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Abstract

In this thesis we introduce the exact quark propagator function for both the instan-

taneous Bethe-Salpeter equation and the reduced Salpeter equation. The stability of

solutions of the exact-propagator full Salpeter equation and reduced Salpeter equa-

tion with various interaction kernels, including Lorentz-scalar, Lorentz-pseudoscalar,

Lorentz-vector, time component Lorentz-vector and Böhm-Joos-Krammer (BJK)

structure are analyzed. By expanding the Salpeter amplitude to a set of orthonor-

mal functions, we present a numerical tool to transfer the Salpeter equation to a

matrix form and obtain the eigenvalues and eigenfunctions for pseudoscalar fermion-

antifermion bound states. Furthermore, by using ’t Hooft’s instanton-induced inter-

action and applying the numerical method to the study of pseudoscalar π,K,D,Ds, B,

Bs, Bc, ηc, ηb mesons, we obtain the mass eigenvalues and wave functions for these

meson’s ground state and excited states within the framework of both the free-

propagator and exact quark propagator Salpeter equation. The calculation shows

that the exact-propagator contributes non-neglectable effect on the numerical re-

sults. In addition, we calculate the decay constant of π, K,D, Ds mesons with the

exact quark propagator. Finally, we propose a differential equation approach to

study the properties of solutions of the full Salpeter equation and reduced Salpeter

equation for various Lorentz structures analytically.



Zusammenfassung

In dieser Arbeit stellen wir die exakte Quark-Propagatorfunktion für die instantane

Bethe-Salpeter Gleichung als auch für die reduzierte Salpeter Gleichung vor. Die

Stabilität der Lösungen der vollen Salpeter Gleichung mit exaktem Propagator und

der reduzierten Salpeter Gleichung mit verschiedenen Wechselwirkungskernen - ein-

schließlich Lorentz-Skalar, Lorentz-Pseudoskalar, Lorentz-Vektor, Zeitkomponenten-

Lorentz-Vektor und Böhm-Joos-Krammer (BJK) Struktur - wird analysiert. Durch

Entwickeln der Salpeter Amplitude in eine Reihe orthonormaler Funktionen stellen

wir ein numerisches Werkzeug vor um die Salpeter Gleichung auf Matrixform zu brin-

gen und um Eigenwerte und Eigenfunktionen der pseudoskalaren Fermion-Antifermion

Bindungszustände zu erhalten. Durch die Verwendung von ’t Hooft’s instanton-

induzierter Wechselwirkung und durch Anwendung der numerischen Methode um

π, K, D, Ds, B,Bs, Bc, ηc, ηb Mesonen zu untersuchen, erhalten wir außerdem die

Masseneigenwerte und Wellenfunktionen für Grundzustände und angeregten Zustände

der Mesonen im Rahmen der freien Propagator als auch der Quark-Propagator

Salpeter Gleichung. Die Berechnungen zeigen, dass der exakte Propagator zu den

numerischen Resultaten einen nicht vernachlässigbaren Beitrag liefert. Darüber hi-

naus berechnen wir die Zerfallskonstante von π,K,D,Ds Mesonen mit Hilfe des

exakten Propagators. Schließlich schlagen wir eine Methode mit Differentialglei-

chungen vor, um die Eigenschaften der Lösungen der vollen und der reduzierten

Salpeter Gleichung für verschiedene Lorentz Strukturen analytisch zu untersuchen.
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Chapter 1

Introduction

The understanding of hadronic states’ properties is one of the challenging tasks in

strong interaction physics research. For more than half a century, the theory about

strong interaction physics has been well established and investigated by physicists.

A phenomenological theory, quantum chromodynamics (QCD), has obtained great

success in describing the hadron’s structure and dynamic properties. Although this

theory has been well established and developed since 1960s, there is still no consistent

and straight way to describe the hadronic properties. Practical calculation can only

be performed for some special cases. Due to the large QCD coupling constant, the

perturbation theory which is quite successful in QED is not valid for the strong

interaction physics at low and intermediate energies.

Therefore as an alternative approach to describe the structure of hadrons - quark

models were proposed by Gell-Mann [1] and Zweig [2] as a realization of the basic

representation of SU(3) group. These models have been developed to simulate the

features of QCD and to depict the hadronic substructure. With numerical calcula-

tion, one can use these models to reproduce experimental data of the hadrons such

as masses and decay ratio, and describe the observations properties such as confine-

ment in QCD. Some non-perturbative methods, such as lattice QCD calculations,

have also been developed.

One of the successful models in describing the properties of heavy mesons and

baryons is the nonrelativistic constituent quark model [1, 3]. But it fails to describe

the properties of light mesons and baryons since the relativistic effects have to be

considered for light constituent masses. Therefore relativistic methods of the quark

dynamics are developed in order to describe hadronic properties better.

The Bethe-Salpeter equation is the most general tool for describing the relativis-
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tic system in the framework of quantum field theory. It was first proposed by Nambu

[10] more than half a century ago, and then was extended to the general form by

Bethe and Salpeter [4] based on the Feynmann graph analysis. The Bethe-Salpeter

equation was also independently proposed by Schwinger [5] using the functional-

derivative formalism, and by Kita [6] employing the S-matrix method. Since then,

the study of Bethe-Salpeter equation has been developed and widely discussed in

many aspects.

Because the time variable appears in the Bethe-Salpeter equation, it is difficult

to solve the general Bethe-Salpeter equation by using either numerical or analyti-

cal approach. Therefore some simplification treatments for the Bethe-Salpeter have

been proposed. The most popular approach is the so called instantaneous sim-

plification proposed by Salpeter [7]. This approximation scheme is based on two

assumptions: instantaneous interaction and free propagator, i.e., the interactions

between the constituents of bound state are instantaneous, and every constituent

of the bound state propagates as a free particle. With these two assumptions the

Bethe-Salpeter equation is reduced to the instantaneous Bethe-Salpeter equation,

or Salpeter equation. The instantaneous Bethe-Salpeter equation represents a sim-

plification from four-dimensional space to three dimensional space and avoids the

difficulties of the relative time degree of freedom.

Reduced Salpeter equation: Several years ago, Lagaë presented a systematic

investigation of the instantaneous Bethe-Salpeter equation [8]. A straightforward

reduction method which transforms the instantaneous Bethe-Salpeter equation to

a set of coupled equations for Salpeter radial wave functions was also proposed in

[8]. Using this method the full instantaneous Bethe-Salpeter equation can be easily

transformed to reduced Salpeter equation. Subsequently, employing Lagaë’s method

Olsson et al. [17, 18] explored the properties of full and reduced Salpeter equation.

For several kinds of interaction kernel, such as kernels of time component Lorentz

scalar, vector, and full vector types, they investigated the validity of the reduced

Salpeter equation. With an instanton-induced interaction, the mass spectra and the

weak decays of mesons are investigated in [20, 21, 22, 80].

More recently an instantaneous approximation to the Bethe-Salpeter formalism

which retains the exact propagators of the bound-state constituents has been pro-

posed [14]. The relevant analysis shows that the influence of introducing exact quark

propagators in the Salpeter equation can not be ignored. The application of the ex-

act quark propagator to the investigation of pseudoscalar bound states with various

interaction kernels has been performed in [95].
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In this work, some new results on pseudoscalar fermion-antifermion bound state

mass spectra and decay constant are discussed within the framework of Bethe-

Salpeter model. By introducing the exact quark propagator assumption, we an-

alyze the influence of exact-propagator on the mass spectrum and eigenfunctions for

pseudoscalar mesons.

This thesis is organized as follows: in chapter 2, starting from Green function,

the general properties of Bethe-Salpeter equation and instantaneous Bethe-Salpeter

equation (Salpeter equation) are reviewed. The so called reduced Salpeter equation

is introduced by using a type of reduction approach. In order to solve the Salpeter

equation, by transforming it to a set of coupled equations and then to a relevant ma-

trix problem, we obtain the corresponding eigenvalue equations which can be calcu-

lated numerically. Then we discuss the Bethe-Salpeter equation with various types

of interaction kernels: the Lorentz scalar, Lorentz pseudoscalar, Lorentz vector,

time-component Lorentz vector and BJK structure kernel. The exact-propagator

full and reduced Salpeter equation for the pseudoscalar fermion-antifermion bound

states are also introduced in this chapter.

In chapter 3, the behaviors of mass function and wave-function renormalization

function of the exact quark propagator are discussed. By introducing the exact quark

propagator to the Salpeter equation with time component Lorentz vector interac-

tion structure for the pseudoscalar fermion-antifermion bound state, we numerically

compute the spectra and plot the corresponding eigenfunctions with details. Fur-

thermore, we also give the eigenvalues and eigenfunctions for the full and reduced

Salpeter equation with other types of interaction kernels and compare the difference

of results between the exact and free propagator cases.

In chapter 4, by adopting a residual interaction which is based on instanton

effects [20, 21], we compute the masses of the pseudoscalar mesons for their three

lowest states with a kernel of Böhm-Joos-Krammer (BJK) structure. We consider

both the free and exact quark propagator and apply them to the Salpeter equation to

study the properties of pseudoscalar mesons. The mass spectra and eigenfunctions

of π, K, D, Ds, B, Bs, Bc, ηc, ηb are obtained and compared with the results of

Koll’s model [20, 21, 22] and the newest data from Particle Data Group (PDG2007)

[37]. In addition, the decay constants of π, K, D, Ds mesons are also obtained and

compared with Koll’s model [22] and PDG2007 [37].

Chapter 5 presents a kind of analytical treatment for the free- and exact-propagator

Salpeter eigenvalue equations with various kernels of interaction structures. For the

harmonic oscillator potential, we transform the reduced Salpeter equation to the cor-
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responding differential equation, specially to the standard Schrödinger type equation

for the kernel of Lorentz-scalar and Lorentz-vector structure. Then we analyze the

spectra and stability of the bound states solutions.

The appendix gives the metric tensor and γ matrix relations used in this the-

sis. The generalized Laguerre basis for the radial functions and the corresponding

formula for the relevant variables are also presented. The detailed calculations for

the transformation from reduced Salpeter equation to Salpeter eigenvalue equation

are also stated in the appendix. For the full Salpeter equation, as an example, we

give the detailed calculation for the equation with kernel of Lorentz pseudoscalar

interaction structure γ5⊗γ5. The plots of eigenfunctions for quark-antiquark bound

states with different interaction kernels are also given in the appendix.

4



Chapter 2

The Salpeter Equation

The Bethe-Salpeter model for fermion-antifermion bound states will be described in

this chapter. The general properties of the Bethe-Salpeter equation and its instan-

taneous approximation (instantaneous Bethe-Salpeter equation) are also presented.

Furthermore, we introduce a reduction approach for the Salpeter equation and ob-

tain the so called reduced Salpeter equation. A suitable extension to the case of

exact-propagator [14] for the instantaneous Bethe-Salpeter equation and reduced

Salpeter equation is also presented.

2.1 Introduction

In particle physics, most hadrons can be described by the quark model which is pro-

posed in the 1960s by Gell-mann [1]. After several decades of development, quantum

chromodynamics has been well established and widely accepted as the fundamental

theory which describes the properties and dynamics of mesons and bayons. However,

there are still some flaws in this strong interaction theory. For example, practical

calculations can only be performed in some special limits. Unlike in QED, one

cannot use perturbation method to make approximations for the interaction ker-

nel in QCD. To understand the internal structure of hadronic bound states is still

one of the main tasks in strong interaction physics. Since there is still no complete

and uniform knowledge of the interaction between quarks, various phenomenological

alternatives have to be developed and tested.

Since 1950’s, a relativistic treatment for two-body bound states which is derived

from Green’s function has been proposed and developed within the framework of

quantum field theory. This is the so called Bethe-Salpeter equation [4], which pro-
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vides a suitable starting point to study the hadronic bound states. However, the

general interaction kernels of the Bethe-Salpeter equation depend on the relative

time variable, which leads to serious conceptional and practical problems. The re-

tardation effects of a parametrization of confinement is also lacking. Therefore, it

is necessary to make some simplification for the Bethe-Salpeter kernel to the three-

dimensional space. After many efforts, it has been proved that the Bethe-Salpeter

kernel can be approximated by an effective static interaction which is instantaneous

in the rest frame of the bound state. Another approximation is the so called free-

propagator assumption which means the constituent of bound state propagates as a

free particle. With both of these two approximations, the Bethe-Salpeter equation

reduces to the (full) Salpeter equation [7], which has been widely investigated for

qq̄ states by Llewellyn Smith [15], Le Yaouanc [16] and recently by Lagaë [8] and

Koll [20]. Although the instantaneous Bethe-Salpeter equation avoids some crucial

problems, there still exists some shortcomings, such as negative energy solutions and

some solutions with zero norm.

For low binding energies, if at least one of the constituent masses in the bound

states is infinite, a further approximation would lead to the so called reduced Salpeter

equation [9, 18]. The reduced Salpeter equation has been widely used because of

it’s standard Hamiltonian form. In this chapter we will review the properties of

Bethe-Salpeter equation and its instantaneous approximation form, then extend it

to the case of exact propagator.

This chapter is organized as follows. In Sec. 2.2, we simply review the general

properties of the Salpeter equation for fermion-antifermion bound states and then

analyze the various interaction kernels between the quark and antiquark. A kind

of simplification for Bethe-Salpeter equation are introduced in this section, where

two assumptions, instantaneous interaction and free-propagator approximation are

employed. These approximations result in the well-known Salpeter equation. In Sec.

2.3, by using Lagaë’s method [8], we convert the Salpeter equation to matrix equa-

tion. In Sec. 2.4, we introduce the reduction of the Salpeter equation [8] and derive

the reduced Salpeter equation which is of the standard eigenvalue type equation

compared with the full instantaneous Bethe-Salpeter equation. In Sec. 2.5, the

general instantaneous Bethe-Salpeter equation is extended to the exact-propagator

case. Sec. 2.6 is the conclusion and summary of this chapter.
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2.2 General Properties of the Salpeter Equation

2.2.1 From Bethe-Salpeter Equation to Salpeter Equation

Within elementary particle physics the Bethe-Salpeter equation has been widely ap-

plied to quantum electrodynamics (QED) and quantum chromodynamics (QCD).

Unfortunately it faces problems of interpretation and of the ignorance of the full in-

teraction kernel in QCD. Except for a very few special cases, such as the well-known

Wick-Cutkosky model [29, 30] which describes the interaction of two scalar particles

by exchange of a massless scalar particle, the Bethe-Salpeter equation is not easy

to handle. The appearance of timelike variables in the equation of motion is one of

the main reasons for this fact. Thus, simplifications of the Bethe-Salpeter equation

in form of some three-dimensional reductions are highly desirable. The most popu-

lar among all proposals is known as instantaneous Bethe-Salpeter equation [7]. Its

formulation is based on assuming all bound state constituents to interact instan-

taneously and to propagate as free particles. The specific relation between Bethe-

Salpeter equations in the Minkowski space and Schrödinger equations in Euclid

space was proposed by Salpeter who used the so called instantaneous approxima-

tion. The latter assumption leads to hard to implement effects such as spontaneous

chiral-symmetry breaking, which is crucial for QCD. That is one of the reasons why

we extend this free-propagator assumption to the exact-propagator case as we will

see later on.

2.2.2 The Instantaneous Interaction and Free Propagator

Approximation

In order to circumvent its complexity and problems of interpretation of (all) its solu-

tions, Salpeter [7] proposed a simplification of the Bethe-Salpeter equation by using

a three-dimensional reduction. Through this method, the Bethe-Salpeter equation is

reduced to the so called instantaneous Bethe-Salpeter equation, which is frequently

employed to study the phenomenology of mesons and even baryons as bound states

of quarks [38, 39].

The Bethe-Salpeter equation reduces to instantaneous Bethe-Salpeter equation

(Salpeter equation) under two assumptions [7]:

• All interactions between the constituents of the bound state are instantaneous

in the center-of-momentum frame of the bound state; the corresponding momentum

P = (M,0);
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• Within the bound state, every constituent propagates as a free particle with

some effective mass.

The so called instantaneous approximations have been adopted widely in various

applications of Bethe-Salpeter equations. With the aid of these approximations, one

can simplify the calculation and express the Salpeter equation just in terms of the

Salpeter amplitude Φ(p) instead of Φ(p).

2.2.3 Formulation of the Salpeter Equation

With these two assumptions stated above, the integration of the interaction ker-

nel over the momentum coordinate produces the so called Salpeter equation. For

fermion-antifermion bound states the Salpeter equation [7] reads

Φ(p) =
∫ d3p′

(2π)3

[
Λ+

1 (p1)γ0[V (p,p0)Φ(p0)]γ0Λ
−
2 (p2)

M − E1(p1)− E2(p2)

−Λ−1 (p1)γ0[V (p,p0)Φ(p0)]γ0Λ
+
2 (p2)

M + E1(p1) + E2(p2)

]
. (2.1)

Here we use the Dirac Hamiltonian

Hi(p) = γ0 [γ · p + mi(p)] , i = 1, 2 (2.2)

and the one-particle energy

Ei(p) =
√

p2 + m2
i (p) , i = 1, 2, (2.3)

where mi(p) is the mass of constituent of bound state. The Hamiltonian satisfies

H2
i (p) = E2

i (p) and Hi(p)γ0 = γ0Hi(−p). The energy projection operators for

positive or negative energy of particle i = 1, 2 are given by

Λ±i (p) =
Ei(p)±Hi(p)

2 Ei(p)
, i = 1, 2 (2.4)

which satisfies projection-operator relations

Λ±i (p)Λ∓i (p) = 0, Λ+
i (p) + Λ−i (p) = 1, (2.5)

Λ±i (p)Λ±i (p) = Λ±i (p), Λ±i (p)γ0 = γ0Λ
±
i (−p). (2.6)
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2.2.4 Interaction Kernel

In the following we introduce the interaction kernel used in the Salpeter equation,

i.e., the confining interaction.

Although lots of efforts over the last several decades have been done, the spin

structure of the confining interaction is still not well established theoretically (at

least for light quarks). That is why various phenomenological spin structures are

considered for the calculations of the mass spectrum of the bound state in the

framework of Bethe-Salpeter equation. In fact, only in the static limit of heavy

quarks the confining interaction is understood. Within this limit the static potential

between heavy quarks takes the linear form [18]

Vc(r) = ac + bcr, (2.7)

where ac denotes the confinement offset, bc is the slope of the potential. For the

light quarks there is still no extension of the confining potential beyond the static

limit.

Concerning the interaction kernels of the Bethe-Salpeter equation, one should

choose some special Lorentz spin structures Γ⊗Γ for the confining interaction. Spin

structures used in this work are constructed by the following matrices:

{I, γ0, γµ, γ5}.

Using these matrices one can build up several Lorentz spin structures as the

following:

Lorentz-scalar structure Γ⊗ Γ = 1⊗ 1

Time-component Lorentz-vector structure Γ⊗ Γ = γ0 ⊗ γ0

Lorentz-vector structure Γ⊗ Γ = γµ ⊗ γµ = γ0 ⊗ γ0 − γ ⊗ γ

Lorentz-pseudoscalar structure Γ⊗ Γ = γ5 ⊗ γ5

Böhm-Joos-Krammer (BJK) structure [25, 26] Γ⊗Γ = 1
2
(γµ⊗γµ+γ5⊗γ5−1⊗1).

The parameters of confinement potential ac, bc and the different Lorentz struc-

tures influence the properties of bound states strongly as we will see later on. In the

present work, in order to compare the calculational results with previous literature,

we will appropriately choose the same parameter values used in Olsson’s paper [17].
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2.3 Converting Salpeter Equation to Matrix Equa-

tion

In order to overcome the difficulty of calculation, Lagaë proposed a method to deal

with the Bethe-Salpeter equation [8, 9]. By expanding the Salpeter amplitude into

a suitable set of basis matrices, the instantaneous Bethe-Salpeter equation can be

transformed to a set of coupled equations for radial wave function [8]. In our work

we adopt the generalized Laguerre basis to expand the Salpeter equation. In the

following we briefly describe the basis matrices and transformation process.

2.3.1 Eigenvalue Equation

Following Lagaë [8] and Olsson [17]’s approach for pseudoscalar bound state, we use

the Salpeter amplitude

Φ(p) = N
[
SφΦ1(p) + CθΦ2(p)γ0 − CφΦ1(p)p̂γ − SθΦ2(p)p̂γγ0

]
γ0γ5, (2.8)

where N is the normalization factor, Φ1(p) and Φ2(p) are components of the Salpeter

amplitude.

Comparing with the Salpeter wave function used in Lagaë’s formalism [8], we

make a substitution Φ(p) → Φ(p)γ0 as that used in Olsson’s work [17]. Therefore

the corresponding eigenvalue equation reads

H[Φ(p)γ0] = M [Φ(p)γ0]. (2.9)

Here M is the mass eigenvalue.

In order to solve the Salpeter equation, from Eq. (2.1) one can rewrite Eq. (2.9)

as an eigenvalue equation

M [Φ(p)γ0] = H1(p1)[Φ(p)γ0]− [Φ(p)γ0]H2(p2)

+
∫ d3p′

(2π)3

[
Λ+

1 (p1)γ0[V (p, p0)Φ(p0)]Λ−2 (p2)

−Λ−1 (p1)γ0[V (p,p0)Φ(p0)]Λ+
2 (p2)

]
. (2.10)

By multiplying Λ±1 (p1) from the left and Λ±2 (p2) from the right, we find that

half of the components of the instantaneous Bethe-Salpeter equation Φ(p) vanishes:

Λ+
1 (p1)Φ(p)Λ+

2 (p2) = Λ−1 (p1)Φ(p)Λ−2 (p2) = 0. (2.11)
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That is,

Λ+
1 (p1)Φ(p)Λ+

2 (p2)− Λ−1 (p1)Φ(p)Λ−2 (p2)

=
1

4E1(p1)E2(p2)

{
[E1(p1) + H1(p1)]Φ(p)[E2(p2) + H2(p2)]

−[E1(p1)−H1(p1)]Φ(p)[E2(p2)−H2(p2)]
}

=
1

4E1(p1)E2(p2)
[H1(p1)Φ(p)E2(p2) + E1(p1)Φ(p)H2(p2)]

= 0. (2.12)

From the above equation on can easily find that the Salpeter amplitude Φ(p)

satisfies

H1(p1)

E1(p1)
Φ(p) + Φ(p)

H2(p2)

E2(p2)
= 0. (2.13)

For a fermion-antifermion system in the rest frame, the instantaneous Bethe-

Salpeter equation involves only the relative momentum p = p1 = −p2. Therefore

Eq. (2.10) becomes

M [Φ(p)γ0] = H(p)[Φ(p)γ0]− [Φ(p)γ0]H(−p)

+
∫ d3p′

(2π)3

[
Λ+(p)γ0[V (p,p0)Φ(p0)]Λ−(−p)

−Λ−(p)γ0[V (p, p0)Φ(p0)]Λ+(−p)
]
. (2.14)

The formal product of V Φ in the above eigenvalue equations represents the sum

of potentials Vi and bilinear covariants:

V (p,p0)Φ(p0) −→ ∑

i

Vi(p, p0)ΓiΦ(p0)Γi . (2.15)

Therefore the eigenvalue equation (2.10) becomes

M [Φ(p)γ0] = H1(p1)[Φ(p)γ0]− [Φ(p)γ0]H2(p2)

+
∑

i

∫ d3p′

(2π)3
Vi(p, p0)

[
Λ+

1 (p1)γ0ΓiΦ(p0)ΓiΛ
−
2 (p2)

−Λ−1 (p1)γ0ΓiΦ(p0)ΓiΛ
+
2 (p2)

]
, (2.16)

where the Γi’s are Dirac matrices.

This eigenvalue equation can be numerically calculated by transforming it to a

set of matrix equations as we will see in the following.
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2.3.2 The Generalized Laguerre Basis

We choose the basis states for the components of the Salpeter amplitude by the

configuration-space representation [23]

φ
(l)
i (r) =

√√√√ (2µ)2l+3i!

Γ(2l + i + 3)
rlexp(−µr)L

(2l+2)
i (2µr), i = 0, 1, 2, ... , (2.17)

where the generalized Laguerre polynomial L
(l)
i (x) is given by [74]

L
(γ)
i (x) =

i∑

t=0

(−1)t


 i + γ

i− t


 xt

t!
, i = 0, 1, 2, ... , (2.18)

which satisfies the orthonormal-relation [74]

∫ ∞

0
dxxγexp(−x)L

(γ)
i (x)L

(γ)
j (x) =

Γ(γ + i + 1)

i!
δij, i, j = 0, 1, 2, ... . (2.19)

From this choice, the Salpeter amplitude will be expanded on the basis φ
(l)
i . More

details can be found in appendix B.

2.3.3 Salpeter Eigenvalue Equations for Various Kernels

In the instantaneous Bethe-Salpeter equation, various interaction kernels have been

investigated in recent years. In this chapter we focus on Salpeter equation with

time-component Lorentz-vector structure γ0 ⊗ γ0 [17]. The calculation processes of

Salpeter equation with other interaction kernels are similar.

As used in Ref. [8], considering constituent quarks of masses mi, we are employ-

ing the following definition

Sθ = sinθ =

√
E1E2 − p2 −m1m2

2E1E2

, Cθ = cosθ =

√
E1E2 + p2 + m1m2

2E1E2

, (2.20)

Sφ = sinφ =

√
E1E2 − p2 + m1m2

2E1E2

, Cφ = cosφ =

√
E1E2 + p2 −m1m2

2E1E2

. (2.21)

Here, to simplify the description, we have made substitutions:

Ei(p) → Ei, i = 1, 2, (2.22)

Sθ(p) → Sθ, Sθ(p
′) → S ′θ, Cθ(p) → Cθ, Cθ(p

′) → C ′
θ.
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Starting from Eq. (2.16), for the kernel of the time-component Lorentz-vector

structure Γ1 ⊗ Γ2 = γ0 ⊗ γ0, we transform the Salpeter eigenvalue equation to a set

of coupled equations by two steps as shown in the following.

The first step: multiply γ5 from the right side for both sides of Eq. (2.16) and

calculate the corresponding trace.

The trace of the left side of Eq. (2.16) multiplying with γ5 is:

Left = tr
{
MΦ(p)γ0γ5

}

= M tr
{[

SφΦ1(p) + CθΦ2(p)γ0 − CφΦ1(p)p̂γ − SθΦ2(p)p̂γγ0

]
γ0γ5γ0γ5

}

= −4MSφΦ1(p). (2.23)

The trace of the right side of Eq. (2.16) multiplying with γ5 involves two parts:

Right = tr
{

H1(p1)Φ(p)γ0γ5 − Φ(p)γ0H2(p2)γ5︸ ︷︷ ︸
kinetic part

}

+tr
{
[Λ+

1 (p1)γ0γ0Φ(p′)γ0Λ
−
2 (p2)γ5 − Λ−1 (p1)γ0γ0Φ(p′)γ0Λ

+
2 (p2)γ5︸ ︷︷ ︸

potential part

]
}
.

(2.24)

For the kinetic part :

tr
{
H1(p1)Φ(p)γ0γ5 − Φ(p)γ0H2(p2)γ5

}

= tr
{
γ0(γ · p1 + m1)[SφΦ1(p) + CθΦ2(p)γ0 − CφΦ1(p)p̂γ − SθΦ2(p)p̂γγ0]γ0γ5γ0γ5

−[SφΦ1(p) + CθΦ2(p)γ0 − CφΦ1(p)p̂γ − SθΦ2(p)p̂γγ0]γ0γ5γ0γ0(γ · p2 + m2)γ5

}

= −tr
{
(m1 + m2)CθΦ2(p)

}

= −4(m1 + m2)CθΦ2(p). (2.25)

For the potential part :

tr
{
[Λ+

1 (p1)Φ(p′)γ0Λ
−
2 (p2)γ5 − Λ−1 (p1)Φ(p′)γ0Λ

+
2 (p2)γ5]

}

= tr
{E1(p1) + H1(p1)

2E1(p1)
Φ(p′)γ0

E2(p2)−H2(p2)

2E2(p2)
γ5
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−E1(p1)−H1(p1)

2E1(p1)
Φ(p′)γ0

E2(p2) + H2(p2)

2E2(p2)
γ5

}

= −4

[
Sθ(p

′)Φ2(p
′)p

E2(p2)− E1(p1)

2E1(p1)E2(p2)
+ Cθ(p

′)Φ2(p
′)

m1E2(p2) + m2E1(p1)

2E1(p1)E2(p2)

]

= −4
[
Sθ(p

′)Sθ(p) + Cθ(p
′)Cθ(p)

]
Sφ(p)Φ2(p

′). (2.26)

In the last step we have used the relation

SθSφ = p
E2 − E1

2E1E2

, CθSφ =
m1E2 + m2E1

2E1E2

(see appendix C).

Combining the Eq. (2.23), (2.25) and (2.26), the Salpeter eigenvalue equation (2.16)

with the kernel of time-component Lorentz-vector γ0 ⊗ γ0 is finally reformed as

MΦ1(p) =
[
E1(p1) + E2(p2)

]
Φ2(p)

+
∫ d3p′

(2π)3
V (p,p′)

[
Sθ(p

′)Sθ(p) + Cθ(p
′)Cθ(p)

]
Φ2(p

′). (2.27)

Since

Φi(p) = Φi(p)Yl,m(p̂) (2.28)

and the integration of Yl,m(p̂) satisfies

∫
dΩpY

∗
l,m(p̂)Yl′,m′(p̂) = δll′δmm′ , (2.29)

by multiplying both sides of the Eq. (2.27) with Y ∗
l′,m′(p̂) and integrating over

∫
dΩp

one obtains

M
∫

dΩpΦ1(p)Y ∗
l′,m′(p̂)Yl,m(p̂)

=
∫

dΩp(E1(p1) + E2(p2))Φ2(p)Y ∗
l′,m′(p̂)Yl,m(p̂)

+
∫ d3p′

(2π)3

∫
dΩpV (p,p′)

[
Sθ(p

′)Sθ(p) + Cθ(p
′)Cθ(p)

]
Φ2(p)Y ∗

l′,m′(p̂)Yl,m(p̂).

(2.30)

With

∫
d3p′ →

∫ ∞

0
dp′p′2

∫
dΩ′

p (2.31)
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and

exp{ip · r} = 4π
∞∑

l=0

l∑

m=−l

iljl(pr)Yl,m(p̂)Y ∗
l,m(r̂)

exp{−ip′ · r} = 4π
∞∑

l′=0

l′∑

m=−l′
(−i)l′jl′(p

′r)Y ∗
l′,m′(p̂

′)Yl′,m′(r̂), (2.32)

For the radial Salpeter function, l = 0, the integration term

V (p− p′) =
∫

d3rV (r) exp{i(p− p′) · r} (2.33)

becomes

16π2
∫

drr2V (r)j0(pr)j0(p
′r). (2.34)

Define (see [8])

VL(p, p′) = 8π
∫ ∞

0
drr2V (r)jL(pr)jL(p′r), (2.35)

the term (2.34) becomes

16π2
∫

dr r2V (r)j0(pr)j0(p
′r) = 2πV0(p, p

′). (2.36)

Further analysis shows that [8]
∫

dΩp

∫
dΩ′

p′V (p− p′)p · p′Y ∗
0,0(p̂)Y0,0(p̂) = 2πpp′V1(p, p

′)

∫
dΩp

∫
dΩ′

p′V (p− p′)Y ∗
0,0(p̂)Y0,0(p̂) = 2πV0(p, p

′). (2.37)

Using the above results from (2.28) to (2.37), the eigenvalue equation (2.27)

associated with the Salpeter component Φ1(p) becomes

MΦ1(p) = [E1 + E2]Φ2(p) +
∫ ∞

0

dp′p′2

(2π)2
[CθV0(p, p

′)C ′
θ + SθV1(p, p

′)S ′θ]Φ2(p
′).(2.38)

With the substitutions

Φi(p) → Φi, Φi(p
′) → Φ′

i, i = 0, 1,

VL(p, p′) → VL, L = 0, 1, (2.39)

equation (2.27) finally reads

MΦ1 = [E1 + E2]Φ2 +
∫ ∞

0

dp′p′2

(2π)2
(CθV0C

′
θ + SθV1S

′
θ)Φ

′
2. (2.40)
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The second step: multiply with γ5γ0 from the right side for both sides of Eq.

(2.16) and calculate the corresponding trace.

Using the same method stated in the first step, the eigenvalue Eq. (2.16) with

kernels of time-component Lorentz-vector γ0 ⊗ γ0 can be transformed to

MΦ2(p) =
[
E1(p1) + E2(p2)

]
Φ1(p)

+
∫ d3p′

(2π)3
V (p− p′)

[
Sφ(p

′)Sφ(p) + Cφ(p
′)Cφ(p)

]
Φ1(p

′).(2.41)

Finally, with the results from (2.28) to (2.37) and substitutions (2.39) we obtain

another eigenvalue equation associated with the Salpeter component Φ2(p)

MΦ2(p) = [E1 + E2]Φ1(p) +
∫ ∞

0

dp′p′2

(2π)2
(SφV0S

′
φ + CφV1C

′
φ)Φ1(p

′). (2.42)

By using the same procedure, the Salpeter eigenvalue equation for other kernels

of interaction Lorentz structures can also be obtained.

For Lorentz-scalar interaction kernel 1⊗ 1 [17],

MΦ1 = [E1 + E2]Φ2 +
∫ ∞

0

dp′p′2

(2π)2
(−CθV0C

′
θ + SθV1S

′
θ)Φ

′
2, (2.43)

MΦ2 = [E1 + E2]Φ1 +
∫ ∞

0

dp′p′2

(2π)2
(−SφV0S

′
φ + CφV1C

′
φ)Φ

′
1. (2.44)

For Lorentz-vector interaction kernel γµ ⊗ γµ [17],

MΦ1 = [E1 + E2]Φ2 +
∫ ∞

0

dp′p′2

(2π)2
4CθV0C

′
θΦ

′
2, (2.45)

MΦ2 = [E1 + E2]Φ1 +
∫ ∞

0

dp′p′2

(2π)2
(−2SφV0S

′
φ)Φ

′
1. (2.46)

For Lorentz-pseudoscalar interaction kernel γ5 ⊗ γ5,

MΦ1 = [E1 + E2]Φ2 +
∫ ∞

0

dp′p′2

(2π)2
(−CθV0C

′
θ)Φ

′
2, (2.47)

MΦ2 = [E1 + E2]Φ1 +
∫ ∞

0

dp′p′2

(2π)2
(SφV0S

′
φ + CφV1C

′
φ)Φ

′
1. (2.48)

For Böhm-Joos-Krammer (BJK) structure [25, 26]
1

2
(γµ⊗ γµ + γ5⊗ γ5− 1⊗ 1),

MΦ1 = [E1 + E2]Φ2 +
∫ ∞

0

dp′p′2

(2π)2
(2CθV0C

′
θ)Φ

′
2, (2.49)

MΦ2 = [E1 + E2]Φ1. (2.50)
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Now we write all of the above Salpeter eigenvalue equations with different Lorentz

structures as two coupled equations by introducing parameters εi, i = 1, 2, 3, 4,

MΦ1 = [E1 + E2]Φ2 +
∫ ∞

0

dp′p′2

(2π)2
(ε1CθV0C

′
θ + ε2SθV1S

′
θ)Φ

′
2, (2.51)

MΦ2 = [E1 + E2]Φ1 +
∫ ∞

0

dp′p′2

(2π)2
(ε3SφV0S

′
φ + ε4CφV1C

′
φ)Φ

′
1. (2.52)

In these two coupled equations we need to handle two functions. By inserting

one to another, we obtain an equation for M2 for just one unknown function.

The parameters εi take the following values:

m1 = m2 1⊗ 1 γ0 ⊗ γ0 γµ ⊗ γµ γ5 ⊗ γ5 BJK

ε1 −1 1 4 −1 2

ε2 0 1 0 0 0

ε3 −1 1 −2 1 0

ε4 1 1 0 1 0

Table 2.1: Parameter εi in the Salpeter equations (2.51) and (2.52).

2.4 Reduced Salpeter Equation

Although the instantaneous Bethe-Salpeter equation has been widely used as the

bound state equation for mesons for many years, numerical and analytical analysis

point out it has negative energy solutions and includes solutions with zero norm [8].

However, both of these solutions do not exist in the so called reduced Salpeter equa-

tion. The reduced Salpeter equation has stable solutions for more kernel types than

does the full Salpeter equation. For example, in the full Salpeter equation there are

no stable solutions with pure Lorentz-scalar structure interaction kernel. But the

reduced Salpeter equation has well-defined stable solutions with scalar confinement

kernel. In addition, the reduced Salpeter equation can be transformed to a single

eigenvalue equation with one Salpeter component amplitude which is easier to han-

dle. From the practical and physical point of view, the reduced Salpeter equation is

worthy to study.
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2.4.1 Reduction Method

The reduced Salpeter equation has been studied for relativistic bound states in a

number of papers [12, 16, 8, 9, 18, 81, 82, 95, 96]. A simplified version for the

instantaneous Bethe-Salpeter equation known as the reduced Salpeter equation has

been proposed by Lagaë [8]. This simplification process only involves radial wave

functions. The final reduced Salpeter equation becomes identical to the full Salpeter

equation if the constituent masses in the full Salpeter equation in the bound states

is infinite. Compared with the full Salpeter equation, the reduced Salpeter equation

is of a standard eigenvalue type equation whose solutions are algebraically simpler

than those of the full Salpeter equation. In the following, we depict the main points

of this simplification approach for the reduced Salpeter equation.

Remember the instantaneous Bethe-Salpeter equation, or the full Salpeter equa-

tion (2.1) mentioned in previous sections

Φ(p) =
∫ d3p′

(2π)3

[
Λ+

1 (p1)γ0[V (p,p0)Φ(p0)]γ0Λ
−
2 (p2)

M − E1(p1)− E2(p2)

−Λ−1 (p1)γ0[V (p,p0)Φ(p0)]γ0Λ
+
2 (p2)

M + E1(p1) + E2(p2)

]
. (2.53)

For the heavy-quark systems

M − E1 − E2

M + E1 + E2

¿ 1, (2.54)

by dropping the second term of the above equation (2.53) and in the center-of-mass

frame of the bound states using the relations p = p1 = −p2, we obtain the so called

reduced Salpeter equation:

Φ(p) =
∫ d3p′

(2π)3

[
Λ+

1 (p)γ0[V (p,p0)Φ(p0)]γ0Λ
−
2 (−p)

M − E1(p)− E2(p)

]
. (2.55)

With the same handling procedure as for the full Salpeter equation, the correspond-

ing eigenvalue equation of Eq. (2.55) is obtained

MΦ(p) = (E1 + E2)Φ(p) +
∫ d3p′

(2π)3
Λ+

1 (p)γ0[V (p,p0)Φ(p0)]γ0Λ
−
2 (−p). (2.56)

According to Eq. (2.9), (2.16) and (2.55), the reduced Salpeter eigenvalue equa-

tion reads

MΦ(p)γ0 = (E1 + E2)Φ(p)γ0 +
∑

i

∫ d3p′

(2π)3
Vi(p,p0)Λ+

1 (p)γ0ΓiΦ(p′)ΓiΛ
−
2 (−p).

(2.57)
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The reduced Salpeter equation has some advantages comparing with the full

equation. As stated above, the full Salpeter equation has negative energy solutions

and solutions with zero norm, but the reduced Salpeter equation does not have these

types of solution. Olsson, et al. [17] have investigated the validity of the reduced

Salpeter equation. The reduced Salpeter equation has stable solutions for more

types of kernels than does the full equation.

For the fermion-antifermion bound states, with |p1| = |p2| = p ≡ |p| and

m1(p1) = m2(p2) = m, E1(p1) = E2(p2) ≡ E(p) =
√

p2 + m2, in the center-of-

mass frame the full Salpeter equation satisfies the constraint (see Eq. (2.13))

H(p)

E(p)
Φ(p) + Φ(p)

H(p)

E(p)
= 0, (2.58)

and the reduced Salpeter equation satisfies the contraints

H(p)Φ(p) = E(p)Φ(p), (2.59)

Φ(−p)H(p) = −E(p)Φ(p). (2.60)

Eq. (2.59) can be rewritten as

H(p)Φ(p)− E(p)Φ(p)

= [γ0(γ · p + m)− E(p)]
(

m

E(p)
Φ1(p) + Φ2(p)γ0 − p

E(p)
Φ1(p)p̂γ

)
γ0γ5

= γ0γ · pγ5Φ2(p)− γ · γγ5
p2

E(p)
Φ1(p) + γ5

m2

E(p)
Φ1(p) + γ0γ5mΦ2(p)

−γ0γ5mΦ1(p)− γ5EΦ2(p)− γ0γ · pγ5Φ1(p)

= [γ0γ · pγ5 + γ0γ5m− γ5E(p)][Φ2(p)− Φ1(p)]

= 0. (2.61)

This leads to

Φ1(p) = Φ2(p).

In the above calculation we have used the anticommutation relation {γi, γj} = −2δij.
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Considering the constraints discussed above, the norm of the reduced Salpeter

amplitude [15, 97, 98]

‖ Φ ‖2=
∫ d3p′

(2π)3
Tr[Φ†(p)Φ(p)], (2.62)

can also be written as the normalization of bound states [18]

‖ Φ ‖2=
1

(2π)3
〈B|B〉 (2.63)

with 〈B|B〉 = 1.

With the reduced Salpeter equation (2.57), one obtains

M ‖ Φ ‖2 =
∫ d3p

(2π)3
[E1 + E2]Tr[Φ†(p)Φ(p)]

+
∑

i

∫ d3p

(2π)3

∫ d3p′

(2π)3
Vi(p− p0)Tr[Φ†(p)γ0ΓiΦ

′(p)Γiγ0].(2.64)

We will discuss the properties of the reduced Salpeter equation in the following

sections.

2.4.2 Reduced Salpeter Eigenvalue Equations for Various

Kernels

By using the same approach used to the full Salpeter equation, we can obtain the

eigenvalue equations for the reduced Salpeter equation with various Lorentz struc-

ture interaction kernels.

For interactions of Lorentz-scalar Dirac structure, Γ⊗ Γ = 1⊗ 1 [18],

MΦ = [E1 + E2]Φ +
1

2

∫ ∞

0

dp′p′2

(2π)2
(−V0 − SφV0S

′
φ + CφV1C

′
φ)Φ

′, (2.65)

for interactions of time-component Lorentz-vector Dirac structure, Γ⊗ Γ = γ0 ⊗ γ0

[18],

MΦ = [E1 + E2]Φ +
1

2

∫ ∞

0

dp′p′2

(2π)2
(V0 + SφV0S

′
φ + CφV1C

′
φ)Φ

′, (2.66)

for interactions of Lorentz-vector Dirac structure, Γ⊗ Γ = γµ ⊗ γµ [18],

MΦ = [E1 + E2]Φ +
∫ ∞

0

dp′p′2

(2π)2
(2V0 − SφV0S

′
φ)Φ

′, (2.67)

20



for interactions of Lorentz-pseudoscalar Dirac structure, Γ⊗ Γ = γ5 ⊗ γ5,

MΦ = [E1 + E2]Φ +
1

2

∫ ∞

0

dp′p′2

(2π)2

[
− V0 + SφV0S

′
φ + CφV1C

′
φ

]
Φ′, (2.68)

and, for interactions of BJK Dirac structure [25, 26], Γ⊗Γ = 1
2
(γµ⊗γµ+γ5⊗γ5−1⊗1),

MΦ = [E1 + E2]Φ +
∫ ∞

0

dp′p′2

(2π)2
V0Φ

′. (2.69)

We can write all of these equations with various Lorentz structures as one equa-

tion by introducing the parameters ηi, i = 0, 1, 2,

MΦ = [E1 + E2]Φ +
1

2

∫ ∞

0

dp′p′2

(2π)2
(η1V0 + η2SφV0S

′
φ + η3CφV1C

′
φ)Φ

′, (2.70)

the parameters take values listed in the following table:

m1 = m2 1⊗ 1 γ0 ⊗ γ0 γµ ⊗ γµ γ5 ⊗ γ5 BJK

η1 −1 1 4 −1 2

η2 −1 1 −2 1 0

η3 1 1 0 1 0

Table 2.2: Parameters ηi in the reduced Salpeter equation (2.70).

If the bound state includes two constituents with same masses, the reduced

Salpeter equation will become much more simple.

2.5 Introducing the Exact Propagator for Salpeter

Equation

2.5.1 Exact Propagator

The Salpeter equation is related to two assumptions, instantaneous interaction and

free propagator. But the latter assumption gives rise to some conceptual prob-

lems as a light quark placed in a static chromoelectric field which polarizes the

vacuum effectively can become a dressed constituent quark. Recently an exact-

propagator instantaneous Bethe-Salpeter equation has been proposed by [14]. There
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the fermion propagator Si(p) is defined by two (Lorentz-scalar) functions, the quark

wave-function renormalization function Zi(p
2) and mass function Mi(p),

Si(p) =
i Zi(p

2)

6p−Mi(p2) + i ε
, 6p ≡ pµ γµ . (2.71)

To generalize the Salpeter equation with exact propagator we have to assume

the functions Mi(p
2) and Zi(p

2) to depend only on the spatial components p of the

momentum p. That allows to substitute Mi(p
2) by Mi(p

2) and Zi(p
2) by Zi(p

2).

The energy E(p) =
√

M2
i (p2) + p2.

2.5.2 Exact Propagator Instantaneous Bethe-Salpeter For-

malism

In this section, we briefly review the exact-propagator instantaneous Bethe-Salpeter

formalism.

With the constraints Λ+
i (p) + Λ−i (p) = 1 and Λ±i (p)γ0 = γ0Λ

±
i (−p) the exact

propagator Si(p) can be rewritten as [14, 94]

Si(p) = i Zi(p
2)

(
Λ+

i (p)

p0 − Ei(p) + i ε
+

Λ−i (p)

p0 + Ei(p)− i ε

)
γ0. (2.72)

By inserting the exact propagator Si(p) into the integral of the product of fermion

propagators in the Bethe-Salpeter equation (2.53) and employing the residue theo-

rem, we finally arrive at the exact propagator instantaneous Bethe-Salpeter formal-

ism for fermion-antifermion bound states:

Φ(p) = Z1(p
2
1) Z2(p

2
2)

∫ d3p′

(2π)3

[
Λ+

1 (p1)γ0[V (p,p0)Φ(p0)]γ0Λ
−
2 (p2)

M − E1(p1)− E2(p2)

−Λ−1 (p1)γ0[V (p,p0)Φ(p0)]γ0Λ
+
2 (p2)

M + E1(p1) + E2(p2)

]
. (2.73)

2.5.3 Exact Propagator Reduced Salpeter Equation

Since the reduced Salpeter equation just has one Salpeter component, it is easier to

extend the reduced Salpeter equation towards the exact-propagator case. Adopting

the same fermion propagator Si(p) formula mentioned above, the reduced Salpeter

equation with exact propagator simply reads

Φ(p) = Z2(p2)
∫ d3p′

(2π)3

Λ+
1 (p)γ0[V (p,p0)Φ(p0)]γ0Λ

−
2 (−p)

M − E1 − E2

. (2.74)
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The corresponding eigenvalue equation is

MΦ(p) =
[
E1(p) + E2(p)

]
Φ(p)

+ Z2(p2)
∫ d3p′

(2π)3
Λ+

1 (p)γ0[V (p,p0)Φ(p0)]γ0Λ
−
2 (−p). (2.75)

2.5.4 Exact Propagator Reduced Salpeter Eigenvalue Equa-

tions for Various Kernels

Following the same way, we can deduce the exact-propagator reduced Salpeter eigen-

value equations for various interaction kernels acting on the reduced Salpeter ampli-

tude. Here the two constituents of bound state have different mass value m1 6= m2.

To simplify the description, we use the substitutions Z2 = Z2(p2), Ei = Ei(p) =√
M2

i (p2) + p2, Φ = Φ(p), Φ′ = Φ(p′).

For interactions of Lorentz-scalar Dirac structure Γ⊗ Γ = 1⊗ 1 ,

MΦ = [E1 + E2]Φ +
1

2
Z2

∫ ∞

0

dp′p′2

(2π)2
(−V0 − SφV0S

′
φ + CφV1C

′
φ)Φ

′, (2.76)

for interactions of time-component Lorentz-vector Dirac structure Γ⊗ Γ = γ0 ⊗ γ0,

MΦ = [E1 + E2]Φ +
1

2
Z2

∫ ∞

0

dp′p′2

(2π)2
(V0 + SφV0S

′
φ − CφV1C

′
φ)Φ

′, (2.77)

for interactions of Lorentz-vector Dirac structure Γ⊗ Γ = γµ ⊗ γµ,

MΦ = [E1 + E2]Φ + Z2
∫ ∞

0

dp′p′2

(2π)2
(2V0 − SφV0S

′
φ)V0Φ

′, (2.78)

for interactions of Lorentz-pseudoscalar Dirac structure Γ⊗ Γ = γ5 ⊗ γ5,

MΦ = [E1 + E2]Φ +
1

2
Z2

∫ ∞

0

dp′p′2

(2π)2

[
− V0 + SφV0S

′
φ + CφV1C

′
φ

]
Φ′, (2.79)

and, for interactions of BJK Dirac structure [25, 26] Γ⊗Γ = 1
2
(γµ⊗γµ+γ5⊗γ5−1⊗1),

MΦ = [E1 + E2]Φ + Z2
∫ ∞

0

dp′p′2

(2π)2
V0Φ

′. (2.80)

We can also write all of these equations with various kernels of Lorentz interaction

structure using one equation by introducing the parameters ηi, i = 0, 1, 2

MΦ = [E1 + E2]Φ +
1

2
Z2

∫ ∞

0

dp′p′2

(2π)2
(η1V0 + η2SφV0S

′
φ + η3CφV1C

′
φ)Φ

′, (2.81)

the parameters take that values listed in table 2.2.
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2.6 Summary and Conclusion

In this chapter we have briefly reviewed the properties of Salpeter equation and

discussed the interaction kernels with various Lorentz structures. Following Lagaë’s

method, by introducing a convenient set of basis and expanding the Salpeter am-

plitude on it, the Salpeter equation is transformed to a set of coupled eigenvalue

equations. The form of Salpeter eigenvalue equation with time-component vector

Lorentz structure interaction kernel γ0⊗γ0 is obtained and the eigenvalue equations

for other Lorentz structures 1 ⊗ 1, γµ ⊗ γµ, γ5 ⊗ γ5,
1
2
(γµ ⊗ γµ + γ5 ⊗ γ5 − 1 ⊗ 1)

have also been given in this chapter. Although the full Salpeter equation has been

widely used and proved effective for some cases, the shortcomings are evident, for

example it has negative energy solutions [17, 9]. In addition, the solutions are un-

stable in the case of some interaction kernels. That is partly the reason that the

simplification schemes are developed to reduce the Salpeter equation. The reduced

Salpeter equation evades some difficulties lying in the full one and can be handled

more conveniently.

The exact quark propagator has been introduced to the Salpeter equation and

reduced Salpeter equation for the quark-antiquark bound state. The eigenvalue

equations for Salpeter equation and reduced Salpeter equation with exact quark

propagator have also been obtained for the further discussion in next chapter.
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Chapter 3

Salpeter Equation with Exact

Propagator

Recently the instantaneous Bethe-Salpeter equation with exact quark propagator

has been discussed in Refs. [14, 94]. In this chapter, we review the assumption

of the exact quark propagator function for the instantaneous Bethe-Salpeter equa-

tion. By analyzing the properties of the exact quark propagator function and the

corresponding exact-propagator instantaneous Bethe-Salpeter equation and exact-

propagator reduced Salpeter equation, the influence induced by the exact quark

propagator on pseudoscalar bound state will be discussed.

3.1 Introduction

As stated in the previous chapter, the instantaneous Bethe-Salpeter equation is

related to the free propagator assumption. However, the assumption of free propa-

gators for the bound-state constituents faces conceptual problem [27, 28, 31, 32, 33,

34, 38]. It is still questionable whether the free propagator can be applied to light

quarks. In addition, as stated in Ref. [14], in quantum chromodynamics, the simul-

taneous free propagator assumptions for the bound-state constituents and confining

interaction can not be consistent. This suggests us to investigate the problem with

corresponding exact propagators [48, 51]. This chapter is mainly to study the influ-

ences of introducing exact quark propagators in the instantaneous Bethe-Salpeter

equation.

This chapter is organized as follows. Sec. 3.2 presents the review of the quark

propagator function from the Dyson-Schwinger equation and the analysis of the
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behavior of quark propagator function. The exact-propagator instantaneous Bethe-

Salpeter equation for pseudoscalar bound state is built up and transformed to a

matrix problem in Sec. 3.3. Numerical solutions for the mass eigenvalue of the

radial excited states are also obtained there. In Sec. 3.4, the exact-propagator

instantaneous Bethe-Salpeter equation with various Lorentz structure interaction

kernels is used to analyze the pseudoscalar bound state and the results of which are

compared with those of the free-propagator Salpeter equation. Moreover, the plots

of the radial wave functions of the pseudoscalar bound state obtained by solving

both free-propagator Salpeter equation and exact-propagator instantaneous Bethe-

Salpeter equation are presented. Sec. 3.5 is the summary of this chapter.

3.2 Quark Propagator from Dyson-Schwinger Equa-

tion

The Dyson-Schwinger equation (DSE) presents a nonperturbative method to study

hadrons as bound states of quarks and the confinement of quarks and gluons within

QCD. The simplest Dyson-Schwinger equation is the so called gap equation [50]

S−1(p) = Z2(ζ
2, Λ2)(iγ · p + mbare) + Z1(ζ

2, Λ2)
∫ d4q

(2π)4
g2Dµν(p− q)

λa

2
γµS(q)Γa

ν(q; p)

(3.1)

where Dµν(p−q) is the dressed propagator, Γa
ν(q; p) is the dressed quark-gluon vertex,

mbare is the bare mass of current quark, Λ is the regulation mass scale. Z1,2(ζ
2, Λ2)

are the quark gluon vertex and quark wave function renormalization constants. The

most general solution of the gap equation is the dressed quark propagator, or exact

quark propagator [50]

S−1(p) = iγ · pA(p2, ζ2) + B(p2, ζ2) =
1

Z(p2, ζ2)
[iγ · p + m(p2)]. (3.2)

The integration kernel in the DSE involves the exact gluon propagator Dµν(p−q)

which is a two-point Green function and the exact quark-gluon vertex Γa
ν(q; p) which

is a three-point Green function. The gap equation is coupled to these two functions

of Dyson-Schwinger equation to infinite hierarchy. So, it is necessary to make a

truncation to these integral equations.

By using the so called “rainbow-ladder truncation” scheme [35, 48, 49, 51, 52,

53, 54, 56] to the Dyson-Schwinger equation and Bethe-Salpeter equation, the exact
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gluon propagator and the exact quark-gluon vertex are replaced by their tree-level

forms. In the literature [35], the exact quark propagators obtained from this trun-

cation model are numerical solutions of quark Dyson-Schwinger equation by fitting

the properties of pion and kaon. The Dyson-Schwinger equations are usually ana-

lyzed in Euclidean space, which implies that the exact quark propagators are also

obtained as Euclidean-space functions. However, within QED and QCD, the analyt-

ical structure of the exact fermion propagators is still receiving intense interest and

there is no definitive conclusion until now (see Refs. [55, 66, 72] and therein). So, in

practical calculation, we have to assume that at least for light-quark propagators, it

is necessary to make an analytical continuation from Euclidean to Minkowski space.

In this case, the quark propagator functions m(p2) and Z(p2) for the u and d quark

can be formalized in analytical form as

m(p2) =
a

1 +
p4

b

+ m0, Z(p2) = 1− c

1− p2

d

, (3.3)

where the values of the parameters for u and d quark are given by interpolation of

the numerical results

a = 0.745GeV, b = (0.744GeV )4, m0 = 0.0055GeV,

c = 0.545, d = (1.85508GeV )2. (3.4)

The parameters for s quark reads

a = 0.8GeV, b = (1.2GeV )4, m0 = 0.09GeV, (3.5)

Z(p2) = 1. (3.6)

3.2.1 The Behavior of Quark Propagator Functions

For the instantaneous Bethe-Salpeter equation, in the “p2
0 = 0” approximation [14],

these functions can be written as

m(p2) =
a

1 +
p4

b

+ m0, Z(p2) = 1− c

1 +
p2

d

. (3.7)

Figure 3.1 and 3.2 show the behavior of mass function mn(p2) and ms(p
2) with

respect to p2 for the u, d quark and s quark respectively. Figure 3.3 shows the

behavior of the wave function renormalization function Z(p2) with respect to p2.
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Figure 3.1: Mass function mn(p2) for u and d quark, n = u, d.
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Figure 3.2: Mass function ms(p
2) for s quark.
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Figure 3.3: Wave-function renormalization function Z(p2) for u and d quark.

For light quarks, such as u and d quark, the mass function mn(p2) is domi-

nated by the nonperturbative mechanism responsible for dynamical chiral-symmetry

breaking.

From Fig. 3.1 we can see the value of mn(p2) drops at p2 ≈ (0.57GeV )2 by more

than two orders from the starting position mn(0) = 0.7505GeV . It will approach the

current light-quark mass m0 = 0.0055GeV in the limit p2 →∞. From Fig. 3.2, for

the strange quark, we can find the value of mass ms(p
2) drops by approximately one

order from the starting position ms(0) = 0.89GeV . In contrast, the wave function

renormalization function Z(p2) changes very mildly. With increasing of p2, Z(p2)

rises slowly from Z(0) = 0.455 to the value 1 as p → ∞, as shown in Fig. 3.3.

The two functions of the exact propagator of light u and d quarks are obtained by

numerically solving the quark Dyson–Schwinger equation in the “renormalization-

group-improved rainbow–ladder truncation” model.

3.3 Exact Propagator Instantaneous Bethe-Salpeter

Equation for Pseudoscalar Bound States

In the present work we focus on fermion-antifermion bound states. The general form

of instantaneous Bethe-Salpeter equation with exact propagator has been stated in

Chapter 2. Now we discuss the practical computation process for the pseudoscalar
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fermion-antifermion bound state. The analysis of reduced Salpeter equation with

exact propagator is also given in the following.

The pseudoscalar states are denoted with JPC = 0−+. The kernel K̂(p,p′) in

the Bethe-Salpeter integrals with time-component Lorentz-vector structure reads

V (p− p′)γ0 ⊗ γ0 where V (p− p′) is any potential. In the following we will see the

exact-propagator instantaneous Bethe-Salpeter equation (2.73) can be reduced to a

set of coupled equations for the radial Salpeter amplitude [8, 17].

3.3.1 The Formalism

Generally, in the case of the Salpeter equation (2.73), the expansion of the Salpeter

amplitude Φ(p) over a complete set of Dirac matrices involves the full 16 independent

Salpeter components. However, because of the constraints Λ±1 (p)1Φ(p)Λ±2 (p)2 = 0,

the Salpeter amplitude Φ(p) just has eight independent components. For the pseu-

doscalar states, only two of them, Φ1(p) and Φ2(p) are relevant. Therefore, in the

center-of-momentum frame of the fermion-antifermion bound state, the correspond-

ing Salpeter amplitude reads

Φ(p) =

[
Φ1(p)

H(p)

E(p)
+ Φ2(p)

]
γ5, (3.8)

where the E(p) is the one-particle energy and H(p) is the corresponding Hamiltonian

introduced in the last chapter.

For the equal mass case m1 = m2, since p ≡ |p|, we have Z1(p
2) = Z2(p

2) ≡
Z(p2), m1(p

2) = m2(p
2) ≡ m(p2) and of course E1(p) = E2(p) = E(p) ≡

√
p2 + m2(p2).

By inserting the wave function renormalization function Z(p2) in all interaction

terms and replacing all constant constituent masses m by the mass function m(p2),

for the time component Lorentz-vector structure we obtain two coupled equations.

MΦ1(p) = 2E(p)Φ2(p) + Z2(p2)
∫ ∞

0

dp′p′2

(2π)2
V0(p, p

′)Φ2(p
′), (3.9)

MΦ2(p) = 2E(p)Φ1(p)

+ Z2(p2)
∫ ∞

0

dp′p′2

(2π)2

[
m(p2)

E(p)
V0(p, p

′)
m(p′2)
E(p′)

+
p

E(p)
V1(p, p

′)
p′

E(p′)

]
Φ1(p

′). (3.10)

The configuration and momentum space representations of radial function are

related by Fourier-Bessel transformations (see appendix B) which involve spherical
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Bessel functions of the first kind jn(z)(n = 0,±1,±2, ...) [74]. To solve this set of

coupled equations, we insert Eq. (3.9) into (3.10) to obtain an eigenvalue equation

for M2:

M2 Φ2(p) = 4 E2(p) Φ2(p) + 2 Z2(p2) E(p)

∞∫

0

dp′p′2

(2π)2
V0(p, p

′) Φ2(p
′)

+ 2
Z2(p2)

E(p)

∞∫

0

dp′p′2

(2π)2

[
m(p2) M(p′2) V0(p, p

′) + pp′V1(p, p
′)

]
Φ2(p

′)

+ Z2(p2)

∞∫

0

dp′p′2

(2π)2

[
m(p2)

E(p)
V0(p, p

′)
M(p′2)
E(p′)

+
p

E(p)
V1(p, p

′)
p′

E(p′)

]

× Z2(p′2)
∞∫

0

dp′′p′′2

(2π)2
V0(p

′, p′′) Φ2(p
′′) . (3.11)

with

VL(p, p′) ≡ 8π
∫ ∞

0
drr2V (r)jL(pr)jL(p′r), L = 0, 1, 2, .... (3.12)

As stated in the last section, by taking the approximation m(p2) ' m and Z(p2) ' 1

for the propagator, we obtain the Salpeter equation for the free propagator.

3.3.2 Matrix Method for Solving the Salpeter Equation

Several techniques have been developed to numerically solve the reduced Salpeter

equation [57, 61] and even the full Salpeter equation [8]. In our computation we

use a generalization of the method of Refs. [8, 59, 64, 65]; that is, in order to

numerically calculate the full Salpeter equation, we transform the corresponding

eigenvalue equation to a matrix equation by expanding the components of the Bethe-

Salpeter amplitue on a set of orthonormal basis. The orthonormal basis functions

are summarized in appendix B. For the numerical calculation, this matrix has to

be truncated with a suitable number of basis functions. The approximate solutions

depend on the size of the basis.

By multiplying with
∫∞
0 dpp2φ

(0)
i (p) from the left side for both sides of Eq. (3.11),

and expanding Φ2(p) in terms of the radial basis functions φ
(0)
i (p), the instantaneous

Bethe-Salpeter equation can be transformed to a set of matrix equations and solved

by diagonalizing the corresponding matrix:

Mij = Iij + IIij + IIIij + IVij + Vij + VIij (3.13)
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where the Iij, IIij, IIIij, IVij, Vij, VIij represents:

Iij = 4
∫ ∞

0
dpp2E2(p)φ

(0)
i (p)φ

(0)
j (p),

IIij = 2
∫ ∞

0

dpp2

(2π)2
Z2(p2)E(p)φ

(0)
i (p)

∫ ∞

0
dp′p′2V0(p, p

′)φ(0)
j (p′),

IIIij = 2
∫ ∞

0

dpp2

(2π)2

Z2(p2)m(p2)

E(p)
φ

(0)
i (p)

∫ ∞

0
dp′p′2M(p′2)V0(p, p

′)φ(0)
j (p′),

IVij = 2
∫ ∞

0

dpp2

(2π)2

pZ2(p2)

E(p)
φ

(0)
i (p)

∫ ∞

0
dp′p′2 p′V1(p, p

′)φ(0)
j (p′),

Vij =
∫ ∞

0

dpp2

(2π)2

Z2(p2)m(p2)

E(p)
φ

(0)
i (p)

∫ ∞

0
dp′p′2

Z2(p′2)M(p′2)
E(p′)

V0(p, p
′)

×
∫ ∞

0

dp′′p′′2

(2π)2
V0(p

′, p′′)φ(0)
j (p′′),

VIij =
∫ ∞

0

dpp2

(2π)2

pZ2(p2)

E(p)
φ

(0)
i (p)

∫ ∞

0
dp′p′2

p′Z2(p′2)
E(p′)

V1(p, p
′)

×
∫ ∞

0

dp′′p′′2

(2π)2
V0(p

′, p′′)φ(0)
j (p′′).

The first term Iij is the matrix element of the square E2. We define aij as the

integral part

aij =
∫ ∞

0
dpp2E2(p)φ

(0)
i (p)φ

(0)
j (p). (3.14)

In order to calculate the other terms IIij, IIIij, ..., VIij, we expand relevant expres-

sions in these integrals in terms of a set of basis functions φ
(l)
i (p), l = 0, 1 in momen-

tum space:

Z2(p2)E(p)φ
(0)
i (p) =

N∑

j=0

bjiφ
(0)
j (p),

Z2(p2)m(p2)

E(p)
φ

(0)
i (p) =

N∑

j=0

cjiφ
(0)
j (p),
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p Z2(p2)

E(p)
φ

(0)
i (p) =

N∑

j=0

djiφ
(1)
j (p),

pφ
(0)
i (p) =

N∑

j=0

ejiφ
(1)
j (p),

M(p2)φ
(0)
i (p) =

N∑

j=0

fjiφ
(0)
j (p). (3.15)

Fourier-Bessel transformations are used in the above calculations.

By using the orthonormality of the basis functions φ
(l)
i (p), the expansion coeffi-

cients bij, dij, eij, fij can be expressed as:

bij =
∫ ∞

0
dpp2Z2(p2)E(p)φ

∗(0)
i (p)φ

(0)
j (p),

cij =
∫ ∞

0
dpp2Z2(p2)m(p2)

E(p)
φ
∗(0)
i (p)φ

(0)
j (p),

dij =
∫ ∞

0
dpp2pZ2(p2)

E(p)
φ
∗(1)
i (p)φ

(0)
j (p),

eij =
∫ ∞

0
dpp2pφ

∗(1)
i (p)φ

(0)
j (p),

fij =
∫ ∞

0
dpp2M(p2)φ

∗(0)
i (p)φ

(0)
j (p). (3.16)

Then we expand V (r)φ
(l)
i (p) in terms of φ

(l)
i (p):

V (r)φ
(l)
i (p) =

N∑

j=0

V
(l)
ji φ

(l)
j (p), l = 0, 1. (3.17)

Here V
(l)
ji is the real and symmetric matrix of expectation values of the potential

V (r). With respect to the basis functions φ
(l)
i (p), it can be written as:

V
(l)
ij =

∫ ∞

0
drr2V (r)φ

∗(l)
i (p)φ

(l)
j (p). (3.18)

In the present calculation, we use the potential: V (r) = λrb, λ > 0. The general

expression for V
(l)
ij can be simplified to [23]

V
(l)
ij = 〈Φi|V (r)|Φj〉

= λ
∫

d3rΦ∗
i,lm(r)rbΦj,lm(r)
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=

√
i! j!

Γ(2l + i + 3)Γ(2l + j + 3)

λ

(2µ)b

i∑

r=0

j∑

s=0

(−1)r+s

r!s!

×

 i + 2l + 2

i− r





 j + 2l + 2

j − s


 Γ(2l + b + r + s + 3). (3.19)

Collecting the matrix expressions of all the above terms, for the linear potential

V (r) = λr, we can rewrite the matrix Mij,

Mij = 4aij + 2
N∑

r=0

briV
(0)
rj + 2

N∑

r=0

N∑

s=0

criV
(0)
rs fsj

+2
N∑

r=0

N∑

s=0

d∗riV
(1)
rs esj +

N∑

r=0

N∑

s=0

N∑

t=0

criV
(0)
rs cstV

(0)
tj

+
N∑

r=0

N∑

s=0

N∑

t=0

d∗riV
(1)
sr dstV

(0)
tj . (3.20)

Numerical calculation of Eq. (3.20) with a suitable matrix size N gives the

matrix elements. Diagonalization the matrix Mij leads to the eigenvalues of the

Salpeter equation.

3.3.3 Numerical Results

Now we apply the method developed in the above sections to a linear shape confining

potential, V (r) = λr, with slope λ = 0.2GeV 2. For confining interactions the

solutions of time-component Lorentz-vector structure have no stability problems

which exist for the solutions of kernel of Lorentz-scalar structure [17, 24, 62].

One of our goals is to analyze the stability of solutions of the instantaneous

Bethe-Salpeter equation with exact quark propagator. Therefore, for a JPC = 0−+

bound state, we compare the mass eigenvalues M of Eq. (2.73) for exact-propagator

with m0 = 0 (corresponding to the chiral limit of QCD) with that of the (free-

propagator) Salpeter equation [23, 63].

As stated above, to solve the eigenvalue equation, we need to expand the Salpeter

amplitude on a set of basis functions in the Hilbert space. These basis functions

involve a variational parameter µ > 0. These basis vectors construct a complete

orthonormal system for any value of µ. Therefore, if the Salpeter amplitude can be

expanded over the full set of basis vectors, the results may be independent of the

parameter µ. In practical computation, we have to make a truncation of expansions

to a finite number of basis vectors which will induce some µ-dependence to the
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results. However, if we take into account a large enough number of basis vectors,

the solutions of Eq. (2.73) will have less dependence on µ and exhibit some stability.

Such a region of stability shows us that the numerical value predicted for mass

eigenvalue M is constant over some range of µ. In our computation we adopt a

50 ⊗ 50 matrix to perform numerical calculations. From Fig. 3.4, we can see that

using the exact propagator, the mass eigenvalue of ground state of Eq. (2.73) would

be higher whereas its values of radial excitations would be lower and all the level

spacings are obviously smaller than that of the free-propagator Salpeter equation.

For time-component Lorentz-vector structure Γ ⊗ Γ = γ0 ⊗ γ0, the first ten

eigenvalues of the free-propagator full Salpeter equation with masses m1 = m2 =

0.336GeV and linear potential V (r) = 0.2r are

{5.106, 4.853, 4.584, 4.299, 3.994, 3.663, 3.299, 2.889, 2.410, 1.813 }.

In the above data group, the last number denotes the eigenvalue of the ground

state, the next to the last one denotes the first excited state and the others are in

analogy to this order:

{ ... ...︸ ︷︷ ︸
higher excited states;

, 2.889︸ ︷︷ ︸
2nd excited state;

, 2.410︸ ︷︷ ︸
1st excited state;

, 1.813︸ ︷︷ ︸
ground state

} (3.21)

In the following, we use the same expression order for the group of eigenvalues as

shown above. The first ten eigenvalues of the exact-propagator full Salpeter equa-

tion with parameters defined by Eq. (3.3) and (3.4) are

{2.980, 2.860, 2.738, 2.611, 2.481, 2.345, 2.204, 2.056, 1.895, 1.750}.

Table 3.1 lists the mass eigenvalues M of the three lowest-lying states calcu-

lated from the free-propagator Salpeter equation and exact-propagator instanta-

neous Bethe-Salpeter equation Eq. (2.73). For the latter one the full parameters of

exact light-quark propagators noted in Eq. (3.4) and (3.7) are used in the calcula-

tion.

We use the current mass m0 = 0.0055GeV which is different from the value used

in previous calculation shown in Fig. 3.4 where m0 = 0 corresponds to the chiral

limit of QCD. However, since the current mass m0 = 0.0055GeV is small, these mass
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eigenvalues are less than 0.5% larger than the corresponding chiral-limit values. So,

it is impossible to distinguish these two sets of values in Fig. 3.4 (full lines).

State
Exact-propagator

bound-state equation

Free-propagator

Salpeter equation

11S0 1.750 1.813

21S0 1.895 2.410

31S0 2.056 2.889

Table 3.1 The bound states masses M (in units of GeV) for the three lowest JPC = 0−+

eigenstates (denoted by 11S0,21S0,31S0) of exact-propagator instantaneous Bethe-Salpeter
equation and of the general free-propagator Salpeter equation for the time-component
Lorentz-vector kernels. For the exact-propagator case the mass values adopt light-quark
propagator parameters described in Eq. (3.4) and (3.7), For free-propagator equation the
mass values take constituent light-quark mass m = 0.336GeV . The linear confining poten-
tial V (r) = λr is used with slope λ = 0.2GeV 2. All of the mass eigenvalues are obtained
by converting both Salpeter equations to 50× 50 matrices.

These mass values are listed with the mass eigenvalues M of the free-propagator

Salpeter equation where the masses of the light u and d quarks take the “constituent

quark mass” value m = 0.336GeV which is frequently adopted by nonrelativistic and

relativistic constituent quark models to describe hadrons [38, 39]. In our calculation,

we find when the constituent quark mass m raise from m = 0GeV to m = 0.336GeV ,

the corresponding mass eigenvalues M of the three lowest bound state in Salpeter

equation increase by 0.1GeV . It suggests that, at least for the light u and d quark,

any neglect of the proper behavior of the momentum-dependent quark mass m(p2)

is questionable.

Fig. 3.5 shows the behavior of the components of the radial Salpeter amplitude

Φ2(r) in configuration space and Φ2(p) in momentum space for the JPC = 0−+

ground state of the exact-propagator instantaneous Bethe-Salpeter equation. The

norm ‖ Φ ‖ of the Salpeter amplitude Φ(p) for JPC = 0−+ bound states [8, 17, 23]

is given by

‖ Φ ‖2= 4
∫ d3p

(2π)3
[Φ∗

1(p)Φ2(p) + Φ∗
2(p)Φ1(p)]. (3.22)

Since

Φ(p) = Φ(p)Yl,m(p̂), (3.23)
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Figure 3.4: Bound-state masses M of the three lowest JPC = 0−+ eigenstates of

the exact-propagator instantaneous Bethe-Salpeter equation(full lines) and of the

general free-Salpeter equation (dashed lines) for a time-component vector kernel

γ0 ⊗ γ0. The potential used here is a linear potential V (r) = λr with slope λ =

0.2GeV 2.
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Figure 3.5: Radial Salpeter functions Φ2(r) and Φ2(p) in configuration space and mo-
mentum space for the lowest JPC = 0−+ state of exact propagator instantaneous Bethe-
Salpeter equation with parameters listed in Eq. (3.4) and (3.7)(dashed lines) and of the
free propagator Salpeter equation with light quark constituent mass m = 0.336GeV (full
lines). The interaction kernel takes the time-component Lorentz-vector structure with
linear confining potential V (r) = λr, λ = 0.2GeV 2.
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and the integration of Yl,m(p̂) over
∫

dΩ satisfies

∫
dΩY ∗

l,m(p̂)Yl,m(p̂) = δll′δmm′ , (3.24)

the norm of the Salpter amplitude ‖ Φ ‖ is translated to

‖ Φ ‖2= 4
∫ ∞

0

dpp2

(2π)3
[Φ∗

1(p)Φ2(p) + Φ∗
2(p)Φ1(p)]. (3.25)

In Fig 3.5, we have chosen the normalization such that Φ2 satisfies

∫ ∞

0
dr r2|Φ2(r)|2 =

∫ ∞

0
dpp2|Φ2(p)|2 = 1 . (3.26)

From Fig. 3.5 one can find that the exact- and free-propagator Salpeter compo-

nents Φ2(r) and Φ2(p) show evident difference for r < 2.2GeV −1 for Φ2(r) and

r < 0.8GeV −1 for Φ2(p). It is hard to distinguish from each other when r > 9GeV −1

for Φ2(r) and when r > 0.8GeV −1 for Φ2(p).

3.4 Eigenfunctions of Full Salpeter Equation for

Various Kernels

Apart from mass eigenvalues, we also obtain the eigenfunctions of the full free-

propagator Salpeter equation and of the exact-propagator instantaneous Bethe-

Salpeter equation for the three lowest pseudoscalar bound states JPC = 0−+ with

the following Lorentz structure interaction kernels:

Time-component Lorentz-vector structure Γ⊗ Γ = γ0 ⊗ γ0,

Lorentz-vector structure Γ⊗ Γ = γµ ⊗ γµ,

Böhm-Joos-Krammer (BJK) structure [25, 26] Γ⊗Γ = 1
2
(γµ⊗γµ+γ5⊗γ5−1⊗1).

The corresponding analysis shows that there is no bound state for the full

Salpeter equation with Lorentz-pseudoscalar structure Γ ⊗ Γ = γ5 ⊗ γ5 interaction

kernels [95]. In the following analysis, we assume the two constituents of the bound

state take equal masses and then adopt the parameters defined in Eq. (3.4) and

(3.7) for the exact-propagator instantaneous Bethe-Salpeter equation and massless

constituent quark masses for free-propagator Salpeter equation. The harmonic oscil-

lator potential V (r) = r2 is used here. The solutions of mass eigenvalues also exhibit

stability for the reduced and full Salpeter equation with respect to the parameter

µ. In the following calculations we employ µ = 1.
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Using the procedure developed in appendix D, the eigenvalues of the reduced

Salpeter equation of the ground state and the excited states, as well as the corre-

sponding eigenfunctions are obtained numerically. The corresponding eigenvalues

and Salpeter component functions Φ2(r) of the full free-propagator Salpeter equa-

tion for the three lowest bound states for various Lorentz structures are listed in the

following.
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Figure 3.6: Salpeter component functions Φ2(r) of the full free-propagator Salpeter

equation for the three lowest bound states with vanishing constituent mass m1 =

m2 = 0GeV for time-component Lorentz-vector structure γ0 ⊗ γ0 with harmonic

oscillator potential V (r) = r2.

For the time-component Lorentz vector structure Γ ⊗ Γ = γ0 ⊗ γ0, the first ten

eigenvalues of the full free-propagator Salpeter equation with vanishing constituent

masses m1 = m2 = 0GeV are

{23.691, 20.912, 18.561, 16.517, 14.804, 13.076, 11.277, 9.326, 7.151, 4.595}.
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Figure 3.7: Salpeter component functions Φ2(r) of the full free-propagator Salpeter

equation for the three lowest bound states with vanishing constituent mass m1 =

m2 = 0GeV for Lorentz-vector structure γµ ⊗ γµ with harmonic oscillator potential

V (r) = r2.

For the Lorentz vector structure Γ ⊗ Γ = γµ ⊗ γµ, the first ten eigenvalues of

the full free-propagator Salpeter equation with vanishing constituent masses m1 =

m2 = 0GeV are

{17.388, 16.173, 14.937, 13.656, 12.316, 10.901, 9.389, 7.745, 5.901, 3.687}.
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Figure 3.8: Salpeter component functions Φ2(r) of the full free-propagator Salpeter

equation for the three lowest bound states with vanishing constituent mass m1 =

m2 = 0GeV for Böhm-Joos-Krammer (BJK) structure [25, 26] 1
2
(γµ⊗γµ +γ5⊗γ5−

1⊗ 1) with harmonic oscillator potential V (r) = r2.

For Böhm-Joos-Krammer (BJK) structure [25, 26] Γ⊗Γ = 1
2
(γµ⊗γµ +γ5⊗γ5−

1 ⊗ 1), the first ten eigenvalues of the full free-propagator Salpeter equation with

vanishing constituent masses m1 = m2 = 0GeV are

{13.790, 12.843, 11.866, 10.849, 9.783, 8.658, 7.456, 6.149, 4.684, 2.927}.

In the following, we give the eigenvalues of both the free-propagator full Salpeter

equation and exact-propagator instantaneous Bethe-Salpeter equation with different

Lorentz structure and plot the corresponding eigenfunctions in configuration space.

It is helpful to see the influence of exact propagator on the eigenfunction of Salpeter

equation compared with the free propagator case.
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Figure 3.9: Salpeter component functions Φ2(r) of the full free-propagator Salpeter

equation (full lines) and the exact-propagator instantaneous Bethe-Salpeter equation

(dashed lines) for the three lowest bound states with light-quark constituent mass

m1 = m2 = 0.336GeV (for free-propagator case) and renormalization mass function

and wave-function renormalization function (3.3), (3.4) (for exact-propagator case),

with harmonic oscillator potential V (r) = r2, for time-component Lorentz-vector

structure interaction kernel γ0 ⊗ γ0.

For time-component Lorentz-vector structure Γ ⊗ Γ = γ0 ⊗ γ0, the first ten

eigenvalues of the full free-propagator Salpeter equation with constituent masses

m1 = m2 = 0.336GeV are

{23.528, 20.885, 18.430, 16.459, 14.735, 13.018, 11.227, 9.288, 7.132, 4.612},

the first ten eigenvalues of the exact-propagator instantaneous Bethe-Salpeter equa-

tion with constituent mass functions and wave-function renormalization function

defined by Eq. (3.3) and (3.4) are

{17.284, 15.749, 14.289, 12.849, 11.378, 9.852, 8.260, 6.599, 4.884, 3.118}.
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Figure 3.10: Salpeter component functions Φ2(r) of the full free-propagator Salpeter

equation (full lines) and the exact-propagator instantaneous Bethe-Salpeter equation

(dashed lines) for the three lowest bound states with light-quark constituent mass

m1 = m2 = 0.336GeV (for free-propagator case) and renormalization mass function

and wave-function renormalization function (3.3), (3.4) (for exact-propagator), with

harmonic oscillator potential V (r) = r2, for Lorentz-vector structure γµ ⊗ γµ.

For Lorentz-vector structure Γ ⊗ Γ = γµ ⊗ γµ, the first ten eigenvalues of the

full Salpeter equation with free-propagator and constituent masses m1 = m2 =

0.336GeV are

{21.845, 20.473, 20.246i, 18.579, 16.730, 15.186, 13.431, 11.570, 9.539, 7.230, 6.277i,

4.409}
where the eigenvalue of the ground state is 4.409, the eigenvalue of the first excited

state is 7.230. Imaginary value do not correspond to any bound state since it leads

to zero norm of the Bethe-Salpeter amplitude. We will discuss this in Sec. 4.7.

The first ten eigenvalues of the exact-propagator full Salpeter equation with

constituent mass functions and wave-function renormalization function defined by

Eq. (3.3) and (3.4) are

{18.418, 16.883, 15.549, 14.077, 12.559, 10.947, 9.203, 7.946i, 7.286, 5.111, 2.683}.
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Figure 3.11: Salpeter component functions Φ2(r) of the full free-propagator Salpeter

equation (full lines) and of the exact-propagator instantaneous Bethe-Salpeter equa-

tion (dashed lines) for the three lowest bound states with light-quark constituent

mass m1 = m2 = 0.38GeV (for free-propagator case) and renormalization mass func-

tion and wave-function renormalization function (3.3), (3.4) (for exact-propagator

case), with harmonic oscillator potential V (r) = r2, for Böhm-Joos-Krammer (BJK)

structure [25, 26] 1
2
(γµ ⊗ γµ + γ5 ⊗ γ5 − 1⊗ 1).

For Böhm-Joos-Krammer (BJK) Lorentz structure [25, 26] Γ⊗ Γ = 1
2
(γµ⊗ γµ +

γ5 ⊗ γ5 − 1 ⊗ 1), the first ten eigenvalues of the full Salpeter equation with free-

propagator and constituent masses m1 = m2 = 0.38GeV are

{18.218, 16.689, 15.378, 14.071, 12.736, 11.321, 9.792, 8.099, 6.154, 3.728},

the first ten eigenvalues of the full Salpeter equation with exact-propagator and

constituent mass functions and wave-function renormalization function defined by

Eq. (3.3) and (3.4) are

{14.156, 13.136, 12.088, 10.998, 9.858, 8.658, 7.387, 6.027, 4.540, 2.771}.
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3.5 Eigenfunctions of Reduced Salpeter Equation

for Different Kernels

In this section, in a similar way as stated above, we plot the eigenfunctions of the

reduced Salpeter equation with free- and exact-propagator together in the one figure.
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Figure 3.12: Eigenfunctions of the free-propagator reduced Salpeter equation for

the three lowest states with vanishing constituent mass m1 = m2 = 0GeV for

time-component Lorentz vector structure γ0⊗ γ0 with harmonic oscillator potential

V (r) = r2.

Comparing Fig. 3.12 with Fig. 3.6, we find that, with free-propagator, the eigen-

functions of the full Salpeter equation are not distinguished different from that of

reduced Salpeter equation in configuration space, for time-component Lorentz vec-

tor structure γ0 ⊗ γ0 with harmonic oscillator potential V (r) = r2.

For time-component Lorentz-vector structure Γ⊗Γ = γ0⊗γ0, the first ten eigen-

values of the free-propagator reduced Salpeter equation with vanishing constituent

masses m1 = m2 = 0GeV are

{24.070, 21.138, 18.672, 16.652, 14.898, 13.177, 11.383, 9.442, 7.281, 4.748}.
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Figure 3.13: Eigenfunctions of the free-propagator reduced Salpeter equation for the

three lowest states with vanishing constituent mass m1 = m2 = 0GeV for Lorentz-

vector structure γµ ⊗ γµ with harmonic oscillator potential V (r) = r2.

For Lorentz-vector structure interaction kernel Γ ⊗ Γ = γµ ⊗ γµ, the first ten

eigenvalues of the reduced Salpeter equation with free-propagator and vanishing

constituent masses m1 = m2 = 0GeV are

{31.709, 28.160, 23.636, 20.686, 18.232, 15.906, 13.576, 11.041, 8.176, 4.676}.
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Figure 3.14: Eigenfunctions of the free-propagator reduced Salpeter equation for the

three lowest states with vanishing constituent mass m1 = m2 = 0GeV for Böhm-

Joos-Krammer (BJK) structure 1
2
(γµ⊗γµ +γ5⊗γ5−1⊗1) with harmonic oscillator

potential V (r) = r2.

For Böhm-Joos-Krammer (BJK) Lorentz structure Γ ⊗ Γ = 1
2
(γµ ⊗ γµ + γ5 ⊗

γ5−1⊗1), the first ten eigenvalues of the reduced free-propagator Salpeter equation

with vanishing constituent masses m1 = m2 = 0GeV are

{22.576, 20.223, 17.935, 16.045, 14.350, 12.612, 10.773, 8.763, 6.489, 3.712}.
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Figure 3.15: Eigenfunctions of the reduced Salpeter equation for the three lowest

states with light-quark constituent mass m1 = m2 = 0.336GeV (for free-propagator

case) and renormalization mass function and wave-function renormalization function

(3.3), (3.4) (for exact-propagator case), with harmonic oscillator potential V (r) = r2,

for Lorentz-scalar structure 1⊗ 1.

For Lorentz-scalar structure Γ⊗Γ = 1⊗1, the first ten eigenvalues of the reduced

free-propagator Salpeter equation with constituent masses m1 = m2 = 0.336GeV

are

{7.319, 6.882, 6.467, 6.054, 5.606, 5.099, 4.505, 3.766, 2.731, 0.578},

the first ten eigenvalues of the exact-propagator reduced Salpeter equation with

constituent mass functions and renormalization of wave functions defined by Eq.

(3.3) and (3.4) are

{3.690, 3.471, 3.294, 3.133, 2.974, 2.799, 2.575, 2.245, 1.587}.
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Figure 3.16: Eigenfunctions of the reduced Salpeter equation for the three lowest

states with light-quark constituent mass m1 = m2 = 0.336GeV (for free-propagator)

and renormalization mass function and wave-function renormalization function (3.3),

(3.4) (for exact-propagator case), with harmonic oscillator potential V (r) = r2, for

time-component Lorentz-vector structure γ0 ⊗ γ0.

For time-component Lorentz-vector structure Γ ⊗ Γ = γ0 ⊗ γ0, the first ten

eigenvalues of the reduced Salpeter equation with free-propagator and constituent

masses m1 = m2 = 0.336GeV are

{23.710, 20.899, 18.464, 16.509, 14.772, 13.065, 11.281, 9.353, 7.213, 4.720},

the first ten eigenvalues of the exact-propagator reduced Salpeter equation with

constituent mass functions and wave-function renormalization function defined by

Eq. (3.3) and (3.4) are

{17.312, 15.755, 14.290, 12.852, 11.382, 9.856, 8.265, 6.606, 4.901, 3.165}.
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Figure 3.17: Eigenfunctions of the reduced Salpeter equation for the three lowest

states with light-quark constituent mass m1 = m2 = 0.336GeV (for free-propagator

case) and renormalization mass function and wave function renormalization function

(3.3), (3.4) (for exact-propagator case), with harmonic oscillator potential V (r) = r2,

for Lorentz-vector structure γµ ⊗ γµ.

For Lorentz-vector structure Γ ⊗ Γ = γµ ⊗ γµ, the first ten eigenvalues of the

reduced Salpeter equation with free-propagator and constituent masses m1 = m2 =

0.336GeV are

{30.891, 27.332, 22.986, 20.322, 17.879, 15.612, 13.294, 10.774, 7.934, 4.494},

the first ten eigenvalues of the reduced Salpeter equation with exact-propagator and

constituent mass functions and wave-function renormalization function defined by

Eq. (3.3) and (3.4) are

{22.069, 19.936, 17.813, 15.874, 13.957, 11.967, 9.886, 7.687, 5.330, 2.697}.
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Figure 3.18: Eigenfunctions of the reduced Salpeter equation for the three lowest

states with light-quark constituent mass m1 = m2 = 0.38GeV (for free-propagator

case) and renormalization mass function and wave function renormalization function

(3.3), (3.4) (for exact-propagator case), with harmonic oscillator potential V (r) = r2,

for Böhm-Joos-Krammer (BJK) structure 1
2
(γµ ⊗ γµ + γ5 ⊗ γ5 − 1⊗ 1).

For Böhm-Joos-Krammer (BJK) Lorentz structure [25, 26] Γ⊗ Γ = 1
2
(γµ⊗ γµ +

γ5 ⊗ γ5 − 1 ⊗ 1), the first ten eigenvalues of the reduced Salpeter equation with

free-propagator and constituent masses m1 = m2 = 0.38GeV are

{22.644, 20.272, 17.994, 16.095, 14.404, 12.671, 10.840, 8.8406, 6.585, 3.849},

and the first ten eigenvalues of the reduced Salpeter equation with exact-propagator

and constituent mass functions and wave-function renormalization function defined

by Eq. (3.3) and (3.4) are

{17.095, 15.605, 14.151, 12.702, 11.217, 9.672, 8.058, 6.365, 4.578, 2.635}.

From the above plots of eigenfunctions, we find that the influence of introducing

the exact propagator on the eigenfunction of both full and reduced Salpeter equation

are rather large and therefore can not be ignored.
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3.6 Summary and Conclusion

In this chapter, we extended the general instantaneous Bethe-Salpeter equation

to the exact propagator instantaneous Bethe-Salpeter equation by introducing the

exact quark propagator deduced from the Dyson-Schwinger equation. For the pseu-

doscalar bound states, we gave the approach of transferring the Bethe-Salpeter equa-

tion to an eigenvalue equation and matrix problem. The stability of the solution is

rather good for a considerable scale. The influence of the exact propagator on the

mass eigenvalues and on eigenfunctions of bound states can not be neglected.

We investigated both the full instantaneous Bethe-Salpeter equation and re-

duced Salpeter equation with exact propagator and compared the eigenfunctions for

three different Lorentz structures: time-component Lorentz-vector structure γ0⊗γ0,

Lorentz-vector structure γµ⊗ γµ and BJK Dirac structure [25, 26]. Within the nu-

merical calculation, for the kernel of Lorentz-vector structure, there exist imaginary

numbers in the solutions of the bound state of the full Salpeter equation. These

imaginary values are not corresponding to bound states, because the imaginary val-

ues lead to zero norm of the eigenfunction (see section 4.7) which is not consistent

with the physical reality.
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Chapter 4

Salpeter Model for Meson with

Instanton Interaction

In the previous chapters we analyzed the Bethe-Salpeter equation for fermion-

antifermion bound states with instantaneous interaction kernels. We also introduced

the exact quark propagator for both the instantaneous Bethe-Salpeter equation and

reduced Salpeter equation. In this chapter we would like to apply it to the study

of a meson model [20] based on the quark-antiquark Bethe-Salpeter equation with

two-body Lorentz structure interaction kernels. The interaction kernel includes a

linearly rising confinement potential with a suitable spin structure which was com-

bined with the effective residual interaction presented by ’t Hooft from instanton

effects in QCD [84]. This relativistic approach employing ’t Hooft’s interaction

provides significant improvements comparing to other approaches.

4.1 Introduction

Despite many years of research on the problem of bound states in QCD, there are

still a lot of questions far from being well understood. The nonrelativistic potential

model of quarks is reasonable to describe the mass spectra of hadrons [19], but it

fails in describing the decay properties of bound states like the pion. It is not valid

for the interactions if the bound state constituents involved are light or massless dy-

namical quarks. Therefore, one has to consider a relativistic formalism for the bound

states when the interaction involves u and d quarks. In addition, the perturbative

treatment which obtains great success in QED is not suitable to QCD in the low-

energy region. Therefore, some effective theoretical descriptions for hadrons have
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been developed. One of the important and widely accepted approaches was made

by ’t Hooft, who introduced the instanton concept and derived an effective interac-

tion within the low energy scale for light quarks by computing the QCD partition

function. Based on the Salpeter equation that includes an instanton interaction, the

relativistic quark models for the light pseudoscalar and vector mesons [20, 70], for

the light scalar mesons [69] have been investigated. This instanton induced inter-

action is also adopted to the calculation of mass spectrum and decay properties of

heavy mesons including heavy quarkonia in Refs. [22, 68, 70]. The instantaneous

Bethe-Salpeter equation with ’t Hooft’s instanton induced interaction gives good

results for both the light and heavy mesons.

In this chapter, by adopting ’t Hooft’s interaction which is based on QCD-

instanton effects, the mesons spectra and eigenfunctions are given with details.

This chapter is organized as follows. In Sec. 4.2, we introduce the ’t Hooft in-

stanton interaction for the quark confining potential. The parameters of potential

and relevant ’t Hooft coupling factor are presented in Sec. 4.3. Sec. 4.4 is devoted to

describing the free-propagator Salpeter equation and exact-quark propagator instan-

taneous Bethe-Salpeter equation with instanton interaction. In Sec. 4.5, both the

free-propagator Salpeter equation and exact-quark propagator instantaneous Bethe-

Salpeter equation with instanton interaction are solved to obtain the mass spectra

of the pseudoscalar mesons. The results are compared with that of Koll’s model

[20] and the latest experiments from Particle Data Group (PDG) [37]. Furthermore,

the eigenfunctions of both the free-propagator Salpeter equation and exact-quark

propagator instantaneous Bethe-Salpeter equation with instanton-induced interac-

tion in momentum space are plotted in Sec. 4.6. Finally, the decay constants for

the pseudoscalar meson such as pion and kaon are investigated in Sec. 4.7. Sec. 4.8

is the summary of this chapter.

4.2 ’t Hooft Interaction

It is not enough to describe the scalar and pseudoscalar mesons π, K, η, η′ from

nonrelativistic potential quark models with only a confining potential. Usually an

additional contribution to the interaction kernel which comes from a one-gluon-

exchange (OGE) should be considered. This extension works quite well for heavy

quarkonia [81, 82, 83], but not for light mesons where perturbation theory is not

valid. In order to circumvent this problem, higher order diagrams should be taken

into account. But it makes the problem more complicated when the higher order
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calculations are introduced. ’t Hooft proposed a QCD based approach to compute

the residual quark-antiquark interaction from instanton effects [84, 85, 86] which

can produce rather good results for meson and baryon mass spectra [19].

As that adopted in the literature [20], we consider the linear confinement poten-

tial V (r) in coordinate space and a suitable spin structure Γ ⊗ Γ in Dirac space,

say V (r) = (ac + bcr)Γ⊗ Γ, to describe the underlying quark model. Here the free

parameters ac, bc are the confinement offset and slope of potential respectively.

The ’t Hooft force is a flavor dependent instanton-induced interaction. Following

the idea of ’t Hooft [84, 87] and Shifman [85], the integral of the instanton induced

interaction kernel is

∫ d3p′

(2π)3
V (p, p′)Φ(p′) = 4gf1f2

∫ d3p′

(2π)3
RΛ(p,p′)

(
tr[I Φ(p′)]I + tr[γ5Φ(p′)]γ5

)
(4.1)

where RΛ = 1
(Λ
√

π)3
e−r2/Λ2

is a regularizing function. The coupling strength gf1f2

with the flavor fi and the finite effective range Λ are free parameters in this model.

gf1f2 takes the value listed in Table 4.1.

4.3 Parameters

In this chapter we first obtain consistent results for the masses and decay proper-

ties of the low lying pseudoscalar mesons with the literature [20, 21, 22, 80] and

experiments [37]. After confirming the validity of the approach, we apply it to cal-

culate the exact-propagator instantaneous Bethe-Salpeter equation for pseudoscalar

mesons such as π,K, B, Bs, and so on. For this purpose we investigate the model of

confinement kernel with BJK spin structure [25, 26] which was also adopted in Ref.

[21].

The relativistic quark model discussed above contains some free parameters:

the confinement potential parameters ac and bc, the coupling strength gf1f2 for ’t

Hooft’s instanton-induced force with an effective range Λ, and the effective con-

stituent quark masses mn,ms,mc,mb. The spin structure used in this chapter is

Böhm-Joos-Krammer (BJK) structure [25, 26] Γ⊗ Γ = 1
2
(γµ⊗ γµ + γ5⊗ γ5− 1⊗ 1)

which is also investigated by Böhm [34], Koll [20] and Münz [101].

In the previous chapter the instantaneous Bethe-Salpeter equation with free-

propagator was extended to the exact-propagator case. Now we solve both the cor-

responding free-propagator and exact-propagator instantaneous equations to obtain

the mass spectra of pseudoscalar mesons. For the exact-propagator instantaneous
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Bethe-Salpeter equation, the constituent quark masses should be replaced by the

corresponding mass function and meanwhile a wave function renormalization func-

tion should be considered. The mass function is only used for light quarks u, d, s.

The effective constituent quark masses and mass functions of light quarks are listed

in Table 4.1 and 4.2.

Parameter Value

gnn [GeV −2] 1.62

gns [GeV −2] 1.35

’t Hooft gnc [GeV −2] 1.58

interaction gnb [GeV −2] 1.07

n = u, d gsc [GeV −2] 1.27

gsb [GeV −2] 0.76

Λ [GeV −1] 2.13

Confinement ac [GeV ] −1.135

parameters bc [GeV 2] 0.256

Table 4.1: The parameters of the confinement potential and the ’t Hooft interaction [22].

Parameter free propagator exact propagator
model model

mn(p2) [GeV ] 0.38 0.745

1+
p4

0.7444

+ 0.0055[94]

Mass ms(p2) [GeV ] 0.55 0.8

1+
p4

1.24

+ 0.09

function mc(p2) [GeV ] 1.78 1.78

mb(p2) [GeV ] 5.09 5.09

Wave-function Zn,s(p2) 1 1− 0.545

1+
p2

1.855082

[94]

renormalization function Zb,c(p2) 1 1

Table 4.2: The constituent quark masses, mass functions and wave function renormal-
ization function of quarks in free- and exact-propagator Salpater model.
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4.4 Salpeter Eigenvalue Equation with Instanton

Interaction

In this section, following the same way stated in the last chapter, we transform the

instantaneous Bethe-Salpeter equation with instanton interaction to the correspond-

ing eigenvalue equation for both free-propagator and exact-propagator cases.

4.4.1 Free Propagator Salpeter Equation with Instanton In-

teraction

By using the eigenvalue equation of the Salpeter equation with Böhm-Joos-Krammer

(BJK) structure [25, 26] and calculating the corresponding trace appearing in the

instanton interaction kernel as shown in Eq. (4.1), we can easily transform the

instanton-induced Salpeter equation to the form of eigenvalue equation.

In Eq. (4.1), the traces are evaluated as

tr[I Φ(p′)]I = 0, (4.2)

tr[γ5Φ(p′)]γ5 = −4C ′
θΦ

′
2γ

5, (4.3)

therefore Eq. (4.1) becomes

∫ d3p′

(2π)3
V (p, p′)Φ(p′) = −16gf1f2

∫ d3p′

(2π)3
RΛ(p,p′)C ′

θΦ
′
2γ

5. (4.4)

By adding the integral of the instanton induced interaction kernel (4.4) into the

full Salpeter eigenvalue equation (2.49) and (2.50), we obtain

MΦ1 = (E1 + E2)Φ2 +
∫ dp′p′2

(2π)2
(2CθV0C

′
θ − 16gf1f2RΛCθC

′
θ)Φ

′
2 (4.5)

MΦ2 = (E1 + E2)Φ1. (4.6)

These two coupled equations are the instanton-induced Salpeter eigenvalue equa-

tions. They can be evaluated numerically by using the matrix method developed in

the last chapter. The corresponding results are listed in Table 4.3.
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4.4.2 Exact Propagator Instantaneous Bethe-Salpeter Equa-

tion with Instanton Interaction

Using the same approach we derive the exact-propagator instantaneous Bethe-Salpeter

eigenvalue equation with instanton induced interaction for the BJK kernel:

MΦ1 = (E1 + E2)Φ2 + Z2(p2)
∫ dp′p′2

(2π)2
(2CθV0C

′
θ − 16gf1f2RΛCθC

′
θ)Φ

′
2 (4.7)

MΦ2 = (E1 + E2)Φ1, (4.8)

where the function Z(p2) is the wave function renormalization function and the

constituent masses take the mass function m(p2) as shown in chapter 3.

4.5 Mass Spectra of the Pseudoscalar Mesons

Following the same way stated in chapter 3, we calculate the mass eigenvalue of

the free-propagator Salpeter equation and exact-propagator instantaneous Bethe-

Salpeter equation with instanton-induced interaction in this section. The exact-

propagator assumption is only applied for the light quarks. A heavy quark with

mass mq much larger than the QCD scale ΛQCD can be considered as free quark

since correction of the static approximation is of the order of mq/ΛQCD. So, the

calculations of mass spectra of heavy quarks are just performed under the free prop-

agator approximation.

In the free-propagator Salpeter model with constituent quark masses, param-

eters of confinement offset ac and slope bc, rather good results of the masses of

pseudoscalar mesons are obtained in [20, 21, 22], especially for the light ones. The

masses of pseudoscalar meson π(0−), K(0−), D(0−), Ds(0
−), B(0−), Bs(0

−) ob-

tained from our free-propagator Salpeter model are exactly consistent with that of

Koll’s model [20, 21] and agree nicely with the newest experimental values listed in

PDG2007 [37]. The masses of pseudoscalar meson ηc(0
−) and ηb(0

−) obtained from

our free- and exact-propagator Salpeter model are closer to the newest experimental

values [37] than that from Koll’s model [20, 21].

From the results we can see that the masses calculated in exact-propagator in-

stantaneous Bethe-Salpeter equation are different from the results of other models.

The influence from the exact quark propagator leads to higher masses for light

mesons.

Table 4.3 shows the mass spectra of the ground state and first excited state of

pseudoscalar mesons calculated in the two different models.
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Meson(JP ) n Koll model free-propagator exact-propagator PDG 2007[37]

π(0−) 0 140 140 1465 139.57108± 0.00035

1 1331 1331 1676 1300± 100

K(0−) 0 506 506 1484 493.667± 0.016

1 1470 1470 1877 —

D(0−) 0 1869 1869 2380 1869.62± 0.2

1 2578 2578 2763 —

Ds(0−) 0 1969 1969 2143 1968.5± 0.6

1 2683 2683 2838 —

B(0−) 0 5279 5279 5685 5279.0± 0.5

1 5869 5869 6021 —

Bs(0−) 0 5369 5369 5539 5366.1± 0.6

1 5960 5960 6097 —

Bc(0−) 0 — 6381 6381 6286± 5

1 — 6890 6890 —

ηc(0−) 0 3114 2983 2983 2979.8± 1.2

1 3708 3653 3653 —

ηb(0−) 0 9565 9479 9479 9300± 20

1 9985 9939 9939 —

Table 4.3 Masses of pseudoscalar mesons in [MeV] with instanton interaction, calcu-
lated with the parameters of Koll’s model [20, 21], free-propagator and exact-propagator
model. Here n denotes the radial excitation.

4.6 Eigenfunctions of the Full Salpeter Equation

with Instanton Interaction

In this section, the eigenfunctions of the three lowest states of pseudoscalar mesons

in configuration space are plotted. Using the same procedure stated in the last chap-

ter, we transfer the eigenvalue equation to a matrix problem which can be solved by

diagonalizing the corresponding matrix. Then, by calculating the eigenvector of the

matrix and multiplying it with the generalized Laguerre basis, the wave function of
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the pseudoscalar bound states will be obtained. The relevant details and computa-

tion codes are given in the appendix D. In appendix E we present the plots of the

corresponding eigenfunction in momentum space. For cc̄ and bb̄ bound state, the

exact-propagator has no influence on the c and b quark due to their heavy masses

(see Table 4.2).
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Figure 4.1: Salpeter component functions Φ2(r) of the free-propagator Salpeter equation
(full lines) and of the exact-propagator instantaneous Bethe-Salpeter equation (dashed
lines) with instanton interaction for the three lowest states of ud̄/dū.
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Figure 4.2: Salpeter component functions Φ2(r) of the free-propagator Salpeter equation
(full lines) and of the exact-propagator instantaneous Bethe-Salpeter equation (dashed
lines) with instanton interaction for the three lowest states of us̄/sū; ds̄/sd̄.
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Figure 4.3: Salpeter component functions Φ2(r) of the free-propagator Salpeter equation
(full lines) and of the exact-propagator instantaneous Bethe-Salpeter equation (dashed
lines) with instanton interaction for the three lowest states of uc̄/cū; dc̄/cd̄.
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Figure 4.4: Salpeter component functions Φ2(r) of the free-propagator Salpeter equation
(full lines) and of the exact-propagator instantaneous Bethe-Salpeter equation (dashed
lines) with instanton interaction for the three lowest states of ub̄/bū; db̄/bd̄.
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Figure 4.5: Salpeter component functions Φ2(r) of the free-propagator Salpeter equation
(full lines) and of the exact-propagator instantaneous Bethe-Salpeter equation (dashed
lines) with instanton interaction for the three lowest states of sb̄/bs̄.
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Figure 4.6: Salpeter component functions Φ2(r) of the free-propagator Salpeter equation
(full lines) and of the exact-propagator instantaneous Bethe-Salpeter equation (dashed
lines) with instanton interaction for the three lowest states of bc̄/cb̄.
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Figure 4.7: Salpeter component functions Φ2(r) of the free-propagator Salpeter equation
(full lines) and of the exact-propagator instantaneous Bethe-Salpeter equation (dashed
lines) with instanton interaction for the three lowest states of cc̄.
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Figure 4.8: Salpeter component functions Φ2(r) of the free-propagator Salpeter equation
(full lines) and of the exact-propagator instantaneous Bethe-Salpeter equation (dashed
lines) with instanton interaction for the three lowest states of bb̄.

4.7 Meson Decay Constants

Besides the description of mass spectra of mesons, a realistic model should also be

able to describe the decay properties. In recent years, the question of pseudoscalar

meson decay constants of π, K,D, Ds mesons received great interest in the literature

(see e.g. [102, 20, 21, 22] and references therein). In this section we discuss the

influence of the exact-propagator model on the decay constants of the pseudoscalar

bound states.

We start the discussion with the decay constant of the pseudoscalar bound state

f0− . According to the definition of the norm of the Bethe-Salpeter amplitude [98, 93],

we have

‖ Φ ‖2=
∫ d3p

(2π)3

1

2
Tr

[
(γ0Φ

†)
[
H1

E1

(Φγ0)− (Φγ0)
H2

E2

]]
, (4.9)

which is related to the normalization of bound states (see Eq. (2.63))

‖ Φ ‖2=
1

(2π)3
. (4.10)
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Because the Salpeter amplitude satisfies the constraint condition (2.58), the norm

(4.9) can be rewritten as [17]

‖ Φ ‖2=
∫ d3p

(2π)3
Tr

[
(γ0Φ

†)
H1

E1

(Φγ0)
]
. (4.11)

By inserting the Salpeter amplitude (2.8) into the norm (4.11) and using (4.6)

Φ1 =
M

E1 + E2

Φ2, (4.12)

we obtain

‖ Φ ‖2 = 4N2
∫ d3p

(2π)3

[
Φ2

∗Φ1 + Φ1
∗Φ2

]

= 4N2
∫ d3p

(2π)3

[M + M∗

E1 + E2

Φ2
∗Φ2

]

= 4N2
∫ d3p

(2π)3

[ 2Re[M ]

E1 + E2

Φ2
∗Φ2

]
. (4.13)

In the practical numerical calculation, the result of mass eigenvalue M may

become an imaginary number. However, from the above formula and especially the

numerator M + M∗, the pure imaginary number should be ignored otherwise the

norm would be zero. That is also the reason why we neglect the pure imaginary

values appearing in the mass eigenvalue spectra in Sec. 3.4 since they are no physical

values. Therefore we have M + M∗ = 2Re[M ] = 2M . Using the definition of the

pseudoscalar decay constant with the axial current jµ
5 =: ψ̄(x)γµγ5ψ(x) :, we have

[92]

〈0|jµ
5 (x)|P 〉 =

1

(2π)3/2

i√
2p0

f0−pµe−ipx, (4.14)

in the rest frame p = (M,0).

For the pseudoscalar bound state

〈0|j0
5(0)|P 〉 = 〈0|T ψ̄α(γ0γ5)αβψβ|P 〉

= −(γ0γ5)αβ〈0|Tψβψ̄α|P 〉

= −Tr{γ0γ5Φ(M,0)(x = 0)}

= −
∫ d4p

(2π)4
Tr{γ0γ5Φ(p)}

= −4N
∫ d3p

(2π)3
SφΦ1(p). (4.15)
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In the above calculation we have transformed to the momentum space. From

Eq. (4.14) and (4.15) we obtain the decay constant of the pion

|f0−| = 4
√

3M√
π

N
∫

dpp2Sφ
Φ2(p)

E1 + E2

(4.16)

with the color factor 3 · 1√
3
.

Now we can calculate weak decay constants of pseudoscalar pions with free-

and exact-propagator Salpeter amplitude respectively. The decay constant of other

mesons such as K, D, Ds can also be obtained in the same way stated above. In

Table 4.4 the results of fπ, fK , fD and fDs for free- and exact-propagator Salpeter

model are listed. The exact-propagator model brings some improvement for the fπ

and fK comparing with the free-propagator case.

Decay Constant Koll model free-propagator exact-propagator PDG 2007[37]

fπ[MeV ] 219 219 181 130.7± 0.46

fK [MeV ] 238 238 219 159.8± 1.88

fD[MeV ] — 263 237 222.6± 16.7

fDs [MeV ] — 284 309 294± 27

Table 4.4: The pseudoscalar decay constants of the π,K,D and Ds mesons.

4.8 Summary and Conclusion

By introducing the ’t Hooft instanton interaction, we investigated the properties of

the free-propagator Salpeter equation and exact-propagator instantaneous Bethe-

Salpeter equation with instanton interaction in this chapter. The mass eigenvalues

of mesons π, K, D, Ds, B, Bs, Bc, ηc and ηb and the corresponding eigenfunctions

of free-propagator full Salpeter equation and exact-propagator instantaneous Bethe-

Salpeter equation have been presented in this chapter. The decay constant f of π,

K, D, Ds mensons was also calculated within the instanton-induced model by using

the same parameters of confinement potential used by previous literature [20, 21].
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Chapter 5

Analytical Treatment

Up to now, all of our analysis for the mass eigenvalue and eigenfunction of the

pseudoscalar bound states are based on numerical calculations which depend on

the matrix size. For some Lorentz structure interaction kernels, this numerical

calculation may produce unphysical values such as imaginary number for the mass

eigenvalue of the bound state. Therefore, it is necessary to perform an analytical or

semianalytical research. In this chapter we present an analytical discussion for the

relevant Salpeter eigenvalue equations. The basic idea is to transform the relevant

Salpeter eigenvalue equation to the corresponding differential equation which can

be discussed from an analytical point of view.

5.1 Introduction

In the previous chapters we have evaluated the Salpeter eigenvalue equation by ex-

panding the Salpeter amplitude on a complete set of orthonormal basis and then

transforming it to a matrix problem. In the practical computation, we have to

choose an appropriate size of matrix. Therefore the numerical results are dependent

on the matrix size and it can be imaginary in some cases depending on the structure

of the kernel. Analytical study would be better to confirm the validity of our nu-

merical method. In this chapter we adopt an analytical approach, i.e., the method

of ordinary differential equation, to study the full Salpeter eigenvalue equation and

the reduced Salpeter eigenvalue equation derived from the full Salpeter equation by

neglecting some interaction terms.

This chapter is organized as follows. In Sec. 5.2, we review the eigenvalue
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equations of the full and reduced Salpeter equation. In Sec. 5.3, we employ the

harmonic-oscillator confining interactions to discuss the reduced Salpeter eigenvalue

equations by using the differential equation method. Then we apply this method to

the case of exact-propagator in Sec. 5.4. Sec. 5.5 is the summary of this chapter.

5.2 Eigenvalue Treatment of Reduced Salpeter Equa-

tion for Various Kernels

With the harmonic-oscillator interaction in configuration space

V (r) = ar2, a = a∗ 6= 0, r ≡ |x|,

the reduced Salpeter equation from the previous chapter can be investigated to a

large extent analytically. For harmonic-oscillator type of potential, with the help

of a differential equation [74] which is satisfied by spherical Bessel functions of all

kinds wn(z)(n = 0,±1,±2, ...),

z2 d2

dz2
wn(z) + 2z

d

dz
wn(z) + [z2 − n(n + 1)]wn(z) = 0, (5.1)

we can analytically determine all potential functions VL(p, p′) in the radial Salpeter

eigenvalue equations.

5.2.1 Differential Operator

With the aid of second-order differential operators

4(L)
p ≡ d2

dp2
+

2

p

d

dp
− L(L + 1)

p2
, L = 0, 1, 2, ..., (5.2)

the spherical Bessel functions of the first kind, jL(pr), satisfy

4(L)
p jL(pr) = −r2jL(pr), L = 0, 1, 2, ... . (5.3)

Using this relation and the “orthogonality relations”

∫ ∞

0
drr2jL(pr)jL(p′r) =

π

2p2
δ(p− p′), L = 0, 1, 2, ..., (5.4)
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we replace the expression r2 in the potential function VL(p, p′) (see Eq. (2.35))

by the differential operator 4(L)
p . The equivalent potential functions for harmonic

oscillators can be evaluated as

VL(p, p′) = 8π
∫ ∞

0
drr2V (r)jL(pr)jL(p′r)

= −8πa
∫ ∞

0
drr24(L)

p jL(pr)jL(p′r)

= −8πa4(L)
p

π

2p2
δ(p− p′)

= −(2π)2a

p2
4(L)

p δ(p− p′), L = 0, 1, 2, ... , (5.5)

where the harmonic oscillator potential V (r) = ar2.

5.2.2 Harmonic Oscillator Reduced Salpeter Equation as

Differential Equation

By employing the potential function (5.5), all radial integral eigenvalue equations

derived in chapter 3 can be simplified to second-order homogeneous linear differential

equations.

The general form of the reduced Salpeter eigenvalue equation for m1 = m2 = m

can be expressed as

MΦ(p) = 2E(p)Φ(p) +
1

2

∫ ∞

0

dp′p′2

(2π)2
(η1V0︸ ︷︷ ︸

I

+ η2
m

E(p)
V0

m

E(p′)︸ ︷︷ ︸
II

+ η3
p

E(p)
V1

p′

E(p′)︸ ︷︷ ︸
III

)Φ(p′).

(5.6)

Now we evaluate the first term

I =
η1

2

∫ ∞

0

dp′p′2

(2π)2
V0Φ(p′)

=
η1

8π2

∫ ∞

0
dp′p′2 · 8πa

∫ ∞

0
drr2r2j0(pr)j0(p

′r)Φ(p′)

=
η1a

π

∫ ∞

0
dp′p′2

∫ ∞

0
drr2(−4(0)

p )j0(pr)j0(p
′r)Φ(p′)

= −η1a

2
4(0)

p

∫ ∞

0
dp′p′2

1

p2
δ(p− p′)Φ(p′)

= −η1a

2
4(0)

p Φ(p). (5.7)
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The evaluation of the second term is

II =
η2

2

∫ ∞

0

dp′p′2

(2π)2

m

E
V0

m

E ′Φ(p′)

=
η2

8π2

∫ ∞

0
dp′p′2

m2

E(p)
· 8πa

∫ ∞

0
drr2r2j0(pr)j0(p

′r)
1

E(p′)
Φ(p′)

=
η2a

π

∫ ∞

0
dp′p′2

∫ ∞

0
drr2 m2

E(p)
(−4(0)

p )j0(pr)j0(p
′r)

1

E(p′)
Φ(p′)

= −η2a

2

m2

E(p)
4(0)

p

∫ ∞

0
dp′p′2

1

p2
δ(p− p′)

1

E(p′)
Φ(p′)

= −η2a

2

m2

E(p)
4(0)

p

Φ(p)

E(p)
.

(5.8)

The integration of the third term is

III =
η3

2

∫ ∞

0

dp′p′2

(2π)2

p

E(p)
V1

p′

E(p′)
Φ(p′)

=
η3

8π2

∫ ∞

0
dp′p′2

p

E(p)
· 8πa

∫ ∞

0
drr2r2j1(pr)j1(p

′r)
p′

E(p′)
Φ(p′)

=
η3a

π

∫ ∞

0
dp′p′2

∫ ∞

0
drr2 p

E(p)
(−4(1)

p )j1(pr)j1(p
′r)

p′

E(p′)
Φ(p′)

= −η3a

2

p

E(p)
4(1)

p

∫ ∞

0
dp′p′2

1

p2
δ(p− p′)

p′

E(p′)
Φ(p′)

= −η3a

2

p

E(p)
4(1)

p

p

E(p)
Φ(p). (5.9)

By using

4(0)
p

Φ(p)

E(p)
=

(
4(0)

p

1

E(p)

)
Φ(p) + 2

(
d

dp

1

E(p)

)(
d

dp
Φ(p)

)
+

1

E(p)
(4(0)

p Φ(p)), (5.10)

4(0)
p

pΦ(p)

E(p)
=

(
4(0)

p

p

E(p)

)
Φ(p) + 2

(
d

dp

p

E(p)

)(
d

dp
Φ(p)

)
+

p

E(p)
(4(0)

p Φ(p)) (5.11)

and

4(1)
p =

d2

dp2
+

2

p

d

dp
− 2

p2

= 4(0)
p − 2

p2
, (5.12)

72



we finally obtain

MΦ(p) = 2E(p)Φ(p)

−a

2

[
η14(0)

p Φ(p) + η2
m2

E(p)
4(0)

p

(
Φ(p)

E(p)

)
+ η3

p

E(p)

(
4(0)

p − 2

p2

)(
p

E(p)
Φ(p)

)]

=
[
2E(p)− a

2

(
η1 +

η2m
2 + η3p

2

E2(p)

)
4(0)

p − a(η3 − η2)
m2p

E4(p)

d

dp

+
a

2E6(p)

(
3η2m

4 + η3p
2(5m2 + 2p2)

)]
Φ(p) (5.13)

where the parameters ηi take the values shown in the following table.

m1 = m2 1⊗ 1 γ0 ⊗ γ0 γµ ⊗ γµ γ5 ⊗ γ5 BJK

η1 −1 1 4 −1 2

η2 −1 1 −2 1 0

η3 1 1 0 1 0

Table 5.1: Values of parameter ηi.

These parameter ηi are connected with the parameters εi listed in Table 2.1

η1 = ε1, η2 = ε3, η3 = ε4.

Now we write the reduced Salpeter eigenvalue equation for each Lorentz structure

kernel respectively. For Lorentz-scalar structure kernel, Γ⊗ Γ = 1⊗ 1,

MΦ(p) =
[
2E(p) + a

( 1

E2(p)
+

m2(p2 − 5m2)

2E6(p)
− 2m2p

E4(p)

d

dp
+

m2

E2(p)
4(0)

p

)]
Φ(p),

(5.14)

for time-component Lorentz-vector structure kernel, Γ⊗ Γ = γ0 ⊗ γ0,

MΦ(p) =
[
2E(p) + a

(2p2 + 3m2

2E4(p)
−4(0)

p

)]
Φ(p), (5.15)

for Lorentz-vector structure kernel, Γ⊗ Γ = γµ ⊗ γµ,

MΦ(p) =
[
2E(p)− 3am4

E6(p)
− 2am2p

E4(p)

d

dp
− a

(
2− m2

E2(p)

)
4(0)

p

]
Φ(p), (5.16)
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for Lorentz-pseudoscalar structure kernel, Γ⊗ Γ = γ5 ⊗ γ5,

MΦ(p) =
[
2E(p) + a

2p2 + 3m2

2E4(p)

]
Φ(p), (5.17)

and, for Böhm-Joos-Krammer (BJK) kernel [25, 26], Γ⊗ Γ = 1
2
(γµ ⊗ γµ + γ5⊗ γ5−

1⊗ 1),

MΦ(p) =
[
2E(p)− a4(0)

p

]
Φ(p). (5.18)

Evidently, for the Lorentz-pseudoscalar structure γ5⊗γ5, the harmonic-oscillator

reduced Salpeter equation is represented by a pure multiplication operator. This

leads to the continuous eigenvalue spectrum for the Hamiltonian. In other words,

there are no bound states.

5.3 Transformation to Schrödinger Equation

For nonvanishing mass of bound-state constituents, i.e., m 6= 0, the ordinary dif-

ferential equations corresponding to the harmonic-oscillator reduced Salpeter equa-

tion with Lorentz-scalar and Lorentz-vector structure are not the standard form

of Schrödinger eigenvalue equations. In order to investigate this analytically, we

try to transform both of them to the form of the second-order ordinary differential

equation

[
− d2

dp2
− 2g(p)

d

dp
+ h(p)

]
Φ(p) = 0. (5.19)

This equation involves two functions, g(p) and h(p). The mass eigenvalue of

bound state, M , appearing in the function h(p) only, is a parameter. By replacing

the amplitude Φ(p) with Φ(p) = f(p)ψ(p) we obtain the eigenvalue equation for

ψ(p)

{
− d2

dp2
− 2

[ 1

f(p)

d

dp
f(p) + g(p)

] d

dp
+

[
h(p)− 2

g(p)

f(p)

d

dp
f(p)− 1

f(p)

d2

dp2
f(p)

]}
ψ(p)

= 0 . (5.20)

In order to transform it to the Schrödinger type operator

−4(0)
p + U(p) = − d2

dp2
− 2

p

d

dp
+ U(p), (5.21)
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we choose function f(p) and g(p) satisfying

1

f(p)

d

dp
f(p) + g(p) =

1

p
, (5.22)

it follows

f(p) = p exp
[
−

∫
dpg(p)

]
(5.23)

and leads to

1

f(p)

d2

dp2
f(p) = g(p)2 − d

dp
g(p)− 2g(p)

p
. (5.24)

With the aid of Eq. (5.22) and (5.24), the eigenvalue equation (5.20) finally becomes

{
− d2

dp2
− 2

p

d

dp
+

[
h(p) +

d

dp
g(p) + g2(p)

]}
ψ(p) = 0 . (5.25)

Corresponding to eigenvalue 0, with the Schrödinger type operator −4(0)
p + U(p),

the potential U(p) becomes

U(p) = h(p) +
d

dp
g(p) + g2(p) . (5.26)

Now we apply this transformation approach to the two Lorentz structure inter-

action kernels.

• For the kernels of Lorentz-scalar structure Γ⊗Γ = 1⊗ 1, recalling the eigen-

value equation (5.14), with simply steps we obtain
{
− d2

dp2
− 2

[
1

p
− p

E2(p)

]
d

dp
+

E2(p)

am2
[M − 2E(p)]− 2E4(p) + m2p2 − 5m4

2m2E4(p)

}
Φ(p)

= 0. (5.27)

Comparing this equation with Eq. (5.19), one easily finds

g(p) =
1

p
− p

E2(p)
, (5.28)

h(p) =
E2(p)

am2
[M − 2E(p)]− 2E4(p) + m2p2 − 5m4

2m2E4(p)
. (5.29)

The integration of g(p) gives f(p) = E(p). By inserting Eq. (5.28) and (5.29) into

Eq. (5.26), we obtain the potential

U(p) =
E2(p)

am2
[M − 2E(p)]− 1

m2
− 1

2E2(p)
. (5.30)
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Finally the eigenvalue equation (5.20) becomes the standard Schrödinger type

equation

[−4(0)
p + U(p)]ψ(p) = 0. (5.31)

• For the kernels of Lorentz-vector structure Γ⊗ Γ = γµ ⊗ γµ, using the same

approach we obtain

g(p) =
1

p
+

m2p

E2(p)[E2(p) + p2]
, (5.32)

h(p) =
E2(p)[2E(p)−M ]

a[E2(p) + p2]
− 3m4

E4(p)[E2(p) + p2]
. (5.33)

The integration of g(p) gives

f(p) =
E(p)√

E2(p) + p2
. (5.34)

Inserting the above equations (5.32) and (5.33) into the potential function (5.26)

yields

U(p) =
E2(p)[2E(p)−M ]

a[E2(p) + p2]
− 2m2p2

E2(p)[E2(p) + p2]
. (5.35)

In the following, using the path paved above we discuss the harmonic-oscillator

reduced Salpeter equation for the exact-propagator case in the frame of Schrödinger

type equation.

5.4 Exact Propagator Harmonic Oscillator Reduced

Salpeter Equation as Differential Equation

In the last section, the harmonic-oscillator reduced Salpeter equation was discussed

with free-propagator. In this section we extend it to the exact-propagator case.

With the mass function m(p2) and wave-function renormalization function Z(p2)

(see Eq. (3.3)), the reduced Salpeter eigenvalue equation for various Lorentz-

structure kernel becomes

MΦ(p) = 2E(p)Φ(p)

+
1

2
Z2(p2)

∫ ∞

0

dp′p′2

(2π)2

(
η1V0 + η2

m

E(p)
V0

m

E(p′)
+ η3

p

E(p)
V1

p′

E(p′)

)
Φ(p′),

(5.36)
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where the energy E(p) =
√

p2 + m2(p2).

The corresponding ordinary differential equations for harmonic-oscillator reduced

Salpeter equations with exact propagator read:

MΦ(p) =
[
2E(p)− a

2

(
η1 +

η2m
2 + η3p

2

E2(p)

)
Z2(p2)4(0)

p − a(η3 − η2)
m2p

E4(p)
Z2(p2)

d

dp

+
a

2E6(p)

(
3η2m

4 + η3p
2(5m2 + 2p2)

)
Z2(p2)

]
Φ(p), (5.37)

where m = m(p2) is the mass function of the exact propagator.

5.5 Summary and Conclusion

In this chapter we transformed the reduced Salpeter equations with harmonic-

oscillator interaction into differential equations. For both free-propagator Salpeter

equation and exact-propagator instantaneous Bethe-Salpeter equation with the harmonic-

oscillator potential we derived their corresponding eigenvalue equations for various

Lorentz structure interaction kernels. For some special kernels such as Lorentz-scalar

structure and Lorentz-vector structure, the reduced Salpeter eigenvalue equation can

be transformed to the standard Schrödinger type equation which can be computed

analytically.
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Appendix A

Properties of γ matrices

In the present work, we use the metric tensor

gµν = gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




. (A.1)

The four-vectors are denoted by light italic type and the three-vectors are denoted

by bold-face type:

xµ = (x0,x), xµ = gµνx
ν = (x0,−x), (A.2)

p · x = gµνp
µxν = p0x0 − p · x, (A.3)

where µ, ν = 0, 1, 2, 3.

The Dirac γ matrices used in this work are

γ0 =


 I 0

0 −I


 , γi =


 0 σi

−σi 0


 , (A.4)

γ5 ≡ −iγ0γ1γ2γ3 = −

 0 I

I 0


 , (A.5)

where the Pauli matrices are

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 . (A.6)
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Trace identities of γ matrices

tr(odd number of γ) = 0 (A.7)

tr(γµγν) = 4gµν (A.8)

tr(γ5) = 0. (A.9)

Hermitian properties of γ matrices

(γ5)† = γ5 (A.10)

(γµ)† = γ0γµγ0. (A.11)

Commutation and anti-commutation relations

[γi, γj] = −2iεijkσ
kI, (A.12)

where εijk is the antisymmetric symbol with ε123 = 1,

{γµ, γν} = 2gµν (A.13)

{γ5, γµ} = 0. (A.14)
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Appendix B

The Generalized Laguerre Basis

for Radial Functions

In the present work we use the generalized Laguerre basis to transform the Salpeter

eigenvalue equations to a set of matrix equations as stated in Refs. [88, 89]. In

Hilbert space L2(R
3) all square-integrable functions can be expanded on a com-

plete set of basis functions. Each of which can be expressed as the product of a

radial function and an angular function. The latter is represented by a spherical

harmonic function Ylm(Ω) for angular momentum l = 0, 1, 2, ... and its projection

m = −l,−l + 1, ..., +l. Ylm(Ω) depends on the solid angle Ω ≡ (θ, φ) and satisfies

the orthonormalization condition

∫
dΩY∗lm(Ω)Yl′m′(Ω) = δll′δmm′ . (B.1)

By using Fourier-Bessel transformation, the configuration-space representation

Φ
(l)
i (r) and the momentum-space representation φ

(l)
i (p) of the radial functions are

related to each other.

φ
(l)
i (r) = il

√
2

π

∫ ∞

0
dp p2jl(pr)φ

(l)
i (p), i = 0, 1, 2, ... , l = 0, 1, 2, ... , (B.2)

φ
(l)
i (p) = (−i)l

√
2

π

∫ ∞

0
dr r2jl(pr)φ

(l)
i (r), i = 0, 1, 2, ... , l = 0, 1, 2, ... . (B.3)

The spherical Bessel functions of the first kind, jn(z)(n = 0,±1,±2, ...) [74], are

remnants of the angular integration. They can be easily deduced from the expansion
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of the plane wave functions over spherical harmonics Ylm(Ω) in configuration (Ωr)

and momentum (Ωp) space

exp(ip · x) = 4π
∞∑

l=0

+l∑

m=−l

iljl(pr)Y∗lm(Ωp)Yl′m′(Ωr). (B.4)

We choose the radial basis in configuration-space representation

φ
(l)
i =

√√√√ (2µ)2l+3i!

Γ(2l + i + 3)
rlexp(−µr)L

(2l+2)
i (2µr), i = 0, 1, 2, ... , (B.5)

where the orthogonal polynomials of generalized-Laguerre type L
(l)
i (x) are

L
(γ)
i (x) =

i∑

t=0

(−1)t


 i + γ

i− t


 xt

t!
, i = 0, 1, 2, ... , (B.6)

which satisfy the orthonormal-relation
∫ ∞

0
dxxγexp(−x)L

(γ)
i (x)L

(γ)
j (x) =

Γ(γ + i + 1)

i!
δij, i, j = 0, 1, 2, ... . (B.7)

These basis functions involve one positive real parameter µ which has the dimen-

sion of mass. The normalization condition requires µ > 0. And these radial basis

functions satisfy the orthonormalization condition
∫ ∞

0
dr r2φ

(l)
i (r)φ

(l)
j (r) = δij, i, j = 0, 1, 2, ... . (B.8)

The corresponding momentum-space representation φ
(l)
i (p) of the basis function is

φ
(l)
i (p) =

√√√√ (2µ)(2l+3)i!

Γ(2l + i + 3)

(−i)lpl

2l+ 1
2 Γ

(
l + 3

2

)
i∑

t=0

(−1)t

t!


 i + 2l + 2

i− t


 Γ(2l + t + 3)(2µ)t

(p2 + µ2)(2l+t+3)/2

×F

(
2l + t + 3

2
,−1 + t

2
; l +

3

2
;

p2

p2 + µ2

)
, i = 0, 1, 2, ... . (B.9)

The hypergeometric F (u, v; ω; z) function is given in terms of the gamma function

Γ by

F (u, v; ω; z) =
Γ(ω)

Γ(u)Γ(v)

∞∑

n=0

Γ(u + n)Γ(v + n)

Γ(ω + n)

zn

n!
. (B.10)

In the momentum space the radial basis function Φ
(l)
i (p) satisfies the orthonor-

malization condition
∫ ∞

0
dp p2φ

∗(l)
i (p)φ

(l)
j (p) = δij, i, j = 0, 1, 2, ... . (B.11)
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For all even values of l, the basis functions are real

φ
∗(l)
i (p) = φ

(l)
i (p), l = 0, 2, 4, ... , i = 0, 1, 2, ... . (B.12)

In this thesis, we mainly use the radial functions for two values l = 0 and l = 1 of

the angular momentum. In momentum space we are just employing the expressions:

φ
(0)
i (p) =

√
i!

µπΓ(i + 3)

4

p

i∑

t=0

(−2)t(t + 1)


 i + 2

i− t




(
1 +

p2

µ2

)−(t+2)/2

× sin

(
(t + 2)arctan

p

µ

)

=
Im{(p + iµ)2i+3[p− i(3 + 2i)µ]}√

µπ(i + 1)(i + 2)p(p2 + µ2)2+i
, (B.13)

φ
(1)
i (p) = −i

√√√√ µ5

π(i + 1)(i + 2)(i + 3)(i + 4)

8

p2

i∑

t=0

(−2)t

t!


 i + 4

i− t


 (t + 3)!µt

(p2 + µ2)(t+3)/2

×
[√

p2 + µ2

t + 2
sin

(
(t + 2)arctan

p

µ

)
− µ

t + 3
sin

(
(t + 3)arctan

p

µ

)]

=
i

2
√

µ3π(i + 1)(i + 2)(i + 3)(i + 4)p2(p2 + µ2)3

× Im

{
(p− iµ)i+5

(p + iµ)i
[3p3 + 3i(5 + 2i)p2µ− (5 + 2i)2pµ2 − i(5 + 2i)µ3]

}
.(B.14)
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Appendix C

Formula of Sθ(p), Cθ(p), Sφ(p), Cφ(p)

For convenience of expression, we have made the substitutions:

Sθ(p) → Sθ, Cθ(p) → Cθ; mi(p) → mi, Ei(p) → Ei, i = 1, 2. (C.1)

In the thesis Sθ, Cθ, Sφ, Cφ are

Sθ =

√
E1E2 − p2 −m1m2

2E1E2

, Cθ =

√
E1E2 + p2 + m1m2

2E1E2

,

Sφ =

√
E1E2 − p2 + m1m2

2E1E2

, Cφ =

√
E1E2 + p2 −m1m2

2E1E2

.

The products of Sθ, Cθ, Sφ, Cφ can be written as

SθSφ = p
E2 − E1

2E1E2

, SθCφ =
|m1E1 −m2E2|

2E1E2

, (C.2)

SθCθ = p
|m1 −m2|

2E1E2

, CθSφ =
m1E2 + m2E1

2E1E2

,

CθCφ = p
E2 + E1

2E1E2

, SφCφ = p
m1 + m2

2E1E2

.

If the constituents of bound state have the same masses, i.e., m1 = m2 = m and

E1 = E2 = E we have

Sθ = 0, Cθ = 1,

Sφ =
m

E
, Cφ =

p

E
. (C.3)
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Appendix D

Codes of the Numerical

Calculation

Here we present as an example the computation codes for the numerical calcula-

tions of Salpeter eigenvalue equation with time-component Lorentz-vector interac-

tion structure Γ⊗Γ = γ0⊗γ0, and for the relevant computations of the pseudoscalar

ud̄/dū bound state. These codes are also suitable to other pseudoscalar bound states.

All codes are compiled within Mathematica 5.0.

D.1 Codes for the Salpeter Eigenvalue Equation

with γ0 ⊗ γ0 Interaction Structure

**********************************************************************

(* input parameters:
“m1[p]” and “m2[p]” are constituent mass functions of the pseudoscalar bound state;
“Z1[p]” and “Z2[p]” are wave function renormalization function of quark propagator;
“x” is the number of matrix bases. *)

m1[p− ] =
0.745

1 +
p4

0.7444

+ 0.0055;

m2[p− ] =
0.745

1 +
p4

0.7444

+ 0.0055;
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Z1[p− ] = 1− 0.545

1 +
p2

1.855082

;

Z2[p− ] = 1− 0.545

1 +
p2

1.855082

;

λ = 1;

x = 50;

µ = 1;

(*main program *)

phip0[s− , p− , µ− ] :=
1√

πµp(p2 + µ2)2+s
∗

√
1

2 + 3s + s2
∗ Im[(p + iµ)2s+3(p− i(3 + 2s)µ)]

(* here the i denotes the imaginary unit *)

phip1[s− , p− , µ− ] := i

√
1

µ3(1 + s)(2 + s)(3 + s)(4 + s)
∗ 1

2p2
√

π(p2 + µ2)3
∗ Im[

(p− iµ)s+5

p + iµs

∗(3p3 + 3ip2(5 + 2s)µ− p(5 + 2s)2µ2 − i(5 + 2s)µ3)]

a[i− , j− , µ− ] := NIntegrate[p2 ∗ (m1[p]2 + p2) ∗ phip0[j, p, µ] ∗ phip0[i, p, µ], {p, 0,∞}]

a[x− , µ− ] := Table[a[i− 1, j− 1, µ], {i, 1, x}, {j, 1, x}]

bu1j[u1− , j− , µ− ] := NIntegrate[p2 ∗ Z1[p]2 ∗
√

m1[p]2 + p2 ∗ phip0[j, p, µ] ∗ phip[u1,p, µ], {p, 0,∞}

bu1j[x− , µ− ] := Table[bu1j[u1− 1, j− 1, µ], {u1, 1, x}, {j, 1, x}]

cju2[u2− , j− , µ− ] := NIntegrate[
p2 ∗ Z1[p]2 ∗m1[p]√

m1[p]2 + p2
∗ phip0[u2, p, µ] ∗ phip0[j, p, µ], {p, 0,∞}]

cju2[x− , µ− ] := Table[cju2[u2− 1, j− 1, µ], {u2, 1, x}, {j, 1, x}

du3j[u3− , j− , µ− ] := NIntegrate[
p3 ∗ Z1[p]2√
m1[p]2 + p2

∗ Conjugate[phip1[j,p, µ]] ∗ phip0[u3, p, µ], {p, 0,∞}]

eu4i[u4− , i− , µ− ] := NIntegrate[p3 ∗ Conjugate[phip1[i, p, µ]] ∗ phip0[u4, p, µ], {p, 0,∞}]
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eu4i[x− , µ− ] := Table[eu4i[u4− 1, i− 1, µ], {u4, 1, µ}, {i, 1, x}]

fiu5[u5− , i− , µ− ] := NIntegrate[p2 ∗m1[p] ∗ phip0[u5, p, µ] ∗ phip[i, p, µ], {p, 0,∞}]

fiu5[x− , µ− ] := Table[fiu5[u5− 1, i− 1, µ], {u5, 1, x}, {i, 1, x}]

v[n− ,u− , a− ,b− ,beta− , ell− , µ− ] :=
a

(2µ)b
∗ Sqrt[

n!u!
Gamma[2ell + 2beta + n + 1]

∗ 1
Gamma[2ell + 2beta + u + 1]

] ∗ Sum[Sum[
(−1)s+r

s!r!
∗ Binomial[n + 2beta + 2ell,n− r]

∗Binomial[u + 2beta + 2ell,u− s] ∗Gamma[s + r + b + 1 + 2beta + 2ell], {s, 0, u}, {r, 0, n}]]

v1[x− , a− ,b− , beta− , ell− , µ− ] := Table[v[n− 1, u− 1, a, b, beta, ell, µ], {n, 1, x}, {u, 1, x}]

a = a[x, µ]

b = bu1j[x, µ];

c = cju2[x, µ];

d = du3j[x, µ];

e = eu4i[x, µ];

f = fiu5[x, µ];

Vo = v1[x, λ, 1, 1, 0, µ];

Vl = v1[x, λ, 1, 1, 1, µ];

Msquared = 4 ∗ a + 2 ∗ b . Vo + 2 ∗ c . Vo . f + c .Vo . c . Vo + 2 ∗ Conjugate[d] . Vl . Transpose[e]

+Conjugate[d] . Vl . Transpose[d] . Vo;

Print[“mass eigenvalues”]

Mmatr = Chop[Sqrt[Eigenvalues[Msquared]]]

eigenvec = Chop[Eigenvectors[Msquared]];
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Phip[p− ] := Table[phip0[s− 1,p, 1], {s, 1, 50}]

MPhip[p− ] := eigenvec . Phip[p]

Print[“radial Salpeter function Φ2(p) in momentum space”]

MPhipvx[p− ] := Part[eigenvec . Phip[p], x]

MPhipvx1[p− ] := Part[eigenvec . Phip[p], x− 1]

MPhipvx2[p− ] := Part[eigenvec . Phip[p], x− 2]

Print[“Salpeter component function Φ2(p) of the ground state in momentum space”]

p1 = Plot[MPhipvx[p], {p, 0, 7}, PlotStyle → {Thickness[0.003], RGBColor{[1, 0, 0]}},
PlotRange → {{0, 1.5}, {−4, 20}}]

Print[“Salpeter component function Φ2(p) of the first excited state in momentum space”]

p2 = Plot[MPhipvx1[p], {p, 0, 7}, PlotStyle → {Thickness[0.003], Dashing[{0.015}],
{RGBColor{[0, 1, 0]}},PlotRange → {{0, 1.5}, {−4, 20}}]

Print[“Salpeter component function Φ2(p) of the second excited state in momentum space”]

p3 = Plot[MPhipvx2[p], {p, 0, 7}, PlotStyle → {Thickness[0.003], Dashing[{0.03}],
RGBColor{[0, 0, 1]}},PlotRange → {{0, 1.5}, {−4, 20}}]

Show[p1,p2,p3]

Print[“Salpeter component function Φ2(r) in configuration space”]

phir[i− , µ− , r− ] := Sqrt[
(2µ)3i!

Gamma[3 + i]
] ∗ Exp[−µr] ∗ LaguerreL[i, 2, 2µr]

Phir[r− ] := Table[phir[i− 1, µ, r], {i, 1, x}]

pr1[r− ] := N[Part[eigenvec . Phir[r], x]]

pr2[r− ] := N[Part[eigenvec . Phir[r], x− 1]]

pr3[r− ] := N[Part[eigenvec . Phir[r], x− 2]]
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Print[“Salpeter component function Φ2(r) of the ground state in configuration space”]

pr1 = Plot[pr1[r], {r, 0, 16},PlotStyle → {Thickness[0.003], RGBColor[1, 0, 0]},
PlotRange → {{0, 16}, {−0.1, 0.4}}]

Print[“Salpeter component function Φ2(r) of the first excited state in configuration space”]

pr2 = Plot[−pr2[r], {r, 0, 16}, PlotStyle → {Thickness[0.003],Dashing[{0.015}],
RGBColor[0, 1, 0]},PlotRange → {{0, 16}, {−0.1, 0.4}}]

Print[“Salpeter component function Φ2(r) of the second excited state in configuration space”]

pr3 = Plot[pr3[r], {r, 0, 16},PlotStyle → {Thickness[0.003], Dashing[{0.03}],
RGBColor[0, 0, 1]},PlotRange → {{0, 16}, {−0.1, 0.4}}]

Show[pr1, pr2, pr3]

***********************************************************************************

D.2 Codes for Calculation of the Pseudoscalar Bound

State

The numerical calculations of the mass eigenvalue for pseudoscalar bound state in
this work are performed by Mathematica 5.0. The following Mathematica codes are
compiled to solve the Salpeter eigenvalue equations with an intanton interaction for
the pseudoscalar ud̄/dū bound state within Koll’s model [20, 21].

**********************************************************************

Print[“Exact-propagator instantaneous Bethe-Salpeter equation with an instanton induced inter-
action”]
Print[“ud̄,dū”]
(* input parameters:
“m1[p]” and “m2[p]” are u- and d-quark mass function respectively;
“Z1[p]” and “Z2[p]” are renormalization wave function for u- and d-quark propagator respectively;
“ac” and “bc” denote the parameters in the potential V(r) = ac + bc · r;
“x” is the number of matrix bases used here. *)
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m1[p− ] =
0.745

1 +
p4

0.7444

+ 0.0055;

m2[p− ] =
0.745

1 +
p4

0.7444

+ 0.0055;

Z1[p− ] = 1− 0.545

1 +
p2

1.855082

;

Z2[p− ] = 1− 0.545

1 +
p2

1.855082

;

ac = −1.135;

bc = 0.256525;

x = 50;

µ = 1;

(*main program *)

phip0[s− , p− , µ− ] :=
1√

πµp(p2 + µ2)2+s
∗

√
1

2 + 3s + s2
∗ Im[(p + iµ)2s+3(p− i(3 + 2s)µ)]

(* here the i denotes the imaginary unit *)

phir0[s− , r− , µ− ] :=

√
(2µ)3s!

Gamma[3 + s]
∗ Exp[−µr] ∗ Sum[(−1)t ∗ Binomial[2 + s, s− t] ∗ (2µr)t

t!
,

{t, 0, s}]

Cθ[p− ] := Sqrt[

√
m1[p]2 + p2 ∗

√
m1[p]2 + p2 + p2 + m1[p] ∗m2[p]

2
√

m1[p]2 + p2 ∗
√

m1[p]2 + p2
]

a[i− , j− , µ− ] := NIntegrate[p2 ∗ (
√

m1[p]2 + p2 +
√

m2[p]2 + p2)2 ∗ phip0[j, p, µ] ∗ phip0[i, p, µ],

{p, 0,∞}] (* here and in the following, the i is an index symbol *)

a[x− , µ− ] := Table[a[i− 1, j− 1, µ], {i, 1, x}, {j, 1, x}]

b[i− , j− , µ− ] := NIntegrate[p2 ∗ (
√

m1[p]2 + p2 +
√

m2[p]2 + p2) ∗ Z1[p] ∗ Z2[p] ∗ Cθ[p]

∗phip0[j, p, µ] ∗ phip0[i, p, µ], {p, 0,∞}]
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b[x− , µ− ] := Table[b[i− 1, j− 1, µ], {i, 1, x}, {j, 1, x}]

c[i− , j− , µ− ] := NIntegrate[p2 ∗ Cθ[p] ∗ phip0[j, p, µ] ∗ phip0[i, p, µ],p, 0,∞]

c[x− , µ− ] := Table[c[i− 1, j− 1, µ], {i, 1, x}, {j, 1, x}]

v[n− ,u− , a− ,b− ,beta− , ell− , µ− ] :=
a

(2µ)2
∗ Sqrt[

n!u!
Gamma[2ell + 2beta + n + 1]

∗Gamma[2ell + 2beta + u + 1])] ∗ Sum[Sum[
(−1)s+r

s!r!
∗ Binomial[n + 2beta + 2ell, n− r]

∗Binomial[u + 2beta + 2ell,u− s] ∗Gamma[s + r + b + 1 + 2beta + 2ell], {s, 0, u}, {r, 0, n}]]

v1[x− , a− ,b− , beta− , ell− , µ− ] := Table[v[n− 1, u− 1, a, b, beta, ell, µ], {n, 1, x}, {u, 1, x}]

vlu1u2[u1− , u2− , µ− ] := NIntegrate[r2 ∗ 1
(2.12845

√
π)3

∗ Exp[
−r2

2.128452
] ∗ phir0[u2, r, µ] ∗ phir0[u1, r, µ],

{r, 0,∞}]

vlu1u2[x− , µ− ] := Table[vlu1u2[u1− 1, u2− 1, µ], {u2, 1, x}, {u1, 1, x}]

A = a[x, µ];

b = b[x, µ];

b = c[x, µ];

vo = ac ∗ IdentityMatrix[x] + v1[x, bc, 1, 1, 0, µ];

vl = vlu1u2[x, µ];

Msquared = A + 2 ∗ b . vo . c− 16 ∗ 1.62 ∗ b . vl . c;

Print[“mass eigenvalues”]

Mmatr = Chop[Sqrt[Eigenvalues[Msquared]]] (*the mass eigenvalues*)

eigenvec = Chop[Eigenvectors[Msquared]];

Phip[p− ] := Table[phip0[s− 1,p, 1], {s, 1, 50}]

MPhip[p− ] := eigenvec . Phip[p]

Print[“eigenfunctions in momentum space”]
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MPhipvx[p− ] := Part[eigenvec . Phip[p], x]

MPhipvx1[p− ] := Part[eigenvec . Phip[p], x− 1]

MPhipvx2[p− ] := Part[eigenvec . Phip[p], x− 2]

Print[“eigenfunction of the ground state in momentum space”]

p1 = Plot[MPhipvx[p], {p, 0, 7}, PlotStyle → {Thickness[0.003], RGBColor{[1, 0, 0]}},
PlotRange → {{0, 4}, {−3, 16}}]

Print[“eigenfunction of the first excited state in momentum space”]

p2 = Plot[MPhipvx1[p], {p, 0, 7}, PlotStyle → {Thickness[0.003], Dashing[{0.015}],
{RGBColor{[0, 1, 0]}},PlotRange → {{0, 4}, {−3, 16}}]

Print[“eigenfunction of the second excited state in momentum space”]

p3 = Plot[MPhipvx2[p], {p, 0, 7}, PlotStyle → {Thickness[0.003], Dashing[{0.03}],
RGBColor{[0, 0, 1]}},PlotRange → {{0, 4}, {−3, 16}}]

Show[p1,p2,p3]

Print[“eigenfunctions in configuration space”]

phir[i− , µ− , r− ] := Sqrt[
(2µ)3i!

Gamma[3 + i]
] ∗ Exp[−µr] ∗ LaguerreL[i, 2, 2µr]

Phir[r− ] := Table[phir[i− 1, µ, r], {i, 1, x}]

pr1[r− ] := N[Part[eigenvec . Phir[r], x]]

pr2[r− ] := N[Part[eigenvec . Phir[r], x− 1]]

pr3[r− ] := N[Part[eigenvec . Phir[r], x− 2]]

Print[“eigenfunction of the ground state in configuration space”]

pr1 = Plot[pr1[r], {r, 0, 20},PlotStyle → {Thickness[0.003], RGBColor[1, 0, 0]},
PlotRange → {{0, 14}, {−0.2, 0.7}}]
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Print[“eigenfunction of the first excited state in configuration space”]

pr2 = Plot[pr2[r], {r, 0, 20},PlotStyle → {Thickness[0.003], Dashing[{0.015}],
RGBColor[0, 1, 0]},PlotRange → {{0, 14}, {−0.2, 0.7}}]

Print[“eigenfunction of the second excited state in configuration space”]

pr3 = Plot[pr3[r], {r, 0, 20},PlotStyle → {Thickness[0.003], Dashing[{0.03}],
RGBColor[0, 0, 1]},PlotRange → {{0, 14}, {−0.2, 0.7}}]

Show[pr1, pr2, pr3]

*************************************************************************************

Running this code, the mass eigenvalues and plots of eigenfunction in momentum-

and configuration-space for the pseudoscalar bound state ud̄/dū will be obtained.

In the case of free-propagator, one just needs to change the input parameters, i.e.

replace the quark mass functions by the corresponding constituent quark masses

and at the same time set Z1[p] = Z2[p] = 1. This code is also suitable to han-

dle other pseudoscalar quark-antiquark bound states, such as pseudoscalar meson

us̄/sū, uc̄/cū, sc̄/cs̄ and so on - one needs to employ the quark mass functions and

the wave function renormalization functions listed in table 4.2.
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Appendix E

Plots of Eigenfunctions in

Momentum Space

E.1 Plots of Eigenfunctions of the Reduced Salpeter

Equation
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Figure E.1: Eigenfunctions of the reduced Salpeter equation for the three lowest states with
vanishing constituent mass m1 = m2 = 0GeV for time-component Lorentz-vector structure Γ⊗Γ =
γ0 ⊗ γ0 with harmonic oscillator potential V (r) = r2.
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Figure E.2: Eigenfunctions of the reduced Salpeter equation for the three lowest states with
vanishing constituent mass m1 = m2 = 0GeV for Lorentz-vector structure Γ ⊗ Γ = γµ ⊗ γµ with
harmonic oscillator potential V (r) = r2.
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Figure E.3: Eigenfunctions of the reduced Salpeter equation for the three lowest states with
vanishing constituent mass m1 = m2 = 0GeV for Böhm-Joos-Krammer (BJK) structure Γ⊗ Γ =
1
2 (γµ ⊗ γµ + γ5 ⊗ γ5 − 1⊗ 1) with harmonic oscillator potential V (r) = r2.
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Figure E.4: Eigenfunctions of the reduced Salpeter equation for the three lowest states with
light-quark constituent mass m1 = m2 = 0.336GeV (for free-propagator) and renormalization
mass function and wave-function renormalization function (3.3), (3.4) (for exact-propagator), with
harmonic oscillator potential V (r) = r2, for Lorentz-scalar structure Γ⊗ Γ = 1⊗ 1.
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Figure E.5: Eigenfunctions of the reduced Salpeter equation for the three lowest states with
light-quark constituent mass m1 = m2 = 0.336GeV (for free-propagator) and renormalization
mass function and wave-function renormalization function (3.3), (3.4), with harmonic oscillator
potential V (r) = r2, for time-component Lorentz-vector structure Γ⊗ Γ = γ0 ⊗ γ0.
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Figure E.6: Eigenfunctions of the reduced Salpeter equation for the three lowest states with
light-quark constituent mass m1 = m2 = 0.336GeV (for free-propagator) and renormalization
mass function and wave function renormalization function (3.3), (3.4), with harmonic oscillator
potential V (r) = r2, for Lorentz-vector structure Γ⊗ Γ = γµ ⊗ γµ.
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Figure E.7: Eigenfunctions of the reduced Salpeter equation for the three lowest states with
light-quark constituent mass m1 = m2 = 0.38GeV (for free-propagator) and renormalization mass
function and wave function renormalization function (3.3), (3.4), with harmonic oscillator potential
V (r) = r2, for Böhm-Joos-Krammer (BJK) structure Γ⊗ Γ = 1

2 (γµ ⊗ γµ + γ5 ⊗ γ5 − 1⊗ 1).
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E.2 Plots of Eigenfunctions of the Full Salpeter

Equation

1 2 3 4 5 6 7

p GeV

-0.25

0

0.25

0.5

0.75

1

1.25

1.5
2
p
G
e
V
3
2

11S0
21S0
31S0

0 0

Figure E.8: Salpeter component functions Φ2(p) of the free-propagator full Salpeter equation
for the three lowest bound states with vanishing constituent mass m1 = m2 = 0GeV for time-
component Lorentz-vector structure Γ⊗Γ = γ0⊗ γ0 with harmonic oscillator potential V (r) = r2.
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Figure E.9: Salpeter component functions Φ2(p) of the free-propagator full Salpeter equation for
the three lowest bound states with vanishing constituent mass m1 = m2 = 0GeV for Böhm-Joos-
Krammer (BJK) structure Γ⊗Γ = 1

2 (γµ⊗ γµ + γ5⊗ γ5− 1⊗ 1) with harmonic oscillator potential
V (r) = r2.
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Figure E.10: Salpeter component functions Φ2(p) of the free-propagator full Salpeter equation
for the three lowest bound states with vanishing constituent mass m1 = m2 = 0GeV for Lorentz-
vector structure Γ⊗ Γ = γµ ⊗ γµ with harmonic oscillator potential V (r) = r2. These two figures
are the same but with a different scale.
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Figure E.11: Salpeter component functions Φ2(p) of the free-propagator full Salpeter equation
(full lines) and exact-propagator instantaneous Bethe-Salpeter equation (dashed lines) for the three
lowest bound states with light-quark constituent mass m1 = m2 = 0.336GeV (for free-propagator)
and renormalization mass function and wave-function renormalization function (3.3), (3.4) (for
exact-propagator), with harmonic oscillator potential V (r) = r2, for time-component Lorentz-
vector structure interaction kernel Γ⊗ Γ = γ0 ⊗ γ0.
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Figure E.12: Salpeter component functions Φ2(p) of the free-propagator full Salpeter equation
(full lines) and exact-propagator instantaneous Bethe-Salpeter equation (dashed lines) for the
three lowest bound states with light-quark constituent mass m1 = m2 = 0.336GeV (for free-
propagator) and renormalization mass function and wave-function renormalization function (3.3),
(3.4) (for exact-propagator), with harmonic oscillator potential V (r) = r2, for Lorentz-vector
structure Γ⊗ Γ = γµ ⊗ γµ.
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Figure E.13: Salpeter component functions Φ2(p) of the free-propagator full Salpeter equation
(full lines) and exact-propagator instantaneous Bethe-Salpeter equation (dashed lines) for the three
lowest bound states with light-quark constituent mass m1 = m2 = 0.38GeV (for free-propagator)
and renormalization mass function and wave-function renormalization function (3.3), (3.4) (for
exact-propagator), with harmonic oscillator potential V (r) = r2, for Böhm-Joos-Krammer (BJK)
structure Γ⊗ Γ = 1

2 (γµ ⊗ γµ + γ5 ⊗ γ5 − 1⊗ 1).

E.3 Plot of Eigenfunctions of the Full Salpeter

Equation for Mesons
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Figure E.14: Salpeter component functions Φ2(p) of the three lowest states of instanton-induced
Salpeter equation for ud̄/dū with free propagator (full lines) and exact propagator (dashed lines)
in momentum space.
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Figure E.15: Salpeter component functions Φ2(p) of the three lowest states of instanton-induced
Salpeter equation for us̄/sū; ds̄/sd̄ with free propagator (full lines) and exact propagator (dashed
lines) in momentum space.
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Figure E.16: Salpeter component functions Φ2(p) of the three lowest states of instanton-induced
Salpeter equation for uc̄/cū; dc̄/cd̄ with free propagator (full lines) and exact propagator (dashed
lines) in momentum space.
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Figure E.17: Salpeter component functions Φ2(p) of the three lowest states of instanton-induced
Salpeter equation for ub̄/bū; db̄/bd̄ with free propagator (full lines) and exact propagator (dashed
lines) in momentum space.
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Figure E.18: Salpeter component functions Φ2(p) of the three lowest states of instanton-induced
Salpeter equation for sc̄/cs̄ with free propagator (full lines) and exact propagator (dashed lines)
in momentum space.
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Figure E.19: Salpeter component functions Φ2(p) of the three lowest states of instanton-induced
Salpeter equation for sb̄/bs̄ with free propagator (full lines) and exact propagator (dashed lines)
in momentum space.
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Figure E.20: Salpeter component functions Φ2(p) of the three lowest states of instanton-induced
Salpeter equation for bc̄/cb̄ in momentum space.
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Figure E.21: Salpeter component functions Φ2(p) of the three lowest states of instanton-induced
Salpeter equation for cc̄ in momentum space.
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Figure E.22: Salpeter component functions Φ2(p) of the three lowest states of instanton-induced
Salpeter equation for bb̄ in momentum space.
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[32] T. Hofsäss and G. Schierholz, Phys. Lett. B 76 (1978) 125.

[33] R. Roth, Nucl. Phys. B 154 (1979) 21.
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[38] W. Lucha, F. F. Schöberl, and D. Gromes, Phys. Rep. 200 (1991) 127.

[39] W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. A 7 (1992) 6431.

[40] P. Maris and P. C. Tandy, Phys. Rev. C 60 (1999) 055214, nucl-th/9905056.

[41] P. Maris, Nucl. Phys. A 663 (2000) 621, nucl-th/9908044.

[42] C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys. 45 (2000) S1, nucl-

th/0005064.

[43] C. D. Roberts, nucl-th/0007054.

[44] R. Alkofer and L. von Smekal, Phys. Rep. 353 (2001) 281, hep-ph/0007355.

[45] P. Maris, in: Proc. of the Int. Conf. on Quark Confinement and the Hadron

Spectrum IV , edited by W. Lucha and K. Maung Maung (World Scientific,

New Jersey/London/Singapore/Hong Kong, 2002), p. 163, nucl-th/0009064.

[46] P. Maris and P. C. Tandy, nucl-th/0109035.

[47] P. Maris, A. Raya, C. D. Roberts, and S. M. Schmidt, Eur. Phys. J. A 18

(2003) 231, nucl-th/0208071.

[48] M. S. Bhagwat, M. A. Pichowsky, and P. C. Tandy, Phys. Rev. D 67 (2003)

054019, hep-ph/0212276.

111



[49] P. C. Tandy, Prog. Part. Nucl. Phys. 50 (2003) 305, nucl-th/0301040.

[50] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12 (2003) 297, nucl-

th/0301049.

[51] M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C. Tandy, Phys. Rev. C

68 (2003) 015203, nucl-th/0304003.

[52] C. D. Roberts, Lect. Notes Phys. 647 (2004) 149, nucl-th/0304050.

[53] A. Krassnigg and C. D. Roberts, Fizika B 13 (2004) 143, nucl-th/0308039.

[54] A. Krassnigg and C. D. Roberts, Nucl. Phys. A 737 (2004) 7, nucl-th/0309025.

[55] R. Alkofer, W. Detmold, C. S. Fischer, and P. Maris, Phys. Rev. D 70 (2004)

014014, hep-ph/0309077.

[56] A. Krassnigg and P. Maris, J. Phys. Conf. Ser. 9 (2005) 153, nucl-th/0412058.

[57] L. J. Nickish, L. Durand, and B. Durand, Phys. Rev. D 30 (1984) 660.

[58] L. Durand and A. Gara, J. Math. Phys. 31 (1990) 2237.

[59] S. Jacobs, M. G. Olsson, and C. J. Suchyta III, Phys. Rev. D 33 (1986) 3338.

[60] S. Jacobs, M. G. Olsson, and C. J. Suchyta III, Phys. Rev. E 34 (1986) 3536.

[61] L. C. Hostler and W. W. Repko, Ann. Phys. (N.Y.) 130 (1980) 329.

[62] J. Parramore, H.-C. Jean, and J. Piekarewicz, Phys. Rev. C 53 (1996) 2449,

nucl-th/9510024.

[63] W. Lucha, K. Maung Maung, and F. F. Schöberl, in: Proc. of the Int. Conf. on

Quark Confinement and the Hadron Spectrum IV , edited by W. Lucha and

K. Maung Maung (World Scientific, New Jersey/London/Singapore/Hong

Kong, 2002), p. 340, hep-ph/0010078.

[64] W. Lucha, K. Maung Maung, and F. F. Schöberl, Phys. Rev. D 64 (2001)
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1. Sept. 27-29, 2005, 55. Jahrestagung der Österreichischen Physikalischen Gesellschaft,

Vienna, Austria.

2. Sept. 16, 2006, the 6th symposium of the Chinese Scholars in Austria, with

poster: Exact-propagator instantaneous Bethe-Salpeter equation for quark-antiquark

bound states.

3. Dec. 01-03, 2006, the 3rd Vienna Central European Seminar, University of Vi-

enna, Austria, with poster: Eigenvalue Spectrum of the Reduced Salpeter Equation

119



with Harmonic Interaction by Solving the Corresponding Differential Equation.

4. Nov. 29 - Dec. 2, 2007, the 4th Vienna Central European Seminar, University of

Vienna, Austria, with poster: Stability in the instantaneous Bethe-Salpeter formal-

ism: reduced exact-propagator bound-state equation with harmonic interaction.

Publications:

1. Zhi-Feng Li, Jin-Jin Liu, Wolfgang Lucha, Wen-Gan Ma, Franz F. Schöberl,
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Bethe-Salpeter Equation for Quark-Antiquark Bound States. Mod. Phys.

Lett. A 21 (2006) 1657, hep-ph/0510372;

3. Zhi-Feng Li, W. Lucha, Franz F. Schöberl, Stability in the instantaneous
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