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Abstract 

 
(i) One of the key questions of cancer biology is whether the tumor development is caused by 

rare cancer stem cells. Evidence for this model and for the model of clonal evolution of 

tumorogenic clones are currently conflicting against each other. We show that both 

hypotheses can be true if one takes into account that tumors could arise from cells that are 

distinct from those which maintain the tumor. We have compared acute lymphoid and chronic 

myeloid leukemia and could observe that whereas myeloid leukemia develop from the same 

CSCs initially and during progression, lymphoid leukemia change the identity of CSCs that 

initiate to a distinct CSC that maintains the leukemia. This finding is essential in 

understanding of the process underlying leukemia development and explains the lineage 

determination so often associated with particular tumors. 

(ii) The BCR/ABL-oncogene activates many different pathways including Stat5-signaling. 

We show that Stat5 is required for the maintenance of leukemia progression. Deletion of Stat5 

in growing leukemia could completely ablate myeloid and a lymphoid leukemia. Stat5 is 

involved in survival of leukemic cells, since its deletion leads to a G0/G1 cell cycle arrest and 

subsequent apoptosis induction in imatinib-sensitive and in imatinib-resistant cells. Therefore, 

Stat5 is a potential drug for treatment of leukemia. 

(iii) We demonstrate an essential function of Stat5 in the EpoR/Jak2/Stat5 axis during 

erythropoietic development. We could show here that expression of Stat5 in Jak2- and EpoR-

deficient erythroid cells could rescue the erythropoiesis in vitro. Introduction of an 

constitutively active Stat5 mutant (cS5F) into Jak2-/- fetal liver cells, could rescue 

erythropoiesis and myelopoiesis in vivo. 

(iv) Contrary to the implicated role of Stat1 as tumor suppressor, we describe a tumor-

promoting role for Stat1 in MPD and lymphoid leukemia. Stat1-/- tumor cells express low 

levels of MCH class I molecules on their surface and therefore exert a better recognition and 

more efficient killing by NK-cells. We could also describe that Stat1-/- tumor cells acquire 

increased levels of MHC class I proteins, which could be a general mechanism of immune-

escape of hematopoietic tumors.  

(v) Finally, we demonstrate an essential role of Stat5 in lymphopoiesis and lymphoid 

leukemia. Stat5 is essential for the development of CD8+ T-cells, B-cells and gdT-cells. 

Because the B-cell development was impaired at the pre-pro B-cell stage, the initial 

transformation by Abelson oncogenes was completely abrogated in vitro and in vivo. This is 

the first description of Stat5 as a major player in normal hematopoiesis and malignancy. 
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Zusammenfassung 

 

(i) Eine der zentralsten Fragen der Krebsforschung lautet, ob die Entwicklung eines Tumors 

durch selten vorkommende Krebs-Stammzellen verursacht wird. Zurzeit herrscht Unklarheit 

darüber, ob dieses Modell oder das Modell der klonalen Evolution von Tumorzellen der 

Wahrheit entspricht. Hier zeigen wir, dass beide Hypothesen wahr sein können, wenn man in 

Betracht zieht, dass Tumorzellen, die den Tumor erhalten, unterschiedlich von denen sind, die 

ihn initiieren. Wir haben akute lymphoide und chronisch myeloide Leukämien verglichen und 

entdeckten, dass die Tumor-initiierende und die Tumor-erhaltende Krebs-Stammzelle in 

myeloiden Leukämien zur ein und derselben Zellart gehört. In lymphoiden Leukämien 

hingegen ändert sich die Identität der Tumor-initiierenden Zelle zu einer andreren Krebs-

Stammzelle, die den Tumor erhält. Dieser Befund ist essentiell, um den Mechanismus der 

Leukämie-Entwicklung zu verstehen und erklärt die Prävalenz der Onkogene für bestimmte 

hämatopoietische Linien. 

(ii) Das BCR/ABL Onkogen aktiviert viele verschiedene Signaltransduktionswege, u.a. auch 

den Stat5 Signalweg. Wir zeigen, dass Stat5 essentiell für die Erhaltung dieser Leukämie ist. 

Die Beseitigung von Stat5 in einer etablierten Leukämie konnte sowohl myeloide als auch 

lymphoide Leukämien heilen. Stat5 ist mitverantwortlich für das Überleben von 

leukämischen Zellen, da dessen Beseitigung zu einem G0/G1 Zellzyklus-Arrest und 

anschliessend zu Apoptose führt - sowohl in Imatinib-empfindlichen wie auch in Imatinib-

resistenten Zellen. Daher ist Stat5 ein potentieller Kandidat für neue Therapien. 

(iii) Wir zeigen eine essentielle Funktion von Stat5 in der EpoR/Jak2/Stat5-Achse in der 

erythroiden Entwicklung. Wir konnten zeigen, dass die Überexpression von Stat5 in Jak2- 

und EpoR-defizienten erythroiden Zellen die Erythropoiese in vitro retten kann. Das 

Einbringen einer konstitutiv-aktiven Stat5-Mutante (cS5F) in Jak2-/- foetalen Leberzellen 

konnte sowohl die Erythropoiese als auch die Myelopoiese retten. 

(iv) Im Gegensatz zu der erwarteten Rolle von Stat1 als Tumor-Suppressor, beschreiben wir 

eine Tumor-fördernde Rolle für Stat1 in MPD und lymphoider Leukämie. Stat1-/- Zellen 

exprimieren geringe Mengen an MHC Klasse I Molekülen an der Zelloberfläche und werden 

daher von NK-Zellen besser erkannt und eliminiert. Wir konnten weiters zeigen, dass Stat1-/-

Tumorzellen in der Lage waren, höhere MHC Klasse I Expression zu erlangen - was ein 

allgemeiner Mechanismus für das Entkommen hämatopoietischer Tumoren vor dem 

Immunsystem sein könnte. 
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(v) Wir zeigen eine essentielle Rolle für Stat5 in der lymphoiden Entwicklung und in 

lymphoider Leukämie. Stat5 ist erforderlich für die Entwicklung von CD8+ T-Zellen, von B-

Zellen und γδ T-Zellen. Aufgrund der Beeinträchtigung der B-Zell-Entwicklung im Pre-Pro-

B-Zellstadium, war die initiale Transformation mit Abelson-Onkogenen in vitro und in vivo 

völlig verhindert. Dies ist die erste Beschreibung von Stat5 als bedeutender Faktor in 

normaler Hämatopoiese und Leukämie. 
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1 Introduction 

 

1.1 Hematopoiesis and leukemia 
 

The developmental process of formation of all blood cells is called hematopoiesis. The word 

hematopoiesis is derived from greek words “haima” (blood) and “poiesis” (to make). Blood 

or the hematopoietic system is normally considered as an organ because of its complex 

structure. According to this, mature blood cells can be subdivided into three major cellular 

subpopulations. Erythrocytes or red blood cells are quantitatively the largest group of the 

hematopoietic system (4-6x106 cells/µl of human peripheral blood). The function of 

erythrocytes is the transport of oxygen to as well as the transport of CO2 from all organs in a 

body. The second largest population of the hematopoietic system is represented by 

thrombocytes or platelets (2-5x105 cells/µl), which are responsible for prevention of 

accidental, injury-induced blood-loss. The third category of blood cells is called leukocytes or 

white blood cells. Leukocytes are organized as distinct sub-populations, consisting of many 

different cell types, which are mainly involved in immune responses to viruses, bacterial 

pathogens and surveillance and eradication of evolving tumors. 

 

1.1.1 Origins of hematopoietic cells 
 

In all tissues, a cellular requirement for regeneration is needed, in order to supply the organ 

with all specific cells throughout lifetime. In the blood system, these cells are called 

hematopoietic stem cells (HSCs) and reside in the bone marrow (BM) of adult individuals 

(Weissman, 2000). 

However, despite blood being one of the best-studied organs, our knowledge about the 

earliest origins of blood cells is rather complex than clear. The reason for this is that 

development, per se, is a hierarchical system and therefore it assumes the existence of an 

ancestral cell for the whole blood system. Until now, emergence of hematopoietic cells has 

been described in four spatially and temporarily different sites of the embryonic development 

(Choi et al., 1998; Gekas et al., 2005; Muller et al., 1994; Samokhvalov et al., 2007). This 

chapter focuses on the description and explanation of these four origins of hematopoietic 

cells. 
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Figure 1: Spatial and temporal sites of origin of HSCs. 

Upper panel: Developmental timewindows for shifting sites of hematopoiesis. 

Lower panel: Hematopoiesis in each location favors the production of specific 

blood lineages. Abbreviations: ECs, endothelial cells; RBCs, red blood cells; 

LTHSC, long-term hematopoietic stem cell; ST-HSC, short-term hematopoietic 

stem cell; CMP, common myeloid progenitor; CLP, common lymphoid progenitor; 

MEP, megakaryocyte/erythroid progenitor; GMP, granulocyte/macrophage 

progenitor (adapted from Orkin and Zon, 2008) 

 

Interestingly, and common to all findings, one can conclude that the first commitment to the 

hematopoietic fate sets on in a part of the mesodermal germ layer called ventral mesoderm, 

right after the initiation of gastrulation (Murry and Keller, 2008). Temporarily, the 

development of blood cells can be subdivided in two major waves (Figure 1). In mice, the 

primitive erythropoiesis takes place from E7.25-E9.0 (Palis et al., 1999; Wong et al., 1986). 

The definitive erythropoiesis takes place from about E8.25-E10.5 and completely replaces the 

primitive erythropoiesis (Palis, 2008; Palis et al., 1999). Spatially, the onsets of primitive and 

definitive erythropoiesis are located in the yolk sac, but later on, the definitive erythropoiesis 

is relocated to the fetal liver. Upon the switch to fetal liver, the hematopoiesis converges to 

one organ in which the production of all mature lineages and amplification of hematopoietic 

cells takes place. 

 

1.1.1.1 Hemangioblast hypothesis 
 

Strikingly, during the stage of primitive erythropoiesis, primitive erythrocytes are present 

throughout the embryo proper already before the first emergence of HSCs. This finding 
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supports the (first of four) postulation of blood cell formation by a cell called hemangioblast. 

Due to the close spatial interaction between blood and endothelial cells in the yolk sac, it was 

hypothesized that a common ancestor (hemangioblast) could give rise to both, the 

hematopoietic and endothelial lineages during embryonic development (Figure 1, Ferkowicz 

and Yoder, 2005; Haar and Ackerman, 1971). Although, the experimental evidence for the 

existence of hemangioblast has been described in vitro (Choi et al., 1998) and in vivo (Huber 

et al., 2004), the formal proof of a single cell asymmetrically dividing into an erythroid and an 

endothelial cell, is still missing. The hemangioblast-hypothesis provides an explanation why 

primitive erythrocytes could be observed in embryos without the existence of a HSC, but does 

not explain how the emergence of HSCs is supported. 

 

1.1.1.2 The AGM-region 
 

The best established view of the place of origin of HSCs during embryonic development is 

the aorta-gonad-mesonephros (AGM) region. It consists of the dorsal aorta, the mesenchyme 

that engulfs the dorsal aorta and the urogenital ridges (Cumano et al., 1996; Ferkowicz and 

Yoder, 2005; Medvinsky and Dzierzak, 1996; Muller et al., 1994). It has been proposed that 

the cells residing in the ventral wall of dorsal aorta (hemogenic endothelial cells) are able to 

budd off HSCs (North et al., 1999; North et al., 2002). It should be mentioned here, that the 

identity of HSCs can only be assayed functionally and retrospectively by the observation of 

long-term engraftment and contribution to all hematopoietic lineages in animals transplanted 

with HSCs. Indeed, experimental evidence for AGM region as the source of HSCs was 

obtained by single cell transplantation studies of E11 AGM cell suspensions in primary and 

serially transplanted mice (Muller et al., 1994). 

 

1.1.1.3 Yolk sac 
 

In contrast to the AGM-region being the site of origin of HSCs, it has repeatedly been 

described that yolk sac might also be a place where HSCs are produced during embryonic 

development. Interestingly, early studies have shown that removal of yolk sac from E7.5 

embryos and further cultivation in vitro, yielded an ablation of all hematopoietic cells (Moore 

and Metcalf, 1970). A more recent work strengthens the theory of yolk sac origin of HSCs 

(Samokhvalov et al., 2007). Here, the use of a transgenic mouse that was able to induce lacZ 
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expression only in Runx1-positive cells enabled the scientists to follow the fate of yolk sac 

cells in vivo (Runx1 is exclusively expressed in the yolk sac at E7.5). Activation of lacZ at the 

day 7.5 of pregnancy was sufficient to permanently stain all hematopoietic cells. Since the 

AGM-region could be stained as well, it was concluded that the yolk sac rather than the 

AGM-region is the site of origin of HSCs. However, the Runx1+ cells described here could 

only constitute recipient mice if injected into the fetal liver of newborn mice - which indicated 

that further signals and maturation steps are required from the AGM-region or the fetal liver 

to obtain a full functioning HSC. This raises the possibility that these yolk sac cells might 

presumably be precursors of fetal HSCs. 

 

1.1.1.4 Placenta 
 

A very recent and intriguing observation suggests that HSC activity might also be initiated in 

the placenta of developing embryos (Rhodes et al., 2008). Interestingly, HSCs have been 

detected in placental tissue in several studies, but it has never been clear whether they are 

really generated there or whether placenta only provided the right microenvironmental cues 

for HSC expansion. To elucidate this, the authors have used mice which lack the heart beat 

and therefore no HSCs could be transported to placenta by the blood-circulation system 

(Koushik et al., 2001). Strikingly, mice lacking the Na+/Ca2+ transporter Ncx1 could develop 

Runx1+/CD41+ HSCs in the placenta. Additionally, Runx1+/CD41+ HSCs contributed to all 

hematopoietic lineages upon serial transplantation. 

 

1.1.2 Fetal and adult (bone marrow) hematopoiesis 
 

It is commonly accepted that the fetal liver is the site of expansion and differentiation of 

HSCs into all mature lineages. In addition, the fetal liver does not serve as the site of HSC-

generation but provides a niche for amplification of hematopoietic cells, in order to produce 

enough cells to colonize all lymphoid organs after birth (Orkin and Zon, 2008). Compared to 

adult HSCs, fetal liver HSCs are different in their homeostatic properties. Accordingly, fetal 

liver HSCs enter the cell cycle more often than BM HSCs (Bowie et al., 2006; Kim et al., 

2007). 

Common to fetal and adult hematopoiesis is the hierarchy of developmental stages and the 

ability to differentiate into erythroid, myeloid and lymphoid cells from a common ancestor 
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(HSC). During the past two decades our view of the hematopoietic development has 

strengthened mainly through the discovery and purification of distinct hematopoietic 

subpopulations by FACS-sorting using a combination of unique surface markers. This 

powerful method has enabled researchers to test every single hematopoietic stem and 

precursor cell population for their ability to differentiate into mature cells in vitro and in vivo. 

Hence, a rare population in the BM could be identified that was negative for the expression of 

all tested lineage markers (lin-) and that expressed early developmental markers c-kit 

(CD117; Stem cell factor SCF-receptor) and Sca-1 (Ikuta and Weissman, 1992; Spangrude et 

al., 1988). This population, termed as LSK (for lin-/Sca-1+/c-kit+), turned out to be enriched 

for HSCs and could be serially transplanted into lethally irradiated recipient mice with 

successful engraftment (Ikuta and Weissman, 1992). Studies with additional cell surface 

markers have revealed a further heterogeneity among the HSC-population and have led to the 

discrimination between long-term repopulating hematopoietic stem cells (LT-HSCs), short-

term repopulating hematopoietic stem cells (ST-HSCs) and multipotent progenitors (MPPs) 

(Osawa et al., 1996; Randall et al., 1996). However, the differences between the ST-HSCs 

and the MPPs turned out to be less prominent than expected. For instance, transplantation of 

ST-HSCs or MPPs into irradiated hosts has always led to a contribution to all three major 

blood lineages. The engraftment, however, was only temporarily and the differentiated cells 

have disappeared after 3-4 weeks - with ST-HSCs showing longer engraftment than MPPs 

(Morrison et al., 1997; Morrison and Weissman, 1994). Our classical view of the HSC-stages 

shows a linear connection between the LT-HSCs, ST-HSCs and MPPs. At the stage of MPPs, 

the hematopoietic development splits up for the first time into two branches - the common 

lymphoid progenitors (CLPs) (Kondo et al., 1997) and the common myeloid progenitors 

(CMPs) (Akashi et al., 2000). Both precursors are able to give arise to all downstream 

populations of the respective lineage, but they are not able to efficiently repopulate irradiated 

hosts. Interestingly, whereas CLPs can strictly differentiate into the lymphoid lineage (B-, T- 

and NK-cells), CMPs determine their fates into myeloid and erythroid lineages by first giving 

rise to either granulocyte-macrophage progenitors (GMPs) or erythrocyte-megakaryocyte 

progenitors (MEPs) (Traver et al., 2001). 

It is exactly this rigid classical model that has been challenged over the last few years, for the 

reason of several findings showing an unexpected heterogeneity among different 

hematopoietic populations (Figure 2). According to the classical model, MPPs can give arise 

to all three hematopoietic lineages and a lineage commitment is established later at the stages 

of CMPs and CLPs. However, several groups have shown that some lineages are more 
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prominently, or even exclusively, chosen downstream of MPPs. For instance, about 25% of 

the MPP-population expressing high levels of fms-like tyrosine kinase 3 (Flt3 or Flk2) 

Flt3high, has been shown to give arise to mere lymphoid and myeloid lineage (Adolfsson et al., 

2005) and was termed lymphoid-primed multipotent progenitor (LMPP). Although another 

study has shown that LMPPs still possess a low (less than 3%) megakaryocyte-erythrocyte 

(MegE) potential, this issue remains a point of debate. 

 

 
Figure 2: Road map of early hematopoiesis 

A, Model proposed by Kondo et al (1997) & Akashi et al (2000) 

B, Model proposed by Adolfsson et al (2005) 

C, Model proposed by Pronk et al (2007) 

D, Model proposed by Arinobu et al (2007) 

(adapted from C.Murre – Cell Stem Cell 2007) 

 

Another report also suggests a rather complex view of the hematopoietic development. Here, 

Pronk et al have assessed the differentiation potential of myeloid progenitors using CD150, 

CD105 (Endoglin) and CD41. Interestingly, they could show a novel hierarchy of progenitors 

with myeloid and erythroid potentials (Pronk et al., 2007). 

A complete novel approach was undertaken by the group of Connie Eaves which re-evaluated 

the hematopoietic tree using functional markers (Hoechst and Rhodamine stainings for drug-

resistance pumps expressed on HSCs) in order to define HSC-potential on a single cell level 

(Dykstra et al., 2007). By doing so, they could define four novel classes of HSCs according to 

their lineage determination ability (termed α, β, γ and δ). α cells had high self-renewal 

activity but were prone to differentiate into the myeloid lineage. β cells had similar self-
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renewal activity and a multipotent potential. γ and δ cells, however lacked the ability to self-

renew but γ cell displayed a robust myeloid and lymphoid potential, whereas δ cell only 

contributed to the lymphoid lineage. 

Finally, the group of Koichi Akashi favors the view that multipotent cells like MPPs might be 

initially primed into the myeloid/erythroid or lymphoid lineage, depending on the expressing 

of GATA1 or PU.1, respectively (Arinobu et al., 2007). This, so called priming, determines 

the specific lineage and could be a hint for further plasticity of HSCs. 

 

1.1.3 Leukemia 
 

The word leukemia is derived from the ancient greek words “leukos” (white) and “aima” 

(blood). It is usually used to describe the cancer of the blood system. On their clinical 

etiology, the leukemias are simply subdivided in chronic and acute leukemias. Leukemias 

implicate real hematological malignancies and are therefore separated from the more benign 

hematological neoplasms like myeloproliferative disorders. 

 

1.1.3.1 Myeloproliferative Disorders 
 

Myeloproliferative disorders or, sometimes termed, diseases (MPD), is a classification of 

diseases that rely on a hyperproliferation of blood cells of the erythroid/myeloid lineage in 

general. Since this classification is based on historical and clinical/morphological 

discrimination of hematological neoplasms rather than on molecular pattern, the term MPDs 

still remains less well defined than that of classical hematological malignancies (leukemias) 

(Levine and Gilliland, 2008). The most prominent difference to classical leukemia is that 

MPDs are initially benign, but mostly develop into malignant forms. The first definition of 

MPDs dates back to 1951, when William Dameshek discovered that polycythemia vera (PV), 

essential thrombocytosis (ET) and primitive or idiopathic myelofibrosis (MF) were closely 

related (Kralovics et al., 2005; Levine and Gilliland, 2008). Today, the category of MPDs is 

further subdivided into two major subgroups consisting of Philadelphia Chromosome (Ph) 

positive and Ph-negative diseases. The initially defined PV, ET and MF are termed Ph-

negative MPDs, whereas the chronic myelogenous (or myeloid) leukemia (CML) is viewed as 

Ph-positive MPDs (Kralovics et al., 2005; Levine and Gilliland, 2008). This is due to the fact 
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that CML normally exerts a milder phenotype than other “malignant” forms of leukemia, and 

has first to evolve into an acute phase disease. 

The recent discovery of a dominant mutation in the pseudokinase domain of Jak2 has 

revolutionized our view of MPDs, especially of the Ph-negative origin (James et al., 2005; 

Kralovics et al., 2005; Levine et al., 2005). A point mutation leading to a mis-translation of 

one amino acid (valine 617 to phenylalanine) was discovered to be the cause of 80% of PV, 

50% of MF and about 20% ET in human patients. Interestingly, all three forms lead to 

fibrosis of the BM and eventually cause death. The discovery of the Jak2V617F mutation was 

therefore a genetic or molecular proof for the common pathogenesis of PV, ET and MF. 

Due to historical/clinical and genetic/molecular reasons, CML is treated in this chapter as 

both a leukemia, and a MPD. Therefore it will be discussed in more detail in the next chapter 

(chronic leukemia). 

 

1.1.3.2 Chronic leukemia 
 

Chronic leukemias are characterized by their clinical etiology, which is described as a year-

long (=chronic) disease of the blood system. Normally, and inevitably, chronic leukemia, 

after an accelerated phase further proceeds into an acute phase. Chronic leukemia is 

characterized by extremely high numbers of relatively mature cells. It occurs predominantly 

in elder persons and is more easily treated due to reduced lethality rate. According to the cell 

lineage affected, chronic leukemia is further subdivided into a lymphoid and a myeloid form, 

CLL and CML, respectively. 

Chronic lymphocytic or lymphoid leukemia (CLL) mostly affects adults over the age of 55 

years and almost never occurs in children. CLL most often affects the B-lymphoid lineage 

and the survival rate is 77% after 5 years (Boelens et al., 2009; Chiorazzi et al., 2005). 

Chronic myelogenous or myeloid leukemia (CML) also affects older persons and rarely 

children. CML progresses form the chronic phase to the accelerated phase over a period of 

several years. The accelerated phase further inevitably progresses to the acute phase, which 

completely resembles an acute leukemia. Due to the treatment with the tyrosine kinase 

inhibitor Imatinib-mesylate, the prognosis of about 56% survival after 5 years has changed to 

about 90% survival upon treatment (Druker, 2008; Faderl et al., 1999). 
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1.1.3.3 Acute Leukemia 
 

Acute leukemias are generally considered to have a poor prognosis. Acute 

lymphoblastic/lymphoid leukemia (ALL) is the most common form of leukemia in children 

but it also occurs later in aged persons (Foon et al., 1980; Piccaluga et al., 2007). 

Acute myelogenous/myeloid leukemia (AML) has a relatively complicated etiology, which is 

classified by the French-American-British (FAB) or the World Health Organization (WHO) 

systems. This is because AML seems to arise from, or secondarily acquire, a load of 

mutations (Bennett et al., 1976). 

Both acute leukemia are associated rather poor prognosis, that is about zero percent survival 

without treatment and 20-50% survival upon treatment. The best prognosis is achieved in 

childhood ALL, because of bone marrow transplantation or stem cell transplantations have 

high rate of success in children. 

 

1.1.3.4 Philadelphia Chromosome-positive leukemia 
 

Philadelphia chromosome (Ph) was the first chromosomal translocation to be identified to 

encode a fusion-protein BCR/ABL, the major cause of several forms of leukemia. Leukemias 

characterized by a specific genetic abnormality, a t(9;22)(q34;q11) translocation, result from 

the formation of combined chromosome from chromosomes 9 and 22 (Groffen et al., 1984; 

Nowell and Hungerford, 1960). As a result of the translocation, a fusion gene product 

(BCR/ABL) is created, representing a constitutively active tyrosine kinase that lacks the 

regulatory domains of its full protein alias c-abl (Clark et al., 1988; Konopka and Witte, 1985; 

Rowley, 1973). The presence of the Ph is linked to three hematopoietic malignancies: CML, 

ALL and chronic neutrophilic leukemia (CNL) (Wong and Witte, 2001). Interestingly, 

whereas in CML, BCR/ABL is responsible for about 95% of all cases, only about 20-30% of 

adult ALL and 2-10% juvenile ALL patients possess the Ph-chromosome. CNL, however, is 

extremely rare and will not be discussed in more detail here.  

The molecular basis for the three diseases is given through the identification of three different 

ways or breakpoints to form a BCR/ABL fusion protein (Wong and Witte, 2001). All 

different breakpoints are in the BCR-gene, whereas the breakpoint of the c-ABL gene remains 

the same. Therefore, three proteins with different weights exist in the already mentioned 

leukemias. 
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This thesis will focus on the two most prominent ones: the smallest BCR/ABLp185 (185kDa) 

protein occurring in about 20-40% of all ALLs and the medium BCR/ABLp210 (210kDa) 

predominantly arising almost all cases of CML (Wong and Witte, 2001). 

 

1.2 Jak/Stat signaling and disease 
 

1.2.1 Overview of Jak/Stat signaling 
 

The Janus kinase (Jak) and signal transducer and activator of transcription (Stat) proteins are 

members of an evolutionary conserved signaling pathway. The Jak/Stat pathway is involved 

in the signal transduction of developmental, proliferative and survival signals from the 

environment to the nucleus of cells, where activation or repression of an appropriate 

repertoire of genes is initiated, leading to adequate responses to extracellular stimuli (Calo et 

al., 2003; Levy and Darnell, 2002; Murray, 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Jak/Stat signaling cascade 

Upon ligand binding, receptor chains dimerize and activate Jaks. Jaks 

subsequently phosphorylate the receptor chain and thereafter, Stats, which 

bind to the receptor. Phosphorylated Stats dimerize and translocate to the 

nucleus. (adapted from Levy and Darnell, 2002) 
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The function of Jak/Stat pathway is mediated by the binding of an extracellular stimulating 

ligand to its cognate receptor which resides in the cytoplasmic membrane (Figure 3). The 

receptors of a non-classical tyrosine kinase family lack their own tyrosine kinase domain and 

are dependent on the physical interaction with Jak tyrosine kinases, bound to the intracellular 

domains of the receptor chains. Upon ligand binding, the receptor chains homo- and 

heterodimerize and bring the Jaks in a close vicinity to each other so that they can 

autophosphorylate themselves. The subsequent phosphorylation of tyrosine residues of the 

intracellular receptor domain is a prerequisite for binding of Stats to the receptors. In a similar 

way, Stats get phosphorylated and activated by Jaks, they homo- or heterodimerize and are 

translocated to the nucleus. Stats are genuine transcription factor and lead (in most cases) to 

an activation of specific target genes (Levy and Darnell, 2002). 

 

1.2.2 Jaks 
 

There have been four members of Jak proteins identified until now, termed Jak1, Jak2, Jak3 

and Tyk2. All Jaks are expressed in a variety of tissues and it has been assumed that their 

function is mostly non-redundant. Analysis of knockout mice and identification of 

homozygous mutation in humans has implicated Jak proteins in many fundamental cellular 

processes. For instance, Jak1 and Jak2 knockout mice displayed the most severe phenotype, 

leading to an early embryonic lethality (Neubauer et al., 1998; Parganas et al., 1998; Rodig et 

al., 1998). It is thought that the function of Jak1 and Jak2 is therefore closely connected to 

either embryonic development per se, or to an essential role in hematopoietic development 

since the lethality of knockout embryos was shown to coincide with the onset of fetal 

hematopoiesis. Interestingly, the most receptors involved in the function of hematopoietic 

cells like proliferation, differentiation and homing - that are represented by the gp130-family, 

common gamma, common beta chains and interferon receptors - signal through Jak1 and 

Jak2. Deletion of Jak3 in mice has led to a severe combined immuno-deficiency  (SCID) 

phenotype due to the lack of T- and NK-, but not B-cells (Nosaka et al., 1995; Thomis et al., 

1995). Additionally, homozygous mutation in humans have been discovered in Jak3, that also 

led to a lack of T-cells, and Tyk2, which displayed a Hyper-IgE syndrome with increased 

susceptibility to different microorganisms (Minegishi et al., 2006; Notarangelo et al., 2001). 

Accordingly, Tyk2 knockout mice exhibited impaired interferon-response that affected the 

viral (Karaghiosoff et al., 2000) and bacterial (Karaghiosoff et al., 2003) response to 

pathogens. 
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Figure 4: Common structure of Jaks (A) and Stats (B) (adapted from Schindler et al, 2007) 

 

The structure of Jaks is comprised of seven unique domain structures, termed Jak-homology 

domains (Figure 4, JH1-7). Functionally, JH7-4 encode the FERM-domain, which is 

responsible for the binding to the cognate receptor chain and resides in the N-terminal part of 

Jak proteins. The SH2-like domain is adjacent to the FERM-domain and is followed by two 

unique Jak kinase domains. Interestingly, one the most C-terminal kinase domain is 

functional in Jaks and the prior kinase doman is therefore termed pseudo-kinase domain 

(Levy and Darnell, 2002). Recently, a mutation in this pseudo kinase domain was discovered 

in Jak2, that is involved in myeloproliferative disorders by possibly rendering the protein 

constitutively active (James et al., 2005; Kralovics et al., 2005; Levine et al., 2005). 

 

1.2.3 Stats 
 

Stat molecules consist of seven members - Stat1 to Stat6, whereas Stat5 is encoded by two 

different genes, Stat5A and Stat5B. In contrast to Jaks, studies on Stats have revealed a more 

redundant roles for Stat protein, with the exception of Stat3 and Stat5 (O'Shea et al., 2002). 

Knockouts for Stat1 and Stat2, for example, have led to an overall normal phenotype in mice, 

with defects becoming prominent only after pathogenic challenge - due to an impaired 

interferon response (Durbin et al., 1996; Meraz et al., 1996; Park et al., 2000). In case of Stat4 

and Stat6, a role in T-cell polarity has become obvious that is responsible in the decision 

between the Th1 and Th2 differentiation and cytotoxic versus humoral immune responses. 

While Stat4 acts downstream of IL-12 signaling and therefore supports the differentiation into 

Th1 cells that mediate anti-pathogenic immunity (Wurster et al., 2000), Stat6 is responsible 
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for IL-4 and Il-13 signaling and Th2 polarity to viruses and helminthes (Wurster et al., 2000; 

Zhu et al., 2001), respectively. As elucidated by knockout studies in mice, the functions of 

Stat3 and Stat5 seem to be more redundant than of all other Stats. For instance, Stat3 deficient 

mice were embryonically lethal already at E6.5-7.5, probably due to a developmental defect 

leading to an impaired closure of the neural tube (Takeda et al., 1997). While mouse 

embryonic fibroblasts (MEFs) could be isolated and expanded in vitro form Stat3 deficient 

mice, it is still unclear whether Stat3 has an important role in other adult cells (O'Shea et al., 

2002). Studies with dominant negative Stat3 or knockdown studies have however proposed an 

essential role in many adult cells and tissues (O'Shea et al., 2002). Similarly, Stat5 has been 

shown to exhibit an essential role in hematopoiesis (Hoelbl et al., 2006; Teglund et al., 1998; 

Yao et al., 2006). Stat5 knockout mice die mostly in utero and/or perinatally, and we and 

others have shown that Stat5 has an essential function in erythrocytes, T- and B-lymphocytes 

(Grebien et al., 2008; Hoelbl et al., 2006; Kerenyi et al., 2008). 

The structure of Stats is well conserved throughout the seven members and evolutionary from 

D. melanoganster to humans (Figure 4). Presumably, Stats are derived from one Stat gene by 

gene duplication. The structure has been solved by christallography for Stat1, Stat3 and Stat4, 

except for their N-terminal parts and therefore mechanisms of DNA-binding and dimerization 

are quite well understood (Becker et al., 1998; Chen et al., 1998; Vinkemeier et al., 1998). 

The N-terminal part is thought to be involved in dimerization of inactive Stats and in nuclear 

import/export. At least for Stat5, this domain has also been shown to mediate oligomerization 

(tetramers) (Moriggl et al., 2005). The coiled-coil domain in its vicinity consists of several 

hydrophilic residues, probably implicated in binding of regulatory proteins. The DNA-

binding domain (DBD) adjacent to the coiled-coil domain enables the binding of Stats to their 

consensus sequences (ISRE and/or GAS) in the promotor regions of many genes. Followed 

by a linker that assures the appropriate distance to DBD, the SH2-domain is the most 

conserved Stat-sequence and responsible for homo- and heterodimerization. Directly behind 

it, the tyrosine residue is situated to avoid intramolecular self-dimerization. At the C-terminal 

end of Stat proteins, the transactivating domain (TAD) is the least conserverd part among 

Stats. It induces promotor clearance and transcription of target genes (O'Shea et al., 2002; 

Schindler et al., 2007). 

 

1.2.4 Jak/Stat signaling in normal hematopoiesis 
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Almost all processes involving two or more hematopoietic cells including 

development/differentiation, survival/cell death and homing/immunity are regulated by 

cytokines. Interestingly, cytokines like interleukins, interferons and other growth factors all 

signal through the Jak/Stat signaling pathway. Therefore Jaks and Stats have an indispensable 

role in hematopoiesis. As already mentioned, the knockout phenotypes in mice and other 

experiments have implicated Jaks and Stats in a variety of cellular functions.  

 

1.2.5 Jak/Stat signaling in leukemia 
 

The unique prevalence of Jak/Stat signaling pathway in hematopoiesis has implicated it in 

malignancies arising from blood cells. It is generally thought that aberrant signaling 

downstream of many cytokines important for self-renewal, proliferation or survival of blood 

cells might be involved in leukemia formation (O'Shea et al., 2002). Especially, 

hematopoietic stem cells, progenitors and other transit amplifying cells might harbor the 

potential to become malignant. 

We and others have therefore focused on the elucidation of Jak/Stat signaling components 

that might be required for tumor initiation or tumor maintenance - and this is also one of the 

major focuses of this thesis. 

Jak1 and Jak2, for example, have been implicated in leukemia development for a long period, 

not only because of their redundant roles in hematopoiesis. It has been proposed that Jak1 and 

Jak2 would promote leukemia formation (Vainchenker et al., 2008; Ward et al., 2000). 

Several groups have shown that Jak1 and Jak2 act downstream of fusion proteins and 

oncogenes (e.g. v-abl, BCR/ABL) that drive leukemia. Due to the lack of genetic models to 

address this issues (Jak1 and Jak2 knockouts are embryonically lethal), it has taken until the 

knockdown techniques have become available, to strengthen this hypothesis (Vainchenker et 

al., 2008). However, recently we could show that in case of Jak1 a tumor promoting role 

might not be correct at least for lymphoid leukemia (Sexl et al., 2003). Even on contrary, v-

abl transformed Jak1 deficient fetal livers gave rise to an increased number of clones in vitro 

and have worsen the outcome of disease when transplanted in vivo. 

Jak2’s role in tumor promotion has been better substantiated. Tel/Jak2 is an occasionally 

occurring fusion protein due to a chromosomal translocation in childhood T-ALL (Schwaller 

et al., 1998). A recently identified point mutation in Jak2 has also been implicated in 50-90% 

of cases of polychythemia vera (PV) (James et al., 2005; Kralovics et al., 2005; Levine et al., 

2005). In a study described in this thesis, we have addressed this question using Jak2-
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deficient fetal livers (FL). Infection of Jak2-/- FL with a constitutively active mutant of the 

downstream player Stat5 (cS5F) has rescued erythropoiesis and myelopoiesis in vivo, but was 

not sufficient to induce leukemia formation, indicating that additional signaling was required 

for downstream of Jak2 for myeloid leukemia formation (Grebien et al., 2008). 

Tyk2 has also been evaluated for its involvement in leukemia formation. Interestingly, we 

could show that loss of Tyk2 in a B-ALL model had no effect on the tumor cell per se, but 

nevertheless has accelerated tumor formation by impairing the NK-cell cytotoxicity and 

surveillance of tumors (Stoiber et al., 2004). 

Stat1 has previously been shown to be a tumor suppressor in many tumors, although its role in 

leukemia formation has not been assessed (Shankaran et al., 2001). Very recently, we could 

show using a B-ALL and a MPD model, that Stat1 promoted leukemia development and its 

loss rendered the mice less tumor prone due to low MHC class I expression on the surface of 

tumor cells. Interestingly, Stat1-/- tumor cells could up-regulate MHC class I expression in 

order to escape the immunesurveillance by NK-cells (Kovacic et al., 2006). 

In contrast to Stat1, Stat3 has initially been implicated in cancer formation as a proto-

oncogene (Bromberg et al., 1999). Accordingly, active (phosphorylated) Stat3 has also been 

found in many leukemia and lymphoma (Yu and Jove, 2004). Stat3 is the major component 

downstream of gp130 receptor family and is therefore thought to be involved in 

differentiation and fate decision processes dependent on cytokines like LIF, IL-6, IL-11, G-

CSF etc. and in inflammation processes (Yu and Jove, 2004). Although a genetic depletion of 

Stat3 has not yet been assessed in leukemia formation, experiments using RNA interference, 

antisense oligonucleotides or dominant negative versions of Stat3 have implicated this protein 

in tumorigenesis (Kisseleva et al., 2002; Levy and Darnell, 2002). 

The role of Stat5 in leukemia formation has been assessed by several groups. For example, a 

constitutively active version of Stat5B was generated by substituting the histidine 299 and the 

serine 711 with arginine and phenylalanine, respectively (Burchill et al., 2003). A transgenic 

mouse bearing this mutant (Stat5B-CA) under the control of the µ-enhancer (Eµ) showed 

increased numbers of pro-B, mature α/β and γ/δT and NK/T, but no leukemia formation. 

Conversely, knockout strategy has initially been used to generate a hypomorphic version of 

Stat5 lacking the N-terminal part (Sexl et al., 2000; Teglund et al., 1998). Unfortunately, the 

rest of the protein was still expressed - leading to a somewhat mild phenotype in these 

knockout mice. For example, the mice were overall healthy, developed normally and showed 

only a reduced but not impaired transformation ability leading to lymphoid and myeloid 

leukemia formation. Interestingly, using a complete knockout of both Stat5 genes, we could 
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recently clarify the role of Stat5 in hematopoiesis and lymphoid leukemia (Hoelbl et al., 

2006). Indeed, Stat5 knockout mice were embryonically and perinatally lethal, but fetal liver 

cells from rare survivors showed an impaired B and T-cell development and an inability of 

transformation with v-abl and BCR/ABLp185 in vitro, and impaired leukemia development in 

vivo. 

 

1.3 Cancer stem cell hypothesis 
 

1.3.1 Evidence for cancer stem cells 
 

There has been emerging evidence over the last decade about the interrelationship between 

normal stem cells and tumor cells being capable of formation and development of novel 

tumors. Particularly, hematological malignancies have been shown to arise from rare or at 

least infrequent tumor cells that can be successfully transplanted into recipient mice (Al-Hajj 

et al., 2003; Bonnet and Dick, 1997; Lapidot et al., 1994; Ricci-Vitiani et al., 2007; Singh et 

al., 2004). The very first report states a successful transplantation of a rare cell fraction 

isolated by FASC-sorting from human AML-patients into non-obese diabetis (NOD)/severe 

combined immunodeficient (SCID) mice (Bonnet and Dick, 1997; Lapidot et al., 1994). 

These cells, forth on termed “cancer stem cells” (CSCs), have become the basis of the later 

postulated “cancer stem cell hypothesis”. Importantly, it was not only frequency that has 

characterized a potential cancer stem cell. Moreover, on the top of the fact that CSC 

represented only 0.2-1% of all AML cells, it was the rest of the AML cells that were not able 

to grow in serial transplants (Bonnet and Dick, 1997). This experiment has clearly shown that 

the rare cells were somewhat superior to all other cells in their capacity to form novel tumors. 

Additionally, this finding has pointed out that cancers, like normal organs, could be 

hierarchically organized and possess stem cell-like cells within them. Most strikingly, the 

phenotype by which the presumable CSCs were isolated from AML-samples resembled the 

surface marker combinations used to identify and isolate HSCs previously (Thy1-, CD34+ and 

CD38-) (Bonnet and Dick, 1997). 

In recent years, CSCs have also been reported in the cancers of brain, breast and colon (Al-

Hajj et al., 2003; Ricci-Vitiani et al., 2007; Singh et al., 2004). Interestingly, the marker 

expression on most if not all of these CSCs resembled closely the phenotype of HSCs. For 

instance, the prospective breast CSCs turned out to be lin-CD24- and CD44+ (Al-Hajj et al., 
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2003). The presumable brain and colon CSCs, on the other hand, expressed a novel surface 

marker CD133 (prominin) which was found to be enriched in the CSC-fraction and also 

expressed of normal human HSCs (Ricci-Vitiani et al., 2007; Singh et al., 2004). 

 

1.3.2 A paradigm cancer stem cell model 
 

The hematopoietic system is one of the best studied and therefore best described organs in 

mammals. As mentioned previously, the blood system consists of a well-studied hierarchy of 

cells with largely known ancestors (like HSCs) and descendents. Moreover, a load of 

phenotypic markers, either as cell surface proteins or intracellular players are known that can 

distinguish between all the described subpopulations (Adams and Scadden, 2006). It is 

because of these hallmarks that the hematopoietic system is established as a paradigm model 

for studying the cancer stem cell hypothesis. Additionally, the blood system has also been a 

source of many mutations, chromosomal translocations and genetic aberrations that are 

associated with different diseases and malignancies (Caligiuri et al., 1997; Jordan, 2002). For 

that reason, it is thinkable that the CSC hypothesis will have to prove in all aspects of this 

model. 

CSCs of the hematopoietic origin are also called leukemic stem cells (LSCs). In this thesis, 

the term CSC is used in order to achieve a general point of view. 

 

1.3.3 The cell of origin of cancer 
 

The quest for the cell of origin of cancer has turned out to be the most problematic part, right 

form the beginning of the cancer stem cell hypothesis. The reason for that is obvious from 

lessons with patients treated from leukemia. Normally, patients with cancer are treated by 

chemotherapy and, more recently with specific inhibitory drugs i.e.- like in case of CML - 

with imatinib-mesylate. However, a cure from cancer is only rarely achieved and in most 

cases the disease develops again, even after several years of successful treatment (Kantarjian 

et al., 2002; Ottmann et al., 2002; Sawyers et al., 2002). According to the cancer stem cell 

hypothesis these observations can be explained by the fact that CSCs share all abilities of 

normal stem cells like self-renewal, the ability the differentiate into more mature cells, 

quiescence, longevity and the ability to “pump out” drugs. 
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Unfortunately, there are two possibilities how this stem cell state of CSCs can be explained: 

First, it is possible that CSCs are normal stem cells that have acquired mutations over time 

and become aberrant. This is plausible if one thinks about stem cells needing less mutations, 

because the program of self-renewal is already active, or about the cells living long enough to 

acquire the mutation. Secondly, it is thinkable that CSCs are progenitors or even mature cells 

that have regained the ability to self-renew (Figure 5, Passegue et al., 2003). 

 

 
 

Figure 5: Leukemic stem cells (LSCs) could originate from normal HSCs 

or from progenitors (adapted from Passegue et al, 2003) 

 

Several findings indicate that both scenarios are true and therefore the interpretation of the 

cancer stem cell model became even more complicated. As already mentioned, the studies on 

AML indicate that HSCs might have become aberrant and gave rise to CSCs. The same might 

be true for other tissues like colon, brain and the breast. However, numerous recent studies 

have implicated that leukemia-initiating cells from AML expressed either a predominantly 

mature myeloid phenotype or consisted of a myeloid progenitor population rather than of 

HSCs (Kelly et al., 2007; Krivtsov et al., 2006; Somervaille and Cleary, 2006). 

Furthermore, it has been suggested that chronic phase CML is initiated in HSCs, or 

presumably LT-HSCs, because the characteristic Ph-translocation can be detected in several 

hematopoietic lineages of the same patient (Holyoake et al., 1999; Takahashi et al., 1998). 

Although in multiple studies BCR/ABL-positive CML (BCR/ABLp210) seemed to originate 

in the HSC-fraction during the chronic phase (Hu et al., 2004; Huntly et al., 2004; Krause et 

al., 2006), a different study placed the acute phase disease CSCs into the fraction of 
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progenitors (Jamieson et al., 2004). Another, perhaps aberrant, spontaneous JunB-/- CML-like 

leukemia was initiated from LT-HSCs (Passegue et al., 2004) and a BCR/ABLp210 Arf-/- 

leukemia was initiated from pre-B cells (Williams and Cancelas, 2006). Strikingly, one recent 

study has reported that 5-FU treatment of donor BM prior to infection with BCR/ABL 

induced CML in serial transplants, whereas direct infection with BCR/ABL without 5-FU 

treatment could redirect the disease into B-ALL lineage (Hu et al., 2004). Interestingly, all 

studies mentioned here using BCR/ABL BM transplantation used 5-FU treatment prior to 

infection. Therefore, it is possible that 5-FU treatment per se had an effect on the etiology of 

myeloid leukemia and may have pre-influenced its outcome. 

 

1.3.4 The frequency of cancer stem cells and the generality of cancer 
stem cell hypothesis 
 

Recently, several reports have raised the possibility that the frequency of CSCs in a tumor 

might actually be underscored (Kelly et al., 2007; Krivtsov et al., 2006; Quintana et al., 2008; 

Somervaille and Cleary, 2006). In transplantation experiments with different forms of 

leukemia and with solid cancers, it could be demonstrated that the number of CSCs relative to 

all other tumor cells is higher than initially suggested. Hence, the numbers were estimated 

between 15-50% of all cells and probably even extend to all tumor cells. 

 

 
Figure 6: Tumors could arise either according to the cancer stem cell 

hypothesis (A) or by clonal evolution  (B) or by a combination of both 

(C). (adapted from Adams et al, 2008) 
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The notion for these findings came from the consideration that the only ability of rare tumor 

cells to develop novel tumors might be a consequence of a lack of appropriate tumor 

microenvironment in NOD/SCID mice (Adams and Strasser, 2008; Kelly et al., 2007). In 

other words, the xenotransplantation experiments used to substantiate the cancer stem cell 

hypothesis seemed to have failed to provide all tumor cells with essential growth factors. 

These findings have challenged the cancer stem cell hypothesis insofar as they suggest that 

tumor growth might indeed be supported by clonally evolving cells - a model already 

proposed to exist for cancer cells (Figure 6). 

 

1.4 Potential targets for treatment of hematopoietic malignancies 
 

It is one of the major challenges in cancer biology to effectively treat cancers. As already 

mentioned before, current therapies mainly focus on the treatment of the bulk of cancer cells 

with diverse chemotherapeutical agents. Chemotherapy however is effective only on the 

majority of rapidly growing cells and has various side effects. Therefore, the patients are only 

exposed to chemotherapeutical agents for a relatively short period of time and the procedure 

has to be repeated several times. In recent years, many effective drugs were discovered that 

target mostly different tyrosine kinases, known to be expressed in cancers. One of this 

tyrosine kinase inhibitor, Imatinib-mesylate (Glivec, or STI571) was the first effective 

inhibitor used to combat CML and has revolutionized the therapy and the survival of patients 

with CML (Druker et al., 2001a; Druker et al., 2001b). However, the search for other 

inhibitors has turned out to be difficult and time-consuming, so that only few other tyrosine 

kinase inhibitors are in clinical use or in clinical trials. Another disadvantage of tyrosine 

kinase inhibitors like Imatinib-mesylate is that patients have to be treated a life-long, since 

Imatinib-mesylate only suppresses CML-progression, but does not completely eradicate the 

cells (Kantarjian et al., 2002; Ottmann et al., 2002; Sawyers et al., 2002). 

 

1.4.1 Jak2 and Stat5 
 

One focus of this thesis was to evaluate the possibility that Jak/Stat-signaling components 

may be potential targets for treatment of leukemia. As already mentioned, Jak/Stat proteins 

are implicated in essential hematopoietic processes and are therefore considered to be 

powerful new drug targets for treatment of leukemia. Jaks, for example, are already ideally 
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suited for drug development, because they are tyrosine kinases and many current strategies 

involve inhibition of this protein family by ATP-analogons, which specifically bind into the 

ATP-binding pocket of the kinase domain and thereby inhibits its function (Druker, 2008). 

On the other side, Stats are transcription factors (TFs) and currently there is lack of 

knowledge how to effectively target transcription factor, although some approaches are quite 

promising. For example, one could design drugs that specifically bind to the DBD of a TF and 

inhibit its binding to DNA. Another approaches would be to specifically inhibit either the 

phosphorylation or the subsequent dimerization of Stat molecules. Probably, in future years, 

there will exist a strategy to cope these problems (Druker, 2008). 

However, our very recent studies have implicated two Jak/Stat-siganaling molecules, namley 

Jak2 (Grebien et al., 2008) and Stat5 (Hoelbl et al., 2006) to be potential targets for the anti-

tumor therapy. 

 

1.4.2 Targeting of cancer stem cells 
 

A completely different approach for complete eradication of cancers was established through 

the postulation of the cancer stem cell hypothesis. The cancer stem cell hypothesis implies 

that only a minority of cancer cells is able to progress the tumor thereby providing an 

explanation for unsuccessful outcomes of the conventional chemotherapy. The reason for the 

relapse of tumors is the inability to hit rare CSCs, so the hypothesis (Adams and Strasser, 

2008; Passegue et al., 2003; Stubbs and Armstrong, 2007). However, the mechanistic reasons 

for this might be of various arts. Therefore, it is thinkable that the frequency of CSCs plays a 

major role in their targeting. On the other hand, it could also be the acquired or intrinsic 

ability of CSCs to self-renew or to overcome death signals induced by fate determinants. 

Additionally, it is possible that CSCs are more resistant to conventional drug therapy, because 

they could express “drug pumps”, similar to normal stem cells. 

Nevertheless, it is obvious that if the cancer stem cell hypothesis is correct, it will be 

necessary to identify the molecular means, which underlie these processes in order to 

eradicate all CSCs. Additionally, it will also be required to discover differences between the 

normal and cancerous stem cells, so that a therapy can be designed that specifically impairs 

CSCs but keeps the normal stem cells alive. 
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2 Aims of this study 

 

The main aim of this study was to elucidate the role of Jak/Stat-signaling components in 

normal hematopoiesis and leukemia. The immense importance of Jak/Stat signaling, as 

discussed in the introduction part of this thesis, and the availability of novel genetic tools (i.e. 

novel transgenic mouse models, discovery of new phenotypic markers and definition of more 

exact hematopoietic populations and new leukemia models) has made it necessary to newly 

address or to re-evaluate the function of Jak/Stat proteins in homeostasis and disease. The 

focus has been set on the evaluation of the janus kinase Jak2 and the transcription factors 

Stat1 and Stat5. 

Beside the role in normal hematopoiesis, we have addressed the question of the impact of 

these proteins for the initiation and maintenance of leukemia. Therefore, several models 

covering MPDs, lymphoid and myeloid, as well as acute and chronic leukemia, have been 

tested during the thesis work. As can be depicted from the results part, the major focus within 

this work was made on the transcription factor Stat5, mostly because of the discovery of its 

striking phenotype and involvement in several lineage decisions as well as leukemia 

formation. Moreover, this thesis has contributed to some essential findings concerning the 

role of Stat1 in leukemia progression and immune surveillance. 

Interestingly, while performing experiments in different leukemia models, we could also 

observe a link between the initiation and maintenance of leukemia, which had provided a 

foundation for a novel model about the development of leukemias in general. 

 

This thesis consists of five major parts: 

 

(i) Cancer stem cells of different developmental fates nourish acute and chronic leukemia. 

  (manuscript in preparation for submission) 

 

(ii) Stat5 is a signaling bottleneck for the maintenance of bcr/abl-positive leukemia. 

  (under revision in Cancer Cell since 2009 March 2nd) 

 

(iii) Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2 

(published in Blood. 2008 May 1;111(9):4511-22. Epub 2008 Jan 31) 

 

(iv) STAT1 acts as a tumor promoter for leukemia development. 
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(published in Cancer Cell. 2006 Jul;10(1):77-87) 

 

(v) Clarifying the role of Stat5 in lymphoid development and Abelson-induced 

transformation. 

(published in Blood. 2006 Jun 15;107(12):4898-906) 

 

Detailed aims and outcomes of the major thesis parts: 
 

(i) Cancer stem cells of different developmental fates nourish acute and chronic leukemia. 

 

Boris Kovacic, Andrea Hoelbl, Marc A. Kerenyi, Memetcan Alacakaptan, Gabriele Stengl 

and Hartmut Beug 

 

This manuscript describes the key question of cancer biology, which is whether the tumor 

development is caused by rare cancer stem cells. Evidence for this model and for the model of 

clonal evolution of tumorogenic clones are currently conflicting against each other. We show 

that both hypotheses can be true if one takes into account that tumors could arise from cells 

that are distinct from those which maintain the tumor. We have compared acute lymphoid and 

chronic myeloid leukemia and could observe that whereas myeloid leukemia develop from the 

same CSCs initially and during progression, lymphoid leukemia change the identity of CSCs 

that initiate to a distinct CSC that progresses the leukemia. This finding is essential in 

understanding of the process that underlies leukemic development and explains the lineage 

determination so often associated with particular tumors. 

 

(ii) Stat5 is a signaling bottleneck for the maintenance of bcr/abl-positive leukemia. 

 

Andrea Hoelbl, Christian Schuster, Boris Kovacic, Maria A. Hoelzl, Sabine Fajmann, Florian 

Grebien, Wolfgang Warsch, Gabriele Stengl, Lothar Hennighausen, Hartmut Beug, Richard 

Moriggl, Veronika Sexl. 

 

This study addresses for the first time the role of Stat5 protein in the maintenance of 

progressing leukemia. The BCR/ABL-oncogene was implicated in a plethora of different 

pathways and Stat5 has been suggested to mediate the most important downstream signals. 

Here we show that Stat5 is a suitable target for therapy because it is required for the 
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maintenance of leukemia progression. Deletion of Stat5 in growing leukemia in vivo could 

completely ablate the leukemic cells of a myeloid and a lymphoid leukemia. We further show 

that Stat5 seems to be involved in survival of leukemic cells, since its deletion leads to a 

G0/G1 cell cycle arrest and subsequent apoptosis induction in imatinib-sensitive and in 

imatinib-resistant cells. These results clearly demonstrate that Stat5 is a potential candidate 

for treatment of leukemia and could be used in addition to imatinib treatment. 

 

(iii) Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2 

 

Florian Grebien, Marc A. Kerenyi, Boris Kovacic, Thomas Kolbe, Verena Becker, Helmut 

Dolznig, Klaus Pfeffer, Ursula Klingmüller, Mathias Müller, Hartmut Beug, 

Ernst W. Müllner and Richard Moriggl 

 

This study demonstrates an essential function of Stat5 in the EpoR/Jak2/Stat5 axis for the 

induction and homeostasis of erythropoietic development. We could show here that 

expression of Stat5 in Jak2- and EpoR-deficient erythroid cells could rescue the 

erythropoiesis in vitro. By utilizing a constitutively active Stat5 mutant (cS5F) into Jak2-/- 

fetal liver cells, we could further show that cS5F could rescue erythropoiesis and 

myelopoiesis in vivo. Additionally, Jak2 was found to require c-kit-signaling through SCF 

and that SCF could induce Stat5 activity. 

 

(iv) STAT1 acts as a tumor promoter for leukemia development. 

 

Boris Kovacic, Dagmar Stoiber, Richard Moriggl, Eva Weisz, René G. Ott, Rita Kreibich, 

David E. Levy, Hartmut Beug, Michael Freissmuth and Veronika Sexl 

 

Stat1 has been considered a tumor suppressor as an immune regulator of the surveillance of 

tumors. In contrast to this, this study describes a tumor-promoting role for Stat1 in MPD and 

lymphoid leukemia models. The explanation for this observation is that Stat1-/- tumor cells 

express low levels of MCH class I molecules on their surface and therefore exert a better 

recognition and more efficient killing by NK-cells. We could also describe that Stat1-/- tumor 

cells acquire increased levels of MHC class I proteins as the tumor progresses. These findings 

collectively indicate that Stat1 is a tumor promoter in leukemia development and that the 
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upregulation of MHC class I is a general mechanism of immune-escape of hematopoietic 

tumors.  

 

(v) Clarifying the role of Stat5 in lymphoid development and Abelson-induced 

transformation. 

 

Andrea Hoelbl, Boris Kovacic, Marc A. Kerenyi, Olivia Simma, Wolfgang Warsch, 

Yongzhi Cui, Hartmut Beug, Lothar Hennighausen, Richard Moriggl, and Veronika Sexl 

 

This study demonstrates an essential role of Stat5 in lymphopoiesis and lymphoid leukemia. 

By comparing lymphoid cells from wildtype, Stat5dN/dN and Stat5-/- mice, we could 

demonstrate that Stat5 is essential for the development of CD8+ T-cells, B-cells and gdT-

cells. Interestingly, B-cell development was impaired at the pre-pro B-cell stage and therefore 

the initial transformation with the Abelson oncogenes was completely abrogated in vitro and 

in vivo. This publication is the first to implicate Stat5 as a major player in normal 

hematopoiesis and malignancy, because previous findings with Stat5dN/dN mice have 

exerted a rather mild phenotype. 
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3 Results 
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3.1.1 Cancer stem cells of different developmental fates nourish acute 
and chronic leukemia 
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Stengl1 and Hartmut Beug1 
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Cancer stem cells of different developmental fates nourish acute and chronic leukemia 

 

Boris Kovacic1, Andrea Hoelbl1,2, Marc A. Kerenyi3, Memetcan Alacakaptan1, Gabriele 

Stengl1 and Hartmut Beug1 

 
1Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria 
2Institute of Pharmacology, Centre of Biomolecular Medicine and Pharmacology, Medical 

University of Vienna (MUV), 1090 Vienna, Austria 
3Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of 

Vienna, 1030 Vienna, Austria 

 

 
 

A key question in cancer biology is whether the processes of tumor-initiation and tumor-

progression are caused by rare cancer stem cells (CSCs). One widely accepted evidence 

for this model is that rare human cancer cells are able to reseed tumors in non-obese 

diabetic/ severe combined immunodeficient (NOD/SCID) mice1,2,3,4,5. However, the 

generality of this ‘cancer stem cell hypothesis’ has recently been questioned by several 

observations showing that a more frequent amount of tumor cells might represent 

CSCs6,7,8,9. Here we show that both scenarios are true if CSCs of distinct developmental 

stages initiate and maintain cancers. Acute lymphoid BCR/ABLp185 leukemia is 

initiated, but not maintained by the rare long-term hematopoietic stem cell population. 

Initiating-CSCs change their fate, are lost and the progressing tumor is maintained 

through frequent precursor B-cells. In contrast, the chronic myeloid BCR/ABLp210 

leukemia is both, initiated and maintained by rare malignant LT-HSCs. Our results 

indicate that lymphoid and myeloid tumors initially follow the cancer stem cell 

hypothesis, but lymphoid tumors progress by clonal evolution, whereas myeloid tumors 

progress according to the cancer stem cell model. This provides an explanation for the 

etiological discrepancy between the chronic and acute leukemia, and raises the question 

whether the mere targeting of rare CSCs might be successful for eradication of all 

tumors.  

 

The most important assumption of the cancer stem cell hypothesis is that tumors are 

hierarchically organized and supported by a rare population of cancer stem cells1,2,3,4,5. 

However, many acute-type tumors do not seem to be hierarchically organized but rather 
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consist of a homogenous population of tumor cells6,9,10,11,12. Hence, emerging evidence 

suggests that in some malignancies, tumor growth is supported by the majority of tumor cells. 

Apart from the question if the cancer stem cell hypothesis can be generalized to all tumors, it 

is also not clear whether the cancer stem cell, which initiates the tumor, and the cancer stem 

cell, which maintains the tumor, are one and the same cell. One possible explanation is that 

tumors develop and progress through a sequence of steps from a stem cell to a population of 

more mature tumor cells and that in some tumors, the initial cancer stem cell population is 

lost, whereas in others, it remains a part of the tumor13. In this case, tumors might undergo a 

process similar to normal tissue development and the existence of cancer stem cells might 

depend on a specific developmental stage and on the acquired oncogenic mutation. 

Whether some tumors are destined to develop into only one specific lineage, whereas others 

choose a distinct lineage or even multiple lineages, could therefore be dependent on both, the 

cell of origin and the oncogenic transformation event. A recent study, however, has 

implicated that 5-FU treatment of donor bone marrow prior to transplantation could influence 

the lineage decision of the normally CML-inducing BCR/ABLp210 protein. Without 5-FU 

pre-treatment, the transplanted mice developed a B-ALL14. However, most, if not all, studies 

of the cancer stem cell hypothesis involving BCR/ABL were performed using 5-FU pre-

treated bone marrow. Therefore, the degree to which the potential cancer stem cells might 

have been biased by the 5-FU treatment is rather unclear. 

In addition, the evidence that the genuine cancer stem cell population is uniquely responsible 

for the development of tumors and conversely, that eradication of cancer stem cells could 

destroy the tumor, is still lacking. 

To clarify whether tumors arise from rare cancer stem cells, we have compared the tumor 

etiology of two closely related oncogenes, BCR/ABL p210 and BCR/ABL p185. The product 

of the fusion oncogene BCR/ABL - generated by a chromosomal translocation t(9:22)15 and 

resulting in the Philadelphia chromosome (Ph)16,17 - is a constitutively active tyrosine 

kinase18, which empowers hematopoietic cells with proliferative and survival advantages. 

Interestingly, whereas exclusively in chronic myeloid leukemia (CML), the breakpoints of 

BCR and ABL generate a 210 kDa protein, a shorter version (185 kDa) exists in a fatal but 

rare childhood acute B-cell leukemia (B-ALL)19,20. Moreover, analysis of patients with CML 

has revealed that cells of all hematopoietic lineages are Ph+, suggesting that these 

translocations may arise in the HSC-compartment21,22. 

Accordingly, we have assumed that if BCR/ABLp210- and BCR/ABLp185-translocations 

originated in the HSC-compartment, transformation of either whole bone marrow (BM) or 
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LT-HSCs alone would lead to comparable frequencies and etiologies of leukemia in vivo. In 

contrast, transformation of whole BM would induce more frequent leukemia formation 

compared to LT-HSCs, if the both oncogenes transformed progenitor cells (figure 1A). We 

have infected BM and LT-HSCs (isolated from 5-FU untreated donors; see supplementary 

methods) with both oncogenes and injected them into lethally irradiated wildtype syngeneic 

mice (in order to keep an intact tumor microenvironment) but to avoid an interaction with the 

host immune system. All mice transplanted with BCR/ABLp210 developed a CML-like 

disease, whereas all mice bearing BCR/ABLp185 succumbed to a B-ALL (figure 1B). Both 

oncogenes have led to severe infiltrations of bone marrow (BM), spleen and liver in vivo 

(supplementary figure 1). Interestingly, the same results in terms of frequency and etiology of 

leukemia formation were obtained irrespectively of the population (whole BM versus LT-

HSCs) transformed by both oncogenes (figure 1B). These results clearly show that in both 

leukemias, the LT-HSC-population is capable of initiating tumor formation. 

However, even if originated in the most primitive hematopoietic cell, the fates of the two 

leukemias seem to be diametrically opposed. GFP+ BCR/ABLp210 leukemic cells were 

present throughout all lineages of the hematopoietic system (figure 2A and supplementary 

figure 2). In contrast, close analysis of GFP+ BCR/ABLp185 leukemic cells has revealed that 

they were almost exclusively composed of CD19+/B220+ precursor-B cells, except for a - 

somewhat aberrant - CD19+/Gr-1+ population in the BM (3.02%) of diseased mice. In case of 

whole BM-transformation, the clear discrepancy between BCR/ABLp210 and BCR/ABLp185 

leukemia could not be explained by the infection of different target cells, because in control 

mice, all mature hematopoietic lineages were GFP+ (figure 2A). Moreover, the transformation 

of mere LT-HSCs yielded the same results for both leukemias. Hence, we hypothesized that 

the most privileged population of BCR/ABLp185 leukemia must have had its origin in the 

LT-HSC. One possible explanation for this would be that BCR/ABLp185-oncogene forces 

the differentiation of LT-HSCs into the B-cell lineage. To understand how this process takes 

place, we have compared the HSC-compartment of BCR/ABLp185 with BCR/ABLp210 

terminally-diseased mice, both initially transplanted with transformed LT-HSCs. Strikingly, 

BCR/ABLp185 mice completely lacked leukemic GFP+ cells in the LT-HSC population 

(Figure 2B, 0% GFP+ cells) and also in more ST-HSC and MPP compartments 

(supplementary figure 2, 0% GFP+ cells within ST-HSC and MPP). This effect was even 

more evident in respect to the total numbers of leukemic, GFP+ HSCs in BCR/ABLp185 

leukemia - which were found ~ 10 fold reduced as compared to control animals (Figure 2C). 

In contrast, the leukemic HSC population was ~ 20 fold increased in BCR/ABLp210 
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leukemia (figure 2C and supplementary figure 2, 69.1% GFP+ cells in LT-HSC, 78.4% in ST-

HSC and 29% in MPP compartments). These results indicate that, even if originating in rare 

LT-HSCs, BCR/ABLp210 and BCR/ABLp185 leukemia both distinctly influence their fate. 

While BCR/ABLp210 highly augments the number of LT-HSCs and thereby increases the 

number and contribution to all progeny-lineages, BCR/ABLp185 seems to determine LT-

HSCs to one specific lineage and exhausts its pool. 

To confirm that BCR/ABLp185 LT-HSC indeed directly differentiate into more committed 

CD19+ cells in vivo, we have analyzed the fate of BCR/ABLp185- versus BCR/ABLp210-

infected LT-HSCs in vitro (figure 2D). BCR/ABLp185 LT-HSCs have differentiated into 

CD19+/B220+/IgM- precursor-B cells within 11-15 days (figure 2D, upper panel). In contrast 

to BCR/ABLp210+ LT-HSC, we could not detect any BCR/ABLp185 GFP+ HSC after 18 

days in culture (figure 2D, lower panel). Interestingly and in line with our findings, MOZ-

TIF2, a fusion protein also causing an acute form of leukemia (AML), could similarly 

transform HSCs and induce a mature myeloid leukemia in vivo23. 

So far, our data suggest that particular oncogenes might change the fate of the initial cancer 

stem cell and thereby direct the fate of a developing tumor. The cell in which the cancer is 

initiated (initiating-CSC) and the cell which maintains the tumor (preserving-CSC) might 

therefore be two developmentally different cells. Therefore, we have speculated whether the 

low and the high frequencies of CSC in some tumors would be a consequence of the 

developmental stage of preserving-CSC. To investigate this, we have modeled three scenarios 

in which CSCs represent different stem or fate-determined cell-stage of leukemia (figure 3A): 

The first assumption is that all tumor cells have the capacity to induce a novel tumor (Model 

1). The second possibility is that a rare stem cell population is exclusively capable to do so 

(Model 2). Conversly, the third possibility is that CSCs belong to a more mature progenitor 

cell pool (Model 3). 

To address this issues, we have purified BCR/ABLp210 or BCR/ABLp185 GFP+ LT-HSCs 

(lin-c-kit+Sca-1+Thy1lowFlt3-) from terminally diseased primary transplants by FACS sorting, 

mixed them with HSC-depleted wildtype BM and injected into lethally irradiated secondary 

recipients. Conversely, wildtype LT-HSCs were mixed with BCR/ABLp210 or 

BCR/ABLp185 GFP+ leukemic bone marrow cells which were devoid of all cells with HSC 

markers (see schemes in supplementary figure 3A and 3B). The expected results related to 

each one of the three models are summarized in figure 3A. Interestingly, when we 

transplanted GFP+LT-HSCs from the BCR/ABLp210 leukemic pool, we observed a fast 

disease onset (15±2 days) in 100% of mice analyzed (n=9). The disease was phenotypically 
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identical to the primary transplant and consisted of GFP+ cells in all hematopoietic lineages 

(figure 3B, upper panel). Moreover, leukemia development was not dependent on the cell 

dosage used for transplantation because injections of 100 - 70,000 cells did not significantly 

change the disease onset (data not shown). Strikingly, when we transplanted more mature 

BCR/ABLp210 leukemic cells (250,000 – 2,000.000) together with wildtype LT-HSC, we did 

not observe leukemia development in any transplanted animal over a period of 14 months 

(figure 3B, lower panel). 

In a clear discrepancy to this, transplantation of BCR/ABLp185 HSC-depleted leukemic cells 

combined with wildtype LT-HSCs yielded a fatal precursor B-cell leukemia in all mice 

observed within 14 days (n=8). This leukemia again consisted of a homogeneous 

CD19+/B220+/IgM- cell population, which infiltrated the BM, spleen, liver and peripheral 

blood of diseased mice (Figure 3C, lower panel, and supplementary figure 3C). Since no 

GFP+ BCR/ABLp185 LT-HSC were present at the time point of terminal disease (figure 2B), 

we decided to inject GFP- LT-HSCs, in case that some cells have down-regulated GFP 

expression but still might induce leukemia upon transplantation. Nevertheless, those cells did 

not induce leukemia in secondary recipients over a period of 8 months (Figure 3C, upper 

panel).  

These data clearly show that in progressing BCR/ABLp210 and BCR/ABLp185 leukemias, 

the diseases are maintained by CSCs that differ in their developmental fate - LT-HSCs and 

precursor B-cells, respectively. Normal precursor B-cells are lineage-restricted, whereas LT-

HSCs possess the unique ability to self-renew and to differentiate into all mature 

hematopoietic cells. Lacking any cellular models to address the molecular mechanisms of 

leukemogenicity on stem cells, we have put in efforts to cultivate BCR/ABLp210 and 

BCR/ABLp185 CSCs in vitro and to examine whether they share any properties with normal 

LT-HSCs. Therefore, we have FACS sorted BCR/ABLp210 LT-HSCs and BCR/ABLp185 

precursor B-cells from diseased mice and observed the outgrowth of leukemic cells under cell 

culture conditions. BCR/ABLp185 preserving-CSCs grew out rapidly in vitro using normal 

serum conditions (10% FCS). They were able to induce leukemia formation upon serial 

transplantation, but did not change their precursor B-cell phenotype nor did they express 

HSC-surface markers in vivo or in vitro (supplementary figure 4). BCR/ABLp210 CSCs, 

however, could not be grown under serum conditions (data not shown). This prompted us to 

cultivate the cells under serum-free conditions with defined growth factors enabling the 

proliferation of hematopoietic stem cells (SCF/Tpo/IGF-II and FGF-1). Interestingly, under 

these ‘self-renewal conditions’, proliferation of BCR/ABLp210 LT-HSCs was only achieved 
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if cells were seeded at very low density. On the morphological level, the colonies consisted of 

a population of more adherent and a population of more suspended cells, both compiling 

“cobblestone-like” structures on dishes (figure 4A). Interestingly, efficient replating required 

FACS-sorting of forward scatter (FSC) high (large) cells (Figure 4A), whereas FSC low 

(small) BCR/ABLp210 LT-HSCs were unable to give rise to any colonies in vitro (movie 1 

and movie 2). In contrast to wildtype LT-HSC, which proliferated only for about 14 days, 

BCR/ABLp210 LT-HSCs could be expanded indefinitely (Figure 4B). In addition to this, we 

could observe expression of many classical HSC and HSC-niche markers (Table2).  

Strikingly, when we injected BCR/ABLp210 LT-HSCs, grown under self-renewal conditions, 

into lethally irradiated mice, we could induce a CML-like leukemia formation. The disease 

accompanied with an increase in GFP+ GR-1+/Mac-1+ cells and a contribution to CD19+ and 

CD3+ cells (figure 4C), indicating that these preserving-CSCs were able to differentiate in 

vivo. 

These results indicate that BCR/ABLp210 LT-HSCs possess all hallmarks of hematopoietic 

stem cells - including HSC marker surface expression, infinite self-renewal and 

differentiation into all mature lineages of the hematopoietic system - and of CSCs - like 

recapitulation of the tumor phenotype upon serial transplantation. In contrast, BCR/ABLp185 

CSCs are homogeneous precursor B-cells, do not express HSC surface markers and do not 

differentiate into mature B-cells in vivo or in vitro, but however they are able to reinitiate an 

acute leukemia in secondary transplants.  

One prediction of the cancer stem cell hypothesis is that rare cancer stem cells might be more 

resistant to chemotherapy than frequent mature cancer cells, because of drug-resistance 

transporters, which are expressed on normal tissue stem cells. Therefore, we have analyzed 

the possibility that BCR/ABLp210 LT-HSC would be more resistant to Imatinib-mesylate 

treatment than BCR/ABLp185 precursor-B cells. As indicated in figure 3E, BCR/ABLp210 

LT-HSC were indeed resistant to different concentrations of imatinib-mesylate, whereas 

BCR/ABLp185 precursor-B cells regressed in proliferation and cell number (figure 4D).  

However, knowing that BCR/ABLp210 CSCs possess all characteristics of LT-HSCs, one 

possible strategy to eradicate CSCs - even if they are insensitive to imatinib-mesylate 

treatment - would be to force them into lineage-commitment. As depicted in Figure 4F 

(middle panel), addition for cytokines for terminal differentiation into erythroid, myeloid and 

lymphoid lineages has completely changed the phenotype of BCR/ABLp210 CSC in vitro. 

After 7 days, the cultures consisted of a mixture of CD19+, Mac-1+ and CD71+/TER119low 

cells (figure 4F, upper panel and data not shown). To elucidate if those differentiated cells 
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were able to initiate leukemia in serial transplants, we have injected 250,000 cells together 

with 250,000 HSC-depleted BM cells into sub-lethally irradiated mice. None of the 

transplanted mice has developed leukemia or hyperplasia after a period of 12 months and 

close analysis of BM, spleens and blood has revealed that no GFP+ cells have emerged during 

the observed period (figure 4F, lower panel). 

 

The “cancer stem cell hypothesis” has been challenged by some observations showing a 

majority of tumor cells being responsible for tumor outgrowth. Our data unify and consolidate 

both theories by demonstrating that cancer stem cells have distinct developmental fates in 

terms of initiation and progression. In other words, these data suggest that oncogenes might 

endow cells with self-renewal and survival abilities only at specific commitment stages. In 

line with this are numerous studies showing that in acute leukemia, committed progenitors 

rather than HSCs could re-induce the disease upon serial transplantation6,24,10,11,12,25,24. Beside 

this, it might also be provocative to think that some CSCs are rare and others frequent as a 

consequence of abundance in the hematopoietic system. The goal of cancer therapy is the 

eradiction of all CSCs and therefore alternative targets are required for their efficient 

depletion. Interestingly, we found that BCR/ABLp210 CSCs were more drug-resistant to 

imatinib-mesylate treatment than BCR/ABLp185 CSCs. Therefore, the anti-cancer drug 

therapies in CML patients may be insufficient in eradication of chronic disease CSCs, but 

more efficient in killing of acute phase CSCs. However, the reason why chronic phase 

patients have unequally better prognosis than patients with acute form of leukemia might be 

due to the enormous total number of CSCs in acute leukemia. 
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Methods summary 

 

Mice 

All mice were kept under sterile conditions in individually ventilated IVC-cages at the IMP-

animal facility. Animal experiments were preformed and protocoled according to the rules of 

the Austrain Tierversuchgesetz 1988, licence no. MA58/1253/03 and MA58/001489/2008/12. 

Since STAT5fl/fl and Mx-1Cre mice had a mixed (C57Bl/6J and 129/Sv) background, all 

wildtype donor and recipient mice were obtained from F1 crosses of C57Bl/6J x 129/Sv 

(B6/129 F1) mice.  

 

Preparation of BM, spleens and PB 

Femurs and tibiae were cut at the ends and the bone marrow cells flushed using a 22-gauche 

needle with 1x PBS. Spleens were crushed with a plunger of a syringe through a 70µm cell 

strainer. Peripheral blood erythrocytes were lyzed in 1xEry-Lysis buffer. All cells were 

collected by centrifugation and resuspended in 1xPBS. 

 

Statistical analysis 

Statistics have been performed using paired and unpaired student’s t-test. 

 

Methods 

 

BM preparation and transplantation 

Four-to-six-week wildtype or STAT5fl/fl Mx1Cre mice were used as donors for six-to-eight-

week old recipient mice. No 5-FU treatments were performed in any of the transplant 

experiments to avoid a bias to the myeloid lineage or a depletion of the potential cell of origin 

of cancer. BM from donor mice was flushed from the femurs and tibiae, pooled and filtrated. 

Whole BM (2-2.5x106 cells/ml) was infected using stable producer lines carrying empty-

IRES-GFP, BCR/ABLp210-IRES-GFP, BCR/ABLp185-IRES-GFP as described earlier26.The 

stable producer cells (GP+E86 cell lines) were initially derived from mouse embryonic 

fibroblasts (MEFs) and display a supportive microenvironment/niche for hematopoietic cells 

and ES cells. 2-3x106 infected total BM cells were injected via tail-vein per lethally (10 Gy) 

irradiated B6/129F1 mouse. For LT-HSCs infections, the LT-HSCs were FACS-sorted as 

described later and infected with the mentioned producer cell lines on 96-well-plates in 

analogous way to whole BM26. For secondary transplantation, wildtype or GFP+ leukemic 



 40 

LT-HSCs and HSC-depleted wildtype or GFP+ leukemic BM was FASC-sorted from sick 

primary transplanted mouse, mixed in the described manner (figure 3A) and injected into 

lethally irradiated secondary B6/129F1 recipients. To avoid differences in leukemogenicity of 

the sorted leukemic cells, we have waited until every single primary and secondary 

transplanted mouse has become terminally diseased. Similarly, mice that did not become sick 

in the expected latency time were observed over a period of at least 12 months before 

sacrificed. 

 

FACS analysis and sorting 

BM, spleen, liver and peripheral blood were isolated from every single transplanted mouse 

and the cells incubated with fluorescence-conjugated lineage antibodies (TER119, CD3, Mac-

1, Gr-1 and CD19). BM and spleens were also stained with CD71 and Ter119 antibodies to 

determine erythroid precursor cells. In addition, BM was stained with (1) lineage markers, c-

kit, Sca-1, Flt3 and Thy1.2 (or CD150) for detection of all HSC subpopulations, (2) with 

lineage markers, c-kit, Sca-1 and IL7Rα for detection of lymphoid precursors and (3) with 

lineage markers with IL7Rα, c-kit, Sca-1, CD16/CD32 and CD34 - for detection of myeloid 

precursor cells. Flow cytometric analysis of all organs was performed on 6-color BD FASC 

Canto (BD Biosciences) equipped with 488nm and 633nm lasers. 

FACS-sorting of wildtype and leukemic LT-HSCs as well as wildtype and leukemic HSC-

depleted BM was performed on 4°C immediately after biopsy of the diseased mouse and 

staining of BM cells with the mentioned HSC-markers using an 8-color BD FACS Aria 

equipped with 488nm, 633nm and 407nm lasers. 

 

Antibodies 

Lineage panel Kit containing biotinylated Ter119 (Ly-76, Ter119), CD3e (CD3ε, 145-2C11), 

CD45R/B220 (RA3-6B2), CD11b (Mac-1, M1/70) and Ly6G/Ly6C (Gr-1, RB6-8C5) were 

purchased from BD Pharmingen and eBioscience. Second step detection Streptavidin-APC-

Cy7, Ter119 (Ly-76, Ter119)-PE and -APC, CD135 (Flk-2/Flt3/Ly-72, A2F10.1)-PE, Flk-1 

(VEGF-R2/Ly-73, Avas12α1)-PE, CD3e (145-2C11)-PerCP, CD19 (1D3)-APC-Cy7, 

CD90.2 (Thy1.2, 53-2.1)-APC, Ly6G/Ly6C (Gr-1, RB6-8C5)-APC, CD62E (E-

Selectin/ELAM-1, 10E9.6)-PE, CD44 (Pgp-1/Ly-24, IM7)-PE, CD34 (RAM34)-APC, IgM 

(II/41)-APC, Ly6A/E (Sca-1, D7)-PE-Cy7, CD71 (Transferrin receptor, C2)-PE, CD16/CD32 

(FcgIII/IIR, 2.4G2)-PE, CD144 (VE-Cadherin, 11D4.1)-PE, CD162 (PSGL-1, 2PH1)-PE and 

CD31 (PECAM-1, MEC13.3)-PE were all obtained from BD Pharmingen. CD11b (Mac-1, 
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M1/70)-PE-Cy7, Tie-2 (Tek/CD202, TEK4)-PE, CD127 (IL7Ra, A7R34)-bio and CD117 (c-

kit, 2B8)-PE-Cy5 were purchased from eBioscience. CD150 (SLAMf1, TC15-12F12.2)-APC 

and CD127 (IL7Ra, SB/199)-PE were purchased from Biolegend. Hamster anti-mouse Notch-

1 (8G10) was purchased from AbD Serotec, rabbit anti-mouse Jagged-1 (H66) from Santa 

Cruz, APC-goat anti-rabbit IgG from Invitrogen and PE-goat anti hamster IgG from Acris. 

 

In vitro cultivation and differentiation 

Freshly sorted GFP+ LT-HSC population from BCR/ABLp210 diseased mice was cultivated 

in 4-wells (1000 cells/well) in serum-free medium (StemPro-34 SFM, GIBCO) containing 

Nutrient supplement (GIBCO), 2mM L-glutamine, Pen/Strep and supplemented with 10ng/ml 

mSCF, 20ng/ml mTPO, 20ng/ml IGF-II, 10ng/ml hFGF-1 (acidic) and 10ng/ml Heparin. 

Confluent outgrowth of “cobblestone”-like structures (figure 4A and movie 1) was obtained 

after about 6-7 days. Thereafter, the smaller cells growing on top of the more adherent ones 

were removed from the 4-well, the adherent rest was washed with 1xPBS, trypsinized and 

pooled together with the smaller cells. The cells were sorted in a FSChigh and a FSClow fraction 

and seeded at a density of 1000 cells per 6cm dish. This procedure of FSChigh/low sorting was 

repeated when the cells were confluent again. The dish dimensions could be increased at 

every sorting/replating step. 

 

Microscopy 

Live cell imaging of leukemic LT-HSCs was performed using a ZEISS Axiovert 200M Life 

Cell Observer with incubator. Before and during live observation, the cells were grown on 4-

well Lab-Tek Chamber Slides (Nunc). The data was analyzed using Metamorph software 

(Zeiss). 

Confocal microscopy was performed on a LSM 510 Meta/Axiovert 200M system from Zeiss. 

The cells were grown on 4-well Lab-Tek Chamber Slides, fixed and stained according to a 

previously described protocol and mounted in Vecta Shield with DAPI. 

 

Imatinib-mesylate treatment 

BCR/ABLp210 LT-HSC and BCR/ABLp185 precursor-B cells were plated at a density of 

30,000 cells on 96-wells in 100 µl medium supplemented with either no imatinib-mesylate, 

100µM imatinib-mesylate or 200µM imatinib-mesylate. On day 16, the cells were taken from 

wells and counted. 
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Figure legends 

 

Figure 1 | LT-HSCs are initiating-CSCs for BCR/ABLp210 and BCR/ABLp185 

leukemia, but BCR/ABLp185 CSCs change their fate during disease progression. 

A, Schematic overview of the hierarchical hematopoietic lineage. Potential initiating-CSCs 

are indicated by arrows. B, Either whole BM cells or FACS-sorted LT-HSCs alone were 

transduced with retroviruses encoding BCR/ABLp210, BCR/ABLp185 or an empty GFP-

labeled vector. All (13/13) BCR/ABLp210-transplanted mice developed a CML and all (6/6) 

BCR/ABLp185-transplanted mice developed a B-ALL, irrespective whether whole BM or 

purified LT-HSCs alone were initially used for transformation (see also supplementary figure 

1A). 

 

Figure 2 | BCR/ABLp185 CSCs change their fate during disease progression and are 

lost. 

A, FACS-analysis of peripheral blood cells isolated from control and terminally-diseased 

mice induced by transplantation of whole BM. Empty vector and BCR/ABLp210 leukemia 

prominently contribute to myeloid (Gr-1+/Mac-1+), lymphoid (CD19+ and CD3+) and 

erythroid (Ter119+) lineages, whereas BCR/ABLp185 mainly contribute to the B-lymphoid 

lineage. The indicated percentages represent relative amounts of GFP+ cells from each 

population analyzed (A and B). B, FACS-analysis of BM cells from control and terminally-

diseased mice induced by transplantation of LT-HSCs alone. In contrast to control or 

BCR/ABLp210 leukemic BM, BCR/ABLp185-diseased BM completely lacks GFP+ LT-

HSCs. C, Quantitative analysis of leukemic GFP+ HSC cells in all diseased and control 

groups. The total numbers of GFP+ cells per 100,000 BM cells and the fold-increase 

compared to empty vector-transplanted mice are indicated. The values for total GFP+ cell 

numbers are represented as means ± SED. D, Analysis of in vitro cell outgrowth by the 

transformation of LT-HSCs with BCR/ABLp210 and BCR/ABLp185, respectively. Contour 

blots indicate the lineage into which the cells have differentiated (upper panel) and the 

presence of HSCs (lower panel). For detailed information on in vitro cultivation see 

supplementary method section. 

 

Figure 3 | BCR/ABLp210 and BCR/ABLp185 preserving-CSCs are distinct in frequency 

and fate. 
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A, Models for disease-maintenance from differently committed preserving-CSCs. In model 1, 

all leukemic cell have the ability to re-initiate leukemia. Model 2 assumes that leukemia is 

maintained by frequent progenitor or lineage-restricted precursor cells and in model 3, the 

leukemia preserving cell is the rare LT-HSC. The predicted outcomes for transplantation of 

either the mixture of leukemic LT-HSCs with wildtype HSC-depleted BM or the mixture of 

wildtype LT-HSC with leukemic HSC-depleted BM, are indicated for every model. B, 

Preserving-CSCs from BCR/ABLp210 leukemia behave according to the model 3. Mixture of 

leukemic BCR/ABLp210 LT-HSCs with wildtype HSC-depleted BM induces a CML-like 

disease formation (upper panel) in 9/9 serially transplanted mice. Transplantation of the 

mixture of wildtype LT-HSCs with frequent, leukemic BCR/ABLp210 HSC-depleted BM 

leaves the mice disease-free for 14 months. No GFP+ cells are detectable after the observed 

period in the BM of 12/12 mice (lower panel). C, Preserving-CSCs from BCR/ABLp185 

leukemia behave according to the model 2. Mixture of all BCR/ABLp185 LT-HSCs with 

wildtype HSC-depleted BM prevents B-ALL formation in 4/4 serially transplanted mice 

(upper panel). Transplantation of the mixture of wildtype LT-HSCs with frequent, leukemic 

BCR/ABLp185 HSC-depleted BM induces a B-ALL formation (lower panel) in 8/8 serially 

transplanted mice. GFP+ leukemic cells in secondary transplanted mice exclusively comprise 

of precursor B-cells (lower panel). 

 

Figure 4 | BCR/ABLp210 preserving-CSCs keep all properties of stem cells in vitro. 

A, Scheme: Leukemic BCR/ABLp210 LT-HSCs were isolated from terminally-diseased 

primary transplanted mice and cultivated under conditions allowing for self-renewal of 

normal HSCs (see method section). The morphologically different cells were FACS-sorted in 

forward scatter high (FSChigh) and forward scatter low (FSClow) cells. Only FSChigh cells give 

arise to new colonies in vitro. The cells are injected into recipient mice under self-renewing or 

fate-determining conditions (subfigures C and F). B, growth curves representing the 

cumulative cell number of BCR/ABLp210 LT-HSC and wildtype LT-HSCs. BCR/ABLp210 

LT-HSCs grew continuously for at least 68 days. C, BCR/ABLp210 LT-HSCs under self-

renewing conditions were injected into recipient mice. FACS-blots indicate the contribution 

of BCR/ABLp210 LT-HSC to myeloid and lymphoid lineages. Induction of leukemia was 

observed in 3/3 mice. D and E, Imatinib-mesylate treatment of BCR/ABLp185 precursor B-

cells (D) and BCR/ABLp210 LT-HSCs (E). BCR/ABLp185 CSCs react with growth 

inhibition and decreased cell number whereas BCR/ABLp210 LT-HSCs do not. F, Enforced 

in vitro differentiation of BCR/ABLp210 LT-HSCs into mature cells and subsequent injection 
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into sublethally irradiated mice. FACS blots in upper panel show that the cells are already 

lineage-restricted at the time point of injection. Analysis of mice indicate no contribution to 

myeloid and lymphoid lineages (lower panel). No leukemia formation was observed.  
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Supplementary figure 3 
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Supplementary figure 4 
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Supplementary figure legends 
 
Supplementary figure 1 | All mice transplanted with BCR/ABLp210 developed a CML-

like disease, whereas all mice bearing BCR/ABLp185 succumbed to a B-ALL. 

A and B, Hematoxilin/eosine (H&E) staining of livers (A) and spleens (B) from diseased 

BCR/ABLp210 and BCR/ABLp185 mice. BCR/ABLp210-induced leukemia is a CML 

disease defined by predominant infiltration of relatively large myeloid blast cells and 

monocytes. BCR/ABLp185-induced leukemia is enriched with lymphoid leukemic cells 

indicated by a stronger hematoxiline stain and less prominent cytoplasma. 

 

Supplementary figure 2 | BCR/ABLp185 diseased mice completely lack leukemic cells in 

the ST-HSC and MPP-fractions. 

FACS-analysis of the BM isolated from control and terminally-diseased mice induced by 

transplantation of LT-HSCs alone. In contrast to empty vector and BCR/ABLp210 leukemic 

BM, BCR/ABLp185-diseased BM completely lacks GFP+ ST-HSCs and MPPs. One 

representative BM analysis from a control, a BCR/ABLp210 and a BCR/ABLp185-diseased 

mouse is shown. 

 

Supplementary figure 3 | BCR/ABLp210 and BCR/ABLp185 preserving-CSCs are 

distinct in frequency and fate. 

Scheme of all experiments performed with BCR/ABLp210 (A) and BCR/ABLp185 (B) 

preserving-CSCs. Presumable preserving-CSCs (either LT-HSCs or HSC-depleted leukemic 

pools) were FACS-sorted from every single primary diseased mouse and transplanted into 

secondary recipient mice The numbers of mice used for secondary transplantation per primary 

diseased mouse are indicated. Also, the total numbers of mice used per cell fraction are 

depicted below. C, BCR/ABLp185 leukemia consists of a homogeneous CD19+/B220+/IgM- 

cell population that infiltrates the spleen and peripheral blood of diseased mice. 

Representative FACS-plots are shown.  

 

Supplementary figure 4 | BCR/ABLp210 preserving-CSCs keep all properties of stem 

cells in vitro. 

A, Summary of FACS analysis of different surface proteins that are expressed in HSCs or in 

more mature cells. BCR/ABLp210 preserving-CSCs express all markers of HSCs and 

completely lack mature markers. B, Summary of FACS and confocal fluorescence 
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microscopy analysis of different surface proteins that are involved in HSC/niche interactions 

and homing to the bone marrow.  
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Summary   

Signals initiated by the constitutively active Bcr/Abl oncoprotein reverberate through 

a complex network involving more than a dozen pathways. The transcription factors Stat5a/b 

have previously been implicated in the initial bcr/abl-induced transformation event. However, 

to be suitable for a targeted therapy, Stat5 must be required for maintenance of leukemia 

rather than its initiation. Accordingly, we examined the effects of Stat5 deletion in either 

myeloid or lymphoid leukemia. Stat5 deletion was associated with effective elimination of 

both types of leukemic cells in vivo including leukemic stem cells. Lack of Stat5 induces 

G0/G1 cell cycle arrest and apoptosis in imatinib-sensitive and imatinib-resistant cells. Thus 

Stat5 is indispensable for the survival of a leukemic cell and a candidate alternative target for 

imatinib-resistant leukemia. 

 

Significance 

Deregulation of the Jak/Stat pathway is found in many tumors, including 

hematopoietic disorders associated with defined genetic alterations leading to the expression 

of oncoproteins (e.g. Bcr/Abl, Tel-Jak2, Jak2V617F, Flt3-ITD). Among all components of 

this pathway, in particular Stat5 was postulated a key regulator and prognostic marker.  Here 

we used bcr/abl-induced leukemia as a model to validate the suitability of Stat5 as a new 

candidate for therapy. Given that its abrogation leads to tumor cell death in both, treatment-

sensitive and treatment-insensitive leukemic cells - Stat5 is prefigured as a key player in 

tumor maintenance. Our data therefore qualify Stat5 as a suitable drug target in bcr/abl+ 

leukemia. Importantly, this absolute dependency might expand to other hematopoietic 

malignancies associated with Stat5 deregulation. 
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Introduction  

Jak (Janus kinase) and Stat (Signal transducer and activator of transcription) molecules 

are part of a highly conserved signaling pathway involved in cell fate decisions like 

differentiation, proliferation and apoptosis (Calo et al., 2003; Levy and Darnell, 2002; 

Murray, 1996). Seven members of the Stat family are known: Stat1, Stat2, Stat3, Stat4, 

Stat5a, Stat5b and Stat6 with a size ranging from 750 to 900 amino acids. Jak and Stat 

molecules are expressed in a variety of tissues mediating critical functions of cytokines and 

other signals (Levy and Darnell, 2002; Moriggl et al., 1999a; Moriggl et al., 1999b; O'Shea et 

al., 2002; Velazquez et al., 1992). The two closely related proteins Stat5a and Stat5b (here 

referred to as Stat5) have redundant functions in hematopoietic cells, and non-redundant 

functions in other tissues (Teglund et al., 1998).  

Persistent Stat5 activation is found in various types of cancer: carcinoma of breast, 

head and neck as well as hematological disorders (Bromberg, 2002; Buettner et al., 2002; 

Kornfeld et al., 2008; Yu and Jove, 2004), allowing the tumor cells to overcome their 

dependence on cytokines and growth factors. Prominent examples are myeloid and lymphoid 

malignancies associated with constitutively active forms of Jak2 (Schwaller et al., 1998; 

Tefferi and Gilliland, 2005a; Tefferi and Gilliland, 2005b; Tefferi et al., 2005; Ward et al., 

2000). In these tumors, the constitutive activation of Jak2 drives the phosphorylation and 

activation of Stat1, Stat3 and Stat5 (Ho et al., 1999; Schwaller et al., 2000). Moreover, 

constitutive activation of the Jak/Stat pathway was found in leukemic cells of patients 

suffering from bcr/abl-induced leukemia (Benekli et al., 2003; Bromberg, 2002; Lin et al., 

2000; Steelman et al., 2004). Bcr/abl-induced leukemia are characterized by a 

t(9;22)(q34;q11) translocation leading to the expression of a chimeric fusion gene product 

(Bcr/Abl) representing a constitutively active tyrosine kinase. This translocation is mainly 

linked to two distinct hematopoietic disorders: acute lymphoid leukemia (ALL) and chronic 

myelogenous leukemia (CML) (Deininger et al., 2000). There is ample evidence that Stat5 is 
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activated in bcr/abl+ cells (Carlesso et al., 1996; Chai et al., 1997; de Groot et al., 1999; Frank 

and Varticovski, 1996; Ilaria and Van Etten, 1996; Shuai et al., 1996; Spiekermann et al., 

2002). Based on experiments using dominant negative mutants of Stat5, an important role for 

Stat5 in bcr/abl-induced survival was proposed (de Groot et al., 1999; Sillaber et al., 2000). 

The importance of Stat5 for transformation of hematopoitic cells and leukemogenesis is also 

evident from the fact that transduction of bone marrow (BM) cells with a constitutively active 

mutant of Stat5 induces multi-lineage leukemia in mice (Moriggl et al., 2005). Similar results 

were obtained when long-term HSC were retrovirally transduced with constitutively active 

Stat5 mutants and transplanted. Again, a fatal myeloproliferative disease (MPD) was 

observed in the recipient mice (Kato et al., 2005). Recent evidence elucidated a diagnostic 

and prognostic role of Stat5 in human myeloproliferative disorders. Single-cell profiling 

revealed that aberrant Stat5 activation correlates with advanced stages of disease (Kotecha et 

al., 2008). 

However, initial experiments using mice expressing N-terminally deleted Stat5 

(Stat5ΔN/ΔNmice) underestimated the importance of Stat5 in bcr/abl-induced diseases since 

these animals still succumbed to leukemia (Sexl et al., 2000). Recently we clarified that Stat5 

is indeed absolutely essential for the initial transformation process mediated by v-abl and 

bcr/ablp185 oncogenes in vitro and in vivo using a complete Stat5 knockout model (Stat5null) 

(Cui et al., 2004; Hoelbl et al., 2006).  

Here, we examined whether Stat5 is also required for disease maintenance and 

qualifies as a potential alternative therapeutic target in leukemia. We show that Stat5 is a 

bottleneck in the signalling network downstream of Bcr/Abl and is unequivocally required for 

the maintenance of leukemia.  
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Results 

Bcr/ablp210- induced myeloid transformation requires Stat5  

We have previously shown that initial lymphoid transformation by the bcr/ablp185 

oncogene critically depends on Stat5 (Hoelbl et al., 2006). However the influence of Stat5 on 

chronic myeloid leukemia (CML) – associated with the bcr/ablp210 translocation form -  has 

still not been unequivocally elucidated. Therefore, we transduced fetal liver (FL) cells derived 

from Stat5+/+, Stat5null/+ and Stat5null/null embryos with a retrovirus encoding bcr/ablp210 and 

plated the cells in growth factor free methylcellulose (numbers of  bcr/abl+/GFP+ cells before 

plating: 17%, 14.8% and 28,6% respectively). As depicted in Figure 1 the number of factor-

independent Stat5null/+ colonies was drastically reduced compared to wild-type (wt) (5.4-fold). 

This reduction was even more evident for Stat5null/null FLs expressing bcr/ablp210. Here, we 

hardly observed any outgrowth of colony-like structures (28.6- fold; p< 0,0001).  These data 

indicate that Stat5 is required for the transforming capabilities of Bcr/Ablp210 in a dosage-

dependent manner. 

Next, we asked whether Stat5 is also required for the maintenance of leukemia 

progression. To induce deletion of Stat5 at any given time point, we crossed Stat5fl/fl mice 

with Mx1Cre mice. In these animals the Cre recombinase is induced by type I interferons 

(IFNs) or p(I:C) treatment. In mice, a CML-like disease is driven by a bcr/abl+c-kit+Lin- 

leukemic stem cell (LSC) population that is defined by their ability to carry on disease to  a 

secondary recipient (Krause et al., 2006; Wang and Dick, 2005). Bcr/ablp210 infected 

Stat5fl/flMx1Cre BM was transplanted into lethally irradiated wt (B6129F1) recipient mice. 

After twelve weeks, first signs of disease evolved and significant numbers of bcr/abl+/GFP+ 

cells in the peripheral blood were detected (data not shown). The mice were sacrificed and 

BMs were prepared. As depicted in Figure 2A, 13.4 + 1.3% of the BM cells were 

bcr/abl+/GFP+. Further analysis revealed that this bcr/abl+/GFP+ population consisted of 
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Mac1+Gr1+ (28.5 + 8.9%) and Lin- (25.1 ± 15.3 % ) cells being mainly stem/progenitor cells 

(Lin-c-kit+Sca-1-; 86.7 + 20.5%). 

BM cells of three diseased animals were pooled and treated ex vivo with recombinant 

IFN-β (1000U/ml) to delete Stat5 (see scheme depicted in Figure 2A). We initially planned 

to transplant a pure Stat5Δ/Δ population and to monitor CML-like disease progression in the 

secondary recipient. However, despite several efforts using various concentrations of IFN-β 

we never obtained a pure Stat5Δ/Δ population by treating bcr/abl+/GFP+ Stat5fl/flMx1Cre cells 

(Figure 2A middle panel). Thus, we reasoned that Stat5Δ/Δ cells might have a severe 

disadvantage in vitro. Hence, we decided to transplant an IFN-β treated “mixed” population 

of Stat5fl/flMx1Cre and Stat5Δ/ΔMx1Cre cells to test whether Stat5Δ/Δ LSCs are capable to 

contribute to CML in vivo (n=9). The co-transplanted non-deleted LSCs served as internal 

control for successful transplantation.  

Two weeks after the secondary transplant, recipient mice displayed clear signs of 

disease including decreased mobility and weight loss. All mice had developed leukemia with 

enlarged spleens and livers and significant numbers of bcr/abl+/GFP+ cells in the BM (Figure 

2A lower panel). We found that 45.1 + 31.5% of BM cells were bcr/abl+/GFP+. Further 

analysis revealed that these bcr/abl+/GFP+ populations were comprised of Lin- cells (20.5 ± 

7.5%) being mainly stem/progenitor cells (Lin-c-kit+Sca-1-, 91 + 5.5 %). Mac1+Gr1+ cells 

were only detected at low percentages (1.1 + 1.7%) whereas 7.2 + 4.1% of cells were 

Mac1+Gr1-. These findings indicated an accelerated stage of the disease. However, when we 

performed genotyping PCR analysis of the leukemic cells derived from BMs, we only 

detected a PCR product corresponding to the floxed Stat5 allele. The Stat5Δ allele was not 

found in any leukemic sample. Thus, the co-transplanted Stat5Δ/Δ LSCs did not contribute to 

leukemia (Figure 2A lower panel).  

 

Stat5−heterozygous cells do not induce bcr/abl+ myeloid leukemia progression 
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As shown in Figure 1, Stat5-heterozygosity had a profound effect on bcr/ablp210-

induced myeloid colony formation. This indicates that lowering Stat5 levels already impedes 

myeloid transformation. To test the effects of reduced Stat5 in bcr/ablp210-induced disease in 

vivo, we made use of Stat5fl/+Mx1Cre BM cells. At the beginning of the experiment, these 

BM cells express Stat5 from both, the wt and the floxed Stat5 allele. Equally as described 

above, we infected these cells with bcr/ablp210 and transplanted them into primary recipients. 

When the numbers of bcr/abl+/GFP+ cells in the peripheral blood increased (data not shown), 

the animals were sacrificed and BMs were prepared (n=3). The bcr/abl+/GFP+ populations 

consisted of Mac1+/Gr1+ (15.4 + 11.8%) and Lin- (22.8 ± 4.7% ) cells being mainly 

stem/progenitor cells (Lin-c-kit+Sca-1-; 82.6 + 11.7%) (Figure 2B, upper panel). BM 

preparations from three mice were pooled and the floxed Stat5 allele was deleted via IFN-ß 

treatment in vitro. In this setting a complete deletion of the remaining floxed Stat5 allele was 

achieved as verified by PCR analysis (Figure 2B, middle panel). The resulting heterozygous 

Stat5Δ/+ population, comprised of leukemic and non-leukemic cells, was then transplanted into 

secondary, lethally irradiated, recipients (n=9).   

Analysis of mice 30 days after transplantation revealed that bcr/abl+/ GFP+ cells were 

entirely missing in the BM and all other organs investigated including lymph nodes, spleen 

and liver (Figure 2B and data not shown). However, the presence of the Stat5Δ  allele was 

confirmed in the BM of the recipient animals proving successful transplantation and 

reconstitution by non-leukemic Stat5Δ/+ cells (Figure 2B, lower panel). Thus, Stat5 

heterozygous cells contribute to hematopoietic reconstitution of lethally irradiated mice but 

do not allow the outgrowth of bcr/ablp210-positive leukemic cells.   

Since Stat5Δ/+ and Stat5Δ/Δ bcr/abl+ cells did not contribute to leukemia, we next asked 

whether a p(I:C) induced loss or reduction of Stat5 would affect the survival of hematopoietic 

stem cells (HSCs) and progenitors in vivo. Therefore we induced deletion of Stat5 in adult 

healthy Stat5fl/flMx1Cre (n=3) and Stat5fl/+Mx1Cre (n=3) by p(I:C) treatment. As a control we 
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included wt Mx1Cre mice (n=4). As shown in Supplementary Figure 1 Stat5 was effectively 

and completely deleted in both, progenitors and the HSC population without reducing the 

numbers of HSCs and progenitors.  

 

Stat5 is required for lymphoid leukemia maintenance in vivo  

Our experiments with bcr/ablp210 indicate that Stat5 is not only required for the initial 

transformation of myeloid cells but also for the maintenance and progression of the disease. 

However, primary myeloid bcr/ablp210 transformed cells are not suitable for long-term 

cultivation in vitro. Hence, we used the v-abl-induced lymphoid leukemia model to further 

study the underlying effects of Stat5 loss (Rosenberg and Baltimore, 1976; Rosenberg and 

Witte, 1988; Siegler and Zajdel, 1972). V-abl+ lymphoid cell lines can be readily established 

in vitro and are applicable for long-term studies (Hoelbl et al., 2006; Kovacic et al., 2006; 

Sexl et al., 2000; Zebedin et al., 2008b). Moreover, bcr/abl-associated lymphoid disease 

represents a specific therapeutic challenge since it normally proceeds rapidly and is associated 

with a high mortality (Piccaluga et al., 2007; Pui and Jeha, 2007).   

 Stable Stat5fl/flMx1Cre and Stat5fl/fl v-abl+ lymphoid cell lines (CD19+, B220+, CD43+) 

were established and controlled for comparable proliferation rates, clone sizes in 

methylcellulose, and homing to hematopoietic organs in vivo (Supplementary Figure 2). 

To check whether cell survival of an already established lymphoid leukemia also 

depends on Stat5, we transplanted Stat5fl/flMx1Cre and Stat5fl/fl v-abl+ cell lines into Rag2-/-γc-

/- mice (n=19 and 7, respectively; 1 x 105 cells/mouse). Rag2-/-γc-/- mice lack lymphoid cells 

and are therefore particularly suited to monitor lymphoid leukemia progression. Mice that had 

received Stat5fl/flMx1Cre cells were divided into two groups (see scheme in Figure 3A). The 

first group received p(I:C) to induce type I IFN responses (n=13) to delete Stat5 in the 

leukemic cells. The second group was mock-injected with PBS (n=6). To control for effects 

of p(I:C) mice that had received Stat5fl/fl cell lines were also p(I:C) treated (n=7). P(I:C) 
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treatment was initiated seven days after the transplantation of the cells and repeated every 

four days until mice displayed signs of sickness. Starting from day 16 post transplantation, 

animals harboring leukemic cells expressing Stat5 appeared sick with decreased mobility, 

scrubby hair and weight loss. In contrast, animals harboring Stat5Δ/Δ leukemic cells appeared 

healthy with normal mobility, fur and weight. Sick animals sacrificed on day 16 and 20 

(“Stat5fl/flMx1Cre + PBS” group) were compared to healthy appearing animals where deletion 

of Stat5 was induced (“Stat5fl/fl + p(I:C)” group). In the diseased animals we found dense 

infiltrations of leukemic cells B220+CD19+ cells in spleens and BMs (Figure 3B, left 

panels). In sharp contrast, leukemic cells were hardly detectable after 16 and 20 days in mice 

where Stat5 had been deleted (Figure 3B, middle and right panels).  

Mice, where Stat5 had been deleted in the leukemic cells survived significantly longer 

(Figure 3C, mean survival of 49 days compared to 20 and 16 days in the “Stat5fl/fl + p(I:C)” 

and “Stat5fl/flMx1Cre untreated” groups, respectively). Similar results were obtained when 

immuno-competent mice were used as recipient animals (Supplementary Figure 3). 

However, finally all mice succumbed to leukemia. Examination of the leukemic cells revealed 

protein expression of Stat5 and lack of the Stat5Δ allele (Figure 3D). We reasoned that p(I:C) 

induced deletion was incomplete in vivo and that some cells escaped deletion. This scenario is 

supported by the fact that we still could induce cell cycle arrest and apoptosis in the ex-vivo 

derived leukemic cells by IFN-β treatment (Figure 3E). This rules out that the cells have 

acquired secondary mutations overcoming the Stat5-requirement.  We reasoned that an 

effective cure of the affected animals was exclusively limited by the efficiency of Cre-

recombinase-mediated gene deletion. 

 

Stat5 is essential for both, proliferation and survival of v-abl-transformed cells 

To be able to study the mechanisms how Stat5 promotes leukemia maintenance in 

vitro we used recombinant IFN-β to activate Cre-mediated Stat5 deletion. A dose of 
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1000U/ml IFN-β was able to activate Cre-recombinase without blocking cell cycle 

progression (data not shown). In contrast to IFN-β treated Stat5fl/fl cells, the resulting Stat5Δ/Δ 

cells showed instantaneous proliferation arrest (Figure 4A) and no viable cells were 

detectable nine days after the initial IFN-β treatment. Genotyping PCR analysis confirmed 

efficient deletion of Stat5 (Figure 4B). To characterize the effects of Stat5 deletion, cell cycle 

profiles and apoptosis stains after IFN-β treatment were performed. As depicted in Figure 4C 

Stat5Δ/Δ cells underwent a G0/G1 cell cycle arrest two days after IFN-β treatment (67.7% + 

1.7% within G0/G1 phase). This cell cycle arrest was followed by apoptosis: nine days after 

the initiation of the experiment, 90.5% + 0.7% of Stat5Δ/Δ but only 13.1% + 2.1% of Stat5fl/fl 

cells treated with IFN-β were  propidium iodide (PI)-positive (Figure 4D).  

 

The re-expression of wt Stat5 rescues survival and proliferation  

To verify that the observed effects are indeed solely provoked by the loss of Stat5 we 

introduced a retroviral construct encoding Stat5 into yet undeleted Stat5fl/flMx1Cre cell lines. 

(Moriggl et al., 1999b). As depicted in Figure 5A, the expression of wt Stat5, but not of the 

empty vector was capable to prevent cell death after nine days upon deletion of endogenous 

Stat5 via IFN-β in vitro. PCR analysis confirmed complete deletion of the endogenous Stat5 

alleles. Additionally, we examined two Stat5 variants. Stat5Δ749 is described to exert dominant 

negative effects by blocking the DNA-binding site of Stat5 target genes (Moriggl et al., 

1996). Stat5Y694F was reported to prevent homodimerization – a prerequisite for nuclear 

translocation and transcriptional activity of Stat5 (Gouilleux et al., 1994; Stoecklin et al., 

1997; Yamashita et al., 1998). Expression of both Stat5 mutants failed to rescue the apoptotic 

effect of endogenous Stat5 loss after IFN-β treatment (Figure 5B). Accordingly, 48 hours 

after IFN-β treatment, we observed down-regulations of several well-described Stat5 target 

genes such as pim-1, cyclin D3, bcl-XL, CIS, cyclin D2 and c-myc (Figure 5C) (Castro et al., 
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1999; Dumon et al., 1999; Lord et al., 2000; Martino et al., 2001; Matsumoto et al., 1997; 

Moon et al., 2004; Peltola et al., 2004; Socolovsky et al., 1999; Stout et al., 2004; Yoshimura 

et al., 1995). To test whether a single target gene compensates for the loss of Stat5 upon IFN-

β administration, we over-expressed either CIS, c-myc, cyclin D2, cyclin D3 or bcl-XL. As 

depicted in Figure 5D, expression of neither of these Stat5 target genes was capable to 

compensate for the loss of Stat5. Therefore, not a single Stat5 target gene, but rather Stat5 as 

a superordinate molecule, maintains the leukemic capacity of bcr/abl+ cells.   

 

High Bcl2 levels or deletion of Trp53 do not relieve Stat5-dependance  

Tumor cells frequently acquire additional mutations after long term maintenance in 

culture. We therefore analyzed our Stat5fl/fl Mx1Cre cell lines after 14 months of continuous 

culture whether any spontaneously acquired mutation would be capable to release the 

necessity for Stat5. When we analyzed the cell lines for expressions of Trp53, BclXL and Bcl2, 

we found that two cell lines (#1 and #3) had completely lost the Trp53 protein (Figure 6A). 

Loss of Trp53 was reported to result in a decreased sensitivity towards imatinib (Wendel et 

al., 2006). Accordingly these cell lines displayed a 5.7-fold lesser sensitivity towards imatinib 

treatment (IC50 of 0.98 µM compared to IC50=0.17 µM; data not shown). Cell line #1 

additionally displayed a significant up-regulation of the Bcl2 protein and a significant 

decrease in Stat5 protein expression. Bcl2 is an anti-apoptotic protein, whose over-expression 

is found in many cancers contributing to tumor initiation, progression and resistance to 

therapies (Danial and Korsmeyer, 2004; Letai et al., 2004; Oltersdorf et al., 2005). However, 

when the residual Stat5 protein was removed by activation of Cre-recombinase, all cell lines 

still underwent complete apoptosis. Hence, even in the presence of elevated Bcl2 protein the 

presence of Stat5 was indispensable for proliferation and survival of leukemic cells. This is in 

line with our observations that over-expression of Bcl2 in Stat5fl/flMx1Cre cell lines and 

subsequent deletion of endogenous Stat5 does not release Stat5 dependence. (Figure 5D).   
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Expression of an imatinib-resistant bcr/abl mutant (bcr/ablp210T315I) does not relieve Stat5 

dependance 

Treatment of bcr/abl-induced CML has been significantly improved by the availability 

of imatinib (Druker et al., 2001a; Druker et al., 2001b). However, some patients acquire 

mutations in the Bcr/Abl oncoprotein which renders them insensitive to imatinib (Chu et al., 

2005; Griswold et al., 2006). In this regard the bcr/ablp210T315I mutation represents one of the 

biggest therapeutic challenges in CML therapy since it mediates complete resistance not only 

to imatinib but also to all of the next generation Abl kinase inhibitors (Quintas-Cardama et al., 

2007; Skaggs et al., 2006). We therefore decided to test whether cells expressing 

bcr/ablp210T315I require the presence of Stat5. Stat5fl/flMx1Cre and Stat5+/+Mx1Cre BM cells 

were infected with retrovirus encoding bcr/ablp210T315I and treated either with imatinib or IFN-

β-mediated Stat5 deletion.  

To ensure survival and proliferation of immature progenitors, cells were maintained in 

a medium supplemented with SCF, Flt3-ligand (Flt3-L), IgF-1, IL-3, IL-6 GM-SCF and 

dexamethasone as described previously (Kieslinger et al., 2000). As expected wt Mx1Cre and 

Stat5fl/flMx1Cre cells expressing bcr/ablp210T315I did not undergo apoptosis upon imatinib 

treatment (Figure 6B, middle panels). In contrast, bcr/ablp210T315I expressing Stat5fl/flMx1Cre 

cells showed substantial cell death upon loss of Stat5 after five days (Figure 6B, right 

panels).     
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Discussion 

A major issue in cancer biology is to differentiate between initiating events and events 

that are required for cancer progression. While substantial progress has been made in 

understanding the evolution of solid tumors, the evolution of leukemic cells is less well 

understood (Albertson et al., 2003; Klein and Klein, 1985; Lengauer et al., 1998; Nowell, 

1976; Visvader and Lindeman, 2008). In this regard, Bcr/abl-induced leukemia is a good 

model system because the initiating event is a well-defined chromosomal translocation (Ren, 

2005; Wong and Witte, 2001). Previously, we showed that Stat5 is required for the initiation 

of lymphoid leukemia (Hoelbl et al., 2006). In this manuscript we provide formal proof for an 

essential role of Stat5 in the maintenance of bcr/abl+ leukemia. Deletion of Stat5 in leukemic 

cells resulted in G0/G1 cell cycle arrest followed by apoptosis. To the best of our knowledge 

this is the first report where an indispensable and non-redundant function of a signaling 

component downstream of the Bcr/Abl tyrosine kinase is described to be necessary for 

leukemia progression in vivo. Several signaling pathways are activated downstream of the 

Bcr/Abl oncoprotein and are implied to contribute to leukemogenesis, e.g. the activation of 

the Phosphatidylinositol 3-kinase (PI3K) pathway or the mitogen-activated protein (MAP) 

kinase pathway (Cortez et al., 1997; Deininger et al., 2000; Ren, 2005; Wong and Witte, 

2004; Zebedin et al., 2008a).                                                                                                                                                                                                   

In this complex signaling network, controlled by Bcr/Abl, Stat5 appears to have a 

unique and privileged position: in fact, our experiments verify that Stat5 is the bottleneck for 

both, bcr/abl-induced disease initiation and progression. The unique role of Stat5 is conserved 

even in the absence of intact Trp53 signaling, as well as in imatinib-resistant cells and most 

importantly extends to the leukemic stem cell (LSC) compartment.   

These findings single out Stat5 from other members of the family of Stat transcription 

factors that have been implicated in signaling downstream of Bcr/Abl. Stat3 is also involved 

in the initial transformation process which is severely impaired in the absence of Stat3. 
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However, Stat3 is dispensable for leukemia progression (V. Sexl, unpublished observations). 

Importantly, the requirement for Stat5 extends to the LSC compartment. LSCs have been 

characterized in myeloid bcr/ablp210-induced leukemia by their ability to allow for serial 

transplantation of the disease (Krause et al., 2006; Wang and Dick, 2005). One of the big 

current therapeutic challenges is to find strategies how to target and eradicate such LSCs. The 

most frequently used drug in CML therapy - imatinib - induces apoptosis in bcr/abl+ cells but 

fails to eradicate LSCs in vivo (Krause and Van Etten, 2007; Neering et al., 2007). Therefore, 

patients must be subjected to continuous treatment to keep them in remission. This situation 

fosters Darwinian evolution and the emergence of resistant clones. In this context, it is worth 

pointing out that even one of the most dreaded imatinib-resistant mutants of Bcr/Abl - 

Bcr/Ablp210T315I – remains strictly dependent on Stat5.  Taken together, these observations 

support the concept that targeting Stat5 provides new therapeutic opportunities. This 

conjecture is further supported by the observation that the mere lowering of Stat5 levels in 

bcr/ablp210+ Stat5fl/+Mx1Cre cells by IFN-β treatment was sufficient to prevent leukemia 

progression in secondary recipient animals - again pointing at the role of Stat5 in LSCs. In 

these animals, the non-leukemic Stat5Δ/+ cells contributed to normal hematopoiesis. This 

indicates that a reduced Stat5 protein level may be well tolerated in normal tissue but is 

deleterious for the bcr/abl+ cell population. It also indicates that partial blockage of Stat5 may 

be tolerated, despite its described role in HSC functionality and hematopoiesis (Wierenga et 

al., 2008). While it is difficult to extrapolate these experiments in mice to patients, at the very 

least these observations justify the assumption that potential side effects of Stat5 blockage 

will not a priori preclude their use in clinics. This conjecture is further supported by the 

development of an inhibitor targeting Jak2. Jak2 is essential for erythropoiesis - but 

nevertheless, Jak2 inhibitors have successfully entered clinical trials (Hexner et al., 2008; 

Lasho et al., 2008; Wernig et al., 2008). 
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For the past decade, signal interceptor-based therapies have been the most promising 

new strategies in the treatment of cancer. Stat5 fulfills two important criteria as a drug target 

for a signal interceptor: (i) Stat5 is a valid target in bcr/abl-induced leukemia because it is 

essential for the disease; (ii) blockage of Stat5 can be anticipated to result in limited and 

tolerable side effects. (iii) Stat5 occupies a privileged position in the Bcr/Abl signaling 

network. This is also evident from microarray data showing that Stat5 target genes are 

prominently down-regulated in response to the Bcr/Abl kinase inhibitor dasatinib (O. 

Hantschel, paper in press). 

However, we found that none of the downstream targets of Stat5 are capable of 

compensating for Stat5 loss in leukemic cells when over-expressed. Similarly, our 

observations are consistent with the interpretation that the function of Stat5 cannot be readily 

bypassed: down-regulation of Stat5 significantly impaired the expression of target genes that 

can also be addressed via alternative routes in the Bcr/Abl-controlled network: e.g. D-type 

cyclins or c-myc via the MAPK/ERK cascade (Marampon et al., 2006; Okabe et al., 2006; 

Serra et al., 2008; Vadiveloo et al., 1998). These findings again highlight that Stat5 is the 

Achilles' heel of the bcr/abl- transformed cell. Importantly, we observed that even the genetic 

instability associated with the abrogation of the Trp53 did not allow for the emergence of 

Stat5-independent leukemic clones.  

Last but not least, we found that the requirement for Stat5 for cell survival was not 

relieved by forced expression of Bcl2 or BclXL. This data were confirmed by a spontaneous 

mutation occurring in one cell line that displayed high protein levels of Bcl2. This cell line 

still underwent apoptosis upon Stat5 abrogation. 

Apart from regulating transcription, Tyr694-phosphorylated Stat5 has recently been 

shown to function as a scaffold for Gab2/PI3K thereby promoting PI3K signaling (Nyga et 

al., 2005). Copious amounts of Stat5 are present in the cytoplasma of CML cells (Harir et al., 
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2007). It is therefore attractive to speculate that this mechanism might also contribute to the 

effects of Stat5 within the Bcr/Abl signaling network.  

Taken together our observations argue for a privileged position of Stat5 in the 

signaling network controlled by Bcr/Abl. Stat5 appears to be the bottleneck through which 

signals must be funneled in an obligatory and non-.redundant way. 
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Experimental procedures 

Mice and genotyping 
 

 Stat5fl/flMx1Cre, Stat5fl/fl, C57BL/6J and Rag2-/γc-/- mice were maintained at the 

Biomedical Research Institute (Medical University of Vienna), C57BL/6J x Sv129 F1 (here 

referred to as B6129F1), at the Institute of Molecular Pathology (IMP, Vienna) under 

specifically pathogen-free sterile conditions. Genotyping of mice and cells was performed as 

described previously (Cui et al., 2004). All animal experiments were carried out in accordance 

with protocols approved by Austrian law.  

BM transplants of bcr/abl p210 infected cells  
 

BM cells from 6 weeks old Stat5fl/flMx1Cre and Stat5f/+Mx1Cre donor mice were co-

cultivated on bcr/ablp210 retroviral producer cells for 48 hours in the presence of IL-3 

(25 ng/ml), IL-6 (50 ng/ml), SCF (50 ng/ml) and 7 µg/ml polybrene. Then, cells were 

transplanted via tail vein injection into lethally irradiated (10 Gy) B6129F1 recipient mice. 

Peripheral blood was taken every week and upon detection of bcr/abl+/GFP+ cells, mice were 

sacrificed. BM cells of three diseased animals were pooled and treated with recombinant IFN-

ß (1000U/ml; Serotech) for 48 hours to delete Stat5. Thereafter cells were transplanted into 

lethally irradiated secondary recipients (B6129F1). 

Deletion of Stat5 in leukemic cell lines 
 

For in vivo deletion of Stat5, 1 x 105 or 1 x 106 v-abl+ Stat5fl/fl and Stat5fl/flMx1Cre 

cells  were injected via the tail vein into Rag2-/-γc-/- or C57BL/6J mice, respectively. From day 

seven on, mice received 400µg p(I:C) (Sigma) intraperitoneally (i.p.) every four days to 

induce Stat5 deletion in the transplanted leukemic cells. Mice, injected with PBS served as 

controls. Upon signs of sickness (decreased mobility, weight loss and scrubby fur), mice were 

sacrificed and lymphatic organs were analyzed for leukemic cell (CD19+, B220+) infiltration 

by flow cytometry. 
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For in vitro deletion of Stat5, Stat5fl/flMxCre v-abl+ cell lines were seeded at a density 

of 3 x 105 cells/ml and incubated for 48 hours in 1000U/ml recombinant (IFN-ß; Serotech) in 

complete RPMI. Stat5fl/fl cell lines treated with IFN-ß and Stat5fl/flMxCre without any 

treatment served as controls. Cells were analyzed by flow cytometric analysis for cell cycle 

progression and apoptosis every day. 

Flow cytometry  

For analysis of leukemic cell lines or ex-vivo derived cells, single cell suspensions 

were pre-incubated with αCD16/CD32 antibodies to prevent non-specific Fc-receptor-

mediated binding. Subsequently, 5 x 105 cells were stained with monoclonal antibodies 

conjugated with fluorescent markers and analyzed by a FACSCantoII flow cytometer using 

FACSDiva software (Becton-Dickinson). The following antibodies, all purchased from BD 

Biosciences, were used: B220 (RA3-6B2), CD19 (1D3), CD43 (1B11), Mac-1 (M1/70), GR-1 

(RB6-8C5), mouse-lineage panel and Sca-1 (D7). C-kit (2B8) was purchased from 

eBioscience. 

Cell cycle and apoptosis analysis: 1 x 106 cells were stained with PI (50 µg/ml) in a 

hypotonic lysis solution (0.1% sodium citrate, 0.1% triton X-100, 100 µg/ml RNAse) and 

incubated at 37°C for 30 minutes. Analysis of dead/ late apoptotic cells was performed by re-

suspending in PBS containing PI (1µg/ml).  
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Figure legends  

Figure 1. bcr/ablp210-induced transformation depends on Stat5 in vitro.  

Bcr/ablp210- induced colony formation of Stat5+/+, Stat5null/+ and Stat5null/null FL cells in 

growth-factor free methylcellulose (n=3 for each genotype). One representative set of data is 

depicted. Data are summarized in a bar graph (right panel). 

Figure 2.  bcr/ablp210-induced disease progression depends on Stat5 in vivo. 

Stat5fl/flMx1Cre (A) or Stat5fl/+Mx1Cre (B) were used as donor mice. As depicted in schemes 

(left panel each) BM cells were infected with bcr/ablp210and transplanted into lethally 

irradiated recipient mice (“1st tp”). After 12 weeks, BM cells were isolated, pooled (n=3), 

treated with IFN-ß for 48h in vitro to induce deletion of the Stat5 alleles and injected into 

secondary lethally irradiated recipients (“2nd tp”; n=9 per genotype). Middle panels in (A) and 

(B) show PCR analysis of BMs at indicated steps of the experiments. Right panels in (A) and 

(B) depict flow cytometric analysis of BMs cells after 1st tp and 2nd tp as indicated. (A) PCR 

analysis revealed that only leukemic cells harbouring the floxed (fl), but no deleted (Δ) Stat5 

alleles contributed to leukemia. (B) No bcr/abl+/GFP+ cells were detected in BM cells of 

secondary recipients. PCR analysis of the non-leukemic BM verified successful 

transplantation (two representative samples are shown). One representative flow cytometric 

profile of BM cells is depicted for each experimental group. Numbers indicate percentages of 

cells belonging to individual sub-populations.  

Figure 3. Lymphoid leukemia progression depends on Stat5 in vivo. 

(A) V-abl+ Stat5fl/flMx1Cre cells were injected into Rag2-/-γc-/- mice and divided in two 

groups: one receiving p(I:C)- the other receiving PBS-injections (control).  

(B) BM and spleen of p(I:C) - treated and control mice were analyzed at indicated time points 

for the presence of transplanted leukemic B-cells (B220+CD19+). Representative flow 

cytometric profiles are depicted. 



 86 

(C) Transplantation of Stat5fl/flMx1Cre and Stat5fl/fl cell lines into Rag2-/-γc-/- mice. 1 x 105 

cells of Stat5fl/flMx1Cre or Stat5fl/fl cell lines (n=3 each) were injected via tail vein. From day 

7 on, 400µg p(I:C) was injected i.p. every 4 days till the mice diseased. Kaplan-Maier plots 

revealed a statistically significant difference in survival time of mice after Stat5 deletion 

compared to the control groups (“Stat5fl/flMx1Cre + p(I:C)” vs. “Stat5fl/flMx1Cre untreated” 

p<0.001; “Stat5fl/flMx1Cre untreated” vs. Stat5fl/fl + p(I:C)” n.s.). Vertical bars indicate mice 

opened as controls on day 16 and 20 (see (B)).  

(D) Analysis of ex vivo derived BM cells from mice of the “Stat5fl/flMx1Cre + p(I:C”  group 

sacrificed on day 56 (#1-3) and 57 (#4). Western Blot for Stat5 (upper panel) and 

corresponding genotyping PCR analysis (lower panel). Four representative samples are 

shown. 

(E) Ex-vivo derived cells are still sensitive to the loss of Stat5. 0.5 x 105 ex-vivo-derived 

Stat5fl/flMx1Cre cells (n=3) were incubated with 1000U/ml IFN-ß. Cell concentrations were 

determined per trypane-blue exclusion on indicated time points.  

Figure 4.  Leukemic cell survival depends on Stat5 in vitro. 

(A) 0.5x105 cells of indicated cell lines (n=3 each) were treated with 1000U IFN-β or mock 

treated. Cell concentrations were determined by trypane-blue exclusion assay on indicated 

time points.  

(B) PCR analysis after IFN-β treatment: Deletion efficiency was determined by specific PCR 

reaction for the floxed (fl) and deleted (Δ) Stat5 alleles 48 hours after IFN-ß treatment.  

Cell cycle (C) and apoptosis (D) analysis of IFN-β treated v-abl transformed cell lines, 

48hours and 9 days after IFN-β treatment, respectively. Loss of Stat5 induces cell cycle arrest 

and apoptosis. Numbers show percentages of cells in indicated cell cycle phases (C) or in late 

apoptosis (D) of one representative sample for each genotype. 

Figure 5. Stat5 re-expression rescues effects of Stat5 deficiency 
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Stat5fl/flMx1Cre cell lines were infected with retroviruses encoding either empty vector, wt 

Stat5 (A), Stat5Y694F and Stat5Δ749 (B) or indicated Stat5 target genes (D). (A) Percentages 

of late apoptotic/dead cells, were determined nine days after IFN-β administration by PI 

staining. PCR analysis revealed complete deletion of Stat5-re-expressing cells.  Numbers 

indicate percentages of PI+ cells. 

 (C) 48 hours after IFN-β administration, expression levels of Stat5 target genes were 

analyzed by real-time PCR and compared to levels measured in equally treated Stat5fl/fl cells. 

Down-regulations of indicated target genes are summarized in bar graphs. Data represent 

means + SD. Asteriks indicate statistical significance as determined by a one-sample T-test 

(two-tailed; *** p<0.001). 

(B, D) Endogenous Stat5 was deleted via IFN-β and outgrowth of GFP+ cells was monitored 

by flow cytometry every 48 hours for eight subsequent days. 

Figure 6. Leukemic cells harbouring second hits are still sensitive to Stat5 loss. 

(A) Long term cultured (14 months) Stat5fl/flMx1Cre v-abl+ cell lines were examined by 

Western blot analysis for Stat5, Trp53, Bcl2 and BclXL protein expressions. Two cell lines 

either over-expressing Bcl-2 and/or lacking Trp53 (# 1, #3) were subjected to Stat5 deletion 

via IFN-β. Cell cycle progression was analyzed by PI staining and FACS analysis after 48 

hours. Percentages of apoptotic cells were determined via PI staining nine days after IFN-β 

administration. Numbers show percentages of cells in indicated cell cycle phases (middle 

panel) or in late apoptosis (right panel). 

(B) BMs of wt Mx1Cre and Stat5fl/flMx1Cre mice were infected with an imatinib-resistant 

bcr/ablp210 mutant (bcr/ablp210T315I) and treated with either imatinib (0.1µM) or IFN-β. After 5 

days cells of the IFN-ß-treated, but not of the imatinib-treated group, showed increased 

numbers of apoptotic (sub-G1) cells. Numbers show percentages of cells in indicated cell 

cycle phases. 
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Figure S1. Effect of Stat5 deletion on normal HSCs and progenitors. 

(A) HSCs and progenitors from bone marrows of Stat5fl/flMx1Cre and Stat5fl/+Mx1Cre mice (6 

weeks of age) were FACS-sorted after p(I:C) treatment (two times, 300µg i.p.). Deletion 
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efficiency was analyzed by PCR reactions specific for floxed (fl) or deleted (Δ) Stat5 alleles. 

Numbers indicate samples from individual mice. 

(B) FACS analysis of HSC and progenitor populations in wt Mx1Cre, Stat5fl/flMx1Cre and 

Stat5fl/+Mx1Cre mice after p(I:C) treatment. Lin- BM cells were gated and analyzed for c-kit 

and Sca-1 surface expression. Bar graphs summarize quantifications of Lin-c-kit+Sca-1+ 

(HSCs) and Lin-c-kit+Sca-1- cells. Data represent means + SD. 
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Figure S2. Stat5fl/flMx1Cre and Stat5fl/fl v-abl+ cell lines proliferate comparably in vitro 

and in vivo. 

(A) 3[H] thymidine incorporation of Stat5fl/flMx1Cre and Stat5fl/fl cell lines. Data represent 

means of three individual cell lines per genotype + SD. The experiment was performed in 

triplicates. 

(B) Colony formation of stable Stat5fl/flMx1Cre and Stat5fl/fl v-abl+ cell lines (n=3 each.) 1 x 

103 cells were plated in growth factor free methylcellulose. After seven days no differences in 

clone size were evident (magnification 4x, 40x). One representative data set is shown. 

(C) Homing of Stat5fl/flMx1Cre and Stat5fl/fl cell lines in vivo. 1 x 106 CSFE labelled cells 

were i.v. injected into Rag2-/-γc-/- mice (n=3). After 24 hours the mice were sacrificed and 

BMs and spleens were analysed by FACS. One representative data set is shown. 
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Figure S3. Transplantation of Stat5fl/flMx1Cre and Stat5fl/fl v-abl+ cell lines into wt 

C57BL/6J mice.  

1 x 106 cells of Stat5fl/flMx1Cre or Stat5fl/fl cell lines (n=3 each) were injected via the tail vein. 

From day seven on, 400µg p(I:C) was injected i.p. every four days until mice diseased. 

Kaplan-Meier analysis revealed a significant difference in survival time of mice after Stat5 

deletion compared to control group (“Stat5fl/flMx1Cre + p(I:C)” vs. “Stat5fl/flMx1Cre 

untreated” p<0.001; “Stat5fl/flMx1Cre untreated” vs. Stat5fl/fl + p(I:C)” n.s.). Mice of the 

(“Stat5fl/flMx1Cre + p(I:C)” group displayed a mean survival of 23.3 days, whereas mice of 

“Stat5fl/flMx1Cre untreated” and “Stat5fl/fl + p(I:C)” groups survived on average 15.4 and 16.5 

days, respectively. 
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Supplemental Experimental Procedures 

Retroviral constructs 

Stat5 target genes, Stat5 mutants and bcr/ablp210 were cloned into a pMSCV-IRES-GFP, 

Bcr/Ablp210T315I into a pMSCV-IRES-dsRed backbone.  

Tissue culture conditions and virus preparation 
  

Transformed FL cells and tumor-derived cell lines were maintained in RPMI 1640 

medium containing 10% fetal calf serum (FCS), 100U/ml penicillin/streptomycin, 50 µM β-

mercaptoethanol and 2 mM L-glutamine (“RPMI complete”). A010 and gp+E86 cells were 

maintained in DMEM medium containing 10% fetal calf serum (FCS), 100U/ml 

penicillin/streptomycin, 50 µM β-mercaptoethanol and 2 mM L-glutamine (“DMEM 

complete”). Cell culture media were purchased from Sigma. Standard supplements were 

purchased from Gibco. 

A010 cells produce an ecotropic replication deficient form of the Abelson murine 

leukemia virus (A-MuLV) encoding the v-abl oncogene and were a generous gift of Dr. 

Naomi Rosenberg. Gp+E86 retroviral packaging cell lines for Stat5 target genes, bcr/ablp210 

as well as mutated version thereof (bcr/ablp210T315I) were established by transfection 

(Lipofectamine Invitrogen®). Cells were sorted for expression of fluorescent proteins using 

BD FACS-Vantage device.  

Bcr/ablp210 and bcr/ablp210T315I infected BM cells were maintained in Stem Cell Pro 

medium supplemented with mSCF (50ng/ml), murine IL-3 (2ng/ml), Flt3-L (10ng/ml), 

murine GMCSF (3ng/ml), IGF-1 (40ng/ml), dexamethasone (1µg/ml) and mouse IL-6 (0,5 

ng/ml) (all purchased from R&D Systems) (“stem cell medium”) as described before 

(Kieslinger et al., 2000). 

Infections and establishment of cell lines  
 

For the preparation of lymphoid cell lines, Stat5fl/fl and Stat5fl/flMx1Cre animals were 

set up for breeding. Fourteen days after conception pregnant animals were sacrificed and FLs 
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prepared. Single cell suspensions from FLs were infected for one hour with viral supernatant 

derived from A010 cells in the presence of 7 µg/ml polybrene as described previously (Sexl et 

al., 2000). The cells were then maintained in complete RPMI medium and observed for the 

outgrowth of stable transformed cell lines.  

In vitro colony formation assay  

Single cell suspensions from FLs (ED 13.5) were co-cultivated on bcr/abl p210 

producer cells in the presence of IL-3 (25 ng/mL), IL-6 (50 ng/mL), SCF (50 ng/mL) and 7 

µg/ml polybrene for 48 hours as described previously (Sexl et al., 2000). After infection, 1 x 

104 GFP+ cells were resuspended in 3 ml cytokine-free methylcellulose (Stem Cell 

Technologies) and plated in 35 mm dishes (1.5ml each). After five days, colonies were 

counted by light microscopy (Leica Fluovert microscope, 4 x magnification).  Images of cell 

culture dishes were scanned using a standard on-desk scanner. 

For comparison of growth capacity between Stat5fl/flMx1Cre and Stat5fl/fl v-abl+ stable 

lymphoid cell lines, 1 x 103 cells were plated in cytokine-free methylcellulose and evaluated 

as described above.  

Re-expression of wt Stat5 and Stat5 target genes in stable v-abl+ cell lines and rescue 

assays 

Infections with indicated Stat5 target genes were performed using retroviral producer 

cell lines as described above. Thereafter GFP+ cells were sorted using a FACSAria (Becton 

Dickinson) and pure GFP+ cell lines were mixed with non-transfected ones of the same 

genotype at a ratio of 1:33. To determine rescue capacity of indicated target genes cells were 

treated with 1000U/ml recombinant IFN-β for 48 hours. Thereafter the percentage of GFP+ 

cells was determined daily by flow cytometry. 

 

CSFE in vivo proliferation assay 
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Cells were labelled with CFSE (carboxy-fluorescein diacetate, succinimidyl ester; Sigma) at a 

final concentration of 0,5 µM in PBS. Subsequently, 1 x 106 cells were injected via the tail 

vein into Rag2-/-γc-/- recipient mice. 24 hours after injection, mice were sacrificed and BMs 

and spleens were analyzed by flow cytometry for the presence of labelled cells. In vitro 

maintained cells served as control. 

[3H] thymidine incorporation 
 
Cells were plated at a density of 2 x 105 cells in 96 round bottom wells. 0.1 µCi [3H] 

thymidine/well (PerkinElmer). After 24 hours, cells were frozen at -80°C, re-thawn and then 

analyzed using a Skatron semi-automatic cell harvester. Incorporation of [3H] thymidine was 

measured by a Packard scintillation counter upon addition of scintillation fluid (Rotiszint 

ECO plus, Roth GmbH & Co KG).  

Cell extracts and Western blotting 
 

Cells were lysed in a buffer containing protease and phosphatase inhibitors (50 mM 

Hepes, pH 7.5, 0.1% Tween-20, 150 mM NaCl, 1 mM EDTA, 20 mM β-glycero-phosphate, 

0.1 mM sodium vanadate, 1 mM sodium fluoride, 10 µg/ml aprotinin, leupeptin and 1 mM 

PMSF, respectively). Protein concentrations were determined using a BCA-kit (Pierce, 

Rockford, IL).  

Proteins (50-100 µg) were separated on an 8% SDS polyacrylamide gel and 

transferred onto Immobilon membranes. Membranes were probed with antibodies directed 

against Stat5, Trp53, Bcl2, BclXL, β-actin and holo-ERK (all purchased from Santa Cruz 

Biotechnologies). Immunoreactive bands were visualized by chemoluminiscent detection 

(ECL detection kit; Amersham, Arlington Heights, UK) using protein A-conjugated 

horseradish peroxidase (Amersham, Arlington Heights, UK). 

Real-time PCR analysis 
 

RNA was isolated using TriZol (Invitrogen). RNA integrity was checked with the 

Agilent Bioanalyzer (Agilent). 2.5 µg RNA was reverse transcribed using Superscript II 
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reverse transcriptase (Invitrogen). Real time PCR was performed on an Eppendorf RealPlex 

cycler using RealMasterMix (Eppendorf) and SYBR Green as described before (Kerenyi et 

al., 2008). The following primer pairs were used: 

pim-1 5´ACGTGGAGAAGGACCCGATTTCC 3´ and 3´GATGTTTTCGTCCTTGATGTCGC 3´ 

cis 5´CTGCTGTGCATAGCCAAGACGTTC 3´ and 5´CAGAGTTGGAAGGGGTACTGTCGG 3´ 

cyclin D2, 5’ AGA AGG GGC TAG CAG ATG A 3’ and 5’ AGG ATG ATG AAG TGA ACA CA-

3’ 

cyclin D3 5´TGCATCTATACGGACCAGGCT 3´and 5´AGGAAGTCGTGCGCAATCA 3´  

bclXL  5 TTGGATGGCCACCTATCTGAAT 3´and 5´TCTCGGCTGCTGCATTGTT 3´  

hypoxanthine-guanine phosphoribosyltransferase (control) 

hprt 5’ TGA TTA GCG ATG ATG AAC CAG G 3’ and 5’ CCT TCA TGA CAT CTC GAG CAA G 

3’ 

In vitro imatinib sensibility assay of bcr/ablp210T315I- transformed cells 
 
BM cells from 6 weeks old Stat5fl/flMx1Cre and Stat5+/+ Mx1Cre mice were co-cultivated 

with viral producer cells encoding a imatinib-resistant version of bcr/ablp210 (bcr/ablp210T315I) 

as described above. After 48 hours of infection cells were maintained in stem cell medium as 

described above and treated either with 100 nM Imatinib or 1000U/ml recombinant IFN-ß. 

Cells were analyzed by flow cytometry for cell cycle distribution daily. 

Statistical analysis 

Statistics were carried out using Student´s t-test, Mann-Whitney-test or a one-way 

ANOVA test as appropriate. Differences in Kaplan-Meier plots were analyzed for statistical 

significance using the log-rank test. Data are presented as averages ± SD and were analyzed 

by Graph Pad® and SPSS software. 
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3.2.6 Clarifying the role of Stat5 in lymphoid development and Abelson-
induced transformation 
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