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ZUSAMMENFASSUNG 
 
Hydrothermal- und Sickerquellen der Tiefsee werden von geologischen Prozessen geformt, 

wobei die Basis allen Lebens in diesen extremen Ökosystemen Chemosynthese ist. In dieser 

Arbeit werden die Abundanz und Diversität der Meiofauna dieser Habitate untersucht. Die 

ersten vier Manuskripte geben einen Überblick über die Meiofaunagemeinschaften an den 

Hydrothermalquellen am Ostpazifischen Rücken, wobei auch eine neue Art beschrieben 

wird. Obwohl dieses Ökosystem von hoher Primärproduktion geprägt ist, findet man 

Meiofauna nur in geringer Dichte (~ 100 Individuen 10 cm-2). Die Diversität ist zudem niedrig 

und nimmt mit abnehmender Toxizität des Hydrothermalflusses zu.  Copepodite wurden zum 

ersten Mal an den Hydrothermalquellen entdeckt. Auch die Hälfte aller identifizierten Arten 

war bisher unbekannt. Das fünfte Manuskript untersucht Meiofauna von Sickerquellen im 

Golf von Mexiko. Wie auch an den Hydrothermalquellen, findet man hier Nematoden, 

Copepoden, Ostracoden and Halacarida in geringer Häufigkeit. Das letzte Manuskript 

vergleicht Meio- und Makrofauna Gemeinschaften der Hydrothermalquellen. Die meisten 

Makrofaunaarten sind endemisch während es sich bei den meisen Meiofaunaarten um 

Generalisten handelt. Die Diversität der Makrofauna ist unimodal entlang des untersuchten 

Stressgradienten verteilt, im Gegensatz dazu ist die Diversität der Meiofauna invers korreliert 

mit dem Stressgradienten. Gründe hierfür werden ausführlich diskutiert.  
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ABSTRACT 
 
Deep-sea hydrothermal vents and cold seeps are extreme ecosystems where geological 

processes fuel benthic communities with chemosynthetic energy. For this study meiofaunal 

diversity and abundance were examined from hydrothermal vents at the East Pacific Rise 

and from cold seeps in the Gulf of Mexico. The first four manuscripts present an overview of 

meiofaunal vent communities, including a description of a new tegastid copepod. Even 

though hydrothermal vents are characterized by high in situ productivity, meiobenthos is of 

low abundance (~ 100 individuals 10 cm-2). Diversity is also low and increases with 

decreasing toxic vent flux. Both copepods and nematodes show diminished diversity at high 

vent flux and most of them are feeding on detritus. For the first time copepodites were 

observed at vents. More than half of the identified species are new to science. In addition, 

meiobenthos from deep-sea cold seeps is described. Major taxon richness (nematodes, 

copepods, ostracods, halacarids) and low abundance are similar to what has been found at 

vents. Finally, vent meio- and macrofauna are compared. Macrofauna species are endemic 

and show unimodal diversity patterns along an environmental stress gradient. In contrast, 

meiofauna species are generalists and diversity is inversely correlated to this stress gradient. 

The underlying mechanism such as body size and related species traits, disturbance and 

productivity are discussed to explain these contrasts between macro- and meiofauna. 

 



4 
 

 



5 
 

INTRODUCTION 

 

Deep-sea hydrothermal vents and cold seeps are among the most unusual and extreme 

ecosystems in the world’s oceans. Hydrothermal vents are located at back-arc basins and on 

the mid-ocean ridges, underwater mountain chains with a total length of 75,000 km. They 

emerge at divergent plate boundaries and are geologically very active, accounting for more 

than 75% of the total volcanic activity on Earth. Hydrothermal fluid flux, seawater that 

migrated through the ocean crust and got enriched with toxic hydrogen sulfide and heavy 

metals, emerges with temperatures of up to 400°C at black smoker sulfide chimneys or as 

diffuse flow with lower temperatures through cracks in the ocean crust within the Axial 

Summit Trough (AST) (Van Dover 2000). In contrast, cold seeps occur mostly along passive 

continental margins. Cold seep fluids originate from petroleum and gas seepage. In the Gulf 

of Mexico, one of the regions studied for this PhD research, the continental slope is fractured 

by salt tectonics. Methane rich fluids as well as sulfide, produced by sulfate reduction in the 

sediments, are the source of energy (Sibuet & Olu1998). Both hydrothermal vent and cold 

seep ecosystems are primarily fueled by chemosynthesis. This is in stark contrast to the 

surrounding deep-sea plains, where energy input in form of particulate organic matter is 

originating primarily from photosynthesis in the surface waters (Etter & Mullineaux 2001). 

Bacteria form the basis of the food-web in deep-sea chemosynthetic ecosystems, 

either as free-living or as symbiotic partners of megafaunal organisms, such as tubeworms 

and mussels. For the associated fauna, bacteria serve as primary producers, and symbiotic 

megafauna act as foundation species. The hosts provide space, structure the habitat, 

change physical and chemical properties, and concentrate food sources (Van Dover 2000, 

Bruno & Bertness 2001). Since the discovery of hydrothermal vents in 1977, over 500 animal 

species have been described (Desbruyères et al. 2006). Vent macrofauna can be generally 

characterized as an endemic, species-poor but biomass-rich community (Tunnicliffe et al. 

1998, Van Dover 2002, Tsurumi & Tunnicliffe2003, Govenar et al. 2005). At hydrocarbon 

seeps, young habitats feature biomass-rich and endemic communities, whereas old habitats 

show low biomass and background deep-sea faunal communities (Cordes et al. 2009). 

Whilst the macrofauna communities are quite well studied at both hydrothermal vents 

and cold seeps, the ecological role of meiofauna (animals in the size range from 63 µm to 1 

mm) is almost unknown, despite its pivotal role in linking bacterial and macrofaunal food 

webs (Gerlach 1971, Giere 2009). At vents, meiofauna currently contributes to about 20% of 

total diversity, but this number is expected to rise in the future, as only a few meiofauna 

studies have been carried out so far and a significant proportion of identified species awaits 

further formal taxonomic description (Bright 2006). Overall, vent meiofauna occurs in low 

abundance, and is a species- and taxon-poor community (Vanreusel et al. 1997, Tsurumi et 
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al. 2003, Zekely et al. 2006, Copley et al. 2007, Gollner et al. 2007). At cold seeps, our 

knowledge of the meiofauna is even less detailed. Hitherto, studies are mostly on taxon level 

and were carried out in various depths and geographic regions, making it difficult to compare 

them. Nematodes and copepods appear to be the dominant taxa and abundances vary from 

very low to extremely high (Levin 2005). 

 

This PhD thesis aims to test and discuss 6 different working hypotheses: 

 

The central objective of this PhD research is to identify and quantify the metazoan and 

foraminiferan meiobenthic community along a vent flux gradient at the 9°N East Pacific Rise, 

a chosen prime study region of the international community InterRidge. From the descriptive 

data, meiobenthic biodiversity is characterized and its underlying mechanisms are discussed. 

As one example of newly discovered species, a copepod is described taxonomically (Gollner 

et al. 2006, Zekely et al. 2006, Gollner et al. 2008, Gollner et al. submitted).  

 

(1) The meiobenthic density at 9°50’N EPR hydrothermal vents follows the general trend 

documented for vent macrobenthos, i.e. high abundance. 

(2) The meiobenthic diversity at 9°50’N EPR hydrothermal vents follows the general trend 

documented for vent macrobenthos, i.e. low species richness. 

(3) The meiobenthic diversity accords with diversity patterns predicted by the intermediate 

disturbance hypothesis (Connel 1978), showing an unimodal diversity pattern along an 

stress/disturbance gradient. 

(4) The meiofauna is vent endemic, similar to what it is known for the macrofauna. 

 

Meiobenthic cold seep community abundances and taxon richness from the Gulf of Mexico 

are investigated (Bright et al. submitted) in order to compare abundance and major taxon 

diversity patterns for both chemosynthetic ecosystems.  

 

(5) Meiobenthic abundance from cold seeps is high and similar to hydrothermal vents, as 

both ecosystems are supported by high in situ primary production. 

 

Meiofauna diversity patterns are compared to macrofauna patterns along an environmental 

stress gradient at the studied vent sites (Gollner & Bright in prep.). 

 

(6) Along an environmental stress gradient the two faunal size classes exhibit similar 

diversity patterns.  
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This thesis includes the following manuscripts (in order of presentation): 

 

Gollner S, Riemer B,  Martinez Arbizu P,  Le Bris N, Bright M (submitted) Community study of 

meiobenthos from the 9º50´N East Pacific Rise over the full range of hydrothermal vent 

flux. 

 

Gollner S, Zekely J, Van Dover CL, Govenar B, Le Bris N, Nemeschkal H, Bright M (2006) 

Benthic copepod communities associated with tubeworm and mussel aggregations on 

the East Pacific Rise. Cahiers de Biologie Marine 47:397-402 

 

Zekely J, Gollner S, Van Dover CL, Govenar B, Le Bris N, Bright M (2006) The nematode 

community and trophic structure of three macrofaunal aggregations at 9° & 11°N East 

Pacific Rise. Cahiers de Biologie Marine 47:477-482 

 

Gollner S, Ivanenko VN, Martinez Arbizu P (2008) A new species of deep-sea Tegastidae 

(Crustacea: Copepoda: Harpacticoida) from 9°50´N on the East Pacific Rise, with 

remarks on its ecology. Zootaxa 1866:323-336 

 

Bright M, Plum C, Riavitz LA, Nikolov N, Martinez Arbizu P, Cordes EE,  Gollner S 

(submitted) Epizooic metazoan meiobenthos associated with tubeworm and mussel 

aggregations from cold seeps of the Northern Gulf of Mexico.  

 

Gollner S, Bright M (in prep) Size matters: contrasting meio – and macrofauna diversity 

patterns at deep-sea hydrothermal vents. 
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ABSTRACT  
We studied meiobenthos at hydrothermal vents along a gradient of vent flux and their well-

characterized megafaunal habitats at the East Pacific Rise 9º50´N region to explore 

meiobenthic diversity and discuss its possible underlying ecological and evolutionary 

processes. A total of 52 species were identified at vent habitats which were dominated by 

hard substrate generalists that also live on bare basalt at ambient deep-sea temperature in 

the axial summit trough (AST generalists). Some vent species are restricted to a specific vent 

habitat (vent specialists), but others occur over a wide range of physico-chemical conditions 

(vent generalists). Additionally, 35 species were only found on cold bare basalt (basalt 

specialists). At vent sites, species richness and diversity clearly increase with decreasing 

vent flux from pompei worm (S: 4-7, H´loge: 0.11 – 0.45), tubeworm (S: 8 – 23; H´loge: 0.44 – 

2.00) to mussel assemblages (S: 28 – 31; H´loge: 2.34 – 2.60). Our data suggest that with 

increasing temperature and toxic hydrogen sulfide concentrations, fewer species are being 

able to cope with these extreme conditions, resulting in less diverse communities. The fact 

that an unimodal relationship between disturbance and diversity, as predicted by the 

intermediate disturbance hypothesis  was not found, might be due to the lack of non-

disturbed habitats within this ecosystem. 

 

Keywords: disturbance, diversity, meiobenthos, hydrothermal vent, hydrothermal flux, 

community study, East Pacific Rise, deep-sea, meiofauna 
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INTRODUCTION 
Marine communities and ecosystem processes are affected by environmental changes, such 

as global warming, ocean anoxia, and ocean acidification (Worm et al. 2006). Disturbance is 

one of the key components ruling diversity and is defined as damage (removal of biomass) or 

more precisely as an event in time that disrupts communities, changes resources, or 

influences the physical environment (White & Pickett 1985, Sousa 2001). The intermediate 

disturbance hypothesis states that highest diversity is found at intermediate disturbance 

because lower disturbance levels encourage dominant species to consume all resources, 

whilst at higher levels of disturbance only colonizing species survive (Connel 1978, Menge & 

Sutherland 1987, Sousa 2001). The same hump-shaped diversity pattern is also expected for 

communities across an environmental stress-gradient (Menge & Sutherland 1987, Bruno et 

al. 2003, Scrosati & Heaven 2007). However, in a review on the disturbance effect on 

diversity, non-significant relationships were the most common (Mackey & Currie 2001). 

Deep-sea hydrothermal vents are model systems of physically highly disturbed and 

stressful marine environments (Van Dover 2000). Dramatic and unpredictable catastrophic 

volcanic eruptions, tectonic disturbances, rapid changes in vent fluid composition, and the 

dynamics of waxing and waning vent flux characterize this ecosystem (Childress & Fisher 

1992, Fornari et al. 1998). Unstable physico-chemical conditions such as high temperature 

and pH gradients, the toxicity of vent emissions, and the temporal lack of oxygen impose 

physiological stress to animals living at such extreme conditions, reducing their rates of 

biochemical reactions when their values are outside their optimal range of tolerance (Menge 

& Sutherland 1987, Bruno & Bertness 2001).  

Hydrothermal vents are relatively small and patchy habitats within the axial summit 

troughs (AST) of the mid-ocean ridges - large, continuous and scarcely populated basalt 

habitats. Vents represent islands where chemosynthetic primary production locally supports 

high densities of mega- and macrofaunal communities. Primary production is carried out by 

chemolithoautotrophic bacteria, using the energy provided by the mixing of the reducing 

hydrothermal fluid flux and oxygenated seawater to fix inorganic carbon (Karl 1995). As part 

of the free-living microbial community they are the foundation of the food-web at vents. As 

symbiotic partners, they occur in a variety of associations with animals. These symbioses 

often act as foundation species in creating and structuring the habitat, modifying their 

environment by changing the physical and chemical properties, concentrating food sources 

and thus providing space for associated fauna (Van Dover 2000, Bruno & Bertness 2001).  

Worldwide, over 500 animal species have been described from hydrothermal vents and 

over 90% are considered endemic for this habitat (Tunnicliffe et al. 1998, Desbruyères et al. 

2006). The vent macrofauna communities are generally characterized by low diversity and 
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low species richness but high population densities (Hessler et al. 1985, Tsurumi & Tunnicliffe 

2003, Van Dover 2003, Govenar et al. 2005).  

One of the best-known mid-ocean ridge regions is located at 9º50´N, 104º17´W on the 

East Pacific Rise (EPR) with a fast spreading rate of 55 mm yr-1 (Carbotte & Macdonald 

1994). The ridge crest is broad and shallow and lies at a depth of about 2500 m. An axial 

summit trough (AST) with associated lava channels is ∼ 50 m wide and ∼ 20 m deep (Fornari 

et al. 1998). Vent communities at the 9º50’N region are known to be frequent and diverse 

(Haymon et al. 1991, Shank et al. 1998). The occurrence of characteristic foundation species 

and associated assemblages shows a striking spatial distribution pattern along a thermal and 

chemical gradient of hydrothermal fluid flux. Furthermore, several habitat types associated 

with different styles of venting can be distinguished: high temperature flow (>50°C) with 

alvinellid polychaetes colonizing sulfide chimneys (e.g. Alvinella pompejana and A. caudata), 

vigorous, but moderate temperature flow (<30°C) with vestimentiferans (e.g. Riftia 

pachyptila) growing on basalt, low temperature flow (<5°C) with bivalves (e.g. Bathymodiolus 

thermophilus) on basalt, and very low or no detectable vent flow with suspension feeders 

(serpulids, barnacles, anemones). The flux can be gradual, but the faunal boundaries are 

distinct (Hessler et al. 1985, Etter & Mullineaux 2001). In addition, there are habitats with no 

visible fauna such as the high temperature (up to 400°C) areas of bare sulfide chimneys and 

bare basalt habitats with no direct influence of hydrothermal fluid flux and ambient deep-sea 

temperature (Van Dover 2000).  

Temperature is not the only parameter influencing the distribution of foundation 

species. In alvinellid habitats, pH is lower and toxic sulfide concentration is much higher for a 

given temperature than at any other vent habitat (Le Bris et al. 2003, Le Bris & Gaill 2007). In 

contrast, the temperature-sulfide relation is more consistent within diffuse flow habitats where 

bathymodiolins and vestimentiferans are found (Le Bris et al. 2006). At bare basalt where 

fluid venting is absent, conditions are similar to those in the surrounding seawater, i.e. no 

sulfide is detectable, pH is neutral, and temperatures are close to ambient (Luther et al. 

2001). 

The zonation of megafauna along this strong physico-chemical gradient was initially 

attributed to physiological responses to stress and nutrient requirements (Childress & Fisher 

1992, Shank et al. 1998, Luther et al. 2001).  Since then, biological factors such as 

competition and predation, facilitation and inhibition were found to mediate the limits of 

species distributions, and it has been concluded that correlations with abiotic gradients 

provide insufficient evidence for inferring causation of zonation along environmental 

gradients (Micheli et al. 2002, Mullineaux et al. 2003, Matabos et al. 2008).  

Our knowledge on the accociated macrofauna of the 9º50´N EPR is limited to 

tubeworm and mussel habitats. Two chemically different sites with Riftia pachyptila as 
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foundation species had similar macrofaunal diversity (S: 19-35, H’log2:1.2-2.1) (Govenar et al. 

2005), and were similar in range to the fauna associated with mussels (S: 34-46, H’loge: 1.5 – 

1.7) along the EPR (Van Dover 2002, Van Dover 2003). No quantitative information is yet 

available for pompei worm associated macrobenthos and for the basalt.  

The meiofauna (smaller size class of animals and protists passing through a 1 mm 

sieve and retained on a 63 µm or 32 µm sieve) communities and distribution have been 

much less studied, although their  importance in marine ecosystems has been acknowledged 

for a long time (Giere 2009). The ecological role of meiofauna is often unknown or not 

considered, and most studies tend to focus on a single habitat and a single taxon. Currently, 

meiofauna species contribute to about 20% of the total diversity known from vents. 

Meiofauna communities generally exhibit low diversity and species richness, and occur in low 

population densities (Bright 2006). Nematode species diversity was observed at hard 

substrate mussel habitats along the EPR (Flint et al. 2006, Zekely et al. 2006a, Copley et al. 

2007) and in sedimented vents with mussels in the North Fiji Basin (Vanreusel et al. 1997). 

Qualitative copepod data are available from pompei worm and tubeworm habitats from Juan 

de Fuca Ridge (Tsurumi et al. 2003), and a quantitative study investigated copepods at the 

EPR (Gollner et al. 2006). However, so far only two studies have described the entire 

meiobenthic community on a species level from mussel beds at the 11º N EPR and 23º N 

Mid-Atlantic Ridge and from tubeworms at the 9°N EPR (Zekely et al. 2006b, Gollner et al. 

2007). 

Here, we test whether the intermediate disturbance hypothesis, predicting highest 

diversity at intermediate stress, holds true for the meiobenthic community at the 

chemosynthetically driven hydrothermal vents. We identified and quantified the entire 

meiobenthic communities from the main habitat types at the 9º50´N EPR region and 

documented species diversity, abundance, and distribution according to well-characterized 

habitat types within this ecosystem. Samples covered the entire range of hydrothermal vent 

flux from black smoker sulfide chimneys devoid of any visible mega- and macrofauna, to 

pompei worms at black smokers, tubeworms and mussels at basalt, and bare basalt within 

the AST. By including samples from basalt with ambient deep-sea temperature and lack of 

vent fluid emissions in our study, we can estimate the degree of endemicity of vent 

meiobenthos in this region and discuss underlying ecological and evolutionary processes.  

 
METHODS 
Study area  
The study was conducted within the axial summit trough (AST) at the 9°50´N 104°17´W 

region at the East Pacific Rise (EPR) in 2500 meters depth.  A total of 22 collections were 

made at 9 sites, using the submersible DSV Alvin in the years 2001 – 2004 (Appendix 1, 2). 
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Five different habitat types were chosen accordingly to their different hydrothermal flux 

regimes (extremely high, high, vigorous, low, no flux), termed sulfide (A), pompei worm (B), 

tubeworm (C), mussel (D), and basalt (E) (Fig. 1). (A) 4 extremely high flux sulfide samples 

were collected from active high temperature bare sulfide chimneys of the black smokers P-

Vent (2003, AD # 3928, 2510 m, 9°50.287´N, 104°17.487´W), Bio9 (2003, AD # 3929, 

9°50.319´N, 104°17.482´W), M-Vent (2003, AD # 3930, 9°50.792´N, 104°17.601´W) and 

BioVent  (2003, AD # 3933, 2505 m, 9°50.927´N, 104°17.584´W). (B) 5 high flux pompei 

worm collections were made at sulfide chimneys of several black smokers colonized by the 

foundation species Alvinella pompejana and A. caudata (Michel´s-Vent (P1), Alvinella Pillar 

(P2), Bio 9 (P3), M-Vent (P4, P5)). (C) 6 tubeworms samples were taken at vigorous flux 

sites dominated by Riftia pachyptila (Tica (T1, T2, T3), Riftia Field (T4, T5, T6)). (D) 3 mussel 

collections were made at a low flow site colonized by Bathymodiolus thermophilus (Mussel 

Bed (M1, M2, M3)), and (E) 4 basalt collections were taken at bare basalt with no 

hydrothermal fluid flux, no foundation species and no visible mega- and macrofauna (near 

Tica (B1, B2, B3) and near Alvinella Pillar (B4) in approximate vicinity of 10 m to tubeworms 

or pompei worms).  

Physico-chemical characteristics 
Temperature was measured at all sites prior to sampling. Temperatures were extremely high 

(244 - 252°C) at sulfides lacking macro- and meiofauna. At the pompei worm habitat 

temperature was highly variable and changing within seconds from overall 14 - 119°C at the 

studied sites. The tubeworm sites Tica and Riftia Field were characterized by warm fluids 

with maximal temperatures of 32°C and 54°C, respectively, and at Mussel Bed we measured 

a maximal temperature of 10°C (Le Bris et al. 2006). On bare basalt the measured 

temperature was 2°C, which is in this habitat accompanied by no dectable sulfide and neutral 

pH (Luther et al. 2001). 

 We were not able to measure sulfide and pH at the pompei worms prior to sampling. 

However, several studies from this and other regions of the EPR revealed that the pH is 

generally acidic with minimal values around pH 4, and sulfide concentrations up to 1520 µM 

∑ H2S  (Di Meo-Savoie et al. 2004, Le Bris et al. 2005, Le Bris & Gaill 2007). At the 

tubeworm and the mussel collection sites, we directly measured these parameters prior to 

sampling: Tica exhibited maximal sulfide concentrations of 283 µM ∑ H2S, and minimal pH of 

5.7. No iron was detected in the fluid. At Riftia Field, maximal sulfide concentration was only 

95 µM ∑ H2S. Minimal pH value was 4.4 in the diffuse flow, and substantial concentrations of 

dissolved ferrous iron were present at this site (up to 42 µM among the tubeworms). In situ 

analysis of vent flux at Mussel Bed showed a minimal pH of 6.7 and maximal sulfide of 151 

µM ∑ H2S (Le Bris et al. 2006).  
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Sample processing 
Due to difference in habitat structure it was necessary to use different sampling devices. 

Tubeworm samples were taken with the hydraulically actuated collection device, named 

`Bushmaster Jr.´ lined with a net of 63 µm mesh size (Govenar et al. 2005, Gollner et al. 

2007). Some additional samples from tubeworm aggregations were taken by the hydraulic 

arm of DSV Alvin at a later time in order to check for presence of meiofauna in the size class 

between 32 and 63 µm. These control samples were not included in further analyses of the 

meiobenthic community. Mussel samples were scooped carefully down to the bottom with a 

linen bag (63 µm) strengthened at its opening by a steel frame and closed by turning the bag. 

Sulfide, pompei worm, and basalt samples were taken with the hydraulic arm of Alvin. A 

piece of the substrate was very carefully broken off from the habitat and put into the sampling 

box. Some organisms might have been lost during the approximately 1 meter long transfer to 

the sampling box on Alvin, probably resulting in slight under-sampling of rare species and 

slight error in species abundances. We are well aware that in most cases, our samples can 

be only considered semi-quantitative. In all cases the area sampled was photographed 

before and after sampling in order to estimate the sea floor surface area of samples taken. 

Samples were separately put into isolated, previously cleaned plastic boxes on the basket of 

DSV Alvin, transported to the surface, and recovered on deck of the ship R/V Atlantis. On 

board, Bushmaster samples from the tubeworm habitat and mussel scoop samples were 

sieved through a 1 mm and 63 µm net. Sulfide, pompei worm, and basalt samples were 

sieved additionally through a 32 µm net. In addition the control samples from tubeworm 

aggregations were sieved through a 32 µm and 63 µm net. All samples were fixed in 4% 

buffered formalin. Samples taken in 2001 and 2002 were transferred to 70% ethanol after 

one day, but this step was found unnecessary for the quality of fixation and therefore was not 

done with the samples taken later.  

In the lab, all meiofauna animals were sorted, counted, and identified to higher taxa 

under a dissecting microscope. Sorting revealed that not a single animal was found in the 

size class from 32 µm to 63 µm in pompei worm and tubeworm samples. In one out of 4 

basalt samples a few juvenile nematodes were found, but no new species were detected. 

These juveniles were excluded from the study to make this sample comparable to all other 

samples. Not a single specimen was present in the sulfide samples and this habitat type was 

therefore excluded from all further analyses. From each sample and each higher taxon 

(copepods, nematodes, ostracods, acari, foraminiferans) all or at least 300 randomly picked 

individuals were identified to lowest possible taxon, usually to species level. All species 

belonging to the permanent meiobenthos (i.e. being in the size class of meiofauna as adults 

according to Giere 2009) were considered in this study. We also recorded the temporary 

meiobenthos (i.e. species that belong to the mega- and macrobenthic size class as adults 
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but are meiobenthic during a certain time of their development) and all pelagic species 

(Calanoida spp., Corycaeidae spp., Oncaeaidae spp.), but both groups were excluded for 

further analyses of permanent meiobenthos.  

A few individuals of Platyhelminthes and numerous Folliculidae (Ciliophora) were 

detected in some samples but could not be included in further analyses because 

identification of Platyhelminthes to species level was not possible due to the method of 

fixation and distinction between live ciliates and empty tubes was not possible. In a previous 

study we included the single species of Tanaidacea (Gollner et al. 2007), but in the 

meantime we found that this specific species (Typhlotanais sp. 1) can grow to large 

macrofauna sizes, and we therefore excluded it in this study. Furthermore, the species 

Harpacticoida sp. 2 in Gollner et al. (2007) could be identified as Xylora bathyalis. 

Cumulative species-effort curves confirmed that the level of sampling effort (for details 

on slide preparation, literature used for species identification, and species effort-curves see 

citations in Gollner et al. 2007), and permuted cumulative species count over samples 

(number of permutations 999) were sufficient for the studied vent habitats. We are well aware 

that a total of 4 collected bare basalt samples is insufficient to describe the community of this 

large habitat and we expect an increase in species numbers with more sampling in the 

future. Nevertheless, even this limited basalt data set gave us important information for the 

assessment of endemicity of vent species. 

Quantification of abundance 
To compare the variable sample areas of single collections with each other, abundance was 

standardized to 10 cm2 sample area. We also measured the volume of accumulated 

sediment within the macrofauna aggregations growing on bare basalt (see Gollner et al. 

2007). Standardization of abundance data to 10 ml sediment revealed similar abundance 

values as for 10 cm2 standardization at pompei worm and tubeworm habitats and relatively 

higher abundances at mussel and basalt habitats (data not shown). To compare this study 

with others we chose to present data based on 10 cm2 sample area.  

Data analyses 
Species richness (S), Shannon-Wiener diversity index (H´loge), and Pielou´s evenness index 

(J´) were calculated from quantitative species-abundance data by DIVERSE subroutine in 

PRIMER Version 5 package (Clarke & Gorley 2001). For statistical analyses bootstrapping 

(10000 resamplings each, 2-sided test, routine „FTBOOT“ from the package „computer 

intensive statistics“ (Nemeschkal 1999)) was used as a well proven method when working 

with a relatively low number of samples and high variances. We tested for significant 

differences in abundance (square-root transformed), species richness (square-root 

transformed), Shannon-Wiener diversity (no transformation), and Pielou’s evenness (no 

transformation). Significance of correlations was carried out by using Pearson´s r (F-value 



18 
 

and t-value calculations by STATISTICA). All significance levels were classical Bonferroni-

corrected (p = alpha/n; alpha = 0.05). To evaluate similarity and dissimilarity of samples, 

Bray-Curtis similarity was created (abundances of species were standardized and square-

root transformed to down-weight the importance of very abundant species without losing the 

influence of rarer species), and similarity percentage (SIMPER) analyses, analysis of 

similarity (ANOSIM), and multi-dimensional scaling (MDS) plot were performed using 

PRIMER v5. The BIO-ENV procedure was carried out by PRIMER v5 to link biota to 

multivariate environmental patterns. Maximum temperature, maximal sulfide, and minimum 

pH were chosen as abiotic variables having possible effect on meiofauna species and 

communities. Additionally, we included the volume of sediment from each sample as value to 

test, because it mainly was composed of organic matter, a known food source for meiofauna 

(Gollner et al. 2007).  Abiotic variables were ln transformed and Euclidean distance was used 

to create a similarity matrix. For biota, Bray-Curtis similarity from species abundance data 

was used. Similarities between biotic and abiotic data were afterwards calculated using 

Spearman´s rank correlation (Clarke & Gorley 2001). 

 
RESULTS 
Abundance 
We counted a total of 74 315 individuals in 22 samples taken from 5 different habitat types 

(sulfide, pompei worm, tubeworm, mussel, basalt) within the AST at the 9°50´N EPR region. 

Not a single specimen was detected in the sulfide samples. Meiobenthic abundance of the 

other 4 habitats was generally low and varied from 1 to 976 ind. 10 cm-2. Abundances were 

not statiscically discernable between pompei worms and tubeworms, tubeworms and 

mussels, tubeworms and basalt habitats. Significantly higher abundances were detected in 

pompei worms compared to mussels and basalt, and mussels to basalt habitats. Variations 

in abundance were higher at sites with higher influence of hydrothermal fluid flux, and lower 

at habitats with low or no vent flux. While abundances of communities at pompei worm and 

tubeworm habitats ranged from 36 – 474 and 1 – 976 ind. 10 cm-2, mussel and basalt 

habitats had less abundance variations with 58 – 87 and 1 - 51 ind. 10 cm-2 (Table 1, 2).  

The meiobenthic community was composed of Copepoda, Nematoda, Ostracoda, 

Acari, and Granuloreticulosa (Platyhelminthes and Ciliates not included in this study). 

Overall, copepods was the most abundant higher taxon (1 - 472 ind. 10 cm-2, relative 

abundance 65% ± 33), with the Dirivultidae (Siphonostomatoida) and harpacticoid copepods 

being the dominant copepod family and order, respectively, and being present at all sites. 

Nematodes were absent in the pompei worm habitat. In the other 3 habitats their abundance 

was highly variable ranging from 1 to 946 ind. 10 cm-2.  Foraminiferans were present at all 

sites, with a maximum of 9 ind. 10 cm-2. Ostracoda were low in abundance (max. 1 ind. 10 
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cm-2) and restricted to tubeworm, mussel, and basalt communities. Acari were only found in 

one mussel sample.  

The pompei worm communities were dominated by copepods in relative abundance 

(99 – 100%). A similar, but less pronounced situation was found in the mussel communities 

(49 – 66%). No clear pattern was discernible in the tubeworm habitat: in 4 out of 6 samples, 

nematodes dominated (58 - 97%), while in 1 sample copepods dominated (80%), and in one 

other sample nematodes, copepods, and foraminiferans were about equally present. On the 

basalt, copepods dominated the communities in abundance in 2 samples (63% and 92%), 

while foraminiferans were dominant in one sample (72%), and no taxa dominance was found 

in another sample (Table 1). 

Diversity 
From a total of 22 samples from all studied habitats, 87 species were identified (52 at vent 

sites, 35 at basalt). Looking at the higher taxa distribution of species from all samples, 56% 

of species were copepods, followed by nematodes (30%), foraminiferans (7%), ostracods 

(6%), and acari (1%). The number of total species found in a habitat increased from pompei 

worm (11 spp.), to tubeworm (31 spp.), to mussel (36 spp.), and to basalt (64 spp.) habitats.  

Species richness and Shannon-Wiener diversity were low and increased from pompei 

worm (S: 4 – 7; H´loge: 0.11 – 0.45), to tubeworm (S: 8 – 23; H´loge: 0.44 – 2.00), and to 

mussel (S: 28 – 31; H´loge: 2.34 – 2.62) communities and were all statistically significantly 

different. Pielou’s evenness was significantly lower at pompei worms (J’: 0.11 – 0.28) 

compared to tubeworms and mussels (J’: 0.15 – 0.91) (Table 1, 2). Diversity measurements 

from basalt communities (S: 20 – 34; H´loge: 1.18 – 2.74, J’: 0.34 – 0.91) were significantly 

higher than those from pompei worms. Compared to tubeworms, only species richness was 

higher at basalt, and all diversity measurements from mussels were similar to basalt (Table 

1, 2). 

Community patterns 
Dissimilarity of pompei worm to tubeworm, to mussel and to basalt communities was > 93%, 

and ANOSIM proved that this was significant (R = 1; p < 0.018). Tubeworm and mussel 

communities were 68% dissimilar (R = 0.53; p = 0.24; n.s.), and tubeworm and basalt 

communities showed a dissimilarity of 84% (R = 0.86; p = 0.005). Mussel and basalt 

communities had a dissimilarity of 75% (R = 0.56, p = 0.06; n.s.) (Table 2). Multidimensional 

scaling (MDS) configuration revealed that meiobenthos from distinct habitats formed distinct 

groups (Fig. 2).  

Community and environment 
Total meiofauna abundance did not correlate to maximal temperature, maximal sulfide, 

minimal pH, volume of sediment, and sampled surface area. Maximal temperature correlated 

significantly inversely with species richness (r = 0.85; p < 0.001) and with Shannon-Wiener 
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diversity index (r =0.66; p < 0.003). In addition, also minimal pH directly measured at the 

sample site of tubeworm and mussel habitats and estimated from measurements of previous 

studies at pompei worm and basalt correlated significantly with species richness (r = 0.88; p 

< 0.001) and with Shannon-Wiener diversity index (0.66; p < 0.003).  An inverse correlation 

of maximal sulfide with species richness (r = 0.71; p = 0.001) was found, but Shannon- 

Wiener diversity (r = 0.59; p = 0.011) was not significantly correlated. Both univariate 

measures of diversity were not correlated with sediment volume and surface area, except for 

Shannon-Wiener diversity and surface area (r = 0.69; p = 0.002). BIOENV gave the result of 

the following single abiotic variables which best group the sites, in a manner consistent with 

the faunal patterns:  pH (rank correlation ρ = 0.55), sulfide (ρ = 0.51), temperature (ρ = 0.51), 

and sediment (ρ = 0.14). Temperature, sulfide, and pH show together a rank correlation of 

0.54. 

Meiofauna distribution on a broader scale 
We summarized the occurrence of species according to habitat and gave them the following 

type names: AST generalist (species found on basalt and at least in one vent habitat, 

indicating a broad ecological niche), basalt specialist (species only found on basalt, 

indicating a more narrow niche), vent specialist (species only found in one vent habitat), vent 

generalist (species found in at least two vent habitats but not on basalt). Our results include 

species reports from other studies to gain a more complete picture (Humes 1984, Humes 

1987, Humes 1989, Humes 1990, Kornicker 1991, Humes & Lutz 1994, Tsurumi et al. 2003, 

Ivanenko & Defaye 2006, Zekely et al. 2006b, Gollner et al. 2008) (see Appendix 3). From 

the 87 identified species we currently can consider 35 species as basalt specialists, 29 

species as AST generalists, 12 species as vent generalists, and 11 species as vent 

specialists. Concerning the vent habitats only, 56% of species are AST generalists, 23% are 

vent generalists, and 21% are vent specialists. 

 

DISCUSSION 

The AST of the midocean ridge at 9°50’N EPR region houses two fundamentally different 

habitats: (i) the large, continuous basalt which is only scarcely populated by mega- and 

macrofauna with stable, ambient deep-sea temperatures. (ii) the relatively small, ephemeral, 

patchy hydrothermal vents at which a distinct zonation of foundation species and their 

associated faunas along a physical stress gradient of hydrothermal vent flux are found. 

Despite these profound differences, meiobenthos from both habitats is more similar than we 

expected. Instead of viewing a community as vent meiobenthos only, we propose to visualize 

them as AST hard substrate, epibenthic and epizoic deep-sea fauna, characterized by a few 

higher taxa of animals and protists with low diversity, and low abundances. Overall, distinct 
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communities colonize each habitat in a pattern of diversity inversely correlated with the 

gradient of hydrothermal vent flux.  

Low abundance and low higher taxon diversity  

Low meiofauna abundances below 100 ind. 10 cm-2 are common for hard substrate vent 

communities, which stand in contrast to many other marine habitats (see Gollner et al. 2007). 

At our studied sites, highest abundance was 976 ind. 10 cm-2, but most samples were 

characterized by <100 ind. 10 cm-2. A similar trend was found in all other comparable 

meiofauna studies from vents (Dinet et al. 1988, Zekely et al. 2006b, Copley et al. 2007). 

Bottom-up as well as top-down processes could provide possible explanations. On the one 

hand, vents are known for their high in situ primary production (Van Dover 2000), but neither 

the quality nor the quantity of particulate organic matter (POM), the major food source for 

meiofauna, has been studied at diffuse flow vents at the 9°N EPR. At Juan de Fuca Ridge, 

meiofauna occupies different feeding guilds and POM is shaped by variations of 

hydrothermal flux (Limén et al. 2007). On the other hand, highly abundant macrofauna 

possibly preys on smaller fauna. 

To our knowledge, only 4 metazoan phyla, Arthropoda, Gastrotricha, Nematoda, 

Platyhelminthes, and 2 protist phyla, Ciliates and Granuloreticulosa, build the entire 

meiobenthic community in the 9°50’N EPR region. Gastrotricha were described from artificial 

devices deployed in this area (Kieneke & Zekely 2007), but we did not encounter them in our 

study of natural communities. The most species rich taxon in our study is the Copepoda with 

49 identified species. Copepoda is also one of the most diversified taxa at hydrothermal 

vents, contributing about 80 described species, which represents more than 15% of the 

species documented from vents worldwide (Bright 2006, Ivanenko & Defaye 2006). 

Diversity is inversely correlated to vent flux  

A clear pattern of diversity emerges from this study of deep-sea hydrothermal vents. 

Meiobenthos diversity was found to be negatively correlated to the vent flux. While this 

ecosystem naturally exhibits the full range from extremely high vent flux above the limits of 

life to absence of vent flux in basalt areas, other types of disturbances such as frequent 

volcanic eruptions and biological disturbances are present everywhere. The fact that an 

unimodal relationship between disturbance and diversity as predicted by the intermediate 

disturbance hypothesis (Connel 1978, Menge & Sutherland 1987) was not found, might be 

due to the lack of non-disturbed habitats within this ecosystem. In consequence, competitive 

exclusion leading to a decrease in diversity at non-disturbed habitats might not play a role.  

Very high vent flux regimes with temperatures around 250°C as measured on the 

surface walls of several black smoker chimneys are above the limits for eukaryotic life, 

currently thought to be about 45-55°C (Lee 2003). These samples lacked any macro- and 

meiofauna. The foundation species Alvinella pompejana and A. caudata thrive at the most 
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extreme of vent habitats still populated by animals. Associated animals, such as the dirivultid 

Stygiopontius hispidulus that dominate the meiobenthic community also survive temporal 

peaks of high flux (Le Bris et al. 2006). For small meiobenthic organisms in general, this 

threat is thought to be more severe than for large macrobenthic animals due to their limited 

mobility relative to their small size in reacting to this potential disturbance. However, within 

the meiobenthos, copepods are considered relatively fast. Observation of live animals after 

collection showed us that this is also true for vent meiofauna (SG, MB pers. obs.). Their 

agility might be one of the factors allowing some copepods to invade this habitat, while the 

more sluggish nematodes, ostracods, and acari are apparently not capable of living in the hot 

pompei worm habitat. 

Physico-chemical characteristics of vent flux impose several physiological stresses and 

disturbances. With increasing vent flux and increasing amplitude of fluctuations, fewer 

species are able to cope with the extreme conditions. By comparing meiobenthic 

communities at different flux regimes and their thriving foundation species, we found that at 

vent sites, species richness and diversity clearly increased with decreasing vent flux from 

alvinellid (S: 4-7, H´loge: 0.11 – 0.45), tubeworm (S: 8 – 23; H´loge: 0.44 – 2.00) to mussel 

assemblages (S: 28 – 31; H´loge: 2.34 – 2.60). Statistical tests show that abiotic parameters of 

the vent flux are inversely correlated to species richness, and that temperature, sulfide 

concentration, and pH might have a great influence on the meiobenthic community structure.  

Previous studies on nematode and copepod communities do not contradict our results. 

The nematode community at sedimented vents in the North Fiji Basin, showed lower species 

diversity in the center of hydrothermal activity than in nearby areas without vent flux 

(Vanreusel et al. 1997). A copepod community study at Ridgeia piscesae tubeworm habitats 

at the Juan de Fuca Ridge also revealed that vents with reduced fluid flux or sites with 

undetectable vent fluid harbor more copepod species than higher flux vent sites (Tsurumi et 

al. 2003). Also a very species poor copepod community was found at sulfide chimneys 

colonized by Paralvinella sulfincola, comparable to what we found at the chimneys colonized 

by pompei worms. In P. sulfincola aggregation the copepod Stygiopontius quadrospinosus 

instead of S. hispidulus dominates the communities with 80% relative abundance (Tsurumi et 

al. 2003).  

The relation of disturbance and diversity in marine meiobenthos apparently is equally 

complex as has been reviewed for a variety of communities, which exhibited unimodel, U-

shaped, positive, negative, or no patterns (Mackey & Currie 2001).  Similar to our results 

from hydrothermal vents, also several community studies from intertidal areas showed a 

negative correlation of diversity with physical disturbance (Ott 1972, Netto et al. 1999, 

Moreno et al. 2006). In contrast along a gradient caused by glacial discharges of meltwater, 

ice and till highest taxonomic distinctness was found at the most disturbed areas (Somerfield 



23 
 

et al. 2006). Along a salinity gradient in an estuary, the diversity pattern was U-shaped 

(Warwick & Gee 1984).  Studies in oil-polluted areas showed no effect on diversity of 

nematodes compared to unpolluted sites (Gee et al. 1992, Schratzberger et al. 2003). Heavy 

metal pollution resulted in diminished taxon diversity (Sundelin & Elmgren 1991, Lee & 

Correa 2005). Disturbance by macrofauna (predation, physical disturbance, competition for 

food) shows  no overall trend that could predict diversity (Ólafsson 2003).  

AST meiofauna and possible underlying ecological and evolutionary processes  

More than half of the 52 species found at the 9°50’N EPR vents at pompei worm, tubeworm, 

and mussel aggregations also inhabit the bare basalt. Taking into account that we only were 

able to collect 4 samples at the basalt, we expect the number of species currently listed as 

vent endemics (specialists and generalists) to decline by future collecting. However, we can 

already see a rough outline of underlying different life histories concerning dirivultid and 

harpacticoid copepods and nematodes. Some species of the Dirivultidae, a family formerly 

classified as vent endemic (Heptner & Ivanenko 2002)  must now be considered as AST 

generalistic, as we also encountered them on bare basalt. Interestingly, many of these 

Dirivultidae showed relatively higher abundance at vent sites and individual species were 

found in many vent samples while at the basalt most species of Dirivultidae were only 

detected in a single sample. In contrast, the harpacticoid Copepoda, an order present in 

many other marine benthic habitats (Giere 2009), were usually more abundant and diverse in 

the basalt habitat. Nematodes were also more diverse on basalt, e.g. no species was found 

in the pompei worm habitat, and only very few species were present in the tubeworm habitat 

(e.g. Halomonhystera hickeyi, Thalassomonhystera fisheri). These few nematode species 

can become very abundant at vent habitats, suggesting that some species and/or genera 

have somehow successfully adapted to the vent environment. Whether the success of vent 

species is due to physiological adaptations, a very broad physiological tolerance, or due to 

biological processes remains to be tested. 

Disturbances, such as the waxing and waning of vents and even volcanic eruptions, 

are less dramatic for AST generalists as populations are present nearby on the basalt. Vent 

generalists have the advantage over vent specialists that shifts in vent flux are tolerated 

according to the range of physiological capabilities of each species. The number of vents 

potentially acting as a source for colonization is much higher for generalists, than specific 

vent types within a given area are for specialists. Consequently, the few vent specialists 

restricted to one specific habitat are most threatened by disturbances.  

Very few basalt samples were taken in the vicinity of vents about 10 meters away from 

flux, and it is far too early to predict which communities are generally found in this neglected 

habitat. It has to be noticed that the studied basalt, although not directly influenced by vent 

flux, might have enhanced food sources compared to more distant bare basalt. We identified 
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species that are also able to live at vent sites, but there were also true basalt specialists, as it 

could be tested for the harpacticoid copepod Smacigastes barti (Gollner et al. 2008). Likely, 

the basalt specialist meiofauna and/or AST meiofauna extends further into the flanks of the 

mid-ocean mountain chain until a switch from an epibenthic to infaunal community occurs 

due to an increase in sediment coverage. 

Conclusion 
This study underlines the importance of including meiofauna in studies of community 

ecology. We provide here an inventory of meiobenthic species and diversity patterns found at 

a deep-sea hydrothermal vent region. While a relationship between meiobenthic diversity 

and vent flux was found, this physical stress gradient does not necessarily imply that a 

causal link exists. The advantage of working on a community that is relatively poor in 

species, is our ability to address, in future work, specific questions on the underlying 

processes shaping this community.  
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Figure 1.  In situ photographs of the 5 different habitat types: Sulfide chimney (A),  pompei 

worm habitat with the polychaete Alvinella pompejana (B), tubeworm habitat with the 

vestimentiferan Riftia pachyptila (C), the mussel habitat with the mytilid mussel 

Bathymodiolus thermophilus (D), and bare basalt habitat (E). 
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Figure 2. 2-dimensional MDS configuration plot for 18 samples from the pompei worm (P1-

P5), tubeworm (T1-T6), mussel (M1-M3), and basalt habitats (B1-B4). 
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Table 2. Results of bootstrapping (bt, 10 000 resamplings each) used to test for significant 

differences in total abundance 10 cm-2 (Ab.), species richness (S), Shannon-Wiener diversity 

(H´loge), and Pielou´s evenness (J´), between the habitats P (pompei worm), T (tubeworm), M 

(mussel), and B (basalt). Significant results after classical Bonferroni-correction are marked 

in bold. Dissimilarity results (Diss. %) calculated by SIMPER, and ANOSIM results (R-

statistics and possible significance level p) are also shown for habitats. 

 

Habitat Ab. S H´loge J´ Diss.% R-stat p  
P - T 0.29 <0.001 <0.001 <0.001 95 1 0.002 
P - M <0.001 <0.001 <0.001 <0.001 94 1 0.018 
P - B <0.001 <0.001 <0.001 <0.001 93 1 0.008 
T - M 0.81 <0.001 <0.001 0.09 68 0.53 0.24 
T - B 0.32 <0.001 0.20 0.86 84 0.86 0.005 
M - B 0.003 0.58 0.07 0.24 75 0.56 0.057 
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Appendix 1. Sample sites within the 9°50´N EPR (East Pacific Rise) region:  Alvinella Pillar, 

Bio 9, Michel´s Vent, M-Vent, Q-Vent (pompei worm habitats), Tica, Riftia Field (tubeworm 

habitats), and Mussel Bed (mussel habitat). Basalt samples were taken near Tica and 

Alvinella Pillar. 
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ABSTRACT 
Variability in the structure of the meiobenthic copepod communities was studied among three 

vent sites on the East Pacific Rise. One of the sites was dominated by the mussel 

Bathymodiolus thermophilus, and the other two of the sites were dominated by the tubeworm 

Riftia pachyptila. In addition to the differences in the dominant megafauna, the maximum 

temperatures were much lower at the mussel-dominated sites, and the temperature to sulfide 

ratio was different between the tubeworm-dominated sites. A total of 22 vent endemic 

siphonostomatoid copepod species and 5 harpacticoid copepod species were identified 

among the three sites. Copepod abundance was low at all sites (< 1-31 ind. 10 cm-2). 

Species richness ranged from 6-14, Shannon-Wiener diversity indices from 1.3-2.3, and 

Pielou’s evenness indices between 0.6-0.9 were found. Differences were detected in 

abundance and Shannon-Wiener diversity between the mussel site and one tubeworm site. 

Multivariate analyses pointed to a relative homogenous mussel bed community and a 

heterogenous tubeworm community. The majority of species were primary consumers 

feeding on detritus. Both copepod sexes and, for the first time, all copepodite stages were 

detected in the samples. 

 

Keywords: meiobenthic copepods, hydrothermal vent, Bathymodiolus thermophilus, Riftia 

pachyptila, East Pacific Rise, community structure 
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INTRODUCTION 

Copepoda is one of the largest and most diversified taxa at hydrothermal vents. They are 

estimated to contribute more than 15% of the total species described from vents worldwide 

(Tunnicliffe et al. 1998). The most important order is the Siphonostomatoida, with more than 

50 described species including the families Dirivultidae and Ecbathyriontidae, which are 

largely endemic to vents (Humes 1988, Heptner & Ivanenko 2002). Even with the large 

number of described species, our knowledge of the variability in copepod community 

structure, as well as the geographic distribution and habitat selection of individual species is 

limited. In this study, we focused on the identification and quantification of the meiobenthic 

copepod communities from three sites on the northern East Pacific Rise. We also explored 

the influence of the dominant megafaunal species Riftia pachyptila Jones, 1981 and 

Bathymodiolus thermophilus Kenk & Wilson, 1985 and hydrothermal fluid flux on the 

structure of the copepod communities. 

 

MATERIAL AND METHODS 
In December 2001 and December 2002, quantitative collections of either mussel-dominated 

or tubeworm-dominated communities were made at three hydrothermal vent sites on East 

Pacific Rise at ~ 2500 meters depth: Tica (9°50.447´N, 104°17.493´W), Riftia Field 

(9°50.705´N, 104°17.393´W), and Buckfield (11°24.90´N, 103°47.20´W). At Tica, large 

aggregations of the tubeworm Riftia pachyptila were visibly dominant, but the mussel 

Bathymodiolus thermophilus was also present. At the time of sampling in 2002, this site was 

characterized by warm fluids with maximum temperatures of 18°C, maximum sulfide 

concentrations of 176 µM ∑H2S, and slightly acidic pH. The more sparse and patchy 

aggregations of tubeworms at Riftia Field lacked mussels and in 2002 exhibited similar 

maximum temperatures of 23°C but maximum sulfide concentrations were 35 µM ∑H2S and 

minimal pH was below 5 (see Le Bris et al. 2006). At Buckfield, mussels formed a dense bed, 

and temperatures ranged between ~2 and 10°C (Van Dover pers. obs.) (Table 1). No data on 

sulfide concentrations and pH were available for this site. Both, R. pachyptila and B. 

thermophilus formed aggregations on hard substrate, and small amounts of sediment, 

consisting primarily of particulate organic matter and a few mineral grains, accumulated 

between the tubes and between the shells and byssal threads of the mussels.  

Three quantitative samples were taken at each of the three sites, Tica (TC1, TC2 in 

2001 and TC3 in 2002), Riftia Field (RF1, RF2 in 2001 and RF3 in 2002) and Buckfield (BF1, 

BF2 and BF3 in 2001) using two collection devices. The tubeworm aggregations were 

sampled with the “Bushmaster Jr.” (300-1300 cm
2 

sample area) (Govenar et al. 2005), and 
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mussel aggregations were sampled with the “mussel pot” (531 cm
2 

sample area) (Van Dover 

2002). Meiofauna was retained on 63 µm mesh-sized net, passing through a 1 mm net, fixed 

in 4% buffered formalin for 24 h, and stored in 70% ethanol. In order to compare these large 

sample areas to other meiofauna studies, we standardized all samples to 10 cm
2
. All 

copepods were counted, and at least 300 individuals per sample were identified to species 

level, until an asymptote was obtained for the cumulative species effort curve constructed for 

each sample (Fig. 1). Planktonic species were excluded in this study because this 

community, albeit closely related to the benthic environment, is not part of the meiobenthos 

(Giere 1993). Biomass of the vent endemic siphonostomatoid copepods was calculated 

according to their body form (see Heptner & Ivanenko 2002). Body volume of harpacticoid 

copepods was estimated (Volume = Length x Width
2 

x Conversion factor corresponding to 

body form) and was then multiplied by the specific gravity of 1.13 (for meiobenthos in 

general) to obtain wet mass in mg (see Feller & Warwick, 1979). The trophic status of each 

species was determined according to the mouth structure of copepods, according to the 

classification determined by Heptner & Ivanenko (2002). Univariate (S, H´loge, J´) and 

multivariate measurements (cluster-analysis, SIMPER, ANOSIM; data were standardized 

and square-root transformed) were calculated using PRIMER v5 Package (Plymouth Marine 

Laboratory; Clarke & Gorley 2001). Student´s t-tests were used to test significant differences 

in abundance and species richness. Due to the relatively small number of samples, 

bootstrapping (1000 resamplings each, two-sided test; routine “FTBOOT” from the package 

“computerintensive statistics” by Nemeschkal 1999) was used to test for significant 

differences in abundance, species richness, and Shannon-Wiener diversity indices among 

the three sites. Results from statistical analysis were classical Bonferrroni-corrected (p = α/n; 

α = 0.05).  

 

RESULTS AND DISCUSSION 

Hydrothermal vents on the East Pacific Rise are highly variable habitats inhabited by distinct 

mega- and macrofaunal communities dominated by the tubeworm Riftia pachyptila or the 

mussel Bathymodiolus thermophilus found in vigorous to moderate diffuse flow areas (Shank 

et al. 1998). Since at the time of sampling, the tubeworm dominated sites Tica and Riftia 

Field were known to exhibit higher overall maximum temperatures than the mussel site 

Buckfield, but differed in their maximum sulfide concentrations and minimum pH (Le Bris et 

al. 2006; Table 1), we expected a divergence in copepod community structure among the 

three different sites. Our findings showed that despite differences in environmental 

characteristics and dominant megafauna, univariate and multivariate analyses revealed that 
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the meiobenthic copepod community composition (e.g. abundance, S, H´log e) and trophic 

structure were similar among the tubeworm dominated sites. The mussel dominated site 

Buckfield and the tubeworm dominated site Riftia Field showed differences in abundance 

and Shannon-Wiener diversity index, but were similar in species richness and trophic 

structure. Differences in the distribution and relative abundance of species among samples 

reflect a relative homogenous mussel bed community and a highly heterogeneous tubeworm 

community. 

We identified a total of 27 species from all three sites. Similar to other studies from 

the Mid-Atlantic Ridge (Zekely et al. 2006) and the Juan de Fuca Ridge (Tsurumi et al. 

2003), vent endemic siphonostomatoid copepods dominated the communities on the East 

Pacific Rise. The highest relative abundance of siphonostomatoids with little variation among 

samples occurred at the mussel bed Buckfield (96-97%). At the tubeworm-dominated site 

Tica, siphonostomatoid relative abundance was also high, but the intra-site variation was 

larger (87-97%), while the lowest relative abundance was found at Riftia Field (75-86%) 

(Table 1). Harpacticoid copepods, known form a variety of shallow-water and deep-sea 

habitats, apparently play a minor role at vents with the exception of one senescent vent site 

at the Juan de Fuca Ridge (Tsurumi et al. 2003). 

Only 6 of 27 species were collected in mussel bed samples and in tubeworm 

aggregations (Table 3). Scotocetes introrsus Humes, 1987 was the most abundant shared 

species among sites. Other siphonostomatoids were patchily distributed among samples at 

all sites, while harpacticoids were rare in all samples. Aphotopontius mammilatus Humes, 

1987 and A. rapunculus Humes & Segonzac, 1998 appeared to be a consistent part of the 

copepod community at Buckfield, contributing more than 10% of the total abundance at the 

mussel bed, while these species were either present in lower abundances or absent in the 

samples from the tubeworm-dominated sites. On the other hand, the three parasitic 

Ceuthocetes species were relatively more abundant at the tubeworm-dominated sites.  

All univariate measures of community structure (S, H’loge, J’, abundance, biomass) 

were quite similar among sites (Table 1). Species richness (S) varied from 6 to 14 species in 

a single sample, but differences among sites were not significant (Table 2). Shannon-Wiener 

diversity indices were low at all sites (H’loge = 1.3 to 2.3; Tables 1 & 2). Pielou’s evenness 

indices were similar and high (J´ = 0.6 to 0.9), with similar proportions of all species. Also 

biomasses estimated for the 3 samples from each site were similar and dominated by the 

large-sized siphonostomatoids (Table 1). Copepod abundances well below 80 ind. 10 cm
-2 

seem to be the rule at hydrothermal vents (Dinet et al. 1988, Tsurumi et al. 2003, Zekely et 

al. 2006). The three hard substrate communities in this study follow this trend. Abundances 
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at Tica (12.8 ± 10.9 ind. 10 cm
-2

) were similar to those of Riftia Field (1.4 ± 1.7 ind.10 cm
-2

) 

and Buckfield (26.2 ± 2.8 ind. 10 cm
-2

). Only at Riftia Field and Buckfield abundances were 

different (Tables 1 & 2).  

Multivariate analyses differentiated a distinct homogenous mussel-dominated 

community at Buckfield and a highly heterogeneous tubeworm-dominated community at Tica 

and Riftia Field. At the mussel bed, samples were highly similar (SIMPER: 86%) indicating a 

rather homogenous assemblage, while among the tubeworm aggregations, intra-site 

similarities were low (SIMPER: Tica 40%, Riftia Field 45%). The dendrogram based on Bray-

Curtis similarity reflects these patterns (Fig. 2). ANOSIM showed a global R of 0.63 at a 

significance level of 1.4% pointing to 3 slightly different communities.  

Out of 16 species found at Tica and 17 species found at Riftia Field, the majority of 13 

species (76% of total species at Tica and 81% of total species in Riftia Field) co-occurred at 

both tubeworm sites. In contrast, only 43% of total species in the mussel bed (6 out of 14 

species) also occurred at the tubeworm-dominated sites and 43% of total species were 

restricted to the mussel bed indicating different assemblages. However, whether these 

differences between copepod communities at tubeworm aggregations from the East Pacific 

Rise 9°N vent sites and a mussel bed from 11°N are due to local factors, such as distinct 

flow regimes or the dominant megafauna, or due to regional-scale differences, possibly 

created by the Clipperton transform fault dividing the East Pacific Rise, remains to be 

studied. 

Little is known on the geographic distribution of copepod species at vents. In previous 

studies, most samples were collected and described from a single vent. The majority of 

species we found among the tubeworm and mussel aggregations in this study were already 

known from the northern East Pacific Rise. However, Aphotopontius probolus Humes, 1990 

was described from the Galapagos Rift, and Bathylaophonte pacifica Lee & Huys, 1999 was 

reported from the southern East Pacific Rise (Ivanenko & Defaye 2006) before they were 

discovered at our study sites.  

Copepods are usually a very abundant part of the benthos in a variety of habitats, and 

play an important role in the food web by linking the microbial community and the 

macrofauna (Giere 1993). Although copepods are known to have representatives at all 

trophic levels, from primary consumers to secondary and tertiary predators and parasites, at 

the hydrothermal vents sites in this study, deposit feeders dominated the copepod 

community, with a total of 24 of 27 total species. Parasites were represented by the three 

species of Ceuthocetes, and predators were absent. Trophic status can be inferred from 

mouth structures (Heptner & Ivanenko 2002). While direct feeding observations have yet to 

be conducted, the mouthparts of many vent siphonostomatoids appear to be suitable for 
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feeding on finely grained particles. Furthermore, bacteria embedded in mucus were found in 

the foreguts of such copepod species (Dinet et al. 1988). The dominance of primary 

consumers in the meiobenthic copepod community could be important for the transfer of 

organic matter at hydrothermal vents. 

The role of parasitic copepods at hydrothermal vents is less understood. For 

example, Ceuthocetes species are thought either to feed on mucus and/or cut round holes 

into the host tissue and obtain their food through these holes (Heptner & Ivanenko 2002, 

Ivanenko & Defaye 2006). So far, they have been found associated with tubeworms or the 

clam Calyptogena magnifica Boss & Turner, 1980 (Ivanenko & Defaye 2006). In our samples 

they were also associated with the mussel Bathymodiolus thermophilus.  

Little is known about the population structure, reproduction, and dispersal of vent 

copepods. Female dominated copepod communities are often found in diverse shallow-water 

habitats (Giere 1993) and were also reported from a vent site at Juan the Fuca Ridge 

(Tsurumi et al. 2003). Also, the majority of species in our samples showed a female bias or 

completely lacked males (Aphotopontius hydronauticus Humes, 1989, A. probolus, A. 

acanthinus Humes & Lutz, 1994). On the other hand, some parasitic species, such as 

Ceuthocetes acanthothrix Humes, 1987, C. aliger Humes & Dojiri, 1980, and C. introversus 

Humes, 1987 and the primary consumer Scotocetes introrsus Humes, 1987 were male 

dominated. While underlying mechanisms of population and community dynamics of female 

or male dominated species cannot be fully understood when samples are collected at a 

single time point, the occurrence of certain larval stages in benthic samples at least points to 

specific life history traits and dispersal capabilities. Copepodite stages from I to V were found 

at the two tubeworm-dominated sites, and a particularly high number of copepodites was 

present at Tica. At the mussel-dominated site Buckfield, copepodites from stage III to V were 

found, but in lower overall abundance than the tubeworm-dominated sites (Table 1). The 

differences in occurrence of copepodite stages between tubeworm and mussel communities 

cannot be explained by possible seasonality in reproduction cycles since all samples were 

taken in the same month of the year. Early copepodite stages have not been found 

previously in vent samples, suggesting pelagic dispersal (Tsurumi et al. 2003, Ivanenko 

1998). However, from our findings we infer that at least in some species living among 

tubeworm aggregations, development through copepodite stages I to V occurs in the benthic 

environment. It has to be kept in mind, however, that many copepods, adults or larvae, are 

known to frequently migrate from the benthic to the pelagic environment in order to disperse, 

reproduce, search for food, or escape predators (Giere 1993). 

 



47 

 

ACKNOWLEDGMENTS 

This work was supported by the Austrian Science Foundation grant FWF (P16774-B03 to M. 

Bright), National Science Foundation USA (Biological Oceanography to C. L. van Dover; 

OCE-0002729 to C. R. Fisher), Ifremer and the European Community (Ventox project EVK3-

1999-00056P to N. Le Bris), International Office Vienna and Promotion Grant University of 

Vienna (to J. Zekely and S. Gollner). We thank the captains and crews of the R/V Atlantis 

and the pilots and crews of the DSV Alvin for their expertise in sample collections, and C.R. 

Fisher for invitation to the cruises and his scientific input. We are grateful to R. Huys, V. N. 

Ivanenko, and P. Martínez-Arbizu for their input in copepod identification and ecology.  

  



48 

 

REFERENCES  
Clarke KR, Gorley RN (2001) PRIMER v5: User manual / tutorial. PRIMER-E Ltd: Plymouth. 

90 pp  

Dinet A, Grassle F, Tunnicliffe V (1988) Premières observations sur la méiofaune des sites 

hydrothermaux de la dorsal East-Pacifique (Guaymas, 21°N) et de l´Explorer Ridge. 

Oceanologica Acta 85: 7-14 

Feller RJ, Warwick RM (1979) Energetics. In: Higgins RP, Thiel H (ed) Introduction to the 

Study of Meiofauna, Smithsonian Institution Press: Washington, pp 181-196 

Giere O (1993) Meiobenthology, the microscopic fauna in aquatic sediments. Springer 

Verlag, Berlin, 328 pp 

Govenar B, Le Bris N, Gollner S, Glanville J, Aperghis AB, Hourdez S, Fisher CR (2005) 

Epifaunal community structure associated with Riftia pachyptila aggregations in 

chemically different hydrothermal vent habitats. Marine Ecology Progress Series 305: 

67-77 

Heptner MV, Ivanenko VN (2002) Copepoda (Crustacea) of hydrothermal ecosystems of the 

World Ocean. Arthropoda Selecta 11: 117-134 

Humes AG (1988) Copepoda from deep-sea hydrothermal vents and cold seeps. 

Hydrobiologia 167/168: 549-554  

Ivanenko VN, Defaye D (2006) Copepoda. In: Desbruyères D, Segonzac M, Bright M (ed) 

Handbook of Hydrothermal Vent Fauna, Densia, Linz. pp 316-355  

Ivanenko VN (1998) Deep-sea hydrothermal vent copepoda (Siphonostomatoida, 

Dirivultidae) in plankton over the Mid-Atlantic Ridge (29°N), morphology of their first 

copepodite stage. Zoologichesky Zhurnal 77: 1-7 

Le Bris N, Govenar B, Le Gall C, Fisher CR (2006) Variability of physico-chemical conditions 

in 9°50´N EPR diffuse flow vent habitats. Marine Chemistry 98: 167-182 

Nemeschkal HL (1999) Morphometric correlation patterns of adult birds (Frinngillidae: 

Passeriformes and Columbiformes) mirror the expression of developmental control 

genes. Evolution 53: 899-918 

Shank TM, Fornari DJ, Von Damm KL, Haymon RM,  Lutz RA (1998) Temporal and spatial 

patterns of biological community development at nascent deep-sea hydrothermal vents 

(9°50´N, East Pacific Rise). Deep Sea Research Part II 45: 465-515 

Tsurumi M, de Graaf RC, Tunnicliffe V (2003) Distributional and biological aspects of 

copepods at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific Ocean. 

Journal of the Marine Biological Association of the United Kingdom 83: 469-477 

Tunnicliffe V, McArthur AG, McHugh D (1998) A biogeographical perspective of the deep-sea 

hydrothermal vent fauna. Advances in Marine Biology 34: 353-442 



49 

 

Van Dover CL (2002) Community structure of mussel beds at deep-sea hydrothermal vents. 

Marine Ecology Progress Series 230: 137-158 

Zekely J, Van Dover CL, Bright M (2006) Hydrothermal vent meiobenthos associated with 

mussel (Bathymodiolus spp.) aggregations from Mid-Atlantic Ridge and the East 

Pacific Rise. Deep Sea Research I 53: 1363-1378 

 

 

 



 Figure 1. Cumulative species-effort curves for copepods based on cumulative number of 

species for samples with > 300 individuals (Tica: TC1, TC2, TC3; Riftia Field: RF3; Buckfield: 

BF1, BF2, BF3).  
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Figure 2. Hierarchical cluster diagram for group average linking, based on Bray-Curtis 

community similarity values from the nine samples (Tica samples: TC1, TC2, TC3; Riftia 

Field samples: RF1, RF2, RF3; Buckfield samples: BF1, BF2, BF3).  
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Table 1. Characteristics of collection sites and benthic copepod communities according to 

sites.  

 
 Tica Riftia Field Buckfield 
Maximum temperature [°C] 18c 23 c  ~ 2 - 10 
Maximum ∑H2S [µM] 176 c  35 c  N/A 
Maximum iron [µM] 0 c  42 c  N/A 
Minimum pH 5.7 c  4.4 c  N/A 
Dominant megafauna R.  pachyptila R.  pachyptila B.  thermophilus 
Sediment [ml 10cm-2] 1.5 - 5.5 0.3 - 1.1 0.1 - 0.2 
Total abundance [ind. per sample] 217 - 983 25 - 342 1224 - 1624 
Abundancea [ind. 10 cm-2] 4 - 27 <1 - 4 23 - 31 
Abundanceb [ind. 10 cm-2] 3 - 24 <1 - 3 23 - 29 
Adults : Copepodites 5.9 ± 3.6 : 1 18.7 ± 22.4 : 1 38.0 ± 25.2 : 1 
Biomass [mg wet weight 10 cm-2] 0.32 - 2.88 0.02 - 0.42 1.47 - 3.01 
Species richness 7 - 14 6 - 14 12-13 
Shannon-Wiener diversity 1.3 - 2.3 1.5 - 2 2.1 - 2.3 
Pielou’s evenness 0.6 - 0.9 0.8 0.9 
Dirivultid copepods [%] 87 - 97 75 - 86 96 - 97 
Harpacticoid copepods [%] 3 - 13 14 - 25 3 - 4 
Deposit feeders [%] 5 - 92 73 - 100 84 - 91 
Parasites [%] 8 - 95 0 - 27 9 - 16 
Predators [%] 0 0 0 
 

aAbundance [ind. 10 cm-2] including copepodites. 
bAbundance [ind. 10 cm-2] excluding copepodites, as it was used to calculate diversity 
indices. 
cMeasured in 2002 (Le Bris et al. 2006) 
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Table 2. Bootstrapping and students t-test (two-sided, t4df = 2.776, p-value in parentheses) 

was used to test for differences in abundance (Ab, ind. 10 cm-2) and species richness (S) 

between the three sites (Tica versus Riftia Field, Tica versus Buckfield, Riftia Field versus 

Buckfield). Bootstrapping was used to test for differences in Shannon-Wiener diversity 

(H´loge). Results are given prior Bonferroni corrections.  

 
 TC vs RF TC vs BF RF vs BF 
Ab 0.01 (0.09) 0.02 (0.13) 0.003 (0.01)a 
S 0.49 (0.60) 0.21 (0.44) 0.05 (0.23) 
H´loge 0.90 0.03 0.003a 
 

asignificant after Bonferroni corrections (p < 0.05) 
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ABSTRACT  
The meiobenthic nematode community of three different vent sites at the East Pacific Rise 

was studied in order to determine whether the abundance, species richness, diversity and 

trophic structure were similar. The sites Tica and Riftia Field were dominated by the 

tubeworm Riftia pachyptila, and the Buckfield site was dominated by the mussel 

Bathymodiolus thermophilus. The nematode communities of all three sites were low in 

abundance (< 1 up to 46 ind. 10 cm
–2

), except one sample from Tica with almost 1000 ind. 

10 cm
-2

. The communities at all sites consisted entirely of primary consumers, mostly deposit 

feeders. Species richness and Shannon-Wiener diversity indices were low and similar at both 

tubeworm sites and slightly but significantly higher at the mussel site. Multivariate analysis 

revealed that the species dissimilarity among the three sites was greater than 50 %, 

indicating distinct communities at each site.  

 

Keywords: hydrothermal vent, meiobenthos, nematodes, Riftia pachyptila, Bathymodiolus 

thermophilus, East Pacific Rise  
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INTRODUCTION 
Ecological community studies address the distribution and abundance of organisms. The 

spatial and temporal heterogeneity of a habitat can play an important role in the structure of a 

community (Begon et al. 1999). Most ecological studies at hydrothermal vents have focused 

on mega- and macrofauna. The few studies of the meiofauna, (animals and protists passing 

through a 1 mm and retained on a 63 µm mesh-sized sieve) (see Giere 1993), have 

indicated that the meiobenthos is a significant part of the hydrothermal vent community 

(Dinet et al. 1988, Shirayama 1992, Vanreusel et al. 1997, Zekely et al. 2006). Nematoda is 

one of the dominant meiobenthic taxa and is known from a variety of terrestrial, freshwater, 

and marine shallow-water and deep-sea habitats (Giere 1993). Vanreusel et al. (1998) were 

the first to describe the structure of a vent nematode community from mussel aggregations at 

soft-sedimented hydrothermal vents at the North Fiji Back-Arc Basin. The abundance and 

composition of nematodes were significantly different between active sites, inhabited by 

Bathymodiolus brevior Cosel & Métivier, 1994 and inactive vent sites, devoid of megafauna 

(Vanreusel et al. 1997). 

The aim of this study was to investigate and compare the nematode communities of 

three hydrothermal vent sites on the northern East Pacific Rise, which differ in environmental 

characteristics, including the occurrence of the structuring large animals Riftia pachyptila 

Jones, 1981 and/or Bathymodiolus thermophilus Kenk & Wilson, 1985. These megafaunae 

create a unique three-dimensional habitat with considerable interstitial space in which small 

macro- and meiobenthic animals, including nematodes, live. They are a suitable structural 

habitat for biodiversity and community structure comparisons at hydrothermal vents.  

 

MATERIAL AND METHODS 

Nine megafaunal aggregations were sampled, three each at the sites Riftia Field 

(9°50.705´N, 104°17.493´W, 2500 m depth) and Tica (9°50.447´N, 104°17,493´W, 2500 m 

depth) (both dominated by the tubeworm Riftia pachyptila, but Bathymodiolus thermophilus 

mussels also occurred at Tica) and three at the site Buckfield (11°24.90´N, 103°47.20´W, 

2480 m depth), where the mussel B. thermophilus was the dominant megafaunal species 

(Table 1). All megafaunal aggregations assembled on bare basalt and small amount of 

sediment, mostly particulate organic matter with few mineral grains, accumulated between 

tubes and/or shells. In 2002, chemical concentrations of ∑H2S and ferrous iron, pH and 

temperature were measured at the collection sites in situ with the “Alchimist” (Le Bris et al. 

2006). At Riftia Field the maximum temperature was 23°C, sulfide concentrations were up to 

35 µM ∑H2S, minimum pH was 5, and dissolved ferrous iron concentrations were as high as 

42 µM. At Tica, maximal temperatures were similar to Riftia Field (maximum 18°C), but the 
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chemistry of the fluid was significantly different (maximal sulfide concentrations up to 176 µM 

∑H2S, neutral pH, ferrous iron was not detected) (Le Bris et al. 2006; Table 1). At the time of 

collection of mussels at Buckfield, maximum temperatures were approximately between 2 

and 10°C (Van Dover, pers. obs.). No chemical measurements were conducted during 

sampling at Buckfield.  

Quantitative tubeworm samples at Riftia Field and Tica were taken using DSV Alvin 

and a hydraulically actuated collection net named the “Bushmaster Jr.” in December 2001 

and December 2002 (sampling area up to 60 cm in diameter; for details see Govenar et al., 

2005). The mussel samples at Buckfield were collected with the “mussel pot” sampling 

device (531 cm
2 
collection area) with DSV Alvin in December 2001 (for details see Van Dover 

2002). On board the ship, megafaunal aggregations were immediately disassembled and 

rinsed 3 times with 10 µm filtered seawater to wash off associated fauna and sediment. To 

extract the meiofaunal community, the samples were washed through a series of sieves (63 

µm, 250 µm, 1 mm sieve size), fixed in 4% buffered formalin for 24 h, and stored in 70% 

ethanol. The nematode community was sorted and individuals were counted under a 

dissection microscope. If present, 300 nematodes per sample were haphazardly chosen and 

mounted in glycerin for identification to the lowest possible taxon level.  

Due to the different sizes of the sampled areas (300 cm
2 

to 1300 cm
2 

for tubeworm 

aggregations and 531 cm
2 

for mussel aggregations) and in order to compare these large 

sample areas with each other and to other meiofauna studies, we standardized the 

abundance to 10 cm
2 

surface area. Individual biomass (µg wet weight) of nematode species 

was estimated according to Andrassy (1956) [wt (µg) = length (µm) x width
2 

(µm) / 1600000; 

wt = µg wet weight, L = length (from anterior to posterior end) and W = maximum diameter of 

body]. All identified specimens were measured and the total biomass of the nematode 

community was estimated by the summation of the mean biomass of each measured species 

by the total abundance of each species in each sample.  

The trophic status of the nematodes was determined by morphology and classified into 

primary consumers, parasitic and predatory secondary and tertiary consumers, following 

Wieser (1953).  

To illustrate the degree of heterogeneity and dominance patterns, k-dominance 

curves were constructed for each sample by plotting the relative abundance of each species 

against the decreasing rank of dominant species. To describe the nematode community 

structure, species richness (S), Pielou’s evenness index (J´), and Shannon-Wiener diversity 

index (H’log e) were calculated. The Students t-test was used to test significant differences in 

abundance (square-root transformed) and species richness (square-root transformed). Due 
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to relative small number of samples, bootstrapping (1000 resamplings each, two-sided test; 

Nemeschkal 1999) was used to test for significant differences in abundance, species 

richness, and Shannon-Wiener diversity indices among the three sites (Nemeschkal 1999). 

Results from statistical analysis were Bonferroni-corrected (p = α/n; α = 0.05). Hierarchical 

clustering was used to compare communities of the three sites. The similarity matrix for 

cluster analysis was generated using Bray-Curtis similarity values calculated from square-

root transformed, standardized abundance data. All univariate indices and multivariate 

measures were performed using the PRIMER v5 package (Plymouth Marine Laboratory; 

Clarke & Gorley 2001).  

 
RESULTS AND DISCUSSION 

At the East Pacific Rise striking spatial patterns of typical megafauna assemblages along a 

gradient of hydrothermal fluid flux are common (e.g. Shank et al. 1998). Hydrothermal vent 

sites of vigorous to moderate diffuse flow such as Tica, Riftia Field, and Buckfield are often 

densely populated by large aggregations of tubeworms and/or mussels. Assembled on bare 

basalt, the tubes or shells and byssal threads of these animals provide a highly structured 

three-dimensional habitat in which little sediment accumulates. Nematodes, one of the most 

divers and abundant meiofaunal taxa in virtually all marine benthic habitats, were found to be 

a consistent but small part of the associated epifaunal community. In this study, the diversity 

of nematodes was extremely low with very few species present in low abundance and 

biomass. The presence of these impoverished nematode communities at the northern East 

Pacific Rise stands in contrast to those of sedimented vent sites from other biogeographical 

regions, such as from the North Fiji Back-Arc Basin (Vanreusel et al. 1997). Multivariate 

analyses of community structure revealed that each site, differing in environmental 

characteristics, harbored its own distinct community. Furthermore, the similarity of both 

tubeworm sites was higher with univariate measures than the similarity of each tubeworm 

site to the mussel site. 

Inferred from mouth structure analyses, the nematode communities associated with 

tubeworms and mussels were entirely comprised of deposit feeders; whereas in other 

habitats, nematode communities are dominated by primary consumers but consumers of 

higher trophic levels are usually present (see Giere 1993). No predators were collected in 

this study.  

In eight out of nine samples, abundances ranged from only < 1 to 46 ind. 10 cm
-2

, with 

biomasses ranging from 0.001 to 0.006 mg 10 cm
-2 

(Table 1). Although statistically not 

significantly different, one exceptional sample from Tica (946 ind. 10 cm-2; 0.164 mg 10 cm-2; 

Table 1) fell within the well-known range of nematode abundance from other shallow-water 
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or deep-sea habitats and might point to a patchy distribution (see Giere 1993) at 

hydrothermal vents. The only species co-occurring at all sites was Thalassomonhystera sp. 

1. It dominated relatively consistently between 84 and 94% to the total community at Tica 

and between 45 to 49% at Buckfield, while its contribution between 0 and 60% at Riftia Field 

was highly variable (Table 2). 

As expected, univariate and multivariate measures of community structure point to 

distinctly different communities along an environmental gradient. Although inferred from a 

total of nine samples only and a few physicochemical data available for these sites, it 

appears that the nematode communities were affected by abiotic key factors such as 

temperature and sulfide concentrations, known to be critical for hydrothermal vent animals. 

Nevertheless, the dominant megafauna structuring the habitat might have a basic influence 

on its associated community, since the degree of similarity was higher between both 

tubeworm sites than between those and the mussel site. The tubeworm communities, at the 

time of sampling, were exposed to similar maximal temperatures near 20°C, in contrast to 

the mussel bed at Buckfield with maximum temperatures ranging from 10°C to slightly above 

ambient (~ 2°C) temperatures (Table 1). Also, the age of the communities, quite different 

between the three sample sites, might have an influence on the structure of the nematode 

communities. The mussel bed Buckfield is older (> 10 yrs; Dreyer et al. 2005) and exhibited a 

more divers macrobenthic community than Riftia Field (< 10 yrs; Van Dover 2000), while Tica 

is the youngest habitat (< 7 years; Van Dover 2000) with the lowest diversity. Univariate 

measures of community structure revealed clear differences between the tubeworm and 

mussel bed communities. A total of only three species from Riftia Field and four species from 

Tica were identified. The few species found, were unevenly distributed among samples and 

sites. Species richness and Shannon-Wiener diversity were low and not significantly different 

between Riftia Field and Tica (Table 3). In contrast, nine species were found at Buckfield, 

and species richness and Shannon-Wiener diversity were significantly higher than both of the 

tubeworm sites (Table 3). The same trends held true for Pielou’s evenness. The more 

pronounced similarity among the both tubeworm dominated nematode communities as well 

as the distinct community associated with the mussel bed was also evident in the k-

dominance curves (Fig. 1). 

 Multivariate analyses (SIMPER) revealed that the species dissimilarity between sites 

was > 50% between Tica and Buckfield, > 60% among Tica and Riftia Field and > 80% 

between Riftia Field and Buckfield (see also Fig. 2). These patterns were also supported by 

an analysis of similarity (ANOSIM; global R = 0.942, p = 0.4). The similarity between Tica 

tubeworm and the Buckfield mussel communities was due to the homogeneity among the 

samples with Bray-Curtis similarity values > 85% at Tica and > 80% at Buckfield (Fig. 2). The 
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latter mussel bed community was characterized by six out of nine species that lacked at the 

other sites. In contrast, the Riftia Field community was rather heterogeneous. The similarity 

among the Riftia Field samples was < 70%, due to the variable relative abundance of 

Thalassomonhystera sp. 1 (60%, 10% and 0%) and that one sample was composed entirely 

of a representative of undescribed genus of Monhysteridae sp. 2 (Table 2). The picture 

emerging from the available data on hydrothermal vent nematode distribution and community 

structure available so far points to a small community composed of a few, mostly yet 

undescribed species belonging to generalistic genera well known from many shallow-water 

and deep-sea environments. Deep-sea hydrothermal vent communities appear to have no 

strong affinities to other communities from sulfidic environments such as the ‘thiobios’ of 

sulfidic sediments, shallow-water vents, or cold seeps, despite the presence of reducing 

chemicals and hypoxia (Vanreusel et al. 1997).  

In general, nematode diversity (species richness, Shannon-Wiener diversity) as well 

as nematode abundance is low at deep-sea hydrothermal vents. At a finer scale however, 

the East Pacific Rise communities from 9° and 11°N in this study were even less abundant 

than those from 21°N (Dinet et al. 1988), the Guaymas Basin (Dinet et al. 1988), and the 

Iheya Ridge (Shirayama 1992), and less abundant and less diverse than those the North Fiji 

Back-Arc Basin (Vanreusel et al. 1997). The difference between the sites in this study and 

other hydrothermal vent sites maybe due to the substrate, but many other factors (e.g. the 

physico-chemical factors, the geographic locations) may contribute as well. Sediments 

through which hydrothermal fluid percolates or mussel aggregations accumulated above the 

sediments appear far more suitable for nematodes than mussel or tubeworm aggregations 

developing on bare basalt. While in situ experiments yet have to determine the exact location 

of nematode distribution within such aggregations either epibenthically on the tubes or shells 

and/or endobenthically within the little sediment accumulating between large animals, 

nematode communities are generally more diverse and more abundant in sediments than on 

hard substrate (Giere 1993).  
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Figure 1. Mean cumulative dominance of nematode species from the three sites (TC = Tica; 

RF = Riftia Field; BF = Buckfield); relative abundances of species were plotted against 

species rank (i.e. number of species) for each sample.  
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Figure 2. Hierarchical cluster diagram for group average linking based on Bray-Curtis 

similarities of nematode species from the nine samples (Tica samples: TC1, TC2, TC3; Riftia 

Field samples: RF1, RF2, RF3; Buckfield samples: BF1, BF2, BF3).  
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Table 1. Characteristics of collection sites (*measured in 2002; Le Bris et al. 2006) and 

nematode communities according to sites. 
 

Site     Riftia Field   Tica   Buckfield 
Maximum temperature [°C]   23*    18*   10 
Maximum ·H2S [μM]    35*    176*   N/A 
Maximum ferrous iron [μM]   42*    0*   N/A 
Minimum pH     4.4*    5.7*   N/A 
Dominant megafauna   R. pachyptila   R. pachyptila  B. thermophilus 
Total abundance    11 - 573   951 - 28369  51 - 66 
Abundance 10 cm-2    <1 - 7    16 - 946  1 - 2 
Species richness    1 - 3    3 - 4   8 - 9 
Shannon-Wiener diversity   0.4 - 0.7   0.3 – 0.5  1.5 – 1.7 
Pielou’s evenness    0.3 - 0.9   0.2 - 0.4  0.7 - 0.8 
Biomass [mg wet weight 10 cm-2] < 0.001 – 0.001   0.002 – 0.16  < 0.0001 
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Table 2. Relative abundance (%) of nematode species occurring at Tica (TC), Riftia Field 

(RF) and Buckfield (BF). 

 
 
Site                                          TC1 TC2  TC3  RF1  RF2  RF3  BF1  BF2  BF3  
Species from three sites                  
Thalassomonhystera fisheri   8 94 84 60   10 48 45 49 
Species from two sites                   
Chromadorita sp. 1       < 1        7 5 1 
Monhysteridae sp. 1   7 3 15       21 13 8 
Monhysteridae sp. 2   5 3 < 1  40 100 90      
Species from one site                   
Anticoma sp. 1               2 3  
Daptonema sp. 1              < 1       
Leptolaimus sp. 1               6 3 7 
Megadesmolaimus sp. 1                6 5 6 
Paracanthonchus sp. 1                3 5 6 
Paralinhomoeus sp. 1                  7 1 
Theristus sp. 1                7 14 22 
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Table 3. Bootstrapping and Students t-test (two-sided, t4df = 2.776, in parentheses) was used 

to test for differences in abundance (Ab, ind. 10 cm-2) and species richness (S) between the 

three sites (TC = Tica; RF = Riftia Field; BF = Buckfield). Bootstrapping was used to test for 

differences in Shannon-Wiener diversity (H´loge). Results are given prior Bonferroni 

corrections. * Significantly different (after Bonferroni corrections; p < 0.05). 

 
TC vs RF   TC vs BF   RF vs BF 

Ab   0.026 (1.487)   0.026 (1.491)   0.744 (0.015) 
S   0.058 (1.91)   0.003* (-10.035)  0.027* (6.849) 
H’loge   0.826    0.003 *   0.003 * 
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ABSTRACT 
Both male and female of the new deep-sea species Smacigastes barti sp. nov. (Tegastidae, 

Sars) are described in detail. Copepoda is one of the most diversified taxa at deep-sea 

hydrothermal vents, but only one species of the family Tegastidae has been described from 

this habitat and other deep-sea environments. Smacigastes barti is the second species of the 

genus Smacigastes Ivanenko & Defaye, 2004, and was found in artificial substrates 

deployed in the vicinity of and 0.5 m from tubeworm aggregations at the 9°50´N region on the 

East Pacific Rise at 2500 meters depth. The derived character states of the new species are 

the lack of coxal endite in the maxilla, and 2-segmented exopods of swimming legs 2 and 3, 

being the latter result of fusion of the 2 proximal segments. An identification key to all known 

genera of Tegastidae is provided. Interestingly the distribution of S. barti showed that it does 

not tolerate elevated temperatures and/or the presence of hydrogen sulfide or oxygen 

fluctuations, although both species of this genus were found in deep-sea chemosynthetic 

environments. 

 

Keywords: copepoda, harpacticoida, Tegastidae, hydrothermal vent, deep-sea 
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INTRODUCTION 
Deep-sea hydrothermal vents are globally widespread extreme environments located at the 

mid-ocean ridge systems. Driven by in situ primary production via chemosynthesis, a special 

vent fauna thrives under highly fluctuating conditions along a gradient of temperature and 

toxic chemicals such as hydrogen sulfide (Van Dover 2000). Copepoda is one of the most 

diversified taxa at hydrothermal vents contributing with about 80 described species, which 

represents more than 15% of the species documented from vents worldwide (Humes & 

Segonzac 1988, Tunnicliffe et al. 1998, Bright 2006). About 50 described vent copepod 

species belong to the order Siphonostomatoida, remarkably to the presumably vent-endemic 

family Dirivultidae Humes & Dojiri. Only 12 species of harpacticoid copepods have been 

described from vents so far, but this group has been less studied and it is thought that the 

diversity of this group might be higher (Heptner & Ivanenko 2002, Ivanenko & Defaye 2006).  

 Copepods of the family Tegastidae (Crustacea, Copepoda, Harpacticoida) are 

characterized by a laterally compressed amphipod-like body, by a modified male genital 

complex, and by a claw-like mandible in the nauplii (Lang 1948, Ivanenko et al. 2008). 

Currently 59 species belonging to 6 genera have been described. Except for the deep-sea 

species Smacigastes micheli (Ivanenko & Defaye 2004), all tegastid species have been 

found in shallow water habitats in association with algae, bryozoans and/or cnidarians 

(Chislenko 1967, Medioni & Soyer 1968, Chislenko 1977, Humes 1981a, 1981b, 1984, 

Ferrari et al. 2007). In a previous paper, S. micheli was reported from artificial substrates as 

a part of a colonization experiment deployed at the active chimney „Eiffel Tower“ on the Mid 

Atlantic Ridge (Ivanenko & Defaye 2004). Here, we describe a new species of the genus 

Smacigastes from deep-sea hydrothermal vents on the East Pacific Rise and provide 

remarks on its ecology. 

 
MATERIALS AND METHODS 
Copepods were collected during cruises AT7-26 and AT11-03 on board of the RV Atlantis to 

the Northern East Pacific Rise in November 2002 and 2003. Specimens were found 

associated with artificial substrates that were used to imitate the natural Riftia pachyptila 

Jones tubeworm aggregations. Each artificial aggregation consisted of 80 PVC (polyvinyl 

chloride) tubes of four different size classes. Four of these artificial aggregations were 

deployed within assemblages of R. pachyptila, ~50 cm from R. pachyptila, and ~20 m from 

the natural aggregations at the site Tica (9°50.447´N, 104°17.493´W) at 2500 meters depth. 

After collection, copepods were fixed in 4% formalin for 24 hours, and transferred to 70% 

ethanol for shipment and storage (for details see Govenar & Fisher 2007). 

 For light microscopy, specimens were dissected in glycerin under a Leica MZ8 

microscope. Copepods and/or parts of copepods were mounted on slides using glycerin 
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(Higgins & Thiel 1988). Specimens were examined, and drawings were made with bright-field 

or differential interference contrast, using a Leica DMR compound microscope. 

 For scanning electron microscopy (SEM), copepods were dehydrated through a 

series of graded ethanol, acetone and HMDS (hexamethyldisilazane) concentrations, 

mounted on aluminium stubs, and sputtered with gold (Nation 1983). Specimens were 

observed using a Philips XL 20 scanning electron microscope. 

 The description is mainly based on the female holotype and the male paratype 1, 

which were drawn using light microscopy. Additional SEM pictures from paratypes were used 

to show more details. For long-term preservation the holotype and paratypes are all mounted 

on slides in glycerin. The type material is deposited in the Forschungsinstitut and 

Naturmuseum Senckenberg,  Frankfurt am Main, Germany (Holotype, Paratypes 1-8), and in 

the Oberösterreichische Landesmuseen, Biologiezentrum Linz, Austria (Paratypes 9-13). 

 
DESCRIPTIVE PART 
Order HARPACTICOIDA Sars 

Family Tegastidae Sars 

Genus Smacigastes Ivanenko & Defaye 

 

Type species 

Smacigastes barti sp. nov. 

 

Type material  

Holotype dissected f#, 19 slides (nr. SMF 31411)  

Paratype 1: dissected m#, 13 slides (nr. SMF 31412)  

Paratype 2: f# (nr. SMF 31413) 

Paratype 3: m# (nr. SMF 31414) 

Paratype 4: f# (nr. SMF 31415) 

Paratype 5: m# (nr. SMF 31416) 

Paratype 6: f# (nr. SMF 31417) 

Paratype 7: m# (nr. SMF 31418) 

Paratype 8: dissected copepodite stage V, 3 slides (nr. SMF 31419) 

Paratype 9: f# (nr. OLML 2007/199) 

Paratype 10: m# (nr. OLML 2007/200) 

Paratype 11:f# (nr. OLML 2007/201) 

Paratype 12: m# (nr. OLML 2007/202) 

Paratype 13: copepodite stage V (nr. OLML 2007/203) 
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Type locality 

East Pacific Rise (EPR); 9°50.447´N, 104°17.493´W; 2500 m depth. The site Tica is located 

on the EPR between the Clipperton and Sequeiros transform faults. The site was colonized 

by the giant tubeworm Riftia pachyptila in 1997 (Fornari et al. 2004). Type material was 

collected from artificial substrates (PVC hoses) deployed in 2002, and recovered one year 

later (see Govenar & Fisher 2007). 

 

Etymology 

The species is named in honor of Breea Govenar who designed the artificial devices from 

which specimens were collected (BART: Breea´s Artificial Riftia Tubes). 

 

Female 

Body (Fig.1a, 1b, 2a) laterally compressed, weakly chitinized, with short sensilla and  few 

pores. Total length of female holotype (rostrum to posterior margin of telson) 420 µm, 

greatest width 180 µm. Rostrum rounded and prominent (Fig. 1a). Prosome 4-segmented 

(cephalothorax and 3 somites bearing legs 2 to 4) (Fig. 2a). Urosome (Fig. 2b) 5-segmented: 

first urosomite with leg 5, genital-double somite with ventral depression and one gonoporus 

covered by flap of the minute leg 6 (Fig. 1c, 5b, 5c), and 2 postgenital somites plus telson 

with furca. Furca 3 times as long as wide, with 7 setae of different length (Fig. 2c). 

 Antennule (Fig. 2d) 7-segmented; formula of setation: 1, 10, 9, 3+aesthetasc, 6, 4, 

6+aesthetasc.  

 Antenna (Fig. 2e) with small coxa and elongate basis with 1 seta and a field of 

cuticular spinules. Exopod 2-segmented, proximal segment with 1 inner setae, distal 

segment with 3 apical setae; endopod 2-segmented, proximal segment with 1 median seta, 

distal segment with 4 inner setae, 6 terminal setae and a hyaline frill subdistally at outer 

margin. 

 Labrum (Fig. 2a) projecting over shield of cephalothorax in lateral view. 

 Mandible (Fig. 3a) with gnathobase (not shown); palp 2-segmented, with 2 distal 

setae on basis and 1-segmented endopod bearing 1 outer and 3 terminal setae. 

 Maxillule (Fig. 3b, c) with praecoxal arthrite bearing 8 spines; coxal endite with 1 seta; 

exopod with 2 setae; basis elongate with 1 median  and 4 terminal setae. 

 Maxilla (Fig. 3d). Syncoxa with two endites, proximal endite with 1, distal endite with 3 

spines. Allobasis with 3 lateral setae, two subdistal and one apical spine. 

 Maxilliped (Fig. 3e, f) 3-segmented, subchelate; syncoxa elongated with 1 distal seta; 

basis with 2 rows of spinules; endopod 1-segmented, produced into a strong claw, with 2 

proximal setae and an inner row of short spinules. 

 Swimming legs 1-4 biramous; armature formula as in Table 1. 
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 Leg 1 (Fig. 4a) with 1-segmented rami.  

 Leg 2 and leg 3 (Fig. 4b, 4c) with 3-segmented endopods and 2-segmented exopods; 

proximal segments of exopods elongated, derived by fusion of former proximal and middle 

segment.   

 Leg 4 (Fig. 4d) with 3-segmented rami. Distal exopod segment with a slightly modified 

inner seta into a spine (Fig. 5a).  

 Leg 5 (Fig. 5b) with baseoendopod and exopod; baseoendopod with 1 basal outer 

seta, 3 inner setae, 1 terminal spine, and 1 small terminal outer seta; exopod with 3 outer 

elements (proximal seta-like; middle and distal ones spine-like), and 2 terminal spines.  

 Leg 6 a small flap with 1 minute seta (Fig. 5c). 

 Single egg sac with three eggs, located ventrally between fifth legs (Fig. 1b, 1c, 2a). 

 

Male differs from female in the following: 

 Length of  paratype 1 (Fig. 1d, 6a), 325 µm; greatest width, 150 µm. Genital-double 

somite (Fig. 1e, 5e) produced ventrally into a large, elongated prominence bearing distally 

asymmetrical genital flap representing leg 6.  

 Antennule (Fig. 6b) 10-segmented; setation formula as follows: 1, 10, 6+a, 1, 

7+aesthetasc, 1, 2, 1, 4, 7+aesthetasc. 

 Leg 5 (Fig. 5d) 2-segmented; basis with 1 outer seta, exopod with 1 outer proximal 

seta, 1 outer subdistal spine, and 2 terminal spines. 

 Leg 6 (Fig. 1e, 5e) a membranous genital flap on the left side.  

 One spermatophore stored inside the genital double-somite (Fig. 5e). 

 

Copepodite stage V 

 Leg 2 (Fig. 6c) and Leg 3 (Fig. 6d) consist of 3-segmented exopods (in contrast to 

adult) and 2-segmented endopods (shortly before division into the adult 3-segmented 

endopod). 

 
 
TAXONOMICAL REMARKS 
Smacigastes barti sp. nov. belongs to the family Tegastidae. This family is characterized by a 

laterally compressed, amphipod-like, strongly chitinized and sculptured body (Lang 1948, 

Huys et al. 1996). Six genera belong to the family Tegastidae, namely Tegastes Norman, 

Smacigastes Ivanenko & Defaye, Parategastes Sars, Syngastes Monard, Feregastes Fiers, 

and Arawella Cottarelli & Baldari. Smacigastes apomorph characters are its elongate furca 

and its weakly chitinized body. The other genera can be distinguished by the segmentation of 

legs 2-4. The key to genera of Tegastidae presented by Huys et al. (1996: 290) and Boxshall 
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and Halsey (2004: 392) turned out to contain typographic inconsistencies. Here, we propose 

a new identification key that also includes the recently described genus Smacigastes (Table 

2). 

 The new species belongs to the genus Smacigastes and shares with S. micheli the 

following distinguishing characters: a 10-segmented male antennule, presence of female leg 

6, and a furca being 3 times as long as wide. Further, both species share a weakly chitinized 

body, distinguishing them from other tegastids having, according to the family diagnosis, 

strongly chitinized bodies (Lang 1948, Huys et al. 1996). Smacigastes micheli shows 3-

segmented exopods of leg 2 and 3. The presumed derived features of S. barti are the fusion 

of proximal exopodal segments 1 and 2 in legs 2 and 3, and the loss of coxal endite of the 

maxilla. 

 Interestingly females of Smacigastes barti and Arawella alexandri Cottarelli & Baldari 

possess a slender P5, which contrast to all other species of Tegastidae. The females of the 

other tegastid species have either a swollen baseoendopod and normal exopod (some 

species of Tegastes, Smacigastes micheli, Ferregastes wellensi Fiers, Parategastes 

caprinus Wellerhaus, P. haphe Leigh-Sharpe, P. sphaericus Claus), a swollen endopod and 

exopod (some Tegastes, Parategastes coetzeei Kunz, P. conexus Humes, P. herteli Jakob), 

a swollen baseoendopod and a reduced exopod (Tegastes georgei Marcus & Masry, T. 

chalmersi Thompson & Scott, Syngastes spp.), or a single swollen rami (Syngastes spp. 

Monard ). Most modified female baseoendopods are found in the genera Syngastes and 

Parategastes with leaf-shaped leg 5. Interestingly, instead of having a broad leg 5, A. 

alexandri developed a special genital somite, produced ventrally into an eaves-shaped 

structure, and S. barti shows a ventral depression of the genital-double somite. We think that 

the shape of female P5 is important as this is the structure holding and protecting the eggs of 

tegastids, ensuring the survival of species. However, the development of female P5 has 

never been discussed or included as a character in tegastid taxonomy. A slender P5 is a 

plesiomorphic character and consequently, Smacigastes might be a relatively ancient 

tegastid genus, as already proposed by Ivanenko & Defaye (2004b). 

 The segmentation of leg 1 to leg 4, the character used to distinguish between shallow 

water tegastids, of Smacigastes barti is similar to the genus Parategastes. Beside the 

apomorph characters of Smacigastes, the new species also differs from Parategastes in the 

number of segments of the female and male antennule (7-segmented and 10-segmented 

antennule in the female and male of S. barti, but 6-segmented and 7-segmented antennule in 

the female and male of Parategastes), number of segments of the antennal exopod (2-

segmented in S. barti, but 1-segmented in Parategastes), shape of female leg 5 (slender in 

S. barti, but endopod transformed into a broadened flap in Parategastes), length of furca 

(long in S. barti, but shorter than wide in Parategastes) (Lang 1948, Jakob 1953, Wellerhaus 
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1970, Kunz 1980, Humes 1984, Huys et al. 1996). The 2-segmented exopods of leg 2 and 

leg 3 and the elongated proximal segments result from the fusion of the proximal and middle 

segments. The setation-formula II-2 of the first elongated exopodal segment of leg 2 and 3 

indicates a fusion process. Huys & Boxshall 1991 proposed a setal formula of I-1 and I-1 for 

the proximal and middle exopodal segments of leg 2 and 3 for the harpacticoid ancestor. The 

fusion process could be proved by studying copepodites of stage V of Smacigastes barti 

having 3-segmented exopods of P2 and P3 (see Fig. 6c, 6d).  

 Shallow-water tegastid genera can be separated by the segmentation of legs 2-4. 

Tegastes has 3-segmented endo- and exopods of leg 2, 3 and 4. The proximal and middle 

exopodal segment of leg 2 and 3 are fused in Arawella, Smacigastes, Parategastes, and 

Syngastes. Further, Syngastes shows a proximal fusion of segments 1 and 2 on the exopod 

of leg 4. Probable plesiomorphic characters of Smacigastes micheli are the 3-segmented 

endopods and exopods of leg 2, 3 and 4 (Ivanenko & Defaye 2004).  Fused proximal and 

middle exopodal segments of legs 2 and leg 3 were found by us in Smacigastes barti and 2 

other undescribed deep-sea tegastid species also belonging to the genus Smacigastes. One 

species was found in samples taken from Gulf of Mexico cold seeps and can be 

distinguished from S. micheli only by shorter spines on the female leg 5 baseoendopod and 

by its body length (one third shorter). A suture between the first two exopodal segments of 

leg 2 and leg 3 were observed only from the posterior dorsal view (not from the anterior view) 

in this cold-seep species. Such suture was not observed in S. barti, but a fissure between 

those segments was observed instead. The other undescribed deep-sea species, found in 

wood-falls from Gorda Ridge, shows a complete fusion of the proximal exopod segments. 

These findings might show a general trend in Tegastidae, having fusion-processes of exo- 

and endopodal segments. Whether the fusion processes point to a parallel evolution of 

shallow-water and deep-sea tegastids, or to characters already developed before the 

colonization of the deep-sea remains to be discussed. 

  

ECOLOGICAL COMMENTS 
Thus far copepods of the family Tegastidae from deep-sea hydrothermal vents have mostly 

been observed in association with artificial and hard substrates. Smacigastes barti, together 

with a variety of other copepods, nematodes, ostracods and foraminiferans, were found 

between PVC hoses used to imitate the tubeworm Riftia pachyptila (Govenar et al. 2007, 

pers. obs. SG). Short-term (~ 10 days) and long-term (~ 1 year) deployments were both 

colonized by S. barti, indicating that the species is able to quickly colonize newly formed 

habitats. Only a few specimens of S. barti were found up to now on natural basalt (pers. obs. 

SG). Smacigastes micheli as well as many other copepods were captured in a specially 

designed array consisting of 4 trays with an artificial substrate of small glass beads, 
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protected from large carnivorous animals by a mesh. It was positioned between 

Bathymodiolus azoricus mytilids at temperatures ranging from 5-13°C at the site Lucky Strike 

on the Mid Atlantic Ridge for ~1 year (Ivanenko & Defaye 2004a, 2004b). The yet 

undescribed tegastid species of the genus Smacigastes from the Gorda Ridge was found to 

be associated with artificially positioned wood. Only copepods of another new and yet 

undescribed tegastid species of the same genus were among natural tubeworm 

aggregations in the Gulf of Mexico cold seeps. The reasons for the attractiveness of artificial 

substrates are difficult to decipher. Artificial substrates are a system in an early succession 

stage as they represent a newly opened habitat without former colonizers (Connel & Slayter 

1977). It might be that both species, S. barti and S. micheli, are fugative species, typical for 

early succession stages, being able to colonize newly opened habitats that are free of 

competition.  

 Smacigastes barti was found associated with artificial substrates deployed at the 

tubeworm-dominated site Tica on the EPR 9°50´N at 2500 meters depth, but was never 

found within the natural tubeworm aggregations at the same site (see Gollner et al. 2007). 

The natural habitat was colonized by Riftia pachyptila and was characterized by moderate 

hydrothermal vent flux with maximum temperatures of 18°C, maximum sulphide 

concentrations of 176 µM ∑ H2S, and minimum measured pH close to neutrality (Le Bris et 

al. 2006). Four artificial aggregations each were deployed in an high flow zone within Riftia 

pachyptila specimens, in a low flow zone with less influence of toxic hydrothermal fluid flux 

~50 cm away from R. pachyptila, and ~20 m away from the natural aggregations with no 

influence of hydrothermal fluid flux and constant deep-sea water temperature of 

approximately 2°C (Govenar & Fisher 2007). The natural Riftia pachyptila community at the 

site Tica was colonized mostly by dirivultid copepods and only some harpacticoid copepods, 

but not a single tegastid was found (for details see Gollner et al. 2006). Interestingly, the 

artificial aggregations were successfully colonized by the new tegastid species and from a 

total of 30 identified S. barti specimens, 14 females, 11 males and 4 copepodites were 

observed. There was no difference in the relative abundance percentage of tegastids in 

short-term and long-term deployments. 2.2 – 2.8% of all identified copepods were S. barti in 

the far away zone, and 0 – 2.6% were found 50 cm away, respectively. Not a single 

specimen was found within the artificial tubes in the high flow zone, except for one artificial 

aggregation that was originally positioned within R. pachyptila but fell out after some time into 

the low flow zone and is therefore counted to the low flow zone. This indicates that S. barti 

lacks the capability to tolerate varying temperatures, and sulfide concentrations of vent flux.  

 The amphipod-like body of shallow-water tegastids has been interpreted as an 

adaptation to their co-existence with algae, bryozoans or cnidarians (Huys & Boxshall 1991, 

Ivanenko & Defaye 2004). Tegastids have never been detected in deep-sea samples from 
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deep-sea abyssal plains (pers. obs. PMA). Their body-shape might not be suitable to live in 

mesopsammal habitats, whose members are usually characterized by worm-shaped bodies 

allowing them to crawl easily between sand grains (Giere 1993). All of the presently 

discovered members belonging to the deep-sea tegastids were found close to or in 

association with hard-substrate chemosynthetic environments. Both Smacigastes barti and 

S. micheli were sampled at deep-sea hydrothermal vents. Two other yet undescribed deep-

sea tegastid species were found at Gulf of Mexico seeps and at wood falls from Gorda 

Ridge, respectively. These findings point to a preference of deep-sea tegastids for hard-

substrate nutrient-rich environments. 
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Figure 1. Smacigastes barti sp. nov. SEM photos: f# paratype: A, habitus, ventral (rostrum 

indicated by arrow); B, habitus, lateral; C, genital-double somite with leg 6 (see arrow); m# 

paratype: D, habitus, lateral; E, spermatophore reservoir with opened gonopore and leg 6 

(see arrow). Scale bars A, B, D 100 µm; C, E 20 µm. 

  

81 
 



Figure 2. Smacigastes barti sp. nov. f# holotype LM drawings: A, habitus, lateral (labrum 

indicated by arrow); B, urosome, ventral; C, furca, ventral; D, antennule (a seta on 2nd 

segment broke and is indicated by a circle); E,  antenna (frill indicated by arrow). Scale bars 

A 100 µm; B-E 50 µm. 
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Figure 3. Smacigastes barti sp. nov. f# holotype LM drawings: A, mandible; B, maxillule; C, 

maxillule (different view, from m# paratype 1); D, maxilla; E, maxilliped, posterior; F, 

maxilliped, anterior. Scale bars A-D 10 µm; E, F 50 µm. 
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Figure 4. Smacigastes barti sp. nov. f# holotype LM drawings: A, leg 1; B, leg 2; C, leg 3; D, 

leg 4. Scale bars A-D 50 µm. 
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Figure 5. Smacigastes barti sp. nov. f# holotype: A, distal endopod segment of leg 4; B, leg 

5;  C, leg 6 (f# paratype 2); m# paratype 1 LM drawings: D, leg 5;  E, leg 6 (see arrow; m# 

paratype 3). Scale bars A, C-E 50 µm; B 100 µm. 
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Figure 6. Smacigastes barti sp. nov m# paratype 1 LM drawing: A, habitus, lateral; B, 

antenulle; paratype 8 copepodite stage V LM drawings: C, leg 2; D, leg 3. Sclae bares A-D 

50 µm. 
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Table 1. Spine and setal formula of legs 1-4 of Smacigastes  barti sp. nov. 

 

Legs  Coxa  Basis  Exopod  Endopod 
Leg 1  0-0  1-0  2, I, 1   1, II, II1 
Leg 2  0-0  1-0  II-2; II, I, 3  0-1; 0-2; I, II, 2 
Leg 3  0-0  1-0  II-2; II, I, 4  0-1: 0-2; 1, II, 3 
Leg 4  0-0  1-0  I-0; I-1; II, I1, 1I1 0-1; 0-2; I, II, 2 
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Table 2. Key to genera of Tegastidae. In parenthesis number of described species of the 

genus. 

 

1 Caudal rami 3-times longer than wide............................. Smacigastes (2) 
- Caudal rami short ............................................................ 2 
2 P2-P3 endopods 2-segmented…………………………… Arawella (1) 
-P2-P3 endopods 3-segmented…………………………….. 3 
3 P2-P3 exopods 2-segmented.......................................... 4 
- P2-P3 exopods 3-segmented……………………………... 5 
4 P4 endopods 2-segmented………………………………. Syngastes (23) 
- P4 endopods 3-segmented……………………………….. Parategastes (6) 
5 P4 endopods 2-segmented………………………………. Feregastes (1) 
- P4 endopods 3-segmented……………………………….. Tegastes (37) 
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ABSTRACT  
The abundance and higher taxonomic composition of the epizooic metazoan meiobenthic 

communities associated with mussel and tubeworm aggregations of hydrocarbon seeps at 

Green Canyon, Atwater Valley, and Alaminos Canyon in depths between 1400 and 2800 

meters were studied and compared to the infaunal community of non-seep sediments 

nearby. Epizooic meiofaunal abundances of associated meiobenthos living in tubeworm 

bushes and mussel beds at seeps were extremely low (usually <100 ind. 10 cm-2), similar to 

epizooic meiofauna at deep-sea hydrothermal vents, and the communities were composed 

primarily of nematodes, copepods, ostracods, and halacarids. In contrast, epizooic 

meiobenthic abundance is lower than it has been reported in previous studies for infauna 

from seep sediments.   Interestingly, non-seep sediments contained higher abundances and 

higher taxonomic diversity, than epizooic seep communities. 
 
Keywords: Gulf of Mexico, meiobenthos, meiofauna, copepods, nematodes, cold seeps, 

abundance, vestimentifera, Bathymodiolus 
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IINTRODUCTION 
The size class of meiofauna is defined as the portion of the community passing through a 1 

mm sieve and being retained on a 32 µm sieve. This community comprises protists and 

metazoan animals that remain small even when adult (permanent meiofauna), and animals 

which temporarily belong to this size class during their larval/juvenile development 

(temporary meiofauna). As a part of the sediment infauna, meiobenthos has been studied 

extensively worldwide from many different habitats, but less attention has been paid to the 

hard substrate epibenthic or epizooic, and epiphytal meiobenthos (Giere 2009).  

At cold seeps, a variety of geologically diverse, reducing habitats can be distinguished 

by the presence of microbial mats or macro/megafaunal communities (see Sibuet & Olu 

1998, Levin 2005). While some animals such as e.g. thyrasid bivalves or frenulate and 

Sclerolinum siboglinids inhabit the sediment and only the anterior part of their tube extends 

above the sediment surface, vestimentiferan tubeworms, bathymodioline and vesicomyid 

bivalves, or sponges can build large physical structures above the sediment surface and 

create habitat as foundation species for an associated macro- and meiofaunal community. In 

general foundation species influence the abundance, composition and structure of the 

associated community (Hacker & Gaines 1997) and can provide food resources, living 

space, favorable settlement conditions, refuge from predators and/or refuge from 

environmental stress (see Bruno & Bertness 2001). 

Meiobenthic community studies at cold seeps are scarce and mainly restricted to 

assessments of abundance, biomass, and composition of higher taxa. They cover a wide 

geographical and depth range from shallow-water sands between 10 to 20 m down to deep-

sea muds at 5000 m. They comprise various types of hydrocarbon gas and oil seep 

(Montana & Spiess 1985, Palmer et al. 1988, Shirayama & Ohta 1990, Olu et al. 1997, 

Sommer et al. 2002, Robinson et al. 2004, Soltwedel et al. 2005, Van Gaever et al. 2006, 

Sergeeva & Gulin 2007), gas hydrates (Sommer et al. 2002), and brine seeps (Powell et al. 

1983, 1986), but are exclusively describing the infaunal meiobenthos from sediments 

covered by bacterial mats or by vesicomyid clams or were taken from sediments inhabited by 

frenulates and Sclerolinum (called pogonophorans) or in the periphery of mussel beds. 

Further, some sediments with discharge of methane but devoid of any visible microbial mat 

or animals  were also studied.   

The Gulf of Mexico was the site of the first discoveries of cold seeps in the 1980s 

(Paull et al. 1984, Kennicutt et al. 1985), and several ecological community studies have 

been carried out since then. Most studies have been completed at seeps located shallower 

than 1000 meters, but more recently some included also deeper sites (see Cordes et al. 

2007, Roberts et al. 2007). Tubeworm bushes, mainly composed of mixed populations of 

Lamellibrachia lymesi and Seepiophila jonesi were studied from the upper Louisiana slope 
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(Berquist et al. 2003, Cordes et al. 2005). The tube surface area taken as a measure of 

habitat size increased the overall surface between 2.6 to 26 fold over the uncolonized 

seafloor (Berquist et al. 2003). In deeper waters of the lower slope, vestimentiferan 

aggregations are primarily composed of Escarpia laminata (Brooks et al. 1990, Cordes et al. 

2007). There are a number of foundation species of mussels on the lower slope, and beds 

may consist of single species such as Bathymodiolus brooksi (at Atwater Valley) and B. 

childressi (Mississippi Canyon), or mixed populations  of B. brooksi and B. childressi 

(Alaminos Canyon) or  B. brooksi and B. heckerae (Florida Escarpment) (Cordes et al. 

2007).   

The macrofauna associated with the upper slope communities are fairly well known 

(Berquist et al. 2003, 2005, Cordes et al. 2005, 2006), and the deeper communities are 

becoming more well characterized (Turnipseed et al. 2003, Cordes et al. 2007, Cordes et al., 

this issue). Seep meiofauna studies at the Gulf of Mexico were conducted for the shallow 

brine seep sand communities at East Flower Garden (Powell et al. 1983, 1986, Jensen 1986) 

and the hydrocarbon seep bacterial mat communities at Alaminos Canyon (2200m), Green 

Canyon (about 700 m), and Atwater Valley (about 2000 m) (Robinson et al. 2004). The 

epifaunal foraminiferan communities associated with tubeworm bushes on the upper slope 

was also studied in detail (Sen Gupta et al. 2007), but no study on the associated metazoan 

meiobenthos has been carried out so far. 

This study examines the abundance and higher taxonomic composition of epizooic, 

permanent, metazoan meiobenthos associated with aggregations of tubeworms and mussels 

from three different locations at Green Canyon (GC), Atwater Valley (AV), and Alaminos 

Canyon (AC) in the Gulf of Mexico. In addition, non-seep sediment cores were taken in the 

vicinity of such aggregations at GC. The following questions were addressed: 1) Do 

abundance and higher taxonomic composition differ between geographical regions? 2) Do 

abundance and higher taxonomic composition differ between mussel and tubeworm 

aggregations? 3) Is the seep epizooic metazoan meiobenthic community similar to seep 

infauna or non-seep sediments? 4) Are there similarities in abundance and higher taxonomic 

composition of seep and hydrothermal vent communities associated with mussels and 

tubeworms? 

 
METHODS 
Study area  
The study was conducted at the three hydrocarbon seep locations Green Canyon 852 (GC, 

depth 1400 m), Alaminos Canyon 818 (AC, depth 2800 m), and Atwater Valley 340 (AV, 

depth 2200 m) of the lower continental slope of the Gulf of Mexico (for further details see this 

volume).  During two cruises in 2006 and 2007, a total of 13 samples were taken with the 
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submersible DSV Alvin (2006) and ROV Jason (2007). Five samples of each foundation 

group were collected at two different seep habitats: mussels M-GC1, M-GC2, M-GC3, M-

AV1, M-AC1; tubeworms T-GC1, T-GC2, T-GC3, T-AV1, T-AV2 and three samples of non-

seep sediments were taken as controls (S-GC1, S-GC2, S-GC3) in close vicinity (< 3 m 

distance) to seep megafauna communities (Table 1).  

Sample collections 
Epifauna collections were carried out with the quantitative sampling devices ‘Mussel Pot’ 

(531 cm2) for mussel aggregations (for further detail of the collection device see Cordes et 

al., this issue) and ‘Bushmaster Jr.’ (2800 cm2) for tubeworm aggregations (for further detail 

see Urcuyo et al. 2003, Berquist et al. 2003). Infauna of non-seep sediment was collected 

with 6.3 cm diameter push cores. Samples were separately put into isolated, previously 

cleaned plastic boxes on the basket of DSV Alvin or ROV Jason, transported to the surface, 

and recovered on deck of the ship RV Atlantis or NOAA Ship Ron Brown. On board, the 

macro and megafauna of ‘Bushmaster’ and ‘Mussel Pot’ samples was carefully rinsed with 

cold 32 µm filtered seawater before we removed them from the samples in order to avoid 

loss of smaller fauna. Mussels and tubeworms of each collection were identified and counted 

(Table 1). The samples were sieved through a 1 mm mesh size to separate macro- from 

meiofauna. Before sieving the samples though a 32 µm sieve, we measured the volume of 

sediment of the entire sample < 1 mm. The meiofauna fraction was fixed in 4% buffered 

formalin. The larger size fractions were retained for complementary studies by collaborators 

(see Cordes et al., this issue).  

The push core sample S-GC1 was split into 3 parts along the entire length, the other 

two samples S-GC2 and S-GC3 were split into half and these parts were used for the 

present analyses. In order to estimate the sediment depth distribution of meiobenthos in 

these samples, we checked the fraction deeper than 5 cm carefully on board of the ship. 

Since one sample lacked any specimens, and two samples only contained a single 

nematode, we only took the upper 5 cm of these samples, and fixed them in 4% buffered 

formalin without sieving.  

Quantification of abundance                                   
To extract meiofauna from the sediment, we used a density centrifugation technique with a 

medium consisting of a Silicapolymer (Fa. Levasil®) mixed with Kaolin (McIntyre & Warwick 

1984, Veit-Koehler 2008). Except for sample T-AV1, all other samples were totally processed 

and the entire meiofauna community was counted and identified to higher taxon level. 

Sample T-AV1 was extremely large (7.5 l sediment including meiofauna after sieving through 

a 1 mm net), therefore a subsample of 217 ml was processed and total abundance was 

estimated.  
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All taxa belonging to the permanent metazoan meiobenthos were considered in this 

study. We noticed the presence of crustacean nauplii but did not include them in further 

analyses due to the fact that they could not be assigned to a specific higher crustacean 

taxon. We also recorded the protist meiobenthos, but did not include them in this study of 

permanent, metazoan meiobenthos. 

 Data analyses                          
Total abundance of meiobenthos was standardized to 10 cm2 sample area and additionally 

to 10 cm2 surface area of mussel shells and tubeworm tubes. The surface of mussels and 

tubeworms were estimated for the main foundation species Bathymodolus brooksi, B. 

childressi, B. heckerae, Esparpia laminata, and Lamellibrachia spp. by measurements of 

lengths and widths for each individual in the collection (see Cordes et al., this issue for 

methods). To test for significant differences in abundances among habitat types in the Green 

Canyon samples, data were square-root transformed and bootstrapping was used as this is a 

well proven method when working with a relatively low number of samples and high 

variances (10000 resamplings each, t-test, 2-sided test, routine ”FTBOOT” from the package 

”computer intensive statistics” (Nemeschkal 1999). Results were classical Bonferroni-

corrected (p = α/n; α = 0.05). To evaluate similarity and dissimilarity among all samples, a 

Bray-Curtis similarity matrix was generated (abundance data from 10 cm2 sample area were 

square-root transformed, but were not standardized in order to better recognize differences 

caused by total abundances), and similarity percentage (SIMPER) analysis, analysis of 

similarity (ANOSIM), and multi-dimensional scaling (MDS) ordination were performed using 

PRIMER v5 (Clark & Warwick 2001). 

 
RESULTS 
Abundance 
The total abundance of the permanent, metazoan meiobenthos associated with mussel and 

tubeworm aggregations of most samples from three different locations at the Northern Gulf of 

Mexico was extremely low and ranged from 1 to 81 ind. 10 cm2 sample area. However, one 

tubeworm aggregation sample (T-AV1) from Atwater Valley (AV) revealed a total abundance 

between one and two orders of magnitude higher (447 ind. 10 cm-2) than the nine other seep 

samples. Non- seep sediment control samples showed abundance values from 870 to 1523 

ind. 10 cm-2 sample area (Table 2).  

Green Canyon (GC) was the only site where the number of samples was sufficient to 

statistically compare the abundances among mussel and tubeworm associated communities, 

and among the seep communities and adjacent non-seep sediments. We found no 

significant difference between mussel and tubeworm meiobenthos abundance (p = 0.19), but 
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significantly lower abundances at both seep communities than in non-seep sediments (both: 

p = 0.003).  

The mussel beds at AV, AC and one sample from Green Canyon (M-GC3) were 

exclusively built by Bathymodiolus brooksi. In addition, B. childressi co-occurred in two GC 

samples, contributing with 50% and 63.2%, respectively to the total mussel abundance. Also 

the tubeworm aggregations of all collections were mixed populations of Escarpia laminata 

and one or two species of Lamellibrachia (Table 1). As foundation species forming biogenic 

habitat, tubeworms and mussels considerably increase the surface area and thus the 

potential living space for meiobenthos. By estimating the actual surface of the foundation 

species, we found an increase of surface in both types of aggregations between 1.78 to 6.03 

fold. The ratio of sample area to the surface area of tubes/shells was similar between the two 

biogenic habitat types, but was more variable in tubeworm bushes (1.78 to 6.03), than 

mussel beds (3.07 – 5.46) (Table 1). 

By assuming that the surface of foundation species was the actual living space of 

associated meiobenthos, we standardized the total abundance of this community to the 

surface area and calculated even lower densities only between 1 and 3 ind. 10 cm2.  Again, 

one tubeworm sample (T-AV1) contained much greater densities of meiobenthos (20 ind.10 

cm-2) (Table 2). T-tests on abundance per surface area of GC samples revealed similar 

results as calculations per sample area with similarly low abundances found in the seep 

habitat types (mussel and tubeworm: p = 0.15; seep and non-seep: both p = 0.003). 

Taxonomic diversity 
The seep metazoan meiobenthic communities were composed of the higher taxa Nematoda, 

Copepoda, Ostracoda, and Halacarida. In addition, naupli larvae were found in seven out of 

ten samples with variable abundances but were excluded from analyses due to the 

impossibility of assignment to a specific crustacean taxon. The protist phylum Foraminifera 

was also represented in all seep samples.  

In all five tubeworm samples from three different locations, the most prominent taxa 

were the nematodes with relative abundances between 57 to 90 % followed by the copepods 

(10 – 43 %). Ostracods and halacarids were relatively rare, often found with relative 

abundances below 1% and below 0.5% respectively (Figure 1). 

The relative distribution of higher taxa was more variable in mussel bed samples. In 

three samples (M-GC3, M-AV1, M-AC1), nematodes dominated (66 – 82%) followed by 

copepods (17 – 30%), while in two samples (M-GC1, M-GC2) copepods were most abundant 

(82 and 99%). Ostracods were found in four, halacarids in three out of five samples. In two of 

these more diverse communities, both ostracods and halacarids reached relative 

abundances between 1 and 5%.  
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The non-seep control sediments collected in close vicinity to mussel and tubeworms 

aggregations at GC additionally harbored the taxon Kinorhyncha. The community was 

primarily composed of nematodes (80 - 81%), followed by copepods (16 -19%), ostracods, 

halacarids, and kinorhynchs (all < 1%). It was remarkable that nauplii and foraminiferans 

were absent from these samples.  

 Community patterns 
SIMPER and ANOSIM analyses did not demonstrate significant differences between mussel 

bed and tubeworm aggregation meiobenthic communities at the taxonomic level examined. 

There were also no significant differences among sites, despite the differences in depth (GC 

1400 m, AV 2200 m, AC 2800 m) (Table 3). However, there were strong differences detected 

between non-seep sediment communities and tubeworm and mussel associated 

communities (> 74% Bray-Curtis dissimilarity), and these differences were significant in the 

ANOSIM (R = 0.64; p = 0.04 for tubeworm/sediment; R = 0.81; p = 0.02 for 

mussel/sediment).  Multidimensional scaling (MDS) ordination revealed that metazoan 

meiobenthos from seep habitats and from adjacent non-seep sediments formed distinct 

groups, with the exception of sample T-AV1 which exhibited relatively high similarity to non-

seep communities (Figure 2). 

  

DISCUSSION 
The epizooic metazoan meiobenthic communities associated with tubeworm and mussel 

structure at cold seeps in the Gulf of Mexico can be characterized as a community composed 

of a limited number of higher taxa including the Nematoda, Copepoda, Ostracoda, and 

Halacarida, occurring in remarkably low abundances. As such, these seep communities are 

similar to epizooic meiobenthic vent communities associated with the mussel genus 

Bathymodiolus or vestimentiferan tubeworms. However, these communities associated with 

biogenic habitats differ from the infaunal communities studied from sands of shallow-water 

seeps and clays of deep-water seeps, which show much higher abundances compared to 

the epizooic meiobenthos from our studied sites.  

Tubeworm aggregations and mussel beds are not only colonized by meiobenthos but 

also by a diverse and abundant macrobenthic community at the GOM cold seeps. In these 

same samples, mussel-associated macrofauna were present in densities between 235.5 and 

1196.3 ind. m-2 (0.2 and 1.2 ind. 10 cm-2) and tubeworm-associated macrofauna were 

between 35.9 and 127.9 ind. m-2 (0.04 and 1.3 ind. 10 cm-2) (Cordes et al. this issue). In 

other samples from the upper slope, macrobenthic abundances calculated per sample area 

ranged from 209 to 9590 ind. m2 (0.2 to 9 ind. 10 cm-2) (Berquist et al. 2003), and 

abundances standardized to the tube surface vary from 4 – 233 ind. m-2 on the upper slope 

(Cordes et al. 2005), and 134.3 – 606.6 ind. m-2 on the lower slope (Cordes et al. 2007). 
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Abundances per mussel shell surface from the Florida Escarpment, a different site in Atwater 

Valley, and Alaminos Canyon were between 160.1 and 4457.8 ind. m-2 (Cordes et al. 2007). 

It appears that the macro- and megafauna are relatively well represented in such 

aggregations fueled by in situ primary production, while small meiobenthic animals are 

relatively scarce. In general the interaction between macrofauna and meiofauna are thought 

to be negative for the smaller size class, as adult large animals are potentially predators 

and/or dislocate meiofauna by movements. In addition, the juvenile macrofauna, temporarily 

in the meiofauna size class while growing up, can act as predators or competitors (Bell and 

Coull 1980). If the seep meiofauna community is regulated by such top-down or by bottom-

up processes remains to be studied. 

Overall, the abundances and higher taxonomic composition of meiobenthos associated 

with tubeworm and mussel habitats from cold seeps in this study are quite similar to those at 

hydrothermal vents (Table 4). The epizooic communities of both environments are low in 

abundance (usually below 100 ind. 10 cm-2) and are mostly dominated by nematodes. In 

addition, communities with equal nematode to copepod distribution, copepod dominated (this 

study, Tsurumi et al. 2003, Zekely et al. 2006, Gollner et al. 2007), or foraminiferan 

dominated communities have also been found (Gollner et al. 2007).  

  While the present study describes the epizooic meiobenthos from cold seeps, all 

other meiobenthic seep studies concern the infauna inhabiting seep sediments (Table 4). 

They range from very shallow sites down to 5000 meters depth, come from different 

geographic regions and a variety of seep types, mostly hydrocarbon gas or gas/oil seeps, but 

also gas hydrates and brine seeps. Most samples were taken from sites covered by bacterial 

mats or colonized by frenulate and sclerolinid tubeworms, or were taken from underneath 

clam beds, but sometimes also from sites devoid of any microbial or megafaunal community. 

In addition to different approaches in extraction techniques and size classes included in the 

meiofauna fraction, there are also large variations in which part of the meiobenthic 

community was analyzed. Some include the entire permanent (metazoan and protist) and 

temporary meiobenthos, and some only parts. Overall, no trends in abundance according to 

depth, geographic regions, seep types, or habitat types are apparent.  

Associated epizooic metazoan meiobenthos from seeps (1 – 81 ind. 10 cm-2) and vents 

(1 – 976 ind. 10 cm-2), as well as vent infauna from sediments (1 – 1075 ind. 10 cm-2), seems 

to be overall lower in abundance than infaunal meiobenthos from seeps (1 – 11292 ind. 10 

cm-2). Low abundances of seep infauna were only detected in anoxic sediments of the Black 

Sea and in some samples from a brine seep at East Flower Garden Banks (Powell et al. 

1983, Sergeva and Gullin 2007). All other infaunal abundances are at least above 100 ind. 

10 cm-2 and most exceed 1000 ind. 10 cm-2 (Table 4). The vast majority of epizooic and 

infaunal vent and seep meiobenthic samples are dominated by nematodes, usually followed 
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by copepods. Other dominant taxa include gnathostomulids and platyhelminthes in highly 

sulfidic brine seep samples (Powell et al. 1983), and rotifers in gas hydrate samples 

(Sommer et al. 2002).  

Although in several meiobenthic studies of seeps the nearby non-seep deep-sea 

samples were found to be lower in abundance than the seep sediment samples (Olu et al. 

1997, Robinson et al. 2004, Soltwedel et al. 2005, Van Gaever et al. 2006), our study could 

not confirm this trend. In general, the abundance of meiobenthos in the deep sea has been 

found to decrease with depth due to a decrease in POM flux in addition to sedimentary 

factors such as calcium carbonate content and sorting. Ranges between 100 and 1000 ind. 

10 cm-2 at shallower depths and between 10 and 100 ind. 10 cm-2 at deep sites are 

considered quite typical (see Giere 2009). Based on a very large data set from the GOM 

deep-sea meiobenthos carried out between 200 and 3000 meters depth, a range between 

600 to 9500 ind. 10 cm-2 was found (Baguley et al. 2006).  Calculated from the correlation 

between abundance and depth, approximately 2500 ind. 10 cm-2 are expected in about 1500 

meters depth (Baguley et al. 2006). This estimation is not only much higher than the actual 

abundances we found at the tubeworm and mussel aggregations, but also higher than in our 

comparable non-seep sediment samples (870 – 1523 ind. 10 cm-2 )  taken in close vicinity to 

seeps and thus most likely exposed to higher POM due to the primary in situ production in 

this chemosynthetic based environment.  
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Figure 1. Relative abundance (%) of taxa for meiobenthos (5 mussel community samples, 5 

tubeworm community samples, 3 non-seep sediment samples). Nematoda, Copepoda and 

others (including Ostracoda, Halacarida, and Kinorhyncha) were present. 
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Figure 2. 2-dimensional MDS configuration plot for 13 samples from 5 mussel community 

samples (M-GC1, M-GC2, M-GC3, M-AV1, M-AC1), 5 tubeworm community samples (T-

GC1, T-GC2, T-GC3, T-AV1, T-AV2), and 3 non-seep sediment samples (S-GC1, S-GC2, S-

GC3) from 3 different depths. 
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Table 3. Dissimilarity results (Diss. %) calculated by SIMPER, and ANOSIM results (R-

statistics and possible significance level p) are shown for mussel compared to tubeworm 

communities, and mussel and tubeworm communities to non-seep sediment communities. 

Additionally, seep sites at different depths (1400 m, 2200 m, 2800 m) are compared with 

each other. 

 Diss% R-Stat p 
mussel - tubeworms 54 0,15 0,13 
mussel - sediment 74 0,81 0,02 
tubeworm - sediment 74 0,64 0,04 
seep: 1400 m -  2200 m 55 0,25 0,13 
seep: 1400 m - 2800 m 62 0,56 0,14 
seep: 2200 m - 2800 m 35 0,56 1 
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ABSTRACT 
The effects of disturbance and changes in productivity are considered key factors shaping 

diversity.  However, communities characterized by specific body sizes and intrinsic life traits 

are usually not taken into account. Meiofauna traits include direct development, adult 

dispersal, short generation times, and mobility. In contrast, macrofauna traits are planktonic 

larval development and dispersal, long generation times, and mobile and sessile lifestyles. 

Further, macro- and meiofauna in general differ in reactions to stress and food requirements. 

Meiofauna is more threatened by stress and has relatively lower food demands, while 

macrofauna is more stress tolerant and requires relatively more food. We use deep-sea 

hydrothermal vents and adjacent bare basalt in the axial summit trough of the East Pacific 

Rise 9º50’ N region as natural experiments to explore in situ diversity of meio- and 

macrofauna at various productivity and disturbance gradients. Our results show, that the two 

communities reacted different to disturbance and productivity conditions. Macrofauna 

diversity pictured a unimodal diversity pattern along an environmental stress gradient, while 

meiofauna diversity was negatively correlated to stress. By scaling the degree of productivity 

and disturbance experienced by animals of two different size classes we provide an 

explanation for the contrasting diversity patterns. Food requirements were found to play a 

major role, especially in the food-limited, low productivity basalt habitat. Lower food demands 

and shorter generation times of meiofauna lead to a highly diverse, permanent community. 

Higher food demands and longer generation times of macrofauna resulted in a low diverse, 

transient, non-reproductive community. At vents we found that reproduction strategies and 

related dispersal capabilities in conjunction with food requirements at different life history 

stages were important factors, leading to a generalistic meiofauna but a vent endemic 

macrofauna. Low physiological fitness of meiofauna  could be responsible for the negative-

to-stress correlated diversity pattern along a hydrothermal flux gradient. Macrofauna with 

higher fitness and more versatile lifestyles was less influenced by hydrothermal stress 

leading to a more complex, unimodal diversity pattern. Our study shows that models 

predicting diversity should not neglect body size related communities traits.  
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INTRODUCTION 
Unraveling the underlying mechanisms that control biodiversity are of great interest in today’s 

world. The insurance hypothesis states that biodiversity stabilizes communities and 

ecosystems (Petchey et al. 2002). Body size is known to influence biodiversity in a significant 

way  (Hildrew et al. 2007). In general, there are many advantages of large size, such as 

increased fecundity, success in size-dependent competition for resources, escape from size-

limited predators, greater diet breadth, greater physiological homeostasis, and tolerance of 

environmental fluctuations. Costs of large size include the risk of dying before breeding, 

higher energy requirements,  enhanced parasitism, and raised environmental stress of less 

agile semi-sessile species (Brown & Sibley 2006). 

Animals occur in a wide range of body size, from less than 100 µm up to several 

meters. In the marine environment, the small meiofauna (animals passing through a 1 mm 

and being retained on a 32 µm net) and the large macrofauna have distinct life traits (Giere 

2009). Looking at life histories of different sized organisms can improve our understanding of 

populations’ dynamics. Adaptations associated with small size are direct benthic 

development, dispersal as adults, short generation times (< 1 year), semelparity, attainment 

of an asymptotic final body size, trophic specialization (selective particle feeding), and 

mobility. In contrast, macrofauna traits are often characterized by planktonic larval 

development and dispersal, long generation times (>1 year), iteroparity, permanent growth, 

less selective feeding, and mobile and sessile life styles (Warwick 1984). Warwick et al. 

(2006) used various sized meshes in an intertidal sand to test if diversity changes gradually 

with chosen size range, similar to what was found in freshwater stream communities (Schmid 

& Schmid-Araya 2007), or if there are size-dependent communities. Two separate 

communities, traditionally characterized as ‘meiofauna’ and ‘macrofauna’, showed contrary 

diversity, suggesting that body size and its related traits, which are fundamentally different in 

marine and freshwater animals, are important in marine environments (Warwick et al. 2006). 

 Fenchel & Finley (2003) proposed to include size and its related life traits when 

studying species distribution and the degree of endemism. Microbes and protists are 

cosmopolitan  due to huge population sizes of small organisms (Fenchel & Finley 2003). 

High abundances make local extinction almost impossible and dispersal capabilities are very 

good. Also for small animals, it is suggested that they are cosmopolitan, but possibly with a 

stronger habitat selection than protists (Fontaneto et al. 2006).  
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Despite the differences in life traits and distribution capabilities of different sized 

organisms the possible effects on biodiversity patterns are widely not considered and not 

observed yet. One of the most studied topics to explain diversity patterns, are the influence 

of disturbance and productivity changes on diversity.  

Disturbance, is defined as damage (removal of biomass) or as an event in time that 

disrupts communities and changes resources or the physical environment (White & Pickett 

1985, Sousa 2001). The intermediate disturbance hypothesis predicts unimodal diversity 

patterns along an increasing disturbance gradient (Connel 1978). The same pattern is also 

expected along stress gradients (Menge & Sutherland 1987, Bruno et al. 2003, Scrosati & 

Heaven 2007). However, in natural systems, disturbance effect on diversity can be positive, 

negative, linear, unimodal, and U-shaped (Mackey & Currie 2001).  

Productivity, is the rate of energy flow to a system (e.g. mg C m-2 yr-1), but studies and 

theoretical models often use measures like biomass, energy availability, growth rate, or a 

measure of productivity at one trophic level (e.g. primary productivity) (Mittelbach et al. 2001, 

Scholes et al. 2005). The original productivity hypothesis, predicting increasing diversity with 

increasing productivity, has been rejected since the 70ies (Pielou 1975). Instead, an 

unimodal diversity pattern along a gradient is now considered as the most common diversity 

pattern (Grime 1973, Mittelbach et al. 2001). 

Combining both disturbance and productivity, Huston (1979, 1994) developed the 

dynamic equilibrium hypothesis, which states that diversity is influenced by frequency of 

reduction (disturbance) and rate of displacement (competitive displacement, growth rate, 

productivity). Diversity depends on the level of both factors. Although there is general support 

for the model, a protist microcosm experiment with various levels of energy and disturbance 

failed to provide unequivocal evidence (Scholes et al. 2005). Haddad et al. (2008) pointed 

out that species’ autecological traits predict the effects of disturbance and productivity on 

diversity. They showed with an experiment that growth rate and the ability to recover from 

disturbance were related to how severely a species is affected by disturbance, and that 

competitive ability of a species tends to be less important. 

In this study, we use deep-sea hydrothermal vents as natural experiments to explore 

in situ diversity of the different sized meio- and macrofauna communities along various 

productivity and stress gradients. Vents are species poor, hence, they allow us to analyze 

the whole community relatively easy. The vent ecosystem offers the full range of 

environmental stress gradients, with extreme high stress/disturbance at high temperature 

black smokers to low stress at bare basalt with no toxic vent flux. Productivity is very high at 

vents, fueled by in situ chemoautotroph production by bacteria, but is very low at the bare 

basalt habitat with no in situ primary production but in close vicinity to vents (Etter & 

Mullineaux 2001).  



112 
 

Whereas the distribution of foundation species such as pompei worms, tubeworms, 

and mussels is relatively well known at hydrothermal vents, knowledge on the associated 

macrofauna is more limited. At Juan de Fuca Ridge a succession model using macrofaunal 

groups showed that habitats with more severe venting conditions had fewer species (groups) 

than those that were characterized by moderate vent flux (Sarrazin et al.1997, Sarrazin et al. 

1999, Sarrazin & Juniper 1999). Quantitative studies on species richness within the 

moderate zone with Ridgeia piscesae as foundation species, revealed similar diversity at 

different succession stages, temperatures, locations, or year of collection (Govenar et al. 

2002, Tsurumi & Tunnicliffe 2003). At the East Pacific Rise (EPR), macrofauna from two 

chemically different sites with Riftia pachyptila as foundation species showed similar diversity 

(S: 19 - 35, H’log2: 1.2 - 2.1) (Govenar et al. 2005). Macrofauna associated with mussels 

along the EPR are similar in diversity (S: 34 - 46 , H’loge: 1.5 – 1.7), but show lower values at 

the Mid Atlantic Ridge (Van Dover 2002, Van Dover 2003). Although these studies provided 

interesting results for the vent habitats, differences in standardizations and locations do not 

allow predicting macrofauna diversity along an environmental gradient. 

In a previous study, we explored meiofauna diversity along an increasing 

hydrothermal flux gradient at the EPR (Gollner et al. submitted). The observed inverse 

correlation between stress and meiofauna diversity patterns was explained by fewer species 

tolerating extreme conditions, resulting in less diverse communities in more extreme habitats. 

In that study it was suggested that the expected unimodal diversity pattern was not found 

due to the lack of non-disturbed habitats (Gollner et al. submitted). Although the basalt in the 

vicinity of vents, showing high meiofauna diversity, is not exposed to toxic hydrothermal fluid 

emissions, the relatively frequent volcanic eruptions and biotic disturbances are causing an 

intermediate disturbed habitat, which is in general expected to show high diversity (Connel 

1978).  

Here, we compare meio- and macrofauna diversity from the same samples from 

various hydrothermal vent habitats along stress and productivity gradients. Huston (1979) 

assumed that changes in environmental variables are affecting populations basically in the 

same way. If this is true, meio- and macrofauna diversity should respond similar to changing 

environments. Instead, we observe a unimodal diversity pattern in the macrofauna but a 

negative-to-stress correlated pattern in the meiofauna size class. Thus, factors influencing 

diversity must be different for the meio- and macrofauna communities, and therfore we 

investigated the degree of differences in life traits of these two communities in relation to 

disturbance and productivity. We conclude that body size and its related traits are the main 

underlying causes of diversity. 
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METHODS 
Study sites and habitat characterization 
We have chosen the well known midocean ridge at the 9°50’ North East Pacific Rise (EPR) 

as our prime study region. The ridge crest is in 2500 m depth, and the axial summit trough 

(AST) is ~50 m wide and ∼20 m deep (Fornari et al. 1998). The majority of the AST is bare 

basalt, scarcely populated by macrofauna, with stable ambient deep-sea temperatures of 

2°C, and no vent flux. Within this AST, we find patchily distributed typical megafauna 

foundation species along a decreasing thermal and chemical gradient: pompei worms 

(Alvinella pompejana and A. caudata) thrive at high flow (>50°C), tubeworms (e.g. Riftia 

pachyptila) at moderate temperature flow (<30°C), mussels (e.g. Bathymodiolus 

thermophilus) at low temperature flow (<5°C), and suspension-feeders grow close to the 

periphery (Etter & Mullineaux 2001).  Physico-chemical conditions are generally more toxic 

and more fluctuating at higher temperatures (Di Meo-Savoie et al. 2004, Le Bris et al. 2006). 

Beside the permanent stress and disturbance caused by vent flux, animals in the AST are 

killed by frequent volcanic eruptions, occurring in 1991 and 2006 at the studied region 

(Shank et al. 1998, Tolstoy et al. 2006). Quantitative samples were collected with the 

submersible Alvin from pompei worm (sites: Alvinella Pillar, Bio 9, M-Vent, Michels Vent), 

tubeworm (sites: Tica, Riftia Field), mussel (at Mussel Bed site collections for meiofauna; at 

Biovent, Eastwall, Trainstation site collections for macrofauna), and bare basalt habitats 

(sampled near Tica and Alvinella Pillar) within ~2 km in the AST from 1999 until 2004 

(number and size of samples see Table 1; details on sampling method, coordinates, and 

depth of sites see Van Dover 2003, Govenar et al. 2005, Gollner et al. submitted).  

Temperature was measured in situ prior to sampling at all habitat types (maximal 

values in habitats: pompei worm 119°C, tubeworm 54°C, mussel 10°C, basalt 2°C). 

Additionally, maximal sulfide, and minimal pH was recorded in situ at tubeworm sites (95 – 

283 µM ∑ H2S, 4.4 – 5.7 pH), and mussel aggregations at the Mussel Bed site (151 µM ∑ 

H2S, 6.7 pH) (Le Bris et al. 2006). At bare basalt no temperature anomalies were detectable, 

indicating absence of sulfide and normal pH of seawater (Luther et al. 2001). At pompei 

worms we could not measure the toxicity of vent flux but maximal values of up to 1520 µM ∑ 

H2S, and pH ~4 are known for this habitat in this region (Di Meo-Savoie et al. 2004, Le Bris & 

Gaill 2007).  

Primary production has to our knowledge never been measured in detail in this 

region. In general, biomass of foundation species is highest for tubeworms (8-15 kg m-2), and 

medium for mussels (2-10 kg m-2) and pompei worms (5 kg m-2) (see Giere et al. 2003). No 

foundation species are present at bare basalt, and also almost no macrofauna is visible, 

pointing to extremely low biomass. Overall, vent habitats are characterized by high 
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production, whereas the bare basalt habitat experiences very low production (Van Dover 

2000). 

Data analyzes 
After sampling, fauna was separated into the meio- and macrofauna. Macrofauna was fixed 

in 4% buffered formaldehyde and stored in 70% ethanol. For the meiofauna the latter step 

was found unnecessary. Animals were identified to lowest possible taxon, usually to species 

level. Meiofauna and macrofauna from the same samples were analyzed from pompei worm, 

tubeworm, and basalt habitats. Macrofauna data from mussels are from the sites Biovent, 

Eastwall, and Trainstation (Van Dover 2003); meiofauna data from mussels are from the site 

Mussel Bed (Gollner al. submitted). All sites are within the same region.   

Details on meiofauna species composition from all 4 habitats can be found in Gollner 

et al. (2007, submitted). Macrofauna data from tubeworm (Govenar et al. 2005) and mussel 

(Van Dover 2003) habitats were recalculated for comparisons with meiofauna to species 

abundances per 10 cm2 sea floor area. Macrofauna abundance and species composition 

from pompei worm and basalt habitats were analyzed and are shown in Appendix 1. The 

foundation species Alvinella caudata, A. pompejana, Bathymodiolus thermophilus (and its 

subtenant Branchipolynoe symmytilida), Tevnia jerichonana, Oasisia alvinae, and Riftia 

pachyptila were excluded from analyses as they mostly rely on their symbiotic partners, are 

not in direct competition for resources, and should have different mechanisms to deal with 

stress as the associated fauna. 

Univariate diversity measures were calculated from quantitative species-abundance 

data by DIVERSE subroutine in PRIMER Version 5 package (Clarke & Gorley 2001). 

Univariate results (abundance, species richness, Shannon-Wiener diversity) of different 

habitat types from different size classes were transformed and tested for significant 

differences using bootstrapping (10000 resamplings each, 2-sided t-test, routine „FTBOOT“ 

from the package „computer intensive statistics“ (Nemeschkal 1999). Testing for possible 

biotic and abiotic correlations were carried out using Pearson´s r (F-value and t-value 

calculations by STATISTICA). All significance levels were classical Bonferroni-corrected (p = 

α/n; α = 0.05).  

 

RESULTS  
From ~225 000 counted individuals a total of 159 species was identified for this study (Table 

1, Table 2). Total species richness of both size classes was similar at tubeworm, mussel, and 

basalt habitats (75 to 87 spp.), but very low at the pompei worm habitat (19 spp.). 55% of 

species belonged to the meiofauna size class and 45% to the macrofauna. Comparing total 

species richness of meio- and macrofauna revealed quite similar values at pompei worms 

(meio: 11 spp., macro: 8 spp.), tubeworms (meio: 31 spp., macro: 44 spp.), and mussels 
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(meio: 36 spp., macro: 51 spp.), but very different ones at bare basalt (meio: 64 spp., macro: 

22 spp.). Dominant meiofauna taxa were copepods and nematodes, dominant macrofauna 

taxa were mollusks and annelids (Table 1, 2). Macrofauna found on basalt were mostly 

juveniles, while adult macrofauna dominated at vents. All life history stages including adult 

meiofauna were found in all habitats. 

Meiofauna species richness and Shannon-Wiener diversity index of studied 

communities were generally low and significantly increased from pompei worm (mean S: 5; 

mean H'loge: 0.3), to tubeworm (S: 14; H'loge: 1.4), and to mussel habitats (S: 29; H'loge: 2.5). 

Total found species number was clearly highest at basalt (total S: 64), but species richness 

and diversity were similar between the mussel and the basalt habitat (S: 28; H'loge: 1.9) 

(Figure 1, Table 1, Appendix 2).  

Macrofauna species richness and Shannon-Wiener diversity index were generally 

low. Similar low values were found at pompei worm and basalt habitats (mean S: 5, 9; mean 

H'loge: 1.1, 1.3). Significantly higher species richness was observed at mussels and 

tubeworms (S: 17; S: 25). Shannon-Wiener diversity index was only significantly higher at 

tubeworms (H'loge: 1.7) (Figure 1, Table 1, Appendix 2).  

We compared meiofauna with macrofauna species richness, and found them to be 

similarly low at pompei worms, significantly higher for macrofauna at tubeworms, and 

significantly higher for meiofauna at mussels and basalt habitats. Shannon-Wiener diversity 

index was significantly higher for macrofauna at pompei worms, similar at tubeworms and 

basalt, and significantly higher for meiofauna at mussel habitats (Figure 1, Appendix 2). 

Meiofauna species richness and Shannon-Wiener diversity index were inversely 

correlated to vent flux (S: all p ≤ 0.001; temperature r = 0.69, pH r = 0.88, sulfide 

concentration r = 0.71; H’loge: temperature and pH both p = 0.003, r = 0.66, sulfide 

concentration: p = 0.01, r = 0.59). Macrofauna species richness and diversity were not 

correlated to these parameters. 

Overall, meiofauna abundance was low (~100 ind. 10 cm-2). Macrofauna abundance 

was extremely high (287±262 ind. 10 cm-2) at tubeworms, high at mussels, and similarly low 

at pompei worm and basalt habitats (~4 ind. 10 cm-2) (Table 1, Appendix 2).  

The majority of meiofauna species at deep-sea hydrothermal vents was not endemic 

to vent habitats but occurred also on the bare basalt with no vent flux. 40% of all meiofauna 

species are basalt specialists (see Gollner et al. submitted). Macrofauna revealed 60% of 

species were restricted to vents (24% vent generalists, 36% vent specialists), and only 7% of 

species were basalt specialists. 33% of macrofauna species were found at vents and on 

basalt. Most species on the basalt were juveniles (Marcus & Tunnicliffe 2002, Micheli et al. 

2002, Mullineaux et al. 2003, Govenar et al. 2004, Desbruyères et al. 2006, Govenar & 

Fisher 2007, Galkin & Goroslavaskaya 2008, Matabos 2008; see Appendix 3). 
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DISCUSSION  
Predicting diversity without considering community traits might not be appropriate for marine 

ecosystems because similar conditions in terms of disturbance and productivity do not create 

similar diversity patterns in meiofauna and macrofauna communities. In contrast to an 

expected similar pattern in meio- and macrofaunal communities, we see an unimodal 

diversity pattern along an environmental stress gradient for macrofauna, but a negative 

correlation of meiofauna diversity with increasing stress. Intrinsic community traits of meio- 

and macrofauna are the best predictors of diversity patterns. Generation time and size-

related food demand regulates diversity in low productivity systems. Over evolutionary time 

scales, distinct reproduction strategies and food demands have influence on the ecological 

state of vent communities, resulting in a generalistic meiofauna but vent-restricted 

macrofauna community. Body-size related physiological fitness can determine diversity in 

stressful habitats. 

Diversity and size related traits in low productive habitats 
Generation time and size-related food demand are the most important factors influencing 

diversity in low productivity systems. At the low productivity basalt habitat, this results in a 

highly diverse, permanent small-sized meiofauna but a low diverse, transient non-

reproductive macrofauna. Short intrinsic generation time, and low food requirements (Peters 

1983) until individuals attain their asymptotic final body size and reach maturity, allow 

establishing a diverse and fertile meiofauna community on basalt, including basalt specialists 

and AST generalists. Our results are in accordance with studies reporting a diverse copepod 

community from bare basalt at the Juan de Fuca Ridge, and a rich nematode community in 

sediments near hydrothermal vents (Vanreusel et al. 1997, Tsurumi et al. 2003). In contrast, 

large macrofauna species with their long generation times and higher food demands cannot 

sustain themselves on basalt with little food until they reach maturity. The lack of adult 

individuals in most macrofauna species found, points to the fact that reproduction might not 

be possible for the majority of species in this habitat. In consequence, macrofauna diversity 

on basalt cannot be high. Low abundant and low diverse macrofauna was also reported from 

artificial substrates positioned in the vicinity of vents (Govenar & Fisher 2007). Marcus & 

Tunnicliffe (2002) observed decreasing body size in two vent gastropods with increasing 

distance from vents at Juan de Fuca Ridge. They speculated that juvenile macrofauna takes 

advantage of the relatively safe basalt habitat, which is less threatened by competition and 

predation of adult macrofauna. We predict that macrofauna growing up on the basalt has to 

migrate into the food-rich vent habitat to sustain their energy needs and to reproduce. 

Ecological state and size related traits at hydrothermal vents 
Intrinsic reproduction strategies of different sized organism and distinct food demands per 

generation time lead to opposite ecological states of meio- and macrofauna at deep-sea 
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hydrothermal vents. The generalistic meiofauna with low food demands and good dispersal 

capabilities can live and migrate within the whole AST as larvae, or juveniles or adults. Many 

meiofauna animals exhibit direct development and can disperse, either active or passive 

through currents, during all phases of life (Giere 2009). The majority of vent meiofauna 

species can live due to their relative low food demands also as adults on the nearby basalt.  

We expect that they migrate within the AST to other vent fields and can endure at least a 

certain time (if not forever) on the low productive basalt. We predict that the loss of highly 

productive vent habitats due to the waning of vent fields or volcanic eruptions is not a major 

problem for meiofauna populations, since nearby populations not effected by eruptions or 

loss of vent fields are theoretically everywhere in the AST. Our observation of a generalistic 

AST hard substrate meiofauna community confirms the general cosmopolitan distribution of 

organisms below 1 mm in size (Fenchel & Finley 2003, Fontaneto et al. 2006). 

Cosmopolitism of small organism is explained by large absolute population sizes, their high 

probability of dispersal and low probability of extinction. However, whether or not vent 

meiofauna is indeed cosmopolitan in distribution remains to be tested. 

Due to their high food requirements, the vent macrofauna is forced to stay very close 

to the high productive vents. In addition, most vent macrofauna species (except e.g. fish) 

cannot disperse far as adults. Adults can hardly drift with currents due to their large size and 

heavy weight. Instead, many have planktonic dispersal via larvae (Warwick 1984). Vent 

larvae are produced in large numbers and are distributed via ocean currents along the AST 

(Mullineaux et al. 2005). If they settle too far away from vents, they might starve to death 

before they reach maturity. For this reason, we agree that most macrofauna species are 

restricted to vents (Tunnicliffe et al. 1998).  

Size, different life styles and the related capacity to deal with hydrothermal stress 
Small body size and intrinsic lower physiological resistance against physico-chemical 

disturbance give rise to negative-to-stress correlated meiofauna diversity patterns at the 

disturbed vent habitats. Higher physiological fitness and broader life style traits of mobile, 

semi-sessile, and sessile macrofauna should principally favor higher species richness of 

large animals in stressful and food rich environments. However, in the extreme pompei worm 

habitat, where only escapers survive and sessile animals rarely do, the disturbance thus 

results in similarly low diversity of both size classes. 

Escape from heat and high levels of toxic chemicals is necessary in extreme, 

disturbed habitats. The pompei worm habitat is one of the most extreme habitats on Earth, 

and the “hottest” animal on Earth, the foundation species Alvinella spp., is found there in high 

abundances (Cary et al. 1998). This foundation species is creating a less toxic habitat for 

itself, by building tubes and actively ventilating them with cold oxygenated seawater by 

quickly moving around (Le Bris & Gaill 2007). The associated fauna is species poor and 
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species richness is similar in meio- and macrofauna communities. Both size classes deal in a 

similar way with the extreme stress of highly fluctuating hydrothermal flux that cause 

temperatures to change within seconds (Di Meo-Savoie et al. 2004). These animals are fast-

moving and thus can probably avoid small-scale disturbance. Copepods are the most 

successful taxon in terms of abundance and species richness and they are very fast 

escapers (McGurk 1986, pers. obs. MB and SG). In the meiofauna size class only copepods 

were detected, but not a single slow-moving nematode was present.  The fast swimming and 

relatively large-sized (~1.2 mm in length) copepod Stygiopontius hispidulus (Humes 1987) 

dominated the meiofauna community with up to 90%  (Gollner et al. submitted). The two 

most successful macrofauna species are the fast swimming amphipod Ventiella sulfuris and 

the incredibly fast snake-like moving polychaete Hesiolyra bergi (pers. obs. MB), that is only 

known from this specific habitat type. Our escaper hypothesis of associated fauna in the 

pompei worm habitat is supported by a temperature experiment with H. bergi, which showed 

that this species is not tolerating temperatures exceeding 40°C and thus has to avoid 

extreme temperatures (Shillito et al. 2001). Sessile species cannot escape and have to 

tolerate the vent flux, which is an extreme challenge in a habitat where temperature peaks of 

120°C are common. Consequently, sessile and semi-sessile species are rarely found in the 

pompei worm habitat. Only 2 limpets (Lepetodrilus galriftensis and L. elevates), were present 

in low abundance in our samples. Overall, a similar macrofauna species composition was 

also observed in another study at pompei worm habitats (Galkin & Goroslavskaya 2008). 

Diversity of both macro- and meiofaunal classes is higher at the tubeworm habitat 

due to decreased hydrothermal stress relative to the pompei worm habitat. Higher 

physiological fitness and broader range of life styles as mobile, semi-sessile and sessile 

macrofauna result in higher macrofauna than meiofauna diversity at the tubeworm habitat. 

The surface-area-to-volume ratio is greater for smaller animals, thus chemical compounds 

and changing temperatures might be more dramatic for the small size class (Townsend & 

Thompson 2007). Macrofauna exhibits greater physiological homeostasis and hence 

tolerance of environmental fluctuations (Brown & Sibley 2006). Their larger size and thicker 

carapaces (e.g. crustaceans) or stronger shells (e.g. gastropods) make them better protected 

against physical and chemical stress. In contrast to the solely mobile meiofauna, the 

macrofauna has mobile, semi-sessile, and sessile representatives. In terms of abundance 

and species richness macrofauna communities at tubeworms are numerically dominated by 

semi-sessile limpets (Govenar et al. 2005). These mollusks can withstand physico-chemical 

stress by sticking themselves very tight to the ground with their strong foot (Garrity 1984). 

Limpets are known to be very resistant against environmental changes, and they are for 

example also successful in highly disturbed rocky shores (Tomanek & Helmuth 2002).  



119 
 

The mussel habitat is characterized by less extreme vent flux than the tubeworm 

habitat, and we expected more species in relation to the tubeworm habitat. This pattern is 

observed for meiofauna, being very sensitive to environmental changes, but not for 

macrofauna. In contrast, the macrofauna diversity is lower than the meiofauna diversity, and 

lower than the macrofauna diversity at tubeworms. It is difficult to decipher, why this 

macrofauna pattern is observed as we find similar macrofauna species composition in both 

habitats.  

At the mussel habitat, lower productivity might cause higher competition for food 

resulting in lower diversity of mussel associated macrofauna, as predicted by the 

intermediate productivity hypothesis (Grime 1973). However, this is extremely speculative 

since food availability has to our knowledge never been measured in the tubeworm and the 

mussel habitat.  

Additional surface area provided by foundation species not only increases habitat 

complexity, but can also facilitate species coexistence and thus enhance diversity (Bruno & 

Bertness 2001). Mussels and tubeworms can build complex three-dimensional structures, 

creating many micro-niches. In studies on the effect of tube surface area on species 

richness, it was found that enhanced area favored species richness (Tsurumi & Tunnicliffe 

2003, Govenar et al. 2005). Interestingly, larger tube surface area had no effect on 

meiofauna diversity (Gollner et al. 2007). There are no data available on mussel surface 

area. However, since the collected mussels for this study were smaller and less abundant 

than the collected tubeworms, we speculate that larger provided surface area and niches 

might cause enhanced macrofauna diversity at the studied tubeworm habitat. Mussel beds 

can also become several meters thick, similar to tubeworms. Therefore, we cannot predict 

that under all circumstances lower diversity in these aggregations is the rule. However, the 

mussel and tubeworm habitats are fundamentally different to the pompei worm and basalt 

habitat, as already discussed. 

Comparison to previous meiofauna and macrofauna patterns along environmental 
gradients in marine habitats 
Based on previous studies it has been concluded that different life traits might influence 

diversity. A comparison of the reaction of nematodes and macrofauna to changed 

disturbance and productivity in an mesocosm experiment revealed that the response of 

nematodes was not always similar to macrofauna (Austen & Widdicombe 2006). In a glacial 

fjord, taxonomic distinctness of macrofauna was U-shaped along the disturbance gradient, 

whilst nematodes showed a positive relationship. However, species richness was similar at 

all observed sites (Somerfield et al. 2006). Austen & Widdicombe (2006) and Somerfield et 

al. (2006) explained the different patterns to have been caused by the design of the 
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experiment or by different sampling methods.  They also stated that the different ecology of 

the groups could be a reason for the observed differences.  

Another study observed meio- and macrofauna in carbonate systems and compared 

diversity of the sublitoral, flats, pools, and lagoons (Netto et al. 1999). Interestingly, in the 

examined place both, meio- and macrofauna consisted of nematodes and polychaetes. 

There were differences in diversity (meiofauna was more diverse), but interestingly diversity 

patterns along the observed habitats were changing in a similar way. This supports our view 

that not only size but also life traits (which were in this case similar) have major influence on 

diversity.  

Conclusions 
Our study shows that models predicting diversity should integrate body size related 

community traits, since intrinsic life traits of marine meio- and macrofauna result in different 

response of communities to changing productivity and disturbance. Here we attempted to 

scale the degree of productivity and disturbance experienced by animals of two different size 

classes and provided an explanation for the contrasting diversity patterns. Developing a 

model that incorporates intrinsic community traits that includes all living beings in an 

environment will be a future challenge to overcome.  
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 Figure 1. Habitat types (basalt, mussel, tubeworm, pompei worm) and their 

hydrothermal vent flux characteristics, showing high flux at the pompei worm habitat 

and low flux at the mussel habitat. Box & Whisker plots demonstrate species richness 

and Shannon-Wiener diversity index (H’loge) with standard error and standard 

deviation for meiofauna (white boxes) and macrofauna (grey boxes). Significant 

differences between meiofauna and macrofauna in a habitat are indicated by *, 

differences between the four meiofauna habitats (white boxes) are indicated by small 

case letters, differences between the four macrofauna habitats (grey boxes) are 

indicated by capital letters.  
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Table 2. Number of species per taxon found in the axial summit trough (AST), in vent 

habitats (Vent), and in single habitats (P = pompei worm, T = tubeworm, M = mussel, 

B = basalt). Total number of species is shown for meiofauna, macrofauna, and all 

fauna. Relative percent (%) of species numbers is given for meio- and macrofauna. 

 
 AST Vent P T M B 
Meiofauna       
Nematoda 26 10 0 5 10 23 
Copepoda 49 33 10 19 19 32 
Acari 1 1 0 0 1 0 
Ostracoda 5 5 0 4 4 4 
Foraminifera 6 3 1 3 2 5 
Macrofauna       
Annelida 28 24 4 18 17 13 
Arthropoda 10 9 1 4 8 4 
Chordata 1 0 0 0 0 1 
Cnidaria 1 1 0 0 1 0 
Echinodermata 1 1 0 1 1 0 
Mollusca 30 30 3 21 23 4 
Nemertea 1 1 0 0 1 0 
       
Total meiofauna 87 52 11 31 36 64 
Total macrofauna 72 66 8 44 51 22 
Total fauna 159 118 19 75 87 86 
       
% meiofauna 55 44 58 41 41 74 
% macrofauna 45 56 42 59 59 26 
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Appendix 1. Macrofauna species abundance per 10 cm2 is shown for each sample 

from the pompei worm habitat (P1 – P5) and the basalt habitat (B1 – B4). For each 

species the taxon is given (AN = Annelida, AR = Arthropoda, CH = Chordata, MO = 

Mollusca). Bold numbers indicate abundance > 1 individual per 10 cm2. (unid. juv. = 

unidentified juvenile). 

 
species taxon P1 P2 P3 P4 P5 B1 B2 B3 B4 
Alvinella caudata AN 1.06 0.35 3.37 2.54 1.21     
Alvinella pompejana AN 3.10 1.31 2.48 6.76 3.03     
Amphisamytha galapagensis AN 0.09 0.06    0.53 0.68  0.05 
Archinome rosacea AN      0.20 0.27   
Branchinotogluma sp. 1 AN         0.22 
Flabelliderma sp. 1 AN      0.02  0.04 0.03 
Galapagomystides aristata AN         0.05 
Glycera tesselata AN       0.15   
Hesiolyra bergi AN 0.97 0.61 0.89 3.38 0.61     
Hesiospina vestimentifera AN         0.05 
Polychaete unid. juv.  AN         0.03 
Polynoid polychaete unid. juv. AN       0.04   
Lepidonotopodium williamse AN         0.03 
Nectochaeta larvae AN   0.18       
Nereis sandersi AN      0.13 0.11   
Nicomache arwidsoni AN       0.11   
Ophryotrocha akessoni AN 0.18 0.12 0.18  0.61 0.02   0.73 
Paralvinella grasslei AN 0.35 0.41 0.35 2.54     0.05 
Syllidae sp. 1 AN      0.02    
Amphipod sp. 4 AR      0.02 0.04   
Bythograea thermydron AR  0.06 0.00       
Dahlella caldariensis AR         0.22 
Typhlotanais sp.1  AR      0.02   0.22 
Ventiella sulfuris AR 1.06 2.13 0.18  2.42 0.07   6.88 
Tunicat CH        0.04   
Gorgoleptis spiralis MO         0.03 
Gastropod unid. juv. MO      0.15 0.19   
Limpet unid. juv. MO      0.11 0.23  0.11 
Lepetodrilus ovalis MO         0.11 
Lepetodrilus cristatus MO         0.03 
Lepetodrilus elevatus MO  0.03 0.35     0.19 0.81 
Lepetodrilus galriftensis MO  0.03 0.18       
Rhynchopelta concentrica MO        0.04 0.16 
 



130 
 

Appendix 2. Results of bootstrapping (bt, 10 000 resamplings each) used to test for 
significant differences in total abundance 10 cm-2 (Ab.), species richness (S), and 
Shannon-Wiener diversity index (H´loge) between the habitats P (pompei worm), T 
(tubeworm), M (mussel), and B (basalt) for meiofauna (Table A) and macrofauna 
(Table B). Table C shows bootstrapping results for meiofauna versus macrofauna in 
the four habitat types (P, T, M, B) tested for abundance (ind. 10 cm-2), species 
richness (S), and Shannon-Wiener diversity (H´loge). Higher (>) and lower (<) values 
of meiofauna (me) and macrofauna (ma) indices are indicated for each habitat. 
Significant results after classical Bonferroni-correction are marked in bold.  
 
A 
 Meiofauna       
Habitat Ab. S H´loge  
P - T 0.29 <0.001 <0.001  
T - M 0.81 <0.001 <0.001  
M - B 0.003 0.58 0.07   
P - M <0.001 <0.001 <0.001  
P - B <0.001 <0.001 <0.001  
T - B 0.32 <0.001 0.20  
 
B 
 Macrofauna       
Habitat Ab. S H´loge  
P - T <0.001 <0.001 <0.001  
T - M <0.001 <0.001 0,001  
M - B <0.001 0.003 0,93  
P - M <0.001 <0.001 <0.001  
P - B 0.51 0.09 0.29  
T - B <0.001 <0.001 0.002  
 
C 
 Meiofauna-Macrofauna        
Habitat Ab.  S  H´loge    
P <0.001 me > 0.476  <0.001 ma >  
T 0.178  <0.001 ma > 0.180    
M <0.001 me > <0.001 me > <0.001 me >  
B 0.082  <0.001 me > 0.062    
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CONCLUSION 
 
Despite the high in situ primary production at hydrothermal vents and cold seeps, abundance 

of meiobenthos is low. This is in contrast to the working hypotheses that both ecosystems 

should support high meiofauna abundance, similar to what is known for the macrofauna 

(rejecting hypotheses 1 and 5). Competition for food and/or predation by rich macrofauna 

could be reasons. Interestingly, nematodes and copepods at mussel and tubeworm 

aggregations at hydrothermal vents were mostly primary consumers. Vent and seep 

meiofauna is taxon poor and includes copepods, nematodes, ostracods, acari, and 

foraminiferans. Additionally, at vents, platyhelminthes and folliculid ciliates were observed.  

Overall, similar to many other meiobenthic studies, nematodes and/or copepods dominate 

the communities in abundance and species richness.  

Species richness of hydrothermal vent meiobenthos is similarly low as macrofauna 

(agrees with hypothesis 2). Meiobenthic diversity is inversely correlated to the environmental 

stress (vent flux) gradient (rejecting hypothesis 3). This questions the generally proposed 

unimodal diversity pattern along a disturbance gradient for vent meiofauna. It is suggested 

that with increasing temperature and toxic hydrogen sulfide concentration, fewer meiofaunal 

species are able to cope with these extreme conditions. This finding is supported by prior 

studies that investigated copepods and nematodes at different vent and non vent locations 

(Vanreusel et al. 1997, Tsurumi et al. 2003).  

Most hydrothermal vent meiobenthic species are not endemics but generalists and 

can live in various vent habitats, in addition to the AST (axial summit trough) (rejecting 

hypthesis 4). This is in contrast to the bare basalt community where many species cannot 

migrate into vent habitats. One of these bare basalt specialists is Smacigastes barti Gollner 

et al. 2008, that does neither tolerate elevated temperatures nor the presence of hydrogen 

sulfide, and/or oxygen fluctuations. 

Surprisingly, the community diversity pattern along an environmental stress gradient 

was hump-shaped for macrofauna but negatively-shaped for meiofauna, showing that 

models predicting diversity but neglecting species traits should not be used for marine 

ecosystems (rejecting hypothesis 6). We hypothesize that species body size and its related 

traits are the main underlying causes of diversity. Low productive systems can only sustain a 

high diverse small-sized fauna with short generation time and low food demands. Low 

physiological fitness of small sized meiofauna leads to a negative-to-stress correlated 

diversity pattern along the hydrothermal flux gradient. Macrofauna, with higher fitness and 

more lifestyle types, is less influenced by hydrothermal stress leading to a more complex, 

unimodal diversity pattern. Distinct reproduction strategies and food demands control vent 
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communities’ ecological state, resulting in a generalistic meiofauna but vent restricted 

macrofauna community. 
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