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1 Introduction

One of the biggest remaining challenges for theoretical physics is the unification of general relativity and
quantum field theory. Till now there is no complete satisfying theory that incorporates these two pillars
of theoretical physics. There exist many problems in unifying those two theories. One of the main prob-
lems considers the dynamics of spacetime. In general relativity spacetime is not just a stage on which
dynamics take place, but rather a participant, which can be understood through the famous Einstein field
equations: Rµν − 1

2gµνR = κTµν . The field equations link the geometry of spacetime with the energy
momentum tensor. Quantum field theories on the other hand as QED (quantum electrodynamics) or
QCD (quantum chromodynamics) work with spacetime just as a stage where dynamics takes place. An-
other technical problem for example is that the right hand side of the Einstein field equations contain the
energy momentum tensor which is a quantum quantity, while the left handside describes gravitation as
a classical field. If Tµν is represented as quantized matter the field equations as they stand, are inconsistent.

One big problem considers the picture of spacetime at small scales. John A. Wheeler argued that the
classical picture of spacetime should break down at very short distances of the order of the Planck-
length lp =

√
Gh̄/c3. The Planck-length is also the distance where it is generally believed, that quantum

fluctuations of spacetime, due to the interplay between gravity and quantum mechanics become important.

There are many approaches for example string theory or Ashtekars approach to quantum gravity, to
mention just a few. Another beautiful approach would be to quantize spacetime itself, by imposing uncer-
tainty relations between time and space coordinates, and to formulate a (hopefully) renormalisable QFT
which contains gravity. At first it seemed to be a very pleasant approach, though it provides a natural
UV-cutoff. But as the authors in [6] showed, not only is the φ4 model not finite in the UV regime, but
the model also exhibits a new type of divergences, the so called UV/IR mixing, that make the model
nonrenormalisable. The situation remained so till H. Grosse and R. Wulkenhaar [4,5] discovered a way to
define a renormalisable non commutative model, by adding a harmonic term to the Lagrangian. This was
a great breakthrough, though it provides the way towards other non-commutative field theories.

After remarkable progress was done in understanding field theory on a fixed NC space, the next step
in progress would be to try to formulate a dynamical structure of NC space time, to enable the incorpo-
ration of GR with QFT.

A recent realization of this idea was proposed by H.Steinacker with a matrix model and has been published
under the name ”emergent gravity from noncommutative gauge theory”. The basic observation is that
matrix models that define noncommutative (NC) gauge theory contain a specific version of gravity. This
provides a dynamical theory for noncommutative spaces. The connection between gravity and NC gauge
theory was first observed in [2]. In particular, it was pointed out in [1] that the Einstein-Hilbert action
will be induced upon quantization, and that it should amount to the UV/IR mixing in noncommutative
gauge theory. This observation is quite astonishing and the prediction is supported by the fact that both
gravity and UV/IR mixing occur only in the U(1) sector of NC gauge theory. Emergent gravity explains
the strange IR behavior of the would-be photons: they are not photons but gravitons defining a non-
trivial geometric background. The would-be U(1) gauge fields are re-interpreted in terms of geometry and
absorbed in the effective metric. The effective metric couples to all other fields.

In this work, we elaborate and verify this explanation of UV/IR mixing in terms of gravity in 2 di-
mensions. We will perform a one-loop quantization of a scalar field coupled to the matrix model of NC
gauge theory resp. gravity in two different ways. First in the geometrical point of view, we interpret the
action as scalar field coupled to gravity, which leads using standard arguments to an induced Einstein-
Hilbert action. Second, we use the more conventional interpretation of the same matrix model in terms of
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NC gauge theory, where integrating out the scalar field leads to an effective action for the NC gauge fields
involving the well-known UV/IR mixing terms. These two computations should agree at least in the IR
regime, where the geometrical picture is expected to make sense. The same procedure in this framework
is also done for the matrix model coupled to spinors.

The 2 dimensional case is different from the 4 dimensional in few ways. First of all the calculations
are easier, but we must deal in the action with an extra dilaton term which does not appear in 4 dimen-
sions. This problem is rather nontrivial. Many authors [15-21] have tried to solve this problem, but till
now there is no solution that fits in our framework. The problem of quantization with an extra dilaton
term appears often in the dimensional reduction of a problem from 4 to 2 dimensions. Our first approach
was to redefine the fields and take the Jacobian of the measure. This approach suffered from a divergence,
which could not be treated with the heat kernel expansion just as in flat space. We were able to proceed
with the quantization procedure by calculating the heat kernel perturbatively.

2 Matrix models, quantization and effective geometry

2.1 Yang Mills action

The starting action is the Yang Mills action that is defined as

SYM [X] = −1
2
Tr[Xa, Xb][Xc, Xd]gacgbd. (1)

The metric here is euclidean or minkowski, although during this framework we will use the euclidean
metric.

gac = δac (2)

or
gac = ηac (3)

Xa are hermitian matrices or operators acting on some Hilbert space H .

The symmetries of this action are the following:

1. Gauge symmetry
Xa → UXaU−1 (4)

U ∈ U(H) (5)

Where the matrices U are unitary operators on some Hilbert space.

2. Translation invariance

Xa → Xa + ca (6)

ca ∈ R2 (7)

3. SO(4) resp. SO(3,1) invariance
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2.1.1 Equations of motion

The equations of motion for this action are:

[Xa, [Xa′ , Xb′ ]]gaa′ = 0 (8)

One special solution is the case of a flat space

Xa = Ȳ a (9)

[Ȳ a, Ȳ b] = iθ̄ab. (10)

Ȳ a generates the algebra A ∼= R2
θ̄

of functions on the Moyal Weyl space(quantum plane). Where θ̄ab is
constant and non degenerate.

Another solution is given by

Xa = Ȳ a ⊗ 1n (11)

which will lead to u(n) gauge theory. Now consider small fluctations of the form

Xa = Ȳ a ⊗ 1n +Aa(Ȳ ). (12)

In the emergent gravity model we focus on configurations which are close to the vacuum plus small
fluctuations Aa0(Ȳ ), which is the new vacuum Xa = Ȳ a ⊗ 1n.

Aa(Ȳ ) = Aa0(Ȳ )⊗ 1n +Aaα(Ȳ )⊗ τα (13)

where Aa(Ȳ ) ∈ A⊗Mn(C) and τα is the basis of su(n).

A different approach is to seperate the trace of the U(1) part and the remaining non abelian part as
follows

Xa = Y a ⊗ 1n +Aa(Y ) (14)

= Y a ⊗ 1n +Aaα(Y )⊗ τα. (15)

Y a = Ȳ a +Aao(Ȳ ) (16)

That means Y a are the generators of a non commutative space Mθ̄ with general non commutativity:

[Y a, Y b] ≡ iθab(Y ) ≈ iθab(y). (17)

Emergent gravity questions the usual interpretation of Aa0 as an abelian gauge field. In emergent gravity
Aa0 is understood as a fluctuation in the NC space, which determines a Poisson structure θab(y) and leads
to an effective metric Gab(y).

4



2.2 Deformation quantization of Poisson manifolds

The emerging picture is that the u(1) sector of the matrix model describes a dynamical theory of Pois-
son manifolds. Now let us consider generators Y a of A satisfying (17). This defines a Poisson manifold
(M, θab(y)), whose quantization is given by Y a. Maxim Kontsevich proved in [3] that any finite dimen-
sional Poisson manifold can be canonically quantized in the sense of deformation quantization, so we can
quantize any poisson structure with the generators Y a.

Before proceeding any further let us describe deformation quantization.

Let (M, {., .}) be a poisson manifold, C∞(M) the algebra of complex valued arbitrary often differen-
tiable functions onM with the pointwise product as commutative algebra structure on the space C∞(M)
fullfilling the Leibnitzrule

{f · g, h} = f · {g, h}+ {f, h} · g (18)

Denote by A = C∞(M)[[θ]] the vector space of formal power series in the variable θ with differentiable
function onM as coefficients. A formal deformation quantization is a multiplication ∗ defined on A which
is associative, C[[θ]] the vector space bilinear, and θ-adically continous, such that for f, g ∈ C∞(M)

f ∗ g |θ=0= f · g (19)

1
θ

(f ∗ g − g ∗ f) |θ=0= i{f, g} (20)

The multiplication ∗ is called a star multiplication, and the term star product is used as is used as
synonym for a formal deformation quantization. The multiplication ∗ can also be described with the
following formula

f ∗ g =
∞∑
m=0

Ck(f, g)θk (21)

with bilinear maps Ck : C∞(M)× C∞(M)→ C∞(M) for k∈ N0. By the θ-adical continuity this extends
to ( ∞∑

j=0

fjθ
j

)
∗
( ∞∑
l=0

glθ
l

)
=
∞∑
j=0

( ∑
k+j+l=m

Ck(fj , gl)
)
θm (22)

2.2.1 The Moyal product

The simplest example of a deformation quantization is the Moyal product for the Poisson sturcture on Rd

with constant coefficients:
α =

∑
i,j

αij∂i ∧ ∂j (23)

αij = −αij (24)

Where ∂i = ∂
∂xi is the partial derivative with respect to x and i = 1, ....., d.

The formula for the Moyal product is

f ∗ g = f · g + θ
∑
i,j

αij∂i(f)∂j(g) +
θ2

2

∑
i,j,k,l

αijαkl∂i∂k(f)∂j∂l(g) + .... = (25)
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=
∞∑
0

θn

n!

∑
i1,....,in;j1,....,jn

n∏
k=1

αikαjk
( n∏
k=1

∂ik(f)
)
·
( n∏
k=1

∂jk(g)
)
. (26)

The associativity means that for any 3 functions f, g, h one has:

(f ∗ g) ∗ h = f ∗ (g ∗ h). (27)

Let α =
∑
i,j α

ij∂i ∧ ∂j be a Poisson bracket with variable coefficients, then the following formula gives
an associative product modulo O(θ2):

f ∗ g = f · g + θ
∑
i,j

αij∂i(f)∂j(g) + O(θ2). (28)

The last equation implies that if Y a operates on a function one obtains the following

[Y a, f(y)] = iθab(y)∂bf(y) + O(θ2). (29)

2.3 The noncommutative metrik Gij

In order to derive the metric we couple a scalar field φ to the matrix model. The most obvious way to
couple φ is the following.

S[φ] = −1
2

Tr[Y b, φ][Y b, φ]gab (30)

S[φ] =
1
2

Tr
(
θac(y)θbd(y)∂cφ∂dφgab

)
+ O(θ3) (31)

S[φ] =
1
2

Tr
(
Gcd∂cφ∂dφ

)
+ O(θ3) (32)

The metric that one obtains from matrix models is given by

Gij = θik(y)θjl(y)gkl. (33)

From this point of view matrix models are very elegant, though they provide a simple prescription to
quantize space time. And in addition they provide a simple prescription of coupling fields to this model.

2.4 Curvature in 2 dimensions after a conformal transformation

In this section we calculate the curvature of a metric after a conformal transformation. Every 2 dimen-
sional Riemannian manifold is conformally flat. And the metric can allways be brought to the following
form

Gkl = eφgkl. (34)

gkl = δkl (35)

The inverse metric is given by
Gkl = e−φgkl. (36)
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Where

φ,b = ∂bφ =
∂φ

∂xb
(37)

A(ab) =
1
2

(Aab +Aba) (38)

A[ab] =
1
2

(Aab −Aba) (39)

The torsion free connection is given by

Γcab =
1
2
Gcd(∂bGad + ∂aGbd − ∂dGab). (40)

= −1
2
Gcd(Gad∂bφ+Gbd∂aφ−Gab∂dφ) (41)

= −1
2

(δcaφ,b + δcbφ,a − gabφc) (42)

The Riemann Tensor can be obtained by the following formula

Rcabd = Γcad,b − Γcab,d + ΓcebΓ
e
ad − ΓcedΓ

e
ab. (43)

Rcabd = R
(1)c
abd +R

(2)c
abd . (44)

R
(1)c
abd = ∂bΓcad − ∂dΓcab = δc[b∂d]∂aφ+ ga[d∂b]∂

cφ (45)

R
(2)c
abd = ΓcebΓ

e
ad − ΓcedΓ

e
ab =

1
2

(δc[b∂d]φ∂aφ− ga[b∂d]φ∂
cφ− ga[dδ

c
b]∂eφ∂

eφ) (46)

Through Contraction one gets the Ricci Tensor

Rcabc = Rab = R
(1)
ab +R

(2)
ab . (47)

R
(1)
ab = −1

2
gab∂c∂

cφ (48)

R
(2)
ab = 0 (49)

Rab = −1
2
gab∂c∂

cφ (50)

The Ricci scalar is given through the contraction with the metric

R = RadG
ad. (51)

R = −Gab∂a∂bφ (52)
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3 The bosonic case

Let us now consider a massive scalar field coupled to the matrix model.

S[φ] = −(2π)Tr
1
2

(
gaa′ [Y a, φ][Y a

′
, φ]−m2φ2

)
(53)

We want to write the trace as an integral. As pointed out in [1], the relation is the following:

(2π)Trf(y) ∼
∫
ωf(y) =

∫
d2yρ(y)f(y) (54)

where ω = iθ−1
ab (y)dyadyb is the symplectic form, and ω = ρ(y)d2y the symplectic volume element. The

density factor is given by

ρ(y) = Pfaff(iθ−1
ab (y)) =

√
detθ−1

ab (y) =
(

detGab(y)
)−1/4

(55)

So now we can write

S[φ] = −(2π)Tr
1
2

(
gaa′ [Y a, φ][Y a

′
, φ]−m2φ2

)
(56)

as

∼
∫
d2y

1
2

(
ρ(y)Gab(y)∂aφ(y)∂bφ(y) + ρ(y)m2φ2

)
. (57)

The metric Gab plays the role of a gravitational metric. The metric enters the kinetic term for any
matter coupled to the matrix model, though the only way to couple matter to this model is done by
Tr[Y a, .][Y a

′
, .]gaa′ .

Gab = θac(y)θbd(y)gcd (58)

∼ indicates the leading contribution in semi-classical expansion in powers of θab.
The metric gab is the following one

gab = δab (59)

or
gab = ηab. (60)

So gab is the flat Euclidean or Minkowski metric, allthough during this framework we remain euclidean.
The partial derivatives denote the derivation with respect to y.

∂b =
∂

∂yb
(61)

3.1 The non trivial geometric background in 2 dimensions

The metric Gab which plays the role of a non trivial geometric background is given as

Gab = θac(y)θbd(y)gcd. (62)
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In 2 dimensions there is a more sufficient way to write this metric, due to the fact that θab(y) is a Poisson
tensor. So it is an antisymmetric tensor which has quite a nice representation in 2 dimensions.

θab(y) = εabθ(y) (63)

Where εab is the epsilon tensor. So the metric can be rewritten as

Gab = εacθ(y)εbdθ(y)gcd := θ2(y)ḡab. (64)

Where ḡab is the flat noncommutative metric and is defined as follows

ḡab := εacεbdgcd. (65)

So we can rewrite the metric in the following way

Gab = e2σ(y)ḡcd. (66)

Where σ is given as
σ(y) = log(θ(y)). (67)

3.2 Quantization and induced gravity

Again the action that we consider after coupling a massive scalar field is the following one

S[φ] =
1
2

∫
d2y

(
ρ(y)Gab(y)∂aφ(y)∂bφ(y) + ρ(y)m̃2φ2

)
(68)

The density factor is in the notation we introduced above given as

ρ(y) = (detGab(y))1/4 = e−σ. (69)

So the action becomes the following one

S[φ] =
1
2

∫
d2y
√
G̃

(
G̃µνeσ(y)∂µφ(y)∂νφ(y) + m̃2φ2(y)

)
. (70)

In the last step we introduced the following metric.

G̃ab := ḡabeσ. (71)

We cannot proceed with the heat kernel expansion due to the dilaton field eσ. So we introduce the
following fields:

φ = φ̃e−σ/2. (72)

The action is the following in terms of the new fields

S[φ] =
1
2

∫
d2y
√
G̃

(
G̃µν∂µφ̃∂ν φ̃− φ̃∂µσ∂ν φ̃+

1
4
φ̃2∂µσ∂νσ + e−σm̃2φ̃2

)
. (73)
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After integrating by parts the action reads

S[φ̃] = −1
2

∫
d2y
√
G̃

(
G̃µν φ̃∂µ∂ν φ̃+ φ̃∂µσ∂ν φ̃−

1
4
φ̃2∂µσ∂νσ − e−σm̃2φ̃2

)
. (74)

The Laplace type operator is the following one

∆G̃ = −
(
G̃µν∂µ∂ν + G̃µν∂µσ∂ν − G̃µν

1
4
∂µσ∂νσ

)
(75)

Due to the fact that we work with the redefined fields φ̃ we first have to calculate the functional determi-
nant.

e−Γφ̃ = J
∫
Dφ̃e−S[φ̃] (76)

In order to define the path integral more precise we decompose φ and φ̃ into eigenfunctions of the Laplace
operator ∆G̃.

φ(y) =
∑
n

anφn(y) =
∑
n

an < x|n > (77)

φ̃(y) =
∑
n

ãnφn(y) =
∑
n

ãn < x|n > (78)

where an and ãn are coefficients. The Laplace operator ∆G̃ has real eigenvalues λn

∆G̃φn(y) = λnφn(y) (79)

and the set of eigenfunctions {φn(y)} is orthonormal and complete∫
d2y
√
G̃φm(y)φn(y) = δmn (80)∑

n

φm(x)φm(y) = δ(y − x). (81)

The path integral measure is defined as

dµ(φ) =
∏
n

dan =
∏
x

Dφ(x). (82)

Let us consider the redefined field in terms of the expansion

φ(y) = eσ/2φ̃(y) =
∑
n

anφn(y) =
∑
n

ãnφn(y))eσ/2. (83)

Due to the orthonormality of the eigenfunctions we obtain

an =
∑
m

(∫
d2y
√
G̃φm(y)eσ/2φn(y)

)
ãm =

∑
m

Cnmãm (84)
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Cnm =
∫
d2y
√
G̃φm(y)eσ/2φn(y) (85)

after expanding eσ/2, the transformation matrix reads

Cnm = δmn −
1
2

∫
d2y
√
G̃φm(y)σ(y)φn(y) (86)

So we find for the change in the path integral measure∏
n

dan = det(Cnm)
∏
m

dãm (87)

After taking the jacobian into account the effective action reads

Γφ̃ = −logdet(Cnm) +
1
2

logdet
(

∆G̃ + e−σm̃2

)
. (88)

We rewrite the last equation and obtain

Γφ̃ = −trlog(Cnm) +
1
2

Trlog
1
2

(∆G̃ + e−σm̃2). (89)

Induced gravity:
We now focus on the geometry point of view. For this we rewrite the trace of the operator in a different
way, to calculate it later on with the heat kernel expansion. The Jacobian will be treated in the next
section.

Tr
(

log
1
2

(∆G̃ + e−σm̃2)
)
∼ −Tr

∫ ∞
0

dα

α

(
e−α

1
2 ∆G̃

)
e−

1
2 e
−σm̃2α (90)

≡ −Tr
∫ ∞

0

dα

α

(
e−α

1
2 ∆G̃

)
e−

1
αΛ̃2− 1

2 e
−σm̃2α (91)

where the small α divergence is regularized using an UV cutoff Λ̃ and the big α divergence is regularized
using a cutoff m̃2. Now we use the heat kernel expansion

Tre−
1
2α∆G̃ ∼

∑
n≥0

(
α

2
)
n−2

2

∫
M
d2y
√
G̃an(y,∆G̃) (92)

where an(y,∆G̃) are known as the Seeley de Witt (or Duhamel) coefficients. So the effective action in this
case takes the following form

Γφ = −
∫
d2y
√
G̃

(
a0(Λ̃2 − e−σ m̃

2

2
log

2Λ̃2

m̃2
) + a2log(

√
2Λ̃
m̃

)
)

(93)

One can drop finte terms due to the fact that we are just interested in the divergent part.

Γφ = −
∫
d2y
√
G̃

(
a0(Λ̃2 − e−σ m̃

2

2
logΛ̃2) + a2log(

Λ̃
m̃

)
)

(94)
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3.2.1 Heat kernel expansion and the Seeley de Witt coefficients

For a given action of the following form

S[φ] =
∫
dnx
√
Gφ(x)Dφ(x) (95)

G = det(Gab) (96)

it is possible to calculate the effective action with the heat kernel expansion.

Let M be a smooth compact Riemannian manifold of dimension n and let V be a vetor bundle over
M. This means that there is a vector space attached to each point of the manifold. We study differential
operators on V. Restricting ourselves only to second order differential operators of Laplace type, such
operators can be represented as

D = −(Gab∂a∂b + ad∂d + b). (97)

Where ad and b are matrix valued functions onM and Gab is the metric onM. Due to the fundamental
theorem of Riemannian geometry there is a unique connection on V and a unique endomorphism E of V
so that

D = −(Gab∇a∇b + E). (98)

∇ is the covariante derivative which contains Riemann derivatives and the gauge ω parts.
One can now express

ωd =
1
2
Ged(ae +GabΓeab) (99)

E = b−Gcd(∂cωd + ωcωd − ωbΓbcd) (100)

Where the Seeley de Witt coefficients read

a0(y) =
1

4π
(101)

a2(y) =
1

24π
(R[G] + 6E). (102)

Again there are few restrictions that the operator D has to fulfill. First D must be a partial second
order operator. Second the coefficient ad is contracted with the metric. The third restriction is the
selfadjointness of the operator with respect to the scalar product.

3.2.2 Heat kernel expansion for the induced action

In the 2 dimensional case we have further simplifications for example

G̃abΓeab = −1
2
G̃abG̃ed(G̃adφ,b + G̃bdφ,a − G̃abφ,d) (103)

= −1
2
G̃ab(δeaφ,b + δebφ,a − G̃abφe) (104)

= −1
2

(G̃ebφ,b + G̃eaφ,a − 2φe) = 0. (105)
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The curvature in 2 dimensions is
R = −G̃ab∂a∂bσ. (106)

The gauge part ω is given by

ωa =
1
2
G̃aba

b. (107)

ab = G̃bc∂cσ (108)

ωa =
1
2
∂aσ. (109)

And E reads

E = −1
2
G̃ab

(
∂a∂bσ + ∂aσ∂bσ

)
. (110)

So the second seeley de witt coefficient is the following one

a2 = R[G̃] + 6E = R[G̃] + 3∆G̃σ − 3G̃ab∂aσ∂bσ (111)

Where

∆G̃σ = −G̃ab∂a∂bσ + Γc∂cσ = − 1√
G̃ab

∂a

(√
G̃abG̃

ab∂bσ

)
. (112)

Γc = G̃abΓcab (113)

So the effective action reads

Γφ = − 1
4π

∫
d2y
√
G̃(Λ̃2 − e−σ(y) m̃

2

2
logΛ̃2)− 1

(24π)

∫
d2y
√
G̃

(
R[G̃] + 3∆G̃σ − 3G̃ab∂aσ∂bσ

)
log(

Λ̃
m̃

).

(114)

3.2.3 The Jacobian

There is a nontrivial problem concerning the Jacobian. By taking the trace of the Jacobian we found a
new divergence δ(x−x). The problem of treating this divergence will be the subject of the following section.

Recall the Jacobian:

Cnm = δmn −
1
2

∫
d2y
√
G̃φm(y)σ(y)φn(y) (115)

During the calculation of the effective action the term concerning the Jacobian is the following one

ΓJ
φ̃

= −trlog(Cnm) (116)

Where the upper index J denotes the part of the effective action that only considers the Jacobian. We
now use the following Taylor expansion

log(1 + β(y)) = β(y) + O(β2). (117)
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The term that emerge after the expansion is the following

ΓJ
φ̃

=
1
2

tr(
∫
d2y
√
G̃φm(y)σ(y)φn(y)) =

1
2

∫
d2y
√
G̃σ(y)

∑
n

φn(y)φn(y) (118)

The sum that enters the integral is not well defined∑
n

φn(y)φn(y) = δ(y − y) = δ(0) (119)

There exists many rigorous methods to regularize this expression. We the choose the heat kernel to regu-
larize this sum, and even in this regualarization inconsistencies appear.

The standard method is to introduce a heat kernel and it is done as follows

ΓJ
φ̃

= lim
t→0

1
2

∫
d2y
√
G̃σ(y)

∑
n

φn(y)exp(−t∆G̃)φn(y) (120)

The sum is now simply given through the Seeley de Witt coefficients:

lim
t→0

∑
n

φn(y)exp(−t∆G̃)φn(y) = lim
t→0

(
a0(y, y)

4πt
+

1
4π
a2(y, y)

)
(121)

As one can easily see we would have a divergence in the first term by taking limt→0. In quantum field
theory on flat spaces this is usually renormalized by subtracting the flat and free Laplacian ∆0 from the
initial expression. This can not be done in our case, because the scalar products are differently defined for
the operators ∆G̃ and ∆0 and the first term does not disappear. One could renormalize the divergence in
the first term bei subtracting the Laplacian ∆G̃0

= −G̃µν∂µ∂nu from the initial expression. To avoid any
ambiguity we derive the heat kernel for our operator perturbatively.

3.3 Evaluation of the heat kernel

3.3.1 Emergent gravity operator

Our starting action is the following

S[φ] =
1
2

∫
d2y
√
G̃

(
G̃µνeσ(y)∂µφ(y)∂νφ(y)

)
. (122)

Note: We took out the mass for simplicity.

After integrating by parts we obtain the following operator

∆G̃ = − 1√
G̃ab

∂a

(√
G̃abG̃

abeσ∂b

)
= −e2σ∂2 − e2σ∂aσ∂a. (123)

Where ∂2 is defined as
∂2 = ∂a∂

a. (124)

As we showed above the effective action is given by

Γφ =
1
2

Trlog
1
2

∆G̃ ∼ −Tr
∫ ∞

0

dα

α

(
e−α

1
2 ∆G̃

)
e−

1
2 m̃

2α (125)
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≡ −Tr
∫ ∞

0

dα

α

(
e−α

1
2 ∆G̃

)
e−

1
αΛ̃2− 1

2 m̃
2α (126)

where the small α divergence is regularized using an UV cutoff Λ̃ and the big α divergence is regularized
using a cutoff m̃2. Note that we allready had the mass so we can use it as an IR regulator.

The calculations simplfy if we calculate the heat kernel for ∆G̃ instead for 1
2∆G̃. To get rid of the

factor 1/2 we simply shift the integration variable α→ 2t. After the shift the effective action is given by

Γφ ≡ −
1
2

Tr
∫ ∞

0

dt

t

(
e−t∆G̃

)
e−

1
2tΛ̃2−m̃

2t. (127)

The main problem during this work was the calculation of the trace of our operator. Due to the extra
dilaton field we were not able to proceed with the standard heat kernel procedure, where the trace is
simply given by the Seeley de Witt coefficients.

3.3.2 The heat kernel

To calculate the heat kernel expansion perturbatively we expand the operator ∆G̃ around the flat Lapla-
cian,

∆G̃ = ∆0 + V (y) (128)

When V (y) = 0 the heat kernel in 2 dimensions is

K0(y, y′, t) =
1

4πt
e−
|y−y′|2

4t (129)

and satisfies the initial condition
K0(y, y′) = lim

t→0
δ2(y − y′). (130)

Let K(y,y’,t) denote the heat kernel of ∆G̃, that means that K(y,y’,t) satisfies the heat equation for the
operator ∆G̃. K(y,y’,t) is also the solution of the integral equation

K(y, y′, t) = K0(y, y′, t)−
∫ t

0

dt1

∫
d2y1K0(y, y1, t− t1)V (y1).K(y1, y

′, t1) (131)

The integral equation can be solved perturbatively in a Neumann series by successive approximation if we
write

K(y, y′, t) = K0(y, y′, t) +K1(y, y′, t) +K2(y, y′, t) + ... (132)

then at coinciding points the heat kernel reads

K(y, y, t) =
1

4πt
+
∫ t

0

dt′
∫
d2y′K(y, y′, t− t′)V (y′)K(y, y′, t′) + ... (133)

The trace of the operator is given by the heat kernel at coinciding points

Tr
(

e−t∆G̃

)
=
∫
d2y
√
G̃K(y, y, t) (134)
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We now use the pertubative heat kernel expansion to evaluate K(y,y,t).

K(y, y, t) =
1

4πt
+
∫ t

0

dt′
∫
d2y′K(y, y′, t− t′)V (y′)K(y, y′, t′) + ... (135)

The perturbation V(y) of our operator is the following

V (y) = −(e2σ − 1)∂2 − e2σ∂aσ∂a (136)

To the second order in σ(y), this is just

V (y) = −(2σ(y) + 2σ(y)2)∂2 − (1 + 2σ(y))∂aσ(y)∂a (137)

Now we perform a Taylor expansion of σ(y) about y = y0

σ(y) = σ(y0) + ∂aσ(y0)(y − y0)a +
1
2
∂a∂bσ(y0)(y − y0)a(y − y0)b + ... (138)

Note that we pull indices with the metric Gab = e2σδab. If we choose Riemannian normal coordinates the
condition ∂aG̃

ab = 0 implies σ(y0) = 0 and ∂aσ(y0) = 0.

The perturbation V(y) reads after the Taylor expansion and the choice of the Riemannian normal co-
ordinates

V (y) = −∂a∂bσ(y0)(y − y0)a(y − y0)b∂2 − 2∂a∂bσ(y0)(y − y0)b∂a (139)

The heat kernel reads
K(y, y, t) =

1
4πt

+K1(y, y, t) +K2(y, y, t) (140)

K1(y, y, t) = − 1
16π2

∂a∂bσ(y0)
∫ t

0

dt′
1

(t− t′)t′

∫
d2y′(y − y0)a(y − y0)be−

|y−y′|2

4(t−t′) ∂2e
− |y
′−y|2

4(t′) (141)

K2(y, y, t) = − 1
8π2

∂a∂bσ(y0)
∫ t

0

dt′
1

(t− t′)t′

∫
d2y′(y − y0)be−

|y−y′|2

4(t−t′) ∂ae
− |y
′−y|2

4(t′) (142)

Besides basic integration one only needs the following integrals to to solve the heat kernel:∫
d2ke−tk

2
=
π

t
(143)

∫
d2ke−tk

2
kakb =

π

2t2
gab (144)∫

d2ke−tk
2
kakbkckd =

π

4t3
(gabgcd + gacgbd + gadgbc) (145)

The solutions for K1 and K2 are the following

K1(y, y, t) = − 1
12π

∂a∂
aσ(y0) (146)
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K2(y, y, t) =
1

4π
∂a∂

aσ(y0). (147)

After adding all contributions one obtains the following heat kernel

K(y, y, t) =
1

4πt
+

1
6π
∂a∂

aσ(y0) (148)

Γφ = − 1
4π

∫
d2y
√
G̃(Λ̃2 − m̃2logΛ̃2)− 1

6π

∫
d2y
√
G̃Gab∂a∂bσlog(

Λ̃
m̃

). (149)

Where Gab is defined as
Gab = e2σ ḡab. (150)

3.4 Geometry from u(1) gauge fields

3.4.1 Moyal Weyl point of view

Now we rewrite the bosonic one loop effective action in terms of the u(1) gauge fields on the flat Moyal
Weyl background R2

θ̄
with generators Xa. This means that we consider small fluctuations

Y a = Xa +Aa. (151)

around the Moyal Weyl Generators Xa, which are solutions of the equations of motion and satisfy:

[Xa, Xb] = iθ̄ab (152)

Where θ̄ab is a constant antisymmetric tensor.
So lets take a look at the matrix model coupled to a scalar field

S[φ] = −1
2
Tr[Y a, f(y)][Y b, f(y)]gab (153)

=
1
2
Tr[Xa +Aa, f(y)][Xb +Ab, f(y)]gab =

1
2
Tr[Xa + θ̄acAc, f(y)][Xb + θ̄bdAd, f(y)]gab (154)

(155)

=
1
2
TrḡcdDcφDdφ =

∫
d2xḡcdDcφDdφ =

∫
d2xφ∆Aφ (156)

Where Da and ḡcd are given as follows

Da =
∂

∂xa
+ i[Aa, .] (157)

ḡcd = θ̄acθ̄bdgab. (158)

These formulas are exact if interpreted as non commutative gauge theory on R2
θ̄

where Da is intepreted
as covariant derivative withe u(1) gauge field Aa(x).
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3.4.2 Coordinate Transformation

To compare the results from the non commutative gauge theory point of view with the results of emergent
gravity one has first to transform the coordinates from y to x.

ya = xa − θ̄abAb (159)

So the Jacobian is given by:

|∂y
a

∂xb
| = |δab − V ab | = 1− θ̄ac ∂Ac

∂xa
+O(θ̄3) = 1− 1

2
θ̄acF̄ac (160)

We will use the following notation

∂̄a =
∂

∂xa
(161)

∂a =
∂

∂ya
(162)

∂a =
∂xc

∂ya
∂

∂xc
= ∂̄a + V ca ∂̄c (163)

V ca = θ̄cf
∂Af
∂xa

(164)

One wants to transform the following action from y to x coordinates.

Γφ = − 1
4π

∫
d2y
√
G̃(Λ̃2 − m̃2logΛ̃2)− 1

6π

∫
d2y
√
G̃Gab∂a∂bσlog(

Λ̃
m̃

). (165)

The metric is given by

Gab(y) = θac(y)θbd(y)gcd = (θ̄ac − θ̄aeθ̄chF̄eh)(θ̄bd − θ̄bf θ̄dgF̄fg)gcd (166)

This metric can be splitted in 2 parts the flat part and the perturbation part, as allways done in the
linearized version of general relativity.

Gab = ḡab − h̃ab (167)

h̃ab = −ḡadθ̄fbF̄df − ḡbdθ̄faF̄df (168)

One should notice that F ac and θ̄ch are tensors in x coordinates Gab is a tensor in y coordinates. So one
has to be careful to the change of variables.
To compute the determinant one uses the following formula:

det(1 +X) = 1 + trX +
1
2

(
(trX)2 − tr(X2)

)
+ O(X3) (169)

Therefore we rewrite the metric in a slightly other way.

Gab(y) = ḡar(δbr +Xb
r) (170)
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Xb
r = θ̄fbF̄rf + ḡrmθ̄

mf F̄fdḡ
db + ḡrmθ̄

meF̄ehḡ
hg θ̄fbF̄gf (171)

The relation between σ and the metric:

(detGab) = (detḡab)(1− 2F̄rf θ̄rf +
3
2

(F̄rf θ̄rf )2) (172)

eσ = (detGab)1/4 = (detḡab)1/4(1− 1
2
F̄rf θ̄

rf + O(θ̄3)) (173)

So σ is given as

σ =
1
4

logdet(ḡab)− 1
2
θ̄acF̄ac −

1
8

(θ̄acF̄ac)2 (174)

As pointed out before Gab is not the metric one proceeds with. The metric we use has an extra term,
which comes from the density factor. G̃ab is the metric that will be used.

G̃ab = e−σGab = (1 +
1
2
θ̄klF̄kl)(ḡab − h̃ab) = ḡab +

1
2
ḡabθ̄klF̄kl − h̃ab (175)

G̃ab = ḡab − hab (176)

Where we redefined the perturbation as follows

hab := h̃ab − 1
2
ḡabθ̄klF̄kl (177)

hab := −ḡadθ̄fbF̄df − ḡbdθ̄faF̄df −
1
2
ḡabθ̄klF̄kl (178)

In the 2 dimensional case calculations simplify further.

θ̄ca = εcaθ̄ (179)

F̄am = εamF (x) (180)

θ̄caF̄am = εcaεamθ̄F (x) = −δcmθ̄F (x) (181)

Using this simple properties the metric perturbation reads

hab = −ḡadεbfεfdθ̄F (x)− ḡbdεafεfdθ̄F (x)− 1
2
ḡabεklεklθ̄F (x) (182)

= ḡabθ̄F (x). (183)

So the metric is the following one
G̃ab = ḡab(1− θ̄F (x)). (184)

The inverse metric is given as
G̃ab = ḡab(1 + θ̄F (x)) + O(A2). (185)
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The partial derivative is after the coordinate transformation

∂aθ̄F (x) = (∂̄a + V ca ∂̄c)θ̄F (x) = (∂̄a + θ̄cn∂̄aAn∂̄c)θ̄F (x). (186)

The dilaton field is given as

σ = −1
2
θ̄mnF̄mn = −θ̄F (x). (187)

One has first to transform the partial derivatives from y to x coordinates.

∂c∂d(θ̄F ) = (∂̄c + V ac ∂̄a)(∂̄d + V bd ∂̄b)(θ̄F ) (188)

= ∂̄c∂̄d(θ̄F ) + θ̄bg∂̄c∂̄dAg∂̄b(θ̄F ) + θ̄bg∂̄dAg∂̄b∂̄c(θ̄F ) + θ̄af ∂̄cAf ∂̄a∂̄d(θ̄F ) (189)

Ommiting terms O((θ̄F )3) the second and third eliminate each other through partial integration and the
remaining terms are∫

d2x
√
G̃|J |G̃cd∂c∂d(θ̄F ) =

∫
d2x
√
ḡ

(
∂̄c∂̄

c(θ̄F ) + θ̄af ∂̄cAf ∂̄a∂̄
c(θ̄F )

)
(190)

=
∫
d2x
√
ḡ

(
∂̄c∂̄

c(θ̄F ) + θ̄af ∂̄aAf ∂̄c∂̄
c(θ̄F )

)
=
∫
d2x
√
ḡ

(
∂̄c∂̄

c(θ̄F ) + θ̄F ∂̄c∂̄
c(θ̄F )

)
+ O((θ̄F )3) (191)

√
G̃|J | =

√
G̃eσ =

√
ḡe−σeσ =

√
ḡ (192)

We can drop the difference between ∂c and ∂̄c in terms which involve O((θ̄F )2), due to the fact that
we negelect terms of O((θ̄F )3). Transforming the bosonic effective action and taking the Jacobian in to
account one obtains the following:

Γφ = − 1
4π

∫
d2x
√
ḡ(Λ̃2 − m̃2logΛ̃2) +

1
6π

∫
d2x

(
ḡab(1− 2θ̄F )∂a∂b(θ̄F )

)
log(

Λ̃
m̃

) (193)

= − 1
4π

∫
d2x
√
ḡΛ̃2 − m̃2logΛ̃2) +

1
6π

∫
d2xḡab

(
∂a∂b(θ̄F )− 2θ̄F ∂̄a∂̄b(θ̄F )

)
log(

Λ̃
m̃

) (194)

Now we transform the partial derivatives and obtain

= − 1
4π

∫
d2x
√
ḡ(Λ̃2 − m̃2logΛ̃2) +

1
6π

∫
d2xḡab

(
∂̄a∂̄b(θ̄F ) + θ̄F ∂̄a∂̄b(θ̄F )− 2θ̄F ∂̄a∂̄b(θ̄F )

)
log(

Λ̃
m̃

)(195)

The term
∫
d2x∂̄c∂̄

c(θ̄F ) vanishes due to Stokes theorem and finally the effective action reads

= − 1
4π

∫
d2x
√
ḡ(Λ̃2 − m̃2logΛ̃2)− 1

6π

∫
d2x

(
θ̄F ∂̄a∂̄

a(θ̄F )
)

log(
Λ̃
m̃

) (196)

There is detail concerning the cutoffs: Λ̃ is the effective cutoff for ∆G̃, which acts on a Hilbert space
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of functions with inner product (f, g) =
∫
d2yf∗(y)g(y). From the gauge theory point of view, we have

an effective cutoff Λ for ∆A = [Y a, [Ya, .]] which acts on a Hilbert space of functions with inner product
(f, g) = Trf∗(y)g(y) =

∫
d2yρ(y)f∗(y)g(y). The relation between ∆G̃ and ∆A can be easily understood if

we write the action in 2 equivalent ways.

S[φ] = −1
2

∫
d2y

(
φ∂a(G̃ab(y)∂bφ) + ρ(y)m2φ2

)
=

1
2

∫
d2yφ

(
∆G̃ + ρ(y)m̃2

)
φ (197)

=
1
2

Tr
(
−φ[Y a, [Ya, φ]] + m̃2φ2

)
=

1
2

∫
d2yφ

(
∆A + m̃2

)
φ (198)

This means the effective cutoffs are related as

∆G̃ = ρ(y)∆A. (199)

Which means that the effective cutoffs we implented to regularize the small α divergence are related as

Λ̃2 = ρ(y)Λ2. (200)

And in order to be consistent with the cutoff for 1
2∆2 for scalar fields (from the gauge theory point of

view) we replace as in [1] Λ2 with 2Λ2. The same is also done for m̃2.
So the effective action reads

Γφ = − 1
2π

∫
d2x
√
ḡ(Λ2 −m2logΛ2)(1 + (θ̄F )2)− 1

6π

∫
d2x

(
θ̄F ∂̄c∂̄

c(θ̄F )
)

log(
Λ
m

). (201)

The effective action we obtained from the geometrical point of view is exactly the effective action we
obtained from the gauge theory point of view.

3.5 One-loop computation for the bosonic case

Consider now the action for a scalar coupled to the u(1) gauge field, written in Moyal-Weyl space. The
Action has the following form.

S[φ] =
∫
d2x

1
2
g̃ab(∂a + ig[Aa, .])φ(∂b + ig[Ab, .])φ+

1
2
m2φ2 = S0[φ] + Sint[φ] (202)

S0[φ] =
∫
d2x

1
2
g̃ab∂aφ∂bφ+

1
2
m2φ2 (203)

det(g̃ab) = 1 (204)

k.k = kikj g̃
ij (205)

k2 = kikjg
ij (206)

We therefore compute

Γφ =
1
2

Tr log
1
2

∆0 + Γ(1)
φ + Γ(2)

φ . (207)

The first contribution is given by the following diagramm.
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Γ(1)
φ = −g

2

2

∫
d2p

(2π)2Aa′ (p)Ab′ (−p)g̃
a
′
ag̃b
′
b

∫
d2k

(2π)2

4kakb + 2kapb + 2pakb + papb
(k.k +m2)((k + p).(k + p) +m2)

(1− eikiθ
ijpj )

(208)
= Γ(1),P

φ + Γ(1),NP
φ (209)

The second contribution is given by the following diagramm.

Γ(2)
φ = g2

∫
d2p

(2π)2Aa(p)Ab(−p)g̃ab
∫

d2k

(2π)2

1
(k.k +m2)

(1− eikiθ
ijpj ) (210)

= Γ(2),P
φ + Γ(2),NP

φ (211)

3.5.1 IR regulator and UV cutoff

We use the Schwinger representation for the propagators.

1
k.k +m2

=
∫ ∞

0

dαe−α(k.k+m2), (212)

1
(k.k +m2)2

=
∫ ∞

0

dααe−α(k.k+m2), (213)

One puts a small mass as an IR regulator and the UV cutoff is implemented as follows:

1
k.k
→
∫ ∞

0

dαe−αk.k−
1

αΛ2 (214)

which removes the UV singularity at α = 0. For this regularization one needs the following integrals:
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∫ ∞
0

dα
1
α
e−αm

2− 1
Λ2α = 2K0(2

√
m2

Λ2
) = −2

(
γ + log(

√
m2

Λ2
)
)

+ O(
m2

Λ2
log(

Λ
m

)) (215)

∫ ∞
0

dα
1
α2
e−αm

2− 1
Λ2α = 2

√
m2Λ2K1(2

√
m2

Λ2
) = Λ2 − 2m2log(

√
Λ2

m2
) +m2(2γ + 1)

+ O(
m4

Λ2
log(

Λ
m

)) (216)

3.5.2 Γ(1)
φ

It is convenient to write (116) using a Feynman parameter.

1
(k.k +m2)((k + p).(k + p) +m2)

=
∫ 1

0

dz
1

(l.l + z(1− z)p.p+m2)2
(217)

=
∫ 1

0

dz

∫ ∞
0

dααe−α(l.l+z(1−z)p.p+m2) (218)

where

l = k + zp (219)

We need ∫
d2k

(2π)2

P (k)
(k.k +m2)((k + p).(k + p) +m2)

(1− eikiθ
ijpj ) (220)

=
∫

d2k

(2π)2P (k)
∫ 1

0

dz

∫ ∞
0

dααe−α(l.l+z(1−z)p.p+m2)− 1
Λ2α (1− eikiθ

ijpj ) (221)

=
∫ 1

0

dz

∫ ∞
0

dααe−α(z(1−z)p.p+m2)− 1
Λ2α

∫
d2l

(2π)2P (l − zp)(e−αl.l − e−α(li.lj+ili
p̃j
α )g̃ij ) (222)

=
∫ 1

0

dz

∫ ∞
0

dααe−α(z(1−z)p.p+m2)− 1
Λ2α

∫
d2l

(2π)2 (P (l − zp)e−αl.l − P (l − zp+ i
p̃j
α

)e−αl.l−
p̃.p̃
4α (223)

We completed the square and shifted the integration in the last expression, where

p̃i = g̃ij p̃
j = g̃ij θ̄

jkpk. (224)

For our purpose, P(k) is a polynomial which is at most quadratic. So one has∫
d2le−αl.l =

π

α
(225)∫

d2llie
−αl.l = 0 (226)
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∫
d2llilje

−αl.l =
π

2
1
α2
g̃ij (227)

Therefore

=
1

4π

∫ 1

0

dz

∫ ∞
0

dαe−α(z(1−z)p.p+m2)− 1
Λ2α

(
papb(1− 4z + 4z2) +

2
α
g̃ab −

−
(
papb(1− 4z + 4z2) + 2i(p̃apb + pap̃b)

1− 2z
α

− 4p̃ap̃b
α2

+
2
α
g̃ab

)
e−

p̃.p̃
4α

)
(228)

m(z)2 := z(1− z)p.p+m2 (229)

=
1

4π

∫ 1

0

dz

(
papb(1− 4z + 4z2)

(
1

m(z)2Λ2
(2
√
m(z)2Λ2K1(2

√
m(z)2

Λ2
))−

− 1
m(z)2Λ2

eff

(2
√
m(z)2Λ2

effK1(2

√
m(z)2

Λ2
eff

))
)

+ 2g̃ab

(
2K0(2

√
m(z)2

Λ2
)− 2K0(2

√
m(z)2

Λ2
eff

)
)

+

+ 4p̃ap̃b

(
2
√
m(z)2Λ2

effK1(2

√
m(z)2

Λ2
eff

)
))

(230)

Here
Λ2
eff =

1
1

Λ2 + 1
4 p̃.p̃

=
1

1
Λ2 + 1

4
p2

Λ4
NC

(231)

is the effective cutoff for non-planar graphs.
Note that

p̃.p̃ = p̃ap̃bg̃
ab = θ̄acθ̄bdpcpdg̃ab = gcdpcpd =

p2

Λ4
NC

(232)

=
1

4π

(
papb

3

(
1

Λ2
eff

log(Λ2
eff )− 1

Λ2
log(Λ2) +

+
1
3

(
1

Λ2
− 1

Λ2
eff

)(3 log(p.p)− 47 + 6γ)
)
− 2g̃ab(log

Λ2
eff

Λ2
) +

+ 4p̃ap̃b

(
Λ2
eff −m2log(Λ2

eff )− 1
6
p.plog(Λ2

eff ) +

+
∫ 1

0

dz(z(1− z)p.p+m2)log(z(1− z)p.p+m2)
)
− 12γ + 2

))
. (233)

=
1

4π

(
−2g̃ab(log

Λ2
eff

Λ2
) + 4p̃ap̃b

(
Λ2
eff −m2log(Λ2

eff )− 1
6
p.plog(Λ2

eff ) +

+
∫ 1

0

dz(z(1− z)p.p+m2)log(z(1− z)p.p+m2)
))

. (234)

24



Taking the limit m to 0 is not possible in this case and the reason is the following integral.∫ 1

0

dz(z(1− z)p.p+m2)log(z(1− z)p.p+m2) = (235)

=
1
3p

(4m2 + p.p)
3
2 arctanh

(
p√

4m2 + p.p

)
− 1

18

(
24m2 + 5p.p− (18m2 + 3p.p)log(m2)

)
(236)

=
1
6
p.plog(m2) + finite (237)

By taking the limit m to 0 we would have a logarithmic divergence.

3.5.3 Γ(2)
φ

The second contribution is given by the following integral.

= g̃ab

∫
d2k

(2π)2

1
(k.k +m2)

(eikiθ
ijpj − 1) = g̃ab

∫
d2k

(2π)2

∫ ∞
0

dαe−α(k.k+m2)− 1
Λ2α (eikiθ

ijpj − 1) (238)

= g̃ab

∫ ∞
0

dαe−αm
2− 1

Λ2α

∫
d2k

(2π)2

(
e−α(k−i p̃2α ).(k−i p̃2α )− p̃.p̃4α − e−αk.k

)
(239)

= g̃ab
1

4π

∫ ∞
0

dα
1
α
e−αm

2− 1
Λ2α

(
e−

p̃.p̃
4α − 1

)
(240)

=
1

4π
g̃ab

(
2K0(2

√
m2

Λ2
eff

)− 2K0(2

√
m2

Λ2

)
(241)

=
1

4π
g̃ab log

Λ2
eff

Λ2
(242)

The g̃ab term in Γ1
φ eliminates Γ2

φ.

3.5.4 Effective Action

Combining the results and using

θ̄F̄ (p)θ̄F̄ (−p) = 4(p̃aAa(p))(p̃bAb(−p)). (243)

One obtains the induced Action

Γφ = Γ(1)
φ + Γ(2)

φ . (244)

= −g
2

2
1

4π

∫
d2p

(2π)2
θF̄ (p)θF̄ (−p)

(
Λ2
eff +

1
6
p.plog(m2) +

p.p

6
log(

p.p

Λ2
eff

)
)

(245)
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To make contact with the geometrical action one uses the following expansion:

Λ2
eff = Λ2 − p2 Λ4

4Λ4
NC

+ ... (246)

which is valid in the IR regime. Assume the first case

Λ << ΛNC . (247)

In this case we can assume

Λ2
eff ∼ Λ2 (248)

Therefore one obtains the following.

Γφ ∼ −g
2

2
1

4π

∫
d2p

(2π)2
θ̄F̄ (p)θ̄F̄ (−p)

(
Λ2 −m2log(Λ2) +

1
6
p.plog(m2)− 1

6
p.plog(Λ2) + finite

)
(249)

= −g
2

2
1

4π

∫
d2p

(2π)2
θ̄F̄ (p)θ̄F̄ (−p)

(
Λ2 −m2log(Λ2)− 1

6
p.plog(

Λ2

m2
) + finite

)
(250)

= − g
2

8π

∫
d2x

(
θ̄F̄ θ̄F̄Λ2 − θ̄F̄ θ̄F̄m2log(Λ2) +

1
3
θ̄F̄ ∂̄a∂̄a(θ̄F̄ )log

Λ
m

+ finite
)

(251)

Using the notation from the last chapter the effective action reads

Γφ = − g
2

2π

∫
d2x

(
θ̄F θ̄FΛ2 − θ̄F θ̄Fm2log(Λ2) +

1
3
θ̄F ∂̄a∂̄a(θ̄F )log

Λ
m

+ finite
)
. (252)

The constant term in (201) represents the phase space volume of states with ∆0 < Λ. It can be obtained
using the same regularization as above with the heat kernel expansion.

1
2

Trlog(
1
2

∆0) ∼ −Tr
∫ ∞

0

dα

α

(
e−α

1
2 ∆0

)
e−

1
2αΛ̃2−m

2α (253)

We use the following expansion

Tre−
1
2α∆0 ∼

∑
n≥0

(
α

2
)
n−2

2

∫
M
d2x
√
ḡan(x,∆0). (254)

where an(x,∆0) are known as the Seeley de Witt (or Duhamel) coefficients. The only non zero coefficient
for this flat and free operator is the first Seeley de Witt (or Duhamel) coefficient.

a0 =
1

4π
(255)

So the constant term reads

1
2

Trlog(
1
2

∆0) = − 1
2π

∫
d2x
√
ḡ

(
Λ2 −m2logΛ2

)
. (256)
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4 The Fermionic case

Let us now consider a Dirac spinor coupled to the matrix model.

S = (2π)Tr
(
ψ̄γa[Y a, ψ]

)
(257)

∼
∫
d2yρ(y)

(
ψ̄iγaθ

ab∂bψ

)
(258)

This is written for the Minkowski case the Euclidean Version is obtained through the replacement ψ̄ → ψ†.
The Dirac operator is then defined through:

D/ψ = γa[Y a, ψ] ∼ iγaθab(y)∂bψ (259)

4.1 Quantization and induced gravity

As in the bosonic case, we couple fermions to the Matrix Model and quantize with the path integral
formalism.
The one loop effective action is given by:

e−Γψ =
∫
dψdψ†e−S[ψ] (260)

Γψ = −1
2

Trlog
(
D/

2

)
(261)

Also as in the bosonic case we compute the one loop effective action in 2 different ways, we first compute
Γψ as induced gravity action, using the geometric heat kernel method. This is then compared with the
one loop effective action of NC u(1) gauge theory in the IR Regime.

4.1.1 Square of the Dirac operator and induced Action

Starting with the following Action

S[ψ] = (2π)Tr
(
ψ†γa[Y a, ψ]

)
(262)

we want to study:

e−Γψ =
∫
dψdψ†e

(2π)Tr

(
ψ̄†γa[Y a,ψ]

)
(263)

= exp(ln(detD/)) = exp(
1
2

logdet(D/2)) (264)

= exp(
1
2

Trlog(D/2)) (265)

at one loop, and consider the euclidean case. The square of the Dirac operator has the following form:

D/
2
ψ = γaγb[Y a, [Y b, ψ]] (266)
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= −γaγbθac∂c(θbd∂dψ) (267)

= −Gcd∂c∂dψ − ad∂dψ (268)

Where ad is:

ad = γaγbθ
ma∂mθ

db (269)

After taking ρ(y) (=
√
G̃) in to account the action reads

S[ψ] =
∫
d2y
√
G̃ψ̄

(
D/

2

)
ψ. (270)

Where the operator D/2 is the following one

D/
2 = −Gcd∂c∂d − ad∂d (271)

= −Gcd∂c∂d − γaγbθ̄maθ̄dbe2σ(y)∂mσ∂d := −Gcd∂c∂d − Γmde2σ(y)∂mσ∂d (272)

We define Γmd as
Γmd =: γaγbθ̄maθ̄db. (273)

We now use the explicit heat kernel procedure to calculate the trace of the following operator

D/
2 = −e2σ∂c∂

c − Γmde2σ(y)∂mσ∂d. (274)

4.1.2 Quantization

We are now interested in the quantization of our matrix model coupled to the fermions. For the quan-
tization procedure we use the path integral formalism, where we take the path integral over all matrices
Y a, while the spinors can be integrated out in terms of a determinant.

As in the bosonic case we have to deal in the fermionic case with an extra dilaton field. Due to this
dilaton field we are not able to proceed with the standard heat kernel expansion, where the effective
action is simply given by Seeley de Witt coefficients. The one loop action will be calculated in the same
way we proceeded with the Bosons.

The effective action for the Fermions in the path integral formalism is given as

e−Γψ =
∫
dψdψ̄e−S[ψ]. (275)

By integrating out the spinors one simply obtains

Γψ = −1
2

Trlog
(
D/

2

)
(276)

∼ 1
2

Tr
∫ ∞

0

dα

α
e−D/

2α ≡ 1
2

Tr
∫ ∞

0

dα

α

(
e−D/

2α

)
e−m̃

2α− 1
Λ̃2α (277)

We introduced Λ̃2 as cutoff for the UV regime and we use the mass as an IR regulator.
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To be consistent with the change of variables that we used in the geometrical interpretation of the bosonic
case we shift Λ̃2 → 2Λ̃2. The same is done for the mass m̃2.

Γψ ∼
1
2

Tr
∫ ∞

0

dt

t

(
e−D/

2t

)
e−2m̃2t− 1

2Λ̃2t (278)

4.2 Evaluation of the heat kernel

4.2.1 The heat kernel

In this section we calculate the pertubvative heat kernel at coinciding points as in the bosonic case.

The trace of the operator is given by the heat kernel

Tr
(

e−D/
2t

)
=
∫
d2y
√
G̃K(y, y, t) (279)

We now use the pertubativ heat kernel expansion to evaluate K(y,y,t).

K(y, y, t) =
1

4πt
+
∫ t

0

dt′
∫
d2y′K(y, y′, t− t′)V (y′)K(y, y′, t′) + ... (280)

To calculate the heat kernel expansion explicitly we expand the operator D/2 around the flat Laplacian,

D/
2 = D/

2
0 + V (y) (281)

The perturbation V(y) of our operator is the following

V (y) = −(e2σ − 1)∂2 − e2σΓmd∂mσ∂d (282)

To the second order in σ(y), this is just

V (y) = −(2σ(y) + 2σ(y)2)∂2 − (1 + 2σ(y))Γmd∂mσ∂d (283)

Now we perform a Taylor expansion of σ(y) about y = y0

σ(y) = σ(y0) + ∂aσ(y0)(y − y0)a +
1
2
∂a∂bσ(y0)(y − y0)a(y − y0)b + ... (284)

Note that we pull indices with the metric Gab = e2σδab. If we choose Riemannian normal coordinates the
condition ∂aG̃

ab = 0 implies σ(y0) = 0 and ∂aσ(y0) = 0.

The perturbation V(y) reads after the Taylor expansion and the choice of the Riemannian normal co-
ordinates

V (y) = −∂a∂bσ(y0)(y − y0)a(y − y0)b∂2 − 2Γmd∂m∂aσ(y0)(y − y0)a∂d (285)

The heat kernel reads
K(y, y, t) =

1
4πt

+K1(y, y, t) +K2(y, y, t) (286)
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K1(y, y, t) = − 1
16π2

∂a∂bσ(y0)
∫ t

0

dt′
1

(t− t′)t′

∫
d2y′(y′ − y0)a(y′ − y0)be−

|y−y′|2

4(t−t′) ∂2e
− |y
′−y|2

4(t′) (287)

K2(y, y, t) = − 1
8π2

Γma∂m∂bσ(y0)
∫ t

0

dt′
1

(t− t′)t′

∫
d2y′(y′ − y0)be−

|y−y′|2

4(t−t′) ∂ae
− |y
′−y|2

4(t′) (288)

After adding all contributions one obtains the following heat kernel

K(y, y, t) =
1

4πt
− 1

12π
∂a∂

aσ(y0) +
1

4π
Γab∂a∂bσ(y0) (289)

We obtain the following for the effective action

Γψ =
1

4π

∫
d2y
√
G̃(Λ̃2−m̃2logΛ̃2)tr(1)+

∫
d2y
√
G̃

(
− 1

12π
Gab∂a∂bσtr(1)+

1
4π
e2σtr(Γab)∂a∂bσ

)
log(

Λ̃
m̃

).

(290)

We first have to calculate the trace of Γab and it is done as follows

tr(Γab) = θ̄acθ̄bdtr(γcγd). (291)

The trace over the 2 dimensional gamma matrices in Euclidean space is given by

tr(γcγd) = 2δcd. (292)

The trace of Γab is
tr(Γab) = 2θ̄acθ̄bdδcd = 2ḡcd. (293)

The trace for a 2 dimensional Dirac spinor is

tr(1) = 2. (294)

We finally obtain the following for the effective action:

Γψ =
1

2π

∫
d2y
√
G̃(Λ̃2 − m̃2logΛ̃2) +

∫
d2y
√
G̃Gab

(
− 1

6π
∂a∂bσ +

1
2π
∂a∂bσ

)
log(

Λ̃
m̃

). (295)

=
1

2π

∫
d2y
√
G̃(Λ̃2 − m̃2logΛ̃2) +

1
3π

∫
d2y
√
G̃Gab∂a∂bσlog(

Λ̃
m̃

). (296)

Where Gab is defined as
Gab = e2σ ḡab. (297)
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4.3 Geometry from u(1) gauge fields

4.3.1 Moyal Weyl point of view

Now we rewrite the action for a Dirac Fermion on the Moyal-Weyl quantum Plane R2
θ coupled to a u(1)

gauge field in the adjoint.
As in the bosonic case we write the general covariant coordinate Y a as

Y a = Xa +Aa (298)

around the Moyal Weyl Generators Xa, which are solutions of the equations of motion and satisfy:

[Xa, Xb] = iθ̄ab (299)

Where θ̄ab is a constant antisymmetric Tensor.
So lets take a look at the Matrix model coupled to a spinor field

[Y a, f(y)] ∼ [Xa +Aa, f(y)] = [Xa − θ̄abAb(x), f(y)] ≡ iθ̄abDbf(y) (300)

giving for the quadratic form

S[ψ]square = (2π)Tr
1
2
ψ†γaγb[Y a, [Y b, ψ]] (301)

= −
∫
d2xψ†γaγbθ̄

amθ̄bnDmDnψ (302)

= −
∫
d2xψ†D̃/

2

Aψ (303)

Where
D̃/

2

A = −γaγbθ̄amθ̄bnDmDn (304)

4.3.2 Coordinate Transformation

To compare the results from the non commutative gauge theory point of view with the results of emergent
gravity one has first to transform the coordinates from y to x.

ya = xa − θ̄abAb (305)

So the Jacobian is given by:

|∂y
a

∂xb
| = |δab − V ab | = 1− θ̄ac ∂Ac

∂xa
+O(θ̄3) = 1− 1

2
θ̄acF̄ac (306)

I will use the following notation:

∂̄a =
∂

∂xa
(307)

∂a =
∂

∂ya
(308)
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∂a =
∂xc

∂ya
∂

∂xc
= ∂̄a + V ca ∂̄c (309)

V ca = θ̄cf
∂Af
∂xa

(310)

One wants to transform the following action from y to x coordinates:

Γψ =
1

2π

∫
d2y
√
G̃(Λ̃2 − m̃2logΛ̃2) +

1
3π

∫
d2y
√
G̃Gab∂a∂bσlog(

Λ̃
m̃

). (311)

The metric is given by

Gab(y) = θac(y)θbd(y)gcd = (θ̄ac − θ̄aeθ̄chF̄eh)(θ̄bd − θ̄bf θ̄dgF̄fg)gcd (312)

This metric can be splitted in 2 parts the flat part and the perturbation part, as allways done in the
linearized version of general relativity.

Gab = ḡab − h̃ab (313)

h̃ab = −ḡadθ̄fbF̄df − ḡbdθ̄faF̄df (314)

One should notice that F ac and θ̄ch are tensors in x coordinates Gab is a tensor in y coordinates. So one
has to be careful to the change of variables.
To compute the determinant one use the following formula:

det(1 +X) = 1 + trX +
1
2

(
(trX)2 − tr(X2)

)
+ O(X3) (315)

Therefore we rewrite the metric in a slightly other way.

Gab(y) = ḡar(δbr +Xb
r) (316)

Xb
r = θ̄fbF̄rf + ḡrmθ̄

mf F̄fdḡ
db + ḡrmθ̄

meF̄ehḡ
hg θ̄fbF̄gf (317)

The relation between σ and the metric:

(detGab) = (detḡab)(1− 2F̄rf θ̄rf +
3
2

(F̄rf θ̄rf )2) (318)

eσ = (detGab)1/4 = (detḡab)1/4(1− 1
2
F̄rf θ̄

rf + O(θ̄3)) (319)

So σ is given as

σ =
1
4

logdet(ḡab)− 1
2
θ̄acF̄ac −

1
8

(θ̄acF̄ac)2 (320)

As pointed out before that is not the metric one proceeds with. The metric we use has an extra term,
which comes from the density factor. This is the metric that will be used.
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G̃ab = e−σGab = (1 +
1
2
θ̄klF̄kl)(ḡab − h̃ab) = ḡab +

1
2
ḡabθ̄klF̄kl − h̃ab (321)

G̃ab = ḡab − hab (322)

Where we redefined the perturbation as follows

hab := h̃ab − 1
2
ḡabθ̄klF̄kl (323)

hab := −ḡadθ̄fbF̄df − ḡbdθ̄faF̄df −
1
2
ḡabθ̄klF̄kl (324)

In the 2 dimensional case calculations simplfy further.

θ̄ca = εcaθ̄ (325)

F̄am = εamF (x) (326)

θ̄caF̄am = εcaεamθ̄F (x) = −δcmθ̄F (x) (327)

Using this simple properties the metric perturbation reads

hab = −ḡadεbfεfdθ̄F (x)− ḡbdεafεfdθ̄F (x)− 1
2
ḡabεklεklθ̄F (x) (328)

= ḡabθ̄F (x). (329)

So the metric is the following one
G̃ab = ḡab(1− θ̄F (x)). (330)

The inverse metric is given as
G̃ab = ḡab(1 + θ̄F (x)) + O(A2). (331)

The partial derivative is after the coordinate transformation

∂aθ̄F (x) = (∂̄a + V ca ∂̄c)θ̄F (x) = (∂̄a + θ̄cn∂̄aAn∂̄c)θ̄F (x). (332)

The dilaton field is given as

σ = −1
2
θ̄mnF̄mn = −θ̄F (x). (333)

Transforming the fermionic effective action and taking the Jacobian in to account one obtains the following

Γψ =
1

2π

∫
d2x
√
G̃|J |(Λ̃2 − m̃2logΛ̃2)− 1

3π

∫
d2x
√
G̃|J |Gab∂a∂bθ̄F (x)log(

Λ̃
m̃

). (334)

As pointed out in the last chapter |J |
√
G̃ = 1. And one has first to transform the partial derivatives from
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y to x coordinates. It is exactly done as in the previous chapter.
One obtains the following for the effective action

Γψ =
1

2π

∫
d2x(Λ̃2 − m̃2logΛ̃2)− 1

3π

∫
d2xḡab(1− 2θ̄F (x))∂a∂bθ̄F (x)log(

Λ̃
m̃

). (335)

=
1

2π

∫
d2x(Λ̃2 − m̃2logΛ̃2)− 1

3π

∫
d2xḡab

(
∂a∂bθ̄F (x)− 2θ̄F (x)∂̄a∂̄bθ̄F (x)

)
log(

Λ̃
m̃

). (336)

=
1

2π

∫
d2x(Λ̃2−m̃2logΛ̃2)− 1

3π

∫
d2x∂̄a∂̄aθ̄F (x)+ θ̄F (x)∂̄a∂̄aθ̄F (x)−2θ̄F (x)∂̄a∂̄aθ̄F (x)log(

Λ̃
m̃

). (337)

=
1

2π

∫
d2x(Λ̃2 − m̃2logΛ̃2) +

1
3π

∫
d2xθ̄F (x)∂̄a∂̄aθ̄F (x)log(

Λ̃
m̃

). (338)

As pointed out in the last chapter there is a detail concerning the cutoffs if one compares it with the
gauge theory point of view. Which means that the effective cutoffs we implented to regularize the small
α divergence are related as

Λ̃2 = ρ(y)Λ2. (339)

And in order to be consistent with the cutoff for 1
2∆2 for scalar fields (from the gauge theory point of

view) we replace as in [1] Λ2 with 2Λ2. The same is again done also for m̃2.

So the effective action reads

Γψ =
1
π

∫
d2x(Λ2 −m2logΛ2)(1 + (θ̄F (x))2) +

1
3π

∫
d2xθ̄F (x)∂̄a∂̄aθ̄F (x)log(

Λ
m

). (340)

The effective action we obtained from the geometrical point of view is exactly the effective action we
obtained from the gauge theory point of view.

4.4 One-loop computation for the fermionic case

We now consider the Feynman diagram corresponding to the following Action

Γψ = −1
2

Trlg∆0 −
g2

2

〈∫
d2xρ̄ψ̄γ̃a[Aa, ψ]

∫
d2yρ̄ψ̄γ̃b[Ab, ψ]

〉
(341)

= −1
2

Trlg∆0 + Γψ(A) (342)

This gives:

Γψ = 2g2

∫
d2p

(2π)2Aa′ (p)Ab′ (−p)g̃
a
′
ag̃b
′
b

∫
d2k

(2π)2

2kakb + kapb + pakb − g̃abk(k + p)
(k.k)((k + p).(k + p))

(1− eikiθ
ijpj ) (343)

which is quite close to the bosonic case, using the notation

k.k = kikj g̃
ij (344)
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k2 = kikjg
ij (345)

To evaluate this loop integral, we rewrite it in a different way as in [3]

=
∫

d2k

(2π)2

(
(2ka + pa)(2kb + pb)
(k.k)((k + p).(k + p))

− 2g̃ab
k.k

)
(1− eikiθ

ijpj ) +

+ (papb − g̃abp.p)
∫

d2k

(2π)2

1
(k.k)((k + p).(k + p))

(eikiθ
ijpj − 1) (346)

Now the first term is precisely the induced action we obtained from the Bosonic case.

Γψ = −2Γφ + g2

∫
d2p

(2π)2Aa′ (p)Ab′ (−p)g̃
a
′
ag̃b
′
b(papb − g̃abp.p)∫

d2k

(2π)2

1
(k.k)((k + p).(k + p))

(eikiθ
ijpj − 1) (347)

So lets take a look at the k part

Γ(2)
ψ = −

∫
d2k

(2π)2

1
(k.k)((k + p).(k + p))

(1− eikiθ
ijpj ) (348)

=
∫ 1

0

dz

∫ ∞
0

dααe−α(z(1−z)p.p)− 1
Λ2α

∫
d2l

(2π)2 e
−αl.l

(
1− e−

p̃p̃
4α

)
(349)

m(z)2 := z(1− z)p.p+m2 (350)

Γ(2)
ψ = − 1

4π

∫ 1

0

dz

(
1

m(z)2Λ2
(2
√
m(z)2Λ2K1(2

√
m(z)2

Λ2
))− 1

m(z)2Λ2
eff

(2
√
m(z)2Λ2

effK1(2

√
m(z)2

Λ2
eff

))
)
(351)

=
1

4π

(
1

Λ2
log(Λ2)− 1

Λ2
eff

log(Λ2
eff ) + (

1
Λ2
eff

− 1
Λ2

)(2γ − 3 + log p.p)
)

(352)

Here
Λ2
eff =

1
1

Λ2 + 1
4 p̃.p̃

=
1

1
Λ2 + 1

4
p2

Λ4
NC

(353)

is the effective cutoff for non-planar graphs.
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4.4.1 Effective Action

Summing up all results we obtain the following for the fermionic effective Action

Γψ = −2Γφ +
1

4π
g2

∫
d2p

(2π)2Aa′ (p)Ab′ (−p)g̃
a
′
ag̃b
′
b(papb − g̃abp.p)(

1
Λ2

log(Λ2)− 1
Λ2
eff

log(Λ2
eff ) + (

1
Λ2
eff

− 1
Λ2

)(2γ − 3 + log p.p)
)

(354)

= −2Γφ −
1
2

1
4π
g2

∫
d2p

(2π)2 F̄abF̄a′b′ g̃
a
′
ag̃b
′
b

(
1

Λ2
log(Λ2)− 1

Λ2
eff

log(Λ2
eff ) + (

1
Λ2
eff

− 1
Λ2

)(2γ − 3 + log p.p)
)

(355)

To make contact with the geometrical action one uses the following expansion:

Λ2
eff = Λ2 − p2 Λ4

4Λ4
NC

+ ... (356)

which is valid in the IR regime. Assume the first case

Λ << ΛNC . (357)

In this case we can assume

Λ2
eff ∼ Λ2 (358)

Therefore one obtains the following:

Γ(2)
ψ = 0 (359)

Therefore

Γψ + 2Γφ = 0 (360)

This result is quite surprising from a supersymmetric point of view. The supersymmetric non commutative
case in 2 dimensions is the same as the supersymmetric commutative case in 2 dimensions. This result
should also encourage the work on 2 dimensional NCQFT, due to the fact that in the supersymmetric
case no UV/IR mixing appears.
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5 Conclusion

The basic intention of this paper is the verification of emergent gravity in 2 dimensions. Emergent gravity
is interesting from many points of view, first the u(1) sector of NC gauge theory is interpreted as terms of
gravity. Gravity is obtained from the Yang Mills matrix model which is similiar to actions that arise in the
context of string theory, such as the IKKT Model. It differs from string theory, in claiming backgroung
independency. We first derived the model with the heat kernel expansion where the coupling metric Gab

is interpreted as gravity. The next step was to compare the gravitational interpretation with the u(1)
sector of NC gauge theory. The effective action is obtained in the gauge theory point of view in terms
of Feynman diagrams. Even though the two effective actions are obtained from a different point of view,
they agree in the IR regime.

Another exciting issue is that the metric couples to all matter, though a reasonable kinetic term is always
of the from: [Xa, .][Xb, .]gab. Further in [1], it was pointed out that the Einstein Hilbert action will be
induced upon quantization and will amount to the UV/IR mixing. The first fact can be easily understood
by looking at the second Seeley de Witt coefficient: a2 = R[G] + 6E. This means that every gravitational
coupling to matter, will lead to an induced Einstein Hilbert action. But the second fact is surprising,
though it gives an alternative explanation to the UV/IR mixing. The ”would be photons” are not photons
but rather gravitons defined on a nontrivial noncommutative background.

The bosonic case was a non trivial problem in this paper, since we had to deal with an extra dilaton
term. This means we end up with a non minimal operator. Many authors [4,9] dealt with the same
problem, but till now no solution was satisfying enough to fit in our framework. The procedure of the
heat kernel expansion is not that ”simple” as in the 4 dimensional case, though in 4 dimensions one
has a minimal operator. The interesting part is that the dilaton factor often appears in the dimensional
reduction from 4 to 2 dimensions, but we started with a matrix model that is in particular defined in 2
dimensions.

We simply solved the problem by calculating the heat kernel perturbatively instead of using the stan-
dard procedure of the heat kernel expansion, where the effective action is given through the Seeley de
Witt coefficients. We finally compared the results with the NC gauge theory point of view and the two
results coincide in the IR regime. The agreement of the 2 results was very pleasing, due to the fact that
we had a non trivial check to the solution of the heat kernel expansion.

An important observation occured during this framework considering the limes m → 0, we explicitly
showed that IR divergences would occur in this limes. One could care less and think of it as anomaly in
2 dimensions, this is simply not true it holds in any dimension. This is not just an effect that occurs in
NCQFT, but as well in usual quantum field theories it is a well known fact that this particular limes is
hard to handle. To be more precise the heat kernel expansion is not the best way to proceed for a massless
scalar field. One can avoid IR divergences with the zeta function regularization. For a great insight to
this problem view [18].

Another exciting observation was done in 2-dimensional NC gauge theory: Γψ + 2Γφ = 0. This in
particular means that in the supersymmetric case all divergences would cancel each other, just as in the
commutative case. Not only the divergences kill each other but the UV/IR mixing phenomena is totally
absent. This opens the way towards a renormalizable model in 2 dimensions that incorporates gravity as
an intristic part.
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6 Appendix

Heat kernel expansion for the induced action

We described in the last chapter how to quantize a given action with the heat kernel expansion. Note
that during the whole procedure the action was covariant, and the meausure that restored covariance was√
G. In the action that we obtained from the matrix model we do not have such a factor.

The action that emerged from the matrix model is the following one

S[φ] = −1
2

∫
d2y
√
gφ(y)(ḡabeσ(y)∂a∂b + ḡabeσ(y)∂aσ∂b − e−σ(y)m2)φ(y). (361)

and the Laplace type operator is

A = −ḡabeσ(y)(∂a∂b + ∂aσ∂b) = −(G̃ab∂a∂b + G̃cd∂cσ∂d). (362)

G̃ab = ḡabeσ(y) (363)

Note: We do not include the mass to the operator, though we took it out during the heat kernel expansion
to regularize the IR divergence.
In the 2 dimensional case many things simplfy for example

G̃abΓeab = −1
2
G̃abG̃ed(G̃adφ,b + G̃bdφ,a − G̃abφ,d) (364)

= −1
2
G̃ab(δeaφ,b + δebφ,a − G̃abφe) (365)

= −1
2

(G̃ebφ,b + G̃eaφ,a − 2φe) = 0. (366)

The curvature in 2 dimensions is
R = −G̃ab∂a∂bσ. (367)

ad is given as
ad = G̃cd∂cσ. (368)

In our case ωd is

ωd =
1
2
G̃eda

e =
1
2
G̃edG̃

ce∂cσ =
1
2
∂dσ. (369)

And E reads
E = −G̃cd(∂cωd + ωcωd) (370)
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∂cωd =
1
2
∂c∂dσ (371)

ωcωd =
1
4
∂cσ∂dσ (372)

E = −1
2
G̃cd(∂c∂dσ +

1
2
∂cσ∂dσ). (373)

So the second coefficient is the following one

a2(y) =
1

(24π)

(
R[G̃] + 3∆G̃σ −

3
2
G̃cd∂cσ∂dσ

)
(374)

After taking all coefficients in to account one obtains for the effective action the following.

Γφ = − 1
4π

∫
d2y
√
G̃(Λ̃2 − e−σ(y) m̃

2

2
logΛ̃2)− 1

(24π)

∫
d2y
√
G̃

(
R[G̃] + 3∆G̃σ −

3
2
G̃cd∂cσ∂dσ

)
log(

Λ̃
m̃

)

(375)

Where

∆G̃σ = −G̃ab∂a∂bσ + Γc∂cσ = − 1√
G̃ab

∂a

(√
G̃abG̃

ab∂bσ

)
. (376)

Γc = G̃abΓcab (377)

A bit of surprise is the second Seeley de Witt coefficient, because it is exactly the same as in the 4
dimensional case.
Now let us consider Sφ again. During the following calculations we will negelect the mass term for clarity.

S[φ] = −1
2

∫
d2y
√
ḡφ(y)(ḡabeσ(y)∂a∂b + ḡabeσ(y)∂aσ∂b)φ(y) = S(1)[φ] + S(2)[φ] (378)

S(1)[φ] := −1
2

∫
d2y
√
ḡφ(y)(ḡabeσ(y)∂a∂b)φ(y) (379)

S(2)[φ] := −1
2

∫
d2y
√
ḡφ(y)(ḡabeσ(y)∂aσ∂b)φ(y) (380)

We now take a closer look at the second term of the action. After one partial integration one obtains

S(2)[φ] :=
1
2

∫
d2y
√
ḡḡabeσ(y)φ(y)(∂aσ∂b + ∂aσ∂bσ + ∂a∂bσ)φ(y). (381)

Comparing the two actions gives us the following

S(2)[φ] :=
1
4

∫
d2y
√
ḡḡabeσ(y)φ(y)(∂aσ∂bσ + ∂a∂bσ)φ(y). (382)

So after taking this in to account

S[φ] = −1
2

∫
d2y
√
ḡφ(y)(ḡabeσ(y)∂a∂b −

1
2
ḡabeσ(y)∂aσ∂bσ −

1
2
ḡabeσ(y)∂a∂bσ)φ(y) (383)
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The Laplace type operator is the following

A = −(G̃ab∂a∂b −
1
2
G̃ab∂aσ∂bσ −

1
2
G̃ab∂a∂bσ). (384)

The Endomorphism E reads
E = b (385)

due to the fact that in this case ωd is 0.

E = −1
2
G̃ab

(
∂aσ∂bσ + ∂a∂bσ

)
(386)

So the second coefficient is the following one

a2(y) =
1

(24π)

(
R[G̃] + 3∆G̃σ − 3G̃cd∂cσ∂dσ

)
(387)

The effective action reads

Γφ = − 1
4π

∫
d2y
√
G̃(Λ̃2 − e−σ(y) m̃

2

2
logΛ̃2)− 1

(24π)

∫
d2y
√
G̃

(
R[G̃] + 3∆G̃ − 3G̃cd∂cσ∂dσσ

)
log(

Λ̃
m̃

).

(388)

Which is a clear contradiction to the previous calculation. The condradiction is in the term ∂cσ∂dσ.
Allthough we calculated the effective action from the same action, with the same procedure we obtain two
different results.
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Zusammenfassung

Die grösste Herausforderung der heutigen modernen Physik ist die Vereinheitlichung der Allgemeinen Rela-
tivitätstheorie (ART) mit der Quantenfeldtheorie (QFT). Bis zum heutigen Stand gibt es keine vollständige
Theorie die diese 2 Grundpfeiler der modernen Physik vereinigt. Es treten viele Probleme auf beim Ver-
such die Theorien zu vereinen. Einer der grössten Probleme betrifft die Dynamik der Raumzeit. In der
ART ist die Raumzeit nicht bloss eine Bühne wo die Dynamik stattfindet, die Raumzeit trägt gundle-
gend zur Dynamik bei. Dieser Sachverhalt kann durch die berühmten Einsteinschen Feldgleichungen
verstanden werden: Rµν − 1

2gµνR = κTµν . Die Einsteinschen Feldgleichungen verknüpfen die Geometrie
der Raumzeit mit dem Energie-Impuls-Tensor. Quantenfeldtheorien wie QED (Quantenelekrodynamik)
oder QCD (Quantenchromodynamik) hingegen arbeiten mit der Raumzeit bloss als eine Bühne wo die
Dynamik stattfindet.

Die Vereinheitlichung scheitert nicht am Aufwand, es gibt zahlreiche wunderschöne Ansätze, z.B. Stringth-
eorie oder Ashtekars Ansatz zur Quantengravitation, um nur einige Wenige zu nennen. Der nichtkommu-
tative Ansatz ist die Raumzeit selbst zu quantisieren, und eine (hoffentlich) renormalisierbare QFT auf
solch eine Raumzeit zu definieren, die nach Möglichkeit auch Gravitation beinhaltet. Anfangs erschien der
Ansatz erfreulich, da die nichtkomutative QFT (NCQFT) einen natürlichen UV-Cutoff enthält. Es stellte
sich heraus [6], dass das nichtkommutative φ4 Modell nicht endlich im UV Bereich ist und auch neue
Divergenztypen beinhaltet, die sogenannten UV/IR mixing Divergenzen. Die Situation blieb unverändert
bis H. Grosse und R. Wulkenhaar [4,5] ein renormalisierbares nichtkommutatives Modell definierten. Das
war ein Durchbruch in der NCQFT.

Erst kürzlich realisierte H. Steinacker mit einem Matrix Modell NCQFT auf einen dynamischen nichtkom-
mutativen Raum zu definieren. Die Idee wurde unter den Namen ”emergent gravity from noncommutative
gauge theory” publiziert. Steinacker erkannte, dass Matrix Modelle (MM) die nichtkommutative Eichthe-
orie (NKET) definieren eine spezifische Version der Gravitation beinhalten. Diese Erkenntnis legt den
Grundstein für eine dynamische Theorie der nichtkommutativen Räume. Im Wesentlichen wurde in [1]
behauptet, dass die Quantisierung zur Einstein Hilbert Wirkung führen wird. Es sollte auch das berühmte
UV/IR mixing in NKET erklären. Diese Behauptung war überraschend und die Aussage wird durch die
Tatsache gestützt, dass UV/IR mixing nur im U(1) Sektor der NCET auftritt. Emergent Gravity erklärt
auch das seltsame Verhalten der Photonen: es sind nicht Photonen sondern Gravitonen, die einen nicht
trivialen Hintergrund definieren. Die U(1) Eichfelder werden in der effektiven Metrik absorbiert. Alle
Felder koppeln an die effektive Metrik.

In dieser Arbeit verifizieren wir die Erklärung des UV/IR mixings durch die Gravitation. Die Rech-
nungen werden in 2 Dimensionen durchgeführt. Wir koppeln das skalare Feld an das MM und führen eine
1 Loop Quantisierung durch. In der geometrischen Interpretation interpretieren wir die Wirkung als ein
Skalarfeld gekoppelt an Gravitation. Diese Interpretation führt zur Einstein Hilbert Wirkung. In der 2.
Interpretation interpretieren wir dasselbe MM als NCET. Die 1 Loop Quantisierung wird mit den Feyn-
manregeln berechnet. Diese 2 Interpretationen sollten zumindest im IR Bereich übereinstimmen. Dieselbe
Prozedur wird für Fermionen gekoppelt am MM durchgeführt.
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