
 
 
 

 
 

 
 
 

 
 

 

DISSERTATION 
 
 
 
 

 
 
 

Ca2+ Dependent Protein Kinases in Arabidopsis thaliana 

 

 

 
 
 
 

angestrebter akademischer Grad 
 

Doktor der Naturwissenschaften (Dr. rer.nat.) 
 
 
 
 
 
 
 

Verfasser: Mag. Norbert Mehlmer 

Matrikel-Nummer: 9820609 

Dissertationsgebiet: Genetik/Mikrobiologie 

Betreuer: Univ.-Prof. Dr. Markus Teige 

 
 
 
 
Wien, am 04. Dezember 2008 

 



Danksagung 

2 

Danksagung 
 
 

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit 

beigetragen haben. Ein ganz großes Dankeschön gilt daher Prof. Markus Teige für die 

interessante Aufgabenstellung, für die exzellente Betreuung und schließlich auch für die 

Korrektur meiner schriftlichen Arbeit.  

Vor allem möchte ich mich bei Roman Bayer, Georgi Atanasov Dermendjiev, Edina 

Csaszar, Daniela Hofmann Rodrigues, Sonja Kolar, Christian Kolowrat, Andrea Mair, 

Helga Waltenberger und Bernhard Wurzinger für die gute Zusammenarbeit bedanken.  

Für die Hilfe bei der Korrektur meiner schriftlichen Arbeit möchte ich mich ganz 

besonders bei Hannelore Breitenbach-Koller und Alexandra Koller bedanken.  

Auch danke ich allen Studenten die mir bei meiner praktischen Arbeit geholfen haben.  

Es ist mir eine große Freude an dieser Stelle meinen Eltern, Eva und Lothar Mehlmer, 

für Ihre treue Begleitung durch mein Jugend - und Studienzeit zu danken. 

 

 

 

 



Zusammenfassung 

 3

Zusammenfassung 

Pflanzen sind nicht in der Lage, den Standort zu wechseln und müssen daher auf 

Änderungen der Umwelt adäquat reagieren um zu überleben und sich fortzupflanzen. 

Viele extrazelluläre Signale wie Licht, biotische und abiotische Stressfaktoren lösen in 

pflanzlichen - und auch in tierischen Zellen  -  eine kurzfristige Erhöhung der zellulären 

Ca2+ Konzentration aus, die als Signal wirkt (Harper et al., 2004; Cheng et al., 2002; 

Sanders et al., 2002). Ca2+ abhängige Protein Kinasen werden in der Gegenwart von 

erhöhtem Ca2+ aktiviert und leiten das ursprüngliche (Stress) Signal durch Protein 

Phosphorylierung weiter. Somit spielen diese Proteinkinasen eine zentrale Rolle in der 

Regulation der zellulären Stressantwort. In dieser Arbeit beschreibe ich die subzelluläre 

Lokalisierung von mehreren Ca2+ abhängigen Protein Kinasen (CDPKs) im 

Allgemeinem und CPK3 im Detail, und analysiere die Rolle von CPK3 in der 

Anpassung an abiotische Stressbedingungen. Durch Verwendung von CDPK-YFP 

Fusionsproteinen und biochemischer Zellfraktionierung war ich in der Lage zu zeigen, 

dass viele CDPKs Membranassoziiert sind. Ich konnte weiterhin zeigen, dass N-

terminale Acylierungen (Myristoylierung und Palmitoylierung) für diese Lokalisierung 

verantwortlich sind. Diese Ergebnisse bestätigen die Beobachtung, dass N-Terminale 

Myristoylierung und Palmitoylierung eine wesentliche Rolle für die subzelluläre 

Lokalisation dieser Proteinkinasen spielen. CPK3 ist allerdings nicht palmitoyliert und 

infolgedessen auch im Zellkern lokalisiert. Dies erhöht die Anzahl von möglichen 

Zielproteinen, die durch CPK3 phosphoryliert werden können. Um molekulare 

Zielproteine von CPK3 zu isolieren, wurden mikrosomale Membranen isoliert und mit 

rekombinanter CPK3 phosphoryliert. Durch einen kombinierten Einsatz pho-

spezifischer Antikörper und massenspektroskopischer Analyse konnten 

Phosphoproteine als CPK3 Targets identifiziert werden. Interessanterweise war ein 

Großteil dieser Proteine in den Transport von gelösten Substanzen und Ionen involviert, 

wie z.B. Ionen Pumpen und Kanal-Proteine, was für den salz-sensitiven Phänotyp der 

cpk3 Knock-out Linie verantwortlich sein dürfte. 
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Abstract 
 

Plants as sessile organisms have to respond to various external stimuli such as different 

forms of stress (i.e. pathogens, abiotic stress) or different light intensities. Many extra 

cellular signals such as light, biotic and abiotic stress factors elicit changes in the 

cellular Ca2+ concentrations in plant and animal cells (Harper et al., 2004; Cheng et al., 

2002; Sanders et al., 2002). In plants, decoding of these calcium signals is performed by 

protein kinases such as calcium dependent protein kinases (CDPKs), which mediate 

cellular responses by either directly changing enzymatic activities via protein 

phosphorylation, or indirectly by changing gene expression patterns. In this work I 

describe the subcellular localization of several CDPKs, in particular that of CPK3 in 

detail and analyse the role of CPK3 in adaptation to abiotic stress conditions. Using 

expression constructs, in which the CDPKs were fused to yellow fluorescent protein 

(YFP) and in biochemical cell fractionation experiments, I was able to demonstrate the 

attachment of several CDPKs to cellular membranes. These results are consistent with 

the observed N-terminal myristoylation and palmitoylation of many CDPKs. However, 

CPK3 is not palmitoylated and localizes also to the nucleus, thus enabling targeting a 

great number of proteins with different subcellular localizations. To identify molecular 

targets of CPK3 isolated microsomal membranes were phosphorylated by recombinant 

CPK3 and identified phosphoproteins were analyzed by MS. Interestingly a major part 

of the identified proteins is involved in transport of solutes and ions including porins 

and ion pumps/channel proteins, which could explain the salt sensitive phenotype of the 

cpk3 knock-out line. 
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1   Introduction 

 

1.1   Protein kinases in plant signaling  

Plants as sessile organisms have to cope repeatedly with changes in their environment 

such as altered growth conditions or different forms of biotic or abiotic stress during 

their life-cycle. Therefore they have evolved a great number of adaptation mechanisms. 

Their survival depends on the ability to adapt to different environmental changes by 

recognizing those extracellular signals and to process them into a cellular response. This 

could either be an adaptation of their cellular metabolism or a switch in their 

developmental program. The recognition of external signals occurs at the molecular 

level by intracellular or cell-surface receptors, which can detect environmental changes 

or signaling molecules. Usually, the recognition of signals by the receptor causes its 

activation and could also change its biochemical features resulting for example in 

different enzymatic properties, conformational changes, interaction with other proteins 

or release of second messenger molecules. In this fashion the generation of chemical 

signals and their further release in the signaling process can activate numerous 

downstream receptors and thereby forward and amplify the signal within signal 

transduction pathways (McCarty and Chory 2000; Colcombet and Hirt 2008).  

Mitogen Activated Protein Kinase (MAPK) cascades present a prototype of such a 

signaling pathway, which is evolutionary highly conserved in animals (Avruch, 

Nemenoff et al. 1982; Ray and Sturgill 1988), yeast (Errede, Cade et al. 1995; 

Herskowitz 1995), and plants (Colcombet and Hirt 2008). The signal transduction 

cascade starts with the activation of the MAP kinase kinase kinase by activation of a 

cellular receptor. In animal-cells, these receptors are for example G-protein-coupled 

receptors reacting to hormones. Accordingly these pathways were initially named 

mitogen-activated protein kinase pathways (Rossomando, Payne et al. 1989). The MAP 

kinase kinase kinase subsequently phosphorylates the MAP kinase kinase, which finally 

phosphorylates and activates the MAP kinase. This cascade thereby transmits the signal 

towards the final targets, i.e. transcriptional regulators in the nucleus, and furthermore 

amplifies the signal from recognition of only a few signals at the cellular surface to 

phosphorylation of a great number of target molecules. Transcription factors present 

bona fide targets for MAP kinases, which could be modified in many ways including 

control of their sub-cellular localization, expression, stability, or their ability to bind to 
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other components of transcriptional complexes and their ability to remodel chromatin 

structure. (Yang, Sharrocks et al. 2003; Whitmarsh 2007). 

Another completely different strategy to transduce extracellular signals to cellular 

targets  for adaptation processes is the generation of so-called secondary messengers. 

These are small molecules, which are generated in response to an extracellular signal. 

The second messenger Ca2+ is stored in the apoplast or organelles (i.e. vacuole, the 

endoplasmatic reticulum, and chloroplast) and its release is mediated by specific ion 

channels (Sanders, Pelloux et al. 2002). In contrast to the surrounding compartments, 

the cytosolic Ca2+ concentration is maintained at low levels (10-100 nM) under resting 

condition. Ca2+ reaches the cytoplasm through a large number of channels in organelles 

and can increase rapidly in concentration in response to either external or internal 

signals. The removal of Ca2+ from the cytoplasm is done by membrane transporters. But 

Ca2+ is not distributed randomly in the cytoplasm and  it is known that the influx of Ca2+ 

generates localized domains of high calcium concentration next to membranes (Etter, 

Minta et al. 1996).  

The detection of Ca2+ is mediated by receptors which can act as sensor responders or as 

sensor relays. Ca2+ binding proteins like the calmodulins represent “sensor relays”. 

Calmodulins are well known Ca2+ receptors, binding Ca2+ with their EF hands. Other 

Ca2+ binding proteins like the CBLs are able to bind Ca2+. Sensor relays have different 

conformations in the Ca2+ bound state and therefore different binding properties to 

target proteins. Protein kinases like the CaMKs, CCaMKs, SRKs and SnRK3s are 

regulated by these calcium binding proteins. But also the regulation of membrane 

proteins like Ca2+-ATPase ACA is regulated by an Ca2+ binding protein (Sanders, 

Pelloux et al. 2002). A sensor responder directly changes the enzymatic activity if Ca2+ 

is bound to it. CDPKs are sensor responders because the calmodulin domain is part of 

the CDPK and is activated by the binding of Ca2+ to the calmodulin. Also the Ca2+ 

sensing receptor (CAS), a membrane bound protein, is directly activated by Ca2+ and it 

is supposed to be responsible for the detection of the influx of Ca2+ from the apoplast of 

stomata (Han, Tang et al. 2003). 

 

Interplay of Protein Kinases and plant hormones 

Many different aspects of plant growth and development are regulated by signaling 

pathways, which involve plant hormones and include protein phosphorylation by 
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protein kinases at one or the other step. I will summarize recent evidence for interaction 

of protein kinase signaling and different plant hormones. 

Auxins (Aux) are well-known signal molecules, which are involved in many 

developmental processes, including shoot and root growth, leaf formation, lateral root 

formation, apical dominance (Fleming 2006). Although Auxin can be synthesised in all 

tissue to some extent, the biosynthesis of Auxins occurs mainly in rapidly growing 

tissues, especially in shoots (Ljung, Bhalerao et al. 2001). Auxins are redistributed 

within the plant through the vasculature system by specific transporters, and polar auxin 

transport, mediated by PINs, is a major driving force in plant development. For example 

phyllotaxis, a developmental program resulting in the asymmetric architecture of plants, 

is established by Auxin gradients (Reinhardt, Pesce et al. 2003). Recently PIN7 has 

been shown to be phosphorylated in planta in a phospho-proteomics study (Nuhse, 

Stensballe et al. 2004). 

Ethylene (ETH) is an example of a small gaseous signal molecule regulating many 

aspects of plant growth and development. It is synthesized from ACC, a side product 

from the methionine cycle. However, the rate-limiting step in the synthesis of ethylene 

is the synthesis of ACC by the ACC synthase, controlled by the stability of ACC 

synthase. The degradation of ACC synthase is regulated by the phosphorylation state on 

the N-terminus of ACC synthase. Un-phosphorylated ACS6 is fast turned over by the 

26S proteasome pathway and it is known that truncated versions of ACC synthase 

lacking the phosphorylation sites are not degraded. It was recently shown that MAP 

kinases are responsible for the phosphorylation of the N-terminal domains stabilizing 

ACC synthase (Joo, Liu et al. 2008). 

Gibberellins (GA) are plant hormones that regulate especially developmental 

processes, for example germination or flowering. It was shown that DELLA proteins, 

which act as transcription factors, play an important role in the negative control of GA 

signaling (Fleet and Sun 2005). These DELLA proteins are degraded via the ubiquitin 

proteasome pathway upon GA treatment (Itoh, Matsuoka et al. 2003). On the other hand 

light increases the amount of DELLA proteins by reducing the GA levels (Achard, Liao 

et al. 2007; Feng, Martinez et al. 2008). Achard et al. showed the complex interplay 

between abiotic stress signals and plant hormones during germination in a “quadruple-

DELLA” mutant lacking four DELLA proteins (GAI, RGA, RGL1 and RGL2). 

Germination of this mutant was less sensitive to salt stress (Achard, Cheng et al. 2006). 
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Brassinosteroids (BR) are derivatives of cholestane that are considered to be the plant 

analogues of steroid hormones in the animal kingdom. Depending on the plant species, 

the distribution of the various BRs differs significantly. In general the application of 

BRs to plants shows a strong growth promoting effect. Consequently, mutations in the 

receptor for BR (bri1) show a dwarfish phenotype. BRI1 is a receptor like kinase 

localized on the membrane. If BRI1 binds BR, BRI1 interacts with BAK1 and both will 

be phosphorylated (Eckardt 2005). 

Abscisic acid (ABA) is an important plant hormone that is involved in many phases of 

the plant life cycle, including seed development and dormancy, and in plant responses 

to various environmental stresses (Seo and Koshiba 2002). ABA is produced in root 

tissue under drought stress condition and then transported to the leaves, where it 

mediates the closure of stomata guard cells (Trejo, Davies et al. 1993; Trejo, Clephan et 

al. 1995). In these cells ABA mediates the release of Ca2+ from the vacuole into the 

cytoplasm blocking the uptake of K+ (McAinsh, Brownlee et al. 1992; MacRobbie 

2000). For a long time it was not clear how the plant-cell recognizes ABA but finally 

receptors were found. The nuclear RNA-binding protein FCA which is involved in the 

control of flowering and a chloroplast H subunit of Mg-chelatase (CHLH) was 

identified (Sheen 1996; Razem, El-Kereamy et al. 2006). Also GPA1 a membrane 

bound G protein-coupled ABA receptor was identified (Liu, Yue et al. 2007). ABFs are 

basic leucine zipper-type (bZIP) transcription factors including ABF1, ABF2 (AREB1), 

ABF3, ABF4 (AREB2), and ABI5, and they can bind to the ABRE elements in the 

promoters of many ABA-induced genes (Choi, Hong et al. 2000; Uno, Furihata et al. 

2000). But it was already known that the active forms of two Arabidopsis CDPKs 

CPK10 and CPK30 activate an ABA stress-inducible promoter in leaf protoplasts 

(Sheen 1996). Supporting evidences for the involvement of CDPKs in transcriptional 

induction came from a Yeast-Two-Hybrid screen, performed with ABF4 as bait. In this 

screen CPK32 was identified and confirmed as interacting partner by in-vitro binding 

and phosphorylation assays (Choi, Park et al. 2005). Also the protein-expression and 

kinase activity of CPK4 and CPK11 were induced by ABA and it was shown that ABA 

induced the transcription factors ABF1 and ABF4 were phosphorylated by both kinases. 

On the other hand, CPK4 and CPK11 knock-out lines showed an ABA insensitive 

phenotype, which could be complemented by the overexpression of CPK4 or CPK11 

(Zhu, Yu et al. 2007). Similar results were obtained with loss-of-function mutants of 
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CPK3 and CPK6, which showed an impaired closure of stomata (Mori, Murata et al. 

2006).  

Light is quite obviously a key-issue for plant’s life, not only for driving photosynthesis 

and thereby enabling the autotrophic life-style of plants, but also as important regulator 

of plant-growth and development. Therefore plants have developed different light-

sensing systems. The detection of red light and far red light is done by phytochromes. 

These are localized in the cytoplasm or the nucleus, depending on the light conditions 

and the type of phytochromes (Sakamoto and Nagatani 1996). Phytochromes are 

synthesized in a red light–absorbing form Pr in the dark. The absorption of red light 

converts Pr to the far-red light-absorbing and biologically active form Pfr. Exposure to 

far-red light can revert Pfr back to its inactive form Pr. In Arabidopsis there are five 

known phytochromes (phyA-phyE), each of them has both unique and redundant 

functions (Devlin, Patel et al. 1998). Analysis of mutants has shown that the C-terminus 

is important for phytochrome function in vivo, but the biochemical mechanism of 

phytochrome signaling is still unclear (Quail 1997). There are evidences that phytA has 

a serine-threonine kinase activity induced by light (Yeh and Lagarias 1998). PKS1 

(phytochrome kinase substrate 1) was identified in a Yeast-Two-Hybrid screen and is 

light dependently phosphorylated by phyA (Fankhauser, Yeh et al. 1999).  

 

Calcium signaling pathways 

Calcium mediated cell signaling is involved in a vast number of processes including 

stress response, growth and development. Many biotic and abiotic signals can cause the 

influx of Ca2+ elevating the cytosolic free calcium ([Ca2+]c) concentration (Knight, 

Trewavas et al. 1997). Also a large set of kinases is regulated directly or indirectly by 

Ca2+ including CDPKs, CaMKs, CCaMKs, SRKs and SnRK3s (Sanders, Pelloux et al. 

2002). 

Ca2+ activated protein kinases have different activation-mechanisms (figure 1.2). 

CDPKs are the only kinases which are directly fused to the Ca2+ binding and activation 

domain.  

 

Calcium in the salt stress response of plants 

High salinity is one of the most severe environmental stresses for plants and for crop 

production (Tuteja 2007). Therefore it is fundamental for productive plant growth to 
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keep the cellular concentration of toxic ions below a threshold level and to accumulate 

certain ions to correct ion imbalance. At the cellular level it is necessary for plants to 

keep the homeostasis between K+ and Na+ because increased concentrations Na+ ions 

are toxic for cellular metabolism. Furthermore, plants need to establish high 

cytoplasmic K+ concentrations to keep their turgor pressure, the driving force for plant 

growth (Hastings and Gutknecht 1978; Walker, Leigh et al. 1996). Accordingly a large 

set of genes is transcriptionally up regulated under salt stress conditions to counteract 

the negative effects of Na+ toxicity and to maintain cellular ion-homeostasis. These 

genes include different Na+ and K+ ion channels (like SOS1, NHX1, NHX8, TPK1 and 

HKT1), receptors, metabolic enzymes for syntheses of compatible solutes acting as 

osmolytes, and signaling factors. One characteristic feature of Na+ stress is the elevated 

cytosolic Ca2+ concentration, which regulates a wide range of Ca2+ dependent pathways. 

It is possible that a Ca2+ release also results from the activation of phospholipase C 

(PLC), leading to hydrolysis of PIP to IP3 and the subsequent release of Ca2+ from 

intracellular Ca2+ stores (Mahajan, Pandey et al. 2008).  

 

Figure 1.1: Overview on the most important ion chan nels in plants according to Mahajan et 
al., 2008 

 
The uptake and removal of ions is regulated by a wide range of ion pumps/channels 

maintaining ion homeostasis (Figure 1.1). Some channels including the K+ inward-

rectifying channel have more selectivity to K+ than for Na+. These channels mediate the 

influx of K+ upon the plasma membrane and selectively accumulate K+ ions. The K+ 

outward-rectifying channel opens during depolarization of the plasma membrane and 
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mediates the efflux of K+ and the influx of Na+ ions. The low-affinity Na+ 

ion-transporter histidine kinase transporter (HKT1) blocks the entry of Na+ into the 

cytosol. The efflux of Na+ from the vacuole is done by the vacuolar Na+/H+ exchanger 

(NHX1) and the H+/Ca2+ antiporter (CAX1) is responsible for the uptake of Ca2+ into 

the vacuole. The plasma membrane localized H+/Na+ antiporter SOS1 is responsible for 

the removal of Na+ from the cytoplasm and was identified in a mutagenesis screen (Wu, 

Ding et al. 1996). The mechanism for regulation of SOS1 consists of a protein kinase 

complex, which is regulated by the presence of Ca2+. The calcineurin B-like protein 

(CBL) SOS3 acts as sensor relay molecule by binding Ca2+ and subsequently activating 

protein kinase SOS2, which phosphorylates and activates SOS1 (Wu, Ding et al. 1996; 

Mahajan, Pandey et al. 2008). 

SOS1 is not the only known target for the protein kinase complex SOS2/SOS3. Under 

salt stress condition the low-affinity Na+ transporter AtHKT1 is repressed by the 

activated SOS2/SOS3 kinase complex. In addition to SOS1, the activated SOS2/SOS3 

kinase complex also activates the vacuolar localized NHX1, which mediates the 

removal of Na+ into the vacuole. 

 

Calcium dependent Protein Kinases (CDPKs) 

CDPKs are broadly distributed in the plant kingdom and in alveolate protists, including 

Eimeria (Bumstead, Dunn et al. 1995; Dunn, Bumstead et al. 1996), Plasmodium 

falciparum (Zhao, Kappes et al. 1993; Farber, Graeser et al. 1997; Gardner, Tettelin et 

al. 1998) and Paramecium tetraurelia (Kim, Messinger et al. 1998). Based on genomic 

sequence analysis 34 CDPKs have been annotated from the fully sequenced genome of 

Arabidopsis thaliana, and 29 CDPKs were found in rice (Asano, Tanaka et al. 2005). 

Sequence analysis of all 34 known Arabidopsis CDPKs showed that the overall 

identities are 39% to 95% and the similarities are 56% to 96%. According to their 

homologies the Arabidopsis CDPKs can be sub-grouped into 4 branches (figure 1.2) 

and phylogenetic analysis of the intron structure showed that CDPKs are evolved by the 

fusion of ancestral CaMK with ancestral calmodulin (Zhang and Choi 2001). 
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Figure 1.2: Phylogenetic tree of all 34 known CDPKs  from Arabidopsis thaliana using 
ClustalW and PHYLIP. 

 

The nearest CDPK homologues of Ca2+ dependent or activated protein kinases are the 

calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent 

protein kinases (CCaMKs), the CDPK-related protein kinases (CRKs) and the SnRK3s.  
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Figure 1.3: Ca 2+-activated protein kinases in plants (Harper, Breto n et al. 2004). CDPK: 
calcium dependent protein kinase. CRK: CDPK-related  portein kinase. CCaMKs calcium 
and calmodulin-dependent protein kinases. CaMK: cal modulin-dependent protein 
kinases. SnRK3: SNF1-related protein kinase 3. 

 
The CaMKs are well characterized in animals and yeast, but there is only one putative 

representative known in plants (Watillon, Kettmann et al. 1995). CCaMKs contain 

calcium-binding domains but these are more similar to visinin than to calmodulins 

(Poovaiah, Xia et al. 1999). CRKs have kinase catalytic domains closely related to those 

of CPKs, and the C-terminal domains share sequence similarity to calmodulin, but the 

EF-hands are poorly conserved. CRKs are not directly activated by Ca2+(Furumoto, 

Ogawa et al. 1996). It is assumed that they contain binding sites which activate the 

kinase. In contrast to the other Ca2+ dependent protein kinases SnRK3 kinases do not act 

on calmodulin, they recognize the Calcineurin B-Like Ca2+-binding protein (CBL) in its 

Ca2+ bound form.  

The protein structure of a CDPK consists of well-defined domains including N- and 

C-terminal variable region, a kinase domain, an auto-inhibitory domain and a 

calmodulin domain with EF hands as Ca2+ binding sites (Harmon, Gribskov et al. 

2000)(figure 1.3 and 1.4). The amino acid sequences of the N-terminal and C-terminal 

domains have the highest variations and it is known that these domains affect the 

subcellular localisation (Dammann, Ichida et al. 2003). Most of the CDPK N-terminal 

sequences contain consensus motifs for myristoylation and palmitoylation, which are 

important for subcellular localisation.  
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Figure 1.4: The activation mechanism of CDPKs (Harm on, Gribskov et al. 2000). Under 
low calcium condition the kinase catalytic domain i s repressed by the binding to the 
auto-inhibitory domain. In the presence of Ca 2+ the calmodulin domain changes the 
conformation by the binding of Ca 2+ to the EF hands. The conformational change of the 
calmodulin removes the auto-inhibitory domain from the kinase catalytic domain and 
activates the kinase.  

 

Known targets of calcium dependent protein kinases 

Protein phosphorylation requires the physical contact between the protein kinase and the 

target protein substrate for the transfer of the phosphate group. The specificity for this 

interaction and phosphorylation depends on binding and phosphorylation motifs on the 

substrate protein and is in general different for each protein kinase family. The fact that 

a certain protein kinase can strongly interact with its substrate was used in Yeast-Two-

Hybrid assays to identify substrates of kinases (Mizoguchi, Ichimura et al. 1998; 

Rodriguez Milla, Uno et al. 2006). But it is not said that a protein which interacts with a 

protein kinase is also phosphorylated by them, because this depends also on the 

appropriate consensus sequence in the protein substrate. For that reason interaction 

between a protein kinase and a prospective substrate has to be confirmed by 

phosphorylation assays. Besides these facts, the interaction and the phosphorylation is 

not a final evidence for a relevant connection between the protein kinase and the 

substrate. It is also necessary to show that both are co-expressed in the same cell, 

localized in the same cellular compartment and have biological relevance.  

All these experimental methods were used to identify substrates for CDPKs in the past 

but for most of them at least one line evidence was missing. First experiments with Ca2+ 

dependent protein kinases were done with soluble proteins and with in-vitro 

phosphorylation assays. It was shown that the phosphorylation of the leaf nitrate 

reductase (NR) from spinach by a CDPK down-regulates the enzymatic activity of NR. 

The phosphorylation of the spinach NR on serine-543 is Ca2+ dependent and leads to the 

binding of a 14-3-3 protein to the phosphorylated loop in the NR protein, which shuts 

down its enzymatic activity (Bachmann, Shiraishi et al. 1996; Moorhead, Douglas et al. 

1996; Douglas, Moorhead et al. 1998; MacKintosh 1998). Sucrose phosphate synthase 
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(SPS) is a soluble enzyme, which catalyzes sucrose synthesis in source leaves and 

responds rapidly to extracellular changes like altered light intensities or osmotic stress. 

A fast regulatory mechanism is necessary to adopt the enzymatic activity to 

environmental conditions. One important switching mechanism is protein 

phosphorylation (Huber and Huber 1996). Two phosphorylation sites at serine-158 and 

serine-424 were identified in spinach SPS. The phosphorylation at serine-158 occurs in 

response to changing light conditions and is catalyzed by a calcium independent stress 

induced kinase (McMichael, Klein et al. 1993). On the other hand, when SPS is 

phosphorylated at serine-424 in spinach by a CDPK under osmotic stress conditions, 

serine-424 phosphorylation leads to increased SPS activity (Toroser and Huber 1997). 

Similar to NR, SPS binds to 14-3-3 proteins after phosphorylation (Moorhead, Douglas 

et al. 1999). Sucrose synthase (SuSy), which is only found in plants and cyanobacteria, 

has a dual role in producing both UDP-glucose and ADP- glucose. Because of that it is 

necessary for cell wall, glycoprotein and starch biosynthesis. SySy was detected in the 

cytosolic and plasma membrane fractions (Amor, Haigler et al. 1995; Carlson and 

Chourey 1996; Sturm, Lienhard et al. 1999). A partially purified CDPK from maize 

leaves and soybean nodules was identified as kinase which phosphorylates SuSy 

(Huber, Huber et al. 1996; Zhang and Chollet 1997). This phosphorylation leads to a 

higher enzymatic activity of SuSy (Huber, Huber et al. 1996). The phosphorylation of 

the amino terminal part of SuSy affects the membrane association (Hardin, Winter et al. 

2004). The actin-depolymerising factor ADF3 is phosphorylated by CDPK (Smertenko, 

Jiang et al. 1998; Allwood, Smertenko et al. 2001).  

There is also increasing evidence for transcription factors as targets of CDPKs: In a 

Yeast-Two-Hybrid screen, using Arabidopsis CPK11 as bait, the nuclear zinc finger 

protein AtDi19 was identified and further confirmed as CPK11 interacting protein by a 

pull-down assay. It was also shown that CPK11 phosphorylates AtDi19 and both 

proteins co-localize in vivo (Rodriguez Milla, Uno et al. 2006). However, functional 

evidence for this interaction could not be provided by the authors. The dimerization and 

the DNA-binding affinity of the wheat basic/leucine zipper (bZIP) histone DNA binding 

protein (HBP-1a) is modulated by the phosphorylation of a CDPK (Tabata, Takase et al. 

1989; Meshi, Moda et al. 1998). The ABA induced bZIP transcription factor ABRE 

Binding Factor (ABF4) from Arabidopsis interacts with CPK32 in the yeast two hybrid 

system and is dependent on the phosphorylation of serine-110 of ABF4 (Choi, Park et 

al. 2005).  
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Most of the CDPKs are believed to be associated with membranes because of their 

N-terminal myristoylation and palmitoylation, which is increasing the hydrophobicity of 

their N-terminal domains. This localisation also explains the great number of identified 

targets or substrates of CDPKs, which are associated with membranes. Phosphorylation 

of the potato NADPH oxidase Respiratory Burst Oxidase Homolog (RBOH) by St 

CPK5 is associated with the production of reactive oxygen species (ROS) (Kobayashi, 

Ohura et al. 2007). ACA2 is an ER localized calmodulin-dependent Ca2+ pump which 

was shown to be phosphorylated by a CDPK, resulting an inhibition of its Ca2+ pump, 

activity (Hwang, Sze et al. 2000). Furthermore, the nodulation specific trans-membrane 

channel protein nodulin 26 from soybean which is a member of the major intrinsic 

proteins (MIPs) is phosphorylated by a CDPK. The phosphorylation of nodulin 26 

increases the permeability for water and is responsible for the voltage-sensitivity of this 

channel protein. (Weaver, Crombie et al. 1991; Weaver, Shomer et al. 1994; Lee, Zhang 

et al. 1995). Also the voltage dependent potassium channel 1 (KAT1) from vicia faba, 

which is localized to the plasma membrane is phosphorylated by a CDPK (Li, Lee et al. 

1998). This is true as well for the seed specific protein vacuolar membrane protein α-

TIP, a member of the Major Intrinsic Protein family (Johnson and Chrispeels 1992; 

Maurel, Kado et al. 1995). 

1.2  Myristoylation and palmitoylation 

Post-translational and co-translation modifications of proteins can alter their 

biochemical properties, such as localisation, stability, enzymatic activity and interaction 

with other proteins or molecular targets. 

Myristoylation is an irreversible co-translational modification which occurs during 

translation on the nascent chain. It starts with the removal of the first amino acid 

methionine from the nascent chain by the methionine amino peptidase. This is followed 

by the attachment of myristic acid on the second amino acid by the N-myristoyl-

CoA:protein myristoyltransferase (NMT). Myristoylation requires a glycine on the 

second amino acid and a consensus motif, which is recognized by the NMT. The 

attachment of the fatty acid myristic acid increases the hydrophobicity of the protein 

affecting the localisation (Resh 1999).  

Palmitoylation is a similar protein modification, but the difference is that it takes place 

after translation and it is therefore a post-translational modification. Palmitic acid is also 

a fatty acid and it is attached to cysteine by palmitoyl acyl transferases. In contrast to 
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myristoylation, palmitoylation is reversible. Much less is known about the process of 

palmitoylation but it must be assumed that it occurs on membranes because proteins 

with increased hydrophobicity are more frequently palmitoylated (Resh 1999). For that 

reason it is believed that the increased hydrophobicity caused by myristoylation favours 

palmitoylation and therefore a strong membrane attachment. 

Sequence comparison of the 34 known CDPKs from Arabidopsis reveals that 29 of 

them contain a glycine on the second amino acid and 28 out of the 29 CDPKs have also 

one or more cysteines in their N-terminus. There is only one CDPK (CPK3), possessing 

only a glycine on position two without cysteines in its neighbourhood. Interestingly, 

CDPKs without a glycine on position two do also lack cysteines and it is assumed that 

these CDPKs are not associated with membranes (Resh 1999; Dammann, Ichida et al. 

2003). Thus the co-appearance of N-myristoylation and palmitoylation motifs could be 

taken as evidence for N-myristoylation and palmitoylation of these CDPKs because 

CDPKs without myristoylation do not contain a palmitoylation motif. It seems that both 

modifications are important for the appropriate cellular localisation of the CDPK, which 

will also be shown in this work. 

 

1.3   Aim of this work 

The aim of this work was to gain insights into the role of CDPKs in the context of 

cellular function and salt stress response by using knock-out and over-expression 

mutants of CPK3. It was found that cpk3 mutants are salt sensitive and CPK3 

overexpressor plants showed increased salt tolerance. This effect could not be explained 

by changes in transcription of typical stress-induced genes, and showed furthermore no 

interference with MAP kinase signaling. To investigate if protein phosphorylation is 

affected in response to salt stress in an unbiased approach, a 2D-gel separation of 

protein extracts from wild type and cpk3 mutants was performed. Moreover, the 

endogenous localisation of CPK3 was determined to understand the molecular 

mechanism how CPK3 regulated the salt stress response in Arabidopsis. To test the 

effect of N-terminal myristoylation of CPK3, it was transiently expressed as YFP-fusion 

protein in tobacco leaves. Finally, recombinantly expressed, CPK3 was used for 

phosphorylation of isolated microsomal membranes proteins to identify phosphorylated 

targets by MS. 
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2   Material and methods 
 

2.1   Buffer and Media 
 
 
TAE: 40 mM Tris acetate, 1 mM Na2EDTA, pH 8.0 

Resuspension buffer P1: 50 mM TrisCl pH 8.0, 10 mM Na2EDTA (including 100 

µg/ml RNase) 

Lysis buffer P2: 200 mM NaOH, 1% SDS 

Neutralisation buffer P3: 3 M potassium acetate pH 5.5 

TE: 10 mM TrisCl pH 8.0, 1 mM Na2EDTA 

CTAB buffer: 2% CTAB; 100 mM TrisCl (pH 8.0); 20 mM EDTA; 1.4M NaCl; 1% 

polyvinylpyrrolidone  

REX buffer: 1% SDS; 10 mM Na2EDTA 

Phenol extraction buffer 1: 1% SDS; 1x TE 

Phenol extraction buffer 2: 0.7 M sucrose; 0.1 M KCl; 0.5 M TrisCl, pH 7.5; 50 mM 

EDTA 

Coomassie staining solution: 2.5 g Coomasie R250/G250 (4:1); 10% isopropanol; 10% 

acidic acid 

Coomassie de-staining solution: 10% isopropanol; 10% acidic acid 

SDS-PAGE equilibration buffer: 75 mM TrisCl at pH 8.8; 6 M urea; 2% SDS; 

0.002% bromophenol blue 

Anode buffer 1: 300 mM TrisCl pH 10.4; 10% methanol 

Anode buffer 2: 25 mM TrisCl 10.4; 10% methanol 

Cathode buffer: 25 mM Tris base pH 9.4; 40 mM glycine; 10% methanol 

TBS-T: 50 mM TrisCl pH 7.4; 150 mM NaCl; 0,1% Tween 

IP buffer: 25 mM TrisCl pH 7.5; 15 mM MgCl2; 15 mM EGTA; 75 mM NaCl; 1 mM 

DTT; 0.1% Nonidet P-40; 15 mM beta-glycerophosphate; 0.5 mM Na3VO3; 1 mM NaF; 

1 x Complete-EDTA free from Roche (per 50 ml) 

IP wash buffer: 50 mM TrisCl pH 7.5; 5 mM EGTA; 5 mM EDTA; 0.1% Tween 20; 

0.1% Nonidet P-40; 250 mM NaCl; 5 mM NaF; 1 x Complete-EDTA free from Roche 

(per 50 ml) 

IP kinase buffer: 20 mM HEPES pH 7.5; 15 mM MgCl2; 5 mM EGTA; 1 mM DTT 
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SDS-PAGE sample buffer: 125 mM TrisCl pH 6,8; 2% SDS; 50% glycerine; 5% 

β-mercaptoethanol; 0,01% bromphenole blue 

Kinase buffer (without and with Ca2+): 20 mM HEPES pH 7.5; 15 mM MgCl2; 5 mM 

EGTA or 100 µM Ca2+; 1 mM DTT 

Homogenization buffer: 400 mM sorbitol; 40 mM HEPES KOH pH 7.0; 10 mM 

Na4P2O7; 2.5 mM MgCl2; 2 mM ascorbate 

pTWIN buffer B1: 20 mM Na-HEPES  pH 8.5; 1000 mM NaCl; 1 mM EDTA; 0.2 

mM β-mercaptoethanol 

pTWIN buffer B2: 20 mM Na-HEPES  pH 7.0; 500 mM NaCl; 1 mM EDTA; 0.2 mM 

β-mercaptoethanol 

Hoagland medium: 4.03 mM Ca(NO3)2 4H2O; 0.522 mM NH4H2PO4; 6.04 mM KNO3; 

1.99 mM MgSO4 7H2O; 0.125 mM NaOH; 89.6 µM EDTA; 89.6 µM FeSO4 7H2O; 

9.68 µM H3BO3; 2.03 µM MnCl2 4H2O; 0.314 µM ZnSO4.7H2O; 0.21 µM CuSO4 

5H2O; 13.9 nM MoO3; 8.59 nM Co(NO3)2 6H2O 

LB: 1% peptone; 0,5% yeast-extract; 1% NaCl 

YEB: 0.5% tryptone; 0.1% yeast extract; 0.5% peptone; 0,5 % Sucrose; 2 mM MgSO4 

Induction media: 1.38 % K2HPO4 3H2O; 0.45% KH2PO4; 0.213% MES H2O pH 5.6; 

0.1% (NH4)2SO4; 0,0246% MgSO4 7H2O; 0.2% Glucose; 150 µM Acetosyringone  

Arabidopsis thaliana suspension media: 0.5 x MS; 3 % sucrose; 1 µg/ml 2,4-D 

TB Buffer: 10 mM CaCl2; 10 mM PIPES-NaOH pH6.7; 15 mM KCl; 55 mM MnCl2 

S.C. Trafo solution (filter sterilized): 40% PEG (4.000); 200 mM LiAcetate; 100 mM 

DTT  

 

2.2  Bacteria and yeast strains 
 
Escherichia coli strain used for cloning: 

DH5αααα F-, ø80dlacZDM15, D(lacZYA-argF)U169, deoR, recA1, endA1, 

sdR17(rk,mk+), phoA, supE44, l-, thi-1, gyrA96, relA1 

 

Escherichia coli strain used for protein expression: 

ER2566 fhuA2 lacZ::T7 gene1 [lon] ompT gal sulA11 R(mcr-73::miniTn10--

TetS)2 [dcm] R(zgb-210::Tn10--TetS) endA1 ∆(mcrC-mrr)114::IS10 
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Saccharomyces cerevisae strain used for complementation: 

AXT3K  ∆ena1::HIS3::ena4, ∆nha1::LEU2, ∆nhx1::KanMX4 

 

Agrobacterium strain used for transient expression in tobacco epidermal cells and 

transformation of Arabidopsis thaliana: 

AGL1   AGL0 (C58 pTiBo542) recA::bla, T-region deleted Mop(+) Cb(R) 

 
 

2.3   Plant lines 
 
Col-0 Wild type ecotype Col-0  

cpk3 T-DNA insertion line cpk3-2 KanR, SALK_02286246  (from NASC) 

35S:CPK3-1 35S:CPK3-YFP KanR over expressing line in Col-0 background 

35S:CPK3-2 35S:CPK3-YFP KanR over expressing line in Col-0 background 

 

2.4   Antibodies 
 
ααααCPK3 Affinity purified antibody from rabbit against the last 15 amino acids 

of CPK3 (mkkgnpelvpnrrrm) 

ααααpThr Commercial antibody (Cell signaling:  #9381) from rabbit against 

phosphorylated threonines 

ααααGFP Commercial antibody (Roche: 11814460001) from mouse against 

phosphorylated threonines 

ααααMPK4 Published antibody from rabbit against MPK4 (Teige, Scheikl et al. 

2004) 

ααααMPK6 Published antibody from rabbit against MPK6 (Teige, Scheikl et al. 

2004) 

 

2.5   Isotopes 
 

L-[35S] methionine:  1175 Ci/mmol-1 (Perkin Elmer) 

[9, 10-3H]-myristic acid: 60 Ci/mmol-1(American Radiolabeled Chemicals) 

[γγγγ32P]ATP:  6000 Ci/mmol-1 (Perkin Elmer) 
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2.6   Oliogonucleotides 
 
Cloning and point-mutagenesis oligonucleotides 
Name Sequence (from 5’ to 3’) ID (TAIR) 

CPK2nt AGGGCCCATGGGTAATGCTTGCGTTGG 
CPK2ct AGCGGCCGCAATGTTTCAGAGAAATGCTAA 
CPK2G2Ant TTGGGCCCATGGCTAATGCTTGCGTTGGA 

At3g10660 

CPK3nt 
AAAAGGATCCGGGCCCATGGGCCACAGACACAGCAAGTCCAAA
TCCTCCG 

CPK3ct 
TTTTGTCGACCTAGCGGCCGCACATTCTGCGTCGGTTTGGCAC
CAATTCTGGATTTCCC 

CPK3G2A-1 GCTGTGTCTGTGGGCGTAGGGCCCGGATCC 
CPK3G2A-2 GGGCCCATGGCCCACAGACACAGCAAGTCC 
CPK3K107R-1 ACAGGTCGCATGCCGGTCAATCCCTACGCG 
CPK3K107R-2 GGATTGACCGGCATGCGACCTGTTGTTTCG 
CPK3 F358A-1 CAGGATGAAACAAGCCCGGGCGATGAAC 
CPK3 F358A-2 CATCGCCCGGGCTTGTTTCATCCTGG 
CPK3 S242A-1 GGATCTTGTTGGCGCCGCATACTATGTTGCCCC 
CPK3 S242A-2 GTATGCGGCGCCAACAAGATCCTTAAACTTATCACC 
CPK3-S242D-1 TCTTGTTGGAGATGCATACTATGTTGCCCCAGA 
CPK3-S242D-2 GGGGCAACATAGTATGCATCTCCAACAAGATCC 

At4g23650 

CPK4nt TTGGATCCATGGAGAAACCAAACCCTAGAAGACCC 
CPK4ct TTGCGGCCGCGTGAATCATCAGATTTAGCAGTGCTGC 

At4g09570 

CPK5nt GGGCCCATGGGCAATTCTTGCCGTGGATCT 
CPK5ct GCGGCCGCACGCGTCTCTCATGCTAATGT 

At4g35310 

CPK6nt TTGGGCCCATGGGCAATTCATGTCGTGGTTCT 
CPK6ct AGCGGCCGCACACATCTCTCATGCTGATGT 
CPK6G2Ant TTGGGCCCATGGCCAATTCATGTCGTGGTTCT 

At2g17290 

CPK9nt 
AAAGGATCCGGGCCCATGGGAAATTGTTTTGCCAAGAATCATG
GATTG 

CPK9ct TTTGCGGCCGCCGAACAGCCGAGGTTGTTGTTGTTGTGG 
CPK9G2Ant CCGGGCCCATGGCCAATTGTTTTGCCAAGAAT 

At3g20410 

CPK11nt GGGCCCATGGAGACGAAGCCAAACCCTAGA 
CPK11ct GCGGCCGCAGTCATCAGATTTTTCACCAT 

At1g35670 

CPK12nt GGGCCCATGGCGAACAAACCAAGAAC 
CPK12ct GCGGCCGCAGACATTCATAGACTCATCAG 

At5g23580 

CPK13nt TTGGGCCCATGGGAAACTGTTGCAGATC 
CPK13ct AGCGGCCGCATTCGTTGCCTAGGTTCAAAG 
CPK13G2Ant TTGGGCCCATGGCCAACTGTTGCAGATC 

At3g51850 

CPK16nt TTGGATCCGGGCCCATGGGTCTCTGTTTCTCCTCCGCCGCC 
CPK16ct TTGCGGCCGCCCTTGCGAGAAATAAGAT 
CPK16G2Ant CCGGGCCCATGGCCCTCTGTTTCTCCTCCGCC 
CPK16C4F-1 GGTCTCTTCTTCTCCTCGGCCGCCAAATCCTCCGGCCACAAC 
CPK16C4F-2 GTGGCCGGAGGATTTGGCGGCCGAGGAGAAGAAGAGACCCAT 

At2g17890 

CPK17nt AAGGGCCCATGGGAAATTGTTGCTCTCACGG 
CPK17ct TTGCGGCCGCGGAATGAAAGTTCACGCCGCTTCTTTGGG 
CPK17G2Ant AAGGGCCCATGGCCAATTGTTGCTCTCACGG 

At5g12180 

CPK24nt TTTGGGCCCATGGGAAGTTGTGTTTCGTCGCCATTGAAAGGC 

CPK24ct 
AAGCGGCCGCTTAGACCTGAGGGTTTATAGGTTTTGGAGATCT
GAAGC 

CPK24G2Ant AGGGCCCATGGCCAGTTGTGTTTCGTCGCCATT 

At2g31500 

CPK28nt AAGGGCCCATGGGTGTCTGTTTCTCCGCC 
CPK28ct TTGCGGCCGCGAAGATTCCTGTGACCTGCAGGGC 
CPK28G2Ant AAGGGCCCATGGCCGTCTGTTTCTCCGCC 

At5g66210 
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CPK29nt TAGGGCCCATGCTTCAAAACCAACATAA 
CPK29ct TGGCGGCCGCATCTGATCAGCTTTGGATCTG 

At1g76040 

KCO1nt GGGCCCATGTCGAGTGATGCAGCTCG 
KCO1ct GCGGCCGCTCCTTTGAATCTGAGACGTGG 
KCO1Ntermct GCGGCCGCCGATCACTCGCCTGAGATTCG 

At5g55630 

 

RT PCR oligonucleotides 
Name Sequence (from 5’ to 3’) ID (TAIR) 
ERF6-1 CCGTTGCCTACTACTGCCACC 

ERF6-2 GCACTTTCTCAACCACCGTC 
At4g17490 

ACS6-1 GAGCGGCGGCGCAACCGGAG 

ACS6-2 CCACCCTGTCATTGTAAGAG 
At4g11280 

GolS2-1 AAGGCTGTGTCGTGCGTGAG 

GolS2-2 GGCTTGGATCCAGCTGCACAG 
At1g60470 

STZ1-1 ATGGCGCTCGAGGCTCTTAC 

STZ1-2 TCCTTCGTAGTGGCACCGC 
At1g27730 

P5CS2-1 CGTCGTCAAGGTTGGGACTGC 

P5CS2-2 TCTAGCGACAGAAGAGCGGC 
At2g39800 

ERD10-1 TCTTCCTCTTCGAGTGATGAAG 

ERD10-2 TCTCTTCCTCTCCAGTGG 
At1g20450 

RD20-1 CCAAAACCATACATGGCAAGAGC 

RD20-2 TGAAAGCCATCCAAAAGGATCG 
At2g33380 

RD29a-1 AGCACCCAGAAGAAGTTGAACATC 

RD29a-2 CGTTACATCCTCTGTTCCAG 
At5g52310 

ACT3-1 ATGGTTAAGGCTGGTTTTGC 

ACT3-2 AGCACAATACCGGTAGTACG 
At2g37620 

CPK3i-1 AGATGTTCGCCGTGAAGTCC 

CPK3i-2 ACGGATGATTTAGCACTTCCG 
At4g23650 
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2.7  DNA Methods 
 

Agarose gel electrophoresis 
 
0.7% - 2.0% agarose gels were prepared according to the size of the DNA molecules to 

be separated. TAE was used as running buffer and for preparation of agarose gels 

including 0.25 µg/ml ethidium bromide. The DNA was applied in DNA loading buffer 

to estimate fragment sizes. The GeneRuler™ 1kb DNA Ladder Plus from Fermentas 

was applied as well. Gels were run at 100-130 V. The DNA fragments were visualized 

under UV light. 

 

Plasmid DNA mini preparation from E. coli 

2 ml over-night-culture was centrifuged for 2 min at 16100 g and the supernatant was 

removed. The pellet was resuspended in 200 µl of resuspension buffer P1 followed by 

addition of lysis buffer P2 to lyse the cells. To mix the suspension, the tubes were 

inverted three times and incubated for 5 min at room temperature. The E. coli lysate was 

neutralized by the addition of 200 µl of neutralisation buffer P3 and mixed by inverting 

three times. After 20 min incubation at 4°C the suspension was centrifuged for 10 min 

at 16100 g. To precipitate the DNA the supernatant was mixed with 0.7 times 

isopropanol and incubated at -20°C for 20 min followed by an centrifugation step at 

16100 g at 4°C. The supernatant was removed and the pellet was washed with 500 µl 

70% EtOH. The pellet was dried in the speedvac and resolved in 50µl 0,5x TE.  

 

Plasmid DNA midi preparation from E. coli 

The midi preparation of plasmid DNA from E. coli was done with the Jetstar 

Midiprep II kit (GENOMED GmbH) in accordance with to the manufacturer´s 

instructions. 

 

Isolation of genomic DNA from Arabidopsis thaliana 

50-150 mg plant material was grinded in 200 µl CTAB buffer with a spatula tip of 

polyvinylpyrrolidone and sand until a fine suspension was generated. This suspension 
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was mixed with additional 200 µl of CTAB buffer and heated up to 65°C for 60 min. 

One volume of chloroform was added to the suspension, the mixture was vortexed and 

then centrifuged for 10 min. The supernatant was precipitated with 0.7 volume of 

isopropanol for 20 min at -20°C and centrifuged at 16100 g for 10 min. The pellet was 

washed with 500 µl 70% EtOH and dried in the speedvac. The pellet was resolved in 

150 µl P1 with RNase A and incubated at 37 °C for 30 min. After the RNase A 

treatment the solution was well mixed with one volume of chloroform and centrifuged 

for 10 min. The supernatant was precipitated with 0.7 volume of isopropanol for 20 min 

at -20°C and centrifuged at 16100 g for 10 min. The pellet was washed with 500 µl 70% 

EtOH and dried in the speedvac. The pellet was resolved in 50 µl ddH20. 

   

Polymerase chain reaction 

PCR reactions were carried out according to the manufacturer´s instructions for the used 

polymerase. The following polymerases were used: GoTaq from Promega, Vent from 

NEB and Turbo Pfu Stratagene.  

 

Ligation of DNA 
DNA fragments were cut out from an agraose and purified with the Wizard® SV Gel 

and PCR Clean-Up System from Promega, according to the manufacturer´s instructions. 

A total volume of 10 µl including ligase buffer 100 U ligase from NEB, 100-200 ng 

insert and 25-50 ng vector DNA fragments was ligated at room temperature for 20 min. 

The reaction was directly used for transformation into E. coli.  

 

Analytical digestion of plasmid DNA 

1.5 µg plasmid DNA was digested with the appropriate restriction endonuclease from 

NEB in a total volume of 20 µl, according to the manufacturer´s instructions. After 

digestion the DNA was separated by Agraose gel electrophoresis. 

 

Preparative digestion of plasmid DNA 

3 µg plasmid DNA was digested with the appropriate restriction endonuclease from 

NEB in a total volume of 40 µl, according to the manufacturer´s instructions. After 
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digestion the DNA was separated by Agraose gel electrophoresis. The appropriate 

bands were cut out and purified with the Wizard® SV Gel and PCR Clean-Up System 

from Promega. 

 

Plasmid DNA vectors and cloning 

pBAT: in-vitro transcription and translation vector with rabbit 3-globin leader 

(Annweiler, Hipskind et al. 1991). 

pGEX4T1: IPTG-inducible E. coli vector for the expression of N-terminal GST-fusion 

proteins from Amersham-Pharmacia. 

pTwin1: IPTG-inducible E. coli vector for the expression of N- and/or C-terminally 

intein-chitin tagged proteins from NEB.  

pBIN19: binary plant transformation vector (Bevan 1984).  

pSKII+: blue white selectable E. coli vector from Stratagene.  

pTLT: CMV 35S promoter based plant expression vector for protoplast transformation 

and sub cloning into pBIN19. This vector was created in this work.  

YEPlac195: yeast cloning vector with the yeast ura selection marker, blue white 

selectable E. coli multi cloning site and a 2µ origin of replication. 

 

RNA isolation from Arabidopsis thaliana 

10-14 day old Arabidopsis thaliana seedlings were frozen in liquid nitrogen and grinded 

to a fine powder. In a 1.5 ml Eppendorf-tube 100-200 mg of the plant material were 

mixed with 130 µl phenol pH 4.0 and 130 µl REX buffer. The mixture was grinded with 

a pre-cooled glass-rod Eppendorf homogenizer in the presence of 50 µl sea sand until a 

fine suspension was generated. 400 µl REX buffer and 400 µl phenol pH 4.0 were 

added, vortexed and centrifuged for 10 min at 16100 g. The aqueous upper phase was 

extracted twice with one volume of PCI and once with one volume of chloroform. The 

supernatant was mixed with 1/3 volume of 10 M LiCl and incubated over night at 4°C. 

To precipitate the RNA the mixture was centrifuged at 16100 g at 4°C for 20 min. The 

pellet was washed once with 2.5 M LiCl and two times with 80% EtOH. The RNA 

pellet was resolved in 25 µl H2O and the concentration was determined by measuring at 

260 nm and 280 nm. 
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Reverse transcription RT-PCR 

Reverse transcription was carried out using the Promega M-MLV reverse Transcriptase, 

RNase H Minus, Point Mutant, according to the manufacturer’s instructions. In a final 

volume of 14 µl 1 µg total RNA and 0.5 µg oligo(dT)15 were mixed and heated to 70°C 

for 5 min, then cooled quickly on ice for 5 min followed by the addition of 5 µl M-

MLV RT 5X Reaction Buffer, 1.25 µl 10 mM dNTP mix and 1µl M-MLV RT (H-). The 

reaction was mixed and incubated at 40°C for 60 min. 1-2 µl reverse transcripted cDNA 

was used for PCR amplification using the GoTaq from Promega. 

 
 
 
 

2.8    Protein methods 

Phenol protein extraction from Arabidopsis  

2 g of plant material were grinded in liquid nitrogen. A second grinding in phenol 

extraction buffer 1 followed. The suspension was centrifuged at 12000 g and the 

supernatant was mixed with the equal amount of phenol pH 7.4. The mixture was 

vortexed for 1 min and centrifuged at 3500 g for 10 min at 4°C. The supernatant 

consisting of aqueous phase was replaced with the same volume of phenol extraction 

buffer 2, vortexed for 1 min and centrifuged at 3500 g for 10 min at 4°C. The 

supernatant consisting of the organic phenol phase was mixed with the same volume of 

phenol extraction buffer 2 and vortexed for 1 min. The mixture was centrifuged at 3500 

g for 10 min at 4°C. The supernatant consisting of the organic phenol phase was mixed 

with 5 times methanol including 100 mM ammonium acetate. To precipitate the 

proteins the suspension was incubated over night at -20°C and centrifuged at 16100 g 

for 10 min. The supernatant was removed and the pellet was washed one time with 

100% MetOH and 2 times with 100% acetone. The pellet was dried in the Speedvac and 

resolved in the appropriate buffer (Isaacson, Damasceno et al. 2006). 

 

SDS-PAGE  

Protein molecular weight determination was done by electrophoresis using 12% and 

8-15% gradient polyacrylamide gels using Mini Protean 3 from BIORAD and Multigel-

Long from Whatman Biometra. As running buffer a solution of 25 mM Tris, 250 mM 
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glycine and 0,1% SDS was used (Fling and Gregerson 1986). The electrophoresis was 

performed, according to the manufacturer’s instructions. For determination of the 

molecular weight the PageRulerTM Prestained Protein Ladder Plus from Fermentas was 

used. 

 

Coomassie staining 

After electrophoresis, the SDS-PAGE gel was placed in Coomassie staining solution 

and was heated up to ~ 60°C and incubated under shaking for 15 min. When the gel 

turned blue the Coomassie staining solution was replaced by the Coomassie de-staining 

solution heated up to ~60°C and incubated under shaking for 15 min. The last step was 

repeated until the gel was completely de-stained. 

 

Silver stain 

All incubation steps were done with light shaking. The SDS-PAGE was incubated in 

50% methanol and 5% acidic acid for 20 min. After 10 min washing in 50% methanol 

the gel was rinsed for 2 h in H20. The gel was sensitized for one min in 0.03% Na2S2O3, 

rinsed two times in water and incubated in 0.1% AgNO3 for 20 min at 4°C. After two 

washing steps in H2O for one min, the developing was started by application of 2% 

Na2CO3 and 0.00014% Formaldehyde until the protein bands turned to dark. The 

reaction was stopped by replacing the staining solution with 5% acetic acid. 

(Shevchenko, Wilm et al. 1996) 

 

2D-Gel electrophoresis 

The protein was purified as described in phenol protein extraction from Arabidopsis. 

200 µl 2d-gel sample containing 100 µg, 7 M urea, 2 M thiourea, 2% CHAPS, 0.5% 

IPG buffer (pH 3-11) NL and 0.002% bromophenol blue was applied on a 11 cm 

Immobiline DryStrip (pH 3-11) NL from GE Healthcare. The proteins were focused 

using an IPGphor from GE Healthcare according to the manufacturer’s instructions. 

After isoelectric focusing, the IPG strip was equilibrated for 15 min in SDS-PAGE 

equilibration buffer with 100 mg DTT. Then the strip was incubated for additional 15 
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min in SDS-PAGE equilibration buffer with 250 mg iodoacetamide. The separation in 

the second dimension was carried out using a 8-15% SDS-PAGE. 

 

Western blot 

Transfer of proteins on PVDF membranes was done with the Tran-Blot® Semi-Dry 

blotting chamber from Biorad. Protein samples were separated by SDS-PAGE. After 

electrophoresis, the gel was incubated in cathode buffer under light shaking for 15 min. 

The PVDF membrane was a short time equilibrated in methanol for 15 sec, rinsed with 

H2O for 2 min and incubated in anode buffer 1 under light shaking for additional 5 min. 

Two layers of Whatman papers soaked in anode buffer 1 were placed on the metal 

anode of the blot-chamber followed by one layer of Whatman paper soaked in anode 

buffer 2. On top of the Whatman paper the membrane, the gel and three layers of 

Whatman papers soaked in cathode buffer were placed. The blot-chamber was closed by 

pressing the metal cathode on top of the last Whatman layers. The transfer was 

performed for 90 min at 1.8 mA/cm2. The blotting efficiency was verified by staining 

the proteins on the membrane with 0.1% Ponceau S in 5% acetic acid and washing them 

with H2O. The Ponceau S was removed by washing the membrane with TBS-T. After 

blotting, the membrane was blocked in TBS-T with 5% fat free dry-milk and incubated 

on a horizontal shaker for 30 min. The blocking solution was replaced with the primary 

antibody diluted in TBS-T with 5% fat free dry-milk and incubated for 2 h at room 

temperature or over night at 4°C under light shaking. To eliminate unspecific bound 

antibodies the membrane was washed 3 times for 10 min with TBS-T. The membrane 

was incubated with the secondary antibody coupled to HRP diluted in TBS-T with 5% 

fat free dry-milk for 45 min. To get rid of unspecific bound secondary antibodies the 

membrane was washed 3 times for 10 min with TBS-T. For detection of the secondary 

antibodies, the SuperSignal® WestPico Chemiluminescent Substrate from PIERCE was 

used, according to the manufacturer´s instructions. 

 

Kinase assay of immunoprecipitated proteins 

About 150-250 mg Arabidopsis seedlings were grinded in IP buffer and clarified by 

centrifugation at 16100 g for 10 min at 4°C. After determination of the protein content 

100 µg were incubated with 10 µl protein A-Sepharose. The clarified supernatant was 
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immunoprecipitated for 1 hour with 20 µl of protein A-Sepharose and 3 µl antibody at 

4°C. The beads were washed three times with IP buffer, once with IP wash buffer and 

finally once with IP kinase buffer. Kinase reaction was started by adding to the beads 20 

µl IP kinase buffer including 2 µg MBP and 2 µCi γ-32ATP. The reaction was 

terminated after 30 min at room temperature by adding the SDS-PAGE sample buffer. 

The sample was analyzed by SDS-PAGE. The incorporation of radioactivity was 

measured by exposing the dry gel over night on a storage phosphor screen which was 

scanned in a GE Healthcare Typhoon 8600 Variable Mode Imager.  (Bogre, Calderini et 

al. 1999) 

 

Kinase assay of recombinant proteins 

Kinase assay was performed by incubating about 1 µg recombinant protein kinase, 3-10 

µg substrate (histone S3, N-Terminus of Kco1 and microsomal membranes) and 2 µCi 

γ-32ATP in kinase buffer without and with Ca2+. The amount of kinase and substrate was 

10 times higher for 2-D gel electrophoresis. After incubation at room temperature for 30 

min the reaction was terminated by adding SDS-PAGE loading buffer. The sample was 

analyzed by SDS-PAGE. The incorporation of radioactivity was measured by exposing 

the dry gel over night on a storage phosphor screen that was scanned in a GE Healthcare 

Typhoon 8600 Variable Mode Imager. 

 

Isolation of microsomal membranes form Arabidopsis thaliana 

10 g of Arabidopsis thaliana suspension culture were first grinded in liquid nitrogen and 

then homogenised in 30 ml homogenisation buffer including Complete-EDTA. The 

suspension was filtered through 2 layers of Miracloth and centrifuged at 500 g for 5 min 

at 4°C. To remove large insoluble cell compartments the supernatant was centrifuged at 

10000 g for 15 min. The microsomal membranes were precipitated by ultra 

centrifugation at 100000 g for 90 min at 4°C. The pellet was washed once with 

homogenisation buffer without Complete-EDTA free and stored at -80°C until it was 

used.  
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Protein purification using the pTWIN protein purification system  

The isolation of recombinant proteins was done using the IMPACT™-pTWIN protein 

purification system from NEB, according to the manufacturer’s instructions. All CDPKs 

were expressed as N-terminal fusion. An over night culture of E. coli (ER2566) carrying 

the pTWIN expression plasmid was inoculated in 200 ml LB-ampicillin and adjusted to 

OD600 of 0.2. The culture was incubated at 37°C under vigorous shaking until OD600 of 

0.6 was reached. Then the expression was induced by the application of 100 µl of 1 M 

IPTG. The best expression was achieved by incubating the culture at 16°C over night 

under vigorous shaking. E. coli were harvested by centrifugation for 10 min at 2900 g at 

4°C and resuspended in 10 ml pre-cooled pTWIN buffer B1. To break the cells the 

suspension was sonificated and clarified by centrifugation at 16000 g at 4°C for 20 min. 

All the following purification steps were performed at 4°C. The supernatant was applied 

to a column packed with 2 ml (bed volume) of chitin beads which were washed in pre-

cooled pTWIN buffer B1. The column was washed with 20 ml of pre-cooled pTWIN 

buffer B1 and fast flushed with 4 ml pre-cooled pTWIN buffer B2. To induce protein 

cleavage the column was incubated on room temperature over night. After the elution 

with pTWIN buffer B2, the buffer was exchanged to kinase buffer (without Ca2+ and 

EGTA) and the protein was concentrated by ultrafiltration in an Amicon® Ultra-4 filter 

device from MILLIPORE.  

 

Protein determination by the Bradford method 

50 µl protein sample was mixed with 950 diluted Bradford (BIO-RAD Protein assay) 

reagent and measured at 595 nm. For determination of protein concentration a BSA 

calibration curve was made with the following protein concentrations: 1.0, 0.5, 0.25, 

0.125, 0.0625 mg/ml. 

 

In-vitro Myristoylation assay 

Myristoylation assay was done by coupled in-vitro transcription/translation in a cell free 

system using the TNT Coupled Wheat Germ Extract System from Promega. 2 µg of 

pBAT-CPK plasmid DNA was linearized with NotI and in-vitro translated. The 

reactions were either carried out in the presence of 10 µCi of L-[35S] methionine for 

total protein labelling, or 50 µCi of [9,10-3H]-labelled myristic acid. Immediately before 
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starting the 90 min reaction at 30°C, the [3H] myristic acid was dried in the speed-vac 

and resuspended in the reaction-mix by pipetting. The samples were separated by SDS-

PAGE. After Coomassie staining the gel containing the 3H labelled proteins was soaked 

in Amplify™ Fluorographic Reagent from Amersham for 30 min and dried in the gel-

drier. Light emission was measured by incubating the dried gel with an x-ray-film for 5-

14 days at -80°C. The uptake of L-[35S] methionine was measured by exposing the dry 

gel over night on a storage phosphor screen. This was scanned in a GE Healthcare 

Typhoon 8600 Variable Mode Imager.  

 

 

2.10   Plant methods 

Vapor-phase sterilization of Arabidopsis seeds 

Seeds were surface sterilized using the vapour-phase method published by (Clough and 

Bent 1998). Open Eppendorf tubes containing about 200 µl seeds were placed in a 10 l 

plastic box. Next to the Eppendorf tubes a 400 ml beaker was placed with 150 ml bleach 

(2.8 % NaClO). After the plastic box was placed in fume hood the generation of 

chlorine gas was started adding about 50 ml of 5 M HCl to the bleach and the lid was 

closed immediately. Seeds were sterilized at least for 2 h or over night.    

 

Cultivation of Arabidopsis thaliana 

Sterile cultivation of Arabidopsis plants (Col-0) was done on ½ MS agar plates or ½ MS 

agar plates, containing 50 µg/ml kanamycin under 16 h light with 80 µmol m-2 sec-1 

light intensity at 25°C. Stratification was carried out prior putting the seeds into light for 

2 days in the dark at 4°C. Non sterile cultivation of Arabidopsis was done by placing 

them on soil (10 parts Spezialblumenerde, Diwoky; 3 sand: Rasenquarz, Körnung 0.2-

2.0 mm, Quarzwerke Österreich GmbH, Melk, Austria; one part perlite: Granuperl S3-

6, #50140050, KNAUF Perlite GmbH, Vienna, Austria) or by sawing them directly.  

Hydroponical cultivation of Arabidopsis plants was done according to Tocquin et al., 

2003. Seeds were placed directly into 0.5 ml PCR tubes filled with ½ Hoagland medium 

with agar and grown for one week. The bottom of the PCR tube was cut off and the tube 

was placed into a 1 ml Gilson (Middleton, WI, USA) tip box filled with ½ Hoagland 

medium which was covered with aluminium foil. To maintain a high humidity the box 
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was covered with transparent foil for about 3 weeks. Then the cover was opened partly 

during one week and then entirely removed (Tocquin, Corbesier et al. 2003).  

Soil and hydroponical cultured Arabidopsis were grown with an light intensity of 200 

µmol m-2 sec-1 under short (8 h light / 16 h dark) or long day (16 h light / 8 h dark) 

condition.  

 

Agrobacterium mediated expression in Nicotiana tabacum leafs 

Transient expression of proteins in Nicotiana tabacum was done, according to the 

method described in (Bucher, Sijen et al. 2003). pBin19 35S: C-terminal YFP constructs 

were transformed via electroporation in Agrobacterium (AGL1) plated on LB media 

containing 50 µg/ml kanamycin. One clone was inoculated in liquid YEB containing 50 

µg/ml kanamycin and incubated over night at 30°C under shaking. On the next day 50 

ml of YEB containing 50 µg/ml kanamycin was inoculated with the pre-culture and 

adjusted to an OD600 of 0.05. Then the culture was incubated at 30°C under vigorous 

shaking until an OD600 of 0.2 was reached. The bacteria suspension was pelleted by 

centrifugation at 2900 g at room temperature for 10 min and resuspended in 25 ml 

induction media. After 2 h incubation at 30°C the cells were again centrifuged at 2900 g 

at room temperature for 10 min and resuspended in 10 ml of 5 % sucrose containing 

300 µM acetosyringone. This suspension was used to infiltrate young Nicotiana 

tabacum leafs with a 1 ml syringe grown under Arabidopsis short day condition. 

Directly after infiltration plants were incubated in the dark over night and were placed 

back in the growth chamber on the following day. Two days after infiltration the 

expression of proteins could be detected.  

 

Transformation of Arabidopsis thaliana (floral dip) 

Stable transformation of Arabidopsis thaliana was performed by the floral dip method 

(Clough and Bent 1998) and (Zhang, Henriques et al. 2006) by using the Agrobacterium 

strain GV3101 (Bevan 1984) carrying pBIN19 plasmid. 250 ml Agrobacterium 

suspension was grown in LB under selective condition until an OD600 of 0.8 was 

reached. Then the cells were precipitated by centrifugation and resuspended in 5% 

sucrose containing 0.05% Silvet L-77. Flowers of 5-8 week-old Arabidopsis thaliana 

(Col-0) plants grown under long day condition were dipped into the bacteria suspension. 
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Then the Arabidopsis thaliana plants were covered with plastic foil and placed in the 

dark over night. On the next day the plastic foil was removed and the plants were put 

back into the grow chambers until the seeds were matured. The selection of positive 

Arabidopsis thaliana plants was carried out on ½ MS plants containing 50 µg/ml 

kanamycin. 

 

Arabidopsis suspension culture 

Arabidopsis thaliana suspension culture (provided by Andrij Belokurow, group Hirt) 

was grown in adequate media. 45 ml of suspension culture was grown in a 250 ml flask 

at 22°C under shaking at 140 rpm. Every 7 days the suspension culture was diluted 1:3 

with Arabidopsis thaliana suspension media. 

 

 

2.10   Yeast and bacteria methods 
 

Preparation of chemical competent E. coli 

A pre-culture of LB supplemented with 20 mM MgSO4 was inoculated with 3-5 

independent E. coli clones and incubated at room temperature under shaking over night. 

600 ml of LB supplemented with 20 mM MgSO4 was adjusted with the pre-culture to 

OD600 of 0.2 and incubated under shaking at room temperature until an OD600 of 0.5 

was achieved. Cells were harvested by centrifugation at 700 g for 10 min at 4°C and 

resuspended in 50 ml ice cooled TB buffer. After incubation on ice for 30 min the cells 

were again harvested by centrifugation at 400 g for 10 min at 4°C and resuspended in 

ice cooled TB buffer supplemented with 7% DMSO. The suspension was incubated on 

ice for additional 30 min, spitted into 450 µl aliquots and frozen away at -80 °C. (Inoue, 

Nojima et al. 1990) 

  

Transformation of chemical competent E. coli 

In a total volume of 10 µl 2-50 µg plasmid DNA was transferred into a 1.5 ml reaction 

tube and placed on ice. Competent E. coli suspension was thawed on ice. 50 µl of the E. 

coli suspension was mixed with the 10 µl plasmid DNA and incubated on ice for 15 

min. The reaction mix was heat-shocked at 37°C for 45 sec and placed back on ice. To 
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recover the cells 800 µl LB media was added and the suspension was incubated for 60 

min at 37°C under shaking. The cells were harvested by centrifugation at 16100 g for 1 

min at room temperature, resuspended in about 80 µl LB and plated on appropriate 

selective LB media.  

 

Transformation of S. cerevisae  

150 µl of S.C. Trafo solution (including 20 µg carrier RNA) were mixed with 

approximately 50 µl of fresh S. cerevisae cells grown on YPD over night. 2 µg of 

plasmid DNA were added and mixed by vortexing. The suspension was incubated at 

30°C for 20 min and heat-shocked for additional 20 min on 44°C. 1 ml sterile H2O was 

added and mixed by inverting the tube. The cells were precipitated by centrifugation at 

room temperature at 2000 g for 2 min. Most of the supernatant was removed and the 

cells were resuspended in 50-100 µl sterile H2O and plated on selective media. 

  

Preparation of electro competent Agrobacteria 

Over night culture of Agrobacteria was inoculated in 600 ml LB and incubated at 30°C 

under vigorous shaking for 1.5 days until an OD600 of 1.5-2 was reached. The 

suspension was cooled down on ice for 10 min. The cells were precipitated by 

centrifugation for 15 min at 6000 g at 4°C and resuspended in 50 ml of 1 mM HEPES 

pH 7.0. Cells were again precipitated by centrifugation at 4000 g at 4°C for 15 min and 

resuspended in 1 mM HEPES pH 7.0. This washing step was additionally repeated 

twice and then the 1 mM HEPES pH 7.0 was replaced by 10 % glycerol. The cells were 

again precipitated by centrifugation at 4000 g at 4°C for 15 min and resuspended in 4-6 

ml 10 % glycerol. Aliquots of 400 µl per 1.5 ml Eppendorf tube were frozen in liquid 

nitrogen and stored at -80°C. 

 

Transformation of electro competent Agrobacteria 

1-2 µl (1 µg/µl) of plasmid DNA were placed into a sterile pre-cooled electroporation 

cuvete. 60 µl of electro competent Agrobacteria suspension were added and mixed by 

pipetting. Electroporation was carried out at 200 Ohm and 1,4 kV and 25 µF with a Bio-

Rad (Hercules, CA, USA) Pulse Controller electroporation device. After electroporation 
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800 µl LB were added the suspension was transferred to a 1.5 ml Eppendorf tube and 

incubated at 30°C for 30-60 min. Cells were precipitated by centrifugation at 14000 g 

for 2 min, resuspended in 50-10 µl LB and plated on LB media containing the 

appropriate antibiotics.  
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2   Results 

2.1   Characterisation of CPK3 

Phenotype of cpk3 mutants 

To elucidate the functional role of CPK3 in planta, a cpk3 knock-out line was obtained 

from the Salk Arabidopsis Insertion Library (N522862; SALK_022862, Salk Institute 

Genomic Analysis Laboratory, La Jolla, CA, USA, http://signal.salk.edu/). This line 

was further analyzed by mapping the T-DNA insertion via PCR and subsequent 

sequencing of the PCR products. This mutant could be confirmed as null mutant at the 

protein level by Western blot analysis using a specific antibody against the C-terminal 

15 amino acids of CPK3 (figure 2.1). 

 

Figure 2.1: CPK3 T-DNA insertion mapping. A: The T- DNA insertion was mapped by PCR, 
using primers specific to the CPK3 gene and the T-D NA. B: PCR products were produced 
with the primer combination LB+RV and LB-FW which i ndicates a double T-DNA 
insertion in the first exon of CPK3 locus. C: Weste rn blot analysis using a specific 
antibody for CPK3 shows that the CPK3 knock-out lin e lacks the endogenous CPK3 
protein.  

 
Since activation of CPK3 kinase activity by salt stress had previously been shown in the 

laboratory (M. Teige, unpublished), germination assays on ½ MS plates were carried 

out in order to test for a salt sensitive phenotype of cpk3 mutants. CPK3 knock-out 
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(cpk3) and two independent CPK3 overexpression lines (CPK3-1 and -2) were 

germinated on ½ MS plates, either without salt, or in the presence of 150 mM NaCl. 

The germination rate on media without salt was 100% for all lines, thus indicating that 

observed changes in germination must be due to salt stress. On the plates containing 150 

mM NaCl, the germination rate of all lines was impaired. However, a very clear 

differentiation emerged: Wild type plants had a germination rate of 22.3% ± 7.82, and 

the cpk3 line was severely impaired showing a strongly reduced germination rate of 

only 8.4% ± 7.08 (figure 2.2). In contrast, the CPK3 overexpression lines displayed an 

increased germination rate which moreover correlated to the level of CPK3 expression 

as revealed by RT-PCR. The weak overexpressor line CPK3-1 had a germination rate of 

about 29.2% ± 2.48, and the strong overexpression line CPK3-2 had a germination rate 

of 55.1% ± 16.95 (figure 2.2). In summary, these experiments clearly showed the 

essential role of CPK3 for the salt stress adaptation in Arabidopsis. 

 

Figure 2.2:  Salt sensitive phenotype and analysis of CPK3 expression-levels in the CPK3 
knock-out mutant ( cpk3) and two independent over-expressor lines (CPK3-1 and CPK3-
2). Germination was scored for seven days on ½ MS p lates supplemented with 150mM 
NaCl and survival was scored for seven days. Statis tical analysis of survival rates from 
three independent plates, n>300 per plate and plant  line. 

 

Crosstalk with salt stress triggered MAP kinase pathways? 

To understand how CPK3 could mediate adaptation to salt stress at the molecular level, 

and which downstream targets could be regulated the further analysis was extended also 
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to related signaling pathways which are known to be involved in salt stress signaling. 

Furthermore, the question of cross-talk between different signaling pathways in salt 

stress response should be addressed. 

MAP kinase pathways are not affected by CPK3 

MAP kinase pathways represent well characterized examples in this respect, and the 

MAP kinases MPK4 and MPK6 are activated by various abiotic and biotic stresses, 

including salt stress (Ichimura, Mizoguchi et al. 2000; Petersen, Brodersen et al. 2000; 

Asai, Tena et al. 2002; Teige, Scheikl et al. 2004). A MAP kinase pathway which 

regulates MPK4 and MPK6 includes the upstream MAP kinase kinase MKK2 and is 

also required for the cold- and salt stress response in Arabidopsis (Teige, Scheikl et al. 

2004). The fact that mkk2 mutants showed a similar phenotype on salt media suggests a 

related regulation mechanism. Therefore CPK3 overexpressor and cpk3 knock-out lines 

were used to determine the activation of MPK4 and MPK6 in response to salt stress by 

immuno-complex kinase assay using MPK4 and MPK6 antibodies (figure 2.3).  

 

Figure 2.3: Salt triggered activation of MPK6 in wi ld type (Col-0), cpk3 knock-out, and two 
independent CPK3 overexpressor lines (see Figure 2. 2) towards myeline basic protein 
(MBP) as generic substrate. Kinase assay: Kinase ac tivities were measured in 
immunocomplex kinase assays upon salt treatment of 14-days-old seedlings for 15 min. 
RT-PCR: Salt triggered induction of known salt stre ss responsive marker genes was 
compared between wild type (Col-0), cpk3, and the t wo CPK3 overexpressor lines by RT-
PCR and compared to Actin (ACT3) as internal contro l. 14-day-old seedlings were treated 
with 150 mM NaCl. 

 

However, no difference in the activation of either MPK4, or MPK6 could be detected. 

Vice versa, the salt stress induced activation of CPK3 was determined in mkk2 
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knock-out and MKK2 overexpressing lines. But again, no difference in activation of 

CPK3 could be detected, clearly demonstrating, that these pathways function 

completely independently at the level of the involved protein kinases  

 

CPK3 does not affect the transcriptional induction of known salt stress 

marker genes 

To look further downstream in the stress response pathway, the expression levels of 

known marker genes for salt stress adaptation were analyzed. MAP kinase pathways are 

known to target predominantly transcriptional responses in animal cells (Whitmarsh 

2007). For plant cells the same seems to hold true as may be seen for studies on gene 

expression in MAP kinase mutant plants (Teige, Scheikl et al. 2004; Qiu, Zhou et al. 

2008) and from identified targets involved in transcriptional regulation (Qiu, Fiil et al. 

2008). The MKK2 MAP kinase pathway plays an essential role in signaling and 

adaptation to cold- and salt-stress in Arabidopsis by regulating a set of 127 genes which 

are required for adaptation to these stresses (Teige, Scheikl et al. 2004). To compare 

transcriptional regulation, downstream targets of the MAP kinase- and the Ca2+ 

dependent protein pathways were analyzed. The expression of marker genes was 

analyzed by RT-PCR specifically to address the question if these MAP kinase pathways 

and the Ca2+ dependent CPK3 signaling pathway cross-talk at the level of target gene 

expression. For that reason 22 known target genes which are known to be regulated in 

response to salt stress based on microarray analysis were selected and analyzed (Kreps, 

Wu et al. 2002; Seki, Ishida et al. 2002; Taji, Seki et al. 2004).  

The result of these experiments is exemplified in figure 2.3 for 8 genes involved in 

ethylene signaling and biosynthesis (ERF6 and ACS6), synthesis of the compatible 

solutes galactinol (GolS2) and proline (P5CS), transcriptional regulation (STZ), and 

general stress response factors (ERD10, RD20, and RD29a). The transcriptional 

induction was analyzed by RT-PCR 30 and 60 min after salt stress treatment in wild 

type plants (Col-0), a cpk3 knock-out mutant, and two different CPK3 overexpressor 

lines which had all been characterized before. It turned out that all salt stress-responsive 

genes were equally induced in all lines. The complete set of genes which was analyzed 

in these studied included furthermore the Na+/H+ antiporters NHX1 and SOS1, the Na+-

induced K+ channel KC1, the trehalose synthesis genes TPS1, TPS11, and T6PP; proline 

catabolism (PDH), ABA- and salt stress-responsive protein phosphatases (AHG3, 
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PP2C); and the general stress-response factors ERD15, and RD29b. But also in these 

cases no difference of the induction patterns of salt-responsive genes emerged between 

the different lines studied. In line with previous microarrays (Kreps, Wu et al. 2002) 

CPK3 expression itself was also not found to be regulated at the mRNA level (figure 

2.3). 

 

Localisation of CPK3 

These findings indicate that CPK3 is not involved in transcriptional induction of salt 

stress response genes and acts independently of MAP kinase pathways. This suggests 

that CPK3 uses a different mechanism to mediate salt stress response. Therefore I 

decided to study the localization of the kinase in different tissues and at the subcellular 

level to get a further idea on the function of CPK3 in salt stress adaptation. 

The amount and tissue-specific distribution of endogenous CPK3 protein from different 

plant tissues was determined using a specific antibody (Figure 2.4 C) against the C-

terminal variable region (Figure 2.4 B). The endogenous level of CPK3 protein in 

Arabidopsis was nearly the same in all compartments with slightly increased CPK3 

protein levels in old leaves and roots (figure 2.4 A). A biochemical fractionation of cell 

extracts from Arabidopsis leaves and root suspension culture revealed that CPK3 

enriches in un-soluble sub-cellular fractions and co-purified with microsomal 

membranes. No CPK3 could be detected in the cytosolic fraction (figure 2.4 A). 

 

Figure 2.4: Localization (A and B) and structure (C ) of the CPK3 protein. (A) Tissue 
specific expression of CPK3 and specificity of the antibody. In the first lane 20 ng of 
recombinant GST-CPK3 protein was loaded and in the following lanes total protein 
extracts from the cpk3 mutant, and from different tissues of wild type pl ants: root; stem; 
flower; young (20 dpg), and old leaves (40 dpg. (B)  Detection of endogenous CPK3 in 
subcellular fractionation from wild type plants. In  lane 1, total cell extract was loaded (T), 
and in the following lanes protein from the 13.000 x g (13k) supernatant (S1) and pellet 
(P1), as well as the 100.000 x g (100k) k supernata nt (S2) and pellet (P2).  
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Figure 2.5: Localization of CPK3 WT-YFP fusion proteins (A), CPK3G2A-YFP fusion 
proteins (B) and YFP protein alone (C) in leaf epid ermal cells, 2 days after infiltration. 
Infiltration of tobacco leaves was done as describe d in experimental procedures. The 
nucleus (N) is marked by an arrow, and three chloro plasts adjacent to the nucleus are 
marked by a triangle in A. Cytoplasmic lobes of the  epidermal cells are marked by the 
triangle in B and C. The scale bar represents 20 µm . Chlorophyll auto-fluorescence is 
shown in red. (D) In vitro myristoylation of CPK3 and CPK2 as positive contro l. The wild 
type (WT) and non-myristoylable G2A mutants of CPK2  and CPK3 were translated in vitro 
in wheat germ extracts. This happend in the presenc e of either 3H-labelled myristic acids 
or 35S-labelled methionine as described in experime ntal procedures and subsequently 
separated by SDS-PAGE. Incorporation of the label w as scored by autoradiography. 

 

To extend this study into the sub-cellular level, I studied the in vivo localisation of 

CPK3-YFP fusion proteins by confocal laser scanning microscopy in Nicotiana 

tabacum (SR1) leaves. Transient transformation was done by infiltration of Agro-

bacteria, containing the constructs for expression under control of the cauliflower 

mosaic virus CaMV 35S promoter. To investigate the N-terminal mediated subcellular 

localisation of CPK3, the YFP portion was fused to the C-terminus of the full-length 

CPK3 coding sequence (figure 2.5). A potential effect of N-terminal myristoylation 

based on localisation was studied by using a mutated form of CPK3, lacking the 

myristoylation site on glycine (G2A). This mutant cannot be myristoylated per se, and 

its localization was compared to either YFP, expressed under the 35S promoter, or the 

wild type version of CPK3-YFP. Expressed CPK3-YFP showed nuclear and membrane 

associated localisation. In contrast, the mutated CPK3-YFP G2A appeared more nuclear 
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and cytosolically localized, which was similar to non-fused YFP. That the observed 

difference in localization could indeed be explained by N-myristoylation of CPK3 was 

confirmed by in vitro myristoylation using wheat germ extract. CPK3, and CPK2 as 

positive control, were in vitro translated either in the presence of 35S-methionine, or 3H-

labelled myristic acid in a coupled transcription/translation system as previously 

described for CPK2 (Lu and Hrabak 2002). The incorporation of the label was detected 

by autoradiography after SDS-page (figure 2.5 D). Both, CPK2 and CPK3 were clearly 

found to be effectively N-myristoylated in these assays. 

 

Salt stress mediated alteration in protein phosphorylation pattern of cpk3 

knock-out plants 

The previous data indicating that CPK3 activity has no influence on salt stress 

dependent gene expression gave rise to the question how the salt sensitive phenotype of 

the cpk3 knock-out mutants could be explained. To investigate salt stress triggered 

changes in protein phosphorylation patterns in wild type and cpk3 knock-out mutants an 

unbiased approach was done. Using different phosphoamino acid-specific antibodies, 

phosphorylated serine and threonine residues were analyzed by 2D-gel Western blotting 

of total proteins from salt-stressed and untreated plant extracts. Considering the 

important role of roots for salt stress adaptation (Munns and Tester 2008) and also the 

strong expression of CPK3 in this tissue, the focus of this studies was based on root 

tissue, isolated from hydroponically grown plants. Phosphorylation patterns of proteins 

before and 30 min after application of salt stress (150 mM) were compared. 100 µg of 

total proteins were separated by 2D-gel electrophoresis. In figure 2.6 the results are 

shown for detection with the anti phospho-Thr antibody.  
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Figure 2.6: CPK3 mediated protein phosphorylation p atterns in response to salt stress. 
Arabidopsis wild type (Col-0) and cpk3 plants were grown in hydroponic culture for four 
weeks before salt stress (150 mM NaCl) was applied for 30 min and protein extracts were 
prepared from roots as described in materials and m ethods. Briefly, 100 µg of total 
protein was separated on pH 3-11 (NL) immobiline dr y strips in the first dimension, 
followed by 8-15% gradient SDS-PAGE in the second d imension. Protein phosphorylation 
on threonine residues was detected after Western bl otting using an anti-phospho-Thr 
antibody (upper panels), and total protein was scor ed by Coomassie-brilliant blue 
staining of the membranes (lower panels). The arrow s in the upper panels mark 
significant changes in the phosphorylation level. 
 

These separations typically resulted in more than 300 spots, which could clearly and 

reproducibly be detected by Coomassie-staining after blotting on PVDF membranes. 

Clear differences in phosphorylation were visible between wild type (Col-0) and cpk3 

mutants in response to salt stress (upper panels). Most importantly, there were no 

detectable differences in total protein spots by Coomassie-staining (lower panels). This 

indicates that the observed differences are indeed due to phosphorylation and not to 

differences in expression. 
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This result was further confirmed by a comparison of untreated wild type and cpk3 

samples (figure 2.7). Also here no differences in phosphorylation could be observed 

pointing out that the discovered differences in Thr-phosphorylation between wild type 

and cpk3 are dependent on CPK3 kinase activity. The arrows in the upper panel of 

figure 2.6 indicate the major changes.  

 
Figure 2.7: Phosphorylation patterns without salt s tress from Col-0 and cpk3. 
Arabidopsis wild type (Col-0) and cpk3 plants were grown under the same condition but 
not treated with NaCl (see figure 2.6).  
 

In summary, 9 spots appeared either new or in strongly enhanced intensity in wild type 

as compared to the cpk3 mutant; whereas 6 spots appeared new or enhanced in the cpk3 

mutant as compared to the wild type. Taken together, a clear difference in the Thr-

phosphorylation of 15 proteins between cpk3 mutants and wild type roots 30 min after 

salt stress was detectable. 
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Regulation of ion homeostasis 

The ability to maintain ion homeostasis under stress conditions is of fundamental 

importance for plants to survive salt stress. Accordingly, plants apply a plethora of 

different transport systems in order to either exclude Na+ from the cell or to sequester it 

into the vacuole via Na+/H+ antiporters (Tuteja 2007). These channels are tightly 

controlled, which becomes particularly important when the plant has to counter act 

environmental changes. For that reason plants are able to adopt to changes in soil ion 

concentrations by removing toxic ions like sodium from the cytoplasm. Different ion 

channels achieve this by pumping out these ions from the cytoplasm in order to 

maintain the critical K+/Na+ ratio. Salt stress results in a transient rise in free cytosolic 

Ca2+ concentration which is perceived by calcium sensor molecules. 

 

The SOS pathway is not activated by CPK3 in yeast 

SOS1 is a Na+/H+ antiporter in the plasma membrane which is responsible for salt 

tolerance in Arabidopsis (figure 2.8). It is known that salt stress leads to elevated 

cytosolic Ca2+ concentration resulting in the activation of the SOS-pathway (Shi, 

Ishitani et al. 2000; Quintero, Ohta et al. 2002; Zhu 2002). In this pathway, the 

activation of SOS1 antiporter activity is regulated by the Ca2+-sensing SOS2/SOS3 

complex. SOS3 (also known as CBL4) is a calcineurin B-like protein (CBL), which can 

bind Ca2+ and therefore recognizes elevated Ca2+ concentration. The Ca2+ bound form of 

SOS3 binds to SOS2, which phosphorylates SOS1 and activates the Na+/H+ antiporter 

(Qiu, Guo et al. 2002). Therefore the possibility that also CPK3, containing both a 

protein kinase domain and a Ca2+-sensing domain, could be able to activate SOS1 

should be tested in a different approach. 
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Figure 2.8 Schematic representation of the SOS path way. Increased Ca 2+ levels are 
recognized by the SOS2-SOS3 and by the CBL10-SOS2 c omplexes. The calcium bound 
SOS2-SOS3 complex activates Na +/H+ antiporter SOS1 and inhibits low-affinity potassiu m 
transporter, which transport Na + ion under increased salt condition. CBL10-SOS2 is also 
activated by increased Ca 2+ levels and activates  the vacuolar Na +/H+ pump NHX1  
(Mahajan, Pandey et al. 2008)  

 

The activation of SOS1 was tested by a yeast functional complementation assay in the 

yeast strain AXT3K (MATalfa, 7ena1::HIS3::ena4, nha1::LEU2, nhx1::KanMX). This 

strain lacks four different sodium transporters (Quintero, Ohta et al. 2002) rendering 

this strain extremely salt sensitive towards sodium. CPK3 was overexpressed under the 

control of the ADH promoter from the YEPlac112 plasmid together with SOS1 which 

was overexpressed when using the original plasmid (pSOS1) from Quintero et al., 2002. 

The transformed yeast cells were plated on media containing 100 and 150 mM NaCl, 

and growth on salt was compared to transformants, complemented with the complete 

SOS-pathway. It was found that the combination of SOS1-SOS2-SOS3 was able to 

restore survival on salt media, but none of the CPK3 constructs was able to compensate 

the function of the SOS2/SOS3 complex (figure 2.9). Altogether, these experiments 

showed that CPK3 is not able to activate the SOS pathway. 
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Figure 2.9: The yeast strain AXT3K lacking sodium t ransporters was used to test the 
activation of the Arabidopsis Na+ transporter SOS1 by CPK3. The positive control 
(SOS1+SOS2+SOS3) was clearly able to counteract bot h high NaCl concentrations of 100 
mM and 150 mM NaCl (B and C). But the negative cont rol (SOS1 with the empty vector 
YEPlac and both empty vectors) and SOS1 with CPK3 s howed no increased growth on 
media containing 100 mM and 150 mM NaCl.  

 

Phosphorylation of microsomal membrane proteins by CDPKs 

The finding that CPK3 does not regulate the SOS pathway does of course not rule out 

other membrane proteins as cellular targets, particularly since CPK3 revealed a 

localization at cellular membranes (shown in figure 2.4 B). Therefore membrane 

associated or membrane localized proteins had to be analyzed in particular as targets of 

CPK3. An important feature of those proteins is that they function at the interface 

between two cellular compartments.  

Exchange of solutes between different cellular compartments is mediated by membrane 

integrated channel proteins which are often highly specific for particular soluble 

molecules. The regulation of these membrane proteins is an essential mechanism to 

maintain normal cellular function, and phosphorylation is a known regulation 

mechanism. It can mediate the adaptation to different environmental conditions.  

To identify membrane associated molecular targets of CDPKs, I performed kinase 

assays using isolated microsomal membranes that had been isolated from an 

Arabidopsis root suspension culture. The phosphorylation of microsomal membranes 

was done by the incubation of recombinant CDPKs (CPK3, CPK4, CPK5, CPK11 and 

CPK6) with microsomal membranes in the presence of γ32-ATP. The phosphorylation 

assays were carried out in kinase buffer, either in the presence of Ca2+ or without Ca2+ 

(EGTA). As negative control microsomal membranes alone were incubated with γ32-

ATP (without CDPK). Interestingly, each CDPK showed different phosphorylation 



Results 
 

 

 51

patterns, indicating that each CDPK has different phosphorylation targets and 

furthermore illustrating the specificity of this assay (figure 2.10).  

 

 

Figure 2.10: Microsomal membranes isolated from Ara bidopsis root suspension culture were 
incubated with CPK3, CPK4, CPK5, CPK11 and CPK6 in the absence or presence of Ca 2+. The 
uptake of radioactivity was measured by autoradiogr am (left) and the total amount of protein 
was detected by Commassie staining (right). Red arr ows idicate potential phosphorylation of 
potential targets. 

 

Phosphorylation of TPK1 by CPK3 

TPK1, the dimeric-outward-rectifying-membrane-K+-channel localized to the tonoplast, 

is known to be Ca2+- and voltage-dependent (Bihler, Eing et al. 2005). Recently, it was 

also shown that 14-3-3 proteins can interact with TPK1. The 14-3-3 binding domain of 

TPK1 contains a consensus sequence for serine/threonine protein kinases and it can be 

demonstrated that the phosphorylation of this motif triggers the binding of the 14-3-3 

proteins, resulting in the activation of the K+ channel (Latz, Becker et al. 2007). 

The phosphorylation by CDPKs was tested with the N-terminal soluble part of TPK1 

(first 80 amino acids including the 14-3-3 binding motif) fused to GST which was 

lacking the trans-membrane domain and the EF hands for Ca2+ binding. In in-vitro 

kinase assays the phosphorylation of the 14-3-3 binding motif was done with 

recombinantly expressed CPK3, CPK4, CPK5 and CPK11 in the absence or presence of 

Ca2+ (figure 2.11 B). CDPKs are able to phosphorylated TPK1 in the presence of Ca2+ 
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and CPK3 showed the highest kinase activity in comparison to CPK4, CPK5 and 

CPK11 which are indicated by rel. activity in figure 2.11 B. The in vivo localisation of 

TPK1 was confirmed by Agrobacteria mediated transient expression in tobacco 

epidermal cells of TPK1-YFP under the control of the CMV 35S promoter (figure 

2.11 C).  

 

Figure 2.11: (A) Topology of TPK1 with four transme mbrane domains (M1-M4) and two 
pore regions (P1-P2). (B) Kinase assay of TPK1 with  CPK3, CPK4, CPK5 and CPK11. 
(C) Agrobacterium mediated transient overexpression of WT TPK1-YFP u nder the control 
of the CMV 35s promoter in epidermal leaf cells. 

 

The previous kinase assays (figure 2.10) showed that recombinant CPK3 is able to 

phosphorylate different membrane bound proteins in a Ca2+-dependent manner. 

Notably, a protein phosphorylated band with a size comparable to TPK1 appeared in 

these assays when microsomal membranes, isolated from Arabidopsis root suspension 

culture, were phosphorylated with recombinantly expressed CPK3 (figure 2.12 C). 

Therefore the kinase assay was repeated with non-radioactive ATP and the 

phosphorylation site was tested using a phosphorylation site specific antibody against 
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the 14-3-3 binding motif. Also in this case the antibody was able to recognize a protein 

of the appropriate size of TPK1 (figure 2.12 B).  

To show that the binding of the 14-3-3-phosphorylation-site-specific antibody is 

specific for phosphorylated TPK1, the non-radioactive kinase assay was repeated while 

using the recombinant N-terminal part of TPK1 fused to GST as substrate and CPK3 as 

protein kinase (figure 2.12 A). These assays did clearly show that CPK3 does 

phosphorylate the vacuolar K+ channel TPK1 specifically at its N-terminal 14-3-3 

binding motif in vitro. 

 

Figure 2.12: Detection of the CPK3 phosphorylated 1 4-3-3 binding motif on the N-terminal 
part of TPK1. CPK3 was detected with the CPK3 antib ody (A). Microsomal membranes 
were phosphorylated by recombinant CPK3 in the abse nce or presence of Ca 2+. 
Phosphorylation of the 14-3-3 binding motif was det ected by Western blot analysis (A). 
Total phosphorylation was detected by incubation wi th γγγγ32-ATP (C). 

 

Characterisation of the CPK3 - TPK1 interaction 

To uncover the molecular properties of CPK3, a structural model of CPK3 was 

generated together with the collaborators Thomas Müller and Dirk Becker at the 

University of Würzburg (Latz and Mehlmer et al., submitted for publication). The 

model was based on the coordinates of two different kinases, the calmodulin-dependent 

kinase I, which shares the highest amino acid similarity with CPK3, and the 

phosphorylase b kinase gamma. The model is restricted to the kinase domain with the 
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N-lobe in the open conformation and has no ATP analogue bound in the ATP binding 

cleft. On the substrate site, the residues of the PKI5-24 peptide were replaced by 

residues Asn26 to Arg45 of TPK1. Side-chain-rotamer-searches and several steps of 

energy refinement ensured that the substrate interacted tightly with the kinase domain 

and no bad van der Waals-contacts are present in the final model. Residues Asn26 to 

Arg33 of TPK1 were modelled to form a short α-helix similar to the PKI peptide, 

whereas residues Arg38 to Arg45 form an extended strand-like structure. The 

C-terminal end of the α-helix of the substrate contains multiple positively charged 

amino acids, mainly arginines, which interact possibly via ionic and polar bonds with 

the highly conserved Glutamate residues Glu157, Glu160, Glu163, and Glu206 of the 

β5α2-loop, the helix α2 and the substrate binding loop in the kinase domain of CPK3 

(figure 2.13 A and B). 

To determine the molecular basis for the observed kinase specificity of the tested 

Arabidopsis CPKs towards TPK1 as substrate, a multiple sequence alignment of the 

region responsible for substrate binding in the tested CPKs was performed (figure 2.13 

C). Highly conserved glutamate positions (Glu160) are crucial for interaction with 

arginine residues in the TPK1 N-terminus according to the model. This alignment 

showed that exactly at one of them an alanine is present in CPK5 and CPK1 (figure 2.13 

marked by the red arrow). Thus the reduced ionic interaction between these CPKs and 

the TPK1 N-terminus could explain the difference in target phosphorylation. 

The next from the structural model deducable insight was the role of one 

autophosphorylation site in CPK3, exactly residing in the substrate binding loop of the 

kinase domain (indicated by the arrow in Figure 2.13 C). Upon activation by calcium, 

autophosphorylation at different serine and threonine residues has been observed for 

many CDPKs (Hegeman, Rodriguez et al. 2006), but so far a functional consequence of 

this autophosphorylation is not known.  

By using the recombinant protein, an autophosphorylation of CPK3 at multiple sites 

could be detected. 6 different protein spots became visible after 2D separation by IEF 

and subsequent SDS PAGE (Figure 2.13 D). In cooperation with Edina Csaszar from 

the mass spectrometry facility at the MFPL the excised spots from the gel were further 

analysed by tandem mass spectrometry. It was found that they correspond to 

differentially phosphorylated forms of CPK3 by its neutral loss of phosphoric acid from 

the serine residue in the indicated peptide fragmentation pattern (Figure 2.13 E).  
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Figure 2.13: (A & B) Molecular modelling of the CDP K TPK binding. (C) Multiple sequence 
alignment of the substrate binding domain of the CP Ks. The sequence alignment was 
done using BLOSUM 62 for the substrate binding regi ons identified in the molecular 
modelling. The difference at the position of Glu160  (for CPK3) is indicated by an arrow. 
(D) 2D gel separation of recombinant CPK3 after aut o-phosphorylation. 30 µg 
recombinant protein were separated on a 2D gel as d escribed in material and methods 
and visualized by Coomassie brilliant blue staining . The direction of the non-linear IEF-
gradient (pH 3-11 from right to left) and the phosp horylation status of CPK3 are indicated 
at the top of the figure. (E) Positive ionization M S/MS spectrum of the phosphorylated 
CPK3 peptide DLVGSAYYVAPEVLK. The doubly charged io n was chosen for CID 
fragmentation and the phosphorylated residue is lab elled with “p”. The peak generated 
by the characteristic loss of phosphoric acid is in dicated by the arrow. 
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In this analysis, Ser242 was unambiguously identified as phosphorylated residue by 

both data base search programs (Mascot and Bioworks). The doubly charged peptide 

DLVGSAYYVAPEVLK was fragmented several times both with phosphorylated and 

with unphosphorylated Ser242 residues. The spectra of the phosphorylated peptide 

(figure 2.13 E) show the characteristic loss of phosphoric acid from the parent ion, a 

series of y fragment ions and several fragment ions indicating the loss of phosphoric 

acid. This serine residue is localized at the very beginning of kinase domain VIII and 

strongly conserved in all CDPKs. Autophosphorylation of the equivalent serine residue 

has been reported for CPK4, CPK11, CPK16, and CPK28 (Hegeman, Rodriguez et al. 

2006).  

The identified Ser242 of CPK3 seems to be important for the recognition between 

kinase and TPK1, but in Yeast-Two-Hybrid experiments an interaction between CPK3 

with the N-terminal part of TPK1 could not be detected. For that reason a mutational 

analysis of the Ser242 in CPK3 was performed. Ser242 was replaced by an alanine to 

mimic the non-phosphorylated state and aspartate to mimic the phosphorylated state. 

The Lys107Arg mutant results in an inactive kinase domain and was used because this 

might stabilize the transient interaction between the kinase and its substrate. However, 

also with these mutants it was not possible to obtain data on interaction between CPK3 

and the N-terminal part of TPK1 in a Yeast-Two-Hybrid system. Subsequently, I tried 

to adopt the split-ubiquitin system (Dualsystems) for analysis of this interaction. 

Unfortunately this approach did also fail due to the high auto-activation of TPK1 in this 

system. 

In subsequent kinase assays, I wanted to test a potential functional consequence of this 

auto-phosphorylation of CPK3. These experiments, using the Ser242Ala mutant and the 

Ser242Asp mutant, revealed that both mutants displayed a reduced kinase activity. This 

was observed for both, autophosphorylation as well as target phosphorylation of TPK1-

N-Terminus. However, the phosphorylation of the N-terminal part of TPK1 was not so 

strongly affected by these mutations. This might be explained by the high affinity of the 

14-3-3 binding motif in TPK1 to the kinase catalytic domain in CPK3 (figure 2.14).  
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Figure 2.14: Phosphorylation of CPK3 WT, K107R, S24 2A and S242D without substrate 
(auto-phosphorylation *) and in the presence of TPK 1-N-term (* 1) as substrate. The 
corespoindng Coomassie stain is shown on the lower panels.  

 

Proteomics approach to identify molecular targets of CPK3 

As shown already in previous reports (Fig. 2.9), recombinant CPK3 could 

phosphorylate proteins in microsomal membranes highly specific in a Ca2+-dependent 

manner in vitro. In these experiments it was found that CPK3 phosphorylates 

specifically proteins at molecular weights, corresponding to 25, 28, 40, 50, 55 and 120 

kDa, respectively (Fig. 2.11c). Based on these results an unbiased proteomics based 

approach was performed aiming at the identification of further CPK3 targets in 

microsomal fractions. To this end a non-radioactive kinase assay was performed, and 

the samples were separated by SDS-PAGE.  
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Figure 2.15: Coomassie stain and autoradiogram of t he phosphorylation of microsomal 
membranes in the presence of recombinant CPK3 and γγγγ32-ATP. Excised spots which were 
analyzed by MS are marked with  red cycles and are numbered.  

 

Slices of the size of 28 and 40 kDa (figure 2.12 C marked with *) were excised from the 

gel and analysed by MS after tryptic in-gel digestion (table 1 and 2). Further samples 

were analyzed after 2D-gel separation of phosphorylated microsomal fractions (figure 

2.15).  

Based on a comparison of radioactively labelled samples, where microsomal 

membranes were phosphorylated by CPK3 in the presence of γ32P-ATP, and a non-
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radioactive 2D-gel, 18 different spots with high activity were selected for further 

analysis by MS resulting in the identification of following candidates (table 2). 

Identified proteins marked with * are also found in the “phosphate” database 

(http://phosphat.mpimp-golm.mpg.de/) which is a compilation of all in vivo identified 

phosphoproteins (Heazlewood, Durek et al. 2008). The selected proteins in bold should 

be analysed in future works because of there certain functions in ion homeostasis and 

signalling. 

Table 1: MS results of the 28 kDa gel slice 

Reference name NCBI (GI) TAIR (GI) 
adenylate kinase  3746809 AT5G63400 
ANAC071 15236556 AT4g23630* 
AT5g58420/mqj2_10  17979233 AT5g58420* 
ATPHB1 (PROHIBITIN 1)  15235317 AT4g28510 
ATPHB3 (PROHIBITIN 3)  15237488 AT5g40770 
ATPHB4 (PROHIBITIN 4)  15232129 AT3g27280 
ATPHB5 (PROHIBITIN 5)  15241367 AT5g14300 
ATPHB6 (PROHIBITIN 6)  15225374 AT2g20530 
ATPUMP1 15232420 AT3g54110 
band 7 family protein  18395770 AT3g01290* 
Cytochrome c oxidase subunit 2  44887814 ATMg00160 
EMB2296 (EMBRYO DEFECTIVE 2296)  15227954 AT2g18020 
EMB2386 (EMBRYO DEFECTIVE 2386) 15218602 AT1g02780* 
EMB3010 (EMBRYO DEFECTIVE 3010) 15238142 AT5g10360* 
enoyl-CoA hydratase/isomerase family protein  30683577 AT4g16210 
GRF9 (GENERAL REGULATORY FACTOR 9) 18406007 AT2g42590 
multicatalytic endopeptidase complex 2511592 AT2g27020 
phosphate-responsive protein 15242420 AT5g09440 
plastid-lipid associated protein PAP  18403751 AT3g23400 
porin 15232074 AT3g01280 
porin 15240765 AT5g67500 
porin 15242210 AT5g15090 
porin  15242146 AT5g57490 
putative protein  6562305 F13G24.110 
putative ribosomal protein S4  6598334 AT2g17360 
ribosomal protein L7A (RPL7aA)  15226635 AT2g47610 
ribosomal protein L7A (RPL7aB)  15229338 AT3g62870 
ribosomal protein L8 (RPL8C)  15234298 AT4g36130* 
ribosomal protein L8-2 108860940 AT3g51190 
ribosomal protein S6  2224751 AT5g10360 
ribosomal protein S8 (RPS8A)  15241316 AT5g20290 
RPS6 (RIBOSOMAL PROTEIN S6) 15236042 AT4g31700* 
transducin family protein / WD-40 repeat  18421762 AT5g38480* 
unknown protein  15227104 AT2g21870 
v-ATPase subunit D  5360953 AT3g58730* 
VHA-E3  15222641 AT1G64200 
V-type proton-ATPase  1143394 AT4g11150 
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Tabelle 2: MS results of the 40 kDa gel slice 

Reference name NCBI (GI) TAIR (GI) 
ANNAT1  15220216 AT1g35720* 
(S)-2-hydroxy-acid oxidase, peroxisomal 15231850 AT3g14420 
AAC1 (ADP/ATP CARRIER 1) 15231937 AT3g08580 
anion-transporting ATPase 18378897 AT1g01910 
ATGSR1 (glutamine synthase) 15240288 AT5G37600* 
ATPDIL2-1/MEE30/UNE5 (PDI-LIKE 2-1) 15226610 AT2g47470 
binding / catalytic/ coenzyme binding  18399328 AT2g20360 
carbon-nitrogen hydrolase family protein  22326744 AT5g12040 
CPK3  15236560 AT4g23650 
F23N19.17  6630455 F23N19.17 
GAPC  15229231 AT3g04120 
GHMP kinase family protein  30678384 AT3g01640 
GLN1;4 (Glutamine synthetase 1;4) 18418013 AT5g16570 
glutamate-ammonia ligase (EC 6.3.1.2) 99698 AT5g37600 
H+-transporting two-sector ATPase 15229475 AT3g28715 
membrane-associated salt-inducible protein like  2632061 AT4G36680 
NADPH thioredoxin reductase  468524 AT2g17420 
nucleotide-binding subunit of vacuolar ATPase  166627 AT1G76030 
OEP37; ion channel  18406405 AT2g43950 
protein kinase 30695267 AT1g52540* 
S-adenosyl-methionine-sterol-C-methyltransferase  2246456 AT1G76090 
serine/threonine protein kinase 22331138 AT3g17410 
SHS1 (SODIUM HYPERSENSITIVE 1) 15236783 AT4g32400 
terpene cyclase/mutase-related  15234163 AT4g33360 
UGE1  15222072 AT1g12780 
unknown protein  22329857 AT1g29790 
unknown protein  15233608 AT4g29520 
uridine diphosphate glucose epimerase 12323247 AT1G63180 
VACUOLAR ATP SYNTHASE 15233891 AT4g38510 
VHA-A 15219234 AT1g78900 

 

Table  3: MS results of the 18 spots from the 2d-gel PAGE 

Reference name NCBI (GI) Tair (GI) Found in spots 
ACA1  30690083 AT1G27770 11 
ACA2  15235643 AT4G37640 12 
acetyl-CoA carboxylase beta subunit  7525042 ATCG00500 5,7,8,11,14,18 
ADL6 (DYNAMIN-LIKE PROTEIN 6)  15218486 AT1G10290* 4,5,7,12 
AGO1 (ARGONAUTE 1)  15221177 AT1G48410* 9 
ALDH3F1 (ALDEHYDE DEHYDROGENASE 3F1) 42567452 AT4G36250 8 
ALDH3H1 (ALDEHYDE DEHYDROGENASE 4) 15219358 AT1G44170 15 
APX3 (ASCORBATE PEROXIDASE 3) 15236239 AT4G35000 17 
ATACP5 (acid phosphatase 5) 18401643 AT3G17790 11 
ATBAG7  15241803 AT5G62390 17,18 
ATCIMS  15238686 AT5G17920 2,6,13 
ATGSTF10 (EARLY DEHYDRATION-INDUCED 13) 15224582 AT2G30870 7 
ATPDR1/PDR1  18401096 AT3G16340 3,13 
ATPHB3 (PROHIBITIN 3)  15237488 AT5G40770 4 
ATRLI2 (RNase L inhibitor protein 2) 22328793 AT4G19210 14 
calnexin, putative  15240773 AT5G07340 1 
clathrin heavy chain, putative  30681617 AT3G11130 18 
CLPC (HEAT SHOCK PROTEIN 93-V) 18423214 AT5G50920 2,3,6,10,13 
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CRT1 (CALRETICULIN 1); calcium ion binding  15223517 AT1G56340* 1 
cytosolic tRNA-Ala synthetase  1673366 - 13 
ECA4_ARATH Calcium-transporting ATPase 4 12643934 AT1G07670 10 
FUS5 (FUSCA 5); MAP kinase kinase  18378920 AT1G02090 10 
GAPC 15229231 AT3G04120 2,3,6,7 
GF14chi isoform Arabidopsis thaliana GRF1 1255987 - 11 
glutamate-tRNA ligase 30690281 AT5G26710 6,8,18 
GRF2 (GENERAL REGULATORY FACTOR 2) 18411901 AT1G78300 10,11 
GRF4 (GENERAL REGULATORY FACTOR 4) 18399524 AT1G35160* 10 
GRF5 (GENERAL REGULATORY FACTOR 5) 18417863 AT5G16050 11 
GRF10 (GENERAL REGULATORY FACTOR 10) 18395103 AT1G22300 16,17 
H+-transporting two-sector ATPase  15229475 AT3G28715 11 
HpcH/HpaI aldolase family protein  15236908 AT4G10750 5 
HSP81-2 (EARLY-RESP. TO DEHYDRATION 8) 15241115 AT5G56030 5,8 
KAB1 (POTASSIUM CHANNEL BETA SUBUNIT) 15219795 AT1G04690 14 
KAPP (Kinase-associated protein phosphatase) 15239690 AT5G19280 12 
kelch repeat-containing protein  30686755 AT2G36360 14 
kinesin motor protein-related  15227596 AT2G36200 10 
legume lectin family protein  15219173 AT1G53070 4 
LOS1 (Low expression of osm. responsive gen. 1)  30696056 AT1G56070* 3,5,8,10,11,12 
magnesium transporter CorA-like protein-related  22325463 AT2G04305 12 
membrane-associated salt-inducible protein like  2632061 - 16 
MFP2 (MULTIFUNCTIONAL PROTEIN) 15231317 AT3G06860 9 
MgATP-energized glutathione S-conjugate pump  2909781 - 18 
monooxygenase, putative (MO2)  15233923 AT4G38540 7 
NDB1 (NAD(P)H DEHYDROGENASE B1) 18417151 AT4G28220 8 
OMR1 (L-O-METHYLTHREONINE RESISTANT 1)  15232827 AT3G10050 13 
PDR8/PEN3 (PLEIOTROPIC DRUG 
RESISTANCE8) 15218936 AT1G59870* 3,13,18 
porin 15242210 AT5G15090 4,6,12,15,16,17 
porin 15232074 AT3G01280 4,6,9,15,16,18 
porin  15240765 AT5G67500 9 
protein phosphatase 2C, putative / PP2C 15232538 AT3G15260 10,11 
protein phosphatase 2C, putative / PP2C 18395099 AT1G22280* 4 
putative ABC transporter  4581139 - 6,8,13 
putative coated vesicle membrane protein  21595553 - 17,18 
RPT4A (regulatory particle triple-A 4A) 15239140 AT5G43010 6,16 
SDH2-1 (succinate dehydrogenase 2-1)  15232149 AT3G27380 5 
sec34-like family protein  30698937 AT1G73430 8 
signal recognition particle 54 kDa protein 2 11094805 - 5,12 
sucrose synthase  436792 - 2,11,15,17 
SUS4 22331535 AT3G43190 2,7,13,16,17 
tetratricopeptide repeat (TPR)-containing protein  30690956 At4g37460 6 
TOC75-III (translocon outer membrane complex 75-III) 15232625 AT3G46740 15 
UbiE/COQ5 methyltransferase family protein  15242092 AT5G57300 7 
Unknown protein  17065080 - 1 
VACUOLAR ATP SYNTHASE SUBUNIT B2 15233891 AT4G38510 5 
v-ATPase subunit D  5360953 - 18 

VHA-A; ATP binding / H+ transporting ATP synthase 15219234 AT1G78900 
2,3,5,6,7,8,9,10,11, 
12,13,14,15,17,18 

VHA-A3 (VACUOLAR PROTON ATPASE A3)  18420373 AT4G39080 11,16 
VPS45 (VACUOLAR PROTEIN SORTING 45) 18411376 AT1G77140 12 
V-type proton-ATPase  1143394 - 5,8,9,12,14 
Y5957_ARATH Uncharacterized protein At5g39570 75171219 At5g39570 1 
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2.2 Impact of N-myristoylation on localisation of CDPKs 

The data presented in the previous chapters on the identification of potential CPK3 

substrates in microsomal fractions illustrate already the great importance of the 

subcellular localization of components involved. Therefore a more general study should 

be performed to address the regulation of CDPK localization by N-terminal 

myristoylation and to elucidate general principles of this mode of protein targeting. To 

test whether the observed N-myristoylation of selected CDPKs influences their 

localization in vivo, I selected several different CDPKs, also including candidates, for 

which no modification had been predicted (Table 4). Two different experimental 

strategies were applied. The first needed the analysis of subcellular localization of 

CDPK-YFP-fusion proteins in isolated Arabidopsis protoplasts, and the second, 

analyzed subcellular localization in tobacco leaves after infiltration with Agrobacteria. 

The use either the wild type form of those proteins which should be myristoylated or the 

G2A mutant form which cannot be myristoylated per se should allow visualizing the 

effect of N-myristoylation in vivo.  

 

Table 4: Prediction of CPK2, CPK6, CPK9 and CPK13 

Protein IMP predictor PlantsP 
predictor 

CPK2 TWILIGHT ZONE Positive 

CPK6 NO Positive 

CPK9 RELIABLE Positive 

CPK13 NO Positive 

Prediction of myristoylation using two prediction p rograms. The IMP prediction site: 
http://mendel.imp.ac.at/sat/myristate/SUPLpredictor .htm and the PlantsP predictor: 
http://plantsp.genomics.purdue.edu/plantsp/html/myr ist.html.  

 

Prediction and reality: Myristoylation of unpredicted candidates - in vitro 

It was essential to demonstrate at the beginning that the investigated proteins are 

translated with the same efficiency and that they are indeed N-myristoylated or not, as 

expected for the respective protein or its mutant. This was done in an in vitro translation 

system as described already for CPK3. The results are shown below for CPK2, CPK3, 

CPK6, CPK9, CPK13, CPK16, CPK17 and CPK28, following the procedure described 

by Lu and Hrabak 2002. CPK2 was used as positive control for a myristoylated protein 
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(Lu and Hrabak 2002), and the G2A served as negative controls of all investigated 

CDPKs (figure 2.16).  

 

 
Figure 2.16: The wild type and the point mutants of  the CDPKs were in vitro translated 
using coupled transcription/translation in wheat ge rm extracts. Translation to label total 
protein in the presence of [ 35S] methionine. Translation in the presence of non 
radioactive amino acids but [ 3H] labelled myristic acid to detect myristoylated p roteins. 
CPK2 served as a positive control for a myristoylat ed protein in these experiments 
according to Lu and Hrabak 2002. 

 

In summary, the N-myristoylation of all tested CDPKs could be shown in these 

experiments. Notably also those CDPKs which were not predicted by the IMP Predictor 

turned out to be myristoylated in-vitro. Therefore the next step was to test the effect of 

myristoylation on the localisation in vivo using YFP fusion proteins. 
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Prediction and reality: myristoylation of unpredicted candidates - in vivo 

The localization of YFP-fusion proteins in transiently transformed Arabidopsis 

protoplasts and in tobacco leaf epidermal cells is shown in figure 2.17 (P1-P4 and T1-

T4). The left panel shows always the localization of the wild type proteins as detected 

with the YFP filter, and the corresponding transmission light image of the same 

protoplast is shown in the adjacent picture to the right. The localization of the G2A 

mutants and the corresponding transmission light image of the protoplasts are shown in 

the right panel of the figure 2.17. For all investigated CDPKs, except for CPK6, the 

functional consequence of myristoylation on subcellular localisation could be clearly 

observed. The WT versions were always membrane bound whereas the G2A mutants 

showed a cytoplasmic localisation.  

Additionally, young developing leaves of tobacco plants were infiltrated with constructs 

encoding YFP-fusion proteins of either the wild type forms of the selected CDPKs or 

their corresponding G2A mutants. The localization of the YFP-fusion proteins in 

epidermal leaf cells is shown in figure 2.17 T1-T4, two days after infiltration.  

In agreement with the results obtained in protoplasts the wild type version of CPK2 was 

localized at membranes with clearly visible accumulation at distinct spots (figure 2.17 

P1 and T1). Not even the nuclear membrane was visible in the YFP signal. In contrast, 

the G2A mutant of CPK2 showed a diffuse localization in the cytosol and also a strong 

signal from the surrounding of the nucleus (figure 2.17 P1 and T1). The CPK6-YFP 

fusion protein showed a different localization in epidermal leaf cells as compared to 

protoplasts. CPK6wt-YFP was localized to the plasma membrane and the nucleus. The 

localization of the CPK6G2A-YFP mutant was the same in principle; only the signal at 

the membranes was more diffuse (figure 2.17 P2 and T2). For CPK9 (figure 2.17 P3 

and T3) and CPK13 (figure 2.17 P4 and T4) the results were the same as obtained from 

protoplasts.  
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Figure 2.17: (continued next page) 
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Figure 2.17: Transient expression of YFP-tagged WT/ G2A mutants of CPK2, CPK6, CPK9 
and CPK13 in Arabidopsis protoplasts (P1-P4) and in  tobacco epidermal cells (T1-T4). P1-
P4: For each CDPK the YFP signal resulting from a s ingle protoplast is shown on the left, 
and the corresponding differential interference con trast (DIC) image of the whole cell is 
shown in the right. T1-T4: Confocal images which ar e merged from three channels. Red: 
auto-fluorescence of the chloroplasts; white: trans mission light; green: YFP 
fluorescence of the expressed CDPK. The dashed whit e lines indicate the position of the 
nucleus and the borderline between the cytosol and the central vacuole. The pictures 
were taken the day after transformation for the pro toplasts and two day after 
transformation the infiltrated tobacco leafs. 

 

Addressing general principles of myristoylation and protein localization 

CPK3 is the only CDPK from Arabidopsis, harbouring a “non-classical” 

N-myristoylation motif in its N-terminus, which does not also contain one or two 

cysteines in close vicinity. Because of this circumstance, CPK3 can undergo N-

myristoylation but not palmitoylation which would require those cysteines. To test the 

effect of an artificially “forced” palmitoylation, the N-terminus of CPK3 was altered 

and two amino acids were replaced by cysteines (N-term: MGHCCSKSK). This 

modification should now enable also palmitoylation of CPK3. However, the in vivo 

expression of the YFP tagged mutant did not show increased attachments to membranes 

(figure 2.18 A and B). Interestingly the in vitro myristoylation of the generated CPK3 

CC mutant showed also a severe reduction in N-myristoylation efficiency (figure 2.16). 
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Figure 2.18: Transient expression of YFP-tagged WT/ G2A/CC mutants of CPK3 in 
Arabidopsis protoplasts (A) and in tobacco epiderma l cells (B). A: The YFP signal 
resulting from a single protoplast is shown on the left, and the corresponding differential 
interference contrast (DIC) image of the whole cell  is shown on the right. Confocal 
images which are merged from three channels. Red: a uto-fluorescence of the 
chloroplasts; white: transmission light; green: YFP  fluorescence of CPK3. The pictures 
were taken the day after transformation of the prot oplasts and two day after 
transformation of the infiltrated tobacco leafs. 

 

CPK17 is an example for a CDPK with very clear and strong membrane localisation. 

Therefore CPK17 and the G2A mutant form of this CDPK which revealed a clear 

cytosolic localisation were used for further mutational studies on the N-terminal 

domain. The N-terminal domain of CPK17 contains the required glycine on the second 

position for N-myristoylation, and two additional cysteines for palmitoylation. To ask 

whether these cysteins are responsible for the palmitoylation and therefore for the 

membrane attachment, a mutant form of CPK17, without these two cysteines was 

analyzed. In this mutant both cysteins were replaced by one serine and a phenylalanine 

(N-Term: MGNSFSHGRD). The expression of this CPK17 SF in tobacco epidermal 

cells showed clear cytosolic localisation (figure 2.19 B). In contrast, the expression in 

protoplasts was different because most of the protein was localized to the surrounding 
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of the nucleus (figure 2.19 A). Interestingly, the in-vitro myristoylation of CPK17 SF 

showed only a weak reduction in myristoylation (figure 2.16) thus indicating that the 

observed difference in localization could indeed be attributed to the difference in 

palmitoylation. 

 

Figure 2.19: Transient expression of YFP-tagged WT/ G2A mutants of CPK17 in 
Arabidopsis protoplasts (A) and in tobacco epiderma l cells (B). A: The YFP signal 
resulting from a single protoplast is shown on the left, and the corresponding differential 
interference contrast (DIC) image of the whole cell  is shown on the right. Confocal 
images which are merged from three channels. Red: a uto-fluorescence of the 
chloroplasts; white: transmission light; green: YFP  fluorescence of CPK17. The pictures 
were taken the day after transformation of the prot oplasts and two day after 
transformation of the infiltrated tobacco leafs. 

 

CPK16 was chosen for further studies because it is predicted as chloroplast-localized 

with a very high probability (i.e. in TAIR, based on TargetP prediction). The 

localisation of proteins to the chloroplast requires a chloroplast targeting sequence on 

the N-terminal domain which is cleaved of upon import into the chloroplast. The 

probability for a chloroplast localisation can be bioinformatically estimated by analysis 

of the N-terminal sequence (Emanuelsson, Nielsen et al. 2000). CPK16 contains also an 

N-myristoylation as well as a palmitoylation motif in its N-terminus. Using the 
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chloroplast prediction program Target P1.1 (http://www.cbs.dtu.dk/services/TargetP/) 

the score for CPK16 is 0.939 and the score for the G2A mutant CPK16 is 0.944. 

Nevertheless, the expression of CPK16 in tobacco epidermal leaf cells and protoplasts 

showed a membrane and nuclear attached localisation for the wild type version of this 

protein. However, if the G2A mutant of CPK16 was studied it turned out to be localized 

in chloroplasts and in the nucleus in tobacco epidermal leaf cells and in protoplasts 

(figure 2.20 A and B). An evidence for chloroplast localisation is the cleavage of the N-

terminal sequence. To test the cleavage, the N-terminal domain of CPK16 and its G2A 

mutant was fused to YFP, expressed in tobacco leaf cells and analyzed by Western 

blotting using an antibody against GFP/YFP (figure 2.20 C). The detected size of the N-

terminal domain of CPK16-YFP was at 40 kDa as expected, whereas the G2A mutant 

form of CPK16 had a reduced size of only about 30 kDa. This reduction in size is a 

strong evidence for a chloroplast localisation of CPK16 G2A due to processing of the 

N-terminal targeting peptide. However, it has to be kept in mind that this is an 

artificially created mutant form of the protein! Nothing is known about whether or not a 

given protein is actually N-myristoylated to 100 % in the cell. 

To study the influence of palmitoylation of the chloroplast localized CPK16 G2A a 

loss-of palmitoylation CPK16 mutant was generated (C4F). In this mutant the single 

cystein residue was replaced by phenylalanine (MGLFFSSAAKS). The expression of 

this mutant in tobacco epidermal leaf cells revealed a loss-of membrane localization and 

a strong nuclear localisation. Again, the double mutant G2A C4F was localized to 

chloroplasts and the nucleus (figure 2.20 B).   
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Figure 2.20: Transient expression of YFP-tagged WT/ G2A mutants of CPK16 in 
Arabidopsis protoplasts (A) and in tobacco epiderma l cells (B). A: The YFP signal 
resulting from a single protoplast is shown on the left, and the corresponding differential 
interference contrast (DIC) image of the whole cell  is shown in the right. Confocal images 
which are merged from three channels. Red: auto-flu orescence of the chloroplasts; 
white: transmission light; green: YFP fluorescence of CPK17. The pictures were taken 
the day after transformation of the protoplasts and  two day after transformation of the 
infiltrated tobacco leafs. C: Western blot (left) o f samples from expressed wt/G2A N-term-
CPK16-YFP in infiltrated tobacco leafs and the corr esponding Coomassie stain.   

 

CPK28 is the closest homolog of CPK16 in the Arabidopsis CDPK family revealing the 

highest sequence homology. Therefore its localization was studied and compared to 

CPK16. The wild type form of CPK28 was found to be membrane associated in tobacco 

epidermal leaf cells and in protoplasts, whereas the G2A CPK28 mutant was only 

visible in the nucleus (figure 2.21 A and B).  
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Figure 2.21: Transient expression of YFP-tagged WT/ G2A mutants of CPK28 in 
Arabidopsis protoplasts (A) and in tobacco epiderma l cells (B). A: The YFP signal 
resulting from a single protoplast is shown in the left, and the corresponding differential 
interference contrast (DIC) image of the whole cell  is shown on the right. Confocal 
images which are merged from three channels. Red: a uto-fluorescence of the 
chloroplasts; white: transmission light; green: YFP  fluorescence of CPK28. The pictures 
were taken the day after transformation of the prot oplasts and two day after 
transformation of the infiltrated tobacco leafs. 
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3  Discussion 

Cellular signal transduction is a prerequisite for plants to be able to adapt to biotic or 

abiotic stress. Signal transduction involves first the recognition of a given signal and 

later on its processing into a cellular response, manifested for example in altered gene 

expression patterns or regulation of fluxes or even movements. A wide spectrum of 

stresses leads to the generation of free intracellular Ca2+ ions which act as secondary 

messenger not only in plants, but also in yeast or animal cells. In this context, the Ca2+ 

ions are used as fast signaling molecules. These signals are subsequently decoded by 

Ca2+-sensing proteins such as CDPKs. They are immediately activated in the presence 

of Ca2+ and phosphorylate target proteins. A great number of proteins are known to be 

phosphorylated by CDPKs (Cheng, Willmann et al. 2002) and these target proteins are 

involved in biotic/abiotic stress response and regulation of metabolism (Cheng, 

Willmann et al. 2002). Notably, membrane associated or membrane localized proteins 

are overrepresent in this set of canonical CDPK targets, which could be explained by 

the large numbers of myristoylated and therefore membrane associated CDPKs. 

 

3.1  CPK3 is an important regulator in the salt stress response 

The analysis of the cpk3 knock-out line revealed a salt sensitive phenotype on the one 

hand, and the over-expression of CPK3 remarkably increased salt tolerance in a dosage-

dependent manner on the other hand. Furthermore, salt stress triggered CPK3-

dependent changes in protein phosphorylation patterns as detected by Western blot of 

2D-gel analysis using a phosphorylation specific antibody. Both hints are strong 

evidence for an important role of CPK3 in the salt stress response and adaptation in 

Arabidopsis. However, in the current literature only little is known about this particular 

CDPK. In 2003 Dammann et al. (Dammann, Ichida et al. 2003) showed a 

cytosolic/nuclear localization of CPK3-GFP fusion proteins in roots in an over-

expression study. In 2006, Mori et al. (Mori, Murata et al. 2006) showed that cpk3/cpk6 

double knock-out plants displayed altered responses of vacuolar potassium channels in 

leaf guard cells in response to abscisic acid (ABA). But neither a direct phosphorylation 

of the channel itself, nor a phenotype of the knock-out plants in response to stress were 

shown in that work. The observed phenotype of cpk3 mutants resembled that of MAPK 

mutants under similar stress conditions (Teige, Scheikl et al. 2004; Qiu, Zhou et al. 
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2008). This was the reason to extend the functional analysis of CPK3 in the salt stress 

response of Arabidopsis towards a deeper analysis of functional cross-talk between 

CDPK- and MAPK- dependent signaling. 

 

3.2  CPK3 signaling upon salt stress does not cross-talk with 

MAP kinases pathways 

Cross-talk between Ca2+ and MAPK signaling are well known for animal cells, where 

Ca2+ signals and calmodulines (CaMs) regulate the Ras/Raf/ERK-MAP kinase 

pathway(Agell, Bachs et al. 2002; Rozengurt 2007), but this general question has so far 

almost not been addressed in plants. In 2005 Ludwig et al.(Ludwig, Saitoh et al. 2005) 

reported ethylene-mediated cross-talk between CDPK and MAPK signaling. Ludwig et 

al. showed that elevated CDPK activities compromised stress-induced MAPK activities 

by over-expression of a truncated and thereby deregulated tobacco CDPK. Furthermore, 

this inhibition required ethylene synthesis and perception. In contrast to this work, no 

interference of CDPK and MAPK activities in the salt stress response could be observed 

for the investigated kinases. Arabidopsis MPK4 and 6, the major players in salt stress 

triggered MAPK pathways, showed normal activities in CPK3 knock-out and over-

expressing lines, and vice versa, CPK3 activity was normally induced in MKK2 knock-

out and over-expressing lines. Furthermore, the normal induction of MAPK dependent 

salt stress marker genes, performed in a cpk3 knock-out and two independent CPK3 

over-expressing lines, also indicated that these pathways act independently and in 

parallel. In this respect, it is important to note that even in animal cells quite different 

forms of cross-talk between Ca2+ and MAPK signaling pathways have been published. 

In the common view Ca2+ signals activate the MAPKs ERK and p38 in response to 

external signals (Agell, Bachs et al. 2002) but cases where Ca2+ and CaM have a clear 

inhibitory effect on ERK activation have also been reported (Agell, Bachs et al. 2002; 

Rozengurt 2007). The latter would be consistent with the observed inhibition of plant 

MAPK activities by expression of deregulated CDPKs in tobacco(Ludwig, Saitoh et al. 

2005). However, the view that MAPK cascades are downstream of Ca2+ signaling 

pathways can certainly not be generalized, not even for the animal system, since it was 

also shown that the p38 MAPK pathway acts upstream of the Wnt/cyclic GMP/Ca2+ 

non-canonical pathway (Ma and Wang 2007). Therefore the conclusion is that cross-
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talk between Ca2+-signaling and MAPK pathways cannot be generalized but has to be 

specifically considered for each different stimulus and the involved kinases, as already 

pointed out for calcium activation of the ERK pathway in animal cells (Schmitt, 

Wayman et al. 2004). 

 

3.3  CPK3 is rather involved in the immediate early response to 

salt stress 

The result that the transcriptional response of a considerable number of known salt 

stress-responsive genes was not influenced in cpk3 mutants or by CPK3 overexpression, 

raised the question how the observed salt sensitive phenotype could be explained. In 

this respect it is interesting to compare the cellular function of salt stress-activated 

protein kinases in different organisms. In yeast cells at least two signaling pathways are 

involved in regulating ion homeostasis and osmotic adjustment. One pathway involves 

the Ca2+-dependent phosphatase calcineurin, which regulates the expression of ion 

transporters, e.g. ENA1, the major Na+ efflux pump in the plasma membrane (Hohmann 

2002; Matsumoto, Ellsmore et al. 2002). The second pathway activates the MAPK 

Hog1, which is required for transcriptional adaptation. But Hog1 is not only involved in 

transcriptional induction of stress response genes in yeast cells, it also regulates the 

activities of the Nha1 Na+/H+ antiporter and the Tok1 potassium channel by 

phosphorylation (Proft and Struhl 2004). This dual role of the MAPK Hog1 in yeast 

osmotic stress adaptation seems to have split in plants. Here mainly the MAPK pathway 

seems to be responsible for the transcriptional induction of the genes required for long-

term adaptation, whereas the CDPK seems to have an important role in the immediate 

early response by phosphorylating target proteins. Again, this cannot be generalized for 

all CDPKs, since another Arabidopsis CDPK (CPK10) was shown to act as 

transcriptional inducer of a barley ABA-responsive promoter in maize leaf protoplasts 

(Sheen 1996). Additionally, a CDPK from the common ice plant Mesembryanthemum 

crystallinum phosphorylates a nuclear substrate protein in response to salt stress 

(Patharkar and Cushman 2000). 

The number of 15 proteins which were found to be CPK3-dependent differentially 

phosphorylated on threonine residues after salt stress, presents a reasonable number of 

potential targets as can be deduced from current literature reviewing CDPK or MAPK 
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targets (Cheng, Willmann et al. 2002; Colcombet and Hirt 2008). Most importantly, the 

very few proteomic studies of plant salt stress response, which have been performed so 

far, focused rather on long-term changes in protein levels and did not address fast 

changes in post-translational protein modification like phosphorylation. In these studies 

it was reported that salt stress first causes a transient suppression of de novo protein 

synthesis (Ndimba, Chivasa et al. 2005), which is also known to occur in yeast cells 

(Teige, Scheikl et al. 2001), and that visible changes in the total protein patterns could 

be observed after several hours or even longer periods only (Ndimba, Chivasa et al. 

2005; Jiang, Yang et al. 2007). It is clear that an additional and immediate mechanism 

of adaptation is required to enable plant survival in an acute stress situation. Only one 

single study did address fast changes in protein phosphorylation in response to salt 

stress in plants so far. In this study multiple phosphorylation of plant plasma membrane 

aquaporins was reported (Prak, Hem et al. 2008). 

 

3.4  Subcellular localization of CPK3 

A co-localization of the protein kinase and its targets would obviously favour fast and 

efficient signal transduction, particularly if the activating signal for the kinase is 

extremely transient and locally restricted, as it is known for CDPKs (Bootman, Lipp et 

al. 2001). Accordingly, the observed membrane localization of CPK3 would be 

consistent with a potential role in regulating channel proteins. Since the membrane 

localization of CPK3 seemed to contrast the published cytoplasmic and nuclear 

localization of CPK3 (Dammann, Ichida et al. 2003) the question was addressed by two 

independent approaches. The biochemical approach uses a CPK3-specific antibody for 

detection of the endogenous protein and confirmed the localization of CPK3-YFP 

fusion proteins in the nucleus and at cellular membranes in epidermal leaves. Analysis 

of these constructs in transgenic plants revealed that the CPK3-YFP fusion proteins 

were able to improve salt tolerance, thus proving these proteins to be functional. Further 

experiments revealed the membrane localization to be dependent on the N-terminal 

myristoylation of CPK3. However, a partial membrane association of CPK3 is also 

visible in the work performed by Dammann et al. in their figure 2 (Dammann, Ichida et 

al. 2003). 

In contrast to CPK3, a nuclear/cytoplasmic localization has been reported for several 

plant MAPKs including Arabidopsis MPK4 and MPK6 (Schweighofer, Kazanaviciute 



Discussion 
 

 

 76

et al. 2007). The activation of gene expression through MAPK cascades involves 

dynamic changes of their subcellular localization, also reflecting the localization of their 

potential targets (Lee, Rudd et al. 2004). In this context, the observed N-myristoylation-

dependent-membrane-localization of CPK3 would nicely provide a molecular basis for 

the different tasks of CDPK and MAPK pathways in plants’ salt stress response. 

 

3.5  Cellular targets of CPK3 in salt stress response 

The findings that CPK3 is an important regulator of salt stress adaptation and that it is 

localized to membranes suggest that CPK3 regulates membrane associated proteins 

which are involved in salt stress adaptation. Regulation of membrane located channel 

proteins by phosphorylation is already a known mechanism for several proteins 

(Mahajan, Pandey et al. 2008). From literature it is known that the substrates of CDPKs 

contain a distinct phosphorylation motif, which is capable of binding of 14-3-3 proteins 

(Cheng, Willmann et al. 2002). 14-3-3 proteins (General Regulating Factors) recognize 

phosphorylation motifs in the phosphorylated state and subsequently modulate the 

function of the phosphorylated protein. The recently identified phosphorylation site in 

the vacuolar two-pore K+ channel TPK1 (Latz, Becker et al. 2007) is a perfect CDPK 

target site for 14-3-3 protein binding after phosphorylation and it would therefore be an 

ideal candidate for CDPK-dependent regulation. CPK3 was clearly able to 

phosphorylate TPK1 in vitro (figure 2.12) and the phosphorylation of microsomal 

membranes further underpinned that TPK1 presents a valid CPK3 target in vitro as well 

as in vivo. 

A large set of trans-membrane proteins, which are known to be important in the 

exchange of water and solute are the Major Intrinsic Proteins (MIPs) (Reizer, Reizer et 

al. 1993; Ishibashi and Sasaki 1995). MIPs that selectively transport water through 

membranes are called aquaporins. In Arabidopsis a family of 35 members of MIPs has 

been predicted, which can be classified into 4 groups according to their amino acid 

sequence homology: The plasma membrane intrinsic proteins (PIPs), the tonoplast 

intrinsic proteins (TIPs), NOD26-like MIPs (NIPs), and the small basic intrinsic 

proteins (SIPs) (Johanson, Karlsson et al. 2001). It has been shown that some MIPs are 

regulated by phosphorylation. For example, Nodulin 26 (Nod26) from soy bean is 

phosphorylated on Ser262 by a CDPK (Weaver, Shomer et al. 1994). It was further 

shown that this phosphorylation enhances water permeability of the channel and it is 
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regulated developmentally and by osmotic signals (Guenther, Chanmanivone et al. 

2003). The seed specific α-TIP is phosphorylated by a tonoplast localized Ca2+-

dependent kinase (Johnson and Chrispeels 1992). Three functional phosphorylation 

sites have been mapped in this channel (Ser7, Ser23 and Ser99) regulating its water 

permeability (Maurel, Kado et al. 1995). 

In this work CPK3 was found to be associated with membranes in vivo and co-

segregated with microsomal membranes in biochemical cell-fractionation experiments. 

For that reason the search for CPK3 substrates was focused on membrane-associated 

proteins. In vitro phosphorylation of isolated microsomal membranes revealed different 

phosphorylation patterns for the analyzed CDPKs (CPK3, CPK4, CPK5, CPK6 and 

CPK11). Interestingly, the phosphorylation pattern obtained with CPK3 differed most 

strongly from the phosphorylation patterns obtained with the other tested CDPKs. In 

particular, a strong phosphorylation was visible at proteins with molecular masses of 

about 25-28 kDa and 40 kDa, respectively.  

In order to develop this approach for the detection of membrane-localized CPK3 targets 

further, a 2D-separation approach was used. Again, recombinant CPK3 was used to 

phosphorylate proteins in microsomal membranes before separation by 2D-gel 

electrophoresis. This approach resulted in the identification of a great number of 

proteins as potential targets by MS. Therefore all identified proteins were further 

analysed in two steps. The first selection represented the quality of the obtained spectra, 

thus reflecting the confidence, for the identification if this particular protein. Second, 

the identified proteins were analyzed for CDPK related phosphorylation motifs 

according to (Cheng, Willmann et al. 2002) in order to reduce the number of false 

positives. According to their function, the identified proteins could be classified in: 

transporter, metabolism, signalling and other/unknown (figure 3.1). 
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Figure 3.1: Functional classification of identified  
potential CPK3 targets in microsomal membranes.  

 

Interestingly, there is a big overlap between the identified proteins and a recently 

published list of proteins identified in detergent-resistance membranes (DRM) which 

are also known as lipid rafts (Fauquenoy, Morelle et al. 2008). In this publication it was 

also shown that a subset of the identified proteins are Ca2+ dependent protein kinases. 

Moreover, these CDPKs (including CPK2) are also shown to be myristoylated and 

palmitoylated. In vivo, these lipid rafts are organized into discrete regions 

(microdomains) with distinct lipid and protein content.   

To conclude, CPK3 is localized to membranes and phosphorylates Ca2+ dependently 

membrane bound proteins. The analysis of these proteins revealed that a major part is 

involved in transport of solutes/ions and signaling. Phosphorylation of these proteins 

could be a mechanism for there activation upon Ca2+ mediated stress response and 

would explain the salt sensitive phenotype of the cpk3 knock-out line.  

 

3.6  Activation of CPK3 

The current model of the activation of CDPKs suggests that the binding of Ca2+ to the 

calmodulin domain of CDPKs results in an refolding of the protein which releases the 

auto-inhibitory domain from the kinase catalytic domain (Harper, Breton et al. 2004). 

This event makes the kinase catalytic domain accessible and opens the possibility for 

the interaction with the substrate. Therefore any changes, which would affect interaction 

between the kinase domain and the regulatory domain, would be expected to have a 
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great impact on kinase activity towards a given substrate. Autophosphorylation of 

CPK3 revealed the existence of five differentially phosphorylated forms (fig. 2.13 D). 

One of those sites could unambiguously be identified as Ser 242 in CPK3, which is 

localized within the substrate binding domain. Therefore this phosphorylation event was 

further studied by generation of loss-of-function (Ser to Ala) and gain-of-function (Ser 

to Asp) mutants of this site in CPK3. If the autophosphorylation at this site should be 

required to trigger the “dissociation” of the auto-inhibitory domain from the active 

kinase domain, the Ala mutation should have little effect on the activity, and the Asp 

mutation- mimicking the phosphorylated version – should render the kinase (more or 

less) Ca2+ independent. However, the functional analysis of these mutants showed that 

this not to be the case. Both mutants had a reduced activity as detected by 

autophosphorylation and phosphorylation of its substrate TPK1. Hence, Ser 242 seems 

not to be involved in this regulatory aspect of CPK3 and further studies are clearly 

required to solve this complex issue involving so many different phosphorylation sites. 

 

3.7  General principles and consequences of protein N-Acylation 

Most of the Arabidopsis CDPKs are thought to be N-terminally myristoylated and 

palmitoylated. The attachment of the myristic acid increases not only the 

hydrophobicity of the protein; it also influences the process of translation and the 

sub-cellular targeting of the protein. The data presented in this work underpin the 

significance of protein N-myristoylation for the appropriate sub-cellular localisation. 

The selected CDPKs, which were studied in more detail in this work, showed clearly 

that the loss of myristoylation was responsible for the loss of membrane association. 

Most of the analysed CDPKs displayed a membrane associated localisation in their wild 

type form which changed dramatically if the myristoylation sites were abolished by 

introducing point mutations. Such a localisation would therefore explain nicely the great 

number of known membrane localized target proteins for different CDPKs (Cheng, 

Willmann et al. 2002).  

In agreement with other studies on CDPKs, the N-myristoylation of CPK2 has already 

been shown by Lu and Hrabak 2008. The N-myristoylation of CPK9 had never been 

demonstrated in vitro before, but a study by Dammann, Ichida et al. 2003 CPK9 was 

shown to be membrane associated in root cells, and (Lino, Carrillo-Rayas et al. 2006) 

isolated in the beetroot homologue of CPK9 from plasma membranes. Moreover, in 
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recent proteomic studies CPK9 was also found to be associated with membranes 

(Nuhse, Stensballe et al. 2003). In addition to these more or less “expected” results it 

was possible to demonstrate experimentally N-myristoylation of CPK6 and 13 in vitro 

despite the negative prediction for those candidates. Accordingly, those two CDPKs 

were listed as not myristoylated in literature (Cheng, Willmann et al. 2002). The 

biological relevance of this in vitro result is clearly visible in vivo as indicated by the 

different subcellular localization of those CDPKs (figure 2.17 P1-P4 and T1-T4). The 

difference between the different prediction programs and the experimental result might 

be explained by a different substrate specificity of the plant N-Myristoyl Transferase 

(NMT) in comparison to the well studied yeast or animal NMTs (Qi, Rajala et al. 2000; 

Thompson and Okuyama 2000; Boisson, Giglione et al. 2003), which serve as basis for 

most currently used prediction programs.  

It is known that N-myristoylation and palmitoylation influences the localisation of 

proteins but the detailed mechanism, i.e. which modification influences which particular 

subcellular targeting is not well understood. To address this question I chose CPK3, 

CPK16, CPK17, and CPK28 to investigate general aspects of N-terminal myristoylation 

and palmitoylation. CPK3 was mutagenized to induce an artificial palmitoylation motif 

in order to test how the double acylation would influence localization. Of particular 

interest was the question whether this additional palmitoylation would prevent nuclear 

import of CPK3. Unfortunately no effect could be observed for the YFP-constructs in 

infiltrated tobacco leaves, but it remains to be tested if the mutated forms are indeed 

myristoylated and palmitoylated as expected.  

CPK17 is N-myristoylated and palmitoylated in its wild type form and targeted to the 

plasma membrane. To test the effect of palmitoylation on plasma membrane targeting, 

two cysteins, which are localized in the N-terminal part of the protein, were replaced by 

serine and alanine. In this mutant the membrane associated localisation of the CPK17 

wt was dramatically changed to the cytoplasma but notably not to the nucleus as it was 

seen for other CDPKs as CPK28 for example. Interestingly, this mutant showed also a 

similar localisation like the CPK17 G2A, which was clearly localized in the cytoplasm 

and not in the nucleus. For CPK17 it seems that both modifications, the N-

myristoylation and palmitoylation, are necessary for the appropriate targeting to the 

plasma membrane.  

The loss of N-myristoylation is not always connected with the loss of membrane 

attachment and the change to a cytoplasmatic localisation. The most striking example in 
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this context is certainly CPK16, which showed a membrane associated localisation as 

wt protein, but a chloroplast localization as G2A mutant. CPK16 also contains an N-

terminal residue for palmitoylation, which could be responsible for an appropriate 

membrane localisation and to keep CPK16 out of chloroplasts. However, the loss of 

palmitoylation mutant C4F did not show a chloroplast localisation. It seems therefore 

that the palmitoylation of CPK16 is not the mechanism, which keeps CPK16 out of 

chloroplasts. On the other hand the C4F mutant also had a reduced membrane 

associated localisation and a strong nuclear localisation, which could be taken as 

evidence for a palmitoylation based mechanism of membrane attachment. A completely 

different explanation could be that the loss of membrane association of CPK16 C4F 

might also be explained by a fast brake-down of the mutant protein in the cytoplasm if 

the protein is not correctly localized to the membrane or nucleus. This effect could also 

be the reason why CPK28 showed a membrane associated localisation while the G2A 

mutant was exclusively localized in the nucleus. Still, it does not explain the chloroplast 

localisation of CPK16 G2A. CPK16 wt and G2A only differ in the N-myristoylation 

and a simple explanation for the chloroplast localisation of CPK16 could be that the 

G2A mutant has a reduced hydrophobic domain on the N-terminus.  

In summary it became clear from these initial studies that the regulation of N-terminal 

myristoylation and palmitoylation is one of the key mechanisms for correct subcellular 

targeting of different CDPKs. Accordingly these studies should be continued using 

these CDPKs as ideal molecular tools to study general principles of subcellular 

targeting and the influence of N-terminal acylation. Moreover the localization of 

particular CDPKs at distinct membranes has high implications for its cellular functions, 

thus offering the possibility to test even phenotypes of these modifications in planta, as 

it was done for the myristoylated SOS3 (Ishitani, Liu et al. 2000) or CBL2 (Batistic, 

Sorek et al. 2008) for example. 
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