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Zusammenfassung 
 
Die Analyse von seismischen Weitwinkel-Reflexionsdaten, akquiriert während der seismischen 
Experimente CELEBRATION 2000 und ALP 2002 in Mitteleuropa, zeigt neben bekannten 
seismischen Signalen aus der Erdkruste und der Erdkrusten-Erdmantelgrenze auch signifikante 
Reflexionseinsätze bei größeren Offsets. Diese Einsätze stammen möglicherweise von einem 
Reflektor im oberen Mantel. Mittels Laufzeitinversion wurden im Rahmen der vorliegenden 
Arbeit Tiefe und Struktur dieses Reflektors ermittelt. Um ein bestmögliches Resultat zu erzielen, 
mussten die Reflexionslaufzeiten so genau wie möglich gepickt werden. Zur Hilfestellung wurden 
mittels Ray Tracing Reflexionslaufzeiten für verschiedene Reflektor-Tiefenmodelle (55 km,       
60 km, 70 km und 80 km) modelliert. Nach einer Optimierung der Laufzeitpicks wurden diese 
nach Tiefe und Struktur invertiert, wobei ein iteratives Verfahren zum Einsatz kam. Das 
zugrunde liegende Krustengeschwindigkeitsmodell basiert auf bereits existierenden Ergebnissen 
der oben genannten Experimente. Die Geschwindigkeitsverteilung im oberen Mantel ist hingegen 
nicht ausreichend bekannt; die Inversion wurde daher für drei Mantelgeschwindigkeitsmodelle 
(Geschwindigkeitsgradienten 0.01 s-1, 0.005 s-1 und 0.002 s-1) durchgeführt. Da die Beziehung 
zwischen Laufzeit und Reflektortiefe nicht linear ist, wurden jeweils drei Iterationen ausgeführt. 
Von den resultierenden drei Reflektor-Tiefenmodellen wies jenes basierend auf einem 
Gradienten von 0.005 s-1 die geringsten Laufzeitfehler auf und wird daher als plausibelstes 
Ergebnis angesehen.  
 
Der subhorizontale Reflektor befindet sich in einer Tiefe von durchschnittlich 55 km und liegt 
geographisch gesehen im Grenzgebiet zwischen Österreich, Ungarn und der Slowakei. 
Geologisch stellt dieses Gebiet die Übergangszone zwischen Ostalpen und Karpaten dar. Die 
Entstehung des Reflektors kann womöglich mit der Intrusion von mafischen Material in die 
Lithosphäre in Verbindung gebracht werden. Diese Interpretation wird durch Schwereanomalien 
und hohe Unterkrustengeschwindigkeiten im Untersuchungsgebiet unterstützt.  
 
In manchen seismischen Sektionen ist zusätzlich ein zweiter Reflexionseinsatz erkenntlich. Dieser 
wurde als zweiter Reflektor in größerer Tiefe (~70 km) interpretiert.        
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Abstract 
 
Analysis of seismic wide-angle reflection data acquired during the CELEBRATION 2000 and 
ALP 2002 experiments in Central Europe reveal – besides known phases – significant reflection 
events at greater offsets. These most likely originate from an upper mantle reflector. Travel times 
correlated with this reflector have been inverted to determine its depth and shape. In order to get 
the best possible result, reflection travel times had to be picked as accurately as possible. Based 
on ray tracing, travel times have been modelled for several reflector depth models (55 km, 60 km,    
70 km and 80 km) to support the picking. After having optimised the amount of travel time 
picks, an iterative inversion scheme was applied. The underlying crustal velocity model was based 
on the results of the above mentioned experiments. The dependence of the upper mantle 
velocities with depth, in contrary, is less known; inversion has therefore been carried out for 
three different velocity models (mantle velocity gradients of 0.01 s-1, 0.005 s-1 and 0.002 s-1). Since 
the relationship between travel time and reflector depth is non-linear, three iterations were 
carried out. In terms of travel time errors, the reflector depth model based on a gradient of   
0.005 s-1 showed the best performance and is therefore considered as the most plausible result.  
 
The reflector lies in a depth of ~55 km and is situated geographically in the border area of 
Austria, Hungary and Slovakia. This region represents the transition zone between Eastern Alps 
and the Carpathians. The reflector origin may be related to intrusion of mafic material into the 
upper mantle and lower crust. This assumption is further supported by positive gravity anomalies 
and high lower crustal velocities in our area of investigation.      
 
On some seismic sections additional second reflective events appear. These have been 
interpreted as a second reflector in a depth of ~70 km.  
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1   Introduction 

 
The complicated geologic setting of Central Europe has been attracting scientific interests for 
several decades with numerous extensive wide-angle reflection and refraction experiments carried 
out in recent years. Amongst them are the POLONAISE 1997, CELEBRATION 2000, ALP 
2002 and SUDETES 2003 experiments, which aimed for a better understanding of the structure 
and the evolution of the lithosphere, with a special focus on the investigation of the crustal 
structure [Brückl et al. 2007]. A network of arbitrarily oriented and intersecting seismic profiles 
cover most of Central Europe from northern Poland down to northern Italy and even further to 
Croatia (Figure 1.1).  
The seismic profiles of ALP 2002 and CELEBRATION 2000 (Figure 1.1) are used for this thesis. 
Geologically, this region extends from the Bohemian massif to the north, across the Molasse 
basin, the Eastern and Southern Alps to the Dinarides in the south, and the Panonnian basin in 
the south-east. 

 
 
Figure 1.1. Field layout of recent large wide-angle reflection/refraction experiments in Central Europe [Behm et al. 2007].                                             
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1.1   Tectonic setting of the investigation area [from Behm et al.    
       2007 and references therein] 
 
The major geologic units of the Eastern Alps and their surrounding tectonic provinces are shown 
in Figure 1.2. The Bohemian massif in the north represents the European platform. To the south, 
European crust dips below the Molasse basin, the foreland of the Alpine orogen. The Molasse 
basin is overthrust to the north by the accretionary wedge of the Eastern Alps, which comprises 
the Flysch belt and the Austro-Alpine nappes. European crust has been exhumed in the Tauern 
Window. The Periadriatic lineament (PAL) is a distinct fault and separates the Eastern Alps from 
the Southern Alps.  
 
The Southern Alps share similar lithologies with the Eastern Alps, but need to be distinguished 
by their tectonic evolution with a southward directed vergency. They are bounded to the south by 
the External Dinarides and the Adriatic foreland (Po plain and the Istria peninsula). To the 
north-east, the Eastern Alps continue into the Carpathians. The Pannonian domain, which 
comprises parts of the Internal Dinarides and the Tisza unit, marks the south-eastern border of 
the Eastern Alps. The Pannonian domain is characterised by deep sedimentary basins and high 
heat flow. The  Mid-Hungarian Line (MHL), an important SW-NE trending fault zone, runs 
through the Pannonian domain.  
 

 
Figure 1.2. Tectonic setting of the investigated area [Behm et al. 2007], generalized after Schmid et al. 2004, Doglioni & Bosselini 
1987, and others. SEMP: Salzach-Enns-Mariazell-Puchberg line; M.-M.L: Mur-Muerz line; Eg.L: Eger line; AF: Alpine Front; 
PAL: Peradriatic lineament; MHL: Mid-Hungarian Line; TW: Tauern Window; VB: Vienna Basin; NG: Neogene Volcanics. 
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Most elements of the present-day crustal structure result from tectonic events since the opening 
of the Atlantic and Indian Ocean in the Jurassic. The anticlockwise rotation of Africa  with 
respect to Europe was followed by convergence between Europe and Africa in the Cretaceous, 
leading to a first phase of Alpine orogenic activity. In the Oligocene, the closure of the Alpine 
ocean basins led to the collision of the Adriatic microplate (subplate of Africa) with the 
European platform, causing a second phase of Alpine orogenic activity. Thereafter, in the late 
Oligocene and early Miocene, roll-back of the south-westward Carpathian subduction zone 
generated the Vienna and Pannonian basins. The ongoing movement of the Adriatic plate 
towards Europe also formed the Dinaridic orogen. Since the late Oligocene and early Miocene, 
the ongoing north-south oriented compression of the Eastern Alps has been accompanied by 
vertical and lateral extrusion and tectonic escape of large crustal wedges to the unconstrained 
margin represented by the Pannonian basin in the east. 
The results of the ALP 2002/CELEBRATION 2000 experiments provided new insights into the 
crustal structure of the Eastern Alps, revealing some features that have been unknown until 
recently (Figure 1.3, Behm et al. 2007). Amongst them is a remarkable jump in Moho depth from 
approximately 37 km to 27-29 km at the transition zone between the Alpine domain and the 
Panonnian domain. This change in Moho depth separates an interpreted Panonnian fragment 
from the Adriatic microplate. It is regarded as a consequence of crustal thinning due to tectonic 
escape from the Alpine collision area to the unconstrained margin represented by the Panonnian 
basin since the late Oligocene to early Miocene.   
 
 

       
 

(a) (b) 

 
Figure 1.3. (a) Results from CELEBRATION 2000/ALP 2002 experiments reveal a new tectonic feature, the Pannonian 
Fragment, which forms a triple junction with the European Plate and the Adriatic Microplate, which underthrusts this fragment. 
(b) The newly discovered plate boundary is indicated by a shift in Moho depth from approximately 37 km to 28 km between the 
Adriatic Plate and the Pannonian Fragment [Behm et al. 2007].  
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1.2   Objective of this thesis 
 
The ALP 2002 and CELEBRATION 2000 experiments were carried out to investigate the 
crustal structure with a particular interest in the Moho discontinuity. In areas with high 
signal/noise ratio, however, not only the typical seismic arrivals such as the Pg- (diving wave 
through the crust), PmP- (Moho-reflection) and Pn-phases (refracted wave from the uppermost 
mantle) are obtained, but also significant reflective events from below the Moho, whose 
investigation poses the main task of this thesis. Those mantle reflections are abundant in certain 
regions and are most prominent on cross-section profiles. A very interesting feature is obtained at 
specific seismic sections where apparently two different reflective events can be recognized.  
 
Observed reflections appear at offsets between 200 and 500 km and accumulate significantly in 
three regions: a) in the transition zone between the Eastern Alps, the Pannonian Basin and the 
Carpathians, b) in the Eastern Alps of Carinthia, c) in the Bohemian Massif in the central Czech 
Republic. 
 
This thesis aims for the investigation of these reflective events from the upper mantle including 
an inversion for depth and shape by applying ray tracing techniques as well as travel time 
inversion. Both approaches will be presented here, their parameters and adjustments explained 
and the accuracies of both systems will be compared.   
In the first step an appropriate starting model will be elaborated to get a first depth estimation 
which subsequently facilitates the application of ray tracing. 3-D ray tracing for simple models is 
applied to support travel time picking. Inversion of these travel time picks allows a more accurate 
determination of the reflector structure. It will be shown that the output of the inversion is 
significantly influenced by the chosen velocity models. Crustal velocities are quite well 
determined, whereas upper mantle velocities are rather poorly constrained. Thus, several upper 
mantle velocity distributions will be tested and their influence on the reflector depth will be 
shown.        
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2   Reflectors in the uppermost mantle 

 
2.1   Petrophysical parameters of crust and mantle 
 
Intensive seismological studies reveal a quite complex structural composition of crust and mantle 
with a strongly varying distribution of petrophysical parameters such as P- and S-wave velocities 
and density (see Figure 2.1b and Figure 2.2). Figure 2.1a shows a cross-section through the crust and 
the upper mantle with the appropriate geological subdivisions.  
 
 
The crust 

The crust can be divided into continental and oceanic crust, with depths of 30 - 50 km beneath 
the continents and 5-10 km beneath the oceans. The average crust density is 2700 kg/m3 and the 
P-wave velocities range typically from 5 km/s at shallow depths to about 6.5 - 7 km/s at a depth 
of 30 - 50 km. Due to the complex composition of the crust, seismic velocities do not generally 
increase continuously with depth but sometimes decrease in zones with different geological 
settings.  
Feldspar (K-feldspar, plagioclase) is the most abundant mineral in the crust, followed by quartz 
and hydrous minerals, such as micas and amphiboles [www.gupf.tu-
freiberg.de/geologie/geo_minerale.html]. 
 
The boundary between crust and mantle is defined by a sharp increase in P-wave velocity to 
about 8 km/s; this transition zone is usually called ‘Mohorovicic discontinuity’ or ‘Moho’. 
 
 
The upper mantle 

The uppermost mantle between the Moho and a depth of 80-120 km is rigid, with slightly 
increasing P- and S-wave velocities. This layer is sometimes called the ‘lid’. Together with the 
crust, the lid forms the lithosphere. An increase of P- and S-wave velocities by 3 - 4 % has been 
observed at around 220 ± 30 km depth (Figure 2.2). However, this discontinuity, also known as 
‘Lehmann discontinuity’, is not found everywhere [Lowrie, 1997].  
Between the lid and this discontinuity, in a depth range of 100 - 200 km, body-wave velocity 
gradients are weakly negative. The layer is called the low-velocity layer (LVL) and is usually 
associated with the top of the asthenosphere. The decrease in seismic velocities is attributed to 
reduced rigidity in this layer.  
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(a) (b) 

                         
Figure 2.1. (a) Cross-section through crust and mantle with internal subdivisions; (b) density-depth profile: in the crust the 
density of rocks increases with depth due to an increase in pressure; in the lithospheric mantle (pale green), the density decreases 
with depth because of increasing temperature [www.geosci.usyd.edu.au/users/prey/Geol-1002/HTML.Lect1/sld015.htm]. 

 
 
Upper mantle P-wave velocities start around 8 km/s and increase slightly with depth until the 
low-velocity layer is reached (e.g. Figure 2.2). Christensen & Mooney (1995) investigated the 
petrophysical parameters of the lithosphere obtained from worldwide data and proposed an 
average P-wave velocity of 8.1 km/s and a density of 3350 kg/m3 for the uppermost mantle. The 
composition of the upper mantle mainly comprises the rock types peridotite, dunite (olivine-rich 
peridotite) and eclogite. Eclogite typically results from high-pressure metamorphism of mafic 
igneous rock (typically basalt or gabbro) as it plunges into the mantle in a subduction zone.  
 
 

 
 
Figure 2.2. P-wave velocity – depth profile in the upper mantle beneath the Canadian shield [Lowrie, 1997]. 
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2.2   Evidence for upper mantle reflectors  
 
In 1975, as the first deep seismic profiling experiments took place, excitement arose among 
seismologists when reflections from the Moho could be obtained, allowing them to study the 
Moho structure in different geologically interesting places. However, on most profiles recorded 
around the world, no reflectors were found within the mantle, except at sites of recent 
continental collision (e.g. the Pyrenees) or active oceanic subduction zones (e.g. Vancouver 
Island) where probably crustal material diving into the mantle was imaged.  
In recent years, the number of deep seismic experiments increased throughout the world, with 
the result that nearly every deep reflection program has reported some type of mantle structure 
(Figure 2.3). Reflection energy from the mantle lithosphere is observed in both near-normal 
incidence and wide-angle data.  
 
 

 
Figure 2.3. Location map indicating surveys reporting mantle reflections [Steer et al. 1998] 
 
 
 
The first experiment to reveal significant mantle reflectors was in 1982 by the BIRPS group, off 
the north coast of Scotland [www.earthscrust.org/earthscrust/science/startups/birps-su.html]. In the 
following years research on the upper mantle was carried out by Lie et al.(1990),                    
BABEL Working Group (1990), Posgay et al. (1990), Calvert et al. (1995), Alsdorf et al. (1996),       
Knapp et al. (1996), MONA LISA Working Group (1997b), Cook et al. (1998, 1999),           
DEKORP-BASIN Research Group (1999), ANCORP Working Group (1999) and Balling (2000). 
Despite these investigations in the lithosphere, little is yet known about the formation of mantle 
structures, why they are preserved, and how they relate to continental evolution. 
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2.3   Categories of mantle reflections (according to D. Steer,  
       J. Knapp and L. Brown, 1998) 
 
2.3.1   Dipping lower crustal to upper mantle reflections 

 
The Flannan and W-features, two distinctive sub-crustal reflectors, are probably the best studied  
mantle reflections and were first observed on the DRUM profile in 1984, offshore north-west of 
Scotland. The results of this project, carried out by the BIRPS group, showed for the first time 
the structural complexity and heterogeneity in the sub-crustal mantle and led to a new 
understanding regarding the role of the mantle in lithospheric evolution at that time. 
The Flannan reflector runs from about 20 km depth within the lower crust down to at least 80 
km total depth in the sub-crustal lithosphere, dipping at about 30° to the east. It is interpreted as 
a fault that had taken up corresponding tectonic movement in the mantle. The W-feature, as seen 
in Figure 2.4, is sub-parallel to the Moho at a depth of 45 km east of the ‘Flannan’, and is 
interpreted as part of the crustal shortening caused during the suturing event. 
 
 

 
Figure 2.4. Cross-section of the DRUM-profile including the prominent W- and Flannan reflectors 

W-reflector 

Moho 

Flannan-
reflector 

 
Similar reflective characteristics are observed in data acquired from the Bay of Bothnia between 
Sweden and Finland [BABEL Working Group, 1990], with the reflective event starting in the lower 
crust and dipping 20 - 25° to a depth of 70 km. In the Superior Province of Canada data show 
lower crustal to upper mantle reflections that dip 25 - 30° to a depth of at least 70 km         
[Calvert et al. 1995]. 
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2.3.2   Diffuse or isolated mantle reflections 

 
Diffusely distributed and isolated reflectors are obtained in a number of experiments including 
the INDEPTH data beneath the Himalayan region and the Trans-Hudson Orogen in North 
Dakota. Isolated mantle reflections are rather difficult to interpret, with proposed theories 
ranging from mafic layering (e.g. Lonesome Lake Complex) to upper mantle intrusions           
(e.g. Mid-Continent Rift). 

 
2.3.3   Sub-horizontal mantle reflections 

 
This category of mantle reflections is characterized by laterally continuous, distinct,                
sub-horizontal events, sometimes appearing as doublet separated roughly by 2 seconds two-way 
travel time or 4 - 5 km. Data showing this kind of reflection have been acquired in the Skagerrak 
between Norway and Denmark, during the MONA LISA experiment in the southeastern North 
Sea, beneath the Pannonian Basin of Hungary, and in the Caledonides and Urals. 
Interpretation attempts vary hugely – Posgay suggests that mantle reflectors in the Pannonian 
Basin may represent structure in the asthenosphere; Snyder (1991) proposes the reflector in north-
west Scotland either to be a ‘Moho relict’ or a mafic or ultra-mafic intrusion. 
 
Sub-horizontal reflections have been observed at even greater depths up to 100 km. During the 
URSEIS project in the Ural Mountains of central Russia, reflectors have been found at a depth of 
80 - 100 km. Later data analysis showed a coincidence of the reflector with velocity anomalies at 
that depth.  

 
2.3.4   Super-deep mantle reflections 

 
The URSEIS experiment indicates not only a reflective horizon at a depth of 80 - 100 km, but 
also reveals two distinctive reflectors in a far deeper portion of the lithosphere, at depths of     
135 - 165 km and 225 km. These reflectors are laterally continuous over a distance of 75 km for 
the reflector at a depth of 135 - 165 km and about 20 km for the second reflector.  
Interpretation was mainly done by Knapp et al. (1996), who advanced the hypothesis that these 
reflections may form the boundary between the lithosphere and the asthenosphere. If they do 
correspond with the base of the lithosphere, compositional layering or mafic intrusions from the 
asthenosphere in the mantle lithosphere could produce strong reflections. 
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2.4   Geological models for upper mantle reflectivity 
 
The complexity of mantle reflections – from shallow to ultra-deep and from dipping to 
horizontal reflections – obtained from numerous deep seismic reflection data around the world, 
makes it difficult to interpret them according to a single geological model. Currently, a couple of 
models shown in Figure 2.5 are considered to explain reflectivity. However, two models – relict 
subduction zones and mantle shear zones – are favoured by many geoscientists. Seismic 
anisotropy and fluids may also account for seismic reflections in the mantle. 

 
2.4.1   Relict subduction and collision 

 
At the subduction of oceanic crust to a depth greater than circa 40 km a transformation from 
basalt/gabbro to eclogite takes place. This transformation does not occur instantaneously, but 
needs some additional conditions. Laboratory experiments and field observations show that 
water plays a key role and stimulates transformation. 
 
Since the density of eclogite is larger than upper mantle peridotite, an increase in density takes 
place during transformation. In this case, densities vary between 3470 kg/m3 and 3610 kg/m3 
[Anderson, 1989] and 3480 ± 70 kg/m3 [Christensen & Mooney, 1995]. P-wave velocities for eclogites 
are defined within a broad range – 7.9 km/s [Christensen & Mooney, 1995], 8.2 - 8.6 km/s 
[Anderson, 1989] and 7.7 - 8.6 km/s [Rudnick & Fountain, 1995]. 
 
Studies of mantle reflectors north of Scotland (W- and Flannan reflectors) resulted in the         
W-reflector to be 3 - 10 km thick with a P-wave velocity of 8.5 ± 0.1 km/s and a surrounding 
mantle P-wave velocity of 8.2 km/s. These observations lead to the conclusion that the Flannan 
and W-reflectors represent reflection events from the tops of slabs of eclogite and therefore 
favours the subduction hypothesis for these reflectors. 
 
Interpretation in terms of ancient subduction and collision zones has also been advocated for 
dipping upper mantle reflectors observed in BABEL data from the Baltic shield [BABEL 
Working group, 1990], MONA LISA data from the North Sea [MONA LISA Working Group, 
1997b] and the LITHOPROBE data in the western Canadian shield [Cook et al., 1998, 1999], 
where the reflectors are interpreted to represent 1.9 - 1.8 Gyr old subduction structures. 

 
2.4.2   Shear zones 

 
Reflectivity generated by crustal faults and shear zones, both in compressional and extensional 
processes, has been investigated by Meissner (1996), and is now widely accepted. Studies 
combining petrophysical measurements, field studies and synthetic reflection modelling have 
shown that the seismic impedance contrast related to shear zones seems to correspond well with 
real data.  
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Shear zones in the upper mantle are unfortunately not well documented, however, field data from 
exposed upper mantle peridotites in the Alps and the north Pyrenean [Vissers et al., 1995, 1997] 
demonstrate the existence of localized shear zones. Observed grain size reduction and mineral 
reaction point towards a reduction in P-wave velocity and density and consequently supports the 
generation of reflectivity.  

 
2.4.3   Anisotropy 

 
Anisotropy may also cause reflectivity. Olivine, which is expected to constitute about two thirds 
of upper mantle minerals, is highly anisotropic. Parts of the upper mantle may develop anisotropy 
when oriented along a stress. Velocity anisotropy larger than 5 % is uncommon – Dunite, 
consisting mainly of olivine, shows a P-wave velocity anisotropy of 8.1 km/s ± 3.9 % [Christensen 
& Mooney, 1995].  
Research by Warner & McGeary (1987) on anisotropy in upper mantle peridotite leads to a 
reflection coefficient of less than 0.04 – in comparison to reflectors on BIRPS profiles which 
show a reflection coefficient of 0.1 – which is too little to produce significant reflection energy. 
However, localized deformation in the upper mantle may contribute to the generation of 
significant reflectivity. 

 
2.4.4   Fluids 

 
The effect of fluids (zero shear modulus), even in very small amounts, on seismic waves is not to 
be neglected as it may cause a significant contrast in reflectivity to the surrounding solid rocks. In 
young tectonic processes as in subducting events, fluids may be present and influence seismic 
properties significantly, whereas in old tectonic features fluids may have already migrated away 
and cause no impact on reflectivity.     
 

 
Figure 2.5. Mantle reflections are thought to be caused by: a) remnants of subduction, b) distributed shearing in the upper 
mantle, c) localized shearing in the upper mantle, or d) mafic intrusions to the upper mantle [Steer et al. 1998] 
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3   Theory of travel time modelling and inversion 

 
3.1   Eikonal equation [Yilmaz, 1987] 
 
The Eikonal equation represents the high-frequency solution to the scalar wave equation and 
allows to compute travel times and ray paths. Its solution represents wavefronts of constant 
phase. At low frequencies body waves do not decouple and the Eikonal equation is then, in 
general, not valid.   
 
In order to derive the Eikonal equation we need a solution to the 3D – scalar wave equation 
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where P(x,y,z,t) is a wavefield (e.g. pressure field, displacement field,…) that propagates with a 
velocity ν. 
 
One solution to this equation is  
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which can be interpreted as a compressional plane wave  in 3D-Cartesian coordinates 

with  as its amplitude and t  its travel time. Substitution of equation E.2 into E.1 
yields the dispersion relation of the scalar wave equation  
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with v  as the propagation velocity of the compressional plane wave. 
 
Rewriting the phase term ( )[ ]zkykxkt zyx ++−ω  in the plane wave solution of equation E.2 

results in  
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defined as a 3D-travel time surface.        

 
Thus, using , equation E.2 can be rewritten in the following manner ),,( zyxT
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18 



In the next step, E.5 will be substituted into the scalar wave equation E.1. After a split into real 
and imaginary parts, E.1 reads 
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The imaginary part has to go, since the term on the right-hand side is real. Dividing the remaining 
equation by ω2 leads to an expression that is commonly known as the Eikonal equation.  
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The function  has units of time and simply represents the time required by the 

wavefront to reach a point  from some reference location  in a medium with  

velocity . One solution to the Eikonal equation is = constant, which defines a 
wavefront at an instant of time. The gradient of represents the raypath, which is 
perpendicular to the wavefront. 
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As mentioned earlier, the Eikonal equation represents just an approximation to the scalar wave 
equation. We want to examine why it is restricted to higher frequencies only and, thus, which 
conditions need to be fulfilled to apply this equation properly. 
Let us consider the same plane wave as in equation E.5. This time, seismic wave attenuation 
through geometrical spreading, scattering etc. will be taken into account. The amplitude then 

becomes a function of .  
0P
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Just as before, E.8 will be substituted into E.1. This time, the partial derivatives need to be 
applied to as well.  0P
The resulting real part is then given by 
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To reduce this equation to the Eikonal equation, the second term on the left-hand side has to go. 
This is done by assuming high frequencies, which results in 1/ω converging to zero. Since 
λ=2πν/ω, where λ is the wavelength, the high-frequency assumption is equivalent to small 
wavelengths. 
 
In practical applications, it is interesting for which wavelengths the Eikonal equation can be used 
as an approximation. It is valid as long as the velocity gradient is much less than the       
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frequency ν/λ. Thus, it can not be used across a layer boundary with a sharp velocity contrast or 
in layers with velocity variations that occur to an extent much lower than the wavelength.  
 
Summing up, the Eikonal equation can be used as an approximation as long as velocities do not 
vary rapidly. 
    
3.2   Methods based on ray tracing 

 
3.2.1   Ray tracing equations [Cerveny, 1987] 
 
The solution to the Eikonal equation is a function that defines the travel time of a wave at each 
point. It can be descriptively explained as a wavefront that is perpendicularly cut by a trajectory 
(or ray). 
Let us assume an earth model with assigned velocities, an arbitrary starting point at the surface 
for a ray to propagate and an initial direction. The ray, emanating from an initial location with 
known coordinates, is now traced along its path through the model. In practical applications, we 
are interested in the travel time the ray needs to get to a specific location in the model or on the 
surface, the ray coordinates at specific points and the direction of the ray at these points.  
 
In order to derive these parameters, we specify the ray by the parametric equation  
 
                                                       x(s) = [ ])(),(),( szsysx      (E.10) 
 
where s is the arclength along the ray, with s = 0 indicating the reference point of the ray.  
 
Since the ray is always perpendicular to a wavefront, it is always parallel to  
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slowness vector.   

T∇

 
                                                            T∇=p                  (E.11) 

 
Now we let the ray advance for a short distance along the ray path yielding the following 
equation  

ds

                                                   dx = 
||

p.  
|| T

dsds
T
T

∇
=

∇
∇                                      (E.12) 

 

where 
|| T

T
∇
∇  is the unit vector parallel to (see Figure 3.1).    ds
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Figure 3.1. Sketch illustrating the quantities (ds, p, unit vector ) which are used in the derivation of the ray tracing equations. 
 

Substitution of the Eikonal equation 
),,(

1||
zyxv

T =∇  into equation E.12 produces the  

1. Ray Tracing Equation 
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Starting from an initial point, this equation allows to determine a new point along the ray path. At 
each point a new ray direction is needed, consequently, the differential equation dp/ds needs to 
be solved. 
 
dp/ds can be rewritten in the following manner when using the index notation and applying the 
rule of changing indices:  
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This is called the 2. Ray Tracing Equation   
 

                                                          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
),,(

1
zyxvds

d
x

p
                                                 (E.14) 

 
Information about the travel time along the path is simply obtained through the slowness 
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In some situations it might be advantageous to use some other independent variable w along the 
ray rather than using s. Then the ray is described by 
 
                                                        [ ])(),(),()( wzwywxw =x                                             (E.16) 
 
The variable w can now be chosen in many ways, for example, as one of the three Cartesian 
coordinates. However, the problem that occurs when using Cartesian coordinates is the non-
monotonic behaviour along the ray. If we choose x3 corresponding to the depth as our variable 
w, the ray must then be divided into a down- and an up-going segment. Some difficulties also 
occur at the turning point of the ray. Therefore, it is more useful to choose a monotonic   
variable w. 
 

Instead of s, the arc length, the travel time T may be used as the variable. With ds
v

dT 1
=  

equations E.13 and E.14 can be rewritten as 
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The ray tracing equations can be written more generally in terms of w, with w given as 
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leading to the following equations 
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                                                                      nv
dw
dT −=                                                        (E.22) 

 
 
The general equations of E.20 - E.22 are reduced to equations E.17 and E.18 if we set n=0, the 
variable w then equals then the travel time T. In case of n=1, we have w=s, the arc length, and 
equations E.20 - E.22 transform to E.13 - E.15. 
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If we wish to evaluate not only rays, but also wavefronts, it may be useful to choose the travel 
time T as the variable along the ray (n=0). Then the wavefronts are obtained automatically, as a 
by-product of the ray tracing. The use of other variables along the ray, for example the             
arc length s, makes the wavefront evaluation more complicated requiring an additional integration 
of equation E.15 or at least an interpolation. In the analytical and cell ray tracing, a very suitable 
form of the ray tracing system is obtained for n=2. Therefore, we shall introduce a special symbol 
w=σ for the variable along the ray: 
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Then, the ray tracing equations read 
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A remarkable feature in equation E.25 and E.26 is the quadratic slowness 1/ν2, which is more 
useful in certain ray tracing applications than the velocity ν or the slowness 1/ν. This is due to the 
fact that equation E.25 only contains the first partial derivatives of 1/ν2, not the quadratic 
slowness 1/ν2 itself, and thus can be handled easier in analytical ray tracing. 
 
In order to solve the ray tracing system equations and the equations for the travel time, initial 
conditions must be given. These are:  
 
 ● coordinates of the initial point P, which also defines the initial x=x0                                     

 ● initial direction p=p0                                                                                                  
 ● initial travel time T=T0                                                                                           
 
The three components of the initial slowness vector p0 have to satisfy the Eikonal equation at the 
initial location P, 
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with ν0 as the initial velocity.  
 
 
 

23 



Given the initial direction of the ray at P by two take-off angles δ0, which represents the 
declination, and φ0, the azimuth, the components of the initial slowness vector can be expressed 
in the following way: 
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As soon as the Eikonal equation is satisfied at the initial point, it is satisfied along the whole ray. 
 
The initial values for x and p allow us to compute a new point along the ray path by applying the 
1st ray tracing equation. Through the 2nd ray tracing equation we get the new direction at that 
specific point, in other words, a new slowness vector p. That again is used in the first equation to 
determine the next ray point.  
 
The above mentioned differential equations can be solved either analytically or numerically. The 
simplest and fastest way to solve the ray tracing equations is based on their analytic solution. Its 
application, however, is limited to simple velocity functions only (e.g. constant velocity, constant 
gradient of velocity: v(z)=v0 + k.z, …) – a criterion that is unfortunately never met in real 
models. Nonetheless, a solution can be found to this kind of problem. The whole medium, which 
is defined by a complicated velocity distribution, will be divided into suitable cells, in which the 
velocity can be approximated in a simpler way that permits analytic solutions. The ray in the 
whole model is then obtained as a chain of analytically computed segments.    
 
In some cases, though, the direct numerical solution of the ray equations is more suitable.  
Numerous numerical techniques are available including the popular Runge-Kutta method and 
the method of the predictor and corrector. 
 
In general, two kinds of ray tracing need to be distinguished – initial-value ray tracing and   
two-point ray tracing. 
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3.2.2   Initial-value ray tracing [Cerveny, 1987] 
 
Initial-value ray tracing describes the tracing of rays through a medium by solving the ray tracing 
equations with given initial conditions (initial point/ initial direction) (see Figure 3.2). 

 
 

 
 

Figure 3.2. In the initial-value application, the ray emanates at an initial location (x0, y0, z0) with its direction defined by the 
azimuth ϕ and declination δ. 
 
 
Many procedures have been elaborated in order to solve the ray tracing equations for the initial 
value problem. To pick a proper procedure depends on many factors such as required accuracy, 
practical purpose, numerical efficiency of computations and the completeness of ray properties 
(should travel times be computed alone or together with ray amplitudes).  

 
3.2.3   Two-point ray tracing [Rawlinson et al. 2003] 
                                      
In the initial-value ray tracing the ray is specified by its two take-off angles δ0, the declination, and 
ϕ0, the azimuth, and then propagates through the medium until it reaches any point at a defined 
surface. Two-point ray tracing, in contrary, involves solving the boundary value problem. That 
means, the source point and the receiver locations are fixed and the two take-off angles are now 
varied in a way so that the ray terminates at a specified receiver location (see Figure 3.3).    

 

 

p

  y 

  z 

v(x,y,z)

  φ 

δ  x 

 

Figure 3.3. In the two-point ray tracing technique the angle of radiation is varied until the ray path terminates at a specified 
receiver [Rawlinson et al. 2003].  
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Since the ray end point (xe, ye) should coincide with the receiver location (Xr, Yr), the boundary 
value problem aims to find δ0 and ϕ0 which solve the two non-linear simultaneous equations 
 

re Xx =),( 00 ϕδ                    (E.29) 

re Yy =),( 00 ϕδ                    (E.30) 
 

Given that (xe, ye) cannot be expressed explicitly as a function of (δ0, ϕ0) for most velocity fields, 
it is usually the case that the boundary value problem is posed as an optimisation problem, with 
the misfit function to be minimised expressed as some measure of the distance between the ray 
end point and its intended target. 
 
Since the optimisation problem is non-linear, a range of iterative non-linear and fully non-linear 
schemes can be applied. A common iterative non-linear scheme is Newton’s method, which 
amounts to iterative application of the following system of equations: 
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Thus, given some starting initial trajectory , solution of this equation provides an updated 
initial trajectory , and the process is repeated until an appropriate tolerance criterion is met. 

0
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0 ,ϕδ
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The success of this scheme depends largely on two factors: (1) accurate calculation of the partial 
derivative matrix, and (2) obtaining an initial guess ray that will converge to the correct minimum 
under the assumption of local linearity. However, both of these requirements can be difficult to 
satisfy, particularly in complex media. One way of obtaining an accurate initial guess ray is to 
shoot a broad fan of rays in the general direction of the receiver array, and then (if necessary) 
shooting out increasingly targeted clusters of rays towards zones containing receivers until a 
suitably accurate initial ray is obtained. 
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3.3   Finite difference method 
 
Rather than tracing rays from point to point through a medium to determine the travel time from 
source to receiver, an alternative is to track the propagation path of the entire wavefront. The 
travel time to any point in the medium can be found using this approach. In order to calculate 
the first-arrival travel time field, solutions of the Eikonal equation on a regular grid have to be 
found, which is most conveniently achieved when using the finite difference method. 
Wavefront tracking approaches do not explicitly find ray paths. However, in the inversion of 
reflection times a way of locating ray paths is required. One way of doing this is to start at the 
receiver and follow the gradient of the travel time field back through the computed travel time 
field to the source. The gradient will always be perpendicular to the first arrival wavefront and 
will therefore determine the first-arrival ray path. In practice, this is done on a cell-by-cell basis 
using the average travel time gradient within each cell. The whole path from receiver to source 
will be described by piecewise linear segments.  
 
 
Vidale (1988) proposed a finite difference scheme that involves progressively integrating the 
travel times along an expanding square in 2-D. However, this method does not directly involve 
the tracking of wavefronts to determine the travel time field, but it represents a precursor of 
schemes that do. The Eikonal equation (E.7) in 2-D is given by: 
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where s(x, z) is the slowness field and T(x, z) is the travel time of a propagating wave. Vidale’s 
method is based on a velocity distribution that is given on the corners of a square grid. Consider 
the grid points surrounding some local source point A in Figure 3.4a. If the travel time to point A 
is T0 then the travel time to the points Bi is determined by the arithmetic mean of the slowness at 
these points: 
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where h is the node separation and and  are the slowness at the nodes Bi and A 

respectively.  
iBs As
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In the next step the travel time to the corner points needs to be found. This can be achieved 

when the known travel times A (T0), B1 (T1) and B2 (T2) in Figure 1a are used. Point C1 (T3) can 
then be determined by applying the Eikonal equation of E.32, with its two differential terms 
approximated with finite differences in the following way: 
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Subsequent substitution of E.34 and E.35 into E.32 yields  
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and solving the equation for T3  
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where s  is the average slowness of all four points under consideration. 
 
This approach of travel time calculation is only valid for planar wavefronts. Vidale defined a 
solution for locally circular wavefronts as well (e.g. in the source neighbourhood).  
 

 

(a) (b) 

 
Figure 3.4. a) Method used by Vidale (1988) to find the first-arrival travel time field for a continuous velocity medium. b) The 
expanding square method for travel time determination. Travel times to the filled circles are determined from the open circles. 
The filled square represents the source [Rawlinson et al. 2003] 
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The travel times for all the other Ci can be derived in the same way. The next step involves 
enlarging the square around the source point as seen in Figure 4b and travel time determination 
for the next set of grid points. However, solving for the travel time to node points cannot be 
done in an arbitrary order as another condition has to be fulfilled, Fermat’s principle. That means 
the travel time has to be an extremum, in our case the shortest travel time to each new node has 
to be taken. Only these times will be valid seismic travel times. Vidale elaborated such a scheme 
for minimum travel times and extended the whole method presented here to 3-D. 
 
At the application of the expanding square method problems may occur with the geometry of the 
travel time field, which does not always resemble the shape of the first arrival wavefront. In areas 
with large velocity contrast, the computed travel times may not represent first-arrivals (Figure 3.5). 
Qin et al. (1992) improved this scheme by introducing an expanding geometry that closely 
resembles the true shape of the wavefront.  

 
 

Figure 3.5. Schematic illustration showing how the expanding square method can fail . The travel time along path 1 is determined 
by the expanding square but path 2 has a shorter travel time due to the high velocity zone [Rawlinson et al. 2003]. 

 
 
As soon as reflection travel times are considered, the finite difference method by Vidale needs to 
be modified. Hole and Zelt (1994) describe a method that is more accurate compared to other 
finite difference methods (e.g. Lecomte & Hamran (1993)). Reflection travel times are computed 
under the assumption that the reflecting interface, the incident wavefront and the reflected 
wavefront are locally planar. Travel times immediately above the reflector will be replaced with 
reflected travel times using Snell’s law of reflection. This can be achieved by defining the normal 
vector to the reflector n and the incident ray vector q.  
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Illustrated in Figure 3.6, the normal vector to the reflector, pointing upward, is defined by local 
differences as 
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with h defined as the grid spacing and dij as reflector depth function of the horizontal grid 
directions i and j. Depth values are not required to lie at grid nodes.  
 
The incident ray vector is defined through the already-computed incident-wave travel times 
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with k2 defined is the deepest grid node such that all nine grid nodes ‘i ± 1, j ± 1, k2’ lie above the 
reflector (Figure 3.6).  
The travel time at reflector depth di,j is then given by 
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with zk2 as the depth at the grid node k2.  

 
Figure 3.6. Illustration of travel time computation at the grid points immediately above the reflector (heavy dashed line) [Hole et 
al. 1994]. Circles represent grid nodes; reflected travel times are computed at the black grid nodes. Application of Snell’s law at the 
interface results in the reflected ray r. Derivation of r requires to take the dot product (dotted line) used in E.40.     
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The reflected vector is now obtained through Snell’s law: r = q – 2(q . n/|n|)n/|n|         (E.40) 
 
The reflected travel times at the grid nodes between the reflector and k2 are  
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This algorithm is accurate for smoothly dipping reflectors with 2-D dips up to ~45° and 3-D dips 
up to ~35°. For larger dips, k2 is too distant from the underlying reflector and the local plane 
assumption is no longer valid. 

 
3.4   Travel time inversion 
 
Here a simple inversion scheme based on the 3-D finite difference algorithm of Vidale (1990) is 
presented. The procedure described by Hole (1996) requires the velocity model to be uniformly 
spaced on a 3-D grid and to coincide with the depth grid; the node interval, however, can be 
adjusted accordingly. To get this inversion system working, the travel times of the phases to be 
inverted have to be known and need to be introduced into the system. Additionally, an initial 
guess of the reflector depth is required. The principle of this method includes the calculation of 
travel times for the initial reflector depth and subsequent comparison to real travel times. As they 
may not coincide the first time, the reflector depth will be changed slightly and the travel times 
will be calculated anew and compared until the real travel times and the calculated ones fit 
together.  
 
The reflection travel time of a ray in a model that contains one horizontal interface is given as 
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with z as the reflector depth, v the velocity above the reflector and θ the angle between the ray 
and the interface normal (Figure 3.7). 
 

z
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Figure 3.7. Sketch illustrating the relationship between the travel time and depth of a reflector. 
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For a dipping reflector, the above equation extends to 
 

αθ coscos2
v

zt =           (E.43) 
 

with α as the dip of the reflector (measured as the angle between the vertical axis and the normal 
to the reflector). 
 
The relation between a small change in reflector depth δz and the resulting change in travel time 
δt can be expressed when rewriting E.43 in the following way 
 

                                                 αθ
δ
δ coscos2

vz
t
=                (E.44) 

 
The right-hand side of equation E.44 can be calculated for each ray through the velocity and the 
reflector model (dip α) and the ray path (θ). The change in depth Δzk for the k-th travel time 
residual Δtk is then 
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where the depth perturbation applies at the reflection point. Δtk is obtained when subtracting the 
calculated travel times for the initial reflector depth from the observed travel times. 
 
Introducing M travel time data into the system will result in M depth perturbations Δzk(x, y) with 
k= 1 to M (Figure 3.8b), which are gridded to obtain a reflector perturbation model Δzij. The 
choice of the gridding scheme is rather important, especially when there are large gaps in 
reflection point coverage. The Laplace interpolation is based on the equation ∇2[Δz(x, y)]=0 and 
introduces a function Δz(x, y) with minimal structure between the depth perturbations         
(Figure 3.8c). For real data sets with errors, spikes may occur at gridding when closely spaced 
reflection points show different depth perturbations. These effects can be reduced when 
smoothing the gridded surface using a 2-D moving average filter (Figure 3.8d).  
Since the relationship between travel time and depth is nonlinear, iterations are needed. Each step 
of the iterative procedure comprises forward modelling of reflection times, inversion (calculation 
of the depth perturbation surface), gridding, smoothing and update of the reflector model. 
 
Equation E.43 represents the travel time for a simple 1-layer model with a constant velocity. 
When considering an interface that separates two media of different known velocities,  equation 
E.44 changes to 
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where θ1 and θ2 are the angles between the ray and interface normal measured above and below 
the interface and v1 and v2 are the velocities above and below the interface. 
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Figure 3.8. Illustration of inversion principle by Hole (1996) using a simple depth model. (A) Starting model with a reflector 
situated at a particular depth, (B) forward modelling of reflection travel times resulting in depth perturbations, (C) gridding of 
discrete depth perturbation points using Laplace Interpolation, (D) subsequent application of moving average filter , (E) updated 
reflector model after first iteration. 
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3.5   Parameterization of the velocity model 
 
In practical applications, the whole model is subdivided into a network of cells, of which 
tetrahedron and rectangular box cells are the most widely used. The velocities are to be 
specified either at the grid points or, alternatively, in the centres of the cells. The correct grid cell 
size is mainly dependent on the complexity of the velocity function. Complicated velocity 
distributions may require a smaller grid size to be suitable for analytical solutions, whereas 
simpler distributions (e.g. constant velocity gradient) may just be defined by one big cell. The 
velocity inside the grid cells is approximated by simple analytical velocity laws. The simplest case 
is to use a constant velocity within individual cells. This, however, automatically implies the 
introduction of interfaces of first order at the cell boundaries. This can be avoided when using 
velocity laws that introduce interfaces of second order only. The velocity distribution is then 
continuous across the cell boundaries, only the gradient is discontinuous. 
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4   Data and correlation of travel times 

 
Data used for this thesis were acquired during CELEBRATION 2000 and ALP 2002 
experiments. These include 7 profiles (43 shots and 827 receivers) from the CELEBRATION 
2000 data set and all ALP 2002 profiles (see Figure 4.1a). The ALP 2002 data set comprises all 39 
shots and 947 receivers along 13 profiles. The average receiver distance is 2.9 km on high-density 
profiles (1208 receivers) and 5.8 km on low-density profiles (583 receivers). The whole data set 
encompasses 78 933 traces, of which approximately 20 % are inline data. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) b)

Figure 4.1. (a) Profiles of CELEBRATION 2000 and ALP 2002 experiments used for this thesis; (b) according shot layout. 
 
Shots and receivers in the Bohemian Massif and in the Pannonian Basin provide record sections 
with high signal-noise ratio, compared to a lower signal-noise ratio in the Alpine region. 
 
Analysis of the data reveals significant reflective events which can be associated with upper 
mantle features. Reflection travel times were picked between offsets of ~250 km and ~500 km. 
On most seismic sections only one single reflective event is present; however, on a couple of 
sections an additional second event can be seen (e.g. Figures 4.8 and 4.9). These events appear at 
offsets >350 km and are separated by a gap in reflectivity from the neighbouring events. 
Reflection events appearing at greater offsets have been marked with ‘R2’ and those at lower 
offsets (<350 km) with ‘R’/’R1’. The occurrence of the reflecting events within a limited offset 
range only points towards a velocity increase below the reflecting interface. As shown in Tooley 
et al. (1965), strong amplitudes occur around the critical offset for a velocity increase. Ray tracing 
modelling for a reflector depth of 60 km and a realistic velocity distribution shows that the 
critical offset is approximately 250 km, which fits nicely with the observed reflections. 
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The procedure of travel time picking was repeated several times. After a comparison with 
modelled travel times (section 5.2), those picks that differed significantly were excluded from 
further computational steps.  
Finally 1078 travel times referring to the first reflective event ‘R’/‘R1’ were picked (see section 
5.4). Due to the low number of ‘R2’ travel times, travel time inversion was carried out for travel 
time picks of ‘R’/‘R1’ only.    
 
In the following section, examples of record sections containing remarkable reflectivity at greater 
offsets will be presented. These reflective events mainly occur at cross-line recordings, a few are 
obtained on in-line sections, especially on CEL07 and CEL10. 
 
Travel times on the following seismic sections are reduced by 8 km/s. 
 

 
Figure 4.2. This cross-line section (NW-SE) is characterised by a single reflective event at an offset range between 
~300 km and ~400 km. Absolute offset is shown by the thin black line above the section. 
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Figure 4.3. Strong reflectivity is observed at offsets between ~220 km and 270 km; its lateral extent, however, is not 
clearly limited due to a lower signal/noise ratio. At lower offsets (~200 km) the Pn-phase (diving wave through the 
upper mantle) can be recognized. The section runs SW-NE. 
 

 
Figure 4.4. Due a good signal/noise ratio the reflective event is indicated by very sharp first-arrivals. A PmP-phase 
is supposed to be on the right-hand side of the section. The section runs NW-SE. 
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Figure 4.5. This section (NW-SE) contains a very strong and clearly bounded reflective phase. Notice the increase in 
travel time between trace numbers 9325 and 9335. This is due to the low velocities in the Vienna basin which 
increase travel times. Just left of this event there seems to be another phase (Pn ?) which cannot be seized completely 
due to a lower signal/noise ratio.  
 

 
Figure 4.6. Beside the significant reflective event at offsets beyond 200 km, this section (NW-SE) shows several 
other seismic phases: Pn-, PmP- and the Pg-phase (diving wave through the crust).  
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Figure 4.7. A very sharp first-arrival event is observed at ~400 km. At greater offsets (500 km, 600 km) a Pn-phase 
may be observed. The section runs NW-SE. 
 

 
Figure 4.8. This is an example of a section in which seemingly two separate reflective events occur. Notice the time 
shift between them. The section runs SW-NE. 
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Figure 4.9. Another example of two different reflective events separated by a gap in reflectivity. The section runs 
SW-NE. 
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5   Modelling of ‘R1’- travel times 
 
5.1   Initial estimation of the reflector depth 
 
Before the actual reflector depth can be derived, it is useful to determine the geographic 
distribution of travel times ‘R1’ in our area of investigation. Travel time coverage is obtained by 
applying the common mid-point (CMP) method which assumes the interfaces to be horizontal 
and the velocity to be dependant only on depth (1-D velocity distribution). This assumption, 
however, is too simple for real data, thus the CMP-method  provides only limitedly accurate 
information about travel time locations.  
Three zones of significant occurrences of travel time – A, B and C (Figure 5.1) – can be 
distinguished. Due to a lower signal-noise ratio in the alpine region and sparse 3-D seismic 
coverage in the Bohemian Massif, reflection points in these regions (B and C) are not as 
abundant as in area A, which lies within the Pannonian Basin, an area with higher signal-noise 
ratio. Consequently, this thesis deals with the investigation of region A, where travel times occur 
in greater number – a fact which allows for better determination of the reflector structure in the 
inversion process.  
 
Travel times associated with second reflective events (‘R2’), as observed in Figures 4.8 and 4.9, are 
located in region A too, but will be neglected here and be treated more accurately in chapter 6. 
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Figure 5.1. Picked travel times can be divided into three geographically distinct zones – A, B and C. The histogram at the bottom 
classifies the CMP-points into offset intervals (column ‘225000’: 197000 m – 250000 m, column ‘275000’: 250000 m – 300000 m, 
column ‘325000’: 300000 m – 350000 m, column ‘375000’: 350000 m – 400000 m, column ‘425000’: 400000 m – 460000 m). 
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Derivation of an initial depth model requires the comparison of picked travel times with 
modelled travel times. For reasons of simplicity, travel times will be calculated for a simple two- 
layer case with constant velocities. The first layer represents the crust with an average crustal 
velocity vc and the bottom layer the upper mantle with the average velocity vm (Figure 5.2). All 
interfaces (topography, Moho, reflector) are assumed to be horizontal. Based on this model, the 
seismic phases ‘Pg’, ‘PmP’ and ‘Pn’ will be modelled; the PlP-travel times, on the other hand, will 
be calculated for a simple 1-layer case with rms-velocities.  

Pg 

PmP 

Pn 

PlP

Topography 

Moho 

Reflector 

vc

vm

vm1

vm2

vc1

vc2

zm 

zr 

 
Figure 5.2. Illustration of the ray pattern for a simple two layer case with constant velocities. The following seismic phases occur: 
Pg (diving wave through the crust), PmP (Moho reflection), Pn (diving wave through the upper mantle) and PlP (interface 
reflection). Zm: Moho depth; Zr: reflector depth; vc1: velocity in the upper crust; vc2: velocity in the lower crust; vm1: velocity in the 
upper mantle; vm2: velocity at reflector depth. 

 
The travel times for these phases are given as 
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with  x… offset 
  vc… average crustal velocity 
  zm… Moho depth 
  θc…  critical angle at Moho 
  vm1… Pn-velocity 

vm… average upper mantle velocity 
zr… reflector depth 

  vrms… rms-velocity of crust and upper mantle 
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The average upper mantle velocity equals the mean of the Pn-velocity (vm1) and the velocity at  
the reflector depth zr (vm2); the average crust velocity is calculated the same way as the mean 
between vc1 and vc2. Lower mantle and lower crustal velocities are given as  

 and )(12 mrmmm zzkvv −+= mccc zkvv .12 += respectively, with km as the mantle velocity 
gradient and kc as the crustal velocity gradient. 
 
Based on the above equations, travel time curves (Figures 5.3-5.6) have been computed for varying 
mantle velocity gradients km (0.015 s-1 and 0.005 s-1 ) and reflector depths zr (50 km and  70 km).  
    Upper-crustal velocity [km/s] 6
Moho depth [km] 30 Lower-crustal velocity [km/s] 6.7
    Pn-velocity [km/s] 8
Reflector depth [km] 70 Mantle velocity gradient [s-1] 0.015
    Velocity at reflector depth [km/s] 8.6
        
Average crustal velocity [km/s] 6.35 Critical angle at Moho [radians] 0.992691962
Average mantle velocity [km/s] 8.3     
RMS-velocity [km/s] 7.40     

 

Table 5.1. Input parameters for the travel time model of Figure 5.3. 
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Figure 5.3.  
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Figure 5.4. 

 
 
The travel time curves of Figures 5.3 and 5.4 indicate the influence of varying mantle velocity 
gradients on first-arrival travel times of the PlP-phase when the reflector depth is kept constant at 
a depth of 70 km. The lower the gradient, the later the first-arrivals and the stronger the 
curvature of the PlP-phase, especially at greater offsets. 
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Changing the reflector depth significantly alters the course of the PlP-Phase (compare         
Figures 5.3/5.4 and 5.5/5.6) with a stronger curvature in travel times.   
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Figure 5.5. 
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Comparison of modelled PlP-travel times from the reflector interface with picked travel times 
gives a first estimation of the reflector depth. 
 
Unfortunately, the lack of information about the mantle velocity gradient, which is supposed to 
range between 0.01 s-1 and 0.002 s-1, and limited information about the reflector depth, permit a 
variety of travel time models and makes it impossible to extract an exact reflector depth-model. 
One plausible model is presented in Figure 5.7, with a reflector depth of 70 km and a mantle 
velocity gradient of 0.01 s-1. The other parameters such as crustal velocities, Moho depth and 
Pn-velocities are relatively well determined from previous studies and were not varied. 
The simplification of using average velocities, however, significantly influences the resulting 
reflector depths when compared to models with a real subsurface velocity distributions. The 
usage of constant velocity layers automatically implies linear ray paths, whereas the ray paths for 
non-constant velocities are curved. Assuming a common ray starting and ending point for both 
models, travel times based on linear ray paths are shorter than those for curved ray paths. Thus, 
to compensate this travel time difference and to yield equal travel times, the reflector needs to be 
shifted to a greater depth. Calculated reflector depths based on models with constant velocities 
are generally too deep since their simplified calculation does not account for curved ray paths. 
This effect impacts particularly on the calculated PlP-travel times which are based on a 1-layer 
model. Estimated depth values, thus, need to be regarded cautiously.   
 

    Upper-crustal velocity [km/s] 6
Moho depth [km] 30 Lower-crustal velocity [km/s] 6.7
    Pn-velocity [km/s] 8.12
Reflector depth [km] 70 Mantle velocity gradient [s-1] 0.01
    Velocity at reflector depth [km/s] 8.52
        
Average crustal velocity [km/s] 6.35 Critical angle at Moho [radians] 0.970420153
Average mantle velocity [km/s] 8.32     
RMS-velocity [km/s] 7.41     

 

Table 5.2. Input parameters for the calculated travel times in Figure 5.7.  
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Figure 5.7. Calculated PlP-travel times are adjusted accordingly to fit the picked travel times. 

47 



5.2   Travel time computation based on the ray tracing equations  
      (program ‘ANRAY’)       
 
The program ‘ANRAY’ (http://seis.karlov.mff.cuni.cz; program description, see Appendix A.2) is 
based on the ray tracing equations and can be used to compute rays, travel times and ray 
synthetic seismograms in 3-D laterally varying anisotropic and isotropic structures. Two different 
modes of computation need to be distinguished for the application in this thesis – initial-value ray 
tracing and two-point ray tracing. 
 
5.2.1   Depth and velocity model 

 
The model used for computation with ‘ANRAY’ extends over 600 km in x-direction, 660 km in 
y-direction and 100 km in z-direction. Model building involves the determination of interfaces, 
which separate layers of different elastic parameters (velocities) and secondly, the definition of 
velocities inside these layers. In total, four interfaces – topography (top of the model), Moho-
discontinuity, reflector interface and bottom boundary of the model – were generated. This is 
equivalent to three layers. The bottom layer is needed when it comes to amplitude calculation. 
Interfaces need to be specified on a regular grid; the grid spacing may be adjusted accordingly 
depending on data density and may be varied from interface to interface. Between the grid points 
the interface is interpolated with bicubic splines. 
 
The seismic model with its interfaces (topography, Moho discontinuity) and velocities (crustal 
velocity distribution, Pn-velocities) is based on the results of ALP 2002 and CELEBRATION 
2000 experiments. As Figure 5.8b indicates, the Moho depths are not defined everywhere; in 
regions where no depth values are present, interpolation and extrapolation was carried out to 
make data available everywhere within the model boundaries. 

a) b)

 
Figure 5.8. (a) Topography map and (b) Moho depth map within the area of investigation [Behm et al. 2007]. 
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Grid spacing for topography and Moho is 20 km, both in x- and y-directions. Since the bottom 
interface of the model is defined as a horizontal plane, depth values can be simply assigned to the 
grid points at the model edges.   
 
The same grid spacing as used for the interfaces is now used when it comes to allocating  velocity 
values to grid points. Grid spacings in z-direction, however, can be chosen arbitrarily according 
to the complexity of the velocity distribution. For the first layer, which represents the crust, the 
number of grid points in x- , y- and z-direction is 34, 31 and 36 respectively, with grid spacings of 
20 km horizontally and 1-2 km vertically. Velocity-depth slices for the crust are illustrated in 
Figure 5.9. Just as for Moho depths, velocities need to be interpolated/extrapolated in areas where 
no values are present. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.9. Velocity-depth slices through the crust down to depths of 31 km [Behm et al. 2007]. 
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The Pn-velocities were determined to lie between 7.8 km/s and 8.2 km/s (see Figure 5.10). 
 
The variation of upper mantle velocities with depth is only poorly known from previous studies. 
Therefore, a simple model is proposed which comprises the velocity on top of the upper mantle 
layer (Figure 5.10) and a vertical velocity gradient. As will be shown, the choice of the latter is 
crucial for the calculation of travel times. 
 

 
  
Figure 5.10. Pn-velocities within the investigation area are based on the results of CELEBRATION 2000/ALP 2002 experiments 
[Behm et al. 2007] 

 
5.2.2   Travel time computation for pre-defined reflector models 

 
Travel times were computed for several reflector models including reflector depths of                     
55 km, 60 km, 70 km and 80 km – values which scatter about the estimated depth of Figure 5.7. 
Since upper mantle velocities are not well determined, ray tracing was applied to two different 
velocity gradients, 0.01 s-1 and 0.005 s-1. 
 
‘ANRAY’ allows to distinguish between two kinds of ray tracing systems– initial-value ray tracing 
with given initial values and an arbitrary ray termination point, and two-point ray tracing, where 
boundary values, such as ray termination coordinates, are introduced. Now, one could try to 
simply use the two-point ray tracing method by choosing a seismic profile that shows the 
reflectivity to be investigated and assigning the appropriate shot- and receiver coordinates to the 
model. This attempt, however, often fails for models with complicated seismic structures due to 
the non-linearity between the declination angle and the ray termination point. Therefore, two-
point ray tracing of travel times may not be feasible for all receivers. This problem can be 
circumvented when applying initial-value ray tracing. The travel times will be computed for a 
range of azimuth and declination angles with their increment defining the density of coverage of 
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computed travel times. In cases where the rays do not terminate at specific receivers, 
interpolation of travel times obtained from nearby rays can be performed.   
 
An important parameter in the initial-value ray tracing application is the choice of the angle 
increment for both, azimuth and declination, since it strongly influences computation time. A 
very small increment, e.g. 0.0001, produces a very dense travel time field, which is generally 
desirable, however, computation time rises significantly. Consequently, a compromise between 
the choice of angle increment and the density of the travel time field needs to be found.  
 
A very effective way to minimize computation time is to start off with a very rough increment, 
e.g. 0.1, for both angles, over the whole range of 90°. Afterwards, the travel time field will be 
plotted in terms of declination angles and the declination range that covers the needed receiver 
array will be defined (see Figure 5.11). Afterwards, the angle increment for the defined range will 
be enhanced accordingly.  

 

a) b)

 
 
 
 
 

Figure 5.11. (a) Travel time computation of shot 27070 towards line CEL10. At short offsets, travel time coverage is sufficient 
but needs to be improved at greater offsets. Therefore the increment for the declination angle needs to be better adjusted. An 
improved coverage is obtained in (b); note that the range of the declination angle is adjusted in a way so that short offsets are cut 
off. 

 
In the first application step, initial-value ray tracing was applied for several reflector depth models 
(55 km, 60 km, 70 km, 80 km) with a mantle velocity gradient of 0.01 s-1. For reflector depths of 
55 km and 80 km, travel times were computed for both velocity gradients, 0.01 s-1 and 0.005 s-1 
(see Figures 5.12 and 5.13). 
 
  

51 



 

a) b)

 
 
 
 
 

c) d)

 
 
 
 
 
Figure 5.12.  
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a) b)

 

c) d)

Figure 5.13.  

 
 
Comparing Figure 5.12a (mantle gradient of 0.01 s-1) and 5.12b (mantle gradient of 0.005 s-1) 
reveals a lack in the coverage of the travel time field in the latter figure. Due to crustal structures 
and variations in Moho depth, travel time computation fails in certain areas for a gradient of 
0.005 s-1. A similar effect is obtained in Figure 5.13d.   
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Reflection travel times of the PlP-phase are obtained at declination angles beyond ~60°. At lower 
angles (< 60°), the ray stays in the first layer (crust) as Pg- and PmP-phase. At a specific angle, the 
ray reaches the second layer as a diving wave. Increasing the angle further results in the ray 
penetrating deeper and deeper into the model until it reaches the reflector interface. The travel 
time field will gradually be built up (illustrated in Figure 5.14). 
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Figure 5.14. At low declination angle δ the ray propagates as Pg-phase; after a specific angle, the ray penetrates into the second 
layer, first as a Pn-phase, later as PlP.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

54 



The interpolated travel time fields of Figures 5.12 and 5.13 now enable travel time sampling onto 
specific receivers. Synthetic travel times are now used to support improved travel time picking, 
since accurate picks are crucial for the subsequent inversion application. Furthermore, modelled 
travel times help to better estimate the depth of the reflector. 
 
 

 
 
Figure 5.15. Synthetic travel times for various depths based on a mantle velocity gradient of 0.01 s-1 are introduced into the 
seismic section in order to better determine the course of reflectivity (red). 

 
Figure 5.15 gives an example of synthetic travel times computed for different reflector depths and 
picked reflective travel times. Modelled travel times based on reflector depths of 55 km and      
60 km coincide partly with observed reflectivity and give a rough clue about the course of 
picking. The reflector depth for this very section can be estimated between a depth of 55 km and 
60 km. Travel times in Figure 5.15 are based on a mantle velocity gradient of 0.01 s-1.  
 
Figure 5.16 demonstrates the influence of varying mantle velocity gradients (0.01 s-1 and 0.005 s-1) 
on travel times. Similar travel times are obtained for reflector models of 55 km (0.005 s-1) and 60 
km (0.01 s-1) 
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Figure 5.16. Comparison between mantle velocity gradients 0.01 s-1 and 0.005 s-1 for reflector depths of 55 km and 80 km.  
 
 
In general, there a several possible reflector depth models that result in similar travel times – 
from lower depths with lower gradients to greater depths with higher gradients – the decisive 
factors are the mantle velocity gradient and the depth of the reflector. Thus, it is difficult to 
more accurately estimate the reflector depth as long as mantle velocities are poorly constrained.  
Travel times related to reflector depths of 70 km and 80 km are long on other sections too and 
can therefore be excluded as possible solutions. A mantle velocity gradient much greater than 
0.01 s-1 would be needed to yield a coincidence with picked travel times. Such high mantle 
gradients are very unlikely in the uppermost mantle.    
As a comparison, velocity data of the Preliminary Earth Model (PREM) by Dziewonski & 
Anderson (1981) refer to an upper mantle velocity gradient of ~0.0006 s-1. Their model, however, 
may lack resolution in the uppermost layers and thus could cause these deviating values in  
velocity gradients. 
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5.3   Travel time computation based on the finite difference  
 approach  
 
In the previous section, travel times were computed by applying the ray tracing-based ‘ANRAY’ 
in order to facilitate travel time picking. Before the updated travel time picks are used for actual 
inversion, forward modelling of travel times with finite differences – just as with ‘ANRAY’ –  will 
be carried out. Afterwards, both approaches will be compared.  

 
5.3.1   Velocity parameterization 

 
The velocity model extends 600 km to the east, 660 km to the north and 108 km in z-direction. 
Since all the interfaces, including the topography, need to be defined within this model box, a 
vertical shift of 8 km was applied. Thus, the depth value of 8 km represents the original zero-level 
(see Appendix A.1). The grids themselves represent cubes with the velocities defined at their 
nodes. The grid spacing has to be adjusted according to the complexity of the velocity 
distribution. Since the velocity distribution within the investigation area is relatively smooth 
without abrupt changes, except for the Moho discontinuity, a grid spacing of 2 km has been used 
during the first computations. A grid spacing of 4 km, however, shows a greater accuracy (travel 
time difference between both grid spacings: ~150 ms) when compared to modelled travel times 
with ‘ANRAY’. Thus, all subsequent computations are based on a grid spacing of 4 km. The 
crust velocity distribution equals that used for travel time computation with ‘ANRAY’. Travel 
time modelling was carried out for mantle velocity gradients of 0.01 s-1, 0.005 s-1 and 0.002 s-1.   

 
5.3.2   Introduction of interfaces 

 
Interfaces such as the crust-mantle boundary (Moho discontinuity), cannot be defined in terms of 
depth, but need to be introduced in terms of velocities. Since an interface is defined as an abrupt 
change in velocity, it is to be specified by assigning velocity values to grid points directly above 
and below the interface (Figure 5.17). The velocity values in between the grid cells are obtained 
through linear interpolation taking the values at the surrounding grid points. Subsequently, the 
interface can no longer be regarded as a sharp boundary between two layers of different seismic 
properties, but as a transition zone to higher/lower velocities. In our case, the Moho 
discontinuity is an interface which represents a jump in velocity from lower crustal velocities    
(6.5 – 7.0 km/s) to ~8 km/s. It is obvious that the smaller the grid spacing the more accurate the 
interface can be represented. The drawback is a rise in computation time when smaller grid cells 
are chosen.  
The modified version by Hole especially treats the inversion of reflection travel times. A reflector 
interface, unlike the Moho interface, can be introduced into the system much more easily, just by 
defining its depth in the input file (see Appendix A.1).  
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Reflector

Topography 
6.06.3 6.1 6.1 6.1 6.2 6.1

6.4 6.2 6.2 6.26.36.3 6.1

6.5 6.5 6.4 6.6 6.5 6.4 6.5

8.3 8.3 8.2 8.48.38.2 8.4
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7.9 8.1 8.0 8.18.08.0 
Moho 

8.2

6.76.8 6.9 6.5 6.7 6.8 6.7

x

 z 

 
 

Figure 5.17. The interface representing the Moho is no longer defined as a boundary between two layers of different velocities, 
but through velocities at the grid points immediately above and below that interface (values marked in red). A velocity jump from 
~ 6.7 km/s to ~ 8.0 km/s takes place. Velocities between the grid points are linearly interpolated.  
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5.3.3   Forward modelling of travel times for pre-defined reflector models 

 
Based on the finite difference approach, travel times have been forward modelled for simply 
defined horizontal reflectors (reflector depths of 55 km and 80 km). For mantle velocity 
gradients,  the values 0.01 s-1 and 0.005 s-1 were used. The resulting travel times for both gradients 
and a reflector depth of 55 km are shown in Figure 5.18. Comparing both gradients reveals a 
travel time difference of ~200 - 300 ms.  
 

 
 
Figure 5.18. Travel times modelled with a mantle velocity gradient of 0.005 s-1 are 200 – 300 ms longer compared to travel times 
based on a velocity gradient of 0.01 s-1. 
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5.3.4   Comparison with ‘ANRAY’-computed travel times  

 
Comparing both approaches – ray tracing-based travel time computation and finite difference-
based travel time computation – shows a difference in travel times of ~200 ms based on a model 
with a reflector depth of 55 km and a mantle velocity gradient of 0.005 s-1 (Figure 5.19). The 
reason may be found in the inaccurate definition of the crust-mantle boundary (see section 5.3.2) 
in the finite difference application which may result in a distortion of travel times. However, an 
accurate analysis is beyond the scope of this thesis. 
 
 

 
 
Figure 5.19. Comparison of travel times computed with finite differences (FD) and with ray tracing indicates a difference in 
travel times of ~200 ms.  

 
 
 

 
 

 
 
 
 
 
 
 
 
 

60 



5.4   Inversion results  
 
The performance of the inversion process depends on accurate travel time picks. Thus, several 
picking updates were carried out, especially since some of the reflective events are obtained in 
areas with lower signal-noise ratio, which makes accurate picking difficult. Uncertainty in these 
cases ranges approximately between 100 and 200 ms. Erroneous picks may result in artefacts 
after inversion, such as abrupt changes in depth among neighbouring values.   
 
After a first inversion step, the newly calculated travel times were compared with the picked 
travel times and those that differed significantly were excluded from the next inversion steps. 
Reduction of travel time data, however, has the downside of yielding a less dense coverage.   
 
Finally, 1078 travel times were used for the inversion. The data set consists of 23 shots         
(Table 5.3b) with recording profiles CEL01, CEL07, CEL09, CEL10 and CEL15. Inversion was 
carried out for three mantle velocity gradients - 0.01 s-1, 0.005 s-1 and 0.002 s-1. The grid cell size is 
4 km for each inversion. Three iterations were carried out for each inversion step. Smoothing 
parameters have been chosen as 31 – 21 –11 (see Appendix A.1 for explanation). That means, 
smoothing extends over 120 km in x- and y-directions during the first iteration, 80 km during the 
second iteration and 40 km during the final one. The extent of smoothing was adapted to the 
number of travel times and since that number is relatively small, inversion was carried out with a 
comparably large smoothing extent to better compensate deviations in travel times. One 
inversion run was carried out with smoothing parameters of 13 -11 -8 (48 x 48 km, 40 x 40 km 
and 28 x 28 km).   
 
The initial reflector is situated at a depth of 55 km. Applying a z-shift (see Appendix A.1) of      
8 km changes the reflector depth to 63 km (Table 5.3c). The appropriate parameters have been set 
in the control file (‘<prefix>.ri’) in Table 5.3a.  
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(a)  (b) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             (c) 

# INPUT FILES --------  
set shfile=newpick.his 
set pars=../../pars 
set v1dfile=litho55.v1d 
set r1dfile=litho55.r1d 
set pref=newpick 
# GENERAL -------- 
set i2d=0 
set step=1 
set floatsrc=1 
set vred=999999999999.0 
set xshift=0. 
set zshift=8. 
set cosmin=0.1 
# DZGRID -------- 
set nsmooth=100 
set c=1. 
set nrng=300 
set idisc=0 
set zcmin=20. 
set zcmax=100. 
# SMOOTH -------- 
set mvan=3 
set mvax=(31 21 11) 
set mvay=(31 21 11) 

vel1d << END 

     Shot ID    x-coordinate      y-coordinate      z-coordinate  
                                 [km]                     [km]                    [km] 
      27020     384.17900     245.31900       0.23200    
       27030     394.90100     222.45800       0.23000    
       21010     422.09800     194.22700       0.24000    
       21011     422.09800     194.22700       0.24000    
       27050     436.40400     172.77400       0.22000    
       27060     455.57900     151.07700       0.14000    
       27070     469.56500     135.67900       0.12000    
       21020     474.27900     268.83700       0.31000    
       20020     228.89100     269.38700       1.41000    
       20030     243.40700     292.64400       1.44800    
       20060     342.27500     423.70400       0.35000    
       20080     412.81800     518.70300       0.61900    
       20081     412.84500     518.70400       0.61900    
       20100     467.79400     590.35100       0.42800    
       28030     423.31800     308.08000       0.15000    
       28040     452.29800     292.44600       0.12800    
       28060     486.75100     248.43000       0.24500    
       28070     507.87800     225.01000       0.16800    
       28080     522.83000     209.91900       0.13000    
       28090     547.73200     178.75900       0.14200    
       25010     566.53100     153.36200       0.11000    
       21030     516.95500     319.93200       0.13000    
       21031     516.95500     319.93200       0.13000    

ro.000.1d 
ro.000.ref 
4 
0.0 0.0 0. 
600. 660. 0.0 
1 
0. 63. 
END

set mvaz=(1 1 1) 
set dflag=0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5.3. (a) Control file ‘litho55.ri’ with links to the input files; (b) file ‘newpick.his’ containing 22 shots used for inversion;  
(c) file ‘litho55.r1d’ containing reflector specifications.  
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In terms of rms-travel time errors, the file ‘<prefix>.itr’ gives a good overview of how well the 
system performs for the different velocity gradients. Travel time residuals of all three models are 
presented in Table 5.4.  
After the first inversion step, the misfit for the model based on the mantle velocity gradient of 
0.005 s-1 is lowest with 0.32 s, compared to 0.36 s and 0.37 s for the other models. After the third 
iteration, rms-travel time errors decline to 0.30 s and 0.29 s for the models with velocity gradients 
of 0.005 s-1 and 0.002 s-1, whereas the model based on the mantle velocity gradient of 0.01 s-1 
shows very little difference in rms-travel time errors with 0.35 s. Compared to the other two 
models, inversion based on the velocity gradient 0.01 s-1 shows definitely the poorest 
performance. The travel time error is already quite high after the first iteration and does not 
improve significantly after three iterations. This is an indication that a mantle velocity gradient of 
0.01 s-1 is too high. Thus, further investigations concentrate on the other two velocity gradients.      
 
In order to determine the influence of a smaller smoothing extent on rms-travel time errors, 
inversion was repeated for the model based on the mantle velocity gradient of 0.005 s-1, this time 
taking smoothing parameters of 13 -11 -8. Since the structure is less strongly smoothed, the rms-
travel time errors are expected to be lower. This is indeed the case, with rms-errors starting at 
0.32 s and declining to 0.27 s after three iterations. Although showing a slight improvement 
compared to the larger smoothing extent from above, the rms-travel time error is still comparably 
high. This allows the assumption that travel time errors will not improve significantly for other 
smoothing parameters either and tend to range between 0.25 s and 0.30 s.   
 

No. of iterations smoothing parameter reflector file rms-traveltime residual [s]
1                             31   31                           ro.001.ref          0.36  
2                             21   21                           ro.002.ref          0.34  
3                             11   11                           ro.003.ref          0.35

No. of iterations smoothing parameter reflector file rms-traveltime residual [s]
1                             31   31                           ro.001.ref          0.32  
2                             21   21                           ro.002.ref          0.31  
3                             11   11                           ro.003.ref          0.30

No. of iterations smoothing parameter reflector file rms-traveltime residual [s]
1                             31   31                           ro.001.ref          0.37  
2                             21   21                           ro.002.ref          0.33  
3                             11   11                           ro.003.ref          0.29

No. of iterations smoothing parameter reflector file rms-traveltime residual [s]
1                             13   13                           ro.001.ref          0.32  
2                             11   11                           ro.002.ref          0.29  
3                             8     8                           ro.003.ref          0.27

(a) Mantle velocity gradient: 0.01 s-1

(b) Mantle velocity gradient: 0.005 s-1

(c) Mantle velocity gradient: 0.002 s-1

(d) Mantle velocity gradient: 0.005 s-1

 
Table 5.4. Rms-travel time residuals for various mantle velocity gradients. Note the change in smoothing parameters in (d). 
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Arithmetic mean & standard deviation 
of traveltime residuals/errors for each shot 

(gradient:0.01 s -1 )
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(a) 

Shot No. 1 2 3 4 5 6 7 8 9 10 11 12 

Shot ID 20020 20030 20060 20080 20081 20100 21010 21011 21020 21030 21031 25010

No. of picks 15 7 3 8 11 12 11 44 13 3 32 170 

 13 14 15 16 17 18 19 20 21 22 23  
 27020 27030 27050 27060 27070 28030 28040 28060 28070 28080 28090  

 25 67 6 124 138 43 60 7 99 91 89  

 

Traveltime residuals/errors vs. Offset
(gradient: 0.01 s -1 )
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(b) 

 
Figure 5.20.  
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Arithmetic mean & standard deviation 
of traveltime residuals/errors for each shot 

(gradient: 0.002 s -1 )
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(a) 

Shot No. 1 2 3 4 5 6 7 8 9 10 11 12 

Shot ID 20020 20030 20060 20080 20081 20100 21010 21011 21020 21030 21031 25010

No. of picks 15 7 3 8 11 12 11 44 13 3 32 170 

 13 14 15 16 17 18 19 20 21 22 23  
 27020 27030 27050 27060 27070 28030 28040 28060 28070 28080 28090  

 25 67 6 124 138 43 60 7 99 91 89  

 

Traveltime residuals/errors vs. Offset
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(b) 

 
Figure 5.21. 
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Arithmetic mean & standard deviation 
of traveltime residuals/errors for each shot  

(gradient: 0.005 s -1 )
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(a) 

Shot No. 1 2 3 4 5 6 7 8 9 10 11 12 

Shot ID 20020 20030 20060 20080 20081 20100 21010 21011 21020 21030 21031 25010

No. of picks 15 7 3 8 11 12 11 44 13 3 32 170 

 13 14 15 16 17 18 19 20 21 22 23  
 27020 27030 27050 27060 27070 28030 28040 28060 28070 28080 28090  

 25 67 6 124 138 43 60 7 99 91 89  
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(b) 

 
 
Figure 5.22. 
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Arithmetic mean of traveltime error for each shot
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Standard deviation
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(b) 

Shot No. 1 2 3 4 5 6 7 8 9 10 11 12 

Shot ID 20020 20030 20060 20080 20081 20100 21010 21011 21020 21030 21031 25010

No. of picks 15 7 3 8 11 12 11 44 13 3 32 170 

 13 14 15 16 17 18 19 20 21 22 23  
 27020 27030 27050 27060 27070 28030 28040 28060 28070 28080 28090  

 25 67 6 124 138 43 60 7 99 91 89  
 
Figure 5.23. Travel time errors for each shot are listed in (a). (b) shows the appropriate standard deviations. 
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Rather than taking the rms-travel time error, it may be more illustrative to display the travel time 
misfits for each single shot, as shown in Figures 5.20a, 5.21a, 5.22a and 5.23. Arithmetic mean 
errors of all three gradients alternate between 0.4 s and -0.7 s (Figure 5.23a). In these cases, the 
mantle velocity gradients are partly too high (positive values) and too low (negative values). The 
misfit in travel times for the velocity gradient of 0.01 s-1 is large for shots 
20060/21030/28040/28060/28070 ranging between -0.5 s and 0.2 s. Taking the velocity gradient 
of 0.005 s-1, errors are large for shots 20030/21030/28070 with misfits of ± 400 ms. The velocity 
gradient of 0.002 s-1, which shows the lowest misfit in terms of rms-values, reaches its maximum 
error at shots 21030 and 28060 with 0.4 s and -0.7 s respectively. 
 
In terms of standard deviations, velocity gradients of 0.01 s-1 and 0.005 s-1 show similar values, 
whereas the values for the velocity gradient of 0.002 s-1 differ at specific shots. Standard 
deviations for shots situated in the Pannonian Basin (Shot No. 7 - 23) are significantly higher 
than those situated along CEL10 (Shot No. 1 - 6). This could be due to the fact that the velocity 
structure in the Pannonian Basin is poorly constrained. Furthermore, a correlation between the 
number of travel time picks and standard deviation can be recognized – the more travel times, 
the higher the standard deviation and vice versa. Except for shot 21010, standard deviations for 
shots with less than 20 travel time picks range between 0 and 0.1 s.  
 
Plotting travel time errors against offset (Figures 5.20b, 5.21b and 5.22b) indicates no significant 
offset dependency.  
 
Factors that may cause relatively high rms-travel time errors include the picking of wrong phases 
and therefore wrong travel times, poorly constrained crustal velocities in the sedimentary basins 
and trigger errors that are supposed to have occurred in the Pannonian Basin which result in a 
time shift.   
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After three iterations, the following three reflector depth models (Figure 5.24, 5.25 and 5.26) were 
created. 
   

 
 
Figure 5.24. 
 

 
Figure 5.25. 
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Figure 5.26. 

 
 
Taking the difference plots (Figures 5.27a/b/c) for the various gradients reveals the influence of 
velocity gradients on depth. Referring to the top of the structure, the difference is ~6 km for the 
model ‘0.01 s-1-0.005 s-1’, 4-5 km for ‘0.005 s-1-0.002 s-1’ and 11 km for ‘0.01 s-1-0.002 s-1’. Between 
the different models, there is no constant z-shift. Differences in depth are larger in the centre of 
the structure and smaller towards the edges. The reason for this may be found in the coverage of 
travel times, which is dense in the middle of the structure and lessens towards the edge.  
 
Under the assumption of linear ray paths, the sensitivity between the change in velocity and 
resulting change in depth can be estimated by expressing the depth from equation E.50 and 
calculating dz/dv. Based on a simplified reflector depth model with an average crust and mantle 
velocity of 7.3 km/s and a reflector depth of 55 km, an increase in velocity of ~2 % results in an 
increase in depth of ~17 %. For wide-angle reflections, the relationship between the change in 
velocity and the resulting change in depth is evidently non-linear. For near vertical incidences, on 
the other hand, this relationship is almost linear. That means, an increase in velocity of ~2 % 
leads to an increase in depth of only ~2 %.  
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 a) b)

 

  c)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.27. Difference plots between the various reflector depth models. 
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Best fitting model 
 
Since the model with a mantle velocity gradient of 0.005 s-1 shows the best performance during 
inversion, with an initial rms-travel time error of 0.32 s and 0.30 s after the third iteration,      
Figure 5.28 represents the most likely result.  
 
The reflector structure can be described as slightly up-doming with the top of the structure at an 
average depth of 54 km. The slopes dip to depths of ~60 km. The reflector extends ~150 km 
to the east and ~150 km to the north and is situated at the boundary of Austria, Hungary and 
Slovakia.    
 

 
 
Figure 5.28. 
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6   Interpretation of ‘R2’- travel times 
 
Second reflective events (‘R2’) (Figure 6.1) are obtained in a couple of seismic sections and appear 
at offsets >350 km. Their occurrence is characterized by a delay in travel time of up to 1000 ms 
and by a gap in reflectivity between the first (‘R1’) and the second event (‘R2’).   
 
These latter events allow for the following interpretations 
 

• a second distinct reflector at a different depth (special case: lithosphere-asthenosphere 
   boundary) 

 • the second event results from multiple reflections between the Moho and ‘R1’ 
  
 

 
 
Figure 6.1. Travel time coverage after application of the CMP-method. Travel times dotted in blue refer to the reflective event 
‘R1’, those dotted in pink to ‘R2’. 
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Interpretation as a second distinct reflector 
 
The occurrence of two reflective events may simply be interpreted as two distinct reflectors at 
different depths. Modelling of travel times with ‘ANRAY’ based on a mantle velocity gradient of 
0.01 s-1 for two different depths reveals a good match between the first reflective event and a 
reflector depth of 55 km, while the second event could be associated with a reflector depth of    
80 km (Figure 6.2). These depth values, however, apply for the seismic section of Figure 6.2 only; 
for other sections, different depths may apply.  
Using the difference plots of Figure 5.27 the depth of the second reflective event can be estimated 
for the more likely velocity gradient of 0.005 s-1. The reflector is then situated at a depth of 
approximately 70 km. 
 

 
 
Figure 6.2. A reflector situated at a depth of 55 km could cause the first reflective event, a second reflector at a depth of 80 km 
may result in the second reflective event. Computation of travel times is based on a mantle velocity gradient of 0.01 s-1. 

 
Special case of a second reflector: lithosphere-asthenosphere boundary 
 
A special case of a second reflector is the lithosphere-asthenosphere boundary. Referring to the 
model by Lenkey (1999), the lithosphere-asthenosphere boundary is situated at depths between 
~70 km in the Panonnian Basin and ~200 km in the Eastern Alps. This boundary (Figure 6.3), 
however, is not well constrained and may be inaccurate in some places. Since velocities for such 
great depths are poorly known as well, reflection travel times may be modelled inaccurately and 
therefore need to be regarded cautiously. A rather good match with a travel time difference of   
~1 s between the picked second reflective event and the calculated travel times (based on the 

74 



finite difference method, mantle velocity gradient of 0.005 s-1) is obtained in Figure 6.4. For most 
other seismic sections, however, travel times differ hugely and thus make the assumption of the 
lithosphere-asthenosphere boundary rather implausible. Moreover, since exact velocities for such 
great depths are unknown, the assumption of a constant velocity gradient may pose another 
significant source of error.     
 

 
Figure 6.3. Depth values of the lithosphere-asthenosphere boundary.  
 

 
Figure 6.4. Travel times based on the lithosphere-asthenosphere model of Figure 6.3 are approximately 1 s longer compared to 
the second reflective event. 
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Interpretation as a multiple reflection 
 
The gap in reflectivity and the time shift between the two reflective events may be caused by a 
multiple reflection between the Moho and ‘R1’. Comparisons of computed multiple reflection 
travel times (based on a reflector depth of 55 km and a mantle velocity gradient of 0.005 s-1), 
however, refute this assumption, as the computed times are over 1 s longer than the second 
reflective event (Figure 6.5 displays one example).    
 

 
 
Figure 6.5. Travel times from multiple reflection do not coincide with the first arrivals of the second reflective event, with over   
1 s difference. Thus, a multiple reflection does not explain the occurrence of the second reflective event.  

 
 
Summing up, multiple reflections do definitely not explain the occurrence of the second 
reflective event with travel time differences of over 1 s. The lithosphere-asthenosphere boundary, 
as a special case of a second reflector, is too vaguely determined to be explicitly assigned to the 
second reflective event. Additional uncertainty arises due to unknown velocities at these great 
depths.  
 
The most likely explanation for the occurrence of the second reflective event is a distinct second 
reflector at a depth of ~80 km (based on a mantle velocity gradient of 0.01 s-1). For the more 
plausible velocity gradient of 0.005 s-1, the reflector depth can be estimated at ~70 km.  
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7   Comparison with related studies and tectonic  
     interpretation     
 
Upper mantle reflection travel times obtained from wide-angle seismic reflection experiments   
originate from a slightly up-doming, sub-horizontal mantle reflector situated at a depth of 
approximately 55 km in the geological transition zone of Eastern Alps/Carpathians and 
Pannonian Basin. Travel time inversion was based on a mantle velocity gradient of 0.005 s-1.  
 
Seismic studies in adjacent areas show mantle reflectors in similar depths and thus confirm that 
mantle reflectors are more widespread than originally thought in the transition zone of the 
Eastern Alps and the Carpathians.  
Investigation of the lithospheric structure of the Bohemian Massif and the Variscan belt during 
the SUDETES 2003 experiment revealed a sub-horizontal upper mantle reflector at a depth of 55 
– 60 km [Hrubcova et al. 2005] (Figure 7.1). Since only one seismic section has been modelled, little 
information is given about the lateral reflector extent. However, due to geographic proximity and 
good coincidence with our model, this reflector is very likely to represent the same feature as the 
reflector from this thesis.  
 
 
 

     
 
 
 
 
 
Figure 7.1. Geological and velocity model along the seismic section S04 from the SUDETES 2003 data set. The profile, which 
runs across the Carpathians, shows a distinct reflector at depths of 55-60 km [Hrubcova et al. 2006]. 
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Based on the CELEBRATION 2000 seismic experiments, Sroda (2008) investigated reflections 
from the Carpathian upper mantle. Tomographic modelling of travel times revealed a mantle 
reflector of ca. 200 x 200 km size beneath the Carpathians. This reflector, as illustrated in       
Figure 7.2, dips in north-south direction, from 45-50 km in the south to 65-70 km in the north. 
The discontinuity was interpreted as a shear zone which originated in a compressional stress 
regime during collision of the continental lithospheric plates.  
In terms of depth and shape, the reflector derived by Sroda (2008) differs significantly from our 
model and may therefore be regarded as a separate reflector unit.       
 

 

 

 
Figure 7.2. Map of the Carpathian mantle reflector derived by Sroda (2008). Blue stars represent shot points; blue circles 
represent receivers.  
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Interpretation in terms of the origin of upper mantle reflectivity in our area of investigation is a 
difficult task, but its occurrence is likely to be related to tectonic processes in that region. The 
approach of interpreting the mantle reflector as part of the subduction slab of the European plate 
underthrusting the Pannonian Fragment is not suitable since our reflector model is not 
significantly dipping.  
Shear zones which are characterized by a decrease in both velocity and density can be excluded as 
an explanation too since our studies indicate a velocity increase.  
 
Our mantle reflector, which best represents the category ‘Sub-horizontal mantle reflectors’ 
(section 2.3), is most likely to be caused by intrusion of mafic material into the upper mantle 
(Figure 7.3). The original cause may be found in the collision of the European Plate with the 
Adriatic Microplate which is accompanied by an escape process of the Pannonian Fragment. 
Extensional processes of the Pannonian Fragment lead to a decrease in crustal thickness. 
Tectonic weak zones related to crustal thinning may facilitate the intrusion of mafic material from 
the asthenosphere into the upper mantle and lower crust and may result in the observed 
reflectivity. This explanation is further supported by gravity measurements in the region.        
Figure 7.4a shows the residual Bouguer gravity after subtraction of the gravity effect of the upper 
10 km of the crust and the Moho topography [Brückl et al. 2006] It reveals a strong positive 
anomaly [60-80 mgal] which coincides well with our reflector model region. This anomaly could 
be explained through higher-density mafic material which intruded into the upper mantle and 
lower crust. This concept of intrusion would also explain the occurrence of high lower crustal 
velocities (> 7 km/s) in the region (Figure 7.4b).         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.3. A vertical cross-section through our reflector model. (M: Molasse; VB: Vienna Basin; PB: Pannonian Basin; MHR: 
Mid-Hungarian mountain range). The colour-coded velocity field of the crust is shown together with the Moho (broken line: zone 
where no clear PmP-phases are obtained). R1 is the reflector modelled with a mantle velocity gradient of 0.005 s-1. R2 is the 
assumed second mantle reflector approximately 25 km below R1. LAB: Lithosphere-asthenosphere boundary. The stripped 
Bouguer anomaly, shown on top, coincides well with the imagination of mafic intrusions into the upper mantle.   
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a)

 

 

c)b)

 
 
Figure 7.4. (a) The residual Bouguer anomaly after subtraction of crustal corrections should show density anomalies in the lower 
crust and uppermost mantle only. The approach of mantle intrusions as the origin of mantle reflections is further supported by 
high lower crustal velocities. (b) Depth slice through Pg velocities at a depth of 26 km [Brückl et al. 2006]. (c) Reflector depth 
model. 
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8   Conclusion and outlook 
 
Wide-angle refraction and reflection data sets of ‘CELEBRATION 2000’ and ‘ALP 2002’ 
experiments reveal upper mantle reflectivity in the transition zone from the Eastern Alps to the 
Carpathians. Based on the finite difference method, reflection travel times were inverted for 
depth and shape. The underlying crustal velocity model and Pn- velocities are very well 
determined through analysis of the above mentioned data sets. Upper mantle velocities, in 
contrary, are poorly constrained, thus inversion was applied for several velocity gradients –                 
0.01 s-1, 0.005 s-1 and 0.002 s-1. Comparing the appropriate travel time residuals yields two 
realistic reflector models: a reflector based on the gradient of 0.005 s-1 at a depth of ~55 km 
and another one based on the gradient of 0.002 s-1 at a depth of ~52 km. However, when taking 
the starting travel times residuals into account, the model with the gradient 0.005 s-1 is to be 
favoured (travel time residuals of 32 ms [0.005 s-1] and 37 ms [0.002 s-1]). The reflector shape can 
be described as sub-horizontal and slightly up-doming.  
 
The origin of the mantle reflector is most likely to be associated with mafic intrusions into the 
upper mantle due to tectonic extension in that region. This approach is supported by further 
geophysical investigations (positive Bouguer gravity and high lower crustal velocities).  
 
Second reflective events observed in some seismic sections most likely originate from a distinct 
second reflector at a greater depth of approximately 70 km.  
 
The first estimation of the reflector depth (see section 5.1) of 70 km, based on a mantle velocity 
gradient of 0.01 s-1, is actually not very accurate in hindsight and demonstrates that a layered 1D-
model with constant velocities is not suitable for depth estimations. 
 
In general, upper mantle reflectivity seems to be more widely spread than thought in the region 
of the Eastern Alps and the Carpathians. Lithospheric investigations in adjacent areas (Figure 8.1), 
reveal mantle reflectors in similar depths as our model. Research done by Hrubcova (2005) north 
of our reflector area also shows a sub-horizontal mantle reflector at a depth of ~55 km. The 
mantle reflector model by Sroda (2008) is situated in a different geological zone and does not 
really correspond in terms of depth and shape, but due the proximity of both reflectors, it may be 
interesting to verify if there is a link between both models. This should be examined in future 
seismic experiments.  
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Figure 8.1. Overall view of observed mantle reflectors in the Eastern Alps/Carpathians with assigned depth values. Arrows 
indicate the direction of the reflector dip.  
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A   Appendix 

 
A.1   Inversion program by Hole (1996) 

 
Before the data structure and the parameters of the inversion program by Hole (1996) shall be 
explained, adjustments to the data set need to be made. The coordinate system needs to be 
changed in a way, so that its origin coincides with the model boundaries (see Figure A1a). The z-
coordinate has to be positive in the downward direction. The top interface, e.g. topography 
(Figure A1b), has to be shifted in a way so that it lies entirely beneath the plane z=0. 
Consequently, to maintain the original model, all its interfaces (e.g. Moho-discontinuity, 
reflectors…) and velocities needs to be shifted by the same amount.    
    

 

y0 

 

(0/0) 
x

y 

x0 

  (0/0) 

yh 

xh 
Moho 

 z-shift 

Topography

z=0 x

z

Figure A1. (a) Cartesian coordinate transformation necessary for the inversion application; (b) inversion procedure by Hole 
requires a model-shift in z-direction so that the whole structure is beneath the z=0-plane.  
 

Hole’s inversion program has primarily been designed for UNIX-based systems and requires the 
compilation of two directories – one that is used for inversion execution, and another containing 
all the files associated with shot and receiver geometries and travel time data. The initial data set 
containing shot/receiver geometries and travel times needs to be split up into four different files,  
 
  <prefix>.his 
  <prefix><shot-ID>.hir 
  <prefix><shot-ID>.hip 
  <prefix><shot-ID>.rir 
 
with the <prefix>.his-file containing a list of all shots (specified by shot-IDs) with their order 
determining the course of computation.  
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Its prefix can be chosen arbitrarily, but needs to be transferred to the other three file types too 
(.hir/.hip/.rir). For each shot defined in the file ‘<prefix>.his’ we need a complete set of files: 
‘<prefix><shot-ID>.hir’, ‘<prefix><shot-ID>.hip’ and ‘<prefix><shot-ID>.rir’. Figure A2 
illustrates the splitting of the original data set into four different files with geometry, travel time 
and receiver specifications.     
 
 

 

Shot-ID 
Shot x-coordinate 
Shot y-coordinate 
Shot z-coordinate 
Receiver-ID 
Receiver x-coordinate 
Receiver y-coordinate 
Receiver z-coordinate 
Travel time [ s ] 
Absolute offset 

.his 

.hir 

.hip 

.rir 

Shot-ID 
Shot x-coordinate 
Shot y-coordinate 
Shot z-coordinate 

Receiver-ID 
CMP x-coordinate 
CMP y-coordinate 
Receiver z-coordinate 

Receiver-ID 
Absolute offset 
Travel time [ s ] 

Receiver-ID 
Receiver x-coordinate 
Receiver y-coordinate 
Receiver z-coordinate 

Travel time/geometry 
data set 

Shot list 

Geometry specifications for each 
shot 

Travel time specifications for each 
shot 

Receiver specifications for each 
shot 

Files 

Figure A2. The data set including travel time and geometry specifications needs to be split into four files, each containing specific 
data. The file ‘.his’ contains a list of all shots, the file ‘.hir’ cmp locations, the file ‘.hip’ travel time specifications and the file ‘.rir’ 
the receiver geometry. 
 
 
In addition to the above mentioned file types, files relating to velocities and reflector 
specifications are needed. All those files (including files ‘.his’, ‘.hip’, ‘.hir’, ‘.rir’) need to be linked 
to a script file that is retrieved when the inversion program is to be executed. The files are to be 
named as follows 
 
  <prefix>.ri  (script file) 
  <prefix>.v1d 
  <prefix>.r1d 
  vel.mod 
  vreset.mod   
 
vel.mod and vreset.mod are two identical velocity files that have to be named in that very way, 
otherwise the system will not work properly. 
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# INPUT FILES ---------- 
set shfile=<prefix>-.his 
set pars=(directory with .his, .hip, .hir, .rir-files) 
set v1dfile=<prefix>.v1d 
set r1dfile=<prefix>.r1d 
set pref=<prefix>- 
 

# GENERAL--------- 
set i2d=0 
set step=1 
set floatsrc=1 
set vred=*** [km/s]           (reduced velocity) 
set xshift=*** [km]   (shift in x-direction [usually 0])
set zshift=*** [km]            (shift in z-direction) 
set cosmin=0.1 
 

# DZGRID--------- 
set nsmooth=100 
set c=1 
set nrng=300 
set idisc=0 
set zcmin=20 
set zcmax=100 
 

# SMOOTH-------- 
set mvan=3 
set mvax=(* * *) [km]     (smoothing in x-direction) 
set mvay=(* * *) [km]     (smoothing in y-direction) 
set mvaz=(1 1 1) [km]   (smoothing in z-direction) 
set dflag=0 

  

<prefix>.ri 

vel1d << END 
vo.000.1d 
vel.000.mod 
* [km]          (node spacing) 
0. 0. 0. 
* * * [km]        (model extent in x-, y- and 
        z-direction) 
-1 
END 

<prefix>.v1d

vel1d << END 
ro.000.1d 
ro.000.ref 
* [km]                (node spacing) 
0. 0. 0. 
* * *. [km] (reflector extent in x- and  

               y-and z-direction) 
1 
0. * [km]                 (reflector depth) 
END 

<prefix>.r1d

Figure A3. Files ‘<prefix>.ri’, ‘<prefix>.v1d’, ‘<prefix>r1d’, needed for the inversion. The asterisk represents a number to be 
filled in (its meaning is explained in brackets). 
 
 
The file ‘<prefix>.ri’ (Figure A3) acts as the executing file, therefore, input files have to be linked 
to this file. Additionally, a number of parameters can be changed and adjusted in this file. 
Amongst them are shifts in x- and z- direction (the amount by which the model is moved 
downwards) and the parameter that controls the reduction of travel times. Taking high values for 
this parameter yields unreduced travel times.  
 
The relationship between reduced travel times and unreduced travel times is given by 
 
                                    treduced = tunreduced – (absolute offset/vreduced)      (A.1) 
 
The number of iterations used for inversion can be adjusted when using ‘mvax’, ‘mvay’ and 
‘mvaz’ under ‘#SMOOTH’ in Figure A3. These parameters define the extent of smoothing in x-, 
y- and z-direction after each iteration. The number of iterations is defined by the numbers 
allocated to ‘mvax’, ‘mvay’ and ‘mvaz’. Two arbitrary values, e.g. 11 and 9 for both - ‘mvax’ and 
‘mvay’ (‘mvaz’ can be neglected since smoothing in z-direction is not needed), means two 
iterations to be carried out with smoothing over a distance of 11 grid nodes in both x- and y-
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directions during the first iteration, and over a distance of 9 grid nodes during the second 
iteration. 
 
As shown in Figure A3, more parameters can be adjusted, but they do not influence the output 
significantly and may remain unchanged. Parameters to be adjusted for the file ‘<prefix>.v1d’ 
are the extent of the velocity model in x-, y- and z-direction and its node spacing (all in km). The 
velocity model itself is specified by ‘vel.000.mod’. 
 
Reflector characteristics, such as lateral and vertical extent and the reflector depth (all in km), can 
be adjusted in the file ‘<prefix>.r1d’. This file allows to define the reflector as a plane horizontal 
interface at a certain depth. At the beginning of computation, the program creates the file 
‘ro.000.ref’ referring to the depth and extent of the reflector of file ‘<prefix>.r1d’. The file 
‘ro.000.ref’ acts as the initial reflector depth model; after each iteration this file will be updated 
(‘ro.001.ref’, ‘ro.002.ref’, ‘ro.003.ref’…). 
 
In cases where an initial reflector model is needed that contains some kind of structure and 
differs from a horizontal plane, the file ‘ro.000.ref’ containing the wanted reflector structure 
needs to be introduced into the system before the computation starts. Additionally, the number 
‘1’ in the r1d-file needs to be amended to ‘-1’ (Figure A4). Thus, the system refers directly to the 
altered file ‘ro.000.ref’ and ignores the reflector depth value below ‘-1’. 
 
  vel1d << END  
  ro.000.1d 
  ro.000.ref 
  * [km]               (node spacing) 
  0. 0. 0. 
  * * *. [km] (reflector extent in x- and  

y-and z-direction) 
  -1 
  0. * [km]             (reflector depth) 
  END 
 
Figure A4. Modified file ‘<prefix>.r1d’ (compare with Figure A3) for reflector structures that differ from a plane horizontal 
interface.   

 
After having defined the data structure of the inversion program, it can be started in the UNIX–
based system using the following command 
 
 ri++    <prefix>.ri    model=vel.mod>  <prefix>.log 
 
with ‘<prefix>.log’ being the output file.  
 
Computation is carried out for each shot in the file ‘<prefix>.his’ and is recorded in the file 
‘<prefix>.log’. The principle of computation involves the inversion of all shots during the first 
iteration, then during the next iteration and so on. As a result, the rms-travel time residual and 
the change in depth Δz will be displayed for each shot. Computation has finished (without errors) 
when ‘Summing DZ’ is displayed at the end of the file ‘<prefix>.log’. 
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Except for the file ‘<prefix>.log’, many more will be created during computation, of which the 
most important are 
 
  ro.001.dz    → file containing the changes in depth Δz after first iteration 
  ro.002.dz    → file containing the changes in depth Δz after second iteration 
  … 
  <prefix>.itr  
 
The .dz-files can be regarded as an open summary of the <prefix>.log-file for each iteration. 
Travel time residuals for each shot will be written into these files, whereas travel time residuals of 
all shots together during one iteration are documented in the file ‘<prefix>.itr’ (Figure A5). This is 
a very useful file, as it illustrates the influence of iterations on rms-travel times.  
 

 

ro.00*.dz 

Shot-ID 
Receiver-ID 
Reflector x-coordinate [km] 
Reflector y-coordinate [km] 
Reflector z-coordinate [km] 
Travel time-residual [s] 
Change in depth [km] 

<prefix>.itr

Number of iterations 
mvax 
mvay 
mvaz 
RMS-travel time residual [s] 

Figure A5. Output files ‘ro.00*.dz’ and ‘<prefix>.itr’. 
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A.2   Description of the program ‘ANRAY’ 

 
The program package ‘ANRAY’ has been developed by Cerveny and is used for the computation 
of ray-related properties, such as travel times, ray amplitudes and ray synthetic seismograms. 
Fundamentally, ‘ANRAY’ is based on the ray tracing equations that have been explained in detail 
in section 3.2.1.  
 
Important characteristics of the package ‘ANRAY’ include 
 
 • the model is 3-D and consists of layers of non-zero thickness 
 • elastic parameters, such as density and seismic velocities inside the layers are  
    determined either by linear interpolation or by B-spline interpolation 
 • a point source can be situated anywhere in the model 
 • the package allows computations in both isotropic and anisotropic layers 
 • two modes of ray tracing may be carried out: two-point ray tracing and initial-value 
    ray tracing (for explanation, see sections 3.2.2 and 3.2.3) 
 • receivers can be distributed along the surface, as well as along vertical profiles 
 
A.2.1   Description of the model 

 
Before the model shall be explained, attention should be drawn to the coordinate system used in 
the ‘ANRAY’ - package. An altered Cartesian coordinate system is used with the x-axis pointing 
towards north and the y-axis pointing east. The z-axis is chosen to be positive downwards.  
The model resembles a box with plane vertical boundaries bounded at the top and at the bottom 
by plane/curved interfaces. The space between two interfaces is defined as a layer. Except for the 
top and bottom boundary, several more interfaces may be introduced into the model. Those 
interfaces usually separate layers of different elastic parameters. Two interfaces are not allowed to 
intersect. Interfaces are determined by depth values below or above a 2-D grid, the values in 
between the grid points are interpolated by bicubic splines resulting in the interface to be smooth.  
 
The elastic parameters, which are also specified at grid points, are interpolated either by linear 
interpolation or by B-spline interpolation. The units of length and velocity must be used 
consistently, either in km and km/s, m and m/s or m and m/ms. The density should always be 
specified in g/cm3. 
 
A.2.2   Description of input and output files 

 
The data structure of the package ‘ANRAY’ encompasses the input data file ‘LIN’ and the output 
files ‘LOU’, ‘LU1’, ‘LU2’ and ‘LU3’. Output data describing the computations are stored in the 
file ‘LOU’. The file ‘LU1’ stores data for plotting ray diagrams, travel time curves and amplitude 
distance curves. Data that allow the computation of ray synthetic seismograms are stored in the 
file ‘LU2’. Velocity surfaces can be plotted through the file ‘LU3’. 
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A.2.2.1   Input data in the file ‘LIN’ 

 
The file ‘LIN’ contains many parameters to be set – the most important ones shall be explained 
in this section. The neglected ones are documented in the manual on the following website: 
http://seis.karlov.mff.cuni.cz 
 
The input file begins with the specification of interfaces and grids. It contains the following 
parameters:  
  

• NINT: number of interfaces in the model. The first interface represents the model 
    surface and the last interface represents the model bottom 
 • MX, MY: number of grid lines x=const. and y=const. 
 • SX(1),…, SX(MX): x-coordinates of grid lines 
 • SY(1),…, SY(MY): y-coordinates of grid lines 
 • Z(1),…, Z(MX*MY): z-coordinates (depths) of the interface at the grid points  
    beginning at line SX(1) from SY(1) to SY(MY), then followed by line SX(2) and so on 
 
The above parameters need to be specified for each single interface.  
 
The next parameter controls the density distribution in the model (IRHO): 
  

• IRHO=1: density is constant throughout each layer 
 
The following set of parameters specifies the distribution of elastic parameters. Approximation of 
elastic parameters between the grid points is available in two modes: iso-surface interpolation and 
B-spline approximation. The latter one has been used throughout this thesis, thus only the 
parameters required for B-spline interpolation shall be mentioned here. 
  

• IANI: specifies properties of the layer 
  IANI=0: layer is isotropic  
 • NX: number of grid lines in x-direction 
 • NY: number of grid lines in y-direction 
 • NZ: number of grid lines in z-direction 
 • X1(1), X1(2),…, X1(NX): coordinates of the grid lines in x-direction 
 • Y1(1), Y1(2),…, Y1(NY): coordinates of the grid lines in y-direction 
 • Z1(1), Z1(2),…, Z1(NZ): coordinates of the grid lines in z-direction 
 
The values of the elastic parameters (P- and S-wave velocities) are assigned in the following way 
(see also Figure A7) 
 
 X(1), Y(1), Z(1)  X(1), Y(1), Z(2)  X(1), Y(1), Z(3) … X(1), Y(2), Z(1)  X(1), Y(2), Z(2)  X(1), Y(2), Z(3) … 
 X(2), Y(1), Z(1)  X(2), Y(1), Z(2)  X(2), Y(1), Z(3) … X(2), Y(2), Z(1)  X(2), Y(2), Z(2)  X(2), Y(2), Z(3) … 
 X(3), Y(1), Z(1)  X(3), Y(1), Z(2)  X(3), Y(1), Z(3) … X(3), Y(2), Z(1)  X(3), Y(2), Z(3)  X(3), Y(2), Z(3) … 
 … 
 
For isotropic layers, the squares of P- and S-wave velocities are to be taken. 
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Figure A6. Scheme of how elastic parameters are to be assigned to the grid points. At first, values are assigned along the vertical 
plane X(1) followed by plane X(2), X(3) and so on.  
 
The following parameters deal with ray specific properties: 
 

 • MEP: specifies whether initial-value ray tracing or two-point ray tracing is to be  
    performed 
  MEP=0: initial-value ray tracing 
  MEP=1: two-point ray tracing is to be performed with one single receiver;  
  performance with more receivers requires the value ‘MEP’ to be changed  

accordingly 
 • MDIM: controls the level of computations 
  MDIM=0: only rays and travel times are computed 
  MDIM=1: Spreading free amplitudes; reflection/transmission/conversion  
  coefficients are evaluated along the rays 
  MDIM=2: ray amplitudes including geometrical spreading 
 
If two-point ray tracing is to be carried out, parameters include 
 

 • PROF: azimuthal angle specifying the angle along which the receivers are situated.  
    The angle is measured in radians from the positive x-axis towards the positive y-axis. 
  PROF=0.0: receivers are situated along the x-axis 
  PROF=1.57: receivers are situated along the y-axis 
 • DST: distances of receivers from the origin of the profile (XPRF, YPRF) 
 • XPRF, YPRF: origin regarding the orientation of the receiver profile; usually 
    coincides with the source coordinates 

90 



 • XREC, YREC: receiver x- and y-coordinates 
 

For regular receiver intervals, PROF and XPRF, YPRF stay the same - the receiver distances, 
however, do not need to be quoted for each single receiver, but simplify to  
 

 • RMIN: distance between the first receiver and the origin (XPRF, YPRF) 
 • RSTEP: receiver interval 
 

Regarding the source, the following parameters are to be specified 
 

 • XSOUR, YSOUR, ZSOUR: (x,y,z)-coordinates of the source 
 • TSOUR: initial time 
 • REPS: vicinity to the receiver; the process terminates if a ray is found within this 
    vicinity (only needed for two-point ray tracing) 
  
If initial-value ray tracing is to be carried out, additional parameters need to be set 
 
 • AMIN, ASTEP, AMAX: declination angle defined by an initial angle, an angle  
    increment and a maximum angle 
 • BMIN, BSTEP, BMAX: azimuthal angle specified by an initial angle, an angle  
    increment and a maximum angle 
 
For both modes of ray tracing, the last parameters include the determination of the number of 
ray segments (see Figure A7) 
 

 • KREF: number of ray segments 
 • CODE (I, 1): number of the layer in which the I-th segment of the ray is situated 
 • CODE (I, 2)=3: compressional wave  
 

 
Figure A7. Ray code for a simple p-wave reflection (b) and a multiple reflection (c). (a) indicates the number of segments for a 
simple reflection 
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 A.2.2.2   Output data to the file ‘LOU’ 

 
As mentioned above, ‘ANRAY’ generates several output files with each file containing different 
ray specific results. Calculated travel times and amplitudes are stored in the file ‘LOU’. The other 
files have not been used, therefore, will not be described here.  
 
The file ‘LOU’ consists of a repetition of the input parameters followed by the actual ray tracing 
results. The results are described through the following parameters: 
 
 • DD: coordinate of the receiver, at which the ray should arrive (in two-point ray tracing) 
 • R: radius of the termination point in two-point ray tracing 
 • XX, YY, ZZ: coordinates of the termination point of the ray 
 • T: travel time of the ray 
 • AZIM, DEC: initial azimuthal and declination angle at the source (in radians) 
 • IND: Parameter describing the history of the ray 
  Important values of IND are: 
  (3) termination of the ray on the model surface 
  (4) termination of the ray on the lower boundary of the model 
 • IND1: ABS(IND1): number of the interface last hit by the ray 
 • ITER: number of iterations needed to find the ray within the vicinity of the receiver 
 • APX (J, I), APY (J, I), APZ(J, I): 
  (J, I): complex amplitudes of (x,y,z)-components of the polarization vector at the 
           termination point; (J) represents the imaginary part and (I) the real part 
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