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SUMMARY 
 

The flaviviruses include several important human pathogens of global medical 

importance. Diseases caused by the dengue viruses, West Nile virus (WNV) and Japanese 

encephalitis virus (JEV) have been classified as emerging diseases and are continuing to 

spread into new territory. The overall objective of this thesis was to address two fundamental 

issues that underlie the biology of flaviviruses: recombination among flavivirus genomes and 

packaging of the viral genome. To this end, an innovative trans-complementation system was 

established in this thesis. This system consists of two genomes each lacking a different part of 

the viral structural protein genes. Thus, neither of these so-called replicons is able to produce 

infectious virions by itself. When introduced together into the same host cell, however, they 

are able to complement each other and both replicons can be packaged into virion particles. 

Thus, these two replicons can be repeatedly passaged together providing ample opportunity 

for recombination events potentially generating full-length, infectious genomes. This system 

was applied to three different flaviviruses, i.e. tick-borne encephalitis virus (TBEV), WNV, 

and JEV  

Surprisingly, in no case the recombination trap produced wild-type genomes by exact, 

homolgous cross-over events different from the general assumption that this would be the 

most likely event to occur. Intermolecular recombination yielding infectious full-length 

viruses was observed for one of the three viral systems, namely JEV. However, rather than 

generating wild-type genomes, aberrant homologous recombination resulted in recombinant 

JE viruses with unnatural gene arrangements and reduced growth properties compared to 

wild-type virus. In spite of the absence of any inter-molecular recombination events, the 

TBEV recombination trap evolved defective genomes with larger deletions presumably by a 

intra-molecular recombination process. The resulting mutants lacked part of a nonstructural 

protein gene and were thus by themselves incompetent for RNA replication. However, in the 
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presence of the other replicon (or an infectious virus) these defects could be complemented in 

trans leading to successful replication of these mutants which thus represent proper sense 

‘defective interfering particles’.  

The fact that all of these deletion mutants could be packaged into virions demonstrated 

that these sequences were not essential for the packaging process. To analyze the 

requirements for packaging within the capsid protein in more detail, the WNV capsid protein 

was subjected to a specific deletion analysis. Artificially introduced deletions into a conserved 

hydrophobic region were mostly well tolerated. Spontaneously emerging pseudorevertants 

surprisingly included two mutants with significantly extended deletions removing more than a 

third of the entire capsid protein. Further analysis confirmed that those minimal capsids 

allowed packaging of the viral genome.  

In summary, this thesis demonstrates that flavivirus genomes have a very low 

propensity, if any, for homologous recombination and provides the first laboratory 

recombination system yielding an aberrant homologous recombination event between 

flavivirus genomes. Furthermore, the data indicate that flavivirus genomes can readily 

undergo intramolecular recombination events leading to extended deletion mutations. The 

spontaneously formed defective interfering particles as well as viable capsid deletion mutants 

provided information on requirements for packaging of the viral genome. 
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ZUSAMMENFASSUNG 
 

Das Genus Flavivirus umfasst eine Reihe wichtiger menschlicher Krankheitserreger. So sind 

zum Beispiel das Dengue, West Nile oder Japanische Enzephalitis Virus als 

wiederaufkommende Erreger klassifiziert worden und dringen in neue Gebiete vor. Das Ziel 

dieser Doktorarbeit war, zwei wichtigen Aspekten der Biologie von Flaviviren auf den Grund 

zu gehen: einerseits die Rekombination von Flaviviren und andererseits die Verpackung des 

viralen RNA Genoms. Hierfür wurde ein neuer, innovativer Ansatz entwickelt. Das 

Grundprinzip beinhaltet zwei defekte Viren, so genannte Replikons, denen jeweils 

unterschiedliche Viruspartikelbausteine fehlen wodurch sie keine infektiösen Viruspartikel 

mehr bilden können. Beide Replikons besitzen jedoch die Fähigkeit in einer Wirtszelle das 

virale Genom zu vervielfältigen und in Proteine zu übersetzen. Wenn beide Viren in der 

gleichen Zelle vorhanden sind, kodieren sie für alle Proteine, die für ein Viruspartikel nötig 

sind. Tatsächlich konnten wir zeigen, dass beide Replikons in infektiöse Partikel verpackt 

werden. Allerdings ist das System nicht so effizient wie ein einzelnes Genom auf dem alle 

Virusbausteine kodiert sind. Aus diesem Grund können „Ganzlängengenome“, die durch 

Rekombination der beiden defekten Genome entstehen können, in Zellpassagen gesucht 

werden. Dieses System wurde auf die drei Flaviviren Frühsommermeningoenzephalitis Virus 

(FSME), WNV und JEV angewandt. 

Interessanterweise, wurde in keinem Fall exakte homolge Rekombination zu Wildtype Virus 

beobachtet, obwohl dies als sehr wahrscheinlich galt. Allerdings konnte Rekombination zu 

infektiösen Ganzlängen Viren in einem der drei Virussystemen gezeigt werden. Beim JE 

Virus führte ungenaue homologe Rekombination zu Viren mit ungewöhnlicher 

Genomstruktur und im Vergleich zum Wildtype Virus reduzierten Wachstum. 

Obwohl keine intermolekulare Rekombination zu infektiösen Viren beim FSME Virus 

gefunden werden konnte, entwickelten sich die defekten FSME Viren durch den Verlust von 
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Sequenzen, herbeigeführt wahrscheinlich durch einen intramolekularen 

Rekombinationsprozess. Den enstandenen Mutanten fehlte ein Teil eines 

Nichtstrukturproteins wodurch sie nicht mehr in der Lage waren ihr RNA Genom zu 

vervielfältigen. Allerdings konnte dieser Defekt in Anwesenheit eines Replikons (oder eines 

infektiösen Virus) kompensiert werden. Die Mutanten erlangten dann wieder die Fähigkeit ihr 

Genom zu vervielfältigen und stellten damit im eigentlichen Sinn defekte hemmende RNA 

Moleküle dar. 

Die Tatsache, dass diese Mutanten in Viruspartikel verpackt werden konnten, zeigte, 

dass die ihnen fehlenden Sequenzen nicht für die Verpackung wichtig waren. Um die 

Anforderungen an das Kapsidprotein für die Verpackung genauer zu analysieren, wurde das 

Kapsidprotein des WNV genauer untersucht. Die Wegnahme von kurzen Sequenzen in einer 

konservierten, hydrophoben Region wurde vom Virus zwar toleriert. In zwei Fällen traten 

jedoch Revertanten auf, denen mehr als ein Drittel der Sequenz für das WNV Kapsidprotein 

fehlten. Eine genauere Analyse zeigte, dass diese reduzierten Kapside ausreichten um das 

virale Genom zu verpacken.  

Zusammenfassend zeigt diese Dissertation, dass Flaviviren eine sehr geringe Tendenz 

zu homologer Rekombination aufweisen. Zugleich beschreibt sie das erste 

Rekombinationssystem im Labor, das ein ungenaues Rekombinationsereignis zwischen 

Flavivirus Genomen zeigen konnte. Darüber hinaus deuten die Ergebnisse darauf hin, dass 

Flaviviren eher zu intramolekularer Rekombination neigen, was zum Verlust von Sequenzen 

führt. Die spontan enstandenene defekten hemmenden RNA Moleküle sowie die 

funktionstüchtigen WNV Kapsid Mutanten lieferten Informationen über die Verpackung des 

viralen Genoms. 
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INTRODUCTION 
 

1. Genus Flavivirus, Family Flaviviridae 

 

The family Flaviviridae consists of three genera: Pestivirus, Hepacivirus and Flavivirus. The 

Genus Flavivirus is the largest genus comprising over 70 viruses, many of which are 

important human pathogens. Although, some flaviviruses have no known vector, most 

members are either transmitted by mosquitoes or ticks which also constitutes two different 

genetic lineages. Further, the members of the genus Flavivirus can be grouped serologically 

into different groups (figure 1). 

 

 

Figure 1. Flavivirus classification. Flaviviruses can be grouped into different groups 

according to serological (serocomplex), phylogenetical (clades) or transmitting vector 

(cluster) (106). 
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1.1. Epidemiology and disease 
 

1.1.1. Japanese encephalitis virus (JEV) 
 

JEV is the most important cause of viral encephalitis in eastern and southern Asia, with 

30,000-50,000 cases reported annually. Most infections are asymptomatic but 25-30% of the 

reported cases result in fatal disease and 50% in neurological sequelae (93). Clinical disease 

varies from non-specific febrile illness to meningoencephalitis, aseptic meningitis or polio-

like acute flaccid paralysis (137). JEV is transmitted in a zoonotic cycle between mosquitoes 

and pigs and/or water birds. Humans become infected only coincidentally and are dead end 

host. There exist two licensed vaccines, the Chinese SA14-14-2 strain, which due to 

international safety requirements cannot be used outside of China and a Vero cell produced 

formalin inactivated SA-14-14-2 strain by Intercell (IXIARO®) which has just been licensed 

for use in Europe and the US. 

1.1.2. West Nile virus (WNV) 
 

Two distinct lineages have been defined for WNV: Lineage 1 includes the NY-99 strain that 

was responsible for the introduction of WNV to the US and Kunjin which represents an 

attenuated subtype circulating in Australia. Lineage 2 includes several African strains but all 

reported cases of severe illness were caused by strains of lineage 1 (117). The transmission 

cycle of WNV is maintained in a bird-mosquito-bird cycle and humans are only incidental 

hosts (93). When humans become infected, in most cases WNV causes a mild febrile illness 

or the infection remains asymptomatic. However, in 1 out of 150 infections a severe and 

sometimes fatal encephalitis, meningoencephalitis or hepatitis have been reported, especially 
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in elder patients (118). Although, a number of different WNV vaccines are at the stage of 

clinical trials (18)(47) at the moment exists only a veterinary vaccine that has been 

successfully used in horses (18). 

 

1.1.3. Tick-borne encephalitis virus (TBEV) 
 

Three subtypes of TBEV have been phylogenetically defined: European, Far Easthern and 

Siberian (31). In Western Europe the principal vector for TBEV is Ixodes ricinus while in 

Eurasia it is Ixodes persulcatus. Typically, TBEV is transmitted in a zoonotic cycle between 

ticks and small vertebrate hosts, mainly rodents, although larger animals like birds or deer can 

get infected as well. Occasionally, the direct transmission to humans drinking unpasteurized 

milk from infected goat, sheep or cow has been reported (122). Approximately 70% of TBEV 

infections are asymptomatic, the remaining percentage can develop an febrile illness after an 

incubation period of 3 to 7 days after the tick bit. Symptoms include fever, headache, malaise 

and nausea. After an asymptomatic phase that may last from 1 to 33 days, in about one third 

of the patients, fever returns accompanied with symptoms affecting the central nervous 

system, such as meningits or meningogoencephalitis. A small percentage of patients sustain 

long-lasting or permanent neurological sequelae. The case fatality rate is below 1% with 

infections of the Western subtype but can be as high as 40% with the Far Easthern subtype. In 

Austria about 90% of the population is vaccinated with a formalin inactivated whole virus 

vaccine which originally has been developed with major input from scientists of  the Institute 

of Virology in Vienna. 

 

 

1.2. Molecular Organization of Flaviviruses 
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1.2.1. Genome organization and virus particle 
 

 

Flaviviruses are positive-stranded RNA viruses. The 11kb-long genome contains a cap 

structure at its 5’ end but no poly-A tail at its 3’ end. It encodes only a single open reading 

frame which is translated into a polyprotein. Posttranslational cleavages by viral and host 

proteases yield three structural proteins: the membrane (M), envelope (E) and capsid (C) 

proteins, as well as seven non-structural proteins that are essential for viral replication (figure 

2)(90) (89).  

 

 

Figure 2. Shematical drawing of a Flavivirus full-length genome. C, capsid; M, membrane; E. 

envelope; NCR, non-coding region. 

 

For example, NS5 is the viral RNA-dependent RNA polymerase (RdRp) and NS-3 is a 

multifunctional protein containing a serine protease domain at its N-terminus necessary for 

the processing of the viral polyprotein and helicase domain at its C-terminus which is part of 

the viral replication complex. Non-coding regions that are rich in RNA secondary structure 

are located at both ends of the genome. These structures have been associated with diverse 

functions controlling replication and translation of the RNA genome (97). Flavivirus virions 

are composed of a single copy of the positive-stranded RNA genome that is packaged by the 

capsid protein C into a nucleocapsid. The nucleocapsid is engulfed by a lipid envelope 

containing the surface glycoproteins prM and E (figure 3).  
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Figure 3. Schematic drawing of 

a mature Flavivirus virion. The 

nucleocapsid which lacks a 

defined form is surrounded by a 

host derived lipid bylayer in 

which the surface glycoproteins 

M and E are inserted (140). 

 

1.2.2. Flavivirus life cycle 
 

1.2.3. Entry and Genome replication 
 

Flaviviruses attach to the surface of a host cell by a yet unidentified receptor.  An involvement 

of heparin sulfate (HS) during attachment and entry has been suggested but its availability on 

the host is not essential for virus uptake (95). Although, no specific cellular receptor has been 

identified, it was established that Flaviviruses enter the cell by receptor mediated endocytosis 

via clathrin coated pits (24). After endocytosis, viral particles are found in uncoated 

prelysosomal vesicles, where fusion of viral and host membrane occurs (89). The RNA 

genome is released into the cytoplasma where replication takes place at the perinuclear 

membrane in virus induced vesicular packets. First, the plus-strand of the viral genome directs 

the synthesis of the viral polyprotein in association with the host membrane (figure 4). Once 

the viral polymerase and other essential proteins are synthesized, the viral RNA is copied. 

RNA replication of the viral genome starts with the synthesis of a negative-strand RNA from 
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which new viral genomic RNA is produced. The process of replication is asymmetric, leading 

to a 10- to 100-fold excess of positive-strands over negative strands (25). 

 

 

Figure 4. Flavivirus life cycle (140). 

 

1.2.4. Assembly and Egress 

 

The glycoproteins prM and E drive budding at the membrane of the endoplasmic reticulum 

(ER)(106). Subviral particles devoid of a nucleocapsid are routinely observed as a by-product 

of flavivirus infections (3) and can be produced by recombinant expression of the two viral 

surface proteins prM and E alone (2). However, preformed nucleocapsids are usually not 

observed in flavivirus-infected cells, indicating that virion formation is a coordinated process 

between the membrane-associated capsid protein and prM-E heterodimers in the ER. After 

intracellular budding at the endoplasmic reticulum immature particles are transported through 

the trans-Golgi network, followed by the cleavage of prM by the host protease furin. Mature 

virions and subviral particles are subsequently released from the host cell by exocytosis (139). 
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1.2.5. Flavivirus packaging and the capsid protein 

 

For many viruses, specific elements on the packaged genome (such as the psi signal on 

retrovirus genomes) or specific protein determinants have been identified which ensure the 

specificity and efficiency of this crucial process. Although it is clear that flaviviruses also 

package their genome with high specificity and efficiency, the determinants that underlie this 

process are essentially unknown. On the RNA level, it has been speculated that specific RNA 

elements present in the terminal non-coding regions may function as packaging signals (97), 

but there is no experimental evidence for this hypothesis. Some studies suggest that packaging 

is tightly coupled to and dependent on RNA replication (70). Other studies indicate that non-

structural proteins may also be involved in this process (83).  

On the protein level, positively charged regions of protein C appear to be involved in RNA 

binding, but no specificity has been demonstrated for this binding (72). Further it is believed 

that a hydrophobic sequence element which is present at a conserved position in all flavivirus 

capsid protein sequences (figure 5) plays an important role in packaging. The functional 

importance of this conserved internal hydrophobic domain has been demonstrated by studies 

with a variety of flaviviruses. For example, characterization of TBEV capsid deletion mutants 

showed that the proportion of infectious virions to non-infectious capsidless subviral particles 

shifted towards subviral particles with increasing deletion length (77). In addition large 

deletions were tolerated only upon the acquisition of additional mutations increasing the 

hydrophobicity of the protein (80). Further, studies on YFV protein C (115) and WNV(131), 

showed that removal of the entire helix α2, which includes the conserved domain produced a 

noninfectious phenotype. In DENV, removing large parts of this hydrophobic domain 

abolished the ability to dimerize in vitro(149) which is a prerequisite for the formation of the 

nucleocapsid and the ability to associate with the ER membrane (98). Taken together, these 
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studies underlined the important role of the conserved internal hydrophobic sequences in 

virion assembly. 

 

Figure 5: Multiple sequence alignment of flavivirus capsid proteins. Residues with high 

similarity (>50%) are red, and the conserved residues highlighted. The secondary structure is 

indicated at the top. The conserved hydrophobic region of flaviviruses is shaded gray. KUN, 

Kunjin; MVE, Murray Valley encephalitis; SLE, St. Louis encephalitis; YFV, yellow fever; 

LIV, loupin ill; LAN, Langat; POW, Powassan virus.(92) 

 

2. RNA Recombination  

 

The versatility of RNA viruses depends on divers and rapid genetic changes. Error-prone viral 

polymerases can cause single nucleotide substitutions at high rates and allow them to quickly 

adapt to new environmental challenges (62). In addition, it has become increasingly clear that 

many RNA viruses add the capacity to exchange genetic material with one another to their 

evolutionary repertoire. RNA recombination has been observed in all types of viruses using 

RNA as a carrier of genetic information: in positive-sense, single-stranded RNA viruses 

((84)), in negative-sense, single-stranded RNA viruses ((142)), in double-stranded RNA 

viruses ((113)) and in retroviruses ((156)). Moreover, it has been shown that RNA 

recombination enables the exchange of genetic material not only between the same or similar 
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viruses but also between distinctly different viruses ((153)). There are also examples in which 

host derived sequences have been identified in viral RNAs: For example a sequence from 28S 

rRNA inserted in the hemagglutinin gene of an influenza virus (67) and a tRNA sequence in 

Sindbis virus RNA (105) or an ubiquitin-coding sequence in bovine viral diarrhea virus (99). 

  

2.1. Mechanism of RNA recombination: Replicase driven template switch 
 

DNA recombination progresses according to a breakage and joining mechanism, involving 

hetero-duplex formation of the two recombining molecules (Holliday junction). In contrast, 

the most accepted model for RNA recombination is a replicase-driven template switch 

mechanism. Here, recombinants are formed during the replication when the viral polymerases 

jumps or switches from one RNA template (donor RNA) to another (acceptor RNA). The 

strongest evidence in favor for this mechanism is provided by the work of Kirkegaard and 

Baltimore on homologous recombination in poliovirus (74). In this study, after super-infection 

of wild-type virus (guanidine sensitive and temperature resistant) with a double mutant 

(guanidine resistant and temperature sensitive) the production of progeny resistant to 

guanidine and temperature was monitored. Interestingly, co-infection in two consecutive steps 

resulted in the inhibition of the replication of the first virus and yielded more than 100 fold 

difference in the yield of recombinants depending on which restrictive factor was applied at 

super-infection. Specifically, the number of recombinants was high when the cells were 

super-infected with the wild-type virus at an elevated temperature and low when the cells 

were super-infected with the mutant virus in the presence of guanidine. Accordingly, such an 

asymmetric result could not be produced by a breaking and joining mechanism inasmuch as 

the parental genomes were equally abundant in each case but because of the asymmetric 

influence of restriction factors on RNA synthesis. Moreover, a later study showed that the 

frequency of recombination events increased throughout the replication cycle of the virus 
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(61). The dependency of recombination on RNA replication for homologous recombination 

has further been confirmed in a RNA recombination system for brome mosaic bromovirus 

where mutations within the two virus-encoded components of the replicase influenced the 

frequency of recombinants (107) (110). Another piece of evidence came from the study of 

aberrant homologous recombination of Turnip crinkle virus, which detected non-templated 

nucleotides at the site of cross-over. This finding further supports the hypothesis that 

recombination simultaneously takes place with replication (17). Even though, this model 

represents the most accepted mechanism, it is still unclear if it is operative in all RNA viruses. 

For example, studies on Brome mosaic virus showed that mutations in the viral polymerase 

selectively decreased only non-homologous recombination but did not affect the frequency of 

homologous recombination (35). Therefore, an additional mechanism has been proposed for 

RNA recombination. The generation of a recombinant sequence can also be conceived via 

breaking the parental sequences and joining the resulting fragments. The first evidence of a 

nonreplicative transesterification mechanism was obtained in the in vitro Qß phage system 

which employed Qß phage replicase to detect replicable RNA species generated from 

nonreplicable RNA fragments (23). Interestingly, these studies revealed that non-homologous 

recombination occurred in the absence of replication while homologous recombination was 

observed in a control experiment, in which the same RNA fragments were incubated in the 

presence of dNTPs and a reverse transcriptase (112). However, the presence of Qß replicase 

required for amplification of the recombinant molecules did not fully exclude a replicative 

mechanism. Further reports of non-replicative recombination exist for picornavirus between 

overlapping 5’ and 3’ RNA fragments of the poliovirus genome (45) but in this study the 3’ 

fragment contained the complete RdRp and therefore it could not be excluded that minimal 

levels of translation led to expression of the viral polymerase promoting recombination via a 

replicative template switch mechanism. In the genus Pestivirus of the family Flaviviridae, 

transfection of overlapping 5’ and 3’ fragments of the bovine viral diarrhea virus, each 
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lacking different essential parts of the viral RdRp gene yielded recombinant full-length 

genomes demonstrating at last the existence of a viral polymerase independent mechanism for 

RNA recombination (38). However, the exact mechanism remains to be elucidated. 

 

2.2. Types of RNA recombination 
 

Initially, RNA recombination has been typed as homologous and non-homologous. However, 

this definition was adapted from DNA recombination and can not easily be applied to RNA 

recombination. Due to the mechanism of template switching sequence pairing seems less 

important for facilitating recombination between RNA than between DNA molecules. Other 

factors such as RNA secondary structures (see below) have been described to redirect the re-

initiation point of the viral replicase. This means that even though homologous sequences are 

present on donor and acceptor strand the point of cross-over may not be determined by 

sequence matches. Therefore, examination of recombination end products can be misleading, 

however according to current theories including the structure of intermediates and the 

recombination machinery the following three types of recombination have been proposed 

(84)(110). 

 

2.2.1. Type I Homologous recombination or similarity essential recombination. 
Homologous recombination occurs if substantial 

sequence similarity on donor and acceptor strand is 

provided and part of this sequence is the major 

determinant of the recombination event which 

directs the cross-over to a region of identical 
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sequence. The created RNA molecules retain the exact sequence and structural organization 

of the parental RNAs. Most of RNA recombination involving full-length viral genomes, such 

as recombination of picornaviruses, is of this type. 

 

2.2.2. Type II Aberrant homologous or similarity-assisted recombination 
 

Similar to type I recombination, there is homology between the parental RNAs of type II 

recombination. The difference is that cross-over does not occur at homologous or compatible 

sites. This imprecise template switch often leads to sequence alterations (insertion, duplication 

or deletions) at the site of cross-over. In addition, to sequence similarity, other factors such as 

RNA secondary structures can influence both the frequency and position of recombination. 

This type of recombination is unique to RNA recombination. It is particularly common, when 

defective RNAs are involved in recombination. 

                                              (110) 

 

2.2.3. Type III Non-Homologous or similarity non essential recombination 
 

Type III recombination includes events between two RNA molecules that either share no 

sequence homology or there is no apparent requirement for sequence similarity or identity. 

Type III recombination would therefore be independent of base-pairing and other factors such 

as polymerase binding sequences or hetero-duplex formation between parental RNAs may be 

involved in re-initiation of the replicase. The frequency of non-homologous recombination is 
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rarely reported. One explanation for this is that many recombination systems involve selection 

of viable or replication competent recombinant genomes. Non-homologous recombination 

often changes the genome structure which increases the probability of non-viable 

recombinants. Therefore, possible non-homologous recombinants exhibit growth deficiencies 

and need to further evolve to gain fitness to become detectable. Such additional adaptation 

often involves deletion of redundant sequences which can lead to recombinant viruses with a 

wild-type like genome organization which would indicate a homologous recombination event. 

                                             (110) 

 

2.3. Factors favoring RNA recombination 
 

2.3.1. Available data on animal viruses 
 

In general, examination of cross-over points suggests that RNA recombination is a chance 

event and thus each nucleotide in an RNA molecule may serve as target for recombination 

(133). It has been suggested that a combination of structure and/or sequence on the donor 

strand that serves momentarily to slow the elongation rate of the viral polymerase can provide 

the kinetic window allowing the switch between templates(61). In accordance with this 

hypothesis, studies of recombinant inter-typic RNA virus genomes of poliovirus revealed that 

all identified cross-over sites were flanked by or located within RNA secondary structures and 

a continuous identical sequence in the cross-over region of minimal 5 nucleotides was 
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observed in the described homologous recombinant genomes (144)(123). Similarly, a study 

on mouse hepatitis virus reported the possible involvement of RNA secondary structure in 

recombination of coronaviruses (5). Interestingly, the frequency of homologous 

recombination decreased when the degree of sequence homology between co-infecting 

polioviruses molecules was reduced (74) (144). To gain more knowledge of the mechanism of 

RNA recombination, in-vitro recombination systems have been created and even though no 

consensus sequence has been identified to be essential for RNA recombination, a wide 

spectrum of RNA motifs supporting recombination or increasing its frequency have been 

characterized. For example, bovine viral diarrhea virus polymerase NS5B (family 

Flaviviridae, genus Pestivirus) was shown to be able to produce RNAs longer than template 

length in vitro, because of the enzyme switching template either at the 5’ end or within the 

template RNA (73). Analysis of template sequence and RNA secondary structure revealed 

that the sequence within 7 nucleotides from the 5’terminus of the template (or donor) RNA 

could affect the frequency of recombination. While a high propensity for recombination with 

G-C rich base pairing near the site of cross-over was observed, no simple correlation between 

the recombination frequency and the number of hydrogen bonds between the template and the 

nascent transcript was observed, indicating the existence of other contributing factors. In 

addition, comparative analysis with other viral polymerases indicated that the 

structure/function of the replicase also greatly affects the frequency of template switch (73). 

 

2.3.2. Lessons from plant viruses 
 

2.3.2.1. Brome mosaic bromovirus (BMV) 
 

Brome mosaic bormovirus genomes consists of three separate RNA molecules designated 

RNA1, RNA2 and RNA3. RNA1 and RNA2 encode BMV replicase proteins 1a and 2a, 
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respectively. RNA3 encodes movement and coat proteins. Recombinantly active mutants of 

RNA3 can be constructed by insertion of artificial sequences. Non-homologous 

recombination or recombinants with imprecise cross-over were observed after insertion of 66 

nts in RNA 3 which were complementary to a respective region on RNA 1. Insertion of the 

corresponding region in direct orientation did not give detectable RNA1/3 recombinants 

(109). Further studies with this system revealed that longer heteroduplexed regions supported 

recombination at higher frequency than shorter ones. Also, shorter than 30 nt heteroduplexed 

regions did not induce RNA1/3 recombinants at detectable level (107). Analysis of 

homologous recombinants generated between RNA2/3 defined that 15 or longer sequence 

identity between RNA2 and RNA3 can support efficient, while 5 and 9nt long common 

regions supported only reduced levels of homologous recombination. No recombinants were 

detected when the common region was 4 or none. Introduction of mismatch mutations 

reduced the number of recombinants and at the same time caused a shift in the location of 

cross-overs towards the non-mutagenized portion (107). Further, AU-rich sequences were 

frequently detected at crossover regions and were shown to support high frequency 

recombination (108). In addition, the presence of GC rich sequences was shown to function as 

recombination enhancers (110). These observations indicated that homologous recombination 

is different from non-homologous recombination with respect to sequence/structure 

requirements. While hetero-duplex formation and strong RNA secondary structures favored 

non-homologous recombination, local sequence homology and AU-rich sequences played a 

major role in homologous recombination of brome mosaic bromovirus.  

 

2.3.2.2. Turnip crinkle virus (TCV) 
 

In contrast to the bromovirus family, the genome of Turnip crinkle carmovirus (TCV) is 

composed of a single positive-sense RNA of 4kb. The virus genome is frequently associated 
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with a number of subviral RNAs, including satellite, defective-interfering and chimeric RNAs 

(111). RNA species of the latter two groups were shown to be the products of natural 

recombination (17). In vivo examination of recombination between common sat RNA D and 

sat RNA C suggested the involvement of a hairpin structure (motif1-hairpin) on the acceptor 

RNA (=sat RNA C) for high frequency of recombination between these two RNAs. In-vitro 

studies of this process helped to develop a model which suggested that the motif1-hairpin is 

involved in recruitment of the RdRp during re-initiation of synthesis following template 

switch. In addition, a short base-paired region formed between the acceptor RNA and the 

nascent RNA was shown to influence the frequency of recombination (111). This suggested 

that according to a template switch mechanism, the viral RdRp can dissociate with the nascent 

transcript and then re-initiation at the motif1-hairpin is assisted by the base-paired region and 

3’ terminal extension is facilitated. These studies confirm the assumption that both RNA 

secondary structures and local sequence pairing play a role in mediating RNA recombination. 

 

2.3.3. Involvement of host genes 
 

Beside the obvious involvement of the viral proteins of the replication complex (107) (61) 

(35) in RNA recombination, several host genes were shown to influence both the occurrence 

and frequency of RNA recombination (132) (21). Analysis of the effect of a single-gene 

deletion library of Saccharomyces cerevisiae on recombination of a positive strand RNA virus 

(Family Tombusviridae) led to the identification of four host genes inducing recombination 

and five other genes inhibiting it. The genes able to suppress RNA recombination were shown 

to be involved in the RNA metabolism/degradation (table 1). Based on the known function of 

genes able to increase the frequency of recombination, the authors suggested that either a 

change in intracellular transport of viral and/or host proteins (or possibly protein-viral RNA 

complexes) to the site of recombination (PEP7 and DC11), and/or differences in the lipid 
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content/structure of the membranous compartment (IPK1, CH02, and DCI1), which contains 

the virus replicase, influences RNA recombination efficiency.  

 

Table.1. Names and functions of host genes affecting RNA recombination 

Gene Molecular function/biological process 
 Supressors 
CTL1 Polynucleotide 5’-phosphatase 
MET22/HAL2 3’(2’),5’Bisphosphate nuleotidase 
HUR1 unknown 
XRN1 5’-3’ exoribonuclease 
UBP3 Ubiquitin-specific protease 
 Accelerators 
PEP7/VPS19 Unknown/Golgi to vacuole transport 
IPK1 Inositol/phosphatidylinositol kinase 
CHO2/PEM1 Phsophatidylethanolamine N-

methyltransferase 
DCI1 Dodecenoyl-CoA Δ-isomerase 

 

2.4. Generation of defective interfering RNA (DI RNA) 
 

Not all RNA viruses have been shown to be able to undergo intermolecular RNA 

recombination (i.e. Vesicular stomatitis virus, West Nile virus, Tick-borne encephalitis virus, 

Newcastle disease virus and RNA phages). However, nearly all RNA viruses generate 

recombinant subgenomic deletion particles designated defective interfering particles (DI 

particles). These RNA genomes retain all cis-acting regulatory sequences required for 

replication and packaging of the RNA, but their replication depends on enzymes and 

structural proteins provided by infectious helper virus.  Notably, their replication interferes 

with closely related viruses able to act as helpers (121). DI RNAs are most efficiently 

generated under conditions in which many infectious virus genomes simultaneously infect the 

same cell (55). It has been suggested that DI RNAs arose by intermolecular recombination 

according to the copy choice model (17)(116)(87) (King, A.M.Q. 1988. Genetic 

recombination in positive strand RNA viruses, p150-185. In E. domingo, J.J. Holland, and P. 
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Ahlquist (ed.), RNA genetics II. CRC Press, Inc., Boca Raton Fla.). One obvious example is 

the generation of DI RNA of Sindbis virus, in which tRNA sequences are incorporated at the 

5’ terminus of the virion RNA (146). Some satellite RNAs of TCV (discussed above) also 

contain nonviral sequences of unknown origin (17). Further, structural analysis of a DI RNA 

of influenza virus supports the hypothesis of intermolecular recombination for its generation 

(34). The analyzed RNA has been shown to consist of several discontinuous regions, some of 

which were derived from RNA-1 and others from RNA-3. Thus, it may represent a true 

recombinant RNA between two different RNA molecules, although both RNAs belong to the 

same virus. Moreover, it was shown that coronavirus recombination occurred more frequently 

within a hypervariable region (5), in which deletions commonly occur after virus passage in 

tissue culture or animals. Thus, the same RNA secondary structure, i.e. strong stem-loop 

structures, may be responsible for both deletions (intramolecular) and recombination 

(intermolecular) by causing a pause in RNA transcription. In conclusion, the generation of DI 

RNA, the occurrence of deletions, insertions or duplication as well as true recombination of 

viral genomes may all be linked to the model of template switch, in which the viral 

polymerase jumps either within or between the same (intramolecular) or between different 

(intermolecular) templates of replication. 

 

2.5. The extent of recombination in the family Flaviviridae 
 

2.5.1. Genus Flavivirus 
 

Most phylogenetic evidence indicates that evolution of Flaviviruses is clonal, with diversity 

generated largely by the accumulation of point mutations rather than recombination events 

(46). However, some sequence-based phylogenetic studies have suggested the occurrence of 

homologous recombination among strains of the same viral species. Several recent 
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publications have identified recombinant Flaviviruses by computational sequence analysis of 

viral isolates from infected patients. These studies suggested that homologous recombination 

had occurred between closely related virus strains of all four dengue virus serotypes 

(57)(143)(1), JEV  (147) and St. Louis encephalitis virus (147). However, there is a complete 

lack of direct experimental evidence for Flavivirus recombination occurring in, for example, 

double-infected cells or animals.  

The controversy over whether or not Flavivirus genomes can recombine carries significant 

practical importance. A commentary by Seligman and Gould published in the Lancet (130) 

warned against the use of live Flavivirus vaccines because of the danger of creating new 

chimeric viruses with unpredictable biological properties if recombination occurs with other 

Flaviviruses that circulate in the environment and accidentally infect vaccinees. This report 

caused a stir among scientists and health officials because live Flavivirus vaccines (e.g. 

against YFV) are an invaluable and much-needed tool to combat life-threatening diseases 

(103). Several studies have provided at least indirect evidence that the propensity of 

Flavivirus RNA to undergo homologous recombination is low or nonexistent. Recombination 

events were not observed in any trans-complementation packaging studies in which 

replication competent defective virus genomes can be packaged by in-trans expressed 

structural proteins. These systems include expression plasmids, cell lines that have been 

modified to constitutively express Flavivirus structural proteins and alphavirus-based 

expression systems. However, since recombination may depend on Flavivirus RNA 

replication, the fact that the structural proteins in these systems were expressed either from 

cellular mRNAs or alphavirus-derived mRNAs, could mean that the necessary conditions for 

recombination were not provided in these experiments. In another study, replication-deficient 

Flavivirus genomes carrying disabling mutations in one of the non-structural proteins were 

successfully complemented by replicating helper RNA, leading to the production of single-

round-infectious particles (68). Although recombination was not observed under these 
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conditions either, the experimental design of this study probably would not have allowed low-

frequency events to be detected. No experimental studies with the purpose of achieving inter-

species recombination have been described so far.  

On the other hand, several studies have shown that Flavivirus genomes can spontaneously 

acquire deletion or sequence-duplication mutations (33)(80). Such mutations are thought to 

occur by a mechanism in which the RNA polymerase falls off from the template and re-

initiates synthesis at a site further upstream or downstream. A similar event is assumed to 

occur during recombination of RNA, when the polymerase dissociates from the first template 

and then continues synthesis from a different template (see above Generation of DI RNA). 

The observation that spontaneous deletions and duplications readily occur provides indirect 

evidence that the Flavivirus replication complex is capable of undergoing processes of the 

kind that can lead to recombination.  

 

2.5.2. Genus Pestivirus 
 

In the case of pestiviruses, such as bovine viral diarrhea virus, heterologous RNA 

recombination is frequently observed in nature and is responsible for changes in viral 

pathogenicity (99, 100). RNA recombination was first observed in connection with the 

molecular characterization of cytopathogenic (cp) BVDV strains that are involved in the 

induction of lethal mucosal disease in cattle (14). Further studies of cp pestiviruses revealed 

that most cp strains evolved from persisting non-cp viruses by recombination (100). As a 

result, cp pestiviral genomes harbor genomic alterations that frequently include insertions of 

cellular mRNA or viral sequences as well as deletions or duplications of viral sequences (10, 

12)(99, 100). In cell culture passages such cp strains were shown to loose the phenotype 

altering sequences by reverting to non-cp viruses  (11)(7). Both homologous and non-

homologous recombination mechanisms - the latter being more frequent - have been 
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described in this context.  Surprisingly, under laboratory conditions, recombination has been 

demonstrated with BVDV even with non-replicating defective virus genomes suggesting a 

polymerase independent recombination mechanism (for comparison, see the above chapter on 

“Mechanism of RNA recombination”) (38). 

 

2.5.3. Genus Hepacivirus 
 

The genus Hepacivirus consists of only one established species Hepatitis C virus (43) , which 

is classified into six genotypes and several additional subtypes. Similarly to the genus 

Flavivirus, recombination in the genus Hepacivirus has been demonstrated only indirectly by 

phylogenetic analysis of different isolates. By such means, intra-genotypic (27)(26) as well as 

inter-genotypic (63) homologous recombinant viruses were identified. Despite these findings 

and the frequent co-detection of multiple genotypes in patients (64)(59)(29) the available data 

suggests that RNA recombination plays only a minor role in the evolution of HCV. In one 

study, only one out of 89 analyzed sequences turned out to be a recombinant virus (27). In 

another study, monitoring of HCV co-infected patients failed to detect recombinant viruses, 

even though some patients were infected with the same subtype (13).   

 

2.6. Recombination in other positive stranded RNA virus families 
 

2.6.1. Picornaviruses 
 

The family Picornaviridae comprises several important pathogens, such as poliovirus or foot-

and–mouth-disease virus. Poliovirus is the best studied virus regarding RNA recombination. It 

has been shown to exhibit the highest rate of homologous recombination (10-5/nt or 1% for 

every 1700nts) (22), but non-homologous recombination was suggested to be almost equally 
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efficient (82). Frequent detection of recombinant viruses after vaccination with polio vaccine 

strain raised the issue of the stability and safety of the vaccine (16)(101). Generally, 

recombination occurred more readily between more closely related picornaviruses and was 

shown to decrease as the genetic relationship diverged. However, this may only reflect the 

greater probability of viable recombinant genomes between closely related viruses rather than 

the influence of homologous sequences on the actual recombination frequency. 

 

2.6.2. Coronaviruses 
 

Coronaviruses contain a positive-sense RNA genome that is unusually large (31kb), which is 

almost twice the size of the next largest viral RNA (paramyxovirus). The discovery of RNA 

recombination of murine hepatitis coronavirus (MHV) was the first proof that also other RNA 

viruses than picornaviruses are capable of this mechanism (85). Studies indicated that similar 

to picornaviruses, coronaviruses can recombine at high frequency because the isolated 

recombinant viruses showed evidence of multiple cross-overs, sometimes even outside of the 

selection markers (66)(65)(94). The estimated rate of recombination was as high as for 

picornaviruses (10-5/nt or 1% for every 1700nts) (88). Recombination mapping of cross-over 

sites of MHV revealed that the recombination frequency was higher near the 3’ end, 

indicating a possible involvement of subgenomic mRNAs in recombination (36, 37).  So far, 

only homologous recombination has been detected between coronaviruses. The absence of 

non-homologous recombination in coronaviruses may reflect their rigid viral RNA or protein 

structure requirements for optimal viral growth.  

 

2.6.3. Alphaviruses 
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In contrast to picorna- and coronaviruses, homologous recombination in alphaviruses seems 

to be uncommon concerning data obtained from recombination studies under laboratory 

conditions (150)(51). Only one study also identified homologous recombinants in the lab 

(120). Intriguingly, a homologous recombinant virus was discovered in nature. 

Recombination between Eastern equine encephalitis virus and a virus related to Sindbis virus 

resulted in the lineage of Western equine encephalitis virus (50). Interestingly, one of the 

putative crossover sites in WEEV RNA was located in the middle of the structural protein-

coding region, such that the structural proteins of WEEV have two different origins, with the 

capsid protein gene being derived from EEV and the rest of the structural proteins being 

derived from Sindbis virus.  

 

2.7. Recombination in negative stranded RNA virus families 
 

Little is known about the recombination mechanism of negative stranded RNA viruses 

because the available data was almost exclusively obtained by phylogenetic analysis of 

isolated genome sequences. Recombinant viruses have been reported in arenavirus (4) and 

(20), hantavirus (75), (136), influenza A virus (44), measles virus (126), and Newcastle 

disease virus (HN gene) (19). Generally, negative-sense RNA viruses have lower rates of 

recombination than positive-sense RNA viruses (119). This assumption is supported by a 

single report of RNA recombination under experimental conditions for a nonsegmented 

negative strand RNA virus (respiratory syncytial virus) (138). In a classical co-infection 

experiment with different marker mutations and consecutive plaque purification only one 

recombinant virus was detected. The genome of the recombinant virus was generated by 

double cross-over between the parental viruses involving non-homologous as well as 

homologous recombination events (138). 
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2.8. Recombination of Retroviruses 
 

The fact that retrovirus particles contain two copies of the RNA genome and that transcription 

makes use of both RNAs results in an extraordinary high propensity for recombination 

(141)(58). Estimates for the recombination rate of HIV in vivo are as high as 1.4x10-4 

recombination events / site / generation, which is about fivefold greater than the average point 

mutation rate (134). Recombination is believed to occur during the reverse transcription 

process according to the template switch mechanism of the copy-choice model. Intriguingly, 

recombination predominantly occurs between co-packaged RNA genomes and co-infection 

with two different viruses does not yield a high number of recombinants. This suggests that 

each particle provides its own reverse transcriptase and the copied RNA genomes are not 

freely exchanged with other RT-reactions in the cytoplasm of the same cell. This 

compartmentalization of the replication location is also observed for many other RNA viruses 

replicating in the cytoplasm. In this context it is important to note that host genes involved in 

the induction or maintenance of membranous structures were shown to influence the 

frequency of recombination. In conclusion, the physical separation of RNA genomes from 

different virus particles within a cell may pose a critical constraint on the occurrence of 

recombination of other “haploid” RNA viruses replicating in the cytoplasm. 
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AIMS 
 
This thesis addresses two fundamental issues that underlie the biology of flaviviruses: 

Recombination among flavivirus genomes and determinants of flavivirus genome packaging. 

These two main objectives can be subdivided into four individual goals. 

 

Goal 1: Establishement of a reciprocal trans-complementation system  

The reciprocal trans-complementation system will involve two different replicons, each 

lacking part of the structural protein coding region, which is, however, present in the other 

one, will be simultaneously introduced into the same host cell. Together, the two replicons 

will express all of the structural components necessary for particle formation. Replication of 

both replicons in the same cell will lead to the expression of all of the components necessary 

for particle production. This will allow to study whether the replicons can be packaged and 

released in the form of single-round-infectious virus like particles (VLPs). Transfer onto fresh 

cells of supernatants containing sufficient concentrations of VLPs to allow double infections 

of cells with VLPs containing both replicons may again lead to VLP production, and these 

passages will be repeated as many times as desired.  

 

Goal 2: Assessment of the propensity for intermolecular recombination 

Replication of two complementary replicons may lead to recombination between the two 

complementing genomes, yielding a full-length infectious virus genome. In contrast to the 

replicon-containing VLPs, the recombined infectious virion will not depend on double 

infections of cells for its propagation and can thus be enriched by subsequent cell culture 

passages. After several limiting dilution passages, it is anticipated that a recombined virus will 

have completely outgrown the two parental replicons and can be characterized by standard 

techniques (Northern blot, PCR, sequence analysis). Complementing replicons of three 
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different flaviviruses, TBEV, JEV and WNV will be tested in this “recombination trap”. If 

recombination to infectious viruses is observed, the recombined genomes will be tested for 

infectivity and growth properties will be assessed in vector and host cells.  

 

Goal 3: Study of other mechanisms involved in adaptation of flaviviruses 

If no recombination to infectious viruses is observed, the defective viruses involved in the 

reciprocal trans-packaging system will be analyzed and tested for adaptive mutations. Such 

mutations may include point mutations, deletions or generation of defective interfering RNAs. 

Analysis of these mutations on the efficiency of the reciprocal packaging will allow new 

insights into flavivirus packaging. Further, it will be interesting to observe whether the 

defective viruses show a greater propensity for intermolecular recombination to infectious 

viruses than for intramolecular changes. 

 

 

Goal 4: Analysis of capsid in flavivirus packaging. An internal hydrophobic sequence 

within the flaviviral capsid protein was shown to play an important role in the assembly of 

infectious TBEV and YFV virions. To systematically test the functional role of hydrophobic 

residues and to define common features of the flavivirus capsid various deletions ranging 

from 4 to 14 amino acids will be introduced into the capsid protein of WNV. Resuscitating 

mutations will be selected in cell culture passages and will allow insights into the basic 

requirements of the nucleocapsid for flavivirus packaging. 
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Abstract 

 

Intermolecular recombination between the genomes of closely related RNA viruses 

can result in the emergence of novel strains with altered pathogenic potential and antigenicity. 

Although recombination between flavivirus genomes has never been demonstrated 

experimentally, the potential risk of generating undesirable recombinants has nevertheless 

been a matter of concern and controversy with respect to the development of live flavivirus 

vaccines. As an experimental system for investigating the ability of flavivirus genomes to 

recombine, we developed a "recombination trap", which was designed to allow the products 

of rare recombination events to be selected and amplified. To do this, we established 

reciprocal packaging systems consisting of pairs of self-replicating subgenomic RNAs 

(replicons) derived from tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and 

Japanese encephalitis virus (JEV) that, due to different deletions in the region encoding their 

structural proteins, individually lacked the ability to produce infectious virions but could 

complement each other in trans and thus be propagated together in cell culture over multiple 

passages. Any infectious viruses with intact, full-length genomes that were generated by 

recombination of the two replicons would be selected and enriched by endpoint-dilution 

passage, as was demonstrated in a spiking experiment. Using the recombination trap, we 

detected two aberrant recombination events using the JEV system, both of which yielded 

unnatural genomes containing duplications. Infectious clones of both of these genomes 

yielded viruses with impaired growth properties. Despite the fact that the replicon pairs shared 

approximately 600 nucleotides of identical sequence where a precise homologous crossover 

event would have yielded a wild-type genome, this was not observed in any of these systems, 

and the TBEV and WNV systems did not yield any viable recombinant genomes at all. Our 

results show that intergenomic recombination can occur with flaviviruses but that its 
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frequency appears to be very low and therefore probably does not represent a major risk in the 

use of live attenuated flavivirus vaccines. 
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Author Summary 

 

Effective live vaccines against the flaviviruses yellow fever virus and Japanese 

encephalitis virus have been in use for decades, and tetravalent live vaccines against dengue 

viruses are currently undergoing clinical testing. Recently, concerns that flavivirus strains 

might have the potential to exchange genetic information by recombination – and generate 

new strains with undesirable properties – have led some researchers to question the safety of 

using live flavivirus vaccines. In the present study, we have developed a "recombination 

trap", a sensitive experimental system for studying flavivirus recombination. This system 

consists of a pair of defective viral genomes, so-called replicons, that are mutually dependent 

because each provides the other with an essential protein required for making virus particles. 

The replicons are propagated together in cell culture for multiple generations under conditions 

that favor the positive selection of any viable virus particles that might arise due to 

recombination. Surprisingly, we observed not a single homologous recombination event using 

recombination traps designed for three different flaviviruses, tick-borne encephalitis virus, 

West Nile virus, and Japanese encephalitis virus (JEV). With JEV, however, we twice 

observed the generation of a recombinant virus with an unnatural genome organization that 

had arisen through a more random process known as aberrant homologous recombination. 

These viruses were impaired in their growth properties. This is the first time that 

recombination of flavivirus genomes has been observed in the laboratory. Our data suggest 

that homologous recombination occurs infrequently, if at all, with flaviviruses and therefore 

probably does not represent a major risk when using live flavivirus vaccines. 
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Introduction 

 

RNA viruses are able to undergo rapid genetic changes in order to adapt to new hosts 

or environments. Although much of this flexibility is due to the error-prone nature of the 

RNA-dependent RNA polymerase, which generates an array of different point mutations 

within the viral population (62), recombination is also a common and important mechanism 

for generating viral diversity (55, 84, 110, 153). Recombination occurs when the RNA-

dependent RNA polymerase switches templates during replication -- an event that is favored 

when both templates share identical or very similar sequences. Three types of RNA 

recombination have been identified: homologous recombination occurs at sites with exact 

sequence matches; aberrant homologous recombination requires sequence homology, but 

crossover occurs either upstream or downstream of the site of homology, resulting in a 

duplication or deletion; and non-homologous (or illegitimate) recombination is independent of 

sequence homology (84, 110).  

When the same cell is infected by viruses of two different strains, or even different 

species, recombination between their genomic RNAs can potentially lead to the emergence of 

new pathogens. A case in point is the emergence of western equine encephalitis virus (WEE), 

a member of the genus Alphavirus, family Togaviridae, which arose by homologous 

recombination between eastern equine encephalitis virus and Sindbis virus (50). 

Some mammalian RNA viruses can recombine at a frequency that is detectable in 

experimental settings (6, 8, 150), and phylogenetic analysis of partial or complete genome 

sequences suggests that RNA recombination is a widespread phenomenon. Naturally 

occurring recombinant viruses have been identified in almost every family of positive-

stranded RNA viruses (84, 153).  

RNA recombination is increasingly being recognized as an important parameter to 

consider in the development of vaccines containing live attenuated viruses (153). Experience 
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with live poliovirus vaccines has already shown that new strains can indeed arise in vaccinees 

due to recombination  between vaccine strains, and possibly between vaccine strains and other 

viruses (16, 28). The potential hazards of homologous recombination events involving live 

vaccine strains has become a concern and an obstacle to the development of flavivirus 

vaccines. Flaviviruses are members of the genus Flavivirus, family Flaviviridae, a family 

which also includes the genera Pestivirus and Hepacivirus. Several of the flaviviruses are 

important human pathogens, such as Japanese encephalitis virus (JEV), West Nile virus 

(WNV), the dengue viruses, yellow fever virus, and tick-borne encephalitis virus (TBEV).   

Live vaccines for the prevention of some flaviviral diseases are already in widespread 

use. Vaccines containing the live yellow fever virus strain 17D, one of the first viral vaccine 

strains ever developed, have been in continuous use since the 1950s, with over 500,000 

administered doses per year (124). A live vaccine against JEV containing the attenuated strain 

SA-14-14-2 has been widely used in China since 1988 and also shows an excellent safety 

record so far (91). 

Although there has never been a report of a pathogenic flavivirus strain arising due to 

recombination involving attenuated vaccine strains (103), the urgent necessity to develop 

tetravalent vaccines containing all four serotypes of dengue virus – two such vaccines are 

currently undergoing clinical testing (125) -- has recently brought the recombination issue to 

the forefront of discussion among researchers, regulators, and vaccine producers (103). It has 

been suggested that recombination, either between the strains present in a multivalent vaccine 

or between an attenuated vaccine strain and a wild-type strain, could lead to the emergence of 

new viruses with unpredictable properties (130). 

So far, recombination between flavivirus genomes has not been demonstrated directly 

in the laboratory. However, phylogenetic analysis of partial genome sequences available in 

the GenBank database has suggested that homologous recombination may have occurred 

between closely related strains of dengue virus (57, 143, 148, 154), JEV (147),  and St. Louis 

40 



encephalitis virus (147).  An experimental approach for assessing the ability of flavivirus 

genomes to recombine is therefore urgently needed. 

Flavivirus virions are composed of a single-stranded, positive-sense RNA genome that 

is packaged by the capsid protein C into a nucleocapsid. The nucleocapsid is covered by a 

lipid envelope containing the surface glycoproteins prM and E. These glycoproteins drive 

budding at the membrane of the endoplasmic reticulum (ER) during the assembly stage and 

mediate entry of the virus into host cells (106). Replicons, defined as self-replicating, non-

infectious RNA molecules, can be generated by deleting parts or all of the region coding for 

the structural proteins C, prM, and E from the viral genome but maintaining all seven of the  

nonstructural proteins and the flanking noncoding sequences, which are required in cis for 

RNA replication (76). By providing the missing structural protein components in trans, 

replicons can be packaged into virus-like particles that are capable of a single round of 

infection (41, 52, 71, 128). 

Typically, researchers developing novel replicating vaccines, especially ones that 

involve multiple components, make an effort to come up with strategies to prevent 

recombination, for example by "wobbling" codons, i.e., replacing codons in homologous 

regions with synonymous ones encoding the same amino acid but consisting of a different 

nucleotide triplet (135, 152). In this study, in order to assess the propensity of flavivirus 

genomes to recombine, we took an opposite approach, establishing a "recombination trap" 

that favors the selection and sensitive detection of recombination products. This system takes 

advantage of the ability of replicon pairs containing deletions in their structural protein genes 

to complement each other in trans and thus be propagated together in cell culture, and by 

passage at limiting dilution, it allows infectious RNA genomes arising by recombination 

between the two replicons to be preferentially selected.  

Using the recombination trap, we have now obtained the first direct evidence of 

recombination between flavivirus genomes in the laboratory. Aberrant homologous 
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recombination was observed twice with JEV replicons, resulting in viruses with unnatural 

gene arrangements and reduced growth properties compared to wild-type JEV. No infectious 

recombinants of any kind were obtained when TBEV or WNV replicons were used. 

Interestingly, we never detected a fully infectious wild-type genome arising by homologous 

recombination in any of these systems. The results of this study show that the propensity of 

flavivirus genomes to recombine appears to be quite low and suggest that recombination does 

not represent a major risk in the use of live attenuated flavivirus vaccines. 
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Results 

 

Establishment of a reciprocal packaging system 

As a tool for testing the propensity of flaviviruses for recombination, we established a 

reciprocal packaging system to allow the co-cultivation of two different defective viruses for 

prolonged passages. This system consisted of two replicons, each of which contained a 

deletion in a region of the RNA genome that encodes structural proteins that are essential for 

virus assembly. Individually, each of these replicons was incapable of forming infectious 

virus particles due to the lack of an essential component for virion assembly, but when present 

together in the cytoplasm of the same cell, they were capable of complementing each other in 

trans, thus allowing each of the defective genomes to be packaged and propagated as single-

round infectious (or pseudoinfectious) particles and allowing co-passage of these replicons in 

cell culture. By conducting passages at limiting dilution, functional revertant wild-type virus 

genomes resulting from recombination between the two replicons could potentially be 

selected and enriched. 

To set up the two-component trans-complementation system, we took advantage of 

two previously described and characterized TBEV replicons called ∆C (78) and ∆ME-eGFP 

(42). As shown in Fig. 1, replicon ΔC consisted of a full-length TBEV genome containing a 

186-bp deletion in the region encoding the capsid (C) protein, and ∆ME-eGFP lacked the 

entire region encoding the envelope proteins prM and E. In addition, ∆ME-eGFP contained an 

additional artificial cistron inserted in the 3' noncoding region (3' NCR) that allowed the 

expression of the enhanced green fluorescent protein (eGFP) under the control of an IRES 

element. 

To test the ability of these replicons to complement each other and to be packaged into 

infectious particles, BHK-21 cells were first transfected with each of the in vitro-synthesized, 

capped replicon RNAs, either individually or in combination. Transfected cells containing 
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replicon ∆C were identified using an immunofluorescence assay with a monoclonal antibody 

recognizing the envelope protein E, which was expressed in ∆C but not in ∆ME-eGFP. Using 

a rhodamine-conjugated secondary antibody for detection, the cells containing ∆C RNA 

appeared red under the fluorescence microscope (Fig. 2, left), as did control cells infected 

with the full-length wild-type (WT) genomic RNA, which also expressed the E protein. 

Transfected cells containing replicon ∆ME-eGFP appeared green under the fluorescence 

microscope. 

When BHK-21 cells were transfected by electroporation with an equal mixture of the 

two replicons (Fig. 2, bottom left), it was observed one day after transfection that some cells 

were positive for eGFP (green cells), some for E (red cells), and some for both (yellow cells 

in the merged image), indicating that they contained both ∆C and ∆ME-eGFP. 

Supernatants from each of the transfected cell cultures were then applied to fresh 

BHK-21 cells, and the cells were tested 24 h later for the presence of E and eGFP (Fig. 2, 

right). After one passage, the cells treated with the supernatant from the cotransfected culture 

(∆C+∆ME-eGFP) again showed a mixed pattern of green, red, and yellow cells, indicating 

that each of the replicons had been packaged into infectious particles and that a subset of the 

cells had been coinfected with both replicons. As expected, the supernatants from cells 

transfected with defective ∆C or ∆ME-eGFP RNA alone apparently did not produce 

infectious particles, and these replicons could not be propagated further. Also as expected, the 

supernatants from the positive control cells that had been transfected with full-length 

infectious genomic RNA (WT) were able to infect fresh cells, as indicated by positive red 

staining for the viral E protein (Fig. 2, top right). 

In this passage experiment, the presence of cells containing both ∆C and ∆ME-eGFP 

suggested that the frequency of coinfection was high enough to enable a further round of 

trans-complementation and packaging of replicon RNAs. To test this, the supernatants from 

passage 1 were again transferred to fresh cells, and, as shown in Fig. 2 (bottom right, "Passage 
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2"), a similar pattern was observed, with cells containing ∆C, ∆ME-eGFP, or both. These 

experiments demonstrate that replicons ∆C and ∆ME-eGFP, when used together, constitute a 

reciprocal packaging system that can be propagated in cell culture by serial passage. 

 

Analysis of individual foci 

Next, we infected fresh BHK-21 cells with various dilutions of supernatants 

containing the mixture of packaged ∆C and ∆ME-eGFP replicons, added a methylcellulose 

overlay, and fixed and stained the cells 50 hours later using an anti-TBEV polyclonal 

antibody and an alkaline-phophatase-conjugated secondary antibody to detect the formation 

of infectious foci. As shown in Fig. 3A, the mixture of packaged replicons formed foci that 

were smaller than those formed by wild-type TBE virus, demonstrating that the ability of 

infectious material to spread from replicon-containing cells was impaired compared to that of 

the virus control. Furthermore, unlike wild-type virus, which showed a linearly proportional 

decrease in the number of plaques formed with increasing dilution, the number of foci formed 

with the packaged replicon mixture decreased very sharply with increasing dilution (data not 

shown). This sensitivity to dilution is consistent with what would be expected if two particles, 

one containing ∆C and the other containing ∆ME-eGFP, were required to make one infectious 

unit (i.e., one focus-forming unit). 

To examine the foci more closely, cells were again infected with different dilutions of 

the ∆C and ∆ME-eGFP mixure and overlaid with nitrocellulose as above, but instead of 

staining with polyclonal serum and alkaline phosphatase, the cells were fixed and prepared for 

detection of E and eGFP by fluorescence microscopy as described in the previous section. An 

example of a typical focus formed by infection with a mixture of packaged ∆C and ∆ME-

eGFP replicons at high dilution is shown in Fig. 3B. In the merged images, each of these foci 

could be seen to consist of a mixed population of cells, some of which were green (∆ME-

eGFP), some red (∆C), and some yellow (∆C + ∆ME-eGFP), similar to what was observed 
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earlier in confluent monolayers shown in Fig. 2. This means that each of the foci was formed 

by infection of neighboring cells by particles containing ∆C or ∆ME-eGFP RNA, or by both 

types of particles simultaneously. Importantly, examination of more than 100 individual foci 

in this manner did not reveal any that consisted of only red-stained E-protein-producing cells, 

which would have been expected if a wild-type revertant virus had arisen in the population 

due to recombination between the replicons. 

 

Competition between replicons and full-length viral genomes 

In contrast to the defective replicon-containing particles, a fully infectious virion 

carrying a full-length genome would not depend on multiple infection of the same cell for its 

propagation, and if it were present in the population, it could be enriched by subsequent cell 

culture passages at high dilution. To test this principle experimentally, we carried out an 

experiment similar to the ones described above, except this time we spiked the mixture of 

packaged replicons with 10 focus-forming units (ffu) of wild-type TBE virus to see whether 

the full-length genome would eventually become dominant after serial passage at limiting 

dilution. For this experiment, however, instead of ∆ME-eGFP, we used a replicon called ∆ME 

(41), which was identical to ∆ME-eGFP except that it had a normal viral 3' end and lacked the 

artificial cistron encoding eGFP (Fig. 1). Lysates of infected BHK-21 cells were analyzed 

after the initial infection and after three endpoint-dilution passages by northern blotting using 

a probe recognizing the nonstructural region of the genome. As shown in Fig. 4A, the 

replicons were initially detected after infection, but after the three passages, only a single 

band was observed, corresponding in size to the full-length genome. The presence of the wild-

type virus genome replacing the two replicons was confirmed by a set of RT-PCRs (Fig. 4B) 

and sequencing (not shown). RT-PCR 1 was specific for the wild-type sequence, whereas RT-

PCRs 2 and 3 yielded specific bands for replicons ∆C and ∆ME, respectively, as well as a 

larger band for the wild-type RNA. After three passages, only the products specific for the 
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wild-type sequence were obtained by all three RT-PCR assays (Fig. 4B). This experiment thus 

showed that the full-length viral genome had displaced the replicons during passage in cell 

culture and demonstrates that this system can be used as a "recombination trap" for selecting 

potential wild-type revertants within the population of replicating RNAs. 

 

Application of the recombination trap 

 The replicon constructs used in the previous set of experiments for establishing the 

reciprocal packaging system, although identical in the region encoding the nonstructural 

genes, contained only a small stretch of 27 identical nucleotides between the C and prM genes 

where a single homologous recombination event could result in the creation of a full-length 

genome by restoring the missing capsid gene in ∆C (Fig. 1). Therefore, in order to increase 

the likelihood of such an event, we constructed a new replicon to use in place of ∆ME that 

increased the region of identical sequence between the deleted regions. This construct, called 

∆E, had all of the E gene deleted (nt 973-2460) but retained the entire prM gene as a 572-nt 

region of common sequence identity where homologous recombination with ∆C could 

potentially take place (Fig. 1). In addition to the TBEV constructs, we also made analogous 

∆C and ∆E replicons using genomic clones of the mosquito-borne flaviviruses West Nile 

virus (WNV) and Japanese encephalitis virus (JEV) (Fig. 1).  

 The recombination trap was then put to use by cotransfecting BHK-21 cells with the 

TBEV, WNV, and JEV ∆C and ∆E replicon pairs and carrying out multiple endpoint-dilution 

passages to favor the selection and enrichment of any viruses with full-length genomes that 

might arise by recombination. Full-length infectious clones of each virus were used as 

controls. After 10 endpoint passages, intracellular RNA was analyzed by gel electrophoresis 

and northern blotting with virus-specific probes (Fig. 5A). As expected, each of the full-

length, wild-type controls yielded a single major band. In the case of TBEV, transfection with 

∆C together with ∆ME or ∆E resulted in two major bands (Fig. 5A, left panel, lanes 3 and 4) 
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that corresponded in size to the original replicons (lanes 5, 6 and 7), suggesting that the two 

original replicons had been co-passaged and maintained throughtout the entire 10 passages.  

Likewise, cotransfection of ∆C and ∆E from WNV also yielded both replicon bands (Fig. 5A, 

middle panel, lane 3).  

In contrast to these results, however, in the case of JEV, northern blotting revealed 

only a single band after passage of the ∆C+∆E pair, suggesting that the replicons were not 

propagated as a pair and that a recombination event might have occurred. This phenomenon 

was observed in two completely separate experiments. Northern blot analysis of earlier 

passages indicated that replacement of the original pair of replicons with the new band had 

already occurred in the third and fifth passage, respectively (data not shown). The relative 

positions of the bands in the gel suggested that the final RNA recombination products were 

not identical in size in the two experiments (Fig. 5A, right panel, lanes 3 and 4).  

As a more sensitive and precise means of assessing whether recombinant RNA 

molecules were present in the population, we devised RT-PCR assays for detecting the 

restoration of deleted regions of the TBEV, WNV, and JEV genomes (see Materials and 

Methods). In these assays, neither of the original replicons could be amplified due to the lack 

of one of the primer-binding sites, but recombinants containing both of these sites would yield 

a PCR product. As shown in Fig. 5B, in the case of TBEV and WNV (left and middle panels, 

respectively), the RT-PCR assay yielded a product in the case of the WT control, but not with 

the passaged replicon pairs, indicating that no detectable reversion to wild-type TBEV or 

WNV had occurred via inter-replicon recombination. With JEV, however, a clearly different 

situation was observed (Fig. 5B, right panel). Positive RT-PCR results were obtained not only 

with the WT control (lane 1) but also with the combination of ∆C and ∆E in the two separate 

experiments (lanes 3 and 4). The first of these PCR products (lane 3) appeared to be larger 

than the one obtained using the wild-type genome, whereas the second (lane 4) was 

approximately the same size. These results provided positive evidence that recombination 
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events had indeed occurred with the JEV system. Other RT-PCR assays that were designed to 

detect the original replicons (see Materials and Methods) failed to yield detectable 

amplification products from the passaged JEV samples, indicating that both replicons had 

been completely displaced by the new recombinant in both of these experiments  (data not 

shown).  

These newly selected recombinant genomes were then reverse-transcribed and 

sequenced. Both of them were found to contain all of the components of the JEV genome, but 

neither corresponded in its arrangement to a wild-type genome. Recombinant 1 (Fig. 6A, top), 

which was obtained in experiment 1, was composed of replicon ∆E sequence from its 5' end 

up to nt 2761 and still included the original deletion of nt 978 to 2477 in the E gene. The 

remainder of the genome was derived from replicon ∆C and included the entire region 

extending from the beginning of prM to the 3' terminus, thereby resulting in an aberrant 

genome containing a partial duplication of the NS1 region and a complete duplication of the 

prM region between prM and E. Recombinant 2 (from experiment 2) resembled the wild-type 

JEV except that it contained a tandem duplication of nucleotides 393-455, corresponding to 

the NS2B/3 protease cleavage site between C and prM (Fig. 6A, bottom). 

 

Growth properties of JEV recombinants 

 To characterize their biological properties, infectious clones of the recombinant 1 and 

recombinant 2 genomes were made as described in Materials and Methods. Full-length RNA 

was synthesized from these templates and used to transfect BHK-21 cells, which in turn 

released infectious particles into the cell supernatant. These viruses were then characterized 

by testing them in a standard plaque assay using Vero cells and by carrying out a multistep 

growth curve experiment using both BHK-21 cells and the mosquito cell line C6/36. 

 The plaque morphology produced by these viruses in Vero cells is shown in Fig. 6B. It 

was observed that the recombinant 1 virus produced large plaques that looked similar to those 
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produced by wild-type JEV. The recombinant 2 virus, on the other hand, produced small 

plaques, suggesting that this virus was impaired in its ability to spread to other cells. 

 The growth curves shown in Fig. 6C, performed using an MOI of 0.01, show that both 

recombinants had impaired growth properties compared to wild-type JEV. Recombinant 2 

grew extremely poorly in BHK-21 cells, whereas the growth rate of recombinant 1 was only 

moderately reduced compared to wild-type JEV. However, the titer of recombinant 1 fell 

sharply after two days due to a strong cytopathic effect (CPE). In C6/36 cells, both of the 

recombinants grew about an order of magnitude more slowly than the wild type, and 

recombinant 1 did not produce an unusually strong CPE in these cells. 

 These results suggest that although passage at limiting dilution apparently gave the 

two aberrant full-length recombinant forms of JEV a growth advantage over the original 

replicon pair, their growth properties would not have allowed them to prevail over a wild-type 

virus, had one been present in the population. We therefore conclude that although aberrant 

recombination events did occur in the JEV system, a normal wild-type revertant was not 

produced by a simple homologous crossover in any of the experiments with JEV, WNV, or 

TBEV. 

 

Discussion 

 

Using a “recombination trap”, an experimental system designed to detect even rare 

recombination events between two self-replicating RNA molecules, we analyzed the 

propensity for intermolecular recombination of three flaviviruses, TBEV, WNV, and JEV. 

The inclusion of long overlapping regions between the two trans-complementing replicons in 

our recombination trap provided ample opportunity for homologous crossover events to 

generate recombinants with wild-type genomes. Surprisingly, however, no such event was 

detected in any of the three flaviviral systems, even after prolonged co-passaging, indicating 

50 



that exact homologous recombination occurs rarely, if at all, with these viruses. However, we 

did detect two aberrant recombination events in the JEV system, each of which gave rise to 

infectious virus progeny with an unnatural genome organization and an impaired growth 

phenotype.  

The potential for unwanted recombination has been a topic of considerable 

controversy in the context of live flavivirus vaccine and vector development. Until now, the 

only evidence for flavivirus recombination has been inferred from sequence data from certain 

natural isolates (56, 57, 143, 147, 148). However, there has been a lack of general agreement 

about the significance of these observations, and due to the lack of appropriate experimental 

systems, it has not yet been verified under laboratory conditions that flavivirus genomes 

actually recombine. The recombination trap described here provides for the first time a 

sensitive system to address this issue experimentally, and the results obtained using this 

system represent the first direct observation of recombination between replicating flavivirus-

derived RNA molecules in the laboratory. From this study, we can draw three major 

conclusions that are relevant for flavivirus vaccine and vector development:  

(i) Homologous recombination among flavivirus genomes, if it occurs at all, is a very 

rare event. The sensitivity of the recombination trap was demonstrated by the spiking 

experiment, which showed that as little as 10 infectious units of wild-type virus resulted in the 

complete displacement of the two replicons by the infectious wild-type virus within three 

passages. It is reasonable to assume that a single recombination event that gives rise to an 

infectious genome would produce at least 10 infectious particles and would thus outgrow the 

parental replicons within three passages or less. Flavivirus replicons typically multiply to 104 

copies per cell (79, 129), and because the experimental conditions used allowed multiple 

rounds of infection at each passage, we estimate that at least 104 cells per passage would have 

been co-infected with complementary replicons, providing approximately 108 molecules that 

could potentially participate in a recombination event. Thus, a homologous crossover event 
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resulting in the generation of wild-type virus – which could have happened at any position 

within the extended stretch of overlapping sequence identity between the two replicons – 

would  have been selected at a frequency as low as one in 108 per passage. However, the 

generation of wild-type virus was never observed for any of the three flaviviruses although 

they were tested over 10 passages.  

(ii) Aberrant recombination apparently does occur, at least for certain flaviviruses. Despite the 

fact that extensive overlaps of identical sequence were present in our replicon pairs to favor 

crossover events at homologous positions to regenerate wild-type genomes, the only 

recombination events observed were aberrant ones that generated unnatural, rearranged forms 

of the JEV genome. As with homologous recombination, longer sequence overlaps between 

the recombination partners provide more potential non-identical crossover sites and would 

thus be expected not only to increase the likelihood of aberrant recombination within the 

overlap region but also the statistical chances of such an event producing a viable genome. 

Our results also raise the question whether ‘wobbling’ the codons of the overlap region, as has 

been used by some researchers to avoid homologous recombination, would actually reduce 

the recombination frequency if it is indeed confirmed that most crossovers are of the aberrant 

type. Furthermore, it remains unclear why no aberrant recombination was observed in the 

TBEV and WNV systems in spite of equivalent experimental conditions and sequence design.  

It is possible that this kind of recombination is favored by yet undefined RNA 

structures that were present in our JEV sequence but not in those of the other two flaviviruses.  

These questions can be addressed in future experiments with the recombination trap. 

(iii) If recombinants arise, they are likely to have an impaired growth phenotype. 

Aberrant recombination, which occurs by a crossover event at non-identical genome 

positions, generates an unnatural genome organization with sequence duplications. In the case 

of the JEV recombinants generated and analyzed in this study, this unnatural genome 

structure apparently caused growth defects, as demonstrated by a reduced-plaque-size 
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phenotype and/or growth kinetics in different host cells. This suggests that under natural 

conditions, progeny virus derived from such aberrant recombination events would, in most 

cases, have little, if any, chance to compete against the parental wild-type virus.  

Overall, these conclusions suggest that recombination may turn out not to be a major 

concern with regard to live flavivirus vaccines and self-replicating flavivirus vectors. Our 

observations are in good agreement with the fact that, in spite of decades of use of live 

flavivirus vaccines and the co-circulation of several flaviviruses in several endemic areas in 

the world, there has not been a single report of a naturally occurring recombinant involving a 

vaccine strain or of recombination between members of different flavivirus species. 

Furthermore, although numerous experiments with chimeric flaviviruses have clearly 

demonstrated that artificially constructed interspecies recombinants can be viable (49, 54, 60, 

102, 104), such recombinants have never been observed to arise under natural conditions. 

The low rate of recombination, even under conditions strongly favoring the selection 

of recombinants, suggest that recombination probably plays, at most, a minor role in the 

biology and evolution of flaviviruses, and this highlights a striking difference between 

flaviviruses and many other RNA viruses (84). Coronaviruses, for example, frequently 

undergo precise homologous recombination (88), and vaccine strains of poliovirus (a 

picornavirus) have been observed to recombine with each other and with other enteroviruses 

(16, 101). Recombination is also a major driver of genetic diversity and viral evolution of 

retroviruses such as HIV (58, 141), and homologous recombination has also been reported 

among plant RNA viruses. For other viruses, such as alphaviruses and pestiviruses, aberrant 

homologous recombination, and even non-homologous recombination, appear to be more 

common than homologous recombination, but its frequency is still significant (9, 10, 50, 99, 

100, 120). In fact, first-generation packaging systems for alphavirus vectors suffered from the 

risk of frequently observed recombination events between helper and vector replicons, 

regenerating infectious virus (150) – a  problem that has been addressed by the development 
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of tripartite packaging systems and other genetic modifications to prevent successful 

recombination. In the case of the pestiviruses, which belong to the same viral family as the 

flaviviruses, sequences of cellular origin can be acquired by non-homologous recombination, 

driving alterations in viral pathogenicity(10, 12). Homologous recombination in these viruses 

was reduced in a pestivirus study when the sequence identity between recombination partners 

was reduced(39).  

How may the low propensity for recombination between flaviviruses be explained at 

the molecular level? RNA recombination is thought to occur through a process in which the 

RNA replication complex falls off its template and continues RNA synthesis on a different 

template. A similar process is probably involved in the generation of deletion or duplication 

mutations during RNA replication (17, 87). Here, the replication complex also falls off and 

reinitiates, but it does so on the same template molecule upstream or downstream from its 

previous position, thus generating, respectively, duplications and deletions. Spontaneous 

deletion and duplication mutations, in contrast to intermolecular recombination events, are 

frequently observed in flaviviruses (80, 127). If, however, the flavivirus replication complex, 

similar to that of other RNA viruses, is capable of releasing its template and continuing RNA 

synthesis at another location, why would it not be able to freely switch templates in the course 

of this process and thus generate a recombined RNA product? One possible explanation 

would be that replication takes place in individual, secluded compartments within the infected 

cell that predominantly contain RNA derived from a single template molecule (81, 151). An 

alternative explanation would be that the RNA template somehow remains associated with the 

replication complex at a site other than the active site, which would favor re-initiation on the 

same RNA molecule after a temporary release of the template from the active site of the 

synthetase.  

The use of trans-complementation systems such as the ones described here as 

recombination traps will allow more detailed investigation of the types of recombination 
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events that flavivirus genomes are capable of undergoing as well as their relative frequencies. 

In addition, the generally low propensity of flavivirus replicons for recombination makes it 

possible for them to be used as reliable tools to study complementation of individual genes 

derived from different viral strains or species. 

 

Materials and Methods 

 

Cells. BHK-21 cells were grown in Eagle’s minimal essential medium (Sigma) 

supplemented with 5% fetal calf serum (FCS), 1% glutamine and 0.5% neomycin (growth 

medium) and maintained in Eagle’s minimal essential medium supplemented with 1% FCS, 

1% glutamine, 0.5% neomycin and 15 mM HEPES, pH 7.4 (maintenance medium). Vero 

cells (ATCC CCL-81) were grown in Eagle’s minimal essential medium supplemented with 

10 % FCS, 30 mM L-glutamine, 100 units of penicillin, and 1 µg/ml streptomycin. Plaque 

assay infections were done in medium containing 1% FCS. Aedes albopictus C6/36 cells were 

grown in Eagle’s minimal essential medium (without NaHCO3) supplemented with 10% FCS, 

20 mM L-glutamine, 100 units of penicillin, 1 µg/ml streptomycin, 13 mM sodium hydroxide, 

19 mM HEPES, pH 7.4, and 0.2 % 50x tryptose-phosphate. For growth curve analysis, the 

FCS concentration was reduced to 1%. 

 

Plasmids and cloning procedures. Plasmid pTNd/c, used for generating infectious 

TBEV, contains a full-length genomic cDNA insert of TBEV strain Neudoerfl (GenBank 

accession number U27495) cloned in plasmid pBR322 (96). RNA transcribed from this 

plasmid was used as the TBEV wild-type virus control. Plasmid pTNd/5’ contains a 5’ cDNA 

fragment of the same viral genome (96). Full-length DNA templates for in vitro transcription 

of TBEV plasmids were generated as described previously (77).  
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pTBEV-ΔC, a derivative of pTNd/c containing a large deletion (62 amino acids) of the 

sequence coding for the capsid protein as well as individual mutations in the signal sequence 

of the capsid protein, was used as the DNA template for in vitro synthesis of replicon ∆C. It 

has been described in an earlier publication (76) in which it was called C (Δ28-89)-S. The 

plasmids for production of replicons ΔME (41) and ΔME-eGFP (42) were also described 

previously. 

Plasmid pTBEV-ΔE, the template for generating TBEV replicon ∆E, was constructed 

by first performing PCR using the primers 5'-ttttaccggtttacgctgatgttggttgcgctgtgga-3' and 5'-

ttccatcgatagtgtgactagcaggccatgagca-3' with pTNd/5' as a template and then cloning this PCR 

product into pTNd/5' using the restriction enzymes AgeI and ClaI. 

For the construction of plasmid pWNV-∆C, the template for generating the WNV ∆C 

replicon, two DNA fragments were made by amplifying portions of the plasmid clone 

pWNV-K1 (127), which contains nucleotides 1-3339 of WNV strain NY99 (isolate Crow 

V76/1). The first fragment was made using the primers 5’-aggtgttccacagggtagcca-3’ and 5’-

ttttggatccttttagcatattgacagccc-3’ and then digesting the resulting product with PacI and 

BamHI. The second fragment was made using primers 5’-tctcggatcctcaaaacaaaagaaaagagg-3’ 

and 5’-aaataggggttccgcgcaca-3’ and digestion with BamHI and NotI. These fragments were 

then mixed with a third fragment generated by digestion of the plasmid pWNV-K4 

(containing nucleotides 3282-11029 from the same WNV strain) with PacI and NotI. Ligation 

of these three fragments resulted in an intermediate construct containing nucleotides 1-3339 

of the WNV genome but lacking nucleotides 151-393 in the C gene, which were replaced by a 

BamHI restriction site. An additional SalI restriction site was created by introducing silent 

nucleotide substitutions at positions 151 and 156  using a site-directed mutagenesis kit 

(Invitrogen) with the primers 5’- gtgtctggagcaacatgggtCgaCttggttctcg-3’ and 5’- 

acccatgttgctccagacactccttccaag-3’ (bold capital letters indicate mutated nucleotides). The full-

length DNA template for RNA synthesis was generated by digestion of pWNV-K1-ΔC and 
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pWNV-K4 with BstEII, followed by in vitro ligation using T4 DNA ligase (Invitrogen) and 

linearization by digestion with NotI. 

For construction of plasmid pWNV-ΔE, pWNV-K1 was used as a template for 

mutagenic PCR using the primers 5’-ttttcacccagtgtcgctgtaagctggggccacca-3’ and 5’-

ttttagatctcgatgtctaagaaaccaggagg-3’. Restriction digestion of the PCR product and WNV-K1 

with BglII and AdeI generated fragments that were ligated to form pWNV-K1-ΔE. This 

partial clone was further digested with PacI and BstEII, and the resulting fragment was cloned 

into pWNV-K4, yielding full-length DNA plasmid pWNV-ΔE. This full-length plasmid was 

linearized by NotI digestion before use as a template for in vitro RNA transcription. 

All constructs containing JEV sequences were based on JEV strain SA-14 (China), 

which was kindly provided by Peter Mason, Yale University. A 5’ clone, pJEV-K3, 

containing nucleotides 1-5616, a 3’clone, pJEV-K4, containing nucleotides 5595-10977, and 

a full-length clone, pJEV/c, containing the whole genome (nt 1-10977) of the wild-type virus 

in pBR322 were generated using standard cloning techniques (manuscript in preparation).  

For construction of pJEV-ΔC, mutagenic PCR was first performed using the primers 

5’-ggcatcgattagtgggaatacgcggggtag-3’ and 5’-aaattaattaatacgactcactatagagaa-3’ with plasmid 

pJEV-K3 as the template. This PCR product and plasmid pJEV-K3 were both digested with 

ClaI and PacI and ligated, forming the intermediate construct pJEV-K3-ΔC. pJEV-K3-ΔC and 

pJEV/c were then digested with PacI and AgeI, and the smaller fragment of pJEV/c was 

replaced by the corresponding fragment of pJEV-K3-ΔC, yielding the full-length cDNA clone 

pJEV-ΔC. 

 For construction of pJEV-ΔE, mutagenic PCR was performed using the primers 5’-

aggcagcccctaggaccagaaccacgttttcttggttcgt-3’ and 5’-

ttttacgcgtggtatttaccatcctcctgctgttggtcgctccggcttacagtgacacttggatgtgccattg-3’ and plasmid 

pJEV-K3 as the template. This PCR product and plasmid pJEV-K3 were both digested with 

AvrII and MluI and ligated together to make the intermediate construct pJEV-K3-ΔE. pJEV-
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K3-ΔE and pJEV/c were then digested with PacI and BamHI, and the smaller fragment of 

pJEV/c was exchanged with the corresponding pJEV-K3-ΔE fragment, yielding the full-

length cDNA clone pJEV-ΔE. 

Infectious clones of JEV recombinants 1 and 2 were made as follows: Cytoplasmic 

RNA that indicated the presence of a full-length virus in the northern blot analysis was 

transcribed into cDNA as described below for RT-PCR. Then, PCR with primers 5’-

tcgagagattagtgcagttt-3’ and 5’-cagtacgacaagtcactatggac-3’ was used to generate a fragment 

that was digested with ClaI and AgeI and exchanged with the corresponding ClaI/AgeI 

fragment of pJEV-K3. Each of these intermediate constructs was cut with AgeI and ligated to 

AgeI-digested pJEV-K4 to form the full-length DNA templates for in vitro transcription. 

 

RNA transfection. In vitro transcription and transfection of BHK-21 cells by 

electroporation were performed as described previously (79, 96, 114). RNA was synthesized 

from full-length cDNA clones or in vitro-ligated full-length templates (see above) using 

reagents of the T7 Megascript kit (Ambion) according to manufacturer’s protocol. The 

template DNA was digested by incubation with DNase I, and the quality of the RNA was 

checked by electrophoresis in a 1% agarose gel containing 6% formalin. RNA was purified 

using an RNeasy Mini kit (Qiagen) and quantified spectrophotometrically. Equimolar 

amounts of RNA were then introduced into BHK-21 cells by electroporation using a Bio-Rad 

Gene Pulser (1.8 kV, 25 µF, 200 Ω). For cotransfections, equal amounts of RNA (~1.1 1012 

copies) of each construct were mixed before electroporation. 

 

Immunofluorescence assays. Twenty-four hours after transfection or infection, BHK-

21 cells were fixed for 20 min with 4% paraformaldehyde in PBS (pH 7.4) and then washed 

two times for 5 min with PBS (pH 7.4) and permeabilized with ice-cold methanol for 6 min at 

-20°C. After three washes with PBS (pH 7.4) and blocking with 3% BSA in PBS (pH 7.4) for 
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30 min at room temperature, intracellular E protein was visualized by sequential incubation 

with a monoclonal mouse antibody against E (1E9) (48) and  a Rhodamine-Red-X-conjugated 

anti-mouse IgG antibody (Jackson Immune Research Laboratory). Simultaneously, eGFP 

fluorescence was enhanced by incubation with a polyclonal rabbit-antibody against GFP 

(Abcam: ab6556), followed by incubation with a fluorescein-isothiocyanate (FITC)-

conjugated anti-rabbit IgG antibody (Jackson Immune Research Laboratory).  

For single-focus immunofluorescence, BHK-21 cells were seeded into 24-well tissue 

culture plates containing microscope coverslips. The confluent monolayer was infected in 

parallel with the dilutions used for the focus assay. Accordingly, cells were treated in the 

same way and covered with a 3% carboxymethyl cellulose overlay dissolved in maintenance 

medium. After 50 hours, cells were washed three times with ice-cold PBS (pH 7.4) and then 

processed for double immunofluorescence staining. Microscopic observation and 

documentation were accomplished by using a LSM 510 scanning confocal microscope (Zeiss) 

and the included software.  

 

Focus assay. Supernatants from BHK-21 cells were collected at passage 1 on day 3 

postinfection. Serial dilutions of supernatants were applied to confluent monolayers of BHK-

21 cells. After a 3-h incubation, supernatants were removed and cells were covered with a 3% 

carboxymethyl cellulose overlay dissolved in maintenance medium. Fifty hours after 

infection, cells were fixed with acetone-methanol (1:1) for 10 min at -20°C and treated with 

polyclonal rabbit anti-TBEV serum. Antibody-labeled cells were detected using an 

immunoenzymatic reaction consisting of sequential incubation with goat anti-rabbit 

immunoglobulin G-alkaline phosphatase and the corresponding enzyme substrate (SigmaFast 

Red TR/Napthol AS-MX tablets). 
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Endpoint passages. Supernatants of infected cells were sequentially diluted, and 200 

µl of each dilution was applied to fresh BHK-21 cells grown in 24-well plates (Nunc). After 

three days, half of the medium was replaced by fresh medium, and after six days, protein E 

released into the supernatant  was detected using a four-layer enzyme-linked immunosorbent 

assay (ELISA) (53) in the case of TBEV and a haemagglutination assay (HA) (127) in the 

case of WNV and JEV. After six days, the highest dilution yielding a positive signal in 

ELISA or HA was cleared of cell debris, sequentially diluted and used for infection of fresh 

BHK-21 cells. 

 

Northern blot analysis. Template DNA for synthesis of RNA probes for northern 

blotting was generated using the following primers and templates: TBEV: template pTNd/c 

and primers agagagcagaagggattga  and tacttaatacgactcactataggtgtgcaagacacccttg generated a 

probe binding to nucleotides 4093-4773 in wild-type virus. WNV: template pWNV-K4 and 

primers agcggctgttggtatggtatg and taatacgactcactataagctgcactcctcttctccct generated a probe 

binding to nucleotides 3448-4107 in wild-type virus. JEV: template pJEV-K4 and primers 

aatggctgctggtacggaatgga and taatacgactcactatacatggtctttttcctctcgtg generated a probe binding 

to nucleotides 3456-4103 in wild-type virus. After phenol-chloroform purification of the 

template DNA, the T7 promoter sequence (underlined) fused to each reverse primer allowed 

RNA synthesis using a T7 MAXIscript In Vitro Transcription Kit (Ambion). The probe RNA 

was labeled by using 0.4 µl of 10 mM Bio-11-UTP (Ambion) instead of UTP. Probe RNA 

was separated from free nucleotides using Micro Bio-Spin 30 columns (BioRad). 

Cytoplasmic RNA was extracted from BHK-21 cells 24 hours after transfection or 

infection. Ten µg of total RNA was applied to a 1% agarose gel, and northern blotting was 

carried out according to the instructions of the NorthernMax-Gly Kit (Ambion). Blotted RNA 

was detected using a BrightStar BioDetect Kit (Ambion). 
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RT-PCR. Reverse transcription-polymerase chain reaction (RT-PCR) was performed 

using the same cytoplamic RNA used for the northern blot analysis, with the primers for 

cDNA synthesis and PCR listed in Table 1. cDNA fragments of the 5’ terminal part of each 

virus genome including the entire sequence coding for the three structural proteins capsid, 

prM and E was synthesized using a reverse primer binding to the sequence coding for NS1 of 

each virus (Table 1). Subsequently, primers binding to sequences absent in both or only one 

of the replicons were used for specific amplification of full-length or replicon cDNA 

fragments of the structural region of TBEV, WNV, or JEV (Table 1). Each PCR was carried 

out using an Advantage® HF2 PCR Kit (Clontech), and amplicons were subjected to 1% 

agarose gel electrophoresis as well as automated sequence analysis as described before (79).   

 

Plaque assays. Vero cells were grown to 80% confluence in 12-well plates and 

incubated for 1 h with virus suspensions serially diluted in maintenance medium. The cells 

were subsequently overlaid with EMEM containing 5% FBS (PAA), 1.5% glutamine (200 

mM, Cambrex), 1% penicillin/streptomycin (10,000 U/ml penicillin, 10 mg/ml streptomycin, 

Sigma), 15 mM HEPES and 0.25% agarose (Sigma). Four days after infection, the cells were 

fixed and stained with a solution containing 4% formaldehyde and 0.1% crystal violet. 

 

Multistep growth curves. Stock preparations of JEV recombinants were generated by 

collecting supernatants of BHK-21 cells transfected with these mutants at day 3 

posttransfection. For analysis of growth properties of recombinant JEV viruses, C6/36 

mosquito cells grown in 6-well plates were infected with wild-type JEV or JEV recombinant 

stock preparations at a low multiplicity of infection (MOI 0.01). Aliquots of supernatants (500 

µl) were taken at different time points, and virus titers were determined by plaque assay. 
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Figure Legends 

 

Figure 1. Structural organization of flavivirus genomes and replicons. Top: Schematic 

drawing of a full-length flavivirus genome. Below: Expanded view of the structural region of 

each replicon. Deletions are indicated by dotted lines, and the missing nucleotides are 

indicated after the "∆" symbol. Nucleotide numbers refer to the position in the corresponding 

wild-type virus sequence. The length of the homologous region that would allow 

recombination to yield a full-length virus is indicated on the right. C, capsid protein; pr, N-

terminal part of prM; M, C-terminal part of prM corresponding to the mature M protein; E, 

protein E; NS, nonstructural protein; NCR, noncoding region; IRES, internal ribosome entry 

site; eGFP, enhanced green fluorescent protein. 

 

Figure 2. Packaging and propagation of complementing TBEV replicons.  Left: Fluorescence 

micrographs showing eGFP and E protein expression in BHK-21 cells 24 hours after 

transfection with in vitro-transcribed full-length genomic RNA or replicon RNA. From top to 

bottom: cells transfected with wild-type RNA, mock-transfected control without RNA, cells 

transfected with ∆C alone, cells transfected with ∆ME-eGFP alone, and cells cotransfected 

with both ∆C and ∆ME-eGFP. Green fluorescence indicates eGFP expression, and red 

fluorescence indicates viral E protein expression. In the merged images shown at the right, 

cells expressing both proteins appear yellow. Right: Cell culture passage 1. Supernatants from 

the transfected cells shown in the left panel were used to inoculate fresh BHK-21 cells, and 

expression of eGFP and E protein was again detected by immunofluorescence staining. 

Bottom: Cell culture passage 2. Supernatants from passage 1 containing both packaged 

replicons were again transferred to fresh BHK-21 cells, and these cells were likewise 

examined by immunofluorescence staining. 
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Figure 3. Analysis of foci. A. Typical foci produced in BHK-21 cells after infection with 

culture supernatants containing wild-type TBEV (left) or a mixture of packaged TBEV 

replicons ΔC and ΔME-eGFP (right). B. Immunofluorescence staining of a single focus 

observed after coinfection with packaged TBEV replicons ΔC and ΔME-eGFP. Cells were 

processed in the same way as for the focus assay shown in A except that instead of an 

immunoenzymatic reaction, immunofluorescence staining was used to detect eGFP and E 

protein expression as in Fig. 2.  

 

Figure 4. Spiking experiment to examine competition between replicons and full-length virus 

genomes. A. Northern blot analysis of total intracellular RNA extracted from BHK-21 cells 

transfected with full-length TBEV genomic RNA (lane 1), TBEV replicon ΔME (lane 2), 

TBEV replicon ΔC (lane 3), or both replicons simultaneously (lane 4). After transfection, 10 

focus-forming units (ffu) of TBEV wild-type virus was added to the supernatant of cells 

cotransfected with replicons ΔME and ΔC, and fresh cells were infected with this mixture. 

Three endpoint passages later, intracellular RNA was examined again, revealing the presence 

of a single RNA species corresponding in size to the viral genome (lane 6). Mock = mock-

infected control. B. RT-PCR performed with the same intracellular RNA samples used for the 

northern blot analysis in A and the TBEV-specific primers listed in Table 1. cDNA synthesis 

was performed using a reverse primer that allowed the synthesis of the 5’ terminal part of 

TBEV genome, extending to the middle of the region coding for NS1. RT-PCR 1: PCR with 

primers binding to sequences in the region coding for the capsid protein (forward) and protein 

E (reverse), allowing detection of the wild-type genome but not replicon ∆C or ∆ME, which 

lack the forward and reverse primer-binding site, respectively. This PCR confirmed the 

presence of a full-length viral genome three endpoint passages after spiking the replicon 

mixture with a small amount of wild-type TBEV. RT-PCR 2: PCR with primers binding to the 

5’NCR (forward) and to the sequence coding for protein E (reverse), allowing detection of 
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wild-type virus (lane 1) and replicon ΔC (lane 3) but not ∆ME. Note the absence of the ∆C-

specific PCR product three endpoint passages after spiking with wild-type virus (lane 6). RT-

PCR 3: PCR with primers binding to the regions coding for the capsid protein (forward) and 

the NS1 protein (reverse), allowing detection of wild-type virus (lane 1) and replicon ΔME 

(lane 3), but not ∆C. Again, note the absence of the ∆ME-specific product three endpoint 

passages after spiking with wild-type virus (lane 6).  

 

Figure 5. Detection of recombinants using the recombination trap. A. Northern blot analysis 

of intracellular RNA. Left: Total cellular RNA was isolated from BHK-21 cells infected with 

wild-type TBEV (lane 1), mock-transfected cells (lane 2), cells infected using supernatants 

from the tenth passage after cotransfection with TBEV replicons ΔC + ΔE (lane 3) or ΔC + 

ΔME (lane 4), and control cells that were transfected separately with TBEV replicon ∆ME 

(lane 5), ∆E (lane 6), or ∆C (lane 7). Middle: The RNA was isolated from BHK-21 cells 

infected with wild-type WNV (lane 1), mock-transfected cells (lane 2), cells infected using 

supernatants from the tenth passage after cotransfection with WNV replicons ΔC + ΔE (lane 

3), and control cells that were transfected separately with WNV replicon ∆E (lane 4) or ∆C 

(lane 5). Right: The RNA was isolated from BHK-21 cells infected with wild-type JEV (lane 

1), mock-transfected cells (lane 2), cells that were infected using supernatants from the tenth 

passage after cotransfection with JEV replicons ΔC + ΔE in two separate experiments (lanes 3 

and 4), and control cells that were transfected separately with JEV replicon ∆E (lane 5) or ∆C 

(lane 6). B. RT-PCR for detection of recombinants. Lane designations are the same as in A. 

RT-PCR assays analogous to RT-PCR 1 in Fig. 4B were carried out using the same cellular 

RNA preparations used for the northern blot shown in A and the appropriate virus-specific 

"RT-PCR1" primers shown in Table 1. The forward and reverse primers in this assay bind to 

the missing regions of the ∆C and ∆E replicons, respectively, and an amplification product is 
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therefore only obtained when both of these sites are present on the same RNA molecule, as 

was observed with two JEV recombinants (lanes 3 and 4 of the right panel). 

 

Figure 6. Growth properties of JEV recombinants A. Schematic diagram of the JEV 

recombinants selected in experiments 1 and 2 (Fig. 5), named recombinant 1 and recombinant 

2, respectively. The 5’ part of the genome of recombinant 1 was derived from replicon ΔE and 

retained the original deletion. The crossover point is after the deletion, in the middle of the 

sequence coding for NS1. The 3' part of recombinant 1 begins with nucleotide 641 of the ∆C 

replicon (numbering corresponds to wild-type TBEV) and continues to the 3' end of the 

genome. The resulting genome thus contains two copies of most of the prM region. The 

genome of recombinant 2 differs from the wild-type genome by a short duplication in the C-

terminal portion of the capsid protein gene, resulting in a duplication of the cleavage site for 

the viral NS2B/3 protease. B. Morphology of plaques produced in Vero cells infected with the 

cloned recombinants. Recombinant 1 produced plaques similar to those of wild-type virus, 

whereas recombinant 2 produced only small plaques. C. Growth curves. Left: Growth kinetics 

of wild-type virus and recombinant viruses in BHK-21 cells after infection at an MOI of 0.1. 

Right: Growth kinetics of wild-type JEV and recombinant viruses in C6/36 mosquito cells 

after infection at an MOI of 0.1 
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TABLE 1. Primers used for RT-PCR 

 

 Forward primer Reverse primer  

TBEV Position in 
full-length 
genome 

Sequence  (5’→3’) Position in full-
length genome 

Sequence (5’→3’) Possible amplicons 

cDNA 
synthesis 

  NS-1 (nt 3700-
3679) 

ccaccacatagcgcaccagg   

RT-PCR 1 Capsid (nt 
214-235) 

caacccagagtccaaatgccaa  E (nt 2100-2081) cagctgcatctctatgaagc  full-length: 1887 nt, 
ΔC: none, ∆ME: none,  
ΔE: none 

RT-PCR 2 5’NCR (nt 1-
21) 

gcagcggttggtttgaaagag  E (nt 2100-2081) cagctgcatctctatgaagc  full-length: 2100 nt, 
ΔC: 1915nts, ΔME: 
none,  ΔE: none 

RT-PCR 3 Capsid (nt 
214-235) 

caacccagagtccaaatgccaa NS-1 (nt 3300-
3279) 

tccgagttatcagagaggag  full-length: 3087 nt, 
ΔC: none, ΔME: 589 nt, 
ΔE: 1600 nt 

 
WNV Position in 

full-length 
genome 

Sequence (5’→3’) Position in full-
length genome 

Sequence (5’→3’) Possible amplicons 

cDNA 
synthesis 

  NS-1 (nt 3700-
3680) 

tgacatagcgtaacacatcag   

RT-PCR 1 Capsid (nt 
164-187) 

gcgtgttgtccttgattggactga  E (nt 2100-2080) gggtggttccaattcaatcag  full-length: 1937 nt, 
ΔC: none, ΔE: none 

RT-PCR 2 5’NCR (nt 1-
20) 

agtagttcgcctgtgtgagc  E (nt 2100-2080) gggtggttccaattcaatcag  full-length: 2100 nt, 
ΔC: 1860 nt, ΔE: none 

RT-PCR 3 Capsid (nt 
164-187) 

gcgtgttgtccttgattggactga  NS-1 (nt 3300-
3280) 

gaagtcaatctctacccggcc  full-length: 3137 nt, 
ΔC: none, ΔE: 1636 nt 

      
JEV Position in 

full-length 
genome 

Sequence (5’→3’) Position in full-
length genome 

Sequence (5’→3’) Possible amplicons 

cDNA 
synthesis 

  NS-1 (nt 3407-
3381) 

ccagtcagtgatcaactttcca
ctgtcag  

 

RT-PCR 1 Capsid (nt 
166-190) 

tattcccactagtgggagtgaag
ag  

E (nt 2130-2110) ctacgatgtaggagtctccga  full-length: 1995 nt, 
ΔC: none, ΔE: none 

RT-PCR 2 5’NCR (nt 48-
67) 

tcgagagattagtgcagttt  E (nt 2130-2110) ctacgatgtaggagtctccga  full-length: 2082 nt, 
ΔC: 1860 nt, ΔE: none 

RT-PCR 3 Capsid (nt 
166-190) 

tattcccactagtgggagtgaag
ag  

NS-1 (nt 3079-
3057) 

ccagtacgacaagtcactatg
gac  

full-length: 2913 nt, 
ΔC: none, ΔE: 2722 nt 

 

 
 

80 



Manuscript 2 
 
Trans-complementing replicon pairs of TBEV evolve by the acquisition of 

spontaneous deletions but not recombination to infectious virus 

 
Abstract 

 

Many RNA viruses show high levels of genetic diversity and recombination can be frequently 

observed. Faviviruses seem to exhibit an unusually low propensity for homologous 

recombination as demonstrated in a recent study. Among three different flaviviruses (tick-

borne encephalitis virus, TBEV, West Nile virus, WNV, Japanese encephalitis virus, JEV) 

tested in a ‘recombination trap’ consisting of pairs of overlapping replicons, none underwent 

homologous recombination which would habe generated infectious wild-type genomes. Only 

JEV yielded infectious genomes with unnatural genome organization by an aberrant 

recombination process. To further investigate the evolution of such trans-complementing 

replicon pairs upon repeated passages, we designed TBEV replicons which shared an 

exceptionally long (2kb) sequence overlap between the deletions in the genes encoding 

protein C or E, respectively. The two replicons could complement each other in the 

production of virus particles and could be serially passaged. As observed with shorter overlap 

regions, no recombination generating infectious full-length genomes was observed. 

Surprisingly, however, the replicon carrying a deletion in the E gene spontaneously extended 

this deletion to reach into the NS1 gene. These new mutants were incapable to replicate by 

themselves, but in the presence of the other replicon or wild-type virus, they were efficiently 

replicated and packaged. Cotransfection with wildtype virus proved that they behaved 

functionally as defective interfering particles. This represents the first characterization of DI 

RNAs of TBEV. Taken together our data demonstrate the ability of TBEV to undergo 
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intramolecular recombination but suggests that intermolecular recombination between 

different TBEV genomes is an unlikely event. 

 
 

Introduction 

 

TBEV belongs to the tick borne group of the genus flavivirus. Both experimental (Manuscript 

1) and phylogenetic studies (147) on RNA recombination of tick-borne viruses failed to 

provide evidence for recombination to occur with this virus.. The close antigenic and 

phylogenetic relationships and the characteristics of their geographic distribution led to the 

proposal that viruses of this group had evolved in a gradual manner by the acquisition of point 

mutations (40). This contrasts with mosquito-borne flaviviruses which appeared to have 

evolved in a more discontinuous fashion which is demonstrated by the identification of 

recombinant genomes of JEV, all four dengue viruses and St.Louis encephalitis virus 

(Manuscript 1)(57, 143, 147, 148). In addition to recombination to full-length viruses, RNA 

viruses can generate recombinant subgenomic deletion RNAs designated defective interfering 

RNA (DI RNA). Such DI RNAs have been found in cell cultures persistently infected with 

west nile virus (WNV), murray valley virus and JEV (15, 30, 86, 145, 155) but not with 

TBEV. It has been suggested that DI RNAs are generated according to the copy choice model 

of RNA recombination (17, 87, 116) (King, A.M.Q. 1988. Genetic recombination in positive 

strand RNA viruses, p150-185. In E. domingo, J.J. Holland, and P. Ahlquist (ed.), RNA 

genetics II. CRC Press, Inc., Boca Raton Fla.) in which the viral RNA dependent RNA 

polymerase (RdRp) jumps either within (intramolecular) or between (intermolecular) 

templates during RNA replication. DI RNA genomes contain large internal deletions but 

retain all cis-acting regulatory sequences required for replication and packaging of the RNA. 

Their RNA replication depends on enzymes and structural proteins, provided by infectious 
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helper virus. Importantly, DI RNA can interfere with the replication of viruses able to act as 

helpers (121)and are most efficiently generated under conditions in which many infectious 

virus genomes simultaneously infect the same cell (55)  

TBEV is a single stranded positive-sensed RNA virus. Its genome encodes only a 

single open reading frame which is translated into a polyprotein. Posttranslational cleavages 

by viral and host proteases yield three structural proteins: the capsid (C) protein, membrane 

(M) and envelope (E), as well as seven non-structural proteins that are essential for viral 

replication. Replicons, defined as a self-replicating, non-infectious RNA molecules, can be 

generated by deleting parts or all of the region coding for the structural proteins C, prM and E. 

In contrast to DI RNA genomes, replicons are capable of autonomous RNA replication. 

Recently, we have developed a recombination trap that favors the selection and sensitive 

detection of recombination products (Manuscript 1). This system involves two different 

replicons with reciprocal deletions of different parts of the structural region. Upon 

introduction of both replicons into the same host cell, each replicon provides the structural 

protein(s) that are missing in the other one. Complementation leads to packaging of both 

defective RNA genomes in two different viral particles and further rounds of infection are 

possible at a multiplicity of infection that allows sufficient coinfection. Possible recombinant 

full-length infectious viruses were shown to outgrow complementing replicons in limiting 

dilution passages, because they do not depend on coinfection (Manuscript 1). Using this 

system, we could demonstrate that replicons of JEV were able to recombine to full-length 

viruses by aberrant homologous recombination. In contrast replicons of TBEV and WNV 

sharing the same length of homologous sequence did not show evidence of recombination. In 

the here described study we wanted to further explore the evolutionary boundaries of tick-

borne encephalitis virus in this experimental setting. Two replicons which shared almost 2kb 

homologous sequence where crossover yielding wild-type virus could occur were constructed 

and tested for their propensity for recombination. Despite selecting conditions for full-length 
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virus, one of the complementing replicons evolved by the acquisition of large internal 

deletions. These results provide evidence that TBEV exhibits a greater propensity for 

intramolecular adaptation than for recombination between different RNA genomes.  

 

Materials and Methods 

 

Cells. BHK-21 cells were grown in Eagle’s minimal essential medium (Sigma) 

supplemented with 5% fetal calf serum (FCS), 1% glutamine and 0.5% neomycin (growth 

medium) and maintained in Eagle’s minimal essential medium supplemented with 1% FCS, 

1% glutamine, 0.5% neomycin and 15 mM HEPES, pH 7.4 (maintenance medium).  

 

Plasmids and cloning procedures. Plasmid pTNd/c, used for generating infectious 

TBEV, contains a full-length genomic cDNA insert of TBEV strain Neudoerfl (GenBank 

accession number U27495) cloned in plasmid pBR322 (96). RNA transcribed from this 

plasmid was used as the TBEV wild-type virus control. Plasmid pTNd/5’ contains a 5’ cDNA 

fragment of the same viral genome (96). Full-length DNA templates for in vitro transcription 

of TBEV plasmids were generated as described previously (77). Plasmid pTNd/ΔDIII was 

constructed using the following primers: ttttcTACGTAcaccaagaaaggcatagaaagac (SnaBI 

restriction site) and gcattATCGATagtgtgactagcaggccatg (ClaI restriction site). pTNd/5’ was 

used as template for the PCR, generating a SnaBI – ClaI fragment lacking domain III of the E 

protein. This fragment was cloned into plasmid pTNd/c generating a full-length replicon 

lacking the sequence coding for domain III of E (aa302-395) as well as additional 10 aa of the 

stem region of protein E (or nucleotides Δ1884-2187 respectively). pTNd/c-ΔM-E-Ns1 and 

pTNd/c-ΔE-Ns1 were cloned using the amplicon of the RT-PCR-3 of RNA isolated after 6 

serial passages of infectious combination ΔC + ΔDIII at limiting dilution. The PCR was 

carried out with primers that excluded the amplification of ΔC (see RT-PCR). The resulting 
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amplicons were digested with MluI and ClaI and cloned into pTNd/5’. E. coli colonies were 

screened for TBEV virus sequences with the following primers: forward primer 

corresponding to nucleotides 43-63, reverse primer corresponding to complementary 

nucleotides of 3170-3150. Positive clones were subjected to sequence analysis and revealed 

that of 40 positive clones 1 clone contained the original ΔDIII deletion, 4 contained a deletion 

of  ΔE-Ns1 (nucleotides 986-3097) and the remaining 35 contained a deletion of ΔM-E-Ns1 

(nucleotides 690-2999). One of ΔE-Ns1 and one of ΔM-E-Ns1 positive pTNd/5’ clones were 

further digested with SalI and ClaI and the resulting fragment was cloned into pTNd/c 

generating pTNd/c-ΔE-Ns1 and pTNd/c-ΔE-Ns1 or into pTNd/c-ΔM-E-eGFP(42) resulting in 

pTNd/c-ΔE-Ns1-eGFP and pTNd/c-ΔE-Ns1-eGFP respectively. 

 

RNA transfection. In vitro transcription and transfection of BHK-21 cells by 

electroporation were performed as described previously (79, 96, 114). RNA was synthesized 

(80)reagents of the T7 Megascript kit (Ambion) according to manufacturer’s protocol. The 

template DNA was digested by incubation with DNase I, and the quality of the RNA was 

checked by electrophoresis in a 1% agarose gel containing 6% formalin. RNA was purified 

using an RNeasy Mini kit (Qiagen) and quantified spectrophotometrically. Equimolar 

amounts of RNA were then introduced into BHK-21 cells by electroporation using a Bio-Rad 

Gene Pulser (1.8kV, 25µF, 200Ώ). For cotransfections, equal amounts of RNA (~1.1 1012 

copies) of each construct were mixed before electroporation. 

 

Immunofluorescence assays. Twenty-four hours after transfection or infection, BHK-

21 cells were fixed for 20 min with 4% paraformaldehyde in PBS (pH 7.4) and then washed 

two times for 5 min with PBS (pH 7.4) and permeabilized with ice-cold methanol for 6 min at 

-20°C. After three washes with PBS (pH 7.4) and blocking with 3% BSA in PBS (pH 7.4) for 

30 min at room temperature, intracellular E protein was visualized by sequential incubation 
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with a monoclonal mouse antibody against E (1E9) (48) and  a Rhodamine-Red-X-conjugated 

anti-mouse IgG antibody (Jackson Immune Research Laboratory). Simultaneously, eGFP 

fluorescence was enhanced with a polyclonal rabbit-antibody against GFP (Abcam: ab6556) 

and successive incubation with fluorescein-isothiocyanate (FITC)-conjugated anti-rabbit IgG 

antibody (Jackson Immune Research Laboratory).  

 

Endpoint passages. Supernatants of infected cells were sequentially diluted, and 200 

µl of each dilution was applied to fresh BHK-21 cells grown in 24-well plates (Nunc). After 

three days, half of the medium was replaced by fresh medium, and after six days, protein E 

released into the supernatant  was detected using a four-layer enzyme-linked immunosorbent 

assay (ELISA)(53). After six days, the highest dilution yielding a positive signal in ELISA 

was cleared of cell debris, sequentially diluted and used for infection of fresh BHK-21 cells. 

Intracellular RNA genomes were analyzed at different passage numbers by northern blotting 

and RT-PCR (see below) 

 

Northern blot analysis. Template DNA for synthesis of RNA probes for northern 

blotting was generated using the following primers and templates: TBEV: template pTNd/c 

and primers agagagcagaagggattga  and tacttaatacgactcactataggtgtgcaagacacccttg generated a 

probe binding to nucleotides 4093-4773 in wild-type virus. After phenol-chloroform 

purification of the template DNA, the T7 promoter sequence (underlined) fused to each 

reverse primer allowed RNA synthesis using a T7 MAXIscript In Vitro Transcription Kit 

(Ambion). The probe RNA was labeled by using 0.4 µl of 10 mM Bio-11-UTP (Ambion) 

instead of UTP. Probe RNA was separated from free nucleotides using Micro Bio-Spin 30 

columns (BioRad). 

Cytoplasmic RNA was extracted from BHK-21 cells 24 hours after transfection or 

infection. Ten µg of total RNA was applied to a 1% Agarose gel and northern blotting was 
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carried out according to the instructions of the NorthernMax-Gly Kit (Ambion), blotted RNA 

was detected using a BrightStar BioDetect Kit (Ambion). 

 

RT-PCR. BHK-21 cells were seeded into 25-cm2 tissue culture flasks. The monolayer 

of cells was infected with 2 ml supernatant of wild-type virus or infectious combination of 

replicons. After 24 hours post infection cytoplasmic RNA was extracted using RNeasy ® 

Mini Kit (Qiagen). Further cDNA was synthesized using a specific primer to TBEV 

(sequence reverse complementary to nucleotides 3700-3679 of plasmid pTNd/c) with the 

cDNA Synthesis system of ROCHE. Wild-type, replicon or possible recombinant genomes 

were detected using primers binding to a sequences present only in wild-type virus (RT-PCR 

1) or replicon ΔC (RT-PCR) or replicon ΔDIII (RT-PCR 3) (see table 1) using the 

Advantage® HF2 PCR Kit (Clontech). As size control separately transfected control RNA of 

wild-type virus and each replicon RNA was used. Further, each obtained amplicon was 

subjected to sequence analysis (as described before (79)). 

 

Table. 1. Primers used for RT-PCR analysis. 

TBEV Position in 
full-length 
genome 

Forward (5’→3’) Position in full-
length genome 

Reverse (5’→3’) possible amplicons 

cDNA 
synthesis 

  NS-1  
(nt 3700-3679) 

ccaccacatagcgcaccagg   

RT-PCR 1 Capsid  
(nt 214-235) 

caacccagagtccaaatgccaa  E  
(nt 2100-2081) 

cagctgcatctctatgaagc  full-length: 1887 nts 
ΔC: none 
ΔDIII: none 

RT-PCR 2 5’NCR  
(nt 1-21) 

gcagcggttggtttgaaagag  E  
(nt 2100-2081) 

cagctgcatctctatgaagc  full-length: 2100 nts 
ΔC: 1915nts 
ΔDIII: none  

RT-PCR 3 Capsid   
(nt 214-235) 

caacccagagtccaaatgccaa NS-1  
(nt 3300-3279) 

tccgagttatcagagaggag  full-length: 3087 nts 
ΔC: none 
ΔDIII: 2784 nts 
 

 

Quantitative PCR. RNA replication and export kinetics were analyzed by 

quantitative real-time PCR (qPCR). For the determination of intracellular RNA copy numbers, 
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cells were collected at individual time points and counted in a Casy TT cell counter (Schärfe 

Systems). Cytoplasmic RNA was purified from a defined number of cells using an RNeasy 

Mini kit and subjected to qPCR. Primer and probes of each qPCR are listed in table 2. The 

same conditions were used for each qPCR as described in a previous study (79). For the 

measurement of viral RNA export, aliquots of supernatants were harvested at the same time 

points as those used for intracellular RNA levels and were cleared from cell debris and 

insoluble material by centrifugation. Next, 140 µl of the supernatant was incubated with 35 µl 

5x RLN lysis buffer (250 mM Tris-Cl, pH 8.0, 700 mM NaCl, 7.5 mM MgCl2, 2.5% [vol/vol] 

Nonidet P-40, 5 mM DTT) for 1 min on ice to break up the viral membrane. Viral RNA was 

further isolated from one-fifth of each lysate, again using an RNeasy Mini kit by following the 

protocol utilized for intracellular RNA purification. One-fifth of the isolated RNA then was 

used as a template for cDNA synthesis using an iScript cDNA synthesis kit (Bio-Rad) 

according to the manufacturer's protocol. An aliquot corresponding to 7 µl of the original cell 

culture supernatant was subjected to qPCR using the same conditions as those for the 

quantification of intracellular RNA (79). The amounts of intra- and extracellular RNA were 

quantified by the comparison of the results to a standard curve. The standard curve was 

prepared by using a serial 10-fold dilution of spectrophotometrically quantified, purified, in 

vitro-synthesized RNA. The total amount of RNA present in each culture flask (intra- and 

extracellular) was further calculated from the measured RNA concentrations to determine the 

percentage of total RNA exported into the supernatant. 

 

Table. 2. Primers used for qPCR analysis. 

qPCR in NS5 5’ → 3’ Position in wild-type 
sequence 

forward Primer GAAGCGGAGGCTGAACAACT nt 7701-7720 
reverse Primer TTGTCACGTTCCGTCTCCAG nt 7781-7762 
Probe TGTGTACAGGCGCACCGGCA nt 7740-7759 
 
qPCR in Capsid 
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forward Primer CAAATGGGCTTGTGTTGATG nt 233-252 
reverse Primer GCACTCACCGTCCTTTTGAT nt 383-364 
Probe GAAGGCGTTCTGGAACTCAG nt 309-328 
 
qPCR in DIII of protein E 
forward Primer CAGTGGGCATGATACAGTGG nt 1932-1951 
reverse Primer AATTGTTGGGTTTGGCGTTA nt 2064-2045 
Probe AAGCCCTGTAGGATCCCAGT nt 1978-1997  
 

 

Results 

 

TBEV replicons with long redundant sequences can complement each other. 

Earlier studies have shown that two replicons with deletions of different structural proteins 

(protein C or E) can produce infectious virus particles when they are present in the same cell. 

In this study, we further exploited this approach by constructing two replicons with different 

deletions in the region coding for the structural proteins and a 2kb long overlapping region 

between the respective deletions where recombination would generate full-length viral 

genomes. Replicon ΔC contained a large deletion (62aa) in the region coding for the capsid 

protein (78)(figure 1) and replicon ΔDIII contained a small deletion in protein E comprising 

the region coding for domain III (figure 1). The sequences between the two engineered 

deletions are present on both replicons and could potentially comprise sequence elements that 

facilitate template switch for intermolecular recombination to full-length virus. Although each 

replicon lacked an essential part of the structural region, all three structural proteins could be 

provided when both replicons were present in the same cell: Capsid (encoded on replicon 

ΔDIII), prM (on both replicons) and E (only on replicon ΔC). To test this hypothesis, both 

mutants were cotransfected into BHK-21 cells and a first passage was dascarried out with 

undiluted supernatant. The observation of infected cells stained with polyclonal TBEV serum 
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indicated that trans-complementation between replicon ΔC and ΔDIII took place and 

infectious virus particles were produced (data not shown).  

Selection of recombination products. Complementing replicons of TBEV were 

shown to be outgrown by few infectious units of full-length infectious virus in limiting 

passages (data not shown). Hence, to select for infectious full-length viruses, the following 

passages of complementing replicons ΔC and ΔDIII were done by serial dilution of 

supernatants of infected cells and determination of the endpoint dilution by ELISA after 6 

days post infection. Typically, wild-type virus under these conditions grew to titers 106 to 107 

whereas the replicon pairs achieved titers of only 102 to 103. This can easily be explained by 

the fact that in the case of the replicons producing cells must be double infected. Upon 

passages, recombination to full length genome would have been expected to lead to growth to 

higher virus titers. However, over a course of 10 passages, no such shift to higher virus titers 

was observed suggesting that no recombination had occurred. To confirm this assumption, 

intracellular viral RNA was analyzed by northern blot analysis and RT-PCR. In the northern 

blot analysis wild-type virus (figure 2a lane 1) or separately transfected control RNA of 

replicon ΔC (figure 2a lane 4) and ΔDIII (figure 2a lane 5) produced a single band. As 

expected, only one band was visible after cotransfection of the two replicons ΔC and ΔDIII 

(figure 2a lane 2) because of almost equal genome size of the two constructs. Surprisingly, 

after 6 passages with these complementing replicons, northern blot analysis revealed two 

bands (figure 2a lane 3). This indicated that a new RNA genome smaller than the two original 

replicons had emerged. Interestingly, the smaller band was more prominent than the larger, 

indicating a selective advantage of the smaller genome. 

Complementing TBE replicons evolve by intramolecular recombination. As a 

more sensitive and precise means of assessing which recombinant RNA molecules were 

present in the population, we devised a RT-PCR assay for detecting sequence rearrangement 

in the structural regions of the original complementing replicons ΔC and ΔDIII. This was 
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accomplished by first making a cDNA copy of approximately the 5' half of the isolated 

intracellular RNA (extending to the middle of the NS1 gene) and then attempting to amplify a 

portion of this cDNA using different combinations of primers (for details see material and 

methods). First, the absence of RNA genomes encoding all three structural proteins on one 

molecule was confirmed. RT-PCR 1 with primers binding to sequences absent on both 

replicons (in the capsid and e genes) yielded a product only for cells infected with wild-type 

virus (figure 2b lane 1) but not for any replicon RNA (figure 2b lanes 2 and 3). The lack of 

amplicons from cells infected with complementing replicons ΔC and ΔDIII showed that no 

full-length virus genome were present even after repeated copassages (figure 2b lane 4).  

Subsequently, each replicon was specifically identified with appropriately designed 

PCR assays. RT-PCR-2 with primers not binding to replicon ΔDIII (reverse primer in E gene) 

yielded the expected product of replicon ΔC (figure 2b lane 3) which is smaller than that of 

wild-type virus (figure 2b lane 1). After copassages replicon ΔC was still present (figure 2b 

lane 4). To specifically detect replicon ΔDIII RT-PCR-3 was designed with primers not 

binding to replicon ΔC. Again, amplicons of this replicons (figure 2b, lane2) were smaller 

than that of wild-type virus (lane 1). Interestingly, after co-passages of ΔC and ΔDIII (figure 

2b lane 4) products were obtained that were smaller than the expected size for replicon ΔDIII. 

Cloning and sequencing of these PCR products (for details see material and methods) 

revealed that the originally designed deletion within ΔDIII had been significantly extended in 

these emerged mutants: These new mutants were designated ΔE-NS1 and ΔME-NS1 and their 

organization is shown in figure 1. Mutant ΔE-NS1 contained an internal deletion lacking 

nucleotides 986 to 3097. The deleted sequence comprised the whole sequence coding for 

protein E and part of the non-structural protein NS1 and was therefore designated ΔE-NS1 

(figure 1). Mutant ΔME-NS1 contained an internal deletion of nucleotides 690 to 2999. The 

deletion comprised the mature protein M as well as the whole sequence coding for protein E 

as well as part of NS1 (figure 1). In summary, both emerged RNAs contained an enlarged 
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deletion compared to the original replicon ΔDIII. Both deletions affected the sequences 

coding for protein NS-1. 

Emerged RNAs show characteristics of defective interfering RNAs. To examine 

whether the emerged mutants exhibit characteristics of DI RNA the deletions were introduced 

into the cDNA clone of full-length TBE virus (see materials and methods and figure 1). Then, 

the replication competence of each mutant in the absence of the complementing replicon ΔC 

was analyzed. BHK cells were transfected with full-length mutant RNA and intracellular 

RNA was quantified by quantitative PCR analysis.  

As shown in figure 3a, transfected RNA of ΔE-NS1 and ΔME-NS1 as well as of a replication 

deficient mutant ΔNS5 which contained a deletion in the region coding for the viral 

polymerase (79) were shown to decrease over time. In contrast, replicon ΔDIII and a replicon 

ΔR88 which exhibits a RNA replication level like wild-type virus (32) were capable of 

accumulating viral RNA within transfected cells. This confirmed that the two emerged 

mutants were incapable of autonomous RNA replication. 

Furthermore, the effect of the emerged mutants on the replication of infectious wild-type virus 

was monitored (figure 3b). Equal amounts of wild-type virus RNAwere co-transfected with 

each mutant. Viral titers were determined by focus assay and revealed that co-transfection of 

wild-type virus with either mutant resulted in a reduced titer. These results demonstrated that 

both emerged mutants could not!!! replicate without enzymes provided by helper virus and 

interfered with replication of infectious virus, both of which are characteristics of DI RNA.  

DI RNAs are infectious by complementation with replicon ΔC. To analyze whether 

the observed DI RNAs ΔE-NS1 and ΔME-NS1 can complement replicon ΔC and produce 

infectious virus particles the mutants were cotransfected with replicon ΔC. To allow separate 

detection of mutant RNA genomes and replicon ΔC DI RNAs were tagged with eGFP 

encoded in a second open reading frame in the 3’NCR as described previously (figure 1). 

Then, each GFP tagged DI RNA was co-transfected with replicon ΔC. Replication of DI 
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RNAs was monitored by the expression of eGFP and replication of replicon ΔC by the 

expression of protein E. As expected, transfection of replicon ΔC yielded cells expressing 

protein E (figure 4) and transfection of DI RNA genomes ΔE-NS1-eGFP and ΔME-NS1-

eGFP resulted in cells negative for eGFP expression which further confirmed the replication 

deficiency of these mutants. However, co-transfection of replicon ΔC and either ΔE-NS1-

eGFP or ΔME-NS1-eGFP yielded cells not only expressing protein E but also eGFP. This 

indicated that replicon ΔC could restore replication of the DI RNAs when both were present 

in the same cells.  

Interestingly, after transfer of supernatants onto fresh cells, cells expressing only protein E but 

not eGFP, as well as cells expressing E and eGFP could be observed (figure 4). However, as 

expected, there were no cells expressing eGFP in the absence of protein E expression 

confirming that the eGFP expressing deletion mutants were not capable of self-replication in 

the absence of a helper replicon or virus. In addition, cells expressing both proteins indicated 

that both genomes were packaged into viral particles and coinfection with two viral particles 

containing different viral genomes resulted in another round of trans-complementation.  

RNA replication and packaging of DI RNAs is complemented by replicon ΔC. To 

confirm that replicon ΔC is able to restore the replication of the DI RNAs which is required 

for trans-complementation, a quantitative PCR analysis was established. Primers and probes 

directed to the region absent on replicon ΔC allowed exclusive monitoring of replication and 

packaging of replicon ΔDIII or DI RNA genomes. Analysis of intracellular RNA revealed that 

RNA replication of DI RNA mutants ΔE-NS1 and ΔME-NS1 was restored to the level of the 

original replicon ΔDIII after cotransfection with replicon ΔC (figure 5a). Further, 

quantification of RNA released from cotransfected cells showed that DI RNAs were exported 

as efficiently as replicon ΔDIII after cotransfection with replicon ΔC (figure 5c). Concluding, 

replicon ΔC was able to restore RNA replication of DI RNA genomes, probably by providing 

a functional NS-1 protein. This again led to the presence of two replicating genomes coding 
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for all three necessary structural proteins and thus packaging of the DI RNAs ΔE-NS1 and 

ΔME-NS1. 

DI RNAs interfere with RNA replication of replicon ΔC but increase its 

packaging efficiency. DI RNAs replicate by means of enzymes provided by infectious helper 

virus with which they interfere. To assess a possible inhibiting effect of DI RNAs on the 

replication of replicon ΔC a quantitative PCR analysis with primers and probe directed to the 

region coding for domain III of protein E was designed. This allowed the specific detection of 

replicon ΔC excluding all other mutant genomes. As shown in figure 5b, transfection of 

replicon ΔC alone or together with ΔDIII resulted in similar replication efficiencies, 

indicating that replicon ΔDIII did not interfere with the replication of replicon ΔC. In contrast 

cotransfection of replicon ΔC with one of the emerged DI RNAs, led to a decreased 

replication of replicon ΔC by at least one log (figure 5b). This result showed that mutants ΔE-

NS1 and ΔME-NS1 not only interfered with replication of infectious full-length genomes but 

also with RNA replication of replicon ΔC. Despite the decreased replication, analysis of 

exported RNA revealed that almost equal amount of replicon ΔC was exported disregarding if 

the complementing partner was replicon ΔDIII or one of the emerged DI RNAs (figure 5d). 

Calculation of the export efficiency showed that RNA of replicon ΔC was exported more 

efficiently when the complementing partner was one of the emerged DI RNAs (figure 6). This 

means, that although DI RNA interfere with RNA replication of replicon ΔC, the overall 

efficiency of trans-complementation is not inhibited because of better packaging of replicon 

ΔC. Taken together, despite the presence of two viral genomes with long homologous 

sequences replicating in the same cell and the low efficiency of trans-complementation 

between the two replicons, an infectious full-length virus generated by intermolecular 

recombination was not detected in any passage. On the contrary, one of the two 

complementing replicons evolved by acquisition of large internal deletions, possibly by an 

intramolecular recombination process. The emerged mutants ΔE-NS1 and ΔME-NS1 
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exhibited classical DI RNA properties meaning they interfered not only with replication of 

infectious wildtype virus but also with RNA replication of replicon ΔC. However, in the 

trans-complementation system, this was compensated by an increased packaging efficiency of 

replicon ΔC. In summary, our data presents the first characterization of DI RNA of TBEV and 

suggests that TBEV has an extremely low propensity for intermolecular recombination. 

 
Discussion 

 

Unlike other RNA viruses, flaviviruses seem to have a low propensity for 

intermolecular recombination. Only recently we were able to provide the first direct proof for 

RNA recombination between two flavivirus genomes. Using a recombination trap designed to 

detect even rare recombination events we obtained two recombinants generated by 

intermolecular recombination between two complementing replicons of JEV. The established 

recombination trap consisted of pairs of self-replicating subgenomic RNAs (replicons) that, 

lacked different portions of the structural proteins. Individually, replicons can not produce 

infectious virions but in this system they could complement each other in trans and thus be 

propagated together in cell culture over multiple passages. Any infectious viruses with intact, 

full-length genomes that were generated by possible recombination of the two replicons 

would be selected and enriched by endpoint-dilution passage, as was demonstrated in spiking 

experiments. Interestingly, no viable recombinants were detected between replicons of WNV 

or TBEV despite the presence of 0,5kb homologous sequences where crossover could have 

occurred. To allow more detailed investigation of the types of recombination events that 

TBEV is capable of undergoing as well as their relative frequencies a similar approach was 

taken in this analysis: To provide optimal conditions for intermolecular recombination, we 

constructed two replicons of TBEV that shared 2kb long homologous sequences and only 

poorly complemented each other in virus particle production which would favor the selection 
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of recombinant full-length genomes even with reduced growth properties. Surprisingly, 

despite our extensive efforts we could not detect intermolecular recombination to infectious 

full-length viruses.  

On the contrary, one of the two analyzed complementing replicons of TBEV adapted 

by the acquisition of large internal deletions. The loss of sequences not required for 

complementation in-cis resulted in two subgenomic RNAs that contained in frame deletions 

of the entire E gene and different portions of the flanking regions including the region coding 

for the N-terminal NS-1 protein. Strikingly, the lack of protein E and N-terminal part of NS-1 

are features shared by all DI RNAs described for flaviviruses. Of 43 different DI RNAs 

described for JEV and MVE, the majority contained deletions affecting the regions coding for 

prM, E and NS-1 while only few also affected the region coding for protein C(145, 155). 

Interestingly, the deletions never affected the C-terminal part of NS-1. This is in good 

agreement with the observation that NS-1 can only be complemented in-trans efficiently if the 

C-terminal part is retained (69). This overall similar molecular organization of DI RNA of 

different flaviviruses and the fact that all deletions are in-frame suggests that DI RNAs are not 

generated by recombination hot spots but are selected because of their properties including 

their ability to be complemented in-trans.  

Generally, DI RNAs emerge in association with infectious wild-type virus and 

interfere with its infectivity while depending on the help of the wild-type virus for RNA 

replication. Here, the observed RNA genomes ΔME-NS-1 and ΔE-NS-1 showed classical DI 

RNA properties in association with wild-type virus. However in the two component trans-

complementation system, infectivity depended on the presence of these mutants. Even though 

they interfered with the RNA replication of the non-infectious helper genome of replicon ΔC, 

the loss of sequences on the mutants not essentially required for complementation seemed to 

be advantageous. One possible reason is that the remaining part of protein E encoded by 

replicon ΔDIII is impedimental in assembly or when packaged into virions.  
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The generation of DI RNAs is believed to follow a similar or identical mechanism as 

true intermolecular recombination. One obvious example is the generation of DI RNA of 

Sindbis virus, in which tRNA sequences are incorporated at the 5’ terminus of the virion RNA 

(146). Another example is provided by structural analysis of a DI RNA of influenza virus 

(34). The analyzed RNA has been shown to consist of several discontinuous regions, some of 

which were derived from influenza virus RNA-1 and others from RNA-3. Thus, it may 

represent a true recombinant RNA between two different RNA molecules, although both 

RNAs belong to the same virus. Moreover, in Coronavirus it was shown that recombination 

occurred more frequently within a hypervariable region (5), in which deletions commonly 

occur after virus passage in tissue culture or animals. Therefore we hypothesize that inter-

molecular recombination, the acquisition of internal deletions or the generation of DI RNAs 

are related. However, considering that in this study DI RNAs were generated despite 

conditions favoring the selection of full-length viruses generated by intermolecular 

recombination suggests that TBEV polymerase exhibits a lower propensity for inter- than for 

intramolecular recombination. This assumption is supported by the fact that under 

experimental conditions true intermolecular recombination has only been demonstrated for 

JEV (Manuscript 1). In contrast, DI RNAs were identified not only in cells persistently 

infected with JEV (145, 155) but also with MVE (86) and WNV(15). In addition, infectious 

West Nile or TBE viruses can quickly acquire large internal deletions or duplications (80, 

127) probably by a mechanism similar to intramolecular recombination. 

One possible explanation for this different propensity of inter- or intra-molecular 

recombination may be provided by the organization of the flavivirus replication complex. For 

flaviviruses RNA replication occurs in association with ∼50–70 nm diameter membranous 

vesicles or spherules (151). It has been speculated that a single spherule contains only one or 

few (–) RNA templates for replication (81, 151) which would explain the low probability for 

template switches between different viral genomes. Another explanation may be that the 
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flavivirus replication complex itself accounts for the low propensity for template switches by 

a strong association to negative-sense template RNA. 

In addition to RNA recombination, the described trans-complementation system 

allowed insights into flavivirus packaging. Separate detection of both involved viral RNAs 

and calculation of export efficiencies revealed that no direct correlation between RNA 

replication and packaging efficiency existed in this trans-complementation system. Although 

mutants ΔE-NS1 and ΔME-NS1 diminished the RNA replication of replicon ΔC, it was 

exported to similar levels as when the complementing partner was replicon ΔDIII. This means 

that the packaging efficiency of replicon ΔC was not determined by sequences in-cis but by 

the in-trans complementing helper RNA suggesting that no RNA sequences but the way the 

three structural proteins are provided determined the packaging efficiency in this trans-

complementation system. Notably, replicon ΔDIII did not affect the RNA replication of 

replicon ΔC. This suggests that two flaviviruses do not compete with each other on the level 

of RNA replication when both are capable of autonomous replication and that the interfering 

effect of DI RNA rests on the limited access of functional protein NS-1. In summary, we 

provide the first characterization of DI RNAs of TBEV and confirm that flaviviruses have an 

extremely low – if any – propensity for intermolecular recombination and show that TBEV 

has a higher propensity for intramolecular recombination. It will be interesting to determine 

what constraints are responsible for this discrepancy. Nevertheless, the general low propensity 

of TBEV to generate recombinants by intermolecular recombination makes this virus a 

reliable tool for vector development or live vaccines. 

 

98 



References 
 
1. Banner, L. R., J. G. Keck, and M. M. Lai. 1990. A clustering of RNA 

recombination sites adjacent to a hypervariable region of the peplomer gene of murine 
coronavirus. Virology 175:548-55. 

2. Brinton, M. A. 1983. Analysis of extracellular West Nile virus particles produced by 
cell cultures from genetically resistant and susceptible mice indicates enhanced 
amplification of defective interfering particles by resistant cultures. J Virol 46:860-70. 

3. Cascone, P. J., C. D. Carpenter, X. H. Li, and A. E. Simon. 1990. Recombination 
between satellite RNAs of turnip crinkle virus. Embo J 9:1709-15. 

4. Debnath, N. C., R. Tiernery, B. K. Sil, M. R. Wills, and A. D. Barrett. 1991. In 
vitro homotypic and heterotypic interference by defective interfering particles of West 
Nile virus. J Gen Virol 72 ( Pt 11):2705-11. 

5. Elshuber, S., S. L. Allison, F. X. Heinz, and C. W. Mandl. 2003. Cleavage of 
protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis 
virus. J Gen Virol 84:183-91. 

6. Fields, S., and G. Winter. 1982. Nucleotide sequences of influenza virus segments 1 
and 3 reveal mosaic structure of a small viral RNA segment. Cell 28:303-13. 

7. Gao, G. F., W. R. Jiang, M. H. Hussain, K. Venugopal, T. S. Gritsun, H. W. Reid, 
and E. A. Gould. 1993. Sequencing and antigenic studies of a Norwegian virus 
isolated from encephalomyelitic sheep confirm the existence of louping ill virus 
outside Great Britain and Ireland. J Gen Virol 74 ( Pt 1):109-14. 

8. Gehrke, R., F. X. Heinz, N. L. Davis, and C. W. Mandl. 2005. Heterologous gene 
expression by infectious and replicon vectors derived from tick-borne encephalitis 
virus and direct comparison of this flavivirus system with an alphavirus replicon. J 
Gen Virol 86:1045-53. 

9. Guirakhoo, F., F. X. Heinz, and C. Kunz. 1989. Epitope model of tick-borne 
encephalitis virus envelope glycoprotein E: analysis of structural properties, role of 
carbohydrate side chain, and conformational changes occurring at acidic pH. Virology 
169:90-9. 

10. Heinz, F. X., W. Tuma, F. Guirakhoo, and C. Kunz. 1986. A model study of the 
use of monoclonal antibodies in capture enzyme immunoassays for antigen 
quantification exploiting the epitope map of tick-borne encephalitis virus. J Biol Stand 
14:133-41. 

11. Holland, J., K. Spindler, F. Horodyski, E. Grabau, S. Nichol, and S. VandePol. 
1982. Rapid evolution of RNA genomes. Science 215:1577-85. 

12. Holmes, E. C., M. Worobey, and A. Rambaut. 1999. Phylogenetic evidence for 
recombination in dengue virus. Mol Biol Evol 16:405-9. 

13. Khromykh, A. A., P. L. Sedlak, and E. G. Westaway. 2000. cis- and trans-acting 
elements in flavivirus RNA replication. J Virol 74:3253-63. 

14. Kofler, R. M., J. H. Aberle, S. W. Aberle, S. L. Allison, F. X. Heinz, and C. W. 
Mandl. 2004. Mimicking live flavivirus immunization with a noninfectious RNA 
vaccine. Proc Natl Acad Sci U S A 101:1951-6. 

15. Kofler, R. M., F. X. Heinz, and C. W. Mandl. 2002. Capsid protein C of tick-borne 
encephalitis virus tolerates large internal deletions and is a favorable target for 
attenuation of virulence. J Virol 76:3534-43. 

16. Kofler, R. M., F. X. Heinz, and C. W. Mandl. 2004. A novel principle of attenuation 
for the development of new generation live flavivirus vaccines. Arch Virol Suppl:191-
200. 

99 



17. Kofler, R. M., V. M. Hoenninger, C. Thurner, and C. W. Mandl. 2006. Functional 
analysis of the tick-borne encephalitis virus cyclization elements indicates major 
differences between mosquito-borne and tick-borne flaviviruses. J Virol 80:4099-113. 

18. Kofler, R. M., A. Leitner, G. O'Riordain, F. X. Heinz, and C. W. Mandl. 2003. 
Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants 
with large deletions in protein C. J Virol 77:443-51. 

19. Kopek, B. G., G. Perkins, D. J. Miller, M. H. Ellisman, and P. Ahlquist. 2007. 
Three-dimensional analysis of a viral RNA replication complex reveals a virus-
induced mini-organelle. PLoS Biol 5:e220. 

20. Lancaster, M. U., S. I. Hodgetts, J. S. Mackenzie, and N. Urosevic. 1998. 
Characterization of defective viral RNA produced during persistent infection of Vero 
cells with Murray Valley encephalitis virus. J Virol 72:2474-82. 

21. Lazzarini, R. A., J. D. Keene, and M. Schubert. 1981. The origins of defective 
interfering particles of the negative-strand RNA viruses. Cell 26:145-54. 

22. Mandl, C. W., M. Ecker, H. Holzmann, C. Kunz, and F. X. Heinz. 1997. Infectious 
cDNA clones of tick-borne encephalitis virus European subtype prototypic strain 
Neudoerfl and high virulence strain Hypr. J Gen Virol 78 ( Pt 5):1049-57. 

23. Orlinger, K. K., V. M. Hoenninger, R. M. Kofler, and C. W. Mandl. 2006. 
Construction and mutagenesis of an artificial bicistronic tick-borne encephalitis virus 
genome reveals an essential function of the second transmembrane region of protein e 
in flavivirus assembly. J Virol 80:12197-208. 

24. Perrault, J. 1981. Origin and replication of defective interfering particles. Curr Top 
Microbiol Immunol 93:151-207. 

25. Reichmann, M. E., and W. M. Schnitzlein. 1979. Defective interfering particles of 
rhabdoviruses. Curr Top Microbiol Immunol 86:123-68. 

26. Schlick, P., C. Taucher, B. Schittl, J. L. Tran, R. M. Kofler, W. Schueler, A. von 
Gabain, A. Meinke, and C. W. Mandl. 2009. Helices {alpha}2 and {alpha}3 of 
WNV Capsid Protein are Dispensable for the Assembly of Infectious Virions. J Virol. 

27. Tolou, H. J., P. Couissinier-Paris, J. P. Durand, V. Mercier, J. J. de Pina, P. de 
Micco, F. Billoir, R. N. Charrel, and X. de Lamballerie. 2001. Evidence for 
recombination in natural populations of dengue virus type 1 based on the analysis of 
complete genome sequences. J Gen Virol 82:1283-90. 

28. Tsai, K. N., S. F. Tsang, C. H. Huang, and R. Y. Chang. 2007. Defective interfering 
RNAs of Japanese encephalitis virus found in mosquito cells and correlation with 
persistent infection. Virus Res 124:139-50. 

29. Tsiang, M., S. S. Monroe, and S. Schlesinger. 1985. Studies of defective interfering 
RNAs of Sindbis virus with and without tRNAAsp sequences at their 5' termini. J 
Virol 54:38-44. 

30. Twiddy, S. S., and E. C. Holmes. 2003. The extent of homologous recombination in 
members of the genus Flavivirus. J Gen Virol 84:429-40. 

31. Uzcategui, N. Y., D. Camacho, G. Comach, R. Cuello de Uzcategui, E. C. Holmes, 
and E. A. Gould. 2001. Molecular epidemiology of dengue type 2 virus in Venezuela: 
evidence for in situ virus evolution and recombination. J Gen Virol 82:2945-53. 

32. Welsch, S., S. Miller, I. Romero-Brey, A. Merz, C. K. Bleck, P. Walther, S. D. 
Fuller, C. Antony, J. Krijnse-Locker, and R. Bartenschlager. 2009. Composition 
and three-dimensional architecture of the dengue virus replication and assembly sites. 
Cell Host Microbe 5:365-75. 

33. Yoon, S. W., S. Y. Lee, S. Y. Won, S. H. Park, S. Y. Park, and Y. S. Jeong. 2006. 
Characterization of homologous defective interfering RNA during persistent infection 
of Vero cells with Japanese encephalitis virus. Mol Cells 21:112-20. 

100 



 

 
 
 

101 



 
 

102 



 
 

103 



 
 
 

104 



 

105 



 
 

106 



Figure Legends 

 

Figure 1. Top: Schematic drawing of a full-length flavivirus genome. Below: Shematical 

blow up of the structural region of TBEV replicons ΔC (76), and replicon ΔDIII as well as DI 

RNA genomes ΔE-NS1 and ΔME-NS1. Box. An internal ribosomal entry site (IRES) driven 

translation element of eGFP was cloned in the 3’noncoding region of the emerged DI RNAs. 

Deletions are indicated by doted lines and the missing nucleotides are indicated within each 

deletion. Nucleotide numbers refer to the position in each respective wild-type virus 

sequence. The length of homologous sequences allowing recombination yielding full-length 

virus is indicated at left. C: capsid protein; pr: pr part of protein prM; M: mature protein prM; 

E: protein E, NS: non-structural protein; NCR: non coding region 

 

Figure 2. A. Northern blot analysis of intracellular viral RNA: Lane 1. RNA of cells infected 

with wild-type virus. Lane 2: RNA of cells transfected with replicon ΔC as well as ΔDIII. 

Lane 3: RNA of cells infected with supernatant containing replicons ΔC and ΔDIII after 6 

passages. Lane 4: RNA of cells transfected with replicon ΔC alone. Lane 5: RNA of cells 

transfected with replicon ΔDIII alone. Lane 6: mock transfected cells. B. RT-PCR analysis of 

intracellular RNA. RT-PCR-1 was performed with primers binding to sequences absent on 

both replicons. RT-PCR-2 was performed with primers allowing amplification of replicon ΔC 

RT-PCR 3 was performed with primers binding to sequences absent of replicon ΔC. Lane 1. 

RNA of cells infected with wild-type virus. Lane 2: RNA of cells transfected with replicon 

ΔDIII. Lane 3: RNA of cells transfected with replicon ΔC alone. Lane 4: RNA from cells 

infected with supernatant containing replicons ΔC and ΔDIII after 6 passages Lane 5: RNA of 

cells transfected with cloned RNA of ΔE-NS-1. Lane 6: RNA of cells transfected with cloned 

RNA of ΔME-NS-1. Lane 7: RNA of mock transfected cells. 
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Figure 3. A. Quantitative PCR with primer and probes binding to sequences coding for NS-5 

of intra-cellular RNA after RNA transfection. ΔR88 is a non-infectious TBE virus with a 

single amino acid deletion which replicates to wild-type virus levels. ΔNS5 lacks the 3’ 

terminal part of the TBEV genome including the sequences coding for NS5 and serves as a 

control for a non-replicating viral genome. B. Analysis of the interfering effect of the emerged 

RNAs on wild-type virus. Cells were transfected with wild-type virus and equal amounts of 

ΔE-NS-1 or ΔME-NS-1. Infectious units were quantified by focus assay. 

 

Figure 4. Co-immunofluorescense staining with antibody against eGFP and protein E. Cells 

were transfected with the respective constructs and protein expression was monitored 24 

hours post-transfection. Due the secondary antibodies cells expressing eGFP appear in green 

(FITC) and cells expressing protein E in red (rodhamine red). After 3 days post transfection 

supernatant was harvested and used to transfect fresh cells. Again, cells were stained 24 hours 

post infection. 

 

Figure 5. A. Quantitative PCR of intracellular RNA of cells transfected with viral RNA as 

indicated. Primers and probes bound to sequences coding for the capsid protein which 

excluded the detection of replicon ΔC. B. Quantitative PCR of intracellular RNA of cells 

transfected with viral RNA as indicated. Primers and probes bound to sequences coding for 

domain III of protein E which excluded the detection of all mutant RNAs except replicon ΔC. 

C. Quantitative PCR of RNA in the supernatant of cells transfected with viral RNAs as 

indicated. Primer and probes as in A. D. Quantitative PCR of RNA in the supernatant of cells 

transfected with viral RNAs as indicated. Primer and probes as in B.  

 

Figure 6. Export efficiencies of replicon ΔC calculated by the percentage of extra 

cellularRNA in relation to intra-cellular RNA. 
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Helices �2 and �3 of West Nile Virus Capsid Protein Are Dispensable
for Assembly of Infectious Virions�
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The internal hydrophobic sequence within the flaviviral capsid protein (protein C) plays an important role
in the assembly of infectious virions. Here, this sequence was analyzed in a West Nile virus lineage I isolate
(crow V76/1). An infectious cDNA clone was constructed and used to introduce deletions into the internal
hydrophobic domain which comprises helix �2 and part of the loop intervening helices �2 and �3. In total, nine
capsid deletion mutants (4 to 14 amino acids long) were constructed and tested for virus viability. Some of the
short deletions did not significantly affect growth in cell culture, whereas larger deletions removing almost the
entire hydrophobic region significantly impaired viral growth. Efficient growth of the majority of mutants
could, however, be restored by the acquisition of second-site mutations. In most cases, these resuscitating
mutations were point mutations within protein C changing individual amino acids into more hydrophobic
residues, reminiscent of what had been observed previously for another flavivirus, tick-borne encephalitis
virus. However, we also identified viable spontaneous pseudorevertants with more than one-third of the capsid
protein removed, i.e., 36 or 37 of a total of 105 residues, including all of helix �3 and a hydrophilic segment
connecting �3 and �4. These large deletions are predicted to induce formation of large, predominantly
hydrophobic fusion helices which may substitute for the loss of the internal hydrophobic domain, underlining
the unrivaled structural and functional flexibility of protein C.

The genus Flavivirus within the family Flaviviridae comprises
important human pathogens such as Japanese encephalitis vi-
rus (JEV), the dengue viruses (DENV), yellow fever virus
(YFV), tick-borne encephalitis virus (TBEV) and West Nile
virus (WNV) (28). The �50-nm flavivirus virion is composed
of two surface proteins, envelope (E) and membrane (M, de-
rived from its precursor protein prM by furin-mediated cleav-
age), and the nucleocapsid consisting of the capsid protein
(protein C) and the 11-kb positive-stranded RNA genome. In
addition to the three structural proteins C, prM, and E, the
genome encodes seven nonstructural proteins (NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5), which are necessary for
replication of the RNA genome (28). Structural and nonstruc-
tural proteins are derived from a single polyprotein, which is
co- and posttranslationally processed into mature proteins by
viral and cellular proteases (6, 28).

The assembly of the virions is thought to occur at the mem-
brane of the rough endoplasmic reticulum (ER) (28, 32). Pro-
tein C, which is the protein located at the very N terminus of
the polyprotein, facilitates translocation of the subsequent pro-

tein prM into the lumen of the ER via an internal signal
sequence located at its C terminus. Proteins prM and E remain
attached to the host-derived membrane by spanning the lipid
bilayer twice via their C-terminal anchor regions (38, 47, 48).
Protein C is originally also anchored to the ER membrane via
the C-terminal internal signal sequence. However, this signal
sequence is cleaved off by the viral NS2B/3 protease, thereby
producing the mature, cytoplasmic form of the protein (4, 30,
40). Multiple copies of protein C and one copy of the RNA
genome form the nucleocapsid. In the virion, the nucleocapsid
appears not to directly interact with the surrounding mem-
brane and the embedded surface proteins prM and E (47) and
furthermore lacks, in contrast to the icosahedrally arranged
surface proteins, a well-ordered structure (25, 49). Instead, the
nucleocapsid may nonspecifically interact with the ER mem-
brane during budding by virtue of a hydrophobic, mostly heli-
cal sequence element which is present at a conserved position
in all of the flavivirus protein C sequences (31, 35).

The recently solved three-dimensional (3D) structures of the
DENV-2 and Kunjin virus C proteins (Kunjin virus is an Aus-
tralian strain of WNV) (11, 31) support this notion. The nu-
clear magnetic resonance 3D structure of DENV-2 protein C
indicates that the protein, composed of four � helices, forms a
dimer in solution (31). The contact surfaces for dimerization
are provided by helices �2 and �4. Helix �2 comprises most of
the internal hydrophobic sequence within protein C. After
dimerization, the interacting helices �2 form the bottom of a
hydrophobic cleft. The highest density of positively charged
residues is found on the opposite side of the dimer, on the
surfaces of helices �4, which interact by forming a coiled coil.
Accordingly, a model suggesting that the hydrophobic cleft
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presumably enables the nucleocapsid to attach to the mem-
brane and that helices �4 play a potential role in interaction
with the negatively charged RNA genome has been established
(31).

The functional importance of the conserved internal hydro-
phobic domain in virus assembly and/or dimerization of pro-
tein C is supported by studies with a variety of flaviviruses. For
instance, removal of major parts of this sequence element in
TBEV resulted in an increased formation of capsidless subviral
particles (19), the secretion of which is also observed in the
course of natural infection or by expression of proteins prM
and E only (1, 22–24, 36). Large deletions were tolerated only
upon the acquisition of additional mutations increasing the
hydrophobicity of the protein (21). These results are in good
accordance with studies of YFV protein C (42) and WNV, in
which case removal of the entire helix �2 produced a nonin-
fectious phenotype (44). Furthermore, in DENV, removing
large parts of the hydrophobic domain abolished both the
ability to dimerize in vitro (46) and the ability to associate with
the ER membrane (35). Taken together, these studies under-
lined the important roles of the conserved internal hydropho-
bic sequence in dimerization of protein C and virion assembly.

In the present study, we set out to systematically test the
functional role of the hydrophobic sequence of WNV protein
C for viral infectivity by introducing deletions ranging from 4 to
14 amino acids. Some of the smaller deletions were well tol-
erated, whereas growth with others was, consistent with previ-
ous findings with TBEV (21), dependent on the acquisition of
second-site point mutations. Surprisingly, two well-replicating
pseudorevertants were shown to have restored growth capabil-
ity through spontaneously enlarged deletions. These mutants
lacked more than one-third of the protein C sequence. The
spontaneously deleted sequences included all of helix �3 and a
hydrophilic loop connecting helices �3 and �4. Our data pro-
vide evidence that although removal of large parts or the entire
internal hydrophobic domain usually causes severe defects in
viral growth, truncating protein C even further can largely
revert this impairment. A viable WNV mutant with capsid
proteins less than two-thirds of the size of the natural protein
was generated by reverse genetics, and its growth properties
were analyzed in comparison to those of the wild-type virus.
Secondary-structure predictions suggest that in these mutants,
the formation of large, hydrophobic fusion helices might com-
pensate for the loss of the conserved hydrophobic domain.

MATERIALS AND METHODS

Cells and virus. Vero (ATCC CCL-81) cells were grown in Eagle�s minimal
essential medium (EMEM) supplemented with 10% fetal bovine serum (FBS;
PAA Laboratories), 1.5% glutamine (200 mM; Cambrex), 1% penicillin-strep-
tomycin (10,000 U/ml penicillin and 10 mg/ml streptomycin; Sigma), and 15 mM
HEPES, pH 7.4. Infections were performed in the presence of 2% instead of
10% FBS, and after infection, cells were maintained in medium lacking FBS. For
virus stock production, FBS was replaced with 1% (wt/vol) bovine serum albumin
(BSA). BHK-21 cells used for introduction of in vitro-transcribed RNA were
handled in growth medium (EMEM supplemented with 5% FBS, 1% glutamine,
0.5% [10 mg/ml] neomycin, and 15 mM HEPES, pH 7.4) and maintenance
medium (EMEM supplemented with 1% FBS, 1% glutamine, 0.5% neomycin,
and 15 mM HEPES, pH 7.4) as described earlier (19, 33, 41).

The WNV strain used in this study was originally isolated from a dead crow
collected during the summer of 1999 in New York City (crow V76/1). The virus
was passaged three times in Vero cells and once in suckling mouse brain prior to
the construction of the infectious cDNA clone.

Cloning procedures. The two partial cDNA clones pWNV-K1 and pWNV-K4
were constructed as described in previous studies (7, 33, 45), with the exception
that pBR322 (5) had been modified by replacing the tetracycline resistance gene
with a multiple-cloning site (BspEI-SwaI-PacI-NotI-SwaI-AatII). For the intro-
duction of deletions into the capsid protein within plasmid pWNV-K1, the Gene
Tailor site-directed mutagenesis system (Invitrogen) was used. Detailed primer
sequences for all constructs are available from the authors upon request.

All constructs were amplified in Escherichia coli strain DH5� cells and char-
acterized by complete sequencing of both strands of the entire inserts.

In vitro RNA transcription and transfection. In vitro transcription with T7
RNA polymerase (Ambion T7 Megascript transcription kit) and transfection of
BHK-21 cells by electroporation were performed as described in previous studies
(12, 19). In the case of transcription reactions required as standards in real-time
PCR analysis, the pWNV-K1 template DNA was degraded by incubation with
DNase I for 15 min at 37°C, and the RNA was purified and separated from
unincorporated nucleotides by using an RNeasy Mini kit (Qiagen). RNA con-
centrations were estimated from band intensities or, for determination of the
RNA standard concentration, measured spectrophotometrically.

Immunofluorescence staining. Intracellular expression of WNV specific pro-
teins was determined by indirect immunofluorescence staining of the envelope
protein E. Accordingly, RNA-transfected BHK-21 cells were seeded into 24-well
plates and supplied with growth medium (EMEM with supplements and 5%
FBS), which was exchanged for maintenance medium (EMEM with supplements
and 1% FBS) at 20 h posttransfection. After 24 or 48 h, cells were treated with
1:1 acetone-methanol for fixation and permeabilization. To specifically detect
WNV protein E, a cross-reactive polyclonal antibody directed against JEV pro-
tein E was used (dilution, 1:50). Staining was performed with a secondary fluo-
rescein isothiocyanate-conjugated anti-rabbit antibody (Jackson Immuno-
Research Laboratories) as suggested by the manufacturer.

Hemagglutination assay (HA). For the detection of WNV viral and/or subviral
particles in supernatants of infected cells, a rapid assay based on the agglutina-
tion of erythrocytes, which is induced by the interaction with viral particles, was
applied (8, 13). Briefly, virus supernatants were diluted 1:1 in borate-buffered
saline (120 mM sodium chloride, 50 mM sodium borate, pH 9.0) containing 0.4%
BSA for particle stabilization. Subsequently, this mixture was further diluted to
produce a geometrical dilution row. Fifty microliters of each of the diluted
samples was mixed with the same amount of a 0.5% solution of goose erythro-
cytes in round-bottom 96-well plates and incubated for 3 h at room temperature.
Virus-induced agglutination of erythrocytes was visible by the lack of sedimented
erythrocytes; the examination of plates was performed by visual inspection.

Mutant stability. To assay the genetic stability of transfected mutants, super-
natants of transfected cells were diluted until the end point of infectivity was
reached. The supernatant corresponding to the end point was then transferred
onto fresh cells, and these passages were repeated at least twice. Subsequently,
RNA was isolated and sequence analysis was performed by using the cDNA
synthesis system of Roche Applied Science and standard PCR and sequencing
protocols.

RNA replication and export. Intracellular RNA replication was monitored by
real-time PCR as described previously (20, 41) with minor modifications. Briefly,
Vero cells grown in six-well plates were incubated with wild-type and mutant
WNV stock preparations at a multiplicity of infection (MOI) of 1. After 1 h, the
cell monolayer was washed and supplied with growth medium which contained
1% BSA and 15 mM HEPES instead of FBS. At selected time points, cells were
detached by trypsin incubation and washed twice in phosphate-buffered saline
(PBS) (pH 7.4) containing 1% BSA. Cytoplasmic RNA was purified from these
cells (RNeasy Mini kit; Qiagen) and was subjected to real-time PCR (PE Applied
Biosystems) quantification as described previously (20, 41). The primers (5�-TC
AGCGATCTCTCCACCAAAG-3� and 5�-GGGTCAGCACGTTTGTCATTG-
3�) and probe (5�-Fam-TGCCCGACCATGGGAGAAGCT-Tamra-3�) targeted
a region within the envelope gene of the WNV genomic RNA. RNA equivalents
were finally determined from a standard curve based on an RNA preparation of
known concentration which was serially diluted in cell lysates of negative control
cells and purified according to the same protocol.

The RNA content in supernatants of transfected cells was measured as pub-
lished recently (41). Accordingly, prior to quantification by real-time PCR, ali-
quots of supernatants were cleared by low-speed centrifugation and RNA was
purified by using the QIAamp viral RNA Mini kit (Qiagen) as suggested by the
manufacturer. RNA export was finally calculated by determining the percentage
of total RNA (intracellular and extracellular) in the supernatant fraction.

Cytotoxicity assay. Similar to the RNA replication and export experiments,
Vero cells were seeded into six-well plates and infected with WNV stock prep-
arations at an MOI of 1, but the growth medium did not contain BSA. Aliquots
of supernatants were transferred into 96-well plates, and cytotoxicity was as-
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sessed by measuring the release of lactate dehydrogenase (LDH) using the
CytoTox 96 nonradioactive cytotoxicity assay (Promega) according to the man-
ufacturer�s instructions.

Plaque morphology and immunocytochemistry. Vero cells were grown to 80%
confluence in 12-well plates and incubated for 1 h with virus suspensions serially
diluted in infection medium. The cells were subsequently overlaid with EMEM
containing 5% FBS (PAA Laboratories), 1.5% glutamine (200 mM; Cambrex),
1% penicillin-streptomycin (10,000 U/ml penicillin and 10 mg/ml streptomycin;
Sigma), 15 mM HEPES, and 0.25% agarose (Sigma). The plaque morphology
was determined following an incubation period ranging from 6 to 9 days postin-
fection. Accordingly, cells were fixed and stained with a solution containing 4%
formaldehyde and 0.1% crystal violet.

Focus-forming units (FFU) were determined by immunocytochemistry. After
incubation for 6 days, the agarose overlay was removed and cells were fixed with
1:1 acetone-methanol. The cells were rehydrated with PBS (pH 7.4) containing
5% sheep serum for 30 min at room temperature. Subsequently, the cells were
incubated for 1 h at 37°C with a WNV-specific polyclonal antiserum (gamma-
WN/KIS/2) diluted 1:3,000 in PBS (pH 7.4) with 0.2% Tween and 3% sheep
serum. Cells were washed twice with PBS (pH 7.4) containing 0.2% Tween and
3% sheep serum and once with TBS buffer (137 mM sodium chloride, 3 mM
potassium chloride, 25 mM Tris, pH 8.0) containing 0.2% Tween and 3% sheep
serum. The incubation with a 1:400 dilution of an anti-rabbit alkaline phos-
phatase-conjugated secondary antibody was performed in TBS buffer with 0.2%
Tween and 3% sheep serum for 45 min at room temperature. Following two
washes with the same buffer, WNV-specific foci were detected by incubating with
Sigma Fast Red TR/naphthol AS-MX for 10 min.

Computer-assisted sequence analysis. Secondary-structure predictions were
performed using PsiPred (15). Hydrophobicity plots were generated according to
the algorithm of Kyte and Doolittle (26) using PROTEAN (DNASTAR, Inc.)
and a window size of 11.

Nucleotide sequence accession number. The sequence of the WNV isolate
(crow 76/1) was deposited under GenBank accession no. FJ151394.

RESULTS

Establishment of a two-component infectious cDNA clone
for WNV isolate V76/1. To generate a tool for WNV reverse
genetics, the genome of a previously uncharacterized lineage I
isolate (see Materials and Methods) (Table 1) was reverse
transcribed, sequenced, and assembled into two plasmids from
which, after in vitro ligation, full-length genomic RNA could
be transcribed (Fig. 1A). To verify the functionality of the
infectious cDNA clone, full-length RNAs were transcribed in
several independent experiments and introduced into BHK-21
cells by electroporation. An apparent cytopathic effect (CPE)
was observed in cells at day 2 posttransfection, indicating virus

replication. The supernatants of transfected BHK-21 cells were
harvested and used to inoculate Vero cells, which are more
susceptible to infection by WNV than BHK-21 cells (unpub-
lished observation). At day 2 postinoculation, the release of
infectious virions into the supernatant was tested by plaque
assays on fresh Vero cells, indicating that virus had grown to
high titers of typically 5 � 108 PFU/ml. Thus, the growth
properties of the recombinant virus were virtually indistin-
guishable from those of the parental wild-type virus, which was
furthermore confirmed by repeated growth curve analyses
(data not shown).

Deletions within helix �2 of WNV protein impair viral
growth to various degrees. To better characterize the func-
tional importance of the hydrophobic helix �2 in WNV protein
C, a set of nine deletions (Fig. 1B) was introduced into the
infectious cDNA clone. Genomic RNAs were transcribed in
vitro and used to transfect BHK-21 cells. Intracellular protein
E expression was determined by immunofluorescence staining,
using wild-type RNA and untransfected cells as positive and
negative controls, respectively. At 24 h posttransfection, all of
the samples presented a very similar picture, with approxi-
mately 10% of the cells being stained by immunofluorescence
(data not shown). At 48 h posttransfection, the number of
positive cells, however, had increased to 100% for deletion
mutants �4/1, �4/3, and �4/4, thus being indistinguishable
from wild-type-RNA-transfected cells (Fig. 2A). In contrast,
cell culture spreading was reduced in all other mutants, with
the most significant effect observed for mutants �7/2, �10, and

FIG. 1. Capsid deletion mutants of WNV. (A) Schematic drawing
of the two partial WNV cDNA clones (not to scale). The WNV
genome was engineered as two partial cDNA clones into pBR322 using
5� PacI and 3� NotI restriction sites. pWNV-K1 contains the T7 pro-
moter sequence (open arrow) and bp 1 to 3339 of the WNV genomic
sequence. The second plasmid, pWNV-K4, contains the sequence cor-
responding to WNV bp 3282 to 11029 and the hepatitis � virus ri-
bozyme sequence (HDVr). To generate full-length DNA templates for
in vitro transcription, the two clones are ligated in vitro subsequent to
cleavage at the BstEII site at nucleotide position 3321/3326. In vitro
transcription is driven by the T7 promoter, and the HDVr sequence
ensures the production of an authentic 3� end. (B) Schematic drawing
of the positions and sizes of the engineered deletions. Deletions of 4,
7, 10, or 14 amino acids (aa) were introduced into helix �2 of WNV
protein C as indicated by the broken arrows. The respective amino acid
positions are indicated, as well as the nomenclature used for mutants
throughout the study. NCR, noncoding region.

TABLE 1. WNV V76/1 isolate-specific genomic
sequence differences

Nucleotide
no.a

Nucleotide in:

Amino acid
difference Location

NY99-
flamingo382-99

(GenBank accession
no. AF196835)b

WNV V76/1
(GenBank

accession no.
FJ151394)

1118 C U A3 V E
1285 C U Silent E
3138 U C Silent NS1
6735 C A Silent NS4A
7015 U C Silent NS4B
7491 G U Silent NS4B
8811 U C Silent NS5
10851 A G NAc 3� noncoding

region

a Genome position numbers are the same for both isolates.
b The genomic sequence of the isolate used for sequence comparison

(GenBank accession no. AF196835) is published in reference 27.
c NA, not applicable.

VOL. 83, 2009 EFFICIENTLY REPLICATING WNV CAPSID DELETION MUTANTS 5583

 on June 2, 2009 
B

ibliothek der M
edU

niW
ien (78085)

 at 
jvi.asm

.org
D

ow
nloaded from

 

http://jvi.asm.org


�14 (Fig. 2A). Notably, deletions �4/2 and �7/2 exhibited a
more distinct defect than the other deletions of the same
length. Sequence inspection (Fig. 1B) indicates that both of
these deletions are located within the most hydrophobic sec-
tion of the helix (LALL-AFF) suggesting that the loss of hy-
drophobicity even more than the length of the deletion may
cause the observed defect in cell culture spreading.

To further evaluate the production of infectious virions and
to assess the export of viral particles by the infected cells, we
inoculated a monolayer of fresh Vero cells with supernatants
of transfected cells. At day 6 postinoculation, virus particles in
supernatants were quantified by HAs (Fig. 2B). Cells infected
with mutants �4/1, �4/3, and �4/4 were capable of exporting
viral particles as much as wild-type virus. In comparison, mu-
tants �4/2, �7/1, �7/3, and �10 exhibited some degree of im-
pairment, whereas mutants �7/2 and �14 were found to be
incapable of producing infectious particles under these exper-
imental conditions. Whereas these data mostly correlated well
with the above-described immunofluorescence results, there
are also discrepancies (such as with mutant �4/2, which pro-

duced more HA-reactive particles than one would have ex-
pected from the immunofluorescence data). This can be ex-
plained by the selection of pseudorevertants already in this first
passage, a phenomenon which is analyzed in detail in a later
section.

The supernatants tested in HA were also subjected to plaque
and focus formation assays to quantify the infectious titers of
the various mutants. However, only wild-type virus, but none of
the mutants, formed visible plaques on Vero cells at 6 days
postinfection. Infectious titers obtained by focus assay
amounted to 1 � 106 FFU/ml for mutants �4/4 and �7/3, 5 �
105 FFU/ml for mutants �4/1 and �4/3, and 1 � 105 FFU/ml
for mutants �4/2, �7/1, and �10, whereas no infectious parti-
cles were detected for mutants �7/2 and �14, in good agree-
ment with the above-described HA data. Thus, the titers for all
mutants were significantly lower than that obtained for wild-
type virus (5 � 108 FFU/ml), suggesting that a large percentage
of the particles produced by these mutants (as detected by HA)
were not infectious or did not initiate the formation of visible
foci.

FIG. 2. Infectious properties of WNV protein C deletion mutants. (A) Viral spread in cell culture. BHK-21 cells were transfected with wild-type
(wt) or mutant in vitro-transcribed RNAs as indicated. As a control, mock-transfected cells were used. at 48 h posttransfection, intracellular protein
E expression was visualized by immunofluorescence staining using a polyclonal antibody directed against JEV protein E which is cross-reactive to
WNV protein E. As secondary antibody, an anti-rabbit fluorescein isothiocyanate conjugate was used. (B) Cell culture passage. Supernatants of
transfected cells were used to inoculate fresh Vero cells. At 6 days postinoculation, the release of virus particles was assessed by subjecting aliquots
of the supernatants to HA. Twofold serial dilutions of supernatants were tested, and the titers (indicated on the left) are expressed on a log2 scale
(samples were measured in duplicate). Error bars indicate standard deviations.
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Spontaneous mutations are selected during cell culture pas-
sages. In order to test whether some of the WNV protein C
mutants might revert to a better growth phenotype, end point
dilution passages on Vero cells were performed and viral titers
were monitored. Improved growth properties were indeed ob-
served for mutants �4/2, �7/1, �7/2, �7/3, and �10 at different
passage numbers, whereas several rounds of blind passaging of
mutant �14 failed to produce a viable revertant. To investigate
if these changes in phenotype were a direct result of additional
alterations within the protein C sequence, viral RNA was iso-
lated from supernatants of infected cells and subjected to re-
verse transcription-PCR and sequence analysis. Notably, se-
quencing of the protein C-coding region indeed verified the
appearance of second-site mutations (Table 2). In most of the
cases, and consistent with previous findings obtained with
TBEV (21), point mutations that represented amino acid
changes to more hydrophobic residues had evolved; however,
most of these amino acid changes were, in contrast to findings
with TBEV, located upstream of the original deletion (Fig.
3A). In total, five different point mutations were identified,
with one of the point mutations, P22L, appearing more fre-
quently than others and in the sequence context of two differ-
ent engineered deletions.

Furthermore, and much to our surprise, we also identified
mutations in which the original deletions were enlarged to
lengths of 36 and 37 residues, respectively (Fig. 3B). Passaging
of mutants �10 and �7/3 resulted in the appearance of large
deletions removing more than one-third of the entire amino
acid sequence of protein C. Mutant �10 evolved into a deletion
of residues G40 to Q75 (termed �36) and furthermore con-
tains a conservative D-to-E exchange at the deletion border
(position 39). This deletion removed all residues of helices �2
and �3 as well as flanking residues, thus producing a capsid
protein lacking the entire internal hydrophobic sequence (31).
The second large deletion mutant (termed �37) originated
from mutant �7/3 and had residues L51 to E87 and thus part
of helix �2, all of helix �3, and part of helix �4 removed. This
mutant was predominant in the sequence pattern obtained
after two cell culture passages (Table 2). However, apparently
another pseudorevertant, which contained the original 7/3 de-
letion in combination with a single point mutation, R45L,
arose in the same passaging experiment and outgrew the large
deletion mutant during subsequent passages (Table 2, passage

5). A similar phenomenon was observed with mutant �7/2, in
which case the original P22L mutation was replaced by a K31M
mutation at later passages. In contrast, the same P22L muta-
tion was also observed to arise in mutant �7/1 but there was
complemented by a second amino acid change (M34L) at a
later passage. These observations illustrate the competition of
pseudorevertants with presumably variable evolutionary fitness
during these cell culture passages.

Recombinant mutants �36 and �37 can be readily passaged
in cell culture. The unexpected tolerance of protein C toward
deletions comprising 36 and 37 amino acids encouraged us to
investigate these mutations in more detail. To ensure that the
observed phenotypes were indeed a direct consequence of the
identified alterations, the �36 and �37 deletions were engi-
neered into the WNV wild-type backbone using the infectious
cDNA clone. Immunofluorescence staining at 48 h posttrans-
fection of in vitro-transcribed RNA (Fig. 3C) suggested that
mutants �36 and �37 were indeed viable.

To further characterize the growth of these mutants, plaque
and focus assays were performed on Vero cells. Even after
incubation for 6 days, no plaques could be identified for both
mutants, whereas wild-type plaques reached a size of between
8 and 15 mm (12.6 � 2.4 mm) (Table 3). In contrast, both
mutants were capable of forming foci on Vero cells, thus con-
firming their infectivity. These were, however, at least four
times smaller than wild-type foci, indicating their reduced abil-
ity to spread in cell culture (Table 3). Nevertheless, both mu-
tants achieved significantly higher titers (1 � 107 FFU/ml) than
their respective parental mutants �10 (1 � 105 FFU/ml) and �7/3
(1 � 106 FFU/ml), thus confirming the notion that extension of
the original deletions to 36 and 37 amino acids within protein C
indeed caused improved cell culture growth properties.

Subsequently, we tested whether mutants �36 and �37 could
be serially passaged in Vero cells and if that would provoke
additional genetic alterations. A single passage using undiluted
supernatant and three subsequent end point passages were
performed, followed by sequence analysis of the entire ge-
nomes. No further sequence alterations were identified after
the passages. These data indicated that the large deletion mu-
tations present in mutants �36 and �37 are sufficient for pro-
viding efficient growth properties in cell culture and remain
genetically stable.

TABLE 2. Spontaneous mutations as determined by sequence analysis

Mutantb
Mutation(s) at passagea:

1 2 5 8 11

�4/1 None None NDc ND ND
�4/2 P61L P61L ND ND ND
�4/3 None None ND ND ND
�4/4 None None ND ND ND
�7/1 P22L P22L P22L/M34L P22L/M34L ND
�7/2 NDc NDc P22L K31M K31M
�7/3 None � L51-E87 R45L R45L ND
�10 D39E/�G40-Q75 D39E/�G40-Q75 D39E/�G40-Q75 D39E/�G40-Q75 ND

a For the first two passages, concentrated samples were used. Subsequently, supernatants were diluted until the end point of infectivity was reached, and these samples
were subjected to further end point passages.

b The 4-amino-acid deletion mutants were passaged only twice.
c ND, not done (sequence analysis was not performed).
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A combined deletion mutant (�48) is severely impaired and
genetically unstable. The deletions present in mutants �36 and
�37 affect overlapping but different regions of protein C. We
wanted to investigate whether removal of the entire region
extending from the 5� border of the �36 deletion to the 3�
border of the �37 deletion would still yield a viable phenotype.
To this end, mutant �48, including the D39E mutation and
lacking residues G40 to E87 (Fig. 3B), was constructed and

analyzed. Immunofluorescence analysis indicated a strongly
impaired phenotype of mutant �48 (Fig. 3C), and no plaque or
focus formation was observed with this mutant (not shown).
However, a single blind passage was sufficient to rescue a
viable phenotype in Vero cells. Sequence analysis after subse-
quent end point passages revealed a duplication of the residues
flanking the 48-amino-acid deletion (i.e., DuM16-D39E�L88-
A94), but the growth properties of this pseudorevertant re-
mained restricted, achieving a titer of only 104 FFU/ml.

RNA export and specific infectivity of mutants �36 and �37
are moderately reduced compared to those of wild-type WNV.
To characterize in detail the capacity of mutants �36 and �37
to replicate, export, and infect, quantitative tests were per-
formed in comparison to wild-type virus. As shown in Fig. 4A,
intracellular RNA replication of both mutants was similar to
that of the wild type at 24 and 48 h postinfection. At 72 and
96 h postinfection, intracellular RNA values of mutant �37
were still at wild-type levels, whereas those of mutant �36
decreased. This decrease was accompanied by strong CPE,
causing a strong reduction of cell numbers at these time points.

FIG. 3. Spontaneous mutations in the WNV capsid protein. (A) Second-site point mutations identified after passaging in Vero cells. The point
mutations were identified at the indicated amino acid positions (marked on top) within a region corresponding to helix �1 (open box), helix �2
(gray box), and surrounding residues. The originally engineered deletions are shown by arrows, and the second-site point mutations are marked
in bold and underlined. On the right, the corresponding nucleotide exchanges are listed. (B) Large deletions �36 and �37, identified after passaging
of mutants �10 and �7/3, respectively. The helical parts of the capsid protein are indicated by boxes, and helix �2 is highlighted in gray. The
positions of the large deletions are indicated by arrows. Furthermore, an artificial large deletion mutant (i.e., �48) was constructed, lacking all
residues which had been spontaneously deleted in both �36 and �37. The precise nucleotide deletions are shown on the right. (C) Immunoflu-
orescence analysis of large deletion mutants. The large deletions (i.e., �36, �37, and �48) were engineered into the infectious cDNA clone, and
mutants were tested as described for Fig. 2A.

TABLE 3. Growth properties of mutants �36 and �37

Virus
mm (mean � SD)

Titer (FFU/ml)
Plaque sizea Focus sizeb

Wild type 12.6 � 2.4 19.8 � 2.86 5 � 108

�36 2.85 � 0.63 1 � 107

�37 5.05 � 1.07 1 � 107

a Mean plaque size was determined at day 6 postinfection. None of the capsid
deletion mutants induced plaque formation, even when incubation was pro-
longed to 9 days postinfection.

b Mean focus size was determined at day 6 postinfection.
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To confirm the visually observed CPE, cytotoxicity was quan-
titatively assessed by measuring the release of LDH into the
supernatants of infected cells. As shown in Fig. 4E, LDH
release from cells infected with mutant �36 was in the same
range as for the wild type and mutant �37 until 48 h postin-
fection. In contrast, at the later time points, LDH levels in
supernatants of �36-infected cells were significantly higher
than others thus confirming its high cytotoxicity and suggesting
that the decreased intracellular RNA values for �36 at 72 and

96 h postinfection were indeed a consequence of excessive cell
deaths (compare Fig. 4A and E).

Quantification of RNA release into the supernatants re-
vealed moderate differences between protein C deletion mu-
tants and wild-type virus. Mutants �36 and, particularly, �37
released less viral RNA into the supernatant than the wild type
at 24 h postinfection (Fig. 4B). Mutant �37 achieved wild-type
levels at later time points; however, �36 remained approxi-
mately one order of magnitude below the wild-type control at

FIG. 4. Characterization of mutants �36 and �37. Approximately 106 Vero cells were infected at an MOI of 1 with the indicated virus
preparation. Wild-type virus and infection medium were used as the respective positive and negative controls. (A) RNA replication (intracellular
RNA) was measured by real-time PCR at the indicated time points. (B) The RNA export kinetics (RNA in supernatant) of mutants �36 and �37
was monitored by real-time PCR. (C) The percentage of exported relative to total RNA (intra- plus extracellular RNA) was calculated for the 48-h
time point. (D) Release of viral particles into the supernatant was assessed by HA. (E) Cytotoxicity was assessed by CytoTox 96 nonradioactive
cytotoxicity assay (Promega) using supernatants of the same samples. The respective optical density at 490 nm (OD490) values, representing LDH
release of disintegrating cells, are shown. (F) Specific infectivity of mutants �36 and �37 and wild-type virus. The specific infectivity was calculated
by determining the ratio of RNA (real-time PCR) to infectious units (focus assay) in virus stock preparations. Mean values from two independent
experiments with error bars indicating standard deviations are shown. wt, wild-type.
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all times. The decreasing values after 48 h (i.e., at 72 and 96 h)
presumably reflect the loss of producing cells caused by the
mutant’s prominent cytotoxicity, thus calling into question the
accuracy of the quantitative data at the later time points. To
better compare the export efficiencies of mutant and wild-type
RNAs, the percentage of total (extracellular and intracellular)
RNA equivalents in the supernatant was calculated for the
48-h time point, at which time effects of cytotoxicity were still
low and comparable among the samples. As illustrated in Fig.
4C, export efficiencies of mutants �36 and �37 were about
two-thirds and half of the wild-type value, indicating that the
mutated capsid proteins, although clearly less efficient in pack-
aging of RNA and/or assembly of virions, were still able to
facilitate the export of a significant percentage of the total
RNA from infected cells. To further determine the export of
viral particles, the same supernatants as used for the quantifi-
cation of viral RNA were subjected to HA. As shown in Fig.
4D, the results of this analysis were in good agreement with the
RNA data shown in Fig. 4B. For mutant �37, the release of
viral particles was delayed but reached nearly the wild-type
level at the latest time point. In contrast, the level for mutant
�36 remained below that of the wild type by approximately 3
log2 dilutions (i.e., approximately 8-fold) at all times, similar to
the approximately 10-fold difference observed in the RNA
values.

To quantitatively compare the specific infectivities of mutant
and wild-type viruses, virus preparations were subjected to
quantitative PCR to determine the number of RNA equiva-
lents (presumed to correlate to the number of virions) and to
focus assays to quantify infectious units in these preparations.
The ratio of RNA equivalents to FFU was then calculated, and
results are plotted in Fig. 4F. Whereas this ratio was approx-
imately 10 for wild-type virus (i.e., 1 out of 10 RNA equiva-
lents/virions caused an infectious focus), it was between 10-
and 100-fold higher in the case of the two deletion mutants,
indicating reduced specific infectivity.

In conclusion, the quantitative comparisons indicated mod-
erate but significant impairments of both viral export and entry
caused by the deletion mutations.

Large deletions are predicted to cause complex rearrange-
ments of the overall helical composition of protein C. Notably,
protein C deletion mutants �36 and �37 are capable of pro-
ducing infectious virions, whereas mutants with deletions of
fewer amino acids are much more severely impaired (i.e., �4/2,
�7/1, �7/2, �7/3, and �10) or noninfectious in cell culture (i.e.,
�14). To obtain further insight into the structural conse-
quences of deletions �36 and �37, the protein C sequences of
these pseudorevertants were subjected to secondary-structure
prediction analysis (PsiPred) (15) and compared to the wild-
type sequence. In Fig. 5A, the secondary-structure prediction
for the WNV V76/1 sequence is presented, with positions of
helices being almost identical to those defined in the crystal
structure (11). In addition, we determined the Kyte-Doolittle
hydrophobicity profile (26). The spontaneous enlargements of
the deletions apparently removed a hydrophilic region extend-
ing from �3 to the beginning of �4 (Fig. 5A, lower panel). This
suggests that the spontaneous deletions compensate for the
loss of the hydrophobic helical structure as represented by
helix �2 by removing another, more hydrophilic region (Fig.
5A). Subsequently, the sequences of protein C deletion mu-

tants (i.e., �36, and �37) were analyzed. As illustrated in the
WNV crystal structure (11), the spontaneous deletion of 36
amino acids resulted in complete removal of helices �2 and �3
(Fig. 5B, lower panel). The secondary-structure prediction sug-
gested the formation of a large single � helix (Fig. 5B, upper
panel) by fusion of helices �1 and �4. Whether the mutant
protein (i.e., a polypeptide of only 61 amino acids) is likely to
adopt a stable conformation in solution remains elusive, and it
will be interesting to investigate this using recombinant pro-
teins. However, it is certainly conceivable that such a long
fusion helix might form upon insertion of protein C into the
ER membrane. Similarly, the formation of a fusion helix was
predicted in the analysis of the second large deletion mutant
(i.e., �37, illustrated in Fig. 5C). Notably, in the crystal struc-
ture, the remainders of helices �2 and �4 are oriented toward
each other, thus suggesting, albeit not proving, that the forma-
tion of a large fusion helix might indeed be possible.

DISCUSSION

The internal hydrophobic domain of the flaviviral protein C
is a functionally important region involved in protein dimer-
ization and membrane interaction during assembly of the
virion (19, 31, 34, 46). In earlier reports, it had been demon-
strated that mutants lacking the entire internal hydrophobic
sequence of protein C are either severely impaired or not
viable at all (21, 42, 44). Although this was also observed with
some of the WNV deletion mutants analyzed in this study, the
pseudorevertant �36, lacking amino acids G40 to Q75 and thus
the entire conserved hydrophobic domain, surprisingly dem-
onstrates that efficient virion assembly and cell culture growth
are in fact possible even in the complete absence of this region.
�37, the second large, spontaneously emerged WNV capsid
deletion mutant, lacks residues L51 to E87 and thus also large
parts of this domain. Both mutants grew well in cell culture,
indicating that highly truncated capsid proteins can be func-
tional.

A remarkable flexibility of protein C toward deletions and
sequence alterations has already been observed in earlier stud-
ies (19, 21, 42, 43, 50). Protein C is essential for binding and
packaging of genomic RNA and contributes to particle assem-
bly and stability (reviewed in reference 38). RNA binding has
been assigned to the highly basic N- and C-terminal parts of
the protein (17). Notably, as tested in a YFV trans-packaging
system, one intact terminus is sufficient for the encapsidation
of genomic RNA (42). Thus, nearly 40 residues of the N ter-
minus of YFV protein C could be removed while the ability to
package RNA was retained. Similarly, 27 residues of its C
terminus, including the entire helix �4, were dispensable for
packaging. Based on their observations with mutants contain-
ing deletions in both termini, Patkar et al. proposed a mech-
anism in which the N terminus is involved in initial binding of
the genomic RNA, followed by binding of the C terminus (42).
The capacity to bind and package viral RNA is largely pre-
served in both mutant �36 and mutant �37 proteins, as mea-
sured by their capacity to export RNA into the supernatants of
infected cells. Another functional requirement of protein C is
to mediate interaction with the ER membrane during budding
(19, 35). It is believed that this interaction involves the hydro-
phobic cleft present on the surface of dimeric protein C (31).
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In the dimer of protein C, helices �2 from each monomer
interact with each other, thus forming the bottom of this cleft.
It is puzzling that mutants �36 and �37 still produced infec-
tious particles even though the entire or large parts of helix �2
were missing. Secondary-structure predictions and hydropho-
bicity plots suggested the formation of new large, hydrophobic
� helices in both of these mutants, whereas a hydrophilic
stretch of residues was lost from both of these proteins. Taken
together, these findings support the idea that the newly formed
fusion helices might functionally substitute for the loss of helix
�2. In addition, the protein C dimer serves as the basic building
block in the assembly of the flaviviral nucleocapsid (18). In the
3D structures of flaviviral protein C (11, 31), the dimers re-
semble a three-layer structure with helices �1 on top, helices
�2 in the middle, and helices �4 at the bottom. In contrast,
helix �3 is not organized pairwise and seems to serve as a
spacer. Mutant �36 lacks helices �2 and �3 and, as a conse-
quence, the middle part of the three-layer structure is com-
pletely removed whereas the top layer of helices �1 and the
bottom layer of helices �4 remain more or less unaffected (Fig.

5B). Similarly, mutant �37 lacks approximately half of helix �2,
the entire helix �3, and approximately half of helix �4 (Fig.
5C). One might assume that the formation of a fusion helix
(composed of the remainders of helices �2 and �4) results in
the formation of two layers instead of three. Stacking of such
two-layer structures might nevertheless enable multimer for-
mation and nucleocapsid assembly, which has been shown as
an intrinsic property of WNV C and DENV C proteins (11,
31). Therefore, it will be interesting to explore the oligomeric
properties and the atomic structures of the mutant proteins in
future experiments. Mutants �36 and �37, however, had a
significantly reduced specific infectivity and formed only small
foci and no plaques, indicating a significantly attenuated phe-
notype. This attenuation may be caused not only by an assem-
bly defect but also by an impairment during entry and unpack-
aging and/or a reduced physico-chemical stability of the
mutant particles. Indeed, a decreased thermal stability of par-
ticles containing C-terminal deletions [C(�77–96)] or deletions
within the internal hydrophobic sequence [C(�43–48)] had
recently been observed (42). The impairment of export and,

FIG. 5. Structure predictions for sequences of the wild type (A), deletion mutation �36 (B), and deletion mutation �37 (C). (A) Secondary-
structure prediction and hydrophobicity blot for the WNV V76/1sequence. Residues R23 to R98, which are also present in the Kunjin protein C
crystal structure (11), are shown. The positions of the introduced deletions and the most hydrophilic part of the protein are shown by open boxes.
The spontaneous deletions �36 and �37 are illustrated by black bars below. (B and C) Upper panels, secondary-structure predictions for mutant
protein C sequences and corresponding hydrophobicity blots. Lower panels, deletions on the Kunjin protein C dimer (11). The four helices are
shown, where present, with the same coloring in all three panels (i.e., �1 in green, �2 in blue, �3 in yellow, and �4 in red); the spontaneous large
deletions (i.e., �36 and �37) are shown in gray. All secondary-structure predictions were performed using PsiPred (15), and the hydrophobicity
blots were generated according to the algorithm of Kyte and Doolittle (26). The protein C 3D structure was adapted from the Protein Data Bank
(accession no. 1SFK) using PyMOL software (10). wt, wild-type.
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potentially connected with this observation, an altered cytotox-
icity (i.e., for mutant �36) are likely caused by a partial defect
in particle assembly.

In this study, we also identified spontaneous mutations
which resembled those described previously for TBEV (21),
i.e., exchanges of individual amino acids to more hydrophobic
residues and duplication mutations. In the TBEV study, the
residue changes were, without exception, located downstream
of the originally engineered deletion, whereas this was the case
for only a single mutation in the WNV system. The P61L
mutation in mutant �4/2 resembles a P57L mutation identified
in TBEV mutant C(�28–46). Both of these mutations of P to
L are located in the loop between the helix �2 containing the
hydrophobic domain and the subsequent helix �3. All other
WNV second-site point mutations, however, appeared up-
stream of the original deletion and affected residues preceding
or located within helix �1. In addition, the TBEV study (21)
identified two duplications as resuscitating mutations. Simi-
larly, WNV mutant �48 was rescued by the emergence of a
duplication mutation, DuM16-D39E�L88-A94, although
growth of the resulting mutant was still highly restricted. Taken
together, these findings suggest that similar mechanisms can
work to compensate for deletion mutations in both TBEV and
WNV and possibly flaviviruses in general.

Flaviviral RNA replication is dependent on the cyclization of
the positive-stranded RNA genome, which is mediated via 5�
and 3� cyclization sequences (reviewed in reference 34). In
mosquito-borne flaviviruses, the 5� cyclization sequence is lo-
cated within the amino-terminal coding region of protein C (2,
3, 9, 14, 16, 20, 29, 39). The WNV 5� cyclization sequence
comprises nucleotides 137 to 144, encoding amino acids V14 to
M16 of protein C. In good agreement with the functional
importance of this region, none of the second-site mutations
including also the large deletions affected this part of the
sequence. Thus, intracellular RNA replication should not be
impaired, and indeed, quantitative assessment showed no sig-
nificant differences between mutants �36 and �37 and wild-
type virus.

In conclusion, our data support a functional importance of
the internal hydrophobic domain of the WNV protein C but
demonstrate that this functionality can be substituted for in
dramatically truncated forms of this protein. Deletions of more
than one-third of the protein in the absence of additional
mutations, which would increase hydrophobicity, can generate
functional protein C. As suggested by secondary-structure pre-
dictions for WNV protein C deletion mutants �36 and �37, the
loss of functional elements contained in the hydrophobic helix
�2 was presumably compensated for by the formation of hy-
drophobic fusion helices and the extrusion of an intermittent
hydrophilic loop region. The high immunogenicity of mutant
flaviviruses containing deletions within protein C has been
successfully demonstrated (19, 21, 37, 44). Taking into account
the delayed growth kinetics together with the fact that high
titers can be achieved with mutants �36 and �37 in cell culture,
we propose that these large deletion mutants might be partic-
ularly useful vaccine candidates.
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