Hybridization of a 

metaphase with PAX5-spanning clones RP11-465P6 and RP11-431F4 (red) and the WT1-specific (11p13) clone 

RP11-74J1 (green) shows a disruption of PAX5. Arrow denotes the der(14). (Cii) Metaphase displaying a split 

signal with PAX5-spanning clones RP11-465P6 and RP11-431F4 (red) and signals for LMO1 (11p15) using 

RP11-379P15 clone (green). Arrow indicates the der(9).  
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Figure 22. Predicted breakpoint region at chromosome 11p15.4-p13. Adapted screenshot from the UCSC 

Genome Browser on Human March 2006 Assembly (www.genome.ucsc.edu) displaying all genes located within 

this region. Genes detected by locus-specific FISH clones (see Appendix, Table 1) are encircled and the 

localization of the signals on the respective derivative chromosomes is indicated by the arrows. 
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Figure 23. Analysis of case 6 with FISH probes located at 11p. PAX5-spanning clones RP11-465P6 and 

RP11-431F4 (green) were applied to metaphases in combination with 11p-specific clones. In all metaphases 

shown the arrows indicate the der(9) (yellow), the normal chromosomes 9 (red) and 11 (white), and the yellow 

arrowhead the der(14). (Ai) Hybridization with PAX5-spanning clones (green) in combination with MRVI-specific 

clone RP11-58H20 (red). (Aii) NELL1-specific clones RP11-3E17 and RP11-116O9 (red) in combination with 

E2F8-specific clone RP11-428C19 (green). All these 11p-specific clones were localized on the der(9). (B) The 

ELP4 5'-end specific clone RP5-1137O17 (red) was observed on the der(14) (Bi), whereas the LGR4 3'-end-

specific clone RP11-426P16 (red) was located on the der(9) (Bii). (C) Metaphase hybridized with LUZP2 5'-end 

RP11-372B5 (red) (Ci) and BDNF 5'-end-specific clone RP11-52H5 (red) (Cii) shows the localization of LUZP2 5'-

end on der(9) and deletion of the BDNF 5'-end encompassing clone. 
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As the FISH strategy was unsuccessful to delineate the PAX5 partner gene, rapid 

amplification of cDNA ends (RACE) was performed, but also all RACE experiments using 

various primer combinations and PCR conditions, which should permit amplification of any 

fusion product resulting from every possible breakpoint within PAX5 (Fig. 24 and Table 2 of 

Appendix) failed to identify the fusion partner. 

 

 

Figure 24. PAX5 RACE assay. A schematic structure of the PAX5 gene is depicted and all known breakpoints of 

PAX5 fusions are indicated (arrows). Localizations of the different gene-specific RACE primers used in the first 

round of amplification are shown (arrowheads).  

 

Case 7 

Case 7 showed a PAX5-split signal in about 62% of cells with additional 1-2 PAX5 5'-end 

signals. Cytogenetics revealed a particularly complex karyotype: 46,XY,add(1)(q44)[3], 

der(1)t(1;?)(p31;?)add(1)(q44)[3],-5,-8,del(9)(p13),del(11)(q23),+2mar[6cp]/46,XY[14]. 

Analysis of aberrant metaphases by FISH showed that the genes ABL1 (9q34) (Fig. 25A) 

and RCSD1 (1q24) (Fig. 25C) were located on a derivative chromosome, which carried the 

PAX5 5'-end signal strongly suggesting the presence of a dic(1;9)(p?;p13) (Fig. 25). 

Moreover, additional derivative chromosomes with PAX5 signals were observed but not 

further analyzed. In concordance with the data obtained by FISH, RACE identified HIPK1 

located at 1p13 as novel PAX5 fusion partner. Owing to the opposite transcriptional 

orientation of PAX5 (centromere-telomere) and HIPK1 (telomere-centromere) the formation 

of a dic(1;9)(p13;p13) as seen in this case or a complex rearrangement is required to 

generate a functional fusion gene. 
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Figure 25. FISH analysis of case 7. (A) Metaphase hybridized with probes specific for the BCR (green) and 

ABL1 (red) genes located at 22q11 and 9q34, respectively. (B) Same metaphase as in A hybridized with PAX5 

flanking clones RP11-220I1 (red) and RP11-12P15 (green) clones. Arrows indicate the normal chromosome 9 

(black) and the der(9) (red). (C) Metaphase hybridized with RCSD1 5'-end (red) and 3'-end-specific (green) 

probes located at 1q24. Arrows point to the normal chromosome 1 (black) and the dic(1;9). (D) Same metaphase 

as in C hybridized with PAX5 5'-end RP11-220I1 (red) and PAX5 3'-end RP11-12P15 (green) specific clones. 

Arrows denote the normal chromosome 9 (black) and the dic(1;9) (red). 
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5.2.2. PAX5 deletions 

Recently, it was shown that apart from PAX5 rearrangements, PAX5 is also a target of other 

somatic mutations in particular monoallelic deletions, which in a significant proportion of the 

cases are focal and just affecting a few exons (Mullighan et al, 2007a). Although our PAX5 

FISH assay was not specifically designed for the detection of PAX5 deletions per se, 

nevertheless a high percentage of the cases (about 10%) displayed monoallelic loss of the 

gene  Moreover, in approximately 4% of the non-rearranged cases focal deletions of the 

PAX5 locus affecting either the 5' or the 3' region were detected. These cases were further 

analyzed using a panel of FISH probes, whose signal patterns reflected the size and the 

extent of the deletions. Examples of the most frequent patterns are described in the 

following. 
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Pattern No. 1  

In some cases hybridization with the PAX5-flanking BAC clones revealed a deletion of the 

3'-clone RP11-12P15 in a significant proportion of the interphase nuclei (Fig. 26Ai), whereas 

after hybridization with the PAX5-specific cosmids a deletion of one entire copy of PAX5 was 

observed (Fig. 26Aii). Further FISH analysis using PAX5-spanning probes RP11-465P6 and 

RP11-431F in combination with RP11-84P7 showed that the deletion encompassed also the 

region telomeric of PAX5 (Fig. 26B). Moreover, a small second signal of the PAX5-spanning 

clones was observed, probably reflecting partial retention of the 5'-end clone RP11-465P6. 

This clone extends beyond the 5'-end of PAX5 suggesting that the deletion starts in PAX5 

exon 1 or just upstream of exon 1 encompassing at least clone RP11-84P7 (Fig. 26). 

 

 

Figure 26. PAX5 deletion pattern no. 1. (Ai) Metaphase and interphase nuclei hybridized with FISH probes 

RP11-220I1 (red) and RP11-12P15 (green) displaying deletion of one signal of RP11-12P15. (Aii) Hybridization 

of interphase nuclei with cos-hPAX5-1 (green) and cos-hPAX5-3 (red) that shows a deletion of one entire copy of 

PAX5. (B) Interphase and metaphase analysis with PAX5-spanning clones RP11-465P6 and RP11-431F4 

(green) in combination with RP11-84P7 (red) demonstrate deletion of the region telomeric of PAX5. Arrows 

indicate the normal chromosome 9 (yellow) and the chromosome 9 with the interstitial deletion (red) showing a 

smaller signal resulting from partial retention of clone RP11-465P6. The schematic maps show the utilized FISH 

clones. 
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Pattern No. 2  

Some cases showed a deletion of the PAX5-flanking clone RP11-220I1 (Fig. 27A), whereas 

hybridization of the PAX5-specific cosmid probes detected two normal copies of PAX5 (Fig. 

27B). Moreover, FISH analysis using the clone RP11-397D12 together with PAX5-spanning 

probes demonstrated two normal signals (Fig. 27D) suggesting the presence of a focal 

deletion encompassing only the region, which is spanned by RP11-220I1 (Fig. 27). Of note, 

this pattern was also observed in ETV6-RUNX1 positive cases.  

 

 

Figure 27. PAX5 deletion pattern no. 2. Interphase nuclei hybridized with (A) PAX5-flanking clones RP11-220I1 

(red) and RP11-12P15 (green) displaying a deletion of RP11-220I1 and (B) PAX5-specific probes cos-hPAX-1 

(green) and cos-hPAX5-3 (red) showing a normal pattern. (D) Hybridization of interphase nuclei with PAX5 

probes RP11-465P6 and RP11-431F4 (green) in combination with RP11-397D12 (red), which demonstrates 

normal signals. Schematic representation of the localization of the utilized FISH clones are shown in the lower 

panels. 

 



Chapter 5  Additional Methods and Results 

 97 

Pattern No. 3  

A third different pattern was also observed in both ETV6-RUNX1 positive and negative 

cases. FISH analysis with PAX5 BAC clones RP11-220I1 and RP11-12P12 showed a 

deletion of the 5'-end flanking clone RP11-220I1 (Fig. 28Ai and Aii) and also a deletion of the 

PAX5 5'-specific probe cos-hPAX5-1 (Fig. 28Aiii). In the example shown, hybridization was 

done on ETV6-RUNX1 positive metaphases to ensure analysis of aberrant cells and to verify 

that the PAX5 deletion concurs in the same leukemic clone (Fig. 28A and B).  

FISH was also performed using the PAX5-spanning clones in combination with 

RP11-397D12, which showed either complete loss of the clone or a smaller but clearly visible 

second signal suggesting a partial deletion of the clone (Fig. 28C). This pattern may on the 

one hand depend on the hybridization efficiency or indicate the presence of two different 

subclones. Of note, the remaining 3'-part of PAX5 could not be detected with the 

PAX5-spanning clones, which possible results from a weaker hybridization efficiency of clone 

RP11-431F4. Together, this type of deletion encompasses only the 5'-end of PAX5 and 

extends at least beyond the ZCCHC7 gene (Fig. 28C). 
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Figure 28. FISH analysis of PAX5 deletion pattern 3. (Ai-ii) Hybridization of interphase nuclei with PAX5 

RP11-220I1 (red) and RP11-12P15 (green) showing a deletion of the 5'-end flanking clone RP11-220I1. (Aiii) 
Metaphase hybridized with PAX5 cos-hPAX5-1 (green) and cos-hPAX5-3 (red) that display a PAX5 5'-end 

deletion. (B) The LSI TEL (green)-AML1 (red) ES Dual Color Translocation probe (Abbott Molecular) was applied 

on the same metaphase as in (A). Arrows point to the der(12), which harbors the ETV6-RUNX1 (TEL-AML1) 

fusion (yellow), and to the normal chromosomes 12 (green) and 21 (red). (C) Metaphase and interphase nuclei 

analysis with the PAX5-spanning probes RP11-465P6 and RP11-431F4 (green) in combination with 

RP11-397D12 (red) that revealed either no, a partial or a complete deletion of clone RP11-397D12. (A and C) 
Arrows indicate the normal (yellow) and the derivative chromosomes 9 (red). Schematic maps depict the applied 

FISH clones. 
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Pattern No. 4 

The most frequently observed deletion pattern was a complete deletion of PAX5 that 

occurred in approximately 10% of the analyzed patients and in nearly all cases was 

associated with a cytogenetically detectable deletion of 9p. These cases were only analyzed 

with the PAX5-flanking clones RP11-220I1 and RP11-12P15.  

In Figure 29 an example is shown that displays a deletion of one entire copy of PAX5.  

 

 

Figure 29. FISH analysis of PAX5 deletion pattern 4. Interphase and metaphase nuclei hybridized with PAX5-

flanking probes RP11-220I1 (red) and RP11-12P15 (green), which display a deletion of one copy of PAX5. 
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A unique case 

In one single patient cytogenetic analysis showed del(9)(p22) suggesting a deletion telomeric 

of PAX5. However, 54% of the interphase nuclei displayed only one signal for the PAX5 

3'-flanking BAC clone and no other signals were observed (Fig. 30A). Hybridization with the 

PAX5 cosmid probes demonstrated deletion of one entire copy of PAX5 and one apparently 

intact allele (Fig. 30B). Therefore, FISH analysis indicated loss of one PAX5 allele 

accompanied by a deletion of the region upstream of PAX5 encompassing ZCCHC7 on the 

second chromosome. 

 

 

Figure 30. A special deletion pattern. (Ai-ii) Examples of interphase nuclei hybridized with RP11-12P15 (green) 

and RP11-220I1 (red) that show only one PAX5 3'-end RP11-12P15 signal. (B) Metaphase analyzed with PAX5 

cos-hPAX5-1 (green) and cos-hPAX5-3 (red) displaying a deletion of one PAX5 allele. Arrow points to the 

"normal" chromosome 9. The schematic map at the bottom shows of the localization of the applied FISH clones. 
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CHAPTER 6 
 

6. DISCUSSION 
 

The discovery of the PAX5 fusion genes 

The aim of the presented research project was to determine the overall incidence of PAX5 

rearrangements and the whole spectrum of fusion partners in childhood ALL in a population-

based survey. At the time this study was initiated only the PAX5-IGH@ activating 

translocation (Busslinger et al, 1996; Iida et al, 1996) and one single PAX5 fusion gene, 

namely PAX5-ETV6 were known (Cazzaniga et al, 2001; Strehl et al, 2003). 

During the time this study was still ongoing, genome-wide analysis using high-resolution SNP 

arrays revealed chromosomal imbalances resulting in PAX5 fusions in 2.1% (Mullighan et al, 

2007a) and 2% (Kawamata et al, 2008) of childhood B-cell precursor ALL (BCP-ALL). 

However, our study still represents the first population-based study using a FISH assay, 

which allows for the detection of all possible PAX5 rearrangements irrespective of 

chromosomal imbalances. Our data corroborate the finding that PAX5 fusions occur 

exclusively in BCP-ALL and at an incidence of about 2.5%. 

Intriguingly, PAX5 can fuse to a multitude of different partner genes encoding transcription 

factors, structural proteins, a tyrosine kinase, and some proteins of still unknown function. All 

breakpoints within PAX5 occur in intron 5 or downstream (except for the PAX5-ETV6 

rearrangement) (Fig. 31) fusing at least the PAX5 DNA-binding paired domain to the 

C-terminal region or even the entire protein encoded by the partner gene (Bousquet et al, 

2007; Mullighan et al, 2007a; Nebral et al, 2007; Kawamata et al, 2008; Nebral et al, in 

press). Therefore, all PAX5 chimeric proteins are predicted to retain the ability to bind to 

PAX5 target genes, but would no longer provide normal transcriptional regulatory functions. 
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Figure 31. PAX5 breakpoints. (A) Schematic representation of the PAX5 gene structure. Arrows indicate the 

breakpoints in the respective introns of all known PAX5 translocations (intron sizes are not in scale). (B) PAX5 

protein showing the corresponding protein domains. PD, paired domain; OP, octapeptide domain; HD, 

homeodomain; TA, transactivation domain; I, inhibitory domain. 
 

The relevance of PAX5 deletions 

The second major finding of the SNP array studies was the frequent deletion of regulators of 

B-cell development, amongst which PAX5 was affected in approximately 30% of BCP-ALL 

(Kuiper et al, 2007; Mullighan et al, 2007a). Intriguingly, PAX5 deletions were also detected 

in ETV6-RUNX1 positive BCP-ALL (Mullighan et al, 2007a; Parker et al, 2008) and may, 

thus, belong to the cooperating mutations required to complete leukemogenesis. Yet, PAX5 

deletions occur only in about 30% of the cases and to some extent coincide with other 

genetic lesions such as deletions of the second ETV6 allele or CDKN2A (S. Strehl, K. 

Nebral, M. König et al., unpublished observation). Thus, whether PAX5 deletions indeed 

belong to those secondary genetic lesions required to convert an ETV6-RUNX1 positive 

preleukemic clone to overt leukemia remains to be proven. 

Monoallelic loss of PAX5 is proposed to lead to haploinsufficiency of the BSAP protein 

contributing to the differentiation arrest seen in BCP-ALL (Kuiper et al, 2007; Mullighan et al, 

2007a). This assumption is based on the initial observation that only a single Pax5 allele is 

transcribed during the earliest phase of B-cell commitment and that B-cell differentiation 

relies on the switch to biallelic expression (Nutt et al, 1999b). Consequently, loss of a wild-

type allele would eliminate the ability to switch on biallelic transcription. However, recent 

investigations clearly show biallelic expression of Pax5 at all stages of B-cell development 

(Fuxa & Busslinger, 2007). The hypothesis that haploinsufficiency of PAX5 may contribute to 

a differentiation block (Kuiper et al, 2007; Mullighan et al, 2007a) is further challenged by the 

fact that in heterozygous Pax5+/- mice B-cell development is normal (Urbanek et al, 1994; 

Nutt et al, 1999b). Moreover, inactivation of one Pax5 allele in mature B-cells in 
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heterozygous Cd19-cre Pax5fl/+ mice in the absence of other oncogenic lesions is not 

sufficient to induce tumor development. On the other hand, complete loss of Pax5 in late 

B-cells results in the development of aggressive progenitor cell lymphoma (Cobaleda et al, 

2007a). Although some of the deletions in BCP-ALL are confined to PAX5, in several cases 

even to a few exons (focal deletions), many of them are broader and encompass a number 

of genes, whose concomitant deletion/haploinsufficiency may as well promote 

leukemogenesis. 

 

Hypomorphic alleles and splice variants 

Alternative splicing of pre-mRNA is a fundamental process that increases proteomic diversity 

and contributes to genetic variability. Increasing evidence substantiates that splicing defects 

(e.g. caused by inherited or somatic mutations in regulatory elements) not only account for 

inherited diseases susceptibility but also increase proteome complexity in cancer cells, and 

that alternative splicing may well be one of the basic causes for cancerogenesis (Kalnina et 

al, 2005; Venables, 2006; Skotheim & Nees, 2007). In this regard, also for several members 

of the PAX gene family a cancer-specific expression of certain isoforms has been observed 

(reviewed by (Barr, 1997; Robson et al, 2006; Lang et al, 2007; Wang et al, 2008)). 

Several human PAX5 isoforms have been described that result either from transcription of 

two alternative promoters leading to expression of exon 1A or 1B containing transcripts 

(Busslinger et al, 1996), or from alternative splicing of exons that encode the C-terminal 

transactivation and inhibitory domains (Robichaud et al, 2004; Sekine et al, 2007). 

Expression of different PAX5 isoforms was observed in B-cells of normal healthy donors 

(Robichaud et al, 2004) but also a possible association with childhood leukemia was reported 

(Sadakane et al, 2007). In this respect, we have identified a novel human PAX5 isoform that 

skips exon 2, and which may specifically occur in BCP-ALL (Krehan et al, in preparation). 

Therefore, in-depth studies are required to elucidate whether the differential expression of 

PAX5 alternatively spliced transcripts is of any pathological relevance or reflects 

physiological stages of B-cell development. In particular, imbalances in the expression of 

PAX5 isoforms may result in modulatory effects on downstream genes. 

Deletions within the PAX5 gene, which are confined to a subset of internal exons result in the 

expression of so-called hypomorphic alleles, which resemble potential splice variants. 

However, such splice variants have so far not been detected in normal B-lymphocytes 

suggesting that they are specifically generated by the intragenic deletion events. Recently, 

similar focal deletions of IKZF1 (Mullighan et al, 2008) and ERG (Mullighan et al, 2007b) in 

BCR-ABL1 positive ALL and a novel BCP-ALL subtype with a unique gene expression 

profile, respectively, were identified. Thus, focal mono-allelic intragenetic deletions may 

represent a distinct mechanism to generate tumor-specific isoforms. 
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The potential oncogenic function of PAX5 mutants 

Several lines of evidence suggest that the various PAX5 aberrations found in BCP-ALL result 

in an impairment of PAX5 activity rather than a complete loss of function. 

One of the defining features of BCP-ALL blast cells is the expression of the cell surface 

antigens CD19 and/or CD79A and/or CD22, which were readily expressed in both the PAX5-

rearranged cases and those with monoallelic PAX5 deletions. Even concomitant mutations of 

the second allele did not abolish expression of the CD19 and CD79A proteins. In leukemic 

blast cells, also on the transcriptional level no correlation between PAX5 mutation status and 

CD19 and CD79A expression was observed (Mullighan et al, 2007a; Kawamata et al, 2008). 

While the lack of CD19 responsiveness, whose expression is strictly PAX5-dependent, to 

PAX5 mutation remains elusive, transcription of CD79A is also initiated by EBF1 and its 

expression can be activated independently of PAX5 (Hagman & Lukin, 2005; Pongubala et 

al, 2008). Although gene expression profiling identified a differential gene expression 

signature between PAX5-deleted and PAX5 wild-type ETV6-RUNX1 BCP-ALL (Mullighan et 

al, 2007a), the differentially expressed genes included only a small subset of those regulated 

by PAX5. 

In vitro, using a luc-CD19 reporter gene assay PAX5 mutants showed reduced 

transcriptional activity as compared to wild-type PAX5 (Bousquet et al, 2007; Mullighan et al, 

2007a; Kawamata et al, 2008), and mutations that affect the PAX5 DNA-binding paired 

domain had a lower binding capacity to CD19 promoter sequences (Mullighan et al, 2007a). 

In contrast to PAX5 DNA-binding and internal deletion mutants, which have only a weak 

competitive activity (Mullighan et al, 2007a), PAX5 fusion genes, appear to act in a dominant-

negative manner over wild-type PAX5 (Bousquet et al, 2007; Mullighan et al, 2007a; Fazio et 

al, 2008; Kawamata et al, 2008). Thus, PAX5 chimera are considered to function as aberrant 

transcription factors that antagonize PAX5 activity provided by the second, wild-type allele 

(Cobaleda et al, 2007b). 

Recent data obtained by in vitro transfection experiments with the PAX5-C20orf112 fusion 

also suggest that the antagonizing function of the chimeric protein is confined to a subset of 

PAX5 target genes (Kawamata et al, 2008). This observation raises the question whether the 

various PAX5 chimera deregulate a common, or dependent on the moieties provided by the 

partner protein, distinct sets of target genes. 

While in vitro studies are certainly required to determine the functional consequences of 

PAX5 mutants, only validation of the data in primary leukemic blast cells will prove their true 

impact. In this respect, transfection of the post-germinal-center B-cell line DG75 with 

PAX5-ELN resulted in downregulation of the PAX5 target genes BLNK, LEF1, and CD79A, 

but in leukemic pre-B cells these genes were not affected (Bousquet et al, 2007). These data 

suggest a cellular context-dependent impact of the PAX5 fusion proteins, and that the results 
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obtained by in vitro transfection experiments - in particular using lymphoma cells, which are 

derived from later stages of B-cell development - may not faithfully reflect their effect in the 

context of B-cell precursor leukemia. 

The B-cell developmental stage-dependent function of Pax5 provides a possible explanation 

for this observation. While during the early stages of B-cell development Pax5 expression is 

required for B-cell development, its downregulation is pivotal for terminal plasma cell 

differentiation. Thus, reliant on the developmental stage of the B-cell both loss-of-function 

and gain-of-function mutation of PAX5 may disrupt B-cell homeostasis. 

Indeed, in B-cell lymphoma derived from later stages of B-cell development ectopic 

expression of PAX5 suggests a gain-of-function mutation (Thomas-Tikhonenko & Cozma, 

2008). In these tumors, which mostly arise from germinal-center B-cells with a functional 

BCR, enforced PAX5 expression results in ligand-independent BCR signaling (Cozma et al, 

2007). Thus, increased expression of PAX5 in post-germinal center B-cells promotes tumor 

growth by perturbing the PAX5-dependent B-cell gene expression program or a block in 

terminal differentiation into plasma cells by failed PAX5 repression (Shaffer et al, 2002; 

Cobaleda et al, 2007b). In this cellular context, PAX5 most likely exerts its oncogenic effects 

via the functional BCR (Cozma et al, 2007; Thomas-Tikhonenko & Cozma, 2008). Loss of 

Pax5 in the context of strong BCR signaling results in forward differentiation of mature B-

cells to plasma cells, whereas Pax5 inactivation in the absence of BCR signaling initiates the 

reversal of differentiation to uncommitted progenitors (Cobaleda et al, 2007a). 

In contrast, in BCP-ALL, which is derived from immature pro- or pre-B-cells PAX5 mutants 

are without exception loss-of-function mutations, which impair but not abolish PAX5 function. 

However, the impact of the PAX5 mutants on the finely tuned B-cell transcription network has 

yet to be elucidated in vitro and more importantly, in vivo. 

 

Concluding remarks  

Although the fundamental role of PAX5 for B-cell development was recognized almost two 

decades ago, until very recently its possible involvement in B-cell malignancy has been 

essentially neglected. Only now PAX5 also emerges as a major player in leukemogenesis 

and it will probably take at least another two decades before the potential oncogenic role of 

PAX5 mutation will be finally elucidated. Dissecting the impact of these peculiar mutants on 

the complex B-cell development regulatory transcriptional network with its multiple 

combinatorial inputs and feedback loops will be a challenging task. 
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8.2. Additional FISH clones 
 

Table 1. Additional FISH clones used for analysis 

Gene/Region Locus Clone Accession Number/ Company 

RSCD1-5' 01q24.2 RP3-455J7* AL031733.3 

RSCD1-3' 01q24.2 RP11-138P14* AQ349162 and AQ385458 
(BAC end pairs) 

3p 03p 3p-arm-specific 
painting probe NA 

TOP2B 03p24.2 RP11-659P16‡ AC093416 

3q-subtelomere 03q subtelomere 196F4# NA 

Chromosome 7 whole chromosome pBS7 NA 

AUTS2-5' 07q11.22 RP11-243F5* AQ486680 

AUTS2-3' 07q11.22 RP11-88H22* AZ516257 

ELN-5' 07q11.23 RP11-148M21* AC093168 

ELN-3' 07q11.23 RP11-349P21* AQ528659 

Chromosome 9 whole chromosome pBS9 NA 

5' of PAX5 09p13 RP11-397D12‡ AL158155.24 

5' of PAX5 09p13 RP11-3J10‡ AL138752 

3' of PAX5 09p13 RP11-84P7‡ AL161792 

LSI BCR/ABL Dual 
Color, Dual Fusion 
Translocation Probe 
Set 

09q34 / 22q11.2 NA Vysis (Abott) 

ELP4-5' 11p13 RP5-1137O17* AL133295 

ELP4-3' and PAX6 11p13 RP11-307I15* DX934410  and  DX934411 
(BAC end pairs) 

WT1 11p13 RP11-74J1 Research Genetics - Invitrogen 

BDNF-5' 11p14.1 RP11-52H5* AQ083161 and AQ115784 
(BAC end pairs) 

KCNA4-3' 11p14.1 RP11-215H22* AC021233.9 

LGR4-3' and 
CCDC34 11p14.1 RP11-426P16* AQ554326 and AQ554330 

(BAC end pairs) 
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MUC15 and 
TMEM16C 11p14.2 RP11-283H3* AC036114 

LUZP2-3' 11p14.3 RP11-54J7* AC087373 

GAS2-5' 11p14.3 RP11-109H8* AQ350699 and AQ323046 
(BAC end pairs) 

LUZP2-5' 11p14.3 RP11-372B5* AC040968 

NELL1-5' 11p15.1 RP11-3E17* AC010811 

NELL1-3' 11p15.1 RP11-116O9* AC105190 

E2F8 11p15.1 RP11-428C19* AC009652 

DKK3 11p15.3 RP11-313H5* AC118656 

GALNTL4-3' 11p15.3 RP11-75K2* AQ267423 

GALNTL4-5' 11p15.3 RP11-47D7* AQ200362 

LMO1 11p15.4 RP11-379P15* AC091013 

WEE1 11p15.4 RP11-16F15* AC011979 

SWAP70-3' 11p15.4 RP11-540A21* AC026250.16 

MRVI1 11p15.4 RP11-58H20* AC009532 

LSI® TEL/AML1 12p13 / 22q22 NA Vysis (Abott) 

Chromosome 14 whole chromosome pBS14 NA 

LSI® IGH DUAL 
break apart 14q32 NA Vysis (Abott) 

BCL11B-5' 14q32.2 RP11-431B1* AC036222 and AC103702 
(BAC end pairs) 

BCL11B-3' 14q32.2 RP11-15E14* AL352981 

*obtained from The Wellcome Trust Sanger Institute; http://www.sanger.ac.uk, Hinxton, 

Cambridge, United Kingdom. 
‡obtained from M. Rocchi, Department of Cytogenetics, University of Bari, Bari, Italy. 
#obtained from L. Kearney, MRC Medical Research Council, John Radcliffe Hospital, 

Molecular Haematology Unit, Headington,  Oxford, United Kingdom. 

NA, not applicable  
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8.3 Additional PCR primers 
 

Table 2. Additional oligonucleotide primer sequences 

Primer Sequence (5' - 3') Direction Gene/Exon1 

BDNFex2-R1 TTCTGGTCCTCATCCAACAGC antisense BDNF/2 

BDNFex2-R2 CGGCAACAAACCACAACATTATC antisense BDNF/2 

ELNex16-R1 GCACGCCAGGAACACCAG antisense ELN/16 

ELNex18-R1 GCCCACCAGGCACTAAGC antisense ELN/18 

ELNex6-R2 AGCAGCGTCAGCCACTCCAC antisense ELN/6 

ETV6ex3-R1 CCTCTTTGGTCAGCAGCAGGAG antisense ETV6/3 

FOXP1ex11-R1 TTGTTGCCTGTGGTTTCTTCTGC antisense FOXP1/11 

FOXP1ex14-R1 GGCGGCTTTGGGTTCTGTAG antisense FOXP1/14 

FOXP1ex8-R1 TGCTGGAGGAGAACCTGGAG antisense FOXP1/8 

HIPK1ex8-F1 CTGCACCAGTTCCTGGAGTTGC sense HIPK1/8 

PAX5ex3-F1 CCATGTTTGCCTGGGAGATCAG sense PAX5/3 

PAX5ex5-F1 TACTCCATCAGCGGCATCC sense PAX5/5 

PAX5ex6-7R1 TGGCTGAATACTCTGTGGTCTGCTC antisense PAX5/6-7 

PAX5ex6-F1 CTGGACCGCGTGTTTGAGAG sense PAX5/6 

PAX5ex7-R1 GGCCTTCATGTCGTCCAG antisense PAX5/7 

PAX5ex9-10-R1 GCTATAATAGTAGGGGGAGCCAAGCA antisense PAX5/9-10 

PAX5ex9-R2 ACGAGGAATACTGAGGGTGGCTGT antisense PAX5/9 

PMLex1-F2 TCAGCTTCTCTTCACGCACTC sense PML/1 

ZNF521ex4-R1 TGAGAGCCGTCCTTGTTCCTC antisense ZNF521/4 

ZNF521ex7-R1 CTGCTGCAACTTGTTTGCTTG antisense ZNF521/7 

1Exon nomenclature according to the Ensembl Genome Browser exon information 

(http://www.ensembl.org/). 
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Fusion transcripts were amplified using the following primer combinations. 

 

PAX5-BDNF:   PAX5ex5-F1 and BDNFex2-R1 

   PAX5ex5-F1 and BDNFex2-R2 

PAX5-ELN:   PAX5ex3-F1 and ELNex6-R2 or ELNex16-R1 

   PAX5ex5-F1 and ELNex18-R1 

PAX5-ETV6:   PAX5ex3-F1 and ETV6ex3-R1 

PAX5-FOXP1: PAX5ex6-F1 and FOXP1ex8-R1 

   PAX5ex3-F1 and FOXP1ex11-R1 

   PAX5ex5-F1 and FOXP1ex14-R1 

PAX5-ZNF521:  PAX5ex3-F1 and ZNF521ex4-R1 

   PAX5ex6-F1 and ZNF521ex7-R1 

HIPK1-PAX5:  HIPK1ex8-F1 and PAX5ex6-7-R1 

PML-PAX5:   PMLex1-F2 and PAX5ex7-R1 

 

To identify novel PAX5 fusion partner genes RACE was performed using various PAX5 gene 

specific primers in combination with universal 5' or 3' primers provided by the Marathon Kit 

(Takara Bio Europe/Clontech, Saint-Germain-en-Laye, France) (Nebral et al, in press). 

Additional 5' RACE experiments were performed using PAX5ex9-10-R1 and AP1 for the first 

round of amplification, and PAX5ex9-R2 and AP2 for the nested second round of 

amplification. Alternatively, instead of a "touch down" PCR reaction a "one step" PCR was 

performed using the following cycling parameters: 95°C initial denaturation for 1min, 35 

cycles of 94°C for 15sec, and 68°C for 5-8min, and final elongation at 68°C for 6min. The 

nested PCR was done for 30 cycles of 94°C for 15sec, and 68°C for 5-8min. 
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DEUTSCHE ZUSAMMENFASSUNG 

PAX5 ist ein Transkriptionsfaktor der Paired Box Genfamilie, welcher sowohl für die 

Entwicklung von B-Zellen aus hämatopoietischen Vorläuferzellen als auch für deren 

Fortbestand als reife B-Zellen von essentieller Bedeutung ist. Vor kurzem wurde gezeigt, 

dass PAX5 in B-Zell-Neoplasien häufig involviert ist. Die entsprechenden genetischen 

Alterationen umfassen Punktmutationen und Deletionen und, von besonderem Interesse im 

Zusammenhang mit meiner Arbeit, auch Genrearrangements. In B-Zell-Non-Hodgkin-

Lymphomen mit einer t(9;14)(p13;q32), zum Beispiel, gelangt das PAX5 Gen durch die 

Translokation in die Nähe des IGH@ Locus, wodurch es zu einer Überexpression von PAX5 

kommt. Im Gegensatz dazu wurden bei akuten lymphatischen B-Vorläuferzell Leukämien 

("B-cell-precursor"; BCP-ALL) Fusionen des PAX5 Gens mit FOXP1 (3p13), AUTS2 (7q11), 

ELN (7q11), ETV6 (12p13), ZNF521 (18q11) und C20orf112 (20q11) beschrieben, wobei die 

daraus resultierenden Fusionstranskripte für chimäre Proteine kodieren. 

Das Ziel der vorliegenden Studie war es daher, die Häufigkeit und Art von PAX5 

Genrearrangements bei ALL im Kindesalter systematisch zu untersuchen, sowie neue PAX5 

Fusionspartner zu identifizieren und zu charakterisieren. Die 446 analysierten Proben 

stammen von konsekutiv in den österreichischen ALL-BFM 2000 und Interfant-99 Studien 

registrierten PatientInnen und repräsentieren daher eine unselektierte und klinisch gut 

charakterisierte Kohorte. 

Zum Nachweis von potentiellen PAX5 Genrearrangements wurden eigene Fluoreszenz in 

situ Hybridisierung (FISH) Assays entwickelt und die Interphase FISH Muster mithilfe der 

Metafer4-Metacyte Software (Metasystems) automatisch ausgewertet. Um alle im PAX5 Gen 

möglichen Bruchpunkte zu erfassen (auch jene, die zu einer veränderten Expression des 

intakten PAX5 Gens durch ein Partnergen führen) wurden primär das Gen flankierende zwei 

Farben FISH Sonden verwendet. Auffällige FISH Muster wurden weiter mit Gen-spezifischen 

Sonden abgeklärt. Anschließend wurden die Fusionspartner entweder mit FISH und/oder 3'- 

oder 5'-RACE (Rapid Amplification of cDNA ends) identifiziert und das Vorhandensein der 

chimären Transkripte mittels RT-PCR (Reverse Transcription-PCR) und Sequenzierung 

überprüft. 

10 von 446 untersuchten Proben (2.2%) zeigten ein für ein PAX5 Rearrangement 

charakteristisches FISH Muster. Ein Fall mit einer PAX5-ETV6 Fusion war bereits aus 

Vorbefunden bekannt, bei einem weiteren wurde eine kürzlich in der Literatur beschriebene 

PAX5-C20orf112 Genfusion gefunden und bei einem Patienten konnte die vorliegende PAX5 

Aberration trotz intensiver Analysen nicht vollständig aufgeklärt werden. Jedoch gelang es 

uns bei sieben Fällen sechs neue PAX5 Fusionspartner zu identifizieren: HIPK1 (1p13), 

POM121 (7q11), JAK2 (9p24), DACH1 (13q21), PML (15q24) und BRD1 (22q13.33). Mit 

Ausnahme von zwei PAX5-JAK2 positiven Fällen, traten alle anderen Fusionen jeweils nur 
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einmal auf. Weiters konnten, zumindest bei der ALL im Kindesalter, keine PAX5-

aktivierenden Translokationen gefunden werden. Aufgrund der großen Heterogenität der 

Fusionspartner ist die von uns etablierte FISH Strategie eine verlässliche und sinnvolle 

Screeningmethode mit der alle potentiellen PAX5 Genfusionen systematisch erfasst werden 

können.  

Aus dem Ergebnis meiner Studie kann man zusammenfassend ableiten, dass zirka 2.5% der 

BCP-ALL Fälle PAX5 Genfusionen aufweisen, welche jedoch eine Vielzahl von 

Partnergenen betreffen, die nicht nur Transkriptionsfaktoren sondern auch Strukturproteine 

und eine Tyrosinkinase, einschließen. Die hypothetischen Fusionsproteine bestehen in allen 

Fällen zumindest aus der PAX5-paired DNA-Bindungsdomäne, die mit der C-terminalen 

Region oder sogar dem gesamten Protein des jeweiligen Partners fusioniert. Die Struktur der 

PAX5 chimären Proteine legt nahe, dass diese zwar an PAX5 Zielgene binden können, aber 

keine normale transkriptionelle Regulation ausüben und dadurch der intrinsischen PAX5-

Aktivität entgegenwirken, was möglicherweise bei der Pathogenese der BCP-ALL eine Rolle 

spielt. 
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