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1 Abstract 
 

 

The viral genome transfer through cellular membranes is a crucial process in the course of 

the early infection events of non-enveloped viruses; however, it is still poorly understood. To 

elucidate this mechanism, human Rhinoviruses are a valuable system. They contain an RNA genome 

of about 7kb in an icosahedral protein capsid, which needs to be transferred through the endosomal 

membrane to infect the host cell. 

This work aimed at detecting in-vitro the minimal requirements necessary for proper genome 

transfer. The main criteria for the establishment of this model system were the membrane lipids, the 

receptors for virus binding and the triggers for viral conversion. Liposomes were prepared to mimic 

the cell surface. The suitability of this model was confirmed by capillary electrophoresis (CE) and 

transmission electron microscopy (TEM). The actual genome transfer however was demonstrated by 

a reverse transcription (RT) PCR assay. 

The liposome-based model used a nickel chelating lipid implanted in the bilayer of the 

vesicle. Receptor constructs, derived from the very low-density lipoprotein-receptor (VLDLR), were 

attached onto the outer liposomal leaflet by a complex bond between its His6-tag and the nickel ions 

of the membrane. Human Rhinovirus serotype 2 (HRV2) was specifically bound to these receptor-

decorated vesicles. Upon virus binding to the liposome, the assembly was primed for infection and 

thus called “lipofectosome”. 

The stepwise assembly of this adduct was assessed by CE with laser-induced fluorescence 

(LIF) detection via tracing of fluorescence labeled liposomes. In addition, TEM imaging was applied to 

confirm the proper formation of the lipofectosome, and to identify the best proportion of its 

components and environmental conditions for its assembly. Subsequently, the trigger and the 

capacity of infection within this model system were examined by detecting different stages of virus 

conversion upon pH lowering and heating. Conditions for entire RNA release from the capsid were 

identified via screening of time series. 

To confirm the ingress of the released RNA into the liposomal compartment, a RT protocol 

was adapted to allow for its application within the lipofectosomes. Technically, an entire RT kit was 

encapsulated in the liposomes prior to their assembly. Upon triggering the infection by either heating 

or acidification, lipofectosomes transferred the RNA genome from the virion into the interior of the 

vesicles. A specific cDNA template was produced by the encapsulated RT kit, and could be detected 

after amplification by PCR. Since these vesicles served as leak-tight compartment, to carry out 

reverse transcription, they can be considered a nano-reaction container. 
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Using RT-lipofectosomes, a system to monitor RNA transfer of non-enveloped viruses was 

invented. The minimal requirements for the genome transfer of HRV2 were identified by an in-vitro 

reconstitution of its putative key components. This work shows that even complex infection 

pathways can be resolved to discrete processes, such as the genome transfer, and can be described 

by defined technical terms. 
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2 Abbreviations 
 

Abbrev. Meaning 

BGE background electrolyte 

CE capillary electrophoresis 

CE-LIF CE equipped with laser induced fluorescence detector 

Ch cholesterol 

cTEM / 

cryoTEM 

cryo transmission electron microscopy 

DLS dynamic light scattering 

dNTP deoxyribonucleotide triphosphate 

DOGS-NTA 1,2-dioleoyl-sn-glycero-3-{[N(5-amino-1-carboxypentyl) 

iminodiacetic acid]succinyl} (nickel salt) 

DSPC 1,2–distearoyl-sn-glycero-3-phosphocholine 

DTT dithiothreitol 

eIF4G1 eukaryotic translation initiation factor 4 G1  

FITC fluorescein isothiocyanate 

FL fluorescence 

GPI glycosyl-phosphatidylinositol 

GUV giant unilamellar vesicle 

His6-tag hexa histidine tag 

HRV human Rhinovirus 

ICAM-1 inter-cellular adhesion molecule 1 

inf MEM infection medium 

LDLR low-density lipoprotein receptor 

LIF laser induced fluorescence 

LRP LDLR related protein 

LUV large unilamellar vesicle 

MBP maltose binding protein 

MLV multi-lamellar vesicle 

mSEC mini SEC 

NBD-PC 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-

yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine 

NTA nitrilo-triacetate 

PBS phosphate buffered saline 

PC polycarbonate 

PCR polymerase chain reaction 

PDI polydiversity index 

PE phosphatidylethanolamine 

PEG polyethyleneglycol 

PEG750PE 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[methoxy (polyethyleneglycol)-750] (ammonium salt) 

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

RT reverse transcription 

SDS sodium dodecylsulphate 

SEC size exclusion chromatography  

SF inf MEM serum free infection medium 

SM sphingomyelin 

SUV small unilamellar vesicle 

TEM transmission electron microcopy  

Tm phase transition temperature (of lipid aggregates) 

TX Triton X100 

VLDLR very low-density lipoprotein receptor 
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3 Introduction 
 

3.1 Virology of Rhinoviruses 
Virus: human Rhinovirus serotype 2 (HRV2); Rhinoviruses are a valuable representative of 

the Picornavirus family. Besides Rhinoviruses, this family contains virus genera such as Enterovirus, 

Cardiovirus, Aphthovirus, Hepatovirus, Parechovirus, Erbovirus, Kobuvirus and Teschovirus. Common 

characteristics are their small size, a non-enveloped icosahedral capsid and their positive sensed RNA 

genome; therefore “pico-RNA virus”. Moreover, their capsid is basically built of four proteins, namely 

VP1 – VP4, which form protomers. A precursor, VP0, has to be cleaved to produce VP2 and VP4. The 

protomer, in turn, is the actual building block of the capsid. By self-assembly, 60 copies of this create 

an icosahedral shell, having a T=1, pseudo T=3 symmetry, as shown in Figure 1 and Figure 2 

(Rossmann et al., 1985). 

Rhinoviruses are the major causative agent of the common cold. Based on the phylogenetic 

relationship of their >100 serotypes, they can be classified in the species HRV-A and HRV-B. A second 

classification focuses on the affinity of the respective serotype to specific receptors of the host cell. 

By this criterion, a major and a minor group can be differentiated. The major group uses a member of 

the immunoglobulin super-family as receptor, inter-cellular adhesion molecule 1 (ICAM-1) but also 

for some serotypes heparan sulfate. For most viruses of this group, ICAM-1 serves not only for 

binding but also catalyses uncoating upon internalization. The smaller, and thus called minor group, 

utilizes members of the LDLR family to bind their host cells. Here, the receptors mediate virus 

internalization; however they do not catalyze their uncoating. In contrast to major group viruses, 

viral uncoating and RNA release of minor group viruses are strictly dependent on pH lowering.  

Both groups enter the host via endocytosis and accumulate in intracellular compartments - 

the endosomes – where they face pH lowering. To deliver their RNA genome from the endosome 

into the cytosol, it is believed that the major group disrupts these compartments, whereas the minor 

group forms a distinct pore through the membrane, which convoys the genome. It is not clear yet 

whether these two strategies are indeed due to different conversion mechanisms of the virion or 

only a matter of virus concentration at the endosomal membrane. Unpublished data suggest 

disintegration of vesicles also for minor group viruses, if applied in high concentration. This work 

aimed at elucidating the genome transfer via pore formation, thus human Rhinovirus serotype 2 

(HRV2) was employed for the experimental setup. It is the best characterized member of the minor 

group (Brabec et al., 2005; Prchla et al., 1995; Semler & Wimmer, 2002; Vlasak et al., 2003). 
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Figure 1: Structural reconstruction of an HRV2 virion via X-
Ray crystallography (Verdaguer et al., 2000). Yellowish 
vertex corresponds to 5-fold axis, built up by VP1; compare 
also with illustration in Figure 2.  

Figure 2: Illustration of arrangement of the viral proteins 
at the 5-fold axis of an icosahedral virus capsid (Flint et al., 
2004). VP4 is located inside the capsid and thus cannot be 
seen from top-view. 

 

Receptors: from natural VLDLR to a recombinant receptor construct; VLDLR is part of the 

LDLR superfamily. Further prominent members of this family are the low-density lipoprotein receptor 

(LDLR) and the LDLR related protein (LRP). A common feature of these proteins is the various 

numbers of binding domains located at the N-terminus. Their primary sequence of 40 amino acids 

contains 6 cysteines each; all form disulfide bridges. LDLR possesses 7 (Yamamoto et al., 1984), 

VLDLR 8 (Takahashi et al., 1992) and LRP 2+8+18+11 of these repeats (Herz et al., 1988), which 

enables for binding of multiple ligands. The structural integrity of the receptors is highly dependent 

on the calcium concentration. After those binding-repeats, a domain similar to the epidermal growth 

factor precursor and a heavily O-glycosylated domain follow. All receptors contain a transmembrane 

and a short C-terminal cytoplasmatic region. This C-terminus possesses an internalization signal, for 

receptor clustering and formation of coated pits, respectively (Semler & Wimmer, 2002). Each 

binding module binds with its inherent binding capacity to the star shaped dome of the virion. The 

dome is generated by VP1 at the 5-fold axis (see Figure 1). Three loop regions of VP1, namely the BC-, 

DE- and HI-loop are interacting with the receptor binding modules. Detailed information on amino 

acids involved in binding between VP1 loops of HRV2 and the binding module V3 of VLDLR are given 

in the article by Verdaguer published in 2004 (Hewat et al., 2000; Verdaguer et al., 2004). The 

receptor molecule folds around the fivefold vertex and attaches to virus with high avidity; Figure 3 

shows binding of receptor fragments to a viral pentamer (Verdaguer et al., 2004). 

 

 

 



8 
 

  
 

Figure 3: Electron density blot of a five-fold axis of HRV2 
with bound receptor fragments (Verdaguer et al., 2004). 
Color code of the reference protomer: VP1 (blue), VP2 
(green), VP3 (red); Receptor constructs are shown as yellow 
stripes. 

 

Figure 4: Illustration of a native very low-density 
lipoprotein receptor (Stryer, 1999). Domains from N- to C-
terminus: ligand binding repeats (green), EGF precursor 
homology (gray), O-linked sugar domain (blue), 
transmembrane region (yellow) and short C-terminal 
cytoplasmatic region (red). 

 

 

 

Recombinant receptor constructs are a valuable and versatile tool to study virus-receptor 

interactions. Due to their high solubility, they are expressed in high concentrations in E.coli. In this 

study, receptor molecules derived from the VLDLR were used. They can be designed in an adaptable 

way, concerning their number and composition of binding modules. Since module V3 possesses the 

highest binding affinity to virions, previous work intended to produce and study constructs with 

different numbers of this repeat. In the course of their expression and purification, a maltose-binding 

protein (MBP) and a His6-tag were needed and had thus been conjugated at each constructs N- and 

C-terminus, respectively. However, these constructs lack further domains, as mentioned for their 

natural counterpart; also the transmembrane domain has been left out (Marlovits et al., 1998; Moser 

et al., 2005; Neumann et al., 2003; Ronacher et al., 2000). Stoichiometric data for a receptor 

fragment, consisting of five times module V3 (His6-V33333-MBP, or short V33333) attaching HRV2 

were derived by CE. The binding stoichiometry proposed the covering of the viral fivefold vertex by 

the receptor as a ring like structure (Konecsni et al., 2004). The receptor covering was proven by 

(Verdaguer et al., 2004). Its good characterization and its high binding avidity to HRV2 was the crucial 

factor in the decision to use V33333 in this study. 
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Virus entry and genome transfer; In the course of the early steps in a viral infection pathway, 

viruses have to transport their genome into the host cell. Although this process is already well 

elucidated for enveloped viruses (Falanga et al., 2009), for non-enveloped viruses the entire process 

is not yet clear in detail. An outline of the virus entry for minor group HRVs, is given in Figure 5. 

Briefly, the virion attaches the host cell via specific binding to receptors (Figure 5: 1-2). In the case of 

minor group viruses, this receptor belongs to the LDLR superfamily, which possesses clathrin-

localization signals at their cytoplasmic region. This means that internalization happens via clathrin-

coated pits (Figure 5: 3). Eventually, Rhinoviruses are transported to endosomes. The pH changes in 

early endosomes and the resulting mildly acidic pH (pH about 6.0) separates the virus from the 

receptor (Figure 5: 4-5). Subsequently, virus is transported to endosomal carrier vesicles and late 

endosomes, where further acidification of the compartments leads to a pH ≤ 5.6 (Neubauer et al., 

1987). As a result of the acidic milieu, viral conversion is triggered and induces uncoating (Figure 5: 5) 

(Prchla et al., 1994). In turn, these conformational changes are supposed to open a transport route 

for the RNA genome, in order to bridge the endosomal membrane and to reach the cytosol. (Fuchs & 

Blaas, 2008) 

In the course of uncoating subviral particles are generated. They can be classified by their 

sedimentation behavior in a sucrose density gradient. Native virus particles sediment with 150 S 

(Swedberg) and are thus denoted 150S particles. First, they convert to intermediate hydrophobic 

particles, sedimenting at 135S. One can distinguish them from native virus by expelled VP4 (the 

inner-most viral protein) and externalized VP1 N-termini, but the capsid contains still its genome. The 

hydrophobic VP1 N-terminus and also VP4 are believed to insert into the endosomal membrane in 

order to generate a pore-like structure for genome transfer. VP4 contains a myristic acid as 

additional hydrophobic moiety. An illustration for this hypothesis is given in Figure 6. Such a pore 

could be a suitable gate for the hydrophilic RNA genome on its way through the lipid bilayer. 

Indications for an impact on the membrane integrity via the N-terminus of VP1, were shown by 

(Zauner et al., 1995). For that work, leakage of a FL-dye from liposomes and erythrocytes was 

detected, depending on VP1-N concentration.  

The second and final subviral particle is called 80S, according again to its behavior in 

sedimentation. In contrast to the 135S particle, it lacks the RNA genome and VP1-N-termini are 

retracted, hence it regained hydrophilic properties. Cryo TEM data showed an expansion of this 

particle in size by 4 % due to a relative movement of the viral proteins. A density corresponding to 

the N-terminus of VP1 was detected below the pseudo threefold axis. At the fivefold axis an iris-like 

movement opened a channel in the capsid with 10 Å in diameter. This channel was wide enough to 

allow the release the RNA genome (Hewat & Blaas, 2006). In conclusion, the hydrophilic virus (150S) 

passes during viral conversion through a hydrophobic stage (135S) and finishes up in a non-infectious 
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and hydrophilic empty capsid (80S). (Korant et al., 1972; Lonberg-Holm et al., 1976; Noble & 

Lonberg-Holm, 1973) 

It is widely believed that the intermediate particle is involved in a pore-forming process at 

the endosomal membrane. Therefore, virologists suppose a contribution of the VP1 N-terminus and 

entire VP4 to either partly destabilize the membrane or to form discrete pore-complexes. Work on 

polio and Rhinoviruses gave already several indications that VP4 is needed for proper genome 

transfer. Similar to the N-terminus of VP1, also VP4 induced leakage in liposome-based assays 

(Danthi et al., 2003; Davis et al., 2008). Moreover, the hydrophobic feature of this viral protein, the 

N-terminal linked myristic acid, was under particular focus. This acid could very much be involved 

either in virus assembly and / or in cell entry (Chow et al., 1987; Martin-Belmonte et al., 2000). 

A proof of the viral induced emergence of size specific pores was described by (Brabec et al., 

2005; Prchla et al., 1995) for endosomal compartments. A brief outline of the principle of these 

works is shown in Figure 6, as well. Basically, two dye molecules of different sizes, namely 10 kDa and 

70 kDa FITC dextran, were enriched within endosomes by fluid-phase uptake. In article by Brabec et 

al. the number of labeled vesicles and their pH values were determined by single-organelle flow 

analysis. Upon co-internalization with either adenovirus or HRV2, different impacts on the 

endosomal compartment could be detected. First, the presence of adenovirus in these 

compartments resulted in endosomal rupture and thus size-independent release of dye molecules. In 

contrast, cointernalized HRV2 only allowed release of the 10 kDa FITC dextran marker, whereas the 

larger one remained in the vesicle. These findings support the formation of pore-like structures. This 

was further confirmed by infection inhibitors, such as bafilomycin. It is described for its inhibition of 

the vacuolar ATPase, which in turn is responsible for pH-lowering in endosomes. Upon treatment of 

the cells with this drug, HRV2-infected cells showed no dye release at all. Since adenovirus infection 

is not dependent on pH-lowering, dye release was still detectable despite using bafilomycin. 

These results raise the question about the minimal requirements necessary for pore 

formation and for subsequent genome transfer, which is addressed in this work. However, it is 

difficult to migrate experimentally from a native point of view towards a minimal system by stepwise 

excluding system elements. Therefore, an in-vitro system was used and successively equipped with 

the components necessary to acquire comparable infection skills as the natural system. The 

consequence was a liposome based model system, which was developed in the present doctoral 

thesis and will be described in more detail in the following sections. 

As mentioned above biological membranes are an efficient barrier for cellular parasites, such 

as viruses. Non-enveloped viruses had to have found strategies to transport their genomes across 

this obstacle. The next section explains the basic building blocks of membranes and their 

compositions. Further, it should give a brief insight on the parameters influencing their consistency. 
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This will give an idea about the techniques viruses had to develop in order to interfere properly with 

this lipid bilayer to utilize the host cell.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure 5: Viral entry of minor group HRVs via endocytosis in clathrin-coated vesicles. The following compartments / 
components are illustrated: plasma membrane (orange stripe), clathrin (purple stripes), receptor (green trapezoid), early 
endosome (orange circle), acidified late endosome (red circle), viral capsid (blue icosahedron) and viral RNA (red line). 
(Drawing by Gerhard Bilek) 

 

 

 

step (1) (2) (3) (4) (5) 

location plasma membrane clathrin-coated 
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early endosomes, 
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Figure 6: Model of virus induced pore formation in biological membranes and subsequent genome shuttling. The viral 
protein VP4 (red triangle) and the N-terminus of VP1 (green bars) are supposed to insert with their hydrophobic domains in 
the membrane of the respective cell compartment. Non-enveloped viruses could then transfer their genome through either 
an emerging pore or simple release it from a collapsing vesicle compartment. In any case, the genome must be transferred 
from the inner side of the compartment to the outer one, which in the case of picornaviruses would be the cytosol. 
(Drawing by Gerhard Bilek) 
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3.2 Biological Membranes 
Lipids: central building block of membranes; Lipid molecules are amphipathic, which means that 

they possess a hydrophilic and a hydrophobic moiety within one molecule. The hydrophilic part is 

built by the so called polar head-group. Usually, a phosphoric acid or its derivates form this end of 

lipids. In contrast, the hydrophobic unit consists of hydrocarbon chains, holding 14 to 24 carbon 

atoms. These chains are formed either from fatty acids esterified to glycerol or from sphingosine.  

Figure 7 gives a scheme for the classification of membrane lipids, based on their structure. 

They are categorized in glycerophospholipids, sphingolipids and cholesterol. Moreover, this scheme 

points out a discrepancy concerning the former classification of phospholipids; they do not 

necessarily contain glycerol (branching in Figure 7). Anyway, glycerophospholipids (Figure 7a) do 

contain glycerol and build the main portion of membrane lipids. This group holds several members, 

which chiefly differ from each other by their head-groups. An ester bond links these alcohols, such as 

choline, ethanolamine, serine, glycerol and inositol, via a phosphate to the sn-3 carbon of glycerol. 

Position sn-1 and sn-2 links a saturated and an unsaturated fatty acid, respectively, to the glycerol. 

The saturated acid possesses 16 to 18 carbon atoms. Normally, the unsaturated one contains a 

longer chain with at least 18 carbons and one or more cis-double bonds. From a steric point of view, 

this attribute is of particular note, because it produces an obvious kink in the tail; this affects the 

membrane consistency. In fact, both, the length of the hydrocarbon chain as well as the cis-double 

bond are responsible for the packing capacity of the lipids and thus influence the membrane fluidity. 

Many membrane functions depend on a particular fluidity. 

The next class contains the sphingolipids (Figure 7b). They are composed of a sphingosine, 

forming an amide linkage with a saturated fatty acid. The acylated sphingosine is also called a 

ceramide. Furthermore, a glycosphingolipid results from a β-glycosidic bond of a sugar or 

oligosaccharides to the 1-OH of the ceramide. The last class contains only cholesterol (Figure 7c). This 

lipid possesses an OH-molecule as polar head-group. Its hydrophobic moiety is composed of a 

sterane derivate, which holds an iso-octyl carbon chain. (Fantini et al., 2002) 
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Figure 7: Classification of membrane lipids. (Fantini et al., 2002) 

 

Due to their amphipathic nature, lipids are able to form large assemblies in aqueous 

solutions only by self-aggregation. Depending on diverse lipid parameters, such as concentration, 

kind of head-group, length of fatty acids, etc., three major types of aggregates can be distinguished 

namely micelles, bilayers and liposomes; illustrated in Figure 8. All types have in common that the 

hydrophobic tails are turned towards the center of the aggregate or are sandwiched between 

bilayers. In any case, only the hydrophilic moieties face the aqueous solution. The cylindrical shape of 

phospholipids (Figure 10, a) favors formation of spherical aggregates. In this way, sealed 

compartments are produced (Alberts et al., 2002). 

 

discrepancy in nomenclature 
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Figure 8: Possible lipid aggregates in aqueous 
solutions. White spheres represent the polar head-
group of lipids. (Lodish et al., 2004) 

 

 

 

Basal membrane model; The current theory on bio-membranes is mainly based on the work 

by Singer and Nicolson (Singer & Nicolson, 1972). They postulated in 1972 the “fluid mosaic model” 

which describes membranes as two-dimensional liquids, consisting of a lipid bilayer with embedded 

protein moiety; original illustration is given in the left-hand panel of Figure 9. A more developed 

model is given in the same figure on the right-hand panel. In addition to the earlier model, several 

membrane components have been discovered during the last decades, as mentioned in the figure 

legend. However, phospholipids remain still the main building block of all biological membranes. 

Indeed, the lipid content of an average animal cell represents up to 50% of the plasma membranes 

mass. The rest is constituted of proteins. One µm2 of such membranes contains approximately 5 x 106 

lipids. For a small animal cell, the plasma membrane would thus contain 109 lipid molecules (Alberts 

et al., 2002). 

Basically, two possible movements can change the position of a lipid within membranes. 

First, the lateral diffusion, with a diffusion coefficient of about 10-8 cm2/sec, moves the lipid within a 

monolayer. This means that lipids migrate with a fast velocity on the surface of a sea of lipids. For 

instance, a large bacterial cell with a length of about 2 µm would be travelled across in one second by 

such a lipid. The second movement takes place within a bilayer of lipids.  This phenomenon is called 

“flip-flop” and describes the migration of a lipid from one lipid mono-layer to the other. It occurs 

scarcely, about once a month (Alberts et al., 2002). 

 

 

 



16 
 

  

Figure 9: Obsolete and current scheme of the fluid mosaic model of biological membranes. The original drawing for the 
postulation of this model by Singer and Nicolson (Singer & Nicolson, 1972) is given on the left-hand panel, however over the 
last decades the model was subjected to further developments. Thus, the right-hand panel gives a more detailed view on 
additional building blocks of the membrane. Besides phospholipids (1) and globular proteins (2), further components, such 
as glycolipids (3), alphahelix proteins (4), oligosaccharide side chains (5), transmembrane domains (6) and cholesterol (7), 
are mentioned. (Drawing by Dana Burns, (Bretscher, 1985)) 

 

Membrane composition and fluidity; Overall, a defined membrane consistency is an 

important precondition for the proper function of a membrane as compartment forming entity. The 

lipid composition is responsible for membrane fluidity and thus enables or inhibits particular 

properties for an entire cell or rather for domains of the plasma membrane. A good criterion for 

defining the membrane fluidity is its “melting point”. At this point an obvious change in the 

membrane viscosity occurs due to a transition in its stage of aggregation; for review see also (Fantini 

et al., 2002). Each aggregate, composed of one or several sorts of lipids possesses a rigid gel-like and 

a liquid crystalline stage. The point of transition is given by the so called phase transition 

temperature (Tm) and depends on the packing capacity of the respective lipid aggregate. Short 

hydrocarbon chains with double bonds hinder tight lipid packing and thus decrease the melting point 

of the membrane. Simple organisms are yet able to keep their membrane fluidity constant over a 

broad temperature range only by changing their lipid composition (Alberts et al., 2002). 

In contrast, many eucaryotic cells possess a buffer molecule to expand the range of phase 

transition. This buffer system uses cholesterol as additional membrane lipid, which hinders tight 

packing of hydrocarbon chains(Fantini et al., 2002; Patty & Frisken, 2003); for its molecular 

orientation next to a phospholipid see Figure 10. Hence crystallization becomes more difficult for 

membranes. Its concentration can go up to one molecule per one phospholipid. Moreover, 

cholesterol decreases the permeability of lipid bilayers, with regard to small water soluble molecules. 

Cholesterol stabilizes the first few carbonyl-groups of a fatty acid chain. This part of the lipid is thus 

less deformable which results in less permeability for the whole compartment. 

Mammalian cells contain four predominant types of phospholipids, namely 

phosphatidylcholine, sphingomyelin, phosphatidylserine and phosphatidylethanolamine. These lipids 

have very specific head-groups and thus differ very much in their properties. The variety of lipids is 

necessary to enable specific activity of proteins embedded in the membrane. In other words, lipids 

1 2 

3 

4 

5 

6 

7 
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serve as sort of solvent for these proteins and provide with that the proper environment to ensure 

their biological function. This effect is very much comparable to soluble proteins depending on a 

specific buffer composition, such as ionic strength or pH (Alberts et al., 2002). 

 

Figure 10: Molecular alignment of a 
phospholipid (a) and cholesterol (b) 
within lipid rafts. Figure form 
“Wikipedia” (free picture) 

 

 

 

 

Lipids rafts; About one decade ago, an even more advanced membrane model was 

postulated. In fact, it was found that the different membrane lipids of a bilayer are not equally 

distributed around the complete entity. Yet, rather than forming a heterogeneous and chaotic mix of 

lipids, they seemed to form sort of definite islands, swimming on the lipid matrix (Simons & Ikonen, 

1997). For this theory, the expression lipid rafts was born and added to the membrane model of 

Singer and Nicolson. Figure 11 shows a drawing of lipids rafts, flanked by a regular membrane area. 

Basically, they are micro domains within membranes, which are constituted of particular lipids, and 

thus can accommodate a unique collection of proteins. These regions build islands with specific 

functions, such as signaling events, intracellular trafficking of proteins and lipids, as well as putative 

entry site for pathogens. 

The molecular structure of lipids and their phase transition stages gave a reasonable 

explanation for the emergence of lipid rafts; although, this theory is partly contradictive to the liquid 

mosaic model, which does not reflect on lipid clustering. In general, membrane lipids can exist in a 

gel-like phase, below their Tm, and in a liquid crystalline stage, above their Tm. A bilayer built up of 

one glycerophospholipid only, such as POPC, which possesses a Tm below 0°C, stays thus in a lipid 

crystalline stage at physiological temperature. As soon as more lipids are involved to build a 

membrane, its Tm will be a result of the respective Tm’s of the lipids. Cholesterol was proposed to 

equilibrate these differences and thus to keep the whole membrane in an intermediate stage of 
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aggregation. For sphingolipids, however, the situation looks different, from a molecular point of 

view. Due to their rigid acyl chains they can pack very tightly, and possess therefore a higher Tm than 

glycerophospholipids. This means that they are in a gel-like stage at 37°C. 

Anyway, cholesterol favors such sphingolipids in its vicinity, because of steric reasons. 

Therefore, a mixture of glycerophospholipids and sphingolipids is supposed to unmix upon 

cholesterol addition. For a biological membrane, containing an enormous variety of lipids, this would 

mean the formation of at least two distinct regions. The entity composed of a glycerophospholipid 

would possess a low cholesterol concentration. It would still stay in a liquid crystalline stage, due to 

its low Tm. The second entity is supposed to contain most of the sphingolipids and cholesterol. The 

high cholesterol content, in turn, causes the intermediate stage of aggregation. This stage is 

characterized by tightly packed acyl chains but still a high mobility of its components. In conclusion, 

the latter entity forms small rafts, which are proposed to float on the glycerophospholipid part of the 

membrane. (Alberts et al., 2002; Fantini et al., 2002) 

 

 

Figure 11: Schematic drawing of the arrangement of membrane lipids and proteins in a lipid raft region. In contrast to a 
non-raft membrane (1), lipid raft sections (2) contain a higher concentration of particular lipids, such as cholesterol (7), 
sphingomyelin or glycolipids (8), and form thus a dense packed and thicker micro domain. Due to a shorter transmembrane 
domain, non-raft proteins (4) are excluded from entering this area, whereas, proteins of specific functions can enrich in the 
raft section. The scheme shows examples such as transmembrane proteins (3) modified by glycosylation (5) and GPI-
anchored proteins (6). Orientation of the bilayer: cytosol (A), Golgi apparatus lumen (B). Figure modified from “Wikipedia” 
(originated by Artur Jan Fijalkowski) 

 

Membrane Permeability and Transport; Important physiologic substances, such as sugars or 

amino-acids, are transported through the membrane by transport mechanisms. Porins, which form 

protein aggregates in membranes, are a good example for those systems. They have been found in 

the outer membrane of many bacteria and allow for diffusion of dissolved molecules of up to 600 Da. 

Further examples are ion-transporters, which carry charged molecules through the amphipathic 

membrane. 

Instead of using such transporters, lipid soluble substances can overcome the lipid bilayer on 

their own by diffusion. However, for this purpose the substances have to possess a high distribution 
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coefficient between the membrane and water phase. Then, they can shed their solvation shell and 

dissolve in the lipophilic core of the bilayer. Inside the core the dissolved substances migrate only by 

diffusion across the lipophilic phase. Upon reaching the hydrophilic end, they become resolvated in 

water again. Since ions carry charges, they are poorly soluble in lipid phases. This can be easily 

explained by the electrostatic energy necessary to transfer a charged particle from a medium with a 

high dielectric constant, such as water, to one of a very low constant. For that reason, Na+ and K+ 

diffuse by a factor 109 slower across the membrane than water and thus need transport systems. For 

its part, water covers an intermediate position. Its high degree of permeability results from the small 

size of the molecule, the high concentration and the lack of complete charges. The lipid solubility of 

some substances might also depend on the respective pH and the resulting charge of the molecule. 

Therefore, the degree of permeability cannot be assigned for any particle per-se. Nevertheless, to 

gain an overview in this regard about several physiologic substances a convenient assignment is 

shown in Table 1. (Adam et al., 2003; Alberts et al., 2002; Stryer, 1999) 

 

membrane permeability to substances 

high permeability low permeability 

CHCHl3 Ions, e.g. Na
+
, K

+
, Cl

-
 

CH3CH2OH amino acids (amphoteric ionic), 

nucleic acids (RNA, DNA) 

CH3CH2OCH2CH3 sugar (several OH-groups) 

(H2O) (H2O) 

CH3COOH* CH3COO
-
* 

NH3* NH4
+
* 

* Depending on molecule charge and pH, respectively. 

Table 1: Examples of substances with high and low membrane permeability. Table modified from (Adam et al., 2003) 

 

As hydrophilic and charged molecule, nucleic acids need transport mechanisms to pass a lipid 

bilayer. With their about 7 kb long RNA genome, Rhinoviruses had to develop such mechanisms to 

conquer cellular membranes. Indeed, minor group HRVs are believed to form a pore in the 

endosomal membrane to shuttle their RNA. The minimal requirements for pore formation are 

defined in this work and will be addressed by an invitro model system 
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3.3 Model System: Lipofectosome 
 

Construction of artificial membranes / liposomes; Biological membranes of living cells are 

very heterogeneous aggregates. As described above, they consist of a number of different lipids and 

a substantial content of embedded or associated proteins. In principle, one can prepare in-vitro 

vesicles from isolated cell membranes. They are certainly handy tools to study membrane 

phenomenon, such as fusion between membranes and the activity of embedded ion channels. 

However, they are very heterogeneous and thus badly defined with regard to their lipid and protein 

content. For that reason, this approach is not well suited for an experimental setup, requiring a 

defined vesicle material. 

In contrast, a well defined lipid composition in vesicles can be guaranteed, if they have been 

de-novo synthesized. Technically, this means adding the required lipids sort by sort into a reaction 

container and to hydrate them. The resulting sort of aggregate, such as micelles or liposomes, can be 

selected via concentration and type of applied lipids. The chosen preparation technique and buffer 

composition for vesicle hydration are also parameters for the formation of lipid aggregates. In any 

case, the prepared lipid membrane will contain only the chosen lipids and thus possess a defined 

lipid ratio (Bilek et al., 2006a; b; Torchilin & Weissig, 2003). 

By using standard procedures for liposome preparation, they can be generated within a size 

range of 25 nm to 2.5 µm. Concerning this diameter, unilamellar vesicles are referred to small (SUV), 

large (LUV) or giant unilamellar vesicles (GUV). Moreover, the incorporation of functional lipids can 

clearly expand and improve the experimental possibilities without great effort or costs. This includes 

for instance tracing vesicles upon insertion of homeopathic amounts of FL-lipids or prolonging the 

vesicle serum half-life via grafting their surface with polyethyleneglycol (PEG) derivatized lipids. The 

latter technique is well established for liposomes applied in drug delivery (Woodle, 1998). To 

conclude, self-made vesicles are very adaptable and clean tools suitable for an enormous spectrum 

of applications. Figure 12 shows the typical appearance of de-novo prepared LUVs (diameter about 

100 – 200 nm) as used in this work, in TEM and cryo-TEM, respectively. Uniform size distribution of 

unilamellar vesicles was conveyed by extrusion of multi-lamellar vesicles. Cryo-TEM image even 

resolves the bilayer of vesicles and shows a low portion of multi-vesicular bodies, which remained 

after extrusion (lower panel).  
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Figure 12: TEM (upper panel) and cryo-TEM images (lower panel) of liposomes. Unilamellar vesicle (1 + 2) and multi-
vesicular body (3) are shown. Negative stain TEM image by Angela Pickl-Herk taken at of 5.6x10

4
 fold magnification, cryo-

TEM image by Günter Resch taken at of 3.1x10
4
 fold magnification. (Drawing by Gerhard Bilek) 

 

Liposome based model system for virus infection; based on the phospholipid composition of 

biological membranes the major building block of the prepared liposomes consisted of the lipids 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), L- -phosphatidylethanolamine (PE), 

cholesterol (Ch), sphingomyelin (SM); structural formula given in Table 2. In spherical compartments, 

POPC lipids accumulate on the outer leaflet while PE tends to enrich in the inner one. This separation 

is explained by the steric arrangement of their head groups (choline and ethanolamine) and 

promotes even the generation of vesicles. Ch and SM were added to mimic a raft like surface. 

1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (DOGS-

NTA) and 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-

phosphocholine (NBD-PC) were employed as functional lipids. Table 2 shows the structural formula 

of these lipids and their functional moiety. The DOGS-NTA lipid was implanted to complex nickel ions 

by its NTA group. Nickel-loaded lipids, in turn, attached His6-tagged proteins (Bubeck et al., 2005; 

Tuthill et al., 2006). Receptor constructs, possessing these tags, were used to decorate the lipid 

surface and then bind specifically the virions. In this work a recombinant receptor construct, derived 

from the VLDLR, was used to decorate the liposomes. Its binding module number V3, which possess 

1 

2 

3 
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high binding affinity, was arranged in a pentameric concatemer (V33333) to obtain an even stronger 

binding to HRV2 (Bubeck et al., 2005; Moser et al., 2005). 

For fluorescence detection, a FL-lipid, NBD-PC, was incorporated into the bilayer. An acyl 

chain is here modified with a FL-dye in order to trace the prepared liposomes by FL-detection. Figure 

13 shows an outline of the model and TEM images, confirming the proper formation of the model 

cell; see background image and lower right-hand panel. Moreover, these images confirm the 

consistency of liposomes and the stage of viral conversion. In other words, one can examine whether 

infectious 150S particles or only sub-viral particles, such as 135S and 80S, are attached to the model 

surface. 

 

 

 
Figure 13: Scheme and TEM images of the liposome based model to mimic cell surfaces. The basic outline of the model 
system (left-hand panel) indicates nickel-chelating lipid head-groups as green circles inside the lipid bilayer. These lipids are 
supposed to complex His6-tags (pink rectangle) of receptor constructs. Virus, in-turn, can bind specifically to these receptor 
constructs and thus completes the system. Background of this figure and lower right-hand panel show TEM visualizations of 
these assemblies. (TEM images by Angela Pickl-Herk; drawing by Gerhard Bilek) 

 

Basically, this model cell is now constituted by the minimal components necessary to allow 

viral genome transfer. It possesses an infectious virion, a receptor to keep it in proximity to the lipid 

membrane and a sealed lipid compartment which serves as recipient for RNA. Since this system is 

primed for “infecting” the liposomal compartment, it was called a “lipofectosome”. 

 

  

virus 
 
receptor: 
* binding 
   modules 
* His6 tag 
 
membrane: 
* Ni

2+
 lipid 

* FL lipid 
* conventional 
    lipid 

 

 

Lipofectosome 
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3.4 Liposomes in Capillary Electrophoresis 
A central topic of this work is the use of liposomes to mimic the cellular membrane of a human 

plasma membrane. As pointed out above, liposomes have been preferred to entire cells, because of 

their versatility and adaptability. In contrast to cell organelles, they can be easily prepared for their 

analysis in CE. By choosing a particular lipid composition, the resulting liposomal membrane can 

certainly mimic that of human cells. These properties made liposomes a suitable deputy cell and also 

a brilliant analyte for CE. However, in the genre of high-performance separation science, the use of 

liposomes as analytes is only one range of application. Several separation principles in analytical 

chemistry take also advantage by the use of liposomes as separation medium. Popular 

representatives are methods such as electrokinetic chromatography (EKC) or capillary 

electrochromatography (CEC). Both, the analysis of liposomes, as well as their application in 

separation methods was described in the following review (Bilek et al., 2006a). It was published in 

the course of the doctoral thesis and thus inserted in this manuscript: 

 

 

 

 

Working title: 

“Analysis of liposomes by capillary electrophoresis 

and their use as carrier in electrokinetic chromatography” 

 

State of publication: published in “Journal of Chromatography B” 2006, 841: 38-51. 
 

Contributing authors: Bilek, G.  
Kremser, L. 
Blaas, D. 
Kenndler, E. 
 

 

 

 

 

 

 

See review (Bilek et al., 2006a) from publication section of appendix  
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4 Materials and Methods 
 

4.1 Liposome Preparation 
Preparation of multi-lamellar vesicles (MLV); Dissolved lipid stocks were prepared from 

lyophilized lipids as provided by Avanti Polar Lipids. An appropriate amount of each lipid was 

dissolved in chloroform to obtain a final lipid concentration of 10 mM. In order to generate a 

membrane with biological relevance, a composition similar to that from literature was prepared 

(Alberts et al., 2002; Evans & Hardison, 1985; Kobayashi et al., 2002; White & Helenius, 1980; 

Wubbolts et al., 2003). Therefore, the dissolved lipid stocks from POPC : PE : SM : Ch : DOGS-NTA : 

NBD-PC (formula shown in Table 2) were mixed in the molar ratio 1 : 1 : 1 : 1.5 : 0.5 : 0.05 in a round-

bottom flask. The solvent was removed under a constant flow of nitrogen gas while rotating the flask 

for at least 3 hours. The resulting dry lipid film was hydrated by the respective buffer for further 2 to 

3 hours. To facilitate detachment of the lipid film from the flask wall, the suspension was frequently 

shaken on a vortex. The buffer volume was chosen to obtain a final lipid concentration between 5 

and 20 mM. The resulting multi-lamellar suspension of vesicles was either immediately used for 

extrusion or stored at -20°C (Torchilin & Weissig, 2003). 

Formation of large uni-lamellar vesicles (LUV) by extrusion; A mini-extruder (Avanti Polar 

Lipids) was used to prepare a liposome population of uniform size distribution.  The extruder 

apparatus was equipped with two polycarbonate (PC) filters with a particular pore diameter. 

Normally, the extrusion was started with a filter diameter of 400 nm und was then reduced to the 

desired diameter in a second and third procedure of extrusion, respectively. The extruder was 

prewarmed to a temperature of about 30 to 50°C (depending on lipid concentration and vesicle 

cargo) and the MLV suspension was applied via a flat-needle Hamilton syringe. For each procedure 

35 passages of the suspension through the filters were performed, collecting the extruded 

suspension finally in the syringe not used for its introduction. In the end, large uni-lamellar vesicles 

(LUV) were ready for immediate use in experiments or were stored at +4°C (AvantiPolarLipids_Inc., 

2009; Hope et al., 1993; Patty & Frisken, 2003; Torchilin & Weissig, 2003). 
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abbrev. structural formula 
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Table 2: Overview of the lipids and their corresponding structural formula, as used for liposome preparation. Functional 
domains are indicated by colored boxes. Table modified from (Bilek et al., 2009) 

 

4.2 Liposome Purification 
Flotation; For their application in TEM, receptor-decorated LUVs were floated to separate 

them from unbound receptor prior to incubation with HRV2. 20 µL DOGS-NTA LUVs of 200 nm 

[~150 nmol lipid] were mixed with 2 µL of soluble receptor fragments [0.15 nmol V33333] and 

incubated for one hour at ambient temperature. The receptor-decorated LUVs were mixed with a 

67% sucrose solution to obtain a final sucrose concentration of 50%. 200 µL of the 50% LUV’sucrose 

mix were overlaid by 900 µL of a 25% sucrose solution and finally by 900 µL of pure buffer, 50 mM 

Tris-HCl pH 8.0. The gradient was subjected to 45.000 rpm at 4°C for 4 hours, in a TLS55 swing-out 

rotor. Subsequently, fractions of 164 µL were taken from the top of the gradient and transferred to a 
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96-well plate. The NBD-PC fluorescence lipid, incorporated in the liposomal membrane, was used to 

trace the liposomes. All fractions were measured on a Wallac 1420 Victor V plate reader (Perkin 

Elmer; Software: Wallac 1420 Manager Version 2.0) at an excitation wavelength of 485 nm and an 

emission wavelength of 535 nm to isolate the main fraction of liposomes. In fact, the liposomes 

accumulated at the interface of 25% and 0% sucrose (Airaksinen et al., 2001; Fricks & Hogle, 1990; 

Lonberg-Holm et al., 1976). 

 

Size exclusion chromatography; High molecular weight particles, such as HRV and liposomes, 

can be separated from significantly smaller molecules by gel filtration, also known as size exclusion 

chromatography (SEC). A very fast and effective SEC method is described in (Torchilin & Weissig, 

2003). In contrast to regular SEC, this technique utilizes a semidry medium and subjects the filtration 

columns to centrifugation while filtering the particles. A further benefit of this SEC is their potential 

for downscaling to a micro range, with regard to applied gel medium and sample volume. Upon 

downscaling, this manuscript refers to this technique as mini-SEC (mSEC). In our laboratory, we 

adapted this technique to enable buffer exchange and purification of used biological particles; such 

as viruses, liposomes and receptors. Moreover, via mSEC sample dilution was significantly reduced, 

compared to regular SEC. 

The sieving material, Sephadex G50 (DNA grade / fine, from Amersham Biosciences), was 

freshly swelled in the respective buffer over-night at +4°C. From the settled material an aliquot of 

450 µL was transferred into a Corning Spin-X centrifuge tube, which was equipped with a cellulose 

acetate membrane, pore size 0.45 µm (Sigma Aldrich). Excess of buffer was removed via 

centrifugation in a tabletop centrifuge; 30 sec. at 800 rpm. Another 450 µL of sieving material were 

added. In order to obtain an appropriate dried column, it was centrifuged at 2000 rpm and 3000 rpm 

for one minute each.  

Ten µL of a liposome suspension [~17 mM] were slowly added on the prepared mSEC 

column, filled with semidry G50 sieving material. The liposomes were filtrated through the column 

via centrifugation at 3000 rpm for one minute. For rinsing, 5 µL of buffer were added and the tube 

was again centrifuged with the same setup. The resulting filtrate, containing liposomes, was 

subjected to a second round of purification, using a freshly prepared mSEC column. Finally, the 

filtrate contained a slightly diluted (factor 2-4), but well purified suspension of liposomes. 
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4.3 Liposome Characterization 
Determination of total phosphorus content; A standard protocol for the assessment of 

inorganic ortho-phosphate via ammonium molybdate (VI) tetra hydrate and its subsequent 

photometric detection was provided by (AvantiPolarLipids_Inc., 2009) and modified with regard to 

the needed working scale. Upon downscaling to the micro range, the protocol was used to confirm 

the lipid concentration of prepared liposome batches. 

KH2PO4 (Sigma) was used to prepare a dilution series and thus to create a calibration function 

for phosphorus consisting of the following amounts: 0, 0.010, 0.020, 0.050 and 0.100 µmol. Both, the 

standard solutions, as well as 5 µL of each liposome batch, with a calculated phosphorus 

concentration of between 0.020 and 0.030 µmol, were transferred in glass vials. To digest the organic 

sample, 129 µL of H2SO4 [8.9 N] (MERCK) were added to each vial and the samples were heated 

without sealing in an oven at 210°C for 25 minutes. The sample vials were chilled for five minutes 

before 43 µL H2O2 [30 wt %] (MERCK) were added. Heat-treatment was continued for additional 

30 minutes. All samples were supposed to be colorless; if not additional 14 µL of H2O2 were added 

and heating was continued for further 15 minutes. Glass vials were chilled at ambient temperature 

and diluted with 1.11 mL deionized water. For the color reaction, 145 µL of a 2.5% solution of 

ammonium molybdate (VI) tetra hydrate (Sigma) were added followed by a short vortex step for 

sample and standard. Finally, 145 µL of a 10% solution of ascorbic acid (MERCK) were added to each 

vial before sealing and subjecting them to heat-treatment, at 100°C for seven minutes. 

For the spectral-photometric analysis, an Eppendorf instrument (BIOphotometer) was used. 

The zero value for the instrument was set with the 0 µmol standard. The absorbance of all five 

standard solutions and all samples was determined at 820 nm. The calibration curve was generated 

by using the standard values and the resulting linear regression was used to derive the unknown 

phosphorus concentration of the samples. For additional information, see also protocol 1 (p170-171) 

of (Torchilin & Weissig, 2003). 

 

Dynamic light scattering (DLS); Non-functionalized liposomes were prepared for subjection 

to DLS. These testing liposomes were composed of POPC, PE and Ch. Before measuring the 

respective liposome suspensions, they were diluted in 50 mM Tris HCl pH 8.0 accordingly, to reach 

the linear range of the instrument. Liposome diameter and poly-diversity index (PDI) were assessed 

on a Malvern Nano ZS (Malvern Instruments; United Kingdom) at the department of pharmaceutical 

technology and biopharmaceutics (university of Vienna; Vienna 1090). The instrument was kindly put 

to our disposal by the group of Univ.Prof.Mag.Dr. Michael Wirth and was operated by Mag. Gerda 

Ratzinger. 
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Electrophoresis of labeled liposomes and lipofectosomes; Capillary and chip electrophoresis 

were employed to detect liposomes and their assemblies. Detailed information on the 

instrumentation and methodology is given in the respective publication, which are mentioned in the 

results and have been inserted in the appendix of this manuscript. Therefore, see the publications 

(Bilek et al., 2006b; Bilek et al., 2007) for information on conventional capillary electrophoresis, and 

(Bilek et al., 2009; Weiss et al., 2009) for detailed descriptions on chip electrophoresis. 

 

TEM imaging; Liposomes or liposome assemblies were prepared and diluted as described in 

the respective section. Four µL of the sample were applied on a glow discharged (20 mA / 30 sec.) 

carbon-coated copper grid and incubated for one minute. Then excess of solution was blotted and 

samples were negatively stained with 2% phosphotungstic acid (pH 7.3) for one minute. The 

preparation of samples, as well as the operation of the TEM instrument was performed by 

DI(FH) Angela Pickl-Herk at the IMBA – institute of molecular biotechnology of the Austrian academy 

of science GmbH (1030, Vienna). The images were taken with a Morada CCD camera at 

magnifications of 8.9 x104, 5.6x104, 3.6 x104or 1.8 x104 (Bilek et al., 2009). 

 

4.4 Genome Transfer / Monitoring of Pore Formation 
Reverse transcription (RT) – PCR; A dry lipid film was prepared as described above. For its 

hydration, however, the RT-kit, SuperScript III – Reverse Transcriptase, from Invitrogen was applied. 

This kit was used with a reverse primer, which was designed to anneal at the 3’ end of the HRV2 

genome; primer sequence is given in Table 5 (P/R: HRV2_3end). The RT-kit consisted of 150 µL 

nuclease-free water, 30 µL primer [2 pmol], 15 µL dNTP [10 mM], 60 µL 5x first-strand buffer, 15 µL 

DTT [0.1 M], 15 µL RNasin [40 units/µL] and 15 µL SuperScript III RT [200 units/µL]. As a consequence 

of the first-strand buffer, the buffer milieu was lastly composed of 50 mM Tris HCl pH 8.3, 75 mM KCl 

and 3 mM MgCl2. Prepared MLVs had a lipid concentration of about 17 mM and were allowed to 

mature over night at +4°C. Before subjecting them to RT experiments, they were extruded through a 

set of 400 nm PC-filters at ambient temperature. 

Upon mSEC-purification, 15 µL of purified RT-liposomes were reloaded with NiSO4, the nickel 

concentration reached 1 mM. Subsequently, 2 µL of the soluble receptor construct, V33333, with a 

concentration of about 5 mg/mL were added and incubated for 30 minutes at ambient temperature. 

To finally prime the receptor-decorated liposomes, 1 µL of HRV2 was added and again incubated for 

30 minutes at ambient temperature; respective virus concentration is given in the results section. 

Infection was triggered by either heating or pH-lowering. For the heat-treatment, samples 

were directly subjected to the PCR-instrument, running the RT-program (see Table 3). The first step 

of this program, 56°C for 10 minutes, is known to uncoat the virus. To trigger uncoating and thus RNA 
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release by pH-lowering, 1 µL of a 1 M sodium acetate buffer pH 5.0 was added. After incubation for 

15 minutes at ambient temperature, the acidic solution was re-neutralized with 0.5 µL of a 1 M 

sodium hydroxide solution. Subsequently, the sample was subjected to PCR, while running the 

second step of the RT-program (4°C / 3 minutes). In any case, upon triggering infection, the RNA 

genome was expected to enter the liposomal lumen. Inside this nano-container, the RT kit was 

allowed to reverse transcribe an about 1kb region from the HRV2 genome. 

 
step parameters commentary 

1 56°C / 10 min virus conversion / RNA release, RNA unfolding 

2 4°C / 3 min reduce RNA refolding 

3 37°C / 1h reverse transcription of RNA genome 

4 70°C / 15 min inactivation of RT 

5 4°C / hold final hold 

Table 3: Program for reverse transcription of the HRV2 genome. 

 

PCR: Amplification of the 3 prime end of HRV2; after finishing RT, the liposomal 

compartment had to be disintegrated in order to reach the synthesized cDNA template. Triton X100 

(TX) was added, adjusting a final concentration of 1 % TX, in the liposome suspension. Two µL of this 

mixture were subjected to a common pfu-polymerase PCR kit (Promega). The PCR mix contained 

40 µL nuclease-free water, 5 µL pfu buffer (10xbuffer with 20 mM MgSO4), 1 µL dNTPs [10 mM], 

0.5 µL forward primer [10 µM]; 0.5 µL reverse primer [10 µM], 2 µL template (TX – treated) and 

finally 1 µL of pfu DNA polymerase [3 units/µL]; sequence of oligo-DNA used as primer is given in 

Table 5. Further, Figure 14 shows the entire primary sequence of the HRV2 genome and indicates a 

923 bp long amplicon at its 3 prime end. This region is flanked by the primers (also indicated), and 

hence being amplified. Subsequently, the PCR sample was again transferred in the PCR instrument, 

and the temperature program, shown in Table 4, was applied.  

The samples together with a 1kb DNA ladder (Gene Ruler, Fermentas) were applied on a 1 % 

agarose gel. Electrophoresis was performed at 80 V for 30 minutes. The gel was incubated in an 

ethidium bromide bath for 10 minutes. Stained DNA bands were visualized and imaged under UV 

light. 

 

 
step parameters commentary 

1 95°C / 2 min initialization 

2 95°C / 45 sec denaturation 

3 50°C / 45 sec annealing 

4 72°C / 2 min elongation 

5 GoTo 2 / 60 repeats cycle adjustment 

6 72°C / 10 min final elongation 

7 4°C / hold final hold 

Table 4: Temperature porgram of PCR  
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primer name {position} orientation sequence Ta 

[°C] 

P/F: HRV2-7A {6126-6148} forward (5'--> 3') gagttgacttacctatggtcacc 62°C 

P/R: HRV2_3end {7028-7048} reverse (5'--> 3') ccactcatgcaaaagcaaatc 60°C 

Table 5: Primer sequences for RT and PCR. For RT-reaction “P/R” was applied in a concentration of 1µM, whereas a 
concentration of 10µM of each primer was used for PCR. Ta: annealing temperature of oligo nucleotides. 

 

 

 

RNA genome of HRV2 
 

    1  uuaaaacugg auccagguug uucccaccug gauuucccac agggaguggu acucuguuau uacgguaacu uuguacgcca guuuuaucuc 

 

   91  ccuuccccca uguaacuuag aaguuuuuca caaagaccaa uagccgguaa ucagccagau uacugaaggu caagcacuuc uguuuccccg 

 

  181  gucaauguug auaugcucca acagggcaaa aacaacugcg aucguuaacc gcaaagcgcc uacgcaaagc uuaguagcau cuuugaaauc 

 

  271  guuuggcugg ucgauccgcc auuuccccug guagaccugg cagaugaggc uagaaauacc ccacuggcga caguguucua gccugcgugg 

 

  361  cugccugcac acccuauggg ugugaagcca aacaauggac aaggugugaa gagccccgug ugcucgcuuu gaguccuccg gccccugaau 

 

  451  guggcuaacc uuaacccugc agcuagagca cguaacccaa uguguaucua gucguaauga gcaauugcgg gaugggacca acuacuuugg 

 

  541  guguccgugu uucacuuuuu ccuuuauauu ugcuuauggu gacaauauau acaauauaua uauuggcacc augggugcac agguuucaag 

 

  631  acaaaauguu ggaacucacu ccacgcaaaa cucuguauca aaugggucua guuuaaauua uuuuaacauc aauuauuuca aagaugcugc 

 

  721  uucaaauggu gcaucaaaac uggaauucac acaagauccu aguaaauuua cugacccagu uaaggauguu uuggaaaagg gaauaccaac 

 

  811  acuacagucc cccacagugg aggcuugugg auacucugau aggauuauac agauuaccag aggagauuca accauaaccu cacaagaugu 

 

  901  ggcuaaugcu aucguugcgu augguguuug gccacauuau cuauccucca aggaugccuc ugcaauugau aaacccucuc aaccagauac 

 

  991  aucuucuaau agauuuuaua cucuaaggag ugugaccugg agcaguuccu caaaggguug gugguggaaa cuaccugaug cacucaagga 

 

 1081  cauggguauu uuuggugaaa acauguuuua ucauuaccug gguaggagug gauacacaau acaugugcag uguaaugcua guaaauuuca 

 

 1171  ccaggguaca cuaauuguug cucugauacc ugagcaucag auugcaagug ccuuacaugg caaugugaau guugguuaca acuacacaca 

 

 1261  cccaggugaa acaggcaggg aaguuaaagc ugagacgaga uugaauccug aucuacaacc uacugaagag uauuggcuaa acuuugaugg 

 

 1351  gacacuccuu ggaaauauua ccauauuccc ucaucaauuu aucaacuuga ggaguaauaa uucugccaca auaauugccc cuuaugucaa 

 

 1441  ugcaguuccu auggauucaa ugcggagcca caauaauugg aguuugguaa uaauaccaau auguccccuu gagacaucaa gugcaauuaa 

 

 1531  cacaauaccu auuacaauau cuauaagccc caugugugca gaguuuuccg gcgcgcgugc caagcgucaa ggauuaccag uuuucaucac 

 

 1621  accagguuca ggacaguuuu ugacaacaga ugauuuccaa uccccaugug cacuucccug guaucaccca acuaaggaaa uuucuauucc 

 

 1711  aggugagguu aaaaauuugg uugaaauuug ucaaguagac agccuaguac caauaaauaa cacugacacc uacaucaaua gugaaaauau 

 

 1801  guauucuguu guauugcaau caucaauuaa ugcaccagau aagaucuucu cuauucgaac agauguugcu ucccaaccuu uagcuacuac 

 

 1891  uuugauuggu gagauaucua gcuauuucac ccacuggaca gggagucucc guuucagcuu cauguuuugu gguacugcca acacuacugu 

 

 1981  uaagcuuuug uuggcauaca caccaccugg uaucgcagaa cccaccacaa gaaaggaugc aaugcuaggc acucauguua uaugggaugu 

 

 2071  gggguugcag ucuacaauau caaugguagu gccauggauu agcgcuaguc auuauagaaa cacaucacca gguagaucua caucugggua 

 

 2161  cauaacaugc ugguaucaga cuagauuagu cauuccaccu cagaccccac caacagcuag auuguuaugu uuuguaucug ggugcaaaga 

 

 2251  cuuuugcuug cgcauggcac gagauacuaa ccuacaccug caaaguggug caauagcaca gaacccuguu gagaauuaua uagaugaagu 

 

 2341  ucuuaaugaa guuuuaguug ucccaaauau uaauaguagu aaccccacaa caucaaauuc ugccccagca uuagaugcug cagaaacagg 

 

 2431  gcacacuagu aguguucaac cagaggaugu cauugaaacu agguaugugc agacaucaca aacaagagau gaaaugaguu uagagaguuu 

 

 2521  ucuuggcaga ucaggaugca uacaugaauc uaaauuagag guuacacuug caaauuauaa caaggagaau uuuacagugu gggcuauuaa 

 

 2611  ucuacaagaa auggcucaaa uuagaaggaa auuugaauug uucaccuaua cuagguuuga uucugaaaua acccuaguuc caugcauuuc 

 

 2701  cgcccuuagu caggacauug gacacaucac aaugcaauac auguauguuc caccaggugc accggugccc aauaguaggg acgauuaugc 

 

 2791  auggcagucu ggcacuaaug ccucuguuuu cuggcaacau ggacaggcuu auccaagauu uuccuuaccu uuccuaagug uggcaucugc 

 

 2881  uuauuacaug uuuuaugaug gguaugauga acaagaucaa aacuauggua cagcaaacac aaauaacaug gggucacuau gcucuaggau 

 

 2971  aguaacagag aaacacauuc auaaaguaca uauaaugaca agaaucuauc acaaggcuaa acaugucaag gcaugguguc cacgcccacc 

 

 3061  cagagcgcuu gaguauacuc gugcucaucg cacuaauuuu aaaauugagg auaggaguau ucagacagca auugugacca gaccaauuau 

 

 3151  cacuacagcu ggccccagug acauguaugu ucauguaggu aaccuuauuu auagaaaucu ucaucuuuuc aacucugaga ugcaugaauc 

 

 3241  uauuuuggua ucuuauucau cagauuuaau cauuuaccga acaaacacug uaggugauga uuacauuccc ucuugugauu guacccaagc 

 

 3331  uacuuauuau ugcaaacaua aaaauagaua cuucccaauu acaguuacaa gccaugacug guaugaaaua caggaaagug aguacuaucc 

 

 3421  caaacacaua caguacaauu uguugauugg ugagggcccu ugugaaccag gugacugugg uggaaaguug cuaugcaaac auggugucau 

 

 3511  agguauagua acagcuggug gugauaauca uguggcuuuu auugaccuua gacacuucca uugugcugaa gaacaagggg uuacagauua 

 

 3601  uauacauaug cuaggagaag cauuuggaaa uggauuugug gauaguguaa aagaacauau acaugccaua aacccaguag gaaauaucag 

 

 3691  caagaaaauu auuaaaugga uguugagaau aauaucagca auggucauaa uaauuagaaa cucuucugac ccccaaacua uauuagcaac 
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 3781  acucacacug auuggguguu cuggaucacc cuggagauuu uuaaaggaaa aauucuguaa auggacacag cuuaauuaua uacacaaaga 

 

 3871  aucagauuca ugguuaaaga aauuuacuga agcaugcaau gcagcuagag ggcuugaaug gauagggaau aagauaucua aauuuauuga 

 

 3961  auggaugaag ucgaugcucc cgcaagcuca auugaagguu aaguacuuaa acgagcuuaa aaaacucaac cuauacgaaa agcaaguuga 

 

 4051  gagcuugcgg guggcugaca ugaaaacaca agaaaaaauu aaaauggaaa uagacacuuu acaugauuug ucacguaaau uucuaccuuu 

 

 4141  guaugcaagu gaggcaaaaa ggauaaaaac ccuauacauu aaaugugaua auaucaucaa gcagaagaaa agaugugaac caguagcuau 

 

 4231  aguuauucau ggaccaccug gugcuggcaa aucuauaaca acaaauuucc uggccaaaau gauaacuaau gauagugaca uauacucucu 

 

 4321  accuccugau ccaaaauauu uugaugguua ugaccaacag aguguaguaa uaauggauga cauuaugcag aauccagccg gggaugacau 

 

 4411  gacacuguuc ugccaaaugg uuucuagugu uacauuuaua ccaccaaugg cugaucuacc agauaaaggc aaggcuuuug auucuagguu 

 

 4501  uguauuaugc agcacaaauc auucccuucu aacacccccg acaauaacuu cacuaccugc aaugaauaga agauuuuucc uagauuuaga 

 

 4591  uauaauagua caugauaacu ucaaagaucc acagggcaaa cuuaaugugg cagcagcguu ucgaccaugu gauguagaua auagaauagg 

 

 4681  aaaugcacgu uguuguccau uugugugugg aaaagcaguu ucuuucaaag aucguaacuc uugcaacaaa uacagccuug cgcaggugua 

 

 4771  caacauaaug auugaagaag acagacggag aagacaagug guugauguca ugacagcuau auuccaaggg ccaauugaua ugaaaaaccc 

 

 4861  accaccaccu gcuauuacug acuugcucca gucuguuaga accccugaag uuauuaagua uugugagggu aauagaugga uaauuccagc 

 

 4951  agaaugcaag auagaaaagg aguugaacuu ggcuaacaca aucauaacaa ucauugcaaa uguuauuggu auggcgagaa uaauauaugu 

 

 5041  uauuuacaaa cuuuuuugca cauuacaggg accauauuca ggagaaccaa agcccaagac uaaaauccca gaaaggcgug uaguaacaca 

 

 5131  gggaccagag gaggaauuug ggaugucuuu aauuaaacau aacucaugug uuauuacaac agaaaauggg aaauucacag gucuuggagu 

 

 5221  auacgacaga uuuguggucg uaccaacaca ugcagauccu ggaaaggaaa uucagguuga ugguauaacu acaaaaguca uugacucaua 

 

 5311  ugaccuauac aacaagaaug ggauaaagcu agaaauaaca guacuuaaau uagauagaaa ugaaaaauuu agagauauca ggagauauau 

 

 5401  accuaacaau gaagaugauu accccaauug caacuuagca cugcuagcaa accagccuga accaacuaua aucaauguug gagauguugu 

 

 5491  auccuauggc aauauacugc ucaguggcaa ccaaacggcu agaaugcuua aauacaguua cccaacuaaa ucugguuacu guggaggugu 

 

 5581  cuuauacaaa auugggcaag ugcuuggaau acauguuggg ggcaauggua gggaugguuu cucagcuaug uuacucagau ccuauuucac 

 

 5671  ugauguucag ggccaaauaa cguuaucaaa gaagaccagu gaauguaacc uacccaguau acacacccca ugcaaaacca aauugcagcc 

 

 5761  uaguguuuuc uaugauguau ucccugguuc aaaagaacca gcuguguugu cugaaaaaga ugcccgguua caaguugauu ucaaugaagc 

 

 5851  acuauuuucu aaauacaaag ggaauacaga uugcuccauu aaugaccaca uaagaauugc aucaucacau uaugcagcac aacucauuac 

 

 5941  cuuagauauu gacccaaaac cuauuacacu ugaggacagu gucuuuggca cugauggauu agaggcucuu gauuugaaca cuagcgcagg 

 

 6031  auuuccauau auugcaaugg gaguuaaaaa gagagauuua auaaacaaca agaccaagga uauaagcaaa cuuaaagaag caauugacaa 

 

 6121  auacggaguu gacuuaccua uggucaccuu cuugaaagau gaacucagaa agcaugaaaa gguaauuaaa gguaaaacua gaguuauuga 

         P/F: Primer HRV2-7A {6126-6148} 

            >>.................................Amplicon 3end (923 bp)...................................> 

 

 6211  agcuaguagu gugaaugaua cccuauuauu uagaacaacu uuuggcaacc ucuuuucaaa guuccacuug aauccuggaa uuguuacugg 

       >.....................................Amplicon 3end (923 bp).....................................> 

 

 6301  aucagcaguu ggaugugauc cagagguguu uuggucaaaa auaccagcaa uguuggauga uaaauguauu auggcuuuug auuauacaaa 

       >.....................................Amplicon 3end (923 bp).....................................> 

 

 6391  uuaugauggu aguauacacc cuauuugguu ugaagcucuu aaacagguac ugguagaucu aucauuuaau ccaacauuaa uagauagacu 

       >.....................................Amplicon 3end (923 bp).....................................> 

 

 6481  augcaagucu aaacacaucu ucaaaaauac auacuaugaa guggagggag guguaccauc uggguguuca gguacuagua uuuuuaacac 

       >.....................................Amplicon 3end (923 bp).....................................> 

 

 6571  uaugaucaau aauauuauca uaaggaccuu aguguuagau gcauacaaga auauagaucu agauaagcuu aagauaauug ccuaugguga 

       >.....................................Amplicon 3end (923 bp).....................................> 

 

 6661  ugaugucaua uucucauaca uacaugaacu ggacauggag gcuauagcaa uagagggugu uaaauauggu uugacuauaa cuccugcuga 

       >.....................................Amplicon 3end (923 bp).....................................> 

 

 6751  uaaaucuaac acauuuguaa aauuagacua uagcaauguu acuuuuuuaa aaagaggguu uaagcaagau gagaaguaua acuuucuaau 

       >.....................................Amplicon 3end (923 bp).....................................> 

 

 6841  acauccaacu uucccugaag augaaauauu ugaauccauc agauggacaa agaaaccauc acaaaugcau gaacaugugu ugucucugug 

       >.....................................Amplicon 3end (923 bp).....................................> 

 

 6931  ucacuuaaug uggcacaaug gacgugacgc auacaaaaaa uuuguggaga agauacgcag uguaagcgcu ggucgugcac uguacauccc 

       >.....................................Amplicon 3end (923 bp).....................................> 

 

 7021  uccguaugau uugcuuuugc augaguggua ugaaaaauuu uaaagauaua gaaauaguaa acugauaguu uauuaguuuu au 

         P/R: Primer HRV2_3end {7028-7048} 

       >...Amplicon 3end (923 bp)..>> 

 

Figure 14: Entire RNA sequence of the HRV2 genome with indications for forward primer, reverse primer and the 
resulting 923bp amplicon at the 3’ end. Modified from embl|X02316|X02316 Human rhinovirus 2 
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Infection from plasma membrane and determination of eIF4G1 marker protein for early 

infection (eIF4G1 cleavage assay); HeLa cells were seeded in parallel in two 48-well plates and 

allowed to grow to 90 % confluence. They were washed with 500 µL PBS each well and subsequently 

incubated in 150 µL infection medium (infMEM), containing 40 nM bafilomycin, for 30 minutes at 

37°C. Before adding virus, the 48-well plates were chilled for 15 minutes at +4°C. The medium on 

chilled cells was exchanged by 150 µL of virus with a MOI of 30, suspended in infMEM containing 

20 nM bafilomycin. To prevent fluid phase uptake and thus bind the virus only to the plasma 

membrane, the samples were incubated for one hour at +4°C. Upon virus attachment, the samples 

were washed twice with 500 µL serum-free infMEM (SF-infMEM) and then incubated with 100 µL of 

SF-infMEM containing 20 nM bafilomycin, 100 mM MES buffer pH 5.2 containing 20 nM bafilomycin 

and the latter mixture plus holding RNase [2 mg/mL], respectively. To perform the actual infection 

from the plasma membrane, the samples were again subjected for one hour at +4°C. Acidified 

samples were re-neutralized by exchanging MES buffer with regular SF-infMEM with 20 nM 

bafilomycin. Further, the infected cells were incubated for five hours at 34°C in order to initialize 

virus replication. Since eIF4G1 cleavage happens at an early time point in HRV infection, five hours of 

incubation are sufficient to assess this marker protein. Finally, all samples were washed with 500 µL 

PBS each and collected in a vial upon addition of 25 µL cell lysis buffer. In addition to these samples, 

controls were prepared in parallel. Positive controls have not been incubated with bafilomycin, 

whereas negative controls have not been infected with virus. Further controls tested the effect of 

applied RNase and the effect of the whole treatment (mock) on the cells (Brabec et al., 2003). 

Ten µL of each sample and each control were separated on a 6% SDS polyacryl-amide gel 

(I=20 mA / 1h) and subsequently blotted on a transfer membrane (I=400 mA / 1.5h; Millipore 

Immobilon). The membrane was incubated with a primary antibody from rabbit against eIF4G1, 

which recognizes both, the cleaved, as well as the native eIF4G1, for one hour at ambient 

temperature. Upon washing with PBS the membrane was incubated again for one hour at ambient 

temperature with a secondary antibody against rabbit, conjugated with a horse radish peroxidase. 

Afterwards, a peroxidase substrate (SuperSignal West Pico - stable peroxide solution and 

luminol/enhancer solution from Pierce) was added, and a chemoluminescence film (Kodax BioMax 

MR Film) was exposed for 30 minutes to the membrane (Gradi et al., 1998). Employing the program 

ImageJ, the signal intensity was assessed. In this way the extent of darkening was quantified and 

plotted in a chart. 
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5 Results and Discussion 
 

5.1 Liposome Characterization 
 

5.1.1 Determination of Lipid Concentration via Total Phosphorus Content 

An important characterization of batches of lipid aggregates is their lipid concentration. 

Especially for the formation of assemblies, such as lipofectosomes, which are composed of three 

building blocks, accurate information about the concentration of the components is needed. 

Otherwise, their reproducible preparation is impeded. From the input concentration of lipids, used 

for MLV preparation, a theoretical lipid concentration can be derived. Since liposome preparation 

can bear unexpected losses of applied lipids, this calculated value needs experimental confirmation. 

Therefore, the total phosphorus content of different liposome batches was assessed by photometric 

means. The resulting lipid content was related to the theoretical value.  

Three liposomes species (MLV, LUV, LUV-DSPC) were oxidativly decomposed. The resulting 

phosphate reacted in acidic solution with ammonium molybdate-(VI) tetra hydrate and formed 

molybdenum blue, which in turn, was detected at 820 nm. Potassium dihydrogenphosphate (Sigma) 

was used to calibrate the system; its calibration function and linear fit are given in Figure 15 (left-

hand panel). 

The applied liposome samples were measured in duplicates. Their measured phosphorus 

content was in good agreement with the theoretical value. Both values, experimental as well as 

theoretical lipid concentration, are given in the bar diagram of Figure 15 (right-hand panel). The 

precision of the assay was dependent on the respective liposome species, as indicated by their error 

bars. Due to their heterogeneity, MLVs were more difficult to examine in comparison to processed 

and thus more homogeneous liposome species. As can be seen from the diagram, measurement of 

the first LUVs sample (middle bars), extruded through a 200 nm filter, had a significantly higher 

precision. Both species (MLV and LUV) were composed of the standard lipid composition, as used to 

mimic biological membranes. The last batch, however, was composed of 1,2–distearoyl-sn-glycero-3-

phosphocholine (DSPC) as a substitute for POPC and PE of the regular mixture. Since DSPC consists of 

saturated fatty acids, the resulting lipid aggregates are more rigid and thus more difficult to process. 

In fact, although extruded in the same way, as the previous LUV batch, concentrations of DSPC-LUVs 

were still difficult to determine with high precision. 

In any case, the experimental estimation of the lipid content of three different liposome 

samples confirmed good correlation with their theoretical value, in terms of phospholipid 

concentration. Therefore, the lipid concentration, derived from lipid input, was considered suitable 
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to refer for the calculation of particle ratios. This is of particular interest for the reproducible 

composition of lipofectosomes, consisting of virions, receptor-molecules and liposomes. 

 

 

 

 
 

 

Figure 15: Determination of total phosphorus in liposomes. The calibration function and its linear regression are shown on 
the left-hand panel. The right-hand panel compares, the resulting concentrations [mM phospholipid] of three liposome 
samples (data measured) with data, derived from their lipid-input concentration (data calculated), as used for liposome 
preparation. Data were measured in duplicates. 

 

5.1.2 Determination of Liposome Size via Dynamic Light Scattering 

An important quality criterion of lipofectosomes is their uniformity, with regard to size 

distribution, of applied liposomes. Moreover, concerning assays for RNA transfer, prepared LUVs 

should not contain multi-vesicular bodies; see Figure 12. Both properties can be conveyed on 

liposomes by extrusion of the MLV suspension through PC filters. The resulting LUVs are expected to 

possess a uniform size population and only one lamella. However, the efficiency of this technique 

needed to be confirmed. For that purpose, DLS was chosen to assess the diameter of MLVs and of 

the corresponding LUVs, upon extrusion through 400 nm and 200 nm filters, respectively. 

The derived liposome diameters, as well as the respective poly diversity index (PDI) are 

shown in Figure 16. MLVs appear in DLS as huge particles with a size up to 700 nm. As expected, due 

to the heterogeneity of this raw liposomal material, their PDI was too high and the data thus not 

reliable; the Figure gives an indication for the PDI-threshold at 0.2 (magenta-dotted line). However, 

for the extruded suspension, the PDI fit the acceptance specifications. LUVs, extruded through a 

400 nm filter, showed a mean diameter of indeed about 400 nm although their size distribution was 

still rather broad. Particle diameters varied by about +/- 50 nm. Significant tighter distributions 

(+/- 2.5 nm) were obtained in the liposome suspension, which was serially extruded through a 

400 nm and a 200 nm filter set. For each extrusion procedure, 35 passages were performed to 
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produce a very uniform vesicle population. Therefore, the determined diameter was, as expected, 

around 200 nm. 

From these results, it can be seen that extrusion is an essential step towards a defined 

working material. Moreover, DLS demonstrated a significant increase in LUV homogeneity upon 

serial extrusion through two sets of filters. As far as allowed by the experimental setup, liposomes 

were therefore extruded to a final diameter of 200 nm. However, for RT-assays only one extrusion 

step, using a 400 nm filter set, was applied to prevent mechanic forces on the enzymes and impairing 

knock-on effects, such as foam formation. 

 

 
Figure 16: Dynamic light scatter confirms 
liposomal diameters of MLV and 
obtaining LUV. Bars in cyan give the 
measured liposome diameter, whereas 
bars in magenta give the corresponding 
poly diversity index (PDI). Samples were 
measured in triplicates. 
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5.2 Formation of Lipofectosomes 
 

5.2.1 CE: Protein/Receptor-Decoration of the Liposomal Surface 

In Figure 13 the outline shows the basal building blocks of the lipofectosome, namely 

liposome, receptor and virion. A crucial step for accurate formation of this assembly was the 

decoration of the liposomal surface with receptor molecules prior to its incubation with virus. In fact, 

virus forms only receptor-mediated aggregates with the liposomes. In our model, a chelator enabled 

receptor decoration of the membrane. Briefly, a nickel chelating lipid was incorporated in the 

liposomal membrane in the course of the MLV preparation. The nickel ions, in turn, formed a 

complex bond with the histidines of His6-tagged receptor molecules. 

Protein decoration of liposomal surfaces was established via nickel DOGS-NTA containing 

liposomes, which were incubated with two different His6 containing receptor molecules. The 

liposomes contained a FL-dye in their aqueous core to allow their tracing via CE-LIF. Protein 

decoration was confirmed by detection of a shift in the electrophoretic mobility of liposomes upon 

protein binding. The results of this project are described in detail in the following publication (Bilek et 

al., 2006b), which is inserted in this manuscript: 

 

 

Working title: 

“Capillary electrophoresis of liposomes 

functionalized for protein binding” 

 

State of publication: Published in “Electrophoresis” 2006, 27: 3999-4007. 
 

Experimental contributing authors: Bilek, G. – 80% 
Kremser, L. – 20% 
 

Contributing items by Bilek, G.: * MLV preparation 
* LUV preparation and purification 
* Production of liposomes stable for CE 
* Characterization of particle size - DLS 
* CE of liposomes – CE-LIF  

 

 

 

 

See article (Bilek et al., 2006b) from publication section of appendix  
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5.2.2 CE / Chip: Specific Binding of Virus to Receptor-Decorated Liposomes 

 

As demonstrated above, liposomal surfaces can be decorated with soluble proteins via a 

His6/Ni-NTA bond. The following two papers, (Bilek et al., 2007) and (Weiss et al., 2009) 

accomplished the formation of lipofectosomes via specific binding of virus to these receptor-

decorated liposomes. These articles were also published in the course of the doctoral thesis and 

describe in detail the stepwise formation of lipofectosomes and their examination by electrophoretic 

means. 

The first article inserted below, (Bilek et al., 2007), utilizes liposomes, which were FL-labeled 

via encapsulation of FITC dextran. These vesicles were detected on a home-made capillary 

electrophoresis instrument, employing LIF detection. Using this method, gradual mobility shifts of 

liposomes were found, which corresponded to the extent of their receptor decoration. After 

decorating the liposome with receptor, HRV2 specifically bound to them. This resulted in an 

additional shift in the mobility of the liposome signal. However, upon virus attachment the 

consequential FL-trace of liposomes rendered a spike-covered signal rather than a neat peak. This 

phenomenon was explained by aggregating virus in capillary instruments. In fact, detergents, such as 

SDS, are normally applied in the BGE to run virus particles and thus prevent aggregation (Kremser et 

al., 2006b). However, detergents affect the consistency of liposomes and were thus avoided in this 

setup. Moreover, due to multiple receptor binding sites on the virus, most probably more than one 

liposome was bound via receptor-mediation and this effect also increased aggregation. The specific 

complex formation was confirmed by replacing HRV2 with a major group virus, HRV14, as a negative 

control. Viruses of this group bind ICAM-1 or heparan sulfate. The utilized receptor fragments 

derived from VLDLR, and targets only minor group viruses. As expected, HRV14 did not bind and the 

liposome signal was not shifted. 

The second publication in this context, aimed at solving the aggregation problem upon virus 

binding (Weiss et al., 2009). As found in previous work of our group, virions can be examined by chip 

electrophoresis with a detergent free BGE (Kolivoska et al., 2007; Weiss et al., 2007). Therefore, the 

experimental method for measuring lipofectosomes was transferred from the capillary to the chip 

format. In contrast to CE, chip electrophoresis uses shorter distances for separation and thus 

requires significant less time for sample analysis. Whereas the former assay traced only one 

component of the lipofectosome, in this work the setup was improved yet by FL-labeling of two 

components: the liposome again via dye encapsulation and this time the virus via protein labeling of 

its capsid. In conclusion, chip electrophoresis indeed overcame the aggregation problem and 

rendered reproducible and neat peaks for lipofectosomes. 
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Working title: 

“Mimicking early events of virus infection: 

Capillary electrophoretic analysis of virus 

attachment to receptor-decorated liposomes” 

 

State of publication: Published in “Analytical Chemistry” 2007, 79: 1620-1625. 
 

Experimental contributing authors: Bilek, G. – 80% 
Kremser, L. – 10% 
Wruss, J. – 10% 
 

Contributing items by Bilek, G.: * MLV preparation 
* LUV preparation and purification 
* Binding studies on CE-LIF instrument 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See article (Bilek et al., 2007) from publication section of appendix  
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Working title: 

“Mimicking virus attachment to host cells employing liposomes: 
Analysis by chip electrophoresis” 

 

State of publication: Published in “Electrophoresis” 2009, 30: 2123-2128 
 

Experimental contributing authors: Weiss, V.U. – 55% 
Bilek, G. – 30% 
Pickl-Herk, A. – 15% 
 

Contributing items by Bilek, G.: * MLV preparation 
* LUV extrusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

See article (Weiss et al., 2009) from publication section of appendix  
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5.2.3 TEM: Visualization of Lipofectosomes 

TEM experiments were designed, to confirm and visualize the previous data on complex formation 

between liposomes, receptors and viruses. This method enables utilization and detection of 

unlabeled material. Therefore, putative interfering effects due to dye molecules can be excluded. In a 

first attempt bare liposomes and virus were visualized. Subsequently, receptor-decorated liposomes 

were incubated with HRV2 to follow complex formation. Receptor molecules, however, were too 

small to allow visualization. Consequently, images of the ternary complex render only liposome and 

virus particles visible. 

A section of a recent article of our group described the approach of visualization of these assemblies 

in detail and hence was added to this chapter. The demonstrated data show the specific attachment 

of HRV2 to receptor-decorated liposomes and thus confirms formation of lipofectosomes. For 

inclusion in this manuscript, the TEM section from (Bilek et al., 2009) was inserted and slightly 

modified to preserve the integrity of the document. 

 

Working title: 

“Chip electrophoretic characterization of liposomes with biological lipid composition: 

Coming closer to a model for viral infection” 

 

State of publication: Accepted for publication in “Electrophoresis” 2009; XX 
 

Experimental contributing authors: Bilek, G. – 55% 
Weiss, U.V. – 30% 
Pickl-Herk, A. – 15% 
 

Contributing items by Bilek, G.: * MLV Preparation 
* LUV Preparation 
* Incubation series of vesicles for TEM imaging 

 

 

 

Begin of insertion from (Bilek et al., 2009)  

Receptor-mediated formation of liposome/virus assemblies; Virus binding to receptor-decorated 

liposomes was also assessed via electron microscopy. Figure 17 shows pictures of liposomes, virus, 

assemblies resulting from mixing receptor-decorated liposomes with virus, and a mixture of bare 

liposomes (lacking receptor) with virus, respectively. Samples were applied to glow discharged 

carbon coated copper grids and negatively stained with 2% phosphotungstic acid, pH 7.3. Liposomes 

appeared as circular density with diameters ranging from about 50 to 200 nm (Figure 17A). Due to 

adsorption and dehydration as part of sample preparation, they are not perfectly round. The image 



41 
 

confirmed that extrusion leads to a size distribution with a maximum diameter of 200 nm, limited by 

the pore size of the polycarbonate filter. HRV2 is shown in Figure 17B. The particles are well 

dispersed and not aggregated. Figure 17C shows receptor-decorated liposomes after incubation with 

virus. The virions are no longer distributed randomly but are preferentially seen attached to 

liposomes and only few free virus particles are detected. To again confirm the specificity of the 

interaction, virus was incubated with bare liposomes (Figure 17D). Liposomes and virus particles are 

randomly distributed and no virions are attached to the lipid vesicles. This confirms that the virus 

does not interact with the membrane per se but depends on the receptor for attachment.  

 

  

  

Figure 17: Virus binding to liposomes depends on the receptor. TEM images of liposomes (A); HRV2 (B); a mixture of virus 
and receptor-decorated liposomes (C); a mixture of virus and bare liposomes (D). Sample staining: samples were adsorbed 
to glow-discharged carbon coated copper grids and negatively stained with 2% phosphotungstic acid, pH 7.3. Images were 
taken at a 5.6 x 10

4
 fold magnification. Size bar = 100 nm 

 

 

 

 

 

End of insertion from (Bilek et al., 2009)  
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The inserted TEM data confirmed findings from capillary electrophoresis that is receptor-mediated 

formation of assemblies. In addition, these TEM images clearly show that attached virus particles are 

still infectious 150S particles, with their RNA genome inside. This means that the produced 

lipofectosomes are indeed primed for genome transfer. The following TEM images will explain the 

optical differentiation of infectious and non-infectious virions. Two experimental techniques are 

known to trigger HRV2 conversion in-vitro and so release viral RNA from the capsid. An effective but 

artificial approach is the heat-treatment. Incubation at 56°C for 10 minutes was shown to release 

RNA from the viral capsid (Kremser et al., 2006a). The second and more subtle approach is pH-

lowering. For this technique, viral conversion is induced via acidification in order to generate a similar 

milieu as present in endosomal compartments during virus infection (Prchla et al., 1994). So far, both 

techniques have only been tested for the conversion of bare virus particles. Therefore, their 

efficiency for triggering RNA release needed to be confirmed for virions engaged in lipofectosomes. 

Consequently, lipofectosomes were prepared and different stages of viral conversion were examined 

upon triggering uncoating. Negative stain TEM distinguishes these viral stages easily by a variable and 

stage-depending ingress of staining material into the viral capsid. As a result, contrast and 

appearance of the capsid are unique for each stage and can thus serve as indicator for 

differentiation. 

Heat induced conversion of virus in lipofectosomes; First, heat treatment was tested for its 

efficiency in triggering RNA release. Receptor-decorated LUVs with a diameter of about 200 nm were 

separated from free receptor (V33333) by flotation. 19 µL of the flotation fraction were incubated 

with 1 µL of 14.5 nM or 7.25 nM HRV2, resulting lipofectosomes containing either 0.73 nM or 

0.36 nM virus. They were incubated at 56°C for 10 minutes to trigger infection. Subsequently, 

lipofectosomes were imaged by negative stain TEM, in order to examine viral and liposomal stages 

and the degree of RNA release (Figure 18). Independent of applied viral concentration, the liposomal 

appearance was still homogeneous; liposomes were of integrity and did not produce aggregates. 

Despite heat-treatment, the majority of viral particles were still attached to the membrane. Since the 

difference in applied virus concentration was only by a factor of two, it did not lead to any 

differences in the saturation of lipofectosomes with virions. 

After heating, the majority of HRV2 appeared either as intermediate particle (Figure 18; 

yellow arrow) or empty capsid (Figure 18; blue arrow). The intermediate corresponded most likely to 

the 135S particle. Due to the ingress of stain media into the empty capsids, in negative stain TEM 80S 

particles are visible with a dark stained center and a bright protein corona. Intermediates retain 

more internal density. Almost no native virus was detected after heat-treatment. This means that 

RNA release had clearly been initialized but complete release was not found for all particles. Several 

intermediates keep at least to some extent their genome. Further or stronger heat-treatment 



43 
 

however, broke viral capsids apart and affected liposome integrity; data not shown. Since the heating 

procedure could not be changed for this reason, it was endeavored to obtain a more efficient degree 

of RNA release by pH-lowering. This technique meets closer the native situation. 

 

 (A) Heat-treatment of 
lipofectosomes containing 
0.73 nM HRV2 
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(B) Heat-treatment of 
lipofectosomes containing 
0.36 nM HRV2 
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Figure 18: Negative stain TEM images of lipofectosomes upon heat-treatment. Receptor-decorated liposomes were 
incubated with HRV2 of two concentrations (indicated in the figure). Heat-treatment: 56°C for 10 minutes. Arrows indicate 
the converting stage of virions (color code is given by the arrow-key at the left-hand side of each picture); sample staining 
as in Figure 17; images were taken at a 5.6 x 10

4
 fold magnification; size bar = 100 nm. 
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HRV2 uncoating in lipofectosomes upon pH lowering; Nothing was known about HRV2 

uncoating on model cells. Only vague protocols existed on in-vitro generation of 135S particles upon 

pH lowering (Prchla et al., 1994). These protocols were modified and used to monitor uncoating in 

lipofectosomes. Therefore, receptor decorated liposomes were floated as described before and 

subsequently incubated with HRV2 to produce lipofectosomes. Again 19 µL of the flotation fraction 

were incubated with 1 µL of HRV2 [12.6 nM]. The resulting lipofectosomes hold thus a virus 

concentration of about 0.63 nM. Next, this sample was acidified with 1 M sodium acetate pH 5.4 to 

achieve a pH of about 5.4. Aliquots of the acidified sample were taken at particular time points after 

pH drop and applied on TEM grids for negative staining. Grid adsorption and staining procedure 

captures and holds lipofectosomes at different stages of uncoating. Figure 19 shows the images for 

the sample prior to acidification (Figure 19 A), immediately after acidification (< 30sec, Figure 19 B), 

after 2 minutes (Figure 19 C) and 15 minutes (Figure 19 D), respectively. Before pH lowering (Figure 

19 A), infectious 150S particles are attached to the liposome membrane via receptor mediation. 

Immediately after acidification of this sample, the virus started converting (Figure 19 B). Occasionally, 

150S particles were still detected and few 80S particles were already found. However, most of the 

virions were not classifiable to either of those. Apparently, the intermediate stage of sub-viral 

particle was again detected (intermediate I, yellow arrow). In contrast to 80S particles, it retained 

some internal density. Thus it appeared dark in its center but held still bright pattern inside. This 

indicated that RNA was not completely released from the capsid. Furthermore, upon 2 minutes of 

acidification (Figure 19 C), all virions have been converted, hence no 150S particles were detectable 

anymore. In addition to the 80S particles, and the just mentioned intermediate I, a further 

intermediate stage appeared at this time point (intermediate II, green arrow). Characteristic for this 

intermediate was a dense rod-like structure inside the capsid. Apparently, both intermediate 

particles were seen at specific time points upon acidification and could be distinguished by an 

unambiguous pattern of the capsid. After incubation for 15 minutes at low pH (Figure 19 D), almost 

all viral and sub-viral particles reached the final point of conversion, the 80S particle. 

This experiment determined different time depending stages of viral conversion during pH 

lowering. At least 2 intermediate particles were resolved. Concerning the genome transfer, it was 

shown that entire RNA content was released from the viral capsids after incubation of the 

lipofectosome for 15 minutes at pH ~5.4. Here, almost exclusively 80S particles were detected. 

Therefore, pH lowering can be considered a very effective way to trigger uncoating of HRV2 in the 

context of lipofectosomes. Moreover, this technique certainly resolves more intermediate viral 

stages than heat-treatment, which apparently works too rapidly to do so. Proper uncoating is the 

prerequisite for genome transfer. This is why the pH treatment will be employed for the following 

experiments using RT-lipofectosomes to detect the ingress of RNA in the nano-container. 
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(C) 2 min / pH 5.4 
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Figure 19: Time series of lipofectosomes incubated at low pH and visualized via negative stain TEM. Lipofectosomes (A) 
were formed and subsequently incubated at pH 5.4 for <30 sec (B), 2 min (C), and 15 min (D), respectively. pH was adjusted 
with 1 M sodium acetate pH 5.4 . Lipofectosomes were prepared in the presence of 0.63 nM HRV2. Arrows indicate the 
converting stage of virions (color code is given by the arrow key at the left-hand side of each picture); sample staining as in 
Figure 17; images were taken at a 5.6 x 10

4
 fold magnification; size bar = 100 nm. 
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5.3 Genome Transfer 
 

5.3.1 RT – Lipofectosomes: in-vitro detection of RNA transfer 

To detect the genome of HRV upon being transferred into liposomes, the hydration buffer for 

MLV preparation was completed with a reverse transcription (RT) kit. Upon purification of the 

resulting liposomes, the RT-kit worked only in their interior. This means that the outer buffer was 

exchanged by a buffer not suited for RT. As target for RT and PCR, a 923bp long region at the 3’end of 

the genome of HRV2 was chosen. In this area, a loop was found within the secondary structure of the 

RNA where primer molecules easily bind. The detection of this amplicon inside the liposomal nano-

container by an RT-PCR assay is the proof for genome transfer through membranes using minimal 

requirements. 

The current section contains several figures, demonstrating images from agarose gels. For the sake of 

clarity and simplicity, several images have been rearranged by leaving out redundant or irrelevant 

lanes. However, one figure represents always one gel only and its original numbering is written on 

the very top of each gel image. Further, a blue stripe has been added to the marker lane at the 

beginning of each gel to highlight its 1kb band.  

 

Testing robustness of the RT enzyme for liposome encapsulation; To ensure that the RT kit 

still works efficiently after being encapsulated in liposomes, conditions as for MLV preparation were 

simulated. 1 µL HRV2 [~620 nM ≡ ~5 mg HRV2 /mL] was mixed with 19 µL of the RT kit, resulting in 

viral concentration of ~31 nM, and incubated at ambient temperature for at least two hours. 

Frequently, the incubation was interrupted for vigorous vortexing. Even under these harsh 

conditions, it turned out that the expected amplicon was detectable. The gel from Figure 20 confirms 

that the RT-kit was indeed able to endure the conditions for liposome preparation. Clear bands can 

be detected upon incubation of the RT-reaction mixture with HRV2. Lane 2 shows the signal after 

incubation of RT for two hours and vigorous vortex treatment. The sample on lane 3 contained 

additionally 0.5 % Triton X100 to simulate conditions for cDNA template recovery by vesicle 

disruption. Both samples were incubated in the presence of liposomes, to mimic the lipid matrix. 

 

Validation of the RT-PCR system; The limit of detection for the HRV2 concentration was 

estimated. 1 µL HRV2 of concentrated virus stock [~620 nM], a dilution 1:200 and 1:2500, 

respectively, were mixed with 19 µL of the RT-Mix. Moreover, it was tested whether RT can be 

inhibited by buffer exchange using mSEC. This would show if non-encapsulated RT-kit can be 

separated from RT-liposomes by gel filtration. 
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Lane 1 to 3 in Figure 21 show three dilution steps of HRV2. Upon mixing with the RT-kit the 

virus concentration in the system corresponded to 31 nM (conc.), 0.15 nM (1:200) and 0.012 nM 

(1:2500). The dilution 1:200 rendered still an obvious band, whereas the dilution of 1:2500 was under 

the detection limit. Further, lane 4 shows the effect of mSEC purification prior to RT. For that 

purpose, the RT mixture, consisting of RT, primer and dNTPs, was applied on a G50-mSEC, and its 

filtrate was incubated with undiluted HRV2. Since no signal is visible in this lane, it can be concluded 

that mSEC inhibits the reaction completely. Most probably, it was stopped due to buffer exchange 

and retardation of components of the RT-kit. On the one hand, these findings confirmed the 

sensitivity of the method; on the other hand they demonstrated an effective way to purify RT-

liposomes from non-encapsulated RT material. A proper purification is essential to avoid any 

background noise, and to stress that positive signals need leak-tight nano-containers. 

 

     M           2      3 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

      M         1           2         3           4   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20: RT-PCR of a 923bp region of HRV2 under 
conditions similar to MLV-preparations. HRV2 conc. in RT 
system: ~31 nM 

 

 

Figure 21: Dilution series of HRV2 to estimate the limit of 
detection for virus in the RT-PCR assay. HRV2 conc. in RT 
system: 1: concentrated [31 nM], 2: 1:200 [0.15 nM], 3: 
1:2500 [0.012 nM].  

 

Encapsulation of the RT-kit inside of liposomes; since the RT-kit appeared to be very robust 

in terms of temperature and mechanic stress, it was encapsulated. For this purpose, a lipid film, 

consisting of POPC:PE:SM:Ch:DOGS-NTA:NBD-PC = 1:1:1:1.5:0.5:0.05 (molar ratio as used for 

lipofectosomes), was produced and hydrated with buffer containing the RT-kit. Beside the 

commercial kit components, the kit contained a reverse primer, which annealed at the 3’ end of the 

HRV2 genome. It produces a cDNA template, which, in turn, had to serve as template for a PCR 

amplicon of about 923 bp; with a resulting DNA band as shown in the gels above. 
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TEM: Visualization of RT-liposomes upon mSEC purification; As mentioned above, mSEC was 

perfectly suited to separate non-encapsulated RT-kit from the RT-liposomes. However, nothing 

definite was known about the appearance, concentration and stage of aggregation of the vesicles 

upon mSEC purification. To check these issues, TEM images were taken of RT-liposomes before 

(Figure 22, A+B) and after mSEC (Figure 22, a+b). As shown in Figure 22 the liposomal appearance did 

not change upon purification. They still appear as homogeneous vesicles and did not tend to 

aggregate. A closer look on the RT-liposomes at 5.6x104 fold magnification confirms that their 

appearance had not changed; compare images before (Figure 22B) and after mSEC (Figure 22b). Only 

the vesicle concentration was significantly reduced upon purification. The overview images taken at 

1.8x104 fold magnification show this reduction (compare Figure 22A + a) which is expected due to 

dilution after mSEC subjection. The extent of dilution is usual for this procedure and vesicle rupture 

can be excluded. Therefore, one can assume that the nano-container was not damaged in the course 

of its purification. This is an important prerequisite for correct function of the RT-assay using 

lipofectosomes. 

 

Before mSEC 

  
 

After mSEC 

  
 
Figure 22: Negative stain images of freshly prepared RT-liposomes before (A+B) and after mSEC purification (a+b). Images 
were taken at a 1.8 x 10

4
 (A+a) and 5.6 x 10

4
 (B+b) fold magnification. Size bars = 500 nm (left-hand panels) and 100 nm 

(right-hand panels), respectively. LUVs were diluted 1:20 before applying them on the grid; sample staining as in Figure 17. 

A B 

a b 
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Heat-trigger on lipofectosomes; Liposomes were purified from non encapsulated RT by 

mSEC. Subsequently, the membrane was decorated with V33333 prior to incubation with HRV2. 

Infection of the so formed lipofectosomes was triggered via incubation at 56°C for 10 minutes. The 

resulting band at about 923 bp on lane 1 of Figure 23 demonstrated the RNA transfer into the lumen 

of the vesicle and thus confirmed the suitability of the method. If V33333 was not added to the 

mixture (lane 3), the band is still visible but certainly weaker. By comparing lane 1 and 3 it is obvious 

that the receptor plays an important role for correct transport of RNA. The remaining signal in lane 3 

can be explained by the presence of 135S particles. These hydrophobic particles can attach to 

membranes in the absence of receptor and thus do not need receptor mediation (Lonberg-Holm et 

al., 1976). To confirm the need of a leak-tight nano-container and infectious virus particles, 

respectively, two controls were added. First, the lipofectosome was disintegrated before triggering 

RNA transfer. In lane 5 of the same figure, no band was detected, because membrane integrity has 

been affected by adding 1% of Triton X100; thus no RT was carried out. 1% TX had no affect on the 

RT reaction per-se (data not shown). Second, the gel gives a good control for the need of infectious 

particles in this assay. The sample in lane 6 used 80S particles instead of 150S. Again, no signal can be 

detected. However, in this case the virion, lacking its genome inside the capsid, was responsible for 

the failed signal, rather than the consistency of the nano-container. It is of note that viral RNA was 

still present from 80S preparation but was not capable of entering the nano-container. These findings 

suggest that only infectious material, where RNA is still primed for its transfer in the capsid, can 

finally overcome the membrane. 

Triggering genome transfer by heating and pH-lowering showed differences in efficiency of 

infection; An efficient and useful way to release RNA from virus in solution can be initialized by 

heating a diluted virus sample up to 56°C for 10 minutes; concentrated virus samples do not release 

their genome under these conditions (unpublished data). However, this technique is very artificial 

and does not represent the natural way, where virus faces pH lowering within endosomal 

compartments. Therefore, it was of interest how these two strategies of virus conversion, differ in 

their efficiency to deliver the genome properly through the membrane. TEM experiments (see 

previous section) suggested already more efficient transport upon pH lowering. The signals, shown in 

Figure 24, stressed again this difference in transport efficiency. Here the lanes 1 – 3 corresponded to 

a genome transfer in lipofectosomes triggered by no-trigger, heat- and low pH-treatment, 

respectively. Apparently, also without trigger several RNA genomes were transferred (lane 1). This 

effect can be explained by stimulated “viral breathing” at 37°C during RT. “Viral breathing” describes 

a dynamic change in the viral capsid. For Rhinovirus this phenomenon allowed digest of the inner 
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VP4 protein by exposing it transiently on the virus surface (Lewis et al., 1998). In the absence of pH 

lowering the membrane decorated receptor keeps holding virus in proximity to the membrane of the 

nano-container. Dynamic changes in the capsid could thus insert transiently exposed hydrophobic 

domains of the virus into the membrane. This hydrophobic attachment is suggested to catalyze the 

RNA transfer even without proper trigger and results in a background signal. However, by using heat 

triggering the signal appeared significantly stronger (lane 2). The strongest signal was obtained after 

triggering the transfer by pH lowering (lane 3). The actual conditions for pH lowering, pH 5.4 for 

15 minutes at ambient temperature, where shown by TEM to be very efficient to uncoat the virion; 

see TEM section. In TEM, it was not possible to trace the route of the RNA after its release. Now, RT-

PCR confirmed that the genome was indeed transferred through the membrane upon release from 

the capsid. 

Besides a very efficient way to uncoat HRV2 in lipofectosomes, pH lowering served as further 

indication for pore formation. As mentioned above, the RT needs a particular buffer milieu for its 

proper function. By changing the outer buffer composition, the RT buffer inside the nano-container 

should not be affected. In the presence of HRV2, however, after pH lowering RT reaction was 

inhibited; data not shown. Complete disintegration of the liposomes can be excluded, because upon 

re-neutralization with a sodium hydroxide solution [500 mM] of the whole mixture, as performed for 

the presented data, the activity of the enzyme was recovered. These findings suggest again the 

formation of a pore, which allows passage for polar molecules or protons. 
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Figure 23: Heat-triggered RNA transfer of lipofectosomes 
and liposome/virus mixtures. 

Incubation of lipofectosomes at 56°C for 10 minutes 
transferred viral genomes from the capsid into the 
liposomal compartment (lane 1). Significantly less RNA was 
transported if no receptor kept the virus on the membrane 
(lane 3). Disintegrated nano-containers were not able to 
carry out RT at all (lane 5). Non-infectious particles, such as 
80S, could not transport their released RNA in the 
liposomal compartment (lane 6). Lipofectosomes were 
prepared in the presence of 33 nM HRV2, TX: Triton X100 
[1%], V33333: Receptor construct, 150S: native virus, 80S: 
empty capsid; 

Figure 24: RT-PCR of lipofectosomes upon triggering 
infection by either heat-treatment or pH-lowering. 

No trigger for uncoating gave a weak signal (lane 1), 
whereas heating at 56°C for 10 minutes (lane 2) resulted in 
a significant higher signal. The strongest signal,  was 
obtained by pH lowering (lane 3); Lipofectosomes were 
prepared in the presence of 33 nM HRV2, 0: no trigger, T: 
heat treatment (56°C/10min), pH: pH-treatment (pH ~5.4 / 
15 minutes / re-neutralization) 

 

Importance of receptor-mediation for RNA transfer; As already indicated in Figure 23, the 

decoration of the liposomal membrane with receptors significantly increased the genome transfer 

presumably by binding more viral particles in proximity of liposomes. To estimate the effect of the 

receptor in more detail, two assays were performed: one with bare RT-liposomes without receptor 

decoration, and the other with V33333-decorated liposomes. Both were incubated with HRV2. The 

following bands in Figure 25 confirmed the need of receptors for an efficient genome transfer into 

the liposomal nano-container. The respective trigger (temperature, pH) showed here a negligible 

contribution to the resulting signal. For the first three lanes, the mixture lacked receptors molecules. 

Sample in lane 1 was not triggered, whereas samples from lane 2 and 3 were triggered by heat and 

pH-lowering, respectively. Despite applying the appropriate triggers, this series did not give clear 

bands due to the lack of receptor decoration. With the same sequence of triggering, lane 4, 5 and 6, 

showed the expected bands by using receptor-decorated RT-liposomes. Apparently, receptor-

decoration is necessary for proper genome transfer in-vitro. This would mean that immediately 

before virus conversion starts, virions need the proximity to the membrane, to release the genome 

correctly. For unknown reasons, the intensity of the signal in this experiment could not be correlated 

with the respective trigger; all signals reached the saturation. One has to be aware of the fact that 

1kb 

V33333       +             -                +           + 
HRV         150S      150S         150S         80S 

TX 

1kb 

Trigger       0             T           pH   
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regular PCR systems are not suited for proper quantification in a subtle concentration range. 

Although keeping all parameters constant (e.g.: cycles of amplification, concentrations of 

components, etc.) the final signals varied always slightly in intensity; data not shown. 

 
Figure 25: Comparison of bare and receptor decorated RT-
liposomes upon RT-PCR with focus on their efficiency of 
genome transfer. 

Liposomes lacking receptor molecules on their surface, 
where not capable of transferring the RNA properly (lane 1-
3). Only assemblies, containing receptor molecules showed 
a significant signal after RT-PCR (lane 4-6). Lipofectosomes 
were prepared in the presence of 33 nM HRV2, R: receptor 
(V33333), 0: no trigger, T: heat treatment (56°C / 
10 minutes), pH: pH treatment (pH ~5.4 / 15 minutes / 
re-neutralization) 

   M      1     2      3     4      5     6 

 
 

 

Formation of lipofectosomes with a dilution-series of HRV2; A rough estimation of the limit 

of detection to reaffirm the presence of HRV2 RNA was shown above. However, that assay used only 

HRV, and the virion was not engaged by receptor-decorated liposomes. As described in the last 

paragraphs, released RNA can be detected upon its ingress in the liposomal compartment. This 

meant a change in the methodology and thus it was of interest whether the limit of detection had 

changed. If not using nano-containers, even viral RNA, not being transferred through the membrane 

gives a signal. It is thus expected that higher virus concentrations are required for signal detection. 

The gel from Figure 26 used lipofectosomes prepared in the presence of different virus 

concentrations. It shows a stepwise reduction of the DNA signal, depending on virus concentration in 

the system. Virus dilutions of 1:100 [~0.33 nM] and 1:1000 [~0.033 nM] were still detectable, 

whereas those of 1:10.000 [~0.0035 nM] and 1:50.000 [~0.0005 nM] were not; nM values 

correspond to virus concentration present while forming the lipofectosome. For the latter dilutions, a 

slight signal was detected for the expected 923 bp band. However, also negative controls, for 

instance upon TX treatment for testing the need of a leak tight nano-container, showed occasionally 

such weak signals (compare lane 13 in Figure 26). Therefore, signals of this extent have always been 

considered background noise and have never been considered RNA transfer. Since regular PCR does 

not work for subtle quantification of DNA templates, it is difficult to judge whether the use of 

lipofectosomes resulted also in a profit for the limit of detection. However, it was confirmed that it 
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did not result in a significant loss of sensitivity. Moreover, the main goal of this method, using nano-

container, was not the achievement of better sensitivity but better selectivity for RNA transferred by 

infectious virus. 

Based on the idea that a pore must be formed through the leak-tight nano-container, in 

order to form a gate for a hydrophilic RNA molecule, two negative controls have been designed, and 

are also shown in Figure 26. The putative pore must possess a particular diameter to carry out 

genome transfer. The extent of this diameter can roughly be estimated, with regard to data 

presented by (Brabec et al., 2005). The group compared leakage of two dyes, which only differed in 

their size (10 and 70kDa FITC dextran), from an endosomal compartment to the cytosol. Only the 

small dye (10kDa) was able to migrate to the cytosol upon co-internalization with HRV2. Considering 

the hydrodynamic diameter of this dye molecule, the putative pore must possess a diameter in the 

range of 10 to 39 Å; see Figure 6. Therefore, a small enzyme, such as the 14 kDa RNase A, could 

readily pass this gate, as well. Lane 12 of Figure 26 shows a control, where lipofectosomes, which 

were already tested to give a clear positive signal (HRV2 dilution of 1:100; compare lane 2), were 

exposed to 50 µg/mL RNase A during heat-triggering and RT. As a result of this incubation, no signal 

was detectable anymore. The RNA genome has been degraded, either inside the capsid, on its route 

through the pore or within the liposome. This finding is in agreement with the theory of pore 

formation upon viral conversion to transfer the RNA (Hewat & Blaas, 2006; Prchla et al., 1995). 

To confirm the proper function of RNase A in the given RT environment, two HRV2 samples 

were diluted in RT-mix to obtain a concentration of 0.33 nM as used for lipofectosomes. During heat-

triggering and subjection to RT-PCR, one of these samples was treated with RNase A [50 µg/mL]. 

Lane 11 in Figure 27 shows the 923 bp band, which corresponds well to the applied HRV2 

concentration. The same sample, but incubated with RNase A (lane 12), did not give any signal. In 

this attempt, RNA was clearly degraded, where RNase A was added. Even the presence of the RNase-

inhibitor could not avoid the degradation. 

The second control in this context emphasized again the need of a leak-tight nano-container. 

For that reason, a tested lipofectosome (prepared in presence of 0.33 nM HRV2) was treated with 1% 

Triton X100, prior to heat triggering. The detergent had certainly a negative effect on membrane 

integrity. Lane 13 (Figure 26) gives the remaining and very weak signal of this control. If compared to 

lane 2 the major part of the signal is lost due to destabilization of the nano-container. This 

demonstrates once more that reverse transcription only works inside the liposomal compartment, in 

its favorable buffer conditions. 
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Figure 26: Concentration of applied HRV2 correlates with 
the intensity of a lipofectosome-derived RT-PCR signal. 

Lipofectosomes were prepared in the presence of 0.33 nM 
(1:100), 0.033 nM (1:1000), 0.0035 nM (1:10.000) and 
0.0005 nM (1:50.000) HRV2; Trigger: 56°C for 10 minutes; 
RNase A in the mixture: 50 µg/mL (applied upon formation 
of the lipofectosome); 
Triton X100 (TX): 1% ; 

Figure 27: Inhibition of RT-PCR by degradation of the viral 
genome with RNase A. 

HRV2 concentration: 0.33 nM; RNase A: 50µg/mL; 

 

Whether or not a pore has formed in the course of minor group HRV infection is still a crucial 

question. A certain answer to this question could give new insights into the mechanism of infection 

of non-enveloped viruses. As demonstrated above, RNase A interferes with the RT system by 

degrading the RNA genome. To do so, the enzyme has entered either the nano-containers or the viral 

capsid via pores. Therefore, the experiments around RT-PCR of lipofectosomes in the presence of 

RNase A must be examined in more detail. To test these in-vitro findings and to confirm their 

biological relevance, it was endeavored to transfer and repeat the experiments in a cell culture 

system. Hence, the next section describes HRV2 infection of HeLa cells from the plasma membrane, 

using native receptor and membrane composition, and its inhibition upon RNase A treatment. 
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5.3.2 HeLa system: Confirmation of RNase A dependent reduction of HRV2 infection. 

(eIF4G1 cleavage assay ) 

To confirm whether the findings from the in-vitro experiments can keep validity in a tissue 

culture approach, the experimental setup was transferred into a living cell system. By using a 

protocol to infect HeLa cells from plasma membranes, one can easily manipulate parameters of 

infection. In this approach infection occurs artificially on the cell surface and virions are not 

internalized into endosomes (Berka et al., 2009; Brabec et al., 2003). By changing buffer conditions to 

lower pH values, infection can be triggered similar to the in-vitro manipulation on lipofectosomes. 

This protocol was used to correlate the presence of RNase A with the infection capacity of HRV2 on 

HeLa cells. 

HeLa cells were incubated with HRV2 [MOI 30] in the presence of 40 nM bafilomycin to 

inhibit infection via endosomal routes. The pH of the medium was changed to pH 5.2 to trigger 

infection from the plasma membrane. Additionally, a further sample also changed to pH 5.2, 

contained RNase A [2mg/mL] in order to reduce infection on cells. 

Western blot applying antibodies against eIF4G1, a marker for early infection (Pain, 1996), 

was used to detect the extent of infection in these cells. Since cleaved eIF4G1 protein is a clear proof 

for early infection, cells were harvested after incubation for only 5 hours at 34°C. As can be seen 

from the Figure 28, the controls (+ / -) worked as expected. The absence of bafilomycin led to regular 

infection of the cells (lane 1 and 2; cleaved product). However, infection was completely stopped in 

the presence of bafilomycin, as demonstrated in lane 3 only uncleaved product is detectable. Upon 

changing the pH to 5.2, still in the presence of bafilomycin, cleaved eIF4G1 can again be detected 

(lane 4). In other words, infection from the plasma membrane has occurred. This signal, in turn, is 

reduced after incubation with RNase A (lane 5). 

For sake of quantitation the films were scanned and the intensity of the signals of cleaved 

product was quantified, using ImageJ. The diagram in Figure 29 shows the resulting values of film 

darkening for the three samples of interest. A detailed overview of the respective treatment of each 

sample is given in the corresponding table at the lower end of the figure. Figure 29 demonstrates in 

more detail that the presence of bafilomycin inhibited infection from plasma membranes almost 

completely (1. Column = 3. Lane). As soon as exposed to low pH, infection was restored (2. Column = 

4. Lane). However, infection, directly from the plasma membrane, can be effectively inhibited by 

addition of RNase A (3. Column = 5. Lane), reducing eIF4G1 cleavage to values of the bafilomycin 

value (1. Column = 3. Lane). 
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The presented data from HeLa experiments support clearly the in-vitro findings using 

lipofectosomes. Both systems detected a significant decrease in HRV2 infection upon treatment with 

RNase A. This data is in agreement with the postulation of pore-formation during minor group HRV 

infection. Indeed, it is very likely that a pore, generated for genome transfer, allows also small 

proteins, such as RNases, to pass the membrane. Thus the RNase A could readily pursue the RNA 

genome on its way from the capsid into the cytosol and into the interior of an artificial nano-

container, respectively. Upon ingress in the new compartment, it is very likely that the RNase 

degrades the genome and thus inhibits infection. However, additional data is required to exclude 

RNA digest prior to its release from the capsid. Moreover, future experiments should also aim at 

assessing the persistence of the putative pore. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
HRV2 [MOI30] + + + + + - - - 

Bafilomycin [40 nM] - - + + + + - - 

pH 5.2 - - - + + - + - 

RNase [2mg/mL] - + - - + - + - 

 
Figure 28: Western Blot of eIF4G1 - Assessment of HRV2 infection from the plasma-membrane upon treatment with 
RNase A. 

Uncleaved eIF4G1 possesses a size of ~200 kDa. In the course of infection it is cleaved by the viral protease 2A
pro

 (Liebig et 
al., 2002) to a fragment of ~130 kDa. Upon infection with HRV2, normally the cleaved protein is the predominant species 
and indicates infection (lane 1 + 2). Non-infected HeLa cells possess only uncleaved protein (lane 6-8). In the presence of 
bafilomycin, HRV2 cannot infect the cells via endosomal routes and thus no cleavage product can be seen (lane 3). 
However, infection can be induced from the plasma membrane by pH lowering (lane 4). Upon incubation with RNase A, 
infection from the plasma membrane was reduced (lane 5). HRV2: MOI 30, representative result from two independent 
experiments is shown. 
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Figure 29: Quantitative assessment of infection from the plasma membrane by eIF4G1 cleavage assay. The bars 
correspond to the intensity of darkening of the Western blot film, shown in Figure 28. Representative result from two 
independent experiments is shown. 

  

Lane 3  4  5 

HRV2 [MOI30] +  +  + 

Bafilomycin [40nM] +  +  + 

pH 5.2 -  +  + 

RNase [2mg/mL] -  -  + 
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6 Summary 
 

The actual infection process of minor group human Rhinoviruses takes place on the 

endosomal membrane. Driven by acidic pH, uncoating of the virion is initialized and the viral genome 

reaches the cytosol of the host cell. How this actual transfer of the genome - a RNA molecule of 

about 7 kb - operates is not yet clear. It is widely believed that a pore, consisting of viral proteins, 

must be formed to transport the hydrophilic RNA through the amphipathic bilayer. However, the 

building blocks of this putative pore are not known. Also, whether its components were only of viral 

origin or additional host factors were needed to carry out proper genome transfer, was left 

unanswered since long. 

This work endeavored thus to generate an appropriate model system in order to elucidate 

the minimal requirements for the correct transport of the genome. For this purpose, an in-vitro 

system was successively equipped with components, which seemed likely to be involved in this 

transport mechanism. To mimic the surface of a human cell, liposomes were prepared and decorated 

with receptors onto their outer leaflets using a complex bond. As a representative of the minor group 

of human Rhinoviruses, HRV2 was bound via its receptors to this liposomal compartment. The 

resulting construct was called a lipofectosome and was used to render a minimal system for genome 

transfer. 

Different liposome batches were characterized to choose for preparation techniques suitable 

for further experimental approaches. Their characterization focused on the lipid concentration and 

the vesicle diameter, which were assessed via determination of total phosphorus content and 

dynamic light scattering, respectively. The correct formation of lipofectosomes was monitored by 

electrophoretic means, such as capillary- and chip-electrophoresis, and confirmed by transmission 

electron microscopy. Moreover, the latter technique was used to examine conditions for complete 

and reproducible viral uncoating. Finally, a reverse transcription kit was encapsulated inside the 

liposomal compartment. These vesicles served as nano-container to generate a DNA template of the 

viral genome. Using this method the ingress of the viral genome from the liposome surface was 

detected upon triggering uncoating from the outside of the liposomal vesicle. 

The resulting data confirmed the successful transfer of viral RNA from the virion to the 

liposomal compartment within a lipofectosome. Moreover, the data allows to derive several 

conclusions from the minimal system requirements and to apply them to the natural situation in 

living cells. First, the system needs to keep the virus in vicinity to the membrane while triggering 

infection, to transport the genome. This model used a recombinant receptor to do so. This receptor 

construct consisted only of binding repeats for targeting the viral capsid and lacked most of its 

natural building parts. Also its transmembrane domain and cytoplasmatic region were not present in 
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the construct and thus do not seem to be required for the genome transport. Besides membrane and 

receptor, host factors, such as additional membrane or cytoplasmatic proteins, can be considered 

not being involved in this process, as genome transfer occurs in their absence. Moreover, the results 

demonstrated that not only the native trigger of uncoating can cause the genome to migrate through 

the membrane. Indeed, a very synthetic stimulus, the heating of virions at 56°C for 10 minutes, which 

was only known to release RNA, was also capable of transferring it properly. Apparently, the proper 

trigger, such as the mimicry of endosomal pH conditions, is of minor importance to carry out genome 

transfer. Upon providing the viral capsid with enough energy to leave its meta-stable stage, the 

resulting uncoating process and pore-formation proceeds independently of the environment. 

For future perspectives, a so far untouched criterion for the minimal system of RNA transport 

is the membrane composition. In this regard, the contribution of lipid rafts needs to be examined. 

One could easily test this criterion by the RT-assay invented here but employing different lipid 

compositions for the liposomal nano-container. Further, the proposed pore needs to be confirmed 

and described in more detail. For instance, leakage data could offer information about the 

persistence of a formed pore. Moreover, detailed data on the structure of a putative pore complex 

could be obtained via visualization of lipofectosomes by high resolution means. Such data can 

provide a base for image-reconstruction. First attempts with cryo electron microscopy looked very 

promising. In turn, the knowledge about the persistence and the structural assembly of such a pore 

complex will provide supplementary information about the early steps in the infection process of 

non-enveloped viruses. 
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9 Appendix 
 

9.1 Publications 
 

The following articles, published in the course of the doctoral thesis, have been inserted in this 

manuscript: 

 

(Bilek et al., 2006a) 

“Analysis of liposomes by capillary electrophoresis and their use as carrier in electrokinetic 

chromatography”  

 

(Bilek et al., 2006b) 

“Capillary electrophoresis of liposomes functionalized for protein binding”  

 

(Bilek et al., 2007) 

“Mimicking early events of virus infection: Capillary electrophoretic analysis of virus attachment to 

receptor-decorated liposomes” 

 

(Weiss et al., 2009) 

“Mimicking virus attachment to host cells employing liposomes: Analysis by chip electrophoresis”  
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bstract

This contribution reviews work about liposomes in the context of electrically driven separation methods in the capillary format. The discussion
overs four topics. The one broaches the application of liposomes as pseudo-stationary phases or carriers in vesicle or liposome electrokinetic
hromatography (EKC) in the way as microemulsions and micelles are used; it includes the chromatographic use of liposomal bilayers as stationary
hases attached to the wall for capillary electrochromatography (CEC). The second topic is the characterization and separation of liposomes as

nalytes by capillary electrophoresis (CE). Then the determination of distribution coefficients and binding constants between liposomes and ligands
s discussed, and finally work dealing with peptides and proteins are reviewed with lipid bilayers as constituents of the electrically driven separation
ystem.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Liposomes are self-assembled vesicles commonly consisting
f phospholipid bilayers enclosing an aqueous solution, with

other lipid aggregates found as well. These model organelles
have been widely used to mimic processes occurring at cell
membranes. The main phospholipids of Eukarya are phosphati-
dylcholine (PC, the most common phospholipid in natural mem-
branes), phosphatidylserine (PS), phosphatidylethanolamine
(PE), sphingomyelin (SM); for the abbreviations and symbols
� This paper is part of a special volume entitled “Analysis of proteins, peptides
nd glycanes by capillary (electromigration) techniques”, dedicated to Zdenek
eyl, guest edited by I. Miksik.
∗ Corresponding author. Tel.: +43 1 4277 52305; fax: +43 1 4277 9523.

E-mail address: ernst.kenndler@univie.ac.at (E. Kenndler).

o
s
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b

570-0232/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
oi:10.1016/j.jchromb.2006.03.031
f the compounds and for their structures see Table 1. These
ubstances are amphiphilic (they possess a hydrophilic and a
ipophilic entity) and many are zwitterionic. Liposomes can
e multi- or unilamellar. The diameter of unilamellar vesicles

mailto:ernst.kenndler@univie.ac.at
dx.doi.org/10.1016/j.jchromb.2006.03.031
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Table 1
List of compounds for liposome formation including structural formulae and symbols used in the text

Compound Symbol Structure R

Phosphatidylcholine PC

Dilauroylphosphatidylcholine
DLPC

R1, R2

1,2-Dilauroyl-sn-glycero-3-phosphocholine

Dimyristoylphosphatidylcholine
DMPC R1, R21,2-Dimyristoyl-sn-glycero-3-phosphocholine

Dipalmitoylphosphatidylcholin
DPPC R1, R21,2-Dipalmitoyl-sn-glycerol-3-phosphocholine

Distearoylphosphatidylcholine
DSPC R1, R21,2-Distearoyl-sn-glycero-3-phosphocholine

Dioleoylphosphatidylcholine
DOPC R1, R21,2-Dioleoyl-sn-glycero-3-phosphocholine

Palmitoylphosphatidylcholine
Mono-PPC

R1

1-Palmitoyl-sn-glycero-phosphocholine H R2

Palmitoyloleoylphosphatidylcholine
POPC

R1

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine R2

Palmitoyllinoleoylphosphatidylcholine
PLPC

R1

1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine R2

Phosphatidylethanolamine PE a

Sphingomyelin SM a

Phosphatidylglycerol PG

Distearoylphosphatidylglycerol
DSPG R1, R21,2-Distearoyl-sn-glycero-3-phosphoglycerol

Dipalmitoylphosphatidylglycerol
DPPG R1, R21,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol

Phosphatidylserine PS
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Table 1 (Continued )

Compound Symbol Structure R

Dipalmitoylphosphatidylserine
DPPS R1, R2

1,2-Dipalmitoyl-sn-glycero-3-phosphoserine

Phosphatidic Acid PA a

Phosphatidylinositol PI a

Cardiolipin CL a

Cholesterol Ch

Dicetylphosphate DCP

r
W
“
∼
v
t
e
w
h

d
t
b
s
f
t
o
m
m
t
o
o
o

w
l
c
s
o
p

i
p
s
l
t
c
t
v
m
m
i
o

a R1, R2 depend on source.

anges between several tens and thousands of nanometers.
ith diameters from ∼25 to ∼100 nm they are usually termed

small unilamellar vesicles” (SUVs) and from ∼100 nm to
1 �m “large unilamellar vesicles” (LUVs). “Giant unilamellar

esicles” (GUVs; 20–150 �m) are formed rather from bipolar
etraether lipids like those occurring in Archaea than from
sters like the phospholipids [1]. Archaea are microorganisms
hich are adapted to extreme environmental conditions like
igh temperatures, low pH or absence of oxygen.

Phospholipid liposomes have been utilized since about two
ecades in liquid chromatography (LC) and became popular for
he investigation of interactions between ligands and biomem-
ranes (for recent reviews, see refs. [2,3]). In electrically driven
eparation methods in the capillary format liposomes were less
requently used and investigated. However, since their introduc-
ion into these methods [4,5] they have raised two-fold interest;
n the one hand, they were considered attractive separation
edia especially as models for the partition of analytes into cell
embranes. On the other hand, capillary electrophoresis (CE)
urned out to be an effective tool to investigate the properties
f liposomes as analytes, like their charge and size distribution,
r their interaction with ligands. It is interesting that most types
f liposomes carry a charge (normally they are anions) even

c

p
s

hen they are composed of neutral compounds or of zwitterionic
ipids in their isoelectric range, at pH values where the opposite
harges should compensate each other. In this respect the lipo-
omes behave similarly to other colloidal particles composed
f apparently electrically neutral compounds like polyethylene,
olyvinylchloride or elementary gold [6].

The use of liposomes as stationary or pseudo-stationary phase
n electrically driven techniques has some advantages as com-
ared to column chromatography. The setup of the separation
ystems is much less complicated; in liquid chromatography, the
iposomes have to be attached to the stationary phase. This is not
he case in electrokinetic chromatography (EKC). Here, the vesi-
les are freely dispersed in solution without steric restrictions
hus better mimicking conditions such as they prevail for lipid
esicles within cells. Similar to micellar electrokinetic chro-
atography (MEKC) and microemulsion electrokinetic chro-
atography (MEEKC) consumption of sample and chemicals

s very low as compared to classical column LC. For reviews
n the use of liposomes in separation techniques and on their

haracterization and analysis by CE see refs. [2,3,7,8].

First the application of phospholipids as pseudo-stationary
hase added to the background electrolyte (BGE), and as real
tationary phase, when they form a coating layer at the capillary
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all is discussed. In both cases, separation of the analytes is
ased on their partition between the aqueous buffers and the lipid
embranes; in principle the system is a chromatographic one.
igration is due to electrokinetic movement, by electrophore-

is for charged analytes and dispersed charged vesicles, and
y the superimposed electroosmotic flow (EOF). Then, work
ealing with the characterization of liposomes by CE is dis-
ussed. CE analysis of liposomes is possible because in many
ases the vesicles exhibit an electric charge as mentioned above.
inally, affinity electrophoresis in the broadest sense involving

iposomes will be discussed and at the end of this contribution a
eparate section is devoted to peptides and proteins. It is obvious
hat these topics overlap in some cases.

. Liposomes for electrically driven capillary
hromatography

When liposomes are used as lipophilic chromatographic
hase, two methods are differentiated in the literature according
o the arrangement of this phase. In both methods the mobile
aqueous) phase is moving through the separation system by the
OF. In capillary electrochromatography (CEC) the stationary
hase is really fixed in the system, either as a packed bed, a
onolithic phase, or as coated layer at the inner capillary wall.

n EKC the lipophilic phase is suspended in the aqueous mobile
hase (or vice versa) in form of micelles, microemulsions or
ther particles forming a pseudo-stationary phase. These par-
icles are normally electrically charged and move thus with an
wn electrophoretic velocity under the influence of the applied
lectric field. With respect to the separation principle being a
hromatographic one it is not a pre-requisite that the one phase
s fixed, it is essential that they migrate in the aqueous phase with
he EOF. The analytes are electrically driven; if the compounds
re uncharged they migrate with the EOF. Separation is possible
ue to the different partitioning of the analytes between the two
hases. Note that the separation of charged analytes in these elec-
rically driven systems can be described similarly by taking into
ccount their own electrophoretic migration. In this section we
ill discuss analyte separation rather than the physico-chemical
arameters it is based on; distribution coefficients and binding
onstants are the topic of the separate Section 4.

.1. Liposomes as pseudo-stationary phases

Nakamura et al. [9] used liposomes as pseudo-stationary
hase in EKC for the separation of hydrophobic compounds.
iposomes consisting of anionic and cationic lipids were
repared by Foley and co-workers [10]. The vesicles were
ade from n-dodecyltrimethylammonium bromide (DTAB) and

odium dodecyl sulphate (SDS). These detergents, either pure or
s mixture, form micelles. However, at a mass ratio of 40/60 of
TAB/SDS and at a total surfactant concentration of 1% (w/v)

he detergent mixture forms vesicles of about 100 nm diameter,

ith the cationic groups directed towards the interior, and the

nionic groups towards the exterior of the vesicle. The authors
ompared these vesicles with SDS micelles and mixed micelles
ormed by SDS and DTAB with respect to detergent ratio, phase

w
s
g
e

r. B 841 (2006) 38–51 41

atio, elution range and selectivity, hydrophobicity, etc. The
esicular systems showed a larger elution window as compared
o the micelles.

LUVs formed from two different zwitterionic phospholipids,
ither with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
POPC) or with 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine
DPPC) as main constituent, were prepared by Wiedmer
t al. [11] and their retention characteristics were evalu-
ted with corticosteroids as reference compounds. A second,
nionic lipid (PS; cardiolipin (CL); phosphatidylglycerol (PG);
r phosphatidic acid (PA)) was present at up to 30% in
he liposome preparations. Running buffer was 50 mM 2-(N-
yclohexylamino)ethanesulfonic acid (CHES) at pH 9. Boric
cid buffer was found to be unsuitable due to the interaction of
orate with the steroids: they were retained even in the absence
f liposomes. Relative migration times, defined as tm/t0 (tm is
he migration time of the analyte, t0 that of an EOF marker)
ere given; they increased with total lipid concentration and
ecreased with the POPC/CL ratio. The effect of the anionic
ead group (from PG, PA, PS or CL, respectively) was investi-
ated at different temperatures. Separation of the corticosteroids
ncreased with increasing negative charge of the vesicles.

Steroid hormones could be separated using liposomes made
rom POPC and POPC/cholesterol (Ch) (80/20 mol%). The
lectrophoretic (anionic) mobility of the vesicles with parti-
le diameters of around 120 nm were small (between 2 and
3 × 10−9 m2 V−1 s−1) and changed with buffer type (at con-
tant ionic strength of 20 mM and 25 ◦C) [12]. The EOF was
ependent on the coating of the capillary. Retention of analytes
orrelated with the results obtained by monolayer penetration
easurements. With similar liposomes (POPC/PS, but no Ch)

henols and steroids were separated [13].
A similar comparison as in ref. [10] was made with three

urfactant vesicles and one phospholipid vesicle [14]. The
uthors related properties like particle diameter, mobility, reten-
ion and migration window, separation efficiency and selectivity
o those of common MEKC systems with SDS. Two types
f surfactant vesicles were formed from non-stoichiometric
queous mixtures of the oppositely charged and single-tailed
urfactants cetyltrimethylammonium bromide (CTAB) and
odium octyl sulfate (SOS) at a 30/70 molar ratio, and of n-
ctyltrimethylammonium bromide (OTAB) and SDS at a 70/30
olar ratio. Other surfactant vesicles consisted of double-tailed

is(2-ethylhexyl)sodium sulfosuccinate (AOT) in 10% MeOH,
nd phospholipid vesicles were made from POPC/PS in a ratio
f 80/20. The vesicles had mean diameters of between 76 and
08 nm, and mobilities of about 35 × 10−9 m2 V−1 s−1 (with the
xception of OTAB/SDS, which exhibited a mobility of only
7 × 10−9 m2 V−1 s−1). Interestingly, all vesicles were nega-
ively charged, although the OTAB/SDS vesicles were prepared
ith the cationic surfactant added in excess. The phase ratios of

he pseudo-chromatographic systems were between 10−2 and
0−3 (with surfactant concentrations between 0.5 and 1.8%,

/v). CTAB/SOS vesicles formed spontaneously in aqueous

olution. A constant particle size was obtained after 14 h of
rowth as determined by dynamic light scattering. For a mod-
rately retained analyte (the retention factors were not given)
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late numbers between 60,000 and 130,000 were measured. The
ame migration order for positional isomers (nitrotoluenes) was
bserved for the vesicle systems, but it differed from that seen
hen SDS micelles were used. Interpretation of the retention
ata based on linear solvation energy relationship (LSER, see
ection 4) revealed that hydrogen bond acidity and cohesive-
ess were the most relevant parameters. In previous work of this
roup, similar systems (CTAB/SOS at 80/20 mol% and AOT in
0% MeOH) were used to correlate retention factors to POW (the
artition constant between octanol and water) for a number of
rganic standard compounds, pesticides and organic acids [15].
he results were based on LSER.

The same group investigated the influence of organic sol-
ents added to the BGE on particle size, retention of neutral
nalytes, methylene and shape selectivity, and based the inter-
retation of the change in retention on LSER analysis [16].
o-called class I (at 0.5%, v/v) and class II solvents (at up

o 15%, v/v) were added to the BGE, consisting of 1.8%
w/v) CTAB/SOS in 10 mM N-(2-hydroxyethyl)piparizine-2′-
2-ethanesulfonic acid) (HEPES) buffer at pH 7.2. Class I mod-
fiers, polar organic compounds like alkylpolyols, are absorbed
n the vesicle and change thus the partition properties for the
nalytes. From this class the authors applied 1-butanediol, 1,2,6-
exanetriol, glycidol, and 2-amino-1-butanol. Class II modifiers
hange physical properties of the bulk liquid phase like the
ielectric constant, and affect in this way analyte partition. Sol-
ents like methanol or acetonitrile belong to class II; acetonitrile
as chosen in this paper. It was found that all modifiers decrease

he methylene selectivity, αCH2 . The methylene selectivity can
e derived from the slope of the curves relating the retention fac-
or, k, of a series of homologues versus their carbon number, nC.
or this purpose, alkylphenones are often taken. The according
egression can be expressed by

og k = log αCH2nC + log β (1)

og β is the intercept of the regression line. It was further found
hat the shape selectivity is decreased by the class II modifier.
hape selectivity is the selectivity coefficient which relates the
etention factors of two positional isomers, 1 and 2, accord-
ng to k1/k2. The class II modifier acetonitrile, on the other
and, did not affect shape selectivity. Based on LSER analy-
is of the retention data it was concluded that cohesiveness and
ydrogen bond acidity play the major role when acetonitrile
as the modifier. With class I solvents cohesiveness is impor-

ant as well, but hydrogen bond basicity is decisive. In a recent
aper [17] the authors compared the effect upon changing the
ounter-ion of the cationic detergent from bromide to chloride.
he size of the vesicles changed from an average diameter of 85

o 96 nm. Class I and class II modifiers had similar effects on elu-
ion range, methylene selectivity, and efficiency. LFER analysis
uggested a difference in solute–vesicle interaction due to the
ounter-ion.
The elution range for EKC with particles containing chiral
-dodecoxycarbonylvaline (DDCV) was increased by apply-

ng mixed vesicles with an oppositely charged detergent, CTAB
18]. The vesicle-based separation system finally consisted of

d
∼
T
1

r. B 841 (2006) 38–51

.4% (w/v) CTAB/DDCV (30/70 mol%) in 35 mM CHES buffer,
H 8.5. Compared to mixed micelles consisting of the DDCV
nd SDS, a larger elution range, higher methylene and shape
electivity was observed. Interestingly enantioselectivity was
ompletely lost in the vesicle system compared to the micellar
ne, indicating a different separation mechanism in both EKC
ystems.

The aggregation behaviour of a novel detergent, sodium
-(4-dodecyloxybenzoyl)-l-valinate (SDLV), which differs

rom that used in ref. [18] by substitution of the carbonyl by
benzoyl group, was investigated by dynamic light scattering,
icroscopy, fluorescence probe and surface tension methods

19]. It spontaneously forms vesicles with 30–70 nm diameter
n aqueous solutions. It was used as chiral selector for EKC
20]. The atropisomers of binaphthol, binaphthyl diamine and
inaphthol phosphate, and the enantiomers of Tröger’s base and
enzoin were separated in borate buffer (at pH 9.7 and 10.3)
ith 2–5 mM SDLV.
Retention factors of drugs in liposome systems composed of

OPC and PS (in a molar ratio of 80/20, suspended in phosphate
uffer of ionic strength 0.05 M at pH 7.4) were compared with
ifferent micellar and microemulsion systems with respect to
he log POW values and membrane permeability [21]. Literature
ata on the permeability of monolayers of the human intestinal
pithelial cell line Caco-2 and of the intestinal segment of rat
leum and rat colon for 20 compounds (including 10 �-blockers)
ere taken as reference. Although the correlations were not
igh (the highest correlation coefficient was 0.88) the best
orrelation with membrane permeability was observed for the
iposomal system.

.2. Immobilized phospholipids as stationary phases

Phospholipids and liposomes have been applied as stationary
hase in LC for a long time; see e.g. the recent review article
f Wiedmer et al. [2]. For their use in CEC phospholipid lay-
rs can be immobilized on the capillary wall where they form
hydrophobic stationary phase. There is no principal dispar-

ty between electrokinetic and pressure driven chromatography
oncerning separation selectivity with regard to neutral analytes;
he difference lays in the zone dispersion effects. However, for
onic analytes it is obvious that the selectivity of the two methods
iffers due to the additional contribution of the electrophoretic
igration in CEC.
A method to immobilize liposomes in the capillary for CEC

as proposed by Yang et al. [22] who made use of the high
ffinity avidin/biotin system; first, the silanol groups of the fused
ilica capillary were reacted with 3-aminopropyltriethoxysilane.
he resulting aminopropylsilica surface was treated with glu-

araldehyde to obtain an aldehyde-activated surface, to which
vidin was coupled. Finally, unilamellar liposomes assembled
rom PC and 2 mol% biotinylated polyethylene were immo-
ilized to this surface. The vesicles had 40 or 90 nm mean

iameter. The smaller vesicles contained ∼80, the larger ones
800 biotinylated polyethylene molecules at the outer surface.
he authors argue that repeated coating finally resulted in up to
5 liposome layers on the wall.
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Örnskov et al. [23] attached derivatized agarose carrying pos-
itively charged quaternary ammonium groups electrostatically
to the silica surface simply by rinsing the capillary with the solu-
tion. The negatively charged liposomes were then immobilized
to the agarose via electrostatic interaction by a subsequent flush.
Drugs as analytes were retained due to the stationary phase as
concluded from the comparison with their migration in non-
coated capillaries. The migration sequence of the analytes was
in agreement with their lipophilicity expressed by log POW.

Cunliffe et al. [24] coated the wall of the silica capillary with
1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) in order to
prevent protein adsorption in CE. The lipid was not intention-
ally applied as stationary chromatographic phase. CE of both
cationic and anionic proteins resulted in highly efficient sep-
arations, indicating a reduction of adsorption, especially for
the cationic analytes. However, incomplete protein recovery,
together with some tailing of the electrophoretic peaks of the
cationic proteins pointed to residual adsorption.

Riekkola and co-workers [25] has published a series of
papers describing methodologies to produce immobilized lipo-
some layers for CEC. In the first paper, they presented a sim-
ple method for coating the capillaries. LUVs with a diame-
ter of about 100 nm consisting of POPC with different pro-
portions of PS and Ch were prepared as usual by extrusion;
they form a bilayer on the silica surface by simple rinsing.
The best separation of uncharged steroids and column stability
were obtained with anionic POPC/PS (80/20 mol%) liposomes.
HEPES buffer turned out to be most favourable for the sep-
aration when used in the coating procedure and in the BGE.
The favourable role of HEPES was confirmed in ref. [26]. It
was shown that hydrophobic interactions between analytes and
the negatively charged phospholipid coating (PC/PS) are impor-
tant for the migration of charged analytes. Other piperazine-
based compounds, i.e., N-(2-hydroxyethyl)piperazine-N′-(2-
hydroxypropanesulfonic acid) (HEPPSO), piperazine-N,N′-
bis(2-ethanesulfonic acid) (PIPES), and piperazine-N,N′-
bis(hydroxypropanesulfonic acid) (POPSO), at pH 7.4 were
evaluated as solution constituents for liposome coating and as
buffering compounds for the separation of the analytes; the phos-
pholipid coatings again consisted of PC and PS. The quality of
the coating was evaluated via separation of five steroids used
as neutral model analytes. Similar to HEPES, addition of small
diamines (ethylenediamine, diaminopropane, bis-tris-propane)
to the liposome solution improved the coating quality [27] (see
Fig. 1). Improved separations were related to an increase in pack-
ing density of the anionic phospholipids caused by the linear
diamines. It was observed that in contrast to the diamine, buffers
like phosphate may have negative effect on coating formation.
Finally, it was demonstrated that Ca-ions can most favourably
be used as substitute for HEPES for the stabilization of the phos-
pholipid coating [28,29]. Application of Ca2+ in the coating
procedure as well as its presence in the separation buffer contain-
ing 3 mM POPC/PS vesicles (at a ratio of 80/20 mol%) led to an
improvement in separation of steroids and phenols. In a recent
paper Hautala et al. [30] investigated the stability of the phospho-
lipid layer as a function of the buffer pH used during the coating
procedure, and for electrochromatographic separation. The lipo-

Fig. 1. Effect of the liposome coating on the separation of steroids. BGE in all
cases 20 mM Tris, pH 7.4. (A) No coating; (B) PC/PS coating using 10 min
preflush with 5 mM 1,3-diaminopropane (DAP) before coating with PC/PS
(80/20 mol% 1 mM solution); (C) capillary coating as in (B); but 5 mM of DAP
added to the liposome solution. Sample aldosterone (1), androstenedione (2),
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estosterone (3), 17�-hydroxyprogesterone (4), progesterone (5); voltage 20 kV,
apillary length 60/51.5 cm. (S) Indicates a system peak. From ref. [27] with
ermission.

ome solution consisted of 3 mM PC/PS in molar ratio of 80/20;
uffer constituent was HEPES. The authors argue that the extent
f the attachment of the coating to the fused silica surface is
onnected to the protonation of the amines of both, the phospho-
ipids and HEPES. The authors found that, as in ref. [28], Ca2+

lays an important role in stabilization of the layer. Separation of
ve steroids was investigated, and relative migration times of the
nalytes (related to the residence time of an EOF marker) were
iven. Because the steroids employed were neutral compounds,
he migration times can easily be converted into retention factors,
i. It can be deduced that the ki values are significantly larger in
ystems containing Ca2+. The coating was stable at a pH between
.5 and 8.0. At pH 10.8 the phospholipids leaked out.

From the measured migration time in untreated and in lipo-
ome coated capillaries retention factors and free energies of
nteraction were derived for a number of drugs [31]. The ana-
ytes (salicylic acid, acetylsalicylic acid, ketoprofen, warfarin,
henytoin, propranolol) were ionized at the pH 7.5 of the BGE.
he capillary was coated with a layer of POPC. The reported
apacity (retention) factors were between 0.7 and 5.7. As the
hase ratio was unknown, distribution coefficients were not
etermined. A significant loss in separation selectivity for the
iposome-modified capillary, as compared to the uncoated one,

as observed and related to the interaction between analyte and

tationary phase. A similar investigation was carried out with
OPC liposomes not bound to the wall, but introduced into the
apillary as a suspension plug [32].
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. Analysis and characterization of liposomes by
apillary electrophoresis

A number of papers deal with CE in the context of liposomes
ut not with analyzing the vesicles explicitly. They describe CE
s a method for determining drugs encapsulated in liposomal
ormulations, mainly by measurements of the concentration of
ree drug by direct analysis [33–37], and the total concentra-
ion after disruption of the liposomes, e.g. by solubilisation with
etergents. Stability of the liposomes and drug leakage was
etermined by direct injection of the formulations as long as
rug and vesicles could be resolved.

In one of the first papers dealing with CE of liposomes
oberts et al. [5] investigated the size distribution of vesicles
onsisting of 1,2-dimyristoyl-sn-glycero-3-phosphocholine
DMPC), dicetylphosphate (DCP), and Ch. A cationic mem-
rane dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbo-
yanine, DiI-C18(C5), served for the detection of the vesicles at
50 nm. The authors related the width of the electrophoretically
easured liposome peak to the size distribution measured by

aser light scattering. The average particle size was 355 nm.
he relatively wide size range (expressed by the standard
eviation) as derived from laser light scattering was ±210 nm.
he mean electrophoretic mobility of the anionic vesicles was
9.3 × 10−9 m2 V−1 s−1 but no values for the distribution of
he mobilities of the liposomes are given. The authors related
eak dispersion not to longitudinal diffusion; they assumed that
he particles are too large as to exhibit a significant diffusional

ass transport during the residence time in the capillary. The

iffusion coefficient, D, was 1.5 × 10−12 m2 s−1, which is
bout two to three orders of magnitude smaller than that of, for
xample, compounds with one benzene ring [38]. This means
hat, according to the Einstein equation for one-dimensional

m
o
r
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ig. 2. Electropherograms of liposomes with entrapped dye and free dye. (a) Eosin Y
apillary, 70 cm length, 50 �m I.D.; voltage 15 kV; BGE for separation 10 mM sodi
0 mL of 1 mM bis(2,4,6-trichlorophenyl)oxalate (TCPO) acetonitrile solution and 2
r. B 841 (2006) 38–51

iffusion (σz = √
2Dt) the spatial peak width σz, after the

ame migration time, t, is by more than one order of magnitude
maller for the liposome than for a small organic molecule; in
act it should be negligible. For the liposome a charge of −821
as calculated, which seemed low taking into account the large
umber of embedded ionic compounds. However, the number
as considered as reasonable due to the non-stoichiometric

atio of cationic and anionic lipid components of the vesicle.
he liposomes were lysed upon reaction with the surfactant
-octyl-�-d-glucopyranoside, either off-line or in the capillary
y injection of plugs of solutions containing liposomes and
etergent. Like in the initial liposome preparation spikes were
bserved in the electropherograms in increasing number and
hese were accompanied by the disappearance of the liposome
eak upon increasing the concentration of the detergent. The
pikes were related to aggregates of the liposomes, and to pre-
ipitated lipidic particles formed after disruption of the bilayer
embrane.
Kawakami et al. [39] analyzed, by CE, the homogeneity of

iposomes composed of DPPC and 1,2-distearoyl-sn-glycero-
-phosphoglycerol (DSPG) in a 10/1 molar ratio. The authors
elated the particle size to migration time. With non-charged
V-absorbing molecules embedded in the membrane, the
eterogeneity of the membrane composition of the vesicles of
certain preparation even when monodispersed was derived

rom the ratio of the UV signals at two different wavelengths.
he migration time of the vesicles of about 100 nm diameter
ade from DPPC/DSPG was measured. The vesicles were most

robably unilamellar as they were produced upon extrusion. The

igration times showed a discontinuity when the temperature

f the CE system was increased [40]. This discontinuity was
elated to the transition temperature from the gel-like to the
iquid crystal phase. It was assumed that softening of the mem-

; (b) rhodamine B. SUVs were prepared from DPPC. Conditions: fused silica
um carbonate buffer (pH 9.0); chemiluminescence detection, reagent mixture,
88 �L of 30% (w/w) aqueous H2O2. From ref. [41] with permission.
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Fig. 3. Electropherograms of a liposome suspension. (A) Top record: electro-
pherogram of the original liposome suspension five-fold diluted (offset +0.15 V).
Bottom record: 100-fold dilution of liposomes not containing fluorescein. (B)
Expanded migration window from 710 to 720 s in the electropherogram of the
five-fold dilution (A, top record). Liposome composition PC, PS, and PEA and
Ch in a molar ratio of 47.3/2.3/42.9/7.5. Separation: −200 Vcm−1 in 250 mM
sucrose, 10 mM HEPES, pH 7.5 in a 50 �m I.D. poly(acryloylaminopropanol)-
coated capillary. Fluorescence detection: Ar-laser, 20 mW, 488 nm excitation,
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rane, e.g. by addition of Ch or short-chain lipids, would lead to
ore elongated liposomes in the electric field during migration,

ccompanied by a reduced frictional force and a higher mobility.
ubstitution of DPPC by Ch shifted the discontinuity point of

he curve (plotting migration time versus viscosity) to higher
iscosity and lower temperature, respectively, which was as
xpected from the decreased membrane rigidity.

Liposomes made from DPPC and 1,2-dipalmitoyl-sn-
lycerol-3-phosphoserine (DPPS) containing dyes (eosin Y or
hodamine B) were analyzed by Tsukagoshi et al. by CE and
etected by chemiluminescence upon reaction of the dyes with
is(2,4,6-trichlorophenyl)oxalate (TCPO) and H2O2 [41] or per-
xyoxalate [42,43] at the capillary outlet. The dyes were trapped
n the vesicles during the preparation of the liposomes. The sta-
ility of the vesicles and the permeation of the dye could be
onitored by the appearance of the peak of the free dye emerg-

ng in the electropherograms (see Fig. 2).
With an ingenious approach Arriaga and co-workers [44]

ere able to measure the size and mobility distribution of indi-
idual liposomes. The authors separated multilamellar vesicles
omposed of PC, PS, PE and Ch in coated capillaries and
etected the individual particles by laser-induced fluorescence
LIF) using an Ar-laser (488 nm). The output of the detector
hotomultiplier was passed through a low pass analog filter with
C of 10 ms, which allowed the detection of the single events

Fig. 3). The particles exhibited an average diameter of 1.1 �m,
he standard deviation of the size distribution was 0.2 �m and
heir size range was between 0.8 and 3 �m. The mobilities of the
ndividual anionic particles were approximately Gaussian dis-
ributed and between about 20 and 40 × 10−9 m2 V−1 s−1, with
n average of 30 × 10−9 m2 V−1 s−1 and a standard deviation
f 3 × 10−9 m2 V−1 s−1. The authors calculated the vesicle vol-
mes to about 1.4 fL; the volume distribution was clearly not
aussian, it was rather a steep Poisson-like distribution with the
aximum number of particles with about 0.2 fL volume (see
ig. 4 in ref. [44]). According to the authors the distribution
f the mobility most probably originated from different surface
harge densities of the membrane and/or polydispersity of the
iposomes (see also ref. [45]).

For liposomes consisting of PC/PG/Ch in various ratios
adko et al. [46] found that the electrophoretic migration was
irectly related to particle size (ranging from 125 to 488 nm in
ean diameter). Investigations were carried out at different ionic

trength. Size-dependent migration was a function of κR (κ−1

s the thickness of the electric double layer which depends on
he ionic strength of the buffer; R is the liposome radius). The

obility of the liposomes thus depends on κR and on the surface
harge density, in accordance with the Overbeek–Booth elec-
rokinetic theory. The authors related the size-dependent elec-
rophoretic separation of the liposomes mainly to the relaxation
ffect caused by the finite relaxation time needed to re-establish
he ion cloud upon the movement of an ion.

Wiedmer et al. [13] measured electrophoretic mobilities of

iposomes by CE and determined their size by dynamic light
cattering. The liposomes were composed from binary mixtures
f POPC with CL, PG, PA or PS, and unilamellar vesicles were
roduced from multilamellar vesicles (lipid concentration about

f
i
i
T

35 ± 17nm band-pass, 1000 V PMT bias. Data acquisition: 50 Hz. From ref.
44] with permission.

–4 mM) in the usual way by extrusion. The mobilities of the
nionic particles were about the same for the same ratio between
he second lipid and POPC; in a 50 mM CHES buffer with pH
mobilities were about 40 × 10−9 m2 V−1 s−1. They increased
ith increasing concentration of PS. Particle diameters were

ndependent of composition, namely about 110–120 nm. A given
iposome preparation migrated significantly slower in borate
uffer as compared to other buffers with the same pH of 9.0.

The electrophoretic mobilities of liposomes (consisting of
C, PA and Ch) with a pH gradient between the lumen and the
uter solution were studied by Phayre et al. [47]. The particle
iameter was between 130 and 170 nm (as measured by dynamic
aser light scattering). The pH difference between the luminal
olution (pHi) and the outside buffer (pHo) was 1.4 units with the
igher pH either inside or outside. These liposomes were com-
ared with vesicles having the same pH of 7.4 on both sides of
he membrane (Fig. 4). A significant difference in mobility was
ound between all three types of vesicles. Their mobilities were

n a range between 29 and 37 × 10−9 m2 V−1 s−1 and decreased
n the sequence (pHi/pHo): 8.8/8.8 > 7.4/7.4 > 7.4/8.8 > 8.8/7.4.
he mobilities could not be related to the different degree of ion-
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Fig. 4. Electropherograms of liposomes with different pH interiors and exteriors:
(A) 8.8 in, 8.8 out; (B) 7.4 in, 7.4 out; (C) 8.8 in, 7.4 out; (D) 7.4 in, 8.8 out.
Liposome made from PC and PA (10:1 molar ratio), and 20% (mol/mol) Ch.
Liposome diameters between 130 and 170 nm. Capillary 62/77 cm length 50 �m
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.D., coated with BRIJ35. BGE: 2 mM tricine, 15 mM potassium sulfate titrated
o pH 7.4 or 8.8 with 1 M sodium hydroxide, 0.001% (w/v) BRIJ 35 added.
oltage −25 kV; UV detection at 214 nm. From ref. [47] with permission.

zation due to acid–base equilibria. It was concluded that more
ophisticated models were needed, taking the membrane as elec-
rical capacitor on the one hand, and considering the relaxation
ffect of ion migration, on the other hand.

In continuation of previous work, Hayes and co-worker
48] investigated the discrepancy between the electrophoretic
ehaviour of liposomes under various experimental conditions
nd that predicted by electrokinetic theories. In extension of clas-
ical theories for rigid, spherical colloidal particles the variation
f ion densities and electric potentials within the ion atmo-
phere normal to the surface of the large particle were considered
ogether with the deformation of the liposomes to spheroid parti-
les with prolate shape. However, the predicted mobilities were
lways smaller than those found experimentally, although the
hape of the curves depicting the reduced mobility as function
f κR agreed with the theory. The authors related these devia-
ion to the unique properties of the liposomes, namely to their
eformability and their susceptibility to field-induced polariza-
ion. In their most recent work [49] these authors improved
he theoretical prediction of electromigration of colloids, tak-
ng into account multipole effects, deformability, polarisability
nd mobile surface charges.

. Distribution coefficients and binding constants

Distribution coefficients between the lipophilic phospholipid
esicles and the aqueous phase can be determined by CE in the
ame way as with MEKC or MEEKC. As described in Section
.1, in a number of papers Foley and co-workers [10,14–18]
elated log k to log POW values and applied LSER to interpret
he interactions of the solutes with the liposomes. Khaledi and
o-workers [50] made an investigation of the factors that are

esponsible for partitioning of analytes between the aqueous
hase and vesicles formed from dihexadecylphosphate (DHP),
n anionic double-chain surfactant. The authors applied LSER
ased on the descriptor values of 41 uncharged test solutes. The

s
i

f
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SER model quantifies the contribution of individual interac-
ions on the retention factor, k, according to

og k = vV + bB + aA + sS + eE + C (2)

is the McGowan volume, B the hydrogen-bond acceptor
asicity, A the hydrogen-bond donor acidity, S the dipolar-
ty/polarisability, and E is the excess molar refraction. The coef-
cients v, b, a, s and e are relative measures for the interaction
f the analytes with the pseudo-phase compared to the aque-
us phase. v is a measure for the difference in cohesive energy
etween the aqueous and the pseudo-stationary phase, b for the
-bond donor strength, a for the H-bond acceptor strength, s

or the dipolarity/polarisability and e for the interaction of the
seudo-stationary phase with n-or �-electrons of the analytes.
is the regression constant which is given by the phase ratio.
The results were compared with analyses using SDS and

odium dodecyl phosphate (SDP) with respect to log POW. The
uthors pointed to the shortcomings of taking log POW values
o describe bio-partitioning of drugs, because n-octanol is a
ulk phase, whereas a membrane displays a structured envi-
onment. Therefore, it might be assumed that partitioning into a
embrane would better correlate with partitioning into micelles

han into a bulk liquid. However, interestingly the opposite was
bserved: log k values from the higher structured DHP vesi-
les correlate better with log POW values than with log k from
icelles. A detailed analysis of the LSER results shows that

ize and hydrogen bond acceptor strength play the major role
n partitioning between water and the SUVs. Analysis of the
ibbs free energy of transfer for the individual functional groups
f the solutes from the aqueous phase into the vesicular phase
hows that the energy associated with cavity formation is the
ain contributor. The surprising result of the better correlation

f the log k values of lipid bilayer membranes with log POW
han with log k values of SDS micelles was also found in lipo-
ome EKC with 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol
DPPG)/DPPC and DPPG/DPPC/Ch vesicles [51]. In continua-
ion of this work LSER was applied to interpret the retention data
f neutral solutes in a system containing vesicles formed from
cationic double-chain surfactant, dihexadecyldimethylammo-
ium bromide [52]. The vesicles were dispersed in deionised
ater (no buffer was used for EKC). Particles with 50 nm aver-

ge diameter were formed, with the bromide ions predominantly
ttached electrostatically at the vesicle surface. This was con-
luded from their average charge, which was only 118, compared
o 17,500 charges calculated from the number of surfactants per
esicle. The free energy of transfer of a functional group, R,
rom water to the pseudo-stationary phase, expressed as

�G = −RT ln

(
kΦ−R

kΦ

)
(3)

as derived as well. Here kΦ−R is the retention factor of the
ubstituted benzene and kΦ that of benzene. It could be demon-

trated that the charge of the head group is most relevant for the
nteractive characteristics of vesicles.

Burns and Khaledi [53] measured the capacity (retention)
actors for a number of neutral and charged analytes in sys-
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ems consisting of liposomes made from DPPC, DPPG and
h with about 40 nm diameter at pH 7.5; the partition coeffi-
ient was derived from the retention factor and the phase ratio.
he latter was calculated from the partial specific volume of

he surfactant, the phospholipid concentration and the critical
ggregation concentration. The logarithm of the partition coef-
cients of the 18 investigated monosubstituted benzenes (all
eutral) ranged between 1.05 and 2.99. The data obtained by
iposome EKC were compared with those predicted by two

ethods based on quantitative structure-partition relationship
QSPR). The first method relates the partition coefficients from
he liposome system to those from water/n-octanol. The sec-
nd method uses descriptors for LSER. The good agreement
etween calculated and measured data illustrates that the migra-
ion properties of analytes in EKC can indeed be predicted. In
ddition, EKC is a fast and sensitive method with low consump-
ion of chemicals and solvents allowing for the determination
f the partition coefficients in multi-analyte mixtures. For 26
asic drugs the retention factors were determined in systems
ontaining phospholipid vesicles made from PS, PC, PG and
h at different ratios [54]. Buffers were HEPES, CHES, 2-(N-
orpholino) ethanesulfonic acid (MES), 3-(cyclohexylamino)-

-propanesulfonic acid (CAPS) and phosphate with different
onic strength, pH was 7.0 or 7.4. It was found that the reten-
ion of the cationic analytes with the negatively charged lipo-
omes is governed by electrostatic interactions, and the ionic
trength plays a dominant role at given pH. Retention data
howed low correlation with log POW values. It should be men-
ioned that the dipolarity and polarisability of the solvation
nvironment associated with such SUVs made from PG, PC and
h was investigated with a series of di-n-alkyl-p-nitroanilines
s solvatochromic �* indicators in combination with size
xclusion methods and photon correlation spectroscopy
55].

Khaledi and co-worker [56] also investigated the effect of
he pH on the distribution of basic drugs (tetracaine, nefopam,
isocain) between the aqueous phase and negatively charged
iposomes in a quantitative way by EKC. The liposomes con-
isted of PC, PG and Ch. Partitioning of the neutral and the
ationic form, both analyte species being in acid–base equilib-
ia, between the two phases was considered. From the retention
ata and based on fundamental thermodynamics the distribu-
ion coefficients of the species, and their particular fractions as

function of the pH were derived. The curves have the typi-
al sigmoid shapes. Partition coefficients were between 46 and
406 M−1 for the cations, and between 20 and 360 M−1 for the
eutral solutes. Moreover, the authors were able to derive, from
he retention data, the shifts in pKa of the solutes caused from
heir interaction with the lipid bilayer. When compared to water,
he pKa values changed by between 0.05 and 0.47 units.

Interactions between cationic liposomes commercially
mployed for drug delivery and a fluorescein conjugated 2′-O-
ethyl-phosphorothioate (Me-PTh) antisense oligonucleotide

ere studied and binding constants were derived from the

hange of the mobility of the oligonucleotide upon modify-
ng the liposome concentration in the BGE [57]. The antisense
ligonucleotide was taken up from HeLa cells in a liposome

o
s
p
d

r. B 841 (2006) 38–51 47

oncentration dependent manner and interfered specifically with
RNA of an aberrant luciferase reporter gene. As a result of this

nteraction, luciferase activity was restored. That way, the con-
entration of delivered antisense oligonucleotide as well as its
orresponding gene expression was determined for two lipo-
ome formulations (Lipofectamine and Escort).

Liposomes were chosen as models for the affinity of drugs
owards low density lipoprotein (LDL) [58]. Total binding affini-
ies (“nK values”) of verapramil and propanolol for liposomes
ere determined by frontal analysis. nK was calculated from
t, the total drug concentration, from Cu, the unbound drug
oncentration, and from Lt, the total liposome concentration
ccording to nK = (Ct − Cu)/CuLt. Frontal analysis by CE was
arried out by co-incubation of liposomes and drug in a physio-
ogical buffer, injection of a plug of this solution, electrophoresis
n the same buffer, and detection of the drug zone by UV.
he height of the trapezoidal peak was taken as a measure

or the unbound drug. A number of liposomes with differ-
nt composition were investigated; they consisted of POPC,
LPC (1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine),
LPC and 1-palmitoyl-sn-glycero-3-phosphocholine (mono-
PC). Significant differences in the nK values were found. They
aried within more than one order of magnitude with values
etween 8.5 × 107 M−1 and 103 × 107 M−1 for verapramil and
2 × 107 M−1 and 178 × 107 M−1 for propanolol. The increase
n the negative charge of the phospholipids was found more rele-
ant for the ligand-binding affinity than the acyl-chain structure.
he binding affinities as function of the liposome composition

size, surface charge) point to the great significance of the elec-
rostatic interactions in binding of the basic drugs. It seems that
iposomes bind the drugs unspecifically as in the case of LDL.
he results are taken to demonstrate the suitability of liposomes
s models to explain the difference of drug binding between
DL and oxidized LDL.

Marques and Schneider [59] proposed a liposome system
o bind DNA in a sequence specific manner. For this purpose
he authors embedded di-alkyl peptide nucleic acid amphiphiles
PNAAs) in the membrane of liposomes that consisted of 1,2-
istearoyl-sn-glycero-3-phosphocholine (DSPC) and Ch. Pep-
ide nucleic acids (PNAs) are synthetic nucleic acid analogues
hich form duplexes and triplexes with complementary single

nd double stranded DNA, respectively. The final amount of
NAA within the membrane was determined via UV absorp-

ion. Such PNA liposomes were incubated with complementary
ingle strand DNA oligomers. Hybridization of the components
as assessed by CE. Free DNA showed a sharp peak, whereas
NA liposomes rendered a broad signal with similar mobil-

ty. Samples incubated with complementary DNA showed both
ignals. The broad peak, however, shifted its mobility, which
trongly indicated duplex formation. From the reduced area of
he DNA peak it was derived that almost all PNA formed a
uplex with complementary 10-mers of DNA. A single mis-
atch within this sequence yielded no binding at all and longer
ligomers showed greatly diminished binding to PNA lipo-
omes. The sequence-specific binding of these liposomes and its
ossible application as biosensing tag in analytical devices was
emonstrated.
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. Work related to proteins and peptides

The first paper describing the application of liposomes in
manner as micelles or oil droplets are used in MEKC or
EEKC, respectively, was published about 10 years ago [4].
onceptually, the liposomes were to serve as models for biolog-

cal membranes like in LC where they are immobilized on gels.
n their paper the authors added liposomes consisting of PC (and
holate) to the BGE (25 mM phosphate, pH 7.4) and separated
everal charged analytes in a coated capillary after application
f an electric field. They assumed that the mobility of both the
OF and the liposomes was negligible. Increased retention of

he analytes was related to their interaction with the vesicles.
n accordance with results obtained by immobilized-liposome
hromatography, two octapeptides, the one with two cysteines
eplaced by serines with respect to the other, were separated with
etter resolution in the presence of the liposomes.

Apolipoproteins constitute the protein moiety of lipoprotein
articles. Liposomes were used as models for lipoproteins such
s very low-density lipoprotein (VLDL) or LDL in an affinity
lectrophoretic approach to study the interaction of apolipopro-
eins with lipids [60]. The unilamellar liposomes consisted of
MPC and were about 100–120 nm in diameter. The number of

opies of apolipoprotein apo CIII (Mr 8.8 kDa) and its derived
eptides (2.1–4.5 kDa) bound to a single liposome and the bind-
ng strength was derived by an equation which relates the change
f the mobility of these ligands to the concentration of the lipo-
omes in the BGE. This change is illustrated in Fig. 5 showing the
lectropherogram of apo CIII at five different liposome concen-
rations. Two assumptions were made: non-cooperative binding
etween apo CIII and the liposome, and the equality of the
obilities of the complex and the free liposome. The binding

onstant for apo CIII was 22 × 103 M−1 and those of the pep-
ides were by factors of 2 to 3 lower, in agreement with data
btained by other methods. The number of analytes bound per
esicle was 1350 for apo CIII, and between 470 and 5200 for the
eptides.

Tsukagoshi et al. [61] presented an immunoassay using eosin
containing liposomes as a labelling reagent for human serum

lbumin (HSA). After introduction of a thiol group onto HSA
ia N-succinimidyl 3-(2-pyridyldithio) propionate as described
y Carlsson et al. [62] the resulting HSA derivate was enabled to
ind labeled liposomes covalently. That protein–liposome con-
ugate was then added to a definite amount of ordinary analyte
SA and subsequently incubated with antibody-immobilized
lass beads to perform a competitive immunoassay. Since an
xcess of protein was used, HSA separated in a glass beads-
ound and a free section. The reactant solution, consisting
f free HSA (labeled and unlabeled), was applied to a CE-
hemiluminescence detection system to remove compounds that
ight perturb the chemiluminescence and to detect the lipo-

omes, respectively. At the tip of the capillary the liposomes
ere destroyed by organic solvents which contained the chemi-
uminescence reagent. In this way a chemiluminescence signal
as induced by the vesicles. Based on the competitive binding

eaction of the two HSA species to the glass beads, the amount
f labeled HSA indicated a relationship to that of analyte HSA.

i
l
b

entrations. C, apo CIII; M, internal marker. Vesicle concentrations: (A) 0; (B)
.1 × 10−6; (C) 1.1 × 10−5; (D) 2.1 × 10−5; and (E) 2.1 × 10−4 �M DMPC
esicle in phosphate-saline buffer at pH 7.4. From ref. [60] with permission.

Basic proteins (lysozyme, cytochrome c, ribonuclease A, and
-chymotrypsinogen A) were separated in accordance with their
lectrophoretic mobilities by zone electrophoresis in capillaries
oated with a phospholipid layer consisting of POPC in acidic
63] or neutral [64] BGEs. The same phospholipid was also
sed as a carrier. Coating was a condition to obtain protein
eaks, as it suppressed adsorption onto the wall. Since the EOF
as reduced upon coating, no significant change in the elec-

rophoretic behaviour of the proteins was observed indicating
nly minor interactions between the proteins and the vesicles in
olution. With the same phospholipid layer, resolution of three
eptides (angiotensin I, II and III) was found to increase with
ncreasing concentration of the phospholipids [64], indicating a
hromatographic interaction of the separands with the stationary
hase.
Tachibana et al. [65] proposed to insert membrane proteins
nto the liposomes and to determine the binding behaviour of
igands by electrochromatography. In this way they derived the
inding constants between a cell wall precursor model pep-
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ide Me(CH2)8CO-Gly-L-Ala-d-D-Glu-Lys(Ac)-D-Ala-D-Ala
nd vancomycin.

Riekkola and co-workers [66] used lysozyme, bound to
he phospholipid coating, as chiral agent. The interaction of
ysozyme with the lipid layer led to strong immobilization of
he protein in the capillary. The layer was stabilized when
he capillary wall was first coated with 1-(4-iodobutyl)-1,4-
imethylpiperazin-1-ium iodide (M1C4). The preparation of the
hiral stationary phase was carried out simply by serially rins-
ng with the solutions containing M1C4, the liposomes, and the
rotein. The attached liposomes were responsible for the stere-
selectivity; this was supported by the finding that the protein
as not needed in the BGE for chiral separation of d- and l-

ryptophan.
Bo and Pawliszyn [67] studied the dynamic process of con-

ugate formation between four standard proteins and vesicles
onsisting of PC and PC/PS (80/20 mol%) by capillary iso-
lectric focusing (CIEF) with whole-column imaging detection
WCID). Stable conjugates between the PC vesicles and trypsin
nhibitor, �-lactoglobulin B (two conjugates), and phosphory-
ase b could be separated from the native proteins due to the pI-

hift of the conjugates. Trypsinogen, on the other hand, showed
n unchanged CIEF profile, which was explained by a very weak
nteraction with PC vesicles. Using PC/PS vesicles, the conju-
ates of all four proteins had lower pI than their native forms

ig. 6. CIEF profile of conjugates between liposome (PC/PS, 80/20 mol%)
ith trypsin inhibitor in dependence of incubation time: (a) 90 min; (b)
0 min; (c) 30 min; (d) 15 min; (e) 5 min; (f) native protein. Sample solution:
.25% methyl cellulose, 4% pharmalytes, 10.7 mM trypsin inhibitor; 250 mM
C/PS (80/20 mol%). Catholyte, 100 mM NaOH, anolyte, 100 mM H3PO4. (*)
enotes degradation product of the protein. Peak 1, native protein. Peaks 3–8
C/PS–trypsin inhibitor conjugates. UV detection at 280 nm; applied voltage
00 V for 2 min, then maintained at 3000 V; focusing time 8 min. From ref. [67]
ith permission.
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esulting from the acidic PS. PC/PS vesicles exhibited multiple
onjugates with trypsin inhibitor (six peaks), �-lactoglobulin B
four peaks), and phosphorylase b (three peaks). This finding
as explained by multiple sites interaction of the proteins with

he PC/PS vesicles. The conjugates were measured at different
ncubation times (up to 90 min) to determine the final interac-
ion equilibrium. The CIEF profile of trypsin inhibitor is shown
n Fig. 6. In a similar paper [68] the authors investigated the
hospholipids–protein interactions of seven standard proteins
ith PC vesicles at different PC concentration, incubation time,

nd incubation temperature by measuring the protein profiles
ith CIEF-WCID.
Receptor proteins were attached via their his6-tag to lipo-

omes [69]. For this purpose a lipid containing nitrilotriacetic
cid (NTA) as head group was incorporated in the bilayer of lipo-
omes consisting of POPC, PE and Ch and a short polyethylene
lycol (PEG) chain for stabilisation. A Ni2+–NTA complex was
enerated at the liposome surface, to which, in turn, the tagged
roteins were bound. The two steps of complex formation could
e monitored by the shift of the electrophoretic peak of the vesi-
le (the lumen was filled with a fluorescence dye for detection).
he complex between liposome and protein was stable but was
estroyed upon addition of EDTA, which removes the Ni ion
nd thus the receptor protein from the liposome, as evidenced
y a shift of the peak to the original position.

. Conclusion

Electrically driven chromatography with liposomes is a valu-
ble tool to measure interactions between lipid membranes and
large variety of ligands. It needs only minute amounts of sam-
le. The liposomes can be applied as pseudo-stationary phases
n the electrically driven separation system in a simple manner,
amely as stable charged colloidal or sub-colloidal constituents
f the BGE.

Liposomes, attached to the wall of the separation capillary
s a bilayer, form a true stationary phase in a CEC system.
ome aspects should be taken into consideration concerning this
ethodology, independent of whether it is pressure or electroki-

etically driven. The one is the slow kinetics of mass transfer in
he mobile phase within the open tube due to the low diffusion
oefficients in liquids (which are five orders of magnitude lower
han in gases). This requires low migration velocities in order
o avoid excessive peak broadening contributed from the mass
ransfer term. The second is the small phase ratio resulting from
he thin layer of the stationary phase and the relatively large
olume of the bulk mobile phase. The latter problem, which
eems typical for this methodology, can be illustrated by the
ata published in ref. [22]. For a phase with as much as five
iposome layers the amount of assembled lipid in a capillary of
0 cm length and 75 �m inner diameter is 12 nmol. The phase
atio is therefore, as small as about 10−3. High partition coef-
cients are thus needed to obtain favourable retention factors,

hich should exceed values of say 1 or 2. If the retention factors

re too low, and if the selectivity coefficients are not very high,
useful resolution will not be achieved. If, e.g. the selectivity

oefficient is 1.1, and a low retention factor of 0.1 is assumed,
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aseline resolution of 1.5 for two peaks of the same height could
e achieved only if the plate number is 600,000, which is not triv-
al. Most systems described in the literature deliver only around
00,000 plates or less in practice. This example illustrates the
imits of the CEC method. Note that here neutral analytes are
onsidered, which are driven only by the EOF. Nevertheless,
t has to be pointed out that open tubular electrochromatogra-
hy has high potential with respect to separation efficiency due
o the plug-like velocity profile of the ionic analytes as well
s of the EOF. Taylor dispersion, as occurs in open tubes due
o the parabolic velocity profile of the hydrodynamic flow, is
bsent.

Migration data (retention factors or electrophoretic mobil-
ties) can elegantly be used to derive thermodynamic data like
inding constants, partition coefficients or free energies of trans-
er. This is an interesting methodology when interactions of
iomembranes with ligands like drugs, peptides, proteins or
ther biopolymers should be mimicked.

For the analytic characterization of the vesicles their differ-
nt electrophoretic velocities when migrating in the electric field
an be utilised. It should be noted that there is no direct rela-
ion between mobility and size of the vesicles. No simple theory
an describe the relation between these two parameters. How-
ver, physical properties like mobilities, diffusion coefficients
r charge numbers, and other characteristics such as membrane
tability can be determined in an easy manner.
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Research Article

Capillary electrophoresis of liposomes
functionalized for protein binding

CE enabled assessing the attachment of hexa-histidine-tagged proteins to functional-
ized phospholipid liposomes. The liposomes were made of 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine, phosphatidyl-ethanolamine, cholesterol and distearoyl-
glycero-3-phosphoethanolamine-N-methoxy(polyethylene glycol) in a molar ratio of
29:26:40:5. The unilamellar vesicles, which had an average diameter of 170 nm, were
labelled by inclusion of FITC-dextran for fluorescence detection. CE was carried out in
poly(vinyl alcohol) (PVA)-coated capillaries at 257C with a BGE consisting of Tris-HCl
(50 mM, pH 8.0). For conjugation of the liposomes with the proteins (soluble synthetic
receptor fragments with molecular mass of 60 and 70 kDa, respectively), Ni21 was
implanted into the vesicle surface by an anchor lipid containing a nitrilotriacetate acid
(NTA) group as complexation agent for the metal ions. The difference in surface charge
enabled the separation of the different species of interest by CE: plain vesicles, vesi-
cles functionalised with Ni-NTA, vesicle–protein complexes and the species formed
upon removal of the Ni-ions by complexation with EDTA. Loss of the Ni-ions resulted in
the release of the proteins and the reappearance of the plain Ni-free NTA-liposome
species in the electropherograms.

Keywords: Capillary electrophoresis / Liposomes / Proteins / Surface modification /
Vesicles DOI 10.1002/elps.200600087

1 Introduction

Liposomes can be made with a lipid composition similar
to that of plasma membranes or of the membranes of cell
organelles, and proteins with a suitable anchor can be in-
serted to create membranes closely resembling that of
their natural counterparts. The defined composition of the
system allows avoiding interference of many other com-
ponents present in natural cellular membranes. This
makes liposomes an attractive model for studying inter-
actions of receptors with substances of biochemical,
biological or medical interest like drugs, receptor ligands
or adhesion molecules in the context of the membrane.

From the analytical point of view, it is advantageous that
liposomes form stable suspensions in aqueous media
and move in an electric field. This makes them appealing
targets for CE. Many parameters influence the electro-
phoretic mobility of these vesicles. Liposomes composed
of neutral and zwitterionic constituents were considered
to be uncharged in BGEs of a pH within the analyte’s iso-
electric pH range [1]. However, in most cases they exhibit
electric charges. For this reason, they can be analyzed by
CE, and they proved useful as anionic pseudostationary
phases in EKC ([2–22]; for recent reviews see [23, 24]. It
was found that, besides the pH, the kind of the electro-
lytes [6, 25] and its ionic strength [5, 18], and the prepa-
ration procedure of the vesicles influences the electro-
phoretic properties of the particles [23, 26]. If their elec-
trophoretic mobility is affected upon attachment of
ligands, this change can be used to assess, or even
quantify, the interaction in a form of ACE. This can be
realised either under equilibrium or under nonequilibrium
conditions, in the latter case given that the kinetic off-rate
is low as compared to the time of the electrophoretic
analysis.
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Chemistry, University of Vienna, Währingerstr. 38, A-1090 Vienna,
Austria
E-mail: ernst.kenndler@univie.ac.at
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Abbreviations: Ch, cholesterol; DOGS-NTA, 1,2-dioleoyl-sn-gly-
cero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl];
DLS, dynamic light scattering; DSPE-PEG, 1,2-distearoyl-sn-gly-
cero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-
750]; FL, fluorescence; LUV, large unilamellar vesicle; MLV, multila-
mellar vesicle; NTA, nitrilotriacetic acid; PE, L-a-phosphatidyl-etha-
nolamine; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocho-
line; PVA, poly(vinyl alcohol); SEC, size-exclusion chromatography
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The present work describes the first step in the develop-
ment of an analytical procedure based mainly on CE to
mimic the interaction of viruses with their receptors
anchored in biomembranes, with liposomes used as a
model. The intention of using PEG-conjugated lipids was
to stabilize the vesicle membrane in order to prevent
attachment at the capillary wall and to avoid inadvertent
vesicle aggregation. Normally, proteins are attached to
the liposomal surface by covalent coupling via amino or
thiol groups [27]. Here we investigate the coordinative
binding of a protein, via an appended His6-tag, to the sur-
face of liposomes with an incorporated Ni-nitrilotriacetate
acid (NTA)-carrying lipid. A similar approach was used for
a frequency surface acoustic waveguide device [28] after
preparation of a modified phospholipid bilayer on a silica
surface. Here we monitor by CE the interaction between a
protein and large unilamellar vesicles (LUVs) in homoge-
neous solution. Due to the anticipated relatively strong
binding (for a His6-tagged antibody fragment, the com-
plex constant is in the 107 M21 range [28]), we selected
nonequilibrium conditions.

2 Materials and methods

2.1 Chemicals

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC), L-a-phosphatidyl-ethanolamine (PE), cholesterol
(Ch), 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxy-
pentyl)iminodiacetic acid)succinyl] (DOGS-NTA), used as
Ni salt, and 1,2-distearoyl-sn-glycero-3-phosphoethanol-
amine-N-[methoxy(polyethylene glycol)-750] ammonium
salt (DSPE-PEG), were all obtained from Avanti Polar
Lipids (Alabaster, AL, distributor Instruchemie B.V., The
Netherlands). HCl and chloroform (both analytical grade)
were from E. Merck (Darmstadt, Germany), Tris and FITC-
dextran from Sigma (Milwaukee, WI). The Latex beads
used as size standards for size-exclusion chromatogra-
phy (SEC) were from Polysciences (Warrington, PA). The
protein carrying a His6-tag at its C-terminus was from the
Vienna Biocenter (Austria).

2.2 Preparation of multilamellar vesicle (MLV)
stocks

POPC, PE, Ch, DOGS-NTA-Ni and DSPE-PEG were dis-
solved in chloroform to produce five separate lipid stocks
with a concentration of 10 mg/mL each [29]. These stock
solutions were combined at the desired ratio in a 50 mL
pointed flask. The final volume of the mixture was ap-
proximately 1 mL. By the aid of a rotary evaporator, the
organic solvent was removed under vacuum resulting in a

thin lipid film at the wall of the flask. To ensure uniform
deposition of the phospholipids, bottom settings were
redissolved twice in 1.5 mL chloroform followed by
immediate evaporation. The last evaporation was run for
at least 4 h to guarantee a well-dried lipid layer without
any traces of solvent [30]. Subsequently, the lipid film was
suspended in 2 mL of 50 mM Tris-HCl (pH 8.0). FITC-
dextran (70 kDa, 2 mM) was added to label the vesicles.
After a hydration period of 30–60 min at 657C in a water
bath, MLVs were produced by 4–7 freeze/thaw cycles; the
lipid suspension was frozen in liquid nitrogen and thawed
at 657C in a water bath [31, 32]. The suspension was vor-
texed between each cycle. Finally, the freshly prepared
MLVs were stored in the dark, under N2 atmosphere, at
2207C (http://www.avantilipids.com, 2005).

2.3 Preparation of LUVs by extrusion

The extruder (Mini-Extruder, Avanti Polar Lipids) was
equipped with two polycarbonate filters. In imitation of a
native cell system, filters with a pore diameter of 400 nm
were chosen, accepting the corresponding disadvantage
of a higher vesicle-heterogeneity. MLVs were loaded into
one of the two syringes, and the apparatus was fully
assembled prior to insertion into the heating block. Lipo-
somes were extruded at elevated temperature (.607C) in
order to avoid agglomeration caused by rigid biomem-
branes. In this way, it was ensured that all vesicle com-
pounds exceeded their phase transition temperature and
reached a liquid-crystal state, while the suspension was
passed 19 times across the pore channels [33]. The
resulting unilamellar vesicles were stored in the dark
under N2 at 47C (http://www.avantilipids.com, 2005).

2.4 Purification and isolation via SEC

A Sephacryl S-1000 column (30 cm61 cm) was used to
separate the vesicles from free FITC-dextran and other
low-molecular-weight impurities and byproducts by SEC.
The column was equilibrated with 50 mM Tris-HCl
(pH 8.0) at 250 mL/min. The void volume was determined
with fluorescent latex beads (200 nm diameter; 120 mL of
a 1:100 dilution of the stock). The vesicle suspension
(120 mL) was then applied and fractions of 300 mL were
collected at 250 mL/min [34]. The vesicles eluted at the
void volume as determined fluorimetrically, using a 96-
well plate reader (Wallac 1420 VICTOR V, PerkinElmer,
Finland; Software: Wallac 1420 Manager Version 2.0).
The parameters were set to 485 nm (excitation) and
535 nm (emission). The fractions were also measured by
UV spectroscopy at 280 nm (Hitachi U-2000 spectro-
photometer) to confirm the results of the fluorescence (FL)
determinations [35].
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2.5 Dynamic light scattering (DLS)

DLS measurements were carried out after purification of
the liposomes with SEC. The average vesicle diameter
was estimated using a Zetasizer (Malvern Nano-ZS, Mal-
vern instruments, UK). For an appropriate concentration,
the liposome suspensions were diluted with 50 mM Tris-
HCl (pH 8.0) prior to the measurements [36–38].

2.6 CE

CE was performed using two different instruments. One
of them was a homemade apparatus equipped with an
LIF detector (Ar-laser, Laser-Physics, Reliant 50S-489,
50 mW, lem 488 nm) [39]. The other was an automated
HP3D instrument (Agilent, Waldbronn, Germany) coupled
to an external FL-detector (ZETALIF Evolution, Pico-
metrics, Ramonville, France) equipped with an Ar-laser
(model 163-M12, 25 mW; Spectra-Physics, Montain
View, CA). A poly(vinyl alcohol) (PVA)-coated capillary
(Agilent) with an id of 75 mm was used for the homemade
instrument; it was positioned in still air at room tempera-
ture (,257C) without thermostating and had a length of
30.0 cm (effective length 21.5 cm). High voltage was
applied by the use of a power supply unit (Type HNC
20.000, Heinzinger Electronic; Germany). Experiments
were performed at a constant voltage of 25 kV, with the
anode placed at the detector side of the capillary; the
resulting current was about 21 mA. Samples were applied
by hydrodynamic injection at the cathodic side of the
capillary by lifting the sample vial by 3 cm for 12 s. For FL
detection, the emitted light was focused by a microscopic
lens system and passed through a filter with a cut-off
wavelength of 500 nm. Light intensity was measured with
a photomultiplier (Hamamatsu H5785, Shimokanzo,
Japan). Data collection was done with DataApex software
(Prague, Czech Republic).

An untreated fused-silica capillary (Composite Metal Ser-
vices) with an id of 75 mm, a total length of 73.0 cm and an
effective length of 58.0 cm was used with the automated
HP3D instrument. The capillary was thermostated at
207C. The applied voltage was 125 kV, with the FL-
detector placed at the cathodic side of the capillary; the
resulting current was about 35 mA. Sample injection was
performed by applying a pressure of 25 mbar for 10 s.
Data acquisition and evaluation of the FL-signal was car-
ried out using Agilent ChemStation Plus software.

For all experiments, Tris-HCl 50 mM (pH 8.0), filtered
through a 0.20 mm cellulose acetate filter, was used as BGE.
The mobility of the analytes was determined using that of
the internal standard (fluorescein) as reference. Prior to
each measurement, the capillaries were rinsed with BGE.

3 Results and discussion

3.1 Conditions for the production of liposomes
stable for CE

The electrophoretic properties of liposomes are strongly
dependent on their composition and the manner how they
are produced. In the present work, several lipids, buffer
compositions, different fluorescence dyes and extrusion
parameters were tested and modified in order to obtain
reproducible electropherograms from the liposome. In
initial experiments, the vesicles were made of POPC and
Ch (65:35 mol%) only, and were labelled by incorporation
of pure fluorescein (2 mM dissolved in 50 mM borate
buffer pH 7.5). However, it turned out that both, the lipid
composition and the nature of the fluorescent dyes were
unfavorable. As observed with SEC, incorporated fluo-
rescein was not fully retained by liposomes. Even such a
purification of stained vesicles in succession showed free
dye, suggesting its release.

Increasing the amount of Ch as described in [33] and
addition of PE as further lipid led to liposomes with
improved stability; the ratio of the lipids used was
27:25:48 mol% (POPC:PE:Ch). In addition, borate buffer
was substituted by Tris-HCl (50 mM, pH 8.0), because,
according to the recommendation of the supplier, borate
is not well-suited for use in PVA-coated capillaries. De-
spite advanced lipid compositions, liposomes were still
leaky for incorporated fluorescein, as mentioned above.
Therefore, coumarin 6, a lipophilic dye, and FITC-dextran
were tested. Both dyes have approximately the same flu-
orescence characteristics as fluorescein (lem/lex of 494/
518 nm). However, presumably because it destabilized
the membranes, irreproducible traces were obtained
upon CE of liposomes stained with coumarin 6, which
tends to insert into the lipid bilayer. In contrast, FITC-
dextran was found to be well-retained in the aqueous
core of the vesicle. Liposomes produced in this manner
were still not suited to render peaks in CE. Thus, a phos-
pholipid conjugated with PEG (DSPE-PEG, see Fig. 1)
was added during liposome production to stabilise the
membrane. Finally, to allow for attachment of His6-tagged
proteins, DOGS-NTA, a lipid derivatised with NTA (Fig. 1),
was also added. The composition of the liposomes used
in our studies is as given below in the individual sections.

3.2 Characterization of particle size

Before determining the particle size distribution by DLS,
the liposome samples were purified by SEC. As expect-
ed, the liposomes were eluted with the void volume (con-
trolled by polystyrene particles). From each sample, at
least three DLS measurements were carried out. The
results refer to vesicles consisting of POPC, PE, Ch and
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Figure 1. Structural formulae of the
constituents of the liposomes investi-
gated in this communication. For PE,
the main fatty acids present in the nat-
ural product, palmitic and oleic acid are
depicted.

DSPE-PEG (29:26:40:5 mol%). DLS gave an average
particle diameter �z of 170.5 nm (it varies for three inde-
pendent measurements with an SD of 0.6 nm), with a
particle size distribution of 65.3 nm. This value is the SD,
s, of the curve depicting the relative frequency of a par-
ticular size class versus the size class, or, in other words, it
is the square root of the second moment of the distribu-
tion function. The polydispersity index, PDI, defined as
PDI ¼ s=�zð Þ2, is 0.15. According to this value, the Cumu-
lants algorithm, representative for hypothetical mono-
modal distributions, was chosen to calculate respective
vesicle diameters. For a critical comparison of different
algorithm for particle size distribution determination of
liposomes see [40].

3.3 CE of liposomes

The following types of liposomes were analyzed: (i) lipo-
somes grafted with DSPE-PEG to increase stability;
(ii) Ni-NTA-implanted liposomes (also DSPE-PEG-graft-
ed); (iii) liposomes with the Ni-ions removed from the
latter species upon reaction with EDTA. All vesicles were
labelled with FITC-dextran dissolved in the aqueous
vesicle core. In order to reduce the background fluores-
cence, SEC was carried out before CE; this step
removes the excess dye.

3.3.1 PEG-grafted liposomes

As mentioned above, our attempts at analyzing lipo-
somes consisting of POPC, PE and Ch by CE failed. The
results were not reproducible, neither by using untreated
nor PVA-coated fused-silica capillaries. Therefore, we
decided to stabilize the liposomes by grafting them with
DSPE-PEG. This is a lipid consisting of two distearoyl
chains, and to which a PEG chain is linked. As the dis-
tearoyl groups become part of the membrane, the hydro-
philic PEG protrudes from the surface of the liposome,
makes it more hydrophilic and reduces aggregation. Fig-
ure 2 shows a typical electropherogram of PEG-grafted
liposomes (POPC:PE:Ch:DSPE-PEG 29:26:40:5 mol%)
using LIF detection at 488/520 nm. The concentration of
the liposomes in this sample is given very roughly due to
the many procedures applied for their preparation and
purification; we assume the concentration given as the
lipid content being in the 1024 M range. Fluorescein
(2 nM) was added as internal standard prior to each
measurement. Note that no neutral marker was used to
indicate the (very low) EOF, because even concomitant
injection of the marker at the detector end would lead to
very long residence times. The time axis of the electro-
pherograms was normalised by the aid of the internal
standard to count for variations, e.g. due to the changing
EOF.
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Figure 2. Electropherograms of (A) Ni-NTA-implanted
liposomes (lipid ratio POPC:PE:Ch:DSPE-PEG DOGS-
NTA-Ni2+ = 29:26:40:5.5 mol%, FL-labelled with FITC-
dextran); and (B) of liposomes disintegrated by heat
treatment (807C, 15 min) in the presence of 10 mM SDS.
IS, internal standard (fluorescein). CE conditions: bare
fused-silica capillary, id 75 mm, total length 73 cm (effec-
tive length 58.0 cm). BGE: Tris-HCl, 50 mM, pH 8.0. Con-
stant voltage: 120 kV, current: 35 mA. Injection by pres-
sure (25 mbar for 10 s) at the anodic side. Temperature,
207C; fluorescence detection at 488 nm excitation wave-
length and 520 nm cut-off.

In most cases, liposomes consisting of POPC, PE and Ch
have negative charge, although they consist of either
zwitterionic (POPC, PE) or uncharged (Ch) constituents
[1, 2, 6, 41]. The present liposomes possess additional
negative charges from the phosphate group of DSPE-
PEG. The peak assigned to the liposomes is relatively
broad in the time domain (Fig. 2A), indicating hetero-
geneity. However, if we consider the mobility distribution
of the species forming this peak, it is surprisingly narrow.
Taking the peak in Fig. 2, we can calculate the average
mobility derived from the apex as 24.661029 m2V21s21.
The width of this peak (expressed by its SD) in mobility
units is as small as 1.061029 m2V21s21, which is only
about 4% of the average mobility. This means that 99%
(63s) of all particles possess mobilities within
6361029 m2V21s21 or within 12% of the average value.

An additional indication for the heterogeneity of the vesi-
cle population can be followed from the seemingly large
noise of the peak signal, which is much stronger than that
of the baseline (see Fig. 2A). This stronger signal fluctua-
tion is not originating from the detector, but is most prob-
ably the result of the numerous vesicle species which are
resolved only in part. It is noteworthy in this context that
Arriaga et al. [42] were able to detect single MLVs with a
very fast detector after separation by CE. These vesicles
exhibited a similar mobility distribution than those depict-
ed in Fig. 2.

In Fig. 2B, the electropherogram resulting after destruc-
tion of the vesicles by heating the sample at 807C for
15 min is shown. The liposome peak in Fig. 2A has dis-
appeared, and a large peak of the released FITC-dextran
arises. This peak has nearly the same corrected area as
the initial liposome peak (they differ by only 10%). The
three small peaks in the migration range around 15 min
are impurities of FITC-dextran.

It is informative to calculate the approximate volume and
mass of the vesicles. Taking a particle radius of roughly
100 nm, the volume of a single vesicle is about
4610215 cm3. If we assume a density of 1 g/cm3, be-
cause the main part of the vesicle is water, a mass of
4610215 g follows. The volume of the bilayer, calculated
from the surface of the vesicle and the bilayer thickness of
5 nm, is then ,6610216 cm3, and its mass roughly
5610216 g. Thus, the lipids contribute only about 12% to
the mass of the entire vesicle.

3.3.2 Ni21-implanted liposomes

In order to allow for binding of a His-tag to the vesicle
surface, PEG-grafted liposomes containing Ni21-satu-
rated DOGS-NTA (ratio POPC:PE:Ch:DSPE-PEG:DOGS-
NTA = 26:24:40:5:5 mol%) were produced. In the DOGS-
NTA molecule (see Fig. 1), the lipid group 1,2-dioleoyl is
linked to NTA, a well-known metal-chelating agent. The
lipophilic DOGS is imbedded in the membrane, and the
NTA-group is exposed to the solvent. The compound
occupies four of the six available coordination sites of a
Ni-ion (see Fig. 1).

An electropherogram of these Ni-NTA-implanted lipo-
somes (also in an estimated concentration in the 1024 M
range, related to the total lipid content) is shown in Fig. 3.
A peak similar to the solely PEG-grafted liposomes
(Fig. 2) is observed. However, the Ni-NTA-containing
liposomes exhibit a shorter migration time; accordingly,
these vesicles have a higher average mobility
(29.561029 m2V21s21). This is not unexpected because
the Ni-NTA lipid should introduce one additional negative

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com



4004 G. Bilek et al. Electrophoresis 2006, 27, 3999–4007

Figure 3. Electropherograms of (A) Ni2+-NTA-implanted
liposomes (ratio POPC:PE:Ch:DSPE-PEG:DOGS-NTA-
Ni21 = 26:24:40:5:5 mol%, FL-labelled with FITC-dex-
tran); (B) after addition of EDTA (10 mM) to the liposome
sample. CE conditions: PVA capillary, id 75 mm, total
length 30 cm (effective length 21.5 cm). BGE: Tris-HCl
50 mM, pH 8.0. Constant voltage: 25 kV, current: 21 mA.
Hydrodynamic injection at the cathodic side (lifting the
inlet by 3 cm for 12 s). Temperature, 257C; fluorescence
detection at 488 nm excitation wavelength and 500 nm
cut-off.

charge. It was observed that the Ni-NTA-containing par-
ticles became more heterogeneous than the PEG-grafted
liposomes; the SD of the mobilities increased from
161029 m2V21s21 to 1.461029 m2V21s21 (see Table 1).

The number of lipid molecules in the bilayer (with a mass
of 5610216 g per vesicle, see above) is about 36105

(taking 1000 Da as an approximate molecular weight of
the lipid). Taking into account that the DOGS-NTA con-
tributes 5% to the total lipid in the bilayer, it can be esti-
mated that each vesicle contains roughly 15 000 DOGS-
NTA molecules and consequently the same number of Ni-
ions.

The logarithm of the equilibrium binding constants of the
complexation reaction between Ni21 and (free) NTA and
EDTA are 11.3 and 18.4, respectively (both as anions at
ionic strength of 0.1 M) [43]. EDTA will thus remove the Ni-
ions, and two negative charges will be added for each

removed Ni21 at the vesicle surface. Since half of the Ni21

is at the inner leaflet of the vesicle and not accessible for
the EDTA, roughly 7500 Ni-ions are complexed and con-
sequently 15 000 negative charges will be added per
vesicle. Thus, the electrophoretic mobility of the liposome
should increase upon addition of EDTA.

This change in mobility can indeed be observed by CE as
shown in Fig. 3. Addition of an excess of EDTA leads to a
shift of the liposome peak towards shorter migration time
(i.e. higher mobility). The peak now overlaps with the peak
of the internal standard. Removal of the Ni21 resulted in an
increase in average mobility by 4.161029 m2V21s21 to
33.661029 m2V21s21 (Table 1). The spread remained the
same, namely 1.561029 m2V21s21 or 5%, expressed by
the SD.

3.4 Interaction of His-tagged proteins with
Ni-implanted liposomes

The NTA-group at the membrane surface occupies four
coordination sites of the Ni-ions (Fig. 1). The remaining
two sites (normally occupied by two water molecules in
aqueous solutions) are accessible for histidines, as are
present, e.g. in the His6-tag genetically appended to
recombinant proteins for the sake of easy purification.

It should be mentioned that nonequilibrium conditions
were used for the binding experiments due to the antici-
pated relatively large complex constant. It was assumed
that it is in the range of 107 M21 as reported for a His6-
tagged antibody fragment [28]. Because the concentra-
tion of the present reactants are in the 10 mM range, we
anticipate sufficient stability of the complex formed by
incubation, at least within the CE run. Therefore, we
reacted the compounds prior to the measurement instead
of adding one reactant to the BGE as in case of equilibri-
um affinity electrophoresis.

Ni-NTA-containing liposomes were thus incubated with
proteins possessing a His6-tag on the C-terminus of the
polypeptide chain. Incubation was simply carried out by
mixing the components at room temperature 30 min prior
to injection. The proteins were products obtained within
the frame of our investigations on virus–receptor interac-
tions. Both proteins were synthetic soluble receptor frag-
ments. Protein1 consists of 540 amino acids and has a
molecular mass of approximately 60 kDa, protein2 has
620 amino acids with a molar mass of 70 kDa.

The electropherogram measured after incubation of Ni-
NTA-containing liposomes (total lipid concentration range
1024 M) with protein1 (34 mM) is shown in Fig. 4. It can be
clearly seen that incubation resulted in a huge shift in
migration indicating the attachment of the protein to the
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Table 1. Average mobility, m, of the different liposomes measured from the apex of the electrophoretic peaks and mobility
distribution of the species forming the peaks expressed as the SD calculated from the electrophoretic peak
widths

Liposome ma) m Distri-
butionb)

m Distri-
bution (%)

From
Fig.

PEG-grafted 24.6 61.0 4 –
PEG-grafted after addition of EDTA 24.7 61.1 4 –
PEG-grafted/DOGS-NTA-Ni 29.6 61.3 5 3
PEG-grafted/DOGS-NTA-Ni 29.4 61.5 5 4
PEG-grafted/DOGS-NTA-Ni 29.4 61.2 3 5
PEG-grafted/DOGS-NTA-Ni 1 His6 protein1 (60 kDa) 19.3 60.9 3 4
PEG-grafted/DOGS-NTA-Ni 1 His6 protein2 (70 kDa) 26.9 61.0 3 5
PEG-grafted/DOGS-NTA-Ni after addition of EDTA 33.6 61.5 5 3
PEG-grafted/DOGS-NTA-Ni after addition of EDTA 33.4 61.3 4 5
PEG-grafted/DOGS-NTA-Ni 1 His6 protein1 (60 kDa) after addition of EDTA 33.4 62.1 7 4
PEG-grafted/DOGS-NTA-Ni 1 His6 protein2 (70 kDa) after addition of EDTA 34.8 61.9 5 5

As reference value 33.8 6 0.1 (n = 5) was used for the determination of the mobility of fluorescein, taken as the internal
standard. The relative error in the measurement of the mobility (expressed by the SD, n = 5, was 0.2–0.461029 m2V21s21).
a) (In 1029 m2V21s21); measured from peak apex.
b) (In 1029 m2V21s21); measurement in triplicate.

Figure 4. Electropherograms of (A) Ni21-NTA-containing
liposomes, (B) liposomes as in (A) but incubated with
33.8 mM protein1 possessing a His6-tag; (C) liposomes as
in (B) after addition of EDTA (20 mM). Liposomes were
produced with a lipid ratio POPC:PE:Ch:DSPE-PEG:-
DOGS-NTA-Ni21 = 26:24:40:5:5 mol%, FL-labelled with
FITC-dextran. CE conditions as in Fig. 3.

liposomes. Indeed, the mobility of the liposomes changes
by nearly 1/3 from 29.4 to 19.361029 m2V21s21 (Table 1).
Formation of a liposome–protein complex was evidenced
by the addition of EDTA. As seen in Fig. 4, in the presence
of EDTA, a peak of Ni21-free NTA-liposome (see Fig. 3)
reappeared. The peaks had infact the same mobility: 33.6
versus 33.461029 m2V21s21, see Table 1.

By the same means, complex formation between Ni21-
NTA-containing liposomes and protein2 (7.4 mM) was
assessed by CE (see Fig. 5). Incubation of the liposomes
(the average mobility as derived from this Fig. is
29.461029 m2V21s21) with the protein gave rise to a shift
of the liposome peak to a higher migration time corre-
sponding to a reduction in average mobility to
26.961029 m2V21s21. As in Fig. 4, treatment of the com-
plex with EDTA reconstituted the DOGS-NTA-containing
but Ni21-free liposome with an average mobility of
34.861029 m2V21s21.

Although there is clear evidence for specific binding of the
proteins via their His-tags to Ni-NTA of the liposomes, the
question arises whether unspecific binding of the protein
to the lipid membrane has an effect on the electrophoretic
properties of the vesicles. To clarify this aspect, solely
PEG-grafted liposomes (not containing Ni-NTA) were
incubated under the same conditions with the protein and
the mixture analyzed by CE. The result is shown for pro-
tein2 in Fig. 6. Indeed, no change in mobility is observed
(the mobilities differ by only 0.161029 m2V21s21). Al-
though the peak in Fig. 6B seems narrower, this is not
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Figure 5. Electropherograms of (A) Ni21-NTA-containing
liposomes, (B) liposomes as in (A) after the addition of
10 mM EDTA, (C) liposomes as in (A) but incubated with
7.4 mM protein2 possessing a His6-tag; (D) liposomes as
in (C) but after the addition of EDTA (20 mM). Liposomes
were produced with a lipid ratio POPC:PE:Ch:DSPE-
PEG:DOGS-NTA-Ni21 = 26:24:40:5:5 mol%, FL-labelled
with FITC-dextran. CE conditions as in Fig. 3.

confirmed when the calculated peak widths are com-
pared. Expressed in mobility, both peaks have a spread of
0.861029 m2V21s21 (given as SDs in 0.6 of the height). It
is obvious that this result is not a direct confirmation of the
absence of unspecific binding, but it corroborates that,
even when present, it does not influence the mobility sig-
nificantly. This is in clear contrast to the results found
when the protein decorates the liposome by specific
attachment.

Finally, the less probable influence of EDTA on the elec-
trophoretic property of the vesicles is briefly discussed. In
order to prove this effect, again solely PEG-grafted lipo-
somes (not containing Ni-NTA) were incubated with EDTA
(10 mM) and the mobilities before and after incubation
were measured. The result is also given in Table 1. It was
found that (as expected) EDTA does not affect the mobil-
ities (24.6 vs. 24.7, both in 1029 m2V21s21) within the
measuring error: SD was 0.361029 m2V21s21, n = 5.

Figure 6. Electropherograms of (A) PEG-grafted lipo-
somes (lipid ratio POPC:PE:Ch:DSPE-PEG = 29:26:40:5
mol%, FL-labelled with FITC-dextran); and (B) liposomes
as in (A) after incubation with 5.9 mM protein2. CE condi-
tions as in Fig. 3.

4 Concluding remarks

CE is well-suited to monitor the binding of proteins to
liposomes. It enables the assessment of specific protein–
liposome interaction, especially by the shift in the elec-
trophoretic mobility. The method paves the way to study
the interaction between liposome-attached proteins and
their ligands, mimicking the situation prevailing at the
surface of natural cell membranes. The method has a
number of advantages. In addition to the well-known high
speed of analysis and large flexibility in system modifica-
tion, it is especially the low consumption of analytes, car-
riers and modifiers which is often a large benefit in bio-
analysis. In many cases, analytes are available only in
minute amounts; carriers and modifiers are expensive
and/or not simply obtainable. As a major advantage, the
system works in homogeneous solution, which can
approximate physiological conditions. Interactions be-
tween the reactants are not hindered by steric restric-
tions, in contrast to most immunoassays involving the
attachment of one analyte to a plastic surface.

The technique appears particularly promising for binding
experiments based on the interaction of ligands with a
membrane protein. The latter can be produced in a sol-
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uble form, i.e. without its hydrophobic membrane anchor,
and subsequently being attached to the lipid bilayer via a
genetically appended hexa-His tag. Interactions of these
protein-carrying liposomes with ligands that modify the
migration behavior of the liposomes in the electric field
can then be monitored by CE easily and with great sensi-
tivity.
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Mimicking Early Events of Virus Infection:
Capillary Electrophoretic Analysis of Virus
Attachment to Receptor-Decorated Liposomes
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The attachment of human rhinovirus serotype 2 to an
artificial cell membrane was followed by capillary elec-
trophoresis. The cell membrane was mimicked by lipo-
somes (average diameter of about 190 nm) containing a
lipid with a nitrilotriacetic acid (NTA) group. This group,
in the presence of Ni2+ ions, served as anchor for the his6-
tags of recombinant derivatives of the very-low-density
lipoprotein (VLDL) receptor comprising either modules
1, 2, and 3 (V123) or five tandem copies of module 3
(V33333). We demonstrate by capillary electrophoresis
with laser induced fluorescence detection of the liposomes
that the minor receptor group rhinovirus HRV2 binds
specifically to the receptor-decorated vesicles; the major
receptor group rhinovirus HRV14, which uses a different
receptor for cell binding, does not attach to the liposomes.

The very first event in virus infection is the specific attachment
of the virion to structures at the host cell membrane, which are
termed “virus receptors”, neglecting the fact that their original
function lies in cell-cell interaction and/or metabolism of the cell.
Viruses have adapted to exploit these molecules for their proper
benefit. The membrane of eukaryotic cells is complex and contains
many different proteins attached to or embedded in the lipid
bilayer. This complicates the analysis of virus binding to specific
receptors in their biological context. A simpler system, mimicking
the cell membrane with its physicochemical properties but
containing only one type of protein at the time, can be realized
with liposomes. These vesicles can be made to carry the proteins
of choice attached by various means like insertion via hydrophobic
transmembrane sequences, binding via covalently linked lipids,
or by making use of noncovalent attachment of the proteins to
suitable functional groups connected to chemically modified lipids.
Based on the latter concept, in the present work, we established
a model for the interaction between a minor group human
rhinovirus (HRV) and its cognate receptors, members of the low-
density lipoprotein receptor family, and used capillary electro-
phoresis (CE) for its analysis.

Modeling of virus attachment was carried out in different steps,
as depicted schematically in Figure 1. First, liposomes were

prepared from standard lipids including nitrilotriacetate (NTA)-
modified dioleoyl-glycerol complexed with Ni2+-ions. A recombi-
nant soluble receptor construct containing a hexa-histidine tag
(his6-tag) at its C-terminus was then attached via the Ni2+-NTA-
lipid to the liposome surface. As a result, a receptor-decorated
vesicle was formed modeling the cell membrane. Finally, virus
was attached to these receptor-decorated vesicles via biospecific
interaction. All individual steps were followed by CE via laser-
induced fluorescence (LIF) detection of a fluorescent dye dis-
solved in the aqueous vesicle core of the liposomes.

EXPERIMENTAL SECTION
Instrumentation. CE with LIF detection was carried out with

a homemade instrument consisting of an Ar-laser (Reliant 50S-
489, 50 mW, Laser-Physics), a high voltage power supply unit
(HNC 20.000, Heinzinger Electronic, Germany), and an optical
bench where the fluorescence light was focused by a microscopic
lens system and passed through a cutoff filter (500 nm) before
reaching the photomultiplier (Hamamatsu H5785, Shimokanzo,
Japan). Data were collected with the DataApex software (Prague,
Czech Republic). A PVA-coated capillary (30.0/21.5 cm length,
75 or 100 µm inner diameter (ID); Agilent, Waldbronn, Germany)
was used with the detection window placed at the anodic side of

* To whom correspondence should be addressed. E-mail:
ernst.kenndler@univie.ac.at.

† University of Vienna.
‡ Medical University of Vienna.

Figure 1. Schematic representation of the attachment of HRV2 to
the liposome membrane. A ternary adduct is formed from the Ni2+-
NTA-implanted liposome, receptor construct V123, and HRV2. A part
of the liposome bilayer is shown that contains the NTA-lipid with
complexed Ni2+ ions. The receptor construct binds via its his6-tag to
the membrane surface by complexation with the Ni2+ ions. Finally,
HRV2 binds biospecifically to the liposome surface via the modules
of the receptor construct. The average diameter of the liposomal
vesicles is about 190 nm, their bilayer thickness is about 5 nm, and
HRV2 diameter is about 30 nm. Note that the MBP fused to the
N-terminus of the receptor is depicted.
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the instrument. The capillary was positioned in still air at room
temperature (∼25 °C) without thermostating. The background
electrolyte for the CE analysis of the liposomes consisted of tris-
(hydroxymethyl)-aminomethan (Tris)/HCl (50 mmol L-1, pH 8.0).
Experiments were performed at a constant voltage of -5 kV; the
resulting current was about 21 µA. Samples were applied by
hydrodynamic injection at the cathodic side of the capillary by
lifting the sample vial by 3 cm for 12 s.

CE with UV detection was performed with an automated HP3D
instrument (Agilent) equipped with a diode array UV-vis detector
(190-600 nm). An untreated fused-silica capillary (68.0/59.5 cm
length, 75 µm ID; Composite Metal Services Ltd.) was used and
thermostated at 20 °C. The separation buffer was prepared by
adjusting boric acid (100 mmol L-1) with NaOH to pH 8.3 and
adding SDS to 10 mmol L-1. The applied voltage was +20 kV,
with the UV detector placed at the cathodic side of the capillary;
the resulting current was about 25 µA. Samples were injected by
25 mbar pressure for 10 s.

The average vesicle diameter and the size-distribution of
purified liposome preparations were determined by using dynamic
light scattering on a Zetasizer (Malvern Nano-ZS, Malvern
instruments, U.K.). The suspensions of the liposomes were diluted
with 50 mM Tris-HCl (pH 8.0) to a concentration appropriate for
the measuring range of the instrument. This is described in more
detail in ref 1.

The Ni concentration of the liposomes was determined by
atomic absorbance spectroscopy (AAS) using a 4100 ZL instru-
ment (Perkin-Elmer) with a transverse heated graphite atomizer
in the stabilized temperature platform furnace technique and
Zeeman-effect background correction (longitudinal). A Ni hollow
cathode lamp (25 mA, slit 0.2 mm, wavelength: 232.0 nm) was
used. Sample volume was 20 µL; analyses were performed without
chemical modifiers. The organic matrix was dry ashed in the
graphite tube with air at 500 °C. For the individual steps of
analysis, the following temperatures were applied: ashing, 500
°C, pyrolysis, 1100 °C, atomization, 2400 °C, cleaning, 2450 °C.
Ar flow was 250 mL min-1.

Reagents. Liposomes were made from 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC), L-R-phosphatidylethanol-
amine (PE), cholesterol (Ch), the ammonium salt of 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylenegly-
col)-750] (DSPE-PEG), and the Ni2+ salt of 1,2-dioleoyl-sn-glycero-
3-[(N-(5-amino-1-carboxypentyl) iminodiacetic acid) succinyl] (Ni2+-
NTA-DOGS), all obtained from Avanti Polar Lipids (Alabaster,
AL, distributor Instruchemie B.V., Netherlands). HCl, NaOH, boric
acid, and chloroform (p.a.) were from E. Merck (Darmstadt,
Germany). Tris and fluorescein isothiocyanate (FITC)-dextran (70
kDa) were from Sigma (Milwaukee, WI). Fluorescence latex beads
used as standards in size exclusion chromatography (SEC) were
from Polysciences (Warrington, PA).

The major group rhinovirus HRV14 and the minor group
rhinovirus HRV2 were grown in HeLa H1 suspension culture and
purified as described elsewhere.2 The virus concentration and the
purity of the virus were monitored by CE.3 The virus stock
solutions were at 5.7 mg/mL (HRV2) and 1.3 mg/mL (HRV14).

Two recombinant soluble receptor constructs, derived from
the human very low-density lipoprotein receptor (VLDLR), were
expressed and purified as described.4 Both were expressed and
used for all experiments as fusion proteins, carrying at their
N-terminus the maltose-binding protein (MBP) and at their
C-terminus a his6-tag. V123 comprises the first three ligand binding
modules of VLDLR, and V33333 is an artificial concatemer of five
copies of the third module of VLDLR. They exhibit different
functional affinity (avidity) toward HRV2.5,6 The concentration of
the respective receptor stock solutions was 8 mg/mL for V123
and 2 mg/mL for V33333.

SEC was carried out on a Sephacryl S-1000 column from GE
Healthcare, Uppsala, Sweden.

Procedures. Multilamellar vesicle (MLV) suspensions were
prepared by dissolving POPC, PE, Ch, DSPE-PEG, and Ni2+-
NTA-DOGS in chloroform to produce separate lipid stocks with
a concentration of 10 mg/mL each. These chloroform stocks were
combined in a 50 mL pointed flask at a ratio of POPC:PE:Ch:
DSPE-PEG:Ni2+-NTA-DOGS ) 26:24:40:5:5 [mol %] to produce
Ni2+-NTA implanted vesicles with PEG grafting as described in
ref 1. Briefly, the organic solvent of the final mixture (ap-
proximately 1.5 mL) was removed under vacuum by the aid of a
rotary evaporator. To ensure uniform deposition of the lipids as a
thin film, the bottom settings were redissolved twice in 1.5 mL of
chloroform followed by immediate evaporation. The last evapora-
tion was conducted for at least 4 h to ensure complete removal of
traces of the solvent. Subsequently, the lipid film was hydrated
in 2.5 mL of 50 mmol L-1 Tris-HCl (pH 8.0), containing 70 µmol
L-1 FITC-dextran to label the vesicles. After 30-60 min at 65 °C
in a water bath, MLVs were produced by 3-6 freeze/thaw cycles;
the lipid suspension was frozen in liquid nitrogen, thawed at 65
°C in a water bath, and vortexed to peel off the lipid film. To avoid
oxidation, freshly produced MLVs were gassed with N2 before
storing them at -20 °C in the dark.

To form large unilamellar vesicles (LUVs) that better mimic
the cell surface, MLVs were passed through two polycarbonate
filters with a pore diameter of 400 nm by the aid of an extruder
(Mini-Extruder, Avanti Polar Lipids) at 65 °C to prevent aggrega-
tion of the rigid lipid membranes. Under this condition, all lipids
are above their phase transition temperature and in a liquid-crystal
state. The suspension was passed 21 times through the filters.
The resulting LUVs were stored under N2 atmosphere at 4 °C in
the dark.

Vesicles were separated from free FITC-dextran and other low-
molecular weight contaminants by SEC, using a Sephacryl S-1000
column (30 cm × 1 cm). The column was equilibrated with 50
mM Tris-HCl (pH 8.0), and its void volume was determined at
250 µL/min with fluorescent latex beads (200 nm diameter; 120
µL of a 1:100 dilution of the stock). Next, the LUV suspension
(120 µL) was applied, and SEC was carried out with the same
mobile phase at the same flow rate; fractions of 300 µL were
collected. The liposomes eluted with the void volume as deter-

(1) Bilek, G.; Kremser, L.; Blaas, D.; Kenndler, E. Electrophoresis 2006, 27,
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(5) Moser, R.; Snyers, L.; Wruss, J.; Angulo, J.; Peters, H.; Peters, T.; Blaas, D.
Virology 2005, 338, 259-269.

(6) Okun, V. M.; Moser, R.; Ronacher, B.; Kenndler, E.; Blaas, D. J. Biol. Chem.
2001, 276, 1057-1062.

Analytical Chemistry, Vol. 79, No. 4, February 15, 2007 1621



mined by fluorimetry, using a 96-well plate reader (Wallac 1420
VICTOR V, Perkin-Elmer, Finland) set at 485 nm excitation and
535 nm emission wavelength. Fractions were also subjected to
UV spectrometry at 280 nm (Hitachi U-2000 spectrophotometer)
to confirm the location of the peak.

RESULTS AND DISCUSSION
Receptor-Decorated Liposomes. VLDL-receptors are mosaic

proteins that most probably evolved from single modules and
building blocks. Their ligand-binding domains at the N-terminus
are composed of various numbers of ligand binding repeats or
type A modules, each about 40 amino acids in length, among them
6 cysteines that are all engaged in disulfide bridges. VLDLR has
8 ligand binding repeats. V33333 is a synthetic soluble receptor
construct; it is a concatemer of five copies of module 3 of VLDLR
fused to MBP. The complete receptor construct (including MBP)
consists of 620 amino acids and has a molecular mass of 67 439
Da. As it possesses a 6 histidine tag, it binds to Ni2+-NTA of the
NTA-DOGS lipid present in the liposome membrane. The
resulting vesicles can be considered a simplified model of a cell
with epitopes for viral attachment. For decoration with the receptor

constructs, the Ni2+-NTA-implanted liposomes were reacted with
V33333 with increasing concentrations (between 1 and 6 µmol
L-1), and the resulting products were analyzed by CE-LIF. The
electropherograms are shown in Figure 2. It can be seen that a
typical, relatively broad liposome peak is obtained, which gradually
shifts to longer migration time with increasing V33333 concentra-
tion in the reaction mixture. The change in the mobility clearly
demonstrates attachment of the receptors to the liposome surface;
the broadening of the peak with increasing receptor concentration
is most probably due to heterogeneity resulting from a mixture
of liposomes carrying different numbers of receptors.

Similarly, another recombinant soluble receptor construct,
V123, was attached to the functionalized liposomes. This fragment
consists of the first three modules of VLDLR. V123 encompasses
535 amino acid residues with a total molecular mass of 59122 Da.
As V33333, V123 is fused to MBP and carries a C-terminal his6-
tag. The electropherograms obtained upon incubation of the Ni2+-
NTA-functionalized liposomes at increasing concentrations of V123
are depicted in Figure 3. The liposome suspension had ap-
proximately the same concentration as in the experiments
described for V33333. Again, upon addition of increasing amounts
of V123 (from 2.7 to 68 µmol L-1), a gradual shift of the liposome
peak was observed. The plateau of its mobility at the higher
concentrations of the receptor in the incubation mixture (Figure
4) indicates that saturation with the receptor occurs above ∼35
µmol L-1. Saturation was not attained with V33333, as the

Figure 2. Electropherograms of liposomes containing Ni2+-NTA-
carrying lipid, incubated with increasing concentration of V33333
(between 1 and 6 µmol L-1). Liposome composition: POPC:PE:Ch:
DSPE-PEG:Ni2+-NTA-DOGS ) 26:24:40:5:5 mol %, FL-labeled
with FITC-dextran (70 µmol L-1). Ni2+-NTA concentration (5% of total
lipid) accessible for receptor binding in the incubation mixture is 1.8
µmol L-1. I.S. internal standard (fluorescein), 2 nmol L-1. CE-
conditions: PVA capillary, 30 cm/21.5 cm length, ID 75 µm. BGE:
Tris-HCl, 50 mM, pH 8.0. Voltage, -5 kV; current, 21 µA. Hydrody-
namic injection at the cathodic side (lifting the inlet by 3 cm for 12 s).
Temperature 25 °C; fluorescence detection at 488 nm excitation
wavelength and 500 nm cutoff.

Figure 3. Electropherograms of Ni2+-NTA-lipid containing lipo-
somes after incubation with increasing concentrations of V123
(between 2.7 and 41 µmol L-1). Ni2+-NTA concentration (5% of total
lipid) accessible for receptor binding in the incubation mixture is 2.0
µmol L-1. Liposome composition and CE conditions are as in Figure
2.
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concentration of the available stock solution was lower than that
of V123 (see Experimental Section).

The Ni2+-concentration in the samples was determined by AAS
(note that the Ni-NTA-containing lipid contributed only 5% of total
lipid). The Ni2+ concentration as obtained after size exclusion
chromatography of the liposomes was estimated to about 16 µmol
L-1. Consequently to dilution upon addition of V33333, the final
Ni2+ concentration was thus 3.6 µmol L-1. Because one-half of
the NTA is located at the inner face of the liposome and is thus
not accessible, roughly 1.8 µmol L-1 of the Ni2+-NTA is available
for complex formation with the his6-tagged receptor (for concen-
trations of the components in the other binding experiments, see
figure legends). It is remarkable that the receptor concentration
required to reach the plateau of the binding curve is considerably
higher. Several causes can be responsible for this effect. The most
probable reason is the dissociation of the Ni2+-NTA/receptor
complex; the equilibrium dissociation constant of the binding
reaction between Ni2+-NTA and a his6 tag is about 10-5-10-6

mol L-1.7-9 As this is within the concentration range of the analytes
in the incubation mixture, an excess of receptor fragment is
needed to shift the equilibrium toward the complex.

Virus Attachment to Receptor-Decorated Liposomes.
When free in solution, V33333 binds to HRV2, as demonstrated
by using CE in our previous papers.10,11 We determined the
composition of the V33333-HRV2 complex at saturation with 12
receptors per virion. However, interaction of the virus with the
cell surface does not involve soluble receptors but rather receptors
that are firmly anchored within the membrane. In the present

paper, we investigated the interaction of rhinoviruses with receptor
fragments present on the liposome surface. This allows free
diffusion within the plane of the lipid bilayer and thus mimics
much better in vivo conditions than, for example, surface plasmon
resonance methodology or any other assay in which one of the
components, receptor or virus, is firmly attached to a solid support.
Therefore, several membrane-attached receptors might be re-
cruited by an individual virion.

Incubation of the virus with the V33333-decorated liposome
results in electropherograms exhibiting a change of the vesicle
peak (Figure 5). Both migration time and shape of the liposome
signal were completely changed. The vesicles emerged consider-
ably later, and the peaks were partly covered with a large number
of spikes (compare Figure 5A with B). The spikes suggest that
clusters of vesicles are formed with virions bridging two or more
liposomes. As previously observed for plain liposomes,1 the peak
together with the spikes completely disappeared upon sonication
(Figure 5C), indicating that the vesicles had been destroyed.

As for V33333, upon incubation of V123-decorated vesicles for
30 min with HRV2, the liposomal peak disappeared and a large
number of spikes emerged within the region of the expected
position of the vesicles carrying virus (Figure 6B). This provides
evidence that complexes had indeed been formed (compare to
the vesicles with attached V33333 carrying virus, Figure 5B).
Additional evidence for the presence of liposome-bound virus
comes from the following experiment; a sample of the putative
virus-carrying vesicle was incubated with 20 mM EDTA for several

(7) Khan, F.; He, M.; Taussig, M. J. Anal. Chem. 2006, 78, 3072-3079.
(8) Nieba, L.; Nieba-Axmann, S. E.; Persson, A.; Hamalainen, M.; Edebratt, F.;

Hansson, A.; Lidholm, J.; Magnusson, K.; Karlsson, A. F.; Pluckthun, A.
Anal. Biochem. 1997, 252, 217-228.

(9) Lata, S.; Reichel, A.; Brock, R.; Tampe, R.; Piehler, J. J. Am. Chem. Soc.
2005, 127, 10205-10215.

(10) Nicodemou, A.; Petsch, M.; Konecsni, T.; Kremser, L.; Kenndler, E.;
Casasnovas, J.; Blaas, D. FEBS Lett. 2005, 579, 5507-5511.

(11) Konecsni, T.; Kremser, L.; Snyers, L.; Rankl, C.; Kilar, F.; Kenndler, E.; Blaas,
D. FEBS Lett. 2004, 568, 99-104.

Figure 4. Mobilities of the liposomes (as measured at the apex of
the peaks shown in Figures 2 and 3) at different concentrations of
the recombinant receptor fragments V123 and V33333, respectively,
in the incubation mixture with the Ni2+-NTA-carrying vesicles. The
mobilities were typically reproducible within 1 × 10-9 m2 V-1 s-1,
according to a relative standard deviation of about 4% (for 3-5
measurements).

Figure 5. Electropherograms of (A) liposomes decorated with
V33333, (B) liposomes as in (A), incubated with HRV2, and (C)
liposomes carrying HRV2 as in (B), after 40 min sonication. Liposome
composition and CE conditions are as in Figure 2. Incubation condition
(in 100 µL): (A) Ni2+-NTA:V33333 ) 1.6:7.4 (µmol L-1); (B) and
(C) Ni2+-NTA:V33333:HRV2 ) 1.6:7.4:0.059 (µmol L-1).
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minutes to destroy the Ni2+-NTA complex (the binding constant
of the Ni2+-EDTA complex is about 7 orders of magnitude larger
than that of the Ni2+-NTA complex) and thus to displace the
receptor from the liposome surface. As expected, the signal
corresponding to bare liposome was re-established after treatment
of the vesicles with EDTA (Figure 6C), thus confirming that the
spikes indeed correspond to aggregates of liposomes bridged by
receptor-bound virions. The signal of the recovered liposomes was
slightly reduced as compared to that of the original sample
because of dilution.

Taken together, our data indicate that virus becomes attached
to the vesicles via the biospecific reaction with the receptor
fragment. Nevertheless, more experiments were carried out to
exclude any unspecific interactions. For this purpose, we inves-
tigated, by CE, whether the liposome peak changed upon addition
of virus to vesicles not carrying receptor. As a further control,
binding of a major group virus to receptor-decorated liposomes
was assessed. As major group viruses use intercellular adhesion
molecule 1, ICAM-1, as a receptor for cell entry and do not bind
VLDLR, binding to the liposome could originate only from
unspecific interactions.

HRV2 Binding to VLDLR-Decorated Liposomes Is Spe-
cific. First, we incubated HRV2 with Ni2+-NTA-implanted lipo-
somes lacking receptors. CE analysis showed no shift of the
liposome peak within the reproducibility of the measurements
(data not shown). This result cannot fully exclude unspecific
interactions because binding of the virus to the liposomes might
not affect the electrophoretic mobility. However, it makes it clear
that the shift of receptor-decorated liposome peak upon incubation

with HRV2 (Figure 5) must be caused by the virus attaching via
the receptor.

As pointed out above, in contrast to the minor group virus
HRV2, major group viruses such as HRV14 do not bind members
of the LDLR-family. This latter serotype was thus selected as a
control. Indeed, HRV14 did not form any complex with V33333,
as confirmed by CE with UV absorbance detection. When
compared to the electrophoretic peaks of free V33333, free HRV14,
and HRV2, the peak of HRV2 disappeared upon incubation with
the receptor construct, and a peak corresponding to the V33333-
virus complex was noticed. No such effect was seen for HRV14.
Both virus and receptor peaks remained unchanged when the
mixture of the components was analyzed (data not shown).

Thus, V33333-decorated liposomes were incubated with the
respective HRV serotypes, and the incubation mixtures were
analyzed by CE. All experiments were carried out with the same
vesicle and receptor concentrations in the incubation solutions,
and all data were acquired in one and the same series (this is
relevant because it was observed that the liposomes from different
preparations can possess slightly different electrophoretic proper-
ties). As expected, HRV2 shifted the liposome peak toward longer
migration times (compare Figure 7A with B), and some spikes
indicate the formation of virus-liposome clusters. In contrast,
addition of the major group virus left the liposome peak nearly

Figure 6. Electropherograms of (A) V123-decorated liposomes:
Ni2+-NTA-implanted liposomes incubated with V123; (B) V123-
decorated liposomes as in (A), incubated with HRV2; (C) HRV2 was
bound to V123-decorated liposomes as in (B), and then EDTA was
added. Liposome composition and CE conditions are as in Figure 2.
Incubation conditions (total incubation volume: 50 µL): (A) Ni2+-
NTA:V33333 ) 2.0:13.5 (µmol L-1); (B) Ni2+-NTA:V33333:HRV2 )
2.0:13.5:0.053 (µmol L-1).

Figure 7. Electropherograms of V33333-decorated liposomes, after
incubation with the minor group virus HRV2 and the major group virus
HRV14, respectively. (A) V33333-decorated liposomes; (B) liposomes
as in (A), after incubation with HRV2 for 1 h; (C) liposomes as in (A),
after incubation with HRV14 for 1 h. I.S. fluorescein 0.7 nmol L-1.
PVA capillary 30.0/21.5 cm length, ID 100 µm. BGE: 50 mM Tris-
HCl, pH 8.0. Incubation conditions (total incubation volume: 10 µL):
(A) Ni2+-NTA:V33333 ) 0.7:7.4 (µmol L-1); (B) V33333-decorated
liposome as in (A), incubated with 0.067 µmol L-1 HRV2; (C) V33333-
decorated liposome as in (A), incubated with 0.061 µmol L-1 HRV14.
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unaffected (compare Figure 7A and C). Within the 95% confidence
limit, the two peaks exhibit the same mobility (of 26.5 × 10-9 m2

V-1 s-1, standard deviation 0.5 × 10-9 m2 V-1 s-1, compare these
data with the mobility of 24.4 × 10-9 m2 V-1 s-1 of the HRV2-
carrying liposomes in Figure 7B). This result is additional proof
that the shift of the receptor-decorated liposome peak, upon
addition of HRV2, does not originate from unspecific interactions,
but results from the specific binding of virus to receptor-carrying
liposomes.

CONCLUSIONS
CE was successfully applied to assess the specific attachment

of HRV2 to receptor-decorated liposomes. Two recombinant
soluble fragments of the VLDL receptor, V33333 and V123, fused
to maltose binding protein and carrying a C-terminal his6-tag, were
attached to liposomes via a Ni2+-NTA-conjugated lipid used as a
component of the liposome bilayer establishing a model of the
cell membrane. The liposomes were labeled with an FL dye,
dissolved in the aqueous vesicle core, thus enabling CE with LIF
detection. Attachment of the virus was detected by a change of
the electrophoretic mobility of the liposome, indicated by a shift
of the vesicle peak. This shift was related to the biospecific
interaction of the virus with the receptors. No change in the

mobility of the V33333-decorated liposomes was observed with a
major group virus that uses ICAM-1 instead of members of the
LDLR-family for infection. This allows the conclusion that the
binding of HRV2 to these receptor-carrying liposomes is specific
and represents a valid model for the attachment of the virus to
the cell membrane. It also shows that a fragment of a natural
receptor (V123) and an artificial receptor (V33333) behave
similarly with respect to their promoting liposome binding of the
virus, allowing one to extrapolate our findings to the in vivo
situation. Further work will be conducted to analyze the next steps
in virus infection that occur in the endosome such as structural
changes of the virion and release of the genomic RNA.
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Research Article

Mimicking virus attachment to host cells
employing liposomes: Analysis by chip
electrophoresis

Electrophoresis on a chip increasingly replaces electrophoresis in the capillary format

because of its speed and containment of the sample within a disposable cartridge. In this

paper we demonstrate its utility in the analysis of the interaction between a virus and a

liposome-anchored receptor, mimicking viral attachment to host cells. This became

possible because detergents, obligatory constituents of the BGE for capillary electro-

phoretic separation of the virus, were not necessary in the chip format. Separations were

carried out in sodium borate buffer, pH 8.3. Liposomes and virus were both labeled for

laser-induced fluorescence detection at lex/lem 630/680 nm. Free virus and virus-

receptor complexes were resolved from virus attached to receptor-decorated liposomes in

the absence of additives or sieving matrices within about 30 s on commercially available

microfluidic chips.

Keywords:

Chip electrophoresis / Fluorescence labeling / Human rhinovirus / Liposome /
Very-low-density lipoprotein receptor DOI 10.1002/elps.200900108

1 Introduction

Human rhinoviruses (HRVs), main causative agents of the

common cold, bind different cell surface receptors for

infection. HRV2 belongs to the minor group of HRVs that

recognize members of the low-density lipoprotein receptor

family [1]. The ligand-binding domain of these receptors is

composed of various numbers of modules of about 40

amino acid residues in length and arranged in tandem that

differently contribute to ligand binding [2]. In order to better

understand the structural basis of ligand recognition,

recombinant concatemers of module 3 of the very-low-

density lipoprotein receptor (VLDLR) have been used in a

number of studies [3–5]. As a result, it is now clear that up to

five modules within a single receptor molecule can attach to

five icosahedral-symmetry-related binding sites around one

vertex of the viral capsid [6, 7].

Attachment of viruses to cells can be mimicked in vitro
by using receptor-carrying liposomes [8, 9]. In previous work

we used electrophoresis in coated fused-silica capillaries to

monitor this process. Attachment of HRV2 to fluorescent

unilamellar liposomes decorated with maltose-binding

protein (MBP)-V33333, a his6-tagged receptor consisting of

five repeats of module 3 of human VLDLR and expressed as

a fusion with MBP, resulted either in a shift of the liposome

peak or in its disappearance; concomitantly, a large number

of spikes were observed, which we attributed to aggregates

[10].

Detergents proved essential in preventing aggregation

of viral particles in CE with fused-silica capillaries, inde-

pendent of whether bare or coated [11]. However, work with

liposomes precludes the use of surfactants. A solution to

this problem was our finding that chip electrophoresis

rendered neat virus peaks even in the absence of detergents

for reasons that are not fully clear to us. We assume that

it might be related to the much shorter residence time

in the chip compared with the capillary. However, we first

used chip electrophoresis for the analysis of complex

formation of virus with different soluble concatemers of

module 3 [12, 13]. In the present paper the recombinant
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his6-tagged MBP-V3333 molecules were attached to the

membrane via 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-

carboxypentyl) iminodiacetic acid)succinyl] (nickel salt)

(DOGS-NTA). In order to follow the binding of the virus to

the membrane, we then employed fluorescence (FL) detec-

tion of both virus and liposomes. For this purpose virus was

labeled within its protein coat with the amine-reactive dye

Cy5, whereas liposomes were visualized via encapsulation of

Atto 637 (free acid form) in their aqueous core. We here

demonstrate the utility of chip electrophoresis for the

assessment of the interaction of virus with receptor-deco-

rated liposomes.

2 Materials and methods

2.1 Chemicals

Sephadex G50 (DNA grade) and Cy5 were obtained from

Amersham Bioscience (Little Chalfont, England). Cy5 was

dissolved in DMSO (499.9%, Sigma Aldrich, Steinheim,

Germany) to yield a 25 mM stock solution. Atto 637 (in free

acid form) was obtained from Fluka (Buchs, Switzerland).

Boric acid (99.99%) was from Sigma Aldrich. Sodium

hydroxide (497%) was from E. Merck (Darmstadt,

Germany). Water was doubly distilled from a quartz

apparatus. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

(POPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-

N-[methoxy (polyethyleneglycol)-750] (ammonium salt)

(PEG750PE) and DOGS-NTA were from Avanti Lipids

(Alabaster, AL, USA) and purchased via Instruchemie

(Delfzyl, The Netherlands). DOGS-NTA was already loaded

with nickel ions upon delivery and was incorporated into

liposomes as such.

2.2 Biological materials

Preparation and purification of HRV2 and assessment of

purity and concentration were carried out as described

previously [14, 15]. A 5 mL aliquot of HRV2 at 9.5 mg/mL

(1.1 mM) in 50 mM sodium borate, pH 7.4 was employed in

all chip electrophoresis experiments. The model receptor

consisted of four copies of ligand-binding module 3 of

human VLDLR arranged in tandem; it was fused to MBP at

its N-terminus and carried a his6-tag at its C-terminus

(MBP-V3333) [4]. The working solution was at 2.0 mg/mL

(32 mM) in TBSC buffer (20 mM Tris-HCl, 150 mM NaCl,

20 mM CaCl2, pH 7.5).

2.3 Instrumentation

Chip electrophoresis was carried out on the Agilent 2100

Bioanalyzer system applying commercially available DNA

chips (Agilent Technologies, Waldbronn, Germany). DNA

chips, produced from soda lime glass, allow analysis of up to

12 samples per chip. Analytes were monitored via FL,

employing both excitation wavelengths of the instrument

produced by a light-emitting diode (lmax 5 470 nm) and a red

laser (lmax 5 630 nm); chips were thermostated to 301C

during analysis. Data were collected with the Agilent 2100

Expert software. Prior to use BGE and sample buffer were

centrifuged for 10 min on a tabletop centrifuge (5415D,

Eppendorf, Hamburg, Germany). The same centrifuge was

employed for spin size exclusion chromatography (spin SEC).

2.4 Buffers

Electrophoretic separations were carried out in 100 mM

boric acid adjusted to pH 8.3 with 3 M NaOH. BGE was

prepared daily to attain the EOF values around 5� 10�8 m2/

Vs. BGE was diluted with bidistilled water to 80 mM boric

acid concentration (sample buffer; BGE0.8) and to 50 mM

boric acid concentration (labeling buffer; BGE0.5).

2.5 Chip handling

DNA chips were handled as described previously [12, 13]. In

short, chip channels were filled with 12 mL BGE on the Chip

Priming Station by the application of pressure (20 s, 1 mL

syringe volume, upper syringe clip position, position C of

the base plate) from the BGE outlet well. Twelve microliters

of Cy5 containing sample buffer (62.5 nM dye concentra-

tion) were applied to the ladder well for adjustment of the

instrument optics and 12 mL BGE to the remaining two

wells marked ‘‘G’’. Six microliters of the samples were

applied to the remaining wells. After the removal of the

chip, electrodes were cleaned with the Electrode Cleaning

Chip (filled with 380 mL doubly distilled water). The script

(defining all operational steps of the chip analysis) that is

normally employed for DNA analysis was modified to

positive polarity mode for both sample injection to the

separation channel and electrophoretic analysis. The injec-

tion voltage was set to 1300 V, the separation voltage to

800 V (approx. 19 kV/m).

2.6 Production of multilamellar vesicles

Lyophilized lipids were dissolved in chloroform at 10 mM

each prior to mixing in a round-bottom flask in the molar

ratio of POPC:PEG750PE:DOGS-NTA 5 18:1:1. Chloroform

was added to about 3.0 mL; the solvent was evaporated and

the resulting lipid film was dried for at least 3 h under a

stream of nitrogen. The dry film was hydrated in 1.7 mL

BGE0.5 or BGE0.5 containing 11 mM Atto 637 (free acid

form) to obtain FL liposomes. The flask was rotated at room

temperature for at least another 3 h and vortexed several

times. The multilamellar vesicle suspension was kept

overnight at 41C for maturation and either extruded to

produce large unilamellar vesicles or stored at �401C.
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Assuming that all lipids were incorporated into liposomes,

the calculated total lipid concentration was 7.1 mM includ-

ing, 0.4 mM DOGS-NTA for unstained liposomes, and

5.9 mM, including 0.3 mM DOGS-NTA for FL liposomes.

2.7 Extrusion

To produce vesicles of defined size, the multilamellar vesicle

suspension was sequentially extruded through two overlaid

polycarbonate filters with pore sizes of 400, 200 and 100 nm

by using a Mini-Extruder (Avanti Lipids) placed on a heating

block pre-warmed to 501C. The suspension was passed 35

times through each couple of filters [16, 17].

2.8 Virus labeling

HRV2 was labeled by mixing 5 mL virus stock with 4.5 mL

BGE0.5 and 0.5 mL 25 mM Cy5 in DMSO (approximate

2.2� 103-fold molar excess of dye over virus). Incubation

was carried out overnight under light protection at ambient

temperature. Low-molecular-weight material was removed

from the labeled virus on spin columns; filters from

Corning Spin-X centrifuge tubes (cellulose acetate

membrane, pore size 0.45 mm, obtained from Sigma

Aldrich) were filled with Sephadex G50 swelled in BGE0.5

(slurry corresponding to 900 mL settled material in total,

applied consecutively in two 450 mL portions). The column

was spun dry on a table-top centrifuge; the labeling mix was

applied and the elution was started via spinning for 1 min at

800 rcf. The column was washed with 20 mL of BGE0.5 via
spinning (1 min, 800 rcf) and the total recovered eluate

(30 mL) was subjected to the same procedure on a fresh spin

column (washing with 15 mL). The final main fraction

contained 5.25 pmoles (i.e. 115 nM) HRV2. Only 6% of the

total virus remained on the columns and was recovered

upon additional washings with 20 mL buffer, each.

2.9 Liposome purification

Non-encapsulated Atto 637 was removed from the

FL-labeled liposomes via spin SEC on G50 Sephadex

columns as above, but equilibrated in bidistilled water.

Ten microliters of liposome suspension were applied

followed by elution at 800 rcf (1 min). The column was

then rinsed with 20 mL BGE0.5 (1 min, 800 rcf) and the total

eluted material was collected.

2.10 Sample preparation for chip electrophoresis

Cy5-labeled HRV2 was diluted 1:21, the receptor stock

solution 1:9 and the liposomes 1:10.5, all with BGE0.8. Note

that FL-labeled liposomes were about 3.6 times less

concentrated. Atto 495 was added as fluorescent EOF

marker (lex 5 495 nm; 3.0 mM final concentration). The

final concentration of labeled HRV2 was 5.6 nM with the

receptor being present in approximately 50-fold molar

excess (based on a stoichiometry of 12 receptor molecules

binding one virion). The DOGS-NTA in the outer liposomal

membrane was in excess over receptor between 1.3- (labeled

liposomes) and 5.4-fold (unlabeled liposomes). Samples

were prepared by mixing constituents in the sequence

receptor, liposomes and labeled HRV2–followed by 20 min

incubation at ambient temperature under light protection.

3 Results and discussion

The experimental conditions were selected such as to enable

recording of free virus as well as receptor-decorated

liposomes and to obtain clear indications for virus attach-

ment to the vesicles. The present chip electrophoresis setup

relies on FL detection; therefore, the aqueous core of the

liposomes was filled with Atto 637 (lex 5 635 nm) and the

virus was rendered fluorescent by reaction of Cy5

(lex 5 649 nm) with the capsid proteins. This allowed for

monitoring within the instrument-specific 630 nm channel.

It is evident that separation is governed by the mobility

of the analytes and that of the EOF, whereby the mobility of

the liposomes might depend on their size (and certainly on

their composition) and that of the virus is affected by the

chemical modification of its capsid upon labeling [18].

Moreover, the mobility of virus and liposomes presumably

changes upon reaction with receptor fragments. Electro-

phoresis in the micro-device has the invaluable advantage

that no detergent is needed (which would most probably

disintegrate the liposomes). However, in general its

separation performance is lower than that of the classical

capillary format.

3.1 Liposomes

The employed liposomes consisted of POPC, PEG750PE

and DOGS-NTA in 18:1:1 molar ratio and were extruded

consecutively through filters of 400, 200 and 100 nm pore

size. Samples representative of the corresponding size

ranges taken after each extrusion step were analyzed by

chip electrophoresis (Fig. 1). When measuring at the apex of

the peaks, the largest vesicles (400 nm size) exhibited a

clearly longer migration time when compared with the

smaller ones (200 and 100 nm) that were barely distinguish-

able. Note that longer migration times correspond to higher

electrophoretic mobility, as the anionic particles are swept

by the EOF toward the cathodic end of the channel. The

liposomes with smaller diameter were apparently more

homogenous, as they gave narrower peaks. Signal fluctua-

tions within the sample zones of the larger-sized liposomes

most likely result from many slightly different species. Atto

637 was not completely removed by spin SEC; however, it

did not interfere as it was sufficiently resolved from the
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liposome peaks. The reproducibility of the migration times,

expressed by the standard deviation of the mean as

determined on three different days by using five different

chips (two samples per chip, ten samples in total) was 2.1%.

3.2 Virus–receptor–liposome complex

For the following binding experiments liposomes extruded

through 200 nm pore size filters were used. To allow for

decoration with his6-tagged receptors, liposomes were made

to contain about 5% DOGS-NTA. In the present work we

used MBP-V3333, a receptor fragment consisting of four

repeats of module 3 of human VLDLR arranged in tandem

and expressed with MBP at its N-terminus and a his6-tag at

its C-terminus. Figure 2A shows the electropherogram of

Atto 637-filled liposomes (l), Fig. 2B that of liposomes

decorated with MBP-V3333 receptor (l1r). Binding of the

receptor via its his6-tag to the DOGS-NTA in the membrane

does not significantly change the migration behavior of the

liposomes. However, a significantly different electrophero-

gram was obtained after incubation with virus (Fig. 2C).

Assuming a final lipid concentration of 190 mM with 4.8 mM

of DOGS-NTA being accessible at the outer leaflet, the molar

excess of the DOGS-NTA groups over receptor was 1.3-fold

(see Section 2). However, even when the DOGS-NTA-groups

in the membrane are in excess over the his6-tags, receptor

binding is not expected to be quantitative because the

dissociation constant is in the 10�6 M range [19], which is

within the same order as the analyte concentrations. There-

fore, a peak attributed to virus bound to soluble receptor

fragments, indicated as virus–receptor complex (v– r) was

recorded as well (Fig. 2C). It has a slightly longer migration

time than the peak ascribed to a contaminant, c, present in all

virus preparations and also becoming labeled with amino-

reactive dyes [20]. The liposome peak is shifted to a shorter

migration time with concomitant zone broadening. This peak

corresponds to the DOGS-NTA-doped liposomes, decorated

with receptor and carrying receptor-attached virus (v–r–l).

There is an increase in noise, which probably reflects

heterogeneous species, either liposomes carrying various

numbers of virions or liposomes aggregated via bridging,

mediated by single or multiple virions.

To explicitly demonstrate the attachment of labeled HRV2

to our receptor-decorated model membrane, we repeated our

experiments with unlabeled liposomes. This approach allowed

us to follow exclusively the signal of labeled HRV2. Figure 3A

depicts an electropherogram of labeled HRV2 that comigrates

with the contaminant c (v1c). Incubation of the virus with

MBP-V3333 yields a peak with increased migration time

corresponding to (v–r), see Fig. 3B. After incubation of v–r

with unlabeled liposomes (Fig. 3C), a third peak, identical to

(v–r–l) in Fig. 2 was seen together with excess of v–r. Not only

the position but also the apparent noisiness of the peaks was

identical upon application of stained and unstained liposomes

(compare Figs. 2C and 3C). However, for unstained lipo-

somes the employed total lipid concentration for complex

formation was about 3.6 times higher than in experiments

with FL-labeled vesicles. Therefore, the ratio between DOGS-

NTA-groups and his6-tagged receptors was about 5.4 as

compared with the ratio of 1.3 in the experiment shown in

Fig. 2. As a consequence, less free v–r were recorded. This

suggests that v–r complexes do not dissociate significantly

from the liposomes during electrophoresis.

3.3 Is HRV–liposome binding specific?

In order to exclude direct interaction between virus and

liposomes in the absence of receptor, virus and DOGS-NTA-

doped liposomes were incubated. Figure 4 shows that virus

(and the contaminant, v1c) and liposomes (l) migrate
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Figure 1. Chip electrophoresis of liposomes, l, from the same
preparation but serially extruded through filters with 400, 200
and 100 nm pore size. The liposomes were FL labeled by
inclusion of an aqueous solution of Atto 637 into the vesicle
core. Total lipid concentration approximately 190 mM. BGE,
100 mM boric acid adjusted to pH 8.3 with 3 M NaOH. Sample
buffer was BGE diluted to 80 mM boric acid concentration.
Separations were carried out at 800 V (approx. 19 kV/m). FL
signal recorded at lex/lem 630/680 nm (arbitrary units).
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Figure 2. Chip electrophoresis of FL liposomes, l, upon incuba-
tion with receptor, r, and Cy5-labeled HRV2, v. (A) Atto 637-
labeled liposomes, (B) Liposomes as in (A) after decoration with
receptor; (C) Electropherogram obtained after incubation of the
receptor-decorated liposomes with HRV2 resulting in binding of
virus (v–r–l complex). Sample buffer, BGE, separation conditions
and FL detection as with Fig. 1; c, contaminant of the virus
preparation.
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identically regardless of whether analyzed separately (A and

B) or as a mixture (C). Taken together, these results prove

that specific interaction between receptor-decorated lipo-

somes and virus can be monitored by chip electrophoresis in

very short times.

4 Concluding remarks

Chip electrophoresis was employed to study the early steps in

viral infection by using a liposome-based system. Liposomes

as model membranes and a rhinovirus were detected on-chip

upon FL labeling. The electrophoretic separation was carried

out in a buffer solution without detergent; this is a clear

advantage over CE where such additives are mandatory for

reproducible analysis of virus. However, detergents disrupt

liposomes. Only the conditions of chip electrophoresis

allowed for the preservation of the components and the

analysis of both components and their interaction products.

Liposomes were functionalized via incorporation of DOGS-

NTA, allowing for decoration with soluble his6-tagged

recombinant receptor fragments. Receptor-carrying lipo-

somes, in turn, were able to specifically bind HRV2. The

individual analytes and liposome-bound virus appear as

baseline-resolved peaks in the electropherograms; the latter is

clearly distinguished from the peaks of their constituents.

This analytic system constitutes a starting point for the

investigation of the early infection steps of non-enveloped

viruses, which are still not fully understood. These include

interactions of the viral capsid with a receptor anchored in a

lipid membrane followed by the transfer of the viral genome

into the cytosol. Indeed, we are currently investigating RNA

release into receptor-decorated liposomes on acidification of

within late endosomes. Furthermore, we are in the process of

comparing the receptor-binding parameters of the mono-

nitrilo-triacetate lipid used in this report with a Tris-nitrilo-

triacetate lipid in order to limit dissociation of the receptor from

the liposome membrane. These findings will be the subjects of

forthcoming publications. Collectively, using a HRV as a model

system, our experiments set the stage to make the first step in

this process accessible to rapid analysis by chip electrophoresis.
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9.2 Zusammenfassung der Dissertation (deutsch / englisch) 
- Abstract (deutsch) - 

Der virale Genomtransfer im Infektionszyklus von nicht-umhüllten Viren ist bisher nur 

ansatzweise erforscht. Diese Arbeit soll zum besseren Verständnis des Transfermechanismus 

beitragen und bedient sich des humanen Rhinoviruses (HRV) als Repräsentant dieser Viren. Diese 

enthalten ein 7 kb RNA-Genom, verkapselt in einer ikosaedrischen Proteinhülle – dem Kapsid. Um die 

Wirtszelle zu infizieren, muss das Genom durch die endosomale Membran in das Zytoplasma 

befördert werden. Die essentiellen viralen und zellulären Elemente für den Transfer sollen mit dieser 

Arbeit - in einem in-vitro Ansatz - detektiert werden. 

Anstelle von lebenden Zellen mit nativen Rezeptoren fanden Liposome als Modellzelle 

Einsatz. Die Liposome wurden mit rekombinanten Rezeptorfragmenten bestückt, die dem „very low-

density lipoprotein“ Rezeptor entstammten. Über ihr C-terminales His6-Tag konnten sie an ein 

Nickel-komplexierendes Lipid der Liposomoberfläche gebunden werden. Nach der spezifischen 

Bindung von HRV Serotyp 2 (HRV2) an diese Rezeptoren der Liposomoberfläche war der 

resultierende Komplex für eine potentielle Infektion präpariert; er wurde daher „Lipofektosom“ 

genannt. Die Eignung dieses Modells konnte mittels Kapillarelektrophorese (CE) und Transmissions-

Elektronenmikroskopie (TEM) bestätigt werden. Der Nachweis des Genomtransfers erfolgte mit 

einem revers-transkribierenden (RT) PCR System. 

Die Parameter für die korrekte Assemblierung des Lipofektosoms wurden mittels CE mit 

laser-induzierter Fluoreszenz-Detektion und TEM-Visualisierung optimiert. Letztere Technik 

ermöglichte Screening von Proben im schwach sauren Medium zur Feststellung der Bedingungen für 

den vollständigen RNA-Transfer. 

Um das Eindringen des RNA-Genoms in das Innere des liposomalen Kompartiments zu 

bestimmen, wurde ein Protokoll zur RT hinsichtlich seiner Anwendung im Lipofektosom adaptiert. 

Dadurch konnte anhand eines Lipofektosoms gezeigt werden, dass mit dem Auslösen der Infektion 

die virale RNA vom Kapsid in das Liposom migrierte; dort konnte sie tatsächlich via RT und PCR 

detektiert werden. Die Dichtheit des liposomalen Kompartiments stellte eine Grundvoraussetzung 

für das Funktionieren des verkapselten RT-Kits dar; man kann es somit als Nano-Reaktionscontainer 

betrachten. 

Zusammenfassend wurde gezeigt, dass die hier entwickelte in-vitro Methode geeignet ist, 

den RNA-Transfer nicht-umhüllter Viren zu detektieren. Diese Arbeit demonstrierte am Beispiel des 

Genomtransfers von HRV2, dass komplexe Infektionsprozesse in diskrete und simple Einzelprozesse 

aufgelöst werden können. 

 

  



68 
 

- Abstract (English) - 

 

Viral genome transfer through cellular membranes is a crucial process in the course of early 

infection events of non-enveloped viruses. It is the aim of this work to contribute to a better 

understanding of this mechanism taking human Rhinoviruses as typical representative of this virus 

type. They contain an RNA genome of about 7 kb in an icosahedral protein capsid, which needs to be 

transferred through the endosomal membrane to infect the host cell. This work aimed at detecting 

in-vitro the essential viral and cellular elements for proper genome transfer. 

Instead of using natural cells with native receptors, the liposome-based model used a nickel 

chelating lipid for attaching His6-tagged receptor constructs, derived from the very low-density 

lipoprotein receptor (VLDLR). Upon specific binding of HRV2, the assembly was primed for infection, 

and thus called “lipofectosome”. The suitability of this model was confirmed by capillary 

electrophoresis (CE) and transmission electron microscopy (TEM). Finally, proper genome transfer 

could be demonstrated by a reverse transcription (RT) PCR assay. 

Parameters for assembly were optimized by CE with laser-induced fluorescence (LIF) 

detection and TEM imaging. The latter technique enabled screening of samples kept in moderately 

acidic environment to identify conditions for entire RNA release. 

To confirm the ingress of released RNA into the liposomal compartment, an RT protocol was 

adapted to allow for its application within lipofectosomes. It was shown that upon triggering 

infection, lipofectosomes transferred the RNA from within the virion into the interior of the vesicle; 

their viral RNA was detected via RT and PCR. Since liposomes served here as leak-tight compartment 

to carry out RT, they can be considered as nano-reaction containers. 

In conclusion, a system to monitor in-vitro the RNA transfer of non-enveloped viruses was 

invented. This work shows that even complex infection pathways can be resolved to discrete and 

plain processes, such as the genome transfer. 
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