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List of Abbreviations

A Adenosin

AA Acrylamide

aa Amino acid

ACL Anterior cruciate ligament 

as Antisense

ASC Adipose-derived stem cell

αSMA α-SMA alpha smooth muscle actin

Bis N,N-Methylenbisacrylamide

BMP-2 Bone morphogenic protein-2

BMPR-1a Bone morphogenic protein receptor-1a

bp Base pairs

BrdU 5-bromo-2-deoxyuridine 
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BW Body weight
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cDNA Complementary DNA

CFL Cofilin

Col III Collagen III

Col IIα1 Collagen II alpha1

Col Iα1 Collagen I alpha1

Col Iα2 Collagen I alpha2

Col XII Collagen XII

COMP Cartilage oligomeric matrix protein

CTO Cell tracker orange

Des Desmin

DMEM Dulbecco's Modified Eagle Medium 

DMSO Dimethylsulfoxide

DNA Deoyribonucleic acid

dNTP 2´-deoxynukleoside-5´-triphosphate

DTT 1,4-Dithiothreitol

E. coli Escherichia coli

ECM Extracellular matrix

EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

EDTA Ethylenediaminetetraacetic acid

ELISA Enzyme-linked immunosorbent assay

EYFP Enhanced yellow fluorescent protein

fbg Fibrinogen

FCS Fetal Calf Serum 
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Abbreviations

FGF Fibroblast growth factor

FGF-1 aFGF Acidic fibroblast growth factor

FGF-2 bFGF Basic fibroblast growth factor

FGFR Fibroblast growth factor receptor

FPA Fibrinopeptide A

FPB Fibrinopeptide B

FS Fibrin sealant

fXIII Factor XIII

G Guanin

GAPDH Glyceraldehydes-3-phosphate dehydrogenase

GFP Green fluorescent protein

GRF Gelatin-resorcinol-formaldehyde 

GST Glutathione S-transferase

h Hour

H&E Hematoxylin/eosin 

HAM Human amnion-derived mesenchymal stem cell

HFP 1,1,1,3,3,3-hexafluoro-2-propanol

His Histidine

HMW High molecular weight

IL-1 Interleukin-1

IL-10 Interleukin-10

IPTG Isopropyl β-D-1-thiogalactopyranoside

IU International unit

kb Kilo base pairs

kDa Kilo Dalton

LB-medium Luria Broth medium

M Marker

M Molar

M.S.B. Martius/scarlet/blue

mg Milli gram

ml Milli liter

mM Milli molar

Mono Monoclonal

mRNA Messenger ribonucleic acid

MSC Mesenchymal stem cell

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

µg Micro gram

µl Micro liter

NaCl Sodium chloride

ng Nano gram

NHS N-hydroxysuccinimide

Ni-NTA Nickel-nitrilotriacetic acid

nm Nano meter
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OC Osteocalcin

OD600 Optical density at 600 nm

OP Osteopontin

OPD O-Phenylenediaminehydrochlorid

P Pellet

PAGE Polyacryl gel electrophoresis

PBS Phosphate buffered saline

PBST Phosphate buffered saline with Tween

PCR Polymerase chain reaction

PEG Polyethylene glycol

Pep peptide

PGLA Poly-(DL-lactic-co-glycolic acid)

pH potentia Hydrogenii

pI Isoelectric point

pmol Pico mol

POX Peroxidase

PPACK D-phenylalanyl-L-propyl-L-arginine chloromethyl ketone 

rpm Rounds per minutes

RT Room temperature
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S Supernatant

SDS-PAGE Sodium dodecylsulfate-polyacrylamide gel electrophoresis 

sec Seconds

SEM Scanning electron microscopy

STD Standard deviation

T Thymine

t-AMCA Tranexamic acid

TBE Tris boric acid EDTA
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TNF tumor necrosis factor
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General Introduction
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General introduction

Tissue engineering approaches urge us to develop and create engineered 

matrices or scaffolds biomimicking tissue in vitro. The main objective of 

that  is  to  stimulate  temporarily  some  aspects  present  in  vivo  during 

normal  tissue development.  Tissue engineering implies  the presence of 

reparative/regenerative cells, biodegradable scaffolds, and bioreactors to 

control  the cellular environment.  Cells  and biomaterial  scaffolds can be 

utilized in many ways. Fibrin represents a useful  biodegradable matrix, 

that also binds to regulatory signals such as growth factors.(1-5)

Fibrinogen and fibrin

Fibrinogen (factor I) is the most important factor in the blood coagulation 

process. It is a soluble ~ 340 kDa serum protein with an isoelectric point 

of 5.1. Fibrinogen is composed of 3 globular units, two outer D domains, 

each connected by helical coil to a central E domain (Figure 1.1). They are 

composed of two sets of three polypeptide chains termed Aa, Bb, g, which 

are linked within its E domain by five disulfide bonds.(6,7)

Figure 1.1. Schematic diagram of fibrinogen showing the major structural domains D 
and E. FPA and FPB are the association sites that participate  in fibrin polymerization 
(adapted from Mosesson, 2000 (8)).
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General introduction

For  conversion  of  fibrinogen  to  fibrin  a  16  amino  acid  region 

(fibrinopeptide  A,  FPA)  of  each  Aα  chain  and  14  amino  acids 

(fibrinopeptide B, FPB) from the Bβ-chains in the E domain are cleaved by 

thrombin (factor II).(9,10) The thereby free N-terminal regions of the Aα 

and Bβ chains bind to the γ chains in the D domains of the fibrinogen and 

build protofibrils.(11,12) That association results in double-stranded fibrils 

in which fibrin molecules become aligned in an end-to-middle staggered 

overlapping arrangement.(13) The protofibrils undergo lateral associations 

and  form  branches  of  a  fiber  network  (Figure  1.2).(8,14)  The  fibrin 

network is described in different ways and the structure depends on the 

enviroment. Thus, fibers formed in vivo are longer and thinner than fibers 

formed outside the biological organism.(15)

In vitro,  the  properties  and structure  can also  be modified  by various 

preparation  methods,  such  as  electrospinning  technique.(16)  The 

consistency of fibrin can be artificially changed by additives such as the 

fibrin stabilizing factor XIII (fXIII), the fibrinolysis inhibitors aprotinin and 

tranexamic acid (t-AMCA), or various growth factors.(4,5,17-20)
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Figure 1.2. Fibrin  polymerization and crosslinking.  The association results in double-
stranded fibrils in which fibrin molecules become aligned in an end-to-middle staggered 
overlapping arrangement. The protofibrils undergo lateral associations and form branches 
of a fiber network (modified from Mosesson, 2000 (8)).

Fibrin  by  itself  and  in  a  modified  form  is  commonly  used  in  surgical 

procedures  to  achieve  rapid  hemostasis  and  tissue  sealing.(21) 

Commercial  available  fibrin  sealant  products  consist  of  a  highly 

concentrated  fibrinogen  complex  and  a  high  potency  thrombin.  After 

reconstitution and mixing of the components, a fibrin-based clot is rapidly 

formed  at  the  site  of  application.  These  products  have  been  clinically 

approved  for  use  as  hemostatic  and  tissue  sealing  agents  in  surgical 

procedures.(22,23) The application of fibrin gel is widely-used due to its 

high biological tolerance and its naturally proteolytic resorption. Therefore 

fibrin gels are perfectly suited as a matrix or depot for living cells and 

bioactive agents which have an intrinsic binding capacity to fibrin.(24,25) 

Due to the hydrated and porous structure of fibrin, however, substances 

without specific affinity to fibrin will exit the gel by diffusion relatively fast. 
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General introduction

These  substances  have  to  be  linked  either  directly  or  by  a  linking 

substance to  fibrinogen and fibrin.  One possible  linking anchor can be 

fibroblast growth factor-2, which is naturally associated to fibrinogen and 

fibrin by a 15 amino acid domain.(26)

Human basic fibroblast growth factor

Fibroblast  growth  factor  (FGF)  constitutes  a  family  of  related  proteins 

controlling normal growth and differentiation of mesenchymal, epithelial, 

and  neuroectodermal  cell  types.(27,28)  Two  main  groups  of  FGF  are 

known; acidic and basic FGF. One type of FGF was isolated initially from 

brain  tissue  and  was  identified  initially  by  its  proliferation-enhancing 

activity for myoblasts. Due to its acidic pI (pI = 5.5-6) the factor was 

named aFGF (acidic FGF or FGF-1).(29,30) Another factor, isolated also 

initially  from brain  tissue,  is  bFGF  (basic  FGF,  heparin-binding  growth 

factor,  prostatropin  or  FGF-2)  with  an  isoelectric  point  of  9.6.  It  was 

identified  by  its  proliferation-enhancing  activities  of  murine  fibroblasts 

(3T3 cells).(31,32) This factor is the prototype member of the FGF family 

and shows a homology of 55% to FGF-1. The FGF-2 gene is expressed in 

bone marrow, lymph node, pancreas, thymus and probably spleen.(31,33) 

The observation that FGF-2 mRNA is below the detection limit in adrenal, 

spleen,  heart,  kidney,  liver,  stomach,  small  intestine,  large  intestine, 

testis  and ovary support  the notion that the high abundance of FGF-2 

mRNA  in  specific  tissues  is  due  to  the  storage  of  mitogen  in  the 

extracellular matrix and not continuous gene expression. (34) FGF-2 is a 

single copy gene, located on the 4th chromosome 4q26-q27 (Figure 1.3) 

and  encodes  by  alternative  splicing  of  multiple  FGF-2  isoforms,  with 

molecular weights ranging from 18 kDa to 24 kDa.(35)
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General introduction

Figure  1.3.  Chromosomal  location  of  human  FGF-2  on  the  4th  chromosome  (red  line)  (adapted  from 
http://www.ensembl.org).

Four high molecular weight isoforms (HMW-FGF-2s) and one low 18 kDa 

protein  exist.  The  low  molecular  weight  isoform,  characterized  by 

Florkiewicz  and  Sommer,  lacks  the  motif  of  a  N-terminal  nuclear 

localization signal and remains localized in the cytosol.(36) It is a single-

chain  polypeptide composed  of  146 amino acids  and does  not  contain 

disulfide  bonds  and  is  not  glycosylated.(31)  The  structure  of  FGF-2, 

revealed by X-ray crystallography, shows a similar  folding structure as 

seen with Interleukin-1(IL-1).(37,38) 

Because of the many different receptor phenotypes expressed in various 

cell  types,  FGF-2  is  a  multifunctional  protein  with  a  wide  spectrum of 

biological activities. FGF-2 stimulates a variety of physiological processes, 

including  cell  proliferation,  cell  differentiation  and  cell  migration.(27) 

FGF-2 plays  an important  physiological  role  in  tissue regeneration  and 

wound healing,  and is  involved also  in angiogenesis  by controlling  the 

proliferation  and  migration  of  vascular  endothelial  cells.(27,39,40)  The 

expression of plasminogen activator and collagenase activity by these cells 

is enhanced by FGF-2.(4,41) It is probably one of the factors responsible 

for the out-growth of new capillary blood vessels in the mesencephalon 

and telencephalon during embryogenesis, at a time when these structures 

are essentially free of blood vessels.(42) 

More  recently,  FGF-2  has  been  further  recognized  as  a  hematopoietic 

cytokine.  Receptors  for  human  FGF  are  expressed  on  the  surface  of 

peripheral B and T cells and a variety of leukemic cell lines. T-lymphocytes 

express  FGF-2 mRNA and produce heparin-binding FGF-like bioactivity, 

raising the possibility of an autocrine or paracrine role for human FGF in 

hematopoietic  cell  function.(43,44)  The  membrane-associated  factor, 
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FGF-2, can be phosphorylated by a protein kinase also located on the cell 

surface, which may alter its activity and bioavailability. Heparin protects 

FGF-2 from inactivation by proteases, acids, and heat. It also improves its 

capacity  to  bind  to  the  receptors  and  hence  potentiates  the  biological 

activities  of  FGF-2.  This  feature  may  be  of  physiological  importance 

because mast cells,  for  example, contain high levels of heparin,  which 

could be released during degranulation. In addition, heparin also increases 

the biological half life of FGF-2.(45,46)
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Study aims

The general purpose of our studies was to modify fibrin for applications in 

regenerative medicine for skin, connective tissue, bone, and cartilage.

Specific purposes were:

1. to  find  truncated  FGF-2  peptides  with  a  high  affinity  to  fibrin  

(chapter 2)

2. to analyze the biological  activity  of the truncated FGF-2 peptide  

compared to FGF-2 (chapter 3)

3. to  test  controlled  release  of  substances  bound  to  fibrin  by  

fibronectin, thrombin, and DNA (chapter 4)

4. to test electrospun fibrin for tissue engineered application of skin  

(chapter 5)

5. to stimulate fibrin-cell constructs for tissue engineered applications 

of tendons and ligaments (chapter 6).

Future perspectives

Future steps of our research would be first the testing of FGF-2 peptide as 

a fibrin anchor for controlled release from fibrin of substances without a 

binding affinity to fibrin. Secondly, our focus would be on the optimization 

of the electrospinning process for fibrin. Finally, our interest would be on 

further stimulation processes of fibrin-cell constructs. It needs to focus on 

standardized strength and stability testing of the produced constructs and 

moreover in vivo testing.
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Fibroblast growth factor-2 peptides bind to fibrinogen
and fibrin and exert biological activity

Abstract

Full length human FGF-2 is a single chain polypeptide of 162 amino acids 

and a  high  binding  affinity  to  fibrinogen  and  fibrin  The  putative 

fibrin(ogen)-binding site of FGF-2 has been localized to an approximately 

40-residue domain near the N-terminus of FGF-2. This domain observation 

allowed us to begin our analyses by further characterizing and truncating 

the  sequences  within  this  domain  required  for  the  FGF-2/fibrinogen 

interaction. Complementary DNAs of FGF-2 peptides ranging from 37 to 

58 amino acids (aa)  were  created by PCR,  ligated into the pGEX-6P-2 

vector system and expressed in E. coli BL21(DE3) bacteria cells. Peptides 

smalller than 37 aa were synthesized. Only purified peptides were tested 

for  their  binding affinitiy to fibrin(ogen) and their  biological  activity on 

mouse myoblast cells (C2C12).

The results of the fibrinogen and fibrin binding assay demonstrated a high 

affinity of native FGF-2 and peptides longer than 37 aa. The  smallest 

fragment of 20 aa had nearly no binding affinity in various concentrations. 

Native FGF-2 also shows the highest proliferative activity in C2C12 cells. 

Similar to the fibrinogen and fibrin binding fragments ranging from 58 aa 

to 37 aa promoted cell proliferation almost in the same dimension. The 

smallest fragment pep5 did not stimulate C2C12 cell growth.

The results indicate that the domain for biological activity and the binding 

domain to fibrinogen are located on the same segment of FGF-2 cDNA. It 

is necessary to use more than the 15 aa, which demonstrates the putative 

binding domain.
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Introduction

Fibroblast  growth  factor-2  (FGF-2,  basic  FGF,  heparin-binding  growth 

factor  or  prostatropin)  belongs  to  a  family  of  heparin-binding  growth 

factors.(1)  As  a  single-chain  protein,  FGF-2  has  146  amino  acids,  an 

isoelectric point of 9.6 and a molecular weight of about 17,400 Dalton.

(2,3) The human FGF-2 gene is expressed in bone marrow, lymph node, 

pancreas, thymus and assumable spleen.(4,5) The observation that FGF-2 

mRNA is below the detection limit in adrenal, spleen, heart, kidney, liver, 

stomach,  small  intestine,  large  intestine,  testis  and  ovary  support  the 

notion that the high abundance of human FGF-2 mRNA in specific tissues 

is  due  to  the  storage  of  mitogen  in  the  extracellular  matrix  and  not 

continuous gene expression.(6)  FGF-2 was characterized by Florkiewicz 

and Sommer(7) and is the prototype member of the FGF family. It does 

not contain any disulfide bonds and is not glycosylated.(2) The structure 

of  FGF-2,  revealed  by  X-ray  crystallography,  shows  a  similar  folding 

structure as seen with Interleukin-1(IL-1).(4,8)

Binding  of  FGF-2  to  one  of  its  receptors  (FGFR-1,  FGFR-2,  FGFR-3, 

FGFR-4) requires the interaction with heparan sulfate and heparan sulfate 

proteoglycans (Syndecan) of the extracellular matrix before reaching full 

functional  activity.(9)  This  is  also  demonstrated  by  the  ability  of 

heparinase to inhibit receptor binding and biological activity of FGF-2.(10) 

Because of the many different receptor phenotypes expressed in various 

cell  types,  FGF-2  is  a  multifunctional  protein  with  a  wide  spectrum of 

biological activities. FGF-2 stimulates a variety of physiological processes, 

including cell proliferation, cell differentiation and cell migration.(11) More 

recently, 

FGF-2 has been further recognized as a hematopoietic cytokine and may 

play  an  important  role  in  wound  healing  and  angiogenesis.(12)  It  is 

released after tissue injury and during inflammatory processes, and also 

during the proliferation of tumor cells.(13) It is probably one of the factors 

responsible  for  the  out-growth  of  new  capillary  blood  vessels  in  the 
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mesencephalon and telencephalon during embryogenesis, at a time when 

these structures are essentially free of blood vessels.(14)

The  expression  of  FGF-2  and  related  factors  seems  to  be  regulated 

differentially, depending on cell type and developmental age.(15,16) The 

FGF-2 can be phosphorylated by a protein kinase also located on the cell 

surface, which may alter its activity and bioavailability. Heparin protects 

FGF-2 from inactivation by proteases, acids, and heat. It also improves its 

capacity  to  bind  to  the  receptors  and  hence  potentates  the  biological 

activities  of  FGF-2.  This  feature  may  be  of  physiological  importance 

because mast cells,  for  example, contain high levels of heparin,  which 

could be released during degranulation. In addition, heparin also increases 

the biological half life of FGF-2. (17,18)  The expression of plasminogen 

activator and collagenase activity by primary endothelial cells is enhanced 

by FGF-2.(12,19) 

The high-affinity and saturable binding of FGF-2 to fibrinogen and fibrin 

indicates an important level of influence at sites of injury between growth 

factors  with  critical  cell  regulatory  functions  and  the  fibrin  matrix.(20) 

Fibrin is naturally associated with a number of growth factors that binds to 

fibrinogen and may promote wound healing.(19,21) Such growth factors 

may attract  and/or  stimulate  cells  involved  in  tissue repair.(4,12)  The 

application of fibrin gel is widely-used in hemostasis and tissue sealing 

due to its high biological tolerance and its naturally proteolytic resorption. 

Therefore, fibrin gels are perfectly suited as a matrix or depot for living 

cells and bioactive agents acting as a slow release delivery system.(20,22) 

Due to the hydrated and porous structure of fibrin, however, substances 

without specific affinity to fibrin will exit the gel by diffusion relatively fast. 

In  comparison,  natural  fibrin  binding  proteins,  or  binding  sequences 

thereof,  can  be  linked  to  target  substances  without  a  natural  binding 

affinity to fibrin, thereby retaining them in the fibrin matrix. FGF-2 holds 

significant potential as a therapeutic additive to sealant products, because 

FGF-2  can  stimulate  wound  healing,  tissue  regeneration,  and 

angiogenesis.  Therefore,  our  aim  was  to  characterize  the  fibrinogen 
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binding domain of FGF-2 that has a high affinity to fibrinogen and fibrin.

(20) The putative fibrinogen-binding site of FGF-2 has been localized to an 

approximately 40-residue domain near the N-terminus of FGF-2 (Figure 

2.1a).(21) This domain observation allowed us to begin our analyses by 

further  characterizing and truncating the sequences  within  this  domain 

required for the FGF-2/fibrinogen interaction (Figure 2.1b).

Figure 2.1a. Three-dimensional structure of human FGF-2 (~ 17.4 kDa protein) The red 
part identifies the putative binding domain (15 bp) of FGF-2 on fibrinogen (plotted using 
Visual Molecular Dynamics).

Figure 2.1b.  Schema of the truncated FGF-2 fragments pep1, pep2, pep3, pep4, and 
pep5 in comparison to full length human FGF-2.
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Materials and methods

Construction of rhFGF-2 and various truncated hFGF-2 peptides

Using a standard polymerase chain reaction (95°C, 30 sec; 60°C, 30 sec; 

72°C, 30 sec; 25 cycles), full length cDNA for human FGF-2 contained in 

the cloning vector system pCR2.1 (Invitrogen, Germany) was amplified 

with the following primer pairs in table 2.1. The primers contained EcoRI 

and  XhoI restriction sites and a 6x HIS-tag on the C-terminus. The PCR 

products, ranging from 486 bp down to 111 bp were digested with EcoRI 

and XhoI  and then ligated  to  the  same restriction enzyme site  in  the 

multicloning region of the pGEX-6P-2 plasmid vector (Pharmacia Biotech, 

Vienna) using DNA Ligation Kit (Roche Diagnostics,  Vienna).  The pGEX 

vector systems contained an N-terminal glutathione S-transferase (GST) 

site, which results in a fusion protein of GST and the protein of interest. It 

also included a PreScision protease site to cleave the GST from the fusion 

protein.  After  transformation  into  Escherichia  coli  Top10  (Invitrogen, 

Germany), the plasmid DNA of positive clones were isolated and purified 

(Mini  Preparation  Kit,  Sigma-Aldrich,  Vienna)  and  then  sequenced  by 

Boehringer Ingelheim Austria GmbH, Vienna.

Expression and purification

Positive clones plasmids were transformed into BL21(DE3) an Escherichia 

coli strain used for protein expression (Invitrogen, Germany), which was 

induced with isopropyl-β-D-thiogalactopyranoside (IPTG). After 5 hours of 

expression cell lysates were dissolved in phosphate buffered saline (PBS, 

pH 7.5), 5 mM 1,4-dithio-DL-threitol (DTT), 1% Triton X-100, protease 

inhibitor cocktail (Roche Diagnostics, Vienna), and 0.5 μg/ml lysozyme. 

The bacteria lysate was mixed, incubated for 15 minutes on ice, sonicated 

6 times for 10 seconds and centrifuged for 15 minutes. The supernatant 

was then incubated with 10% glutathione Sepharose slurry (Pharmacia 

Biotech, Vienna) over night at 4°C. Afterwards the column was washed 

once with the lysis buffer and twice with a cleavage buffer (50 mM Tris-
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HCl, pH 7.0; 150 mM NaCl; 0.01% Triton X-100). Then the GST fusion 

protein  was  cleaved  with  Precision  protease  (Amersham  Biosciences, 

Germany) over night at 4°C and only the recombinant hFGF-2 peptides 

were  eluted  using  50  mM  Tris-HCl  (pH  7.0)  and  10  mM  reduced 

glutathione.  Purified  proteins  were  dialyzed  against  PBS  using  a 

minidialysis  system  (Pierce,  THP  Medical  Products,  Vienna),  and  then 

stored at -80°C.

Electrophoresis and Western blot analysis

Sodium  dodecylsulfate-polyacrylamide  gel  electrophoresis  (SDS-PAGE), 

followed by Coomassie brilliant blue staining, was performed at each step 

of  the  recombinant  protein  production  as  previously  described.(23) 

Peptides  (<7  kDa)  were  separated  by  discontinuous  tricine  SDS-PAGE 

according to manufacturer’s instruction (Bio-Rad Laboratories, Vienna). 

For  Western  blot  analysis,  samples  in  the  gel  after  SDS-PAGE  were 

electrophoretically  semi-dry  transferred  to  a  nitrocellulose  membrane 

(Bio-Rad,  Vienna).  The  membrane  was  first  immersed  in  a  blocking 

solution (PBS and 2% bovine serum albumin (BSA)) and then incubated 

with  monoclonal  anti-His6-peroxidase  antibody  diluted  1:1.000  in  PBS 

containing 0.2% TWEEN (PBST 0.2). After washing three times with PBST 

0.2,  the  membrane  was  covered  with  a  chemiluminescent  detecting 

reagent  (Roche  Diagnostics,  Vienna)  according  to  manufacturer’s 

instruction.  Immuno-reactive bands were visualized in the MultiimageTM 

Light Cabinet (Biozym, Vienna).

Synthetic peptides

Due  to  the  small  sizes  and  therefore  difficult  expression  procedure 

peptides pep3 (37 aa), pep4 (29 aa) and pep5 (20 aa) were synthesized 

by the company PiChem (Graz). The sequences are shown in Table 2.1.
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Table 2.1.  Primers with  EcoRI  and  XhoI  restriction sites  for  ligation into  pGEX-6P-2 
expression vector system. The restriction sites are underlined and the 6x HIS-tag on the 
C-terminus is marked in red. The sequences of the synthetic peptides #3, #4, and #5 
contain a 5x HIS-tag at the C-terminus (red).

Biological activity of recombinant hFGF-2 and peptides

Mouse  myoblast  (C2C12)  cells  were  purchased  from  ECACC  (Sigma-

Aldrich, Vienna). They were grown in Dulbecco’s Modified Eagle Medium 

(DMEM) with  10% fetal  calf  serum (FCS).  At  50-60% confluence cells 

were  trypsinized  and  transferred  to  a  24-well  plate  (1  x  104/well). 

Following a 48-hour-culture period at 37°C, cells were washed with DMEM 

only and then covered with fresh medium (DMEM + 1% FCS) containing 

various concentrations of rhFGF-2 or rhFGF-2 peptides. After 48 hours the 

number  of  viable  cells  was  determined  by  adding  3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium  bromide  (MTT,  Sigma-

Aldrich,  Vienna)  as  previously  described.(24)  MTT  is  converted  to 

formazan  by  mitochondrial  succinate  dehydrogenase.  The  amount  of 

formazan produced is proportional to the number of viable cells and its 

absorbance was read at 550 nm.

Primers sense (s) and antisense (as); 5' - 3'

EcoR I restriction site

hbFGF full lenght sense GGA ATT CCC ATG GCA GCC GGG AGC ATC

hbFGF pep1 sense GGA ATT CCC GAA GAG AGA GGA GTT GTG

hbFGF pep2 sense GGA ATT CCC GTG TGT GCT AAC CGT TAC

Xho I restriction site

hbFGF full lenght antisense CTC GAG TCA ATG ATG ATG ATG ATG ATG GCT CTT AGC AGA CAT TGG

hbFGF pep antisense CTC GAG TCA ATG ATG ATG ATG ATG ATG CCT TGA CCG GTA AGT ATT

Synthetic peptides

pep 3 (37 aa) EDGRLLASKC VTDECFFFER LESNNYNTYR SRHHHHH

pep 4 (29 aa) KCVTDECFFF ERLESNNYNT YRSRHHHHH

pep 5 (20 aa) FERLESNNYN TYRSRHHHHH
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Fibrin(ogen) binding assay

A polystrene  96-well  plate  (Nunc® Maxisorp ELISA-plates)  was  coated 

with 1 mg/ml fibrinogen (Tisseel, Baxter AG, Vienna) overnight at 4°C, 

and  blocked  with  blocking  solution  (PBS  and  1%  BSA)  at  room 

temperature (RT) for 2 h. After washing three times with PBS, purified 

recombinant proteins and peptides were added in various dilutions to the 

plate and incubated for 1 hour at RT. After washing procedure, monoclonal 

anti-His6-peroxidase  antibody  diluted  in  PBST  0.1  was  added  and 

incubated  for  1  hour  at  RT.  Finally,  the  plate  was  washed  again  and 

samples were  incubated with o-phenylenediaminehydrochlorid substrate 

for color reaction. The absorbance was measured at 492 nm and 620 nm.

For  fibrin  binding  analysis  the  plate  was  first  coated  with  2  mg/ml 

fibrinogen overnight at 4°C and then incubated with 10 I.U./ml thrombin 

(Tisseel,  Baxter  AG,  Vienna)  for  30  minutes  at  37°C.  The  following 

procedure was the same as described above.
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Results

rhFGF-2 and hFGF-2 peptides

Recombinant human FGF-2 was expressed as a fusion protein using the 

pGEX-6P-2 system. Western blot technique revealed the detection with 

monoclonal  anit-6His-peroxidase  antibody  (Figure  2.2a).  It  showed 

enough correctly sized protein in the supernatant for purification steps. 

The result of cleavage and purification of rhFGF-2 was confirmed by SDS-

PAGE (Figure 2.2b). 

Figure 2.2. Expression and purification of FGF-2. (a) The expression of fused GST-FGF-2 
(~  43  kDa)  was  analysed  by  Western  blot  technique  developed  with  a  monoclonal 
anti-6His-peroxidase antibody. S supernatant, P inclusion bodies. (b) The cleaved and 
purified FGF-2 (~ 17.4 kDa) was confirmed by SDS-PAGE stained with Coomassie brilliant 
blue.

As a result of deletion of human FGF-2 cDNA parts, amino- and carboxyl-

terminally truncated rhFGF-2 peptides (pep1 to pep3) were successfully 

expressed as a GST fused protein (Figure 2.3a). The Western blot analysis 

represented  similar  protein  amounts  in  both supernatant  and  inclusion 

bodies. It also showed unspecific reactions of the antibody. Purified and 

cleaved peptides pep1 (~32 kD), pep2 (~ 5.2 kD), and pep3 (~ 29 kD) 

were analyzed by tricine SDS-PAGE (Figure 2.3b). Fragments smaller than 

37  amino  acids  were  sythesized.  Discontinuous  tricine  SDS-PAGE 

confirmed the different sizes of the peptides pep3, pep4, and pep5 (Figure 

2.4).
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Figure 2.3.  The expression and purification of FGF-2 peptides. (a) The expression of 
fused GST-pep1 (~ 32 kDa),  GST-pep2 (~ 31 kDa),  and GST-pep3 (~ 29 kDa) was 
analysed by Western blot technique developed with a monoclonal anti-6His-peroxidase 
antibody. Lane 1, 3, 5 supernatant; lane 2, 4, 6 inclusion bodies. (b) The cleaved and 
purified pep1 (~ 6.2 kDa), pep2 (~ 5.2 kDa), and pep3 (~ 4.0 kDa) were confirmed by 
discontinuous tricine SDS-PAGE stained with Coomassie brilliant blue.

Figure 2.4. Synthetized peptides pep3 (~ 4.0 kDa), pep4 (~ 3.1 kDa), and pep5 (~ 2.1 
kDa) were detected by discontinuous tricine SDS-PAGE stained with Coomassie brilliant 
blue

Binding assay

Only purified proteins and peptides in different concentrations were used 

for testing the binding affinity to fibrinogen and fibrin (Figure 2.5). The 

results  of  the fibrinogen and fibrin  binding assay demonstrated  a  high 

affinity of native rhFGF-2, pep1, pep2, and pep3 to fibrinogen. Peptide 

pep4 showed a significantly lower and pep5 has nearly no binding affinity 

in various concentrations.
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Figure 2.5. Fibrin(ogen) binding assay with different concentrations of FGF-2 and FGF-2 
peptides (pep1 – pep5). (a) The graph represents the binding affinity  of the purified 
(FGF-2, pep1, and pep2) respectively synthesized (pep3, pep4, and pep5) samples to 
fibrinogen.  (b)  The graph demonstrates the binding affinity  to  fibrin.  The values are 
expressed as mean ± SD (*p<0.01).

Biological activity

Recombinant  human FGF-2 showed the  highest  proliferative  activity  in 

mouse myoblast cells. Similar to the fibrinogen and fibrin binding assay 

pep1 to pep3 promoted cell proliferation almost in the same dimension. 

The smallest fragment pep5 did not stimulate C2C12 cell growth (Figure 

2.6).

Figure  2.6.  MTT  assay  of  mouse  myoblast  (C2C12)  cells  incubated  with  different 
concentrations of FGF-2 and FGF-2 peptides (pep1 – pep5). The values are expressed as 
mean ± SD.
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Discussion

Full  length  human  FGF-2  is  a  single  chain  polypeptide  without  any 

disulfide bonds and glycosylation. It is suitable to be expressed in E. coli, 

especially  in  E.  coli BL21(DE3)  and  glutathione  S-transferase  fusion 

system. Amplified FGF-2 was ligated into pGEX-6P-2 vector which contains 

a GST at the N-terminus. The N-terminal fusion with GST led to a higher 

expression rate of FGF-2 than in the pET-11a (direct expression without a 

fusion protein) and pEYFP-His (C-terminal fusion with EYFP, that encodes 

a green-yellow variant of the Aequorea victoria green fluorescent protein 

(GFP)) vector systems (data not shown). After  expression, this  system 

permits convenient site-specific cleavage and simultaneous purification on 

Glutathione  Sepharose™.  For  FGF-2  digestion  and  purification  it  is 

necessary to work at low temperature (5°C) to minimize degradation of 

the protein and peptides.

The high expression rate of a N-terminal fused protein and the following 

simultaneous purification and cleavage of the protein of interest allows the 

production of the smaller FGF-2 peptides pep1 - pep4. According to Peng 

et al. the putative fibrinogen-binding site of FGF-2 has been localized near 

the N-terminus of FGF-2.(21) That allowed us to begin our analyses by 

further characterizing the sequences within this domain required for the 

FGF-2/ fibrinogen interaction.

The  smallest  FGF-2  peptide  pep5  with  20  aa,  which  characterizes  the 

binding domain of FGF-2 to fibrinogen and fibrin, has to be synthesized. 

This domain incorporated in the whole FGF-2 protein sequence represents 

over 90% of the binding affinity of FGF-2 to fibrinogen and fibrin(21). Only 

pep5 (20 aa) shows no binding affinity to both fibrinogen and fibrin. In 

contrast to Peng et al our aim was not only to identify the fibrinogen and 

fibrin binding domain of FGF-2 but also produce FGF-2 truncated peptides 

including this binding area.(21)

The pGEX-6P-2 vector system with the N-terminal fusion of GST allows a 

high level expression of fused peptides and a well working cleavage and 
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purification down to 37 amino acids. Consequently, to eliminate all sorts of 

unspecific  reactions  for  the  binding  assays  to  fibrinogen  and  fibrin 

peptides pep3, pep4, and pep5 were synthesized.

The results  of  the  binding assays  demonstrate  that  there  is  a  binding 

affinity to both fibrinogen and fibrin down to 87 base pairs or 29 amino 

acids (pep4). Based on these results, we assume that there are more than 

the  15  amino  acids  of  pep5  necessary  for  the  binding  of  hFGF-2  to 

fibrinogen. The extension has to be on the N-terminal site and needs a 

minimum of 4 amino acids (pep4).

Another point of interest is the biological activity in a mouse myoblast cell 

line. The results demonstrate a concentration dependent biological activity 

of FGF-2 and the FGF-2 peptides pep1 to pep4. Full length FGF-2 showed 

the highest cell growth effect. In contrast pep2 and pep3 decreased these 

effect  down  to  about  50%.  The  smallest  peptide  pep5  possesses  an 

extremely weak or no biological activity in all concentrations. 

Consequently, the results indicate that the domain for biological activity 

and the binding domain to fibrinogen are located on the same segment of 

FGF-2  cDNA.  And it  is  necessary  to  use  more  than  the  15  aa,  which 

represents the putative binding domain.

Therefore  it  might  be possible  that  hFGF-2 fragments  act  as  a  linking 

agent between fibrinogen and target  substances in fibrin matrices.(25) 

And they  could  stimulate  cell  proliferation  and thereby  have beneficial 

effects on wound healing and angiogenesis.
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Abstract

Fast growth, proliferation and differentiation of cells, which were isolated 

from waste material, is one of the aims for tissue engineering applications. 

Isolated human adipose-derived stem cells (ASCs) were stimulated with 3 

ng/ml (low-dose) and 30 ng/ml (high-dose) recombinant fibroblast growth 

factor 2 (FGF-2) and a 32 amino acid FGF-2 peptide over 28 days. Results 

showed  on  one  hand  the  estimated  growth  and  proliferation  effect  of 

FGF-2  in  both  the  low-dose  and  high-dose  group. On  the  other  hand 

FGF-2  peptide  stimulation  had  no  effect  on  cell  growth  and  cell 

proliferation. In contrast to cell growth and cell proliferation, stimulation 

with both 3 ng/ml and 30 ng/ml of FGF-2 peptide upregulated collagen 

Iα2 already within 7 days compared to the addition of FGF-2. Another 

marker for development into connective tissue and tendon, collagen III, 

showed a higher mRNA expression level in the low-dose group within 7 

days, as well. The effects of the low-dose concentration of FGF-2 peptide 

on ASCs were reflected in the ratio of collagen Iα2 to collagen III. The 

high differentiation effect of FGF-peptide also was detected on the mRNA 

expression of alpha smooth muscle actin (α-SMA) and desmin, which are 

essential  extra-cellular  matrix  proteins  and  cytoskeletal  elements  for 

tissue engineering applications. 

The stimulation with FGF-2 and FGF-peptide led to differentiation patterns 

in  ASCs  for  essential  extracellular  matrix  proteins  and  cytoskeletal 

elements, which are key for tendons and ligaments.
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Introduction

Mesenchymal stem cells (MSCs) are mostly isolated from bone marrow. 

However, other sources exist such as adipose tissue, muscle, connective 

tissue, skin, and placenta with similar surface expression patterns on the 

MSCs.(1) Recent studies have confirmed the existence of an abundant and 

easily  accessible  source  of  multipotent  stem  cells  in  subcutaneous  or 

articular adipose tissue.(1-5) Human adipose tissue is  vascularized and 

represents a source of autologous multipotent cells, such as pericytes and 

marrow-derived MSCs.(6,7) Cells isolated from adipose tissue, which were 

obtained from elective liposuction procedures under local anesthesia, have 

been termed processed adipose-derived stem cells (ASCs). Many studies 

analyzed and documented the cellular behaviour of the ASCs. Erickson et 

al. described the high chondrogenic potential of ASCs in vitro and in vivo.

(8)  Different  culture conditions  induced surface expression patterns  on 

ASCs associated with the adipocyte, osteoblast, and myocyte pathways.

(1,9-11) 

Some groups as Marie and Varkey et al. showed an osteogenic effect of 

human  basic  fibroblast  growth  factor  (heparin-binding  growth  factor, 

prostatropin,  bFGF or FGF-2) on osteoprogenitor and bone marrow cells.

(12,13)  Dvorak  et  al.  proposed  that  the  endogenous  FGF  signaling 

pathway can be implicated in differentiation of human embryonic stem 

cells.{18}  Cell  differentiation,  proliferation,  and  migration  are  often 

induced by FGF during development in the same cell type. Therefore, the 

same receptor for FGF-2 can produce various biological effects.

Fibroblast growth factor constitutes a family of related proteins controlling 

normal  growth  and  differentiation  of  mesenchymal,  epithelial,  and 

neuroectodermal cell types.(14,15) FGF-2 was isolated initially from brain 

tissue. Its  gene  is  expressed  in  bone  marrow,  lymph node,  pancreas, 

thymus  and  presumably  spleen.(16-18)  The  observation  that  hFGF-2 

mRNA is below the detection limit in adrenal, spleen, heart, kidney, liver, 

stomach,  small  intestine,  large  intestine,  testis  and  ovary  support  the 
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notion that the high abundance of hFGF-2 mRNA in specific tissues is due 

to the storage of mitogen in the extracellular matrix and not continuous 

gene expression. (19) 

Because of the many different receptor phenotypes expressed in various 

cell  types,  FGF-2  is  a  multifunctional  protein  with  a  wide  spectrum of 

biological activities. FGF-2 stimulates a variety of physiological processes, 

including cell proliferation, cell differentiation and cell migration.(14) More 

recently, FGF-2 has been further recognized as a hematopoietic cytokine. 

Receptors for human FGF are expressed on the surface of peripheral B and 

T cells and a variety of leukemic cell lines. T-lymphocytes express FGF-2 

mRNA  and  produce  heparin-binding  FGF-like  bioactivity,  raising  the 

possibility  of  an  autocrine  or  paracrine  role  for  human  FGF  in 

hematopoietic cell function.(20,21) 

Binding  of  FGF-2  to  one  of  its  receptors  (FGFR-1,  FGFR-2,  FGFR-3, 

FGFR-4) requires the interaction with heparan sulfate and heparan sulfate 

proteoglycans (Syndecan) of the extracellular matrix before reaching full 

functional  activity.(22)  This  is  also  demonstrated  by  the  ability  of 

heparinase to inhibit receptor binding and biological activity of FGF-2.(23) 

Because of the many different receptor phenotypes expressed in various 

cell  types,  FGF-2  is  a  multifunctional  protein  with  a  wide  spectrum of 

biological activities. FGF-2 stimulates a variety of physiological processes, 

including cell proliferation, cell differentiation and cell migration.(14) More 

recently, FGF-2 has been further recognized as a hematopoietic cytokine. 

Receptors for human FGF are expressed on the surface of peripheral B and 

T cells and a variety of leukemic cell lines. T-lymphocytes express FGF-2 

mRNA  and  produce  heparin-binding  FGF-like  bioactivity,  raising  the 

possibility  of  an  autocrine  or  paracrine  role  for  human  FGF  in 

hematopoietic cell function.(20,21)

FGF-2 plays  an important  physiological  role  in  tissue regeneration  and 

wound healing,  and is  involved also  in angiogenesis  by controlling  the 

proliferation and migration of vascular endothelial cells. The expression of 

plasminogen activator and collagenase activity by these cells is enhanced 
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by FGF-2.(24,25) It is probably one of the factors responsible for the out-

growth  of  new  capillary  blood  vessels  in  the  mesencephalon  and 

telencephalon during embryogenesis, at a time when these structures are 

essentially  free  of  blood  vessels.(26)  The  high-affinity  and  saturable 

binding of FGF-2 to fbrinogen and fibrin indicates an important level of 

coordination at  sites  of  injury  between growth  factors  with  critical  cell 

regulatory  functions  and  the  fibrin  matrix.(27)  In  previous  studies  the 

binding domain of FGF-2 to fibrinogen was characterized by truncating the 

protein  from  the  carboxyl-  and  amino-terminus.(28,29)  One  of  these 

peptides  is  32  amino  acids  long  and  showed  both  binding  affinity  to 

fibrinogen and fibrin and biological activity on fibroblast cells.(30) 

The  effect  of  FGF-2  on  bone  marrow  stromal  cells  in  two  different 

concentrations  was  analyzed  by  Hankemeier  et  al.  The  increase  in 

proliferation  and  the  stimulation  of  the  mRNA  expression  of  specific 

extracellular matrix proteins and cytoskeletal elements by low-dose FGF-2 

treatment established an interesting background for our experiments.(31) 

This study analyzes the effect of FGF-2 and a truncated synthesized FGF-2 

peptide in two different concentrations on adipose-derived stem cells. Cell 

growth,  proliferation  and  differentiation  of  collagen  Iα2,  collagen  III, 

vimentin,  desmin,  and  α-smooth  muscle  protein  (α-SMA)  mRNA 

expression are observed.
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Materials and methods

ASC isolation and cultivation

Human  subcutaneous  adipose  tissue  was  collected  during  liposuction 

procedures in plastic and reconstructive surgery. The study was approved 

by  the  local  Ethical  Review  Board.  Adipose-derived  stem  cell  (ASC) 

isolation was modified form Zuk et  al.(1) and followed a procedure as 

described  previously.(32)  Finally,  cells  were  cultured  in  Dulbecco’s 

Modified Eagle’s Medium mixed 1:1 with Ham’s F-12 (DMEM/Ham’s F-12) 

containing 1% penicillin/streptomycin, 2 mM glutamine and 10% fetal calf 

serum  (FCS;  Sigma-Aldrich,  Vienna)  at  37°C,  5%  CO2 and  95%  air 

humidity to a subconfluent state.

Stimulation of human ASC cultures

In  the following experiments,  cells  up to  passage 4 were  seeded at  a 

density of 150 cells/well in 96-well plates and 5,0 x 103 cells/well in 6-well 

plates  (Nunc,  Vienna).  Cells  were  covered  with  the  medium described 

above supplemented  with low-dose (3 ng/ml)  recombinant  human full-

length FGF-2 (154 amino acids,  PeproTech, Vienna) or synthetic FGF-2 

peptide (37 amino acids, PiChem, Graz), high-dose (30 ng/ml) of both 

agents, or without any growth factor as the control. The supplemented 

medium  was  changed  once  per  week  and  samples  for  analysis  were 

collected after 7, 14, 21, and 28 days. Due to the low number of seeded 

cell,  three  replicates  for  the  first  collection  time  point  on  day  7  were 

prepared  for  cell  density  analysis  and reverse  transcription-polymerase 

chain reaction (RT-PCR).

Cell count, cell viability, and cell proliferation

Numbers of viable cells were counted on days 7, 14, 21, and 28 by trypan 

blue exclusion in a Neubauer counting chamber. Analysis of cell viability 

was  performed  using  on  one  hand  an  MTT  assay.  3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium  bromide  (MTT,  Sigma-
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Aldrich, Vienna) was added to the cells as previously described.(33) MTT 

is converted to formazan by mitochondrial succinate dehydrogenase. The 

amount of formazan produced is proportional to the number of viable cells 

and  its  absobance  was  read  at  550  nm.  On  the  other  hand  the 

proliferation of the cells was analyzed with a BrdU kit (Roche Diagnostics, 

Vienna) according to manufacturer’s instruction. 5-bromo-2-deoxyuridine 

(BrdU)  is  a  synthetic  nucleoside,  which  is  incorporated  into  newly 

produced DNA of replicating cells.(34) Cells were incubated for 24 hours 

at 37°C with the BrdU labeling solution. During this period the BrdU, which 

is analogue to pyrimidine was incorporated in place of thymidine into the 

newly synethized cellular DNA. The labeling medium was removed, then 

cells  were  fixed  and  incubated  with  the  anti-BrdU  conjugate.  Finally 

samples were washed, covered with the substrate and measured at 450 

nm.

RT-PCR

RNA  was  extracted  from  cells  according  to  manufacturer’s  instruction 

(GenElute Mammalian Total RNA Kit, Sigma-Aldrich, Vienna) Purified RNA 

was quantified using a spectrophotometer at 260 and 280 nm, and then 

aliquoted and stored at -80°C. 2 μg of RNA were first treated with RNase-

free DNase (Promega GmbH, Germany) according to the manufacturer’s 

instruction  and  then  transcribed  into  cDNA  using  AMV  reverse 

transcription system (Promega GmbH, Germany).  Primer sequences for 

the genes of interest  for  the RT-PCR were described in table 3.1. PCR 

conditions were: 5 min at 94°C, and then 39 cycles of 1 min at 94°C, 1 

min at 60°C and 1 min at 72°C. The PCR reactions were separated by gel 

electrophoresis and the product bands were visualized and photographed 

under ultraviolet light densiometry. The results were expressed as relative 

quantification of mRNA levels compared to mRNA levels of the internal 

reference gene GAPDH and the control group without stimulation.
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Table 3.1. Human specific oligonucleotide primers used for polymerase chain reactions. 
Col Iα2, collagen I alpha2; Col IIIα1, collagen III alpha1; Vim, vimentin;  α-SMA, alpha 
smooth  muscle  actin;  Des,  desmin;  GAPDH,  glyceraldehydes-3-phosphate 
dehydrogenase.

Statistical analysis

The  means  ±  SEM were  calculated  for  all  variables  tested.  Statistical 

analysis  of  data  was  performed  by  unpaired  t-test  and  statistical 

significance was accepted at p<0.05.
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Results

Light microscopic analysis showed that cultured cells were healthy in all 

groups (Figure 1). Cells treated with low-dose FGF-2 (3 ng/ml) reached 

higher cell  densities  than cultures in all  other groups and possessed a 

more homogeneous spindle-shaped morphology at day 7, 14, 21, and 28 

(Figure 1e-h). Both FGF-2 peptide groups (3 ng/ml and 30 ng/ml) showed 

similar cell  morphology and growth behaviour as cells  cultured without 

stimulation over the whole time period (Figure 3.1a-d, 3.1m-p). Low-dose 

FGF-2 peptide treated cells  arranged to stellar  cell  clusters  on day 28 

(Figure 3.1a-d).

Cell count and cell viability, and cell proliferation

Generally, the cell density was significantly higher on day 21 and 28 in the 

ASC cultures with low-dose (3 ng/ml) FGF2- or FGF-2 peptide compared 

with cultures of high-dose (30 ng/ml) FGF-2 or FGF-2 peptide on days 7, 

14, 21, and 28 (Figure 2a). The cell density of both FGF-2 peptide groups 

was below or on the level of the control group without FGF-2 or FGF-2 

peptide.  The cell  number increased significantly  in  the FGF-2 low-dose 

group  on  day  21  compared  to  the  FGF-2  peptide  and  control  group 

(p<0.01). The proliferation of both FGF-2 peptide groups were almost on 

the same level as that of the control group at all time points (Figure 3.2b-

c). The FGF-2 groups showed higher proliferation as all other groups. The 

MTT and BrdU assay detected the highest signal in both FGF-2 groups on 

day 14.

49



FGF-2 peptide enhance adipose-derived stem
cell differentiation into tendon-like tissue

Figure 3.1. Light micrographs from ASCs stimulated with FGF-2 peptide (a-d and m-p) 
and FGF-2 (e-h and q-t) in 2 different concentrations in comparison to the control group 
(i-l) over 28 days (magnification, x100).
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Figure  3.2. Cell  count  (a),  cell  viability  measured  by  MTT  assay  (b),  and  cell 
proliferation (c) analyzed by BrdU incorporation of human ASCs on day 7, 14, 21, and 28 
after stimulation with low-dose (3 ng/ml) and high-dose (30 ng/ml) FGF-2 peptide and 
FGF-2 (*p<0.05).
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Gene expression

As  measured  by  PCR,  the  growth  factors  FGF-2  and  synthetic  FGF-2 

peptide  utilized  in  this  study  displayed  differentiation  in  osteogenetic 

direction  on  ASCs.  In  these  experiments,  expression  of  mRNA  for  a 

positive marker of osteogenesis Col Iα2 and for a fibrous scleroprotein Col 

IIIα1 was determined. For Col Iα2 and Col IIIα1 gene expression (Figure 

3.3a-d), only the treatment with 3 ng/ml FGF-2 peptide for 7 days led to 

significantly enhanced gene expression of 35% and 96% respectively as 

compared with the addition of FGF-2 (**p<0.01). ASCs treated with 30 

ng/ml of FGF-2 peptide showed a continuous expression pattern of Col Iα2 

over the whole time period of 28 days. The ratio of Col Iα2 to Col IIIα1 

was significant higher in both FGF-2 peptide groups (Figure 3.3e-f).
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Figure 3.3. Comparison of mRNA expression of collagen Iα2 and collagen IIIα1 in the 
low-dose (a, c) and the high-dose group (b, d) of FGF-2 peptide and FGF-2. The ratio of 
collagen Iα2 to collagen IIIα1 showed a significant increase in both FGF-2 peptide groups 
(e, f; *, p < 0.05). The results were expressed as relative quantification of mRNA levels 
compared to mRNA levels of the internal reference gene GAPDH and the control group 
without stimulation. Open bar: FGF-2 peptide; closed bar: FGF-2 stimulation.

Vimentin, desmin, and α-SMA mRNAs were detected in each group at all 

time points  (Figure 3.4a-f).  The 3 ng/ml  and 30 ng/ml  FGF-2 peptide 

groups showed a significantly higher desmin expression on day 7 and 28 

compared to FGF-2 stimulation (*p<0.05). In both FGF-2 peptide groups 

the expression levels  of  vimentin,  desmin,  and  α-SMA reached highest 

levels on day 28. The addition of 3 ng/ml and 30 ng/ml of FGF-2 resulted 

in the highest mRNA levels already on day 14. 
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Figure 3.4. Expression patterns of  mRNA of vimentin (a,  b),  desmin (c,  d),  and  α-
smooth muscle actin (e,  f).   The results  were expressed as relative quantification of 
mRNA levels compared to mRNA levels of the internal reference gene GAPDH and the 
control  group  without  stimulation.  Open  bar:  FGF-2  peptide;  closed  bar:  FGF-2 
stimulation.
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Discussion

This study demonstrates various effects of recombinant human fibroblast 

growth  factor-2  (FGF-2)  and  of  one  synthetic  FGF-2  peptide  on 

proliferation and differentiation of isolated human adipose-derived stem 

cells (ASCs). FGF-2 often induces proliferation and migration in the same 

cell type during development, angiogenesis, regeneration, and cancer.(35) 

Koumoto  et  al.  showed  an  upregulation  of  osteoblast  migration  and  a 

decrease of alkaline phosphatase activity and osterix mRNA expression by 

FGF-2.(36) Dvorak et al. found that FGF-2 can be implicated in the self-

renewal process and the differentiation of human embryonic stem cells.

(37,38)  Some  other  studies  also  approved  in  vitro  mineralization, 

elevation  of  proliferation,  and  stimulation  of  osteogenic  parameters  of 

human  and  rat  bone  marrow  stromal  cells.(12,13,39-43)  FGF-2  also 

showed  a  high  potency  in  cell  growth  and  differentiation  of  human 

adipose-derived stem cells.(44,45) 

In comparison to previous studies especially of bone marrow stromal cells 

treated  with  FGF-2  our  results  present  an  interesting  effect  into  the 

development  of  connective  tissue  and  tendon  with  ASCs.  Similar  to 

Hankemeier  et  al.  the  data  of  this  study  showed  on  one  hand  the 

estimated growth effect of FGF-2.(31) The low-dose FGF-2 enhanced cell 

growth within 21 days and cell proliferation within 14 days. In contrast, 

the  high-dose  group  led  to  an  increase  in  cell  growth  within  7  days. 

However, it showed a subsequent decrease to the values of the control 

group without stimulation. Cell proliferation reached its maximum within 

14 days and decreased moderately afterwards. Generally, the cell growth 

was higher in the low-dose FGF-2 group than in the high-dose one.

On the other hand FGF-2 peptide stimulation had no effect on cell growth 

and cell proliferation in both the 3 ng/ml and 30 ng/ml group compared to 

the control group. For cell growth the method of cell counting and the MTT 

assay led to similar tendency in the results.
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In contrast to cell growth and cell proliferation, stimulation with both 3 

ng/ml and 30 ng/ml of FGF-2 peptide upregulated collagen Iα2 already 

within  7  days  compared  to  the  addition of  FGF-2.  Another  marker  for 

development into connective tissue and tendon, collagen III,  showed a 

higher mRNA expression level  in the low-dose group within 7 days, as 

well. The effects of the low-dose concentration of FGF-2 peptide on ASCs 

were reflected in the ratio of collagen Iα2 to collagen III. The lower values 

(as a result of high collagen III expression)  in the FGF-2 peptide group 

suggested differentiation into the development of connective tissue and 

tendon. The high differentiation effect of FGF-peptide also was detected on 

the mRNA expression of alpha smooth muscle actin (α-SMA) and desmin, 

which  are  essential  extra-cellular  matrix  proteins  and  cytosceletal 

elements for tissue engineering applications. Desmin elevated in the low-

dose and the high-dose FGF-2 peptide group within 7 days and showed a 

second  maximum  after  28  days.  In  contrast,  α-SMA  was  highly 

upregulated in both FGF-2 peptide groups only within 28 days. Vimentin 

showed similar expression levels as the control group during the entire 

observation period.

Moreover, there was no mRNA expression signal detected in all groups of 

stimulation and in the control  group as well  for the adipogenic marker 

lipoprotein  lipase  (data  not  shown).  Therefore,  we  could  exclude 

differentiation of ASCs into adipocytes.

The normal  growth  and  proliferation  behaviour  of  ASCs in  both  FGF-2 

peptide groups during the whole time period led to the conclusion that 

FGF-2  loses  its  domain  or  configuration  with  the  truncation,  which  is 

responsible for increasing proliferation. In contrast to that, especially the 

low-dose  FGF-2  peptide  group  possessed  a  very  early  differentiation 

potential of the ASCs for collagen Iα2, collagen III, and desmin.

For further experiments stimulation with a combination of FGF-2 and FGF-

peptide might lead to a high cell number and an early differentiation of 

isolated ASCs.
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Conclusion

Fast growth, proliferation and differentiation of cells, which were isolated 

from waste material, is one of the aims for tissue engineering applications. 

The stimulation with FGF-2 and FGF-peptide led to differentiation patterns 

in essential extracellular matrix proteins and cytoskeletal elements, which 

are key patterns for tendons and ligaments development.
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Abstract

Fibrin sealants have been proposed as depot matrices for substances due 

to  their  biocompatibility,  advantageous  biological  properties,  and 

widespread use in wound healing.  Our  study showed possibilities  for a 

continuous and controlled release of pharmaceutically active substances 

out  of  a  fibrin  matrix.  Substances  of  interest  were  linked  to  naturally 

occuring  fibrin-anchors,  i)  thrombin,  ii)  fibronectin,  and  iii)  DNA. 

Fibronectin and thrombin bind fibrin by a specific binding moiety and DNA 

by charge. Fibrin clots were prepared from Tisseel Fibrin Sealant (Baxter 

AG, Vienna) by mixing 100 mg/ml fibrinogen, the substance of interest 

and 4 U/ml of thrombin. Chemical crosslinking of proteins was performed 

with EDC using standard reaction conditions. Modification of proteins with 

biotin  and  PPACK  was  performed  with  N-hydroxysuccinimid  activated 

compounds. With fibrin-anchors pharmaceutically active substances, i.e. 

tumor necrosis factor (TNF), albumin and plasmid-DNA were continously 

released  over  10  days.  In  conclusion,  the  naturally  occuring  proteins 

fibronectin and thrombin with a fibrin binding moiety or DNA can be used 

as fibrin-anchors. 
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Introduction

Natural extracellular matrices (ECMs) of tissues are regarded as depots for 

growth factors, which affect many physiological processes of surrounding 

tissues  (1-3).  Similar  to  ECMs,  biomatrix  preparations,  such  as  fibrin-

based  biomaterials,  may  act  as  temporary  depots  for  the  sustained 

release of substances or drugs. Fibrin sealants, a fibrin-based biomaterial, 

are  optimally  suited  as  drug  depots,  because  of  their  biocompatibility, 

advantageous biological properties, and established use in haemostasis, 

tissue sealing and support of wound healing (4-6). Commercially available 

fibrin  sealants  contain  fibrinogen  and  thrombin  isolated  from  human 

plasma (7).

Fibrin  sealants  (FS)  rapidly,  consistently  and  easily  form  a  clot  when 

fibrinogen is mixed with thrombin. Fibrinogen, a soluble plasma protein, is 

converted  into  insoluble  fibrin  monomers,  via  proteolytic  cleavage  by 

thrombin.  These  monomers  aggregate  into  fibrils  to  form  a  three-

dimensional biopolymer clot (8). The 3-D clot is, ultimately, degraded via 

proteolysis by plasmin, and the degradation products are then resorbed by 

phagocytosis  (7).  The  natural  degradation  of  fibrin  sealants  is  a 

prerequisite for a controlled release drug depot.  

Therefore, if a pharamceutically active substance is linked to a fibrin clot, 

the substance can be released in a controlled fashion. This also implies 

that the substance must be bound to the fibrin clot in either a reversible 

or  an  irreversible  way.  A  pharmaceutically  active  substance  can  be 

modified or the fibrin matrix can be modified to bind the substance in the 

matrix.  

A  fibrin  binding  moiety,  or  fibrin-anchor,  can  be  directly  linked  to  a 

pharmaceutically active substance or indirectly linked to a drug binding 

moiety. The resulting structure, whether directly or indirectly bound, are 

termed fibrin conjugates (Figure 4.1). Previous studies evaluated vascular 

endothelial  growth  factor,  basic  fibroblast  growth  factor  and 

interleukin-1β  as  naturally  occurring  fibrin-anchors  (3,9,10). 
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Alternatively,  tranexamic  acid  (t-AMCA,  4-(aminmethyl)cyclohexane 

carboxylic  acid),  an  antifibrinolytic  agent,  can  modify  the  density  and 

structure of the fibrin matrix. Tranexamic acid decreases the density and 

increases the free space within the clot to retain affinity bound substances 

(11).

Figure  4.1. Fibrin  conjugates  consist  of  a  fibrin-anchor  directly  bound  to  a 
pharmaceutically active substance (left) or indirectly bound via a drug binding moiety 
(right). Moieties are either affinity bound or covalently bound.

The aim of the work is to evaluate thrombin, fibronectin and a specific 

plasmid-DNA  (pGEM-IL10)  as  naturally  occurring  fibrin-anchors  and  to 

compare diffusion rates of high and low weight molecules from a fibrin clot 

modified by tranexamic acid. Tranexamic acid is one of the most common 

fibrinolysis  inhibitors  and  influences  the  structure  and  mechanical 

properties of fibrin (12-14). The release of cytochrome C as an example 

for  a  low  molecular  weight  substance  and  the  the  release  of  a  high 

molecular  β-galactosidase,  both  without  intrinsic  affinity  to  fibrin  was 

tested. 

Secondly, the diffusion was tested of substances linked to fibrin-anchors 

based upon naturally occuring proteins with a fibrin binding moiety, such 

as i) thrombin ii) fibronectin, or due to charge iii) DNA. Fibrin clots for 
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release experiments were prepared from Tisseel Fibrin Sealant and after 

polymerization incubated in phosphate-buffered saline (PBS). 

Thrombin as a natural byproduct in fibrin formation has a tight binding to 

fibrin  with  high  binding  capacity  but  without  crosslinking.  Binding  of 

proteins to thrombin by random chemical crosslinking reactions bears the 

risk  that  lysin  residues  within  the  fibrin  binding  exo-loop  of  thrombin 

become modified and the fibrin/fibrinogen binding activity is lost. To avoid 

this effect, a modified form of the irreversible thrombin inhibitor PPACK 

was used to bind proteins to a specific site on thrombin. The modified 

PPACK is bound easily to a protein of interest and will direct the protein to 

the active site of thrombin and form a covalent link without affecting the 

fibrin/fibrinogen binding activity of thrombin.

Fibronectin, the second natural byproduct in fibrin formulation, is a large 

molecule and binds to fibrin via affinity and FXIII-crosslinking. Linking to 

fibrin via fibronectin binding was done by covalently 1-etyl-3-3-dimethyl-

aminopropylcarbodiimide (EDC) binding of fibronectin to a tumor necrosis 

factor (TNF) antibody for further affinity binding of TNF (15).

Compared to thrombin and fibronectin DNA binds because of its charge 

strongly to fibrin and fibrinogen. First, plasmid-DNA encoding for a gene is 

embedded in  the  fibrin  matrix  and its  affinity  for  fibrin  and fibrinogen 

allows a slow but sustained release of DNA over a long period of time. The 

use  of  DNA  as  a  binding  moiety  is  a  new  concept  of  controlled  and 

consistant release of substances of interest and should not be mixed up 

with genetransfer. 
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Materials and methods

Thrombin as a fibrin-anchor

The  fibrin  conjugate  was  prepared  by  dissolving  8.8  μM  of  biotin-N-

hydroxysuccinimide  (biotin-X-NHS;  Calbiochem,  CA,  USA)  in  N,N-

dimethylformamide (DMF; Fluka, Germany) and then incubated with 9.54 

μM D-phenylalanyl-L-propyl-L-arginine chloromethyl ketone (PPACK: NHS-

PPACK; Pichem, Austria) in 10 mM hydrochloric acid (HCl; Sigma, Vienna, 

Austria) buffer at room temperature (RT) for 30 minutes. Unbound PPACK 

was saturated with 0.13 μM valin (Merck, Germany) at RT for 30 minutes 

(16). Following saturation, 322 μl of PPACK bound biotin and PPACK bound 

valin  solution  was  added  to  66  μg  of  thrombin  dissolved  in  400  μl 

phosphate buffered saline (PBS). After a 30-minute incubation at RT, a 

size  exclusion  column  (Amicon  Y10;  Millipore,  MA,  USA)  was  used  to 

isolate  thrombin  bound PPACK from unbound PPACK,  biotin,  valin  and 

other forms. The resulting fibrin conjugate consists of thrombin as the 

fibrin  anchor,  PPACK  as  the  drug  binding  moiety,  and  biotin  as  the 

pharmaceutically active substance. Fibrin clots were spiked with 64 μl of 

the PPACK-thrombin-biotin binding conjugate.

The  release  of  biotin  was  measured  using  streptavidin-peroxidase 

(streptavidin-POX) immuno assay. A microtiter plate was incubated with 

diluted supernatant fluids over night at 4°C to allow proteins to attach to 

the plate. Then the plates were washed, 2 hours saturated with 1% bovine 

serum albumin (BSA) at RT, washed again with PBS and incubated for 1 

hour  with  streptavidin-POX  conjugate  (Sigma-Aldrich,  Vienna)  diluted 

1:5000  in  0.1%  BSA.  After  washing  the  plates  again  in  PBS,  o-

phenylenediaminehydrochloride (OPD) solution was added, incubated, and 

the color  reaction was stopped with  3 M sulfuric  acid (Sigma, Vienna, 

Austria). The absorbance at 492 nm and 620 nm for the reference were 

measured with a microplate reader (Spectra, SLT Labinstruments).
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Fibronectin as a fibrin-anchor

The fibronectin binding conjugate was prepared by dissolving 9 mg/ml 

tumor  necrosis  factor  (TNF)  antibody  (American  Laboratories  Inc., 

Connecticut,  USA)  in  10  mg/ml  1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC; Aldrich, USA) solution. After 5 minutes of incubation 

at RT 4.5 mg/ml fibronection (gift from T. Seelich, Baxter AG) was added. 

The reaction was incubated  for  4  hours  at  RT and stopped by adding 

sodium acetate (Sigma, Vienna, Austria) to a final concentration of 100 

mM. The EDC-fibronectin-TNF antibody binding conjugate were dialysed 

against PBS using an Amicon Y100; (Millipore, MA, USA) size exclusion 

column (17). 

The  degree  of  coupling  was  analyzed  via  a  sandwich-enzyme  linked 

immuno  assay  (ELISA).  Briefly,  a  microtiter  plate  was  coated  with 

fibrinogen  overnight  at  4°C  and  subsequently  incubated  with  EDC-

fibronectin-TNF-antibody binding conjugate  or  an  uncoupled  mixture  of 

TNF-antibody and fibronectin for 1 hour at RT. After washing the plate 

with PBS, recombinant human TNF (Knoll AG, Germany) was added and 

incubated for 1 hour at RT. After an other wash with PBS, the plate was 

first incubated with a secondary TNF antibody (Jackson Immuno Research 

Europe Ltd., Great Britain) recognizing another epitope for 1 hour at RT 

and then 15 minutes with a goat anti rabbit peroxidase conjugate. OPD 

was used as substrate for peroxidase. The colour reaction was stopped 

after 2 minutes with 0.5 M sulfuric acid and the absorbance measured at 

492 nm and 620 nm for reference with a microplate reader.

Same parts of EDC-fibronectin-TNF antibody binding conjugate and TNF 

were  incubated  for  2  hours  at  RT  and  then  mixed  to  the  fibrinogen 

component before adding thrombin. The polymerized clots were coated 

with PBS and incubated over a time period. The TNF concentrations in the 

supernatant fluids were analyzed by ELISA. Microtiter plates were coated 

with the supernatants of the clots and incubated for 24 hours at 4°C. After 

that it followed the same procedure as described above.
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DNA as a fibrin-anchor

The full  length cDNA for  baboon IL-10 was amplified using a standard 

polymerase  chain  reaction  (PCR)  (94°C-30’’,  58°C-30’’,  72°C-30’’,  40 

cycles) (18). The forward (5’-CCAGGCCAGGGCACCCAGTCTGA-3’) and the 

reverse (5’-ATAGAGTCGCCACCCTGATGTCTC-3’) primer obtained a ~500 

base  pairs  PCR  product,  which  was  ligated  into  pGEM-T  Easy  vector 

(Promega,  Germany).  The  product  pGEM/IL-10  was  used  to  transform 

Escherichia  coli DH5α  (Invitrogen,  Lofer,  Austria).  Plasmid  DNA  from 

positive bacteria colonies were isolated from 5 ml overnight cultures using 

Miniprep kit (Qiagen, Germany). DNA concentration was measured at 260 

nm and 280 nm as the reference using a photometer (SmartSpecTM3000, 

Bio-Rad Laboratories, Vienna, Austria).

Fibrin clots were spiked with either 2 or 20 µg plasmid-DNA (pGEM-IL10) 

and incubated in PBS or 25000 U/ml urokinase (Sigma-Aldrich, Vienna). 

Released  plasmid-DNA  was  purified  with  Qiagen  DNA  extraction  kit 

following the manufacture’s instructions (Qiagen, Hilden, Germany). After 

amplification  of  the  IL-10  gene  using  polymerase  chain  reaction 

(94°C-30’’, 50°C-30’’, 72°C-30’’, 30 cycles) with the primer pair (forward: 

GATTCTACGTCGACCGGTCAT,  reverse:  CAGTCGAGGCTGATAGCGAGCT), 

the PCR products were visualized on a 1% agarose gel. The amount of 

released  DNA  was  densitometrically  assessed  in  a  semiquantitative 

manner (The Mini Cycler, MJ Research, INC, MA, USA).

Fibrin clots without FS-anchor

Tranexamic  acid  (6.67 mM and 667 mM, Sigma,  Vienna,  Austria)  was 

added to the fibrinogen component to decrease density and crosslinking 

and increase fibril  size of the fibrin network. Cytochrom C (20 mg/ml; 

Sigma, Vienna,  Austria)  or  β-galactosidase (10 mg/ml;  Sigma, Vienna, 

Austria)  was  added  to  the  fibrinogen  component  as  the  low and  high 

molecular weight compound, respectively. 
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The  release  of  cytochrome  C  and  β-galactosidase  was  measured 

photometrically  at  409  nm  and  420  nm,  respectively,  using  a  DU-70 

Spectrophotometer (Beckmann Instruments, New Jersey, USA).

Preparation of Fibrin Clots

Tisseel® VH  Fibrin  Sealant  (Baxter  AG,  Vienna,  Austria)  was  used  to 

prepare 200 μl clots. The fibrinogen component was reconstituted with an 

aprotinin  solution and the thrombin component  with a  40 mM calcium 

chloride  solution  according  to  the  manufacturer’s  instruction.  The  final 

concentration  of  fibrinogen  was  50  mg/ml  and  of  thrombin  2  IU/ml, 

respectively. 

Polymerized fibrin clots  were  then transferred into  cryo-tubes,  covered 

with 1 ml PBS and incubated at 37°C. The supernatant fluid was collected 

at 2 hours and every 24 hours thereafter for 12 days and stored at -20°C 

until  analysis.  PBS  or  urokinase  were  replaced  and  the  clot  was 

continuously  incubated  at  37°C  between  collections.  On  the12th  day, 

remaining  clots  were  lysed  with  25  mg/ml  trypsin  and  the  substance 

content in the lysate was analyzed.

Statistic analysis

Experiments were run in triplicates (N = 3) and repeated three to five 

times (3-5).  Results were displayed as mean and standard deviation.
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Results

Thrombin as a fibrin-anchor

Thrombin -PPACK coupling showed a higher thrombin binding capacity to 

fibrin  than  free  active  thrombin,  (data  not  shown).  Conjugation  of 

biotinylated  albumin  to  thrombin  via  the  NHS-PPACK allows over  75% 

retention  of  albumin in a fibrin  clot.  In  contrast,  free  albumin without 

binding  to  thrombin  is  released  mostly  within  24  hours  from the  clot 

(Figure 4.2a). The release of PPACK-coupled and uncoupled streptavidin 

without thrombin as a fibrin-anchor shows no difference of retardation in 

the measured supernatants (Figure 4.2b).

Figure 4.2a. Covalently bound labeled albumin to thrombin via PPACK showed a reduced 
release rate of albumin than free albumin over 4 days. Nearly 75% of bound albumin was 
retained in the fibrin clot. Closed bar: free albumin, open bar: bound albumin.

Figure 4.2b. Covalently bound streptavidin-POX to PPACK without thrombin as a fibrin-
anchor showed no significant difference to unbound streptavidin-POX over 4 days. Closed 
bar: uncoupled strepdavidin-POX, open bar: PPACK coupled streptavidin-POX.
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The results of Figure 4.3 demonstrated the high affinity of biotinylated 

fibronectin  to  fibrin  in  comparison  to  biotinylated  albumin  without 

fibronectin  as  a  fibrin-anchor.  Only  the  controll  substance,  biotinylated 

albumin, was released from fibrin within 8 days. Biotinylated fibronectin 

was continuously released in small  quantities over the time-period. For 

demonstration  of  a  continuous  and  retarded  release  of  a  substance 

coupled  to  fibronectin  as  a  fibrin-anchor,  TNF  was  bound  to  an  EDC-

fibronectin-TNF antibody binding conjugate. Fibrin with fibronectin bound 

TNF showed a slow and delayed release (Figure 4.4).  Fibrin containing 

unbound TNF showed a high release of TNF within the first 4 days. After 

clot lysis on day 10 nearly 30% of TNF were measured in remained fibrin 

clots. 

Figure 4.3. Graph illustrates the high affinity of fibronectin to fibrin. Biotinylated albumin 
without  fibronectin  as  a  fibrin-anchor  showed  a  significant  higher  release  than 
biotinylated  fibronectin  over  10  days.  Closed  bar:  biotinylated  albumin,  open  bar: 
biotinylated fibronectin.
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Figure 4.4. Covalently bound anti-TNF antibody to fibronectin via EDC showed a reduced 
release rate of TNF than the unbound anti-TNF antibody over 10 days. Bound anti-TNF 
antibody and so TNF was retarded in  the  fibrin  clot.  Closed bar:  fibronectin  + TNF-
antibody (uncoupled mixture), open bar: fibronectin-TNF-antibody (EDC-coupled).

DNA as a fibrin-anchor

Fibrin clots spiked 20 µg plasmid DNA and incubated with PBS showed a 

higher release of plasmid DNA than fibrin containing 2 μg over the first 4 

days. In general, the incubation of the fibrin clots with urokinase led to a 

higher and more continous release of plasmid DNA. The best result was 

obtained with fibrin spiked with 20 μg (Figure 4.5). 

Figure 4.5. Fibrin clots spiked with 2  or 20 μg of plasmid-DNA (pGEM/IL-10) were 
incubated  in  PBS  of  urokinase  over  4  days.  Release  rate  of  the  supernatants  was 
analysed  by  PCR.  Fibrin  clots  containing  20  μg  plasmid-DNA  and  incubated  with 
urokinase showed the most effective release of pGEM/IL-10.
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Fibrin clots without FS-anchor

Diffusion of a low molecular weight substance, cytochrom C, and a high 

molecular  weight  substance,  β-galactosidase,  was  independent  of 

molecular weight of the substance and density of the fibrin network. Over 

50% of cytochrom C and β-galactasidase added to fine and coarse fibrin 

clots was found in the supernatants after 24 hours and another 40% was 

released during the next 2 days (Figure 4.6). 

Figure  4.6. Release  rate  of  cytochrom  c  (LMW)  and  β-galactosidase  (HMW)  was 
independent of the molecular weight of these substances and the density of the fibrin 
network.

0

20

40

60

80

100

120%

control LMW/HMW day 1 day 2 day 3

fine fibrin clot
+ LMW 

fine fibrin clot
+ HMW

coarse fibrin clot
+ LMW

coarse fibrin clot
+ HMW

0

20

40

60

80

100

120%

control LMW/HMW day 1 day 2 day 3

fine fibrin clot
+ LMW 

fine fibrin clot
+ HMW

coarse fibrin clot
+ LMW

coarse fibrin clot
+ HMW

75



Controlled release of substances bound to
fibrin-anchors or of DNA

Discussion 

This study documents fibrin-based delivery systems for a sustained and 

controlled release of substances by using fibrin anchors. Because of its 

advantageous  biological  properties,  fibrin  gels  have  been  generally 

proposed  as  preferred  matrices  for  regeneration  in  wound  healing 

(3,19,20). Thus, it is important finding possibilities to bind substances of 

interest to fibrin. Fibrin-anchors as thrombin, fibronectin and DNA have a 

high binding capacity to fibrin and binding oportunities to any substances. 

Thrombin and fibronectin are proteins and have a high natural  binding 

affinity to fibrin.

Modification of substances and linking to fibrin via thrombin binding was 

done covalently to a specific site on thrombin utilizing a modified form of 

the  irreversible  thrombin  inhibitor  PPACK.  Conjugation  of  a  labeled 

protein,  i.e.  biotinylated albumin,  to thrombin allow retardation  of  this 

protein on fibrinogen coated plates (data not shown) as well as in a fibrin 

clot. In contrast, free albumin, as an example of a labeled substance of 

interest, showed a high release in the first days.

Fibronectin the second natural byproduct in fibrin formulation is a large 

molecule  and  binds  to  fibrin  via  affinity  and  FXIII-crosslinking.  Biotin-

labeled fibronectin was slowly released from a fibrin clot over 14 days and 

still most of the labeled fibronectin was found in lysates from the residual 

clot. In contrast, biotin-labeled albumin was released quickly within 4 days 

resulting in high concentrations in the clot-supernatant and nothing was 

left in the lysed clot after 14 days (data not shown). Conjugation of an 

anti-TNF  antibody  (using  EDC-coupling  technique)  to  fibronectin  and 

incorporation of TNF-loaded conjugates into fibrin clots allowed retardation 

on  TNF  in  a  fibrin  clot.  Thus,  the  high  initial  concentrations  of  TNF 

detected  in  supernatants  from  clots  with  free  TNF  were  avoided. 

Conjugation of aprotinin to fibronectin and incorporation into fibrin clots 

increases persistance of clots with bound aprotinin compared to clots with 

free  aprotinin.  This  led  to  more  restistant  fibrin  gels  with  a  slower 
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degradation rate. Therefore, to fibrin bound substances will be released in 

smaller amounts over a longer period of fibrin degradation.  

Compared to thrombin and fibronectin DNA binds through charge strong 

to  fibrin  and  fibrinogen.  First  plamid-DNA  encoding  for  a  gene  is 

embedded in  the  fibrin  matrix  and its  affinity  for  fibrin  and fibrinogen 

allows a slow but sustained release of DNA over a long period of time. 

Fibrin clots treated with urokinase showed a more continuous release of 

plasmid-DNA than clots covered with PBS. This result showed the strong 

binding of DNA to fibrin/fibrinogen and that DNA will just be released by 

degradation of  fibrin.  Transfection reagents  resulting in condensed and 

neutralized DNA are expected to reduce the affinity of DNA to fibrinogen. 

For a more consistent release of plasmid-DNA it actually is necessary to 

use a retrenching acting substance such as urokinase. The results showed 

then a more consistent and controlled release than by using PBS. It also 

will be possible to use single- or a double stranded, linear or circular DNA 

as a fibrin/fibrinogen binding moiety (data not shown). In this case DNA 

parts bind via affinity or covalent binding substances of interest. 

Finally, results of released substances with different molecular weights (β-

galactosidase and cytochrom C) and without a binding affinity to fibrin 

demonstrated an immediate release after clot formation. Also the addition 

of  tranexamic  acid  for  a  more  structured  fibrin  network  with  smaller 

cavaties did not affect the fast release of β-galactosidase and cytochrom C 

within three days. Therefore, substances without specific affinity to fibrin 

were released from the fibrin gel by diffusion. The molecular weight and 

the difference in fibrin structure by addition of tranexamic acid did not 

effect the delivery rate of these substances. 

In  conclusion,  the  feasibility  of  using  affinity  based  fibrin  binding 

conjugates for specific drug binding to fibrin gels has been shown for three 

binding moieties: thrombin, fibonectin and DNA. By use of these fibrin-

anchors a slower release of different substances without a natural affinity 

to fibrin components could be achieved. 
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Abstract

Electrospinning  has  been  recognized  as  an  efficient  technique  for  the 

fabrication  of  polymer  nanofibers.  In  this  study,  we  describe 

electrospinning of fibrin nanofibers in an attempt to create biomimicking 

tissue-like material  in vitro for use as a tissue scaffold and  in vivo for 

angiogenesis.

We have used lyophilized human fibrinogen and thrombin of the product 

Tisseel®  VH  (Baxter  AG)  to  demonstrate  fibrin  electrospinning.  The 

mixture dissolved in an appropriate dilution of 1,1,1,3,3,3-hexafluoro-2-

propanol  and  sodium  chloride  solution  was  electrospun  under  various 

conditions. The quality of electrospun fibers were analyzed by scanning 

electron microscopy (SEM). For in vitro tests sterile matrices were seeded 

with human adipose derived stem cells for 14 days.  In vivo experiments 

were  done  using  an  excision  model  on  the  dorsal  site  of  VEGFR-2-

luciferase transgenic mice. 

Due to the small diameters of the electrospun fibrin nanofiber, they are 

more  attractive  for  cell  attachment.  Their  similarity  in  size  to  native 

extracellular matrix components and the 3-dimensional structure allows 

cells to attach to several fibers in a more natural geometry. In addition, 

seeded cells showed different proliferation patterns on matrices containing 

growth  factors  in  comparison  on  nanofibers  without  additives. 

Furthermore, VEGFR-2-luciferase transgenic mice treated with electrospun 

fibrin  containing  growth  factors  showed  a  higher  VEGFR-2  promoter 

activity during 3 weeks of observation. From the results of these studies 

we  hypothesize  that  it  may  be  possible  to  construct  fibrous  scaffolds 

composed of nanofibers for tissue engineering and wound repair using the 

process of electrospinning with fibrin. 
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Introduction

Tissue engineering has pursued a variety of materials and manufacturing 

processes  over  the  last  decades  to  develop  and  create  engineered 

matrices or scaffolds biomimicking tissue in vitro. The majority of these 

attempts  have  focused  on  materials  such  as  poly-(lactic  acid),  poly-

(glycolic  acid),  polycaprolactone,  other  biocompatible  polymers,  and 

collagen for use in matrix construction with limited success. Many of these 

scaffold  materials  lack  mechanical  integrity  and  often  induce  an 

inflammatory  response.(1-4)  Moreover,  typical  scaffold  fiber  diameters 

approximate  10  μm,  which  is  comparable  to  the  diameter  of  a  cell. 

Constituents  of  the  natural  extracellular  matrix  (ECM)  exhibit  fiber 

diameters that are in the range of 50-150 nm, a cross-sectional diameter 

far smaller than can be achieved with conventional processing strategies. 

Electrospinning represents a fabrication technique that makes it possible 

to produce fibrils of various materials with a cross-sectional diameter that 

resembles the native profile.(5-7)

Electrostatic  spinning,  or  electrospinning,  is  a  process  that  utilizes 

electrostatic forces to create small diameter fibers from the solution of a 

polymer or proteins.(8,9) The process can generate generous amounts of 

fibers  at  the  sub-micron  level,  smaller  in  diameter  than  any  standard 

extrusion process.(10) The efficacy of this process, as well  as the final 

fiber product, are affected by a litany of factors, including, but not limited 

to solution polymer or protein concentration, viscosity of solution, voltage 

between solution and ground electrode, the distance between the Taylor 

cone  and  the  ground  electrode,  and  environmental  conditions  such  as 

humidity and temperature.(11,12)

Electrospun fibers, because of their small diameters, have been of much 

interest  not  only  in  the  textile  field,  but  also  in  that  of  biomedical 

research. The small diameter fiber is more attractive to cell attachment, 

because of its similarity in size to native ECM components, which allow for 

the cell to attach to several fibers in a more natural geometry, rather than 
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the singular flattened orientation that an attached cell would experience 

on  a  large  diameter  fiber.  Much  research  had  been  conducted  with 

synthetic  resorbable  polymers,  such  as  poly-(DL-lactic-co-glycolic  acid 

(PGLA), and natural polymers(10), such as collagen.(3)

In  addition  to  collagen(3,4,6),  fibrinogen(13)  and  fibrin  represent 

materials for use in the development of an electrospun tissue engineering 

scaffold.(14-16) These materials have additional potential uses in wound 

dressings and hemostasis products.(13,17)

The use of fibrin in wound treatment is storied, with reporting of such 

dating to 1909 by Bergel et al., who used dried plasma to arrest surgical 

bleeding. Patches of pure fibrin have documented use in the decade to 

follow. Early uses of fibrin included aid to skin grafting and nerve repair.

(18,19) The current fibrin-based products come in two forms,  dry and 

liquid. Both involve simultaneous application of fibrinogen and thrombin, 

sometimes with the addition of Factor XIII and calcium. The dry product 

contains fibrinogen and thrombin,  in  a  freeze-dried or  frozen state,  to 

prevent their reacting. Stored in air-tight packaging, this product will yield 

fibrin upon exposure to air humidity, and more appropriately, to a wound. 

The  liquid  product  is  delivered  as  a  combination  of  fibrinogen  and 

thrombin, forming a layer of fibrin that immediately clots the bleeding.

(20,21) Both technologies show great efficacy in their  ability to deliver 

concentrations of these proteins at levels much higher than in blood. Both 

of these products, however, have their drawbacks. The dry sealant has 

difficulty in handling because of its activation upon exposure to moisture 

(even humid air will  begin the reaction). The liquid version has a long 

preparation time because of the necessary dissolution of components, and 

therefore will probably not be optimal in an emergency setting.(22-24)

However, the rapid attainment of fibrin with better handling could make 

such  a  product  more  viable  and  practical.  With  the  technology  of 

electrospinning,  an  electrospun  fibrin  wound  dressing  would  have  the 

added  benefit  of  small  fiber  diameter  and  a  big  surface  which  could 

accelerate  wound  healing.  Wnek  et  al. demonstrated  the  feasibility  of 
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electrospinning  fibrinogen  through the  determination  of  an  appropriate 

addition (10X minimal  essential  medium) to  a  common electrospinning 

organic solvent 1,1,1,3,3,3-hexafluoro-2-propanol. Once the appropriate 

solvent was determined, Wnek et al. electrospun different concentrations 

of bovine fibrinogen and measured the fiber diameters of the final product 

using SEM microscopy and image processing software.(13) Their results 

indicated that fiber diameter could be controlled by the adjustment of the 

concentration of the spinning solution. However, this was only fibrinogen 

and not the endproduct fibrin.

In addition, an electrospun mat of synthetic or natural polymer or protein 

could  be  used  as  a  vehicle  for  drug  delivery,  which  enhances  the 

application in wound healing therapies. Bioactive agents such as growth 

factors could be incorporated into the polymer or protein solution to be 

spun, and should be uniformly distributed as the final nanofiber product. 

These  added  substances  support  cell  proliferation,  migration  and 

differentiation.(25-27)   In  comparison  to  other  well-proven  useful 

technologies for drug delivery matrices,  none would show the full  cell-

friendly benefits of electrospun materials.(11,28,29) The use of a protein, 

such  as  fibrinogen  and  fibrin  should  reduce  much  concern  of 

immunogenicity and offer a more favourable attachment scaffold for cell 

infiltration.  Several  of  these growth factors,  including fibroblast  growth 

factor  2  (FGF-2)  are  involved  in  vascular  responses  by  increasing 

endothelial  cell  proliferation,  stimulating  migration  and  promoting 

angiogenesis.(30)  FGF-2  also  increases  secretion  of  collagenase  and 

urokinase plasminogen activator,  and has its  influence on human bone 

marrow stromal cells as a potential implication for tissue engineering.(31)

Another growth factor of interest has a critical role in bone formation and 

regeneration. The bone morphogenic protein 2 (BMP-2) has been studied 

using a variety of delivery systems(32-34) and showed strong influence in 

mesenchymal stem cell osteogenic differentiation.(35)

85



Electrospun fibrin nanofibers for the use
in tissue engineering

Therefore,  this  study  aimed  at  electrospinning  fibrin  with  and  without 

growth factors and secondly the possibility to use electrospun fibrin fibers 

both in vitro and in vivo.
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Materials and methods

Electrospinning

Lyophilized human fibrinogen and thrombin (Tisseel Baxter AG, Vienna) 

were suspended in a solution of 9 parts 1,1,1,3,3,3-hexafluoro-2-propanol 

(HFP)  and  1  part  of  10X  minimal  essential  medium (MEM)  without  L-

glutamine  (Sigma-Aldrich,  Vienna).(13)  The  final  solution  with 

concentrations of 75 mg/ml of fibrinogen, 125 IU/ml of thrombin and 12.5 

μg/ml  fluorescent  labeled  fibrinogen  488  (Invitrogen  GmbH,  Lofer)  for 

detection of electrospun fibrin nanofibers was placed in a 2 ml syringe 

with 20 gauge blunt needle. Either 200 ng/ml recombinant human basic 

fibroblast growth factor (rhFGF-2; ProSpec-Tany TechnoGene Ltd., Israel) 

or 200 ng/ml recombinant human bone morphogenic protein 2 (BMP-2; 

InductOs®,  Wyeth  Pharmaceuticals,  Vienna)  was  mixed  into  the  fibrin 

solution. In addition for a better stability of the electrospun structure, 10 

mg/ml  poly-(DL-lactic-co-glycolic  acid  (PGLA))  was  added  to  the  final 

mixture. A syringe pump was maintained for a continous flow rate of 0.01 

ml/min during the spinning process. A high voltage power supply imparted 

a voltage of  25 kV at  the syringe needle.  The electrospun fibers were 

collected on a rotating aluminium cylinder of 12 cm in length and 3 cm in 

diameter, which roated at a rotational velocity of approximately 400 rpm. 

The distance from the needle tip to the cylinder was 12 cm. After 120 min 

the  electrospinning  process  was  stopped.  The  nanofiber  mats  were 

removed from the cylinder and, wrapped in aluminium foil and stored at 

4°C until further use.

Scanning electron microscopy of electrospun fibrin

To  analyze  the  morphology  of  the  nano-scaffold,  scanning  electron 

microscopy  (SEM)  was  used.  The  samples  of  each  mat  were  cut  into 

appropriate size, coated with gold using Edwards S150 sputter coater and 

then SEM imaging was carried out using JEOL T100 (JEOL Ltd.  Tokyo, 

Japan) microscope. SEM images were obtained at magnifications of 500x, 
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2000x  and  5000x  and  scanned  into  digital  computer  images.  Fiber 

diameter was determined by means of Image J 1.33u (Wayne Rasband 

National  Institute  of  Health,  USA).  These  values  were  averaged  and 

standard deviations calculated.

Experimental setup in vitro

Cells and cell culture

Isolated human adipose-derived stem cells in passage 2 were cultured in a 

mixture of Dulbecco’s Modified Eagle’s Medium (DMEM) and Ham’s F-12 

medium in the same volumes supplemented with 10% fetal calf serum 

(FCS),  1%  L-glutamine,  penicillin  and  streptavidin  (PAA  Laboratories, 

Pasching) at 37°C, 5% CO2 and 95% air humidity up to a subconfluent 

state of 80%.(36,37)

For the in vitro experiments adherent cells were stained with CellTrackerTM 

Orange (CTO) CMRA (Invitrogen GmbH, Lofer) according to manufacturing 

instructions. After effective labeling, cells were removed from cell culture 

plates by incubating with 10X trypsin (PAA Laboratories, Pasching) and 

centrifugation  (5  min,  1500  rpm).  106 cells/mL  were  then  seeded  on 

sterile electrospun nanofiber fibrin scaffolds. After 2 hours, seeded cells 

were covered with 1 ml fresh medium supplemented with 1% FCS. 

On day 14, seeded CTO-labeled cells were first stained with 5 μM calcein 

AM  (Invitrogen  GmbH,  Lofer)  for  15  min  at  37°C,  washed  once  with 

phosphate  buffered  saline  without  MgCl2 and  CaCl2 (PAA  Laboratories, 

Pasching).  Subsequently,  cells  were  stained  with  300  nM  4´,6-

diamidino-2-phenylindole  dihydrochloride  (DAPI)  for  2  min  at  room 

temperature. After washing, cells were covered with cell culture medium 

and imaged for live/dead viability.

Fluorescence microscopy

The  fluorescent  signal  generated  by  the  labeling  of  the  electrospun 

nanofiber  fibrin with fluorescent  labeled fibrinogen 488 nm and by the 

cells  with  CTO,  calcein  AM  and  DAPI  was  detected  by  fluorescence 
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microscopy  using  a  UV-microscope  (Zeiss,  Axiovert  10/AttoArc 

HBO100W). Signals were detected on days 1, 5, 7, 14.

RT-PCR

RNA was extracted from cells after 14 days of the experiment using trizol. 

Phase separation was conducted using chloroform. Tubes were centrifuged 

and only the aqueous phase containing the RNA was transferred to a fresh 

tube  for  further  precipitation  and  purification.  RNA  precipitation  was 

performed using isopropyl  alcohol,  and RNA pellets  were purified using 

70% ethanol (Sigma-Aldrich, Vienna). Purified RNA was quantified using a 

spectrophotometer, and then aliquoted and stored at -80°C. 2μg of RNA 

were  first  treated  with  Rnase-free  Dnase  (Promega  GmbH,  Germany) 

according  to  the  manufacturer’s  instruction  and  then  transcribed  into 

cDNA  using  AMV  reverse  transcription  system  (Promega  GmbH, 

Germany). For RT-PCR the following primer sequences (Table 5.1) and 

conditions were used: 5 min at 94°C, and then 39 cycles of 1 min at 94°C, 

1 min at 60°C and 1 min at 72°C. The PCR reactions were separated by 

gel  electrophoresis  and  the  product  bands  were  visualized  and 

photographed under ultraviolet light densiometry.
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Table 5.1. Human specific oligonucleotide primers used for polymerase chain reactions. 
Col Iα1, collagen I alpha1; Col IIα1, collagen II alpha1; OC, osteocalcin; OP, osteopontin; 
Vim, vimentin; αSMA, alpha smooth muscle actin; Des, desmin; GAPDH, 
glyceraldehydes-3-phosphate dehydrogenase.

Experimental setup in vivo

Excision model in transgenic VEGFR-2 luciferase mice

In  vivo  models  were  approved  by  the  local  Committee  on  Animal 

Experiments,  Vienna,  Austria,  and  all  experimental  procedures  were 

consistent with the Guide for the Care and Use of Laboratory Animals of 

the National Institute of Health (NIH Publication No. 85-23, revised 1996).

Transgenic  FVB/N-Tg(VEGFR-2-luc)Xen mice  (Xenogen Corporation,  CA, 

USA) were used for non-invasive, real-time assessment of the vascular 

endothelial growth factor receptor 2 (VEGFR-2 / Flk-1 / KDR) induction 

using an in vivo imaging system (VivoVision® IVIS®, Xenogen, Alameda, 

CA).  In  these  mice  the  VEGFR-2  promoter  is  fused  with  the  firefly 

luciferase gene, thus resulting in a co-transcription of the VEGFR-2 and 

firefly  luciferase.  VEGFR-2  expression  was  monitored  by  luciferase  co-

expression after injection of the substrate luciferine in vivo. 

After  the initial  isoflurane (2 Vol% + 300 ml/min air)  anesthesia mice 

were  further  anesthetized  with  intraperitoneal  (i.p.)  1:10  dilution  of 
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ketamine:xylazine  (60  mg/kg  BW,  7.5  mg/kg  BW,  respectively).  Mice 

were injected i.p. with luciferine (150 mg/kg BW) and imaged using a CCD 

camera  IVIS  imaging  system in  order  to  acquire  a  background  image 

signal.  After  background  imaging  each  back  was  shaved  and  sites  of 

excision were disinfected. Two round skin excisions (1 cm in diameter) 

were  prepared  and  either  covered  with  appropriate  electrospun  fibrin 

nanofiber mats or 0.2 ml fibringel (Tisseel Duplojet, Baxter AG, Vienna). 

Finally  the shaved part  of  the back was dressed with TegadermTM (3M 

Austria GmbH, Wr. Neustadt). As a control, excisions were only covered 

with TegadermTM.

Follow up

2 hours postoperatively, animals were imaged again. A luciferin injection 

preceeded  each  imaging  sequence.  The  bioluminescence  signal  was 

quantified  using  LivingImage  software  (Xenogen  Corporation,  Alameda, 

CA) from the in vivo luciferace activity (indirect sign of VEGFR-2 activity) 

measured in emitted photons per second. Pre-surgical activity was set to 

100% (=baseline) and the subsequent measurements were referenced to 

this baseline. Bioluminescence images were obtained over a period of 3 

weeks (1 day, 2, 5, 7, 10, 13, 15, 17, and 20 days post OP).

Planimetric analysis

Digital images were taken under standardized conditions (light, distance, 

magnification) and then transferred to a personal computer. Subsequent 

analysis of wound closure area was performed with a specific planimetric 

software program (Lucia G®, Version 4.8, Laboratory Imaging Ltd., Czech 

Republic). 

Statistical analysis

The medians  and deviations (Q1,  Q3)  were  calculated  for  all  variables 

tested. Statistical significance was accepted at *p < 0.05 and **p < 0.01.
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Results

The  quality  of  electrospun  fibers  were  analysed  using  the  scanning 

electron  microscopy  SEM  evaluation.  Figure  5.1  show  that  there  is  a 

difference  in  using  the  same conditions  for  spinning  only  fibrin  and  a 

mixture of fibrin and PGLA. There are much more fibers in mixed matrix 

therefore it  has a higher density in the structure. The fibers are more 

orientated and have a better regular structure and are similar in diameter 

than in the matrix just made out of fibrin.

Figure 5.1. SEM micrographs illustrating the fibrous structure of electrospun fibrin (a, c, 
e) and fibrin+PGLA (b, d, f) scaffolds with additives as rhFGF-2 (c, d) and rhBMP-2 (e, f).

Experimental setup in vitro

Labeled  adipose derived stem cells  were  seeded on sterile  electrospun 

fibrin nanofiber mats. After 48 hours analysed samples showed cells well 

distributed in and also on the biodegradable matrix (Figure 5.2a). CTO 

labeled cells could be well detected for 5 days, then the staining faded and 

became more granular. Therefore, it was necessary to label the cells in 
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the matrix after 14 days again (calcein AM). Further added proteins as 

human FGF-2 and human BMP-2 showed different patterns of the cells in 

orientation after 14 days in culture (Figure 5.2b). Human FGF-2 treated 

adipose derived stem cells showed an equal orientation and had a thin 

body. In contrast to that, cells on the scaffolds containing BMP-2 formed 

circular structures. 

Figure 5.2a. Electrospun fibrin colonized with adipose derived stem cells, cultured in 
DMEM medium containing 5% FCS. After 48 hours cells were stained with a hematoxyline 
solution and photographed with a magnification of 200x. The photograph of CTO labeled 
cells points up the well-distribution of cells specially in the electrospun fibrin nanofiber 
matrix.
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Figure 5.2b. Human adipose derived stem cells were seeded on electrospun fibrin/PGLA 
with  and  without  rhFGF-2  and  rhBMP-2.  After  14  days  cells  showed  different  cell 
morphology.

The difference in behavior is also reflected in the gene expression results 

(Figure  5.3).  The  messenger  RNA  (mRNA)  levels  of  vimentin,  alpha 

smooth  muscle  actin,  and  desmin  were  highly  expressed  only  in  the 

control  group.  High levels  of  the chrondrogenic  markers  collagen IIα 1 

(**p < 0.01 control vs. BMP-2 group) and osteopontin (*p < 0.05) were 

also observed only in the cells without any scaffold. The cells showed a 

significant high expression of collagen Iα 1 (**p < 0.01) and osteocalcin 

(**p <  0.01)  in  cells  on  the  electrospun  fibrin  containing  rhBMP-2  in 
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comparison to all other groups. Cells only showed no collagen Iα 1 and 

osteocalcin expression.

Figure 5.3. Different expression levels of osteogenic and endothelial markers could be 
observed  in  adipose  derived  stem  cells  on  fibrin/PGLA,  fibrin/PGLA+FGF-2  and 
fibrin/PGLA+BMP-2 (n = 6, median ± Q1, Q3).
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Experimental setup in vivo

Appropriate cut electrospun fibrin nanofiber mats +/- human FGF-2 were 

applied  on  the  skin  excisions  of  transgenic  FVB/N-Tg(VEGFR-2-luc)Xen 

mice (Figure 5.4). 

Figure 5.4. Photograph of  an electrospun fibrin/PGLA mat produced from 75 mg/ml 
fibrinogen,  125 IU/ml thrombin and 10 mg/ml PGLA solved in HFP/MEM for use as a 
wound dressing in our transgenic mouse skin excision wound model.

For the control groups either 0.2 ml fibringel or no therapy were applied. 

Associated  bioluminescence  imaging  (Figure  5.5a)  generally  showed 

higher VEGFR-2 expression levels on day 1 and 10 after injury. There was 

a  high  increase  in  VEGF-R2  expression  in  the  group  of  electrospun 

nanofiber mats +FGF-2 on day 12 in comparison to all other groups. Both 

electrospun  fibrin  without  FGF-2  and  fibringel  led  nearly  to  the  same 

results and induced a higher VEGFR-2 signal from day 7 to day 20 than 

the control group without any therapy (Figure 5.5b).
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Figure 5.5a. Photographs show mouse dorsal skin excision wounds at days 1, 10, 15 
and 20 post injury with corresponding image after analysis  and color representing of 
photon quantification. The photon quantification increases, as color progresses from blue 
to red.

Figure 5.5b. Quantification  of  luciferase  signal  (photons/sec)  from wound  area 
with Living Image® software. Luciferase activity show a higher signal on days 12 
and 15 in he electrospun fibrin containg rhFGF-2 group in comparison to all other 
groups (n = 6, median ± Q1, Q3).
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Planimetric analysis (Figure 5.6a and 5.6b) showed a significant slower 

wound closure of the fibringel group from day 2 to day 10 post injury in 

comparison to all other groups. There also is a slight difference in wound 

closure  on  days  2  and  5  in  the  control  group  to  both  groups  with 

electrospun fibrin as wound coverage.

Figure 5.6a. Comparison of wounds at days 10, 15 and 20 to post operative area size. 
The photographs  show the strong contraction until day 10 in the control group and the 
delayed wound healing of the fibringel group.
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Figure 5.6b. Kinetics  of  wound closure.  Differences in  median wound area between 
fibringel  therapy  and  all  other  groups  were  statistically  significant  at  all  time  points 
between day 2 and 10 (*p < 0.05 on days 2, 7 and 10; **p < 0.01 on day 5). Results 
also show a slight difference in wound closure in both groups of electrospun fibrin wound 
coverage in comparison to control group. Closure in controls is shown as a reference and 
represents wound closure only through contraction (n = 6, median ± Q1, Q3).
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Discussion

As described by Langer and Vacanti  in 1993,  tissue engineering is  “an 

interdisciplinary  field  that  applies  the  principles  of  engineering  and life 

sciences toward the development  of  biological  substitutes  that  restore, 

maintain, or improve tissue function.”(38) One part of tissue enginnering 

has  been  the  design  of  scaffolds  with  similarity  to  native  extracellular 

matrix (ECM) biologically and mechanically. From the results of this study 

as well as from historical studies fibrin represents an appropriate healing 

material with biological properties similar to the ECM. With the technique 

of electrospinning it is possible to create various structures, shapes and 

sizes of fibrin matrices with a high surface / volume ratio and fibers with 

small  diameters of 0.1 – 1 μm. Another benefit  of this method is that 

almost all scaffolds and structures can be made seamless. This fact will 

prevent  any  variation  or  possible  weak  areas  in  the  scaffold  during 

development,  application  and  regeneration  phase.  Preliminary 

experiments showed that electrospun fibrin alone has a weak structure 

and is difficult to remove from the collection electrode. Therefore, small 

amounts  of  PGLA,  a  biodegradable and biocompatible  copolymer,  were 

added for a better mechanical stability of electrospun fibrin. In addition to 

PGLA, growth factors i.e. FGF-2 and BMP-2 were also mixed prior into the 

protein solution for stimulation of cell behavior. Studies have shown that 

nanometer-sized  elements  have  positive  effects  on  cells.(39)  In  vitro 

experiments of this study showed good results in cell morphology and cell 

differentiation on fibrin nanofiber matrices. The influence of BMP-2 in the 

electrospun  fibrin  /  PGLA  led  into  an  osteogenic  differentiation  of  the 

adipose derived stem cells. Teixeira et al also observed that nanogrooved 

surfaces can induce contact guidance of human corneal  epithelial  cells, 

causing  them  to  elongate  and  align  their  cytoskeleton  along  the 

topological  features  of  the  scaffold.(40)  The  results  of  this  study  also 

represents a tissue engineered scaffold where the cells are well-distributed 

in the matrix. 
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Due to the auspicious results from the presumed mechanical properties of 

the electrospun fibrin / PGLA nanofibers and our in vitro experiments the 

scaffold was used in an in vivo dorsal skin excision wound healing model 

in transgenic VEGFR-2-luc mice. The electrospun matrix could work as an 

appropriate  wound coverage  and as  well  as  it  could  accelerate  wound 

closure and healing. The results demonstrate that the electrospun fibrin is 

suitable  for  wound  coverage.  In  comparison  to  the  well-studied  and 

commonly  clinically  used  fibrin  glue,  the  electrospun  fibrin  has  no 

preparation time, is easier to apply to the skin wound and naturally sticks 

to the wound. Therefore, it is simple to cover even irregular wounds. The 

nanofiber network and the high surface area of the electrospun bandage 

ensure air permeability and absorbance of some wound fluid. Results of 

the planimetric analysis also showed that this matrix can be seen as a 

semidry or semiliquid wound bandage that accelerates wound closure but 

is effective against skin contractions.

With  its  additionally  capacity  to  function  as  a  drug  delivery  depot, 

electrospun fibrin  represents  a  perfect  tissue engineerednbiocompatible 

and biodegradable scaffold for wound dressing with hemostatic qualities.
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Abstract

The mechanical environment has the ability to alter the differentiation and 

phenotype  of  cells.  To  determine  the  specificity  of  this  effect,  we 

developed  three-dimensional  constructs  that  embedded  mesenchymal 

stem  cells  (MSCs)  within  fibrin  gel  and  loaded  the  constructs 

simultaneously in compression and extension. The constructs were placed 

under either static or dynamic loading for 14 days and their morphology 

as well as levels of proteins and genes related to either tendon/ligament 

or  cartilage  phenotype  was  determined.  Histological  analysis  of  the 

constructs  after  the  14  days  of  stretch  showed  fewer,  elongated,  and 

directionally  oriented  cells  and  a  high  density  of  collagen  within  the 

extension zone of both the dynamic and static stretch groups. Since this 

morphology and the production of large amounts of collagen is not typical 

of MSCs, the expression of markers of the tendon/ligament lineage were 

measured  to  determine  whether  the  MSCs  had  differentiated  down  a 

tendon/ligament phenotype. As expected, the expression of  collagen III, 

collagen Iα 1, and tensin 2 were all increased within the extension region 

regardless  of  the  dynamics  of  loading.  The  compressed  sites  of  the 

dynamic  stimulated  samples  showed  significantly  lower  expression  of 

collagen III, collagen Iα 1,  α -smooth muscle actin and tensin 2.  These 

data  indicate  that  MSCs  within  fibrin-based  gels  can  be  pushed  down 

divergent  cell  fates  solely  on the  basis  of  whether  they  are  loaded in 

tension or compression.
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Introduction

The anterior cruciate ligament (ACL) is the primary stabilizer of the knee. 

It functions to prevent anterior movement of the tibia in relation to the 

femur and restrict internal rotation of the tibia. Without a functional ACL, 

the knee rapidly deteriorates since the resulting laxity of the knee alters 

normal  biomechanics.(1)  Due  to  its  limited  vascularization  and  poor 

healing potential, injuries to the ACL need surgical intervention to return 

to normal function. For this reason, over 100,000 ACL reconstructions are 

performed  annually  in  the  United  States  alone.  Current  methods  to 

reconstruct the ACL include: (1) autografts (replacment with the patients 

own tissue);  (2)  allografts  (replacment with cadaveric  tissue);  and (3) 

permanent  protheses  (replacment  with  synthetic  material).  Using 

autografts means that healthy tissue from the patient is sacrificed and this 

is associated with donor site morbidity (Mastrokalos et al 2005). Allograft 

use is limited by the high potential for infectious disease transfer and the 

potential  immunogenic  response,(2,3)  and  permanent  or  synthetic 

protheses  are  not  widely  used because they  fail  due to  poor  abrasion 

resistance.(4-7) 

More recently, biologically based ACL replacements have been developed, 

first with reconstituted type I collagen fibers (8), later with prestressed 

collagen sutures seeded with mesenchymal stem cells (MSC)(9) and most 

recently  Hairfield-Stein  et  al. developed  self-organized  engineered 

ligament tissue from bone marrow stromal  cells  without an exogenous 

extracellular matrix or scaffold.(10,11). Ligament-derived fibroblasts have 

also been used with varying success.(12,13) Clearly, a number of different 

methodologies have been developed, using a variety of scaffolds with little 

focus on the role that the scaffold might play in the development of the 

tissue.

Biomaterial scaffolds play very important roles in tissue engineering both 

in  vitro and  in  vivo.  An ideal  scaffold provides temporary support  and 

promotes the proper functional determination of the cells within the tissue 
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prior to being resorbed by the body. It is becoming increasingly clear that 

beyond  the  chemical  signals  provided  by  the  scaffold,  cells  receive 

important  mechanical  cues  from  the  stiffness  of  the  scaffold.(14-17) 

Simply changing the stiffness of the 2-dimensional (2D) substrate used for 

culturing MSCs can induce their differentiation into neural, muscular, or 

adipose cells.(18) In vivo however, cells rarely grow in 2D. In 3D, the 

mechanical environment is even more complex. Not only does the passive 

stiffness of the matrix need to be considered, but the active mechanical 

environment  (i.e.  tension,  compression,  torsion,  etc.)  needs  to  be 

considered as well.

The role of the active mechanical environment is particularly important 

when  one  considers  musculoskeletal  tissues.  For  example,  when 

attempting to engineer  cartilage,  constructs  are regularly  placed under 

compressive loads, while in engineering tendons/ligaments tensile loads 

are more important.(19,20)  However, in most of the studies that have 

looked at the active mechanical environment, specific chemical agents and 

growth  factors  are  added  to  the  media  to  further  promote  the 

differentiation of cells towards the desired phenotype. As a result,  it is 

impossible to tell whether it is the mechanical environment, the chemical 

environment, or both that is required for the differentiation events. 

The aim of the current study was to determine the role of mechanical 

loading  alone  on  the  phenotype  of  MSCs  derived  from  the  amniotic 

membrane. In order to test this aim, we developed a 3D circular construct 

model and placed these constructs into bioreactors using flat grips. Static 

or dynamic separation of the grips resulted in compressive loading on the 

gripped region and uniaxial tensile loading on the ungripped region.(21) 

Following  14  days  of  loading,  the  constructs  were  collected  and 

histological  and  expression  analyses  were  performed  to  determine  the 

phenotype of the cells within the different regions of the graft.
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Materials and methods

HAM isolation and cultivation

All  experimental  procedures  and  cell  isolations  were  performed  with 

approval  of  the  local  Ethical  Review  Board.  Human  placentae  were 

collected  during  caesarean  sections  with  previous  consent.  Following 

collection, the amniotic membrane was peeled off the placenta by blunt 

dissection and washed several times in phosphate buffered saline (PBS). 

Cells were isolated as described by Moore et al. with some modifications. 

Briefly, the amniotic membrane was minced and digested with collagenase 

(1  mg/mL  collagenase  I  (Biochrom AG,  Vienna)  in  endothelial  growth 

medium (EGM-2; PAA Laboratories GmbH, Pasching) and 10% fetal calf 

serum (FCS; PAA Laboratories GmbH, Pasching) for 2 hours and 37°C. 

Following digestion,  the cell  suspensions were filtered through 100 µm 

strainers,  centrifuged,  washed,  and  cultured  in  the  selected  medium 

EGM-2  (Cambrex  Bio  Science,  Verviers,  Belgium)  at  37°C,  5% carbon 

dioxide (CO2), and 95% air humidity to a subconfluent state.

Fibrin-Cell Constructs and stimulation process

Culture  plates  (35 mm) were  pre-coated  with  Sylgard® (Dow Corning, 

Wiesbaden, Germany) and allowed to cure for 14 days. On the day of 

plating, a Sylgard®-mold was pressed into place in the middle of each 

35mm plate and the plates were sterilized using ultraviolet-light and 70% 

ethylene alcohol. Tisseel® VH Fibrin Sealant (Baxter AG, Vienna) was used 

to  prepare  560  μL  fibrin  gels  in  the  culture  plates.  The  fibrinogen 

component  was  reconstituted with  an aprotinin  solution (3000 KIU/ml) 

and  the  thrombin  component  with  a  40  mM calcium chloride  solution 

according  to  the  manufacturer’s  instruction.  Serum-free  medium 

containing fibrinogen and 5x105 cells was mixed with an equal volume of 4 

IU/mL thrombin. The final concentration of fibrinogen was 12.5 mg/mL 

and of thrombin 2 IU/mL. After 2 hours of polymerization, the fibrin gels 
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were  washed  twice  with  serum-free  medium,  covered  with  1.5  mL  of 

medium containing  5% FCS,  and  put  into  the  incubator  at  37°C,  5% 

carbon dioxide (CO2), and 95% air humidity for 13 days. Every third day 

the media was replaced with fresh medium supplemented with 30 IU/mL 

aprotinin and the fibrin constructs were.

On  day  14,  the  circular  fibrin  constructs  were  placed  into  specially 

designed grips and connected to uniaxial strain bioreactor (Figure 6.1B). 

Because of the design of the grips, the gripped portion of the construct 

underwent compression while the free portion of the constructs underwent 

uniaxially extension (Figure 6.1C). The constructs were divided into three 

groups: (1) unloaded; (2) static; and (3) dynamic. The dynamic groups 

were loaded for 14 days at 0.1Hz. The static control groups were also 

fixed in the bioreactor and the length of the construct set  so that the 

constructs were under tension, but no dynamic stretch was performed. 

The unloaded groups were removed from their molds and allowed to float 

free for  the 14-day period.  The media was changed every second day 

during  the  14-day  loading  period.  At  the  end  of  the  14  days,  the 

constructs were measured and cut into stretched and compressed parts 

and  stored  either  at  -80°C  for  RNA  analysis  or  in  a  4.5%  buffered 

formaldehyde solution for histological analysis.
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Figure 6.1. (A) Formation of fibrin-based 3-dimensional engineered cell construct after 
3, 6, and 13 days. The fibrin-cell matrix was forming around the SylgardTM bar. (B) The 
bioreactor. (C) The set up of the mechanical stimulation process. Fibrin-cell constructs 
were clamped on two hooks in a cell culture dish and covered with medium. The hooks 
were connected to the stepper motor for stimulation.

RT-PCR

RNA was extracted from cells with trireagent according to manufacturers 

instructions. Purified RNA was quantified by spectrophotometry, and then 

aliquoted and stored at -80°C. Prior to reverse transcription, 2 μg of RNA 

were treated with RNase-free DNase (Promega GmbH, Germany) and the 

resulting  product  was  transcribed  into  cDNA  using  the  AMV  reverse 

transcription  system  (Promega  GmbH,  Germany).  For  reverse 

transcriptase-polymerase  chain  reaction  (RT-PCR)  the  following  primer 
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sequences (Table 6.1) and conditions were used: 5 min at 94°C, and then 

39 cycles of 1 min at 94°C, 1 min at 58°C and 1 min at 72°C. The PCR 

reactions were separated by gel electrophoresis and the product bands 

were visualized and quantified using ultraviolet light densiometry.

Table 6.1. Human specific oligonucleotide primers used for polymerase chain reactions. 
Col III, collagen III; Col XII, collagen XII; TNS2, tensin 2; COMP, cartilage oligomeric 
matrix protein; BMPR Ia, bone morphogenic protein receptor Ia; CFL1, cofilin 1; αSMA, 
alpha smooth muscle  actin;  β-actin,  beta actin;  GAPDH, glyceraldehydes-3-phosphate 
dehydrogenase.

Histology

At the time of collection, stretched and control fibrin constructs were fixed 

in 4.5% buffered formaldehyde solution. Fixed samples were embedded in 

paraffin,  sectioned,  and  stained  with  hematoxylin/eosin  (H&E)  using 

standard histology protocols. For M.S.B. (martius/scarlet/blue) trichrome 

staining, samples were deparaffinated, rinsed in alcohol and water, and 

then treated according to Lendrum et al.(22) Finally, samples were rinsed 

in deionised water, dehydrated, and fixed on object slides with Aquatex 

(Merck  GmbH,  Vienna).  Evaluation  of  labeled  slides  of  the  fibrin/cell 

Gene Primers: sense (s) and antisense (as); 5' - 3' accession#

Col III s TGG AGT GTC TGG ACC AAA AG NM_000090.2
as ACC ATC TGA TCC AGG GTT TC 

Col XII s GAG GGA GTG GAG CTG TTT G NM_080645.2
as GAA CGA TGG GTT CGC TCA G 

TNS2 s TCA GTC ACC ATG TCA CCT TC NM_170754.2
as GTC CTT GTC CTT CAG CAG G

COMP s CAA GGT GGT AGA CAA GAT CG NM_000095.2
as ACC ACG TAG AAG CTG GAG C

BMPRIa s AAA TGG CGT GGC GAA AAA GTG NM_004329.2
as ACA GCA AGG CCC AGG TCA GC

CFL1 s ATG CCC TCT ATG ATG CAA CC NM_005507
as GGA TGG AGG GAG AAG GAA AA

aSMA s CGA CCG AAT GCA GAA GGA GA NM_001613.1
as TTT GCG GTG GAC AAT GGA AG

bActin s ACC TTC TAC AAT GAG CTG CG NM_001101.2
as GGA GTA CTT GCG CTG AGG A

GAPDH s TTA GCA CCC CTG GCC AAG G NM_002046.3
as CTT ACT CCT TGG AGG CCA TG
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constructs was done blinded. Samples were analyzed for residual fibrin, 

cell number and collagen level.

Statistical analysis

The medians  and deviations (Q1,  Q3)  were  calculated  for  all  variables 

tested. Statistical analysis of data was performed by unpaired t-test and 

statistical significance was accepted at *p < 0.05.
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Results

Morphology

The formation of the fibrin-cell  constructs took place within 14 days of 

plating (Figure 6.1A). The length of the constructs was determined using a 

digital  calliper  both  following  formation  and  after  the  14  days  loading 

period.  At the end of  the loading period, the dynamic constructs  were 

about 14% longer (pre=20.5±0.0mm and post=24.1±0.3mm) while the 

length of neither the static nor unloaded constructs had changed over the 

14 days in culture. 

Histology

Histological examination of the constructs showed evenly spread cells in 

the constructs of all groups (Figure 6.2). The static and unloaded matrices 

were continuous, while the dynamic group contained some holes due to 

the  high  tensile  loads  during  the  experiment  (Figure  6.2A).  The  cell 

number was significantly higher in the unloaded group compared with the 

dynamic  and  static  groups  (*p<0.05,  Figure  6.2B).  The  cells  in  the 

dynamic  and  static  stretched  areas  were  orientated  within  the  matrix, 

while  cells  in  the  unloaded  group  were  not.  Cells  in  the  compressed 

regions  were  grouped  and  showed  no  uniform  orientation.  M.S.B. 

trichrome staining showed blue-green areas of collagen in the dynamic 

stretch group (Figure 6.3). Because of the low collagen concentrations in 

the compressed areas blue areas could not be detected within this region. 
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Figure  6.2.  Histological  and  statistical  analysis  of  hämatoxylin  and  eosin  stained 
samples.  (A)  Most  of  the dynamic  and static  stimulated cells  were orientated in  the 
direction of mechanical stimulation (10x). (B) The cell number was significantly higher in 
the unloaded group compared with the stretched groups (*p<0.05).
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Figure 6.3. Representative slides of M.S.B. trichrome stained (A) dynamic, (B) static 
stimulated  and  (C)  unstimulated  fibrin-cell  constructs.  Stimulated  samples  possessed 
collagen  production  which  is  represented  in  the  blue-green  colour.  Some  collagen 
locations are indicated by black arrows (20x).

Gene Expression

The increased levels of collagen in the stretched groups suggested that 

the  MSCs  had  differentiated  within  the  fibrin  matrix.  Therefore,  the 

expression of  genes indicative  of  the  tendon/ligament or  cartilage fate 

were determined. The genes analyzed fell into three general groups: those 

that did not change with tension or compression; those that decreased 

with  either  tension  or  compression;  and  those  that  increased  under 

tension. The genes that were unchanged in any group were cofilin, and 

bone  morphogenic  protein  receptor  Ia  (Figure  6.4).  Surprisingly,  the 
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previously identified tension-dependent genes, cartilage oligomeric matrix 

protein and collagen XII, were significant higher in the unloaded group 

(Figure 6.4). Collagen III, and tensin2 were highest in the dynamic stretch 

group and showed a significantly higher expression in both the dynamic 

and static  stretch samples  compared to the corresponding compressed 

regions (Figure 6.5). Alpha smooth muscle actin was higher in both the 

dynamic  and  static  groups  in  the  region  of  extension  then  in  the 

compression zones (Figure 6.5). 

Figure 6.4. Different expression levels of various markers important for ligaments could 

be observed in amniotic derived mesenchymal stem cells. (n = 6, median ± Q1, Q3). (A) 

cofilin; (B) BMPR Ia (bone morphogenic protein receptor Ia); (C) collagen XII; (D) COMP 

(cartilage oligomeric matrix protein).
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Figure 6.5. Different expression levels of various markers important for ligaments could 
be observed in amniotic derived mesenchymal stem cells. (n = 6, median ± Q1, Q3). (A) 
tensin2; (B) collagen III; (C) αSMA (alpha smooth muscle protein).
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Discussion

Using a unique circular construct and a flat gripping system, were have 

shown that  mechanical  loading  on  its  own provides  important  cues  to 

MSCs  that  promote  their  differentiation  into  various  musculoskeletal 

tissues. When loaded under dynamic uniaxial tension, MSCs orient along 

the line of stretch, synthesize a collagen rich matrix, and begin to express 

markers  of  developing  tendons/ligaments.  Under  compression  or  in 

unloaded gels, cells showed no equal orientation and led to both to low 

mRNA expression levels for collagen III, alphaSMA, and tensin2.

One of the best studied aspects of mechanical loading is its effect on cell 

orientation.  Both  in  2D  and  3D,  tension  causes  cells  to  reorient 

themselves  in  a  direction  that  is  directly  related  to  the  applied  load.

(23,24)  In  the  current  study,  the  cells  in  the  stretch  groups  became 

longer, reoriented, and well-distributed within the fibrin scaffold. Although 

the fibrin was homogeneous, cells in the unloaded group appeared mostly 

in  clusters,  possibly  due  to  the  clonal  expansion  of  cells  that  did  not 

migrate through the fibrin gel. These groups of cells showed no secondary 

organization and the cells themselves were much smaller than the cells in 

the stretched groups (Figure 6.3). 

Cell number was lower in both dynamic and static stretch group compared 

to the unloaded group. One possible explanation for there being fewer 

cells  within the constructs  following the 14 days of  stretch is  that the 

application of mechanical stretch dynamic as well as static inhibited cell 

growth  and  promoted  cell  differentiation.  This  hypothesis  is  supported 

both by mRNA and histological observation. In the regions of extension, 

there was an increase in the amount of collagen detected by Masson’s 

trichrome indicating that the cells in this region had become more tendon-

like (Figure 6.3). Furthermore, collagen III, a collagen that is expressed in 

developmentally  immature  tendon,  and  the  focal  adhesion  molecule 

Tensin2 were expressed to a greater degree in the tensile region (Figure 

5),  suggesting  that  in  the  loaded  area  the  construct  was  becoming  a 

developmental tendon. 
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The dynamic stretch group possessed the lowest concentration of cells. 

The cells were embedded in the matrix at a greater distance from each 

other and seemed to reside within holes in the fibrin network. Constructs 

that underwent static stretch showed a similar cell number but the cell 

were embedded in a strong fibrin matrix, similar to unloaded cells. The 

level of collagen XII and cofilin were higher in the static constructs relative 

to the dynamic groups. Alpha smooth muscle actin tended to be higher in 

the stretched samples then in the compressed regions. Both collagen XII 

and COMP, markers associated with the interactions between the fibrils 

and the surrounding matrix, were highly expressed in cells embedded in 

unloaded gels. 

MSCs embedded in fibrin without any uniaxial tension appeared mostly in 

clusters and appeared to take on a cartilage phenotype. In comparison, 

static  stretch  changed  the  nature  of  MSCs  dramatically.  Cells  showed 

orientation  along  the  direction  of  tension  and  expressed  markers  of 

developing  tendons/ligaments.  Although  about  one  third  of  embeeded 

cells  died  during  the  stretching  process  amnion-derived  mesenchymal 

stem cells  are  excellent  cells  for  tissue  engineering  applications.  They 

have a high potential because of their fetal origin and pluripotency.(25) 

MSCs derived from amnion also have a high expansion potency allowing 

the rapid formation of tissues such as the fibrin constructs used here.(24) 

The cells  also appear  robust  and under  the right  mechanical  cues  can 

differentiate into tendon/ligament or cartilage like cells.
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Summary

Tissue engineering approaches urge us to develop and create engineered 

matrices  or  scaffolds  biomimicking  tissue  in  vitro.  Tissue  engineering 

implies  the  presence  of  reparative/regenerative  cells,  biodegradable 

scaffolds, and bioreactors to control the cellular environment. Cells and 

biomaterial  scaffolds can be utilized in many ways. Fibrin represents  a 

useful biodegradable matrix that also binds to regulatory signals such as 

growth factors. In our studies we tested fibroblast growth factor-2 (FGF-2) 

peptides, which have a binding affinity to fibrin(ogen) of their biological 

activity and behavior on isolated human adipose-derived stem cells. FGF-2 

peptides  had  no  proliferation  effect,  but  elevated  collagen  Iα 2  and 

collagen III mRNA expression within 7 days of incubation compared to 

FGF-2 addition. Further experiments concerned the controlled release of 

substances out of fibrin. These agents, not having a fibrin-binding domain, 

were  bound  to  a  fibrin  anchor  (fibronectin  or  thrombin),  which  has  a 

naturally binding domain to fibrin(ogen), and showed continous release 

from the matrix.

Another approach was the production of fibrin mats using electrospinning. 

Fibrinogen and thrombin solved in a hexafluoroisopropanol solution were 

electrospun to nanofibers. Due to the small diameters of the electrospun 

fibrin  nanofiber,  they  are  more  attractive  for  cell  attachment.  Their 

similarity  in  size to native extracellular  matrix  components  and the 3-

dimensional structure allows cells to attach to several  fibers in a more 

natural geometry. In addition, seeded cells showed different proliferation 

patterns  on  matrices  containing  growth  factors  in  comparison  on 

nanofibers without additives.

Finally,  a  novel  method for  generating three-dimensional  mesenchymal 

stem cell (MSC)-based constructs using fibrin gel casting were used for 

amniotic MSC, which were mixed within the fibrin gel. Over the next 8 

days, cell-mediated tension contracts the gel around two artificial anchors, 

resulting in small tubular constructs. Following formation, these constructs 

were connected to a stepper-motor and were uniaxially loaded to 114% of 
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their resting length at 0.1 Hz over 14 days. Histological analysis of the 

constructs showed a high density of collagen between the anchors. These 

data  indicate  that  MSC/fibrin-based  gels  provide  a  novel  method  to 

engineer three-dimensional functional constructs as tendon or ligament in 

vitro.
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Zusammenfassung

Die Methode von Tissue Engineering oder der Gewebezüchtung drängt uns 

Matrizen  oder  Stützgerüste  ,  die  Gewebearten  imitieren  in  vitro zu 

entwickeln. Tissue Engineering setzt die Präsenz von sich regenerierenden 

Zellen,  biologisch  degradierenden  Matrizen  und  Bioreaktoren,  die  die 

zelluläre Umwelt regulieren. Zellen und biologische Matrizen können mit 

unterschiedlichen Methoden verwendet werden.

Fibrin  stellt  eine  gut  anwendbare  biologisch  abbaubare  Matrix,  an  die 

regulatorische Faktoren wie Wachstumsfaktoren binden, dar. In unseren 

Studien  testeten  wir  Fibroblasten  Wachstumsfaktor  2  (FGF-2)  Peptide, 

welche  eine  Bindungsaffinität  zu  Fibrin(ogen)  aufweisen,  auf  ihre 

biologische  Aktivität  an  isolierten  humanen  Fettstammzellen.  FGF-2 

Peptide  hatten  keine  Auswirkung  auf  die  Proliferation  der  Zellen,  aber 

führten  zu  einer  Erhöhung  der  Kollagen  Ia2  und  Kollagen  III  mRNA 

Expression  innerhalb  einer  Inkubationszeit  von  7  Tagen.  Weitere 

Experimente  beschäftigten  sich  mit  dem kontrollierten  Freisetzung  von 

Substanzen aus Fibrin. Substanzen, die keine natürliche Bindungsaffinität 

zu  Fibrin(ogen)  aufweisen,  wurden  an  sogenannte  Fibrin-Anker 

(Fibronektin oder Trombin), die eine Bindedomäne zu Fibrin(ogen) haben, 

gebunden. Mit diesem System zeigte sich eine kontinuierliche Freisetzung 

dieser Substanzen aus der Fibrinmatrix.

Eine weiter Methode der Modifikation von Fibrin war die Produktion von 

Fibrinmatten durch elektrisches Spinnen. Fibrinogen und Trombin wurden 

in  einer  Hexafluoroisopropanol-Lösung  gelöst  und  zu  Nanofasern 

gesponnen. Auf Grund des geringen Durchmessers der Nanofasern bilden 

sie eine attraktive Matrix für Zellkontakte. Die Ähnlichkeit in der Größe 

des  Netzwerks  und der  3-dimensionalen Anordnung der  Nanofasern zu 

extrazellulären Matrixcomponenten erleichtern Zellen den Kontakt und die 

Anhaftung zur Matrix.

Zuletzt  beschäftigten  wir  uns  noch  mit  einer  neuen  Methode  um  3-

dimensionale mesenchymale Stammzell-Konstrukte in Fibrin zu erzeugen. 

Amniotische  mesenchymale  Stammzellen  wurden  mit  Fibrin  vermischt. 
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Innerhalb von 8 Tagen wurde das Fibrin durch die zelluläre Spannung zu 

einem schlauchartigen Konstrukt kontrahiert. Dieses Fibrin-Zell-Konstrukt 

wurde in einem Bioreaktor über einen Zeitraum von 14 Tagen mit 0.1 Hz 

auf eine Länge von 114% gedehnt. Histologische Untersuchungen zeigten 

eine  hohe  Dichte  von  Kollagen  im gedehnten  Bereich.  Diese  Resultate 

weisen auf eine neue Methode zur Produktion  in vitro von funktionellen 

Konstrukten wie Sehnen oder Bänder hin.
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