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Chapter 1

Introduction

The proton transfer reaction is one of the essential processes in chemistry. It is the

main step in the typical (i.e. Arrhenius) acid-base reactions. The properties of

liquid water, particularly its conductivity, are governed by the interchange of pro-

tons. Deeper understanding of these reactions is important for many processes

in technology and biology. But experimental probing is especially challenging

because of the short time scale. A fascinating emerging field is concerning the ex-

cited state intramolecular proton transfer (ESIPT). Rather than just examining

a macroscopic average, a proton transfer along an intramolecular hydrogen-bond

is directly triggered with a LASER pulse and probed by a subsequent pulse.

Modern femto-second pump-probe techniques allow to follow the reactive process

on atomic time and length scales.[1] Today’s computational techniques provide

very accurate ab-initio treatment of the excited molecules and guide the inter-

pretation of experimentally obtained transients.[2] Aside from the importance of

proton transfers for basic research, there are many photo-chemical applications

for molecules exhibiting this ESIPT and it may play an important role in photo-

biology.

The main property that is observed related to ESIPT is a large Stokes shift

which comes from the extended excited state relaxation. The absorbed light is

typically in the UV and the emission in the visible part of the spectrum unless

there is even a radiationless decay to the ground state (cf. Fig. 1.1). In this

way the molecule disposes of potentially harmful UV light and works as a photo-

1
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Figure 1.1: General scheme of ESIPT: The stable tautomer in

the ground state (where the hydrogen is often localized

on an oxygen) is referred to here as enol (E). After UV

excitation the proton transfer to keto (K*) proceeds. K*

relaxes either by emitting light with a strong Stokes shift

or by internal conversion (IC).

stabilizer or sun-screen. ESIPT systems are interesting for LASER technology

if an excited state tautomer is formed which is not stable in the ground state.

This leads to an automatic population inversion independent of the absorption

yields. Other ideas are pointed into the direction of control theory[3] and nano-

technology, especially molecular switches that are related to the proton transfer

and concomitant structural changes[4, 5, 6]. Such switches may be used for data

storage or possibly processing. In photobiology excited state proton transfers

between the DNA strands may play an important role for excited state relaxation

as a protection from photodamage.[7] Proton transfers in photoactive proteins are

of great interest as well.[8]

It is a general phenomenon that after photoexcitation a molecule experiences a

shift in electron density. This may lead to a change in acid or base constants. If

both, the acid and the base centers are located along a hydrogen bond, ESIPT

may happen. In many systems this proton transfer is almost barrierless. Then

the process occurs on the time scale of a molecular skeletal vibration and the

transfer is finished in less than 100 fs. In this context it has to be noted that

this ultrafast process is not governed by the hydrogen motion itself but rather

by somewhat slower skeletal motions which move the system into a favorable

geometry first.[9, 6, 10, 11] If there is a noticeable barrier along the proton transfer
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path then usually tunneling plays an important role. In this case the spectra

change significantly after deuteration.[12]

In this work the [2,2’-bipyridyl-]-3,3’-diol BP (OH)2 molecule was examined (Fig.

1.2). It is a symmetric (C2h) molecule with two intra-molecular hydrogen bonds.

In the ground state the most stable form has the two hydrogens located on the

oxygen atoms. This will be called the di-enol (DE) tautomer. A single pro-

ton transfer leads to mono-keto (MK), a second one to di-keto (DK). Many

experimental[13, 14, 15, 16, 17, 18, 3] and computational[19, 20, 21, 5] studies

have been performed on this molecule. From the highly time resolved experiments

in connection with computational interpretations the general reaction scheme is

known: Within 100 fs after UV excitation DE disappears and and both the MK

and DK species are present.[18, 3] Subsequently MK is converted to DK on a

10 ps time-scale.[15] The transfer coherently excites normal modes which keep

ringing until well after this time.[3] Then fluorescence from the DK is observed.

A quantum yield of 0.22[18] in cyclohexane indicates that it is fairly stable in the

excited state. However many other details of this process are not yet known and

can only be guessed from the experimental transients. Especially information

about the initial transfer step is rather speculative as the time resolution is not

quite high enough. A more detailed understanding of the photochemistry of this

molecule would be desirable considering many potential applications. They in-

clude usage as a LASER dye [13] or a probe in biological systems [22]. Derivatives

of BP (OH)2 could be effective photostabilizers or solar energy collectors.[17] The

fact that a two channel process is present is interesting in the context of control

theory.[3]

The main focus of this work was to get a more detailed insight into the initial

transfer step that takes place within 100 fs after photo-excitation[3]. This was

achieved by molecular dynamics simulations. Nuclei were considered as classical

particles moving in the effective field of the electrons in their first excited state.

The electrons were treated quantum mechanically at the ab-initio level. Such an

actual numerical solution of the Schrödinger equation even for the excited state

has been made possible by the ever increasing speed of computers. The dynamics

simulations were supplemented by static calculations to get a more extended

view for interpreting the results. The electronic structure methods used in this
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Figure 1.2: The three tautomers of the [2,2’-bipyridyl-]-3,3’-diol

molecule: di-enol (DE), mono-keto (MK), di-keto (DK)

work were time-dependent density functional theory (TDDFT) and second-order

coupled cluster with the resolution of the identity approximation (RI-CC2).
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Theory

2.1 The Schrödinger Equation in Chemistry

In time-independent quantum mechanics the state of a system of N particles is

described by its wave function Ψ(r1, ..., rN) where ri = (xi, yi, zi, ωi) denotes the

three spacial and the spin coordinates of particle i. The physical meaning of

the wave function lies in the fact that the probabilty distribution is given by

the absolute square of the wave function, i.e. Ψ(r1, ..., rN)∗Ψ(r1, ..., rN) gives the

(differential) probability of find particle 1 at r1, particle 2 at r2 etc.

The wave function is found as eigenfunction of the Hamiltonian operator Ĥ by

solving the Schrödinger equation (2.1). The eigenvalue corresponds to the energy

E.

Ĥ(Ψ) = EΨ (2.1)

The Hamiltonian operator is split up into the kinetic energy operator T̂ and

the potential energy operator V̂ (2.2) (where V (r1, ..., rN) denotes the potential

energy). A stationary solution of the Schrödinger equation corresponds to a

constant energy. In this way it is the quantum mechanical equivalent of the

energy conservation law.

Ĥ = T̂ + V̂ (2.2)

T̂ (Ψ) =
N∑
i=1

− ~2

2mi

4i Ψ (2.3)

5
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V̂ (Ψ) = V (r1, ..., rN)Ψ (2.4)

T̂ makes up the quantum-mechanical stationary kinetic energy. It is inversely

proportional to the mass of the particle mi. In this way it can be understood that

quantum effects become less important when mass increases. Quantum effects are

essential for describing electronic behavior. Since the proton is about 2000 times

heavier than the electron, quantum effects are less important for atomic nuclei.

But it is important to consider zero point vibrations and tunneling phenomena

which are especially important for hydrogen, the lightest possible nucleus, and

its involvement in proton transfers.

In chemistry atomic units (~ = 1, melectr. = 1, e = 1,...) are usually taken to

simplify the expression. The considered particles are positively charged nuclei and

negatively charged electrons. Let there be N nuclei at positions (R1, ..., RN) =

R with charges Zµ and masses mµ (µ = 1, ..., N) and n electrons at positions

(r1, ..., rn) = r. Then the kinetic energy operator can be rewritten according to

(2.5). And the potential energy without external influence is given by (2.8).

T̂ = T̂nuc + T̂el (2.5)

T̂nuc =
N∑
µ=1

− 1

2mµ

4µ (2.6)

T̂el =
n∑
i=1

−1

2
4i (2.7)

V (R, r) = Vnn(R) + Vne(R, r) + Vee(r) :=

:=
N−1∑
µ=1

N∑
ν=µ+1

ZµZν
Rµν

−
N∑
µ=1

n∑
i=1

Zµ
Rµi

+
n−1∑
i=1

n∑
j=i

1

rij
(2.8)

It is convenient to rewrite the Hamiltonian according to

Ĥ = T̂nuc + Ĥel (2.9)

Ĥel = T̂el + V̂ (2.10)

2.1.1 The Born-Oppenheimer Approximation

The set of eigenfunctions of Ĥel (defined according to (2.11)) contains an or-

thonormal basis B, called the adiabatic basis, of the Hilbert space of all possible
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wavefunctions f(R, r).

∀φ(r; R) ∈ B : Ĥel(φ(r; R)) = Eφ(R)φ(r; R) (2.11)

For the following derivation it is enough to know that this set exists. Finding

such functions at fixed nuclear geometries R is one of the major areas in quantum

chemistry. Except for very simple cases only approximative solutions exist and

only a few eigenfunctions are computed. Different methods of doing that will

be introduced in Section 2.4. The wave function is expressed in terms of these

eigenfunctions as an expansion considering all nuclear geometries.

Ψ(R, r) =
∑
φ∈B

χφ(R)φ(r; R) (2.12)

If (2.12) is plugged into the Schrödinger equation (2.1) with the definition of the

Hamilton operator in (2.9) one gets the following result.

(T̂nuc + Ĥel − E)(
∑
φ∈B

χφ(R)φ(r; R)) ≡ 0 (2.13)

By applying the scalar product 〈. | .〉 (defined as an integration over all electronic

coordinates after taking the complex conjugate of the first expression), equation

(2.13) can be rewritten.

(2.13)⇔ ∀ψ ∈ B : 〈ψ| (T̂nuc + Ĥel − E)
∑
φ∈B

χφ |φ〉 = 0 (2.14)

The three terms corresponding to the three operators can be separately evaluated

by considering how the operators act on functions with different arguments.∑
φ∈B

〈ψ| (−E)χφ |φ〉 = −E
∑
φ∈B

χφ 〈ψ | φ〉 = −Eχψ (2.15)∑
φ∈B

〈ψ| Ĥelχφ |φ〉 =
∑
φ∈B

χφEφ 〈ψ | φ〉 = Eψχψ (2.16)

With the kinetic energy operator first the product rule with second derivatives

has to be applied (2.18). Then the expression could be rewritten by using the

quantum mechanical definition of the momentum as the spatial derivative of the
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wave function and then taking the velocity v (2.19).∑
φ∈B

〈ψ| T̂nucχφ |φ〉 = (2.17)

= T̂nuc(χψ) +
∑
φ∈B

(
N∑
µ=1

1

mµ

5µ χφ 〈ψ| 5µ |φ〉+ 〈ψ| T̂nuc |φ〉χφ) = (2.18)

= T̂nuc(χψ)−
∑
φ∈B

(iv · 〈ψ| 5R |φ〉+ 〈ψ| T̂nuc |φ〉)χφ (2.19)

With this the Schrödinger equation can be written as (cf. [23]):

∀ψ ∈ B : T̂nuc(χψ(R))+Eψ(R)χψ(R)−
∑
φ∈B

(iv·〈ψ|5R|φ〉+〈ψ| T̂nuc |φ〉)χφ = Eχψ(R)

(2.20)

The terms in the sum are called the ”non-adiabatic couplings”. They are usually

very small. Neglecting them reduces (2.20) to isolated equations (2.21). This

resembles the Schrödinger equation (2.1) where the potential V is replaced by

the electron energy. Nuclei move on an isolated ”adiabatic energy surface”. This

is called the Born-Oppenheimer approximation. Its validity and its exceptions

will be discussed in Section 2.3.

T̂nuc(χψ(R)) + Eψ(R)χψ(R) = Eχψ(R) (2.21)

The significance of this is that the electronic (2.11) and nuclear Schrödinger equa-

tions (2.21) can be treated separately. In many cases it is enough to consider the

electronic one and consider the nuclei fixed or as classically moving particles.

Electronic structure computation will be discussed in Section 2.4.

In a similar way translation and rotation can be separated from the nuclear

degrees of freedom. In the general case there are 3 translational and 3 rotational

degress of freedom and one only has to consider 3N − 6 internal coordinates (for

a linear molecule 3N − 5, for an atom 3N − 3 = 0).

2.2 The Pauli Principle

A physically valid wave function does not only have to comply with the Schrödinger

equation 2.1 but also with the Pauli principle. For electrons (and all other
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Fermions) this means that the wave function has to be antisymmetric with regard

to the interchange of two electronic coordinates.

φ(r1, ..., ri, ..., rj, ..., rn) = −φ(r1, ..., rj, ..., ri, ..., rn) (2.22)

An immediate consequence is that it is not possible that two electrons with the

same spin are at the same position (i.e. rj = ri).

φ(r1, ..., ri, ..., ri, ..., rn) = −φ(r1, ..., ri, ..., ri, ..., rn) (2.23)

⇒ φ(r1, ..., ri, ..., ri, ..., rn) = 0 (2.24)

2.3 Dynamics Simulations

Dynamics simulations are concerned with the time-dependent behavior of a sys-

tem. In this way chemical processes can be directly observed and more informa-

tion is gained then just by considering the stationary points or other cuts out of

the potential energy surface.

In principle the time-dependent Schrödinger equation (2.25) has to be solved.

Ĥ(Ψ(R, r, t)) = i~
∂

∂t
Ψ(R, r, t) (2.25)

As far as t is concerned this is an ordinary first order differential equation and

no eigenvalue problem. The solution (if Ĥ is time-independent) is directly given

with the time propagator (2.26).

Ψ(R, r, t) = e
it
~

bHΨ(R, r, t) (2.26)

The problem is of course actually evaluating this expression. There are dif-

ferent approximations to this problem. Adiabatic dynamics are run under the

assumption of the Born-Oppenheimer approximation (2.21). For non-adiabatic

dynamics coupling elements as given in Eqn. 2.19 are evaluated as a post Born-

Oppenheimer correction. Another approximation is treating the nuclei as classical

particles as far as their kinetic energy is concerned. If this is done with the adia-

batic approximation purely classical dynamics result for the nuclei. Non-adiabatic

dynamics with classically moving nuclei are called a ”mixed quantum-classical”

approach.
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2.3.1 Classical Dynamics

In the classical limit neither adiabatic quantum effects nor couplings between

states are considered (cf. Eqn 2.20). In this way nuclei are classical particles that

behave according to Newton’s laws. Forces are determined by the gradient of the

electronic energy. This leads to a system of coupled differential equations, one

for each nucleus.

∀µ ∈ {1, ..., N} : aµ(t) :=
d2

dt2
Rµ(t) = − 1

mµ

∇µEψ(R(t)) (2.27)

A numerical solution to this is provided by the Verlet algorithm[24] or alterna-

tively if explicit velocity is required the velocity Verlet algorithm. In the second

case one starts with a geometry R(0) and velocity v(0). The two quantities

are propagated according to (2.28) and (2.29) where the acceleration a(t) =

(a1(t), ..., aN(t)) is computed from the electronic energy gradient (2.27).

R(t+ ∆t) = R(t) + v(t)∆t+
1

2
a(t)∆t2 (2.28)

v(t+ ∆t) = v(t) +
a(t) + a(t+ ∆t)

2
∆t (2.29)

2.3.2 Adiabatic Quantum Dynamics

Another way to approximate (2.26) is applying the Born-Oppenheimer approxi-

mation but retaining other quantum effects. The time-dependent formulation of

(2.21) yields (2.30). The solution with a time-independent Hamiltonian is (2.31).

T̂nuc(χψ(R, t)) + Eψ(R)χψ(R, t) = i~
∂

∂t
χψ(R) (2.30)

⇔ χ(R, t) = e
it
~ ( bTnuc+Eψ(R))χ(R, t) (2.31)

The major difficulty is evaluating the quantity Eψ(R). In simple systems like har-

monic or Morse oscillators it can be given in analytical form. Usually Eψ(R) has

to be approximated by a grid where at every point an electronic structure calcu-

lation (2.11) has to be performed. The number of grid points scales exponentially

with the number of degrees of freedom. The problem with large molecules is that

most degrees of freedom have to be fixed to reduce the number of grid points.

In this way the problem of this approach is that the molecule is constrained in a

rather unphysical way.
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2.3.3 Non-adiabatic Dynamics

Typically in chemistry the Born-Oppenheimer approximation is valid. But it

breaks down when close lying states are present and when nuclear motion is

fast (cf. 2.20). In this way non-adiabatic corrections are needed in many cases

when excited state dynamics are simulated. The fact that many molecules do

not show fluorescence or have a low quantum yield is a clear indicator that the

Born-Oppenheimer picture of having two isolated excited states breaks down. The

states mix and non-radiative decay takes place. The energy of the excited state is

turned into vibrational energy which is subsequently given to the environment. A

transition between two states usually occurs close to an intersection, a place where

the states are degenerate. But complete degeneracy is not required, the transition

takes place because the states are close in energy and the Born-Oppenheimer

approximation breaks down.

One way of simulating excited state dynamics is by using the full quantum picture.

For this it is convenient to use the diabatic basis. The diabatic basis functions

are formed as linear transformations of the adiabatic basis B (2.11) under the

condition that non-adiabatic couplings between the functions are 0. With this

condition Eqn. (2.20) (and its time-dependent counter part) are greatly simpli-

fied. In the next step a model potential may be formed. Then wave packet dy-

namics may be performed using the multi-configuration time-dependent Hartree

method.[23]

An alternative approach are on-the-fly mixed quantum-classical dynamics (MQCD)

based on the Surface Hopping method[25] as implemented in our Newton-X

molecular dynamics package[26]. Nuclei are treated as classical particles propa-

gated with the velocity-Verlet algorithm (2.28). Then the time-dependent nuclear

wave function χψ(R, t) is a moving δ-function and can be written as χψ(R(t))

or as just χψ(t) a time-dependent coefficient for the adiabatic electronic function

ψ ∈ B. The χψ(t) (within an adiabatic basis) are propagated according to (2.32)

where B′ is the set of states considered.[25] The equation can be seen as a sim-

plification of the time-dependent counterpart of (2.20) where the non-adiabatic

coupling arises from the product rule of the spatial derivative. Interestingly the

non-adiabatic coupling term can also be obtained as a time derivative of the
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moving δ-function[25].

i
d

dt
χψ(t) +

∑
φ∈B′

iv(t) · 〈ψ(r; t) | 5R | φ(r; t)〉χφ(t) = Eψ(t)χψ(t) (2.32)

In surface hopping dynamics one initially specifies the states of interest B′. In

principle all states have an influence. But this influence is very small if the states

are well separated in energy. Therefore typically only the ground state and a

few lowest excited states are considered. One also needs a starting state φ ∈ B′

and starting geometry and velocity. The dynamics are run by propagating the

geometry (2.28) and velocity (2.29) with the velocity Verlet algorithm, and the

nuclear wave function coefficients χψ (2.32). For this the gradient of the current

state φ and the non-adiabatic derivative couplings of φ to all other considered

states ψ ∈ B′ are used and have to be computed by the electronic structure

program. The complex coefficients χψ do not influence the dynamics directly. The

essence of Surface Hopping dynamics is that according to their values stochastic

hops to a new state ψ ∈ B′ are performed and the dynamics continue with the

forces of this state.

A similar approach from a practical viewpoint, also leading to on-the-fly dynam-

cis, is Full Multiple Spawning (FMS)[27]. In FMS the nuclear wave function

χψ(R, t), ψ ∈ B′ is expressed in a basis of moving Gaussians. For each such basis

function, a gradient and non-adiabatic coupling calculation as just described is

performed per time step. Then the post Born-Oppenheimer nuclear Schrödinger

equation in this basis is solved to get the nuclear wave function coefficients.

The basis functions are propagated according to classical forces. In this way an

accurate description can be obtained without the need of too many electronic

structure computations. To improve the description new basis functions are in-

troduced (”spawned”) when needed, typically this is done when the non-adiabatic

coupling is large.

2.3.4 Analysis of geometry

A major task in the analysis of dynamics is to reduce the data to find important

information. In this work especially geometric parameters were of interest. Two
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ways of analyzing them are the use of standard internal coordinates or linear

coordinate transformations.

Internal coordinate analysis

Internal coodinates are an alternative to cartesian coordinates when describing

a molecular geometry. For a unique description the number of internal coordi-

nates has to be equal to the number of molecular degrees of freedom (typically

3N-6). The most common ones are distances between 2 atoms, bond angles be-

tween 3 atoms, and torsion angles between 4 atoms (the angle between the planes

spanned by the first three and the last three atoms). The conversion into internal

coordinates is performed by geometrical considerations. Well chosen internal co-

ordinates can present a more physical representation of the system. The problem

is that the choice of internal coordinates is not unique and that linear depen-

dencies may arise if the structure changes (for example it is not possible to talk

about a torsion angle if three of the atoms are in a straight line).

Geometry Superposition

When geometry analysis is carried out in cartesian coordinates proper care has

to be taken of translation and rotation. Translation is considered by moving

the center of mass to the origin. For rotation structures are aligned by a least

squares fit. This can reduce small effects that stem from translation and rotation.

A problem is that the fit has discontinuities when the structure changes too much

which produces artefacts in some cases.[28]

The weighted root mean square deviation d between two structures R and S

is defined by equation (2.34). Typically the atomic masses are used for these

weighting factors wα. The RMSD can be seen as a metric in the Hilbert space of

nuclear coordinates, it is a weighted norm of the difference vector.

W =
N∑
α=1

wα (2.33)
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d(R,S) =

√√√√ 1

W

N∑
µ=1

wα
∑

α∈{x,y,z}

(Rµα − Sµα)2 (2.34)

A rotation T is applied to a structure by multiplying the coordinates of each

atom with a rotation matrix T.

T (R1, ..., RN) = (TR1, ...,TRN) (2.35)

The objective of superposition is finding the rotation T which minimizes the

RMSD according to (2.36).

d(R, T (S))→ min (2.36)

A convenient way of describing the rotations is through the use of normalized

quaternions. Then the RMSD minimization leads to a problem that can be

readily solved with Linear Algebra as described in ref. [28]

Normal mode analysis

Normal modes are linear combinations of cartesian coordinates, found as the

eigenvectors of the mass-weighted Hessian matrix of the energy. The idea of the

normal mode analysis performed in this work was to describe the molecular mo-

tion in terms of its normal mode displacements. The coordinate transformation

is similar to Ref. [29]. The remaining manipulations that were performed stem

from statistical considerations.

Let Q = (q1 | ... | q3N) be the matrix containing the normal modes at a reference

geometry in cartesian coordinates and R(i, t) the cartesian coordinates of trajec-

tory i at time step t. The displacement vector R(i, t) in normal coordinates with

respect to a reference geometry R0 is found in the following way.

R(i, t) = Q−1(R(i, t)−R0) (2.37)

In a next step one may average over the trajectories to get the motion of the

average trajectory R̄(t). This is shown in equation 2.38 (where nTr denotes

the number of trajectories run in the simulation). R̄(t) shows coherent activity
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present in the dynamics. Only these should remain because with a sufficient

sample size random motions should cancel out and the corresponding entries in

R̄(t) should have constant value.

R̄(t) =
1

nTr

nTr∑
i=1

R(i, t) (2.38)

To reduce this information one may take the standard deviation over time of

this quantity. This leads to a vector R̂coh that contains one number per normal

mode to represent its coherent activity. It is computed as an empirical stan-

dard deviation according to (2.39) where kα and kω are the first and last time

steps considered and ∆t the constant time interval. The value of this quantity

represents the coherent activity of a normal mode during the dynamics.

R̂2
coh =

1

kω − kα

kω∑
k=kα

R̄(k∆t)2 −

(
1

kω − kα

kω∑
k=kα

R̄(k∆t)

)2

(2.39)

In a similar way the quantity R̂tot can be defined as the total standard deviation

over time steps and trajectories without prior averaging. It should be a measure

of the total motion observed along normal modes.

The result does in principle depend on the reference structure R0 but one could

assume that there is no strong dependence as long as a fairly reasonable one is

chosen. In the application of this method (cf. Sec. 4.4) it was observed that the

results were very similar no matter which one of the equilibrium structures was

taken as a reference.

For the application care has to be taken that the description in linear cartesian

coordinates is valid. It is problematic once geometric changes are too strong. This

was a problem for the test application on retinal analogue ”protonated Schiff base

4” (1,3,5-heptatriene-iminium-cation). The hydrogen z-coordinate was H out-of-

plane at the starting geometry. But after a rotation around 90◦ which occured

in relation to the non-radiative decay, it constituted a C-H stretch. Hence it was

not possible to follow the out-of-plane vibration in this way. A solution may be to

use a well chosen set of internal coordinates for the representation of the normal

modes.
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Essential Dynamics

Another approach for analyzing dynamics motions is called Essential Dynamics

(cf. [30]). It is a principal component analysis of the geometric displacements

intended to find important motions in the dynamics. This is performed by diag-

onalizing the covariance matrix. The eigenvectors give the modes of interest, the

corresponding eigenvalues represent the variance of these modes.

The two quantities needed to compute the covariance matrix are the vector con-

taining the mean positions R̄ and the 3N × 3N matrix A containing the cross

terms, both in cartesian coordinates. In the present case averaging is performed

over all trajectories and time steps at once. It would also be possible to com-

pute essential dynamics for an average trajectory but this procedure seems more

meaningful as it takes all information that is present.

R̄µα =
1

nTr(kω − kα + 1)

nTr∑
i=1

kω∑
k=kα

Rµα(i, k∆t) (2.40)

Aµα,νβ =
1

nTr(kω − kα + 1)

nTr∑
i=1

kω∑
k=kα

Rµα(i, k∆t)Rνβ(i, k∆t) (2.41)

µ, ν ∈ {1, ..., N};α, β ∈ {x, y, z} (2.42)

Then the covariance matrix C between the different nuclear coordinates is given

according to

Cµα,νβ = Aµα,νβ − R̄µαR̄νβ (2.43)

Since C is a symmetric matrix it contains a basis of orthogonal eigenvectors Ea .

These eigenvectors represent the Essential Dynamics modes. It can be seen that

the Ea are uncorrelated and that the corresponding eigenvalue va is the variance

of the mode.

CEa = vaEa, a ∈ {1, ..., 3N} (2.44)

By sorting the Ea according to their variance va important motions can be found.

The first piece of information will be found by just viusalizing them. If the modes

are fed into the Normal Mode Analysis procedure described above, the time-

dependence of the motion can be seen. Alternatively further dynamics simulations

including only the first most important modes as degrees of freedom could be

carried out.
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2.4 Computing Electronic Structure

A major task in quantum chemistry is the computation of eigenfunctions of the

electronic Hamiltonian (2.11). In static quantum chemistry parts of the potential

energy surface Eφ(R) (c.f. Eq. 2.11) is constructed. Of special interest are

the stationary points, i.e. geometries R where 5REφ(R) = 0. In dynamics

simulations forces are needed to propagate geometries and velocities (2.28,2.29).

Non-adiabatic couplings are needed if non-adiabatic dynamics are performed.

Many different approaches to electronic structure theory exist. In any case a

compromise between efficiency and accuracy has to be made to provide a good

description of the system of interest in reasonable time.

2.4.1 General Considerations

Typically the electronic wave function is expressed in terms of molecular orbitals

(MO). An MO ψj(ri) is a function of the coordinates of only one electron. In the

simplest case the wave function is expressed as a Hartree product. In this case

electrons are statistically independent and have no effect on each other.

φ(r) = ψ1(r1)...ψn(rn) =
n∏
i=1

ψi(ri) (2.45)

A more general form is considering a sum of products.

φ(r) =
∑
k

dk

n∏
i=1

ψk(i)(ri) (2.46)

Slater Determinants

With the general form (2.46) wave functions that comply with the Pauli principle

(2.22) can be constructed as ”Slater Determinants”. Eqn. (2.49) is the explicit

definition of the determinant where Sn is the group of permutations and sgn(π)

is +1 if π is even and -1 if π is odd.
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φ0(r) = |ψ1 . . . ψn〉 := (2.47)

=
1√
n!

∣∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) . . . ψn(r1)

ψ1(r2)
. . . ψn(r2)

...
. . .

...

ψ1(rn) . . . . . . ψn(rn)

∣∣∣∣∣∣∣∣∣∣
= (2.48)

=
1√
n!

∑
π∈Sn

sgn(π)
n∏
i=1

ψπ(i)(ri) (2.49)

Wave functions of this sort are used with the Hartree-Fock method (Section 2.4.2).

Post Hartree-Fock methods (Section 2.4.3) consider several determinants.

Second Quantization

An efficient way to deal with Slater determinants that will be used in Sec. 2.4.3 is

called Second Quantization. [31] In this approach for each spin-orbital ψi a linear

annihilation operator âi is defined which removes the spin-orbital ψi at the left of

a Slater determinant if ψi is present in the determinant and sets it equal to |0〉 if

not. In this way an n electron function is transformed into a Slater determinant

which depends explicitely only on n-1 electronic coordinate vectors. For applying

âi, first ψi has to be moved to the left position which may change the sign of the

determinant (2.50), second the orbital is removed according to the definition of

the operator (2.51).

âi|ψ1 . . . ψi−1ψiψi+1 . . . ψn〉 = (−1)i−1âi|ψiψ1 . . . ψi−1ψi+1 . . . ψn〉 :=(2.50)

:= (−1)i−1|ψ1 . . . ψi−1ψi+1 . . . ψn〉 (2.51)

The adjoint operator of âi is written â†i . According to the definition of an adjoint

operator (2.52) â†i removes an orbital from the bra. (The bra is the vector ready

to form a scalar product with a ket or equivalently it could be seen as a linear

functional, i.e. an element of the dual space.)

〈ψ1 . . . ψi−1ψiψi+1 . . . ψn|â†i := 〈âi(ψ1 . . . ψi−1ψiψi+1 . . . ψn)| = (2.52)

= (−1)i−1〈ψ1 . . . ψi−1ψi+1 . . . ψn| (2.53)
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By considering the values of the matrix elements it can be shown that annihilating

an orbital in the bra is equivalent to creating an orbital in the ket. Hence â†r acting

on a ket is called the creation operator.

â†r |ψ1 . . . ψn〉 = |ψrψ1 . . . ψn〉 (2.54)

In this way excitations can be conveniently represented. For example the deter-

minant |φri 〉 where occupied orbital ψi is replaced by unoccupied orbital ψr can

be written as (2.55).

|φri 〉 := |ψ1 . . . ψi−1ψrψi+1 . . . ψn〉 = â†râi |φ0〉 (2.55)

The order of the operators is decisive.

âiâ
†
r |φ0〉 = âi |ψrψ1 . . . ψi−1ψiψi+1 . . . ψn〉 = (2.56)

= −âi |ψiψ1 . . . ψi−1ψrψi+1 . . . ψn〉 = − |φri 〉

Eqn. (2.56) is an example of the anticommutator relations which can be used

to derive the properties of determinants without having to consider their explicit

form (2.49), cf. [31].

Basis Sets

The spatial part ψ̃(xi, yi, zi) of the MOs used to construct the electronic wave

function is usually formed as a linear combination of atomic orbitals (AO) χk(xi, yi, zi)

(2.57).

ψ̃i =
∑
k

ckiχk (2.57)

The χk are usually chosen to resemble orbitals in isolated atoms. Slater type

orbitals (STO) are more physical and give the correct behaviour including nuclear

cusps. But usually Gaussian type orbitals (GTO) are chosen for computational

reasons. GTOs can be defined like (2.58) where the radial part is determined by

ζ and the angular part by lx, ly, lz [31]. To mimic the behaviour of STOs, linear

combinations of GTOs are formed in contracted basis sets. In this way the wave

function can be well represented as far as nuclear cusps and also radial nodal
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planes are concerned without having the problem of too many independent basis

functions.

χGTOζ,lx,ly ,lz(r) = Nxlxylyzlze−ζr
2

(2.58)

Basis sets are classified according to the number and type of basis functions used.

A minimal basis set contains a basis function for every atomic orbital in the

isolated atom. Multiple ζ basis sets add extra basis functions with the same

angular behaviour as in the minimal basis set but with a different prefactor ζ in

the exponent. Functions of higher l, called polarization functions, are important

for correclty describing bonds. Functions with a small exponent, called diffuse

functions, are used to describe long range interactions and are needed for anions

and Rydberg states.

2.4.2 The Hartree-Fock Method

In the Hartree-Fock (HF) Ansatz the wave function φ0(r) is written as a single

Slater determinant (2.47). The HF energy in terms of MO integrals is given ac-

cording to (2.60) (where integration in the braket is performed over the respective

coordinates and O is the set of occupied orbitals). The expression can be derived

by plugging the explicit form of the Slater determinant (2.49) into (2.59) or with

the formalism of second quantization (2.4.1).[31, 32]

E0 =
〈
φ0(r) | Ĥ ′el | φ0(r)

〉
:=

:=
〈
φ0(r) | T̂el + Vne(R, r) + Vee(r) | φ0(r)

〉
= (2.59)

=
∑
a∈O

〈
a(r1) | −1

2
41 −

N∑
µ=1

Zµ
Rµ1

| a(r1)

〉
+ (2.60)

+
1

2

∑
a,b∈O

(〈
a(r1)b(r2)) | 1

r12

| a(r1)b(r2)

〉
−
〈
a(r1)b(r2) | 1

r12

| b(r1)a(r2)

〉)
The one-electron terms in (2.60) are the kinetic energy of the electron and the

electrostatic interaction between the electron cloud and the nuclei. The first

two-electron term is called the Coulomb integral. It gives the average repulsion

between the electron clouds and raises the HF energy. The second term, the

exchange integral lowering the energy, is a quantum mechanical term that arises
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from the antisymmetry of the wave function (c.f. Sec. 2.2). It is non-zero only

if a and b are of the same spin. The major source of error in HF theory is that

the Coulomb integral overestimates interelectronic repulsion since electrons are

unphysically kept from moving out of each others’ way. This energy increase

is an example of the general fact that according to the variational principle the

energy expectation value of any trial function has to be greater or equal to the

true ground state energy.

The most common way for solving the HF equations is by expressing the MOs ψi

as linear combinations of AOs χk according to (2.57). This leads to the Roothan-

Hall equations. The problem is converted into a non-linear eigenvalue equation

which produces the MOs that will give the lowest possible HF energy for the

specific basis set.[31, 32] According to the variational principle this should be the

best approximation.

2.4.3 Post Hartree-Fock Methods

Several methods have been developed for producing wave functions beyond the

Hartree-Fock approximation. The approaches can be grouped into configuration

interaction (CI), many-body perturbation theory, and pair theories (most impor-

tant coupled cluster). But the boundaries between the last two are not clear and

different approaches may lead to the same final equations. Moreover combinations

can be applied.[31]

Configuration Interaction

In configuration interaction (CI) the wave function is formed as a linear combina-

tion of several determinants usually based on a HF reference function (2.61). O
and U denote the (ordered) sets of occupied and unoccupied orbitals, φrs...ab...(r) are

the excited determinants where electrons have been moved from orbitals a, b, . . .

to orbitals r, s, . . .. The objective of CI is finding the linear expansion coefficients

drs...ab... which minimize the energy and give the optimal result according to the vari-

ation principle. They are found as the lowest energy eigenvector of the CI matrix
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which contains the integrals between the different determinants.

φ(r)CI = φ0(r) +
∑
a∈O

∑
r∈U

draφ
r
a(r) +

∑
a<b∈O

∑
r<s∈U

drsabφ
rs
ab(r) + . . . (2.61)

Rather than in the basis of Slater determinants, CI may also be performed with

configuration state functions (CSF). CSFs are linear combinations of Slater de-

terminants that are already eigenfunctions of the spin operator, i.e. singlets,

triplets, etc.

Full CI considers the whole expansion (2.61) which goes until all the electrons are

in virtual orbitals. It is the full solution for the Schrödinger equation in a given

one electron basis. nCI , the number of considered determinants corresponds to all

possibilities of placing n electrons into |O|+ |U| orbitals. It can be approximately

given by (2.62). Hence the method scales exponentially with the electron number.

nCI ≈ (|O|+ |U|)n (2.62)

In practice expression (2.61) is usually truncated after a given order, e.g. 2

which leads to CISD. The wave function is variationally determined and hence

the energy expectation value is an upper bound of the true gound state energy.

But the problem with this approach is lack of size-consistency. This means that

any given truncation will recover a larger part of the correlation energy in a

smaller system than in a larger one.[31] A way to explain this is to consider for

example that CISD is full CI for a two-electron system but truncated CI for a

larger system and that there is no reason to assume that the coefficients for higher

excitations should be zero. Just for statistical reasons it is expected that higher

excitations play a more important role in larger systems. An improvement is the

Davidson correction which estimates the effect of quadruple excitations based on

the weight of the HF determinant in the expansion.

A variant of the CI approach is the mutli-configuration self consistent field (MC-

SCF) method. For a smaller number of determinants orbital coefficients and

determinant coefficients are varied simultaneously. A CI computation on top of

this is termed multi-reference CI (MR-CI).
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Many-body perturbation theory

Another approach for electronic structure calculations is many-body perturbation

theory. The method is based on the more general concept of Rayleigh-Schrödinger

perturbation theory. In the widely used form called Møller-Plesset perturbation

theory (MP) the 0th order Hamiltonian is the HF Hamiltonian Ĥ0, defined accord-

ing to (2.63) where f̂i is the Fock operator acting on electron i. The perturbation

is defined as the difference to the correct Hamiltonian.

Ĥ0 =
n∑
i=1

f̂i (2.63)

The eigenfunctions Ĥ0 are all the determinants that can be formed from HF

orbitals. Because of this the solutions can be expressed in this basis and no extra

differential equations have to be solved. Because of Brillouin’s theorem matrix

elements between the HF determinant and singly excited determinants are zero.

With only one- and two-electron operators also all the matrix elements to triply

and higher excited determinants are zero. Therefore only interactions with doubly

excited determinants have to be considered.

The 0th order MP energy is the sum of the orbital energies, in 1st order the

correct HF energy (2.60) is obtained. The first correction is in the second order

leading to the popular MP2 method. According to the considerations above it

can be shown that the perturbation energy E
(2)
0 is given as a quadruple sum over

two-electron MO integrals (2.64) where εi is the energy of orbital i.[31]

E
(2)
0 =

1

4

∑
a, b ∈ O
r, s ∈ U

∣∣∣〈a(r1)b(r2) | 1
r12
| r(r1)s(r2)− s(r1)r(r2)

〉∣∣∣2
εa + εb − εr − εs

(2.64)

Evaluation of the expression (2.64) can be sped up by using the resolution of

the identity (RI) approximation. The idea of this approach is to express the

two electron integrals in an auxiliary basis set. The resulting RI-MP2 method

cuts down on both computation time and storage needs. Therefore it allows for

efficient evaluation of energies, gradients and other properties.[33, 32]
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Coupled Cluster Theory

Pair theories consider electron correlation by individual electron pairs. The main

representative is coupled cluster (CC) theory. For this it is convenient to define

the cluster operator T̂ (m) in the formalism of second quantization (cf. section

2.4.1). The parameters brs...ab... are called the cluster amplitudes.

T̂ (m) = 1̂ + T̂1 + . . .+ T̂m (2.65)

T̂1 =
∑
a∈O

∑
r∈U

braâ
†
râa (2.66)

T̂2 =
1

4

∑
a,b∈O

∑
r,s∈U

brsabâ
†
râ
†
sâbâa

. . .

Using T̂ (m) m-th order CI could be expressed according to Eqn. (2.67). In the

CC ansatz the exponential of the operator is taken (2.68).

φ(r)CI = T (m)φ0(r) (2.67)

φ(r)CC = exp(T (m))φ0(r) (2.68)

Through taking the exponential, higher excitations are implicitely considered

(2.69) without the need of additional parameters compared to the same order CI.

exp(T1) = 1 +
∑
a∈O

∑
r∈U

braâ
†
râa +

1

2

∑
a,b∈O

∑
r,s∈U

brab
s
bâ
†
râ
†
sâbâa + . . . (2.69)

An advantage of the CC method is that it is size consistent. The CC equations

are not solved in a variational approach. This means that the result is not an

upper bound of the true energy.

CCS, CCSD, CCSDT, ... denote cluster expansions up to T1, T2, T3, . . .. An

approximation to these are the CCS(D), CCSD(T), ... approaches where the

last order is treated in a perturbative manner. They are commonly used but

not suitable for excited state computation. An alternative approach is in the

CC2, CC3, ... series. In the CC2 approach double excitations are approximated

whereas single excitations are fully retained. The ground state result is of the

same quality as MP2 but the timing is somewhat longer because of the iterative

nature. The great advantage of CC2 especially with the RI-approximation is

that it allows for excited state computation including come correlation energy on

a feasible time scale.[34, 32]
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2.4.4 Density Functional Theory

Compared to the wave function based methods just mentioned, density functional

theory (DFT) considers only the electron density ρ(r). Whereas a wave function

has 3 spatial (+ 1 spin) coordinates for every electron, the density is described

by these 3(+1) coordinates only once. This allows for a significant speed up of

the procedure.

A functional is a ”function of a function” or more precisely a mapping from a

vector space into the underlying field. The functional derivative of a functional

A[.] at Ψ (if it exists) can be defined as the linear functional 〈δA[Ψ]| which fulfills

the following relation (2.70).

d

dt
A[Ψ + tΦ]t=0 = 〈δA[Ψ] | Φ〉 (2.70)

In wave mechanics the energy expectation value of a normalized wave function

Ψ(r) is given by the functional EW [Ψ] (2.71). The variation principle (2.72)

states that for any given trial function this expectation value is larger than the

true ground state energy E0. Finding the ground state wave function can be

considered as a minimization of EW [Ψ] under the constraint of 〈Ψ | Ψ〉 = 1.

This is done by searching for a Ψ with a vanishing functional derivative of the

Lagrangian (2.73). The Lagrangian parameter E gives the energy expectation

value.

EW [Ψ] =
〈

Ψ | Ĥel | Ψ
〉
, 〈Ψ | Ψ〉 = 1 (2.71)

∀Ψ : EW [Ψ] > E0 (2.72)

〈δ (EW [Ψ] + E(〈Ψ | Ψ〉 − 1))| = 〈0| (2.73)

Hohenberg and Kohn [35] showed that similar relations also hold for the density

ρ(r). Their first theorem states that for a given stationary electron density there

is only one possible external potential. The number of electrons is determined

by the integral of the density. Together that means that with a given density

the Hamiltonian and hence its lowest eigenvalue, the ground state energy, are

clearly determined. Then a functional ED[ρ] must exist which gives the ground

state energy of a given electron density ρ containing n electrons (2.74). The

second Hohenberg-Kohn theorem states that there is a variational principle for



CHAPTER 2. THEORY 26

the density with a given external potential v(r) (2.75). And again a Lagrangian

can be formulated (2.76). The Lagrangian parameter turns out to be the chemical

potential µ.[36]

Ev[ρ],
∫
ρ(r)d3r = n (2.74)

∀ρ : Ev[ρ] > E0 (2.75)〈
δ
(
Ev[ρ] + µ(

∫
ρ(r)d3r − n)

)∣∣ = 〈0| (2.76)

The difficulty of the DFT approach is that the functional Ev is not known and

can only be approximated. It is straight forward to define functionals related

to the external potential Vext[ρ] (2.77) and interelectronic Coulomb repulsion of

uncorrelated electrons J [ρ] (2.78.[36]

Vext[ρ] =

∫
ρ(r)v(r)d3r (2.77)

J [ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12

d3r1d
3r2 (2.78)

An approximation to the kinetic energy can be obtained in the Kohn-Sham for-

malism [37] which is the most widely used form of DFT. In this approach the

wave function is constructed from atomic orbitals ψi(r). The single particle ki-

netic energy is obtained by applying the kinetic energy operator.[38]

TS[ρ] =
n∑
i=1

〈
ψi | −

1

2
4 | ψi

〉
(2.79)

The assumption in Kohn-Sham DFT is that the three terms Vext[ρ], J [ρ], TS[ρ]

should make up the largest part of the energy. The effects that have been ne-

glected are the electron correlation and exchange interactions. These are sum-

marized in the exchange-correlation functional Exc[ρ] and the energy is given

according to (2.80).

Ev[ρ] = Vext[ρ] + J [ρ] + TS[ρ] + Exc[ρ] (2.80)

So far no approximations have been made but the problem with the approach is

that Exc is not known. An early parametrization that uses only local information

is the local density approximation. It is mainly used in solid state chemistry.

The generalized gradient approximation also includes the gradient of the density
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in the computation. One prominent representative, the PBE functional gives

good results in both solid state and molecular chemistry. A different approach is

computing the Hartree-Fock exchange (cf. Eqn. 2.60) of the Kohn-Sham orbitals

and including a fraction of this into the functional. These hybrid functionals, like

B3LYP, are very popular in molecular computations.[38]

2.4.5 Excited States

Electronically excited states are eigenfunctions of Ĥel other than the ground state.

They are used to describe a molecule after UV excitation or higher energy irra-

diation. Excited state computation can be divided into direct and propagator

approaches.[2]

In CI based methods excited states are found directly as higher energy eigenvec-

tors of the CI matrix. The minimal version CIS gives a qualitative picture of

excited states but lacks electron correlation which can be crucial for the correct

state order and excitation energies. In the state-averaged MC-SCF formalism

orbitals are optimized for each excited state considered which improves the result

and allows for accurate treatment of multi-configurational character. Improve-

ment of MC-SCF results with MR-CISD gives very accurate energies but is only

feasible for small molecules. An alternative approach of improving the MC-SCF

result is multi-reference perturbation theory which works similar to MP2.[39]

Excitation energies can be obtained without explicit construction of the excited

state wave function from the frequency dependent ground state polarizability.

This gives rise to the time-dependent DFT (TDDFT) method which is popular

because it produces high level results at a low cost.[40] Linear response CC2

[34, 32] produces good results for excited states and is still rather efficient. If

more accurate results are required, CCSD excitation energies can be obtained

with the equation-of-motion formalism.[2]
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2.5 Time resolved Experiments

In the recent years experimental time resolution has been extended into the femto

second regime. The main step was the production of the corresponding LASER

pulses. A sub-picosecond pulse is split up with a semi-transparent mirror and

sent along two paths of slightly different lenghts, e.g. a difference of 0.3 mm

leads to a 1 ps delay. The pump pulse is the one with the slightly shorter path

and reaches the sample at equilibrium. The probe pulse which has a slight delay

is used to measure the process. Different methodologies for the measurement

exist. The second pulse may cause stimulated emission which can be detected.

In resonant multi-photon ionization the second pulse leads to ionization of the

sample. The formed ions can be detected by mass spectrometry.[41] In transient

photo-electron spectroscopy the energy of the emitted electrons is measured. An

alternative option is fluorescence upconversion.[18] High quality results are ob-

tained if spectroscopy is performed in an ultrasonic beam. This jet cooling leads

to vibrationally relaxed molecules which gives the possibility for obtaining extra

information.[41]

From the wave number ν̄ of a normal mode, the oscillation period T is obtained

according to (2.81). For example a 200/cm normal mode has an oscillation period

of 167 fs which is well above the time-resolution that can be achieved. That means

that actual atomic motions can be probed. One of the first systems where the

oscillations were directly observed was the I−Hg−I molecule because the heavy

atoms result in a low vibration/excitation frequency. Today also skeletal modes

in regular organic molecules are seen.[1]

T =
1

ν̄c
(2.81)

The maximum uniquely determined frequency in discrete Fourier analysis amounts

to half of the sampling frequency. Using Eqn. (2.81) the maximum probed wave

number can be easily computed. For example a 30 fs sampling frequency corre-

sponds to a maximum accessed wave number of 556/cm.
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Computational Considerations

The aim of this study was the simulation of the excited state behaviour of the

[2,2’-Bipyridyl-]-3,3’-diol (BP (OH)2) molecule. It is known from experiments

and earlier computations that the molecule exhibits single and double proton

transfer after UV excitation along intramolecular hydrogen bonds. In the ground

state the di-enol (DE) structure where both hydrogens are bound to oxygens is

stable. In the excited state one or two protons are transferred to yield mono-keto

(MK) or di-keto (DK) respectively.

3.1 Dynamics Simulation

BP (OH)2 has a considerable quantum yield of 0.22 [18]. Only one study reported

possible ground state decay which was expected to occur at a time scale of 20

ps [16]. This means that decay to the ground state is expected to be negligible

within the 100 fs simulated. Moreover the important part of the dynamics should

occur in the ππ∗-state which is the first excited state at the Franck-Condon point.

nπ∗ influence was described in Ref. [16] but it should only play a minor role. In

this way adiabatic dynamics on a sinlge state can be performed.

The next question is wether adiabatic quantum dynamics (cf. Eqn. 2.31) have

to be performed or if nuclei can be treated as classical particles. Generally it is

established by experiment and computation that hydrogen tunneling may play a

29
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role in excited state proton transfer processes with both intermolecular [42, 43]

[44] and even intramolecular [12] proton transfer. But if no barrier is present there

is no need for tunneling and the transfer proceeds on the time scale of skeletal

normal modes in less than 100 fs [10, 11]. For BP (OH)2 it was shown that the

transfer is not affected by substitution of the hydrogen atoms against deuterium

[45]. According to the definition of the kinetic energy operator (2.3) a change in

mass should strongly affect a tunneling process (cf. examples in Ref. [42]). This

is a clear indicator that tunneling should not play a role in this case.

Neither non-adiabatic nor adiabatic quantum effects are expected to play a role

in the process. Therefore the simulations were performed using classical dynam-

ics for the nuclei (cf. Sec. 2.3.1). Only with initial condition sampling quantum

mechanics were taken into account. Both, initial nuclei positions and momenta

were chosen considering the zero point vibrations according to the Wigner dis-

tribution, cf. [26]. In the course of the dynamics positions and momenta were

updated according to the velocity Verlet algorithm (2.28, 2.29) with a time step

of 0.5 fs. At the TDDFT level 100 trajectories were computed up to 100 fs. Due

to increased computer time only 36 trajectoreis up to 100 fs were computed at

the RI-CC2 level. To get some more insight on the later steps, 11 trajectories

were extended up to 300 fs.

3.2 Electronic Structure Method

As mentioned above (section 3.1) decay to the ground state is not expected to

occur within the 100 fs simulated. Moreover no significant geometric changes

are expected during the process. Because of this it should suffice to use a single

reference method.

The size of the system (14 heavy atoms and 8 hydrogens) allows for ab-initio

treatment of the electronic structure even in the excited state. Two feasible

approaches for this are the time-dependent density functional theory (TDDFT,

Sec. 2.4.4) [46, 47, 40] and second-order approximate coupled cluster [34] with

the resolution of the identity approximation for 2-electron integrals (RI-CC2)

[48, 49, 32] (cf. Sec. 2.4.3). For TDDFT the B3LYP [50] functional has been
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taken whose suitability for excited state proton transfer has been shown in Ref.

[51]. For all electronic structure computations the Turbomole program package

[52] was used.

Two basis sets were used in the simulations, the TZVP [53] basis set and a

mixture of SVP and SV [54] which will be called ”SVP-SV”. The TZVP basis

set has triple-ζ quality valence orbitals with polarisation functions. For heavy

atoms it contains 5 s-exponents, 3 p-exponents, and 1 d-exponent. This leads

to 19 basis functions considering the degeneracy of the p- and d-orbitals. 3 s-,

and 1 p-exponents lead to 6 functions for hydrogen. In total 314 contracted basis

functions were considered. The ”SVP-SV” basis set consisted of SVP (double-ζ

(”split”) valence polarization) for heavy atoms (3s 2p 1d) and polar hydrogens

(2s 1p) and SV (split valence) for hydrogens bonded to carbon (2s). In total this

lead to 218 contracted basis functions.

Dynamics and spectra simulations were performed with the SVP-SV basis set

with the RI-CC2 and TDDFT/B3LYP methods. Geometry optimizations were

perforemd at the TDDFT/B3LYP/SVP-SV, TDDFT/B3LYP/TZVP, and RI-

CC2/SVP-SV levels. RI-CC2/TZVP was used to compute single point energies

on the RI-CC2/SVP-SV structures.

3.3 Potential Energy Surfaces

The quantity Eφ(R), i.e. the potential energy acting on the nuclei for electrons

in state φ (cf. Eqn. 2.11), is a multidimensional function depending on all

the nuclear degrees of freedom R. To represent it in an efficient way usually

potential energy surfaces (PES) are computed by only varying a few important

degrees of freedom. Two kinds of 2-dimensional PES’s have been computed in

this study, one with a relaxed geometry and one with structures obtained from

linear interpolation.

The idea of a reaction coordinate driven PES is to change an internal coordinate

which is expected to be important in the reaction and relax the remaining struc-

ture. An advantage of this approach is that the resulting surface contains the
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stationary points. For BP (OH)2 this has been performed by setting the two OH

distances to different values and optimizing the remaining geometric parameters.

Additionally a grid with linear interpolation was computed. This was done in a

similar way to Ref. [21]. The ground state FC minimum RFC , the two mirrored

ππ∗ MK minima (under planarity restriction) RMK1 ,RMK2 , and the ππ∗ DK

minimum RDK were used. A linear interpolated structure R(ξ1, ξ2) was formed

according to (3.1) and the corresponding single point energy was computed.

R0 =
1

4
(RFC + RMK1 + RMK2 + RDK)

R(ξ1, ξ2) = R0 + ξ1(RDK −RFC) + ξ2(RMK2 −RMK1) (3.1)

In the original work [21] a similar grid based on the ground state structures

was computed because through this optimizations in the excited states could be

avoided. Another advantage is that in this linear approach clear effective masses

can be assigned to the degrees of freedom which allows for quantum mechanical

wave packet propagation. The downside is that neither of the stationary points

is actually on the surface. In total it seems that the first kind of surface is more

useful unless one wants to avoid excited state geometry optimizations.

3.4 Analysis of Dynamics Simulation

The analysis of the dynamics was mainly concerned with geometric changes as the

process of interest was a geometric change rather than a change in electronic struc-

ture. The three methods described in Section 2.3.4 were used. Internal coordinate

analysis was readily available as part of the Newton-X package [26]. Distances

of the H atom to the O and N atoms on either side (ROH,1, ROH,2, RHN,1, RHN,2)

were chosen to represent the hydrogen transfer process. The distances between

the O and N atoms (RON,1, RON,2) should show skeletal geometric changes. For

further analysis a reaction coordinate was defined according to (3.2).

∆Ri = ROH,i −RHN,i; i ∈ {1, 2} (3.2)

In this way a proton transfer on side i could be defined as the point in time when

∆Ri = 0, and the tautomer structures according to (3.3-3.5). The active side
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was defined as the side of the first proton transfer.

DE ⇔ ∆R1,∆R2 ≤ 0 (3.3)

MK ⇔ (∆R1 ≤ 0 ∧∆R2 > 0) ∨ (∆R1 > 0 ∧∆R2 ≤ 0) (3.4)

DK ⇔ ∆R1,∆R2 > 0 (3.5)

Normal mode analysis (Sec. 2.3.4) and Essential Dynamics (Sec. 2.3.4) were

performed. To do this, first an alignment of the structures (Sec. 2.3.4) had to

performed. There was no code available for this and the manipulations described

had to be implemented. This was done with the Python programming language.

Linear algebra manipulations were performed with the numpy Python package.

For manipulation of chemical structure files the openbabel package was used. The

routines developed in this work will be implemented into the Newton-X molecular

dynamics package[26].

Geometry alignment was done according to a least squares fit. The procedures

were coded in Python according to the prescript given in Ref. [28]. A difficulty

in the current project was the breaking of symmetry that went along with the

single proton transfer. In order to account for this, in all the trajectories the

active side was identified and the atoms renumbered to have it on the same side

of the molecule. After this the structures were superposed on the DK minimum.

On these aligned trajectories the algebra of normal mode analysis and essential

dynamics was carried out. In the case of normal mode analysis the absolute

value of the displacement R(i, t) was taken for out-of-plane modes as the motion

in both directions is equivalent.



Chapter 4

Results and Discussion

In this section the results of the computations will be presented. They have been

published in Refs [55] and [56]. Here the important results will be reviewed and

some complimentary information will be given.

4.1 Stationary points

Six stationary point structures were considered in the study. The three en-

ergy minima corresponded to the structures of interest: the di-enol (DE), the

mono-keto (MK), and the di-keto (DK). Two first order saddle points were com-

puted to give the transition states between DE-MK and MK-DK. A second order

saddle point represented the symmetric transfer DE-DK. The geometries of the

minima can be seen in Figure 4.1. Except for the DE ground state all other

structures are computed for the excited ππ∗ state. The RI-CC2/SVP-SV and

TDDFT/B3LYP/TZVP results will be discussed, TDDFT values in parenthe-

ses. The LUMO in the symmetric tautomers is delocalized over the inter-ring CC

bond (cf. Ref. [20]), whose distance is shortened by 0.06 Å (0.06 Å) on excitation.

It can be seen through shortening of the CO distance by 0.04 Å (0.07 Å) that

the keto functionality is formed. A similar shortening was observed in the HBT

molecule.[11] In the MK tautomer the interring CC distance remains unchanged

with RI-CC2 and increases by 0.04 Å with TDDFT. In this structure the HOMO

34
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Table 4.1: Lengths of the hydrogen bonds computed with differ-

ent methods. Optimizations were done with Cs restric-

tion. FC denotes Franck-Condon structure, i.e. the

ground state DE. MK and DK are optimized in the

S1(ππ∗) state.

Method FC (N· · ·H) MK (N· · ·H) MK (O· · ·H) DK (O· · ·H)

B3LYP/SVP-SV 1.658 1.741 1.751 1.696

B3LYP/TZVP 1.686 1.777 1.783 1.722

RI-CC2/SVP-SV 1.638 1.615 1.744 1.667

RI-CC2/TZVP 1.645 1.621 1.755 1.671

and LUMO are localized on different rings. Keto formation reduces the CO bond

by 0.02 Å (0.07 Å). With RI-CC2, a shortening of the N· · ·H hydrogen bond by

0.02 Å is observed, while its length increases by 0.09 Å at the TDDFT level.

Because of weaker interaction energies and flatter potentials hydrogen bonds are

rather sensitive to the computational description. This could also be seen in this

sudy. To allow for a closer comparison between methods, hydrogen bond lengths.

of structures with planarity restriction at different levels of theory are summarized

in Table 4.1. Values computed with the RI-CC2 method are significantly smaller

than those obtained at the (TD)DFT level. This effect amounts to about 0.02-

0.04 in the electronic ground state and increases to above 0.1 for the N· · ·H bond

length in the MK structure in the S1 state. A similar trend with similar numbers

was also seen in our previous study [51]. The absence of an excited state DE

minimum at the RI-CC2 level and the smaller MK-DK barrier could be explained

by the presence of stronger hydrogen bonds in this method. The hydrogen bond

lengths increase when a larger basis set is used which is probably related to a

decrease in the basis set superposition error which is known to overstabilize such

interactions. The effect is strong at the DFT level and hardly noticable with

RI-CC2.

The relative energies of the structures are shown in Fig. 4.2. At the RI-CC2 level

vertical excitation amounts to 3.901 eV. The Franck-Condon excited structure

relaxes without a barrier to either the MK or DK forms which are about equal in

energy. The MK→DK reaction barrier amounts to 0.126 eV. At the TDDFT level

there exists a shallow DE minimum with a very low barrier (0.002 eV) toward
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Figure 4.1: Ground state (DE) and S1 (ππ∗) state (MK, DK)

fully optimized geometries at the RI-CC2/SVP-SV

level. (TD)DFT/B3LYP/TZVP values are shown in

parentheses; at the MK the TDDFT/B3LYP/TZVP

structure with planarity restriction is taken as no true

local MK minimum was found. For DE and DK only

symmetry unique values are shown. DE and DK are

planar, MK shows an NCCN interring torsion angle of

175o.
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Figure 4.2: S1 (ππ∗) energies for planar structures relative to

the DE ground state minimum computed at the RI-

CC2 and TDDFT/B3LYP levels using the SVP-SV and

TZVP basis sets, TZVP results in parentheses.

MK formation. Symmetric DK formation would proceed over a second order

saddle point with a barrier of 0.079 eV. In TDDFT MK is considerably more

stable (0.101 eV) than DK. And the MK→DK barrier (0.221 eV) is about twice

as high as with RI-CC2.

Vertical excitation energies for the first 7 states at the DE ground state minimum

are shown in Table 4.2. The most intense transition is to the S1 (ππ∗) state which

can be characterized as a HOMO-LUMO excitation. Because of the high oscillator

strength mostly this state will be accessed by the experiment. The excitation

energy computed here is quite similar to the experimental absorption maximum

of 3.647 eV[14] measured in cyclohexane. The fact that the energy is a little bit

too high may be related to solvation effects. Several states of ππ∗ (Ag, Bu) and

nπ∗ (Au, Bg) character are following S1 and have zero or small oscillator strength.

The next state with larger oscillator strength is the 21Bu state which is S5 at

TDDFT and S6 at RI-CC2, respectively. This may be the origin of the second

peak in the absorption spectrum reported below 250 nm [14, 15]. It may also be

the doorway state for experiments with excitation at 267 nm. The significance of

this is that at 267 nm different dynamics take place. With this higher excitation

energy a transient MK/DK ratio of 2:1 is seen rather than the DK excess seen

at lower excitation energies.[14, 15, 3] No further examinations on this question

have been made. It can be seen that the RI-CC2 excitation energies are generally
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Table 4.2: Vertical excitation and fluorescence energies (eV) of

the first singlet excited states computed at different levels

of theory. Oscillator strengths are shown in parentheses.

TDDFT/B3LYP RI-CC2 Exp.a

Struct. State SVP-SV TZVP State SVP-SV TZVP

FC 11Bu 3.737(3.38E-01) 3.767(3.49E-01) 11Bu 3.901 (3.75E-01) 3.848 (3.73E-01) 3.647

FC 11Au 4.305 (1.45E-03) 4.362 (2.62E-03) 21Ag 4.685 (0) 4.607 (0)

FC 21Ag 4.559 (0)) 4.552 (0) 11Au 4.686 (1.51E-03) 4.662 (1.66E-03)

FC 31Ag 4.668 (0) 4.658 (0) 31Ag 5.402 (0) 5.280 (0)

FC 21Bu 5.057 (5.83E-02) 5.041 (5.96E-02) 11Bg 5.506 (0) 5.454 (0)

FC 11Bg 5.143 (0) 5.124 (0) 21Bu 5.618 (9.44E-02) 5.493 (1.03E-01)

FC 21Bg 5.462 (0) 5.443 (0) 21Bg 5.960 (0) 5.873 (0)

MK 21Bu 2.466 (1.48E-01) 2.409 (1.47E-01) 21Bu 2.488 (3.11E-01) 2.477 (2.73E-01) 2.183

DK 21Bu 2.708 (3.40E-01) 2.690 (3.63E-01) 21Bu 2.599 (3.98E-01) 2.583 (4.27E-01) 2.431

aRef. [14]

somewhat higher than the TDDFT results. Basis set dependence is rather small.

With RI-CC2 both the two Ag and Bg states have multi-reference character and

mixing between them may not be appropriately described. But for the states of

interest the approach should be accurate. Also the vertical fluorescence energies

and corresponding oscillator strenghts of the MK and DK structures are shown

in Table 4.2. Similar values to the experiment and most importantly the same

ordering are obtained. This is a verification of the respective assignment of the

experimental bands to the MK and DK structures.

There is a rather large gap to the first nπ∗ state (11Au) of about 0.6 eV in the

Franck-Condon region. At this geometry an electron is taken out of a non-bonding

orbital of a nitrogen atom. The situtation drastically changes after one or two

protons are transferred and the non-bonding orbital is supplied by an oxygen

atom. At MK and DK type geometries the nπ∗ state becomes competitive with

ππ∗ and true S1 minima exist where this S1 state is of nπ∗ character. Their

energies are very similar to the ones of the ππ∗ minima.
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Figure 4.3: Relaxed PES with fixed OH-distances under pla-

narity constriction in the ππ∗ state computed at the RI-

CC2/SVP-SV (a) and TDDFT/B3LYP/SVP (b) lev-

els.

4.2 Potential energy surfaces

Two-dimensional potential energy surfaces have been computed by fixing the two

OH-distances at different values and relaxing the remaining structure under pla-

narity constriction. This is intended to give insights into the reaction dynamics.

But it should be remembered that in the sub 100 fs process considered it cannot

be expected that the geometry relaxes fully. This means that the dynamics do not

actually proceed on this PES but rather above it as far as the energy is concerned.

The advantage of the approach is that the stationary points of interest are part

of such a surface. In this way surfaces at the RI-CC2/SVP-SV and B3LYP/SVP

level have been computed for the ππ∗ state (Fig. 4.3).

In the Franck-Condon region (i.e. close to the DE structure) both surfaces show

a steep decline. On the other side wells for the MK and DK structures are found.

The symmetric DE→DK path proceeds over an elongated shallow area in RI-CC2.

In TDDFT there is even a second order saddle point in the way and a shallow

DE minimum exists (cf. Fig. 4.2). In both cases the symmetric transfer seems

rather unlikely as the symmetric path forms a ridge which is unstable toward
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Figure 4.4: Linear PES computed at the RI-CC2/TZVP (a)

and TDDFT/B3LYP/TZVP (b) levels. The structures

were constructed according to (3.1).

unsymmetric MK formation. Only highly symmetric starting conditions would

lead to a symmetric double proton transfer and symmetry breaking is expected by

considering these PES’s. For the geometries considered in the PES’s also vertical

energies of the nπ∗ state have been considered. The shape of this PES is rather

similar and dynamics in this state should proceed in a similar way. An important

fact is that the nπ∗ energies are very close to the ππ∗ energies even for structures

optimized at the nπ∗ level. As mentioned above (Sec. 4.1) true minima for nπ∗

as the first excited state exist.

For comparison with a quantum dynamical study that has been recently per-

formed [21] also a linear PES has been constructed (Fig. 4.4). Contrary to the

study mentioned, the MK and DK structures optimized in the excited (ππ∗) state

have been taken. The definition of structures was according to (3.1). And single

point calculations with the TZVP basis set have been performed.

In general the linear PES’s are very similar to the relaxed PES’s. MK and DK

wells are clearly seen. A difference is that in the linear grid even RI-CC2 shows

a shallow DE minimum and the corresponding second order saddle point.
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4.3 Simulated UV spectra

For a more accurate comparison with experimental results, UV spectra were sim-

ulated. This is done by doing single point calculations on random structures

created by a Wigner distribution in the same way as for the initial conditions

generation of the dynamics (Sec. 3.1). The results for RI-CC2/SVP-SV and

B3LYP/SVP-SV are shown in Fig. 4.5. In this figure the large Stokes shift

that goes along with the extensive excited state relaxation caused by the pro-

ton transfer can be clearly seen. For the Franck-Condon absorption and DK

fluorescence, the results are very similar: absorption in the near UV and green

fluorescence as is also known from experiment. Even the shoulder to the right of

the maximum in the experimental spectrum [14] is well reproduced. For MK RI-

CC2 shows the behavior that is expected from experiment: a fluorescence band

slightly red-shifted compared to DK. In B3LYP the vertical fluorescence from

MK with planarity restriction is also good. But the MK band in the simulated

spectrum is stretched to lower energies. This has to do with the fact that after

inter-ring torsion there is a clear charge transfer state in the MK. And it is a

well known fact that standard density functionals are not suitable for describing

charge transfer states.[2] In Figure 4.5 it can also be seen that the band maxima

are always slightly red-shifted compared to the vertical excitations. The RI-CC2

band maxima are always slightly higher in energy than the experimental values,

with B3LYP the absorption maximum is very close to, DK higher and MK lower

in energy than the experimental value. An important result of this calculation is

that the ordering is consistent with the experimental interpretion of the bands,

i.e. DK at 510 nm and MK at 568 nm.

4.4 Dynamics Results

Dynamics simulations were performed to get a direct insight into the process. In

the computed PES (Fig. 4.3) it can be seen that there is a barrierless asymmetric

one-proton-transfer-path leading to the MK. The symmetric path is also barrier-

less in RI-CC2 and has a second order saddle point in TDDFT/B3LYP. But in
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Figure 4.5: Simulated absorption and emission spectra at the

(a) RI-CC2/SVP-SV and (b) B3LYP/SVP-SV levels.

Cirles show experimental band maxima [14], crosses

vertical absorption and fluorescence energies respec-

tively.



CHAPTER 4. RESULTS AND DISCUSSION 43

both cases there is a ridge that should favor MK formation unless the starting

conditions are highly symmetrical.

In Fig. 4.6 the time evolution of the DE, MK, and DK species (as defined in

Eqns 3.3-3.5) is presented for dynamics simulations at the RI-CC2/SVP-SV and

TDDFT/B3LYP/SVP-SV levels. In both cases a rapid drop of the initial DE

population and formation of MK is observed. With RI-CC2 transfers start after

just 3 fs, and 90% conversion is reached after 18.5 fs. The MK population shows

a maximum at about 30 fs and subsequently more DK is formed. At 60 fs a small

amount of the DE reappears. This result can be compared to a fluorescence

anisotopy study [18] where a 350 fs decay component was observed when probing

at 460 nm emission wave length. The signal was attributed to the DE form.

The simulations indicate that these molecules do not stay in the Franck-Condon

region for the whole time but rather that part of the wave packet is reflected

back. After 100 fs 63% MK and 37% DK are present.

The results are quite different in the TDDFT dynamics. An initial rapid DE drop

is observed but it is considerably slower and the time for 90% conversion is 42.5

fs which is more than twice the RI-CC2 value. Hardly DK formation is observed

and after 100 fs only 5% DK are present. The difference can be attributed to the

fact that MK is 0.1 eV lower in energy than DK at the TDDFT/B3LYP, that the

barrier is higher than with RI-CC2, and that there is less excess energy from the

vertical excitation (cf. Fig. 4.2).

The experiment[3] clearly shows that significant amounts of DK are present after

100 fs. This is in contradiction to the TDDFT results which will be not consid-

ered further. A problem with both methods is that the predicted transfer time is

about a fifth of the 50 fs that were concluded from the experiment[3]. It is not

clear wether this is a problem of the experimental interpretation or a computa-

tional inaccuracy. On the one hand it should be difficult to probe a 50 fs process

with the 30 fs time resolution that was available. On the other hand the compar-

ison between RI-CC2 and TDDFT dynamics also shows how small differences in

the computation strongly affect the outcome. A close connection between both

experiment and theory is needed to understand these open questions better.

It was almost always observed that DK formation proceeded with MK as a
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Figure 4.6: Relative abundances of the DE, MK, and DK

species over time for dynamics simulations at the RI-

CC2/SVP-SV and TDDFT/B3LYP/SVP-SV levels.

short term intermediate. This can be seen by projecting the dynamics onto

the ∆R1/∆R2 surface (Fig. 4.7). Both the DE-MK and the MK-DK paths are

well populated and reactions take place in both directions. Only 2 trajectories

are found on the symmetric DE-DK path. On average 2.0 proton transfers (cf.

Sec. 3.4) were observed per trajectory in the first 100 fs: 1.2 DE → MK, 0.5

MK → DK, 0.2 DK → MK, 0.2 MK → DE. This gives the picture of a

highly dynamical system rather than two separated reaction branches. This is

in accordance with the relaxed PES presented above (Fig. 4.3) which makes it

plausible that trajectories would slide off the ridge to form the MK rather than

proceed in the symmetric process. But this picture is contrary to the prevalent

experimtal interpretation [15, 3] which considers two branched isolated reaction

channels and a one-directional MK → DK conversion on a 10 ps time scale. The

question will be adressed in more detail below.

It is well documented in the literature that skeletal motions are decisive for

the excited-state proton transfer [9, 6, 10, 11]. The acceptor and donor atoms

have to move close enough together for the transfer to take place. To repre-

sent this movement the average value of the distance between the O and N

atoms RNO,active involved in the process can be plotted against the reaction coor-

dinate ∆Ractive. It was shown that for the rigid 10-hydroxybenzo[h]quinoline
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Figure 4.7: Projection of the RI-CC2 trajectories onto the

∆R1/∆R2 surface. Time coding: − 0-25 fs, - - - 25-50

fs, − · − · − 50-75 fs, · · · 75-100 fs

molecule (HBQ) RNO,active decreases only by about 0.03 Å with the proton

transfer whereas it is shortened by about 0.13 Å in the more flexible 2-(2’-

hydroxyphenyl-)benzothiazole (HBT). This analysis for BP (OH)2 is shown in

Fig. 4.8. The NO distance when the trajectory starts is on average already 0.03

Å shorter than the equilibrium value. This can be understood by the fact that

with the random initial conditions (cf. Sec. 3.1) the side with the shorter NO

distance is favored to become the active side of the first proton transfer. In the

course of the remaining process the NO distance shortens by only 0.02 more Å in

connection with the transfer. After that the NO distance stretches as the molecule

bends to the other side. The transfer proceeds very quickly (7 fs) compared to

the HBT (36 fs)[11] and HBQ (30 fs)[10] dynamics simulations. The reason for

this is probably that there is a competitive advantage with two proton transfer

sites. Moreover there is a steep energy gradient for the first transfer. Whereas the

experiment is very well in accordance with the simulations for HBT and HBQ,

it gives a much longer time of about 50 fs[3] for the transfer in BP (OH)2. To

get some more insight on the problem, a symmetric trajectory starting from the

undistorted C2h ground state minimum with no initial momentum was run. In

this case the symmetric concerted transfer occurs after 39 fs accompanied by an
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Figure 4.8: Time dependence of the average NO distance

RNO,active plotted against the average value of the re-

action coordinate ∆Ractive.

NO contraction of 0.14 Å. This shows how strongly the process is either facilitated

by the symmetry-breaking or the initial kinetic energy. The result emphasizes

the multidimensional and dynamic nature of the process.

In the Fourier transform of the experimental transient three oscillations were

seen. These were assigned to two totally symmetric modes (21ag, 20ag) and one

antisymmetric mode (20bu).[3] The corresponding motions in the DK (S1, ππ
∗)

are shown in Fig. 4.9. Similar motions where also found for the other tautomers.

It can be seen that the 21ag (and 20ag) modes shorten the O-N distances simul-

taneously whereas the 20bu favors only one side in each half cycle. Therefore the

totally symmetric modes were taken as evidence for a symmetric double transfer

whereas the 20bu motion could give a single transfer.[3]

It is interesting to consider that excitation of a non-totally symmetric mode in

an allowed transition is against the Franck-Condon rules. The fact that it is

observed is a direct evidence of the reactive process[3] and related to the strongly

anharmonic potential. The precise formulation is that only even vibrational states

of a non-totally symmetric mode can be accessed. This comes from the fact that

the potential curves are symmetric because motion in both directions has to be

equivalent. A significant excitation only occurs if the shape of the PES strongly

changes with the electronic excitation.[57] This is the case in a reactive potential

as observed here.

To compare with experimental results, standard deviations of normal mode mo-
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Figure 4.9: Normal mode motions of the DK computed at the

RI-CC2/SVP-SV level for the S1(ππ∗) state.

tions with respect to the DK reference geometry have been analyzed (cf. Sec.

2.3.4). The total (R̂tot) and coherent (R̂coh) standard deviations of the 24 lowest

energy normal modes are presented In Fig. 4.10. R̂tot (light blue) represents total

fluctuations and has a strong component for every mode. The magnitude should

be mostly related to the initial condition sampling (Sec. 3.1). It is stronger for

the looser low frequency modes. When averaging over trajectories is performed

to produce R̂tot, random motions should cancel out and only coherent motions

that were caused by the electronic excitation should remain. In the part that can

be sampled by a 30 fs experiment - below 550/cm (cf. 2.5) - just the three modes

are found that were also mentioned there[3]. In the higher frequency range, three

more modes are found. Particularly strong coherent behavior was found for 17ag

which is an aromatic breathing vibration. Its excitation is connected to a losening

of the ring as an electron is excited from a bonding π-orbital to an anti-bonding

π∗-orbital. Similar effects are known for other aromatic systems.

An important result of this analysis is that strong coherent activity of symmet-

ric modes is not in contradiction to the symmetry breaking process that was

observed. This can be understood by the fact that the superposition of a sym-

metric and an antisymmetric mode will yield an asymmetric motion. Activity

of the symmetric mode was taken as a main argument for a symmetric reaction
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Figure 4.10: Total (R̂tot, light blue) and coherent (R̂coh, dark

blue) normal mode activity during the dynamics sim-

ulation as measured by the standard deviation of aver-

aged displacement vectors with respect to the DK ref-

erence geometry. Vibrational frequencies are given in

parentheses (cm−1).

path[3]. The analysis just performed relativizes this result and shows that the

asymmetric process is consistent with experiment.



Chapter 5

Conclusions and Outlook

The excited state double proton transfer in [2,2’-bipyridyl]-3,3’-diol (BP (OH)2)

was examined by extended quantum chemical computations with the ab-initio

RI-CC2 and TDDFT methods. First, benchmark computations on the surface

of the first singlet excited state were performed to understand the physics of

the molecule and test the consistency of the methods. Then ab-initio dynamics

simulations considering all degrees of freedom were performed to follow the actual

proton transfer process. The results were compared against experimental data to

judge their accuracy.

Main attention was given to the question of sequential versus concerted proton

transfer. The prevalent experimental interpretation[15, 3] considered a branched

reaction path with a uni-directional MK → DK conversion on a 10 ps time scale.

The simulations shed a completely new light on the process. It was found that MK

and DK were readily interconverted in both directions during the 300 fs simulated.

It was shown by considering the time-dependent spectra and particularly the

normal mode oscillations that this highly dynamic rather than branched system

is still in agreement with experimental results. The reaction scheme obtained

from the dynamics simulations is shown in Fig. 5.1. The first transfer occured

in 7 fs on average. After 30 fs a maximum of the MK intermediate was observed

and enhanced DK formation proceeded. The direct symmetric DE → DK path

was almost never observed. In the highly energetic system both reverse reactions:

DK →MK and MK → DE took place. This outcome is opposed to the current
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Figure 5.1: Reaction scheme of the excited state intramolecular

double proton transfer of BP (OH)2 as concluded from

the dynamics simulations in this work.

experimental interpretation but in agreement with the epxerimental data. New

experiments guided by these results may be able to either verify or disprove them

and complete the understanding of BP (OH)2 and other similar systems.

With the ever increasing speed of computers ab-initio computations of many

molecules of technological and biological interest have become possible. More

and more advanced probing techniques allow for the investigation of chemical

processes on the atomic time and length scales. The advantage of the experimen-

tal approach is that the results are in essence correct. The downside is that the

information is often indirect and difficult to interpret. Computation is the com-

plimentary approach. On the one hand it gives direct insight into the simulated

processes. On the other hand every kind of mathematical model necessitates

coarsening as far as the surroundings, the physics, and the numerical approach

are concerned (i.e. one does not have the analytical solution of the theory of ev-

erything for the whole universe). Therefore a computational solution will never

yield a result with complete accuracy. As it was also noticed in this project it is

the interplay between experiment and theory that gives a deeper insight into the

physical and chemical processes surrounding us and allows for new developments

in medicine and technology.
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Deutsche Zusammenfassung

In dieser Arbeit wurde die Photochemie des [2,2’-Bipyridyl-]-3,3’-diol (BP (OH)2)

Moleküls untersucht (vgl. Fig. 1.2). BP (OH)2 ist interessant wegen vieler

möglicher Anwendungen des Moleküls und dessen Derivaten: zum Beispiel als

LASER Farbstoff[13] als biochemische Sonde[22], als Photostabilisator oder Son-

nenkollektor [17] oder aber auch im Zusammenhang von Kontrolltheorie[3]. Das

Molekül besitzt zwei intramolekulare Wasserstoffbrücken, entlang derer nach UV

Anregung die Wasserstoffatome transferiert werden. Experimente[13, 14, 15, 16,

17, 18, 3] und frühere Rechnungen[19, 20, 21, 5] haben den prinzipiellen Prozess

dargelegt: Im Grundzustand ist die di-enol (DE) Form stabil, bei der beide

Wasserstoffe an die Sauerstoffatome gebunden sind. Nach Anregung durch UV

Licht werden innerhalb von 100 fs ein oder zwei Protonen transferiert und beide

weiteren Tautomere, mono-keto (MK) und di-keto (DK) sind zu sehen.[18, 3]

Mit einer Zeitkonstante von 10 ps wandelt sich dann MK in DK um.[15] Nach

dem Transfer werden charakteristische Anregungen von Normalschwingungen

beobachtet.[3] Schließlich fluoresziert das DK Tautomer. Einige Fragen sind aber

noch nicht geklärt. Vor allem über den ersten Transferschritt ist wenig Informa-

tion vorhanden, da dieser unter der experimentellen Zeitauflösung stattfindet.

Das Ziel des Projektes war es, den beschriebenen Prozess und dabei vor allem

den ersten Transferschritt besser zu verstehen. Dafür wurde eine Molekulardy-

namiksimulation über die ersten 100 fs durchgeführt. Es wurde mit klassischen

Kernen gerechnet, die sich im effektiven Feld der quantenmechanisch beschriebe-

nen Elektronen bewegten. Die Elektronen im angeregten Zustand wurden mit

den ab-initio Methoden der zeit-abhängigen Dichtefunktionaltheorie und ”res-

olution of the identity second-order coupled cluster” gerechnet. Neben diesen

Dynamikrechnungen wurden Teile der Energiefläche, insbesondere die stationären
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Punkte, genauer untersucht und außerdem die Absorptions- und Fluoreszenzspek-

tren simuliert.

Die Ergebnisse sind in Refs [55, 56] zu publiziert. In allen Trajektorien der

Dynamiksimulation fanden Protonentransfers innerhalb der 100 fs nach UV An-

regung statt, wobei MK und DK gebildet wurden. DK entstand allerdings fast

ausschließlich über sequentielle Transfers mit MK als Zwischenprodukt. Dies ist

im Gegensatz zur vorherrschenden experimentellen Interpretation[15, 3]. Dort

wurde von einem verzweigten Reaktionsweg ausgegangen, in dem in einem ersten

Schritt entweder MK oder direkt DK in einem symmetrischen Prozess gebildet

wird. Es ist ein interessantes Resultat, das experimentell schwierig zugänglich

war, dass der Prozess dynamischer ist, als bisher gedacht und keine zwei getren-

nten Reaktionswege vorliegen. Die Tatsache, dass auch dieser Ablauf mit den

experimentellen Daten zusammenpasst, wurde genau überprüft. Insbesondere

konnten auch die beobachteten Normalschwingungen reproduziert werden. Für

diese Normalschwingungsanalyse wurden Python Routinen programmiert, die in

das Newton-X Molukulardynamikpackage[26] integriert werden.

In dem Projekt konnte gesehen werden, wie mit modernen Simulationsmethoden

ein chemischer Prozess direkt simuliert werden kann. Durch dass Zusammenspiel

von Experiment und Rechnung war es auch in diesem Fall möglich, ein genaues

Verständnis der Reaktion zu bekommen. Die Resultate sind einerseits im Hin-

blick auf die möglichen Anwendungen interessant. Andererseits helfen derartige

Studien, das Verständnis von molekularen Prozessen zu verbessern, die sowohl

von der Zeit- als auch von der Größenskala her weit unter den Alltagserfahrung

liegen und zur Zeit eine große Herausforderung für Experiment und Rechnung

sind.
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