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1 Introduction

Monte Carlo (MC) methods are widely-used in finance, in particular for the valuation

of a multiplicity of exotic financial products. In contrast to derivatives on stocks

and currencies, the valuation of interest rate derivatives includes some peculiarities.

These special characteristics are discussed and implemented in this thesis.

The goal of this thesis is to study and implement MC methods for the valuation

of interest rate derivatives. Due to the wide range of different interest rate models,

the scope of this thesis is restricted to Gaussian short rate models. Hence, I will

price bonds, bond options and cap agreements according to the Vasicek model, the

Ho-Lee model and the Hull-White model, by applying MC methods. As all three

models are calibrated to market data, the resulting prices will be compared with

market data. Furthermore, I will examine path-dependent interest rate derivatives

briefly. Exemplary, I will present the valuation of a periodic cap instrument based

on the Hull-White model.

This thesis is structured as follows; In Section 2, I will present the main char-

acteristics of interest rates, as they form the underlying variables of interest rate

derivatives. Furthermore, I will discuss the most important interest rate sensitive

products and survey the markets in which these derivatives are traded. At this point,

it is especially accounted for the Austrian market. In order to apply MC methods,

stochastic processes describing the underlying variables have to be defined. Hence, I

will present basics on stochastic processes in Section 3. Section 4 discusses the most

important concept of derivative pricing, namely risk neutral valuation. This concept

is crucial, as it provides a general framework to work with. In Section 5, models for

the short rate are presented and discussed. Thus, I will go beyond Gaussian models

in order to study the different approaches. In addition, I will generally examine how

to determine the corresponding model parameters. After discussing the underlying

short rate models, pricing methods are described in Section 6. Besides the Black

model, which is based on the well known Black-Scholes-Merton model, numerical

methods are presented in this section. Hence, I will discuss MC methods, lattice

methods and finite difference methods. In Section 7, I will consolidate all acquired
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acknowledgements and value cap agreements based on to the Vasicek model, the

Ho-Lee model and the Hull-White model using MC methods. As these short rate

models have been calibrated to market prices, I will compare the simulated prices

with observed ones. Moreover, I will price a periodic cap agreement after reviewing

its main characteristics. In addition to this path-dependent interest rate derivative,

some other important ones are examined in Section 8.
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2 Interest Rates and Interest Rate Derivatives

According to Hull [1], derivatives can be described as financial contracts, whose

values depend on the price of the object of purpose, the underlying. For example,

the price for an option to buy a ton of corn in one year depends on the price of corn.

The value of this derivative -the option- therefore depends on the price of corn in one

year. The option will only be executed, if the corn spot price in the future is above

the predefined price, the strike price. In the case of interest rate derivatives, the

underlying variables are interest rates. Hence the prices for these contracts depend

on the underlying interest rates1. The option on buying one ton of corn enables

the buyer of this contract to hedge against facing a too high spot price in one year.

The main purpose of interest rate derivatives is to hedge oneself against interest

rates that are too high, too low or too volatile etc. In accordance to this, Obst and

Hinter [2] note that the possibility of hedging against extreme price and interest

rate fluctuations are the main goals of future and option markets. Since the 1960ies,

interest rates in general are much more volatile and the levels that are reached are

quite often above the ones before the 1960ies. Reißner [3] notes that the increased

volatility was due to the rising inflation in the 1960ies, to the relaxation of interest

rate regulations and also to the breakdown of the Bretton-Woods-System. Thus,

interest rate derivatives became more and more popular, whereas they boomed in

the 1980s and 1990s.

Besides hedgers, whose aim is to insure themselves against movements of interest

rates, stock prices, exchange rates, etc., that influence their financial situation nega-

tively, there are two other types of actors in derivative markets, namely speculators

and arbitrageurs. Speculators have no position they want to hedge. It is their goal

to profit from expected changes in prices. In fact, speculators play an important

role in derivative markets as they are willing to except risk in order to make profit.

As a hedger might want to buy the right to sell one of his assets in the future for a

predefined price, there must be another trader who is willing to enter this contract.

In most cases, the counterparts in such situations are speculators. Whereas the

1As it will be concretized in Section 2.2, this also covers bonds as possible underlying variables.
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hedger expects that the price of the underlying asset will decrease, the speculator

bets on increasing prices for the underlying asset. The latter tries to profit from

the lower price assumed by the hedger. He buys the asset according to the contract

specifications and tries to sell the asset for the expected higher market price in the

future. As a result, speculators are needed to make hedging possible as they are

willing to take risk hedgers do not want to carry2. Arbitrageurs are participants in

the futures and option markets that are only trying to capitalize differences in prices

on different markets. Therefore, an arbitrageur might buy an asset in one market,

in order to sell it for a higher price in another market. Arbitrage is mostly possible

because of differing information levels of the respective market participants.

2.1 Interest Rates

Before discussing derivatives on interest rates, it is necessary to be more specific

about the underlying. In general, money can be invested over different periods, at

different interest rates 3. Plotting the interest rates against time gives the so called

term structure or yield curve. The ECB (European Central Bank) provides daily

spot rates based on European central government bonds4. Figure 1 displays the term

structure according to bond prices for the 26tℎ of March 2009. The underlying data

are taken from the ECB web site [5]. As the spot rates are based on the market

prices of zero coupon bonds, as indicated in Equation (1), spot rates can not be

computed for an arbitrary time to maturity. As a result, the missing spot rates have

to be estimated, whereas proper estimation techniques are still widely discussed.

Zero coupon or pure discount bonds return a single unit of cash flow at the

maturity date without paying anything in-between. Thus, observing the price of a

zero coupon bond at time t that matures at time s can be expressed as follows:

P (t, s) = e−R(t,s)(s−t) (1)

2It would also be possible that such a contract is concluded by two hedgers, due to differing
expectations. Such situations are rather rare, as Hull [4] notes.

3On a small scale, this means that it is possible to establish several saving accounts for different
time horizons, at different interest rates.

4All of these bonds have to have an AAA rating and have to fulfill several criteria published on
the ECB web site [5].
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Figure 1: Yield curve for the 26tℎ of March, based on data provided by the ECB

After rearranging Equation (1), the corresponding spot rate R(t, s) can be written

as:

R(t, s) = − lnP (t, s)

(s− t)
(2)

For these representations a continuously compounded spot rate R(t, s) is assumed.

The time to maturity (s − t) is of special interest as it also incorporates the day

count convention. This convention clarifies for how many days an invested amount

of money is compounded per year. Due to different usances in markets there are

several different day count convention types. Hull [1] presents the following three

exemplary conventions:

Actual

Actual in period

Actual

360

30

360

Actual indicates the number of days that actually go by. Thus the actual number

of days per year is assumed. In some markets it is common to assume trading days

only. Hence, the number of days per year when assets are traded on exchanges are

assumed. In Austria the average number of trading days is about 252 per year. For

simplicity all upcoming simulations and calculations will be performed by applying

the 30
360

convention. Consequently, it is assumed that every month comprises of 30

days and one year of 360 days. Hence, challenges due to differing numbers of trading

days are avoided by this selection of day count convention type.

A crucial concept, which is on the bottom of valuing interest rate derivatives
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using MC simulation, is the theoretical concept of the short rate r(t). This is the

yield on an instantly maturing bond, therefore:

r(t) = lim
t→s

R(t, s) (3)

As a result, the short rate represents the interest rate at time t for an infinitesimal

small period. It has to be emphasized that the short rate is only a theoretical

concept. Hence, it can not be observed in the market. In accordance to the short

rate, the instantaneous forward rate f(t, s) can be introduced. This rate is denoted

in terms of the forward curve as it represents the interest rate for an infinitesimal

small time period at time s observed at time t. The instantaneous forward rate

therefore represents the interest rate for an infinitesimal small period in the future

(beginning at time s), whereas this interest rate is determined ahead at time t.

Thus, f(t, t) and r(t) are equivalent. Combining the definition of the instantaneous

forward rate and Equation (2) gives the following representation of the spot rate:

R(t, s) =
1

(s− t)

(∫ s

t

f(t, �)d�

)
(4)

As a result, the instantaneous forward rates can be deduced from observed discount

bond prices as in Equation (1) by setting

f(t, s) = − ∂

∂s
lnP (t, s) (5)

It follows that the term structure can be determined by the instantaneous forward

curve as well as by future short rates. As already mentioned, these interest rates are

not observable in the market, but they form crucial theoretic elements in the context

of modelling the term structure. In accordance to Equation (4) and by assuming a

market without any arbitrage possibilities, the interest payment for a given period

has to be the same irrespective whether an overall interest rate or several interest

rates for an arbitrary number of subperiods are applied. Figure 2 depicts a period of

length T1 + T2 + T3 = T . The Ti, for i = 1, 2, 3, represent the length of equal sized

subperiods. The ri, for i = 1, 2, 3, indicate the continuously compounded interest

6



rates for the three subperiods. Thus, the value of a zero coupon bond that pays

r1 = 1% r2 = 3% r3 = 5%

T1 T2 T3

Figure 2: Representation of continuously compounding

one Euro after T has to equal:

P (0, T ) = 1 ⋅ e−0.01⋅T1e−0.03⋅T2e−0.05⋅T3

As the subperiods in the example of Figure 2 are all equally sized, the zero coupon

bond price at time zero simplifies to:

P (0, T ) = 1 ⋅ e−0.09⋅Ti = 1 ⋅ e−0.09⋅Ti TT = 1 ⋅ e−rT = 1 ⋅ e−0.03⋅3 = 0.9139

As a result, one would have to pay 91 Cents at time zero in order to receive one Euro

at time T . r represents the arithmetically averaged interest rate for the whole period.

Thus, observing the interest rates for an arbitrary number of sub periods, facilitates

calculating the interest rate for the overall period as the arithmetic average of the

subperiods interest rates. As this also has to hold for infinitesimal small periods,

the continuously compounded one year rate for example can be deduced from all

the short rates within the upcoming year. Hence, by simulating the short rate the

whole term structure can be determined. This already shows the importance of the

short rate. In order to achieve realistic yield curves via simulation, so called short

rate models will be introduced in Section 5. As mentioned in the introduction, in

this thesis short rate models are of main interest in order to narrow the wide range

of modelling approaches.

After having discussed some basics on interest rates, financial instruments that

depend on interest rates or bonds are introduced in the next section.

2.2 Interest Rate Sensitive Financial Instruments

As mentioned in Section 2, the prices of interest rate derivatives depend somehow

on interest rates. This rather unspecific definition will be now concretized by dis-
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cussing the main interest rate sensitive instruments. This discussion is geared to the

representations of Branger and Schlag [6].

2.2.1 Unconditional Contracts

Investing in shares includes the participation in the profit and the loss of the com-

pany. As this investment might be too risky for some investors or as it might be

unfavorable for the issuer, governments and companies provide bonds. From a the-

oretical point of view a bank deposit can also be interpreted as a bond. The bank

costumer buys a theoretical bond issued by the bank when putting his money on

an account and is payed out when closing the account. Disregarding the default

risk, the main advantage of a basic bond is the certainty of all payments, as all

coupon payments5 and the nominal value are determined when the bond is issued.

This is done by defining the number of coupon payments and by determining their

amount, which is usually represented in percentages of the nominal value. Zero

Coupon bonds repay the nominal value and the compensation for lending the money

to the company or the government at maturity at once. As a result, zero coupon

bonds do not imply any interest rate depending risk. If fixed coupon payments

are settled, it seems rather controversial that interest rate depending risk is present.

The interest rate depending risk follows from the coupon payments that can be rein-

vested until the date of maturity. As these payments can be reinvested at variable

interest rates the price for the bond varies. Another possibility when issuing bonds

are coupon payments that depend on variable interest rates, as for example the LI-

BOR6 (London Interbank Offered Rate). Such bonds are called floaters. According

to the conception, the coupon payments directly depend on a reference rate. The

valuation of a bond also has to incorporate the default risk of the issuer. It might be

possible that companies or governments can not afford the coupon payments and/or

the nominal value at the date of maturity.

5Coupon payments are payments that compensate for lending the money to the government
(Treasury bonds) or companies (Corporate bonds).

6The LIBOR is a floating reference rate, which is determined by the trading of deposits between
banks on the Eurocurrency market. LIBOR reference rates are quoted for maturities ranging from
over night and one year.
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Forward Rate Agreements (FRA’s) are similar to zero coupon bonds. The signif-

icant difference is that Forward Rate Agreements define the assessment of a certain

amount of money for a period that starts at a certain point in the future and not

immediately, as when investing in bonds. As the payments at maturity are deter-

mined beforehand, the prices for Forward Rate Agreements do not depend directly

on varying interest rates. The interest rate sensitivity relies on the possibility of

speculation by betting on a certain evolution of the interest rate.

Swaps are agreements on exchanging cash flows in the future. In the fundamental

case, an investor agrees on paying a predetermined cash flow sequence in order to

receive variable cash flows that depend on a reference rate such as the LIBOR.

Reitz, Schwarz and Martin [7] note that Plain Vanilla interest rate swaps, which are

equivalent to the ones just described, are the classical instrument to hedge against

the risk of changing interest rates. The authors argue that this was the reason for

the increasing popularity of these contracts. Nowadays, the number of different

swaps is therefore unmanageable, they cite.

Forward contracts determine the exchange of an asset at a certain time in the

future for a predefined price. These contracts can be individually established by

the exchanging parties. As a result such contracts cannot be easily traded on an

exchange. Forwards are mainly traded OTC7.

Future contracts are very similar to forward contracts. Differently to forwards,

future contracts are traded mainly on exchanges. This difference in the initiation of

the contract brings along a crucial restriction for future contracts. The exchanging

parties are no longer able to specify certain articles of agreement, as all future

contracts have to be standardized in order to ensure smooth trading. Although

this might seem to be a huge drawback, futures are popular as it is much easier to

find an exchange partner. Moreover, Beike and Schlütz [8] note that it is nearly

impossible to do not find a counterpart for a future contract at the EUREX (Future

exchange established in a cooperation by the ’Deutschen Terminbörse’ and the ’Swiss

Options and Financial Futures Exchange)8. Beside the advantage of easy matching,
7OTC stands for Over-The-Counter, which means that the buying and the selling parties are

in direct contact with each other to specify the details of the contract.
8Beike and Schlütz [8] note that this is mainly due to the Market Maker System at the EUREX,
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future contracts imply no default risk, as both parties need to have a so called

margin account. These accounts guarantee every counterpart the completion of

the contract, as changes in the claims have to be booked daily to these margin

accounts. Concluding the differences between futures and forwards, it can be said

that futures imply lower transaction costs by passing on the possibility of individual

arrangements of the contracts.

2.2.2 Conditional Contracts

All the instruments presented up to now are based on an unconditional execution

of the contract. The parties in these contracts have not got the possibility to de-

cide whether the exchange is conducted or not. Differently to these contracts, the

instruments discussed in this section include the possibility for one party to decide

upon the execution. Pricing such instruments is therefore more complicating and

goes beyond discounting future cash flows. Although stochastic modelling of the

interest rate dynamics is already needed when pricing swaps and futures. In this

work, only contracts that include the possibility of deciding upon the execution will

be discussed, as there is no need to use rather complicated models to price rather

simple derivatives. Especially, when pricing forwards there is no need to assign a

specific term structure in advance. Hence, I will focus on the valuation of conditional

contracts. The most popular OTC interest rate options and therefore conditional

contracts according to Hull [4] are: bond options, interest rate caps/floors and swap

options9.

In general, options constitute the right, but not the obligation to sell or buy an

asset at a predefined point in time for a predefined price. The object of purchase

is called the underlying and the predefined price the strike price. To complete the

introductory terminology for options, the right to buy the underlying is constituted

by a call option, where a put option10 entitles to sell the underlying. Options,

irrespective of the underlying, can be classified by their date of execution. European

where some participants have committed themselves to always take the counterpart, for reasonable
contracts.

9For swap options, the abbreviated form swaption is also common.
10It has become common to use the abbreviations call and put, thus to omit ’option’.
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options represent the simplest form of all options, as the holder has got the right to

sell or buy the underlying at only one determined date in the future, the maturity

or expiration date. American options incorporate the right for the holder to sell or

buy the underlying at any point in time until the maturity date. As a result, the

holder of an American option can exercise his option within a whole period instead

of at a single point in time. American style options therefore provide more freedom

in reacting on price changes of the underlying. Bermudan options are in the middle

of European and American options, just like the Bermudan islands are. Bermudan

options incorporate the right to sell or buy the underlying at several predefined

points in time.

Besides the classification on the basis of execution dates, options can also be

grouped according to their payoff function. Plain Vanilla options describe ’basic’

options. They are traded mainly on exchanges, therefore the prices for these prod-

ucts are quoted regularly. The payoff ' of a Plain Vanilla option only depends on

the price S of the underlying at maturity T and the strike price K. Therefore the

payoff function for a call option can be written as:

'(ST ) = max (ST −K, 0) =

⎛⎝ 0 , if ST < K

ST −K , if ST ≥ K

⎞⎠ (6)

For a put option the payoff function looks like:

'(ST ) = max (K − ST , 0) =

⎛⎝ K − ST , if ST ≤ K

0 , if ST > K

⎞⎠ (7)

In the case of a call option a rational investor would not execute the option, if the

market price of the underlying is below the predefined strike price. A put option

would not be executed, if the market price of the underlying is above the strike

price11. For pricing Plain Vanilla options there exist comprehensive closed formulas

that were presented by Fischer Black [9]. For Exotic options on the other hand,

more complicating models are necessary.

11These considerations neither take into account the payed price of the option beforehand, nor
dues that arise because of the transaction.
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Exotic options are options that were modified with respect to their payoff func-

tion or their conditions of execution. The largest group of exotic options are the

path-dependent ones. Differently to European, American or Bermudan options, the

payoff function of e.g. Asian options depend on the average price of the under-

lying within a predefined period. As a result, the price of the underlying has to

be investigated for the whole specified period. The payoff of lookback options also

depends on the price of the underlying before maturity. The payoff of a lookback

call when exercised, is the final price of the underlying, minus the minimum price

of the underlying till maturity. For a lookback put the payoff is the maximum price

of the underlying till maturity, minus the final price of the underlying at maturity.

Another modification to standard options are incorporated by knock-in and knock-

out options. The payoff of these derivatives depends on the fact, whether the price

of the underlying has exceeded or undershot a specific level. These options are also

called barrier options. As there are many possible conditions (combining barriers for

example) the underlying price might have to fulfill the variety of these derivatives

is immense.

Bond options incorporate the right to sell or buy a bond at a predefined point in

time for a certain price. As a result, the payoff function for zero coupon bond options

is equivalent to Equation (6) and Equation (7) by replacing S(T ) with P (T, s). As

Jamshidian [10] showed, options on coupon paying options can be interpreted as a

portfolio of options on pure discount bonds as the ones in Equation (1). Concerning

the issuer, Beike and Schlütz [8] note that government bonds are favored by investors.

Corporate bonds on the other hand are irrelevant. They provide the following reason

for Germany: The market for bonds issued by banks is not that liquid and there are

nearly no corporate bonds. The interest for such options is therefore quite small.

As government bonds, especially the ones issued by the USA, Germany, Japan

and Great Britain are quite popular, options on these bonds are quite common.

Furthermore, Beike and Schlütz state that bond options are favored for bonds where

the maturity date is far away in the future. The latter fact might be explained with

the argument that prices for bonds that last longer vary much more than those which

mature in the near future. If the bond for example matures in 30 years the prices
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might vary much more, as people have more different expectations about the future.

These expectations also include a potential default risk which will be incorporated

in the prices of bonds, and which will then influence the option price. In theory, the

default risk for government bonds is said to be zero, as it can be assumed that all

governmental financial commitments are secured by tax income.

Some bonds include the right for the issuer to pay back the issued bond for a

fixed price before the bond expires. In this case such callable bonds incorporate a

call option on the bond. Bonds are issued to increase debenture capital. Callable

bonds are issued as it might be possible that the debt can be payed back earlier. As

the discounted value of the payoffs of the bond decreases with time, the prices the

issuer would have to afford decrease as well. Bonds with call features generally offer

higher yields than bonds without a call feature, as investors have to be compensated

for a possible early payback. Of course the right to sell the bond earlier can also be

embedded. In this case the bond is called a puttable bond. The holder of a puttable

bond has bought the bond as such, as well as a put option on this bond that allows

her to sell the bond at a given date for a given price. As puttable bonds incorporate

the possibility of selling the bond at a predefined price before it matures, prices for

such bonds are usually lower. This can be justified with the lower risk such bonds

carry, as the bond can be disbursed before its maturity date. Hull [4] states, that

a five-year fixed-rate deposit with the possibility of an immediate account closing

can be seen as an embedded put option on a bond12, as it contains an American

put option on the bond. On the other hand, Hull [4] states that mortgages or loans

that include the right to pay back the loan before it is due can be interpreted as

they include a call option on the loan. This argument arises by assuming that a

loan disbursed by the bank is the same as a bond issued by the debtor sold to the

bank. As a result, if the debtor pays back his bond earlier by paying back his loan

he executes a call option on the bond.

In contrast to loans where the interest rate is determined for the whole life-span

of the loan, there are loans with flexible interest rates. In the latter case the interest

rates and the cost for the debtor are adjusted to a predefined market spot rate, such

12It was already stated in Section that a bank deposit can be interpreted as a bond.
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as the LIBOR or the EURIBOR13. Interest rates for loan and deposit contracts are

usually not adjusted daily. Moreover, they are matched to spot rates in predefined

time intervals such as three months. An interest rate cap (cap in short), which is a

top-selling contract according to Reißner [3], can be used in such cases to impose a

maximum of interest that has to be paid at these adjustment dates. As a result, a

cap rate is defined. This rate is the highest interest rate that has to be afforded by

the debtor. Thus, the debtor can hedge herself against the increase of the interest

rate of his loan above the cap rate. Hull [11] stresses the practical issue that if a loan

and a cap on that loan are provided by the same company, the value of the cap is

already included in the charged interest rate. If that is not the case, the debtor has

to afford the value of the cap agreement separately. In such a case, a cap does not

reduce the interest rate payments for the debtor, but it compensates the debtor for

the higher liabilities. If a bond with variable interest payments (which is in general

the same as a loan, as mentioned earlier) that depend on the LIBOR pays 3.5%

in three months is assumed, the debtor has to afford 0.25 ⋅ 0.035 ⋅ 100 000 = 875

Euros, given a nominal value of 100 000 Euros. If a cap rate of 3% is assumed,

the debtor would have to afford 750 Euros only, as the cap agreement compensates

her for the 0.5 percentage points above the cap rate. An important feature of caps

and floors is that the compensation for the differing interest rates is not payed at

the reset days (the days when the interest rates are adjusted), but when the period

for which the interest rate is adjusted expires (after three months, in the example

above). Assuming a cap agreement with a volume of one unit of currency, with a

cape rate of RCap, between the times t and s on the interest rate R(t, s) being the

realized interest rate for the very same period, whose length is denoted as Δ� = s−t

gives a payoff at s of:

Δ� max(R(t, s)−RCap, 0)

This formulation is geared to the representations of Clewlow and Strickland [12]. In

order to receive the value of this cap at time t, this payoff has to be discounted. To

discount the payoff, the spot rate R(t, s) has to be assumed and the payoff of the

13The EURIBOR (Euro Interbank Offered Rate) is as the LIBOR an interest rate on debt
between banks. The EURIBOR is calculated on the basis of interest rates offered by representative
European banks for maturities from one month to one year.
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cap at time t is then given by:

Δ�

1 +R(t, s)Δ�
max (R(t, s)−RCap, 0)

which is equivalent to

(1 +RCapΔ�) max

(
1

1 +RCapΔ�
− 1

1 +R(t, s)Δ�
, 0

)

Thus, an option that caps the interest rate at RCap between t and s is equivalent to

1 +RCapΔ� European put options with an exercise price of 1
1+RCapΔ�

on a discount

bond with a face value of one unit of currency. In reality a cap agreement does

not comprise of a single period of compensation, there are several of such periods.

As a result, the summed up values of all caplets, as the agreements for the single

periods are called, yields to the price of the whole cap agreement. Thus, the value

of a cap agreement is a portfolio of European put options on a series of discount

bonds. This result will not be important for the simulations, but it will be important

when calibrating the investigated models to market data, as presented in Section 5.3.

Figure 3 from Hull [11] shows the interest rate that a debtor would have to account

for when repaying a Floating-rate loan combined with a long position in a cap rate

agreement. Differently to cap agreements, floor contracts assure a compensation for

Figure 3: Borrower’s effective interest rate with a floating- rate loan and an interest-rate cap (Presented by Hull [11])

interest payments that are below a certain rate, the floor rate. Hence, by holding a

floor one can hedge oneself against too low interest payments that will be received.
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The payoff function in t can be analogously written to the one of a cap as:

Δ�

1 +R(t, s)Δ�
max (RFloor −R(t, s), 0)

which can be reformulated as

(1 +RFloorΔ�) max

(
1

1 +R(t, s)Δ�
− 1

1 +RFloorΔ�
, 0

)

Thus, a floorlet can be interpreted as (1 +RFloorΔ�) European call options with an

exercise price of 1
1+RFloorΔ�

on a one unit paying bond expiring at time s.

Mixtures of caps and floors are called collars. These contracts ensure that the

considered interest payments are always within a band, bounded by the cap and

the floor rate. A collar is therefore a combination of a long position in a cap and a

short position in a floor agreement. Hull [1] cites that collars are usually established

such that the price of the cap equals the price of the collar. The cost for entering

a collar is equal to zero in this case. The efforts for the collar therefore result from

compensations that are due to interest rates below the floor rate.

As already stated in Section 2.2.1, swaps are contracts that convert variable into

fixed interest payments. Differently to a forward swap, where a company has to

fulfill the swap contract, swap options or swaptions in short, enable the company to

decide, whether or not to execute the swap. As a result, if a company has to pay

back a loan while the variable interest payments are high, the company can enter the

swap contract; but it does not have to. Thus, if the variable interest payments are

low the company can profit from the low market interest rates. Hull [11] gives the

following example as an application of such swaptions: A company that will enter

a five year loan in half a year is assumed. The assumed loan incorporates variable

interest payments. In order to hedge against too high variable interest payments the

company can buy a swaption. In this case the company would receive the variable

interest payments from the swaption counterpart. These variable payments can then

be used to pay back the loan. On the other hand, the company has to afford fixed

interest payments to compensate the swaption counterpart. As swaptions provide

the right, but not the obligation of execution, the company will only execute the
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swaption, if the variable interest rate is above the swap rate. In this example the

swaption is called a put- or payer-swaption, as its holder has to afford the predefined

fixed interest payments. If the holder of a swaption receives the predefined fixed

interest payments, the swaption is called a call - or receiver swaption. An example

for the latter agreement is presented by Beike and Schlütz [8]. If a fund manager is

confronted with high fluctuations in interest rates he can buy a receiver swaption.

This receiver swaption ensures her to receive at least a certain fixed interest. As

a result, the fund manager will only execute the swaption, if the variable interest

payments are below the fixed ones. A swap can be interpreted as the exchange

of a bond with variable interest payments and a bond with a predetermined fixed

interest payment. As a result, a swaption can be seen as an option on the exchange

of a fixed interest paying bond and the nominal value of the swap. Thus, if a swap

allows its holder to pay a fixed amount of interest and to receive a variable one, this

contract can be seen as a put option on a fixed interest paying bond with a strike

price equal to the nominal value of the swap. A call option on a fixed interest paying

bond, with a strike price of the nominal value of the swap can be assumed, if the

holder of this call option has the right to pay variable interest and to receive fixed

interest payments.

As the features of swaptions and caps and floors look fairly the same, the differ-

ence shall be discussed briefly. In a cap and floor agreement the underlying interest

rate is compared with the predefined cap or floor rates at several predefined times

and whether the contract is a floor or a cap the option is executed. In the case

of swaptions the interest payments are settled for a whole period. Therefore the

underlying interest rate and the strike are compared only once14. As a result, it is

possible to hold a cap that comprises of caplets with different strike prices and there-

fore provides differing cap rates. A payer swaption on the other hand guarantees

only one swap rate and one payoff.

14It can be assumed that the holders of swaptions already include their expectations of the
evolution of the underlying interest rate in the future.
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2.3 Markets for Interest Rate Derivatives

According to Branger and Schlag [6], the most important derivative exchanges are

the CBOT (Chicago Board of Table), the LIFFE (London International Financial

Futures Exchange) and the EUREX in Frankfurt. Trading a derivative on an ex-

change is only possible, if the derivatives are standardized. Otherwise, there would

be a large variety of different products that are not traded, as the date to maturity

or the underlying does not fit the needs of the investors. As Hull [11] notes, the

most popular interest rate options traded on exchanges are those on Treasury bonds

futures, Treasury note futures and Eurodollar futures. All these contracts are highly

standardized, very often demanded and can therefore be easily traded on exchanges.

On the other hand, there are completely customized products, such as swap-

tions and caps and floors. These contracts cannot be standardized as the needs of

the specific investor have to be met. If the company from Section 2.2.2 wants to

hedge itself against too high interest payments because of a floating rate loan, the

counterpart for such an agreement would be a bank. In order to fit the needs of

the company a swaption will be provided that ensures fixed interest payments of a

specific volume for a specific period. As a result, such contracts can only be dealt

Over The Counter (OTC). If the company would wish to resell the contract instead

of using it, it would be rather burdensome to find a counterpart who is interested in

this very specific agreement. The secondary market for such products will therefore

also take place OTC.

Now the interest derivative market in Austria will be briefly highlighted. In 1991

the ÖTOB (Österreichische Termin- und Optionen Börse) was founded. The ÖTOB

was then integrated in the Wienerbörse AG and is now part of the latter as the

segment derivatives market.at. Nowadays, investors can buy futures and options

on Austrian and central eastern European stocks and indices [13]. As a result,

there is no Austrian exchange that supports trading of interest rate derivatives.

In fact, in 1993 the trade of futures on Austrian government bonds (AGB) was

started at the former ÖTOB. Up to September 1996, when the trading of AGB-

options started, the AGB-Futures were the only interest rate derivatives traded at
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Interest Rate Swaps Interest Rate Options Forward Rate Agreements

1995 196 2 1927

1998 2080 113 1133

2001 2205 70 1962

2004 9338 288 3912

Table 1: Average daily turnover in millions of US Dollar at the Austrian derivative market (based on data from the
Austrian Federal Bank [16])

the ÖTOB. Then AGB-options were introduced, which incorporated the right to

sell or buy the underlying government bond at any point in time, as the option was

American style. Trading on AGB-options was enabled by Sal Oppenheim Jr. & Cie.

KGaA, as this independent private bank entered the ÖTOB as a General Clearing

member to handle the exchange of AGB-options. For the ÖTOB the AGB-options

were introduced in order to supplement its offer [14]. In fact, the ÖTOB ended

its ambitions for the AGB-options already after 13 months. AGB-Futures on the

other hand were traded from 1993 until 1999. The termination of trading the AGB-

Futures also determines the termination of interest rate derivatives at an Austrian

exchange [15]. Although there is no Austrian Exchange for interest rate derivatives

anymore, Austrian banks are very active in trading them. Transactions for such

contracts are carried out OTC or on foreign exchanges. To underpin the activities

of Austrian banks some results of the Triennial Central Bank Survey 2004 [16] are

presented. The whole survey, which is also known as the BIS-Survey, is carried out

in 50 different countries. Its aim is it to gather information about the turnovers

of foreign exchange contracts and contracts for derivatives. Thus, 13 private banks

selected by the Österreichischen Nationalbank were surveyed. These 13 banks were

investigated as they were responsible for 98% of the turnovers for derivative contracts

in Austria. Table 1 presents the average daily turnovers for interest rate swaps,

interest rate options and forward rate agreements (FRAs). As Table 1 shows, the

daily turnovers for the three contracts are not negligible. Although the average daily

turnover is rather small, compared with interest rate swaps and FRAs, Austrian

banks seem to be fond of interest rate options. It is remarkable that the turnover

for interest rate options increased by 400% from 2001 to 2004. These numbers as well

as the fact that for example on the 13tℎ of November 2008 1.514.799 future contracts
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and 251.158 options on fixed income derivatives were traded at the EUREX [17] in

Frankfurt should make clear that interest rate derivatives are widely used and that

it is worth thinking about proper pricing models.
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3 Stochastic Processes

In order to simulate changes of variables using MC techniques, stochastic processes

have to be introduced. The presentations in this section are based on the descriptions

in Hull [4].

In general, stochastic processes can be defined in discrete or in continuous time.

For discrete processes, changes of the variable are only possible at certain points in

time. On the other hand, when defining the process in continuous time, changes

are possible at any point in time. The basic process employed in this thesis is

the so called Wiener process15 or Brownian Motion. A Wiener process is a special

Markov process, thus the following feature is also valid for Wiener processes. In a

Markov process the best predictor for the future value of a variable is it’s current

value. Hence, all previous values of the variable are irrelevant for determining future

values. This feature is captured by Markov processes, as consecutive changes are

independent of each other. As a result, Markov processes incorporate the weak

form of capital market efficiency, as the prices of traded assets already reflect all the

information about previous prices. Otherwise it would be possible to predict future

prices by analyzing past ones. Hull [4] also notes that the weak form of capital

market efficiency should be valid due to the trades in a market. If a certain chart of

an asset price would indicate a specific movement of the future price, this movement

would be anticipated and the possibility of making a profit out if it would diminish.

For the upcoming simulations variables that follow Markov processes are employed.

These variables change randomly by �(�, �) in a given period, where � is the normal

distribution, with an expected value of � and a standard deviation of �.

3.1 Wiener Processes

In the case of a Wiener process a variable z is assumed whose random change in dis-

crete time can be expressed by �(0, 1), in every period. As the consecutive changes

in the variable of a Wiener process are independent, the probability distributions

are also independent. Thus, for calculating the expected value of the process one
15This process is named after the American mathematician Norbert Wiener.
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can sum up all expected values, which gives a value of zero. The standard deviation

of this process for two periods would be
√

1 + 1, as the additivity is given for the

variance, but not for the standard deviation. Hence, calculating the standard devi-

ation for half a year gives
√

0.5. In order to do this, the changes of the variable z

for a given change in time Δt can be written as:

Δz = "
√

Δt with " ∼ �(0, 1) (8)

In accordance to this, it can be assumed that the whole period under consideration

T can be split up into N equally sized time periods of length Δt. In order to do this,

N = T
Δt

changes are observed. The calculation of the change in z between t = 0 and

t = T is determined as:

z(T )− z(0) =
N∑
i=1

"
√

Δt

The expected value of the change over the whole period is again zero and the variance

is NΔt = T . The standard deviation of the change is therefore
√
T .

Figure 4 shows the evolution of two variables. Variable z changes 100 times a

year, whereas variable k changes 1000 times a year. As a result the changes in the

two variables can be written as:

Δz = "

√
1

100
with " ∼ �(0, 1)

Δk = "

√
1

1000
with " ∼ �(0, 1)

Thus, the time steps for the evolution of variable z are ten times longer, than the

ones for k. Therefore, the possible changes in z are much larger than the ones of

k. For the variables z and k two exchange traded goods can be assumed, where the

first one is only traded a few times a year and the other one is traded every minute.

The price for the first one would only change a few times a year, but the magnitude

of the changes might be considerably high as some important factors have changed.

As the second good is traded every minute the actual prices already incorporate all

available information one minute ago. As a result, the increase of the magnitude
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of the changes, as the length of the time steps increases, is quite reasonable. The

Figure 4: Two stochastic processes with different step length and variance

variables z and k were generated using Microsoft Visual Basic (VBA).

3.2 Generating Normal Random Variables

In order to simulate a variable that changes randomly within �(0, 1), standard nor-

mal pseudo random numbers have to be generated. Clewlow and Strickland [12]

state that during MC simulations 30% of the execution time is needed for generat-

ing random numbers. Hence, it is worth having a closer look at this part. As C++

only provides a generator for standard uniform random numbers, a transformation

has to be applied. Clewlow and Strickland [12] propose three alternatives for gen-

erating standard normal pseudo random numbers, when a generator for standard

uniform pseudo random numbers is available. The first one is only an approximation,

where twelve uniform numbers are generated, summed up and then six is subtracted

from the total. In this case twelve standard uniform random numbers have to be

generated, in order to receive one standard normal random number. As a result,

this procedure is rather inefficient. A more efficient alternative to generate standard

normal pseudo random numbers is the Box-Muller transformation. This algorithm

was presented by Box and Muller [18] in 1958 and is based on sampling independent

standard uniform numbers and projecting them on a circle, whose radius is based

on one of these random numbers. Then a random angle between zero and 2� is

set using a second random number. This procedure defines two random points at
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the boundary of the assumed circle using the sine and cosine function. Upon the

three methods presented by Clewlow and Strickland, the polar rejection is the most

efficient one. The polar rejection is also known as the Marsaglia-Bray algorithm,

developed by G. Marsaglia and T. Bray [19]. Their algorithm is a modification of the

Box-Muller algorithm. For this method two independent uniform random numbers

are necessary in order to generate two standard normal pseudo random numbers.

According to Clewlow and Strickland [12], the algorithm for the polar rejection can

be written in the following manner:

repeat

x1 = standard uniform random number

x2 = standard uniform random number

w = x2
1 + x2

2

until w < 1

c =
√
−2 ln(w)

w

z1 = cx1

z2 = cx2

Comparing the three methods, Clewlow and Strickland [12] conclude that the

polar rejection is nearly three times faster than the first alternative and still slightly

faster than the Box-Muller transformation. Glasserman [20] notes that avoiding to

incorporate an evaluation of the sine and cosine function reduces the computing time

noticeable. As the polar rejection is faster and more accurate, this transformation

technique will be applied in the upcoming simulations. As the polar rejection has to

be implemented separately, the transformation from standard uniform to standard

normal random numbers will be named random() in the algorithms in appendix.

The algorithm itself is presented in Appendix B.12.

Figure 5 shows the distribution of 10000 values that have been generated accord-

ing to the polar rejection method. For these random numbers a mean of -0.03 and a

standard deviation of 1.07 were found. The shape of the distribution function and

the distribution parameters are in favor of the hypothesis that the generated values

are standard normally distributed. Furthermore, it was tested, wether the 10.000

values are standard normally distributed or not, using a �2 test on distributions.
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According to the test statistic, the Null-Hypothesis of standard normally distributed

values could not be rejected, even at a significance level of 0.5%. Thus, it can be

assumed that the algorithm works well.

Figure 5: Histogram for 10.000 pseudo random numbers, generated via Visual Basic

3.3 Generalized Wiener Process

Up to now, processes were assumed that do not change deterministically. Accord-

ingly, they did not incorporate a drift a for example, which describes a constant

change of the variable. Furthermore, one can modify the standard deviation of

the process by multiplying the increments of the Wiener process, Δz = �
√

Δt, by

a constant b. Such a process with dz16 defining a Generalized Wiener process in

continuous time can be written as:

dx = a dt+ b dz (9)

For small changes in time the change in the variable x can also be written as:

Δx = aΔt+ b"
√

Δt (10)

Figure 6 shows four different Wiener processes. dx = dz describes a standard

Wiener process without a drift parameter and with a standard deviation equal to
16In order to define a Wiener process in continuous time, the step length Δt (as in Equation (8))

has to become infinitesimal small.
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one for the observed period. dx = 2 dz on the other hand, describes the increasing

magnitude of the random changes by two. The variance of the process is therefore

increasing by four. Moreover, one can claim a deterministic drift in the process, by

increasing the variable x by 0.1 per time increment. This is described by the process

dx = 0.1 dt+ 2 dz. dx = 0.1 dt describes the situation where x does not rely on any

random changes. In both cases the expected value of the change in the variable x

is no more equal to zero. In the case of an investigated period of length one, the

expected value of the changes in x would be equal to 0.1. As it will be shown later

Figure 6: General Wiener processes with a=0.1 and b=2

on, a and b in Equation (9) and (10) might depend on the variable x and on time,

thus, such a process looks like:

dx = a(x, t) dt+ b(x, t) dz

In this case a and b change with t and x. These processes are called Itô-Processes

and are of special interest when pricing derivatives applying MC simulations, as it

will be shown in the next section.
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4 Pricing Interest Rate Derivatives

An elementary question that has to be answered is: Why do we need pricing formulas

for interest rate options, as there are market prices for them? Reitz, Schwarz and

Martin [7] present the following arguments: Although prices for interest rate options

result from the demand and supply on exchanges and between banks, it is necessary

to calculate theoretical prices for these products. These theoretical prices are needed,

as it is not possible to observe market prices for all products. Furthermore, these

theoretical prices are necessary to analyze the determinants of these derivatives

plainly, in order to calculate potential changes in market prices and to hedge oneself

against these changes.

Before presenting valuation methods for interest rate derivatives (see Section 6),

two fundamental concepts have to be introduced. The concept of risk neutral valu-

ation constitutes a conceptual framework for pricing derivatives, irrespective of in-

vestors’ risk preferences. Martingales on the other hand, are necessary when defining

stochastic processes of variables in such a risk neutral framework.

4.1 Risk Neutral Valuation

The most important concept for pricing derivatives is the one of Risk Neutral Valu-

ation. For the time being the Risk Neutral Valuation will be discussed in the light

of stock prices, as the concept is more intuitive in this case. The presented approach

is based on the findings of Cox, Ross and Rubinstein [21].

A stock, whose current price is S0 and an option on this stock that matures in

T , which is worth ℎ today is assumed. The price of this stock might increase or

decrease until T . In order to this, the stock price at T , might be S0u, if the stock

price increases and S0d, if it decreases. Where u and d represent the percentage

change of the stock price plus 100%. In T the option has a payoff which is set

equal to ℎu, if the stock price increased and ℎd, if it decreased. Now a portfolio is

considered that consists of Δ shares and a short position in an European call option.

As a result, the right to buy a certain amount of shares at T for a given price is

27



sold. Thus, the portfolio will be worth S0uΔ− ℎu in T , if the stock price increases

and S0dΔ−ℎd, if the stock price decreases. Setting the values of this portfolio equal

gives:

S0uΔ− ℎu = S0dΔ− ℎd

or equivalently

Δ =
ℎu − ℎd
S0u− S0d

(11)

As stated above, Δ represents the amount of shares in the portfolio. As the payoffs

for an upward and downward movement are equal in the case of setting Δ equal to

(11), the payoff of the portfolio is risk free. At this point, it has to be assumed that

there are no arbitrage opportunities. Therefore, it is not possible to invest zero today

and receive a positive amount tomorrow with a positive probability. In accordance

to that, portfolios with the same payoff at a future date have to have the same price

today. In the case of the portfolio that consists of Δ shares and the short position

in an European call option on the same shares, there is no risk at all. According

to the assumption that there are no arbitrage opportunities, this portfolio can only

return the risk free rate rrf . Δ therefore ensures that the value of the portfolio is

the same, no matter if the stock prices rise or decline. As a result it can be stated

that the value of the risk free portfolio is equal to S0uΔ − ℎu, irrespective of the

evolution of the stock price. Assuming that there are no arbitrage opportunities,

the discounted value (using the risk free rate) of the portfolio in T , must be equal

to the cost for setting up the portfolio today.

S0Δ− ℎ = (S0uΔ− ℎu)e−rrfT

Inserting Δ from Equation (11) and rearranging this equation gives:

ℎ = e−rrfT [pℎu + (1− p)ℎd]

where

p =
errfT − d
u− d

The term p can be interpreted as a probability in this case. In accordance to
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this, p is known as the risk neutral probability. The risk neutral probabilities are

computed without making any assumptions about the real world probabilities of up-

or downward moves of the stock price. This is due to the fact that the current prices

of the shares should already include all future considerations about the evolution of

the price. The only assumptions that have to be made concern the possible changes

in the stock price and the strike price. The risk free rate can be observed in the

market. Thus, the value of the option can be deduced from the changed stock price,

the strike price and the time to maturity T .

For the upcoming deviations Ê will denote the expected value in a risk neutral

world, as described. In such a world all investors are indifferent towards risk. Hence,

there is no need to compensate them for the risk they are taking. As already

mentioned before, the return of every portfolio can only be the risk free rate rrf .

The expected return of the stock in a risk neutral world is simply the risk free rate17.

Therefore one can write Ê(ST ) = S0e
rrfT . Applying p and (1-p) as the risk neutral

probabilities for the up and downward movement of the price, it follows that the

investment will only pay the risk free rate. Concluding these findings Hull states:

’In a risk-neutral world all individuals are indifferent to risk. In such

a world investors require no compensation for risk, and the expected

return on all securities is the risk free interest rate. [...] This result is

an example of an important general principle in option pricing known

as risk-neutral valuation. The principle states that we can assume the

world is risk neutral when pricing an option. The price we obtain is

correct not just in a risk-neutral world, but in the real world as well.’ [4]

The concept of Risk Neutral Valuation is incorporated in the famous Black-

Scholes-Merton model through the stochastic differential equation, which can be

deduced from the evolution of the stock price (presented in Equation (38)) they

assumed. By deriving the price for a derivative on the share, the expected value of

the share price is cancelled out.

17This can be also shown by computing the expected return of the stock using the risk neutral
probabilities p.
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4.2 Martingale Measures

For the discussion of the martingale measure it will be followed the representation

in Hull [1]. In Section 4.1 it was assumed that the risk free interest rate is constant

over time. In fact, interest rates change over time (The yield curve that is presented

in Figure 1 for example, only represents the spot rates at the 26tℎ of March 2009). In

Section 4.1 it was shown, that the expected returns of all securities in a risk neutral

world have to equal the risk free rate and that future payoffs can be discounted using

the risk free rate. Thus, how can these changes in interest rates be described?

The unifying characteristics of derivatives is the dependence on an underlying

variable, the price of a share or an interest rate for example. To model these variables

(indicated as �) one can assume that they follow a stochastic process such as:

d�

�
= mdt+ s dz (12)

dz again indicates a Wiener process. m indicates the mean of the changes or the

drift. As it was already discussed in Section 3, multiplying the increments of the

Wiener process by a certain value, changes the volatility of the process in the same

proportion, as the increments of the Wiener process are standard normally dis-

tributed. Furthermore, it is assumed that m (the expected value of �) and s (the

volatility of �) only depend on time and �.

Now two derivatives g1 and g2 on � are assumed, which follow the processes:

dg1

g1

= �1 dt+ �1 dz and
dg2

g2

= �2 dt+ �2 dz (13)

�1, �2, �1 and �2 are functions of � and t. The two functions in Equation (13)

represent the percentage change of the derivative prices in a continuous setting. In

a discrete setting the absolute changes of the derivatives’ prices would look like:

Δg1 = �1g1Δt+ �1g1Δz and Δg2 = �2g2Δt+ �2g2Δz

In all the presented formulas the only source of uncertainty lies in the increments of
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the Wiener process dz. Eliminating these increments by building a portfolio Π of

the two derivatives leads to an invested value of �2g2 in derivative g1 and −�1g1 in

derivative g2. The value of this portfolio Π can therefore be written as:

Π = (�2g2)g1 − (�1g1)g2

or

ΔΠ = (�2g2)Δg1 − (�1g1)Δg2

As this portfolio is risk free (the increments of the Wiener process cancels out) and

due to the assumption that there are no arbitrage possibilities, the return of this

portfolio has got to equal the risk free rate rrf . Therefore the following has got to

hold:

ΔΠ = (�2g2)Δg1 − (�1g1)Δg2 = rrfΠΔt

or equivalently

ΔΠ = (�2g2)(�1g1Δt+ �1g1Δz)− (�1g1)(�2g2Δt+ �2g2Δz) = rrfΠΔt

which simplifies to
�1 − rrf
�1

=
�2 − rrf
�2

The left and the right hand side of the last equation represent the market price of risk

for �. This price represents how much risk one has to take in order to increase the

return of the asset that depends on �. Moreover, this shows that for two derivatives

with the very same underlying, the market price of risk for this underlying has to

be same irrespective of the two derivatives. Defining the market price of risk of � as

� gives:
�− rrf
�

= � or equivalently � = rrf + �� (14)

Thus, the mean return of a derivative is defined by the risk free rate plus one part

that depends on the market price of risk and the volatility of the derivative.

A martingale is a stochastic process that has a drift equal to zero. A variable �
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follows a martingale, if the evolution of � can be written as

d� = � dz

where dz is again a Wiener process. As there is no drift parameter, the expected

value of the variable �T for all T ≥ 0 has got to equal the initial value �0, by the law

of large numbers. This is due to the fact that the increments of a Wiener process

are standard normally distributed.

Assuming two assets that only depend on one source of uncertainty with the

prices g and k, one can define the relative price  of g in terms of k as  = g
k
.

Thus, the asset price k is used as a numeraire, the value of g is represented in terms

of k. Now it is assumed that the market price of risk is equivalent to the standard

deviation of the second asset k, � = �k. According to Equation (14), �, the expected

value of a derivative, which depends on � and t, therefore equals �k = rrf + �2
k, for

a derivative k and �g = rrf +�g�k, for a derivative g. Combining these assumptions

with Equation (13) defines the changes of the derivative prices for g and k as:

dg = (rrf + �k�g)g dt+ �gg dz

dk = (rrf + �2
k)k dt+ �kk dz

These two formulas imply that the changes in the asset price for g and k also depend

on the current absolute values of the prices. In this case it is useful to apply the

natural logarithm. Applying Itô’s Lemma (A derivation of Itô’s Lemma using some

results from differential calculus is presented in Appendix A.), where a(x, t) and

b(x, t) from the Appendix are equal to (rrf +�k�g)g and �gg for the variable g gives:

d ln g =

(
1

g
(rrf + �k�g)g −

1

2g2
�2
gg

2

)
dt+

1

g
�gg dz

which simplifies to

d ln g =

(
rrf + �k�g −

�2
g

2

)
dt+ �g dz (15)

32



Similarly, applying Itô’s Lemma to the process of the variable k gives:

d ln k =

(
rrf +

�2
k

2

)
dt+ �k dz (16)

By subtracting Equation (16) from Equation (15) gives:

d(ln g − ln k) =

(
�k�g −

�2
g

2
− �2

k

2

)
dt+ (�g − �k) dz

which is equivalent to

d
(

ln
g

k

)
= −(�g − �k)2

2
dt+ (�g − �k) dz

Applying once again Itô’s Lemma, as indicated in Appendix A, with the exponential

function as the function G, − (�g−�k)2

2
as a and (�g − �k) as b gives:

d
(g
k

)
= −g

k

(�g − �k)2

2
+
g

k

(�g − �k)2

2︸ ︷︷ ︸
0

dt+
g

k
(�g − �k) dz

As a result the process of g
k
has no drift and follows a process like d� = � dz. Thus,

g
k
is a Martingale as defined above. As the best predictor for a Martingale is the

initial value of the process, the expected value of g
k
has to equal:

g0

k0

= Ek
(
gT
kT

)
or equivalently g0 = k0Ek

(
gT
kT

)
(17)

Where the indices indicate the initial values and the values at the maturity date

T . The expectation function Ek stands for the expected value in the case of a risk

neutral world in terms of k. Hence, for calculating the expected value not the ’real

world’ probabilities are used, but the risk neutral ones. In the case of assuming the

standard deviation �k, as the market price of risk, one calls this measure a forward

risk neutral measure with respect to k. From Equation (17) it follows that the initial

price of the asset g can be calculated by describing the evolution of g and k in a risk

neutral world without making assumptions about the real probabilities of an up- or

downward movement of the prices for the two assets. As a bank account is also a
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tradable asset, it can also be applied as a numeraire. In this case the initial value k0

can be set equal to one. The changes in the value of a bank account are described

by the interest rate R(t, s), the value of the bank account therefore increases with

every time step by r(t). As it is assumed that a bank account does not bear any risk,

�k equals zero. By writing the value of the bank account at the time to maturity T

as kT = exp
(∫ T

0
r(t) dt

)
, the initial value of a derivative g can be defined as:

g0 = Ê(e−rTgT ) (18)

r indicates the mean value of the short rate r(t) over the whole period and Ê indicates

the expected value in the classic risk neutral world. An interest rate derivative

can therefore be priced by simulating the evolution of the short rate r(t) in a risk

neutral setting. In this case the price of the derivative at the time to maturity gT is

calculated18 and discounted using the mean of the short rate for the random path,

as it was proposed in Figure 2 and the accompanying calculations in Section 2.1.

Pricing for example a bond in this classic risk neutral world can be carried out by

P (t, s) = Ê
[
exp

(∫ s

t

r(t) dt

)]

Thus, one can simulate the short rate r(t) in the classic risk neutral world and is

then able to calculate several different payoffs according to the simulated short rate

paths and use the mean value of these payoffs, as the price for this derivative. In

order to apply MC methods, it is necessary to describe the evolution of the variables

of interest as stochastic processes. Thus, for the simulation of interest rates it is

necessary to define a stochastic process that describes the changes in the short rate

such that the resulting term structure at least resembles the actual one. In the next

section such models will be presented, the short rate models.

18The price of this derivative might depend on the value of the short rate at a certain point in
time or at the whole path that is described by the risk neutral evolution of it.

34



5 Short Rate Models

The short rate (or instantaneous interest rate) r(t), introduced in Section 2.1, can be

interpreted as the interest rate for an infinitesimal small time period. In Section 2.1

it was also shown that in the case of continuous compounding the interest rate for

a period that comprises of several subperiods is determined as the average interest

rate of all subperiods. As this is also valid for the short rate, stochastic processes

in terms of the short rate can be defined to simulate term structures. There are

several proposals for processes the short rate might follow. This thesis concentrates

on Equilibrium and No-Arbitrage models, as Hull [1] calls them. Figure 7, which

was deduced from Clewlow, Strickland [12], summarizes all common approaches

for valuing interest rate derivatives. The distinction Hull made for the models is

equivalent to the categories ’Traditional term structure models’ for Equilibrium

models and ’Equilibrium term structure volatility models’ for No-Arbitrage models.

The ’Fit term structure volatility models’ are beyond the scope of this thesis in

order to concentrate on a narrow clipping of a vast topic. The ’Model bond prices’

models on the other hand will be discussed briefly in Section 6.1.

5.1 Equilibrium Models

Hull [4] describes equilibrium models as models that are based on assumptions about

economic variables and that derive a process for the short rate, r(t). These models

then explore what the assumed process for r(t) implies for bond and option prices.

The theory of interest rate modelling is based on the findings of Vasicek [22].

In general short rate models assume that changes in the short rate depend on the

short rate’s mean a (the drift) and its variance b2 (or diffusion function), which

both depend on the level of r(t) and time t. This assumption is equivalent to the

presentation in Section 3. Thus, changes in the short rate can be represented as:

dr = a(r, t) dt+ b(r, t) dz (19)

This is equivalent to say that the short rate r(t) follows a continuous Markov process.
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Figure 7: Representation of the possibilities to value interest rate derivatives (deduced from Clewlow, Strickland [12]
p. 189)

The short rate process is therefore characterized by a single state variable, namely

its current value. It has to be noted, that this is one out of three assumptions made

by Vasicek. The second assumptions states that the price of a discount bond is

determined by the process of the short rate over the bond’s time to maturity. This

ensures that the interest paid for a certain investment has got to be the same no

matter whether the whole period is divided in infinitesimal small periods or the

period is examined as one (see Figure 2 in Section 2.1). The last assumption made

by Vasicek concerns the market. Vasicek assumed that the market is efficient. Thus,

there are no transaction cost, information is available for all investors simultaneously

and every investor acts rationally. This assumption ensures that investors have

homogenous expectations and that no profitable risk-free arbitrage is possible.

As mentioned before, the price of a pure discount bond is assumed to depend on

the short rate r(t). For the derivation of the risk neutral interdependence between

the term structure and the short rate, Vasicek did not assume any specific function.

In a classical risk neutral world (as discussed in Section 4.1), where no investor has

to be compensated for taking risk, the dependence between the short rate and bond
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prices can be described as follows:

P (t, s) = Ê[e−r(s−t)]

where Ê is the risk neutral expected value. Thus, the discount bond price can be

interpreted as the expected value of a function of r(t). Applying now Itô’s lemma

as presented in Appendix A, while the process of r(t) is similar to the one for x

in Equation (46) and the bond price P (t, s, r(t)) will represent the continuously

differentiable function G, shows that the bond price satisfies a stochastic differential

equation like:

dP = P (�(t, s, r(t)) dt− P�(t, s, r(t)) dz (20)

�(t, s, r(t)), �(t, s, r(t)) are the mean and the variance of the instantaneous rate of

return at time t, on a bond with maturity time s. Considering now an investor

who issues an amount of W1 of a bond and simultaneously buys an amount W2 of

another bond, gives a portfolio of these two bonds that is now worth W = W2−W1.

Applying now Equation (20) to the value of this portfolio and assuming that the

values W1 and W2 are set proportional to �(t, s2) and �(t, s1)19 shows that the value

of the constructed portfolio changes over time according to:

dW = W
�(t, s2)�(t, s1)− �(t, s1)�(t, s2)

(�(t, s1)− �(t, s2))
dt

As changes in the value of the portfolio do not depend on the stochastic element dz

anymore, the return of the portfolio W has got to equal the risk free rate r(t), as

profitable risk-free arbitrage is not possible (Third assumption of Vasicek):

�(t, s1)− r(t)
�(t, s1)

=
�(t, s2)− r(t)

�(t, s2)

As a result the market prices of risk for the two bonds have to be equivalent. As

the times to maturity s1 and s2 are set arbitrary, the market price of risk q(t, r(t))

19It has to be noted that this convention for the values W1 and W2 is similar to the selection of
numeraire as it was presented in section 4.2.
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can also be written as:

q(t, r(t)) =
�(t, s, r(t))− r(t)

�(t, s)

Substituting here the formulas for the mean �(t, s, r(t)) and �(t, s, r(t)) that resulted

from applying Itô’s lemma, to the bond price formula which lead to Equation (20),

gives:
∂P

∂t
+ (f + �q)

∂P

∂r(t)
+

1

2
�2 ∂2P

∂r(t)2
− r(t), P = 0 for t ≤ s (21)

Vasicek calls Equation (21) the term structure equation, as one obtains bond prices

after defining the process of the short rate r(t) and the market price of risk q(t, r(t)).

As it was shown in Equation (18), the price of an interest rate derivative, that

pays 's at time s, is in t equivalent to: Ê[e−r(s−t)'s]. Where Ê is the risk neutral

expected value. As above a zero coupon bond is introduced that has a price of P (t, s)

in t and pays 1$ in s, therefore 's = 1. For the case that the market price of risk

is equal to zero (q = 0), the classical risk neutral world is assumed. Consequently,

bond prices can be calculated as

P (t, s) = Ê[e−r(s−t)] (22)

The term structure can therefore be deduced from Equation (1) by substituting

P (t, s) by Equation (22), thus

R(t, s) = − 1

(s− t)
ln Ê[e−r(s−t)] (23)

As a result, if the risk neutral process of the short rate is determined the whole

structure of R(t, s) is determined as well.

5.1.1 Vasicek Model

Vasicek [22], who presented the derivation of an arbitrage-free price of a derivative as

shown in Section 5.1, started his analysis by assuming that the short or instantaneous

spot rate follows a stochastic process, which is determined by the increments of a
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Wiener process, a drift and a diffusion parameter, as shown in Equation (19). The

derivation of an arbitrage-free price followed the ideas of Black and Scholes [23].

Therefore, by constructing a suitable risk-free portfolio Vasicek showed how to range

between a measure in the ’real’ world and a risk-neutral one. These changes between

the measures describe a Girsanov change of measure. As Vasicek showed that this

is true for a general setting of Equation (19), the implementation of a special model

is based on defining a risk neutral process for the short rate.

Vasicek proposed to assume a constant market price of risk �. For pricing deriva-

tives, the value of the market price of risk is actually irrelevant, as shown in Section

4.2. If the risk neutral process is defined, derivatives can be priced without having

any idea of the value of �. The value of the market price of risk is only necessary for

moving from the real to the risk-neutral measure and vice versa. The risk neutral

process Vasicek assumed is equivalent to:

dr = �(
 − r) dt+ � dz (24)

The short rate therefore follows an Ornstein-Uhlenbeck process [24]. As a result a

drift of �(
 − r) and a time independent variance �2 are assumed. 
 represents the

long-term mean of the short rate and � the speed, at which the short rate r returns to

its long-term mean. This feature is know as mean reversion. Thus, the interest rate

will return to a long term average level. If r is above this mean reverting level, r will

decrease. The opposite will happen, if r is below this level. As already mentioned, �

represents the speed at which the short rate returns to the average long-term level.

The speed of return is given as a proportional factor per time interval. There are also

economic arguments that are in favor of mean reverting interest rates. If the interest

rates are too high, it is more expensive to borrow money. Hence, investments will

decrease and therefore economic growth will decrease as well. Thus, the demand for

money will decrease, which will lead to decreasing interest rates. If interest rates

are too low, the demand for money will increase which will then lead to increasing

interest rates.

In the Vasicek model the term structure of interest rates and the associated
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volatility structure are both determined by the model after fixing the constant pa-

rameters �, 
, � and the initial value of the short rate r. Bond prices and the

corresponding yields can be therefore verified as:

P (t, s) = A(t, s)e−rB(t,s) (25)

R(t, s) = − lnA(t, s)

s− t
+
B(t, s)

s− t
r

where

B(t, s) =
1

�
(1− e−�(s−t))

lnA(t, s) =
R∞
�

(1− e−�(s−t))− (s− t)R∞ −
�2

4�3
(1− e−�(s−t))2

where

R∞ = lim�→∞R(t, �) = 
 − �2

2�2

The volatility of the spot rates for maturity s at time t is given by:

�R(t, s) =
�

�(s− t)
(1− e−�(s−t))

Thus, by varying the parameters �, 
, � and r, the yield curve can have several

different shapes, as shown in Figure 8. In order to simulate the short rate r accord-

ing to Equation (24), it is necessary to formulate the process in a discrete setting

beginning at t = 0. According to the Euler scheme Equation (24) can be written as:

rt+1 = rt + �(
 − rt)Δt+ �"t+1

√
Δt (26)

In the setting presented by Vasicek [22] the coefficients �, 
 and � are all assumed

to be constant over time. Glasserman [20] shows that for this case Equation (24)

can be written as:

rt+1 = e−�(Δt)rt + 
(1− e−�(Δt)) + �

√
1

2�
(1− e−2�Δt)"t+1 (27)

The advantage of using Equation (27) lies in the of the simulation. While Equa-

tion (26) is only an approximation, Equation (27) enables one to simulate the the
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Figure 8: Three different yield curves of a zero coupon bond, due to different combinations of the parameters
proposed by Vasicek.

process assumed by Vasicek exactly, without discretization error. For the term

structure that will be presented in Figure 14, the average deviation of the spot rates

deduced from Equation (26), from the spot rates simulated via Equation (27) is

only −0.004 percentage points. Thus, the approximation error is negligible. For all

upcoming simulations I will apply exact formulas, if available.

5.1.2 CIR Model

One severe drawback of the Vasicek model is that the short rate might become

negative. As a result the interest payed for such an infinitesimal small time period

would be negative. Thus, one would have to pay for lending money to someone

else. Cox, Ingersoll and Ross [25] therefore presented an adaption of the Vasicek

model. By including the square root of the short rate into the diffusion process,

they overcame this problem. As a result, the formulation of the short rate process

under the CIR model in a risk neutral world looks like:

dr = �(
 − r) dt+ �
√
r dz (28)
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The constants �, 
 and � are the same as in Equation (24). In order to ensure

that the short rate cannot become negative, 2�
 > �2 has to hold. An other fea-

ture concerns the volatility of the process. The higher the short rate becomes, the

more volatile the process will be. Figure 9 contrasts the difference in the processes

described by the Vasicek and the CIR model. For these sample paths Euler approx-

imations were used in order to define the processes (24) and (28) in discrete time.

The Euler approximation for the CIR model is equivalent to the one for the Vasicek

model as in Equation (26), but the diffusion process is multiplied by the square

root of the short rate one period ahead. This also led to the sobriquet ’square-root’

process of the CIR model. For the two paths the increments of the Wiener process

are equivalent for every time step, thus the different shapes are only due to the

different diffusion processes. As the short rate is in this case always smaller than

100% the square root term decreases the effect of the diffusion term, thus the path

for the CIR model is less volatile. As the long term average short rate is positive

and above the initial value of 0.979% the square root term also ensures that the

short rate does not become negative. As the short rate approaches zero the effect

of the increments of the Wiener process decreases and might even get equal to zero.

In this case the long-term positive effect dominates. The parameters of the CIR can

Figure 9: Sample short rate paths of the Vasicek and the CIR model with equivalent increments of the Wiener
process with 
 = 0.05, � = 0.3 and r0 = 0.00979

again be deduced from calibrating the model to real market data (see Section 5.3).

As the CIR and the Vasicek model are both relatively strict concerning the possible
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paths of the short rate, the lineup of possible shapes of the zero coupon curve can be

widened by using for example time depending long-term average short rate values.

Similar to the Vasicek model there are analytical models for bonds and bond option

prices in the CIR model. Thus, no simulations for such contracts are necessary.

5.1.3 Two Factor Short Rate Models

The CIR as well as the Vasicek model are both one-factor short rate models, as

the whole zero coupon interest-rate curve is characterized by the single factor r(t),

the short rate. Thus, if a poor model is selected to simulate the term structure, the

resulting estimates for prices of derivatives will also be poor. Hull [1] mentions, that a

model that leads to a one percent deviating price of a bond from the real price, might

lead to a 25% deviation in the option price. As a result a proper model is essential

for pricing interest rate derivatives. Jamshidian and Zhu [26], who considered data

on the Japanese Yen, the U.S. Dollar and the German Mark, showed that when

using only one explaining component 68%-76% of the total variation in the term

structure can be explained. Using two components already increases the explained

part to 85%-90%, whereas three components already explain 93%-94% in the total

variation. As Brigo and Mercurio note:

’The choice of the number of factors then involves a compromise be-

tween numerically-efficient implementation and capability of the model

to represent realistic correlation patterns (and covariance structures in

general) and to fit satisfactory enough market data in most concrete

situations.’ [27]

Thus, besides the fact that a multi factor model increases the explained total vari-

ation of a given term structure, they also incorporate more realistic assumptions

concerning the correlations between interest rates for different times to maturity.

Assuming a thirty-year (which equals the longest time to maturity assumed in the

Vasicek model in Section 5.1.1) and a one-year interest rate, according to the Vasicek

model a shock in the interest rate curve at time t is transmitted through all matu-

rities equally, as the correlation coefficient is equal to one for two different times to
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maturity20. As a result, one-factor short rate models can be applied for products

that only depend on a single rate of the term structure and also for products that

depend on interest rates that are close to each other, according to their maturity

dates. The latter assumption is due to the fact that for example a one-year and a

six-month interest rate will surely be highly correlated.

Brennan and Schwartz [28] for example presented a two factor model where a

short term interest rate tends to the level of a long-term one, where the latter follows

a stochastic process as well. As a long term interest rate, the return of a bond with

infinite time to maturity was used in their model. In fact the maturity date for

such bonds is not determined beforehand. The invested amount would be payed

back when the corporation is liquidated. In reality the interest that is payed for

these bonds is either determined beforehand for the whole time to maturity or for

predefined periods such as ten years. As such bonds are traded assets, the return of

such a bond has to equal the risk free rate in a risk neutral world. The process for

the payed interest can be computed according to the process for the bond prices.

Brennan and Schwartz therefore proposed to model the short rate as well as a long-

term interest rate explicitly.

5.1.4 Drawbacks of Equilibrium Models

A huge drawback becomes apparent when determining the process of the short rate,

described by the Vasicek model. The variance, the long term mean and the speed

of mean reversion have to be set such that an observed term structure is replicated.

As a result the observed term structure is not an input, but rather an output of

equilibrium models. As the long term mean and the speed of mean reversion are both

time invariant, zero coupon bond prices cannot be reproduced exactly. By relaxing

the assumption of time invariant parameters term structures can be modelled more

accurately. This is the main difference of equilibrium and no-arbitrage models that

will be discussed in the next section.

20see Brigo and Mercurio [27] p. 138

44



5.2 No-Arbitrage Models

As discussed in the previous section equilibrium models usually cannot replicate a

given term structure perfectly as their determining parameters do not depend on

time. As a result, huge discrepancies between the modelled term structure and the

observed one might occur. By implementing a time depending long-term level, a

good fit to market data can be achieved. Besides the fact that zero coupon bond

prices are replicated correctly, models for the short rate also have to take into ac-

count the observed volatilities for interest rate derivatives. Instead of presenting and

discussing several no-arbitrage models, the generalized Hull-White model presented

by Hull and White [29] will be introduced. The advantage of this approach is the

possibility of deducing the most common no-arbitrage models as special cases of

the generalized Hull-White model. In Hull and White’s model some function of the

short-rate follows a Gaussian diffusion process of the following form:

df(r) = [�(t)− a(t)f(r)] dt+ �(t) dz (29)

As mentioned earlier, equilibrium models cannot replicate an observed term struc-

ture satisfactorily due to their inflexible conception. For no-arbitrage models the

variable �(t) incorporates a more flexible process, in order to fit an observed term

structure. The parameters a(t) and �(t) are usually called volatility parameters, as

they have to be set such that market prices of a set of actively traded interest-rate

derivatives can be properly replicated. For the case that these volatility parameters

as well as the parameter �(t) are all time independent and that f(r) = r the gener-

alized Hull-White model is equivalent to the Vasicek model, as in Equation (24).

5.2.1 The Ho-Lee Model

The Ho-Lee model, which was presented by Ho and Lee in 1986 [30], was the first

no-arbitrage model for the term structure. Initially Ho and Lee presented their

model by applying a binomial tree, as it will be discussed briefly in section 6, but

they also showed that the model converges to the generalized Hull-White model with
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f(r) = r, a(t) = 0 and � being constant in continuous time.

dr = �(t) dt+ � dz (30)

Thus, by defining this process in a discrete manner, paths for the short rate can

be simulated as in Section 5.1. Differently to the Vasicek model, the Ho-Lee model

incorporates a time depending term �(t). In the case of the Ho-Lee model this

parameter �(t) can be computed analytically as:

�(t) =
∂f(0, t)

∂t
+ �2t (31)

f(0, t) is the instantaneous forward rate at time t. Hence, the slope of the forward

curve determines the direction where the short rate is heading to. A derivation of

this relation was presented by Glasserman21. Thus, the exact discrete process of the

short rate in the Ho-Lee model can be written as:

r(ti+1) = r(ti) + [f(0, ti+1)− f(0, ti)] +
�2

2
[t2i+1 − t2i ] + �

√
ti+1 − ti"i+1 (32)

"i+1 is again an independent standard normally distributed random variable. The

forward rates f(0, t) can be deduced from the spot rate curve by stressing the fact

that the interest payed for a certain period has to be the same no matter, if it

is computed by a zero coupon bond that matures at the end of the period or by

assuming the interest rate for a shorter period and a forward rate, that covers the

remaining time of the period. As a result, by applying the forward rates observed

in the market the Ho-Lee model will perfectly fit the observed term structure. The

only still unknown parameter in Equation (32) is �, the volatility of the short rate.

The Ho-Lee model does not incorporate a mean reversion variable, as a result, this

model has one fewer variable as the Hull-White model, that will be discussed in

the next section. Although the Ho-Lee model fits an observed term structure, it is

not necessarily the fact that it also replicates observed market prices. Discrepancies

between model implied prices and market data might be due to a poor replication

21see Glasserman [20] pp. 112
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of the volatility observed in the market.

As the short rate is normally distributed in the Ho-Lee model, European call

and put options on a s-maturity pure discount bond can be calculated as:

c(t, T, s) = P (t, s)N(d1)−KP (t, T )N(d2)

p(t, T, s) = KP (t, T )N(−d2)− P (t, s)N(−d1)

with

d1 =
ln
(

P (t,s)
KP (t,s)

)
�p

+
�p
2

d2 = d1 − �p

with the standard deviation of the bond price in T :

�p = �(s− T )
√
T − t

This explicit result will be important when calibrating the model to market data in

Section 5.3.

5.2.2 The Hull-White Model

The process Hull and White [31] proposed for the short rate can be written as:

dr = [�(t)− �r] dt+ � d (33)

Differently to the Vasicek model, the mean reversion level is now scaled by the speed

of mean reversion and moreover it is time dependent in order to fit an observed term

structure. Thus, the processes look similar, but in the Hull-White model the level

of the short rate is adjusted to an observed term structure as �(t) is determined as:

�(t) =
∂f(0, t)

∂t
+ �f(0, t) +

�2

2�
(1− e−2�t) (34)
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As a result the Hull-White model can be seen as a Vasicek model fitted to the term

structure or as a Ho-Lee model with mean reversion. As in the Ho-Lee model the

short rate follows the gradient of the forward curve. Thus, if the forward rate curve

has a positive slope the short rate will increase. If the short rate deviates from the

one implied by the initial forward rate curve, the short rate will be pulled back at

the rate of �. Differently to the Vasicek and the Ho-Lee model there is no exact

time-discrete version of the short rate process. As a result the Euler scheme (see

Equation (40)) will be applied. The Hull-White model can therefore be implemented

as:

r(ti+1) = r(ti)

+

(
[f(0, ti+1)− f(0, ti)] + �f(0, ti) +

�2

2�
(1− e−2�ti)− �r(ti)

)
[ti+1 − ti]

+ �
√
ti+1 − ti"i+1

(35)

As for the Ho-Lee model there exist explicit formulas for European call and put

options on pure discount bonds, thus:

c(t, T, s) = P (t, s)N(d1)−KP (t, T )N(d2

P (t, T, s) = KP (t, T )N(−d2 − P (t, s)N(−d1)

with

d1 =
ln
(

P (t,s)
KP (t,s)

)
�p

+
�p
2

d2 = d1 − �p

with the standard deviation of the bond price in T :

�2
p =

�2

2�3
(1− e−2�(T−t))(1− e−�(s−T ))2

Equivalently to the Ho-Lee model this formula will be necessary in section 5.3.
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5.2.3 The Black-Karasinski Model

The Black-Karasinski model [32] was proposed by Black and Karasinski in 1991.

Differently to the Ho-Lee and the Hull-White model, this model does not allow

for negative short rates, as the function f(r) in the generalized Hull-White model is

assumed to be the natural logarithm. Thus, the short rate is lognormally distributed,

instead of normal as in the Ho-Lee and in the Hull-White model. In the Black-

Karasinski model it is not possible to deduce prices of bonds from the short rate,

moreover Hull [1] notes that it is more difficult to manage the Black-Karasinski

model analytically. As a result, it will be concentrated on Gaussian models such as

the Vasicek, the Ho-Lee and the Hull-White model in this thesis.

5.3 Model Calibration

As a next step in the employment of the short rate models presented in Section 5, the

process defining parameters have to be determined. For the valuation of the bond

option in Section 6.2.2, I have evaluated the parameters experimentally such that

the simulated yield curve resembles the observed one sufficiently accurate. This ap-

proach for determining the parameters will be refined in this section, by introducing

the method of calibration.

The method of calibration is based on the existence of closed formulas for in-

terest rate derivatives in the respective models. By pricing derivatives according

to these formulas and varying the process determining parameters, the combination

of parameters can be found that minimizes the difference between model generated

prices and market prices. In order to verify the difference between market and

model implied prices, a proper measure has to be found. Hull [1] for example pro-

poses to apply the sum of squared residuals as a measure for the differences. In

this case the sum of squared absolute deviations has to be minimized. Clewlow and

Strickland [12] on the other hand, propose to apply a measure that is based on the

minimization of proportional differences. Correspondingly to this, the deviations

are evaluated according to relative prices. As this ensures that differences in prices

are minimized independent of the prices’ levels the latter approach will be applied
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in this thesis.

In accordance to this, market data for interest rate derivatives have to be found,

whereas the selected derivatives should resemble the derivatives that shall be prices

as much as possible, as Hull [1] notes. Finally, it shall be noted that whenever the

number of instruments that has to be calibrated is larger than one, the calibration

can only provide an overall approximation for the short rate processes.

In Section 7, the Vasicek, the Ho-Lee and the Hull-White model will be calibrated

in order to replicate observed market prices. For the Vasicek model the parameter

selection approach presented in Section 5.1.1 will be refined.
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6 Methods for Valuing Interest Rate Derivatives

In this section valuation methods for interest rate derivatives are presented. In

general, there are two approaches for pricing interest rate derivatives (see Figure 7).

The first one is based one modelling bond prices. This approach was presented

by Fischer Black [9] and is an extension to the well known Black-Scholes-Merton

model [23]. After discussing the Black model and pointing out the disadvantages

of applying it, valuation methods based on modelling interest rates are presented.

Hence, tree building methods and finite difference methods are reviewed briefly.

Finally the method of MC simulations is introduced.

6.1 Black Model

The Black model is based on the well known Black-Scholes-Merton model developed

in the 1970ies, by Fischer Black, Myron Scholes [23] and Robert Merton [33]. The

adapted version for interest rate derivatives was then presented by Fischer Black in

1976 [9]. According to the findings of Gjukez [34] the Black model is the favored

model by European companies that offer interest rate derivatives. One possible

reason for this might be the easy computation of prices, without modelling the whole

term structure. As a result, this rather simple pricing method is not applicable to

path-dependent derivatives.

The Black-Scholes-Merton model was developed to price stock options. Exten-

sions to the original model allow for the pricing of options on foreign exchange,

options on indices and options on future contracts. The Black model [9], was devel-

oped to price futures on commodities. Thus, an option can be priced, which gives

its holder the right to buy or sell a future on a commodity at a certain date in the

future. Moreover, if the future contract and the option have the same maturity date,

the Black model prices an option on the future contract as well as an option on the

underlying of the future contract. This is due to the fact that the future price of a

commodity will converge to the spot price of the commodity as the maturity date

approaches.22 The assumptions of the Black model can be summarized as follows:
22Assuming that the future price is above the spot price at the time to maturity, arbitrageurs
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1. The market is arbitrage free. Thus, it is not possible to invest zero today and

receive a positive amount tomorrow with a positive probability.

2. Transaction costs and similar costs are not accounted for.

3. The assumed instruments can be traded in unrestricted volumes.

4. There exists a risk free rate23, which is constant over time.

5. The underlying variable of the option is lognormally distributed at maturity

of the option.

(ad 1) This assumption is essential, as it ensures that two instruments with the same

cash flows have the same price. This result is important for Risk Neutral Valuation

(see Section 4.1). As real markets are surely not arbitrage free, due to differing

information levels, this assumption does not meet reality. At this point it is pointed

out that model prices are only consistent with real prices, if all assumptions made

are fulfilled in real markets.

(ad 2) As transaction and similar costs are either fixed or variable according to the

contract value, this assumption should not cause too much harm.

(ad 3) The assumption of unrestricted trading possibilities is also surely not fulfilled

in reality, but as derivative markets are in general quite liquid, this difference should

be negligible.

(ad 4) This is a very problematic assumption in the sense that the underlying variable

might be a forward rate as in the case of pricing a cap which is assumed to be

stochastic, but for calculating the discounted value of the payoff a constant and

therefore non-stochastic interest rate is applied.

(ad 5) When pricing a single instrument this assumption is not that problematic.

But, if for example a bond option, a cap agreement and a swaption, all with the

can sell future contracts, buy the underlying at the lower spot price at the time to maturity and
deliver the underlying to the buyer of the future contract. As a result the future prices will decrease
as long as this arbitrage opportunity is persistent. If the future price is below the spot price at
the time to maturity it will be profitable to enter in a future contract, the prices of these contracts
will rise.

23Which is the same as assuming that there is a bond with an appropriate time to maturity that
has no default risk.
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same maturity date, are priced, the Black model leads to an inconsistent valuation,

as all underlying variables are assumed to be lognormally distributed at once. In

the case of the bond option, it has to be assumed that the bond prices at maturity

are lognormally distributed, for the cap agreement on the other hand, it has to be

assumed that the interest rate is lognormally distributed, in the case of the swaption,

it has to be assumed that the swap rate is lognormally distributed. As these three

assumptions cannot be met at the very same point in time the Black model can only

be regarded as a ’one model-one product’ approach as Clewlow and Strickland [12]

put it.

According to Reißner [3] the Black model is not appropriate to value interest rate

options, as it does not take into account the term structure of the underlying interest

rate, although this is a large source of risk for the option. This critic arises as Black

sets the behavior of the interest rate as constant. Another point that is mentioned

by Reißner is that bonds and future prices differ fundamentally from stocks which

were the basis for the remarks of Black. Beside all these inconsistencies the Black

model is widely used by practitioners as shown by Gjukez [34]. As some calculations

according to the Black model will be necessary when dealing with market data, as

in Section 7, the closed formula for pricing an option on a variable V will be now

presented.

Similar to the payoff function for a call option on stocks, the payoff function of a

call option on V at maturity, can be written as max (VT −K, 0). Assuming that V is

lognormally distributed with a standard deviation s equal to �
√
T and an expected

value equal to F (0, T ) the expected value of an option with strike K on V can be

written as:

E[max (VT −K, 0)] = E(VT )N(d1)−KN(d2)

where E is the usual expected value and N() is the cumulative standard normal

distribution. The functions N(d1) and N(d2) can be interpreted as the risk neutral

probabilities (see Section 4.1) and are defined as follows:

d1 =
ln[E(VT )/K] + s2/2

s
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d2 =
ln[E(VT )/K]− s2/2

s

As discussed earlier, at time to maturity the option price on a future contract has

to equal the option price on the underlying of the future contract, as a result VT can

be replaced by its forward price. Here it shall be noted again that future contracts

do not require any investment beforehand. In a risk neutral world (see 4.1) a future

contract therefore has to have a return equal to zero. As a result one can state that

E[F (0, T )] = F (0, T ). The payoff of the option in T can therefore be written as

F (0, T )N(d1)−KN(d2). Furthermore, the value of the option has to be discounted

in order to evaluate it today. Therefore the price of a zero coupon bond is needed.

This zero coupon bond has to have the same maturity date as the option. Here a

zero coupon bond is introduced that pays 1 unit of currency at T and whose value is

known in t = 0 which is donated as P (0, T ). Thus, one can just multiply the value

of the option in T with P (0, T ) and receive the discounted call option price in t = 0:

c = P (0, T )[F (0, T )N(d1)−KN(d2] (36)

d1 =
ln[F (0, T )/K] + �2T/2

�
√
T

d2 =
ln[F (0, T )/K]− �2T

�
√
T

In the case of a put option the value of the option can be expressed as max (K − V, 0).

In this case Equation (36) changes and the value of the put option in t = 0 can be

expressed as:

p = P (0, T )[KN(−d2)− F (0, T )N(−d1] (37)

Thus, in order to price a bond option in the Black setting the variable V has to be

replaced by the forward bond price. As it was mentioned above, the Black model

assumes that the underlying is lognormally distributed. Thus, in order to price

a European bond option, it has to be assumed that the bond price is lognormally

distributed at maturity. For caps and floors it has to be assumed that the underlying

forward rate is lognormally distributed at maturity. And for swaptions it has to be

assumed that the swap rate is lognormally distributed at maturity.
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As mentioned before, a huge drawback of the Black model is that it does not take

into account the evolution of interest rates. As a result the evolution of the forward

rate for example is assumed to be stochastic, but the risk-free rate is assumed to

be deterministic. Moreover, all interest rate derivatives that depend on the path of

the underlying can not be priced using the Black-Model. Therefore models for the

behavior of interest rates, as presented in Section 5, were developed. As already

mentioned there, for some of the presented short rate models there exist explicit for-

mulas. In these cases European bond options can be priced using explicit formulas,

which is in consequence (see Section 2.2.2) also true for swaptions and cap agree-

ments. As explicit formulas are not available in many cases, numerical methods for

valuing interest rate derivatives are presented In the upcoming two subsections.

6.2 Numerical Methods for the Valuation of Interest Rate

Derivatives

Besides the explicit prices the Black model returns, interest rate derivatives can also

be valued by applying numerical methods. Moreover for a wide range of interest

rate sensitive instruments numerical methods are inevitable.

6.2.1 Lattice and Finite Difference Methods

Lattice methods are based on a time discrete representation of stochastic processes.

In a so called binomial tree it is assumed that the underlying interest rate is heading

towards two directions only during one subperiod. It can be assumed, for example

that the interest rate for the observed period is either increasing or decreasing. The

probabilities for both events can be deduced from risk neutral valuation, as discussed

in Section 4.1. Hull [1] notes that it is sometimes favorable to apply trinomial trees

for interest rate derivatives, as they provide one additional degree of freedom. In the

case of a trinomial tree it is possible to assume an additional; ’middle’ movement

of the interest rate. Hull and White [35] presented an approach, how to implement

trinomial trees for one-factor short rate models. After deciding how the interest

rate can change within one subperiod, the constructed lattice is adjusted for all
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subperiods in order to fit an observed term structure. The underlying parameters

for the short rate models are found via calibration.

Finite difference methods on the other hand are based on solving a system of

partial differential equations, which are met by the derivative. The explicit finite

difference method (based on a mathematical relation between the current option

prices and three option prices one time step ahead24) is equivalent to the construction

of a trinomial tree. Differently to the method of lattices and finite-differences, MC

methods simulate the evolution of stochastic variables.

6.2.2 Monte Carlo Simulation

The technique of MC simulation is a numerical tool to simulate uncertain events.

By simulating these uncertain events sufficiently often, it is possible to obtain in-

formation about the distribution of the investigated variable. Winston [36] presents

some examples for the practical applicability of MC simulation. Well known cor-

porations such as General Motors, Pfizer or Procter and Gamble use MC methods

to simulate the average return and the risk factor for new products. Thus, MC

simulation methods are helpful tools for launching new products. On the other

hand MC methods can be used to predict the net income or potential costs, as it is

done by General Motors. It is also possible to simulate the optimal plant capacity

for a certain product, as it is done by Lilly, a pharmaceutic corporation. These

examples should give an insight in the wide range of applications for MC methods

in economics. The application of interest in this thesis is the financial one. The

technique of MC simulation can be used to value options on different kinds of assets

and contracts. Glasserman [20] states, that the technique of MC simulation has

become an essential tool for pricing of derivative securities and risk management.

Boyle [37] already presented the approach of valuing options via MC simulations

in 1977. As the MC simulation as such is a rather costly tool for option valuation

at first sight, techniques for improving the efficiency are necessary. Boyle already

suggested to use antithetic variates in order to reduce the variance and therefore

improve the simulations. This variance reducing technique as well as others will be
24The implicit finite difference method applies the other way around
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discussed and applied later in this section.

’The name Monte Carlo simulation comes from the fact that during the

1930s and 1940s, many computer simulations were performed to estimate

the probability that the chain reaction needed for the atom bomb would

work successfully. The physicists involved in this work were big fans of

gambling, so they gave the simulations the code name Monte Carlo.’ [36]

Basics on Monte Carlo Methods For the upcoming technical discussions of

MC methods it will be followed the comprehensive presentation in Glasserman [20].

MC methods are based on the common statistical idea of deducing the probability of

events from their frequency. For example, by asking a sample of students about their

grade point average, one can hypothesize about the probability that a randomly

picked student has a grade point average lower than two. MC methods use this

relationship in reverse. By sampling randomly from a universe of possible outcomes

and taking the fraction of random draws that fall in a given set, one can infer on

the sets volume. Thus, by sampling the grade point average of the students given

a realistic model, it would be possible to estimate the frequency of a certain grade

average point. Due to the law of large numbers these estimates converge to their

correct values as the number of draws increases.

As the volume can also be seen as the integral, Glasserman [20] presents the

problem of estimating the integral of a function ℎ as follows: The integral over the

unit interval of a function ℎ(x) can be written as:

� =

∫ 1

0

ℎ(x) dx

To estimate this integral one can sample uniformly distributed values U in-between

the unit interval, apply the function ℎ to them and divide the sum of all these values

by the number of randomly determined numbers. Thus, the estimate would look

like:

�̂n =
1

n

n∑
i=1

ℎ(Ui)

57



If ℎ(x) is integrable over [0,1] then by the law of large numbers the estimated value

�̂n has to converge to the real value �. Assuming for example ℎ(x) = x as the

underlying function, one can easily estimate the integral over the unit interval for

this function. Generating 500 hundred independently and uniformly distributed

values in the interval [0,1] and calculating successively the mean for these values,

shows that the mean is actually converging to the true value of 0.5. Figure 10

represents the mean of the value in dependence of the number of generated values.

Another important question that arises concerns the deviation of the simulated value

Figure 10: Mean of independently and uniformly distributed values in the unit interval, in dependence of the number
of generated values.

from the real value. For the variance of the values of ℎ(x) one can therefore write:

�2
ℎ =

∫ 1

0

(ℎ(x)− �)2 dx

The estimation error �̂ − � of the MC simulation is approximately normally dis-

tributed with a mean equal to zero and a standard deviation (standard error) of:

�ℎ√
n

Thus, the standard deviation of the estimation error is decreasing as n increases. As

a result, the more random numbers (later on it will be whole paths) are simulated

the smaller the standard deviation of the estimation error will become. According

to this formula, it is necessary to sample 100 times more random numbers in order

to increase the precision by one decimal place. In Figure 11 the reduction of the
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sample standard deviation is shown as the size of the sample increases. Besides the

cases as above, where the integral can be solved analytically, � will not be known

usually. Thus, �ℎ can not be calculated. Using the estimate for � one can calculate

the sample standard deviation or standard error as an estimate for �ℎ as:

sℎ =

√√√⎷ 1

n− 1

n∑
i=1

(ℎ(Ui)− �̂n)2

In Figure 11 this estimation error is plotted against the volume of sampled num-

bers by applying the simple function ℎ(x) = x. Glasserman [20] notes that MC

Figure 11: Estimation error based on estimating the integral over the unit interval, for the function ℎ(x) = x, in
dependence of the number of samples.

methods are generally not competitive when calculating one-dimensional integrals.

The advantages of MC methods arises when calculating integrals for higher dimen-

sions, because the dimensionality does not influence the estimation error. Moreover,

MC methods are not restricted to the unit interval, that is why the method of MC

simulation is a practical tool for valuing derivatives.

In order to value derivatives it is necessary to sample the evolution of their

underlying and to calculate the price of the derivative based on the values of the

underlying at maturity. Finally, one can calculate the discounted expectation for

these prices. In accordance to this, it is necessary to sample the whole evolution of

a variable instead of a single random number. Among others, potential underlying
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assets are interest rates and stock prices. As the latter was the underlying presented

by Boyle [37] and as the valuation of derivatives on stocks was the starting point,

an example will be presented. As it was discussed in Section 2.2, a put option on a

stock would be either worth S(T ) − K, if the stock price is above the strike price

K, or equal to zero, if it is not. The Black-Scholes-Merton model, as presented in

Section 6.1, describes the evolution of stock prices through the stochastic differential

equation:
dS(t)

S(t)
= r dt+ �dz(t) (38)

The percentage change in the asset price can be interpreted as the mean rate of

return per time step plus the increment of a Wiener process dz(t). The mean rate

of return is equal to the risk free rate r as the Black-Scholes formula is based on the

assumption of risk neutrality (see Section 4.1). The solution of Equation (38) can

be written as follows:

ST = S(0)e(r 1
2
�2T+�W (T )) (39)

Thus, when the initial stock price and the risk free rate r is known, one can simulate

the stock price in T quite easily. As Equation (39) indicates, it is possible to simulate

the change of the asset price for the whole period at once. Thus, the evolution of

the asset price is not taken into account. If the changes in the asset price can be

expressed as in Equation (38), the resulting European call option prices will be

equivalent to the ones calculated according to the famous Black-Scholes formula.

Figure 12 shows one hundred different paths that describe the possible evolution of

a stock price for one year by splitting the whole year in one thousand time steps.

Calculating the payoff for a European call and discounting it gives in this case one

hundred different values for the option. By the law of large numbers the mean

of all discounted values is an unbiased estimator for the real value. Clewlow and

Strickland [12] note that in order to get an acceptably accurate estimate one has

typically got to simulate more than one million paths. According to the Black-

Scholes formula, a European call option on a stock that has a current price of one

hundred units of currency and a volatility of 20%, with a strike price of ninety and

one year to maturity has to have a current price of 15.42 units of currency. Modelling
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one million paths, that are split in ten equally sized time periods returns a price

that deviates by about 0.16 from the real price. To be more precise, the standard

error for this simulation is already only different from zero at the fifth decimal place.

Therefore accuracy can be increased by increasing the number of paths. Whereas,

this is equivalent to the results presented in Figure 11.

Figure 12: One hundred sample paths of a stock price

In examples different from the one above, it is not always possible to formulate

the continuous evolution of a variable in an exact discrete form. Glasserman [20]

notes that such models are exceptional and that most derivative models can only be

simulated approximately25. Thus, the joint distribution of the simulated values does

not coincide with the values of the continuous-time model. For all models where

there is no exact process the discrete Euler approximation will be applied. The

reason for selecting this approach was the easy implementation and the universal

applicability of this method. Considering a stochastic differential Equation for a

process X of the form:

dX(t) = a(X(t)) dt+ b(X(t))dz(t)

where X(0) is a fixed value, z is a Wiener process and a and b take real values, the

25If the underlying SDE is not integrable and/or the derivative is path dependent
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Euler scheme can be written as:

X̂(ti+1) = X̂(ti) + a(X̂(ti))[ti+1 − ti] + b(X̂(ti))
√
ti+1 − ti"i+1 (40)

where X̂ indicates a time-discretized approximation to X and Z1, Z2, ... are inde-

pendent standard normal numbers. As a result, this discretized form can easily be

implemented. Glasserman notes that the Euler scheme is not sufficiently accurate

in certain cases and that the Euler scheme has to be improved (For a discussion

of possible refinements it is referred to Glasserman [20]). In order to decrease the

possible discretization error due to using the Euler scheme, it is necessary to include

as many time steps as possible in order to achieve a good approximation for the

continuous formulation. In the last example one million paths were simulated, so

that the standard error was negligible. By decreasing the length of the time steps,

the simulation time extends enormously.

Differently to derivatives on stocks and currencies, interest rate derivatives are

more difficult to evaluate. Hull [1] gives the following four reasons:

1. The behavior over time of a single interest rate is more complex than the one

of a stock price or an exchange rate.

2. In order to price some specific derivatives it is necessary to model the behavior

of the whole term structure. Thus, the behavior of a collection of spot rates

for different times to maturity has to be simulated.

3. The volatilities of the interest rates might be different at different points in

time.

4. In order to price interest rate derivatives, models for the evolution of interest

rates have to be found.

In the upcoming sections all these hurdles are taken, which will result in pricing

derivatives on the basis of real market data.

Simulating Short Rate Paths According to the Vasicek Model As Haug [38]

points out, implementing MC simulations in C++ or any other lower level computer
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language decreases the computation time dramatically, all further simulations will

be carried out using C++. Although VBA is widely used in practice, I will stick to

C++, as simulating 1 million paths of a short rate process, as presented in Section 5,

took about four hours in VBA, but only about half an hour in C++.

The first example for simulating short rate paths is based on the Vasicek model

as presented in Section 5.1.1. As Equation (26) and (27) show, it is necessary to

evaluate the speed of mean reversion, the long-term mean and the standard deviation

of the process of the short rate process. Brigo and Mercurio [27] note, that it is

possible to deduce the model parameters that define the process of the short rate

from a series of daily quoted interest rates. Thus, by applying an appropriate proxy

variable for the short rate, like a daily series of the interest rate for one month,

the model parameters can be estimated. As the applied data set is collected in the

real world and not in a risk neutral one, the market price of risk has also got to be

estimated. On the other hand derivative prices such as bond prices are equivalent

in the real and in a risk-neutral world. As a result observed prices of bonds for

example, can be used to calibrate the model. Brigo and Mercurio [27], then propose

to combine the two approaches in order to fit the short rate process to market

data. The two authors cite that the diffusion process is the same in the real as in a

risk-neutral world. As a result �, the standard deviation of the generalized Wiener

process, can be estimated from historical data by a maximum-likelihood estimator.

The coefficients for the speed of mean reversion and for the long-term mean, on the

other hand, can be found by calibrating (see Section 5.3) the process to observed

derivative prices.

In order to replicate the Euro yield curve from Figure 1 a proxy for the short

rate had to be found. Differently to the proposal of Brigo and Mercurio [27] and

differently to the approach of Treepongkaruna and Gray [39], I applied the EONIA

(Euro Over Night Index Average) to estimate the standard deviation for the process

of the short rate (instead of a three month interest rate). The EONIA- Interest rate is

a weighted average of interest rates for interbank lending in the Euro money market

for one night. I selected this interest rate as it is the one with the shortest time

to maturity available, namely one night. In accordance to the recommendations
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of Brigo and Mercurio [27], I estimated the standard deviation using maximum

likelihood estimators26. The estimation lead to a annual standard deviation27 of 0.5

percentage points. The values of the speed of mean reversion and the long-term

average interest rate on the other hand were determined experimentally for the time

being. Hence, I set the parameters such that the simulated yield curve at least

resembles the observed one28. As a result I determined a long-term mean of 5%, a

mean reverting speed of 30% and an initial short rate value of 0.979%29. Figure 14

represents the resulting yield curve. In order to incorporate the 30
360

day count

convention, I assumed 360 time steps per year, which facilitates computing interest

rates for periods less than one year. At this point it shall be pointed out again, that

the number of time steps can be set arbitrarily, as the number of time steps only

influences the constant parameter that is multiplied with the diffusion coefficient,

the standard deviation of the process for one year still equals the square root of one

times �. Nevertheless, when presenting some basics on Monte Carlo methods, it

was briefly discussed that using as many time steps as possible is preferable, when

simulating approximations for short rate processes.

Figure 13 represents 100 different paths of the proposed short rate process. As it

can be seen, the short rate tends to increase until the long-term level of 5% is reached.

This increase of the short rate ensures that the spot rate will also increase as time to

maturity increases. In order to price zero coupon bonds, with these short rate paths,

I computed today’s bond prices according to Equation (22). By simulating 1 million

paths with 360 time steps per year, as for the yield curve presented in Figure 14, I

had to determine the values of 10800 bond prices (for every time to maturity). In

accordance to the remarks while presenting some basics on MC methods, I simulated

1 million different bond prices for these 10800 times to maturity. By calculating the

average value of the bond prices at every maturity date, I deduced the simulated

bond prices. Transforming these bond prices, as indicated in Equation (23), leads

26see Brigo and Mercurio [27] p. 62
27The data set comprised of EONIA interest rates from the 26tℎ of March 2008 till the 26tℎ of

March 2009
28A more accurate and scientific approach will be presented in Section 5.3
29The initial short rate value was set equal to the last daily EONIA interest rate, namely the

one for the 26tℎ of March 2009.
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Figure 13: Representation of 100 short rate paths according to the Vasicek model with 
 = 0.05, � = 0.3 and
r0 = 0.00979

to the presentation of the spot rates for times to maturity from one to thirty years

as presented in Figure 14.

Figure 14: Spot rates for maturities up to 30 years, simulated using 1 million paths of the short rate with 360 time
steps for each year, based on the Vasicek model with 
 = 0.05, � = 0.3 and r0 = 0.00979

As a first example for interest derivative valuation using MC simulation, a rather

simple derivative will be priced, namely a European call option on a bond. For the

underlying short rate process according to the Vasicek model I assumed the same

parameters as above. In this example an European call option with a strike price

of K = 0.5 and a time to maturity of one year, on a 10 year zero coupon bond was

priced. Thus, this contract gives its owner the right to buy a zero coupon bond in

one year that matures in ten years. In order to calculate the discounted payoff of this
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bond option, I had to simulate the values of two zero coupon bonds. The first one

concerns the period starting in one year and ending in ten years. The second starts

today and matures next year. The first one determines the payoff of the option,

whereas the second ensures proper discounting. As a matter of fact, the initial value

for the simulations one year ahead are different in every path, thus the value of the

option has to be discounted applying a zero coupon bond according to the former

evolution of the short rate. Consequently, I set the initial value equal to the last

simulated increment of the short rate process for pricing the one year zero coupon

bond. For every single initial value one year ahead, I simulated a short rate path

until maturity. Thus, one million paths for the evolution of the ten year bond were

simulated. I calculated the one-year-option price for every single path by applying

max[P (1, 10)−0.5, 0]. Afterwards I discounted these payoffs using the one year zero

coupon bond calculated before. As there are 1 million different discounted values,

the mean value was calculated as an estimate for today’s option value, as it discussed

earlier. The simulation of today’s option price resulted in a value of 0.196966. Thus,

in order to have the right to buy a 10 year zero coupon bond, with a face value of

one Euro in one year for a price of 50 Cents one has to pay 19.6966 Cents today.

The algorithm for pricing this bond option is presented in Appendix B.1.

Jamshidian [10] showed that under the short rate process described by the Va-

sicek model, European discount bond call and put options can be priced using a

closed formula as:

c(t, T, s) = P (t, s)N(d1)−KP (t, T )N(d2

p(t, T, s) = KP (t, T )N(−d2)− P (t, s)N(−d1)

with

d1 =
ln
(

P (t,s)
KP (t,s)

)
�p

+
�p
2

d2 = d1 − �p
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with the standard deviation of the bond price in T :

�p =
�(t, T )(1− e−�(s−T ))

�

�(t, T ) =

√
�2(1− e−2�(T−t))

2�

As a result, the price of the just simulated bond option can be calculated analytically

and leads to a value of 19.6994. In Figure 15 the convergence of the simulated price

towards the exact one is plotted for up to one hundred thousand paths. In order to

decrease the number of paths while achieving a certain accuracy of the simulation,

variance reducing techniques will be introduced next. For such simple contracts and

Figure 15: Convergence of the simulated price of an European call option

under the assumption that the Vasicek model replicates the real world perfectly, no

simulations would be necessary as a closed formula is available. As it was discussed

in Section 2.2.2, cap agreements and swaptions can also be represented as European

bond options. Thus, they can also be priced according to the formula presented by

Jamshidian. Hence, as it will be shown in Section 8, MC methods are inevitable in

many cases.

Variance Reduction Techniques In this section two methods are introduced

that can be applied in order to reduce the standard deviation of the simulated prices
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and therefore improve the convergence of the prices towards their exact values by

applying the same number of simulated paths. The sample standard deviation for

the simulated values can be written as:

= SD =

√∑Patℎs
j=1 (Capletj)2 − 1

Patℎs

(∑Patℎs
j=1 Capletj

)2

Patℎs− 1

where Capletj is the jtℎ caplet for one maturity date. Thus, by calculating the

standard deviation for every simulated price, one can compare the efficiency of

different simulation methods.

Antithetic Variates

’The method of antithetic variates attempts to reduce variance by intro-

ducing negative dependence between pairs of replications.’ [20]

A very simple technique to reduce the variance and therefore the standard de-

viation of the estimators for derivative prices is the method of antithetic variates.

For the presentation of this method it is followed the comprehensive presentation

of Glasserman [20]. As it was remarked in Section 6.2.2, the aim of applying MC

methods for pricing derivatives is to estimate the expected value of a certain random

variable. In the case of a derivative this variable is the derivatives price. Differently

to standard MC methods, where only single observations (per path) were made,

the method of antithetic variates assumes that pairs (Yi, Ỹi) of observations (per

path) are made. For these pairs it is assumed that they are independently, identi-

cally distributed and that the observations of one pair have the same distribution

although they are ordinarily not independent. The antithetic variates estimator ŶAV

can therefore be written as:

ŶAV =
1

2n

(
n∑
i=1

Yi +
n∑
i=1

Ỹi

)
=

1

n

n∑
i=1

(
Yi + Ỹi

2

)

The estimator for the expected value of a derivative is then calculated as the average

of the average of a pair of observation. As Glasserman shows, by assuming that the
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computational effort of generating a pair (Yi, Ỹi) is twice as high than for a single

observation, an antithetic variate will only reduce the standard deviation, if the

covariance between Yi and Ỹi is negative.

As the standard deviation can only be decreased in the case of a negative covari-

ance, a negative relationship between the observations is necessary. In accordance

to Clewlow and Strickland [12] an option on an asset S1 can be assumed. By the

way, another option on a second asset S2 is assumed that is perfectly negatively

correlated with S1 and which is currently worth exactly S1. As the current prices

and the volatilities for these two assets are the same the values of the options on

these assets also have to equal (see Section 4.1). Assuming a portfolio of the two

options on the assets leads to a much lower variability in the option price. This is

due to the fact that whenever one option pays-off, the other one does not and vice

versa. In order to generate perfectly negative correlated pairs of observations, the

increments of the Wiener process are once applied with a negative and once with a

positive sign for one time step. From the resulting values the average is computed.

For the short rate processes according to the Vasicek model this would mean, that

two process are defined at once like:

dr1 = �(
 − r1) dt+ � dz

dr2 = �(
 − r2) dt− � dz

Control Variates As Glasserman [20] notes, the method of control variates

is among the most effective and broadly applicable technique for improving MC

simulation. The remarks in this section are based on the presentation of Glasser-

man [20]. The method of control variates is based on the knowledge of future values

of a control variate.

The deviations of simulated future values from observed future values of the

control variate can be incorporated in the simulation of the variable of interest,

in order to improve the efficiency of the simulation. Assuming n outputs of the

simulation of n paths that can be written as Y1, Y2, Y3, ..., Yn. These values might be

69



the discounted payoffs of an option. For every path that was simulated, the variables

X1, X2, X3, ..., Xn are computed as well. It is assumed that the pairs (Yi, Xi) are

independently, identically distributed and that the expected value E(X) is known.

As a result:

Yi(b) = Yi − b(Xi − E[X])

can be computed for every simulated path. Calculating the mean for this series,

gives the control variate estimator:

Y (b) = Y − b(X − E[X]) =
1

n

n∑
i=1

(Yi − b(Xi − E[X])) (41)

As the expected value of X is known, this estimator is unbiased and consistent. As

it can be shown, the value of b that minimizes the variance of the control variate

estimator is equivalent to:

b∗ =
�Y
�X

�XY =
COV [X, Y ]

V ar[X]
(42)

As E[Y ] is usually not known, the optimal b∗ will not be observed either. Neverthe-

less, Glasserman [20] notes, that the benefit of using an estimate of b∗ as a control

variate is still present. An obvious estimate for the optimal parameter b∗ is to re-

place the population parameters in Equation (42) by their sample counterparts. In

this case the estimator equals the slope coefficient in a linear regression analysis.

70



7 Valuing a Cap Agreement Using Monte Carlo Sim-

ulation

In this section a cap agreement will be priced, applying the Vasicek, the Ho-Lee and

the Hull-White model. These models were selected as there exist explicit formulas

for pricing caplets. Thus, the simulated prices can be verified by comparing them

with the market data and the prices deduced from the explicit formulas. Moreover,

it will be shown, how the simulations can be improved, in order to achieve faster

convergence of the simulated prices towards the explicit ones.

7.1 Market Data

The underlying market data, were gathered at the 2nd of June, from Reuters 3000

Xtra a real time prices providing platform of the Thomson Reuters corporation.30

As this platform provides real time prices it is important to note that the prices were

downloaded at nine o’clock in the morning. The cap agreement I picked out, lasts

for five years, caps the EURIBOR-12M31 at 2% and starts at the 4tℎ of June. As it is

common practice that no caplet is assumed for the first period, there are four caplets

overall that have to be priced in this agreement. As mentioned in Section 2.2.2, the

maturity date of a caplet is the date when the actual spot rate is compared with

the cap rate. The compensation, on the other hand, is paid at the next reset date,

in this example this will be in one year. Figure 16 illustrates this contract.

04.06 2009 04.06 2010 06.06 2011 04.06 2012 04.06 2013 04.06 2014

Caplet 1 Caplet 2 Caplet 3 Caplet 4
Figure 16: Representation of a cap agreement starting on the 4 June 2009 on the 12 month EURIBOR, which
matures on the 4 June 2014.

In the year 2011 the reset date for the cap agreement will be the 6tℎ instead

of the 4tℎ as the 4tℎ June 2011 is a Saturday. Hence, there is no trading of bonds

which could verify the market rate for the next year. In accordance to all previous
30At this point I want to especially thank Arne Westerkamp for providing me with the access to

this platform as well as for introducing it to me.
31This implies that the cap agreement is reset annually.
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Caplet Maturity P (0, t) R(0, t) f(0, t, t + 1) Black(76) caplet(0, t, t + 1)
Maturity in years Volatilities

04 June 2009 0 1

04 June 2010 1 0.9828 0.0173 0.0348 0.4863 0.0153

06 June 2011 2 0.9491 0.026 0.0498 0.3862 0.0286

04 June 2012 3 0.903 0.034 0.0549 0.336 0.0318

04 June 2013 4 0.8547 0.0392 0.0569 0.3133 0.0319

04 June 2014 5 0.8074

Table 2: Black volatilities and the resulting caplet prices, prices of pure discount bonds as well as the corresponding
spot and forward rates for the 4tℎ June 2009

calculations and simulations I will again apply the 30
360

day count convention.

Market data for caps and floors are usually not quoted in cash prices, instead in

Black volatilities. This shows how widely used and accepted the Black model [9] is.

Thus, the price of a cap or floor is not quoted in a specific currency, but is an input

parameter of a model. In order to obtain cash prices, these volatilities with the

corresponding bond and strike prices have to be plugged into the formula proposed

by Black. The prices of a pure discount bond as well as the spot and forward rates,

the Black volatilities and the resulting cash prices for the single caplets are presented

in Table 2. In accordance to the Black model, the price of a pure discount bond at

the expiry date of the cap is also needed which is stated in the line for the 4tℎ June

2014. In accordance to this, the first caplet is worth 1.53 Cents at the 2nd of June.

Thus, a contract that ensures that one has to pay 2% interest only, for a one-year

investment starting in one year, at a nominal value of one Euro is worth 1.53 Cents.

The prices for the other Caplets are given in the last column in Table 2.

7.2 Valuing a Cap Agreement

In this section the results from Section 5 and section 5.3 are consolidated in order

to price a cap agreement. The procedure, of how to price a cap agreement, shall be

briefly reviewed.

At first a model for the short rate has to be selected. As the main focus of

this thesis lies on Gaussian short rate models, one of the following most popular

short rate models was applied: the Vasicek, the Ho-Lee or the Hull-White model.
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In the next stage, all necessary parameters that define the short rate process in

each model have to be determined. In the case of the Vasicek model the standard

deviation was estimated from a proxy variable for the short rate, the EONIA, the

mean reversion level and the rate of mean reversion on the other hand were chosen

in order to minimize the difference between the observed term structure and the one

implied by the Vasicek model. Due to the rather simple process described by the

Vasicek model, the current term structure is not used as an input parameter like in

the Ho-Lee and the Hull-White model.

Subsequently, for the Ho-Lee and the Hull-White model the current term struc-

ture is incorporated by calculating forward rates from observed bond prices as in-

dicated in Equation (5). As only a restricted number of bond prices (namely for

every month) were available, I interpolated the 29 values (based on the assumption

that every month has got 30 days and every year 360 days) in-between geometrically

(every interpolated value sn is equal to sn =
∑n

k=0 a0q
k where a0 is the start value

of the interpolated series and q is the increment that ensures that the last available

value is reached.). Afterwards short rate paths have to be simulated. While simu-

lating these paths, the average value of the short rate has to be calculated for every

caplet till maturity date, in order to discount the value of the caplet. Moreover,

the average short rate has to be computed for the time during the maturity dates

of the caplets, as forward rates for this period are needed to calculate the payoff of

the caplets. The discounted values of the four caplets were all computed at once

when all short rate paths were simulated. Thus, from every started short rate path,

I deduced prices for all four caplets. Consequently, the discounted values for every

caplet for every path had to be summed up and stored. After simulating several

paths, the caplet prices are calculated as the average prices for all paths.

The number of simulated paths in a MC simulation is usually above one million.

As the average calculation time for the three models is about half an hour in the

case of one million paths, I will only present results of simulations with one hundred

thousand paths. This approach was selected in order to achieve faster results as

this is essential in real time trading. As the difference in the simulated prices and

the explicit ones might be big in this case, variance reducing techniques will also be
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introduced and implemented. Additionally, the computation time for every model

will be presented, in order to compare the procedures according to the computational

effort.

7.2.1 Valuing a Cap Agreement in the Vasicek Model

The continuous process for the short rate in the Vasicek model is given in Equa-

tion (24). In Section 6.2.2 the value of � was estimated by assuming the EONIA as

a proxy for the short rate. The values � and 
 on the other hand, were set experi-

mentally. Now the approach proposed by Brigo and Mercurio [27] will be completely

followed for fitting the model to the term structure observed for the 4tℎ of June. As

the Vasicek model does not fit the initial term structure automatically, the aim of

this section will be to replicate market bond prices by the model as good as possi-

ble. For the volatility � of the short rate process, the estimated value 0.5 percentage

points, from Section 6.2.2 will be applied. The initial value of the short rate process

was set equal the actual value of the EONIA from the 2nd of June, 0.75%. This

interest rate has the same maturity as the simulated short rates, namely one day.

As a result, the only model parameters that have to be found are � and 
. Thus,

by combining different values for these parameters the Vasicek model can be fitted

to a given term structure. On way to verify the value of � and 
 that fit the ob-

served bond prices best, is to minimize the following function, which I will refer to

as SSPR(�, 
) (Sum of Squared Percentaged Residuals):

SSPR(�, 
) = min
�,


√√√⎷ M∑
i=1

(
modeli(�, 
)−marketi

marketi

)2

(43)

modeli(�, 
) denotes the itℎ model implied price and marketi denotes the itℎ corre-

sponding market price. This approach was proposed by Clewlow and Strickland [12]

and was selected as it measures the deviations irrespective of the size of the prices.

The parameters that fit the overall term structure best were found numerically via

Microsoft Excel Solver. Thus, the parameters that fit the given term structure best

are � = 0.8553 and 
 = 0.0577. In Figure 17 the yield curves according to the
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market data and the data implied by the Vasicek model calibrated as described are

plotted. As it can be seen, although the curves look similar there are still deviations.

It has to be noted that these yield curves are only based on bonds with full year

maturity. Thus, it is not accounted for deviations in-between. After all coefficients

were found, I calculated the caplet prices, as discussed in Section 5.1.1. The re-

sulting prices are presented in Table 3. The coefficient of determination R2 for the

explicitly calculated prices and the observed market data is about 94%. Thus, 94%

of the variation in the market data is explained by the prices deduced from the Va-

sicek model with the determined parameters. In the case of the Vasicek model the

Figure 17: Yield curves implied by market data and the calibrated Vasicek model (based on bonds maturing at the
maturity dates of the caplets)

short rate process was simulated one hundred thousand times according to Equa-

tion (27). The simulation results based on the calibrated Vasicek model and one

hundred thousand short rate paths are presented in Table 3. The corresponding

program code can be found in Appendix B.2.

In accordance to the remarks of Section 6.2.2, I also applied variance reduction

techniques. The antithetic variate method was applied as discussed before. Thus,

one step forward in a short rate paths comprises of the average change of the process

based on the usual increment Wiener process and the very same increment multiplied

by minus one. The program code for the simulation with antithetic variates in the

Vasicek model is presented in Appendix B.3. For the control variate technique, I

applied the observed bond prices as control variates. In order this, short rate paths

were sampled beforehand to calculate the linear regression coefficient in-between the

simulated bond and caplet prices. Afterwards, I simulated hundred thousand short
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rate paths, by applying the estimated optimal values for b in Equation (41). The

program code for the simulation with control variates is presented in Appendix B.4.

Caplet 1 Caplet 2 Caplet 3 Caplet 4 SSPR Calculation
time in seconds

Market prices 0.01541 0.02845 0.03162 0.0318

Explicit prices 0.01518 0.02513 0.03057 0.03307 0.13487

Simulated prices 0.0152 0.02514 0.03058 0.03308 0.13468 70
std. error 0.00405 0.0043 0.0042 0.00397

Simulated prices
(antithetic)

0.0152 0.02514 0.03057 0.03307 0.13442 74

std. error 0.00002 0.00004 0.00006 0.00007

Simulated prices
(control variate)

0.01517 0.02512 0.03056 0.03307 0.13525 72

std. error 0.00305 0.00333 0.00345 0.00344

Table 3: Caplet prices simulated according to the Vasicek model

For the Vasicek model the simulated values do not fit the market data very well.

The coefficient of determination for the simulated prices was about 94%, just as

the one for the explicit prices. As the coefficient of determination is very similar

for all three simulation results, the goodness of fit is determined according to the

values of the SSPR function. Although the explicit calculation of the caplet prices

is supposed to return the most accurate prices, Table 3 shows that the simulation

approaches (except for the one with control variates) returned smaller values of the

SSPR. Thus, the simulated prices fit the market data better than the explicitly

calculated prices. As the simulated prices are supposed to tend towards the explicit

prices, it can be assumed that this improvement is coincidental. The benefits of

using variance reducing techniques can be metered from the standard deviations

of the simulated prices. As it can be seen, the standard deviations for the prices

simulated with antithetic variates dropped sharply. Thus, this variance reducing

technique is very powerful in this case. This is even more interesting as the change

in computation time is negligible. For the caplet prices simulated with control

variates, the results also indicate an improvement of the simulation as the standard

deviations again decreased. Comparing this decrease with the one that followed

from applying antithetic variates, it can be said that the latter was more intensive.

Thus, the control variate technique does not seem to be that powerful in this case.

This might be due to a poor control variate. Overall it can be said that the two
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variance reduction techniques improve the simulations, but at different magnitudes.

The improvement is also visible, as the simulated prices show a tendency towards

the explicit prices.

As only computation time hinders one to simulate more short rate paths, im-

provements of the program code are desirable. When simulating every single path

exactly according to Equation (27), where the exponential function and the square

root function have to be called at every single time step, the computation time is

relatively high. Thus, by computing all constant values beforehand, the simulation

time can be reduced by about two thirds.

7.2.2 Valuing a Cap Agreement in the Ho-Lee Model

The continuous formulation of the Ho-Lee model was given in Equation (30) and (31).

As the forward rates can be deduced from the initial term structure, the only un-

known parameter in this formulation is �, the standard deviation of the short rate

process. Differently to the Vasicek model, the Ho-Lee model already fits the initial

term structure as the gradient of the forward curve is incorporated in discrete form.

Thus, differently to the Vasicek model, the prices of the caplets and not bond prices

are fitted to market prices. In order to calibrate the Ho-Lee model to the market

data, the following function SSPR(�) has to be minimized:

SSPR(�) = min
�

√√√⎷ M∑
i=1

(
modeli(�)−marketi

marketi

)2

(44)

As for the Vasicek model, the solution for this problem was found by applying the

Excel solver. As a result � that minimizes this function is equal to 0.0126 percentage

points. The coefficient of determination R2 for the explicitly calculated prices and

the observed market data is about 99.991%. Thus, 99.991% of the variation in the

market data is explained by the prices deduced from the Ho-Lee model. As a result

the Ho-Lee model fits the market data much better than the Vasicek model.

The simulations of the short rate paths, according to the Ho-Lee model were

run by applying the exact discrete formulation of the continuous short rate process
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as given in Equation (32). The results of the simulation of one hundred thousand

paths, with � = 0.01265, is presented in Table 4. The corresponding program code

is shown in Appendix B.5.

Caplet 1 Caplet 2 Caplet 3 Caplet 4 SSPR Calculation
time in seconds

Market prices 0.01541 0.02845 0.03162 0.0318

Explicit prices 0.01536 0.02844 0.03162 0.03183 0.01066

Simulated prices 0.0156 0.0284 0.03154 0.03175 0.02144 123
std. error 0.0122 0.01639 0.01796 0.01858

Simulated prices
(antithetic)

0.01561 0.02842 0.03159 0.0318 0.02115 178

std. error 0.00225 0.0013 0.00134 0.0015

Simulated prices
(control variate)

0.01562 0.02842 0.0316 0.03181 0.02125 122

std. error 0.00838 0.01018 0.01098 0.01135

Table 4: Caplet prices simulated according to the Ho-Lee model

In accordance to the implications of the coefficient of determination, SSPR

also indicates that the Ho-Lee model returns more accurate prices than the Vasicek

model. Moreover, Table 4 shows that the explicit calculations lead to the best re-

sults, as SSPR is the lowest in this case. The variance reduction techniques again

improved the simulations as SSPR decreased when applying them. In accordance

to the results from the simulations in the Vasicek model, applying the bond prices as

a control variate did not improve the simulations as much as the antithetic variates

did. The very same story is told by the standard deviations. The standard devia-

tions decreased for all prices whenever a variance reducing technique was applied,

but the improvements achieved by the antithetic variates were much higher. As

control variates, once again the bond prices were applied. The program code for the

simulation with control variates can be found in Appendix B.7, whereas the one for

the simulation with antithetic variates can be found in Appendix B.6.

Differently to the Vasicek model, there is no chance to avoid the call of a power

function for every time step. Furthermore, the forward rate curve has to be in-

cluded in the simulations. This amongst others is reflected in the increase of the

computation time by about 70%. The computational burden due to functions, that

have to be called in every time step, becomes even more apparent when applying

antithetic variates. In this case the power function has to be called twice, hence the

computation time increases by about 45%, compared with the standard simulation.
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7.2.3 Valuing a Cap Agreement in the Hull-White Model

Differently to the Ho-Lee model, the Hull-White model has a parameter for mean

reversion. The continuous Hull-White process for the short rate is presented in

Equation (33) and (34). This process is again consistent with the initial term struc-

ture, due to the incorporation of the forward curve and its changes over time. � and

the speed of mean reversion have to be determined by calibrating the Hull-White

model to a set of market prices. The function that has to be minimized now equals:

SSPR(�, �) = min
�,�

√√√⎷ M∑
i=1

(
modeli(�, �)−marketi

marketi

)2

(45)

Solving this equation, again via Excel Solver, lead to the values: � = 0.0213 and

� = 0.01317. The coefficient of determination R2 for the explicitly calculated prices

and the observed market data is about 99.994%. Thus, 99.994% of the variation in

the market data is explained by the prices deduced from the Hull-White model. As

a result, the Hull-White model fits the market data much better than the Vasicek

and slightly better than the Ho-Lee model. The value of the SSPR function on the

other hand indicates that the Ho-Lee model fits the market data better. This shows

the incompatibility of these measures.

For the Hull-White model the discrete formulation of the short rate as in Equa-

tion (35) was applied. This formulation represents the discrete short rate process

deduced from the continuous model, as in Equation (33), by applying the Euler

scheme. As a result, the simulated values might incorporate a bias due to the dis-

cretization. Once again, I simulated one hundred thousand paths. The program

code for the standard simulation can be found in Appendix B.8. The simulated

caplet prices are presented in Table 5.

The values of the SSPR function once again indicate that the explicitly com-

puted prices are the most accurate ones. The simulated values once again return

a worse fit. The variance reduction techniques return improvements as the values

of SSPR decrease. Moreover, the standard deviations also decreased notably. Dif-

ferently to the results for the Vasicek and the Ho-Lee the Hull-White simulation
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Caplet 1 Caplet 2 Caplet 3 Caplet 4 SSPR Calculation
time in seconds

Market prices 0.01541 0.02845 0.03162 0.0318

Explicit prices 0.01541 0.02845 0.03162 0.0318 0.01138

Simulated prices 0.01555 0.02797 0.03081 0.03062 0.05867 70
std. error 0.01236 0.01649 0.01796 0.01842

Simulated prices
(antithetic)

0.01554 0.028 0.03081 0.03062 0.05825 79

std. error 0.00239 0.00139 0.00142 0.00159

Simulated prices
(control variate)

0.01554 0.02811 0.03107 0.03108 0.04232 78

std. error 0.00002 0.00003 0.00003 0.00003

Table 5: Caplet prices simulated according to the Hull-White model

results imply that the control variate technique is more powerful than the antithetic

variate technique. This can be deduced from the tremendously decreasing standard

deviations, when applying observed bond prices as control variates. For the sim-

ulations in the Vasicek and the Ho-Lee model exact formulations in discrete time

were applied. In the Hull-White model on the other hand, I applied an Euler ap-

proximation to simulate the process. This approximation might have cased an error

that demonstrates in prices differing from the explicit ones, beyond the range of the

standard deviations. According to the computational time it can be said, that the

simulations according to the Hull-White model are nearly as fast as the ones in the

Vasicek model. This might be caused by the rather simple process of the short rate

due to the Euler approximation. Overall, it can be said that a tradeoff between

accuracy and computational afford can be determined. Thus, in order to achieve

more accurate results more computation time has to be accepted.

7.3 Pricing a Periodic Cap Agreement in the Hull-White

Model

In this section the applicability of MC methods are demonstrated for pricing periodic

cap agreements, in the Hull-White model. The short rate process from the Hull-

White model was selected, as it fits the observed market data from Section 5.3 best

(according to the coefficient of determination). A periodic cap agreement will be

priced as the Hull-White model is already calibrated to a cap agreement. It shall

be mentioned here again, that the applied calibration instruments should resemble
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the derivative that has be priced as much as possible. Thus, in order to price knock

in/out swaps (see Section 8) the models should be calibrated to observed swap prices

and their volatility structure.

Periodic caps and periodic floors incorporate a relative cap rate, as the latter

depends on the evolution of the observed interest rate. The cap rate in a periodic

cap agreement is determined by the variable interest rate, with a maturity equal to

the time in-between the reset dates, plus an arbitrary percentage amount. At the

maturity date of the first caplet, the cap rate is determined by the initial interest

rate for one year plus the arbitrary amount. For the next caplet the cap rate is

determined by the one year interest rate observed at the maturity date of the first

caplet, plus the arbitrary amount. Thus, the cap rates are changing relatively to

the evolution of the interest rates (see Dash [40]). As a result the owner of such a

periodic cap can hedge herself against to intensive jumps in the interest rates he has

to afford.

As an example a period cap agreement was assumed for the next five years.

Differently to the example in Section 7.2.3, the cap rate is now flexible, for all

caplets with maturity dates above one year in the future. The cap rate for the first

caplet on the other hand is already determined, as 1.73%, which is the one-year

rate, plus the predefined amount, which is assumed to be 1% in this example. Thus,

the cap rate for the first caplet is equal to 2.73%. For all other caplets the cap rate

differs for every single path, as the cap rate will then be determined by the one

year forward rate plus 1%. Once again I simulated one hundred thousand short rate

paths. The results for this periodic cap agreement are presented in Table 6. The

program code for this example can be found in Appendix B.11.

Caplet 1 Caplet 2 Caplet 3 Caplet 4 Calculation
time in seconds

Simulated prices 0.00874 0.00675 0.00196 0.00116 74
std. error 0.00818 0.00726 0.004 0.00296

Table 6: Periodic caplet prices simulated according to the Hull-White model

The price for the one year 1% periodic caplet with a nominal value of one Euro

for example, would be 0.874 Cents. Comparing the prices of the standard caplets
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and the periodic ones, it can be said that the prices of the latter ones are much

lower. This is due to the flexible cap rate that is always above 2%, which was the

cap rate in the standard cap agreement. Consequently, the compensation payments

for the holder of the periodic cap agreement are always smaller. In order to this the

values of the single caplets and therefore the whole cap agreement has to be lower.

As periodic cap agreements are path-dependent interest rate derivatives there are

no closed formulas for them. Furthermore, no market data for such contracts were

available. Thus, a comparison according to SSPR is not possible.
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8 Advantages of Using Monte Carlo Methods for

the Valuation of Interest Rate Derivatives

An important question that has not been posed jet concerns the necessity of MC

methods for valuing interest rate derivatives. In Section 5.3 I determined explicit so-

lutions for the three presented models. Besides MCmethods, interest rate derivatives

can also be valued using lattice methods or finite difference methods, as mentioned

in Section 6.2.1. Hence, why is it necessary to apply MC methods?

8.1 Necessity for Monte Carlo Methods

From a theoretical point of view the Black model does not return satisfying prices,

as the valuation of different derivatives with differing underlyings leads to an in-

consistent overall approach (see Section 6.1). Finite difference methods are based

on solving iteratively a system of stochastic differential equations by approximat-

ing partial differentials through discrete formulations. Thus, by decreasing the step

length, the solution converges to the solution of the differential equations. Lattice

methods work out similar to finite difference methods, moreover the trinomial lattice

is equivalent to apply finite difference methods. As MC simulations are compara-

tively inefficient according to Greco [41], the necessity of MC methods is questioned.

In fact, finite difference methods start at the maturity date of a derivative and work

through to the present value of the derivative. As a result, finite difference and lat-

tice methods can be easily applied to derivatives of European and American style.

MC methods, on the other hand, simulate the underlying value starting with the ini-

tial value of the process. Thus, especially path-dependent derivatives can be easily

priced by applying MC methods. Greco [41] presents the following path-dependent

interest rate derivatives:

∙ In the case of index amortizing swaps the principal declines (amortizes), when

interest rates decrease. One period ahead, it is always determined whether the

underlying interest rate has decreased or not. If it has decreased, the princi-

pal value decreases at the next time to maturity by a predefined percentage
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amount. If the underlying has not changed or even increased, the principal

value stays the same (see London [42]).

∙ As it was discussed in Section 2.2.2, Asian options are options where the final

payoff depends on the average value of the underlying.

∙ The payoff of structured notes does not depend solely on one underlying, but

on several different indices, which would also have to be simulated.

∙ Range notes incorporate the possibility to earn a higher interest rate than the

one observed in the market, if the spot interest rate is within a predefined

range. If the spot rate lies outside this range the derivative pays nothing.

∙ In the case of Knock in/out swaps, the payoff depends on whether the under-

lying interest rate has exceeded a predefined level or not. It has to be noted

that the payoff might be conditional on several predefined levels that have to

be crossed.

∙ And Periodic caps and floors, as presented earlier.

For all these and similar products, MC methods are inevitable. The advantages

of MC methods rely on their facile and flexible applicability, their independence of

the dimensionality and the smooth parallelization. As the variety of interest rate

derivatives is broad and the possibilities for new products are immense, applications

of Monte Carlo methods will surely be of interest in the future.
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9 Conclusion

The aim of this thesis was to discuss and implement Monte Carlo methods for pricing

interest rate derivatives. Due to the wide range of different interest rate models, I

focused on Gaussian short rate models. In consequence to this, short rate processes

according to the Vasicek, the Ho-Lee and the Hull-White model were discussed and

implemented in C++. I adjusted these models such that they replicate observed

market prices best. As there are closed formulas available for caplets in all the three

investigated models, it is easy to compare the explicit solutions. I showed that the

Ho-Lee and the Hull-White model fitted the observed market prices much better

than the Vasicek model. This result is not surprising as the Vasicek model is a

rather rigid model in contrast to the Ho-Lee and the Hull-White model.

The additional effort for the explicit calculations in the Ho-Lee and the Hull-

White model, was confined as the explicit formulas only incorporate single bond

prices, that can easily be observed in the market. For the simulation of short rate

paths on the other hand, the whole observed term structure had to be included.

Thus, the changes of the instantaneous forward rate had to be incorporated for

every single time step. Taken together, the implementation of the Vasicek model was

rather plain, compared to the Ho-Lee and Hull-White model. The complexity of the

implementation of the latter two models paid off, when comparing the simulations

results. As for the explicit calculations, the Ho-Lee and the Hull-White model

provided results much closer to the market data. Comparing the simulation results

of the Ho-Lee and the Hull-White model it can be said that the Ho-Lee model

lead to better results than Hull-White model, although the latter incorporates one

additional parameter for fitting observed market prices. This result corresponds to

the application of an approximation for the simulation of the continuous process

in the Hull-White model. Thus, for further analysis techniques for reducing the

discretization error are recommended.

As trading on interest rate derivatives proceeds continuously, it is important to

achieve fast simulation results. Thus, the computational effort was an important as-

pect in this thesis. The discussion of this aspect has occurred in nearly every section,
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as there are multiple starting points to achieve faster simulations. The discussion

ranges from applying a suitable transformation algorithm for uniform random num-

bers, to the selection of an adequate computer language, to the optimization of the

program codes and finally to the implementation of variance reducing techniques.

For transforming uniform random number, I applied the polar rejection. I adopted

this method, as it is supposed to be the fastest and most accurate upon the inves-

tigated ones. At the beginning of this thesis, I was convinced of implementing the

investigated short rate models in Visual Basic. For the first few examples it seemed

to be sufficient to apply Visual Basic. Nevertheless, when I increased the number

of simulated paths or when I carried out a convergence analysis, the implementa-

tion in Visual Basic was rather burdensome. In consequence to this, I implemented

all models in C++. This lead to an enormous reduction of simulation time. In

order to receive a first simulation result, I always implemented the short rate pro-

cesses as presented. Afterwards, I sought for possible improvements of the program

code. Consequently, I computed constant terms beforehand. This lead to note-

worthy reductions in simulation time, especially when power, exponential or square

root functions were computed beforehand. Finally, I implemented variance reduc-

tions techniques in order to improve the simulations. Thus, by applying antithetic

and control variates, the sample standard deviations were reduced for all models.

Although, the control variate technique is said to be one of the most powerful vari-

ance reduction techniques, the implementation of antithetic variates lead to much

lower sample standard deviations in the Vasicek and the Ho-Lee model for these

instruments. Thus, for further investigations it might be interesting wether a better

control variate than observed bond prices can be applied for interest rate deriva-

tives. Summarizing the simulation results applying variance reduction techniques

it can be said, that the implementation of antithetic variates lead to remarkable

improvements of the simulations by increasing simulation time imperceptibly. The

poor results from applying control variates might be due to the low correlation

in-between the control variates, the observed bond prices, and the cap prices.

As there are explicit formulas for pricing interest rate cap agreements in all three

discussed models, the question arose whether it is necessary to apply a method
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that is computationally highly intensive or not. In Section 8, I presented the most

common path-dependent interest rate derivatives. For pricing all these derivatives

MC methods are inevitable. Thus, there is no other possibility for pricing these

derivatives. Hull [1] cites that the underlying short rate models should always be

calibrated to market prices of derivatives that resemble the ones of interest as much

as possible. In order to this, I concentrated on pricing a periodic cap agreement.

Consequently, I showed that the implementation is rather straight forward when the

underlying short rate process is already defined.

Concluding this thesis, it can be said that MC methods are inevitable for most

path-dependent interest rate derivatives. In order to price these derivatives, the

whole simulation approach has to be questioned. For proper improvements of the

latter, the trade-off between computational accuracy and computational effort has

to be considered persistently.
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A Itô’s Lemma

Instead of deriving Itô’s Lemma it will be shown here that the lemma can be deduced

from results of the differential calculus [1]. A continuously differentiable function

G on the variables x and y is assumed, where Δx indicates a small change in x

analogously for y and ΔG the corresponding change in G. Using a Taylor series

expansion ΔG can be represented as:

ΔG =
∂G

∂x
Δx+

∂G

∂y
Δy +

1

2

∂2G

∂x2
Δx2 +

1

2

∂2G

∂y2
Δy2 +

∂2G

∂x∂y
ΔxΔy + . . .

for lim
Δx,Δy→0

dG =
∂G

∂x
dx+

∂G

∂y
dy

Now it is assumed that x follows an Itô process, therefore:

dx = a(x, t) dt+ b(x, t) dz (46)

The change in a function G of this variable x and time t can therefore be written

as:

ΔG =
∂G

∂x
Δx+

∂G

∂t
Δt+

1

2

∂2G

∂x2
Δx2 +

1

2

∂2G

∂t2
Δt2 +

∂2G

∂x∂t
ΔxΔt+ . . . (47)

In a discrete setting Equation (46) would look like:

Δx = a(x, t)Δt+ b(x, t)"
√

Δt

For the Taylor series expansion of the changes in G there is a quadratic term of

Δx. Among others, this latter term consists of Δt. Although one can assume that

the changes in x will be infinitesimal small, the quadratic term ofΔx will not be

negligible. Moreover this term includes the quadratic increments of the Wiener

process. As these increments are standard normally distributed the following has to

hold: E("2)− [E(")]2 = 1. As the expected vale of " is equal to zero, E("2) = 1 has

to hold. The variance of "2Δt consists of quadratic terms of Δt, which diminishes

when the time steps are assumed to be infinitesimal small. In accordance to this,
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the quadratic term of Δx will not be stochastic as Δt → 0 and will therefore be

equal to Δx2 = b2Δt. Applying these acknowledgements to Equation (47) it follows

that:

dG =
∂G

∂x
dx+

∂G

∂t
dt+

1

2

∂2G

∂x2
b2 dt

Substituting here dx with Equation (46), it follows:

dG =

(
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2

)
dt+

∂G

∂x
b dz
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B Program Codes

In this section the applied program codes are presented. It has to be noted that

the program codes of the main program were shortened for the preprocessors. The

subprogram random() is presented in Section B.12, whereas the subprogram max()

is denoted in Section B.13.

B.1 Pricing an European call option on a zero coupon bond

int main()
{
ofstream fout( "optionprice.txt" );
time_t start,end;
time(&start);
srand(time(0));
int paths=100000;
long double doublepaths=paths;
long double sigma=0.005;
long double alpha=0.3;
long double longr=0.05;
long double sigma2=pow(sigma,2)/2;
long double steplength=0.002777777777777780000000000000;
long double term1=exp(-alpha*steplength);
long double term2=longr*(1-exp(-alpha*steplength));
long double term3=sigma*sqrt((1/(2*alpha))*(1-exp(-2*alpha*steplength)));
long double sigmasqrdt=sigma*sqrt(steplength);
long double sumoption=0;
for(int h=0; h<paths; h++)
{

long double r=0.00979;
long double bondr=0;
long double discount=0;
for (int i=0; i < 360; ++i)
{

r=term1*r+term2+term3*random();
discount=discount+r;

}
for (int i=360; i < 3600; ++i)
{

r=term1*r+term2+term3*random();
bondr=bondr+r;

}
sumoption = sumoption +exp(-discount/360)*max(exp(-bondr/360)-0.5,0);

}
fout << sumoption/doublepaths;
fout << endl;
time(&end);
double dif=difftime(end,start);
cout << "Calculation Time "<<dif<<"\n";
cin.get();
}
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B.2 Vasicek Model: Simulation of a 5 year cap agreement

int main()
{
time_t start,end;
time(&start);
srand(time(0));
int paths=100000;
long double pathsdouble=paths;
long double sigma=0.005;
long double alpha=0.408391354946227000000000000000;
long double longr=0.069370233769936100000000000000;
long double steplength=0.002777777777777780000000000000;
long double sumrpayoff;
long double sigmasqrdt=sigma*sqrt(steplength);
long double payoff[7]={0};
long double payoffsquared[7]={0};
long double timesteps=1800;
long double term1= exp(-alpha*steplength);
long double term2=longr*(1-term1);
long double term3=sigma*sqrt((1/(2*alpha))*(1-exp(-2*alpha*steplength)));
long double capamount=exp(-0.02);
long double discountcap=1/capamount;
long double payoffamount;
for(int h=0; h<paths; h++)
{

long double r=0.0075;
long double bond=0;
long double sumr=0;
long double sumrpayoff=0;
long double discount=0;
for (int i=0; i < timesteps; ++i)
{

long double idouble=i;
r=term1*r+term2+term3*random();//r=r+alpha*(longr-r)*steplength+sigmasqrdt*random();
sumr=sumr+r;
sumrpayoff=sumrpayoff+r;
if ((i+1)%360==0)
{

int o=(i+1)/360;
if ((i+1)/360>1)
{

payoffamount=exp(-sumrpayoff/360);
payoff[o-2]=payoff[o-2]+(1/capamount)*max(capamount-payoffamount,0)*bond;
payoffsquared[o-2]=payoffsquared[o-2]+pow(discountcap*max(capamount-payoffamount,0)*bond,2);

}
bond=exp(-sumr/360);
sumrpayoff=0;

}
}

}
cout << "Caplet 1: "<<payoff[0]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[0]-(payoff[0]*payoff[0])/paths)/(paths-1))<<"\n";
cout << "Caplet 2: "<<payoff[1]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[1]-(payoff[1]*payoff[1])/paths)/(paths-1))<<"\n";
cout << "Caplet 3: "<<payoff[2]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[2]-(payoff[2]*payoff[2])/paths)/(paths-1))<<"\n";
cout << "Caplet 4: "<<payoff[3]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[3]-(payoff[3]*payoff[3])/paths)/(paths-1))<<"\n";
time(&end); double dif=difftime(end,start);
cout << "Calculation Time "<<dif<<"\n";
cin.get();
}
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B.3 Vasicek Model: Simulation of a 5 year cap agreement
with antithetic variates

int main()
{
time_t start,end;time(&start);
srand(time(0));
int paths=100000;
long double pathsdouble=paths;
long double sigma=0.005;
long double alpha=0.408391354946227000000000000000;
long double longr=0.069370233769936100000000000000;
long double steplength=0.002777777777777780000000000000;
int timesteps=1800;
long double sumrpayoff;
long double sigmasqrdt=sigma*sqrt(steplength);
long double payoff[7]={0};
long double payoffsquared[7]={0};
long double term1= exp(-alpha*steplength);
long double term2=longr*(1-term1);
long double term3=sigma*sqrt((1/(2*alpha))*(1-exp(-2*alpha*steplength)));
long double capamount=exp(-0.02);
long double discountcap=1/capamount;
long double payoffamount1;
long double payoffamount2;
for(int h=0;h<paths; h++)
{

long double r1=0.0075;
long double bond1=0;
long double sumr1=0;
long double r2=0.0075;
long double bond2=0;
long double sumr2=0;
long double sumrpayoff1=0;
long double sumrpayoff2=0;
for (int i=0; i < timesteps; ++i)
{

long double idouble=i;
long double epsilon=random();
r1=term1*r1+term2+term3*epsilon;//r1=r1+alpha*(longr-r1)*steplength+sigmasqrdt*epsilon;
r2=term1*r2+term2-term3*epsilon;//r2=r2+alpha*(longr-r2)*steplength-sigmasqrdt*epsilon;
sumr1=sumr1+r1;
sumr2=sumr2+r2;
sumrpayoff1=sumrpayoff1+r1;
sumrpayoff2=sumrpayoff2+r2;
if ((i+1)%360==0)
{

int o=(i+1)/360;
if ((i+1)/360>1)
{

payoffamount1=exp(-sumrpayoff1/360);
payoffamount2=exp(-sumrpayoff2/360);
payoff[o-2]= payoff[o-2]+0.5*((1/capamount)*max(capamount-payoffamount1,0)*bond1

+(1/capamount)*max(capamount-payoffamount2,0)*bond2);
payoffsquared[o-2]= payoffsquared[o-2]+pow(0.5*((1/capamount)*max(capamount-payoffamount1,0)*bond1+

(1/capamount)*max(capamount-payoffamount2,0)*bond2),2);
}
bond1=exp(-sumr1/360);
bond2=exp(-sumr2/360);
sumrpayoff1=0;
sumrpayoff2=0;

}
}

}
cout << "Caplet 1:"<<payoff[0]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[0]-(payoff[0]*payoff[0])/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 2:"<<payoff[1]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[1]-(payoff[1]*payoff[1])/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 3:"<<payoff[2]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[2]-(payoff[2]*payoff[2])/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 4:"<<payoff[3]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[3]-(payoff[3]*payoff[3])/pathsdouble)/(pathsdouble-1))<<"\n";
time(&end);
double dif=difftime(end,start);
cout << "Calculation Time"<<dif<<"\n";
cin.get();
}
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B.4 Vasicek Model: Simulation of a 5 year cap agreement
with a control variate

int main()
{
time_t start,end;
time(&start);
srand(time(0));
int paths=100000;
long double doublepaths=paths;
long double sigma=0.005;
long double alpha=0.408391354946227000000000000000;
long double longr=0.069370233769936100000000000000;
long double steplength=0.002777777777777780000000000000;
long double term1=exp(-alpha*steplength);
long double term2=longr*(1-term1);
long double term3=sigma*sqrt((1/(2*alpha))*(1-exp(-2*alpha*steplength)));
long double capamount=exp(-0.02);
long double discountcap=1/capamount;
long double payoffamount;
long double bond;
long double explicitbond[]={0.981598533, 0.947277262, 0.903879138,
0.856014443};
signed long double b[]={1.0807,0.466422,0.264835,0.167488};
long double sumrpayoff;
long double payoff [5]={0};
long double payoffsquared [5]={0};
long double timesteps=1800;
for(int h=0; h<paths; h++)
{

long double r=0.0075;
long double sumr=0;
long double sumrpayoff=0;
long double discount=0;
for (int i=0; i < timesteps; ++i)
{

long double idouble=i;
r=term1*r+term2+term3*random();//r=r+alpha*(longr-r)*steplength+sigmasqrdt*random();
sumr=sumr+r;
sumrpayoff=sumrpayoff+r;
if ((i+1)%360==0)
{

int o=(i+1)/360;
if ((i+1)/360>1)
{

payoffamount=exp(-sumrpayoff/360);
payoff[o-2]=payoff[o-2]+(1/capamount)*max(capamount-payoffamount,0)*bond+b[o-2]*(bond-explicitbond[o-2]);
payoffsquared[o-2]=payoffsquared[o-2]
+pow((1/capamount)*max(capamount-payoffamount,0)*bond+b[o-2]*(bond-explicitbond[o-2]),2);

}
bond=exp(-sumr/360);
sumrpayoff=0;

}
}

}
cout << "Caplet 1:"<<payoff[0]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[0]-(payoff[0]*payoff[0])/paths)/(paths-1))<<"\n";
cout << "Caplet 2:"<<payoff[1]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[1]-(payoff[1]*payoff[1])/paths)/(paths-1))<<"\n";
cout << "Caplet 3:"<<payoff[2]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[2]-(payoff[2]*payoff[2])/paths)/(paths-1))<<"\n";
cout << "Caplet 4:"<<payoff[3]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[3]-(payoff[3]*payoff[3])/paths)/(paths-1))<<"\n";
time(&end);
time(&end);
double dif=difftime(end,start);
cout <<"Calculation Time"<<dif<<"\n";
cin.get();
}
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B.5 Ho-Lee Model: Simulation of a 5 year cap agreement

Note: The increments of �(t), stored in difference[], were deleted from this code.

int main()
{
time_t
start,end;
time(&start);
srand(time(0));
int paths=100000;
long double pathsdouble=paths;
long double sigma=0.012653215911395000000000000000;
long double sigma2=pow(sigma,2)/2;
long double steplength=0.002777777777777780000000000000;
long double sigmasqrdt=sigma*sqrt(steplength);
long double capamount=exp(-0.02);
long double discountcap=1/capamount;
long double payoffamount;
signed long double difference[]={};
long double sumrpayoff;
long double payoff[7]={0};
long double payoffsquared[7]={0};
long double timesteps=1800;
for(int h=0; h<paths; h++)
{

long double r=0.0075;
long double sumr=0;
long double bond=0;
long double sumrpayoff=0;
long double discount=0;
for (int i=0; i < timesteps; ++i)
{

long double idouble=i;
r=r+difference[i]+sigma2*(pow((idouble+1)/360,2)-pow((idouble)/360,2))+sigmasqrdt*random();
sumr=sumr+r;
sumrpayoff=sumrpayoff+r;
if ((i+1)%360==0)
{

int o=(i+1)/360;
if ((i+1)/360>1)
{

payoffamount=exp(-sumrpayoff/360);
payoff[o-2]=payoff[o-2]+(1/capamount)*max(capamount-payoffamount,0)*bond;
payoffsquared[o-2]=payoffsquared[o-2]+pow(discountcap*max(capamount-payoffamount,0)*bond,2);

}
bond=exp(-sumr/360);
sumrpayoff=0;

}
}

}
cout << "Caplet 1:"<<payoff[0]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[0]-payoff[0]*payoff[0]/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 2:"<<payoff[1]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[1]-payoff[1]*payoff[1]/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 3:"<<payoff[2]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[2]-payoff[2]*payoff[2]/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 4:"<<payoff[3]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[3]-payoff[3]*payoff[3]/pathsdouble)/(pathsdouble-1))<<"\n";
time(&end); double dif=difftime(end,start);
cout << "Calculation Time "<<dif<<"\n";
cin.get();
}
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B.6 Ho-Lee Model: Simulation of a 5 year cap agreement
with antithetic variates

Note: The increments of �(t), stored in difference[], were deleted from this code.

int main()
{
time_t start,end;
time(&start);
srand(time(0));
int paths=100000;
long double pathsdouble=paths;
long double sigma=0.012653215911395000000000000000;
long double sigma2=pow(sigma,2)/2;
long double steplength=0.002777777777777780000000000000;
long double sigmasqrdt=sigma*sqrt(steplength);
long double capamount=exp(-0.02);
long double discountcap=1/capamount;
long double payoffamount1;
long double payoffamount2;
signed long double difference[]={};
long double sumrpayoff;
long double payoff[7]={0};
long double payoffsquared[7]={0};
long double timesteps=1800;
for(int h=0; h<paths; h++)
{

long double bond1=0;
long double bond2=0;
long double r1=0.0075;
long double r2=0.0075;
long double sumr1=0;
long double sumr2=0;
long double sumrpayoff1=0;
long double sumrpayoff2=0;
for (int i=0; i < timesteps; ++i)
{

long double idouble=i;
long double epsilon=random();
r1=r1+difference[i]+sigma2*(pow((idouble+1)/360,2)-pow((idouble)/360,2))+sigmasqrdt*epsilon;
r2=r2+difference[i]+sigma2*(pow((idouble+1)/360,2)-pow((idouble)/360,2))-sigmasqrdt*epsilon;
sumr1=sumr1+r1;
sumr2=sumr2+r2;
sumrpayoff1=sumrpayoff1+r1;
sumrpayoff2=sumrpayoff2+r2;
if ((i+1)%360==0)
{

int o=(i+1)/360;
if ((i+1)/360>1)
{

payoffamount1=exp(-sumrpayoff1/360);
payoffamount2=exp(-sumrpayoff2/360);
payoff[o-2]=payoff[o-2]+0.5*(discountcap*max(capamount-payoffamount1,0)*bond1

+discountcap*max(capamount-payoffamount2,0)*bond2);
payoffsquared[o-2]= payoffsquared[o-2]+pow(0.5*(discountcap*max(capamount-payoffamount1,0)*bond1

+discountcap*max(capamount-payoffamount2,0)*bond2),2);
}
bond1=exp(-sumr1/360);
bond2=exp(-sumr2/360);
sumrpayoff1=0;
sumrpayoff2=0;

}
}

}
cout << "Caplet 1:"<<payoff[0]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[0]-payoff[0]*payoff[0]/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 2:"<<payoff[1]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[1]-payoff[1]*payoff[1]/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 3:"<<payoff[2]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[2]-payoff[2]*payoff[2]/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 4:"<<payoff[3]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[3]-payoff[3]*payoff[3]/pathsdouble)/(pathsdouble-1))<<"\n";
time(&end);
double dif=difftime(end,start);
cout << "Calculation Time"<<dif<<"\n";
cin.get();
}
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B.7 Ho-Lee Model: Simulation of a 5 year cap agreement
with a control variate

Note: The increments of �(t), stored in difference[], were deleted from this code.

int main()
{
time_t start,end;
time(&start); srand(time(0));
int paths=100000;
long double doublepaths=paths;
long double sigma=0.012653215911395000000000000000;
long double sigma2=pow(sigma,2)/2;
long double steplength=0.002777777777777780000000000000;
long double sigmasqrdt=sigma*sqrt(steplength);
long double capamount=exp(-0.02);
long double discountcap=1/capamount;
long double payoffamount;
long double bond;
long double explicitbond[]={0.982838484311106000000000000000,
0.949199967737070000000000000000,
0.903014155972148000000000000000,
0.854738281615469000000000000000,
0.807421108299888000000000000000};
signed long double b[]={1.22418,0.65277,0.415419, 0.293846};
signed long double difference[]={};
long double sumrpayoff;
long double payoff [5]={0};
long double payoffsquared [5]={0};
long double timesteps=1800;
for(int h=0; h<paths; h++)

{
long double r=0.0075;
long double sumr=0;
long double sumrpayoff=0;
long double discount=0;
for (int i=0; i < timesteps; ++i)
{

long double idouble=i;
r=r+difference[i]+sigma2*(pow((idouble+1)/360,2)-pow((idouble)/360,2))+sigmasqrdt*random();
sumr=sumr+r;
sumrpayoff=sumrpayoff+r;
if ((i+1)%360==0)
{

int o=(i+1)/360;
if ((i+1)/360>1)
{

payoffamount=exp(-sumrpayoff/360);
payoff[o-2]=payoff[o-2]+(1/capamount)*max(capamount-payoffamount,0)*bond+b[o-2]*(bond-explicitbond[o-2]);
payoffsquared[o-2]=payoffsquared[o-2]
+pow((1/capamount)*max(capamount-payoffamount,0)*bond+b[o-2]*(bond-explicitbond[o-2]),2);

}
bond=exp(-sumr/360);
sumrpayoff=0;

}
}

}
cout << "Caplet 1: "<<payoff[0]/paths<<"\n";
cout << "Standard Error: "<<(sqrt(payoffsquared[0]-(payoff[0]*payoff[0])/paths)/(paths-1))<<"\n";
cout << "Caplet 2: "<<payoff[1]/paths<<"\n";
cout << "Standard Error: "<<(sqrt(payoffsquared[1]-(payoff[1]*payoff[1])/paths)/(paths-1))<<"\n";
cout << "Caplet 3: "<<payoff[2]/paths<<"\n";
cout << "Standard Error: "<<(sqrt(payoffsquared[2]-(payoff[2]*payoff[2])/paths)/(paths-1))<<"\n";
cout << "Caplet 4: "<<payoff[3]/paths<<"\n";
cout << "Standard Error: "<<(sqrt(payoffsquared[3]-(payoff[3]*payoff[3])/paths)/(paths-1))<<"\n";
time(&end);
double dif=difftime(end,start);
cout << "Calculation
Time "<<dif<<"\n";
cin.get();
}
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B.8 Hull-White Model: Simulation of a 5 year cap agreement

Note: The increments of �(t) were deleted from this code.

int main()
{
time_t start,end;
time(&start);
srand(time(0));
long double paths=100000;
long double sigma=0.013170825943613200000000000000;
long double alpha=0.021352409494617600000000000000;
long double sigma2=pow(sigma,2)/2;
long double steplength=0.002777777777777780000000000000;
long double sigmasqrdt=sigma*sqrt(steplength);
long double capamount=exp(-0.02);
long double discountcap=1/capamount;
long double payoffamount;
signed long double theta[]={};
long double sumrpayoff;
long double payoff[7]={0};
long double payoffsquared[7]={0};
long double timesteps=1800;
long double bond=0;
for(int h=0;h<paths; h++)
{

long double r=0.0075;
long double sumr=0;
long double sumrpayoff=0;
for (int i=0; i < timesteps; ++i)
{

long double idouble=i;
r=r+(theta[i]-alpha*r)*steplength+sigmasqrdt*random();
sumr=sumr+r;
sumrpayoff=sumrpayoff+r;
if ((i+1)%360==0)
{

int o=(i+1)/360;
if ((i+1)/360>1)
{

payoffamount=exp(-sumrpayoff/360);
payoff[o-2]=payoff[o-2]+(1/capamount)*max(capamount-payoffamount,0)*bond;
payoffsquared[o-2]=payoffsquared[o-2]+pow(discountcap*max(capamount-payoffamount,0)*bond,2);

}
bond=exp(-sumr/360);
sumrpayoff=0;

}
}

}
cout << "Caplet 1:"<<payoff[0]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[0]-(payoff[0]*payoff[0])/paths)/(paths-1))<<"\n";
cout << "Caplet 2:"<<payoff[1]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[1]-(payoff[1]*payoff[1])/paths)/(paths-1))<<"\n";
cout << "Caplet 3:"<<payoff[2]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[2]-(payoff[2]*payoff[2])/paths)/(paths-1))<<"\n";
cout << "Caplet 4:"<<payoff[3]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[3]-(payoff[3]*payoff[3])/paths)/(paths-1))<<"\n";
time(&end);
time(&end);
double dif=difftime(end,start);
cout <<"Calculation Time"<<dif<<"\n";
cin.get();
}
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B.9 Hull-White Model: Simulation of a 5 year cap agreement
with antithetic variates

Note: The increments of �(t) were deleted from this code.

int main()
{
time_t start,end;
time(&start);
srand(time(0));
long double paths=100000;
long double pathsdouble=paths;
long double
sigma=0.013170825943613200000000000000;
long double alpha=0.021352409494617600000000000000;
long double sigma2=pow(sigma,2)/2;
long double steplength=0.002777777777777780000000000000;
long double sigmasqrdt=sigma*sqrt(steplength);
long double capamount=exp(-0.02);
long double discountcap=1/capamount;
long double payoffamount1;
long double payoffamount2;
long double bond1;
long double bond2;
signed long double theta[]={};
long double sumrpayoff;
long double payoff[7]={0};
long double payoffsquared[7]={0};
long double timesteps=1800;
for(int h=0; h<paths; h++)
{

long double r1=0.0075;
long double r2=0.0075;
long double sumr1=0;
long double sumr2=0;
long double sumrpayoff1=0;
long double sumrpayoff2=0;
long double discount1=0;
long double discount2=0;
for (int i=0; i < timesteps; ++i)
{

long double idouble=i;
long double epsilon=random();
r1=r1+(theta[i]-alpha*r1)*steplength+sigmasqrdt*epsilon;
r2=r2+(theta[i]-alpha*r2)*steplength-sigmasqrdt*epsilon;
sumr1=sumr1+r1;
sumr2=sumr2+r2;
sumrpayoff1=sumrpayoff1+r1;
sumrpayoff2=sumrpayoff2+r2;
if ((i+1)%360==0)
{

int o=(i+1)/360;
if ((i+1)/360>1)
{

payoffamount1=exp(-sumrpayoff1/360);
payoffamount2=exp(-sumrpayoff2/360);
payoff[o-2]=payoff[o-2]+0.5*((1/capamount)*max(capamount-payoffamount1,0)*bond1

+(1/capamount)*max(capamount-payoffamount2,0)*bond2);
payoffsquared[o-2]= payoffsquared[o-2]+pow(0.5*((1/capamount)*max(capamount-payoffamount1,0)*bond1

+(1/capamount)*max(capamount-payoffamount2,0)*bond2),2);
}
bond1=exp(-sumr1/360);
bond2=exp(-sumr2/360);
sumrpayoff1=0;
sumrpayoff2=0;

}
}

}
cout << "Caplet 1:"<<payoff[0]/pathsdouble<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[0]-(payoff[0]*payoff[0])/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 2:"<<payoff[1]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[1]-(payoff[1]*payoff[1])/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 3:"<<payoff[2]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[2]-(payoff[2]*payoff[2])/pathsdouble)/(pathsdouble-1))<<"\n";
cout << "Caplet 4:"<<payoff[3]/pathsdouble<<"\n";
cout <<"Standard Error:"<<sqrt((payoffsquared[3]-(payoff[3]*payoff[3])/pathsdouble)/(pathsdouble-1))<<"\n";
time(&end);
double dif=difftime(end,start);
cout << "Calculation Time"<<dif<<"\n";
cin.get();
}
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B.10 Hull-White Model: Simulation of a 5 year cap agree-
ment with a control variate

Note: The increments of �(t) were deleted from this code.

int main()
{
time_t start,end;
time(&start);
srand(time(0));
int paths=100000;
long double doublepaths=paths;
long double sigma=0.013170825943613200000000000000;
long double alpha=0.021352409494617600000000000000;
long double sigma2=pow(sigma,2)/2;
long double steplength=0.002777777777777780000000000000;
long double sigmasqrdt=sigma*sqrt(steplength);
long double capamount=exp(-0.02);
long double discountcap=1/capamount;
long double payoffamount;
long double bond; long double
explicitbond[]={0.982838484311106000000000000000,
0.949199967737070000000000000000,
0.903014155972148000000000000000,
0.854738281615469000000000000000,
0.807421108299888000000000000000};
signed long double b[]={1.20546,0.635602,0.401353, 0.282529};
signed long double theta[]={};
long double sumrpayoff;
long double payoff [5]={0};
long double payoffsquared [5]={0};
long double timesteps=1800;
for(int h=0; h<paths; h++)
{

long double r=0.0075;
long double sumr=0;
long double sumrpayoff=0;
long double discount=0;
for (int i=0; i < timesteps; ++i)
{

long double idouble=i;
r=r+(theta[i]-alpha*r)*steplength+sigmasqrdt*random();
sumr=sumr+r;
sumrpayoff=sumrpayoff+r;
if ((i+1)%360==0)
{

int o=(i+1)/360;
if ((i+1)/360>1)
{

payoffamount=exp(-sumrpayoff/360);
payoff[o-2]=payoff[o-2]+(1/capamount)*max(capamount-payoffamount,0)*bond+b[o-2]*(bond-explicitbond[o-2]);
payoffsquared[o-2]=payoffsquared[o-2]
+pow((1/capamount)*max(capamount-payoffamount,0)*bond+b[o-2]*(bond-explicitbond[o-2]),2);

}
bond=exp(-sumr/360);
sumrpayoff=0;

}
}

}
cout << "Caplet 1:"<<payoff[0]/paths<<"\n";
cout << "Standard Error:"<<(sqrt(payoffsquared[0]-(payoff[0]*payoff[0])/paths)/(paths-1))<<"\n";
cout << "Caplet 2:"<<payoff[1]/paths<<"\n";
cout << "Standard Error:"<<(sqrt(payoffsquared[1]-(payoff[1]*payoff[1])/paths)/(paths-1))<<"\n";
cout << "Caplet 3:"<<payoff[2]/paths<<"\n";
cout << "Standard Error:"<<(sqrt(payoffsquared[2]-(payoff[2]*payoff[2])/paths)/(paths-1))<<"\n";
cout << "Caplet 4:"<<payoff[3]/paths<<"\n";
cout << "Standard Error:"<<(sqrt(payoffsquared[3]-(payoff[3]*payoff[3])/paths)/(paths-1))<<"\n";
time(&end);
double dif=difftime(end,start);
cout << "Calculation Time "<<dif<<"\n";
cin.get();
}
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B.11 Hull-White Model: Simulation of a periodic cap agree-
ment

Note: The increments of �(t) were deleted from this code.

int main()
{
time_t start,end;
time(&start);
srand(time(0));
long double paths=100000;
long double sigma=0.013170825943613200000000000000;
long double alpha=0.021352409494617600000000000000;
long double sigma2=pow(sigma,2)/2;
long double steplength=0.002777777777777780000000000000;
long double sigmasqrdt=sigma*sqrt(steplength);
long double capamount;
long double payoffamount;
signed long double theta[]={};
long double sumrpayoff;
long double payoff[7]={0};
long double payoffsquared[7]={0};
long double timesteps=1800;
long double bond=0;
for(int h=0; h<paths; h++)
{

long double r=0.0075;
long double caprate=0.0273;
long double sumr=0;
long double sumrpayoff=0;
for (int i=0; i < timesteps; ++i)
{

long double idouble=i;
r=r+(theta[i]-alpha*r)*steplength+sigmasqrdt*random();
sumr=sumr+r;
sumrpayoff=sumrpayoff+r;
if ((i+1)%360==0)
{

int o=(i+1)/360;
if ((i+1)/360>1)
{

payoffamount=exp(-sumrpayoff/360);
payoff[o-2]=payoff[o-2]+(1/capamount)*max(capamount-payoffamount,0)*bond;
payoffsquared[o-2]=payoffsquared[o-2]+pow((1/capamount)*max(capamount-payoffamount,0)*bond,2);

}
capamount=exp(-sumrpayoff/360-0.01);
bond=exp(-sumr/360);
sumrpayoff=0;

}
}

}
cout << "Caplet 1: "<<payoff[0]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[0]-(payoff[0]*payoff[0])/paths)/(paths-1))<<"\n";
cout << "Caplet 2: "<<payoff[1]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[1]-(payoff[1]*payoff[1])/paths)/(paths-1))<<"\n";
cout << "Caplet 3: "<<payoff[2]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[2]-(payoff[2]*payoff[2])/paths)/(paths-1))<<"\n";
cout << "Caplet 4: "<<payoff[3]/paths<<"\n";
cout << "Standard Error:"<<sqrt((payoffsquared[3]-(payoff[3]*payoff[3])/paths)/(paths-1))<<"\n";
time(&end);
time(&end);
double dif=difftime(end,start);
cout <<"Calculation Time "<<dif<<"\n";
cin.get();
}
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B.12 The subprogram random()

static long double z2;
static bool second=false;
long double random()
{
long double x1;
long double x2;
long double w;
long double c;
long double snd;
if (second==true)
{

snd= z2;
second=false;

}
else
{

do
{

x1=2*rand()/static_cast<double>(RAND_MAX)-1;
x2=2*rand()/static_cast<double>(RAND_MAX)-1;
w=x1*x1+x2*x2;

}
while (w>=1);
c =sqrt(-2*log(w)/w);
snd=c*x2;
z2=c*x1;
second=true;

}
return snd;
}

B.13 The subprogram max()

long double max(long double x, long double y)
{

if(x<y)
{

return y;
}
else
{

return x;
}

}
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Abstract

This thesis presents the applicability of Monte Carlo methods for the valuation of

interest rate derivatives. As the spectrum of interest rate models is wide, I focus

on the Vasicek model, the Ho-Lee model and the Hull-White model. These three

Gaussian short rate models are implemented in C++. In the course of that, I present

improvements of the corresponding simulations. These improvements range from

selecting suitable algorithms for transforming uniform pseudo random numbers to

standard normal pseudo random numbers, to the selection of a suitable programming

language, to the optimization of the program codes and finally to the implementation

of variance reducing techniques. In order to improve the standard deviation of the

simulated interest rate derivative prices, I apply the variance reducing techniques of

antithetic and control variates. For the latter I selected observed bond prices.

In order to implement the Vasicek model, the Ho-Lee model and the Hull-White

model, I calibrate them to observed market prices of an interest rate cap agreement.

The calibration suggests that the Ho-Lee and the Hull-White model fit observed

market prices much better than the Vasicek model. Subsequently, I simulate prices

for the very same cap agreement and compare them with the ones calculated via

closed formulas. The results indicate that improvements in the simulated prices,

due to variance reduction techniques, are always accompanied with an increase in

the computational burden. Thus, it has always got to be accounted for the trade-off

between computational accuracy and computational efficiency.

In conclusion, I implement a periodic cap agreement based on the Hull-White

model as a case study. Exemplary, I show that after the parameters of the short

rate processes are defined, path-dependent interest rate derivatives can be priced

easily. Eventually, I account for the importance of Monte Carlo methods for pricing

path-dependent interest rate derivatives.
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Zusammenfassung

In dieser Diplomarbeit wird die Anwendung von Monte Carlo Verfahren für die Be-

wertung von Zinsderivaten diskutiert. Aufgrund der Vielzahl von unterschiedlichen

Zinsmodellen, liegt das Hauptaugenmerk dieser Arbeit auf dem Vasicek, dem Ho-

Lee und dem Hull-White Modell. Diese drei Short Rate Modelle werden in der Pro-

grammiersprache C++ implementiert. In weiterer Folge werden Verbesserungen der

jeweiligen Simulationen diskutiert. Diese Verbesserungen reichen von der Auswahl

eines Algorithmus zur Umwandlung von gleich verteilten Pseudo-Zufallszahlen in

standardnormal verteilte Pseudo-Zufallszahlen, über die Wahl einer geeigneten Pro-

grammiersprache, hin zu möglichen Optimierungen des Quellcodes bis hin zur Imple-

mentierung von Varianz reduzierenden Verfahren. Um die Standardabweichung der

simulierten Preise zu verbessern, werden antithetische Zufallsvariablen und Kontrol-

lvariate angewendet. Für Letztere wurden beobachtete Preise von Anleihen gewählt.

Um das Vasicek Modell, das Ho-Lee Model und das Hull-White Modell zu im-

plementieren, werden alle drei Modelle gemäß beobachteten Marktpreisen eines In-

terest Rate Cap Agreements kalibriert. Die Kalibrierung zeigt, dass das Ho-Lee

sowie das Hull-White Modell die beobachteten Marktpreise besser repliziert als das

Vasicek Modell. In weiterer Folge werden die Preise eines Interest Rate Cap Agree-

ments simuliert. Die simulierten Preise werden anschließend mit explizit berech-

neten Preisen und beobachteten Marktpreisen verglichen. Die Ergebnisse zeigen,

dass Verbesserungen der Simulationen aufgrund von Varianz reduzierenden Ver-

fahren stets mit höherem rechnerischen Aufwand verbunden sind.

Schließlich wird ein Periodic Cap Agreement auf Basis des Hull-White Modells

als Fallstudie implementiert. Exemplarisch wird gezeigt, dass pfadabhängige Zins-

derivate einfach bewertet werden können, sofern die Parameter des zugrunde liegen-

den Short Rate Prozesses bereits definiert sind. Schlussendlich wird die Relevanz

von Monte Carlo Methoden für die Bewertung von pfadabhängigen Zinsderivaten

diskutiert.
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