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Introduction

In the last two decades, research on genetic influences on various psychiatric disorders has

seen a virtual explosion. This is related to the identification of various polymorphisms

in the human genome. The term “polymorphism” describes the fact that two or more

variants of a gene (alleles) coexist in the same population. These variants can influence

the phenotype, the observable characteristics of an organism. They may also influence the

risk for diseases or disorders.

Newly arising molecular genetic studies (like linkage and association studies) are used to

investigate possible influences of certain genetic variants (alleles) on disease susceptibility.

In the field of anorexia nervosa, one polymorphism of interest is the 5-HT2A –1438 G/A

polymorphism. It is constituted by an alteration in the gene sequence coding the serotonin

receptor 5-HT2A (the base adenine is substituted by the base guanine at position –1438

in the promoter region of the DNA sequence). Various studies have found an association

of this polymorphism with anorexia nervosa, but a considerable number of studies did not

confirm this result.

This paper attempts to replicate the association of the 5-HT2A –1438 G/A polymorphism

with anorexia nervosa. Furthermore, as research on the association is contradictory, the

possible interactions of the polymorphism with environmental risk factors will be explored.

Moreover, the influence of the genetic main and interaction effects on life-time severity and

age of onset will be investigated. For statistical analysis, conditional logistic regression

and multiple linear regression are used. In addition to these “traditional” methods, an

only recently developed data-mining algorithm will be applied: odds ratio multifactor

dimensionality reduction. The results will be compared to those of the regression model.

Chapter one gives a short introduction on eating disorders. It includes the diagnostic

criteria for anorexia nervosa, bulimia nervosa, and eating disorders not otherwise specified.

Also, the risk factors for eating disorders in general and anorexia nervosa in particular are

described.

In the second chapter, the function of genes and polymorphisms is explained, as well as

possible study designs to investigate genetic influences on liability for diseases and mental

disorders.
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Introduction

Chapter three is dedicated to giving an overview of the serotonin system with regard

to anorexia nervosa. Influences of the serotonin regulation on eating behavior and eating

disorders are reported. Furthermore, this chapter describes the role of the 5-HT2A gene and

the 5-HT2A –1438 G/A polymorphism in eating disorders in general and anorexia nervosa

in particular.

The fourth chapter describes the methods used for statistical analysis. It comprises an

extensive description of the conditional logistic regression model as well as an introduction

to odds ratio multifactor dimensionality reduction.

After this theoretical part, the hypotheses of this paper are listed in chapter five. This is

followed by a description of the sample and the results of the statistical analysis in chapter

six.

The last chapter, chapter seven, includes the interpretation of the results and the dis-

cussion and criticism concerning the study reported in this paper.
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1. Eating Disorders

Eating disorders have been known about for a long time, but only in the last thirty years

have they been considered a psychiatric disorder and included in the diagnostic systems

(Davison & Neale, 2002).

They are grouped in three diagnostic categories:

� anorexia nervosa

� bulimia nervosa

� atypical eating disorders

The borderline between those categories is not easy to draw, as the disorders have many

features in common and patients frequently move between them (Fairburn & Harrison,

2003), particularly with regard to anorexia nervosa and bulimia nervosa. Nevertheless,

there are distinct diagnostic criteria for these categories. They will be outlined in the

following section.

1.1. Anorexia Nervosa

Anorexia nervosa is a psychiatric disorder that is mainly characterized by a strong fear

of gaining weight. The literal translation of the expression however, meaning the loss of

appetite due to emotional reasons, is somewhat misleading. People suffering from anorexia

nervosa do not lose their appetite or their interest in eating. On the contrary, their focus

is almost entirely dedicated towards issues related to eating. They often read cook books,

or even prepare delicious meals for their family. But they are also involved in strictly

controlling their food and calorie intake and in keeping a rigorous diet (Davison & Neale,

2002).

1.1.1. Clinical Features

The criteria for anorexia nervosa (according to DSM-IV-TR) are the following:

13



1. Eating Disorders

A. Refusal to maintain body weight at or above a minimally normal weight for age and

height (e. g., weight loss leading to maintenance of body weight less than 85% of that

expected; or failure to make expected weight gain during period of growth, leading

to body weight less than 85% of that expected).

B. Intense fear of gaining weight or becoming fat, even though underweight.

C. Disturbance in the way in which one’s body weight or shape is experienced, undue

influence of body weight or shape on self-evaluation, or denial of the seriousness of

the current low body weight.

D. In postmenarcheal females, amenorrhea, i. e., the absence of at least three consecutive

menstrual cycles. (A woman is considered to have amenorrhea if her periods occur

only following hormone, e. g., estrogen, administration.)

Additionally, the type of the disorder has to be specified:

1. Restricting Type: during the current episode of anorexia nervosa, the person has not

regularly engaged in binge-eating or purging behavior (i. e., self-induced vomiting or

the misuse of laxatives, diuretics, or enemas)

2. Binge-Eating/Purging Type: during the current episode of anorexia nervosa, the

person has regularly engaged in binge-eating or purging behavior (i. e., self-induced

vomiting or the misuse of laxatives, diuretics, or enemas)

The binge-eating/purging type seems to be more severe. Anorexic patients of this sub-

type have higher frequencies of other, comorbid disorders. They more often show comorbid

depression, anxiety disorders, and substance abuse (Laessle, Wittchen, Fichter, & Pirke,

1988).

Anorexia nervosa is a disorder that affects the entire organism. Somatic manifestations

and symptoms are secondary effects of starvation and include low blood pressure (hypoten-

sion), reduced resting heart rate (bradycardia), lower body temperature (hypothermia),

and hypercarotenemia (a yellow-orange discoloration of the skin). The skin also becomes

dry and fine body hair (lanugo hair) begins to grow. Also, due to starvation, loss of muscle

mass and atrophy of the breasts can be observed. Osteopenia is another severe sign of the

physical symptoms of anorexia nervosa. This reduction of the bone mineral density can

lead to osteoporosis.

Dehydration and malnutrition can lead to headaches, lethargy, dizziness, and syncope

(Gurenlian, 2002).
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1.2. Bulimia Nervosa

Malnutrition leads to a change in the hormone regulation and to an electrolyte imbalance.

These substances are involved in the cerebral metabolism, consequently these changes are

the cause of fatigue, adynamia, and heart rhythm disturbances. They can even lead to

death.

In patients with anorexia nervosa, the size of the brain mass is reduced, the disorder

frequently leads to neurological impairments (Davison & Neale, 2002).

Psychological manifestations include difficulties in concentration and decision making,

depression, social withdrawal, and obsessiveness – especially with food (Gurenlian, 2002).

Patients with anorexia nervosa judge their self-worth in terms of weight and shape. They

consider their low weight to be an accomplishment rather than a problem. Thus, they have

limited motivation to change (Fairburn & Harrison, 2003).

1.1.2. Epidemiology

The age of onset of the disorder varies, though symptoms usually appear in the early or

middle teenage years, often following a diet or a critical life event. The distribution of the

age of onset has two peaks, at the age of 14 and 18 years (Gurenlian, 2002).

The life-time prevalence of anorexia nervosa is 2.0%, the point prevalence 0.3%. The

restricting type is about three times more common than the binge-eating/purging type

(Favaro, Ferrara, & Santonastaso, 2003).

Patients suffering from anorexia nervosa often have comorbid psychiatric disorders, the

most common being depressive disorders, obsessive–compulsive disorders, anxiety disor-

ders, alcohol abuse and personality disorders.

Affected female patients often have sexual disorders. A study on women at a mean age of

24 years showed that 20% did not yet have sexual intercourse, and that half of the sample

did not experience an orgasm or sexual desire (Davison & Neale, 2002).

Among adolescents, dysthymia may be more strongly associated with eating disorders

than depression (Zaider, Johnson, & Cockell, 2000).

1.2. Bulimia Nervosa

The origin of the term bulimia is the Greek word for ox hunger. It describes one of the

main features that distinguishes bulimia nervosa from anorexia nervosa: repeated episodes

of binge-eating, where large amounts of food are eaten in a relatively short time. These
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episodes of eating are characterized by a loss of control – they only stop when the patient

experiences an unpleasant feeling of fullness.

In many cases, these binge episodes are followed by compensatory purging behavior such

as self-induced vomiting, abuse of laxatives, enemas, diuretics, caffeine, or other stimulants.

Bulimia nervosa is more difficult to detect than anorexia nervosa, because affected indi-

viduals do not show signs of illness and most are of normal weight (Gurenlian, 2002).

1.2.1. Clinical Features

The diagnostic criteria for bulimia nervosa (DSM-IV-TR) are the following:

A. Recurrent episodes of binge-eating. An episode of binge eating is characterized by both

of the following:

1. Eating in a discrete period of time (e. g., within any 2-h period) an amount of

food that is definitely larger than most people would eat in a similar period of

time in similar circumstances; and,

2. A sense of lack of control over eating during the episode (e. g., a feeling that

one cannot stop eating or control what or how much one is eating).

B. Recurrent inappropriate compensatory behavior to prevent weight gain, such as self-

induced vomiting; misuse of laxatives, diuretics, or other medications; fasting; or

excessive exercise.

C. The binge-eating and inappropriate compensatory behaviors both occur, on average, at

least twice a week for 3 months.

D. Self-evaluation is unduly influenced by body shape and weight.

E. The disturbance does not occur exclusively during episodes of anorexia nervosa.

There are two subtypes:

1. Purging type: The person regularly engages in self-induced vomiting or the misuse

of laxatives or diuretics.

2. Non-purging type: The person uses other inappropriate compensatory behaviors,

such as fasting or excessive exercise, but does not regularly engage in self-induced

vomiting or the misuse of laxatives or diuretics.
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1.3. Other (Atypical) Eating Disorders

This distinction in two subtypes is new to DSM-IV and was not included in DSM-III-R.

This ensures that the type of inappropriate compensatory behaviors is indicated with the

diagnosis (Herzog & Delinski, 2001).

Patients of the non-purging type tend to have higher weight, less frequent eating attacks

and fewer comorbid psychiatric disorders, although this is not supported by all studies –

some findings suggest only minor differences between the two subtypes (Davison & Neale,

2002).

The binge-eating episodes are frequently kept secret and can be caused by stress and

negative emotions. The ingested food is usually eaten quickly, and the chosen products are

often sweets like ice cream or cake.

After the attack, feelings of disgust, unpleasantness, and fear of gaining weight are

common. This triggers the purging behavior that is performed to revoke the calorie intake.

Like anorexic patients, people suffering from bulimia nervosa have a strong fear of gaining

weight – their self-esteem is heavily dependent on their ability to maintain normal weight.

Bulimia nervosa leads to several somatic symptoms. The self-induced vomiting leads to

potassium insufficiency, gastrointestinal lesions, and loss of adamantine due to corrosion

from gastric acid. Use of laxatives can lead to diarrhea, to changes in the electrolyte

homeostasis, and to irregularities in heart rhythm (Davison & Neale, 2002).

1.2.2. Epidemiology

The life-time prevalence of bulimia nervosa is about 4.6%, with a point prevalence of 1.8%

(Favaro et al., 2003).

The greatest risk to develop bulimia nervosa is during the late teens and early twens, at

a later age than for anorexia nervosa (Karwautz, 2004). 90% of the patients are female,

some of them were overweight at the onset of the disorder and in many cases the eating

attacks began during the course of a diet.

Frequent comorbid psychiatric disorders of bulimia nervosa are affective disorders (de-

pression), personality disorders (borderline personality disorder, in particular), anxiety

disorders, substance abuse and behavioral disorders. Suicide rates in bulimic patients are

significantly higher than in the normal population (Davison & Neale, 2002).

1.3. Other (Atypical) Eating Disorders

The category “atypical eating disorders” or “eating disorders not otherwise specified” (ED-

NOS) is used to diagnose eating disorders of clinical severity that do not conform to the

17
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diagnostic criteria for anorexia nervosa or bulimia nervosa. Most atypical eating disorders

resemble anorexia nervosa and bulimia nervosa, and they may be as severe and long lasting

(Fairburn & Harrison, 2003). People in this category may not meet all necessary criteria

for anorexia nervosa or bulimia nervosa, e. g. they may still have a normal menstrual cycle

or the frequency of purging may be too low for a diagnosis other than EDNOS.

1.3.1. Clinical Features

The diagnostic criteria for Eating Disorder Not Otherwise Specified (DSM-IV) are only

given by examples:

1. For females, all of the criteria for anorexia nervosa are met except that the individual

has regular menses.

2. All of the criteria for anorexia nervosa are met except that, despite significant weight

loss, the individual’s weight is in the normal range.

3. All of the criteria for bulimia nervosa are met except that the binge-eating and

inappropriate compensatory mechanisms occur at a frequency of less than twice a

week or for a duration of less than 3 months.

4. The regular use of inappropriate compensatory behavior by an individual of normal

body weight after eating small amounts of food (e. g., self-induced vomiting after the

consumption of two cookies).

5. Repeatedly chewing and spitting out, but not swallowing, large amounts of food.

6. Binge-eating disorder: recurrent episodes of binge-eating in the absence of the regular

use of compensatory behaviors characteristic of bulimia nervosa.

This category represents a wide variety of clinical pictures, as it can range from persons

who just fall short of full criteria to persons who have a qualitatively different disease

pattern.

1.3.2. Epidemiology

A rather large proportion of eating-disordered patients falls in this category, with estimates

ranging from 25% to 50%. Of the general population, 4% to 6% have an eating disorder

not otherwise specified (EDNOS).

Some studies suggest that EDNOS is associated with later development of anorexia

nervosa or bulimia nervosa (Herzog & Delinski, 2001).
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1.3. Other (Atypical) Eating Disorders

1.3.3. Binge-Eating Disorder

Binge-Eating Disorder was introduced in the DSM-IV as a provisional diagnosis requiring

further research. Thus, there are no diagnostic criteria, only research criteria. They are,

according to DSM-IV, the following:

A. Recurrent episodes of binge-eating. An episode of binge eating is characterized by both

of the following:

1. Eating, in a discrete period of time (e. g., within any 2-hour period), an amount

of food that is definitely larger than most people would eat in a similar period

of time under similar circumstances.

2. A sense of lack of control over eating during the episode (e. g., a feeling that

one cannot stop eating or control what or how much one is eating).

B. The binge-eating episodes are associated with at least three of the following:

1. Eating much more rapidly than normal

2. Eating until feeling uncomfortably full

3. Eating large amounts of food when not feeling physically hungry

4. Eating alone because of being embarrassed by how much one is eating

5. Feeling disgusted with oneself, depressed, or feeling very guilty after overeating.

C. Marked distress regarding binge-eating.

D. The binge-eating occurs, on average, at least 2 days a week for 6 months.

E. The binge-eating is not associated with the regular use of inappropriate compensatory

behaviors (e. g., purging, fasting, excessive exercise) and does not occur exclusively

during the course of anorexia nervosa or bulimia nervosa.

Compared with obese patients who do not binge, obese patients who engage in binge-

eating report significantly greater distress about eating and weight, as well as psychosocial

impairment and psychopathology including depression. These patients also report lower

self-esteem than non-binging obese subjects.

Although the introduction of the purging and non-purging subtype of bulimia nervosa

with DSM-IV has clouded the distinction between binge-eating disorder and bulimia ner-

vosa, it seems to be a distinct disorder (Herzog & Delinski, 2001).

Epidemiological research on binge-eating disorder is rare. A study on a representative

Austrian sample (1000 female subjects) revealed a point prevalence rate of 3.3%, with
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higher rates in overweight (4.1%) or obese (8.5%) women than in normal weight women

(2.9%). This difference, however, was not statistically significant (Kinzl, Traweger, Trefalt,

Mangweth, & Biebl, 1999).

The gender difference for the prevalence of binge-eating disorder does not seem to be as

severe as in anorexia nervosa or bulimia nervosa. Several studies did not find any gender

differences when comparing the rates of (white) women and men.

Studies have found very high rates of obesity and psychiatric comorbidity, especially

mood and anxiety disorders (Striegel-Moore & Frank, 2003).

1.4. Risk Factors

In this section, the risk factors for eating disorders will be described. Anorexia nervosa,

bulimia nervosa and atypical eating disorders share most of their risk factors, which is why

they are not depicted separately.

Nonetheless, there are specific influences that are only relevant for either of these disor-

ders. They will be mentioned at the end of this section, especially in regard to anorexia

nervosa.

Generally, risk factors can be grouped in extrinsic (adverse experiences) and intrinsic

(genetic vulnerability) factors (Karwautz et al., 2001). Another classification is to group

them as

� genetic risk factors,

� personality traits and

� environmental risk factors (Karwautz, 2004).

1.4.1. Genetic Risk Factors

Genetic risk for eating disorder can be assessed in various ways, ranging from classical twin

and family studies to only newly emerging molecular genetic studies. These methods will

be discussed in more detail in section 2.4.

Twin studies showed a greater concordance rate of anorexia nervosa in monozygotic

than in dizygotic twins. The concordance for monozygotic twins ranged from 30% to 65%,

whereas for the dizygotic twins it only was between 0% and 9% (Karwautz, 2004). This

suggests a relatively high importance of genetic factors, although no specific genetic risk

factor (such as a vulnerability gene) can be identified by this approach.
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For genetic traits, clustering within families should be observable. For anorexia nervosa,

the prevalence rate in sisters of affected individuals ranges from 3% to 7%, and in female

first-degree relatives from 4% to 10% (Karwautz, 2004).

Other studies also show familial clustering of eating disorders with other comorbid dis-

orders. Higher prevalences of affective disorders and obsessive–compulsive disorders have

been found in first-degree relatives of subjects suffering from anorexia nervosa or bulimia

nervosa. Furthermore, a family history of an eating disorder, mood disorder, or alcohol

and substance abuse seems to enhance the risk for anorexia nervosa or bulimia nervosa in

adolescents (Gorwood, Kipman, & Foulon, 2003).

Molecular genetic studies indicated that genes involved in serotonergic regulation, espe-

cially the gene for the 5-HT2A receptor, might be susceptibility factors for anorexia nervosa

(Karwautz, 2004). The findings of these studies will be discussed in more detail in chapter

3, since they are of central interest to this paper.

1.4.2. Personality Traits

There are, amongst others, two very important personality traits that may be risk factors

in anorexia nervosa: perfectionism and temperamental traits such as harm avoidance and

novelty seeking.

Perfectionism is the strongest candidate for being related to anorexia nervosa. It has

been found before onset, it enhances during the illness, and it is present after recovery

(Karwautz, 2004). Persons with high levels of perfectionism are over-represented in first

degree relatives of patients with an eating disorder (Gorwood et al., 2003), and family

members of anorexic subjects also have higher rates of obsessive–compulsive personality

disorders (Karwautz, 2004).

The trait has also been identified as a risk factor for bulimic women considering them-

selves as overweight.

Temperamental traits also seem to play an important role in eating disorders and anorexia

nervosa. Studies have found higher harm avoidance, lower cooperativeness, and lower nov-

elty seeking in subjects suffering from anorexia nervosa. All these differences were inde-

pendent from body weight (Karwautz, 2004).

Personality traits are substantially influenced by genetic factors, and they may interact

with environmental influences in anorexia nervosa. Moreover, they can be associated with

specific neurotransmitter systems – novelty seeking is linked to dopaminergic functioning,

and harm avoidance is linked to serotonergic functioning (Karwautz, 2004).
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A third personality trait that might be associated with eating disorders is low self-

esteem. Karwautz (2004) states that the risk of developing an eating disorder in children

with low self-esteem is eight times higher than in those with high self-esteem. This might be

explained by the fact that a negative self-evaluation enhances the drive to attain perfection

in all areas of life.

Low self-esteem seems to be a potent risk factor for anorexia nervosa. High levels of

shyness, loneliness and feelings of inferiority have been reported in adolescents preceding

anorexia nervosa of the binge-purging type, but not in the restricting type (Karwautz,

2004).

1.4.3. Environmental Risk Factors

Familial risk and parental problems

Familial background and family environment are vital factors in the development of eating

disorders. Both parental dieting and encouragement by parents to lose weight has signifi-

cant impact on dieting concerns and behaviors in adolescent girls. Women with anorexia

nervosa or bulimia nervosa report receiving more comments about weight or shape by

family members during their childhood than controls (Wade, Gillespie, & Martin, 2007).

Maternal restraint and disinhibition predicts higher body dissatisfaction and dieting be-

haviors even at the age of eight.

Families with an eating-disordered child share some common characteristics, but it is

still unclear if these interaction patterns exist prior to the onset of the disorder. Some

studies found that adverse parenting (especially low contact, high expectations and parental

discord) constitutes a risk factor for eating disorders (e. g. Gorwood et al. (2003), Fairburn

and Harrison (2003) or Wade et al. (2007)). Other longitudinal studies did not find any

specific interaction pattern that proved to be predictive of anorexia nervosa or bulimia

nervosa (Karwautz, 2004).

As is the case with most other psychiatric disorders, the presence of a psychiatric diagnose

in the parents also increases the risk of developing an eating disorder. Family history of an

eating disorder (and also of depression and obsessive–compulsive disorder) is a risk factor

for developing an eating disorder.

In recent studies, genetic factors were found to explain a large part of this familial risk

(Gorwood et al., 2003).
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Life events

Stressful life events and psychosocial difficulties often precede anorexia nervosa and bulimia

nervosa. These include negative life events concerning the patient’s parents, interpersonal

difficulties such as teasing and bullying at school or pudicity events. The latter seem to be

especially important for anorexia nervosa – they occur in 20% of the cases.

However, such life events are experiences shared by the vast majority of people and

cannot explain the specific development of an eating disorder. It has been proposed that

the important factor is the meaning of the event: loss events are postulated to be related to

depression, threat events to anxiety disorders. Pudicity events associated primarily with

sexual disgust seem to be common in anorexia nervosa, which suggests that life events

linked to the emotion of disgust and shame may be a trigger for eating disorders.

An alternative theory states that the response to an event is an important component

in shaping the outcome. Eating-disordered patients were found to have a more helpless

coping response: subjects suffering from anorexia nervosa applied more avoidance strate-

gies, subjects suffering from bulimia nervosa ruminated more on their problems (Karwautz,

2004).

General cultural risk

The majority (90% to 96%) of subjects suffering from eating disorders is female. The

greatest risk for developing anorexia nervosa is during the mid teens, whereas the risk for

bulimia nervosa is highest in the late teens and early twens.

Race (white) and heterosexual orientation are also risk factors for eating disorders

(Karwautz, 2004), as is living in a western society (Fairburn & Harrison, 2003).

However, social class is not correlated with the risk of developing an eating disorder,

although adolescents from a higher social class were found to desire lower body weights, to

diet more often, to binge more severely, and to exercise more for weight control (Karwautz,

2004).

Additionally, there is a higher risk for the development of an eating disorder, especially

anorexia nervosa, in certain groups of people. These groups include dancers, runners,

skaters, models, actors, gymnasts, wrestlers, and college sorority members, for whom thin-

ness is emphasized and highly valued (Gurenlian, 2002).
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Interpersonal Problems

Social support and peer group interaction play an important role as risk factors for eating

disorders. Bullying and teasing of girls by peers when gaining weight during adolescence

results in negative feelings towards body shape and further development of eating disorders.

Social support influences vulnerability for mental disorders in general. Anorexia ner-

vosa patients and bulimia nervosa patients have deficits in their social network. Thus,

insufficient or inadequate social support seems to be a predictor of bad outcome in eating

disorders (Karwautz, 2004).

Traumatic Experiences

Sexual and physical abuse are non-specific risk factors for eating disorders, especially in

connection with psychiatric comorbidity. Abuse is more strongly related with bulimia

nervosa than with anorexia nervosa (Karwautz, 2004).

1.4.4. Specific Risk Factors for Subtypes of Eating Disorders

In summary, the risk factors for developing an eating disorder of any type are:

General factors:

� female sex

� adolescence and early adulthood

� living in a western society

Environmental risk factors:

� family dieting

� negative comments about weight or shape

� adverse parenting (questionable)

� family history of eating disorders, depression, or obsessive–compulsive disorders

� traumatic experiences (sexual and physical abuse)

Personality traits:

� perfectionism
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� temperamental traits like harm avoidance, low novelty seeking, low self-esteem

Genetic risk factors:

� distinctive features of the serotonergic regulation

� other factors, like family history of eating disorders, may also be subsumed under

genetic risk factors

As mentioned at the beginning of this section, most of the risk factors are shared for

the different types of eating disorders, especially for anorexia nervosa and bulimia nervosa.

Fairburn, Cooper, Doll, and Welch (1999) have proposed a classification into risk factors

that increase the risk for a general psychiatric disorder and risk factors that increase the

risk for a specific eating disorder.

Findings in this study suggest that there are some differences in the importance of the

risk factors mentioned above for the different types of eating disorders.

Subjects suffering from anorexia nervosa have higher rates of parental eating disorders

and of family dieting. Another rather specific risk factor for anorexia nervosa is the psy-

chological trait perfectionism, which is especially common in anorexic subjects (Fairburn

et al., 1999).

In addition, it has been found that high paternal expectations and paternal control is

uniquely associated with the risk for developing anorexia nervosa. Maternal expectations

or control did not play an important role for the distinction of the two types of eating

disorders (Wade et al., 2007).

Bulimia nervosa patients, on the other hand, show higher rates of parental obesity during

their childhood, they have an earlier menarche than anorexic patients, and there is a trend

to having received more critical comments about eating, appearance, and weight from

family members. Furthermore, the exposure to parental psychiatric disorders during the

patient’s childhood is higher for bulimia nervosa, especially for parental depression, alcohol

abuse and drug abuse (Fairburn et al., 1999). This is in accordance with other studies

(Fairburn & Harrison, 2003).

Another important risk factor that seems relevant for the distinction of bulimia ner-

vosa from anorexia nervosa is premorbid repeated sexual and severe physical abuse, where

bulimic patients show higher rates (Karwautz, 2004).

25



26



2. Genes and Polymorphisms

2.1. What Genes Do

Before starting to outline what genes do, it is important to make clear what genes do not do.

Popular science writers often refer to genes “for” schizophrenia, intelligence, or depression.

Needless to say, there are no genes “for” any of these traits or mental disorders. Genes will

certainly play a contributory role in their development by influencing individual variations

in liability for certain traits or disorders, but referring to a gene “for” some disorder can

create the misleading impression that there is a direct genetic influence on these features.

There are, of course, some disorders that are linked to certain genes in a more direct way

(meaning that the disorders are caused by a mutation of a single gene not depending on any

environmental risk experience). Examples of these are cystic fibrosis, tuberous sclerosis,

and Huntington’s disease, all of which strictly follow Mendelian inheritance patterns and

are therefore called Mendelian disorders. In more complex disorders like anorexia nervosa,

vulnerability is a result of the interplay of many genes and environmental influences.

Even in Mendelian disorders however, genes do not actually cause the phenotype (the

visible manifestation of the genetic liability). Rather, they are involved in the causation

of specific biochemical reactions that serve to give rise to the phenotype. In the following,

this process will be explained in detail.

2.1.1. The Genetic Code

From the mid-nineteenth century, it has been known that certain characteristics are passed

on from generation to generation. This was discovered by the Austrian monk Gregor

Mendel who studied patterns of inheritance in pea plants. He concluded that carriers of

this information, the genes, exist in alternate forms, now called alleles.

The importance of this finding was not realized until much later, as Watson and Crick

discovered in 1953 that the relevant genetic material, deoxyribonucleic acid (DNA), had a

paired helix structure. This structure allows for replication of the genetic material, which

is necessary for cell division (Rutter, 2006).

The carrier of the genetic information, the DNA, consists of combinations of four bases.
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Theses bases are rings of carbon and hydrogen atoms and they constitute the nucleotides

– adenine (A), cytosine (C), guanine (G), and thymine (T).

The nucleotides are organized in triplets – the so-called codons. The genetic information

lies in the sequence of codons, like e. g. ATC CGA CTT ACC etc. They form the DNA,

which is organized in a double helix. The two strands of DNA are reciprocal.

Although the DNA molecule is a very long chain, the information contained is not

organized uninterruptedly. There are exons that code for polypeptides (and, in the long

run, proteins), and the intervening introns that do not code for any specific genetic product.

2.1.2. From Genes to Proteins

The expression of genetic information in all cells is a one-way system. It begins with

the DNA, which carries the inherited genetic information. The DNA is translated into

a polypeptide, and ultimately into a protein, by processes known as transcription and

translation.

Transcription

In the transcriptional phase, the DNA molecule is transformed into an mRNA (messenger

ribonucleic acid) molecule. The mRNA differs from the DNA chemically, but the encoded

genetic information is retained from original molecule. Not all genetic information in the

DNA, however, is transcribed into mRNA. The promoter region, a section in the DNA that

regulates the transcription process, is not transformed. The elements that influence the

transcription process are called transcription factors, and they collectively constitute the

promoter. Some of those factors are located distantly from the genes they are influencing

(and therefore are called trans-acting), while some of them have a local function in the DNA

duplex on which they reside (they are called cis-acting). Additionally, the promoter can

contain so-called enhancers that enhance the transcriptional activity of specific genes, and

silencers that inhibit that transcriptional activity. These transcriptional factors are not

usually termed genes, but they are still made out of DNA sequences and will be inherited

along with the rest of the DNA.

In the second transcription phase, after the removal of the promoter region, the introns

are eliminated and the exons are connected – a process called splicing. This produces a

continuous segment of end-to-end exons.

Many genes in humans show alternative splicing. This means that different exon combi-

nations result from the same gene during RNA processing. The same gene may therefore

give rise to multiple unique proteins with different effects.
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Translation

During the process of translation, the mRNA segments are transformed into polypeptides

and proteins. Each codon represents a specific amino acid. The information in the mRNA

is processed sequentially, resulting in a chain of a large number of amino acids – the protein

product coded in the specific gene (Brown, 1999).

The protein structure is highly varied and cannot easily be predicted from the amino

acid sequence. In addition to the possible variations in the mRNA (as a result of alterna-

tive splicing), there are various post-translational modifications like the alteration of some

amino acids and polypeptides.

The conversion of polypeptides into proteins involves the folding of proteins, which is

crucial for them to unfold their effects. The precise mechanisms involved in the folding

process are highly complex and still unclear. They are driven by genes, but they are also

influenced by the environment of the cell.

These proteins coded in the DNA play a role in the liability to genetically influenced traits

or disorders. In most cases however, it remains unclear how (and why) they lead to certain

outcome behaviors. The ultimate behavioral outcome of gene action is a complicated

process, and it is not directly determined by the inherited DNA in a single causal chain

(Rutter, 2006).

2.2. Polymorphisms

The term “genetic polymorphism” (sometimes also called “morphism”) describes the fact

that genetic variants of a gene (alleles) coexist in temporary or permanent balance within

a single interbreeding population in a single spatial region (Huxley, 1955).

Polymorphisms result from the evolutionary process, and they are extremely common.

To be called a polymorphism, the allelic variant of a gene must have an occurrence of at

least four percent; otherwise it is called a mutation. Polymorphisms serve to retain variety

of form in a population living in a varied environment, and they ensure biodiversity by the

process of genetic recombination (Sheppard, 1975).

Already, Mendel stated that a gene consists of a pair of alleles. One allele is inherited from

each parent. Out of all existing polymorphisms for a specific gene, each individual possesses

two allelic variants at the specific genetic locus that make up the subject’s genotype. In

this paper, the alleles of interest are the 5-HT2A –1438 A and 5-HT2A –1438 G alleles

(explanation follows in section 3.4.1).
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An individual can either possess two identical alleles (e. g. AA or GG) – the subject

would then be called homozygous – or two different alleles (e. g. AG), where the subject

would be said to be heterozygous.

A specific allele can be dominant or recessive. This specifies the effect of the allele on

the phenotype (the observable characteristics of an organism). For dominant alleles, the

phenotype is entirely determined by this allele. The other allele at that specific locus does

not have any effect in the presence of the dominant co-allele – it remains silent and is called

recessive. A recessive allele only determines the phenotype if the individual is homozygous

for the recessive allele.

Another possibility (that was not described by Mendel, but later by Karl Correns) is

incomplete dominance, where a heterozygous genotype creates an intermediate phenotype.

In this case, both alleles influence the observable characteristics in a dosage-dependent

manner.

Yet another way in which two alleles might interact is co-dominance. In co-dominance,

neither of the alleles is recessive. If an individual is heterozygous, it expresses both phe-

notypes. An example for this would be the AB0 blood group system, where the alleles IA

and IB are co-dominant. An IAIB genotype results in the individual having type AB blood

as phenotype. The third allele, I0, is recessive to the IA and IB alleles, so genotypes IAIA

and IAI0 both cause type A blood as phenotype. This also exemplifies that there can be

more than two alleles for a single genetic locus.

Mendel stated in his Law of Independent Assortment, also known as Inheritance Law,

that the inheritance of one trait (in a specific genetic locus) does not affect the inheritance

pattern of another trait (in another genetic locus). This is only true when the two genes

reside on different chromosomes. When two genes reside on the same chromosome, they

are inherited conjointly – a phenomenon called genetic linkage, in which the alleles are said

to be in linkage disequilibrium.

There is, of course, an exception to this. During cell division (in the meiosis phase),

chromosome pairs may intertwine and exchange fragments – a process called crossing over.

This can cause two genes on the same chromosome to separate from each other. The two

genes can then be inherited separately, causing the linkage disequilibrium to be incomplete.

The further apart on a chromosome two genes reside, the higher the probability that they

will separate and break the linkage (Brown, 1999).

Polymorphisms can be explored by the use of genetic markers. A genetic marker is a

known DNA sequence that shows variation due to mutation or alteration. They can be

used to study the relationship between a disease and its genetics.
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There are different kinds of genetic markers, and the following list is far from being

exhaustive (Spooner, Treuren, & Vicente, 2005):

� Restriction fragment length polymorphism (RFLP)

� Amplified fragment length polymorphism (AFLP)

� Random amplification of polymorphic DNA (RAPD)

� Variable number tandem repeat (VNTR)

� Short tandem repeat (STR)

� Microsatellite polymorphism

� Single nucleotide polymorphism (SNP)

The smallest unit of genetic variation is the single nucleotide polymorphism (SNP). It

is a variation of the DNA sequence by only one nucleotide: a base in a certain genetic

locus is substituted by a different one. SNPs reflect past mutations that were mostly (but

not exclusively) unique events. Two individuals sharing a variant allele share a common

evolutionary heritage.

SNPs are quite common in the human DNA. It has been estimated that when comparing

human DNA sequences, an SNP can be found every 1000–2000 nucleotides. Hence, the

whole human genome might contain 1.6 million to 3.2 million SNPs.

Most human variation that is influenced by genes can be traced to SNPs. They can

influence the development of psychological traits or the susceptibility to certain diseases or

disorders (Stoneking, 2001).

In this paper, a single nucleotide polymorphism in the serotonin system and its relevance

for the development of anorexia nervosa will be investigated.

2.3. Gene and Environment Interplay

There is no direct connection between a particular genetic mutation and development of

a mental disorder or disease. This is not the case for a single-gene disorder (where the

mutation of one single gene is responsible for the outcome), nor is it the case in complex

disorders. The latter are always a result of multiple genes and their interplay (including

influences from non-protein-coding introns). Both types also depend on environmental

factors.
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2.3.1. Gene–Environment Interaction

Considering that both genetic and environmental factors are important for the development

of a specific disorder, the question is raised whether genetic and environmental effects act

independently. If so, the effect is said to be “additive”, meaning that the combined effects

are no more than the sum of both effects considered separately.

Recent research has shown that this is not the case for many disorders. It has been found

that the effect of certain genes is not independent from environmental factors and vice versa,

but that the effect of environmental hazards or risk factors is dependent on environmental

influences. In other words, there is interaction between genetic and environmental factors

(this is often written as G × E). The presence of certain environments may increase the

genetic effects (or, viewed from a different perspective, the presence of a certain genetic

configuration may increase the effects of a particular environmental factor). This would be

termed a synergistic interaction. Otherwise, the effect of the one could be reduced by the

other (Rutter, 2006).

The question whether there is a significant interaction between genes and environment

can be assessed in many different ways (see section 2.4). One of them is to focus on

the interaction between some identified and measured genetic allelic variation and some

identified and measured environmental risk factor.

2.3.2. Gene–Environment Correlation

Another way in which genes can “interact” (although not in the statistical meaning of the

word) with environment is termed gene–environment correlation. There are three types of

gene–environment correlations – passive, active, and evocative.

Passive correlations mean that parents who pass “risky” genes on to their children also,

on the whole, tend to create “risky” rearing environments for their children. Simply, the

parental genes increase the likelihood that the children will experience more environmental

risks. Genes thereby influence the children’s environment and, indirectly, their vulnerability

to a certain disease.

Active gene–environment correlations behave in a different way, although the genetic

effects are still indirect. In the case of active correlation, the child’s genetically influenced

behavior has effects on the environmental situations that the child grows up in. A child that

engages in aggressive reading, as an example, will have much more opportunity to learn

from books than a child with different interests. The children’s interests are, of course,

influenced by their genes (as well as by their upbringing). Genetically influenced traits will

lead to distinctive experiences.
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Evocative gene–environment correlations work in a somewhat comparable fashion, the

difference being that the effect is not on the selecting of environments, but rather on the

responses induced in other people. Children vary in their ability to successfully socialize

with others, thereby influencing their environment and their social experiences (humor

and compassion, quarrel and rejection). This makes it difficult to separate genetic and

environmental influences (Rutter, 2006).

2.3.3. Good Genes and Bad Genes

The identification of certain genes and their allelic variants as genetic risk factors raises

the question whether there are certain genetic configurations that are undesirable or even

bad. It might be assumed that genes could be subdivided into those that are good and

those that are bad. This, however, is not the case.

Genes may be (partly) responsible for the development of traits or diseases. Considering

traits, the first point that has to be made is that a specific gene only constitutes a small

influence on a specific trait – the effect of the individual identified genes has proved to be

very small. As an example, an identified susceptibility gene for the temperamental trait

sensation seeking accounted for only about four percent of the variance on that trait.

The second point is even more crucial. The extension of the notion that genes can

possibly be divided into good and bad implies that there are some human attributes or traits

that are inherently good or bad in their effects. The temperamental feature of behavioral

inhibition or emotional constraint or withdrawal in new or challenging situations can serve

as an example. It constitutes a risk factor for anxiety disorders, but it is a protective factor

against antisocial behavior. So, as traits cannot be divided into good and bad, neither can

genes or their allelic variants.

Considering diseases, it might more easily be presumed that they are undesirable and

therefore bad. This is certainly true for some (Huntington’s disease, for example). But

even in a single-gene disorder there might be an important mixture of good and bad

effects. A well known example of this is provided by thalassemia, the condition giving

rise to sickle-cell disease. Sickle-cell disease is a severe disorder with high mortality, and,

obviously, it would be good to eliminate the suffering and death it brings about. However,

the gene responsible for sickle-cell anaemia is incompletely recessive. Carriers of the allele

responsible for sickle-cell disease also develop a small number of sickle red blood cells.

These do not cause any symptoms, but they have a protective influence against malaria –

an equally serious, equally deadly, disease.

Hence, the supposed subdivision of genes into good and bad is misleading and unhelpful.
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The effect of genes always have to be seen in their interplay with environmental conditions

(Rutter, 2006).

2.4. Methods for Research of Genetic Influences

There are several ways to study genetic influences on traits. Ramoz, Versini, and Gorwood

(2007) adduce family and twin studies and linkage and association studies. Furthermore,

the transmission of certain alleles from parents to their offspring can be analyzed with a

specific study design (transmission disequilibrium test).

Another method is the gene–environment interaction study. Moffitt, Caspi, and Rutter

(2005) add a description of a strategy to find these gene–environment interactions. A

special case in this context is the use of case-control or case-sib designs (Witte, Gauderman,

& Thomas, 1999).

2.4.1. Family Studies

Genetic risk for diseases or mental disorders runs in families, and this familial loading might

reflect a genetic liability. This becomes even more plausible if the strength of the loading

varies systematically with the degree of biological genetic relatedness – i. e. being highest

in first-degree relatives, lower in second-degree relatives and even lower in third-degree

relatives (Rutter, 2006). Based on this idea, family studies use the prevalence of mental

disorders in family systems to estimate their heritability.

Family studies do not permit a clear separation of genetic and non-genetic influences,

which is a major limitation. Differences in genetic relatedness are accompanied by differ-

ences in environmental risks, so the effects cannot be estimated separately.

Nevertheless, family data can be valuable in suggesting how many susceptibility genes are

likely to be operative in a certain disorder. This can be accomplished through mathematical

calculations. Since first-degree relatives share 50% of their genes it is possible to conclude

that, if the risk is much less than 1 in 2, inheritance involves synergism between particular

patterns of genes. A precise figure of genes involved cannot be calculated, however (Rutter,

2006).

2.4.2. Twin Studies

Twin studies are aimed at disentangling the variation that is caused by genes and environ-

ment. By comparison of monozygotic twins (who share 100% of their genetic configuration)

and dizygotic twins (who share only 50% of their genes) it becomes possible to estimate
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the percentage of the variance of a phenotype that can be attributed to genetic effects

(heritability).

Twin studies allow for the parsing out of sources of familial aggregation, at least to

some extent. Variance in susceptibility can be partitioned into additive genetic, shared

environmental and unique environmental factors. Shared environmental factors reflect

environmental influences to which both twins are exposed. They contribute to the similarity

of twins. Unique environmental factors refer to environmental experiences to which only

one member of a twin pair is exposed. This allows a more accurate calculation of heritability

(Bulik, 2005).

Several studies have shown a family aggregation for anorexia nervosa and also bulimia

nervosa. For anorexia nervosa, heritability estimations range from 60% to 88% (Ramoz et

al., 2007).

There are various criticisms of the twin method. One of the more severe is that the

heritability estimate may reflect factors other than genes. It has been shown that the

application of heritability estimation on questionnaire data can lead to heritability rates

greater than 100%, when the assumptions of the model are not met. Also, estimated

heritability rates tend to overestimate the effect of genetic configuration (Schönemann,

1997).

As Schönemann (1997) points out, the biometric definition of heritability is limited to

phenotypical differences. All genetically determined traits or features that have the same

expression in all individuals are ignored. To illustrate this, he uses an example quoted from

Hirsch (1981): Leggedness (the number of legs humans have) is clearly predetermined by

genes. Under normal circumstances virtually all people are born with two legs. In wartimes

however, people may lose one or both legs due to environmental influences. All variability

in leggedness will be due to environment, not to genes. The heritability estimate for the

trait leggedness will, therefore, be zero.

2.4.3. Adoption Studies

Adoption studies investigate the correlations between adopted children and either their bi-

ological parents or their adoptive parents (or both) on a certain trait or disorder. Adopted

children are not reared by their biological parents, which allows for a more clear-cut sepa-

ration of genetic and environmental influences.

In the field of anorexia nervosa, there are no adoption studies (Fairburn & Harrison,

2003).
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2.4.4. Linkage Studies

Linkage studies have the goal to identify vulnerability genes for specific psychiatric disor-

ders. In these studies, the whole human genome is screened, without an a priori hypothesis

(Ramoz et al., 2007).

This type of study does not identify individual genes. Rather, it identifies particular

segments of a chromosome. This is achieved by investigating the co-inheritance between a

gene locus and the disorder (or trait) being studied in related couples (generally sib-pairs)

that are both affected by the particular disorder. Statistics can determine if the extent to

which two affected siblings share identical genetic alleles exceeds chance.

So-called polymorphic genetic markers are used to examine the transmission and segrega-

tion of genetic material. These are markers that vary across individuals in any population.

In this manner, chromosomal regions that are linked to a specific disorder can be identified.

A limitation of linkage studies is that the identified chromosomal areas are quite large

and therefore include a very large number of genes. So the task of finding the relevant

susceptibility gene remains quite challenging (Rutter, 2006).

Furthermore, the effect of the susceptibility gene has to be quite strong to be detected,

and the sample size therefore has to be large. This becomes, of course, more severe when

the disorder examined is rare, as eating disorders are (Ramoz et al., 2007).

2.4.5. Association Studies

Just as with linkage studies, association studies are carried out to identify genes of vul-

nerability in eating disorders and other diseases, but they function on an entirely different

principle.

Association studies compare the frequencies of specific alleles and genotypes between

patients and controls in selected candidate genes. If the distribution of the alleles or

genotypes varies between patients and healthy subjects, the gene is likely to be associated

with the disorder. This approach is also known as candidate gene approach (Kwon &

Goate, 2000).

Identifying variants of genes that are linked to a specific disorder helps the understanding

of vulnerability for, or resilience against, that disorder. Another benefit could be the

explanation for certain groups of patient’s poor response to pharmacological treatment, if

that treatment is linked to neurological pathways influenced by that gene (Ramoz et al.,

2007).

The major advantage of this design is that it permits detection of susceptibility genes

even when their effect is relatively small. This is especially important in the study of

36



2.4. Methods for Research of Genetic Influences

multifactorial disorders (Rutter, 2006). Nevertheless, the samples used in this design have

to be quite large (Hinney, Remschmidt, & Hebebrand, 2000).

One of the disadvantages of association studies is that association may arise as a result

of population stratification. Population subgroups frequently differ in allele frequencies

for reasons that do not have anything to do with the disorder of interest. So, if cases

and controls are drawn from somewhat different populations, spurious associations may be

detected and reported (Rutter, 2006).

Association studies carried out so far, both in the field of anorexia nervosa and in general,

reveal occasionally significant but often unreplicated findings (Bulik, 2005).

2.4.6. Transmission Disequilibrium

The problem of population stratification is avoided by the use of the transmission dise-

quilibrium test (TDT), developed by Spielman, McGinnis, and Ewens (1993). TDT uses

family trios consisting of an index patient and both parents, requiring the parents to be

heterozygous for the allele that is presumably associated with a certain disease or trait.

The test evaluates the frequency with which the allele is transmitted to the affected off-

spring. If it is transmitted more frequently than expected by chance, this allele (or an

allele in close proximity) is thought to predispose to the disease. If it is transmitted less

frequently than expected by chance, it might be protective (Hinney et al., 2000).

The transmission disequilibrium test has relatively low statistical power and therefore

needs larger sample sizes to detect significant effects (Klump & Gobrogge, 2005).

2.4.7. Gene–Environment Interaction (G × E) Studies

The research of genetic influences for eating disorders, and also other disorders and diseases,

has yielded inconsistent and sometimes contradictory results. This leads to the (not very

surprising) conclusion that not genes alone are responsible for vulnerability. Genes and

environmental factors work together in a complex way. Therefore, in the last two decades,

research has increasingly targeted the influences of both. These studies investigate the

interaction of genes and environmental factors, and are therefore called gene–environment

interaction studies – in short G × E studies (Thapar, Harold, Rice, Langley, & Michael,

2007).

The term G × E can describe different scenarios. In a methodological sense it refers to

the situation where genetic factors influence individual sensitivity to certain environmental

influences. This means that the presence of an interaction is deduced statistically. This
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does not necessarily mean that this interaction is also present on a biological level, although

this clearly is the hope.

The investigation of gene–environment interaction has become an important research

area in psychiatry, psychology, and medicine (Thapar et al., 2007). It can help understand-

ing and identification of both environmental and genetic risk factors and their interplay.

Just like association studies, it can facilitate the understanding of biological causes of (not

only) mental disorders and it can have benefits for the improvement of pharmacological

treatment.

The study conducted in this paper is a gene–environment interaction study. The most

common way of data analysis for G × E studies is the use of logistic regression. This

method is outlined in sections 4.4.1 and 4.4.2.

There are various designs that can be used. One possibility is the use of a matched

sample. For each affected subject (called the “case”) an unaffected subject (called the

“control”) is selected. The matching can be done by age or other variables that are somehow

related to the disorder of interest. A special case of a matched sample is the case-sibling

design (Witte et al., 1999). For this design, the unaffected control group consists of siblings

of the affected persons. This has the advantage that population stratification can be avoided

and therefore cannot distort the findings.

Data analysis in this case can be done with conditional logistic regression. Some theo-

retical background on this is given in section 4.4.3.

A relatively new approach for both matched and unmatched samples is odds ratio mul-

tifactor dimensionality reduction. This method is introduced in section 4.4.4.
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Disorders

The topic of this paper is to investigate the role of a certain polymorphism in the 5-HT2A

receptor gene as a risk factor for anorexia nervosa. The 5-HT2A receptor is part of the

serotonin system, which is why this chapter will first outline the role of the serotonin

regulation for eating behavior in general and anorexia nervosa in particular, followed by a

closer look at the 5-HT2A receptor gene and its polymorphisms. One of them, the 5-HT2A

–1438 G/A polymorphism, will be explained in more detail, and its role in anorexia nervosa

will be elucidated.

3.1. Parts of the Serotonin Regulation

Serotonin (5-hydroxytryptamine, or 5-HT) is one of many important neurotransmitters

in the central nervous system and other parts of the body. It was originally discovered

as a vasoconstrictor substance in blood serum, a serum agent that affects vascular tone

(that is also where the name “serotonin” comes from). Only later was serotonin’s chemical

composition and broad range of physiological roles elucidated. That is the reason why 5-HT

is the preferred name in the pharmacological field (Serretti, Calati, Mandelli, & De Ronchi,

2006).

Serotonin is involved in many regulative circuits for different behaviors (perception of

pain, regulation of sleep, mood and appetite being only a few examples), and it also plays

a role in development and retention of various psychiatric disorders.

The serotonergic system is complex and consists of numerous ascending and descending

nerve tracts. Origin of these tracts are the raphe nuclei (nuclei raphes), located in the

brain stem. From there, various connections to different regions of the brain exist (e. g. to

thalamus, hypothalamus, medial temporal lobe, neocortex, basal ganglia, cerebellum, and

others).

The serotonin neurotransmitter belongs to the group of monoamines, along with adrenaline,

noradrenaline, dopamine, and other neurotransmitter substances.
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Starting point for the synthesis of serotonin is the amino acid L-tryptophan (L-TRP),

which is derived from diet. In the first of the two steps, L-tryptophan is transformed

into 5-hydroxy-L-tryptophan (5-HTP) by the enzyme tryptophan hydroxylase (TPH). The

subsequent and final step in the synthesis is conducted by the enzyme 5-hydroxytrypto-

phan-decarboxylase and leads to the final product, serotonin (5-HT). Its molecular formula

is C10H12N2O (the chemical structure depicted in figure 3.1).

One major serotonin metabolite, a product of serotonin decomposition, is 5-hydroxy-

indoleacetic acid (5-HIAA). The transformation is performed with the help of the enzyme

monoamine oxidase (MAO-A). After that, it can be transported back into the neuron that

it was released from – a process called reuptake.

Figure 3.1.: Chemical structure of serotonin (5-HT). (Source: http://de.wikipedia.org/wiki/Bild:Serotonin -
%285-HT%29.svg).

Serotonin is stored in synaptic vesicles of the neurons until it is released into the synaptic

cleft. The trigger for the release is an electric nerval stimulus, the action potential, that

is received via the axon of the nerve cell. (For illustration, figure 3.2 shows a schematic

drawing of a synapse.)

Once released, the function of the serotonin (and also of all other neurotransmitters)

is to transmit the electric signal to the postsynaptic cell by a chemical pathway. This is

achieved through the binding of the neurotransmitter, in this case serotonin, to a receptor

in the membrane of the postsynaptic cell.

The postsynaptic receptor in the membrane of the cell to be affected has to recognize the

transmitter (which is achieved by the specific form of the protein that the neurotransmitter

consists of) and must consequently trigger a mechanism that enables signal transmission.

This is done via the activation of ion channels.

Two types of receptors exist. In directly operating receptors, the ion channels are part

of the same molecule that the receptor consists of (they are called ionotropic receptors). In

indirectly operating receptors on the other hand, receptor (e. g. metabotropic receptor) and

ion channel are two different molecules and have to communicate via second messengers.

The binding of a ligand (like serotonin) to a directly operating receptor causes the ion

channels to open. The transmission is said to be conveyed by a first messenger. The
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Figure 3.2.: Synapse. (Source: http://www.patientcenters.com/autism/graphics/pdd0103.gif).

opening of the ion channels allows ions of a certain type (like Na+, K+, Ca2+ or Cl–) to

penetrate the cellular membrane, which causes a depolarization in the target cell. The

chemical signal is transferred back into an electric signal.

In indirectly operating receptors, the binding of the ligand causes the opening of the ion

channel via a second messenger. In most cases, an additional protein (for instance, a G-

protein that contains the amino acid guanin), is needed. The G-protein transforms inactive

guanosine diphosphate (GDP) into active guanosine triphosphate (GTP). This stimulates

enzymes like adenylate cyclase to produce (for example) cyclic adenosine monophosphate

(cAMP) that acts as second messenger, opens the ion channels, and permits the signal

transmission of the nerval impulse (Pritzel, Brand, & Markowitsch, 2003).

There is a great number of different serotonin receptors – at least 13 have been identified

in humans. They are grouped into seven classes, named 5-HT1 to 5-HT7. They are located

on the cell membrane of nerve cells and other cells, and they mediate the effect of serotonin

and also of a broad range of pharmaceutical and hallucinogenic drugs. Except for the 5-

HT3 receptor, which is a ligand-gated ion channel, all other 5-HT receptors are G-protein

coupled receptors that activate an intracellular second messenger cascade.

5-HT1, 5-HT5, 5-HT6, and 5-HT7 receptors are mainly located in the central nervous

system (CNS), 5-HT3 receptors are found in peripheral and central neurones, and 5-HT2

and 5-HT4 receptors are situated in both the central nervous system and peripherally.

The 5-HT2 receptor group, which will be depicted in more detail, consists of three re-
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ceptor subtypes that are found in the central nervous system and other parts of the body

(Hoyer et al., 1994):

� 5-HT2A receptors are located in vascular smooth muscles, platelets, lung, central

nervous system, and in the gastrointestinal tract. This is the “classical” serotonin

receptor, the first that was discovered in the 5-HT2 receptor group – it was, therefore,

also named the 5-HT2 receptor for a long time, until the different receptors in this

group were discovered. It is also the focus of this paper, so it will be discussed below.

� 5-HT2B receptors are situated peripherally, as far as research has shown up to

now.

� 5-HT2C receptors are only found in the central nervous system, with a high density

appearing in the choroid plexus (plexus choroideus), the area in the ventricles where

the cerebrospinal fluid is produced.

The 5-HT2A receptor consists of 471 amino acids. The DNA coding for the receptor is

located on locus 13q14–q21, that is on the long arm of chromosome 13, in the range of

band 14 to band 21 (Ferrari et al., 2007).

It is found in various peripheral tissues and in many areas of the cortex – in the claustrum

(a region that is connected to the visual cortex), some components of the limbic system

(particularly the olfactory nuclei), and parts of the basal ganglia. The functions mediated

by the receptor include contractile responses in many vascular smooth muscle preparations,

contractile response in bronchial, uterine, and urinary smooth muscle, as well as platelet

aggregation and increased capillary permeability. Central nervous effects include some

behavioral effects and neuronal depolarization. Most of these were found in animal studies

(Hoyer et al., 1994). Functions of the 5-HT2A receptor and the serotonin system generally

related to eating will be discussed below, in section 3.2.

3.2. Serotonin Regulation and Eating Behavior

Serotonin regulation plays an important part in eating and eating behavior. It has been

shown that spontaneous food intake and the termination of food intake correlates with

intrahypothalamic release of serotonin. In the course of ingestion, a phaseal release of

serotonin leads to satiation and consequently to the cessation of ingestion. Through this

mechanism, the amount of consumed food is regulated.

The related area in the brain of the phaseal release of serotonin and therefore of ap-

petite regulation is the suprachiasmatic nucleus (nucleus suprachiasmaticus) located in
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the paraventricular and ventromedial hypothalamus – a structure that is also responsible

for controlling endogenous circadian rhythms. Experiments with serotonin agonists and

antagonists show that this region plays an important role in the regulation of the eating

behavior. This part of the brain has an exceptionally high density of 5-HT2C and 5-HT1B

receptors.

Furthermore, it has been shown in animal experiments that an increased availability of

serotonin agonists (like dexfenfluramine, a pharmaceutical product that is used to treat

obesity) in extracellular space of the brain leads to a reduction of the amount of food intake

and also occasionally to a reduction of body weight. Inversely, a reduction of serotonin

availability in cerebral extracellular space leads to an augmentation of food intake and, as

the case may be, body weight (Baumgarten & Grozdanovic, 1996).

In a multicenter study conducted in nine European countries, the use of dexfenfluramine

caused an increased weight loss for six months in obese patients, with the lower body

weight maintained for a further six months (Guy-Grand et al., 1989). This suggests that

the serotonergic system has an effect on the appetite system and on energy intake.

Other studies showed that pharmacological enhancement of 5-HT neurotransmission in

both animals and humans generally leads to increased satiety. An exception to this is the

5-HT1A receptor, who’s stimulation, in animals, leads to the induction of feeding. This

suggests that there are opposing components within the serotonin system (Brewerton,

1995).

Regarding the composition of food consumed, it becomes evident that the amount of

carbohydrates in particular is influenced by the serotonergic system. This seems to be

mediated especially by 5-HT2C and 5-HT1B receptors, as has been shown in studies with

mutated mice that did not express the 5-HT2C receptor: the mice showed a significant

increase of body mass (13%) when they had unlimited access to food sources. This also

suggests the pathogenic role of selective 5-HT receptor alteration in the development of eat-

ing disorders in humans. A compromised homeostasis of satiety could lead to uncontrolled

and excessive food intake, potentially resulting in obesity (Baumgarten & Grozdanovic,

1996).

In addition, other studies show a reduction of fat intake. This has first been shown in

animal studies that provided different diets which the animals could choose from. Serotonin

admission in these experiments gave rise to a selective reduction of both carbohydrate and

fat intake. Studies of the same kind were also performed on humans. Subjects that received

dexfenfluramine reduced the intake of high carbohydrate food and, because of the nutrient

composition of the food, also the consumption of fat.
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Furthermore, in humans serotonergic drugs lead not only to a reduction of meal size, but

also to a reduction of snacking (the elimination of some snacks from the eating repertoire)

(Blundell, Lawton, & Halford, 1995).

Although the development of eating disorders of the type bulimia nervosa cannot, like

any complex, multifactorial disorder, be explained by serotonergic dysregulation alone, it

seems to play a significant role. Several studies show that severity of symptoms, espe-

cially regarding the frequency of binge eating attacks, correlates with the concentration of

5-HIAA (5-hydroxyindoleacetic acid) in bulimic patients. High frequency of eating attacks

involved low levels of 5-HIAA in liquor (Baumgarten & Grozdanovic, 1996). Binging and

vomiting has been shown to decrease serotonin synthesis in other studies (Kaye, Gwirts-

man, & George, 1989), and a significant correlation of high frequencies of binging and low

concentrations of serotonin in cerebrospinal fluid has been found (Jimerson, Lesem, Kaye,

& Brewerton, 1992). A preliminary trial study showed a decrease in the frequency of bu-

limic symptoms in severely symptomatic patients who were treated with ondanserton, a

5-HT3 receptor antagonist (Faris et al., 2000).

Concerning the symptoms of bulimia nervosa in general, insulin resistance (which might

be present in both anorexia nervosa and bulimia nervosa) impairs the body’s ability to

produce serotonin from L-tryptophan (Brewerton, 1995). Furthermore, the symptom of

compulsive exercising may be related to changes in serotonin metabolism. It has been

shown that the selective serotonin reuptake inhibitor (SSRI) fluoxetine leads to a reduction

in compulsive exercising (Patrick, 2002).

Another cardinal symptom of bulimia nervosa is the loss of control during the binge

eating attacks. The serotonin metabolism is related to controlling punishment-suppressed

behaviors. Serotonin enhancement leads to suppression of these “unwanted” behaviors,

whereas serotonin attenuation leads to the release of those behaviors. Theoretically, a

functional serotonin deficit in bulimic patients could contribute to the loss of control of

typical “punishment-suppressed” bulimic behaviors, such as bingeing, vomiting, purging or

other forms of socially unacceptable behaviors (Brewerton, 1995).

3.3. Serotonin Regulation and Anorexia Nervosa

Serotonin regulation has been shown to be a significant factor in eating disorders (Patrick,

2002). The function of serotonin regulation in relation to eating and satiety has already

been discussed in section 3.2.

In anorexic patients, low levels of serotonin have been reported (Patrick, 2002). These
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disturbances could be a consequence of dietary abnormalities, or they could be a premorbid

trait. This is why subjects who have recovered from anorexia nervosa are also studied –

persisting disturbances suggest that these are existent already before the onset of the

disorder.

Several studies have shown alterations in the serotonin activity in the ill state, and also

that these disturbances persist after recovery (Kaye et al., 2005; Kaye, Gendall, & Michael,

1998).

When underweight, anorexia nervosa patients also show a significant reduction in con-

centration of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the cere-

brospinal fluid (CSF) compared to healthy controls. These findings suggest a reduced

serotonergic activity (which could also be secondary to a reduced availability of trypto-

phan due to reduced food intake) (Kaye et al., 2005).

Another study by Kaye, Gwirtsman, George, and Ebert (1991) reports elevated concen-

trations of 5-HIAA in cerebrospinal fluid after long-term recovery from anorexia nervosa,

a finding that, at first sight, appears contradictory. It might be explained by the fact

that dieting also lowers plasma tryptophan levels in healthy women. In anorexic patients,

resumption of normal eating may unveil intrinsic abnormalities in the serotonergic system

that might be responsible for core behavioral or temperamental risks (Kaye et al., 1998).

Some studies use platelets as a model for the serotonergic synapse in the brain. The

platelet 5-HT2A receptor has characteristics similar to those reported for the 5-HT2A re-

ceptor in the human brain. In fact, the nucleotide sequence of the human platelet 5-HT2A

receptor is identical to that of the human frontal cortex 5-HT2A receptor (except for one

nucleotide, which does not alter the amino acid structure).

It could be shown that patients suffering from eating disorders (both anorexia nervosa

and bulimia nervosa) show altered binding characteristics for the platelet 5-HT2A receptor.

Certain binding characteristics were elevated, indicating an enhanced receptor binding in

anorexia and bulimia nervosa. This indicates that the 5-HT2A receptor is in some way

related to body weight and body weight regulation (Spigset, Andersen, Hägg, & Mjöndal,

1999).

Brain imaging studies using serotonin ligands offer the potential for understanding pre-

viously inaccessible brain serotonin neurotransmitter function. Results showed reduced

5-HT2A receptor activity in cortical regions for subjects that are ill with, or have recovered

from, anorexia nervosa (Kaye et al., 2005).

Another hint that the serotonin regulation is an important factor in the development of
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anorexia nervosa is the fact that it is known to modulate several hormones which have been

reported to be dysfunctional in anorexic patients. These include corticotropin releasing

hormone (CRH) and related hormones, gonadotropins, arginine vasopressin (AVP) and

prolactin (PRL) (Brewerton & Jimerson, 1996).

Symptoms of Anorexia Nervosa

Serotonin regulation is also involved with a number of symptoms and comorbidities typical

for anorexia nervosa.

Eating disorders have a considerable relation to affective disorders, particularly depres-

sion, which also involve a reduction in serotonin function. Anorexic patients also have

high frequencies of depressed mood and lifetime histories of major depressive disorders.

It is possible that the impaired synaptic transmission in serotonin pathways may be a

shared cause for both eating disorders and depression (Jimerson, Lesemb, Kaye, Heggd, &

Brewerton, 1990).

Anxiety is another symptom commonly reported by eating disordered patients. They

also show high frequencies of obsessional symptoms and higher rates of obsessive–com-

pulsive disorder (OCD) and other anxiety disorders than would be expected from normal

controls. Serotonin plays an important role in the modulation of anxiety. Both animal

and human studies suggest that anxiety is generally increased with enhanced serotonin

function. An exception to this is the 5-HT1A receptor, as it seems to have an anxiolytic

effect. The stimulation of this receptor also leads to the induction of feeding in animals,

as was noted in section 3.2, which could link eating with anxiety reduction (Brewerton,

1995).

Another important trait that is typical of anorexic patients (and that is linked to anxiety)

is harm avoidance. Subjects suffering from anorexia nervosa typically show high scores for

this personality trait (Brewerton, Hand, & Bishop Jr., 1993), and harm avoidance is linked

to the serotonin system: high scores on the harm avoidance dimension are related to an

increased serotonergic activity (Hansenne & Ansseau, 1999; Melke et al., 2003).

Eating disordered patients commonly have a distorted view of their actual body shape

(Kaye et al., 1998). They perceive themselves as chubby even when at the brink of

starvation. Interestingly, psychedelic drugs such as lysergic acid diethylamide (LSD) –

which structurally resembles the serotonin neurotransmitter – are known to produce mood-

congruent alterations in the perception of self and body, including changes in body size.
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Serotonin receptor dysfunction could therefore be involved in changes in body image and

self perception in anorexia nervosa patients (Brewerton, 1995).

It should also be noted that the serotonin antagonist cyproheptadine decreased the “fear

of becoming fat” in anorexic patients compared to a placebo group in a study by Goldberg

et al. (1980).

It is a known fact that the majority of patients with anorexia nervosa are female. This

asymmetry is often explained by social or perhaps hormonal factors. Another possible

explanation could be differences in central serotonin regulation between the sexes. This

issue has first been addressed in studies on rats, where female rats showed higher brain

serotonin and 5-HIAA levels, a greater response to certain serotonin agonists, and a higher

activity of tryptophan hydroxylase. Moreover, the serotonin system of female rats appears

to be less adaptive to stress than that of male rats (Brewerton, 1995).

Some of these differences also have been found in humans. Like in the animal studies, fe-

male subjects show higher levels of 5-HIAA in the cerebrospinal fluid (CSF) and also higher

responses (increase in serum prolactin level) to injection of L-tryptophan in comparison

to male subjects (Heninger, Charney, & Sternberg, 1984). In addition, these prolactin re-

sponses to injection of L-tryptophan are markedly increased after three weeks of dieting in

women, but not in men – a finding that suggests that dieting alters the serotonin function

more in women than in men (Goodwin, Fairburn, & Cowen, 1987).

Medication Studies

The role of serotonin regulation in relation to anorexia nervosa can also be investigated

with the help of medication studies. The reaction of individuals suffering from anorexia

nervosa and the respective reaction of controls to serotonin agonists and antagonists can

give insight into the function of serotonin in the disorder.

In contrast to bulimia nervosa, the role of medical treatment in anorexia nervosa is quite

limited, especially in low-weight patients (Kaye et al., 2005).

Although selective serotonin reuptake inhibitors (SSRIs) seemed to be quite promising

for the treatment of eating disorders, no consistent effect of weight gain could be shown

(Ramoz et al., 2007).

The serotonin agonist cyproheptadine increases the rate of weight gain in anorexic pa-

tients, but the effect is only marginal (Halmi, Eckert, LaDu, & Cohen, 1986).

Given the high rate of relapse for eating disorders, it is only reasonable that a considerable

number of studies focuses on this topic. It has been found in a double-blind, placebo-
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controlled study that the SSRI fluoxetine, when given after weight restoration, significantly

reduces the rate of relapse in anorexia nervosa patients and also facilitates weight gain.

The fact that selective serotonin reuptake inhibitors are not effective in malnourished

and underweight anorexia nervosa patients might be explained by the reduced availability

of tryptophan, a precursor of serotonin that is gathered from diet. SSRIs are dependent

on neuronal release of serotonin, because they only impair the reuptake of the released

neurotransmitter. Malnourished patients with anorexia nervosa show reduced 5-HIAA in

cerebrospinal fluid, which suggests reduced synaptic serotonin availability.

As weight restoration normalizes nutrition, 5-HIAA concentration becomes elevated in

anorexic patients. These changes in nutrition and serotonin activity could be the underlying

cause for patients responding to fluoxetine after weight gain (Kaye et al., 1998).

Polymorphisms in the Serotonin System

There are various polymorphisms in the serotonergic system. For some of them, the re-

search of their importance for eating disorders has only begun very recently. As this is

not the main topic of this paper, this section does not attempt to give a comprehensive or

exhaustive review of ongoing research in this area. Instead, only a few examples of genetic

studies shall be given as an introduction to the field of research that this study is embedded

in.

Genetic polymorphisms that have been studied in relation to anorexia nervosa are

(amongst others) the following (Klump & Gobrogge, 2005):

� The Pro-279-Leu polymorphism 5-HT7 receptor gene,

� the Phe-124-Cys polymorphism in the 5-HT1Dβ receptor gene,

� various other polymorphisms in the 5-HT1D receptor gene,

� the Cys-23-Ser polymorphism in the 5-HT2C receptor gene,

� the serotonin transporter (5-HTT) gene linked polymorphism (5-HTTLPR; long and

short alleles),

� the 1095 T/C polymorphism in the tryptophan hydroxylase (TPH) gene,

� the –1438 G/A polymorphism in the promoter region of the 5-HT2A receptor gene.
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Most of the studies conducted to research the influence of these genes in their role related

to anorexia nervosa reported negative findings. No associations between allele frequency

and anorexia nervosa have been found for the 5-HT7, 5-HT1Dβ, 5-HTT, or the TPH gene.

It bears noting that there are different ways to assess the influence of genetic polymor-

phisms on psychiatric (or other) disorders. The association studies mentioned here are

only one possibility. Other possibilities, such as gene–environment interaction studies (G

× E studies), are explained in section 2.4.

For the 5-HT2C receptor gene, initial studies draw a more promising picture. Two of

four studies have found an increased frequency of the ser23 allele for individuals suffering

from anorexia nervosa in relation to controls. That could suggest an influence of this

polymorphism in the development of this disorder (Klump & Gobrogge, 2005).

The most promising results for genes in the serotonin system have been found for the

5-HT2A receptor gene. These will be outlined in section 3.4.2, after a short introduction

to the genetics of the 5-HT2A receptor.

3.4. The 5-HT2A Gene and Anorexia Nervosa

3.4.1. The 5-HT2A Gene and its Polymorphisms

The 5-HT2A Gene

The 5-hydroxytryptamine type 2A receptor gene (HTR2A) was one of the first human

serotonin receptor genes to be cloned. It is located on the long arm of chromosome 13,

in the bands 14 to 21 (locus 13q14–21). The gene location is depicted in figure 3.3. The

gene includes three exons and two introns, spanning 20 kilobases (kb) (Parsons, D’Souza,

Arranz, Kerwin, & Makoff, 2004).

Figure 3.3.: Chromosome 13. (Source: http://www.genecards.org/cgi-bin/carddisp.pl?id=5293&id type=-
hgnc&search=5293).

Polymorphisms in the 5-HT2A Gene

There are six polymorphisms related to the 5-HT2A gene that have been targets of research

to present (Jönsson et al., 2001):
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� Thr-25-Asn polymorphism (amino acid substitution)

� His-452-Tyr polymorphism (amino acid substitution)

� Ala-447-Val polymorphism (amino acid substitution)

� 102 T/C polymorphism (nucleotide exchange)

� 516 C/T polymorphism (nucleotide exchange)

� –1438 G/A polymorphism (nucleotide exchange)

The three amino acid substitutions, Thr-25-Asn, His-452-Tyr, and Ala-447-Val, have not

yielded any significant results in the field of eating disorders, nor have the two nucleotide

exchange polymorphisms, 102 T/C and 516 C/T. The latter two polymorphisms are so-

called silent mutations, which do not lead to an alteration of the amino acid sequence in

protein synthesis (Hinney et al., 2000).

In contrast to these polymorphisms, the –1438 G/A polymorphism is not a mutation

of the 5-HT2A gene itself – it is located in the promoter region of that gene. Numerous

studies have been performed to evaluate the role of this polymorphism in eating disorders

and other mental diseases. Important results will be depicted in section 3.4.2.

The 5-HT2A –1438 G/A Polymorphism

Detection of the –1438 G/A polymorphism was first published by Spurlock et al. (1998).

They screened the promoter region of the 5-HT2A gene and detected an A to G polymor-

phism at base position –1438. The base adenine was substituted by the base guanine. They

also found that this newly detected polymorphism was in complete linkage disequilibrium

with the 102 T/C polymorphism. All subjects in the study with the –1438 A allele were

found to have the 102 T allele, while those with the –1438 G allele were found to have the

102 C allele.

Functionality of the 5-HT2A –1438 G/A Polymorphism

The initial study of Spurlock et al. (1998) did not find any significant differences in basal

activity or promoter activity of the –1438 A and G alleles. The polymorphism does not

alter the expression or structure of the 5-HT2A receptor protein.

Nacmias et al. (1999) first suggested that the polymorphism might modify the tran-

scription of the gene. Parsons et al. (2004) investigated the functionality of the –1438

G/A polymorphism in greater detail. They found that promoter activity was significantly
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higher in the presence of the –1438 A allele when a specific enhancer (SV40) was present.

They concluded that the –1438 G/A polymorphism does enhance promoter activity, under

certain conditions.

To date, this issue is still in discussion and could not be clarified satisfactorily.

3.4.2. The 5-HT2A –1438 G/A Polymorphism in Eating Behavior and

Anorexia Nervosa

In the following, the results of different studies concerning the 5-HT2A –1438 G/A poly-

morphism in relation to eating behavior and anorexia nervosa will be reported. It must

always be kept in mind that in complex diseases like anorexia nervosa, a single mutation

or polymorphism can only confer a small effect to predisposition to the disease. The risk

of individuals carrying a specific allele will only be slightly elevated (Hinney et al., 2000).

The 5-HT2A –1438 G/A Polymorphism in Eating Behavior in General

The –1438 A allele is related to food and energy intake. This has been shown in a study of

overweight adults, were the A allele was associated with lower energy intake. This was due

to the lower intakes of all main nutrients. The effects of the A allele were not related to

differences in body mass index or biological variables, and it is important to mention that

the 5-HT2A –1438 G/A polymorphism is not associated with obesity (Aubert, Betoulle,

Herbeth, Siest, & Fumeron, 2000).

These results have also been found in children and adolescents that were not overweight.

The –1438 A allele was significantly associated with lower energy intake. This was mainly

due to lower ingestion of total, monounsaturated, and saturated fat (both measured in g/d

and as percentage of daily energy levels) (Herbeth et al., 2005).

The 5-HT2A –1438 G/A Polymorphism in Anorexia Nervosa

The first study to report an association of the 5-HT2A –1438 G/A polymorphism and

anorexia nervosa was performed by Collier et al. (1997). They performed a study on 81

affected patients of British origin and 226 healthy white controls and found an increased

frequency of the –1438 A allele in anorexic patients. They also reported a significantly

increased frequency of the AA genotype and concluded that the 5-HT2A gene might be

a susceptibility factor for anorexia nervosa. The reported frequencies in anorexia nervosa

patients were 0.51 for the –1438 A allele and 0.31 for the AA genotype (controls: 0.41,

0.15).

Two subsequent studies (Hinney, Ziegler, Nothen, Remschmidt, & Hebebrand, 1997;
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Campbell, Sundaramurthy, Markham, & Pieri, 1998) failed to replicate this association.

It has to be noted that the first of these two studies did not use a control group, and the

study by Campbell et al. observed a very high frequency of the AA genotype in the control

group.

Sorbi et al. (1998) performed another study, this time replicating the results of the

initial study. They used a sample of 77 patients with anorexia nervosa and 107 controls,

both of Italian origin. They found an elevated frequency of the –1438 A allele and the

AA genotype in anorexia nervosa patients, the reported frequencies being 0.565 for the A

allele and 0.299 for the AA genotype. In their study, they also analyzed the association of

the –1438 G/A polymorphism with different subgroups of anorexia nervosa patients. They

found that both A allele frequency and AA genotype frequency were increased in particular

in subjects with anorexia nervosa of the restricting subtype (A allele frequency 0.662, AA

genotype frequency 0.419) and suggested that restricting and purging subtypes of anorexia

nervosa have different involvement of the 5-HT2A –1438 G/A polymorphism.

More studies were performed, some supporting an association of the –1438 G/A poly-

morphism with anorexia nervosa, others not supporting it. A meta-analysis of nine studies

(four in favor of the association, five not supporting this hypothesis) found a significantly

increased frequency of the –1438 A allele in patients with anorexia nervosa (reported A

allele frequency 0.468 in patients, 0.436 in controls; AA genotype frequency not reported).

All of the studies mentioned above were included in the meta-analysis, and it was stated

that the inter-study heterogeneity was high. Also, the study reported a large variation of

the –1438 A allele frequency in controls (0.36 to 0.54) and admitted that the diversity of

inclusion criteria and the differences in clinical characteristics of the samples (comorbidity,

age of onset, . . . ) could contaminate the impact of the 5-HT2A –1438 G/A polymorphism

(Gorwood et al., 2003). Furthermore, this study only investigated the association of the

–1438 G/A polymorphism with the whole anorexia nervosa group, not distinguishing be-

tween restricting and purging subtype.

One of the studies (Kipman et al., 2002) included in this meta-analysis also investigated

the transmission of the –1438 A allele from parents to their offspring (via transmission dis-

equilibrium test). In a sample of French origin, they did not find an excess of transmission

of the A allele, nor did they find any association of the A allele with anorexia nervosa.

Furthermore, the allele frequencies between the restricting and purging subtype did not

significantly differ from each other. The study also did not succeed in finding an association

of the A allele with lifetime severity of anorexia nervosa (assessed by worst lifetime Body

Mass Index).

However, the results of the study indicated a relation of the A allele to a later age of onset.
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Patients with the A allele had an older age of onset (mean = 15.28) than patients without

this allele (mean = 14.01). Although this association was rather weak, the conclusion of

the study was that the 5-HT2A –1438 A allele might act as a modifying rather than global

susceptibility factor, delaying the onset rather than properly increasing the risk for the

disorder.

A study by Gorwood et al. (2002) also used the transmission disequilibrium test in

a relatively big sample of 316 trios collected in six European centers. As mentioned in

section 2.4.6, this method is not vulnerable to report false positive findings that result

from stratification bias. Like the study by Kipman et al. (2002) (that used the same

test), no association of the –1438 A allele or AA genotype could be found in this sample.

Furthermore, no differences in age of onset and minimum adult body mass index were

found in post hoc analyses when comparing patients with an A allele to patients that are

homozygous for the G allele.

In more recent studies, the association could be replicated at least in part. Ricca et al.

(2004) performed a study on a sample of 148 eating disordered patients (anorexia nervosa

and bulimia nervosa) and 89 controls recruited in Italy. They found that patients with

some kind of eating disorder had higher frequencies of both A allele and AA genotype

(A allele frequency in total eating disorder sample 0.524, AA genotype frequency in this

group 0.216; controls: 0.358, 0.101). The study also reported significant differences in the

frequency of the –1438 A allele and the AA genotype for the anorexia nervosa restricting

subgroup in comparison to controls, A allele frequency being 0.554, AA genotype frequency

0.297. No significant differences were found when the anorexia nervosa purging subgroup

was compared to controls.

Rybakowski et al. (2006) analyzed the association of the 5-HT2A –1438 G/A polymor-

phism with anorexia nervosa in a Polish sample of 132 female adolescent patients suffering

from anorexia nervosa and 93 healthy controls. They could not find a significant effect,

but they reported a statistical trend towards the association of the A allele with anorexia

nervosa. The A allele frequency in this sample was 0.649, the AA genotype frequency 0.42

in anorexia nervosa patients, 0.567 and 0.292 in healthy controls. The A allele and AA

genotype frequencies in the restricting subgroup were slightly higher (A allele 0.661, AA

genotype 0.448), but no separate statistical test was performed to assess the significance

of these frequencies in comparison to the control subjects.
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The 5-HT2A –1438 G/A Polymorphism in Comorbidities and Traits related to

Anorexia Nervosa

A different and less restrictive approach of investigating the possible relation of the 5-HT2A

–1438 G/A polymorphism to anorexia nervosa is to take a look at personality traits and

comorbidities involved in this disorder. Since certain traits or comorbidities are quite fre-

quent, it can be assumed that the susceptibility genes do not convey a higher susceptibility

to anorexia nervosa in particular, but rather that they are responsible for certain character

attributes which might be risk factors for disorders that share some of their features.

This was first stated in a study by Enoch et al. (1998). They adduced that anorexia

nervosa and obsessive–compulsive disorder are heritable and often comorbid disorders that

share several personality traits, including harm avoidance, perfectionism, and obsessional-

ity. The study replicated the association of the 5-HT2A –1438 A allele and AA genotype

with anorexia nervosa and extended it to obsessive compulsive disorder, which was (only)

associated with a higher frequency of the A allele, not the AA genotype in this study. As a

conclusion the study suggests the possibility that the 5-HT2A –1438 G/A promoter poly-

morphism may contribute to a behavioral trait that is common to both anorexia nervosa

and obsessive–compulsive disorder, like one of the traits mentioned above.

This was replicated in a study by Walitza et al. (2002), who not only found an increased

frequency of the –1438 A allele in patients suffering from obsessive–compulsive disorder, but

also an elevated AA genotype frequency. They also adduced traits that frequently occur in

both anorexia nervosa and obsessive–compulsive disorder as a possible explanation for the

association of the –1438 G/A polymorphism with the two disorders, explicitly mentioning

behavioral inhibition, high harm avoidance and obsessive concerns with exactness and

perfectionism.

A study by Ricca et al. (2004) investigated eating disorder pathology by the means of a

standardized interview, the Eating Disorder Examination (EDE). Results showed that the

pathology differed for the three genotypes (AA, AG, and GG). Subjects with the –1438

AA genotype showed higher weight concern (EDE 3 subscale) compared to subjects with

GA and GG genotype, and they showed higher shape concern (EDE 4 subscale) compared

to subjects with GG genotype. The overall severity of eating disorder psychopathology

(EDE total score) was also found to be higher in subjects with AA genotype compared to

subjects with the GG genotype. These results were independent of the diagnostic group

(anorexia nervosa restricting and purging type, and bulimia nervosa).

Personality traits related to anorexia nervosa were assessed directly in a study by Rybakowski
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et al. (2006). This study found that the –1438 AA genotype is associated with lower re-

ward dependence (compared to the GG genotype). It is stated that subjects who score

low in this dimension are characterized as emotionally withdrawn, socially aloof and not

sentimental, and previous research has shown that low reward dependence is characteristic

of restrictive-type anorexia nervosa subjects.

The study also found the –1438 AG genotype to be associated with higher harm avoidance

(compared to the AA genotype).

The findings presented in this chapter indicate a possible role of the 5-HT2A receptor and

the –1438 G/A polymorphism in anorexia nervosa, although the results of the studies are

somewhat conflicting. It has to be noted that, at present, there are no gene–environment

interaction studies for the 5-HT2A gene or the –1438 G/A polymorphism and anorexia

nervosa.
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This chapter will outline the instruments for data acquisition and for statistical analysis.

Furthermore, the genotyping procedure will be delineated.

4.1. Study Design

A case–control design was used (matched 1–1 study) in this study, comparing sister pairs

that are discordant for anorexia nervosa – the anorexia nervosa patient being the case, her

sister serving as the control.

4.2. Assessment of Risk Factors and other Variables

The environmental risk factors were assessed with the Oxford Risk Factor Interview for

Eating Disorders (ORFI). It was developed and first used by Fairburn, Welch, Doll, Davies,

and O’Connor (1997).

The Oxford Risk Factor Interview for Eating Disorders is a semi-structured investigator-

based interview designed to examine the specific risk factors associated with an eating

disorder. It consists of 37 items. The items are coded dichotomously by the investigator –

they can either be considered a risk factor (1) or not (0). The questions can be classified

in five environmental risk domains:

1. Parental problems: This subscale includes low parental contact, separation from par-

ents, arguments with parents, parental criticism, parental high expectations, parental

overinvolvement or underinvolvement, parental minimal affection, parental control,

family conflict avoidance, and family social situation.

2. Disruptive events: This domain includes parental death, death of a sibling or another

close person, parental divorce, parental chronic illness, frequent house moves, critical

life events in the year before onset, sexual and physical abuse.

3. Parental psychiatric disorder: This part of the interview asks for distress by parental

mood disorder, parental anxiety disorder, and parental substance-related disorder
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(all before the onset of the eating disorder).

4. Interpersonal problems: This subscale includes questions about teasing (not related

to shape, weight, eating, or appearance), bullying, not having close friends, not having

male friends, missing preparations for menarche, and teasing about breast or breast

development.

5. Family dieting environment: This domain covers dieting with a family member be-

fore onset of anorexia nervosa, repeated critical comments about shape, weight, or

eating (by family or others), parental eating disorder or obesity, family fitness in-

fluences, teasing about shape, weight, or appearance, and eating disorder among

acquaintances.

The interview starts with establishing a time line with index age (the age of onset of the

eating disorder). This ensures that the variable of interest preceded the outcome (Kazdin,

Kraemer, Kessler, Kupfer, & Offord, 1997).

It has to be noted that for this study, it has not been assessed whether these risk factors

were present in the environment of the interrogated subject. Rather, the questions were

phrased such that the subjective distress caused by a certain environmental factor was

recorded (e.g. “Were you distressed by low parental contact?”). The interviewer judged

whether the event or circumstance in question was distressing for the patient. This ensured

that it was not the presence of a risk factor that was assessed, but rather the subjective

distress that that risk factor caused. (This is especially important because the study

consisted of sib-pairs. It is, of course, highly probable that the present risk factors for the

siblings are almost identical. The subjective impact of these risk factors, on the other hand,

can be different for the two siblings.)

In addition to the environmental risk factors described above, the following variables

were recorded:

� age of patient and control

� age of onset

� life-time diagnosis (either anorexia nervosa restricting subtype or binge-eating/purging

subtype)

� Body Mass Index (current, lowest and highest)

� current employment status
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� highest education level and age (at the time of birth of patient) of mother and father

� age and sex of siblings

4.3. Genotyping

Blood samples and cheek cell swabs were collected from patients and their sisters. The

genomic DNA was prepared according to procedures described by Freeman et al. (1997).

The sequence of the forward primer Pro2F is 59-CTA GCC ACC CTG AGC CTA TG-

39; the sequence of the reverse primer Pro2R is 59-TTG TGC AGA TTC CCA TTA

AGG-39. The polymerase chain reaction (PCR) program consisted of 30 cycles of 95°C

for 30 seconds, 59°C for 30 seconds, and 72°C for 30 seconds. The resulting PCR product

was then digested with MspI restriction endonuclease. After digestion, the products were

separated on agarose gel by electrophoresis. An A at position –1438 leads to an uncut

fragment of 200 base pairs (bp), a G at position –1438 leads to two fragments of length

121 bp and 79 bp (Masellis et al., 1998).

4.4. Statistical Analysis

For statistical analysis, regression models have been used. Conditional Regression has

become a standard method to predict dichotomous outcomes (like disease status: anorexia

nervosa vs. no eating disorder). As this study uses a matched sample, the method of choice

is conditional logistic regression.

To facilitate the understanding of the model, this part starts with an explanation of

the standard logistic regression analysis, followed by a closer look at conditional logistic

regression model in section 4.4.3.

As an alternative, a data-mining algorithm was applied. This method, the odds ratio

multifactor dimensionality reduction, was designed to identify interactions that predict a

dichotomous outcome. It is described in section 4.4.4.

Multiple linear regression models are also used in the analysis. They serve to identify

genetic and environmental effects on continuous outcome variables (like body mass index

and age of onset). Since this method is relatively well known, it will not be described here.

4.4.1. Logistic Regression

To start with, the method will be outlined with only a single independent variable. Sub-

sequently, the model of the multiple logistic regression will be explained.
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The Logistic Regression Model

It is the intent of the logistic regression model to explain a single dichotomous outcome

variable y dependent on a single independent variable x. In this context, the independent

variable is called the predictor.

The logistic model is defined by

π(x) =
eβ0+β1x

1 + eβ0+β1x
(4.1)

with

π(x) being the expected value of the outcome at x, in mathematical terms E(Y |x)

β0 being the intercept of the model and

β1 being the slope parameter of predictor x.

The application of the so-called logit-transformation results in

g(x) = ln
(

π(x)
1− π(x)

)
= β0 + β1x (4.2)

which is called the logit. It has several desirable properties of the linear regression model.

The logit g(x) is linear in its parameters, it can be continuous and can have a range from

−∞ to +∞.

However, there are differences to the linear regression model. In the logistic regression

model, an observation of the outcome variable may be expressed as

y = E(Y |x) + ε

or

y = π(x) + ε

with

ε being the error (the observation’s deviation from the conditional mean).

Opposed to the linear regression model, ε is not normally distributed, because it can

only assume two possible values. For y = 1, the error results to ε = 1 − π(x), for y = 0

it is ε = −π(x). So the distribution of ε is a binomial distribution with the variance of

π(x)(1− π(x)).
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Maximum Likelihood Estimation of Coefficients

In the linear regression model, the method of least squares is often used for estimating the

unknown parameters of the model. The values for β0 and β1 are chosen so that the sum

of squared deviations of the observed values of Y from the predicted values is a minimum.

For the linear model, those estimates have several desirable properties. This is not

the case in the logistic model. For this reason, the more general method of maximum

likelihood is chosen. To apply this method, a likelihood function has to be constructed.

This function expresses the probability of the observed data as a function of the unknown

model parameters (Hosmer & Lemeshow, 2000). The intention of the maximum likelihood

method is to find those model parameters that maximize the likelihood. The result is a set

of parameters that ensure that the model describes the observed data most closely.

If the outcome variable Y is coded as 0 or 1, the expression for π(x) in equation (4.1)

yields the conditional probability that Y is equal to 1, given x and an arbitrary value of

β = (β0, β1). This will be denoted as P (Y = 1|x). As a consequence, the expression

1− π(x) gives the conditional probability that Y equals 0 given x, P (y = 0|x).

The contribution to the likelihood function for the pair (xi, yi) can be expressed as

π(xi)yi (1− π(xi))
1−yi . (4.3)

The observations of the i subjects are assumed to be independent, so the likelihood

function for the whole dataset is the product of the likelihoods of all subjects (i = 1 . . . n),

l(β) =
n∏
i=1

π(xi)yi (1− π(xi))
1−yi (4.4)

with

β as the vector of parameters, (β0, β1).

We now need to find those values of β that maximize the value of the likelihood function

in (4.4). This is accomplished by differentiating the equation with respect to the unknown

parameters, β0 and β1. As this is mathematically complex for a term consisting of products,

we work with the logarithm of equation (4.4). This is called the log likelihood :

L(β) = ln l(β) =
n∑
i=1

(yi ln(π(xi)) + (1− yi) ln (1− π(xi))) (4.5)

After differentiation of (4.5) with respect to β0 and β1, we set the resulting equations to

zero to obtain the values of β0 and β1 that yield the greatest likelihood. Those equations

are called the likelihood equations:
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∑
(yi − π(xi)) = 0 (4.6)

and

∑
xi (yi − π(xi)) = 0 . (4.7)

These equations have to be solved by means of iterative methods, since their solutions

are nonlinear in β0 and β1.

The resulting values of equations (4.6) and (4.7) are the maximum likelihood estimates,

denoted as β̂.

4.4.2. Multiple Logistic Regression

The Multiple Logistic Regression Model

In the case of more than one predictor, x is a vector with p elements, one element per

predictor. The conditional probability of the outcome is P (Y = 1|x = π(x)).

The logit of the multiple regression model is therefore

g(x) = β0 + β1x1 + β2x2 + β3x3 + · · ·+ βpxp (4.8)

and the regression model itself is defined by

π(x) =
eg(x)

1 + eg(x)
. (4.9)

Equation (4.9) is the model specification for continuous independent variables. If the

model includes predictors on an ordinal scale, dummy variables have to be used. For a

predictor xj with kj levels, kj − 1 dummy variables are required. They are denoted as Djl

with l = 1 . . . kj − 1 (Hosmer & Lemeshow, 2000).

The logit for p predictors, with the jth being discrete (ordinal), would be written as

g(x) = β0 + β1x1 + · · ·+
kj−1∑
l=1

βjlDjl + · · ·+ βpxp . (4.10)

In the following section, the summation and double subscripting for design variables will

be omitted when possible to improve readability.
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Maximum Likelihood Estimation

For the estimation of the parameters of the model, we have a sample of n independent

observations (xi, yi) with i = 1 . . . n. By means of the maximum likelihood method, the

unknown coefficient vector β′ = (β0, β1, . . . , βp) should be estimated. The likelihood equa-

tion is the same as for the univariate logistic regression model

l(β) =
n∏
i=1

π(xi)yi (1− π(xi))
1−yi (4.11)

with π(x) defined as in equation (4.9). Analogous to the univariate model, the logarithm

of the likelihood function will be differentiated with respect to the p+1 coefficients, resulting

in p+ 1 likelihood equations:

∑
(yi − π(xi)) = 0

and

∑
xi (yi − π(xi)) = 0

for j = 1 . . . p. These equations have to be solved iteratively, usually using special

software. The solution of these equations are the estimated coefficients β̂.

4.4.3. Conditional Logistic Regression

The use of the logistic regression model is not limited to simple random samples. It can

also be used in cohort studies and in case-control studies, when the likelihood function is

adjusted accordingly.

Case-Control Studies

Case-control studies are studies where the sampling is performed conditional on the out-

come variable. In fact, two samples are drawn; one out of a population of cases, the other

out of a population of controls.

By means of a logistic regression model, adjusted odds-ratios can be obtained from the

estimated slope coefficients. The fact that the odds ratio is invariant under different study

designs (cohort or case-control) has first been noted by Cornfield (1951). The mathematical

base for this was demonstrated later, by Farewell (1979) and Prentice and Pyke (1979).

Unlike in conventional logistic regression, the binary outcome variable in case-control

studies is fixed by stratification. All the cases have outcome y = 1, while all the controls
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have outcome y = 0. The dependent variables in this case are the covariates x. So the aim

of the logistic regression is not to model the probability of the outcome, but to model the

probability of the covariates x given a predefined outcome. The likelihood function is the

product of the stratum-specific likelihood functions, which depend on

� the probability that the subject was selected for the sample, and

� the probability distribution of the covariates (Hosmer & Lemeshow, 2000).

In order to construct the likelihood function, we introduce a variable that specifies

whether a subject of the population was selected for the sample (s = 1) or not (s = 0).

The full likelihood for a sample of n1 cases (outcome y = 1) and n0 controls (outcome

y = 0) is

n1∏
i=1

P (xi|yi = 1, si = 1)
n0∏
i=1

P (xi|yi = 0, si = 1) . (4.12)

The key in developing a likelihood function for case-control studies is the application of

Bayes theorem. For an individual term in the likelihood function shown in equation (4.12),

the application of the theorem results in

P (x|y, s = 1) =
P (y|x, s = 1)P (x|s = 1)

P (y|s = 1)
. (4.13)

Bayes theorem is then used on the first term in the numerator in equation (4.13), which

yields for y = 1

P (y = 1|x, s = 1) =
P (y = 1|x)P (s = 1|x, y = 1)

P (y = 0|x)P (s = 1|x, y = 0) + P (y = 1|x)P (s = 1|x, y = 1)
.

(4.14)

An important assumption is that the selection of cases and controls is independent of

the covariate values. Let τ1 be the probability for a case to be selected for the sample and

τ0 the probability of selection of the control:

τ1 = P (s = 1|y = 1,x) = P (s = 1|y = 1)

τ0 = P (s = 1|y = 0,x) = P (s = 1|y = 0)

These probabilities, and also the logistic regression model, π(x), are now substituted

into equation (4.14), leading to
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P (y = 1|x, s = 1) =
τ1π(x)

τ0(1− π(x)) + τ1π(x)
. (4.15)

If both the numerator and denominator of the expression on the right side of equation

(4.15) are divided by τ0(1 − π(x)), the result is a logistic regression model with intercept

β∗0 = ln(τ1/τ0) + β0.

To simplify notation we introduce

π∗(x) = P (y = 1|x, s = 1) =
τ1π(x)

τ0(1− π(x)) + τ1π(x)
.

Because of the assumption that sampling is carried out independent of covariate values,

it results that P (x|s = 1) = P (x), with P (x) denoting the probability distribution of the

covariates (Hosmer & Lemeshow, 2000). The general term in the likelihood of equation

(4.13) then becomes, for y = 1

P (x|y = 1, s = 1) =
π∗(x)P (x)

P (y = 1|s = 1)
(4.16)

and for y = 0

P (x|y = 0, s = 1) =
(1− π∗(x))P (x)
P (y = 0|s = 1)

. (4.17)

We can now express the likelihood for cases and controls with

L∗(β) =
n∏
i=1

π∗(xi)yi(1− π∗(xi))1−yi (4.18)

The likelihood function of the full sample shown in equation (4.12) now becomes

L∗(β) ·
n∏
i=1

(
P (xi)

P (yi|si = 1)

)
. (4.19)

As can easily be seen, the first term in equation (4.19) is the same as for a non-stratified

sample, with the outcome of interest being modeled as the dependent variable. Assuming

that the probability distribution of the covariates x, P (x), does not contain information

about the coefficients in the logistic regression model, maximizing the full likelihood is only

restricted by P (yi = 1|si = 1) = n1/n and P (yi = 0|si = 1) = n0/n. The likelihood equa-

tions obtained by differentiating, with respect to the parameter β∗0 , satisfy this condition.

As a consequence, the analysis of data from case-control studies via logistic regression can

be performed in the same way as for conventional studies.

The maximum likelihood estimators have the same properties as in conventional samples:
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they are asymptotically normally distributed, with their covariance matrix obtained from

the inverse of the information matrix (Hosmer & Lemeshow, 2000).

The Matched Study

The matched study is a special case of a stratified case-control study. Subjects are stratified

on variables that are thought to be associated with the outcome (e. g. sex or age). Within

each stratum, samples of cases (outcome y = 1) and controls (outcome y = 0) are selected.

Generally, it is not necessary for the number of cases and controls within each stratum

to be constant, but a typical design is the 1–m matched study, in which for each case there

are m controls (Hosmer & Lemeshow, 2000).

Another typical design is the 1–1 matched design. Here, the subjects are grouped in

pairs, with one subject being the case and the other being the control. One way to conduct

this stratification is to select pairs of genetically related subjects, with one sibling being

the case (y = 1) and the other being the control (y = 0). In this case, there are only two

subjects per stratum, the case and the control. This design is used in this paper. It is

explained in greater detail in section 4.4.3.

Assuming that we would have n case-control pairs (and therefore n strata) and p covari-

ates, the number of parameters to be estimated by the maximum likelihood method would

be n+ p, consisting of the constant term, p slope coefficients for the covariates and n− 1

coefficients for the stratum-specific design variables. The sample size would be 2n, so the

number of parameters to estimate would increase with the sample size. This would lead to

biased maximum likelihood estimates (Breslow & Day, 1980).

A solution for this problem is to consider the n − 1 stratum-specific parameters as

nuisance parameters that need not be estimated. In this case it is possible to use methods

of conditional inference to create a maximum likelihood function who’s estimators of the

slope coefficients in the logistic regression model are consistent and asymptotically normally

distributed.

The derivation of the conditional likelihood function is illustrated in section 4.4.3.

Stratum-Specific Logistic Regression Model

The stratum-specific logistic regression model for K strata with n1k cases and n0k controls

in stratum k (k = 1 . . .K) is

πk(x) =
eαk+β′x

1 + eαk+β′x
(4.20)

with
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αk as contribution to the logit of all terms constant within the kth stratum (e. g. the

matching or stratification variables) and

β as vector of the p slope coefficients, β′ = (β1, β2, . . . , βp) without an intercept.

The interpretation of the p slope coefficients is the same as in any other logistic regression

model. Each coefficient represents the change in log-odds for a one-unit-increase in the

covariate holding all other covariates constant in every stratum (Hosmer & Lemeshow,

2000).

Conditional Likelihood

For the 1–m matched case study, the conditional likelihood for the kth stratum is dependent

on the total number of subjects in the stratum nk = n1k + n0k and the total number of

cases in the stratum n1k. The question is how many possibilities there are to assign n1k

persons as cases out of the nk subjects in the stratum. The number of possible assignments

ck is given by

ck =
(
nk
n1k

)
=

nk!
n1k!(nk − n1k)!

. (4.21)

To specify the stratum-specific likelihood, the subjects 1 to n1k are the cases (y = 1)

and the subjects n1k + 1 to nk are the controls. The stratum-specific likelihood function

can then be written as

lk(β) =

n1k∏
i=1

P (xi|yi = 1)
nk∏

i=n1k+1
P (xi|yi = 0)

ck∑
j=1

(
n1k∏
ij=1

P (xjij |yij = 1)
nk∏

ij=n1k+1
P (xjij |yij = 0)

) . (4.22)

Here, the index i is used for the observed data, and the index ij is used for the jth

possibility out of the ck assignments.

The full conditional likelihood is given by

l(β) =
K∏
k=1

lk(β) (4.23)

which is the product over the stratum-specific likelihoods. This is legitimate due to their

independence.

Application of Bayes’ theorem to each P (x|y) term in (4.22) yields
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lk(β) =

n1k∏
i=1

eβ
′xi

ck∑
j=1

n1k∏
ij=1

e
β′xjij

. (4.24)

The 1–1 Matched Study

For the 1–1 matched study with only two subjects in each stratum, the stratum-specific

likelihood can be simplified to the expression

lk(β) =
eβ

′x1k

eβ
′x1k + eβ

′x0k
(4.25)

with

x1k as the data vector for the case (y = 1) in the kth stratum/pair and

x0k as the data vector for the controls (y = 0) in the kth stratum/pair.

As described in section 4.4.3, equation (4.25) does not model the probability of the

outcome. It estimates the probability of the covariate values given a certain outcome.

Equation (4.25) describes the likelihood that the subject that is identified as the case is

in fact the case (given specific values of β, x1k and x0k) under the following assumptions

(Hosmer & Lemeshow, 2000):

1. that there are two subjects: one subject as the case, the other subject as the control

and

2. that the logistic regression model in equation (4.20) is the correct model.

To facilitate understanding of this fact, we assume as an example a model with one

dichotomous covariate and a slope parameter β = 0.8. The observed covariate data are

x1k = 1 for the case and x0k = 0 for the control. Equation (4.25) results to a value of

lk(β = 0.8) =
e0.8·1

e0.8·1 + e0.8·0
= 0.690 .

This means that the probability is 0.69 that a subject with covariate value x = 1 is the

case, compared to a subject with the covariate value x = 0.

Otherwise, if the value of the covariate for the case is x1k = 0 and that of the control is

x0k = 1, the result would be

lk(β = 0.8) =
e0.8·0

e0.8·0 + e0.8·1
= 0.310
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So the probability is 0.31 that a subject with x = 0 is the case, compared to a subject

with x = 1.

For the values of the covariates of case and control being identical (x1k = x0k), equation

(4.25) results to lk(β) = 0.5 for any value of β. Therefore, if case and control have the

same values in their covariates, the model considers it equally likely for that subject to

be case or control. Thus, any case-control pair with the same value for any covariate is

uninformative for the estimation of that covariate’s coefficient.

This means that, in practice, an estimator may only be based on a small fraction of the

total number of possible pairs, namely on the discordant pairs. This can be examined by

forming 2×2 tables cross-classifying case vs. control for all dichotomous covariates (Hosmer

& Lemeshow, 2000).

Effects of Ignoring the Matching

Breslow and Day (1980) state that it was common practice in earlier days (when special

software was not easily available) to ignore the matching of the data and perform a stan-

dard, unconditional regression analysis. In most cases, this does not alter the estimates

of the relative risk. However, there are certain circumstances under which the differences

between the matched and unmatched analysis become more severe.

The two conditions under which the matching can be ignored with only slight alterations

of the estimates, according to Breslow and Day (1980), are that the stratification variables

are either

1. conditionally independent of disease status given the risk factors or

2. conditionally independent of the risk factors given disease status.

Nevertheless, in an unmatched analysis with data collected in a matched design, the

results tend to be biased in direction of conservatism.

Other authors, for example Hosmer and Lemeshow (2000), also advise not to ignore the

matching.

Relation of Conditional and Unconditional Logistic Regression

Hosmer and Lemeshow (2000) state that it is also possible to use the method of standard

logistic regression to fit a conditional logistic regression model. To do this, the data has

to be reorganized. A new data vector x∗ has to be computed by subtracting the covariate

values of the control from the covariate values of the case, x∗ = x1k − x0k. The new
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sample size is the number of the case-control pairs (the number of strata in the conditional

analysis).

For the fitted standard logistic regression model, the intercept has to be excluded from

the model specification, and the outcome is set to 1 for all subjects. This yields identical

results as an unconditional logistic regression analysis on the original data.

It has to be noted that not all software packages are able to allow a constant outcome

for all cases.

Model Interpretation

In the linear regression model, the interpretation of the slope coefficients (the estimated β̂)

is relatively straightforward. The slope coefficients represent the change in the dependent

variable when the independent variable changes by one unit (when all other independent

variables are held constant). The mathematical reason for this is that there is no link

function involved (or, expressed more correctly, the link function is the identity function

y = y).

In the logistic regression model, the link function is the logit transformation g(x) =

log
(

π(x)
1−π(x)

)
= β′x. The slope coefficient therefore represents the change in the logit

corresponding to a change of one unit in the independent variable (all other independent

variables held constant). The interpretation depends on placing meaning on the difference

between two logits.

Slope Coefficients and Odds Ratio. A measure to make interpretation easier is the odds

ratio. The odds for the outcome to be present amongst individuals with a covariate value

of x = 1 are defined as relation of the probability of the outcome to be present to the

probability of the outcome not to be present:

π(x = 1)
1− π(x = 1)

(4.26)

Vice versa, the odds for the outcome being present among individuals with the covariate

value x = 0 are defined by:

π(x = 0)
1− π(x = 0)

(4.27)

So the odds ratio (OR) is given by the equation

OR =
π(x=1)

1−π(x=1)

π(x=0)
1−π(x=0)

= exp(β) (4.28)
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An odds ratio expresses how much more likely it is for the outcome to be present among

those with covariate values of x = 1 than among those with x = 0. An odds ratio of two

would mean that the risk for a certain outcome of a subject with covariate x = 1 is twice

as high as the risk of a subject with x = 0 in the study population. An odds ratio lower

than one indicates that a covariate value of x = 1 reduces the risk, while an odds ratio of

one indicates that the covariate does not have an effect. For this reason, 95% confidence

intervalls for the odds ratios are specified.

For dichotomous variables, the odds ratio indicates the change of risk in relation to

the reference category (usually x = 0). In the case of polytomous variables with k > 2

categories, k−1 slope coefficients have to be estimated. The odds ratios of these coefficients

also indicate the change of risk in relation to the reference category (if the proper coding

for the design variables is used).

The adequacy of this interpretation is entirely dependent on the adequacy of the model

assumptions, namely linearity and constant slope. Departure from this makes interpreta-

tion inappropriate.

Interpretation of Interaction. One of these departures is called interaction. The rela-

tionship of independent variable and logit is still linear, but the slopes differ for certain

groups. When interaction is present, the association between risk factor and outcome vari-

able depends in some way on the level of the covariate. The effect of the risk factor cannot

be specified without also specifying the level of the covariate (Hosmer & Lemeshow, 2000).

Assessment of Fit

There are various ways to assess the fit of a (conditional) logistic regression model. The

following is a brief outline of the methods used in this paper.

Likelihood Ratio Test (LR-Test). The likelihood ratio test (LR-Test, LRT) is a statistical

test that can be used to compare the goodness-of-fit of two nested models. It compares a

relatively complex model to a simpler model, and judges which of those models better fits

the particular dataset. The test provides an objective criterion for selecting among possible

models. It approximately follows a χ2 distribution, with the number of parameters (degrees

of freedom, df) being the number of additional parameters in the more complex model.

The test statistic is defined by

LR = −2 · log
L0

L1
= −2 · (logL0 − logL1) (4.29)

with
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L0 being the maximum likelihood of the simple model and

L1 being the maximum likelihood of the more complex model.

In most cases (including this paper), the test compares a particular model with the

null-model that only contains an intercept parameter. In other words, it is a test of the

omnibus null hypothesis that all parameters (all estimated slope coefficients β) are zero

(Huelsenbeck & Crandall, 1997).

Akaike Information Criterion (AIC). The Akaike information criterion (Akaike, 1974)

is a measure of the goodness of fit of an estimated statistical model. It is not a test in

the sense of hypothesis testing, but serves for model selection. Given several competing

models, the one with the lowest AIC is the one fitting the data best. The AIC “punishes”

more complex models because it takes the number of parameters into account. It is defined

by

AIC = −2 · logL+ 2k (4.30)

with

L as the maximum likelihood of the model in question and

k as the number of parameters of the model.

Variance explained (R2). The dependent variable y of the regression model shows a

certain variance. The fraction of variance that is explained by the regression model is

indicated by R2:

R2
SS = 1−

n∑
i=1

(yi − π̂i)2

n∑
i=1

(yi − y)2
(4.31)

with

yi observed value for subject i and

π̂i predicted value of the regression model for subject i.

As the variance explained automatically increases with the number of parameters in the

model, this figure can be adjusted (adjusted R2). This measure of the amount of variance

explained is based on the deviance of the expected values from the observed values – it is

a sum-of-squares measure (therefore the index).
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Another measure of explained variance is based on the model likelihoods. When applied

to linear models, it is identical to the standard multiple R2, but it can also be applied to

generalized linear models like the conditional logistic regression model. It is defined by

R2
L = 1−

(
L0

L1

) 2
n

(4.32)

with

L0 being the maximum likelihood of the null model,

L1 being the maximum likelihood of the model in question, and

n being the number of observations (sample size).

As this measure cannot attain a value of one, the maximum value can be calculated by

R2
L,(max) = 1− L

2
n
0 (4.33)

and the likelihood-based measure can be scaled more adequately (Mittlböck & Schemper,

1996).

Hosmer and Lemeshow (2000) adduce that for logistic regression models, the values for

R2 are generally very low in comparison to linear regression models. Thus, they do not

recommend publishing this figure with results from fitted logistic regression models. But

they also state that it may be useful in the model building stage.

4.4.4. Odds Ratio Multifactor Dimensionality Reduction

Multifactor dimensionality reduction (MDR) is the implementation of a data-mining strat-

egy developed by Ritchie et al. (2001), inspired by the combinatorial-partitioning method

(Nelson, Kardia, Ferrell, & Sing, 2001). The MDR approach is an alternative to logistic

regression that is suited to find high-order interactions in relatively small data sets. It was

designed to find gene–environment (G × E) or gene–gene (G × G) interactions. Logistic

regression is less practical when dealing with high-dimensional data, because in the esti-

mation of coefficients for high-order interactions, the contingency table cells may contain

no or few observations. This leads to large coefficient estimates and high standard errors

(Hosmer & Lemeshow, 2000).

The MDR approach is a data-reduction method for the exploratory analysis of quantita-

tive traits. It pools variables into high-risk and low-risk groups. The predictors are thereby

reduced from n dimensions to one dimension. The method is model free (as no particular

genetic model is assumed) and nonparametric (as no parameters are estimated). It is also

applicable to discordant sib-pair studies (Ritchie et al., 2001).
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The MDR method was first used to detect high-order genetic interaction in sporadic

breast cancer (Ritchie et al., 2001). A freeware program has been developed by Hahn,

Ritchie, and Moore (2003).

The method was later enhanced to include the estimation of odds ratios by Chung,

Lee, Elston, and Park (2007). The method is called odds ratio multifactor dimensionality

reduction (OR MDR).

MDR Algorithm

The MDR algorithm consists of six steps (Coffey et al., 2004) that will be outlined in the

following (see also figure 4.1). It can be used to find interaction patterns of polytomous

predictors (that have two or three categories) when predicting a dichotomous outcome.

1. The procedure starts with the subdivision of the data into 10 equal subsets. The

so-called training set consists of 9/10 of the matched pairs, while the independent

holdout set contains the remaining 1/10 of the pairs. The model is first developed in

the training set, while the holdout set is used for cross-validation.

2. In the second step, a set of n factors is selected. In fact, only the number n of how

many factors will be included in the model is specified.

3. Then, the n factors are represented in n-dimensional space. As an example, two

polymorphisms with three genotypes would each be represented as nine (32) genotype

combinations.

4. In step 4, the ratio of cases to controls is computed in each multifactor cell. Each cell

is labeled as “high-risk” if the ratio of cases to controls exceeds a certain threshold

(e. g. ratio ≥ 1). Otherwise, the cell is labeled as “low-risk”. This reduces the n-

dimensional multifactor classes into a one-dimensional model with two multifactor

classes: high-risk and low-risk.

5. Steps 2–4 are repeated for all other possible n factor combinations. The model that

has the fewest misclassified individuals in the training set is chosen as best n factor

model.

6. This best n factor model is then used to predict the disease status for the remaining

1/10 of the data, the holdout set. All empty cells in either the training or holdout

set are ignored since there is nothing to predict. In this step, the prediction error is

computed. It is the ratio of incorrect predictions in the holdout set.
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Figure 4.1.: MDR algorithm. (Source: Coffey et al., 2004)

This process is repeated for each possible 9:1 split of the data, resulting in a 10-fold cross-

validation. To protect against chance divisions of the data, this 10-fold-cross validation is

repeated 10 times, the data being randomized before each trial.

The reported statistics for the final model are the average prediction error of the 100

estimates and the cross-validation consistency, which is the number of times a particular

set of n factors is identified across the 10-fold cross-validation (ranging from 0 to 10).

As the number n of factors has to be chosen, it is advisable to perform the procedure for

a range of values, which results in one model for each value of n (e. g. one best two-factor

model, one best three-factor model, one best four-factor model).

It can be assessed whether the prediction error is lower than expected by chance. In a

balanced sample, the prediction error expected by chance would be 0.5, as the number of

cases equals the number of controls (Coffey et al., 2004).

The MDR algorithm can be enhanced by the integration of machine learning methods

for classification (Moore et al., 2006).
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Advantages and Disadvantages of the MDR Approach

The primary advantage of the MDR approach is that it facilitates the simultaneous detec-

tion of multiple genetic and environmental loci associated with a discrete clinical endpoint.

This is accomplished by the pooling into high-risk and low-risk groups, reducing the di-

mensionality of the data set to one.

Furthermore, the method is nonparametric. In parametric methods like the generalized

linear model, the number of possible interaction terms grows exponentially with each addi-

tional main effect included in the model. This can result in having too many independent

variables in relation to the number of observed outcome events. Fitting a full model with

all interaction terms and then using backward elimination to derive a more parsimonious

model would not be possible in this case. The MDR method avoids this problem.

A third advantage is that MDR does not assume a specific genetic model – no mode of

inheritance has to be specified. This is especially important for diseases where the mode

of inheritance is unknown and likely very complex.

A disadvantage of the MDR approach is that it can be computationally intensive when

more polymorphisms or environmental risk factors are involved.

In the present implementation, the MDR method is only applicable to case-control stud-

ies that are balanced (that have the same number of cases and controls). This limitation

may be patched by results of future research.

Furthermore, MDR models can be difficult to interpret. There might not be an obvious

trend in the distribution of high-risk and low-risk groupings across the multidimensional

genotype space. The lack of an obvious trend might be a sign of epistasis (the interaction of

multiple genes to produce a certain phenotype; e. g. a disease or mental disorder) (Ritchie

et al., 2001).

Another disadvantage in model interpretation may become evident when MDR is used

in the presence of main effects or known covariates, where it becomes much harder to

disentangle the final model. For example, if an MDR analysis suggests an optimal model

that contains four factors, it is not clear whether this model represents a four-way inter-

action, two separate two-way interactions, or two main effects and a two-way interaction,

etc. (Coffey et al., 2004).

Perhaps the most severe limitation is that the MDR approach is vulnerable to false

positive and negative errors when the ratio of cases to controls in a combination of genotypes

(or environmental factors, or both) is similar to that of the entire data, or when the number

of cases and controls are very small in a combination. If the number of subjects in a cell

is small, the ratio is not robust against small changes in the number of cases or controls
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– small changes in the frequencies can result in a change of the classification of that cell,

thereby altering the resulting model (Chung et al., 2007).

This limitation is remedied with the introduction of estimated odds ratios into the

MDR method, resulting in the odds ratio multifactor dimensionality reduction method

(OR MDR).

OR MDR Algorithm

The odds ratio multifactor dimensionality reduction method (OR MDR) is based on the

MDR method. Developed by Chung et al. (2007), its major advantage is that it allows

estimation of odds ratios as quantitative measure of risk for each combination of genotypes

– the genotype combinations can be ordered from highest to lowest risk. Furthermore,

confidence intervals can be estimated with this method, allowing a comparison of disease

risk between different genotype combinations.

In an OR MDR analysis, the first step is to perform a conventional MDR analysis on the

data. This results in a best model (the combination of genetic and/or environmental factors

that has the lowest prediction error). For this model, the odds ratios for each combination

of genotypes (or environmental factors) are computed as a quantitative measure of disease

risk (Chung et al., 2007).

The whole process is illustrated in figure 4.2, where the MDR analysis is performed in

stage 1 and the odds ratios are computed in stage 2.

To illustrate the estimation of the odds ratios, two polymorphisms (P1, P2) each with

three genotypes are assumed to be selected as the best model by the MDR analysis. The

two polymorphisms and the binary variable distinguishing cases and controls yield a 3×3×2

contingency table for N subjects.

The odds of the disease for a given genotype combination (P1 = i, P2 = j) are

P (Disease|P1 = i, P2 = j)
P (Normal|P1 = i, P2 = j)

=
P (P1 = i, P2 = j|Disease)
P (P1 = i, P2 = j|Normal)

· P (Disease)
P (Normal)

(4.34)

Then, the odds for the genotypes (i, j), θij , is given as follows:

θij =
P (P1 = i, P2 = j|Disease)
P (P1 = i, P2 = j|Normal)

=
P (Disease|P1 = i, P2 = j)
P (Normal|P1 = i, P2 = j)

· P (Normal)
P (Disease)

(4.35)

The right-hand side can be interpreted as the odds of the disease for the genotypes (i,

j) divided by the odds of the disease for all data (disregarding the genotype information).

From the data, θij is estimated as follows:
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Figure 4.2.: OR MDR algorithm. (Source: Chung et al. (2007)

θij =
nij0

n..0
nij1

n..1

(4.36)

with

nij0 as the number of controls with genotypes i and j

nij1 as the number of cases with genotypes i and j

n..0 as the total number of controls

n..1 as the total number of cases

This odds ratio is slightly different from the ordinary odds ratio estimator. If it is equal

to one, the odds of the genotype is equal to the odds of the case for the entire data (the risk

associated with the disease for the given genotype combination is the same as the overall

risk in the whole sample), so there is no association with the disease. Odds ratios greater

than one indicate a positive association, odds ratios of less than one a negative (protective)

association between genotype (or environmental) combination and the disease.

This modified odds ratio ensures that, for a chosen threshold of one, the binary classi-

fication of the OR MDR method is the same as that of the MDR method (Chung et al.,

2007).
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The OR MDR method also provides a measure of accuracy by deriving a cell-specific

confidence interval for θij . This can be used to compare the odds ratios for specific com-

binations of genotypes (or environmental risks).

Two types of confidence intervals are provided by the method. One type is the conven-

tional asymptotic confidence interval for the ratio of two success probabilities derived from

two independent binomial distributions. The other type is a bootstrap confidence interval

that is especially useful when sample sizes are small (Chung et al., 2007).

4.5. Software for Statistical Analysis

All statistical analyses were performed with the software package R, version 2.7.0 (R De-

velopment Core Team, 2008). For the conditional logistic regression analysis, the survival

and MASS packages (Venables & Ripley, 2001) were used. For the MDR and OR MDR

analysis, the ORMDR package was used.

It must be noted that there is another MDR package available in R, namely the Rmdr

package. This package seems to yield incorrect results, as the results were contradictory

to both the freeware program by Hahn et al. (2003) and the ORMDR package.

The code for the analyses is found in the appendix.

79



80



Part II.

Empirical Part

81





5. Formulation of Questions and Hypotheses

This chapter will detail the questions and hypotheses that are investigated in this paper.

5.1. Hardy-Weinberg Equilibrium

The Hardy-Weinberg principle (Hardy, 1908) states that the genotype frequencies in a

population remain constant, or are in equilibrium from generation to generation, unless

there are specific disturbing influences. These disturbing influences include non-random

mating, mutations, selection, limited population size, random genetic drift, and gene flow.

If the Hardy-Weinberg principle applies, the (expected) genotype frequencies can be

calculated as a function of the allele frequencies:

f(AA) = p2

f(AG) = 2pq

f(GG) = q2

with

p being the frequency of the A allele and

q being the frequency of the G allele.

These expected genotype frequencies will be compared to the empirical (observed) geno-

type frequencies in the sample by means of a χ2-test. It is assumed that the empirical

frequencies do not deviate from the expected ones – in other words the genotype frequen-

cies are assumed to be in Hardy-Weinberg equilibrium.

5.2. Association of 5-HT2A –1438 G/A Polymorphism with

Anorexia Nervosa

Although this is not the paper’s main question, it will analyze whether the association of

the –1438 A allele with anorexia nervosa can be replicated in the collected sample. This will
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be done for the whole anorexia nervosa group (both restricting and binge-eating/purging

type) and for the restricting group alone (as this group has been associated with an elevated

frequency of the –1438 a allele, e.g. by Sorbi et al. (1998); Ricca et al. (2004)). The

statistical analysis used for this will once again be the χ2-test. According to some of the

association studies that revealed a significant effect of the 5-HT2A –1438 A allele and AA

genotype (e.g. Collier et al., 1997; Sorbi et al., 1998; Gorwood et al., 2003; Ricca et al.,

2004), the expectation is that both in the whole sample and in the restricting subgroup,

the frequencies of the –1438 A allele and of the AA genotype are higher than in the control

group.

5.3. Gene–Environment Correlation

In order to evaluate possible genetic effects or interactions of environmental and genetic

factors, it is necessary to assess whether the exposure to the environmental risk factors

is associated with the genetic factor. If this is the case, the measure of environmental

exposure is contaminated with genetic variation, compromising the interpretation of the

results (Caspi & Mofftt, 2006). It is assumed that there is no gene–environment correlation.

This is assessed by means of an analysis of variance (ANOVA) and the corresponding effect

size η2.

5.4. Interaction of 5-HT2A –1438 G/A Polymorphism and

Environmental Risk Factors

Research shows that the 5-HT2A –1438 G/A polymorphism might be associated with

anorexia nervosa. Since the results are conflicting, it is assumed that there are inter-

actions of environmental risk factors (assessed via Oxford Risk Factor Interview) and the

5-HT2A –1438 G/A polymorphism. The possible interaction effects will be evaluated using

regression models.

5.4.1. Models 1 and 2: Anorexia Nervosa and Gene–Environment Interaction

In the first model, the predicted variable will be the diagnosis (anorexia nervosa vs. no

eating disorder). A conditional logistic regression model will be used for the analysis. The

predictors in the model are the 5-HT2A –1438 genotype, the total exposure to environmental

risk factors, and their interaction. From this initial model, unnecessary predictors are

excluded in a stepwise backward selection process based on the Akaike information criterion
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– the terms that lower the AIC the most are excluded first, until the model only contains

significant or relevant predictors.

In the second model, the environmental risk factors will be investigated in more detail.

The Oxford Risk Factor Interview distinguishes five environmental risk domains. So the

initial model includes:

� the main effects

– of the 5-HT2A –1438 G/A polymorphism and

– of all five environmental subdomains (ed1: parental problems; ed2: disruptive

events; ed3: parental psychiatric disorder; ed4: interpersonal problems; ed5:

family dieting behavior) and

� the interaction effects of the 5-HT2A –1438 G/A polymorphism with all five environ-

mental subdomains:

– 5-HT2A –1438 G/A Polymorphism × parental problems (ed1)

– 5-HT2A –1438 G/A Polymorphism × disruptive events (ed2)

– 5-HT2A –1438 G/A Polymorphism × parental psychiatric disorder (ed3)

– 5-HT2A –1438 G/A Polymorphism × interpersonal problems (ed4)

– 5-HT2A –1438 G/A Polymorphism × family dieting behavior (ed5)

As in model 1, unnecessary predictors are excluded in a stepwise backward selection

process based on the AIC.

5.4.2. Application of Odds Ratio Multifactor Dimensionality Reduction to

Identify Interactions

In addition to the conditional logistic regression model that evaluates possible interactions

of the 5-HT2A –1438 G/A polymorphism with the five environmental risk domains, a

new (exploratory) method of analysis is employed: odds ratio multifactor dimensionality

reduction (Chung et al., 2007). This method was designed to find gene–environment (and

gene–gene) interactions.

5.4.3. Model 3: Body Mass Index and Gene–Environment Interaction

Research suggests that the possible impact of the 5-HT2A –1438 G/A polymorphism might

not be directly linked to the diagnosis of anorexia nervosa. A possible measure of the

severity of the disorder is the lowest body mass index during the illness (Hebebrand et al.,
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1996). To evaluate a possible genetic influence, a multiple linear regression model will be

used to predict the lowest recorded body mass index in the anorexic subjects (the healthy

controls are not used for the analysis). Studies to present do not reveal a genetic influence

of the 5-HT2A –1438 G/A polymorphism on life-time severity assessed by lowest body mass

index (e.g. Kipman et al., 2002; Gorwood et al., 2002). Therefore, the regression model

not only includes genetic main effects but also interactions with environmental risk factors.

Model 3 includes the main effects of the 5-HT2A –1438 G/A polymorphism and all five

environmental subdomains, as well as all their interactions. Again, a stepwise backward

selection process is performed.

Since the body mass index might be lower for the restricting subgroup, the influence of

the anorexia nervosa subtype is investigated by the introduction of an according covariate

into the resulting model.

5.4.4. Model 4: Age of Onset and Gene–Environment Interaction

Literature states that the 5-HT2A –1438 G/A polymorphism might act as a modifying

factor in anorexia nervosa. The –1438 A allele was found to delay the onset in a study

by Kipman et al. (2002), while one other study did not report any differences in the age

of onset related to the 5-HT2A –1438 G/A polymorphism (Gorwood et al., 2002). The

question whether the effect of the 5-HT2A –1438 G/A polymorphism can be clarified in

this sample, as well as the additional issue of potential interactions with environmental risk

factors, will be answered by means of a multiple linear regression model. As above, the

model (model 4) includes genetic and five environmental main effects and their interactions,

the dependent variable being the age of onset. A stepwise backward selection process will

determine the model with the best fit.

To evaluate a possible influence of the subtype (restricting vs. binge-eating/purging), an

according covariate is added to the model.
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6.1. Description of Sample

6.1.1. Recruitment of Subjects

The study conducted in this paper is a multicenter study. Participants were recruited

in three centers: the King’s College Institute of Psychiatry, Eating Disorder Department

(London), the Hospital Princeps d’Espanya, Department of Psychiatry (Barcelona), and

the University Clinic of of Neuropsychiatry of Childhood and Adolescence, Eating Disorders

Unit (Vienna).

The protocol for the study was approved by the ethic committees of the three centers.

Patients and their sisters gave written informed consent for all procedures before inclusion

in the study.

The data were collected during a period of four years, between 2000 and 2003.

6.1.2. Sample Size

For the study, 128 sister pairs were interviewed and genotyped. The genotyping procedure

could be performed successfully for only 89 sister pairs. Therefore the sample consists of

89 women suffering from anorexia nervosa (cases), and their 89 healthy sisters (controls).

Table 6.1 gives the number of case-control pairs with respect to the center in which the

data were collected and to the anorexia nervosa subtype.

AN-R AN-BP AN (total)
London 9 6 15
Vienna 25 29 54

Barcelona 6 14 20
Total 40 49 89

Table 6.1.: Sample size per center and diagnose
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6.1.3. Age

The mean age of the patients is 24.18 years (standard deviation 7.75, ranging from 14 years

to 62 years), the mean age of the sisters is 24.64 years (standard deviation 8.37, ranging

from 14 years to 56 years). Accordingly, the mean age difference between the affected and

the healthy sister is -0.49 years, with a standard deviation of 3.95. The patients are slightly

younger.

The distribution of the age difference is depicted in figure 6.1.

FALSE
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●

−10 −5 0 5

Figure 6.1.: Distribution of age difference

6.1.4. Parents

The education levels of the subject’s parents are given in table 6.2. For both mothers and

fathers, secondary degree has the highest frequency.

primary school professional degree secondary degree university degree
Mother 0.292 0.270 0.303 0.135
Father 0.227 0.250 0.273 0.250

Table 6.2.: Highest education levels of parents

The age at birth of the affected sister also has been recorded for the parents. For the

mothers this variable averages 27.59 years (standard deviation 5.15), while for the fathers,

the mean age at birth of the future anorexic daughter is 30.86 years (standard deviation
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6.02).

6.1.5. Eating Disorder Related Characteristics

The mean age of onset in the total anorexia nervosa group (all patients) is 16.3 years

(standard deviation 4.36). The mean age of onset for the restricting subtype (15.88 years)

is lower than in the binge-eating/purging subtype (16.63 years). The difference is signifi-

cant (Mann-Whitney test, W = 7832, p < 0.001), and the distribution of this variable is

visualized in figure 6.2.

The mean duration of illness in the total anorexia nervosa group is 4.97 years (standard

deviation 5.32). For the restricting subgroup, the duration of illness averages 3.46 years,

while for the binge-eating/purging subgroups it is 6.17 years. This difference is also signifi-

cant (Mann-Whitney test, W = 6320.5, p < 0.001), and a boxplot for the variable duration

of illness is depicted in figure 6.2.
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Figure 6.2.: Boxplots of age of onset (left) and duration of illness (right)

Concerning the Body Mass Index (BMI), three measures have been recorded for both

the patients and their healthy sisters: lowest, current, and highest BMI.

The current BMI for the patients is 18.22 on the average (standard deviation 1.94),

whereas for the healthy controls it is at a somewhat higher level of 21.85 (standard deviation
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3.24). Concerning the subtypes, the current BMI is somewhat lower for the restricting

subgroup (17.85), compared to the binge-eating/purging subgroup (18.52).

The difference in the current body mass index was assessed with a Kruskal-Wallis test

to compare the three groups, indicating that the difference is significant (χ2
(2) = 63.28,

p < 0.0001). Furthermore, the significance of the difference of the restricting and binge-

eating/purging subgroup was judged with an exact Mann-Whitney U -test. The two sub-

groups do not differ significantly in their current body mass index (W = 794.5, p = 0.1778).

The lowest BMI (that can be considered a measure of severity of the eating disorder,

especially in the subgroup of restricting patients) is 14.57 for the affected and 19.76 for the

healthy sisters.

The numbers are given in table 6.3, with their standard deviations in parentheses. For

visualization, figure 6.3 shows boxplots of lowest, current and highest BMI for each group

separately.

The difference of lowest body mass index in a three-group comparison (healthy sisters,

restricting, and binge-eating/purging subgroup) is significant (Kruskal-Wallis test; χ2
(2) =

111.87, p < 0.0001). Moreover, the difference between the patients in the two anorexia

nervosa subgroups is also significant (exact Wilcoxon test; W = 676.5, p = 0.029)
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Figure 6.3.: Boxplots of BMI
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AN-R AN-BP AN (total) controls
lowest BMI 14.08 (1.59) 14.96 (1.91) 14.57 (1.82) 19.76 (2.5)

current BMI 17.85 (2.12) 18.52 (1.74) 18.22 (1.94) 21.85 (3.24)
highest BMI 20.99 (3.4) 21.26 (2.4) 21.14 (2.88) 23.09 (3.69)

Table 6.3.: Body Mass Index

6.1.6. Exposure to Environmental Risk

The exposure to environmental risk factors (distressing events or circumstances) was as-

sessed by the Oxford Risk Factor Interview (see section 4.2). The environmental risk factors

are grouped into five domains: parental problems (ed1), disruptive events (ed2), parental

psychiatric disorder (ed3), interpersonal problems (ed4), and family dieting environment

(ed5). The mean numbers of circumstances or events that the subjects felt distressed by

are listed in table 6.4, along with the corresponding standard deviations in parentheses.

AN-R AN-BP AN (total) controls
Parental problems (ed1) 2.38 (2.14) 2.92 (1.86) 2.67 (2) 1.92 (1.91)
Disruptive events (ed2) 1.12 (1.14) 1.59 (1.37) 1.38 (1.28) 0.88 (0.96)

Parental psych. disorder (ed3) 0.25 (0.63) 0.45 (0.77) 0.36 (0.71) 0.26 (0.53)
Interpersonal problems (ed4) 1.1 (1.1) 0.92 (0.95) 1 (1.02) 0.62 (0.86)

Family dieting env. (ed5) 1.85 (1.23) 1.96 (1.43) 1.91 (1.34) 1.39 (1.39)
Total (edt) 6.7 (3.18) 7.84 (3.54) 7.33 (3.41) 5.07 (3.53)

Table 6.4.: Environmental risk exposure

Furthermore, the distributions of the five environmental domains (and the total environ-

mental exposure (edt), which is the sum of the five subdomains) are visualized in figure

6.4. For each subdomain, the boxplot on the left corresponds to the healthy sisters, the

box in the middle to the anorexic patients of restricting subtype, and the plot on the right

to the patients of binge-eating/purging subtype.

As further description of the sample, the correlations between the five environmental

subdomains are given in table 6.5. The highest correlation is observed between subdomains

one and four, parental problems and interpersonal problems.

6.1.7. Allele and Genotype Frequencies

The allele frequencies of the 5-HT2A –1438 G/A polymorphism are shown in table 6.6, the

genotype distribution is shown in table 6.7.

The frequency of the –1438 A allele is highest in the subgroup of restricting patients,

and lowest in controls. The subgroup of binge-eating/purging anorexic patients shows an
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Figure 6.4.: Boxplots of environmental risk exposure

ed1 ed2 ed3 ed4 ed5
ed1 1.0000 0.2139 0.2563 0.3232 0.1426
ed2 0.2139 1.0000 0.2161 -0.0436 0.1933
ed3 0.2563 0.2161 1.0000 0.0795 0.0723
ed4 0.3232 -0.0436 0.0795 1.0000 0.0219
ed5 0.1426 0.1933 0.0723 0.0219 1.0000

Table 6.5.: Environmental domain correlations

intermediate frequency. In total, the whole group of anorexic patients still shows a higher

frequency of the A allele, compared to controls.

The same can be said for the –1438 AA genotype.

AN-R AN-BP AN (total) controls
A allele frequency 0.475 0.449 0.461 0.421
G allele frequency 0.525 0.551 0.539 0.579

Table 6.6.: Allele frequencies

6.2. Hardy-Weinberg Equilibrium

If the Hardy-Weinberg principle (Hardy, 1908) applies, the (expected) genotype frequencies

are a function of the allele frequencies in the sample (see section 5.1). The observed and

expected genotype frequencies are shown in table 6.8.

The χ2-test performed to compare observed and expected frequencies was non-significant
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AN-R AN-BP AN (total) controls
GG genotype frequency 0.250 0.286 0.270 0.270
AG genotype frequency 0.550 0.531 0.539 0.618
AA genotype frequency 0.200 0.184 0.191 0.112

Table 6.7.: Genotype frequencies

observed expected
GG genotype 48.00 55.62
AG genotype 103.00 87.76
AA genotype 27.00 34.62

Table 6.8.: Observed and expected genotype frequencies

(χ2
(2) = 2.72, p = 0.2567). The genotype frequencies in the sample are in Hardy-Weinberg

equilibrium.

6.3. Association of 5-HT2A –1438 G/A Polymorphism with

Anorexia Nervosa

In order to assess a possible association of the 5-HT2A –1438 G/A polymorphism and

anorexia nervosa, a comparison of absolute frequencies of alleles and genotypes between

anorexic patients and controls was performed (using χ2 tests). The absolute and relative

frequencies of the –1438 alleles are shown in table 6.9, while the frequencies of the –1438

genotypes are shown in table 6.10.

AN (total) AN-R controls
A allele frequency 82 (0.461) 38 (0.475) 75 (0.421)
G allele frequency 96 (0.539) 42 (0.525) 103 (0.579)

Table 6.9.: Allele frequencies for test of association

The statistical tests were performed for the anorexia nervosa total group and for the

restricting subgroup, both allele-wise and genotype-wise.

The tests did not yield any significant association of the 5-HT2A –1438 G/A polymor-

phism with the diagnosis of anorexia nervosa. The results are listed in table 6.11, and

they show that neither the distribution of alleles nor the distribution of genotypes have

an association with the diagnosis, both for the total anorexia nervosa group and for the

restricting subtype subgroup.
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AN (total) AN-R controls
GG genotype 24 (0.27) 10 (0.25) 24 (0.27)
AG genotype 48 (0.539) 22 (0.55) 55 (0.618)
AA genotype 17 (0.191) 8 (0.2) 10 (0.112)

Table 6.10.: Genotype frequencies for test of association

χ2 df p value
allele-wise, AN (total) 0.41 1 0.52187

allele-wise, AN-R 0.45 1 0.5043
genotype-wise, AN (total) 2.29 2 0.31814

genotype-wise, AN-R 1.77 2 0.41205

Table 6.11.: Association tests

6.4. Gene–Environment Correlation

In order to investigate a possible gene–environment correlation, it has to be computed

whether the exposure to the five environmental domains differs for the three genotypes.

This was done using an analysis of variance (ANOVA) for each environmental domain

separately.

effect size η2 p value
Parental Problems (ed1) 0.002146 0.828663
Disruptive Events (ed2) 0.003747 0.720047

Parental Psychiatric Disorder (ed3) 0.009797 0.422536
Interpersonal Problems (ed4) 0.031079 0.063127

Family dieting environment (ed5) 0.006787 0.551092

Table 6.12.: Gene–environment correlation

The results (p values and effect sizes η2) are shown in table 6.12. None of the three

genotypes did show a significantly different exposure to the environmental factors assessed

in this study – no gene–environment correlation could be detected in the sample.

Concerning the assumptions of the ANOVA it must be noted that the assumption of

normality of the errors (residuals) was not met. The Shapiro-Wilk test revealed deviations

from normality (p < 0.0001 for all five subdomains). The nonparametric alternative, the

Kruskal-Wallis test, requires the number of ties in the data to be small (Fischer, 1996), and

the ANOVA seems quite robust to deviations from normality if homogeneity of variance

is given (Ferguson & Takane, 2005). Therefore it can be assumed that this violation will

not have any consequence here. The assumption of equal variances was met (Levene’s test,

p ≥ 0.362 for all five subdomains).
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6.5. Interaction of 5-HT2A –1438 G/A Polymorphism and

Environmental Risk Factors

6.5.1. Anorexia Nervosa and Gene–Environment Interaction

The primary intent of this paper is to investigate the role of the 5-HT2A –1438 G/A

polymorphism and its interaction with environmental risk factors in relation to anorexia

nervosa. For this purpose, a regression model was used. The outcome of interest, which is

the diagnosis (anorexia nervosa or no eating disorder), is dichotomous. Because of the study

design (1–1 matched sample), the data analysis was performed by means of a conditional

logistic regression model.

The sample consists of 89 sister pairs, so the sample size for the following analyses (using

conditional logistic regression) is N = 178.

Model 1: Anorexia Nervosa and one Total Environmental Factor

The first regression model used to examine genetic and environmental effects, as well as

a possible interaction between the two factors, is shown in equation (6.1). It is the full

(saturated) model – the starting point of the analysis. It shall be called model 1a.

gan(x) = βgenotype · xgenotype + βedt · xedt + βgenotype×edt · xgenotype · xedt (6.1)

with

gan(x) being the logit of the probability P (Y = 1) (the probability of showing the

outcome of interest, namely a diagnosis of anorexia nervosa) dependent on the

values of the covariates,

β being the slope coefficient and

x being the covariate value.

The model uses one global, continuous environmental factor (edt, environmental domain

(total)). It is constituted by the number of questions of the Oxford Risk Factor Interview

that have been answered with “yes”, so it is the number of risky environmental events or

circumstances the subject felt distressed by (see section 4.2 for further description). It can

(theoretically) range from 0 (not distressed by any environmental risk) to 36 (distressed

by all assessed environmental risk events). The maximum value in the sample is 19.

The genotype variable has three levels, representing the three possible 5-HT2A –1438

genotypes: AA (two –1438 A alleles), AG (one A allele and one G allele), and GG (two

G alleles). For model estimation, dummy variables must be used (see section 4.4.2), so, in
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fact, the model does not only contain one variable for the genotype: for the three levels, two

dummy variables must be used (and therefore, two slope coefficients must be estimated:

βgenotypeGA and βgenotypeAA). The third level, genotype GG, is the reference level.

The model does not contain an intercept, as the intercepts would have to be estimated

for each stratum (sister pair) separately. For this analysis, the intercepts are not of interest

and therefore regarded as nuisance parameters (they are not estimated by the model).

The parameters (slope coefficients) of model 1a are shown in table 6.13.

β̂ OR SE(β̂) ORlower .95 ORupper .95 p value
genAG -0.4645 0.628 0.976 0.09280 4.26 0.630
genAA -1.2784 0.278 1.743 0.00915 8.47 0.460

edt 0.2988 1.348 0.141 1.02212 1.78 0.034 *
genAG:edt -0.0143 0.986 0.159 0.72164 1.35 0.930
genAA:edt 0.4060 1.501 0.308 0.81997 2.75 0.190

Table 6.13.: Model 1a (coefficients)

Model 1a explains 17.69% of the total variance and 35.39% of the variance that can

maximally be explained (R2
L = 0.1769, R2

L,(max) = 0.5). It differs significantly from the

null-model (likelihood ratio test, χ2
(5) = 34.66, p < 0.0001) and has an AIC of 98.72.

From this model, the non-significant terms were excluded stepwise (backward stepwise

selection), based on the Akaike information criterion (AIC). The terms that lowered the

AIC the most were excluded first, until the model only contained significant or relevant

terms (for interaction effects, the main effects were of course kept in the model). So, the

first term excluded was the term for the interaction. This yielded the following model

(model 1b), shown in equation (6.2).

gan(x) = βgenotype · xgenotype + βedt · xedt (6.2)

Model 1b only includes the main effects of the 5-HT2A –1438 G/A polymorphism and

environmental risk. The likelihood ratio test to compare models 1a and 1b was not sig-

nificant (χ2
(2) = 3.71, p = 0.15671), so the fit of model 1b is equally good while using less

parameters. The estimated coefficients are shown in table 6.14.

Model 1b explains 15.96% of the total variance and 31.93% of the variance that can

possibly be explained (R2
L = 0.1596, R2

L,(max) = 0.5). It differs significantly from the

null-model (likelihood ratio test, χ2
(3) = 30.96, p < 0.0001) and has an AIC of 98.42.

As can be ascertained from table 6.14, no genetic main effect could be found. The odds

ratios of the coefficients for the different genotypes did not differ significantly from one
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β̂ OR SE(β̂) ORlower .95 ORupper .95 p value
genAG -0.569 0.566 0.5521 0.192 1.67 0.300000
genAA 0.961 2.615 0.8323 0.512 13.36 0.250000

edt 0.308 1.360 0.0718 1.182 1.57 0.000018 *

Table 6.14.: Model 1b (coefficients)

(this is also indicated by the confidence interval that includes the value one). It must be

noted that the odds ratios for the effects of the genotype are rather high for genotype AA

and rather low for genotype AG, but they are not significant. This may be explained by

the fact that the sample size is rather small – only 27 persons had genotype AA.
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Figure 6.5.: Model 1b

The odds ratio for the variable edt shows that the environmental influences that were

assessed with the Oxford Risk Factor Interview constitute a risk factor. The more events

or circumstances the subjects are distressed by, the higher the risk of being the case (of

having developed an eating disorder of type anorexia nervosa). Each event increases the

relative risk by the factor of 1.360.

The model is illustrated in figure 6.5. Although the genetic main effect is non-significant,

the relative log-odds of risk for anorexia nervosa is shown separately for the three genotypes.
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The model building process was not continued for model 1, since the hypotheses in this

paper focus on genetic main effect and genetic interaction, neither of which could be found

with model 1.

Model 2: Anorexia Nervosa and Five Environmental Subdomains

Looking at the environmental risk factors in more detail, we find that they can be divided

into five subdomains. These subdomains (that already have been listed in section 4.2) are:

� Environmental domain 1 (ed1): parental problems

� Environmental domain 2 (ed2): disruptive events

� Environmental domain 3 (ed3): parental psychiatric disorder

� Environmental domain 4 (ed4): interpersonal problems

� Environmental domain 5 (ed5): family dieting environment

The conditional logistic regression analysis started with the full (saturated) model, model

2a, that is shown in equation (6.3).

gan(x) = βgenotype · xgenotype + βed1 · xed1 + βed2 · xed2+

βed3 · xed3 + βed4 · xed4 + βed5 · xed5+

βgenotype×ed1 · xgenotype · xed1 + βgenotype×ed2 · xgenotype · xed2+

βgenotype×ed3 · xgenotype · xed3 + βgenotype×ed4 · xgenotype · xed4+

βgenotype×ed5 · xgenotype · xed5 (6.3)

It includes a genetic main effect, all five environmental subdomains, and five interaction

terms. The estimated coefficients of model 2a are listed in table 6.15.

Model 2a explains 23.64% of the total variance and 47.27% of the variance that can

possibly be explained (R2
L = 0.2364, R2

L,(max) = 0.5). It differs significantly from the

null-model (likelihood ratio test, χ2
(17) = 48, p < 0.0001) and has an AIC of 109.38.

From this model, in which only the influence of environmental domain 5 (family dieting

environment) is significant, the non-significant terms are once again removed in a stepwise

backward selection process (based on the AIC).

The resulting model is called model 2b, shown in equation (6.4).
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β̂ OR SE(β̂) ORlower .95 ORupper .95 p value
genAG -0.09750 0.9071 1.218 0.083392 9.87 0.940
genAA -2.32086 0.0982 3.023 0.000262 36.76 0.440

ed1 0.06580 1.0680 0.225 0.687066 1.66 0.770
ed2 0.75090 2.1189 0.521 0.763005 5.88 0.150
ed3 0.00448 1.0045 0.812 0.204489 4.93 1.000
ed4 0.57354 1.7745 0.432 0.761467 4.14 0.180
ed5 0.85471 2.3507 0.433 1.005379 5.50 0.049 *

genAG:ed1 0.18257 1.2003 0.316 0.646488 2.23 0.560
genAA:ed1 0.91298 2.4917 0.642 0.708283 8.77 0.150
genAG:ed2 0.19472 1.2150 0.557 0.407523 3.62 0.730
genAA:ed2 -1.34469 0.2606 1.145 0.027609 2.46 0.240
genAG:ed3 0.03071 1.0312 1.197 0.098736 10.77 0.980
genAA:ed3 4.69006 108.8602 3.142 0.230134 51494.01 0.140
genAG:ed4 -0.30597 0.7364 0.519 0.266514 2.03 0.560
genAA:ed4 3.64370 38.2329 2.653 0.211059 6925.81 0.170
genAG:ed5 -0.78432 0.4564 0.468 0.182448 1.14 0.094
genAA:ed5 0.48202 1.6193 0.962 0.245544 10.68 0.620

Table 6.15.: Model 2a (coefficients)

gan(x) = βgenotype · xgenotype+

βed2 · xed2 + βed4 · xed4 + βed5 · xed5+

βgenotype×ed5 · xgenotype · xed5 (6.4)

β̂ OR SE(β̂) ORlower .95 ORupper .95 p value
genAG 0.286 1.331 0.779 0.289 6.13 0.7100
genAA 1.517 4.559 1.020 0.618 33.64 0.1400

ed2 0.731 2.078 0.251 1.270 3.40 0.0036 *
ed4 0.569 1.766 0.206 1.179 2.65 0.0058 *
ed5 0.912 2.488 0.396 1.146 5.40 0.0210 *

genAG:ed5 -0.762 0.467 0.417 0.206 1.06 0.0680
genAA:ed5 -0.476 0.621 0.529 0.220 1.75 0.3700

Table 6.16.: Model 2b (coefficients)

The estimated coefficients of model 2b are shown in table 6.16. The model contains three

significant parameters, namely environmental domain 2 (disruptive events), environmental

domain 4 (interpersonal problems), and environmental domain 5 (family dieting environ-

ment). Comparison of models 2a and 2b through a likelihood ratio test showed that model
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2b fits the data equally well while being more parsimonious (χ2
(10) = 11.93, p = 0.28972).

Model 2b explains 18.34% of the total variance and 36.69% of the variance that can

possibly be explained (R2
L = 0.1834, R2

L,(max) = 0.5). It differs significantly from the

null-model (likelihood ratio test, χ2
(7) = 36.07, p < 0.0001) and has an AIC of 101.31.

The model building process for model 2 was discontinued at this point, because it could

be seen that the issues of interest, the genetic main effect and its interaction with envi-

ronmental risks, were not significant. Nevertheless it must be noted that the interaction

effect of the AG genotype and environmental domain 5 (family dieting environment) is

borderline significant.

Table 6.16 shows that a possible genetic main effect of the 5-HT2A –1438 G/A poly-

morphism could not be found in the data used for this analysis. The odds ratios for the

different genotypes do not significantly differ from one, indicating that they do not convey

any increased risk for development of anorexia nervosa. The same can be said for the in-

teraction terms of genotype AG and environmental subdomain 5 (family dieting behavior),

although it must be noted that this term is borderline significant.

As for the environmental influences, the presence of disruptive events (ed2), interpersonal

problems (ed4), or family dieting environment (ed5) increases the risk for anorexia nervosa.

The odds ratios for these factors all are significantly greater than one. This means that

the risk for anorexia nervosa increases with the number of events in the specific subdomain.

The biggest increase in risk is for the family dieting subdomain (ed5), the odds ratio being

2.488. This means that with each additional event or circumstance in the family dieting

environment that a subject feels distressed by, the risk for anorexia nervosa increases by

this factor.

Being distressed by a disruptive event (ed2) increases the risk by a factor of 2.078, while

each additional event in the interpersonal problem subdomain increases the risk by 1.766.

Whether these coefficients differ from each other has not been assessed.

Both models (model 1b with a total environmental factor and model 2b with the environ-

mental influences split up in five subdomains) indicate that there are no genetic influences

when the outcome of interest is the diagnosis (anorexia nervosa vs. no eating disorder).

But the interaction term of environmental domain 5 (family dieting environment) and the

5-HT2A –1438 AG genotype was borderline significant. Disregarding the non-significance,

this indicates that subjects with the AG genotype are less severely influenced by distressing

events in the family dieting environment than persons with genotype AA. It must be noted

that only 27 persons in the sample have genotype AA. This results in a high standard error

for the genetic main effects (table 6.16), and may impair parameter estimation.
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6.5.2. Body Mass Index and Gene–Environment Interaction

To investigate the role of the 5-HT2A –1438 G/A polymorphism in other factors related to

anorexia nervosa, a multiple linear regression on the lowest body mass index (BMI) was

computed. This measure can serve as indicator of the severity of the disorder (Hebebrand

et al., 1996).

The data set for this regression analysis contained only the subjects that were diagnosed

with anorexia nervosa (the cases), so the sample size is N = 89.

Model 3: Linear Regression Model for Body Mass Index

The initial model (model 3a) included the genetic and environmental main effects as well

as all possible interactions. Additionally, it includes the subtype of anorexia nervosa (as

the body mass index is assumed to be lower for the patients of restricting subtype) as

well as the age of onset (as the body mass index is generally lower in younger subjects

(Hebebrand, Wehmeier, & Remschmidt, 2000)). It is shown in equation (6.5).

ŷbmi(x) = β0 + βgenotype · xgenotype + βed1 · xed1 + βed2 · xed2+

βed3 · xed3 + βed4 · xed4 + βed5 · xed5+

βgenotype×ed1 · xgenotype · xed1 + βgenotype×ed2 · xgenotype · xed2+

βgenotype×ed3 · xgenotype · xed3 + βgenotype×ed4 · xgenotype · xed4+

βgenotype×ed5 · xgenotype · xed5 + βsubtype · xsubtype + βonset · xonset (6.5)

From this model, the non-significant terms were excluded stepwise (backward stepwise

selection), based on the Akaike information criterion (AIC). The terms that lowered the

AIC the most were excluded first, until the model only contained significant or relevant

terms (for interaction effects, the main effects were, of course, kept in the model). This

yielded model 3b, shown in equation (6.6).

ŷbmi(x) = β0 + βed3 · xed3 + βsubtype · xsubtype + βonset · xonset (6.6)

The estimated coefficients for model 3b are shown in table 6.17. Comparison of models

3a and 3b through a likelihood ratio test showed that model 3b fits the data equally well

while being more parsimonious (χ2
(16) = 20.53, p = 0.19721).

In model 3b, there is no significant genetic main or interaction effect. The terms have
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β̂ Std. Error t value p value
(Intercept) 11.634 0.8910 13.06 <0.0001 *

ed3 -0.485 0.2645 -1.83 0.07050
onset 0.106 0.0431 2.45 0.01639 *

subtype 0.893 0.3750 2.38 0.01957 *

Table 6.17.: Model 3b, BMI (Coefficients)

been excluded by the stepwise selection procedure. This shows that the 5-HT2A –1438

G/A polymorphism does not influence the severity of anorexia nervosa.

The environmental subdomain parental psychiatric disorder (ed3) is borderline signif-

icant (the body mass index would be lower for individuals that are more distressed by

parental disorders, indicating a higher severity of the illness). The covariates for age of

onset and subtype are both significant. The reference level for the subtype is the restricting

subgroup, so the positive coefficient can be interpreted as a higher body mass index in the

binge-eating/purging subgroup of patients (as expected). The coefficient for age of onset

is also positive, indicating that the body mass index rises with later onset of the disease

(as presumed).

It must be noted that the global measures of model 3b are not very satisfying. It only

explains a small part of the total variance (R2 = 0.1411 and R2
adj = 0.1101). The global

F -test of the null hypothesis that all coefficients are zero is significant (F(3,83) = 4.55,

p = 0.0053). The AIC of the model is 346.87.

Test of Model Assumptions

The model assumptions for the linear regression model are linearity of relationship be-

tween dependent and independent variables, homoscedasticity (constant variance) of the

errors, independence of the errors (no serial correlation), and normality of the error distri-

bution. Furthermore, correlation between independent variables (multicollinearity) inflates

the estimated standard errors of the coefficients, so this should also be checked for.

Linearity was tested graphically. Neither the plot observed vs. predicted values nor the

plot of residuals vs. predicted values revealed any major deviations from linearity. Of

course, the plots also show the poor fit of the model. This is especially true for the plot

of observed vs. predicted values – in a model with better fit, the points in the scatter plot

should be close to a diagonal line (as observed and predicted value should be in immediate

vicinity). The plots are shown in figure 6.6.

The Harrison-McCabe test was not significant and therefore did not reveal any sign of

heteroscedasticity (HMC = 0.403, p = 0.105), the Shapiro-Wilk test for normality of the
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Figure 6.6.: Model 3b: Observed vs. predicted (left), residuals vs. predicted (right)

residuals also was non-significant (p = 0.32), and the variance inflating factors (Fox &

Monette, 1992) all were below the critical value of 4 (GV IF <= 1.049). The Durbin-

Watson statistic was non-significant, showing no sign of autocorrelation (DW = 1.732,

p = 0.206).

6.5.3. Age of Onset and Gene–Environment Interaction

Another potential impact of the 5-HT2A –1438 G/A polymorphism is its possible role in the

moderation of the age of onset. In a study by Kipman et al. (2002) the –1438 A allele was

found to delay the onset. In this paper that issue was assessed through a linear regression

model.

Model 4: Linear Regression Model for Age of Onset

The initial model, model 4a, included genetic and environmental main effects and all pos-

sible interactions. It is shown in equation (6.7).

ŷonset(x) = β0 + βgenotype · xgenotype + βed1 · xed1 + βed2 · xed2+

βed3 · xed3 + βed4 · xed4 + βed5 · xed5+

βgenotype×ed1 · xgenotype · xed1 + βgenotype×ed2 · xgenotype · xed2+

βgenotype×ed3 · xgenotype · xed3 + βgenotype×ed4 · xgenotype · xed4+

βgenotype×ed5 · xgenotype · xed5 (6.7)

In a stepwise backward selection process, predictors were removed (based on the AIC)
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until the model only contained significant or relevant terms. This leads to model 4b, shown

in equation (6.8).

ŷonset(x) = β0 + βgenotype · xgenotype + βed2 · xed2+

βed5 · xed5 + βgenotype×ed2 · xgenotype · xed2 (6.8)

β̂ Std. Error t value p value
(Intercept) 15.388 1.274 12.076 <0.0001 *

genAG 0.729 1.444 0.505 0.61519
genAA 1.180 1.839 0.641 0.52302

ed2 2.522 0.694 3.635 0.00048 *
ed5 -0.706 0.330 -2.137 0.03560 *

genAG:ed2 -1.529 0.825 -1.853 0.06752
genAA:ed2 -2.152 1.131 -1.902 0.06067

Table 6.18.: Model 4b, age of onset (coefficients)

When model 4b is compared to model 4a through a likelihood ratio test it can be shown

that the more parsimonious model 4b fits the data equally well (χ2
(11) = 10.81, p = 0.45973).

The model contains two significant (environmental) main effects, namely for the domains

disruptive events (ed2) and family dieting environment (ed5). The presence of disruptive

events seems to delay the onset of anorexia nervosa, whereas the presence of family dieting

environment seems to lead to an earlier onset of the disease.

The model does not contain a significant main effect of the 5-HT2A –1438 G/A polymor-

phism. The standard errors for the genetic main effects are relatively large (due to small

sample size). The coefficient for the AA genotype main effect is positive, which would

(in case of significance) indicate that a later onset is related to more disruptive events for

subjects with that genotype.

The interaction coefficients in model 4b are only borderline significant. If they were

significant (i. e. in a larger sample), they would indicate that both the –1438 AA and AG

genotype seem to lead to an earlier onset only in the presence of disruptive events. If this

interaction is excluded from the model, the coefficients for the genetic main effects change

little, and remain non-significant (results not shown).

Model 4b explains 14.92% of the total variance (R2 = 0.2079 and R2
adj = 0.1492), the

global F -test of the null hypothesis that all coefficients are zero is significant (F(6,81) = 3.54,

p = 0.0036). The AIC of the model is 503.34.
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Inclusion of a covariate for the subtype of the eating disorder (restricting vs. binge-

eating/purging subtype) did not change the model. The subtype covariate was not sig-

nificant, so the type of eating disorder does not seem to influence the effects of the other

covariates in the model predicting the age of onset. The likelihood ratio test to compare

model 4b and the model including the subtype covariate (model 4c) shows that their fit

does not differ significantly, indicating that the inclusion of the subtype covariate does not

have any benefit (χ2
(1) = 0.02, p = 0.89407).

For the sake of completeness, model 4c is shown in equation (6.9). Its estimated coeffi-

cients are listed in table 6.19.

ŷonset(x) = β0 + βgenotype · xgenotype + βed2 · xed2+

βed5 · xed5 + βgenotype×ed2 · xgenotype · xed2+

βsubtype · xsubtype (6.9)

β̂ Std. Error t value p value
(Intercept) 15.216 1.868 8.147 <0.0001 *

genAG 0.741 1.456 0.509 0.61213
genAA 1.194 1.854 0.644 0.52127

ed2 2.512 0.702 3.579 0.00058 *
ed5 -0.706 0.332 -2.124 0.03676 *

subtype 0.113 0.893 0.127 0.89928
genAG:ed2 -1.530 0.830 -1.842 0.06913
genAA:ed2 -2.156 1.138 -1.894 0.06188

Table 6.19.: Model 4c, age of onset (coefficients)

Model 4c would explain 13.88% of the total variance (R2 = 0.2081 and R2
adj = 0.1388),

the global F -test of the null hypothesis that all coefficients are zero would be significant

(F(7,80) = 3, p = 0.0075). The AIC of the model would be 505.32.

Test of Model Assumptions and Comments on Model 4b

Although the global summary statistics of model 4b mentioned above are better than for

model 3c, it may not be ideal, as the model could be influenced by outliers. This becomes

evident when exploring the assumption of linearity with the plot of observed vs. predicted

values and residuals vs. predicted values (figure 6.7).

These plots reveal that there are some individuals with an untypically late age of onset,

which the model does not predict well. What is slightly more crucial is that the model
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Figure 6.7.: Model 4b: Observed vs. predicted (left), residuals vs. predicted (right)

itself is influenced to a great extent by those outliers, in particular by the value of subject

111, as is seen in the plot of residuals vs. leverage, where Cook’s distance is also charted

(figure 6.8).
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Figure 6.8.: Model 4b: QQ-plot (left), residuals vs. leverage, Cook’s distance (right)

The values of the predictors of subject 111 are shown in table 6.20, along with the

corresponding means of the sample used for the regression model (that is, including subject

111). This subject has a very high exposure to distressing disruptive events (ed2) and family

dieting environment (ed5). Only very few subjects in the sample show an equally extreme

exposure, which explains this subject’s severe influence on the model. The model would

predict a rather late age of onset of 25.2 years for subject 111, but the observed age of

onset is 15.0 years.

This also explains why the residuals deviated significantly from normality, as the Shapiro-

Wilk test revealed (p < 0.0001). The other assumptions of the linear regression model were
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gen ed1 ed2 ed3 ed4 ed5 Age of Onset Predicted
Subject 111 GG 3.00 5.00 0.000 0.00 4.00 15.0 25.2

Mean NA 2.62 1.35 0.364 1.01 1.91 16.3 NA

Table 6.20.: Predictors of subject 111 and sample means

met for model 4b. The Harrison-McCabe test did not detect heteroscedasticity (HMC =

0.496, p = 0.486), the Durbin-Watson statistic was non-significant indicating that there

were no auto-correlations (DW = 1.798, p = 0.311), and the variance inflating factors (Fox

& Monette, 1992) were below the critical value of 4 for each predictor (GV IF <= 2.028).

Model 4d: Exclusion of Outlier

As the one subject mentioned above influenced the model severely and had a very extreme

exposure to environmental risks, the model building process was repeated, this time based

on a dataset where subject 111 was excluded. As true above, starting point was the model

including all main and interaction effects, model 4a (equation (6.7)). From this model,

terms were excluded based on the AIC. This process revealed almost the same model as

the analysis based on the full dataset, model 4b. The resulting model is labeled model 4d.

ŷonset(x) = β0 + βgenotype · xgenotype + βed2 · xed2+

βgenotype×ed2 · xgenotype · xed2 (6.10)

The only difference to model 4b is that the main effect of environmental domain 5, family

dieting environment, is no longer significant and was therefore removed from the model.

The coefficients of model 4d are listed in table 6.21.

β̂ Std. Error t value p value
(Intercept) 12.30 1.136 10.82 <0.0001 *

genAG 2.52 1.415 1.78 0.07853
genAA 3.56 1.752 2.03 0.04537 *

ed2 4.94 0.888 5.57 <0.0001 *
genAG:ed2 -4.02 0.982 -4.09 0.00010 *
genAA:ed2 -4.93 1.215 -4.05 0.00011 *

Table 6.21.: Model 4d, age of onset (coefficients)

The results show that the influence of disruptive events (ed2) is significant, just as in

model 4b. A later onset of anorexia nervosa seems to be related with being distressed by
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more disruptive events, as the model based on the sample data suggests. Furthermore,

there is a significant genetic main effect. Subjects with the 5-HT2A –1438 AA genotype

seem to have a later age of onset, delayed by about 3.5 years opposed to the GG genotype.

Having the AG genotype also seems to delay the onset by 2.5 years, although this effect is

not significant.

However, model 4d contains a significant interaction term. The delay for AA and AG

genotypes (genetic main effect) would be true only in absence of any disruptive events.

When events of this domain are present, the genetic and environmental main effects are

modified by the interaction. The environmental main effect states that more disruptive

events and a later onset are related. This is only true, however, for subjects with genotypes

AA and AG. Patients with genotype GG do not show any correlation of onset and the

number of disruptive events.

To make interpretation a little clearer, this will be exemplified with a numeric example.

The predicted age of onset for a subject with the GG genotype not being distressed by any

disruptive event is 12.3 years. For an individual with the AA genotype and no disruptive

event, the predicted age of onset is 15.86 years, about 3.5 years later. Due to the main

effect of disruptive events (ed2), the predicted age of onset rises with the number of events

that an individual is distressed by. But, as there is an interaction, this is only true for

individuals with the GG genotype. The predicted onset with one distressing event for a

subject with the GG genotype is 17.24 years. But for an individual with the AA genotype,

the predicted age is 15.88 years – so the onset is (almost) not delayed for subjects of the

AA (and AG) genotype by the distressing event (the main effect of the disruptive event

is compensated by the interaction of disruptive events and the AA (and AG) genotype).

This is also visualized in figure 6.9. The 5-HT2A –1438 G/A polymorphism seems to be a

modifying factor in the onset of anorexia nervosa.

Model 4d explains 26.77% of the total variance (R2 = 0.3103 and R2
adj = 0.2677), the

global F -test of the null hypothesis that all coefficients are zero is significant (F(5,81) = 7.29,

p < 0.0001). The AIC of the model is 484.66.

Inclusion of the subtype (restricting vs. binge-eating/purging) of the eating disorder did

not change the model. The subtype coefficient was not significant and the other coefficients

remained almost unchanged. This is also indicated by the likelihood ratio test comparing

this new model (model 4e) to model 4d. It is non-significant, showing that there is no

difference in the fit of these two models. (χ2
(1) = 0.06, p = 0.81048).

For the sake of completeness, model 4e is shown in equation (6.11) and its coefficients

are listed in table 6.22.
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Figure 6.9.: Model 4d: Observed and predicted values

ŷonset(x) = β0 + βgenotype · xgenotype + βed2 · xed2+

βgenotype×ed2 · xgenotype · xed2 + βsubtype · xsubtype (6.11)

β̂ Std. Error t value p value
(Intercept) 12.008 1.712 7.01 <0.0001 *

genAG 2.545 1.427 1.78 0.07834
genAA 3.588 1.766 2.03 0.04553 *

ed2 4.931 0.895 5.51 <0.0001 *
subtype 0.192 0.833 0.23 0.81868

genAG:ed2 -4.022 0.988 -4.07 0.00011 *
genAA:ed2 -4.937 1.223 -4.04 0.00012 *

Table 6.22.: Model 4e, age of onset (coefficients)

Model 4e would explain 25.91% of the total variance (R2 = 0.3108 and R2
adj = 0.2591),

the global F -test of the null hypothesis that all coefficients are zero would be significant

(F(6,80) = 6.01, p < 0.0001). The AIC of the model would be 486.61.
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Test of Model Assumptions for Model 4d

The graphical test of linearity is not depicted here, because, obviously, it looks very sim-

ilar to model 4b (as only one subject has been excluded). Still, the residuals deviated

significantly from normality, as the Shapiro-Wilk test showed (p = 0.0015). The Harrison-

McCabe test did not show any sign of heteroscedasticity (HMC = 0.555, p = 0.761); the

Durbin-Watson statistic was non-significant, indicating that there were no auto-correlations

(DW = 1.624, p = 0.072), and the variance inflating factors (Fox & Monette, 1992) were

below the critical value of 4 for each predictor (GV IF <= 2.645).

6.6. Application of Odds Ratio Multifactor Dimensionality

Reduction

As an alternative to conditional logistic regression, the possible gene–environment inter-

actions of the 5-HT2A –1438 G/A polymorphism and the five environmental subdomains,

with respect to the diagnosis (anorexia nervosa vs. no eating disorder), were analyzed with

odds ratio multifactor dimensionality reduction (OR MDR).

6.6.1. Recoding of Environmental Risk Factors

In order to render the application of the odds ratio multifactor dimensionality reduction

(OR MDR) method possible, the continuous environmental risk factors must be recoded

into dichotomous or polytomous variables with three levels.

The levels (categories) of the resulting variables (named ed1r to ed5r) have been de-

termined with the help of a conditional logistic regression model that has been estimated

for each environmental domain. In each model, the environmental domain in question is

the only predictor for the disease status (eating disorder vs. no eating disorder). But the

model does not use the environmental domain as a linear predictor – instead it treats it as

if it were a variable of nominal scale. As a consequence, a number of dummy variables are

created and their coefficients are estimated by the regression model. The odds ratio of each

coefficient is the increase in risk relative to the reference category (which is “not feeling

distressed by any environmental risk event of the environmental domain in question”, e. g.

ed1 = 0).

This reference category (e. g. ed1 = 0) was also the reference category for the new

variable (e. g. ed1r = 0). The next higher levels of the environmental domain that had

similar odds ratios were combined to category 1 of the new variable (e. g. ed1r = 1, which

will be referred to as “moderate exposure”), while all other environmental risk exposures
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with even higher odds ratios were combined to category 2 (e. g. ed1r = 2, referred to as

“high exposure”).

For environmental domain 1 (parental problems), environmental exposures of 1, 2, or 3

events were recoded to category 1 (ed1r = 1).

For environmental domains 2 and 5 (disruptive events and family dieting environment),

having experienced 1 or 2 distressing events in that domain was recoded to ed2r = 1 and

ed5r = 1, respectively.

For the remaining domains 3 and 4 (parental psychiatric disorder and interpersonal

problems), exposure to 1 distressing event was recoded into level 1 for the new variable

(ed3r = 1, ed4r = 1). Having experienced more than 1 event was coded as category 2.

6.6.2. Finding the Best Factor Models

The OR MDR method allows to specify the number of factors that are combined to predict

the outcome of interest, in this case the diagnosis. As this number is not known in advance,

a range of values was used, and the resulting models are listed. In the following, the model

calculations for two, three, and four factors are described.

In each application of the OR MDR method, the result is one best model. This best model

is the model with the lowest prediction error and the highest cross-validation consistency

(the number of times that the model has been identified as the best model in the 10 cross-

validation trials, so the number can range from 0 to 10). Additionally, the OR MDR

method returns a table of all models that were found in the 10 cross-validations. In the

best case scenario, the best model is found in all 10 trials. If this is not the case, all other

identified models are also reported.

Like in most data mining algorithms, chance findings are possible. For this reason,

the OR MDR analysis is performed not only once, but 10000 times (in this paper). The

reported results consist of two tables. The first table is the table of best models: It specifies

how many times a specific model has been identified as the best model. In this table, the

mean cross-validation consistency is also reported for the model(s).

The second table contains the results of the 10-fold cross-validations of the 10000 OR

MDR applications. Like the first table it contains the absolute and relative frequencies

with which the model was identified as the best model (in the 10-fold cross-validations),

and it reports the mean training error (percentage of wrong classifications in the training

set) and the mean test error (prediction error: percentage of wrong classifications in the

holdout set) for the models.
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Two Factor Model

The two factor model revealed the combination of the environmental factors disruptive

events (ed2r) and interpersonal problems (ed4r) as best model to predict disease status.

In all of the 10000 trials, this model resulted as the best model. The model has a cross-

validation consistency of 9.4, meaning that is was selected 9.4 times in the 10-fold cross-

validation, on the average (table 6.23). Considering the 100000 cross-validations, this

model was selected 94.26% of the times (table 6.24). So the results for the two factor case

are unequivocal.

The model does not contain an effect of the 5-HT2A –1438 G/A polymorphism.

Frequency Percentage CV-consistency
ed2r × ed4r 10000 1 9.4262

Table 6.23.: Two factor model (best models)

Frequency Percentage Avg.train.er Avg.test.er
ed1r × ed3r 2 0.00002 0.3375 0.7778
ed1r × ed4r 140 0.00140 0.3344 0.6093
ed1r × ed5r 4103 0.04103 0.3320 0.4975
ed2r × ed4r 94262 0.94262 0.3193 0.3294
ed2r × ed5r 27 0.00027 0.3329 0.6577
ed4r × ed5r 1466 0.01466 0.3236 0.5235

Table 6.24.: Two factor model (cross validation models)

For an easier interpretation, the odds ratios of the factor combinations are listed below.

For some of the combinations the risk ratio cannot be estimated, because the combination

does not contain enough subjects. The highest risk (odds ratio) is observed in the group of

subjects exposed to high frequencies of disruptive events (ed2r = 2) and to no interpersonal

problems (ed4r = 0). In this combination the asymptotic 95% confidence interval does not

contain the value of one, indicating that this combination has a significant effect, increasing

the risk of anorexia nervosa by the factor of 3.667, relative to the overall ratio of cases to

controls.

The only other odds ratio that exceeds one is the combination of moderate exposure to

both disruptive events and interpersonal problems (ed2r = 1, ed4r = 1). This combination

also increases the risk of being affected by the disorder (by a factor of 2.111). Not being

distressed by any events in those two categories has an odds ratio of 0.4, the confidence

interval not including one. So this combination has a lower risk of developing anorexia

nervosa. This means that the ratio of cases to controls in this combination is lower than
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the ratio of the whole sample.

When the ranking of the odds ratios is considered (table 6.25), it can be seen that the

risk is elevated whenever one of the environmental exposures is high (ed2r = 2 and/or

ed4r = 2). The odds ratio of the group that shows high exposure in both groups cannot

be estimated, as this combination only contains cases and no controls (which is also a

conclusive fact).

Furthermore, when a subject shows moderate exposure in both domains, the risk is also

elevated. In the author’s view, this may constitute an interaction.

On the whole, the prediction error (average test error) is 0.3294, meaning that 32.94%

of the subjects in the holdout set are classified incorrectly. This number is notably below

the classification error that would be expected by chance, where 50% of the subjects would

be classified incorrectly.

ed2r ed4r Cases Cont. Cat. OR lower .95 upper .95
1 0 1 4 11 Low 0.364 0.201 1.099
2 0 0 10 25 Low 0.4 0.27 0.783
3 1 0 14 24 Low 0.583 0.391 1.052
4 1 2 15 11 High 1.364 0.755 2.803
5 2 1 5 3 High 1.667 0.538 6.765
6 1 1 19 9 High 2.111 1.098 4.41
7 0 2 9 3 High 3 0.968 10.717
8 2 0 11 3 High 3.667 1.183 12.7
9 2 2 2 0 High Inf NaN Inf

Table 6.25.: Two factor model (odds ratios)

Three Factor Model

For the three factor model, the results are not as conclusive as for the two factor model.

Here the 10000 applications of the (OR) MDR method revealed two models, both of them

resulting with almost equal frequency (table 6.26). Interestingly, the model that resulted

more often (ed1r × ed2r × ed4r) has the lower average cross-validation consistency (4.4

times out of 10). The other model (ed2r × ed4r × ed5r) has a cross-validation frequency

of 4.9. This second model also has a lower prediction error and occurs more often in the

10-fold cross validations (table 6.27).

Analogous to the two factor model, no genetic influence of the 5-HT2A –1438 G/A

polymorphism is reported by any three factor model.

The odds ratios will be estimated for both models. The first model (ed1r× ed2r× ed4r)

includes the environmental domains parental problems, disruptive events, and interpersonal
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Frequency Percentage CV-consistency
ed1r × ed2r × ed4r 5084 0.5084 4.4079
ed1r × ed2r × ed5r 562 0.0562 4.0801
ed2r × ed4r × ed5r 4354 0.4354 4.9118

Table 6.26.: Three factor model (best models)

Frequency Percentage Avg.train.er Avg.test.er
ed1r × ed2r × ed4r 36385 0.36385 0.2724 0.3996
ed1r × ed2r × ed5r 21333 0.21333 0.2717 0.4415
ed1r × ed3r × ed5r 7 0.00007 0.2768 0.7143
ed1r × ed4r × ed5r 1700 0.01700 0.2730 0.5428
ed2r × ed3r × ed4r 6 0.00006 0.2719 0.6019
ed2r × ed4r × ed5r 39556 0.39556 0.2676 0.4130
gen1 × ed2r × ed4r 1013 0.01013 0.2751 0.5206

Table 6.27.: Three factor model (cross validation models)

problems. The results of the OR MDR estimation are shown in table 6.28. The frequencies

in the cells are rather low, leading to large confidence intervals. Only three intervals do not

contain the value of one (indicating a significant odds ratio). The first is for the combination

of no exposure to any environmental risk factors, where the odds ratio is below one (in

this category, the ratio of cases to controls is lower than in the whole sample). The other

confidence intervals are higher than one.

The combinations of environmental risk factors that have an odds ratio significantly

greater than one are: high exposure to environmental domains 1 and 4 and moderate

exposure to domain 2, and moderate exposure to all three of those factors.

A three-way interaction is hard to judge, and the results have to interpreted critically,

as the number of subjects per combination is low. The results might not be very stable.

The prediction error of this model is 44.15%, only somewhat lower than would be ex-

pected from chance.

The second model (ed2r × ed4r × ed5r) includes the environmental domains disruptive

events, interpersonal problems, and family dieting environment. Table 6.29 reveals that

the frequencies in all combinations are relatively low, resulting in large confidence intervals.

Some of the cells do not contain any observations at all, so no odds ratio estimations are

possible.

Only two intervals do not include the value of one. One of them is for low exposure to

environmental risk (no events in the domains disruptive events and interpersonal problems,

moderate exposure in the family dieting environment), where the odds ratio is lower than
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ed1r ed2r ed4r Cases Cont. Cat. OR lower .95 upper .95
1 0 0 1 0 2 Low 0 NaN NaN
2 0 0 2 0 1 Low 0 NaN NaN
3 0 0 0 2 12 Low 0.167 0.095 0.723
4 2 1 0 1 4 Low 0.25 0.094 2.193
5 2 0 1 1 4 Low 0.25 0.094 2.193
6 1 0 0 5 11 Low 0.455 0.252 1.255
7 2 2 1 1 2 Low 0.5 0.125 5.416
8 1 0 1 3 5 Low 0.6 0.25 2.435
9 1 1 0 8 13 Low 0.615 0.357 1.412

10 1 1 2 5 8 Low 0.625 0.313 1.837
11 0 1 1 2 3 Low 0.667 0.215 3.894
12 0 1 0 5 7 Low 0.714 0.341 2.166
13 0 2 0 1 1 High 1 0.141 15.741
14 0 1 2 1 1 High 1 0.141 15.741
15 2 0 0 3 2 High 1.5 0.375 8.762
16 2 0 2 5 2 High 2.5 0.625 12.549
17 1 1 1 14 5 High 2.8 1.165 7.445
18 2 1 1 3 1 High 3 0.423 28.295
19 1 2 1 4 1 High 4 0.563 35.088
20 2 1 2 9 2 High 4.5 1.125 20.244
21 1 2 0 5 1 High 5 0.704 41.943
22 2 2 0 5 1 High 5 0.704 41.943
23 1 0 2 4 0 High Inf NaN Inf
24 2 2 2 2 0 High Inf NaN Inf
25 0 2 1 0 0 NaN NaN NaN
26 0 2 2 0 0 NaN NaN NaN
27 1 2 2 0 0 NaN NaN NaN

Table 6.28.: Three factor model A (odds ratios)

one, indicating a lower cases to controls ratio than in the whole sample. The other one

is for the combination of moderate exposure in all three domains, where the odds ratio is

significantly higher than one (higher case–control ratio than in the whole sample).

In the author’s point of view, no noticeable pattern that would account for an interaction

can be found in the table of odds ratios. Generally viewed, the risk for having developed

anorexia nervosa (odds ratio) rises with the exposure to environmental risk.

The prediction error of the model ed2r×ed4r×ed5r is 41.3%, slightly lower than expected

by chance.
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ed2r ed4r ed5r Cases Cont. Cat. OR lower .95 upper .95
1 0 1 0 0 4 Low 0 NaN NaN
2 0 1 2 0 3 Low 0 NaN NaN
3 0 0 0 2 9 Low 0.222 0.116 1
4 1 0 0 2 8 Low 0.25 0.125 1.145
5 0 0 1 4 12 Low 0.333 0.189 0.994
6 1 0 1 6 14 Low 0.429 0.254 1.065
7 1 1 0 2 4 Low 0.5 0.188 2.661
8 2 1 1 2 3 Low 0.667 0.215 3.894
9 1 2 0 4 4 High 1 0.375 3.875

10 0 1 1 4 4 High 1 0.375 3.875
11 0 2 1 2 2 High 1 0.25 6.944
12 0 0 2 4 4 High 1 0.375 3.875
13 1 2 1 6 4 High 1.5 0.563 5.135
14 1 2 2 5 3 High 1.667 0.538 6.765
15 2 0 2 5 2 High 2.5 0.625 12.549
16 1 0 2 6 2 High 3 0.75 14.465
17 1 1 1 13 4 High 3.25 1.22 9.584
18 2 0 1 4 1 High 4 0.563 35.088
19 1 1 2 4 1 High 4 0.563 35.088
20 0 2 2 4 1 High 4 0.563 35.088
21 2 0 0 2 0 High Inf NaN Inf
22 2 1 0 2 0 High Inf NaN Inf
23 0 2 0 3 0 High Inf NaN Inf
24 2 2 1 1 0 High Inf NaN Inf
25 2 1 2 1 0 High Inf NaN Inf
26 2 2 2 1 0 High Inf NaN Inf
27 2 2 0 0 0 NaN NaN NaN

Table 6.29.: Three factor model B (odds ratios)

Four Factor Model

In the case of four factors, the 10000 (OR) MDR trials lead to a unique solution, as

tables 6.30 and 6.31 show. The model contains only environmental risk domains, namely

parental problems (ed1r), disruptive events (ed2r), interpersonal problems (ed4r), and

family dieting environment (ed5r). The cross-validation consistency is 9.2 (a relatively

high value). The prediction error is 37%, considerably lower than expected by chance.

Again, the model does not contain an effect of the 5-HT2A –1438 G/A polymorphism.

As the frequencies in the cells are obviously lower than in the three factor model (because

of the additional variable in the model), the odds ratios are not listed for the model. Their

confidence intervals are quite large.
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Frequency Percentage CV-consistency
ed1r × ed2r × ed4r × ed5r 10000 1 9.2234

Table 6.30.: Four factor model (best models)

Frequency Percentage Avg.train.er Avg.test.er
ed1r × ed2r × ed3r × ed4r 23 0.00023 0.2178 0.5734
ed1r × ed2r × ed3r × ed5r 5520 0.05520 0.2080 0.4628
ed1r × ed2r × ed4r × ed5r 92234 0.92234 0.2003 0.3703
gen1 × ed1r × ed2r × ed4r 6 0.00006 0.2219 0.6481
gen1 × ed1r × ed2r × ed5r 1559 0.01559 0.2112 0.5364
gen1 × ed1r × ed4r × ed5r 655 0.00655 0.2125 0.5454
gen1 × ed2r × ed4r × ed5r 3 0.00003 0.2188 0.6296

Table 6.31.: Four factor model (cross validation models)

Conclusion

The two factor model seems to describe the data best, as it has the lowest prediction

error. As mentioned in section 4.4.4, it cannot be judged whether the included variables

(disruptive events and interpersonal problems) act as two separate main effects or if they

constitute an interaction effect.

The three and four factor models also have a prediction error that is lower than expected

by chance (50%), so the detected effects seem valuable for a prediction of disease status.

The results of the odds ratio multifactor dimensionality reduction (OR MDR) method

can be interpreted with the resulting odds ratios, but there are two disadvantages here (an

in-depth discussion will follow in section 7.4). First, the two, three, and four factor models

are reported one at a time, with the odds ratios only listed for each model separately –

thereby making a combined interpretation of all findings not easily possible.

Second, the predictors in the (OR) MDR analysis are only of nominal scale. This makes

interpretation difficult.

Another possible way to evaluate the results of the (odds ratio) multifactor dimension-

ality reduction is to use a conditional logistic regression model. The model included the

interaction terms the (OR) MDR method revealed, along with all the necessary main ef-

fects and subordinate interaction terms. The model equation is shown in equation (6.12).

It does not use the recoded versions of the environmental risk variables, as this is not

necessary for the regression model. The estimated coefficients are listed in table 6.32.
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gan(x) = βed1 · xed1 + βed2 · xed2 + βed4 · xed4 + βed5 · xed5+

βed2×ed4 · xed2 · xed4+

βed2×ed5 · xed2 · xed5+

βed4×ed4 · xed4 · xed5+

βed1×ed2×ed4 · xed1 · xed2 · xed4+

βed1×ed2×ed5 · xed1 · xed2 · xed5+

βed1×ed4×ed5 · xed1 · xed4 · xed5+

βed2×ed4×ed5 · xed2 · xed4 · xed5+

βed1×ed2×ed4×ed5 · xed1 · xed2 · xed4 · xed5 (6.12)

β̂ OR SE(β̂) ORlower .95 ORupper .95 p value
ed1 0.0637 1.066 0.185 0.7416 1.532 0.730
ed2 0.8465 2.332 0.490 0.8921 6.094 0.084
ed4 1.0227 2.781 0.546 0.9545 8.100 0.061
ed5 0.4429 1.557 0.294 0.8745 2.773 0.130

ed2:ed4 -1.3342 0.263 0.743 0.0614 1.130 0.073
ed2:ed5 -0.0865 0.917 0.258 0.5526 1.522 0.740
ed4:ed5 -0.2916 0.747 0.432 0.3205 1.742 0.500

ed1:ed2:ed4 0.4142 1.513 0.196 1.0311 2.220 0.034 *
ed1:ed2:ed5 0.0198 1.020 0.055 0.9162 1.136 0.720
ed1:ed4:ed5 0.0368 1.038 0.106 0.8426 1.278 0.730
ed2:ed4:ed5 0.4600 1.584 0.398 0.7260 3.456 0.250

ed1:ed2:ed4:ed5 -0.1545 0.857 0.096 0.7096 1.035 0.110

Table 6.32.: Conditional logistic regression model of MDR results

The estimated coefficients show that none of the main effects remain significant. Envi-

ronmental domains disruptive events (ed2) and interpersonal problems (ed4) are borderline

significant, with both odds ratios higher than two. If interpreted, each distressing event in

the domains disruptive events (ed2) and interpersonal problems (ed4) would increase the

risk of anorexia nervosa by the factor of two, approximately.

The two-way interaction found by the two factor model of disruptive events and inter-

personal problems (ed2 × ed4) is also only borderline significant. Interestingly, the odds

ratio is below one. This means that when distressing events by one of the two domains are

experienced, additional events of the other domain do not seem to be as severe as when

occurring alone (if the fact that the coefficients are not significant was ignored). The other
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two-way interactions are clearly non-significant. They have to remain in the model so that

the higher-order interactions can be estimated correctly.

Of the two three-way interactions that were revealed by the three factor models, only one

is significant (ed1×ed2×ed4). When parental problems (ed1), disruptive events (ed2), and

interpersonal problems (ed4) occur together, the risk for anorexia nervosa increases more

dramatically as the (borderline significant) main effects of these domains would suggest.

The coefficient of the four-way interaction is not significant.

The model explains 19.65% of the total variance and 39.31% of the variance that can

possibly be explained (R2
L = 0.1965, R2

L,(max) = 0.5). It differs significantly from the

null-model (likelihood ratio test, χ2
(12) = 38.95, p = 0.00011) and has an AIC of 108.43.

Neither of the (OR) MDR models identified a genetic effect. Also, the domain parental

psychiatric disorder (ed3) did not have a significant impact on the risk of developing

anorexia nervosa.

The application of the (OR) MDR method revealed some interaction effects that would

not have been found with the regression model alone, as a full model including all two-way,

three-way, and four-way interactions would have too many parameters to use backward

stepwise selection to identify them.

On the other hand, the results of the (OR) MDR analysis are not easy to interpret, as

it cannot be judged whether the models are based only on an interaction or if they include

also main effects. Furthermore, the odds ratio estimations have quite large confidence

intervals, as the sample size is relatively low. Another disadvantage is that the predictors

used in the MDR analysis are only categorial.

Combining both methods is quite beneficial, as possible main and interaction effects of

higher order can be evaluated in a regression model without having to use a backward

stepwise selection process for model building.
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7. Interpretation and Discussion

To the author’s knowledge, this is the first study of possible interactions of the 5-HT2A –

1438 G/A polymorphism with environmental risk factors in anorexia nervosa. This section

will attempt to embed the reported results in the current state of research.

7.1. Association of 5-HT2A –1438 G/A Polymorphism with

Anorexia Nervosa

In a number of studies of the role of the 5-HT2A –1438 G/A polymorphism in anorexia

nervosa, the 5-HT2A –1438 A allele and/or the AA genotype has been found to be associated

with the disorder (Collier et al., 1997; Sorbi et al., 1998; Nacmias et al., 1999; Ricca et

al., 2002, 2004). In other studies, only a statistical trend towards association was found

(Rybakowski et al., 2006), while some did not find any association (Hinney et al., 1997;

Campbell et al., 1998; Kipman et al., 2002). A meta-analysis including nine studies (four in

favor of the association, five not supporting this hypothesis) found an increased frequency

of the –1438 A allele in anorexia nervosa (Gorwood et al., 2003).

In this sample, the association of the 5-HT2A –1438 A allele with anorexia nervosa

could not be replicated. The analysis showed that the frequency of the A allele was not

significantly higher in the group of anorexic subjects (total sample) compared to controls.

Some earlier studies reported elevated frequencies only in the subgroup of patients with

anorexia nervosa restricting subtype (Sorbi et al., 1998; Nacmias et al., 1999; Ricca et al.,

2002, 2004), so the analysis was also carried out for this subgroup separately. Again, the

association of the A allele with anorexia nervosa could not be replicated.

The same results have been found when the frequencies of the genotypes were compared.

The AA genotype was not significantly associated with anorexia nervosa (total sample),

nor did the results support an association of the AA genotype in the restricting subgroup.

Interpreting this result, it always has to be kept in mind that the effect of a single gene

can only be a small contribution in the susceptibility for a complex disorder like anorexia

nervosa. So non-replications in this field are quite frequent (Hinney et al., 2000).
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Another fact that must be considered is that the frequency of alleles and genotypes

varies in different populations (Hinney et al., 2000). This is the reason why in other

studies ethnic admixture is a possible explanation for a significant association (Witte et

al., 1999). The study in hand used a sample of discordant sister pairs, so the possibility

of ethnic admixture is one point of criticism that does not apply here. Therefore, the

non-replication of the association of the 5-HT2A –1438 G/A polymorphism and anorexia

nervosa (total and restricting subgroup) in this sample may indicate a higher probability

that the positive findings were false-positives. This interpretation is supported by the fact

that other studies that used the transmission disequilibrium test (which is not affected

by ethnic admixture) also could not replicate an association of the 5-HT2A –1438 G/A

polymorphism (e.g. Kipman et al., 2002; Gorwood et al., 2002).

On the other hand, a few points of criticism apply to the test of association in this

study. Using (only) the diagnostic criteria for measuring the outcome may not be sufficient

to allow meaningful associations. Clinical heterogeneity might contaminate the results

(Ricca et al., 2004). It might be more beneficial to use a continuous psychopathological

measure to identify an association.

7.2. Interaction of 5-HT2A –1438 G/A Polymorphism and

Environmental Risk Factors

7.2.1. Anorexia Nervosa and Gene–Environment Interaction

The possible genetic and environmental effects and their potential interactions, with re-

spect to the diagnosis of anorexia nervosa, have been assessed with two conditional logistic

regression models (model 1b and model 2b) and with the odds ratio multifactor dimen-

sionality reduction method.

Conditional Logistic Regression Model Results

Neither of the two regression models found a genetic main effect of the 5-HT2A –1438 G/A

polymorphism on the predicted outcome (anorexia nervosa vs. no eating disorder).

Model 1b. Model 1b used a global measure of environmental risk and found, as expected,

a significant influence of environmental risk factors. The more distressed by environmental

events an individual feels, the higher the risk of having developed an eating disorder of

type anorexia nervosa.
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No significant interaction effects of the genetic and environmental factors could be found

with model 1b.

Model 2b. Model 2b separated the environmental risk factor into five subdomains. This

model found significant environmental main effects of three domains: disruptive events, in-

terpersonal problems, and family dieting environment. Distressing events in those domains

increase the risk of having developed anorexia nervosa.

The domains parental problems and parental psychiatric disorder did not have a signif-

icant impact on the risk for the disorder.

Concordant to model 1b, no significant interaction effect of environmental risk factors

and the 5-HT2A –1438 G/A polymorphism could be detected with model 2b. But it

must be noted that the interaction effect of family dieting environment and 5-HT2A –1438

AG genotype was borderline significant. This non-significance is possibly due to a lack

of statistical power because of insufficient sample size. Neglecting the non-significance,

the odds ratio of the interaction coefficient would show that subjects with the –1438 AG

genotype were less negatively influenced by distressing family dieting environment.

Inclusion of a covariate for the anorexia nervosa subtype (restricting vs. binge-eating/purging)

was not possible in model 1b or 2b. The maximum likelihood estimations did not converge

in the model with the additional covariate, resulting in extremely high standard errors.

The reason for this may be insufficient sample size (not enough discordant pairs in the

included covariates).

Neither was it possible to perform a separate conditional logistic regression analysis in

the subsample of anorexic subjects of restricting subtype and their healthy sisters (for the

same reasons).

Still, the models explain a rather large part of the explainable variance (31.93% for model

1b and 36.69% for model 2b), so the model fit seems sufficient.

Criticism of Regression Models. One possible point of criticism related to the regression

analysis is the assumption of linearity of the covariates for the environmental subdomains.

In the framework of the regression model, it is postulated that each additional environ-

mental event or circumstance that a subject is distressed by increases the risk in a linear

fashion. The increase in risk is presumed to be the same whether the environmental risk

changes from no distressing event to one event, or from four events to five events. This is

relatively unlikely, so further research may benefit from the use of different models (or a

mathematical transformation of the covariates).
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Results of the Odds Ratio Multifactor Dimensionality Reduction Analysis

The odds ratio multifactor dimensionality reduction analysis did not reveal any interaction

of environmental risk factors with the 5-HT2A –1438 G/A polymorphism. Instead, it

revealed four possible interaction effects among the environmental risks.

In the (OR) MDR analysis, the number of predictors that are considered must be speci-

fied. As this number is not known in advance, the analysis has been performed three times

(with two, three, and four predictors).

The two factor model revealed a possible interaction of disruptive events and interper-

sonal problems.

The three factor model indicated that there are two possible three-way interactions;

disruptive events, interpersonal problems, family dieting; and parental problems, disruptive

events, interpersonal problems.

The four factor model suggested an interaction between parental problems, disruptive

events, interpersonal problems, and family dieting environment.

Due to methodological issues (that will be discussed in section 7.4), the interpretation

of these possible interaction effects is not an easy task. This is why a conditional logistic

regression analysis was performed. The model included the presumed interactions and all

necessary lower-order effects.

The results of the conditional logistic regression analysis showed that the two-way in-

teraction of disruptive events and interpersonal problems was borderline significant. The

odds ratio for the coefficient was below one, indicating that the combined occurrence of

distressing events in these two domains is not as severe as suggested by their main effects.

Of the suggested three-way interactions, only the coefficient of parental problems, dis-

ruptive events, and interpersonal problems was significant. The odds ratio was greater

than one. This means that when events in two of these domains are present, an additional

occurrence of a distressing event in the third domain has a more severe influence on the

risk for anorexia nervosa than the main effects would suggest.

The four-way interaction of parental problems, disruptive events, interpersonal problems,

and family dieting environment was not significant.

Of the main effects (that must be included in the model to estimate the coefficients

of the interactions correctly), none were significant. The effects of disruptive events and

interpersonal problems were only borderline significant, although their odds ratios were

quite high (the relative risk was increased by the factor of more than two).

The regression model explains 39.31% of the explainable variance. This is about as

much as the regression models that have been deduced by a backward stepwise selection
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process. Nevertheless, the (OR) MDR method revealed interactions among environmental

risk factors that would not have been found with the regression models alone (partly

because they were not searched for, and partly because the number of parameters would

have been to high for coefficient estimation).

Criticism of Analysis

As previously noted, it may be more promising to use a continuous measure instead of the

clinical diagnosis, as the clinical diagnosis may be contaminated by heterogeneity, thereby

clouding possible genetic effects on specific subpopulations that are united into a single

diagnostic category.

It may also be beneficial to perform an analogous analysis on the restricting subgroup

only. This would require a larger sample be collected. Also, in a larger sample, the

interaction effect of family dieting environment and the 5-HT2A –1438 G/A polymorphism

may prove significant.

It has been previously discussed that there is a possibility the 5-HT2A –1438 G/A poly-

morphism is not related to anorexia nervosa in a direct way. The effects of the polymor-

phism may be contributory for an underlying personality trait that moderates the risk

of development of the disorder. Herbeth et al. (2005) mentioned perfectionism and ob-

sessionality, and Rybakowski et al. (2006) adduced high harm avoidance and low reward

dependence. Future research should address this possibility.

7.2.2. Body Mass Index and Gene–Environment Interaction

One of the hypotheses in this paper is that the 5-HT2A –1438 G/A polymorphism and its

interaction with environmental risk factors may be a moderator for the severity of anorexia

nervosa. Other studies (e. g. Kipman et al., 2002; Gorwood et al., 2003) did not find an

association of life-time severity (also assessed by lowest body mass index) and the 5-HT2A

–1438 G/A polymorphism. In this paper, the question was investigated by means of a

linear regression model (model 3b) that predicted the lowest body mass index, which can

be used as an indicator of the severity of the disease (Hebebrand et al., 1996). The model

was based on the subjects suffering from anorexia nervosa – the healthy controls were not

used for the analysis.

Main Effects. In the regression model (model 3b), no significant genetic main effects were

found. The analysis in this study supports the findings mentioned above – the 5-HT2A –

1438 G/A polymorphism does not seem to have an influence on the severity of anorexia

125



7. Interpretation and Discussion

nervosa.

Concerning the environmental risk factors, only the domain of parental psychiatric disor-

ders might have an influence on severity. It must be noted that the effect is only borderline

significant, which could be attributed to the small sample size.

The subtype of the disorder (restricting or binge-eating/purging type) and the age of

onset seem to be predictive of the severity of the disorder, as has been expected. Patients

of the restricting subtype tend to have a lower body mass index, as well as patients with an

earlier onset of the disease (as the body mass index is generally lower in younger people).

The analysis supports previous findings that the 5-HT2A –1438 G/A polymorphism does

not influence the severity of anorexia nervosa, as no main or interaction effect could be

found in the regression model.

Criticism of Regression Model. A major point of criticism is that the analysis could not

be carried out on a data set including only patients of the restricting subtype. This was

hindered by the insufficient sample size. As the body mass index is generally lower for the

restricting subtype, a separate analysis for the restricting subgroup (or on a bigger overall

sample) would be desirable.

Another point of criticism that applies is the assumption of linearity of the predictors in

the environmental subdomains (just as in models 1b and 2b). It may be more plausible that

the environmental risk factors do not act linearly on the severity of the disorder. Future

research should consider this.

7.2.3. Age of Onset and Gene–Environment Interaction

One study indicated that the 5-HT2A –1438 G/A polymorphism might be related to the

age of onset of anorexia nervosa. It was reported that the A allele was associated with a

later age of onset (Kipman et al., 2002).

To investigate this matter, a linear regression model was used, predicting the age of onset

in the sample of eating disordered patients. As the initial analysis was severely influenced

by an outlier in the sample, the regression analysis was performed twice – based on the

complete data set (model 4b) and based on a data set where that subject was excluded

(model 4d).

Main Effects. The initial model including the outlier (model 4b) did not find a genetic

main effect of the 5-HT2A –1438 G/A polymorphism, but two environmental risk factors

showed a significant influence on the age of onset. A later onset is related to having experi-
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enced more distressing disruptive events, whereas events in the family dieting environment

domain seem to lead to an earlier onset of the disorder.

Interactions. The model did not find any significant interactions of the 5-HT2A –1438

G/A polymorphism with environmental risk factors, but the coefficients for the interaction

of AG and AA genotype with disruptive events were borderline significant (both interac-

tions would lead to an earlier onset when significant).

The model explains 14.92% of the total variance, but there were deviations from nor-

mality of the residuals, so not all model assumptions were met.

Furthermore, as was mentioned above, the model was severely influenced by an outlier.

The subject in question displayed very high scores for the environmental domains disruptive

events and family dieting environment.

Exclusion of Outlier. So the analysis was repeated, excluding the outlier. The resulting

model (model 4d) found a significant main effect of disruptive events. The later the onset

of anorexia nervosa, the more the individual feels distressed by disruptive events. The

main effect of the family dieting environment domain was no longer significant in model

4d and was therefore excluded. The model found a significant main effect of the 5-HT2A

–1438 AA genotype, delaying the onset. This is in accordance with the results of Kipman

et al. (2002).

Furthermore, the interaction coefficients of AG and AA genotype and disruptive events

(that were only borderline significant in model 4b) were now significant. For subjects with

AG and AA genotypes, the age of onset is (almost) not influenced by distressing disruptive

events (or vice versa).

Influence of Subtype. Inclusion of subtype did not change the models, so the subtype of

the eating disorder (restricting vs. binge-eating/purging) does not seem to affect the age

of onset or the other coefficients in the model.

Model 4d explains 26.77% of total variance, indicating a good fit for a regression model.

But like in model 4b, the assumption of normality of the error was not met.

Criticism of the Regression Model. One major point of criticism is that the model

does not predict well when the observed age of onset is high. This is especially severe

for the subject that was excluded. Additionally, that subject also displayed very high

environmental risk exposure. Due to scarce data with high environmental risk scores, the

model was highly influenced by this outlier. This leads to another point of criticism: The
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models do not predict well for (untypically) high environmental risk exposure. Of course,

this is only natural as unduly extrapolation is always a problem in regression models. This

is also key in the criticism of the assumption of linearity of the predictors (that has already

been phrased for the preceding models in this paper, and also applies to this model).

7.3. Summary of Results

7.3.1. Environmental Risk Effects

Environmental risk factors play an important role in the field of anorexia nervosa. This

was once again confirmed by the analysis in this paper.

Distressing events in the domains disruptive events, interpersonal problems, and family

dieting environment seem to induce an increased risk for a diagnosis of anorexia nervosa.

Furthermore, these environmental risk domains might interact with each other (as the odds

ratio multifactor dimensionality reduction revealed). Disruptive events and interpersonal

problems occurring conjointly might not be fully additive in their effects, as the risk does

not increase as much as predicted by the main effects (although only borderline significant).

On the other hand, when events of these two domains co-occur with an event of the parental

problem domain, the risk for anorexia nervosa increases more than anticipated.

Life-time severity (assessed by lowest body mass index) seems to be influenced by the

environmental domain of parental psychiatric disorder. More events in this domain seem

to lead to a lower body mass index, indicating a higher severity.

7.3.2. Effects of the 5-HT2A –1438 G/A Polymorphism

The analysis in this paper did not show a main effect of the 5-HT2A –1438 G/A poly-

morphism, concerning the risk for anorexia nervosa (the outcome of interest being the

diagnosis). This was shown with means of an association test, a conditional logistic regres-

sion model, and an odds ratio multifactor dimensionality reduction analysis.

The 5-HT2A –1438 G/A polymorphism does not seem to have an effect on the life-time

severity of anorexia nervosa. A linear regression model did not reveal any genetic effects

in the prediction of lowest body mass index.

The AA and AG genotype seem to delay the onset of anorexia nervosa. This was shown

in a linear regression analysis, after exclusion of an outlier. (The analysis also revealed

interaction effects, see section 7.3.3.)
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7.3.3. Interactions of Genetic and Environmental Factors

Although no main effect of the 5-HT2A –1438 G/A polymorphism could be found when

predicting the diagnosis (anorexia nervosa vs. no eating disorder), the analysis revealed an

interaction that was borderline significant. The AG genotype seems to act in a protective

way in the presence of distressing events in the family dieting domain. When distressed by

those events (like family fitness influences, parental eating disorders or obesity, dieting with

other family members before onset, or critical comments about shape, weight, or eating by

family and others), the risk for subjects with AG genotype is not as high as for subjects

with other genotypes.

Concerning the age of onset, the analysis revealed a significant interaction of the 5-HT2A

–1438 G/A polymorphism and environmental risk factors (after exclusion of an outlier).

For subjects with AA and AG genotypes, the presence of disruptive events does (almost)

not influence the age of onset of anorexia nervosa, compared to subjects with GG genotype

that experience distress in this environmental domain (for them, a later onset correlates

with more distressing events).

This might be surprising, as the AA genotype has been found to delay the onset as a

main effect. But viewed in a wider context, this may not be as unrealistic as it seems. If

a certain genetic configuration would only have negative effects, it would most likely be

very rare. Individuals with that unfavorable genotype would be disadvantaged (from a

evolutionary standpoint), and therefore the frequency of that genotype or the respective

allele could be expected to be very low. As this is not the case for the –1438 A allele or AA

genotype, the fact that this genotype can also act protectively might not be as startling as

initially thought.

7.4. The Odds Ratio Multifactor Dimensionality Reduction

Method

The odds ratio multifactor dimensionality reduction method certainly has some advantages

(which have already been mentioned in section 4.4.4). It is non-parametric and model-free

(no genetic model is assumed). Most of all, it facilitates the simultaneous detection of

high-order interactions among genetic and environmental factors.

A major point of criticism of the odds ratio multifactor dimensionality reduction method

is the fact that the results cannot be easily interpreted. There are three facets that con-

tribute to this problem. First, the model is not easy to disentangle. A reported four-way
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interaction might consist of two separate two-way interactions, a two-way interaction and

two separate main effects, or some other combination. With the results of the OR MDR

method alone, this cannot be judged satisfactorily.

Second, the odds ratios reported by the OR MDR method are unorthodox. They do not

represent an increase or decrease in risk relative to a specific reference category, but only an

increased ratio of cases to controls (in a certain combination of risk factors) in relation to

the case–control ratio in the whole sample. This may not be a severe problem for finding

gene–gene interactions, but in case of interactions that only include environmental risk

factors it is nonetheless awkward. Speaking of a “reduced” risk in a combination of zero

exposure to two risk factors seems, in this context, inappropriate.

The third issue that complicates interpretation is the fact that the models for two, three

and four factors (and all other computed models) are only reported separately. This makes

a combined interpretation almost impossible. It can easily be judged which model is the

better one by interpreting the prediction error, but how the findings of the models interact

may not be judged by the means of the OR MDR method.

A criticism that does not only apply to OR MDR but also to conditional logistic regres-

sion analysis is that false positives and false negatives findings are possible when sample

size is small. This is especially grave when only MDR is used. With the OR MDR method,

the size of the odds ratio confidence intervals can reveal how assured the effect of a combi-

nation of risk factors is, but in order to obtain small confidence intervals, the sample size

seems to have to be relatively big (especially when the number of predictors is high).

It has to be noted that the OR MDR method is a data-mining strategy. This means that

it is predominantly used for exploratory data analysis. For this purpose it seems highly

valuable, because it can identify (possible) interaction effects more easily than a regression

model.

For interpretation, it has several limitations. In the author’s opinion it is best to use a

conditional logistic regression model that includes the interaction effects revealed by the

MDR method to facilitate the understanding of the reported results.

7.5. Summary of Criticism and Suggestions for Future Research

Like any other empiric study, the analysis in this paper is subject to limitations and

criticism. Some of the aspects have already been mentioned above. This section will

attempt to give a summary, and will also suggest some improvements for future research.

To begin at a very basic level, the assessment of environmental risk factors is of major
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importance for the results of the analysis and their interpretation. Although the Oxford

Risk Factor Interview (ORFI) is a well-recognized instrument in the field of risk factor

research in eating disorders, it seems questionable whether the impact of the various events

in the subdomains is of equal importance. This could be assessed by means of a Rasch

model.

Furthermore it is well-known that a (forced) dichotomous response (yes/no) yields a

number of problems. This“forced choice”does not allow any nuances in the response, which

might lead to the measure being biased by the phenomenon of reactance. This criticism

could be diminished by the fact that the ORFI is conducted by a trained researcher and that

this researcher judged whether the event or circumstance was distressing for the individual

(which might also be criticized). Still, it might be beneficial to assess the influence of

environmental risk on a finer scale (e. g. a Likert scale).

At a more technical level, criticism might be aroused by the assumptions of the regression

models. Here, the environmental predictors are postulated to act in a linear fashion. Each

event in an environmental domain is presumed to increase the risk by the same amount.

This assumption is, clearly, unrealistic. It still can serve as a first approximation, but other

models may be advantageous.

Moreover, exposure to a large number of distressing environmental risk events is not

especially common. This means both that the model is highly influenced by subjects that

show high exposure, and that the model does not predict well for high exposures.

The scores for the environmental risk factors could be recoded, as has been done for the

odds ratio multifactor dimensionality reduction. Of course, such recoding is always more

or less arbitrary and can also be criticized.

Future studies should also take into account that the effect of the 5-HT2A –1438 G/A

polymorphism might only be related to the subgroup of patients with restricting-type

anorexia nervosa. This is especially important when predicting the disease status (diagno-

sis). The sample in this paper was too small to conduct a separate analysis on this subset

of patients. Generally it has to be said that the results in this study are quite speculative,

as the sample size is relatively small.

The regression model for predicting the age of onset revealed an outlier that influenced

the model severely. In this paper, the outlier was excluded. It would be beneficial to repeat

the analysis in a different sample.

It was already mentioned in this paper that the use of a categorial outcome measure

(disease status: diagnosis of anorexia nervosa vs. no eating disorder) is not favorable.

Heterogeneity may cloud some genetic effects. For future research it could be advantageous
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to use a continuous measure of outcome.

Another approach of future research might be to investigate underlying personality traits

(like perfectionism, obsessionality, harm avoidance, or reward dependence). It is highly

probable that genetic variations do not influence disease status in a direct fashion. These

personality traits (that are risk factors for anorexia nervosa) might be a link in the causal

chain.

One last point of criticism applies to every empiric study. The reported significant

effects might by false positives, resulting from type I errors. In the field of molecular

genetic research, false positives (and also false negatives) are extremely common, because

the effects of one single genetic polymorphism are usually very small. It is the task of

future research to replicate the findings in this paper, or to dismiss them as false positives.
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A. R Code

A.1. Libraries, Data Preperations, and Functions

###################################################

### chunk number 1 : preamble

###################################################

l ibrary ( f o r e i g n )

l ibrary ( s u r v i v a l ) # c l o g i t

l ibrary (MASS) # stepAIC

l ibrary ( x tab l e ) # LaTeX−Tabe l l en

l ibrary (UsingR )

l ibrary ( car ) # recode

l ibrary ( lmtes t )

l ibrary ( exactRankTests )

#workdir <− ”E:/Uni−Psycho/Diplomarbei t/Projek t 5ht2a Esstoerung/Auswertung/”

# Memory S t i c k Uni

workdir <− ”G:/Uni−Psycho/Diplomarbeit/Projekt 5ht2a Esstoerung/Auswertung/”

# Memory S t i c k zu Hause

#workdir <− ”D:/ new/Uni−Psycho/Diplomarbei t/Projek t 5ht2a Esstoerung/Auswertung/”

# zu Hause

o r i g d a t f i l e <− paste ( workdir , ”5ht2a−data−v006−q . csv ” , sep = ””) # Daten noch im

”abhängigen ” Format , zur Kontro l l e der Variab len

f i l ename <− paste ( workdir , ”5ht2a−data−v007−q . csv ” , sep = ””) # Daten f ü r l o g .

Reg

o r i gda t <− read . csv2 ( o r i g d a t f i l e )

names( o r i gda t ) <− to lower (names( o r i gda t ) )

dat <− read . csv2 ( f i l ename )

names( dat ) <− to lower (names( dat ) )

## =============================================================================

## Er s t e l l e n der d i cho tomi s i e r t en Variab len f ü r Umweltfaktoren

## =============================================================================

# e v t l . schon be i der Datenaufbere i tung ?? und im Fi l e spe ichern ?

envdom1d <− as . integer ( dat$envdom1 > 0)

envdom2d <− as . integer ( dat$envdom2 > 0)
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envdom3d <− as . integer ( dat$envdom3 > 0)

envdom4d <− as . integer ( dat$envdom4 > 0)

envdom5d <− as . integer ( dat$envdom5 > 0)

envdomtd <− as . integer ( dat$envdomt > 0)

envdom1dm <− as . integer ( dat$envdom1 > median( dat$envdom1) )

envdom2dm <− as . integer ( dat$envdom2 > median( dat$envdom2) )

envdom3dm <− as . integer ( dat$envdom3 > median( dat$envdom3) )

envdom4dm <− as . integer ( dat$envdom4 > median( dat$envdom4) )

envdom5dm <− as . integer ( dat$envdom5 > median( dat$envdom5) )

envdomtdm <− as . integer ( dat$envdomt > median( dat$envdomt ) )

dat <− data . frame ( dat , envdom1d , envdom2d , envdom3d , envdom4d , envdom5d , envdomtd ,

envdom1dm , envdom2dm , envdom3dm , envdom4dm , envdom5dm , envdomtdm)

rm( envdom1d , envdom2d , envdom3d , envdom4d , envdom5d , envdomtd , envdom1dm , envdom2dm ,

envdom3dm , envdom4dm , envdom5dm , envdomtdm)

nomisdat <− subset ( dat , dat$gencompl ) #89

or ignomisdat <− subset ( or igdat , o r i gda t$gencompl )

ed1 <− nomisdat$envdom1

ed2 <− nomisdat$envdom2

ed3 <− nomisdat$envdom3

ed4 <− nomisdat$envdom4

ed5 <− nomisdat$envdom5

edt <− nomisdat$envdomt

gen <− factor ( nomisdat$ht2a1438 )

levels ( gen ) <− c ( ”GG” , ”AG” , ”AA”)

nomisdat <− data . frame ( nomisdat , gen , ed1 , ed2 , ed3 , ed4 , ed5 , edt )

s t rpa r <− function ( a , b , rda=2, rdb=2) {
a <− round( a , rda )

b <− round(b , rdb )

s1 <− as . character ( a )

s2 <− as . character (b)

return (paste ( a , ” ( ” , b , ”) ” , sep=””) )

}

s t r c h i t a b <− function ( c h i t e s t ob j , c r =2, pr=5) {
c1 <− as . character (round( c h i t e s t o b j$ s t a t i s t i c , c r ) )

c2 <− as . character (round( c h i t e s t o b j$parameter , 0) )

c3 <− as . character (round( c h i t e s t o b j$p . value , pr ) )

return (c ( c1 , c2 , c3 ) )

}

recode <−
function (var , recodes , as . factor . r e s u l t , levels )

{
recode . l i s t <− rev ( s trsp l i t ( recodes , ” ; ”) [ [ 1 ] ] )

i s . f a c <− i s . factor (var )
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i f (missing (as . factor . r e s u l t ) )

as . factor . r e s u l t <− i s . f a c

i f ( i s . f a c )

var <− as . character (var )

r e s u l t <− var

i f ( i s .numeric (var ) ) {
l o <− min(var , na .rm = TRUE)

hi <− max(var , na .rm = TRUE)

}
for ( term in recode . l i s t ) {

i f (0 < length (grep ( ” : ” , term ) ) ) {
range <− s trsp l i t ( s trsp l i t ( term , ”=”) [ [ 1 ] ] [ 1 ] , ” : ”)

low <− eval (parse ( text = range [ [ 1 ] ] [ 1 ] ) )

high <− eval (parse ( text = range [ [ 1 ] ] [ 2 ] ) )

t a r g e t <− eval (parse ( text = s trsp l i t ( term , ”=”) [ [ 1 ] ] [ 2 ] ) )

r e s u l t [ ( var >= low ) & (var <= high ) ] <− t a r g e t

}
else i f (0 < length (grep ( ” e l s e ” , term ) ) ) {

t a r g e t <− eval (parse ( text = s trsp l i t ( term , ”=”) [ [ 1 ] ] [ 2 ] ) )

r e s u l t [ 1 : length (var ) ] <− t a r g e t

}
else {

set <− eval (parse ( text = s trsp l i t ( term , ”=”) [ [ 1 ] ] [ 1 ] ) )

t a r g e t <− eval (parse ( text = s trsp l i t ( term , ”=”) [ [ 1 ] ] [ 2 ] ) )

for ( va l in set ) {
i f ( i s .na( va l ) )

r e s u l t [ i s .na(var ) ] <− t a r g e t

else r e s u l t [ var == val ] <− t a r g e t

}
}

}
i f (as . factor . r e s u l t ) {

r e s u l t <− i f ( !missing ( levels ) )

factor ( r e su l t , levels = levels )

else as . factor ( r e s u l t )

}
else i f ( ! i s .numeric ( r e s u l t ) ) {

r e s u l t . v a l i d <− na . omit ( r e s u l t )

save . warn <− options (warn=2)

r e s <− try ( i f ( length ( r e s u l t . v a l i d ) == length (grep ( ”[0−9] ” ,

r e s u l t . v a l i d ) ) )

as .numeric ( r e s u l t ) , s i l e n t=TRUE)

r e s u l t <− i f ( class ( r e s ) == ”try−e r r o r ” | | i s . null ( r e s ) ) r e s u l t

else r e s

options ( save . warn )

}
r e s u l t

}

AIC . s e l f <− function (mod) return(−2*mod$ l o g l i k [ 2 ] + 2* length (mod$coef f ic ients ) )
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eta <− function ( aovobj ) {
SS <− anova( aovobj )$”Sum Sq”

return (SS [ 1 ] /sum(SS ) ) #SS fa c t o r N/SS Total

}
condregtab <− function ( coxpho ) {

taba <− summary( coxpho )$coef

tabb <− summary( coxpho )$conf . i n t

s i g <− as . integer ( taba [ , 5 ] < 0 . 05 )

s i g <− recode ( s ig , ”0= ' ' ;1= ' * ' ”)

#tab <− cbind ( taba [ , c (1 ,2 ,3) ] , tabb [ , c (3 ,4) ] , taba [ , 5 ] )

tabtmp <− cbind ( taba [ , c ( 1 , 2 , 3 ) ] , tabb [ , c ( 3 , 4 ) ] , taba [ , 5 ] )

tab <− cbind (

format ( tabtmp [ , 1 ] , d i g i t s =3, s c i e n t i f i c=FALSE) , # coe f

format ( tabtmp [ , 2 ] , d i g i t s =3, s c i e n t i f i c=FALSE) , # exp ( coe f )

format ( tabtmp [ , 3 ] , d i g i t s =3, s c i e n t i f i c=FALSE) , # se ( coe f )

format ( tabtmp [ , 4 ] , d i g i t s =3, s c i e n t i f i c=FALSE) , # lower .95 CI o f exp ( coe f )

format ( tabtmp [ , 5 ] , d i g i t s =3, s c i e n t i f i c=FALSE) , # upper .95 CI o f exp ( coe f )

format ( tabtmp [ , 6 ] , d i g i t s =5, s c i e n t i f i c=FALSE) ) # p−va lue

tab <− cbind ( tab , s i g )

rownames( tab ) <− rownames( taba )

colnames ( tab ) <− c ( ”$\\hat \\ beta$” , ”OR” , ”SE($\\hat \\ beta$ ) ” , ”OR\\ subscr { lower

.95} ” , ”OR\\ subscr {upper .95} ” , ”$p$ value ” , ” ”)

return ( tab )

}

l i n r e g t ab <− function ( lmo ) {
tmptab <− summary( lmo )$coef f ic ients

s i g <− as . integer ( tmptab [ , 4 ] < 0 . 05 )

s i g <− recode ( s ig , ”0= ' ' ;1= ' * ' ”)

tab <− cbind (

format ( tmptab [ , 1 ] , d i g i t s =3) ,

format ( tmptab [ , 2 ] , d i g i t s =3) ,

format ( tmptab [ , 3 ] , d i g i t s =3) ,

format ( tmptab [ , 4 ] , d i g i t s =10, s c i e n t i f i c=FALSE)

)

tab [ , 4 ] <− substr ( tab [ , 4 ] , 0 , 7)

tab [ , 4 ] <− recode ( tab [ , 4 ] , ” '0.00000 '= '<0.0001 ' ”)

tab <− cbind ( tab , s i g )

colnames ( tab ) <− c ( ”$\\hat \\ beta$” , ”Std . Error ” , ”$ t$ value ” , ”$p$ value ” , ” ”)

return ( tab )

}

l r t e s t . s e l f <− function ( simp , comp) {
ch i sq <− abs(−2* ( simp$ l o g l i k [ 2 ] − comp$ l o g l i k [ 2 ] ) )

dfd <− length (comp$coef f ic ients ) − length ( simp$coef f ic ients )

l r t . p <− pchisq ( chisq , abs ( dfd ) , lower . t a i l=FALSE)

return (c ( chisq , dfd , l r t . p ) )

}

A.2. Description of Sample
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###################################################

### chunk number 2 : samp les i ze

###################################################

n . ca s e s . a l l <− length ( dat$uniq id [ dat$outcome==1])

n . cont . a l l <− length ( dat$uniq id [ dat$outcome==0])

n . ca s e s <− length ( nomisdat$uniq id [ nomisdat$outcome==1])

n . cont <− length ( nomisdat$uniq id [ nomisdat$outcome==0])

n . ca s e s . london <− length ( nomisdat$uniq id [ ( nomisdat$outcome==1) & ( nomisdat$ cent id

==1) ] )

n . c a s e s . vienna <− length ( nomisdat$uniq id [ ( nomisdat$outcome==1) & ( nomisdat$ cent id

==2) ] )

n . c a s e s . spa in <− length ( nomisdat$uniq id [ ( nomisdat$outcome==1) & ( nomisdat$ cent id==3)

] )

n . anr <− length ( nomisdat$uniq id [ nomisdat$psdiag2==1])

n . anbp <− length ( nomisdat$uniq id [ nomisdat$psdiag2==2])

n . anr . london <− length ( nomisdat$uniq id [ ( nomisdat$psdiag2==1) & ( nomisdat$ cent id==1)

] )

n . anr . vienna <− length ( nomisdat$uniq id [ ( nomisdat$psdiag2==1) & ( nomisdat$ cent id==2)

] )

n . anr . spa in <− length ( nomisdat$uniq id [ ( nomisdat$psdiag2==1) & ( nomisdat$ cent id==3) ] )

n . anbp . london <− length ( nomisdat$uniq id [ ( nomisdat$psdiag2==2) & ( nomisdat$ cent id==1)

] )

n . anbp . vienna <− length ( nomisdat$uniq id [ ( nomisdat$psdiag2==2) & ( nomisdat$ cent id==2)

] )

n . anbp . spa in <− length ( nomisdat$uniq id [ ( nomisdat$psdiag2==2) & ( nomisdat$ cent id==3)

] )

###################################################

### chunk number 3 : samp les i ze . tab

###################################################

tab <− rbind (

c (n . anr . london , n . anbp . london , n . ca s e s . london ) ,

c (n . anr . vienna , n . anbp . vienna , n . ca s e s . vienna ) ,

c (n . anr . spain , n . anbp . spain , n . c a s e s . spa in ) ,

c (n . anr , n . anbp , n . ca s e s ) )

rownames( tab ) <− c ( ”London” , ”Vienna ” , ”Barcelona ” , ”Total ”)

colnames ( tab ) <− c ( ”AN−R” , ”AN−BP” , ”AN ( t o t a l ) ”)

print ( x tab l e ( tab , l a b e l=”tab . n” , capt ion=”Sample s i z e per c ente r and diagnose ”) ) #

a l i gn = ; s a n i t i z e . t e x t . f unc t i on = func t ion ( x ) x
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###################################################

### chunk number 4 : age

###################################################

age . c a s e s .mean <− mean( nomisdat$p1age [ nomisdat$outcome==1] , na .rm=TRUE)

age . cont .mean <− mean( nomisdat$p1age [ nomisdat$outcome==0] , na .rm=TRUE)

age . ca s e s .min <− min( nomisdat$p1age [ nomisdat$outcome==1] , na .rm=TRUE)

age . ca s e s .max <− max( nomisdat$p1age [ nomisdat$outcome==1] , na .rm=TRUE)

age . cont .min <− min( nomisdat$p1age [ nomisdat$outcome==0] , na .rm=TRUE)

age . cont .max <− max( nomisdat$p1age [ nomisdat$outcome==0] , na .rm=TRUE)

age . ca s e s . sd <− sd ( nomisdat$p1age [ nomisdat$outcome==1] , na .rm=TRUE)

age . cont . sd <− sd ( nomisdat$p1age [ nomisdat$outcome==0] , na .rm=TRUE)

age . d i f f .mean <− mean( or ignomisdat$p1age − or ignomisdat$p1ages , na .rm=TRUE)

age . d i f f . sd <− sd ( or ignomisdat$p1age − or ignomisdat$p1ages , na .rm=TRUE)

###################################################

### chunk number 5 : f i g a g e

###################################################

s imple . hist . and . boxplot ( or ignomisdat$p1age − or ignomisdat$p1ages ,

main=NULL,

breaks=seq ( from=−15, to=10, by=2) )

###################################################

### chunk number 6 : edu

###################################################

momedu <− factor ( or ignomisdat$a33 ) # mother ' s h i g h e s t educat ion

levels (momedu) <− c ( ”primary schoo l ” , ” p r o f e s s i o n a l degree ” , ”secondary degree ” , ”

un i v e r s i t y degree ”)

dadedu <− factor ( or ignomisdat$a30 )

levels ( dadedu ) <− c ( ”primary schoo l ” , ” p r o f e s s i o n a l degree ” , ”secondary degree ” , ”

un i v e r s i t y degree ”)

momage .mean <− mean( o r i gda t$a11 , na .rm=TRUE)

momage . sd <− sd ( o r i gda t$a11 , na .rm=TRUE)

dadage .mean <− mean( o r i gda t$a12 , na .rm=TRUE)

dadage . sd <− sd ( o r i gda t$a12 , na .rm=TRUE)

tab <− rbind (prop . table ( table (momedu) ) , prop . table ( table ( dadedu ) ) )

rownames( tab ) <− c ( ”Mother ” , ”Father ”)

print ( x tab l e ( tab , l a b e l=”tab : edu ” , capt ion=”Highest educat ion l e v e l s o f parents ” ,

d i g i t s = 3) )

###################################################

### chunk number 7 : edre la tedaon

###################################################
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# Age of Onset

aon . ca s e s .mean <− mean( nomisdat$psedon [ nomisdat$outcome==1] , na .rm=TRUE)

aon . ca s e s . sd <− sd ( nomisdat$psedon [ nomisdat$outcome==1] , na .rm=TRUE)

aon . anr .mean <− mean( nomisdat$psedon [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

aon . anr . sd <− sd ( nomisdat$psedon [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

aon . anr .min <− min( nomisdat$psedon [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

aon . anr .max <− max( nomisdat$psedon [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

aon . anbp .mean <− mean( nomisdat$psedon [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

aon . anbp . sd <− sd ( nomisdat$psedon [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

aon . anbp .min <− min( nomisdat$psedon [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

aon . anbp .max <− max( nomisdat$psedon [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

tmp <− subset ( nomisdat , psdiag2 != 0)

psedon . stat <− wi lcox . t e s t (tmp$psedon , tmp$psdiag2 )$ s t a t i s t i c

psedon . p <− wi lcox . t e s t (tmp$psedon , tmp$psdiag2 )$p . va lue

###################################################

### chunk number 8 : edre l a t eddur

###################################################

# Duration o f i l l n e s s

dur . ca s e s .mean <− mean( nomisdat$dur [ nomisdat$outcome==1] , na .rm=TRUE)

dur . c a s e s . sd <− sd ( nomisdat$dur [ nomisdat$outcome==1] , na .rm=TRUE)

dur . anr .mean <− mean( nomisdat$dur [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

dur . anr . sd <− sd ( nomisdat$dur [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

dur . anbp .mean <− mean( nomisdat$dur [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

dur . anbp . sd <− sd ( nomisdat$dur [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

tmp <− subset ( nomisdat , psdiag2 != 0)

dur . stat <− wi lcox . t e s t (tmp$dur , tmp$psdiag2 )$ s t a t i s t i c

dur . p <− wi lcox . t e s t (tmp$dur , tmp$psdiag2 )$p . va lue

###################################################

### chunk number 9 : f i gduraon

###################################################

#Age of Onset + Duration o f I l l n e s s − Boxp lo ts

par (mfrow=c ( 1 , 2 ) )

boxplot ( nomisdat$psedon [ nomisdat$outcome==1] ˜ nomisdat$psdiag2 [ nomisdat$outcome

==1] , col=”gray ” , names=c ( ”AN−R” , ”AN−BP”) , main=”Age o f onset ”)

boxplot ( nomisdat$dur [ nomisdat$outcome==1] ˜ nomisdat$psdiag2 [ nomisdat$outcome==1] ,

col=”gray ” , names=c ( ”AN−R” , ”AN−BP”) , main=”Duration o f i l l n e s s ”)

###################################################

### chunk number 10: edre la tedbmi

###################################################
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#Body Mass Index (BMI) − current

bmi . cur . c a s e s .mean <− mean( nomisdat$p1cbmi [ nomisdat$outcome==1] , na .rm=TRUE)

bmi . cur . c a s e s . sd <− sd ( nomisdat$p1cbmi [ nomisdat$outcome==1] , na .rm=TRUE)

bmi . cur . anr .mean <− mean( nomisdat$p1cbmi [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

bmi . cur . anr . sd <− sd ( nomisdat$p1cbmi [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

bmi . cur . anbp .mean <− mean( nomisdat$p1cbmi [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

bmi . cur . anbp . sd <− sd ( nomisdat$p1cbmi [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

bmi . cur . cont .mean <− mean( nomisdat$p1cbmi [ nomisdat$outcome==0] , na .rm=TRUE)

bmi . cur . cont . sd <− sd ( nomisdat$p1cbmi [ nomisdat$outcome==0] , na .rm=TRUE)

#Body Mass Index (BMI) − l owes t

bmi . low . ca s e s .mean <− mean( nomisdat$p2lbmi [ nomisdat$outcome==1] , na .rm=TRUE)

bmi . low . ca s e s . sd <− sd ( nomisdat$p2lbmi [ nomisdat$outcome==1] , na .rm=TRUE)

bmi . low . anr .mean <− mean( nomisdat$p2lbmi [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

bmi . low . anr . sd <− sd ( nomisdat$p2lbmi [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

bmi . low . anbp .mean <− mean( nomisdat$p2lbmi [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

bmi . low . anbp . sd <− sd ( nomisdat$p2lbmi [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

bmi . low . cont .mean <− mean( nomisdat$p2lbmi [ nomisdat$outcome==0] , na .rm=TRUE)

bmi . low . cont . sd <− sd ( nomisdat$p2lbmi [ nomisdat$outcome==0] , na .rm=TRUE)

#Body Mass Index (BMI) − h i g h e s t

bmi . high . ca s e s .mean <− mean( nomisdat$p5hbmi [ nomisdat$outcome==1] , na .rm=TRUE)

bmi . high . ca s e s . sd <− sd ( nomisdat$p5hbmi [ nomisdat$outcome==1] , na .rm=TRUE)

bmi . high . anr .mean <− mean( nomisdat$p5hbmi [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

bmi . high . anr . sd <− sd ( nomisdat$p5hbmi [ nomisdat$psdiag2 ==1] , na .rm=TRUE)

bmi . high . anbp .mean <− mean( nomisdat$p5hbmi [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

bmi . high . anbp . sd <− sd ( nomisdat$p5hbmi [ nomisdat$psdiag2 ==2] , na .rm=TRUE)

bmi . high . cont .mean <− mean( nomisdat$p5hbmi [ nomisdat$outcome==0] , na .rm=TRUE)

bmi . high . cont . sd <− sd ( nomisdat$p5hbmi [ nomisdat$outcome==0] , na .rm=TRUE)

kw <− kruska l . t e s t ( nomisdat$p1cbmi ˜ factor ( nomisdat$psdiag2 ) )

kw . cbmi . stat <− kw$ s t a t i s t i c

kw . cbmi . df <− kw$parameter

kw . cbmi . p <− kw$p . va lue

tmp <− subset ( nomisdat , psdiag2 != 0)

wi l cox <− wi lcox . exact (tmp$p1cbmi ˜ factor (tmp$psdiag2 ) )

wi l cox . cbmi . stat <− wi lcox$ s t a t i s t i c

wi l cox . cbmi . p <− wi lcox$p . va lue

kw <− kruska l . t e s t ( nomisdat$p2lbmi ˜ factor ( nomisdat$psdiag2 ) )

kw . lbmi . stat <− kw$ s t a t i s t i c
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kw . lbmi . df <− kw$parameter

kw . lbmi . p <− kw$p . va lue

wi l cox <− wi lcox . exact (tmp$p2lbmi ˜ factor (tmp$psdiag2 ) )

wi l cox . lbmi . stat <− wi lcox$ s t a t i s t i c

wi l cox . lbmi . p <− wi lcox$p . va lue

###################################################

### chunk number 11: f i g bmi

###################################################

par (mfrow=c ( 1 , 3 ) )

boxplot ( nomisdat$p2lbmi ˜ nomisdat$psdiag2 , col=”gray ” , main=”Lowest ” , names=c ( ”

c on t r o l s ” , ”AN−R” , ”AN−BP”) , l a s =3, ylim=c (10 ,35) )

boxplot ( nomisdat$p1cbmi ˜ nomisdat$psdiag2 , col=”gray ” , main=”Current ” , names=c ( ”

c on t r o l s ” , ”AN−R” , ”AN−BP”) , l a s =3, ylim=c (10 ,35) )

boxplot ( nomisdat$p5hbmi ˜ nomisdat$psdiag2 , col=”gray ” , main=”Highest ” , names=c ( ”

c on t r o l s ” , ”AN−R” , ”AN−BP”) , l a s =3, ylim=c (10 ,35) )

###################################################

### chunk number 12: bmitab

###################################################

tab <− rbind (

c ( s t rpa r (bmi . low . anr .mean, bmi . low . anr . sd ) , s t rpa r (bmi . low . anbp .mean, bmi . low . anbp .

sd ) , s t rpa r (bmi . low . ca s e s .mean, bmi . low . ca s e s . sd ) , s t rpa r (bmi . low . cont .mean, bmi

. low . cont . sd ) ) ,

c ( s t rpa r (bmi . cur . anr .mean, bmi . cur . anr . sd ) , s t rpa r (bmi . cur . anbp .mean, bmi . cur . anbp .

sd ) , s t rpa r (bmi . cur . c a s e s .mean, bmi . cur . c a s e s . sd ) , s t rpa r (bmi . cur . cont .mean, bmi

. cur . cont . sd ) ) ,

c ( s t rpa r (bmi . high . anr .mean, bmi . high . anr . sd ) , s t rpa r (bmi . high . anbp .mean, bmi . high .

anbp . sd ) , s t rpa r (bmi . high . ca s e s .mean, bmi . high . c a s e s . sd ) , s t rpa r (bmi . high . cont .

mean, bmi . high . cont . sd ) ) )

rownames( tab ) <− c ( ” lowest BMI” , ”cur rent BMI” , ”h i ghe s t BMI”)

colnames ( tab ) <− c ( ”AN−R” , ”AN−BP” , ”AN ( t o t a l ) ” , ” c on t r o l s ”)

print ( x tab l e ( tab , l a b e l=”tab : bmi” , capt ion=”Body Mass Index ”) ) #a l i gn = ; s a n i t i z e .

t e x t . f unc t i on = func t ion ( x ) x

###################################################

### chunk number 13: edexptab

###################################################

edmean <− rbind (

unlist ( lapply ( sp l i t ( nomisdat$ed1 , nomisdat$psdiag2 ) , mean, na .rm=TRUE) ) ,

unlist ( lapply ( sp l i t ( nomisdat$ed2 , nomisdat$psdiag2 ) , mean, na .rm=TRUE) ) ,

unlist ( lapply ( sp l i t ( nomisdat$ed3 , nomisdat$psdiag2 ) , mean, na .rm=TRUE) ) ,

unlist ( lapply ( sp l i t ( nomisdat$ed4 , nomisdat$psdiag2 ) , mean, na .rm=TRUE) ) ,

unlist ( lapply ( sp l i t ( nomisdat$ed5 , nomisdat$psdiag2 ) , mean, na .rm=TRUE) ) ,

unlist ( lapply ( sp l i t ( nomisdat$edt , nomisdat$psdiag2 ) , mean, na .rm=TRUE) )
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)

edsd <− rbind (

unlist ( lapply ( sp l i t ( nomisdat$ed1 , nomisdat$psdiag2 ) , sd , na .rm=TRUE) ) ,

unlist ( lapply ( sp l i t ( nomisdat$ed2 , nomisdat$psdiag2 ) , sd , na .rm=TRUE) ) ,

unlist ( lapply ( sp l i t ( nomisdat$ed3 , nomisdat$psdiag2 ) , sd , na .rm=TRUE) ) ,

unlist ( lapply ( sp l i t ( nomisdat$ed4 , nomisdat$psdiag2 ) , sd , na .rm=TRUE) ) ,

unlist ( lapply ( sp l i t ( nomisdat$ed5 , nomisdat$psdiag2 ) , sd , na .rm=TRUE) ) ,

unlist ( lapply ( sp l i t ( nomisdat$edt , nomisdat$psdiag2 ) , sd , na .rm=TRUE) )

)

edmean . to t <− c (

mean( nomisdat$ed1 [ nomisdat$outcome==1] , na .rm=TRUE) ,

mean( nomisdat$ed2 [ nomisdat$outcome==1] , na .rm=TRUE) ,

mean( nomisdat$ed3 [ nomisdat$outcome==1] , na .rm=TRUE) ,

mean( nomisdat$ed4 [ nomisdat$outcome==1] , na .rm=TRUE) ,

mean( nomisdat$ed5 [ nomisdat$outcome==1] , na .rm=TRUE) ,

mean( nomisdat$edt [ nomisdat$outcome==1] , na .rm=TRUE)

)

edsd . to t <− c (

sd ( nomisdat$ed1 [ nomisdat$outcome==1] , na .rm=TRUE) ,

sd ( nomisdat$ed2 [ nomisdat$outcome==1] , na .rm=TRUE) ,

sd ( nomisdat$ed3 [ nomisdat$outcome==1] , na .rm=TRUE) ,

sd ( nomisdat$ed4 [ nomisdat$outcome==1] , na .rm=TRUE) ,

sd ( nomisdat$ed5 [ nomisdat$outcome==1] , na .rm=TRUE) ,

sd ( nomisdat$edt [ nomisdat$outcome==1] , na .rm=TRUE)

)

edtab <− cbind (

s t rpa r ( edmean [ , 2 ] , edsd [ , 2 ] ) ,

s t rpa r ( edmean [ , 3 ] , edsd [ , 3 ] ) ,

s t rpa r ( edmean . tot , edsd . to t ) ,

s t rpa r ( edmean [ , 1 ] , edsd [ , 1 ] )

)

colnames ( edtab ) <− c ( ”AN−R” , ”AN−BP” , ”AN ( t o t a l ) ” , ” c on t r o l s ”)

rownames( edtab ) <− c ( ”Parenta l problems ($ed1$ ) ” , ”Di s rupt ive events ($ed2$ ) ” , ”

Parenta l psych . d i s o rd e r ($ed3$ ) ” , ” I n t e r p e r s ona l problems ($ed4$ ) ” , ”Family

d i e t i n g env . ($ed5$ ) ” , ”Total ($edt$ ) ”)

print ( x tab l e ( edtab , l a b e l=”tab . edexp ” , capt ion=”Environmental r i s k exposure ”) , table

. placement=” ! ht ” , s a n i t i z e . text . function = function ( x ) x )

###################################################

### chunk number 14: f i g edexp1

###################################################

par (mfrow=c ( 1 , 3 ) )

boxplot ( nomisdat$ed1 ˜ nomisdat$psdiag2 , col=”gray ” , main=”Parenta l problems\n( ed1 ) ”

, names=c ( ” c on t r o l s ” , ”AN−R” , ”AN−BP”) , l a s =3, ylim=c ( 0 , 8 ) )
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boxplot ( nomisdat$ed2 ˜ nomisdat$psdiag2 , col=”gray ” , main=”Dis rupt ive events \n( ed2 ) ”

, names=c ( ” c on t r o l s ” , ”AN−R” , ”AN−BP”) , l a s =3, ylim=c ( 0 , 8 ) )

boxplot ( nomisdat$ed3 ˜ nomisdat$psdiag2 , col=”gray ” , main=”Parenta l psych . d i s o rd e r \
n( ed3 ) ” , names=c ( ” c on t r o l s ” , ”AN−R” , ”AN−BP”) , l a s =3, ylim=c ( 0 , 8 ) )

###################################################

### chunk number 15: f i g edexp2

###################################################

par (mfrow=c ( 1 , 3 ) )

boxplot ( nomisdat$ed4 ˜ nomisdat$psdiag2 , col=”gray ” , main=”In t e rp e r s ona l problems\n(

ed4 ) ” , names=c ( ” c on t r o l s ” , ”AN−R” , ”AN−BP”) , l a s =3, ylim=c ( 0 , 8 ) )

boxplot ( nomisdat$ed5 ˜ nomisdat$psdiag2 , col=”gray ” , main=”Family d i e t i n g

environment\n( ed5 ) ” , names=c ( ” c on t r o l s ” , ”AN−R” , ”AN−BP”) , l a s =3, ylim=c ( 0 , 8 ) )

boxplot ( nomisdat$edt ˜ nomisdat$psdiag2 , col=”gray ” , main=”Total \n( edt ) ” , names=c ( ”

c on t r o l s ” , ”AN−R” , ”AN−BP”) , l a s =3)

###################################################

### chunk number 16: edcor tab

###################################################

edcor <− format ( cor ( nomisdat [ 7 2 : 7 6 ] ) , d i g i t s =3, s c i e n t i f i c=FALSE)

print ( x tab l e ( edcor , l a b e l=”tab . edcor ” , capt ion=”Environmental domain c o r r e l a t i o n s ” ,

a l i g n=” r r r r r r ”) ) #a l i gn = ; s a n i t i z e . t e x t . f unc t i on = func t ion ( x ) x

###################################################

### chunk number 17: a l l e l e f r e q t a b

###################################################

# cases and con t r o l s s e pa ra t e l y

tmp <− nomisdat$ht2a [ nomisdat$outcome==0]

abs f r eq . g <− sum(tmp == 11 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

abs f r eq . a <− sum(tmp == 22 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

cont . r e l f r e q . a <− abs f r eq . a / ( ab s f r eq . a+abs f r eq . g ) # 0.4213483

cont . r e l f r e q . g <− abs f r eq . g / ( ab s f r eq . a+abs f r eq . g )

# AN ( t o t a l )

tmp <− nomisdat$ht2a [ nomisdat$outcome==1]

abs f r eq . g <− sum(tmp == 11 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

abs f r eq . a <− sum(tmp == 22 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

case . r e l f r e q . a <− abs f r eq . a / ( ab s f r eq . a+abs f r eq . g ) # case . r e l f r e q . a

case . r e l f r e q . g <− abs f r eq . g / ( ab s f r eq . a+abs f r eq . g )

# AN−R
tmp <− nomisdat$ht2a [ nomisdat$psdiag2==1]

abs f r eq . g <− sum(tmp == 11 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

abs f r eq . a <− sum(tmp == 22 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

anr . r e l f r e q . a <− abs f r eq . a / ( ab s f r eq . a+abs f r eq . g ) # case . r e l f r e q . a

anr . r e l f r e q . g <− abs f r eq . g / ( ab s f r eq . a+abs f r eq . g )

# AN−BP
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tmp <− nomisdat$ht2a [ nomisdat$psdiag2==2]

abs f r eq . g <− sum(tmp == 11 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

abs f r eq . a <− sum(tmp == 22 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

anbp . r e l f r e q . a <− abs f r eq . a / ( ab s f r eq . a+abs f r eq . g ) # case . r e l f r e q . a

anbp . r e l f r e q . g <− abs f r eq . g / ( ab s f r eq . a+abs f r eq . g )

tab <− rbind (

c ( anr . r e l f r e q . a , anbp . r e l f r e q . a , case . r e l f r e q . a , cont . r e l f r e q . a ) ,

c ( anr . r e l f r e q . g , anbp . r e l f r e q . g , case . r e l f r e q . g , cont . r e l f r e q . g ) )

rownames( tab ) <− c ( ”A a l l e l e f requency ” , ”G a l l e l e f requency ”)

colnames ( tab ) <− c ( ”AN−R” , ”AN−BP” , ”AN ( t o t a l ) ” , ” c on t r o l s ”)

print ( x tab l e ( tab , l a b e l=”tab : a l l e l e f r e q ” , capt ion=”A l l e l e f r e qu en c i e s ” , d i g i t s = 3) )

#a l i gn = ; s a n i t i z e . t e x t . f unc t i on = func t ion ( x ) x

# Genotype f r e quenc i e s

tab <− rbind (

prop . table ( table ( nomisdat$ht2a1438 [ nomisdat$psdiag2==1]) ) , # AN−R
prop . table ( table ( nomisdat$ht2a1438 [ nomisdat$psdiag2==2]) ) , # AN−BP

prop . table ( table ( nomisdat$ht2a1438 [ nomisdat$outcome==1]) ) , # AN ( t o t a l )

prop . table ( table ( nomisdat$ht2a1438 [ nomisdat$outcome==0]) ) ) # con t r o l s

tab <− t ( tab )

rownames( tab ) <− c ( ”GG genotype f requency ” , ”AG genotype f requency ” , ”AA genotype

f requency ”)

colnames ( tab ) <− c ( ”AN−R” , ”AN−BP” , ”AN ( t o t a l ) ” , ” c on t r o l s ”)

print ( x tab l e ( tab , l a b e l=”tab : genotype f req ” , capt ion=”Genotype f r e qu en c i e s ” , d i g i t s =

3) ) #a l i gn = ; s a n i t i z e . t e x t . f unc t i on = func t ion ( x ) x

A.3. Hardy-Weinberg Equilibrium

###################################################

### chunk number 18: hw

###################################################

# 1=G ( cut ) , 2=A ( uncut )

abs f r eq . g <− sum( nomisdat$ht2a == 11 , na .rm=TRUE) *2 + sum( nomisdat$ht2a == 12 , na .rm

=TRUE)

abs f r eq . a <− sum( nomisdat$ht2a == 22 , na .rm=TRUE) *2 + sum( nomisdat$ht2a == 12 , na .rm

=TRUE)

r e l f r e q . a <− abs f r eq . a / ( ab s f r eq . a+abs f r eq . g ) # 0.4522613

r e l f r e q . g <− abs f r eq . g / ( ab s f r eq . a+abs f r eq . g ) # 0.5477387

prop . table ( table ( nomisdat$ht2a ) )

hw . gg <− r e l f r e q . gˆ2

hw. aa <− r e l f r e q . aˆ2
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hw. ga <− 2 * r e l f r e q . a * r e l f r e q . g

data . ab s f r eq <− table ( nomisdat$ht2a )

hw . abs f r eq <− c (hw . gg , hw . ga , hw . aa ) * length ( nomisdat$ht2a )

tab <− matrix (c (data . abs f req , hw . abs f r eq ) , nrow=3)

rownames( tab ) <− c ( ”GG genotype ” , ”AG genotype ” , ”AA genotype ”)

colnames ( tab ) <− c ( ”observed ” , ”expected ”)

chsq <− ch i sq . t e s t ( tab )

chsq . va l <− chsq$ s t a t i s t i c

chsq . df <− chsq$parameter

chsq . p <− chsq$p . va lue

###################################################

### chunk number 19: hwtab

###################################################

print ( x tab l e ( tab , l a b e l=”tab : hardy−weinberg ” , capt ion=”Observed and expected

genotype f r e qu en c i e s ”) ) #a l i gn = ; s a n i t i z e . t e x t . f unc t i on = func t ion ( x ) x

A.4. Association tests

###################################################

### chunk number 20: tabassoc

###################################################

## =============================================================================

## Assoc ia t ion o f A a l l e l e and AN

## =============================================================================

# 1=G ( cut ) , 2=A ( uncut )

# AN ( t o t a l ) vs . c on t r o l s

# con t r o l s

tmp <− nomisdat$ht2a [ nomisdat$outcome==0]

cont . ab s f r eq . g <− sum(tmp == 11 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

cont . ab s f r eq . a <− sum(tmp == 22 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

tmp <− nomisdat$ht2a [ nomisdat$outcome==1]

ca s e s . ab s f r eq . g <− sum(tmp == 11 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

ca s e s . ab s f r eq . a <− sum(tmp == 22 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

tab <− matrix (c ( ca s e s . ab s f r eq . a , c a s e s . ab s f r eq . g , cont . ab s f r eq . a , cont . ab s f r eq . g ) ,

nrow=2)

rownames( tab ) <− c ( ”A a l l e l e f requency ” , ”G a l l e l e f requency ”)

colnames ( tab ) <− c ( ”AN ( t o t a l ) ” , ” c on t r o l s ”)

ch i sq . a l l e l e . c a s e s <− ch i sq . t e s t ( tab ) # [ ? ]

proptab <− prop . table ( tab , 2)

147



A. R Code

prtab . ca s e s <− matrix (c ( s t rpa r ( tab [ 1 , 1 ] , proptab [ 1 , 1 ] , 0 , 3) , s t rpa r ( tab [ 1 , 2 ] ,

proptab [ 1 , 2 ] , 0 , 3) , s t rpa r ( tab [ 2 , 1 ] , proptab [ 2 , 1 ] , 0 , 3) , s t rpa r ( tab [ 2 , 2 ] ,

proptab [ 2 , 2 ] , 0 , 3) ) , nrow=2, byrow=TRUE)

rownames( prtab . ca s e s ) <− c ( ”A a l l e l e f requency ” , ”G a l l e l e f requency ”)

colnames ( prtab . ca s e s ) <− c ( ”AN ( t o t a l ) ” , ” c on t r o l s ”)

#pr in t ( x t a b l e ( pr tab . cases , l a b e l =”tab : a l l e l e a s s o c ” , capt ion=”A l l e l e f r equenc i e s , AN

( t o t a l ) vs . c on t r o l s ”) ) #a l i gn = ; s a n i t i z e . t e x t . f unc t ion = func t ion ( x ) x

# AN−R vs . c on t r o l s

tmp <− nomisdat$ht2a [ nomisdat$outcome==0]

cont . ab s f r eq . g <− sum(tmp == 11 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

cont . ab s f r eq . a <− sum(tmp == 22 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

tmp <− nomisdat$ht2a [ nomisdat$psdiag2==1] # an−r

anr . ab s f r eq . g <− sum(tmp == 11 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

anr . ab s f r eq . a <− sum(tmp == 22 , na .rm=TRUE) *2 + sum(tmp == 12 , na .rm=TRUE)

tab <− matrix (c ( anr . ab s f r eq . a , anr . ab s f r eq . g , cont . ab s f r eq . a , cont . ab s f r eq . g ) , nrow

=2)

rownames( tab ) <− c ( ”A a l l e l e f requency ” , ”G a l l e l e f requency ”)

colnames ( tab ) <− c ( ”AN−R” , ” c on t r o l s ”)

ch i sq . a l l e l e . anr <− ch i sq . t e s t ( tab ) # [ ? ]

proptab <− prop . table ( tab , 2)

prtab . anr <− matrix (c ( s t rpa r ( tab [ 1 , 1 ] , proptab [ 1 , 1 ] , 0 , 3) , s t rpa r ( tab [ 1 , 2 ] , proptab

[ 1 , 2 ] , 0 , 3) , s t rpa r ( tab [ 2 , 1 ] , proptab [ 2 , 1 ] , 0 , 3) , s t rpa r ( tab [ 2 , 2 ] , proptab

[ 2 , 2 ] , 0 , 3) ) , nrow=2, byrow=TRUE)

rownames( prtab . anr ) <− c ( ”A a l l e l e f requency ” , ”G a l l e l e f requency ”)

colnames ( prtab . anr ) <− c ( ”AN−R” , ” c on t r o l s ”)

prtab . ges <− cbind ( prtab . ca s e s [ , 1 ] , prtab . anr )

colnames ( prtab . ges ) <− c ( ”AN ( t o t a l ) ” , ”AN−R” , ” c on t r o l s ”)

print ( x tab l e ( prtab . ges , l a b e l=”tab : a l l e l e a s s o c ” , capt ion=”A l l e l e f r e qu en c i e s f o r

t e s t o f a s s o c i a t i o n ”) ) #a l i gn = ; s a n i t i z e . t e x t . f unc t i on = func t ion ( x ) x

## =============================================================================

## Assoc ia t ion o f AA genotype and AN

## =============================================================================

# AN ( t o t a l ) vs . c on t r o l s

tab <− t ( rbind (

table ( nomisdat$ht2a1438 [ nomisdat$outcome==1]) ,

table ( nomisdat$ht2a1438 [ nomisdat$outcome==0]) ) )

colnames ( tab ) <− c ( ”AN ( t o t a l ) ” , ” c on t r o l s ”)

rownames( tab ) <− c ( ”GG genotype ” , ”AG genotype ” , ”AA genotype ”)
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ch i sq . genotype . ca s e s <− ch i sq . t e s t ( tab ) # [ ? ]

# AN−R vs . c on t r o l s

tab <− t ( rbind (

table ( nomisdat$ht2a1438 [ nomisdat$psdiag2==1]) ,

table ( nomisdat$ht2a1438 [ nomisdat$outcome==0]) ) )

colnames ( tab ) <− c ( ”AN−R” , ” c on t r o l s ”)

rownames( tab ) <− c ( ”GG genotype ” , ”AG genotype ” , ”AA genotype ”)

ch i sq . genotype . anr <− ch i sq . t e s t ( tab ) # [ ? ]

# t a b l e f o r paper

tab <− t ( rbind (

table ( nomisdat$ht2a1438 [ nomisdat$outcome==1]) ,

table ( nomisdat$ht2a1438 [ nomisdat$psdiag2==1]) ,

table ( nomisdat$ht2a1438 [ nomisdat$outcome==0]) ) )

colnames ( tab ) <− c ( ”AN ( t o t a l ) ” , ”AN−R” , ” c on t r o l s ”)

rownames( tab ) <− c ( ”GG genotype ” , ”AG genotype ” , ”AA genotype ”)

proptab <− prop . table ( tab , 2)

prtab <− matrix (c (

s t rpa r ( tab [ 1 , 1 ] , proptab [ 1 , 1 ] , 0 , 3) ,

s t rpa r ( tab [ 1 , 2 ] , proptab [ 1 , 2 ] , 0 , 3) ,

s t rpa r ( tab [ 1 , 3 ] , proptab [ 1 , 3 ] , 0 , 3) ,

s t rpa r ( tab [ 2 , 1 ] , proptab [ 2 , 1 ] , 0 , 3) ,

s t rpa r ( tab [ 2 , 2 ] , proptab [ 2 , 2 ] , 0 , 3) ,

s t rpa r ( tab [ 2 , 3 ] , proptab [ 2 , 3 ] , 0 , 3) ,

s t rpa r ( tab [ 3 , 1 ] , proptab [ 3 , 1 ] , 0 , 3) ,

s t rpa r ( tab [ 3 , 2 ] , proptab [ 3 , 2 ] , 0 , 3) ,

s t rpa r ( tab [ 3 , 3 ] , proptab [ 3 , 3 ] , 0 , 3) ) , nrow=3, byrow=TRUE)

colnames ( prtab ) <− colnames ( tab )

rownames( prtab ) <− rownames( tab )

print ( x tab l e ( prtab , l a b e l=”tab : genotypeassoc ” , capt ion=”Genotype f r e qu en c i e s f o r

t e s t o f a s s o c i a t i o n ”) ) #a l i gn = ; s a n i t i z e . t e x t . f unc t i on = func t ion ( x ) x

###################################################

### chunk number 21: tabassoc2

###################################################

ch i sqtab <− rbind (

s t r c h i t a b ( ch i sq . a l l e l e . c a s e s ) ,

s t r c h i t a b ( ch i sq . a l l e l e . anr ) ,

s t r c h i t a b ( ch i sq . genotype . ca s e s ) ,

s t r c h i t a b ( ch i sq . genotype . anr ) )

colnames ( ch i sq tab ) <− c ( ”$\\ ch i ˆ2$” , ”$df$” , ”$p$ value ”)

rownames( ch i sq tab ) <− c ( ” a l l e l e −wise , AN ( t o t a l ) ” , ” a l l e l e −wise , AN−R” , ”genotype−
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wise , AN ( t o t a l ) ” , ”genotype−wise , AN−R”)

print ( x tab l e ( chisqtab , l a b e l=”tab : a s soc ” , capt ion=”Assoc i a t i on t e s t s ” , a l i g n=” r r r r ”)

, s a n i t i z e . text . function = function ( x ) x )

A.5. Gene–Environment Correlation

###################################################

### chunk number 22: r ge tab

###################################################

rge1 <− aov ( nomisdat$envdom1 ˜ gen )

rge2 <− aov ( nomisdat$envdom2 ˜ gen )

rge3 <− aov ( nomisdat$envdom3 ˜ gen )

rge4 <− aov ( nomisdat$envdom4 ˜ gen )

rge5 <− aov ( nomisdat$envdom5 ˜ gen )

rgetab <− cbind (

format (c ( eta ( rge1 ) , eta ( rge2 ) , eta ( rge3 ) , eta ( rge4 ) , eta ( rge5 ) ) , d i g i t s =4) ,

format (c (anova( rge1 )$”Pr(>F) ” [ 1 ] , anova( rge2 )$”Pr(>F) ” [ 1 ] , anova( rge3 )$”Pr(>F) ” [ 1 ] ,

anova( rge4 )$”Pr(>F) ” [ 1 ] , anova( rge5 )$”Pr(>F) ” [ 1 ] ) , d i g i t s =5) )

colnames ( rgetab ) <− c ( ” e f f e c t s i z e $\\ eta ˆ2$” , ”$p$ value ”)

rownames( rgetab ) <− c ( ”Parenta l Problems ($ed1$ ) ” , ”Di s rupt ive Events ($ed2$ ) ” , ”

Parenta l P sy ch i a t r i c Disorder ($ed3$ ) ” , ” I n t e r p e r s ona l Problems ($ed4$ ) ” , ”

Family d i e t i n g environment ($ed5$ ) ”)

print ( x tab l e ( rgetab , l a b e l=”tab . rge ” , capt ion=”Gene−−environment c o r r e l a t i o n ” , a l i g n

= ” r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text . function = function ( x ) x )

l evene .min <− min(

l evene . t e s t ( rge1 )$”Pr(>F) ” [ 1 ] ,

l evene . t e s t ( rge2 )$”Pr(>F) ” [ 1 ] ,

l evene . t e s t ( rge3 )$”Pr(>F) ” [ 1 ] ,

l evene . t e s t ( rge4 )$”Pr(>F) ” [ 1 ] ,

l evene . t e s t ( rge5 )$”Pr(>F) ” [ 1 ] )

shap i ro . range <− range (

shap i ro . t e s t ( rge1$residuals )$p . value ,

shap i ro . t e s t ( rge2$residuals )$p . value ,

shap i ro . t e s t ( rge3$residuals )$p . value ,

shap i ro . t e s t ( rge4$residuals )$p . value ,

shap i ro . t e s t ( rge5$residuals )$p . va lue )

A.6. Conditional Logistic Regression Models

###################################################

### chunk number 23: c l r . sample . s i z e

###################################################

n . pairs <− length ( nomisdat$outcome [ nomisdat$outcome==1])

n . c l r <− length ( nomisdat$outcome )
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edtmax <− max( nomisdat$edt , na .rm=TRUE)

###################################################

### chunk number 24: model1a

###################################################

model1a <− c l o g i t ( outcome ˜ gen* edt + s t r a t a ( un iq id ) , data=nomisdat , method=”exact ”)

#model1a

model1a . r sq <− summary( model1a )$ r sq [ 1 ]

model1a . rsqmax <− summary( model1a )$ r sq [ 2 ]

model1a . r s q r e l <− model1a . r sq / model1a . rsqmax

model1a .AIC <− AIC . s e l f ( model1a )

model1a .LRT. ch i sq <− summary( model1a )$ l o g t e s t [ 1 ]

model1a .LRT. df <− summary( model1a )$ l o g t e s t [ 2 ]

model1a .LRT. p <− summary( model1a )$ l o g t e s t [ 3 ]

tab <− condregtab ( model1a )

print ( x tab l e ( tab , l a b e l=”tab . model1a ” , capt ion=”Model 1a ( c o e f f i c i e n t s ) ” , a l i g n = ”

r r r r r r r l ”) , table . placement=” ! ht ” , s a n i t i z e . text . function = function ( x ) x )

###################################################

### chunk number 25: l r t a b

###################################################

model1b <− stepAIC ( model1a , trace=FALSE)

l r t . 1 ab <− l r t e s t . s e l f (model1b , model1a )

l r t . 1 ab . ch i sq <− l r t . 1 ab [ 1 ]

l r t . 1 ab . df <− l r t . 1 ab [ 2 ]

l r t . 1 ab . p <− l r t . 1 ab [ 3 ]

###################################################

### chunk number 26: model1b

###################################################

#model1b$anova

#summary(model1b )

#AIC. s e l f (model1b )

# Model l e n t h ä l t ke ine WW, nur HE gen und HE umwelt

model1b . r sq <− summary( model1b )$ r sq [ 1 ]

model1b . rsqmax <− summary( model1b )$ r sq [ 2 ]

model1b . r s q r e l <− model1b . r sq / model1b . rsqmax

model1b .AIC <− AIC . s e l f ( model1b )

model1b .LRT. ch i sq <− summary( model1b )$ l o g t e s t [ 1 ]

model1b .LRT. df <− summary( model1b )$ l o g t e s t [ 2 ]

model1b .LRT. p <− summary( model1b )$ l o g t e s t [ 3 ]

tab <− condregtab ( model1b )

print ( x tab l e ( tab , l a b e l=”tab . model1b ” , capt ion=”Model 1b ( c o e f f i c i e n t s ) ” , a l i g n = ”

r r r r r r r l ”) , table . placement=” ! ht ” , s a n i t i z e . text . function = function ( x ) x )
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###################################################

### chunk number 27: f i gmode l1b

###################################################

model1b . pre <− function (genAG , genAA , edt , co ) {
g <− genAG*co$coef f ic ients [1 ]+genAA*co$coef f ic ients [2 ]+ edt *co$coef f ic ients [ 3 ]

return (exp( g )/(1+exp( g ) ) )

}
curve ( model1b . pre (0 , 0 , x , model1b ) , from=−15, to=15, ylab=”Log−odds o f r e l a t i v e r i s k

f o r AN” , xlab=”Total events ( d i f f e r e n c e ) ”) #?

curve ( model1b . pre (1 , 0 , x , model1b ) , from=−15, to=15, add=TRUE, l t y=”dashed ”)

curve ( model1b . pre (0 , 1 , x , model1b ) , from=−15, to=15, add=TRUE, l t y=”dotdash ”)

legend ( ”bottomright ” , legend=c ( ”Genotype GG” , ”Genotype AG” , ”Genotype AA”) , l t y=c ( ”

s o l i d ” , ”dashed ” , ”dotdash ”) ) #$

###################################################

### chunk number 28: model2a

###################################################

model2a <− c l o g i t ( outcome ˜ gen*ed1 + gen*ed2 + gen*ed3 + gen*ed4 + gen*ed5 + s t r a t a

( un iq id ) , data=nomisdat , method=”exact ”)

#model2a

model2a . r sq <− summary( model2a )$ r sq [ 1 ]

model2a . rsqmax <− summary( model2a )$ r sq [ 2 ]

model2a . r s q r e l <− model2a . r sq / model2a . rsqmax

model2a .AIC <− AIC . s e l f ( model2a )

model2a .LRT. ch i sq <− summary( model2a )$ l o g t e s t [ 1 ]

model2a .LRT. df <− summary( model2a )$ l o g t e s t [ 2 ]

model2a .LRT. p <− summary( model2a )$ l o g t e s t [ 3 ]

model2a . tab <− condregtab ( model2a )

print ( x tab l e ( model2a . tab , l a b e l=”tab . model2a ” , capt ion=”Model 2a ( c o e f f i c i e n t s ) ” ,

a l i g n = ” r r r r r r r l ”) , table . placement=” ! ht ” , s a n i t i z e . text . function = function ( x )

x )

###################################################

### chunk number 29: model2b

###################################################

model2b <− c l o g i t ( outcome ˜ gen + ed2+ed4+ed5+gen : ed5+ s t r a t a ( un iq id ) , data=nomisdat

, method=”exact ”)

model2b . r sq <− summary( model2b )$ r sq [ 1 ]

model2b . rsqmax <− summary( model2b )$ r sq [ 2 ]

model2b . r s q r e l <− model2b . r sq / model2b . rsqmax

model2b .AIC <− AIC . s e l f ( model2b )

model2b .LRT. ch i sq <− summary( model2b )$ l o g t e s t [ 1 ]

model2b .LRT. df <− summary( model2b )$ l o g t e s t [ 2 ]
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model2b .LRT. p <− summary( model2b )$ l o g t e s t [ 3 ]

model2b . tab <− condregtab ( model2b )

print ( x tab l e ( model2b . tab , l a b e l=”tab . model2b ” , capt ion=”Model 2b ( c o e f f i c i e n t s ) ” ,

a l i g n = ” r r r r r r r l ”) , table . placement=” ! ht ” , s a n i t i z e . text . function = function ( x )

x )

l r t . 2 ab <− l r t e s t . s e l f (model2b , model2a )

l r t . 2 ab . ch i sq <− l r t . 2 ab [ 1 ]

l r t . 2 ab . df <− l r t . 2 ab [ 2 ]

l r t . 2 ab . p <− l r t . 2 ab [ 3 ]

A.7. Linear Regression Models

###################################################

### chunk number 30: l i n r e gn

###################################################

n . l i n <− length ( nomisdat$ht2a1438 [ nomisdat$outcome==1]) #$

###################################################

### chunk number 31: model3b

###################################################

subtype <− nomisdat$psdiag2

levels ( subtype ) <− c ( ”AN−R” , ”AN−BP”)

onset <− nomisdat$psedon

model3a <− lm( p2lbmi ˜ gen*ed1 + gen*ed2+gen*ed3 + gen*ed4+gen*ed5 + onset + subtype

, data=nomisdat , subset=(outcome==1))

#summary(model3a )

model3a . step <− stepAIC ( model3a , trace=FALSE)

#summary(model3a . s t ep )

#AIC(model3a . s t ep )

model3b <− lm( p2lbmi ˜ ed3+onset+subtype , data=nomisdat , subset=(outcome==1))

model3b . r sq <− summary( model3b )$r . squared

model3b . ad j r sq <− summary( model3b )$adj . r . squared

model3b . f <− summary( model3b )$ f s t a t i s t i c [ 1 ]

model3b . f d f 1 <− summary( model3b )$ f s t a t i s t i c [ 2 ]

model3b . f d f 2 <− summary( model3b )$ f s t a t i s t i c [ 3 ]

model3b . fp <− pf (summary( model3b )$ f s t a t i s t i c [ 1 ] ,summary( model3b )$ f s t a t i s t i c [ 2 ] ,

summary( model3b )$ f s t a t i s t i c [ 3 ] , lower . t a i l=FALSE)

model3b .AIC <− AIC( model3b )

model3b . tab <− l i n r e g t ab ( model3b )

print ( x tab l e ( model3b . tab , l a b e l=”tab . model3b ” , capt ion=”Model 3b , BMI ( C o e f f i c i e n t s )

” , a l i g n = ” r r r r r l ”) , table . placement=” ! ht ” , s a n i t i z e . text . function = function ( x

) x )
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l r t . 3 ab <− l r t e s t (model3b , model3a )

l r t . 3 ab . ch i sq <− l r t . 3 ab$Chisq [ 2 ]

l r t . 3 ab . df <− l r t . 3 ab$Df [ 2 ]

l r t . 3 ab . p <− l r t . 3 ab$”Pr(>Chisq ) ” [ 2 ]

###################################################

### chunk number 32: f i gmode l 3 b l i n e a r i t y 1

###################################################

plot ( model3b$f itted . va lues , model3b$f itted . va lue s+model3b$residuals , x lab=”Pred icted

va lues ” , ylab=”Observed va lues ”) #l i n e a r i t y (1) : observed vs .\ pred i c t ed va lue s

−− diagnonal l i n e

###################################################

### chunk number 33: f i gmode l 3 b l i n e a r i t y 2

###################################################

plot ( model3b$f itted . va lues , model3b$residuals , x lab=”Pred icted va lues ” , ylab=”

Res idua l s ”) #l i n e a r i t y (2) : r e s i d u a l s vs . p r ed i c t ed −− ho r i z on t a l l i n e #$

###################################################

### chunk number 34: model3bass

###################################################

model3b . hmc <− hmctest (model3b , plot = FALSE) #homoscedas t i c i t y ( harrison−mccabe−
t e s t )

model3b . hmc . s <− model3b . hmc$ s t a t i s t i c

model3b . hmc . p <− model3b . hmc$p . va lue

model3b .dw <− dwtest (model3b , a l t e r n a t i v e = ”two . s ided ”) #au toco r r e l a t i on (

knapp s i g n i f i k a n t ! )

model3b .dw . s <−model3b .dw$ s t a t i s t i c

model3b .dw . p <− model3b .dw$p . va lue

model3b . shap <− shap i ro . t e s t ( model3b$residuals ) #nv der res iduen

model3b . shap . s <− model3b . shap$ s t a t i s t i c

model3b . shap . p <− model3b . shap$p . va lue

model3b . maxgvif <− max( v i f ( model3b ) ) #mu l t i c o l l i n e a r i t y ; g v i f ˆ(1/2 df ) <= 4 [ ? ] fox

(1992)

###################################################

### chunk number 35: model4b

###################################################

tmpdat <− subset ( nomisdat , ( nomisdat$outcome==1) & ! i s .na( nomisdat$psedon ) )

model4a <− lm( psedon ˜ gen*ed1 + gen*ed2+gen*ed3 + gen*ed4+gen*ed5 , data=tmpdat )

model4b <− lm( psedon ˜ gen+ed2+ed5+gen : ed2 , data=tmpdat )

model4b . r sq <− summary( model4b )$r . squared

model4b . ad j r sq <− summary( model4b )$adj . r . squared
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model4b . f <− summary( model4b )$ f s t a t i s t i c [ 1 ]

model4b . f d f 1 <− summary( model4b )$ f s t a t i s t i c [ 2 ]

model4b . f d f 2 <− summary( model4b )$ f s t a t i s t i c [ 3 ]

model4b . fp <− pf (summary( model4b )$ f s t a t i s t i c [ 1 ] ,summary( model4b )$ f s t a t i s t i c [ 2 ] ,

summary( model4b )$ f s t a t i s t i c [ 3 ] , lower . t a i l=FALSE)

model4b .AIC <− AIC( model4b )

model4b . tab <− l i n r e g t ab ( model4b )

print ( x tab l e ( model4b . tab , l a b e l=”tab . model4b ” , capt ion=”Model 4b , age o f onset (

c o e f f i c i e n t s ) ” , a l i g n = ” r r r r r l ”) , table . placement=” ! ht ” , s a n i t i z e . text . function

= function ( x ) x )

l r t . 4 ab <− l r t e s t (model4b , model4a )

l r t . 4 ab . ch i sq <− l r t . 4 ab$Chisq [ 2 ]

l r t . 4 ab . df <− l r t . 4 ab$Df [ 2 ]

l r t . 4 ab . p <− l r t . 4 ab$”Pr(>Chisq ) ” [ 2 ]

###################################################

### chunk number 36: l r t e s t 4 b c

###################################################

subtype <− nomisdat$psdiag2

levels ( subtype ) <− c ( ”AN−R” , ”AN−BP”)

model4c <− lm( psedon ˜ gen+ed2+ed5+gen : ed2+subtype , data=nomisdat , subset=(outcome

==1))

l r t . 4 bc <− l r t e s t (model4b , model4c )

l r t . 4 bc . ch i sq <− l r t . 4 bc$Chisq [ 2 ]

l r t . 4 bc . df <− l r t . 4 bc$Df [ 2 ]

l r t . 4 bc . p <− l r t . 4 bc$”Pr(>Chisq ) ” [ 2 ]

###################################################

### chunk number 37: model4c

###################################################

model4c . r sq <− summary( model4c )$r . squared

model4c . ad j r sq <− summary( model4c )$adj . r . squared

model4c . f <− summary( model4c )$ f s t a t i s t i c [ 1 ]

model4c . f d f 1 <− summary( model4c )$ f s t a t i s t i c [ 2 ]

model4c . f d f 2 <− summary( model4c )$ f s t a t i s t i c [ 3 ]

model4c . fp <− pf (summary( model4c )$ f s t a t i s t i c [ 1 ] ,summary( model4c )$ f s t a t i s t i c [ 2 ] ,

summary( model4c )$ f s t a t i s t i c [ 3 ] , lower . t a i l=FALSE)

model4c .AIC <− AIC( model4c )

model4c . tab <− l i n r e g t ab ( model4c )

print ( x tab l e ( model4c . tab , l a b e l=”tab . model4c ” , capt ion=”Model 4c , age o f onset (

c o e f f i c i e n t s ) ” , a l i g n = ” r r r r r l ”) , table . placement=” ! ht ” , s a n i t i z e . text . function

= function ( x ) x )
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###################################################

### chunk number 38: f i gmode l 4 b l i n e a r i t y 1

###################################################

plot ( model4b$f itted . va lues , model4b$f itted . va lue s+model4b$residuals , x lab=”Pred icted

va lues ” , ylab=”Observed va lues ”) #l i n e a r i t y (1) : observed vs . p r ed i c t ed va lue s

−− diagnonal l i n e

###################################################

### chunk number 39: f i gmode l 4 b l i n e a r i t y 2

###################################################

plot ( model4b$f itted . va lues , model4b$residuals , x lab=”Pred icted va lues ” , ylab=”

Res idua l s ”) #l i n e a r i t y (2) : r e s i d u a l s vs . p r ed i c t ed −− ho r i z on t a l l i n e$

###################################################

### chunk number 40: f i gmode l 4 b l i n e a r i t y 3

###################################################

plot (model4b , which=2)

###################################################

### chunk number 41: f i gmode l 4 b l i n e a r i t y 4

###################################################

plot (model4b , which=5)

###################################################

### chunk number 42: t ab s111va l

###################################################

s111 <− rbind ( tmpdat [ 75 , c ( 71 : 76 , 6) ] , mean( tmpdat [ , c ( 71 : 76 , 6) ] ) )

s111 <− cbind ( s111 , c ( model4b$f itted . va lue s [ 7 5 ] , NA) )

colnames ( s111 ) <− c ( ”gen ” , ”ed1 ” , ”ed2 ” , ”ed3 ” , ”ed4 ” , ”ed5 ” , ”Age o f Onset ” , ”

Pred ic ted ”)

rownames( s111 ) <− c ( ”Subject 111 ” , ”Mean”)

s111 <− format ( s111 , d i g i t s =3, s c i e n t i f i c=FALSE)

###################################################

### chunk number 43: tabs111

###################################################

print ( x tab l e ( s111 , l a b e l=”tab . s111 ” , capt ion=”Pred i c t o r s o f sub j e c t 111 and sample

means ” , a l i g n = ” r r r r r r r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text . function =

function ( x ) x )

model4b . hmc <− hmctest (model4b , plot = FALSE) #homoscedas t i c i t y ( harrison−mccabe−
t e s t )

model4b . hmc . s <− model4b . hmc$ s t a t i s t i c

model4b . hmc . p <− model4b . hmc$p . va lue

model4b .dw <− dwtest (model4b , a l t e r n a t i v e = ”two . s ided ”) #au toco r r e l a t i on (

knapp s i g n i f i k a n t ! )
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model4b .dw . s <−model4b .dw$ s t a t i s t i c

model4b .dw . p <− model4b .dw$p . va lue

model4b . shap <− shap i ro . t e s t ( model4b$residuals ) #nv der res iduen

model4b . shap . s <− model4b . shap$ s t a t i s t i c

model4b . shap . p <− model4b . shap$p . va lue

model4b . maxgvif <− max( v i f ( model4b ) [ , 3 ] ) #mu l t i c o l l i n e a r i t y ; g v i f ˆ(1/2 df ) <= 4 [ ? ]

fox (1992)

###################################################

### chunk number 44: model4d

###################################################

noout<− tmpdat [−75 , ]

model4d <− lm( psedon ˜ gen+ed2+gen : ed2 , data=noout )

model4d . r sq <− summary( model4d )$r . squared

model4d . ad j r sq <− summary( model4d )$adj . r . squared

model4d . f <− summary( model4d )$ f s t a t i s t i c [ 1 ]

model4d . f d f 1 <− summary( model4d )$ f s t a t i s t i c [ 2 ]

model4d . f d f 2 <− summary( model4d )$ f s t a t i s t i c [ 3 ]

model4d . fp <− pf (summary( model4d )$ f s t a t i s t i c [ 1 ] ,summary( model4d )$ f s t a t i s t i c [ 2 ] ,

summary( model4d )$ f s t a t i s t i c [ 3 ] , lower . t a i l=FALSE)

model4d .AIC <− AIC( model4d )

model4d . tab <− l i n r e g t ab ( model4d )

print ( x tab l e ( model4d . tab , l a b e l=”tab . model4d ” , capt ion=”Model 4d , age o f onset (

c o e f f i c i e n t s ) ” , a l i g n = ” r r r r r l ”) , table . placement=” ! ht ” , s a n i t i z e . text .

function = function ( x ) x )

###################################################

### chunk number 45: mode l4dpredic t

###################################################

pre <− noout [ 3 , ]

pre$ed2<−0 ; pre$gen<−factor ( ”GG”)

preGG0 <− predict (model4d , pre ) #, i n t e r v a l=”pr ed i c t i on ”)

pre$ed2<−1 ; pre$gen<−factor ( ”GG”)

preGG1 <− predict (model4d , pre ) #, i n t e r v a l=”pr ed i c t i on ”)

pre$ed2<−0 ; pre$gen<−factor ( ”AA”)

preAA0 <− predict (model4d , pre ) #, i n t e r v a l=”pr ed i c t i on ”)

pre$ed2<−1 ; pre$gen<−factor ( ”AA”)

preAA1 <− predict (model4d , pre ) #, i n t e r v a l=”pr ed i c t i on ”)

###################################################

### chunk number 46: f i gmode l 4 c i n t e r a c t

###################################################

hlp <− function (model , gen , ed2 ) {
pre<−noout [ 3 , ]

pre$ed2 <− ed2
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pre$gen <− gen

return ( predict (model , pre ) )

}
ed2 . p <− c ( 0 , 5 , 0 , 5 , 0 , 5 )

gen . p <− c ( ”GG” , ”GG” , ”AG” , ”AG” , ”AA” , ”AA”)

y <− NULL

for ( i in 1 : 6 ) y <− c (y , hlp (model4d , factor ( gen . p [ i ] ) , ed2 . p [ i ] ) )

plot ( noout$ed2 , noout$psedon , col=as . integer ( noout$gen ) , pch=as . integer ( noout$gen )

, xlab=”Number o f d i s r up t i v e events ” , ylab=”Age o f onset ”)

l ines ( ed2 . p [ 1 : 2 ] , y [ 1 : 2 ] , lwd=2, col=which( levels ( noout$gen )==”GG”) , l t y=which(

levels ( noout$gen )==”GG”) )

l ines ( ed2 . p [ 3 : 4 ] , y [ 3 : 4 ] , lwd=2, col=which( levels ( noout$gen )==”AG”) , l t y=which(

levels ( noout$gen )==”AG”) )

l ines ( ed2 . p [ 5 : 6 ] , y [ 5 : 6 ] , lwd=2, col=which( levels ( noout$gen )==”AA”) , l t y=which(

levels ( noout$gen )==”AA”)+1)

legend ( ” t o p l e f t ” , legend=c ( ”Genotype GG ( pred i c t ed ) ” , ”Genotype AG ( pred i c t ed ) ” , ”

Genotype AA ( pred i c t ed ) ” , ”Genotype GG ( observed ) ” , ”Genotype AG ( observed ) ” ,

”Genotype AA ( observed ) ”) , col=c ( 1 , 2 , 3 , 1 , 2 , 3 ) , pch=c (NA,NA,NA, 1 , 2 , 3 ) , l t y=c

( 1 , 2 , 4 , 0 , 0 , 0 ) , lwd=c ( 2 , 2 , 2 , 1 , 1 , 1 ) , cex =0.8)

###################################################

### chunk number 47: mode l4de l r t

###################################################

subtype <− noout$psdiag2

model4e <− lm( psedon ˜ gen+ed2+gen : ed2+subtype , data=noout )

l r t . 4de <− l r t e s t (model4d , model4e )

l r t . 4de . ch i sq <− l r t . 4de$Chisq [ 2 ]

l r t . 4de . df <− l r t . 4de$Df [ 2 ]

l r t . 4de . p <− l r t . 4de$”Pr(>Chisq ) ” [ 2 ]

###################################################

### chunk number 48: model4e

###################################################

model4e . r sq <− summary( model4e )$r . squared

model4e . ad j r sq <− summary( model4e )$adj . r . squared

model4e . f <− summary( model4e )$ f s t a t i s t i c [ 1 ]

model4e . f d f 1 <− summary( model4e )$ f s t a t i s t i c [ 2 ]

model4e . f d f 2 <− summary( model4e )$ f s t a t i s t i c [ 3 ]

model4e . fp <− pf (summary( model4e )$ f s t a t i s t i c [ 1 ] ,summary( model4e )$ f s t a t i s t i c [ 2 ] ,

summary( model4e )$ f s t a t i s t i c [ 3 ] , lower . t a i l=FALSE)

model4e .AIC <− AIC( model4e )

model4e . tab <− l i n r e g t ab ( model4e )

print ( x tab l e ( model4e . tab , l a b e l=”tab . model4e ” , capt ion=”Model 4e , age o f onset (

c o e f f i c i e n t s ) ” , a l i g n = ” r r r r r l ”) , table . placement=” ! ht ” , s a n i t i z e . text .

function = function ( x ) x )
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###################################################

### chunk number 49: model4dass

###################################################

model4d . hmc <− hmctest (model4d , plot = FALSE) #homoscedas t i c i t y ( harrison−mccabe−
t e s t )

model4d . hmc . s <− model4d . hmc$ s t a t i s t i c

model4d . hmc . p <− model4d . hmc$p . va lue

model4d .dw <− dwtest (model4d , a l t e r n a t i v e = ”two . s ided ”) #au toco r r e l a t i on (

knapp s i g n i f i k a n t ! )

model4d .dw . s <−model4d .dw$ s t a t i s t i c

model4d .dw . p <− model4d .dw$p . va lue

model4d . shap <− shap i ro . t e s t ( model4d$residuals ) #nv der res iduen

model4d . shap . s <− model4d . shap$ s t a t i s t i c

model4d . shap . p <− model4d . shap$p . va lue

model4d . maxgvif <− max( v i f ( model4d ) [ , 3 ] ) #mu l t i c o l l i n e a r i t y ; g v i f ˆ(1/2 d f ) <= 4 [ ? ]

fox (1992)
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###################################################

### chunk number 1 : prepare

###################################################

l ibrary ( f o r e i g n )

l ibrary ( s u r v i v a l ) # c l o g i t

l ibrary (MASS) # stepAIC

l ibrary ( car ) # v i f ( ) and recode ()

#l i b r a r y (Rmdr)

l ibrary (ORMDR)

l ibrary ( x tab l e )

#workdir <− ”E:/Uni−Psycho/Diplomarbei t/Projek t 5ht2a Esstoerung/Auswertung/”

# Memory S t i c k Uni

workdir <− ”G:/Uni−Psycho/Diplomarbeit/Projekt 5ht2a Esstoerung/Auswertung/”

# Memory S t i c k zu Hause

#workdir <− ”D:/ new/Uni−Psycho/Diplomarbei t/Projek t 5ht2a Esstoerung/Auswertung/”

# zu Hause

o r i g d a t f i l e <− paste ( workdir , ”5ht2a−data−v006−q . csv ” , sep = ””) # Daten noch im

”abhängigen ” Format , zur Kontro l l e der Variab len

f i l ename <− paste ( workdir , ”5ht2a−data−v007−q . csv ” , sep = ””) # Daten f ü r l o g .

Reg

o r i gda t <− read . csv2 ( o r i g d a t f i l e )

names( o r i gda t ) <− to lower (names( o r i gda t ) )

dat <− read . csv2 ( f i l ename )

names( dat ) <− to lower (names( dat ) )

## =============================================================================

## Er s t e l l e n der d i cho tomi s i e r t en Variab len f ü r Umweltfaktoren
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## =============================================================================

# e v t l . schon be i der Datenaufbere i tung ?? und im Fi l e spe ichern ?

envdom1d <− as . integer ( dat$envdom1 > 0)

envdom2d <− as . integer ( dat$envdom2 > 0)

envdom3d <− as . integer ( dat$envdom3 > 0)

envdom4d <− as . integer ( dat$envdom4 > 0)

envdom5d <− as . integer ( dat$envdom5 > 0)

envdomtd <− as . integer ( dat$envdomt > 0)

envdom1dm <− as . integer ( dat$envdom1 > median( dat$envdom1) )

envdom2dm <− as . integer ( dat$envdom2 > median( dat$envdom2) )

envdom3dm <− as . integer ( dat$envdom3 > median( dat$envdom3) )

envdom4dm <− as . integer ( dat$envdom4 > median( dat$envdom4) )

envdom5dm <− as . integer ( dat$envdom5 > median( dat$envdom5) )

envdomtdm <− as . integer ( dat$envdomt > median( dat$envdomt ) )

dat <− data . frame ( dat , envdom1d , envdom2d , envdom3d , envdom4d , envdom5d , envdomtd ,

envdom1dm , envdom2dm , envdom3dm , envdom4dm , envdom5dm , envdomtdm)

rm( envdom1d , envdom2d , envdom3d , envdom4d , envdom5d , envdomtd , envdom1dm , envdom2dm ,

envdom3dm , envdom4dm , envdom5dm , envdomtdm)

nomisdat <− subset ( dat , dat$gencompl ) #89

or ignomisdat <− subset ( or igdat , o r i gda t$gencompl )

ed1 <− nomisdat$envdom1

ed2 <− nomisdat$envdom2

ed3 <− nomisdat$envdom3

ed4 <− nomisdat$envdom4

ed5 <− nomisdat$envdom5

edt <− nomisdat$envdomt

gen <− factor ( nomisdat$ht2a1438 )

levels ( gen ) <− c ( ”GG” , ”AG” , ”AA”)

nomisdat <− data . frame ( nomisdat , gen , ed1 , ed2 , ed3 , ed4 , ed5 , edt )

ed1r <− recode ( nomisdat$envdom1 , ”0=0; c (1 , 2 , 3 ) =1; e l s e=2”)

ed2r <− recode ( nomisdat$envdom2 , ”0=0; c (1 , 2 ) =1; e l s e=2”)

ed3r <− recode ( nomisdat$envdom3 , ”0=0;1=1; e l s e=2”)

ed4r <− recode ( nomisdat$envdom4 , ”0=0;1=1; e l s e=2”)

ed5r <− recode ( nomisdat$envdom5 , ”0=0; c (1 , 2 ) =1; e l s e=2”)

## =============================================================================

## MDR: Daten zusammenstel len

## =============================================================================

gen1 <− recode ( nomisdat$ht2a1438 , ”11=0;12=1;22=2 ”)

#gen2 <− recode ( nomisdat$ h t t l p r , ”11=0;12=1;22=2”)

attach ( nomisdat )

ormdrdat1 <− data . frame ( ”Class ”=outcome , gen1 , ed1r , ed2r , ed3r , ed4r , ed5r )
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#ormdrdat2 <− data . frame (”Class”=outcome , gen1 , gen2 , ed1r , ed2r , ed3r , ed4r , ed5r

)

#ormdrdat1 . d <− data . frame (”Class”=outcome , gen1 , envdom1d , envdom2d , envdom3d ,

envdom4d , envdom5d)

#ormdrdat1 .dm <− data . frame (”Class”=outcome , gen1 , envdom1dm , envdom2dm , envdom3dm

, envdom4dm , envdom5dm)

detach ( nomisdat )

mdrsummary <− function (mdro) {
varn <− names(mdro$data )

cat ( ”Var iab le names : ” , varn , ”\n”)

cat ( ”Combinations : \n”)

print (mdro$min . comb)

cat ( ”Train ing Error :\n”)

print (mdro$ t r a i n . e r a t e )

cat ( ”Test Error :\n”)

print (mdro$ t e s t . e r a t e )

cat ( ”Best combi : ” , mdro$best . combi , ”( ” , varn [ as . integer (mdro$best . combi ) ] , ”) \n”

)

# mean t r a i n i n g error and t e s t error

# number o f ( s u c c e s s f u l ) cross−v a l i d a t i o n s

}
mult .mdr <− function (count , dat , combi , co l r e sp , cs , cv . f o ld , randomize ) {

mdrr <− mdr . c ( dat , combi=combi , c o l r e s p=co l r e sp , cs=cs , cv . f o l d=cv . fo ld , randomize

=randomize )

varn <− names(mdrr$data )

tmp <− paste ( varn [ as . integer (mdrr$best . combi ) ] , c o l l a p s e=” , ”)

for ( i in 2 : count ) {
mdrr <− mdr . c ( dat , combi=combi , c o l r e s p=co l r e sp , cs=cs , cv . f o l d=cv . fo ld ,

randomize=randomize )

tmp <− c (tmp , paste ( varn [ as . integer (mdrr$best . combi ) ] , c o l l a p s e=” , ”) )

}
return ( table (tmp) )

}
mult .mdr . cv <− function (count , dat , combi , co l r e sp , cs , cv . f o ld , randomize ) {

mdrr <− mdr . c ( dat , combi=combi , c o l r e s p=co l r e sp , cs=cs , cv . f o l d=cv . fo ld , randomize

=randomize )

varn <− names(mdrr$data )

t r a i n . e r <− NULL

t e s t . e r <− NULL

besttmp <− NULL

cvtmp <− NULL

bestcvc <− NULL

for ( i in 1 : count ) {
mdrr <− mdr . c ( dat , combi=combi , c o l r e s p=co l r e sp , cs=cs , cv . f o l d=cv . fo ld ,

randomize=randomize )

t r a i n . e r <− c ( t r a i n . er , mdrr$ t r a i n . e r a t e )

t e s t . e r <− c ( t e s t . er , mdrr$ t e s t . e r a t e )

t h i s b e s t <− paste ( varn [ as . integer (mdrr$best . combi ) ] , c o l l a p s e=” x ”)

besttmp <− c ( besttmp , t h i s b e s t )

cvthistmp <− c (paste ( varn [ mdrr$min . comb [ , 1 ] ] , c o l l a p s e=” x ”) ,
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paste ( varn [ mdrr$min . comb [ , 2 ] ] , c o l l a p s e=” x ”) ,

paste ( varn [ mdrr$min . comb [ , 3 ] ] , c o l l a p s e=” x ”) ,

paste ( varn [ mdrr$min . comb [ , 4 ] ] , c o l l a p s e=” x ”) ,

paste ( varn [ mdrr$min . comb [ , 5 ] ] , c o l l a p s e=” x ”) ,

paste ( varn [ mdrr$min . comb [ , 6 ] ] , c o l l a p s e=” x ”) ,

paste ( varn [ mdrr$min . comb [ , 7 ] ] , c o l l a p s e=” x ”) ,

paste ( varn [ mdrr$min . comb [ , 8 ] ] , c o l l a p s e=” x ”) ,

paste ( varn [ mdrr$min . comb [ , 9 ] ] , c o l l a p s e=” x ”) ,

paste ( varn [ mdrr$min . comb [ , 1 0 ] ] , c o l l a p s e=” x ”) )

cvtmp <− c ( cvtmp , cvthistmp )

bes tcvc <− c ( bestcvc , sum( cvthistmp==th i s b e s t ) )

#cvc <− c ( cvc , sum( cvth i s tmp==cvth i s tmp [ 1 ] ) ,

# sum( cvth i s tmp==cvth i s tmp [ 2 ] ) ,

# sum( cvth i s tmp==cvth i s tmp [ 3 ] ) ,

# sum( cvth i s tmp==cvth i s tmp [ 4 ] ) ,

# sum( cvth i s tmp==cvth i s tmp [ 5 ] ) ,

# sum( cvth i s tmp==cvth i s tmp [ 6 ] ) ,

# sum( cvth i s tmp==cvth i s tmp [ 7 ] ) ,

# sum( cvth i s tmp==cvth i s tmp [ 8 ] ) ,

# sum( cvth i s tmp==cvth i s tmp [ 9 ] ) ,

# sum( cvth i s tmp==cvth i s tmp [ 1 0 ] ) )

#for ( i in 1 : cv . f o l d ) cvtmp <− c ( cvtmp , pas te ( varn [ mdrr$min . comb [ , i ] ] , c o l l a p s e=”

x ”) )

}
#return ( l i s t ( besttmp , b e s t c v c ) )

r e t cv <− data . frame (model=cvtmp , t r a i n . er , t e s t . e r )

r e t cvtab <− t ( t ( table ( r e t cv$model) ) )

traintmp <− NULL

testtmp <− NULL

cvctmp <− NULL

for ( i in 1 : length ( r e t cvtab ) ) {
traintmp <− c ( traintmp , mean( r e t cv$ t r a i n . e r [ r e t cv$model==rownames( r e t cvtab ) [ i ] ] )

)

testtmp <− c ( testtmp , mean( r e t cv$ t e s t . e r [ r e t cv$model==rownames( r e t cvtab ) [ i ] ] ) )

#cvctmp <− c ( cvctmp , mean( r e t c v$cvc [ r e t c v$model==rownames ( r e t c v t a b ) [ i ] ] ) )

}
r e t cvtab <− cbind ( retcvtab , prop . table ( r e t cvtab ) , traintmp , testtmp )

colnames ( r e t cvtab ) <− c ( ”Frequency ” , ”Percentage ” , ”Avg . t r a i n . e r ” , ”Avg . t e s t . e r ”)

r e t b e s t <− data . frame (model=besttmp , bes tcvc )

r e tb e s t t ab <− t ( t ( table ( r e t b e s t$model) ) )

for ( i in ( 1 : length ( r e tb e s t t ab ) ) )

cvctmp <− c ( cvctmp , mean( r e t b e s t$bestcvc [ r e t b e s t$model==rownames( r e tb e s t t ab ) [ i

] ] ) )

r e tb e s t t ab <− cbind ( r e tbes t tab , prop . table ( r e tb e s t t ab ) , cvctmp )

colnames ( r e tb e s t t ab ) <− c ( ”Frequency ” , ”Percentage ” , ”CV−con s i s t ency ”)

return ( l i s t ( ”best ”=retbes t tab , ” c r o s s v a l ”=retcvtab ) )

}

texformat <− function ( tab ) {
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tabneu <− tab

tabneu$best [ , 1 ] <− as . character ( tab$best [ , 1 ] )# , d i g i t s =0, s c i e n t i f i c=FALSE)

tabneu$best [ , 2 ] <− format ( tab$best [ , 2 ] , d i g i t s =4, s c i e n t i f i c=FALSE)

tabneu$best [ , 3 ] <− format ( tab$best [ , 3 ] , d i g i t s =5, s c i e n t i f i c=FALSE)

tabneu$ c r o s s v a l [ , 1 ] <− as . character ( tab$ c r o s s v a l [ , 1 ] ) #, d i g i t s =0, s c i e n t i f i c=

FALSE)

tabneu$ c r o s s v a l [ , 2 ] <− format ( tab$ c r o s s v a l [ , 2 ] , d i g i t s =3, s c i e n t i f i c=FALSE)

tabneu$ c r o s s v a l [ , 3 ] <− format ( tab$ c r o s s v a l [ , 3 ] , d i g i t s =4, s c i e n t i f i c=FALSE)

tabneu$ c r o s s v a l [ , 4 ] <− format ( tab$ c r o s s v a l [ , 4 ] , d i g i t s =4, s c i e n t i f i c=FALSE)

#rownames ( tabneu$ b e s t ) <− gsub (”$” , ”$” , rownames ( tabneu$ b e s t ) )

#rownames ( tabneu$ b e s t ) <− gsub (”ˆ” , ”$” , rownames ( tabneu$ b e s t ) )

rownames( tabneu$best ) <− gsub ( ”x” , ”$\\\\ t imes$” , rownames( tabneu$best ) )

#rownames ( tabneu$ c r o s s v a l ) <− gsub (”$” , ”$” , rownames ( tabneu$ c r o s s v a l ) )

#rownames ( tabneu$ c r o s s v a l ) <− gsub (”ˆ” , ”$” , rownames ( tabneu$ c r o s s v a l ) )

rownames( tabneu$ c r o s s v a l ) <− gsub ( ”x” , ”$\\\\ t imes$” , rownames( tabneu$ c r o s s v a l ) )

#$ zu beginn und ende , $edrx$ , x e r s e t z en durch \\ t imes

return ( tabneu )

}

AIC . s e l f <− function (mod) return(−2*mod$ l o g l i k [ 2 ] + 2* length (mod$coef f ic ients ) )

eta <− function ( aovobj ) {
SS <− anova( aovobj )$”Sum Sq”

return (SS [ 1 ] /sum(SS) ) #SS fa c t o r N/SS Total

}

recode <−
function (var , recodes , as . factor . r e s u l t , levels )

{
recode . l i s t <− rev ( s trsp l i t ( recodes , ” ; ”) [ [ 1 ] ] )

i s . f a c <− i s . factor (var )

i f (missing (as . factor . r e s u l t ) )

as . factor . r e s u l t <− i s . f a c

i f ( i s . f a c )

var <− as . character (var )

r e s u l t <− var

i f ( i s .numeric (var ) ) {
l o <− min(var , na .rm = TRUE)

hi <− max(var , na .rm = TRUE)

}
for ( term in recode . l i s t ) {

i f (0 < length (grep ( ” : ” , term ) ) ) {
range <− s trsp l i t ( s trsp l i t ( term , ”=”) [ [ 1 ] ] [ 1 ] , ” : ”)

low <− eval (parse ( text = range [ [ 1 ] ] [ 1 ] ) )

high <− eval (parse ( text = range [ [ 1 ] ] [ 2 ] ) )

t a r g e t <− eval (parse ( text = s trsp l i t ( term , ”=”) [ [ 1 ] ] [ 2 ] ) )

r e s u l t [ ( var >= low ) & (var <= high ) ] <− t a r g e t

}
else i f (0 < length (grep ( ” e l s e ” , term ) ) ) {
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t a r g e t <− eval (parse ( text = s trsp l i t ( term , ”=”) [ [ 1 ] ] [ 2 ] ) )

r e s u l t [ 1 : length (var ) ] <− t a r g e t

}
else {

set <− eval (parse ( text = s trsp l i t ( term , ”=”) [ [ 1 ] ] [ 1 ] ) )

t a r g e t <− eval (parse ( text = s trsp l i t ( term , ”=”) [ [ 1 ] ] [ 2 ] ) )

for ( va l in set ) {
i f ( i s .na( va l ) )

r e s u l t [ i s .na(var ) ] <− t a r g e t

else r e s u l t [ var == val ] <− t a r g e t

}
}

}
i f (as . factor . r e s u l t ) {

r e s u l t <− i f ( !missing ( levels ) )

factor ( r e su l t , levels = levels )

else as . factor ( r e s u l t )

}
else i f ( ! i s .numeric ( r e s u l t ) ) {

r e s u l t . v a l i d <− na . omit ( r e s u l t )

save . warn <− options (warn=2)

r e s <− try ( i f ( length ( r e s u l t . v a l i d ) == length (grep ( ”[0−9] ” ,

r e s u l t . v a l i d ) ) )

as .numeric ( r e s u l t ) , s i l e n t=TRUE)

r e s u l t <− i f ( class ( r e s ) == ”try−e r r o r ” | | i s . null ( r e s ) ) r e s u l t

else r e s

options ( save . warn )

}
r e s u l t

}

condregtab <− function ( coxpho ) {
taba <− summary( coxpho )$coef

tabb <− summary( coxpho )$conf . i n t

s i g <− as . integer ( taba [ , 5 ] < 0 . 05 )

s i g <− recode ( s ig , ”0= ' ' ;1= ' * ' ”)

#tab <− cbind ( taba [ , c (1 ,2 ,3) ] , tabb [ , c (3 ,4) ] , taba [ , 5 ] )

tabtmp <− cbind ( taba [ , c ( 1 , 2 , 3 ) ] , tabb [ , c ( 3 , 4 ) ] , taba [ , 5 ] )

tab <− cbind (

format ( tabtmp [ , 1 ] , d i g i t s =3, s c i e n t i f i c=FALSE) , # coe f

format ( tabtmp [ , 2 ] , d i g i t s =3, s c i e n t i f i c=FALSE) , # exp ( coe f )

format ( tabtmp [ , 3 ] , d i g i t s =2, s c i e n t i f i c=FALSE) , # se ( coe f )

format ( tabtmp [ , 4 ] , d i g i t s =3, s c i e n t i f i c=FALSE) , # lower .95 CI o f exp ( coe f )

format ( tabtmp [ , 5 ] , d i g i t s =4, s c i e n t i f i c=FALSE) , # upper .95 CI o f exp ( coe f )

format ( tabtmp [ , 6 ] , d i g i t s =5, s c i e n t i f i c=FALSE) ) # p−va lue

tab <− cbind ( tab , s i g )

rownames( tab ) <− rownames( taba )

colnames ( tab ) <− c ( ”$\\hat \\ beta$” , ”OR” , ”SE($\\hat \\ beta$ ) ” , ”OR\\ subscr { lower

.95} ” , ”OR\\ subscr {upper .95} ” , ”$p$ value ” , ” ”)

return ( tab )

}
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l r t e s t . s e l f <− function ( simp , comp) {
ch i sq <− abs(−2* ( simp$ l o g l i k [ 2 ] − comp$ l o g l i k [ 2 ] ) )

dfd <− length (comp$coef f ic ients ) − length ( simp$coef f ic ients )

l r t . p <− pchisq ( chisq , abs ( dfd ) , lower . t a i l=FALSE)

return (c ( chisq , dfd , l r t . p ) )

}
ormdrtab <− function ( datset , bestcomb ) {

tmp <− ormdr ( datset , bestcombi=bestcomb , cs =1, c o l r e s p =1,CI . Asy=TRUE, CI . Boot=FALSE,B

=1000)

tmp <− data . frame (tmp , s t r ing sAsFac to r s=FALSE)

tmp <− with (tmp , tmp [ order (Odds . r a t i o , d e c r ea s ing=FALSE) , ] )

tmp <− tmp[−(which(names(tmp)==”Rank”) ) ] # Rank−Spa l t e weg

unchangedpos <− which(names(tmp)==”Hi .Low”)

tab1 <− as . matrix (tmp [ 1 : unchangedpos ] )

tab2 <− as . matrix ( format (tmp [ , ( unchangedpos+1) : length (tmp) ] , d i g i t s =3) )

#tab2 <− NULL

#for ( i in ( unchangedpos+1) : l en g t h ( tmp) ) {
# tab2 <− cbind ( tab2 , format ( tmp [ , i ] , d i g i t s =3)) # , s c i e n t i f i c=FALSE) )

#}
tab <− cbind ( tab1 , tab2 )

rownames( tab ) <− rep ( ” ” , length ( tab [ , 1 ] ) ) # d i f f e r e n t charac ter ? [ ? ] [ . . . ] [

here ]

rownames( tab ) [ 1 ] <− ” ”

rownames( tab ) [ 3 ] <− ” ”

colnames ( tab ) [ ( unchangedpos−2) : ( unchangedpos+3) ] <− c ( ”Cases ” , ”Cont . ” , ”Cat . ” , ”

OR” , ”lower . 95 ” , ”upper . 95 ”)

return ( tab )

}

tab1 <− mult .mdr . cv (10000 , ormdrdat1 , combi=1, c o l r e s p =1, cs =1, cv . f o l d =10,

randomize=TRUE)

tab2 <− mult .mdr . cv (10000 , ormdrdat1 , combi=2, c o l r e s p =1, cs =1, cv . f o l d =10,

randomize=TRUE)

tab3 <− mult .mdr . cv (10000 , ormdrdat1 , combi=3, c o l r e s p =1, cs =1, cv . f o l d =10,

randomize=TRUE)

tab4 <− mult .mdr . cv (10000 , ormdrdat1 , combi=4, c o l r e s p =1, cs =1, cv . f o l d =10,

randomize=TRUE)

tab5 <− mult .mdr . cv (10000 , ormdrdat1 , combi=5, c o l r e s p =1, cs =1, cv . f o l d =10,

randomize=TRUE)

#save ( tab1 , f i l e=pas te ( workdir , ”/ tab1 . Robj ” , sep =””) )

#save ( tab2 , f i l e=pas te ( workdir , ”/ tab2 . Robj ” , sep =””) )

#save ( tab3 , f i l e=pas te ( workdir , ”/ tab3 . Robj ” , sep =””) )

#save ( tab4 , f i l e=pas te ( workdir , ”/ tab4 . Robj ” , sep =””) )

#save ( tab5 , f i l e=pas te ( workdir , ”/ tab5 . Robj ” , sep =””) )

#load ( pas te ( workdir , ”/ tab1 . Robj ” , sep =””) )
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#load ( pas te ( workdir , ”/ tab2 . Robj ” , sep =””) )

#load ( pas te ( workdir , ”/ tab3 . Robj ” , sep =””) )

#load ( pas te ( workdir , ”/ tab4 . Robj ” , sep =””) )

#load ( pas te ( workdir , ”/ tab5 . Robj ” , sep =””) )

tab1tex <− texformat ( tab1 )

tab2tex <− texformat ( tab2 )

tab3tex <− texformat ( tab3 )

tab4tex <− texformat ( tab4 )

tab5tex <− texformat ( tab5 )

###################################################

### chunk number 2 : 2 fac

###################################################

print ( x tab l e ( tab2tex$best , l a b e l=”tab . 2 f b e s t ” , capt ion=”Two f a c t o r model ( bes t

models ) ” , a l i g n = ” r r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text . function =

function ( x ) x )

print ( x tab l e ( tab2tex$ c ro s sva l , l a b e l=”tab . 2 f cv ” , capt ion=”Two f a c t o r model ( c r o s s

v a l i d a t i o n models ) ” , a l i g n = ” r r r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text .

function = function ( x ) x )

###################################################

### chunk number 3 : ormdr2

###################################################

x <− ormdrtab ( ormdrdat1 , bestcomb=c (4 , 6) )

print ( x tab l e (x , l a b e l=”tab . 2 f o r ” , capt ion=”Two f a c t o r model ( odds r a t i o s ) ” , a l i g n =

” r r r r r r r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text . function = function ( x ) x )

#x <− data . frame (ormdr ( ormdrdat1 , bestcombi=c (4 , 6) , cs=1, co l r e s p =1,CI . Asy=TRUE,CI .

Boot=FALSE,B=1000) )

#ormdr2sort <− with ( x , x [ order (Odds . ra t io , decreas ing=FALSE) , ] )

#pr in t ( ormdr2sort )

###################################################

### chunk number 4 : 3 fac

###################################################

print ( x tab l e ( tab3tex$best , l a b e l=”tab . 3 f b e s t ” , capt ion=”Three f a c t o r model ( bes t

models ) ” , a l i g n = ” r r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text . function =

function ( x ) x )

print ( x tab l e ( tab3tex$ c ro s sva l , l a b e l=”tab . 3 f cv ” , capt ion=”Three f a c t o r model ( c r o s s

v a l i d a t i o n models ) ” , a l i g n = ” r r r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text .

function = function ( x ) x )

###################################################

### chunk number 5 : ormdr3a

###################################################

x <− ormdrtab ( ormdrdat1 , bestcomb=c (3 , 4 , 6) )

print ( x tab l e (x , l a b e l=”tab . 3 forA ” , capt ion=”Three f a c t o r model A ( odds r a t i o s ) ” ,
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a l i g n = ” r r r r r r r r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text . function = function (

x ) x )

###################################################

### chunk number 6 : ormdr3b

###################################################

x <− ormdrtab ( ormdrdat1 , bestcomb=c (4 , 6 , 7) )

print ( x tab l e (x , l a b e l=”tab . 3 forB ” , capt ion=”Three f a c t o r model B ( odds r a t i o s ) ” ,

a l i g n = ” r r r r r r r r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text . function = function (

x ) x )

#x <− data . frame (ormdr ( ormdrdat1 , bestcombi=c (4 , 6 , 7) , cs=1, co l r e s p =1,CI . Asy=TRUE,CI .

Boot=FALSE,B=1000) )

#ormdr3sort <− with ( x , x [ order (Odds . ra t io , decreas ing=FALSE) , ] )

#pr in t ( ormdr3sort )

###################################################

### chunk number 7 : 4 fac

###################################################

print ( x tab l e ( tab4tex$best , l a b e l=”tab . 4 f b e s t ” , capt ion=”Four f a c t o r model ( bes t

models ) ” , a l i g n = ” r r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text . function =

function ( x ) x )

print ( x tab l e ( tab4tex$ c ro s sva l , l a b e l=”tab . 4 f cv ” , capt ion=”Four f a c t o r model ( c r o s s

v a l i d a t i o n models ) ” , a l i g n = ” r r r r r ”) , table . placement=” ! ht ” , s a n i t i z e . text .

function = function ( x ) x )

###################################################

### chunk number 8 : ormdr4

###################################################

#x <− ormdrtab ( ormdrdat1 , bestcomb=c (3 , 4 , 6 , 7) )

#pr in t ( x t a b l e ( x , l a b e l =”tab .4 f o r ” , capt ion=”Four f a c t o r model ( odds r a t i o s ) ” , a l i g n

= ”r r r r r r r r r r r ”) , t a b l e . placement=”! ht ” , s a n i t i z e . t e x t . f unc t i on = func t ion ( x ) x )

x <− data . frame ( ormdr ( ormdrdat1 , bestcombi=c (3 , 4 , 6 , 7) , c s =1, c o l r e s p =1,CI . Asy=TRUE,

CI . Boot=FALSE,B=1000) )

ormdr4sort <− with (x , x [ order (Odds . r a t i o , d e c r ea s ing=FALSE) , ] )

print ( ormdr4sort )

###################################################

### chunk number 9 : mdrtest

###################################################

mdrtest <− c l o g i t ( outcome ˜ ed1+ed2+ed4+ed5 + ed2 : ed4 + ed2 : ed5 + ed4 : ed5 + ed1 : ed2 :

ed4 + ed1 : ed2 : ed5 + ed1 : ed4 : ed5 + ed2 : ed4 : ed5 + ed1 : ed2 : ed4 : ed5 + s t r a t a ( un iq id )

, data=nomisdat , method=”exact ”)

mdrtest . r sq <− summary( mdrtest )$ r sq [ 1 ]

mdrtest . rsqmax <− summary( mdrtest )$ r sq [ 2 ]

mdrtest . r s q r e l <− mdrtest . r sq / mdrtest . rsqmax
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mdrtest .AIC <− AIC . s e l f ( mdrtest )

mdrtest .LRT. ch i sq <− summary( mdrtest )$ l o g t e s t [ 1 ]

mdrtest .LRT. df <− summary( mdrtest )$ l o g t e s t [ 2 ]

mdrtest .LRT. p <− summary( mdrtest )$ l o g t e s t [ 3 ]

mdrtest . tab <− condregtab ( mdrtest )

print ( x tab l e ( mdrtest . tab , l a b e l=”tab . mdrtest ” , capt ion=”Condi t iona l l o g i s t i c

r e g r e s s i o n model o f MDR r e s u l t s ” , a l i g n = ” r r r r r r r l ”) , table . placement=” ! ht ” ,

s a n i t i z e . text . function = function ( x ) x )
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Abstract

The serotonin system is known to play a role in eating behavior and eating disorders.

Recently, a number of polymorphisms have been identified in the serotonin system, one of

them being the –1438 G/A polymorphism in the gene for the 5-HT2A receptor (HTR2A).

The A allele and the AA genotype have been associated with the diagnosis of anorexia

nervosa in some studies. Other studies did not confirm the association.

In this paper, the association could not be replicated in a 1–1 matched sib-pair sample

collected in three European centers. The sample consisted of 89 subjects suffering from

anorexia nervosa and their 89 healthy sisters as controls.

The inconsistent findings on the association of the 5-HT2A –1438 G/A polymorphism

suggest that not this polymorphism alone is responsible for the development of anorexia

nervosa. As a new approach, the interactions of the 5-HT2A –1438 G/A polymorphism and

five environmental risk domains (assessed by the Oxford Risk Factor Interview) are evalu-

ated by the use of conditional logistic regression and odds ratio multifactor dimensionality

reduction. The latter method is a model-free, nonparametric data-mining strategy that

was specifically developed for identifying gene–environment and gene–gene interactions in

relatively small samples.

The conditional logistic regression analysis did not find any significant genetic main

effect that altered the risk of being diagnosed with anorexia nervosa. Concerning the

environmental risk factors, the domains of disruptive events, interpersonal problems, and

family dieting environment significantly increased the risk for anorexia nervosa. For the

presumed interaction effects, only borderline significance could be shown. The AG genotype

might act protectively in presence of distressing events in the family dieting environment

domain.

The odds ratio multifactor dimensionality reduction analysis did not support that in-

teraction. But it revealed interactions between environmental domains disruptive events,

interpersonal problems, and parental problems.

The two methods came to somewhat similar conclusions concerning the genetic influence

of the 5-HT2A –1438 G/A polymorphism on the risk for anorexia nervosa.

It was also suggested that the 5-HT2A –1438 G/A polymorphism might be a modifying
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factor in the age of onset. This issue was investigated with a linear regression model. After

exclusion of an outlier, the model found a significant genetic main effect. The AA geno-

type seems to delay the onset of anorexia nervosa. Being distressed by disruptive events

seems to constitute an environmental risk that also seems to delay the onset. Further-

more, a significant interaction effect of the AA and AG genotype with the environmental

domain disruptive events was found: Both genotypes seem to lead to an earlier onset of

anorexia nervosa in presence of distressing disruptive events, compared to subjects with

GG genotype.

The paper also investigated possible genetic and environmental main and interaction

effects with respect to the life-time severity of anorexia nervosa (assessed by the lowest body

mass index, BMI). The analysis did not reveal any significant genetic main or interaction

effects.

In summary, the study found no genetic main or interaction effect when the outcome

of interest was the diagnosis (only a borderline significant interaction effect between the

AG genotype and family dieting environment, which was not confirmed by the OR MDR

analysis). Neither were there any genetic effects influencing life-time severity (assessed by

lowest BMI). But there were genetic main and interaction effects in the prediction of age

of onset.
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Zusammenfassung

Es ist bekannt, dass das Serotonin-System mit Essverhalten und Essstörungen in Zusam-

menhang steht. Im Zuge jüngerer genetischer Forschung wurden mehrere sogenannte

Polymorphismen im Serotonin-System identifiziert. Einer davon ist der 5-HT2A –1438

G/A Polymorphismus im Gen für den 5-HT2A Rezeptor (HTR2A). Das A Allel und der

AA Genotyp dieses Polymorphismus wurden in einigen Studien mit Anorexia Nervosa

in Zusammenhang gebracht. Andere Studien wiederum konnten diese Assoziation nicht

replizieren.

Die Assoziation konnte auch in dieser Studie nicht repliziert werden. Die verwendete

Stichprobe bestand aus Patientinnen dreier europäischer Zentren, die an Anorexia Nervosa

litten, und deren gesunden Schwestern als Kontrollgruppe.

Die uneinheitlichen Ergebnisse der Assoziationsstudien legen nahe, dass womöglich auch

Umweltfaktoren eine wichtige Rolle spielen. In der vorliegenden Arbeit wurden als neuer

Ansatz neben den Einflüssen des 5-HT2A –1438 G/A Polymorphismus und Umweltrisiko-

faktoren (erhoben mittels des Oxford Risk Factor Interviews) auch deren Wechselwirkungen

untersucht. Die Auswertung erfolgte mittels bedingter logistischer Regression als auch mit

der Odds Ratio Multifactor Dimensionality Reduction Methode. Letzteres ist ein relativ

neues, modell- und parameterfreies Verfahren aus dem Data Mining Bereich, das speziell

für die Identifikation von Gen–Gen- und Gen–Umwelt-Wechselwirkungen entwickelt wurde.

Mittels bedingter logistischer Regression konnte kein genetischer Haupteffekt des 5-HT2A

–1438 G/A Polymorphismus gefunden werden, der das Risiko einer Anorexia Nervosa Di-

agnose erhöhen würde. Von den fünf untersuchten Umweltrisikofaktoren gingen drei mit

einem erhöhten Risiko einher (disruptive events, interpersonal problems und family diet-

ing environment). Bezüglich der vermuteten Wechselwirkungen konnte auch lediglich eine

knapp nicht-signifikante Wechselwirkung identifiziert werden. Personen mit dem Genotyp

AG scheinen bei einem vorhandenen Umweltrisiko in der Domäne family dieting environ-

ment eine (relativ zu dem Genotyp GG) leicht verminderte Wahrscheinlichkeit für eine

Diagnose von Anorexia Nervosa aufzuweisen.

Die Odds Ratio Multifactor Dimensionality Reduction Methode stützt diese mögliche

Wechselwirkung nicht. Sie identifizierte allerdings Interaktionen zwischen verschiedenen
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Zusammenfassung

Umweltfaktoren (Domänen disruptive events, interpersonal problems und parental prob-

lems).

Eine mögliche moderierende Wirkung des 5-HT2A –1438 G/A Polymorphismus in Bezug

auf den Erkrankungsbeginn (age of onset) wurde schon in früheren Artikeln diskutiert. In

dieser Arbeit wurde dies mittels multipler linearer Regression bestätigt. Nach dem Auss-

chluss eines Ausreißers ergab sich ein genetischer Haupteffekt: Personen mit Genotyp AA

zeigten einen verspäteten Beginn der Essstörung (relativ zu Personen vom Genotyp GG).

Zusätzlich identifizierte die Analyse Wechselwirkungen. Während bei Personen mit Geno-

typ AA mehr Ereignisse aus der Domäne disruptive events mit einem späteren Beginn der

Erkrankung zusammenhängen, scheint diese Beziehung für Personen mit den Genotypen

AG und GG nicht zu gelten.

Weiters wurde in der vorliegenden Arbeit der Einfluss von genetischen und Umwelteffek-

ten (und deren Wechselwirkungen) auf den Schweregrad der Erkrankung untersucht (erfasst

durch den niedrigsten Body Mass Index). Es konnten keine genetischen Haupteffekte oder

Wechselwirkungen gefunden werden.

Zusammenfassend kann gesagt werden, dass in der Studie keine signifikanten genetischen

Haupteffekte oder Wechselwirkungen gefunden wurden, die das Risiko einer Diagnose von

Anorexia Nervosa beeinflussen würden (es wurde lediglich eine knapp nicht-signfikante

Wechselwirkung zwischen dem AG Gentotyp und family dieting environment gefunden, die

aber durch die Odds Ratio Multifactor Dimensionality Reduction Methode nicht bestätigt

wurde). Ebensowenig wurden genetische Haupteffekte oder Wechselwirkungen in Bezug

auf den Schweregrad der Essstörung gefunden. Der 5-HT2A –1438 G/A Polymorphismus

dürfte aber Einfluss auf den Krankheitsbeginn haben (sowohl als Haupteffekt als auch in

Form einer Wechselwirkung).

176



References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions

on Automatic Control , 19 (6), 716–723.

Aubert, R., Betoulle, D., Herbeth, B., Siest, G., & Fumeron, F. (2000). 5-HT2A recep-

tor gene polymorphism is associated with food and alcohol intake in obese people.

International Journal of Obesity , 24 (7), 920–924.

Baumgarten, H. G., & Grozdanovic, Z. (1996). Serotonin – essverhalten und essstörungen.
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Schäfer, H., et al. (1996). Body weight in acute anorexia nervosa and at follow-

up assessed with percentiles for the body mass index : Implications of a low body

weight at referral. International Journal of Eating Disorders, 19 (4), 347–357.

Hebebrand, J., Wehmeier, P., & Remschmidt, H. (2000). Weight criteria for diagnosis of

179



References

anorexia nervosa. American Journal of Psychiatry , 157 (6), 1024.

Heninger, G., Charney, D., & Sternberg, D. (1984). Serotonergic function in depression.

prolactin response to intravenous tryptophan in depressed patients and healthy sub-

jects. Archives Of General Psychiatry , 41 (4), 398–402.

Herbeth, B., Aubry, E., Fumeron, F., Aubert, R., Cailotto, F., Siest, G., et al. (2005). Poly-

morphism of the 5-HT2A receptor gene and food intakes in children and adolescents:

the stanislas family study. Am J Clin Nutr , 82 (2), 467–470.

Herzog, D. B., & Delinski, S. S. (2001). Eating disorders. Innovative directions in research

and practice. In R. H. Striegel-Moore & L. Smolak (Eds.), (chap. Classification of

Eating Disorders). Washington, DC: American Psychological Association.

Hinney, A., Remschmidt, H., & Hebebrand, J. (2000). Candidate gene polymorphisms in

eating disorders. European Journal of Pharmacology , 410 , 147–459.

Hinney, A., Ziegler, A., Nothen, M., Remschmidt, H., & Hebebrand, J. (1997). 5-HT2A

receptor gene polymorphism, anorexia nervosa, and obesity. Lancet , 350 , 1324–1325.

Hirsch, J. (1981). To ’unfrock the charlatans’. Sage Race Relations Abstracts, 6 , 1–67.

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. New York, NY: Wiley.

Hoyer, D., Clarke, D. E., Fozard, J. R., Hartig, P. R., Martin, G. R., Mylecharane, E. J.,

et al. (1994). International union of pharmacology classification of receptors for

5-hydroxytryptamine (serotonin). Pharmacological Reviews, 46 (2), 157–203.

Huelsenbeck, J. P., & Crandall, K. A. (1997). Phylogeny estimation and hypothesis testing

using maximum likelihood. Annual Review of Ecology and Systematics, 28 , 437–466.

Huxley, J. (1955). Morphism and evolution. Heredity , 9 , 1–52.

Jimerson, D. C., Lesem, M. D., Kaye, W. H., & Brewerton, T. D. (1992). Low serotonin

and dopamine metabolite concentrations in cerebrospinal fluid from bulimic patients

with frequent binge episodes. Archives Of General Psychiatry , 49 , 132–138.

Jimerson, D. C., Lesemb, M. D., Kaye, W. H., Heggd, A. P., & Brewerton, T. D. (1990).

Eating disorders and depression: Is there a serotonin connection? Biological Psychi-

atry , 28 (5), 443–454.
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