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1 Introduction
1.1 The cutaneous peripheral sensory nervous system
Anatomically, the human nervous system is divided into the central nervous system,

CNS and the peripheral nervous system, PNS. While the CNS comprises the brain and

the spinal cord, the PNS consists of the efferent postganglionic and the sensory

afferent structures of the somatic and autonomic nervous system, including the twelve

cranial nerves.

In terms of physiological function, the nervous system is divided into the somatic

nervous system of conscious control and the autonomic nervous system, ANS of

involuntarily regulated, visceral functions. Both systems consist of afferent sensory

neurons and efferent motor neurons, as well as connecting interneurons. The sensory,

motor and interneurons of the autonomic nervous system in turn, are arranged in two

functional systems: The sympathetic and the parasympathetic autonomic nervous

system.

The peripheral sensory nervous system therefore includes: The sensory afferents of

the somatic nervous system and the sensory sympathetic and parasympathetic

afferents of the autonomic nervous system, also called visceral sensory neurons. All

of them innervate to varying extent the human skin [1] [2].

1.1.1 Anatomy of the cutaneous peripheral sensory nervous system
The cell bodies of somatic and visceral afferent sensory neurons are located in the

dorsal root ganglia, DRG and in the ganglia of the cranial nerves. All sensory neurons

are considered pseudounipolar, with the exception of several cranial nerves which

contain bipolar neurons [3]. Pseudounipolar neurons possess one bifurcated axon, the

long distal process innervating the peripheral target tissue and the short proximal

process projecting to the spinal cord. The sensory roots leaving the ganglia converge

with the motor roots originating in the brain stem and the spinal cord and form mixed

cranial nerves and the 31 pairs of spinal nerves. They branch and proceed in mixed

bundles to their peripheral target tissues.

Cutaneous nerves enter the skin via the subcutis which is mainly built of connective

and adipose tissue. Nerve bundles proceed to the subsequent dermis, which primarily

consists of fibroblasts that secrete the main components of the extracellular matrix, in

particular the glycoproteins elastin, fibronectin and collagen [4]. The dermis further
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contains microvascular blood and lymphatic vessels, as well as the skin appendages

and immune cells [5] [6]. In the dermis nerve bundles loosen and axonal fibers branch

to build the dermal nerve plexi. Autonomic motor and sensory fibers, mainly of the

sympathetic and to minor extent of the parasympathetic system, innervate the

arteriovenous anastomoses, the microvascular blood and lymphatic vessels, the

sebaceous and sweat glands and the hair follicles with the erector pili muscles [7].

However, autonomic fibers do not enter the superficial epidermal layer of the skin. In

contrast, the somatic sensory neurons either terminate in the dermis or in the

epidermis. In the dermis somatic sensory neurons end as encapsulated

mechanoreceptors (Pacinian, Meissner and Ruffini corpuscles), innervate the hair

follicles or form free sensory nerve endings [8]. In the epidermis the somatic sensory

neurons generally terminate as free nerve endings or in complex with Merkel cells

located in the epidermal basal layer [9]. The predominant cell type of the epidermis

constitute keratinocytes with up to 85 to 95 percent, followed by melanocytes,

Langerhans cells and Merkel cells. Keratinocytes undergo terminal differentiation, a

mechanism of controlled cell death that results in denucleated, cornified cells of the

horny layer [10] [11]. Keratinocytes of different stages of differentiation form the

characteristic squamous stratified epithel which is subclassified into the 5 epidermal

layers: stratum basale , stratum spinosum, stratum granulosum, stratum lucidum and

stratum corneum (Figure 1).

Unmyelinated somatic sensory fibers branch extensively at the dermal-epidermal

borders and create a three dimensional network of sensory fibers throughout the

epidermis [12] [13].  The most superficial fibers reach into the stratum granulosum.

Different sensory fiber types terminate in distinct keratinocyte layers and may serve

different functional purpose, as indicated by Zylka MJ. in 2005 [14].
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1.1.2 Classification of sensory neurons
Sensory neurons can be classified into four subgroups according to their extent of

myelination and conduction velocity: Aα, Aβ, Aδ and C fibers [15]. In short, Aα

fibers possess the largest diameters of 12 – 20 µm at a maximum conduction velocity

of 120 m/s, followed by Aβ fibers  (6 – 12 µm; max. 70 m/s), Aδ (1 – 5 µm;

Figure 1: Topography of nerve fibers in the skin
A) Human dermal nerve plexus and B) neuronal fibers entering the epidermis (arrows);
Cryosections of human punch biopsies, neurites labeled with mouse monoclonal anti-
SMI312 and goat anti-mouse Alexa 594, keratinocytes labeled with rabbit polyclonal
anti-cytokeratin 1/10 and goat anti-rabbit Alexa 488, nuclei labeled with DAPI (Zeiss
Axiovert S100; 100x magnification)
C )  In-vitro co-culture of sensory neurites and primary human keratinocytes;
Keratinocytes labeled with rabbit polyclonal anti-wide spectrum cytokeratin and goat
anti-rabbit Alexa 488, neurites labeled with mouse monoclonal anti-SMI312 and goat
anti-mouse Alexa 594 (Zeiss Axiovert S100; 200x magnification)
D)  Sketch of the squamous morphology of the human epidermis (modified from
Eucerin®)

Stratum corneum

Stratum lucidum

Stratum granulosum

Stratum spinosum

Stratum basale

Basal membrane

Free nerve endings

A B

C D
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max._30_m/s) and C fibers (0,2 – 1,5 µm; max. 2 m/s). Sensory Aα nerve fibers

innervate the proprioceptive organs of muscles, the golgi tendon organ and the muscle

spindle [16]. Sensory Aβ fibers form the secondary afferent endings in the muscle

spindle and innervate all mechanorecpetive structures in the dermis (1.1.1). Sensory

Aδ and C fibers, terminate as free nerve endings in the skin, whereas only C fibers

proceed into the epidermal layer (Figure 2). Subtypes of both fiber types respond to

temperature and osmotic changes, as well as mechanical, chemical and noxious

stimuli [17].

Transient receptor potential channel subfamilies have been implicated as molecular

sensors involved in a variety of the above indicated sensations [18]. Warming and

cooling sensation is transmitted via TRPV1 – 4 and TRPA1 and M8, respectively.

TRPC5 has been implicated in osmosensing [19] and the TRPN and P subfamilies

have been related to mechanosensing. In addition, TRPV, TRPA and M subtypes have

been detected on nociceptive fibers [20] [21] and several exogenous and endogenous

ligands to TRP channels have been identified [22] [23].

Stratum corneum
Stratum granulosum
Stratum spinosum
Stratum basale

Epidermis

Aδ (lightly myelinated)

Peptidergic C-fiber
(unmyleinated)

Non-peptidergic C-fiber
Aβ (thickly myelinated)

Figure 2: Different classes of somatic sensory fibers innervate the human skin
Somatic sensory fibers derived from DRGs innervate different layers and structures of
the skin. Aβ fibers innervate mechanoreceptive skin appendages, Aδ fibers terminate
as free nerve endings in the dermis, while unmyelinated C fibers terminate in complex
with Merkel cells or as free nerve endings in the epidermis. (modified from
Lumpkin&Caterina 2007)
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Aδ and C nerve fibers that signal pain in response to noxious stimuli are generally

termed nociceptors. Different nociceptor subtypes are defined based on the fiber type

and conduction velocity, the soma size, the modalities of stimulation and the

characteristics of pain sensation transmitted, for instance sharp, pungent or burning

[24].

In addition, different types of nociceptive sensory neurons can be subdivided

according to their expression of specific molecular markers, including neurofilaments,

neuropeptides, enzymes, receptors, as well as their neurotrophic dependency [24]. In

rat, approximately 40 % of DRGs stain for NF200, heavy neurofilament 200_kDa, a

marker for myelinated neurons. Only 10_% of NF200+ neurons are nociceptive, the

nociceptive Aδ fibers. NF200+ Aδ  and NF200- fibers are subclassified into

peptidergic and non-peptidergic nociceptors. Peptidergic neurons contain

neuropeptides as substance P (SP) or calcitonin gene related peptide (CGRP). They

depend on nerve growth factor (NGF) for survival and sustainment of their receptive

properties [25]. Accordingly, peptidergic neurons express the NGF high affinity

receptor TrkA. Non-peptidergic neurons express the specific surface proteoglycan

versican that binds the plant lectin isolectin B4 (IB4) [26] [27]. They are dependent on

glial cell-line derived neurotrophic factor (GDNF) and express its receptor tyrosine

kinase Ret and the co-receptors GFRα (1-4). TRPV1 is expressed in subpopulations

of both, peptidergic and non-peptidergic neurons (Figure 3).

Notably, molecular markers show no specificity for target tissues, considerable

overlap exists [28] and marker expression varies substantially between species [29]

[28] and developmental stages [30] [31]. Despite these limitations, above indicated

markers remain valuable for the general classification of sensory neurons and are

combined and extended with different functional properties [32].
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1.1.3 Efferent functions of cutaneous sensory neurons
The classical view of sensory nerves in the skin assigns afferent sensory transmission

and efferent release of neurotransmitters, neuropeptides and neurohormones to

separate anatomical entities. However, present knowledge strongly indicates that

sensory reception and efferent release of neuromediators occur at the very same

sensory afferent ending. A more and more complex auto and para-neuroendocrine

system between nerve fibers, cutaneous cells, immune cells and the microvascular

system in the skin becomes apparent  (Figure 4) [24] [33] [34].

Sensory C and Aδ fibers have been shown to produce and release neuropeptides, as

substance P (SP) or calcitonin gene related peptide (CGRP), neurotransmitters as

acetylcholine (ACh) and catecholamines (norepinephrine, NE; dopamine) and

neurotrophins as NGF. Respective cognate receptors are expressed on numerous cell

types in the skin including keratinocytes, fibroblasts, endothelial cells, smooth muscle

cells, Merkel cells, mast cells and leukocytes. Further, indicated cell types have been

reported to produce and secrete various neuromodulatory factors themselves [35].

Sensory afferents release neuropeptides in response to a wide range of external and

internal stimuli, including extreme temperature, low pH, nitric oxide, UV radiation,

ATP or other factors released during tissue injury. Neuropeptides bind and act on

adjacent cutaneous cells, which in turn secrete more neuropeptides and

Peptiderg
40%

Non-
Peptiderg

60%

20% of Adelta
NF200+

50% of C-fibers

CGRP+
SP+
TrkA+
NGF dep.

IB4+
Ret
GFRa1-4
GDNF dep.

50% of C
fibers

Figure 3: Molecular markers of
nociceptive neurons
Nociceptive neurons are divided into
peptidergic and non-peptidergic
neurons by the expression of
molecular markers. Peptidergic: SP+,
CGRP+, TrkA+ and dependent on
NGF; Non-peptidergic: IB4+, Ret+,
GFRα+ and dependent on GDNF.
Note that 20 % of NF200+ Aδ fibers
and 50 % of C fibers are peptidergic;
Values given for immunofluorescent
studies in rats  (based on McMahon
2005, Priestly_2002).
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neuromodulatory factors. The so created autonomic feedback loops play an important

role in skin homeostasis, but also in neurogenic inflammation, pain or pruritus and is

misregulated in a number of cutaneous diseases [36] [37] [38].

Figure 4: Efferent functions of sensory neurons
Auto and para-neuroendocrine interaction of sensory afferents, skin cells, immune
cells and the microvascular system using the example of the neuropeptides SP and
CGRP: Acitvated sensory afferents release neuropeptides that activate mast cells and
vascular endothelial cells, resulting in the release of cytokines, neurotrophic factors
and neuropeptides. (Julius & Basbaum 2001)
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1.2 Cutaneous neuropeptides
Neuropeptides are small peptides built of 4 to approximately 40 amino acid residues.

Members of the same neuropeptide family are usually transcribed in one large

precursor molecule, named pre-pro-neuropeptide. Proteolytic cleavage and

posttranslational modifications are required to finally genereate the active

neuropeptide. In general, neuropeptides are ligands of G protein coupled receptors

(GPCR), thus modulating the excitability of the target cells. Besides the strong

expression of neuropeptides and their receptors in the CNS and in the peripheral

terminals, they are expressed in nearly all non-neuronal tissues. This allows an

extensive crosstalk of neuronal and non-neuronal cells and the integration of different

body functions and systems [39].

In the skin, Aδ and C fibers and various cutaneous cell types (1.1.3) have been shown

to produce and release neuropeptides including tachykinins (SP, neurokinins NK)

[40], VIP/secretin peptides (VIP, PACAP) [41], CGRP peptides [42], opioids and

POMC derived peptides [43] [44], as well as endocannabinoids [45]. In summary,

they regulate functions in the skin as vasoconstriction and -dilatation and sweat

production and -secretion, thus maintaining the skin’s temperature and water balance.

Neuropeptides possess extensive immune modulatory capabilities. They stimulate the

release of pro and anti-inflammatory cytokines, induce the expression of vascular

adhesion molecules and exert trophic effects on immune cells, fibroblasts and

endothelial cells. Both, cytokines and neuropeptides in turn influence the excitability

of sensory afferent nerve endings in the skin [38]. Thus, neuropeptides do not only

promote inflammation and wound healing, but play a major role in neuropathic pain

and pruritus.

1.2.1 Calcitonin gene related peptide, CGRP
The superfamily of calcitonin gene-related peptides includes CGRP, calcitonin (CT),

amylin and adrenomedullin. CGRP1 and CT are encoded in the human CALC I gene,

whereas CGRP2 is derived form the CALC II gene. CGRP1 and CGRP2 are built of

37 amino acids and differ in 3 residues. The two subtypes of CGRP1, CGRP1α and

CGRP1β, are genereated by alternativ splicing and differ in 1 residue [42] [46].

CGRP1α is the predominant subtype present in sensory neurons, while CGRP1β is

found in enteric neurons [47].
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Based on affinity and pharmacological studies, two types of receptors have been

proposed, CGRP-R1 and CGRP-R2. CGRP-R1 has been identified as a heterodimer

of a 7 transmembrane calcitonin-receptor-like receptor (CRLR) and one of three

single transmembrane receptor-activity-modifying-proteins, RAMP1. RAMP1

transports CRLR to the plasma membrane. The existence of the CGRP-R2 receptor

has recently been questioned as its molecular components remain elusive [48].

In rat skin CGRP is expressed in approximately 51 % of sensory neurons [49] and is

found in colocalization with either SP or somatostatin (SST) [50]. CGRP positive

fibers are associated with the dermal microvascular system [51]. CGRP was shown to

exert potent effects as vasodilator [52] and directly stimulates endothelial cell

proliferation, indicating a possible role in angiogenesis and wound healing [53].

CGRP positive fibers are also found closely associated with keratinocytes,

melanocytes [54], Merkel cells, Langerhans cells [55] and mast cells [56], which are

involved in inflammatory processes. However, some controversy regarding the role of

CGRP during inflammation exists. It was shown that CGRP in general exerts an anti-

inflammatory effect [57]. On the other hand, it also stimulates neutrophil and

monocyte adhesion to microvascular endothelial cells (HDMECs) [58] and the release

of pro-inflammatory cytokines, as TNFα, from mast cells [59] [60].

1.3 Cutaneous neurotrophic factors
Per definition, a neurotophic factor exerts trophic, survival and growth effects on

neurons. Neurotrophic factors are expressed in the CNS and the peripheral target

tissues. They promote and guide innervation during development and ensure the

maintainance of neuronal subtypes in the adult organism. The concept of neurotrophic

factors was first described by Rita Levi-Montalcini and Stanley Cohen with the

discovery of NGF [61].

Subtypes of cutaneous nerve fibers show selective dependency on different

neurotrophic factors. They express specific tyrosine kinase receptors that are

internalized together with the bound ligand and retrogradely transported to the cell

somata, thereby ensuring the survival of the respective neuron [62] [63]. In the skin,

neurotrophic factors of the neurotrophin and TGFβ superfamilies are expressed by

various cell types including keratinocytes [64] [65], fibroblasts [66], endothelial cells

[67] [68] and Merkel cells [69]. Dysregulation of cutaneous neurotrophin levels has
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been implicated in several cutaneous diseases, causing pain, hypersensitivity and

neuropathic conditions [24] [70].

1.3.1 Nerve growth factor, NGF
Nerve growth factor (NGF) is the most prominent member of the superfamily of

neurotrophins that also includes brain derived neurotrophic factor (BDNF),

neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). Mature NGF exists in two forms, a

high molecular weight hexameric complex built of 2α : 2β : 2γ subunits named 7S

NGF and the βNGF homodimer. 7S NGF is expressed at high levels in murine

submaxillary glands, but is absent in most other murine tissue or other species [71].

Accordingly, it was shown that the biological functions of NGF are mediated via its β

homodimer [72] [73]. The NGFβ subunit is synthesized as 40 kDa glycosylated

proNGF precursor molecule [74]. Pro NGF is released upon neuronal activity and

processed to mature NGF of 13 kDa in a plasminogen/ tissue plasminogen activator

(tPA) dependent manner in the extracellular space [75].

The NGFβ homodimer binds two classes of receptors, the high affinity receptor TrkA

and the low affinity receptor p75. Besides NGF, p75 is bound by all members of the

neurotrophin family, as well as the precursor proNGF. While the activation of p75 has

been implicated in apoptosis [76], TrkA activation induces signaling to promote the

survival and maintenance of the target cell. The phosphorylated receptor-ligand

complex is internalized in signaling endosomes that are transported retrograd to the

cell somata [77]. Simultaneously, TrkA activates downstream signaling via MAP

kinase pathways [78], thereby inducing posttranslational and transcriptional

modifications of several ion channels [79].

NGF is essential for the maintenance of the nociceptive phenotype of peptidergic C

and Aδ fibers and is a key regulator of nociception in the periphery. It directly

influences the sensitivity of nociceptive afferents via sensitization of receptors as

TRPV1 [80] or bradykinin receptors [81] and stimulation of TRPV1 expression [82].

Furthermore, the production of neuropeptides such as SP and CGRP is regulated by

NGF [83]. Neuropeptides in turn play a key role in inflammation and sensitization of

nociceptive afferents (1.2) and mediate the release of pro and anti-inflammatory

cytokines (TNFα, IL1α/β, IL6, IL8 and IL10), as well as NGF from skin and immune

cells [38] [60] [84].
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1.4 The role of peripheral sensory neurons in cutaneous
disease

A crucial role for cutaneous sensory neuronal afferents has become apparent in

several cutaneous diseases, especially in Atopic Dermatitis (AD) and Psoriasis. Both

are chronic inflammatory skin diseases with marked dysregulation in keratinocyte

proliferation and differentiation, resulting in skin barrier dysfunction. Plaques of

inflamed skin exhibit massive infiltration of immune cells and extensive accumulation

of allergen specific IgE [85] [86]. Though, the type of T-cell infiltration presents the

main difference between psoriatic and atopic inflamed plaques [87].

Psoriatic and AD skin exhibit increased neuronal fiber density and a marked increase

in SP and CGRP positive fibers [88] [89]. As indicated in 1.2 and 1.3 SP and CGRP

stimulate the release of cytokines and neurotrophins from cutaneous cell types and

immune cells. Accordingly, increased levels of NGF in psoriatic and AD skin have

been detected [90]. Cytokines, neuropeptides and NGF in turn cause sensitization of

nociceptive afferents and the stimulation of already infiltrated immune cells.

In summary, sensory afferent neurons are not only considerably affected in cutaneous

diseases, but account for the sustained and persistent inflammation, pain and pruritus,

collectively referred to as neurogenic inflammation.

1.5 Focus of the Diploma Thesis
In this work, the local influence of dermal and epidermal skin cells on sensory

afferent nerve growth is investigated using a novel in-vitro co-culture system of

porcine DRGs and human primary skin cells.

In a first attempt, the co-culture system is established and characterized. The

sensitivity of the system in repsonse to the neurotrophic factor human NGFβ is

examined. Induced peripheral fibers are classified using common nociceptive markers

(1.1.2) and the functionality of cultured neurons is analyzed by stimulating the

efferent function of sensory neurons (1.1.3).

Secondly, the effects of primary human keratinocytes and fibroblasts on peripheral

sensory fiber growth and morphology is examined. Are skin cells sufficient to induce

fiber outgrowth in the co-culture system? Do keratinocytes and fibroblasts exert

different effects? Does endogenously produced NGF play a role in skin cell mediated

effects and are any other factors beside NGF involved?
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2 Materials
2.1 Antibodies

Primary Antibodies

Rabbit polyclonal anti-TrkA Abcam, Cambridge UK

Rabbit polyclonal anti-TRPV1 Abcam, Cambridge UK

Rabbit polyclonal anti-PGP9.5 Abcam, Cambridge UK

Mouse monoclonal anti-CGRP Abcam, Cambridge UK

Mouse monoclonal anti-Fibroblast Surface Protein Abcam, Cambridge UK

Rabbit polyclonal anti-wide spectrum Cytokeratin Abcam, Cambridge UK

Rabbit polyclonal anti-Cytokeratin 1/10 Covance, Emeryville USA

Mouse monoclonal anti-Pan-Axonal Neurofilament Covance, Emeryville USA

Mouse monoclonal anti-Myelin CNPase Covance, Emeryville USA

Goat polyclonal anti-NGFβ, affinity purified R&D, MN USA

Isolectin GS-IB4, Alexa Fluor 488 conjugate Molecular Probes, OR USA

Secondary Antibodies

Alexa Fluor 488, Goat anti-mouse IgG (H+L) Molecular Probes, OR USA

Alexa Fluor 488, Donkey anti-goat IgG (H+L) Molecular Probes, OR USA

Alexa Fluor 488, Goat anti-rabbit IgG (H+L) Molecular Probes, OR USA

Alexa Fluor 594, Goat anti-mouse IgG (H+L) Molecular Probes, OR USA

Alexa Fluor 594, Goat anti-rabbit IgG (H+L) Molecular Probes, OR USA

2.2 Chemicals and Buffers

All solutions were prepared with ultra pure water (ddH2O) using a Milli-Q academic

water purification system.

Aceton Merck, Darmstadt GER

Albumin, Bovine (cohnVfraction >96%) Sigma-Aldrich, Munich GER

Bayer Baysilone, highly viscous VWR, Darmstadt GER
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Calciumchloride Merck, Darmstadt GER

Capsaicin Sigma-Aldrich, Steinheim GER

Capsazepin A.G.Scientific, San Diego USA

DAPI, dilactate Sigma-Aldrich, Munich GER

D-Glucose Merck, Darmstadt GER

Dimethyl sulfoxid (DMSO) Sigma-Aldrich, Munich GER

Donkey Serum Sigma-Aldrich, Munich GER

Dulbecco’s PBS (1x w/o Ca2+, Mg2+) Invitrogen, Karlsruhe GER

Dulbecco’s PBS (10x w/o Ca2+, Mg2+) Invitrogen, Karlsruhe GER

Essential Aminoacids (50x) Invitrogen, Karlsruhe GER

Ethanol, abs. Merck, Darmstadt GER

Fetal bovine serum PAA, Linz Austria

Fluka H2O, RNase/DNase free Sigma-Aldrich, Steinheim GER

Fluorescence Mounting Media Dako, Glostrup Denmark

Gentamycin (10mg/mL) Invitrogen, Karlsruhe GER

Goat Serum Sigma-Aldrich, Munich GER

HEPES 1M Invitrogen, Karlsruhe GER

Horse Serum, heat inactivated Invitrogen, Karlsruhe GER

Isopropanol Merck, Darmstadt GER

L-Glutamin (200mM) Invitrogen, Karlsruhe GER

Magnesiumchloride Sigma-Aldrich, Steinheim GER

Methanol Merck, Darmstadt GER

Methyl-Cellulose Sigma-Aldrich, Munich GER

OCT-Media Tissue-Tec® Leica Microsystems, Wetzlar GER

Paraformaldehyde Sigma-Aldrich, Steinheim GER

PBS (1x w/o Ca2+, Mg2+) PAA, Linz, Austria

Penicillin-Streptomycin (10.000 U/mL each) Invitrogen, Karlsruhe GER

Penicillin-Streptomycin

(5000 U/mL, 5000µg/mL) Invitrogen, Karlsruhe GER

Percoll GE Healthcare, Uppsala Sweden

Poly-L-Lysine (0,1%) Sigma-Aldrich, Munich GER

Potassiumchloride Merck, Darmstadt GER

Sigmacote SL-2 Sigma-Aldrich, Munich GER
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Sodiumchloride Merck, Darmstadt GER

Triton X-100 Sigma-Aldrich, Steinheim GER

Tween Cayman, Michigan USA

Trypan blue (0,4%) Sigma-Aldrich, Munich GER

Ultrasonol 7, neutral Roth, Karlsruhe GER

HEPES basal buffer for DRG stimulation (Ref.)

HEPES 25 mM

Supplements:

Invitrogen, Karlsruhe GER

135 mM

3,5 mM

2,5 mM

1,0 mM

3,3 mM

0,1 %

-

NaCl

KCl

CaCl2

MgCl2

Glucose

BSA

PH 7,4

HEPES high potassium for DRG stimulation

HEPES basal

Supplements:

50 mM KCl

HEPES Capsaicin for DRG stimulation

HEPES basal

Supplements:

50nM Capsaicin

2.3 Enzymes and Recombinant Proteins

Trypsin EDTA PAA, Linz Austria

Collagenase Invitrogen, Karlsruhe GER

Dispase II (2,4U/mL) Roche, Penzberg GER
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Human NGFβ Sigma-Aldrich, Munich GER

Mouse NGF 7S Merck, Darmstadt GER

2.4 Assays and Kits

BCA-Assay Uptima Interchim, Montlucon France

Bioplex Cell Lysis Kit Bio-Rad, Munich GER

NGFβ Single Plex Kit Bio-Rad, Munich GER

Human CGRP EIA Kit Cayman, Michigan USA

TaqMan 18s Gene Expression Assay Applied Biosystems, Foster City USA

TaqMan high capacity cDNA RT Kit Applied Biosystems, Foster City USA

TaqMan human NGFβ Gene Expression Assay Applied Biosystems, Foster City USA

TaqMan universal PCR MasterMix Applied Biosystems, Foster City USA

RNase free DNase Set Qiagen, Hilden GER

RNeasy Mini Kit Qiagen, Hilden GER

2.5 Cell Culture Media and Supplements

DMEM culture medium for primary fibroblasts (Gibco)

DMEM high glucose (4,5g/L) with phenolred

Supplements:

Invitrogen, Karlsruhe GER

10% v/v

10 µl/mL

50 U/mL

50 µg/mL

Fetal bovine serum

Glutamax

Penicillin

Streptomycinsulfate

DMEM cryomedium for primary fibroblasts (Gibco)

DMEM cryomedium with DMSO Invitrogen, Karlsruhe GER

7,5 % v/v DMSO
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DMEM medium for dorsal root ganglion cell isolation (Sigma)

DMEM high glucose with Gentamycin

Supplements:

Sigma-Aldrich, Munich GER

5 µg/mL Gentamycin (10mg/mL)

KGM-2 culture medium for primary keratinocytes (Lonza)

KBM-2 w/o Ca2+

Supplements:

Lonza, Walkersville MD USA

Bovine pituitary extract (BPE)

Epinephrine

Gentamycin, Amphotericin-B

Human epidermal growth factor (hEGF)

Hydrocortisone

Insulin

Transferrin

Ca2+ 0,1 mM

KGM-2 cryomedium for primary keratinocytes (Lonza)

KGM cryomedium with DMSO and fetal bovine serum Lonza, Walkersville MD USA

20% v/v

7,5% v/v

Fetal bovine serum

DMSO

F12 culture media for primary dorsal root ganglion cells (Sigma)

F12 basal medium 500 mL

Supplements:

Sigma-Aldrich, Munich GER

10% v/v

10 ng/mL

1,5 mL

2,5 mL

5 mL

Horse serum

Human NGFβ

Essential aminoacids (50x)

L-Glutamin (200 mM)

Penicillin-Streptomycin (10.000 U/mL)
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2.6 Plastic ware and Consumables

6 well plates Greiner, Nürtingen GER

96 well plates Greiner, Nürtingen GER

96 well optical reaction plate, MicroAmp Applied Biosystems, Darmstadt

Adhesion films, MicroAmp Applied Biosystems, Darmstadt

Bottle top filters (150mL, 250mL) Nalgene, Lawrence KS USA

Cell culture dishes, 35mm x 10mm Becton Dickinson (BD), USA

Cell culture flasks (25, 75, 185, 500 cm2) Greiner, Nürtingen GER

Cell strainer Nylon 70 µm Becton Dickinson (BD), USA

Cover glass, 12 mm, 25 mm diameter VWR, Darmstadt GER

Cover glass, rectangular Menzel-Glass, Braunschweig GER

Cryotubes, 1,5 mL Nunc, Wiesbaden GER

Dumont Nr.5 forceps Reiss, Mainz GER

Eppendorf tubes (0,5, 1, 1,5 mL) Eppendorf, Hamburg GER

Falcon tubes (15 mL, 50 mL) Greiner, Nürtingen GER

Glass syringe, Luer lock 2 mL Fortuna Optima, Wertheim GER

Latex gloves powder free Kimberly-Clark, Mainz GER

Needles, 21 gauge Unimed, Lausanne CH

Neubauer chamber and cover glass Brand, Wertheim GER

Pasteur pipettes, plugged and non-plugged VWR, Darmstadt GER

Sterile biopsy instruments (scissors, forceps) Aesculap, Hammacher GER

Superfrost microscope slides Menzel-Glass, Braunschweig GER

Super PAP pen, large EMS, Munich GER

2.7 Equipment and Instrumentation

Analytical balances

BP211D precision balance Sartorius, Göttingen GER

Autoclaves

Varioklav 135S H+P, Oberschleißheim GER

Technoklav IBS integra biosciences, Chur CH
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Bioplex System

Bioplex 2200 System Bio-Rad, Munich GER

Cell Couting devices

Neubauer hemocytometer Schreck, Hofheim GER

Nucleo Counter Chemometec, Gydevang Denmark

Centrifuges

Centrifuge 5415 R Eppendorf, Hamburg GER

Heraeus Megafuge 1.0R ThermoScientific, Schwerte GER

Heraeus Multifuge3 S-R ThermoScientific, Schwerte GER

Cooling units

-196°C Cryostorage System K10 Taylor-Wharton Theodore, AL USA

-80°C ultra low temperature freezer Liebherr, Ochsenhausen GER

-20°C freezer Liebherr, Ochsenhausen GER

+4°C refrigerator Bosch, Munich GER

Cryotom

Leica CM3050S Leica Microsystems, Wetzlar GER

Ice machine

ZBE 30-10 Ziegra-Ice machines, Isernhagen GER

Incubators

HERAcell 150 Heraeus, Hanau GER

HERAcell 240 Heraeus, Hanau GER

Lamina Flow Workbenches

HERAsafe KS 12 Kendro, Hanau GER

HERAsafe Kendro, Hanau GER

Magnetic stirrers and heating plates

Big Squid IKA-Works, Staufen GER

VMS C4 VWR, Darmstadt GER

Microscopes

Axiovert S100 Zeiss, Göttingen GER

Confocal Laser Scanning Microscope Olympus, Hamburg GER

Leica MZ6 Leica Microsystems, Wetzlar GER

MCX 1600 Micros, Vienna Austria
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Orbital shaker

Thermo mixer comfort, plate shaker Eppendorf, Hamburg GER

MS 1 Minishaker IKA, NC USA

PCR machines

DNA Engine Biozym, Oldendorf GER

7900 HT Fast Real-Time PCR System Applied Biosystems, Foster USA

pH-Meter

763 Multi-Calimatic Knick, Berlin

Photometer

Spectra Max 250 Molecular Devices, Sunnyvale USA

Nanodrop ND-1000 Peqlab, Wilmington USA

Pipettes

Micropipettes

Reference 0,5-10 µL

Reference 0,5-20 µL

Reference 10-100 µL

Reference 100-1000 µL

Reference 500-2500 µL

Eppendorf, Hamburg

Eppendorf, Hamburg

Eppendorf, Hamburg

Eppendorf, Hamburg

Eppendorf, Hamburg

Multichannel pipettes manual

Finpipette manual (12-channel) 50-300

Finpipette manual (8-channel) 50-300

Finpipette manual (8-channel) 5-50

Labsystems, Helsinki Finland

Labsystems, Helsinki Finland

Labsystems, Helsinki Finland

Pipetboy acu IBS Integra Biosciences, Chur CH

Vacuum System and Suction devices

Vacusafe comfort IBS Integra Biosciences, Zurich CH

Miniport Hassheider, Köln GER

Water purification system

Milli-Q academic Millipore, Eschborn GER

Water baths

GFL 1002 GFL, Burgwedel GER
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2.8 Cell Material

Human cell material was derived from skin biopsies supplied by clinical cooperation

partners. The average age of donors was 56,6 years, ranging from 34 to 74 years.

Upon removal, skin biopsies were immediately cooled (4°C), placed on DMEM

soaked membranes and subjected to the isolation of dermal fibroblasts and epidermal

keratinocytes the same day.

Dorsal root ganglion cells were isolated from porcine spines (sus scrofa domestica)

kindly provided by the lab of Prof. Dr. Martin Schmelz, University of Heidelberg. The

spine of piglets was removed between postnatal day 2 and 5, cleaned with ice cold

PBS, cut in half and stored in pre-cooled (4°C) DMEM. The samples were kept on ice

during transportation and the subsequent isolation of dorsal root ganglia.

2.9 Software

AnalySIS® Version 3.2 Soft Imaging System, Münster GER

AxioVision Version 4.7 Zeiss, Göttingen GER

Bioplex Manager Bio-Rad, Hercules USA

Graphpad Prism 4 Graphpad Software, San Diego USA

ImageJ http://rsbweb.nih.gov/ij/

Leica for CLSM Olympus, Hamburg GER

ND-1000 V3.3.0 Peqlab, Wilmington USA

RQ Manager 1.2 Applied Biosystems, Foster USA

SDS 2.3 analysis software Applied Biosystems, Foster USA

SoftMax Pro Version 2.0.1 Molecular Devices, Suuyvale USA
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3 Methods
3.1 Cell Biology
All Cell Biology techniques were performed under sterile conditions. Cell material

employed for in-vitro and co-culture experiments comprised of keratinocytes

≤_passage 3 and fibroblasts ≤ passage 4 isolated from human skin biopsies, as well as

dorsal root ganglion cells (DRGs) derived from porcine spines (sus scrofa domestica).

3.1.1 Isolation and cultivation of human keratinocytes and
fibroblasts

Until the isolation of keratinocytes and fibroblasts human skin biopsies were cooled

(4 °C) and nurtured by a DMEM soaked membrane. First, subcutaneous and adipose

tissue were removed and the biopsies were cut into small pieces of 3 mm edge length.

Following a short disinfection in 70 % ethanol and PBS with penicillin and

streptomycin (50 U/mL, 50 µg/mL), the biopsy pieces were subjected to 2 hours of

enzymatic digest in dispase-II (2 U/mL) at 37 °C. The epidermis was subsequently

stripped off the dermis, incubated additional 10 min in 1x Trypsin (PAA) at 37 °C and

then pressed through a 70 µm cell strainer. Dissociated keratinocytes were collected,

resuspended in KGM-2 (Lonza) and seeded into 75 cm2 cell culture flasks.  Medium

was changed every second day and cells were transferred into the next bigger cell

culture flask after reaching 80 % confluence.

The dermis was placed into the cavities of a 6-well plate. After becoming adherent,

the pieces were covered with DMEM (Gibco) and cultivated at 37 °C in 5 % CO2.

Until the outgrowth of fibroblasts, medium was changed every 4-5 days, later every 2-

3 days. After reaching confluence, the dermis pieces were removed and the fibroblasts

were seeded into cell culture flasks.

3.1.2 Cell counting of primary skin cells
The cell count of primary keratinocytes and fibroblasts was determined previously to

cryopreservation and seeding into co-culture chambers or 6-well plates. Skin cells

were trypsinized and resuspended in KGM-2 (Lonza) or DMEM (Gibco),

respectively. The cell count was determined using a Neubauer chamber. To exclude

dead cells from count, Trypan blue was added in a 1:1 ratio. The missing integrity of

dead cell membranes allows the diffusion of the dye into the cytoplasm, thus the

discrimination between viable and dead cells.
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3.1.3 Cryopreservation of primary skin cells
1x10^6 cells were resuspended in 1 mL of keratinocyte or fibroblast cryomedium.

Cells were gradually frozen in isopropanol chambers at –80 °C and stored at –196_°C

in a cryostorage system.

For resuspension cell vials were quickly thawed at 37° C and immediately seeded into

75 cm2 cell culture flasks at a density of approximately 1x10^4 cells per cm2. To limit

the effect of cryomedium supplements as DMSO, medium was changed the following

day.

3.1.4 Isolation and cultivation of porcine dorsal root ganglion cells
(DRGs)

The spine of piglets was removed, cleaned with ice cold PBS, cut in half and stored in

pre-cooled (4 °C) DMEM. The samples were kept on ice during excision and

subsequent cleaning of dorsal root ganglia. D-PBS without Ca2+ Mg2+ was used for all

washing steps.

Each piece of spine was cut in half along the medial axis and the dorsal root ganglia

were excised from both sides of the vertebral canal. A binocular microscope was used

to remove the ventral and dorsal axonal radices, as well as the dura mater. Cleaned

DRGs were transferred to collagenase (740 U/mL in DMEM with Gentamycin) and

incubated 3x 45 min at 37°C. Every 45 min half of the collagenase solution was

replaced. Following two washing steps the DRGs were subjected to an additional

10_min of digest in 1x Trypsin (PAA) at 37 °C. DRGs were subsequently dissociated

using a coated, fire polished Pasteur pipette. The cells were separated from fiber

material of the extracellular matrix by Percoll density gradient centrifugation (20 %

Percoll) and resuspended in F12 with 10 ng/mL human NGFβ (huNGFβ).

The cell count was determined using a NucleoCounter. 16x10^4 dorsal root ganglion

cells were seeded into the middle compartment of a co-culture chamber and cultivated

at 37 °C in 5 % CO2. Medium was changed every second day.
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Figure 5: Excision of the DRGs of a porcine spine
A) – C) The spine is cut in half along the medial axis. D) DRGs are excised from the
vertebral canal.

3.1.5 Cell counting of DRGs via NucleoCounter
DRGs compose of a heterogeneous mixture of sensory neuron cell bodies of different

size associated with small glial cells, often referred to as satellite cells. To obtain an

exact, reliable and reproducible cell count for dissociated dorsal root ganglion cells

ChemoMetec’s NucleoCounter was used.

The NucleoCounter is basically a fluorescence microscope with an integrated optical

imaging and analysis system. It accounts for different cell size, cell viability and

errors due to the aggregation of cells, by cell lysis and by counting the fluorescent

labeled nuclei.

A small sample volume of 50 µL is subjected to lysis by low pH (solution A),

followed by a stabilizing solution B. The mixture is sucked into the NucleoCasette, a

small device combining flow channels with immobilized propidium iodide and a

measurement chamber of defined volume. Propidium iodide intercalates between the

base pairs, is excited by green light of 535 nm and emits red light of 617 nm. The

NucleoCounter determines the total amount of fluorescent nuclei in the measurement

A B

C D
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chamber. Correction for cell viability is achieved by measuring the amount of nuclei

and therefore dead cells, labelled in non-lysed cell suspension.

Equal volume of dissociated DRG cell suspension, solution A and solution B were

mixed and subsequently sucked into the NucleoCasette. The number of viable cells

was obtained from measuring the untreated DRG cell suspension, and subsequent

subtraction from the total DRG cell count.

3.1.6 Co-culture model of human skin cells and porcine DRGs
In-vivo the peripheral terminals of sensory neurons in the skin are clearly separated

from their cell bodies in the dorsal root ganglia and thus located in a completely

different microenvironment. This particular anatomical and physiological feature

constitutes a major drawback in the development of accurate in-vitro models of the

peripheral sensory network of the skin.

Two major problems are to be solved: First, the peripheral axonal fibers and their cell

bodies have to be spatially separated. Second, non-neuronal cells in the periphery e.g.

skin cells require cultivation media different from medium optimized for dorsal root

ganglion cells.

In cooperation with the lab of Prof. Dr. Martin Schmelz, Ruprecht-Karls University of

Heidelberg, a culture chamber was developed that allows the cultivation of neuronal

somata and their axonal processes in separate compartments. Due to a silicon seal that

is largely impermeable to liquids between these compartments, the co-cultivation of

skin cells within the axonal “peripheral” compartment was possible.

Cultivation-chambers were prepared 2-3 days before the isolation of the DRGs and

stored at 4 °C until testing the leak tightness of the seal. 6-well plates were coated

with poly-L-lysine (0,1 %) over night, washed with sterile PBS and dried at RT.

Using a metal ridge, parallel grid lines spaced 300µm apart were scratched into the

coated surface of each 6-well cavity. Two parallel lines of a sugar polymer were

subsequently applied rectangular to the scratched grid lines. Sterile silicone was

applied on the edges of co-culture chambers using a glass syringe with a 21-gauge

needle. The chambers were subsequently placed into the cavities of the 6-well plate,

on top of the sugar polymer.

A sterile weight of approximately 300 g was placed on top of the chambers for several

seconds to generate a tight seal between the chamber compartments. Following 1 h of

sterilization under UV-light at RT, the middle compartment was filled with F12
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medium (Sigma) and placed at 37 °C over night. Thus, leaky chambers excluded from

subsequent experiments.

16x10^4 dissociated dorsal root ganglion cells were seeded into the middle

compartment and cultivated in F12 (Sigma) with 10 ng/mL huNGFβ. Following over

night incubation and adherence of DRGs, chambers were again checked for

impermeable seals. Subsequently, the “peripheral” side chambers were loaded with

the respective potential axonal growth cues, NGFβ or skin cells. Loading of the side

chambers stated time point d = 0 of the cultivation period. Co-culture chambers were

cultivated for 10 days at 37 °C in 5 % CO2. The medium of each compartment was

changed every second day.

3.2 Induction and manipulation of peripheral nerve fiber
growth

The principle of the co-culture chamber is based on eliciting peripheral axonal fiber

growth in the side compartments, whereas the dorsal root cell bodies are cultivated in

the middle chamber. Notably, cultivation conditions in the middle chamber were

optimized for DRGs, whereas side chambers were loaded with potential growth cues.

Fiber outgrowth induced by huNGFβ, skin cells and conditioned media was

investigated. Respective cultivation media only (KGM-2, DMEM, F12) served as

negative controls and experiments were run in duplicates. Co-culture chambers were

cultivated for 10 days at 37 °C in 5 % CO2. The medium of each compartment was

changed every second day.

PM NS

Figure 6: Sketch of the co-culture chamber
DRGs are seeded into the middle compartment (M), axonal processes extend into the
peripheral side compartments (P) guided by grid lines (light blue). Growth cues:
neurotrophic factor NGFβ (N), skin cells (S)
(S) skin cells, (M) middle chamber, (P) peripheral chamber, (N) neurotrophic factors
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Peripheral fiber growth was observed using an optical microscope on day 4 or 5,

day_6 and day 10. Pictures of each neurite in the side chamber were taken and

subjected to analysis (see 3.3).

3.2.1 Effect of external human NGFβ on peripheral fiber growth
Due to its well-characterized neurotrophic effect on peripheral sensory neurons,

huNGFβ  was used to set up and evaluate the co-culture system. Increasing

concentrations of NGFβ, 0,04 ng/mL, 0,2 ng/mL, 1 ng/mL, 5 ng/mL and 10 ng/mL in

F12 (Sigma), were loaded into the side compartments of co-culture chambers.

3.2.2 NGFβ sequestration via anti-NGFβ antibody
To selectively block the growth of neurites mediated by huNGFβ, an affinity purified

anti-NGFβ antibody (R&D) was applied. This antibody was developed to block the

biological activity of NGFβ, as previously shown in an 3H-thymidine incorporation

assay with TF-1 cells [91].

To investigate the inhibition of the biological activity of NGFβ, both NGFβ and anti-

NGFβ  antibody were mixed in the side compartments. 2µg/mL antibody and

10_ng/mL huNGFβ in F12 (Sigma) were incubated for 10 min at RT prior to loading.

Growth of peripheral fibers was monitored and analyzed as described in 3.3.

Additionally, a complexation assay was conducted, to detect free, non-sequestered

NGFβ in solution using the Bioplex assay (3.7.2). 10 ng/mL huNGFβ in F12 (Sigma)

were mixed with increasing concentrations of anti-NGFβ antibody: 0,01 µg/mL,

0,05_µg/mL, 0,1 µg/mL, 1 µg/mL and 2 µg/mL. Following 15 min incubation at RT

the remaining amount of NGFβ in solution was quantified with a Bioplex assay.

3.2.3 Effect of primary skin cells on peripheral fiber growth
To investigate the ability of primary skin cells to induce peripheral fiber growth,

keratinocytes and fibroblasts were seeded into the side compartment of the co-culture

chambers.

Skin cells were trypsinized and resuspended in KGM-2 (Lonza) or DMEM (Gibco),

respectively. The cell count was determined using a Neubauer hemocytometer.

1x10^4 cells were seeded close to the border of the side compartment using a sterile

insert. In parallel, supernatants of the side compartments were subjected to NGFβ

Bioplex assays to determine the amount of secreted NGFβ. Every second day
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previously to the change of the media, supernatants were collected and stored at

–80_°C until NGFβ quantification.

3.2.4 Effect of NGFβ sequestration in supernatants of primary skin
cells

To selectively neutralize the effect of NGFβ secreted by primary skin cells, an affinity

purified anti-NGFβ antibody (R&D) was applied, as described in 3.2.2.

Using the NGFβ concentration measured in the supernatants of keratinocytes and

fibroblasts as a guide value, 0,1 µg/mL antibody were applied to equal an

approximately 1000-fold excess of antibody to its epitope. The successful

complexation of free NGFβ by the antibody was controlled using a Bioplex assay.

Every second day previously to the change of the media, supernatants were collected

and stored at –80 °C until NGFβ quantification.

3.2.5 Effect of conditioned media of primary skin cells on
peripheral fiber growth

It was investigated, whether conditioned media of keratinocytes and fibroblasts are

able to mimic the effect of primary skin cells seeded into the side compartments.

Medium of skin cells cultured for two days in 185 cm2 culture flasks exhibiting

>_80% confluence was collected and stored at –80 °C. Conditioned media were

subjected to 5 min centrifugation at 10.000 rpm directly before being loaded into the

side compartments.

3.2.6 Effect of NGFβ  sequestration in conditioned media of
primary skin cells

To selectively inhibit the effect of secreted NGFβ in conditioned media, an affinity

purified anti-NGFβ antibody (R&D) was applied, as described in 3.2.2.

The NGFβ concentration measured in conditioned media of keratinocytes and

fibroblasts served as guide values to determine the antibody concentration that equals

an approximately 1000-fold excess of antibody to its epitope. The successful

complexation of free NGFβ was controlled using a Bioplex assay.

Conditioned medium and 0,1 µg/mL antibody were incubated for 15 min at RT

previously to loading of the side compartments and determination of the free NGFβ

content.



Methods

Page 40

3.3 Monitoring and analysis of peripheral fiber growth
Peripheral fiber growth was observed on day 4 or 5, day 6 and day 10 with an optical

microscope. Pictures of each process or several mosaic pictures of adjacent areas of

the side comparment were taken using AxioVision 4.7 software. Thus, double counts

of processes were avoided.

Subsequent analyses of fiber length were conducted with ImageJ and AnalySIS®

Version 3.2. Total peripheral fiber growth of a given side compartment was

determined as the sum of the length of each individual grown fiber in µm, termed

cumulative peripheral neurite length (CPNL). Occasional reanalysis of random chosen

data sets were conducted and revealed similar results.

Figure 7: Analysis of total
growth of peripheral fibers.
100µm were used as reference
scale to determine the pixel / µm
ratio.
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3.3.1 Immunofluorescence (IF) staining of DRGs and primary skin
cells in co-culture

Peripheral fibers in co-culture with skin cells were subjected to immunofluorescence

(IF) staining for histological identification on day 10. Keratinocytes were stained with

anti-wide-spectrum cytokeratin antibody (Abcam) [92], fibroblasts with anti-

fibroblast surface protein antibody (Abcam) [93] and axonal processes were stained

using the pan_axonal neurofilament marker SMI312 (Covance) [94]. IF staining was

conducted as described in 3.4.1.

List of Antibodies Dilution Source

Rabbit polyclonal anti-wide spectrum Cytokeratin 1:1000 Abcam

Mouse monoclonal anti-Fibroblast Surface Protein 1:200 Abcam

Mouse monoclonal anti-Pan-Axonal Neurofilament 1:2000 Covance

Alexa Fluor 488, Goat anti-rabbit IgG (H+L) 1:1000 Mol.Probes

Alexa Fluor 488, Goat anti-mouse IgG (H+L) 1:1000 Mol.Probes

Alexa Fluor 594, Goat anti-mouse IgG (H+L) 1:1000 Mol.Probes

3.4 Characterization of nociceptive DRGs via IF staining
The nociceptive phenotype of dorsal root ganglion cells and their peripheral fibers

was displayed using the nociceptive, peptidergic markers calcitonin-gene-related-

peptide (CGRP) and the receptor tyrosine kinase TrkA, the non-peptidergic marker

Isolectin B4 (IB4) and the ambiguously expressed vanilloid receptor TRPV1. IF

staining of DRG somata in the middle compartment, as well as their peripheral fibers

in the side compartment was conducted.

Monitoring and analysis of peripheral fibers and their respective marker expression

was performed as described in 3.3. The fraction of peripheral fiber length expressing

each marker compared to total fiber growth was investigated. Individual fractions of

marker expression were stated as percentage of cumulative peripheral neurite length

(CPNL).

List of Antibodies Dilution Source Ref.

Mouse monoclonal anti-Pan-Axonal Neurofilament 1:2000 Covance [94]

Rabbit polyclonal anti-PGP9.5 1:1000 Abcam [95]

Mouse monoclonal anti-CGRP 1:500 Abcam [96]
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List of Antibodies Dilution Source Ref.

Rabbit polyclonal anti-TrkA 1:200 Abcam [97]

Rabbit polyclonal anti-TRPV1 1:200 Abcam n.d.

Isolectin GS-IB4, Alexa Fluor 488 conjugate 1:200 Mol.Probes [98]

Alexa Fluor 594, Goat anti-mouse IgG (H+L) 1:1000 Mol.Probes

Alexa Fluor 594, Goat anti-rabbit IgG (H+L) 1:1000 Mol.Probes

Alexa Fluor 488, Goat anti-mouse IgG (H+L) 1:1000 Mol.Probes

Alexa Fluor 488, Goat anti-rabbit IgG (H+L) 1:1000 Mol.Probes

3.4.1 Immunofluorescence (IF) staining of DRGs
Primary and secondary antibodies were diluted in PBS with 1 % goat serum and all

steps were carried out at RT, if not stated otherwise.

Co-culture chambers were carefully washed with PBS and the cells were fixed in 4 %

Paraformaldehyde (PFA) for 15 min. Following two washing steps, cells were

permeabilized in 0,1 % Triton in PBS (PBS-T) for 10 min. After two additional

washing steps, 1 hour of incubation with blocking solution (1 % BSA) took place.

Primary antibodies were diluted directly before use and over night incubation was

carried out at 4 °C in humid chambers.

Subsequently, chambers were washed with 1 % goat serum in PBS and subjected to 3

hours of secondary antibody incubation at RT in the dark. Following two washing

steps with 1 % goat serum in 0,1 % PBS-T and a third with PBS only, DAPI solution

was applied for 15 min. Chambers were washed with PBS and subjected to increasing

concentrations of ethanol (50 %, 70 %,  96 %). The co-culture chambers were

carefully removed using surgical blades. Fluorescence Mounting Media (Dako) and

coverslips of 25 mm diameter were used for mounting. 6-well plates were allowed to

dry over night at 4 °C before examination under the microscope.

3.5 Determination of the functionality of DRGs
To determine whether cultured DRGs and their peripheral fibers are functional and

therefore can be stimulated to release neurotransmitter, a modified version of the

stimulation assay employed by Hingtgen in 2006 was conducted [99]. In rats, CGRP

is expressed in over 40 % of peptidergic DRGs and therefore comprises the most

abundant neuropeptide. Hence, CGRP release upon stimulation was chosen as readout

parameter.
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To examine, whether stimulation of DRG somata in the middle compartment is

transmitted to the side compartment, stimuli application was restricted to the middle

chamber. Neuropeptide secretion was detected in the middle and side compartment,

respectively.

Co-culture chambers cultivated in the presence of 10 ng/mL huNGF were subjected to

stimulation at day 10. Two subsequent stimulation cycles were conducted to examine

repetitive stimulation. The incubation period was set to 10 min at 37 °C in 5 % CO2.

After every period supernatants were collected and stored at –20 °C until detection of

CGRP concentrations (3.7.1).

At the start of each cylce, chambers were carefully washed with HEPES buffer. To

determine basal CGRP release, the cultures were initially incubated with HEPES.

Subsequently, stimuli were applied to the middle compartments, whereas HEPES is

loaded into the side compartments. Following careful washing steps, a second

stimulation cycle was performed.

Figure 8: Scheme of the stimulation assay
Respective stimuli (high potassium, 50 mM; TRPV1 agonist capsaicin, 50 nM) and the specific
TRPV1 antagonist capsazepine (500 nM) are applied to the middle compartment alone and in
various combinations; Secreted CGRP is detected in the supernatants of the side and middle
compartment by EIA. 1 cycle of stimulation comprises 10 min incubation with HEPES,
followed by 10 min stimulation.

DRGs NeuritesNeurites

K+ 50 mMCapsaicin 50 nM

HEPES HEPESStimulation K+/ CPS Stimulation K+/ CPS

CGRP / supernatant

Capsazepine 500 nM

10min 10min 10min 10min
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First, stimulation with 50 mM potassium was used to unspecifically cause

depolarization and neurotransmitter release of the DRGs. Second, a specific, ligand-

receptor mediated stimulation was performed using the TRPV1 agonist capsaicin

(CPS). TRPV1 is expressed in a subpopulation of DRGs in-vivo, as well as in culture

(examined in 3.4). 50 nM capsaicin in HEPES basal were applied.

To assess the potential of the system to specifically block the ligand-receptor

mediated stimulation, the synthetic TRPV1 antagonist capsazepine (CPZ) was co-

applied with CPS and high potassium, respectively. Capsazepine was employed in a

10-fold excess over capsaicin at a concentration of 500nM and was co-applied with 50

mM potassium.

3.6 Immunohistochemistry
Punch biopsy material of normal and atopic human skin was derived from clinical

cooperation partners. Following excision biospies were rinsed with PBS, mounted in

Tissue-Tec® and subjected to cryopreservation in liquid nitrogen. Biopsy material

was stored at –80 °C until preparation of cryosections.

3.6.1 Cryosections human skin
Vertical sections of 5 µm and 50 µm were genereated using a Leica CM3050S

cryotom. 4 to 5 sections were transferred to one microscope slide. The sections were

dried for 1 hour at RT and subsequently fixed with icecold aceton. Sections were

stored at –20 °C until immunofluorescence staining.

3.6.2 Immunofluorescence (IF) staining of skin cryosections
Anti-pan-axonal neurofilament antibody SMI312 (Covance) was used to monitor

peripheral neuronal structures in normal and atopic skin. Epidermal structures were

stained with anti-cytokeratin 1/10 antibody (Covance). All antibodies were diluted in

1 % BSA.

Aceton fixed cryosections were washed with PBS and blocked with 3 % BSA for

1_hour at RT. Primary antibody incubation was performed over night at 4 °C using a

humid chamber. The next day sections were washed with 0,1 % Triton in PBS (PBS-

T), followed by PBS only. Subsequent secondary antibody incubation took place for

2_hours at RT in the dark. After another washing step with PBS sections were

subjected to DAPI staining for 15 min at RT, followed by dehydration using
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increasing concentrations of ethanol (50 %, 70 %, 96 %). Sections were mounted with

fluorescent mounting media (Dako) and dried over night at 4 °C.

List of Antibodies Dilution Source Ref.

Mouse monoclonal anti-Pan-Axonal Neurofilament 1:2000 Covance [94]

Rabbit polyclonal anti-Cytokeratin 1/10 1:1000 Covance n.d

Alexa Fluor 594, Goat anti-mouse IgG (H+L) 1:1000 Mol.Probes

Alexa Fluor 488, Goat anti-rabbit IgG (H+L) 1:1000 Mol.Probes

3.7 Protein Biochemistry

3.7.1 Quantitative analysis of CGRP
To detect the concentration of CGRP released by DRG stimulation, a human CGRP

Enzyme Immunoassay Kit (Cayman) was used. This EIA is based on a sandwich-

enzyme-immunoassay. The 96-well plate is precoated with mouse monoclonal anti-

CGRP antibody that captures free CGRP protein. The acetylcholinesterase (AChE)

conjugated tracer (Fab’) binds specfically to a different epitope of CGRP. The

enzymatic activity of AChE hydrolyzes an ester bond of the added Ellman’s reagent,

forming a yellow compound. The intensity of the color is proportional to the amount

of CGRP. The absorbance is measured at 405 nm, unspecific absorption was detected

at 650 nm. The limit of detection is stated with 2 –5 pg/mL.

Precoated plates were washed 5 times with washing buffer. 100 µL of Ellman’s

reagent, medium (for non-specfic binding), standards (1000 pg/mL – 7,81 pg/mL) and

samples were employed. 100 µL of anti-CGRP AChE tracer were added except for

cavities with blank. Following 20 hours of incubation at 4 °C and several washing

steps, 200 µL of Ellman’s reagent was added. Absorbance is measured after 60 min of

incubation at RT.

3.7.2 Quantitative analysis of NGFβ via Bio-Plex assay
To detect the concentration of NGFβ in supernatants of co-culture chambers, in

conditioned media and in the supernatants of primary skin cells, a Bio-Plex Cytokine

Assay was used. In general it is possible to quantitatively detect 27 different cytokines

and growth factors in parallel in one sample.
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This assay is based on the simultaneous detection of the identity and the quantity of a

protein of interest. Notably, an optimized flow cytometer with two lasers and a high-

speed signal processor is necessary. The solid phase of an ordinary EIA is replaced by

fluorescence color coded microbeads that are covalently bound to the capture

antibodies. The color code of the microbead is clearly identified by the laser system of

the flow cytometer and designates the protein type.

A secondary biotinylated antibody recognizes a different epitope of the protein of

interest. Streptavidin-Phycoerythrin is added and binds the biotinylated detection

antibody. The intensity of the fluorescent signal after excitation at 532 nm, compared

to a standard curve determines the quantity of the protein.

The 96-well microplate was pre-wet with assay buffer. After each step, the liquid was

removed by using vacuum filtration. The multiplex bead solution was added to each

well, followed by washing steps. 50 µL of standard and samples were added and

incubated for 30 min at RT. Following washing steps the detection antibody was

added to each well and incubated for 30 min at RT. After an additional washing step,

streptavidin-PE was applied to each well, followed by another 10 min of incubation.

Finally, beads were resuspended in assay buffer and immediately subjected to

detection.

3.7.3 Determination of total protein concentration
The concentration of NGFβ detected in the supernatants of primary skin cells

(see_3.7.4.) was normalized to total protein concentrations.

The cells were lysed with cell lysis buffer (Biorad) with protease inhibitors and

subjected to the BCA Protein Quantification Kit (Uptima). This colorimetric assay is

based on an improved Biuret reaction. Cu2+ are reduced to Cu+ by oxidation of

peptide bonds. Cu+ ions are subsequently bound by the specific chelator

Bicinchoninic acid and form a water soluble purple complex. Absorbance at 562 nm

is proportional to the protein concentration, which is determined using a standard

curve.

Standards and samples are measured in triplicates. 5 µL of blank (lysis buffer),

standards (2 mg/mL – 0,062 mg/mL) and samples were mixed with 200 µL of BCA

reagent and incubated for 30 min at 37 °C. Absorption was measured at 562 nm using

the Spectra Max 250 (Molecular Devices).
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3.7.4 Expression and secretion of NGFβ in primary skin cells
To investigate the expression and secretion of NGFβ by keratinocytes and fibroblasts,

the following assays were conducted.

3x10^4 primary skin cells were seeded into 6-well chambers and cultivated for 10

days at 37 °C in 5 % CO2. Supernatants were collected at day 2, 4, 6 and 10. Samples

were stored at –80 °C until the detection of NGFβ with the Bioplex Assay, as

described in 3.7.2. In parallel skin cells were lysed using cell lysis buffer (Biorad)

with protease inhibitors and total protein concentrations were detected using the BCA

assay (3.7.3). The NGFβ concentration of the supernatants was normalized to the total

protein concentration.

In a second setup skin cells were lysed using a guanidine-thiocyanate containing

buffer (Qiagen) and subjected to mRNA isolation at day 2, 4, 6 and 10. Total mRNA

was isolated with Qiagen spin columns (3.8.1) and subjected to reverse transcription

using the TaqMan high capacity cDNA RT Kit (3.8.2). Expression levels of NGFβ

were detected with real time PCR using the TaqMan human NGFβ Gene Expression

Assay (3.8.3).

3.8 Molecular Biology

3.8.1 RNA isolation of primary skin cells
Skin cell lysates collected as described in 3.7.4 were subjected to mRNA isolation

using the Qiagen RNeasy-Kit. This kit selectively excludes RNAs smaller than 200

nucleotides. Lysates were mixed with 70 % ethanol and transferred to RNeasy spin

columns. RNA efficiently binds the silica-based membrane of the columns. The

supernatant was removed by short centrifugation. Co-isolated DNA was degraded

with DNase, followed by washing steps. mRNA was eluted in 50 µL of RNase free

water and subjected to quantification and quality testing using a nanodrop ND1000

photometer (Peqlab). At neutral pH an absorbance of 1 at 260 nm correlates with 44

µg of RNA per mL. A ratio of 260 nm to 280 nm between 1.9 and 2.1 refers to

comparatively pure RNA. The mRNA samples were stored at –80 °C until reverse

transcription.
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3.8.2 cDNA RT-PCR
1 µg of mRNA is conducted to reverse transcription in a total volume of 100 µL using

the TaqMan high capacity cDNA RT Kit (Applied Biosystems). Per reaction 10 µL

RT buffer, 4 µL dNTPs, 10 µL primer and 5 µL of reverse transcriptase were

employed.

PCR Program for RT-PCR

25 °C 10 min

37 °C 120 min

4 °C ∝

3.8.3 TaqMan® realtime PCR
Expression levels of NGFβ mRNA were detected by real time PCR using the TaqMan

human NGFβ Gene Expression Assay (Applied Biosystems). In parallel, expression

of the endogenous control 18S rRNA was determined. Expression levels of NGFβ

mRNA were normalized using the respective levels of 18S rRNA. Experiments were

run in duplicates.

Assay Catalog Number

NGFβ Hs00171458_m1

18S Hs99999901_s1

The TaqMan® system is based on a DNA probe with the fluorsecent reporter FAM™

bound to the 5 prime end and the quencher NFQ™ bound to the 3 prime end. The

probe binds its complementary sequence within the amplified region between the

primer pairs. During amplification the Taq polymerase degrades the probe. Both

fluorscent reporter and quencher are released. Due to the lack of proximity of the

quencher to the reporter, a fluorescent signal can be detected. Excitation of the

fluorescent signal is achieved at 488 nm and emission takes place at 518 nm.

Therefore, fluorescence intensity correlates with copy numbers of the amplified

sequence.

3,5 µL of each primer pair were mixed with 33,5 µL Universal PCR Mastermix

(Applied Biosystems). 3 µL of cDNA and 30,5 µL RNsae-free water were added and

mixed. 25 µL total reaction volume was employed. 30 cycles of amplification were

run and PCR protocol is indicated below.
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PCR Program for TaqMan® PCR

50 °C 2 min

95 °C 10 min

95 °C 15 sec

60 °C 60 sec

4 °C ∝ sec

30x

Relative quantification is achieved by calculating ΔCT and RQ (2-ΔΔct) from measured

CT values according to the following scheme:

Value Calculation

CT Cycle threshold

ΔCT CTNGFβ - CT18S

ΔΔCT CTNGFβ - CT18S - ΔCTKo

RQ 2-ΔΔct

3.9 Statistics
Statistical analysis was conducted using Graphpad Prism 4. Data were analysed

assuming sampling from Gaussian distribution. Statistical tests included matched one

and two-tailed t-tests, repeated measures one-way ANOVA for comparison of three or

more matched groups, as well as two-way ANOVA for comparison of three or more

groups analyzed for two or more conditions. Appropriate post tests included

Dunnett’s test to compare several groups to control, a test for linear trend and the

Bonferroni test for selected pairs of groups. All values are stated as arithmetic mean ±

standard deviation (SD). Significances are reported according to the following

definition:

P value In words Symbol

≤ 0,001 Extremely significant ***

0,001 – 0,01 Highly significant **

0,01 – 0,05 Significant *

> 0,05 Not significant ns
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4 Results
4.1 Characterization of the co-culture system
In-vitro models of the peripheral sensory network face two major problems to

accurately mimic the in-vivo situation: First, the peripheral terminals of the sensory

neurons have to be spatially separated from their cell bodies in the dorsal root ganglia.

Second, non-neuronal cells in the periphery require completely different

microenvironments and thus, different cultivation conditions. To address questions

about the growth dependency of the peripheral axonal fibers in the skin, current mixed

culture models of DRGs and skin cells [94] are not sufficient.

Here, a more accurate co-culture model was developed that allows the cultivation of

neuronal somata and their axonal processes in separate compartments. A silicon seal

allows for different cultivation conditions in the middle and side compartments while

remaining penetrable for axonal processes. Figure 9 B) shows a schematic draft of a

co-culture chamber with one middle and two side compartments.

Figure 9 C) shows a section of a representative co-culture chamber at day 10 stained

with anti-pan axonal neurofilament marker SMI312 and DAPI. Dissociated dorsal

root ganglion cells were seeded into the middle compartment in neuron specific

medium and adhered over night. Subsequent loading of the side compartments with

the respective growth cues, either NGFβ or skin cells, stated time point d = 0. Total

cultivation period comprised 10 days. The length of a single axonal process varied

between several µm and up to one cm at day 10. Total neurite outgrowth in the side

compartment is quantified as Cumulative Peripheral Neurite Length, CPNL and given

in µm.
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4.1.1 Effect of NGFβ on neuronal fiber growth
The sensitivity of the co-culture system was investigated using nerve growth factor

(NGF). NGF is a potent neurotrophic factor and known to induce neuronal growth and

differentiation. The neurotrophic effects of NGF are mediated by its β subunit [73].

Therefore, recombinant human NGFβ (Sigma) was used to assess NGF induced fiber

growth in the present co-culture system. Increasing concentrations of huNGFβ (0,04

ng/mL, 0,02 ng/mL, 1 ng/mL, 5 ng/mL and 10 ng/mL) were loaded into the side

compartment of the co-culture chambers. Medium served as negative control and

DRGs DRGsSkin Cells NGFβ

SMI 312
DAPI

A B

C

Figure 9: The co-culture system
A)  Anatomical illustration of dorsal root ganglia lateral to the spinal cord
(www.laesieworks.com)
B) The co-culture chamber: DRGs are seeded into the middle compartment; NGFβ or
skin cells are loaded into the side compartments as growth cue. Neurites grow through
the silicon sealed borders.
C) Immunofluorescent picture of a representative co-culture chamber (middle and side
compartment) at day 10. Growth cue: 10 ng/mL huNGFβ. DRGs and peripheral
processes were labeled with mouse monoclonal anti-SMI312, goat anti-mouse Alexa
Fluor 594 and DAPI. Arrows indicate the position of axonal processes in the side
compartment. The picture was taken as a mosaic of 52 images at 100x magnification
with an Axiovert S100 microscope (Zeiss).
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cumulative peripheral neurite growth (CPNL) in the side compartments was

monitored and analyzed at days 4, 5, 6 and 10.

Figure 10 A) shows the increase in CPNL with time. The main increase in growth

occurrs between day 6 and 10 and 10 ng/mL huNGFβ exhibits the greatest growth

promoting effect. In B) the cumulative peripheral fiber growth at day 10 caused by

each concentration of huNGFβ is displayed, a detailed representation of the boxed

section in A). Data were analyzed for non-linear regression, resulting in a sigmoidal

dose-response curve C)  with an R2 of 0,9750. The half maximal effective

concentration (EC50) determined is 4,524 ng/mL.

These results indicate that NGFβ mediates neurite outgrowth in a dose dependent

manner. No outgrowth is caused by medium without stimulus and is therefore run as

negative control in all further experiments. 10 ng/mL huNGFβ exhibits the greatest

outgrowth promoting effect, already in the range of saturation according to the

sigmoidal dose-response curve in C). 10 ng/mL huNGFβ is therefore used as positive

control in further experiments.
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Additionally, an anti-NGFβ antibody (affinity purified, R&D) was applied to

selectively neutralize the growth effects mediated by huNGFβ. The capacity of the

anti-NGFβ antibody to neutralize the biological activity of NGFβ was previously

shown in an 3H-thymidine incorporation assay with TF-1 cells [91]. Here, two types

of experiments were conducted:

First, the capability of the antibody to block NGFβ mediated fiber growth in the co-

culture system was investigated. 10 ng/mL huNGFβ and 2µg/mL antibody were

applied simultaneously in the side compartment and cumulative peripheral neurite

growth was detected.

Figure 11 A) shows the fraction of remaining fiber growth (%) in the presence of the

anti-NGFβ antibody compared to the positive control 10 ng/mL huNGFβ (100 %).

Fiber growth is reduced to ***3,5 ±4,5 %. The ability of the anti-NGFβ antibody to

Figure 10: Neurite outgrowth
induced by recombinant human
NGFβ
A) Total peripheral fiber growth is
monitored at increasing huNGFβ
concen t r a t i ons :  0 ,04_ng/mL,
0,02_ng/mL, 1_ng/mL, 5 ng/mL and
10 ng/mL and compared to negative
control. The cumulative peripheral
neurite length (CPNL) was detected
at days 4, 5, 6 and 10.

B) Cumulative peripheral neurite length at day 10 at increasing concentrations of
huNGFβ. Differences between overall means were analyzed by one-way ANOVA
(***P ≤0,001) followed by Dunnett's multiple comparisons test to compare all columns
vs. control (**P 0,001 – 0,01). C)_Data as in B) analyzed for non-linear regression.
Plotted is a sigmoid dose-response curve (R2 0,9750), EC50 equals 4,524 ng/mL.
(n_=_3, run in duplicates)

***
ANO
VA

A B

C
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neutralize peripheral fiber growth in the co-culture system is considered highly

significant.

Second, it is tested whether the successful sequestration of NGF could be controlled

by detecting unsequestered, free NGF with the Bioplex Cytokine Assay (Bio-Rad). A

complexation assay was conducted. 10 ng/mL huNGFβ were mixed with increasing

concentrations of anti-NGFβ antibody. 10 ng/mL huNGFβ without antibody served as

positive control. Following 15 min incubation at RT the remaining amount of free

NGFβ in solution was detected.

In Figure 11 B) the free amount of huNGFβ in solution (pg/mL) is depicted at

increasing concentrations of anti-NGFβ  antibody: 0,01 µg/mL, 0,05 µg/mL,

0,1_µg/mL, 1_µg/mL and 2 µg/mL. A significant reduction of free NGFβ is achieved

with *0,10 µg/mL, **1 µg/mL and **2 µg/mL antibody.
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Figure 11: Analysis of neutralization capacity of anti-NGFβ antibody
A) Effect of NGF sequestration with anti-NGFβ antibody (2 ng/mL) on NGFβ
(10 ng/mL) induced peripheral fiber growth. The graph shows the percent (%)
of fiber growth in the presence of the antibody compared to the positive control.
Columns were compared by t-test (***P ±0,001). (n = 4, run in duplicates)
B) Sequestration of 10 ng/mL huNGFβ with increasing concentrations of anti-
NGFβ antibody: 0,01 µg/mL, 0,05 µg/mL, 0,10 µg/mL, 1 µg/mL and 2 µg/mL.
Free NGFβ was detected by Bioplex Cytokine assay. Differences between
overall means were compared by one-way ANOVA (**P_0,01 – 0,05).
Individual means were compared to control by Dunnett’s multiple comparisons
test (**P 0,001 – 0,01; *P 0,01 – 0,05). (n = 2, run in duplicates)

A

B
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4.1.2 Characterization of nociceptive DRGs and fibers via IF
staining

In general, dorsal root ganglion cells are classified by the expression of several

neurotransmitters, surface receptors, as well as their binding properties for the plant

lectin IB4 and their neurotrophic dependency on either NGF or glial cell derived

neurotrophic factor GDNF [34]. Dissociated dorsal root ganglion cells of several

species have previously been stained for the expression of these markers [28].

However, reliable quantitative studies of their expression pattern in the peripheral

target tissues, as the skin, remain elusive.

The co-culture system provides the possibility to analyze the expression of sensory

neuronal markers at the peripheral axonal fibers grown in different environments.

Here the nociceptive expression pattern of fibers grown in the presence of 10 ng/mL

huNGβ in the side compartment was investigated via immunofluorescence staining.

At day 10 cells were fixed with 4 % paraformaldehyde (PFA). Somata and peripheral

fibers were labeled for the nociceptive, peptidergic markers calcitonin-gene-related-

peptide (CGRP) and the receptor tyrosine kinase TrkA, the non-peptidergic marker

Isolectin B4 (IB4) and the vanilloid receptor TRPV1. Total peripheral fibers were

labeled with the pan axonal markers SMI312 and PGP9.5, respectively. Cell nuclei

were stained with DAPI.

Figure 12 A) shows representative pictures of DRG somata and peripheral neurites.

CGRP, TrkA, IB4 and TRPV1 are labeled.in green (Alexa 488) and total peripheral

fibers in red (Alexa 594). All four markers are detected to varying extent on somata

and fibers. CGRP, TrkA and IB4 are observed alongside the axonal shafts, whereas

TRPV1 is present at axonal terminals.

B) The graph depicts the quantification of peripheral marker expression. The

fraction_(%) of peripheral fiber length labeled for each marker is compared to

cumulative fiber length (100 %, grey dotted line). TRPV1 is expressed by

approximately 4,6 %, TrkA by 17,8_%, CGRP by 54,7 % and IB4 by 63,8 % of

cumulative peripheral fibers.

C) The table summarizes the relative expression (%), standard deviations (SD and

SEM) and number of experiments per marker (n).
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Figure 12: Nociceptive expression pattern of NGFβ induced peripheral fibers
Neurite outgrowth was induced by 10 ng/mL huNGFβ. DRGs were fixed at day 10
with 4 % PFA and stained for the nociceptive, peptidergic markers calcitonin-gene-
related-peptide (CGRP) and the receptor tyrosine kinase TrkA, the non-peptidergic
marker Isolectin B4 (IB4) and the vanilloid receptor TRPV1 (Mouse monoclonal anti-
CGRP, rabbit polyclonal anti-TrkA, rabbit polyclonal anti-TRPV1, Isolectin GS-IB4
Alexa Fluor 488 conjugate). Total peripheral fibers were labeled with either mouse
monoclonal anti-SMI312 or rabbit polyclonal anti-PGP9.5. (CPNL, cumulative
peripheral neurite length)
A) Immunofluorescent staining of DRG somata and respective peripheral neurites.
CGRP, TrkA, IB4 and TRPV1 were stained in green with Alexa 488 (Goat anti-mouse
Alexa Fluor 488, goat anti-rabbit Alexa Fluor 488, Isolectin GS-IB4 Alexa Fluor 488
conjugate). Total peripheral fibers were labeled in red with Alexa 594 (Goat anti-
mouse Alexa Fluor 594, goat anti-rabbit Alexa Fluor 594).
B) Expression pattern of CGRP, TrkA, IB4 and TRPV1: Plotted is the fraction (%) of
peripheral fiber length expressing each marker compared to total fiber length (100 %).
Differences between overall means were analyzed by one-way ANOVA (**P 0,001 –
0,01). Individual columns were compared by Bonferroni’s multiple comparisons post-
test (**P 0,001 – 0,01; *P 0,01 – 0,05).
C) Table indicating average total length (%) ± standard deviation for each marker
expressed in the peripheral fibers (n=3; experiments run in duplicates)

Somata Neurites
CGRP

TrkA

IB4

TRPV1

A B

C

63,83 ±
10,10

54,72 ±
20,37

17,79 ±
11,97

4,63 ±
5,74

Mean ±
SD

3333n

IB4CGRPTrkATRPV1
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4.1.3 Stimulation of DRGs and peripheral fibers
It was investigated whether cultured DRGs and their peripheral fibers are functional

and therefore can be stimulated to release the neurotransmitter CGRP, an efferent

function of DRGs. To examine further, whether stimulation of DRGs in the middle

compartment is relayed to axonal terminals in the side compartment, application of

stimuli was confined to the middel chamber. Unspecific stimulation was performed

with high potassium at a concentration of 50_mM (Figure 13). Specific, receptor

dependent stimulation was conducted with 50_nM capsaicin (CPS) that exerts its

function by binding to the receptor TRPV1. The specific inhibition of capsaicin

mediated stimulation was examined with the synthetic TRPV1 antagonist capsazepine

(CPZ), added in a 10-fold excess over CPS at 500 nM (Figure 14).

DRGs were cultivated with 10 ng/mL huNGFβ in the side compartment and subjected

to stimulation experiments at day 10. Each stimulation cycle comprised of a wash

step, 10 min incubation with HEPES buffer to determine basal CGRP release,

followed by 10 min incubation with the stimulus applied to the middle compartment.

After each 10 min incubation period the supernatants of middle and side

compartments were collected. The concentration of CGRP was detected by EIA

(Cayman).

Figure 13 depicts the results for stimulation with high potassium. In A) the CGRP

content of the middle compartment is plotted for two consecutive stimulation cycles.

Basal CGRP release of 60,3 ±43,2 and 72,8 ±17,89 pg/mL after the first and second

HEPES incubation is detected. Following the stimulation with high potassium, CGRP

concentration is increased to *344,2 ±145,0 pg/mL (*P <0,05) in the first cycle and to
**184,4 ±19,7 pg/mL (**P 0,001 – 0,01) in the second cycle. In B) the CGRP content

of the side compartment is plotted for two consecutive stimulation cylces. A basal

release of 5,2 ±7,3 pg/mL and 31,8 ±44,5 pg/mL CGRP in the first and second cycle

is detected. Following the application of high potassium to the middle compartment,

the CGRP content in the side compartment is increased to **105,4 ±4,2 pg/mL

(**P_0,001 – 0,01) for the first cycle and 84,0 ±2,4 pg/mL for the second cycle.

During the second HEPES application, CGRP release does not completely return to

the basal level. Hence, the second basal and induced release of CGRP are not

significantly different. However, the second stimulation is highly significant

compared to the initial basal level during HEPES application in the first cycle.
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Figure_13 C) shows two representative pictures of immunofluorescent labeled

neuronal fibers before (-K+) and after stimulation (+K+). Total peripheral fibers are

labeled with a primary anti-PGP9.5 antibody and stained red with Alexa 594. CGRP

is stained green with a primary anti-CGRP antibody and Alexa 488. Following two

cycles of stimulation the CGRP content of the fibers is clearly reduced.

Hence, the stimulation with high potassium (50 mM) is used as positive control in all

subsequent stimulation experiments.
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Figure 13: Stimulation of CGRP release with potassium
Repetitive stimulation of DRGs with 50 mM potassium at day 10; Neurite outgrowth
was induced by 10 ng/mL huNGFβ. Supernatants of middle and side compartments
were subjected to EIA for quantification of CGRP. Basal CGRP release was detected
in HEPES without stimulus.
A) Middle compartment: CGRP concentration (pg/mL) in the supernatants of two
consecutive stimulation cycles. Differences between overall means were analyzed by
one-way ANOVA (**P 0,001 – 0,01). Individual means were compared by
Bonferroni’s multiple comparisons post-test (*P 0,01 – 0,05) and t-test (***P <0,001;
**P 0,001 – 0,01). (n = 3, total of 14 middle chambers out of 3 piglets)
B) Side compartment: CGRP concentration (pg/mL) in the supernatant of two
consecutive stimulation cycles. Differences between overall means were analyzed by
one-way ANOVA  (*P 0,01 – 0,05). Individual means were compared by t-test (**P
0,001 – 0,01). (n = 3, run in duplicates)
C) Representative pictures of immunofluorescent staining; CGRP in green and
PGP9.5 in red (Mouse monoclonal anti-CGRP, rabbit polyclonal anti-PGP9.5, goat
anti-mouse Alexa 488, goat anti-rabbit Alexa 594) chamber fixed and stained before
stimulation (–K+) and chamber fixed and stained after two cycles of stimulation
(+K+). Pictures were taken at 100x magnification with an Axiovert S100 microscope
(Zeiss).
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Figure 14 shows the CGRP release induced by stimulation with capsaicin (CPS) and

the specific block of CPS stimulation with capsazepine (CPZ) in A), as well as the

persistent unspecific stimulation with high potassium in the presence of CPZ in B).

The first cycle of stimulation is displayed. Detected CGRP concentration is

normalized to cumulative peripheral fiber growth (pg/(mL.µm) to minimize errors

derived from unequal fiber outgrowth.

In A) the stimulation with 50 nM CPS is compared with co-application of CPS and

500 nM CPZ (1:10). CPS elevates the CGRP concentration 2,3 fold compared to its

basal level after HEPES incubation (p 0,0607). On the other hand, co-application of

CPS and CPZ does not increase the CGRP concentration compared to the basal level.

Notably, the CGRP concentration after CPS stimulation compared to the co-

application of CPS:CPZ exhibits a *4 fold (*P <0,05) decrease.

In B) the simultanous application of 50_mM potassium and 500 nM CPZ is indicated.

The CGRP concentration in the side compartment is increased *2,2-fold (*P_<0,05)

compared to the basal level.

In summary, stimulation of DRGs with the TRPV1 agonist CPS is specifically

blocked by its antagonist, whereas unspecific stimulation with potassium is not.



Results

Page 63

Figure 14: Stimulation of DRGs with the TRPV1 agonist capsaicin (CPS) and
antagonist capsazepine (CPZ)
Stimulation at day 10 of neurite outgrowth induced by 10 ng/mL huNGFβ .
Concentration of CGRP (pg/mL) in the supernatant was normalized to cumulative
peripheral neurite growth (CPNL in µm) of the respective side compartment. Basal
CGRP release was detected in HEPES without stimulus.
A) Stimulation with 50 nM CPS and co-application of 50 nM CPS and 500 nM CPZ
(1:10). Plotted is the CGRP content of the supernatant in the side compartment
normalized with total fiber growth (pg/(mL.µm)). Differences between individual
means were compared by t-test (*P 0,01 – 0,05). (CPS/CPZ n = 3; CPS n=4, run in
duplicates)
B) Co-application of 50 mM potassium (K+) and 500 nM CPZ: Plotted is the CGRP
content of the supernatant in the side compartment normalized with total fiber growth
(pg/(mL.µm)). Differences between means were compared by t-test (*P 0,01 – 0,05).
(n = 3, run in duplicates)

HEPES
K+/CPZ

HEPES
CPS / CPZ
HEPES
CPS

A

B



Results

Page 64

4.2 NGF expression and secretion by human skin cells
The ability of skin cells to produce and secrete NGFβ has previously been shown by

different groups [100] [101] [102]. In order to address questions about the growth

effects of peripheral axonal fibers mediated by skin cells, the expression and secretion

pattern of NGFβ by keratinocytes and fibroblasts were determined. In addition, the

content of NGFβ in the supernatants of co-cultures with skin cells was detected.

4.2.1 Kinetics of NGFβ expression and secretion
Keratinocytes and fibroblasts were cultivated for 10 days in mono-culture, in an equal

cells per cm2 to volume ratio as in co-culture side compartments. The concentration of

NGFβ in the supernatants of skin cells was detected at day 2, 4, 6, 8 and 10 using the

Bio-Plex Cytokine Assay. In parallel, the total protein concentration of cell lysates

was determined with the BCA Protein Quantification Kit. Detected concentrations of

NGFβ were normalized to respective total protein concentrations.

In a second parallel setup skin cells were lysed and subjected to mRNA isolation at

day 2, 4, 6, 8 and 10. Following reverse transcription the expression levels of NGFβ

were detected by real time PCR using the TaqMan human NGFβ Gene Expression

Assay (Applied Biosystems). Detected Expression levels of huNGFβ were normalized

using the endogenous control 18S rRNA.

Figure 15 summarizes the kinetics of NGFβ expression and secretion by primary skin

cells over 10 days in culture. NGFβ mRNA and protein is detectable in both,

keratinocytes as well as in fibroblasts. In A) ddCt values of NGFβ expression of

keratinocytes and fibroblasts are plotted with cultivation time. Fibroblasts show

significantly higher expression levels compared to keratinocytes at all time points.

This tendency is also reflected in the protein levels shown in B). The normalized

concentration of NGFβ in the supernatants of skin cells per mg total protein (pg/mg)

is plotted with cultivation time. The concentration of NGFβ in the supernatants of

fibroblasts is several folds higher compared to keratinocytes at all time points.

Furthermore, a significant effect on NGFβ levels by days is detected. NGFβ

concentration in the supernatant increases for both cell types with a peak at day 6,

followed by a decrease of levels at day 8 and 10.
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Figure 15: NGFβ expression and secretion by primary skin cells
Keratinocytes and fibroblasts were cultivated for 2, 4, 6, 8 and 10 days. Cells / cm2 to
volume ratio as in the co-culture side compartments. Two parallel setups were
conducted: i) NGFβ in the supernatants was quantified and normalized to total protein
concentration. ii)_mRNA was isolated, transcribed to cDNA and subjected to real time
PCR for the detection of NGFβ expression levels. (n = 2, run in duplicates)
A) Expression levels of NGFβ (ddCt values) in keratinocytes and fibroblasts at day 2,
4, 6, 8 and 10. Expression levels were normalized to the endogenous control 18S
rRNA. Overall expression of NGFβ in keratinocytes and fibroblasts was compared by
two-way ANOVA (**P_0,001 – 0,01). Values of individual time points were
compared by Bonferroni’s post-test (***P ±0,001).
B) Normalized concentrations of NGFβ (pg/mg total protein) in the supernatants of
keratinocytes and fibroblasts at day 2, 4, 6, 8 and 10. Overall NGFβ concentrations in
the supernatants of keratinocytes and fibroblasts were compared by two-way ANOVA
(***P ±0,001). Values of individual time points were compared by Bonferroni’s post-
test (**P 0,001 – 0,01).
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4.2.2 NGFβ concentration of co-culture supernatants
The content of NGFβ in the supernatants of primary skin cells co-cultivated in co-

culture chambers over 10 days was determined. Cells were seeded in the side

compartments at day 0. Supernatants were subjected to Bio-Plex Cytokine Assay for

NGFβ detection every second day before replacement of the medium.

Figure 16 shows the average concentration of NGFβ in the supernatants of

keratinocytes and fibroblasts in co-culture chambers. Each data set comprises five

values representing the NGFβ concentration at day 2, 4, 6, 8 and 10. Each individual

value is an average of 6 (keratinocytes) and 4 (fibroblasts) experiments, ran in

duplicates. NGFβ concentrations detected are within the same range as previously

defined in 4.2.1. However, no difference of NGFβ levels between keratinocytes and

fibroblasts is observed.

Figure 16: Concentration of NGFβ in supernatants of skin cells in co-culture
chambers
Keratinocytes and fibroblasts were seeded into the side compartment of co-culture
chambers and cultivated for 10 days. NGFβ detection in the supernatants of skin cells
every second day before media replacement.
The graph shows five values representing NGFβ concentrations (pg/mL) at day 2, 4,
6, 8 and 10 of keratinocyte and fibroblast supernatants, respectively. (Keratinocytes
n_= 6; Fibroblasts n = 4, run in duplicates)
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4.3 Effect of primary skin cells on peripheral fiber growth
Peripheral neurite growth in the side compartment of co-culture chambers is induced

by huNGFβ in a dose dependent manner. Furthermore, keratinocytes and fibroblasts

express and secrete huNGFβ. In the present co-culture system, it was investigated

whether primary skin cells serve as sufficient growth cue to induce peripheral neurite

growth.

In a second step, it was examined whether endogenously produced NGFβ is necessary

for peripheral neurite growth mediated by skin cells. Does NGFβ independent

outgrowth occur in the presence of keratinocytes and fibroblasts, respectively? An

anti-NGFβ antibody (4.1.1) was employed to specifically neutralize growth effects

mediated by secreted NGFβ.

Finally, it was analyzed whether NGFβ independent growth occurs due to a soluble

factor released into the supernatants and therefore can be mimicked by conditioned

media of skin cells.

4.3.1 Peripheral fiber growth mediated by primary skin cells
Keratinocytes and Fibroblasts were seeded into the side compartment of co-culture

chambers and cultivated for 10 days. Respective cultivation media (KGM-2, DMEM,

F12) served as negative controls and 10 ng/mL external huNGFβ was used as high

standard positive control. Peripheral fiber growth was monitored and analyzed at day

10.

Figure 17 A) shows representative pictures of immunofluorescent labeled skin cells

and neurites in co-culture. Total peripheral fibers are labeled in red with anti-pan

axonal neurofilament marker SMI312 or anti-PGP9.5, followed by Alexa 594 coupled

secondary antibodies. Fibroblasts and keratinocytes are labeled in green with anti-

fibroblast surface protein (FSP) and anti-wide spectrum cytokeratin, followed by

Alexa 488. Peripheral neurites induced by fibroblasts and keratinocytes differ in their

phenotype. Fibers entering the keratinocyte layer grow along the cell borders, branch

and wrap around individual keratinocytes (arrows). Fibroblast induced neurites

exhibit minor branching and wrapping. B) shows the quantification of neurite

outgrowth mediated by skin cells compared to control and high standard 10 ng/mL

huNGFβ. Both fibroblasts and keratinocytes are sufficient to induce significant

neurite outgrowth compared to medium control, which equaled zero. Surprisingly,
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keratinocyte mediated peripheral fiber growth exceeds the values achieved by the high

standard 10 ng/mL huNGFβ  with 247.899 ± 234.649 µm compared to

179.978_±10.467 µm. The difference is however not significant. Further, fibroblasts

mediated 44.882 ±19.486 µm CPNL, which is 4 times less outgrowth compared to

10_ng/mL huNGFβ.
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Figure 17: Analysis of neurite outgrowth mediated by skin cells
A )  Immunofluorescent stainings of skin cells in co-culture. Fibroblasts and
keratinocytes labeled in green with Alexa 488 (mouse monoclonal anti-FSP,
polyclonal rabbit anti-wide spectrum cytokeratin; goat anti-mouse Alexa 488, goat
anti-rabbit Alexa 488). Neurites labeled in red with Alexa 594 (mouse monoclonal
anti-SMI312, rabbit polyclonal anti-PGP9.5; goat anti-mouse Alexa 594, goat anti-
rabbit Alexa 594). Pictures were taken as a mosaic at 100x magnification with an
Axiovert S100 microscope (Zeiss).
B) Total peripheral fiber growth (µm) at day 10 mediated by: Control (Ko), fibroblasts,
10mL_huNGFβ and keratinocytes. Individual means were compared to control via one
sample t-test as control equals 0 (*P 0,01 – 0,05). Skin cell mediated fiber growth was
compared to huNGFβ mediated growth by t-test (***P ±0,001). (Ko, fibroblasts n_= 4;
huNGFβ n = 3; Keratinocytes n = 7, run in duplicates)

A

B

Fibroblasts Keratinocytes



Results

Page 70

4.3.2 NGFβ independent fiber growth mediated by primary skin
cells

The growth effects mediated by NGFβ secreted by primary skin cells were selectively

blocked by an anti-NGFβ antibody. 0,1 µg/mL antibody (approximately 1000-fold

excess per epitope in reference to the average concentration measured in co-culture

supernatants) was co-applied with keratinocytes and fibroblasts in the side

compartments. Fiber growth was monitored and analyzed at day 10.

Figure 18 shows the cumulative peripheral neurite outgrowth mediated by

keratinocytes in A) and fibroblasts in B). Antibody co-application causes a significant

reduction in fiber outgrowth in the presence of both cell types. However,

keratinocytes mediate a total of 65.912_±39.989 µm NGFβ independent outgrowth,

compared to 3.451 ±2.308 µm mediated by fibroblasts. Co-application of 10 ng/mL

huNGFβ and 2 µg/mL antibody as negative control shows a remaining neurite

outgrowth of ***6.522 ±8.479 µm (4.1.1). Therefore, fibroblast mediated NGFβ

independent fiber growth yields CPNLs below control level.

Figure 18: Analysis of NGFβ dependency of peripheral fiber growth mediated by
skin cells
A) NGFβ dependency of keratinocyte mediated neurite outgrowth: Cumulative
peripheral neurite growth (µm) at day 10 mediated by keratinocytes and keratinocytes
plus anti-NGFβ antibody. Means were compared by t-test (**P 0,001 – 0,01).
(Keratinocytes n = 7; Kerat. anti-NGFβ n = 5, run in duplicates)
B) NGFβ dependency of fibroblast medited neurite outgrowth: Cumulative peripheral
neurite growth (µm) at day 10 mediated by fibroblasts and fibroblasts plus anti-NGFβ
antibody. Means were compared by t-test (**P 0,001 – 0,01). (n = 4; run in duplicates)

A B
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4.3.3 Peripheral fiber growth mediated by conditioned media of
primary skin cells

As NGFβ is secreted into the supernatant by skin cells (4.2), it was investigated

whether conditioned media of keratinocytes and fibroblasts are able to mimic the

growth effect of primary skin cells.

Cell culture supernatants of skin cells cultured for two days at >80 % confluence were

collected and loaded into co-culture side compartments as growth cue. 0,1 µg/mL

anti-NGFβ antibody (approximately 1000-fold excess per epitope in reference to the

concentration detected in conditioned media) was pre-incubated with conditioned

media at RT for 15min and subsequently loaded into the side compartments.

Cumulative peripheral neurite growth was monitored and analyzed at day 10.

Figure 19 shows the cumulative peripheral neurite length mediated by conditioned

medium of keratinocytes in A) and fibroblasts in B). Conditioned media of both,

keratinocytes and fibroblasts mediate fiber outgrowth, with 15.626_±19.287_µm and

459.367 ±415.853 µm, respectively. Co-application of anti-NGF antibody and

conditioned fibroblast medium causes a significant reduction in CPNL of 91,8 %. Co-

application of anti-NGF antibody and conditioned keratinocyte medium caused a non

significant reduction of 39 % CPNL. Though, absolute values differ from the CPNLs

(µm) obtained by skin cells (4.3.2), overall tendency is similar. Different absolute

CPNLs may be due to large standard deviations caused by the inconsistency of

conditioned media.

In summary, conditioned media mimic the effects of keratinocytes and fibroblasts on

fiber growth. Neurite outgrowth mediated by keratinocytes and conditioned

keratinocyte medium likely represents an accumulative effect of NGF and at least one

additional soluble factor. Fibroblast induced fiber growth is NGF mediated.
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4.4 Quantification of NGFβ independent neurite growth
To quantify and compare NGFβ independent peripheral neurite growth detected in

4.3.2, relative values were calculated for each growth condition.

Skin cells and co-applied anti-NGF antibody were loaded in the two side

compartments of the same co-culture chamber. NGFβ independent fiber growth of

one side compartment is expressed as percent (%) of total fiber growth present in the

second side compartment grown without antibody. Co-application of 10 ng/mL

huNGFβ and 2 µg/mL antibody served as negative control.

Figure 20 shows the relative values of NGFβ independent peripheral neurite growth

mediated by keratinocytes and fibroblasts compared to controls. No significant

difference is detected between negative control and fibroblasts, with 3,53 ±4,54 % and

8,94 ±7,48 % CPNL, respectively. However, keratinocytes mediate significant NGFβ

independent outgrowth of **42,93 ±25,61 % CPNL (**P 0,001 – 0,01). Notably, NGFβ

Figure 19: Analysis of NGFβ dependency of peripheral fiber growth mediated by
conditioned media of skin cells
A) NGFβ dependency of conditioned media mediated outgrowth, keratinocytes:
Cumulative peripheral neurite growth (µm) at day 10 mediated by conditioned
keratinocyte medium and co-applied anti-NGFβ antibody. Means were compared by t-
test. (n = 2, run in duplicates)
B)  NGFβ dependency of conditioned media mediated outgrowth, fibroblasts:
Cumulative peripheral neurite growth (µm) at day 10 mediated by conditioned
fibroblast medium and co-applied anti-NGFβ antibody. Means were compared by t-
test (*P 0,01 – 0,05). (n = 5, run in duplicates)
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independent fiber growth induced by keratinocytes is significantly higher compared to

fibroblasts.

In summary, approximately 42,9 % of keratinocyte mediated peripheral fibers grow

independently of NGFβ and are induced by at least one additional factor. Fibroblasts

however induce fiber growth via NGFβ.

4.5 Kinetics of NGFβ independent fiber growth
As previously shown (4.4), keratinocytes mediate significant NGFβ independent

peripheral neurite outgrowth. Here, it was investigated whether neurites mediated by

keratinocytes with and without endogenous NGFβ show different kinetics in growth.

Co-cultures with keratinocytes only and with co-application of anti-NGFβ antibody

were compared. CPNLs in the side compartments were monitored and analyzed at day

4, 6 and 10.

Figure 20: Quantification of NGFβ independent neurite outgrowth
Neurite outgrowth after co-application of primary skin cells and anti-NGFβ antibody
was compared and normalized to skin cell mediated growth. NGFβ independent
neurite growth is expressed as fraction (%) of cumulative peripheral neurite growth
(100 %, grey) of respective control.
Depicted are keratinocytes plus anti-NGF, fibroblasts plus anti-NGF and the negative
control 10 ng/mL huNGFβ plus 2 µg/mL antibody.
Differences between overall means were compared by one-way ANOVA (**P 0,001 –
0,01). Individual means were compared by Bonferroni’s multiple comparisons post-
test (**P 0,001 – 0,01; *P 0,01 – 0,05). (Kerat. anti-NGF n = 6; Fibro. anti-NGF,
huNGF anti-NGF n = 4, run in duplicates)
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Figure 21 shows cumulative peripheral neurite outgrowth at day 4, 6 and 10 mediated

by keratinocytes with and without endogenous NGFβ. The growth curve of both

conditions differs significantly. Notably, there is no difference in CPNLs at day 4,

with 2.110 ±4.532 µm and 1.450 ±1.661 µm, as well as day 6, with 9.646 ±9.761 µm

and 9.404 ±12.216 µm. However, significant difference is detected at day 10, with

double the amount of CPNL grown in the presence of endogenously produced NGFβ.

Neurites enter the keratinocyte layer approximately at day 6.

Figure 21: Kinetics of neurite outgrowth mediated by keratinocytes
A) Cumulative peripheral neurite length (µm) at day 4, 6 and 10 of keratinocytes and
co-applied anti-NGFβ. Growth kinetics of both conditions (*P 0,01 – 0,05) and
increase over days (***P_±0,001) were compared by two-way ANOVA. Cumulative
neurite outgrowth of both conditions were compared at day 10 by Bonferroni’s post-
test (**P 0,01 – 0,05). (n_= 6, run in duplicates)
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5 Discussion
In the present work the role of NGF in the local stimulation of sensory afferent nerve

fiber growth in the skin is investigated using an in-vitro co-culture system of porcine

DRGs and human primary skin cells.

First, the co-culture system is characterized according to its sensitivity to recombinant

human NGFβ and the subtypes of sensory fibers outgrown. The functionality of

cultured sensory neurons is verified via unspecific and specific stimulation and the

detection of released neuropeptides.

Second, the effects of primary human skin cells on the outgrowth of peripheral

sensory fibers is examined. The expression and production of endogenous NGF of

keratinocytes and fibroblasts is detected and correlated with induced fiber growth.

Furthermore, the application of an anti-NGF antibody specifically blocks the trophic

effects mediated by endogenous NGF and allows for the identification of NGF

independent fiber growth mediated by skin cells.

5.1 The co-culture system
In-vivo the cell bodies of sensory afferent neurons are located in the ganglia of the

dorsal root and the cranial nerves. These pseudounipolar cells are clustered together

without dendritic interconnections and surrounded only by glia cells, referred to as

satellite cells [103]. In contrast, sensory nerve fibers in the skin interact and are

associated with multiple different cell types including keratinocytes, fibroblasts,

endothelial cells, Merkel cells, Langerhans cells and mast cells [34]. They form an

extensive three dimensional network in the dermis and epidermis [12] and are

exposed to and express receptors for a multitude of neurotrophic factors,

neuropeptides and cytokines [34]. Free nerve endings (FNEs) accumulate vesicles and

cytoplasmic organelles and release various neuropeptides themselves [105]. Thus,

where the neuronal somata are rather isolated and dependent on satellite cells and

retrograd transport of survival factors, their peripheral terminal endings widely

interact with the cells of the target tissue. Current mixed in-vitro models of peripheral

sensory neurons and skin cells [94] are inadequate as they do not account for the

anatomical spatial separation and the different molecular microenvironments of

somata and nerve fiber endings.

The present co-culture system was developed to more accurately mimic the in-vivo

situation. The neuronal somata and their axonal processes are cultivated in separate
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compartments, sealed by silicon and a sugar polymer mixture. „Peripheral“ axonal

processes are able to grow from the middle into the side compartments and cultivation

conditions are optimized for both, neuronal and human skin cells.

For obvious reason, human DRGs are not available for the co-culture system.

However, murine and rat sensory neurons have been shown to significantly differ in

several sensory neuronal channels, for instance in the expression of Mas-related G-

protein coupled receptors (Mrgprs) [14]. In addition, the expression of molecular

markers as IB4, CGRP and SP and therefore the diversification of nociceptive neurons

varies considerably with species [28]. Furthermore, human skin differs from rat skin

in several aspects of neurogenic inflammation [24]. In recent years, the pig sus scrofa

domestica gained significance as an alternative model organism to rodents in

neuroscience, as there is substantial similarity between human and pig neuronal

anatomy, physiology [106] and pharmacology [107]. In order to establish an in-vitro

model that closely reproduces the in-vivo situation in human skin, porcine DRGs and

human primary skin cells were combined.

5.1.1 Effect of recombinant growth factors on sensory nerve
growth

The co-culture system is sufficiently sensitive to induce peripheral fiber outgrowth in

response to neurotrophic factors. Here, recombinant human NGFβ was applied to the

side compartments in increasing concentrations and mediated peripheral neurite

outgrowth in a dose dependent manner. A minimum of 40 pg/mL were sufficient for

26,464 ±2,217_mm cumulative peripheral fiber growth (CPNL), whereas the high

standard positive control of 10 ng/mL induced a CPNL of 17,997 ±1,046 cm at day

10. In general, axonal processes appeared in the side compartment at day 4 to 5 and

showed largest increase in total length between day 6 and 10. The length of a single

axonal process varied between several µm and up to one cm. Results strongly

indicate, that the present co-culture system is well fit to study attractive as well as

repellent trophic effects on sensory neuronal growth of any given soluble factor.

5.1.2 Quantitative analysis of nociceptive molecular markers in the
peripheral fibers

Dorsal root ganglion cells have been extensively characterized according to the

expression of nociceptive molecular markers as NF200, IB4, SP, CGRP, TrkA and
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TRPV1 [28]. Beside immunofluorescent studies, a combination of fluorescent

labeling and electrophysiology has been applied to relate molecular marker expression

to function [32]. Additionally, sensory neuronal afferents in the skin are detected via

immunohistochemical studies [108]. However, the quantitative detection of molecular

marker expression on neuronal fibers in the skin is challenging. Several markers are

as well expressed on skin cells and cause significant „background“ staining. For

example, keratinocytes express and stain positive for TrkA and TRPV1 [34].

Furthermore, vertical sections of the skin cut through the three dimensional sensory

network, and require sequential cutting and computational reconstruction to suffice a

quantitative approach [14].

In the present co-culture system neuronal somata and their peripheral fibers are

cultivated in spatially separated compartments. In addition to the detection of

nociceptive markers expressed by DRGs, it is possible to quantify the expression of

individual markers in the sensory fibers. Quantitative changes in the expression

pattern as response to different peripheral growth conditions can be detected and

analyzed.

Here, the expression of the nociceptive markers IB4, CGRP, TrkA and TRPV1 was

quantified in periperal afferent fibers grown in response to recombinant huNGFβ. IB4

and CGRP expression was prevailing with 63,8 % and 54,7 %, respectively. These

values strongly indicate a significant overlap between the two markers in peripheral

sensory afferents, as it has been shown for DRGs [28]. However, double staining of

both markers for the verification and quantification of the overlap is pending. The

NGF high affinity receptor TrkA was detected along 17,8 % and TRPV1 at 4,6 % of

CPNL. The small relative number of TRPV1 expression may at least in part be

explained by the nature of its expression pattern. The TRPV1 signal was confined to

the fiber endings, whereas IB4, CGRP and TrkA were observed alongside the axonal

shafts. Thus, besides the relative values of CPNL positive for individual molecular

markers, a qualitative conclusion of the expression pattern can be drawn.

5.1.3 Specific and unspecific stimulation of efferent functions of
sensory neurons

Besides their various receptive properties, sensory neuronal afferents are able to

release neurotransmitters, neuropeptides and neurohormones [34]. In the skin, this

local efferent function of sensory afferent neurons is involved in a complex auto and
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para-neuroendocrine system between nerve fibers, skin cells, immune cells and the

microvascular system [24] [33] [34].

Two distinct mechanisms for the efferent release of neuropeptides have been

described. The classical model of the axon reflex was first proposed by Lewis 1927

[109] and originally associated with vasodilatation and plasma extravasation during

the weal and flare response to focal skin irritation. To date, the concept has been

expanded to neurogenic inflammation in general, including also non-vascular effects

mediated by neuropeptide release, sensitization of sensory afferents and immune cell

activation [110] [36]. Peripheral sensory afferent depolarization results in a pulse that

travels centrally, but induces antidromically proceeding signals at branching points of

the same neuron. Antidromic signals travel back to the periphery and result in the

release of neuromediators from the fiber endings. However, this picture is incomplete

as the induction of peripheral flare response by histamine injection [111] and

cutaneous inflammation following capsaicin injection [104] is abolished by removal

of DRGs and distal dorsal root rhizotomy, respectively. Intact DRGs and the

involvement of neuronal somata seem crucial to efferent functions of sensory

afferents mediated by axon reflex.

As direct stimulation of the dorsal root was shown to induce antidromic vasodilatation

[109] [112], a similar approach was chosen to test the functionality of sensory neurons

grown in the present co-culture system. The cell somata in the middle compartment

were subjected to stimulus application, whereas the efferent release of neuropeptides

of the peripheral fibers in the side compartment was detected.

The neuropeptide CGRP is considered the most abundant neuropeptide in Aδ and C

fibers in the human skin [50]. It constitutes the predominant neuropeptide in DRGs

expressed by approximately 40 % of the somata (rattus norvegicus) [34] and is

expressed by 63,8 % of peripheral CPNL in the present co-culture system (5.1.2).

Therefore, the efferent release of CGRP into the supernatant was chosen as the

readout parameter.

Neuropeptides are released from C and Aδ fibers in response to a wide range of

internal and external stimuli. Intradermal injection of capsaicin mediates neurogenic

inflammation via the axon reflex mechanism and involves the peripheral release of SP

and CGRP [104]. In the same setup, neurogenic inflammation is completely abolished

by the application of the TRPV1 antagonist capsazepine in a dose dependent manner.



Discussion

Page 79

In the present co-culture system the capsaicin receptor TRPV1 is expressed by

neuronal somata. Therefore, capsaicin and capsazepine were chosen for the specific,

receptor mediated stimulation and block of CGRP release, respectively. Unspecific

stimulation with high potassium (50 mM) was used as positive control [99].

Both, unspecific high potassium and specific capsaicin mediated stimulation of

neuronal somata resulted in efferent CGRP release in the side compartment. High

potassium application yielded an approximately 20-fold increase in CGRP levels

compared to basal release. Repetitive stimulation was accomplished, however basal

CGRP levels between two cycles did not completely return to the initial basal level.

Specific stimulation with capsaicin resulted in a 2,3-fold increase in the peripheral

CGRP levels, whereas the co-application of capsaicin and capsazepine did not

stimulate CGRP release above the basal level. Thus, capsazepine specifically blocked

capsaicin mediated CGRP release, whereas the co-application of high potassium and

capsazepine yielded a 2,2-fold increase in CGRP levels.

In addition to the axon reflex concept, the direct release of neuromediators from the

stimulated sensory afferent terminals of capsaicin sensitive neurons has been shown

[113]. This local coupling of the afferent and efferent function of sensory neurons

plays a key role in the intercellular crosstalk and skin homeostasis. Although these

experiments have not been performed in the present thesis, direct stimulation of the

peripheral fibers is also feasible.

Since DRGs are spatially separated from the peripheral fibers, it seems further

possible to investigate changes in the peripheral efferent functions during application

of central acting substances. An equivalent mechanism in-vivo is the presynaptic

inhibition of the central projections of primary afferent neurons in the spinal cord

[110].

CGRP positive afferent fibers in the skin are often associated with keratinocytes,

melanocytes [54], Merkel cells, Langerhans cells [55] or mast cells [56]. These cell

types also play an important role in inflammatory conditions [34]. Using the co-

culture system, the investigation of efferent functions of sensory afferents in co-

culture with virtually any other cutaneous cell type is possible. Notably, the efferent

release of neuromediators from peripheral fibers may be directly quantified in the

supernatant.
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5.2 Neurotrophic effects of human skin cells on sensory
neurons

In several cutaneous diseases significant changes in the epidermal neuronal fiber

density and morphology has been detected. In atopic dermatitis (AD) and Psoriasis

peptidergic SP+ CGRP+ fiber density is increased [89] [88], wherease diabetic

neuropathy shows a reduction in unmyelinated epidermal C fibers [114]. Consistently,

the level of NGF is elevated in AD [108] and psoriasis [115], and depleted in the skin

of early diabetic neuropathy [70] [116]. Further, NGF regulates the production of

neuropeptides in sensory afferents. Neuropeptides have an influence on the production

and release of cytokines, as TNFα, IL-1 and INFγ that in turn stimulate the cutaneous

expression of NGF, NT-3 and NT-4 [117]. Thus, a strong neurogenic component is

suggested in the development and sustainment of cutaneous diseases.

In this thesis, the local influence of primary human dermal and epidermal skin cells on

sensory afferent nerve growth is investigated using the co-culture system. Both,

keratinocytes and fibroblasts were sufficient to induce sensory fiber outgrowth.

Surprisingly, keratinocyte mediated outgrowth exceeded the CPNL of the high

standard 10 ng/mL recombinant huNGFβ, though not significantly. Fibroblasts

induced substantial peripheral fiber growth, however only 25 % of the CPNL

mediated by keratinocytes.

The concentration of endogenously produced NGFβ of primary skin cells in the co-

culture chamber was detected in parallel. The supernatants of keratinocytes and

fibroblasts contained similar concentrations of average 23,8 pg/mL and 19,4 pg/mL

NGFβ, respectively. However, the NGFβ concentrations did not correlate with

induced total fiber outgrowth. Keratinocytes induced an average CPNL of 247,9_mm,

whereas fibroblasts only mediated 44,9 mm. Furthermore, the 500-times higher

concentration of 10_ng/mL recombinant huNGFβ induced an average CPNL of

180_mm, which is 4-times the CPNL obtained by fibroblasts, but only 0,7-times that

of keratinocytes.

Although differences in the trophic capacity between endogenously and

recombinantly produced huNGFβ are possible, the vast difference in CPNL of

keratinocytes and fibroblasts occurred in the presence of equal concentrations of

endogenous NGFβ. The involvement of at least one other keratinocyte derived

component seemed likely to account for this difference.



Discussion

Page 81

To identify potential NGF independent fiber growth, a specific anti-NGFβ antibody

was co-applied with primary skin cells to inhibit the biological effects of endogenous

NGFβ. The CPNL of fibroblasts decreased to the negative control level in the

presence of the antibody, whereas keratinocytes mediated 42,9 % NGF independent

CPNL. Hence, keratinocytes and fibroblasts showed significant difference in NGFβ

dependency to promote neurite growth. Whereas fibroblast mediated outgrowth is

considered to be dependent on NGFβ, only 57,1 % of keratinocyte mediated CPNL is.

The results were reproducible with conditioned media. Thus, NGF independent

keratinocyte mediated growth is likely caused by at least one additional soluble factor.

5.2.1 Difference in morphology of peripheral fibers mediated by
keratinocytes and fibroblasts

Differences in the trophic effects of keratinocytes and fibroblasts on fiber outgrowth

were also detectable via immunofluorescent analysis. Neurites stimulated by

keratinocytes exhibited extensive branching and fibers wrapped around individual

cells. No difference in morphology was detected between keratinocyte induced

neurites and NGF independent keratinocyte induced neurites (data not shown). On the

other hand, fibroblasts mediated peripheral fibers of an unbranched, straight

phenotype with minor wrapping. Thus, besides the distinct dependency on NGF for

the induction of fiber growth, both cell types exert crucial influence on the local

morphology of sensory afferents.

5.2.2 Kinetics of NGF independent growth mediated by
keratinocytes

In addition, the kinetics of fiber outgrowth induced by keratinocytes with and without

anti-NGFβ antibody was significantly different. No difference in CPNL was detected

at day 4 and 6. However, at day 10 NGF independent CPNL scores only 42,9 %

compared to fiber growth in the presence of endogenous NGFβ. Neurites entered the

keratinocyte layer of the co-culture system approximately at day 6.

It is concluded that NGFβ is not necessary for neurites to enter the side compartments,

extend and reach the keratinocyte layer. In general, increase in CPNL is most

prominent between day 6 and 10, as shown in growth curves with external huNGFβ.

It is hypothesized that NGFβ is mainly necessary for the increase and growth in

length, in consistence with the immunofluorescent analysis of neurite morphology

(5.2.1).
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5.3 Potential additional keratinocyte derived factors in
sensory fiber outgrowth – GDNF

Glial cell-line derived neurotrophic factor is a distant member of the TGFβ

superfamily based on structural and conformational similarities. The active

homodimer binds the GDNF family receptor α (GFRα1), induces recruitment and

autophosphorylation of the receptor tyrosine kinase Ret and intracellular signaling via

Src kinase [118]. Approximately half of the TrkA+, NGF dependent DRGs switch

their expression pattern and dependency towards GDNF in early postnatal life [31].

Subsequently, GDNF mediates the survival of IB4 positive, non-peptidergic, small

diameter sensory afferents of both the somatosensory and the autonomic nervous

system [119].

Immunofluorescent analysis and RT-PCR of human skin showed strong expression of

GDNF, GFRα1/2 and Ret in all epidermal layers, whereas GDNF gradually decreases

with ascending keratinocyte layers [65]. In addition, preliminary data obtained in this

thesis via real time PCR of primary human skin cells, revealed equal expression levels

of GDNF and NGF in keratinocytes. In human fibroblasts GDNF expression was

significantly lower than NGF expression, though still higher than the GDNF level

measured in keratinocytes (preliminary data, not shown).

Additionally, GDNF is implicated in cutaneous diseases as AD, inflammation and

hyperalgesia. GDNF production was found enhanced in the epidermis of two distinct

mouse models of atopic dermatitis [120]. Injection and overexpression of GDNF in

the skin of rat [121] and mouse [122] significantly reduced the thresholds of

mechanical stimulation and led to sensitization of nociceptors and mechanical

hyperalgesia. Furthermore, inflammatory conditions induced by radiant heat led to

gradually enhanced secretion of GDNF in DRGs and induced a specific increase in

TRPV1 expression on IB4 positive neurons [82].

Taken together, GDNF would present a quite reasonable candidate for the detected

induction of NGF independent peripheral fiber growth mediated by keratinocytes.

Further experiments are needed to determine the potential of GDNF to stimulate fiber

outgrowth and the induced sensory fiber types. Subsequent combinations of anti-NGF

and anti-GDNF antibodies co-applied with keratinocytes allow the quantification of

GDNF dependent peripheral sensory afferents.
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6 Abstract
In this work, the local influence of dermal and epidermal skin cells on sensory

afferent nerve growth was investigated using a novel in-vitro co-culture system of

porcine dorsal root ganglion cells (DRGs) and human primary skin cells.

The co-culture system allows for the cultivation of cell somata and peripheral

neuronal processes in spatially separated compartments that are liquid-impermeable.

In accordance with the in-vivo situation, only the axonal processes of sensory neurons

were co-cultivated with dermal and epidermal skin cells in the „peripheral“

compartment. This approach allows to study the neuronal cutaneous network in-vitro.

In a first attempt, the co-culture system was established and characterized. The

sensitivity of the system in response to the neurotrophic factor human NGFβ was

examined. Recombinant huNGFβ induced a dose-dependent outgrowth of peripheral

sensory fibers in a range between several pg/mL to 10 ng/mL. The major increase in

cumulative peripheral neurite length (CPNL) was detected between day 6 and 10 of

cells in culture.

Subsequently, subtypes of peripheral sensory fibers grown in response to huNGFβ

were characterized and quantified via immunofluorescent staining for the nociceptive,

peptidergic markers calcitonin-gene-related-peptide (CGRP) and receptor tyrosine

kinase TrkA, the non-peptidergic marker Isolectin B4 (IB4) and the vanilloid receptor

TRPV1. IB4 and CGRP expressions were prevailing with 63,8 % and 54,7_%,

followed by TrkA with 17,8 % and TRPV1 with 4,6 % of CPNL, thus confirming the

nociceptive sensory phenotype of the grown fibers.

The functionality of the cultured sensory neurons was verified via unspecific

stimulation with high potassium (50mM) and specific stimulation with the TRPV1

agonist capsaicin (CPS) and inhibition with the antagonist capsazepine (CPZ),

respectively. Unspecific and specific stimulation of the somata in the middle

compartment resulted in an efferent release of the neuropeptide CGRP in the

peripheral side compartment. The CPS mediated stimulation of TRPV1 was

successfully inhibited by the receptor specific antagonist CPZ, further emphasizing

the functionality of the cultured neurons.

Finally, the neurotrophic effects of keratinocytes and fibroblasts on peripheral sensory

fiber outgrowth was investigated. Both cell types were sufficient to induce substantial
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sensory fiber outgrowth. Surprisingly, keratinocyte mediated CPNL exceeded the

outgrowth mediated by recombinant huNGFβ.

Additionally, co-application of an anti-NGFβ antibody decreased fibroblast mediated

growth to negative control level, whereas keratinocytes mediated growth was only

reduced to 42,9 %. These results indicate that fibroblasts induce fiber growth mainly

via NGF, whereas keratinocytes produce at least one additional soluble factor that

accounts for the NGF independent fiber growth.

Comparison of keratinocyte mediated outgrowth with and without anti-NGFβ

antibody revealed no difference in CPNL values at day 4 and 6. As neuronal fibers

usually reached the keratinocyte layer at day 6, NGF seems not necessary for neurites

to enter the side compartment, extend and reach the keratinocytes. NGF may rather

play a role for the increase in length between day 6 and 10, consistent with the

reduction of 57,1 % of CPNL without NGF.

Further consistent with this hypothesis was the analysis of fiber morphology. Neurites

stimulated by keratinocytes exhibited extensive branching and frequently wrapped

around individual cells. On the contrary, fibroblasts mediated fibers of more

unbranched and straight phenotype.
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7 Zusammenfassung
Im Rahmen dieser Arbeit wurde der Einfluss von dermalen und epidermalen

Hautzellen auf das Wachstum von peripheren sensorischen Nerven in einem neuen in-

vitro Kokultur-Modell untersucht.

In diesem Modell werden neuronale Zellkörper und ihre peripheren Fortsätze örtlich

getrennt in separaten, flüssigkeitsdichten Kammern kultiviert. Entsprechend den

Gegebenheiten in-vivo, wurden dermale und epidermale Hautzellen ausschließlich mit

den neuronalen Fortsätzen in der „peripheren“ Seitenkammer kultiviert. Dieses

spezielle Setup ermöglicht die Untersuchung des peripheren neuronalen Netzwerks in

der Haut in-vitro.

Im ersten Schritt der Arbeit wurde das Kokultur-Modell etabliert und charakterisiert.

Die Sensitivität des Systems auf neurotrophe Faktoren wurde mittels humanem NGFβ

analysiert. Rekombinantes huNGFβ  induzierte dosis-abhängiges peripheres

Neuritenwachstum in einem Bereich von wenigen pg/mL bis hin zu 10_ng/mL. Die

größte Zunahme an der gesamten peripheren Neuriten Länge (cumulative peripheral

neurite length, CPNL) wurde zwischen dem sechsten und zehnten Tag der

Kultivierung beobachtet.

Die von huNGFβ induzierten peripheren Fortsätze wurden im Anschluss mittels

Immunfluoreszenzfärbung charakterisiert und quantifiziert. Detektiert wurden die

Marker für sensorische, nozizeptive, peptiderge Neurone Calcitonin-gene-related-

peptide (CGRP) und Receptor tyrosine kinase TrkA, der sensorische, nozizeptive,

nicht-peptiderge Marker Isolectin B4 (IB4) und der Vanilloid Rezeptor TRPV1. Die

Espression von IB4 und CGRP war mit 63,8 % und 54,7 % am stärksten detektiertbar,

gefolgt von TrkA mit 17,8 % und TRPV1 mit 4,6 %. Der positive Nachweis dieser

Marker bestätigt die Präsenz von sensorischen, nozizeptiven Fasern im vorliegenden

Modell. Dabei kann zum ersten Mal eine quantitative Aussage über das

Expressionsmuster dieser Marker in den peripheren Fasern, abhängig von den

Wachstumsbedingungen gemacht werden.

Die Funktionalität der kultivierten Neuronen wurde mittels unspezifischer Stimulation

mit 50 mM Kalium und spezifischer Stimulation mit dem TRPV1 Agonisten

Capsaicin (CPS), sowie Inhibition mit dem Antagonisten Capsazepin (CPZ) bestätigt.

Sowohl unspezifische als auch spezifische Stimulation der neuronalen Somata in der

Mittelkammer bewirkten die efferente Ausschüttung des Neuropeptids CGRP in der
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peripheren Seitenkammer. Die Stimulation von TRPV1 mittels CPS wurde erfolgreich

durch den Rezeptor-spezifischen Antagonisten CPZ inhibiert und bestätigt erneut die

Funktionalität der kultivierten Neurone.

Schließlich wurde die neurotrophe Wirkung von Fibroblasten und Keratinozyten auf

das Wachstum der peripheren neuronalen Fortsätze untersucht. Beide Zelltypen

induzierten erhebliches Neuritenwachstum, wobei Keratinozyten sogar höhere CPNL

Werte erzielte als recombinantes huNGFβ. Bei gleichzeitiger Anwendung eines anti-

NGFβ  Antikörpers wurde das von Fibroblasten induzierte Wachstum auf

Kontrollniveau reduziert, wohingegen Keratinozyten vermitteltes Wachstum nur auf

42,9 % verringert wurde. Diese Ergebnisse deuten darauf hin, dass Fibroblasten

induziertes Neuritenwachstum größtenteils durch NGF vermittelt wird. Keratinozyten

scheinen hingegen zumindest einen zustätzlichen, sekretierten Faktor zu produzieren,

der für das verbleibende, NGF unabhängige Wachstum verantwortlich ist.

Im Vergleich zwischen Keratinozyten vermitteltem Neuritenwachstum mit und ohne

anti-NGFβ Antikörper, zeigte sich keinerlei Unterschied in den CPNL Werten am Tag

4 und 6. Da Neurite üblicherweise die Keratinozytenschicht am Tag 6 erreichen,

scheint NGF nicht notwendig für das Auswachsen und Erreichen der Keratinozyten zu

sein. NGF spielt möglicherweise eine größere Rolle im Längenwachstum zwischen

Tag 6 und 10, wo sich ein Unterschied von minus 57,1 % ohne NGF manifestiert.

Mit dieser Annahme gehen auch Beobachtungen der Morphology der Neurite

konform. Keratinozyten vermittelten Fortsätze mit einem hohen Grad an

Verzweigungen, die häufig einzelne Zellen umwickelten. Hingegen wiesen

Fibroblasten induzierte Fasern einen geradlinigen, gering verzweigten Phänotyp auf.
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9 Abbreviations

µg Microgram
µL Microliter
µm Micrometer
AD Atopic Dermatitis
BDNF Brain-derived neurotrophic factor
CGRP Calcitonin gene-related peptide
CNS Central nervous system
CPNL Cumulative peripheral neurite length
CPS Capsaicin
CPZ Capsazepine
CRLR Calcitonin-receptor-like-receptor
CT Calcitonin
DAPI 4',6-diamidino-2-phenylindole, dihydrochloride
DMEM Dulbecco's Modified Eagle Medium
DRG Dorsal root ganglia
EC50 Half effective concentration
GDNF Glial cell-derived neurotrophic factor
GFRa1-4 GDNF family receptor alpha 1-4
HDMECsHuman dermal microvascular endothelial cells
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
huNGFb Recombinant human NGF
IB4 Isolectin B4
IL Interleukin
m/s meter per seconds
max. Maximum
min Minutes
mL Milliliter
n Number of independent data sets
NF200 Heavy neurofilament 200 kDa
ng Nanogram
NGFb Beta subunit of Nerve growth factor
NK Neurokinin
NT-3 Neurotrophin-3
NT-4 Neurotrophin-4
PACAP Pituitary adenylate cyclase activating protein
PBS Phosphate buffered saline
PNS Peripheral nervous system
POMC Proopiomelanocortin
RAMP Receptor-activity-modifying-protein
RT Room temperature
SP Substance P
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SST Somatostatin
TG Trigeminal ganglia
TNFa Tumor necrosis factor alpha
TrkA Receptor tyrosine kinase A
TRPV1 Transient receptor potential vanilloid 1
UV Ultraviolet light
VIP Vascular intestinal peptide
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