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1. SUMMARY 

 
Mycoplasma gallisepticum (MG) is an important avian pathogen that causes respiratory 
diseases in chickens and turkeys imposing severe commercial losses on the poultry industry 
worldwide. Cytadherence of MG which is the prerequisite for a successful infection is 
mediated by a terminal tip structure composed of several proteins with GapA being 
recognized as the major cytadherence protein which shares homology with the major 
adhesion of the human pathogen M. pneumoniae, P1. Interestingly, the well-described MG 
prototype strain Rlow and its highly passaged derivative Rhigh differ not only in virulence but 
also in the expression of GapA. While the virulent strain Rlow expresses GapA and is 
pathogenic for chickens, the attenuated strain Rhigh lacks GapA. 
 In order to elucidate the role GapA in cytadherence, the ability of MG to bind erythrocytes in 
vitro (hemadsorption [HA]) was examined. Virulent strain Rlow displayed HA(+), HA(-) and 
mixed phenotypes (sectored colonies), and Rhigh was found to express exclusively the HA(-) 
phenotype. The absence of GapA in Rlow –derived HA(-) clones resulted from mutation in the 
gapA gene, which differed from the mutation previously described for Rhigh and was found to 
switch with a high frequency. Importantly, the ability of hemadsorbtion correlated with the 
presence of GapA and CrmA, which was shown by generation of the crmA-negative mutant 
mHAD3 using transposon mutagenesis. The disruption of the crmA gene resulted in a 
decreased expression of GapA. Further analysis using RT-PCR revealed that both genes, 
gapA and crmA, are present on a single polycistronic RNA. 
In order to investigate the role of the cytadherence-related proteins GapA and CrmA in cell 
invasion and host colonization, strains Rlow, Rhigh and several clones displaying the HA(-) 
phenotype were subjected to the double immunofluorescence assay and the gentamicin 
invasion assay. It was demonstrated that GapA and CrmA are not required for cell invasion 
in vitro, although they are necessary for translocation through a polarized cell monolayer, as 
clones lacking GapA and CrmA, though able to invade non-phagocytic cells, were unable to 
translocate. To simulate the situation in the host, chickens were infected by aerosol, and 
after necropsy they were scored for the severity of air sac lesions, as well as for the re-
isolation of MG from different inner organs. Although the re-isolation from the respiratory tract 
was not significantly different, only clones displaying the GapA/CrmA-positive phenotype 
were capable of successful infection in vivo. 
For further elucidation of the role of the two cytadhesins, GapA and CrmA, in MG virulence 
and host colonization, chickens were infected by aerosol with the HA(-) mutants RCL2 
(nonsense mutation in gapA) and mHAD3 (crmA disrupted by a transposon) and after 
necropsy scored for the severity of air sac lesions, as well as for the re-isolation of MG from 
different inner organs. Data indicated that the mutant mHAD3 had lost its virulence properties 
similarly to strain Rhigh. Surprisingly, however, the mutant RCL2 displayed a higher virulence 
than Rhigh, although a lower one than Rlow. Furthermore, a correlation between the frequency 
of re-isolation from air sacks and inner organs was observed. The more often MG was re-
isolated from the air sacks, as higher was the frequency of re-isolation for inner organs.  
To reveal the function of various cytadherence-related genes of MG clustered in the “mgc-
locus”, a project was started to develop a targeted gene disruption. Suicide vectors carrying 
the subcloned target gene disrupted by the tetracycline resistance gene, tetM, were created 
and used for transformation of MG. Unfortunately, no transformants were obtained by 
following this direct approach. When a fragment of MG’s origin of replication (oriC´) was 
added to the vector for disruption of gapA, such a modified vector gave rise to several 
transformants. Analyses of the clones revealed that indeed a homologous recombination 
event took place, however, not in the gapA locus but in the oriC region of the MG genome. 
Although not leading to the desired knock-out mutants, this vector allows the future 
development of specifically integrating expression vectors.  
To define the role of each gene product of an “extended” mgc operon in the complex 
cytadherence process of MG and their localization within the cell, the development of specific 
antibodies was initiated. The selected genes, namely mgc2, crmB and crmC, were subjected 
to a site-directed mutagenesis and cloned into E. coli expression vectors. Purified fusion 
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proteins were used for the immunization of rabbits. The hyperimmune sera showed reactivity 
with MG proteins of the approximately expected sizes. With the exception of the Mgc2-
specific antiserum that detected only a single band in all the clones tested, additional 
proteins were detected by CrmB- and CrmC-specific antisera. The characteristics of the 
proteins detected remains to be elucidated by other techniques, such as MALDI-TOF 
analysis or 2D-gel electrophoresis.  
 
 
 
 
2. ZUSAMMENFASSUNG 
 
Mycoplasma gallisepticum ist ein aviärer Krankheitserreger, der bei Vögeln respiratorische 
Erkrankungen oft chronischer Natur verursacht, und auch zu systemischen Infektionen 
führen kann. Eine entscheidende Rolle für den Infektionsverlauf spielt hierbei das 
Zytoadhärenzprotein GapA, welches dem Zytoadhärenzprotein P1 des humanen 
Krankheitserregers M. pneumoniae strukturell und funktionell sehr ähnlich ist. 
Interessanterweise unterscheiden sich die beiden M. gallisepticum Laborstämme Rlow und 
Rhigh nicht nur in ihrer Virulenz, sondern auch in Bezug auf ihre GapA-Expression. Während 
der virulente Stamm Rlow GapA exprimiert und für Hühner pathogen ist, exprimiert der 
vielfach passagierte Laborstamm Rhigh kein GapA und ist auch nicht mehr virulent. 
Um die Bedeutung von GapA für die Virulenz zu untersuchen, wurde die Fähigkeit von 
M. gallisepticum getestet, Erythrozyten in vitro zu binden (Hämadsorption [HA]). Der virulente 
Stamm Rlow zeigte hierbei einen HA(+)-, HA(-)- bzw. einen gemischten Phänotyp. Im 
Gegensatz dazu zeigte der Stamm Rhigh ausschließlich einen HA(-)-Phänotyp. Die 
Abwesenheit von GapA in HA(-) Rlow, oder auch in HA(-)-Derivaten wird durch eine Mutation 
im Gen gapA verursacht, welche sich von einer zuvor beschriebenen anderen Mutation im 
Gen gapA von Rhigh unterscheidet und mit einer hohen Frequenz auftritt. Im Wesentlichen 
korrelierte die Fähigkeit, Erythrozyten zu binden mit der Anwesenheit von GapA und CrmA. 
Dies wurde durch die Erzeugung der CrmA-negativen Mutante mHAD3 mittels Transposon-
Mutagenese nachgewiesen. Das Zerstören des crmA-Gens führte hierbei zu einer 
reduzierten GapA-Expression. Durch weitere Analysen mittels RT-PCR konnte gezeigt 
werden, dass die beiden Gene gapA und crmA auf einer polycistronischen mRNA liegen.  
Um die Rolle von GapA und CrmA währen der Zellinvasion und der Wirtskolonisierung zu 
untersuchen, wurden die Stämme Rlow, Rhigh und Derivate mit einem HA(-)-Phänotyp einem 
Gentamicin-Invasionsversuch unterzogen, sowie mittels Doppelter 
Immunfluoreszenzmikroskopie untersucht.  
In in vitro Experimenten wurde bereits nachgewiesen, dass weder GapA noch CrmA für eine 
Zellinvasion benötig werden. Dennoch sind diese Proteine für eine Translokation durch eine 
polarisierte Zell-Einzelschicht (Zell-Monolayer) von Bedeutung. Klone, welche weder GapA 
noch CrmA exprimieren und daher in nicht-phagozytotische Zellen eindringen können, sind 
nicht in der Lage, eine polarisierte Zell-Einzelschicht zu durchdringen. In einem in vivo 
Experiment wurden Hühner mittels Aerosolen, bestehend aus Rlow, Rhigh und gemischten 
bakteriellen Kulturen, infiziert. Die infizierten Tiere wurden dann hinsichtlich des 
Schweregrades von Luftsackläsionen und der Anwesenheit von M. gallisepticum in 
verschiedenen inneren Organen untersucht. Unabhängig der, für die Infektion eingesetzten, 
bakteriellen Stämme konnte M. gallisepticum aus den Atemwegen der infizierten Tieren re-
isoliert werden. Viel wichtiger ist jedoch die Tatsache, dass nur Klone mit einem 
GapA/CrmA-positiven Phänotyp in der Lage waren, unterschiedliche innere Organe zu 
besiedeln.  
Um die Rolle der beiden Zytoadhäsine GapA und CrmA in Bezug auf die Virulenz und 
Wirtskolonisierung von M. gallisepticum weiter zu untersuchen, wurden Hühner mit den 
HA(-)-Mutanten RCL2 (gapA mit einem vorzeitigen Stoppcodon) sowie mHAD3 (crmA 
zerstört durch ein Transposon) infiziert und wie bereits beschrieben untersucht. Die Daten 
zeigten, dass die Mutante mHAD3 ihre Virulenz, ähnlich wie der Stamm Rhigh, verloren hat. 
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Die Mutante RCL2 zeigte überraschenderweise eine höhere Virulenz als Rhigh, aber dennoch 
eine geringere Virulenz als Rlow. Zusätzlich wurde eine Korrelation zwischen der Häufigkeit 
der Reisolierung aus den Luftsäcken und den inneren Organen festgestellt. Je öfters 
M. gallisepticum aus Luftsäcken isoliert werden konnte, desto höher war auch die Frequenz 
der Reisolierung aus den inneren Organen. 
Die Funktion einiger Zytoadhärenz-verwandten Gene von M. gallisepticum, welche im „mgc 
Lokus“ als Cluster vorliegen, wurde mittels gezielter Gendisruption untersucht. Hierzu 
wurden Suizidvektoren, welche Teile der zu disruptierenden Ziel-Gene trugen, erstellt, und in 
die Ziel-Genfragmente wurde eine Tetracyclinresistenzkassette (tetPO/tetM) inseriert. 
Unglücklicherweise konnten nach Transformation von M. gallisepticum mit diesen 
Suizidvektoren keine Transformanten erhalten werden. Durch das zusätzliche Hinzufügen 
eines Fragments des Replikationsursprungs (oriC) von M. gallisepticum war dies aber 
schlussendlich möglich. Eine Analyse der Transformanten zeigte, dass die Integration der 
Tetracyclinresistenz via homologe Rekombination nicht im gewünschten Zielgen gapA, 
sondern in der oriC-Region des M. gallisepticum -Genoms stattgefunden hat. Obwohl keine 
gewünschten “knock-out“-Mutanten hergestellt werden konnten, erlaubt dieser Vektor in der 
Zukunft die Entwicklung von spezifisch integrierenden Expressions-Vektoren. 
Um die Funktion der Genprodukte eines „erweiterten“ mgc-Operons im komplexen Prozess 
der Zytoadhärenz von M. gallisepticum, sowie deren Lokalisation in der Bakterienzelle zu 
untersuchen, wurden spezifische Antikörper entwickelt. Die ausgewählten Gene mgc2, crmB 
und crmC wurden in E. coli-Expressionsvektoren kloniert und ortsspezifisch mutiert, um dem 
andersartigen Codon usage von Mycoplasmen Rechnung zu tragen. Fusionsproteine wurden 
hergestellt, gereinigt, und für die Immunisierung von Kaninchen verwendet. Die gewonnenen 
Sera zeigten Reaktivität mit M. gallisepticum Proteinen der erwarteten Größen. Im 
Gegensatz zum Mgc2-spezifischen Antiserum, welches nur eine einzelne Proteinbande 
detektierte, wurden mit den CrmB- und CrmC-spezifischen Antiseren zusätzliche Proteine 
detektiert. Die Art dieser Proteine, und damit die Spezifität der Seren, muss nun mit andern 
Techniken, wie zum Beispiel der MALDI-TOF-Analyse oder einer 2D-Gelelektrophorese 
bestimmt werden. 
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3. INTRODUCTION 

 

3.1. Mycoplasmas  

Mycoplasmas are the smallest prokaryotes known capable of self-replication. They are 

distinguished from other bacteria by the absence of a cell wall. Taxonomically, the lack of the 

cell wall is used to separate the class Mollicutes, which comprises of mycoplasmas and other 

small procaryotic organisms bounded by a single trilaminar cell membrane (spiroplasmas, 

acholeplasmas, ureaplasmas and others). Mollicutes are wide-spread in nature occurring as 

saprophytes or obligate parasites of humans, mammals, reptiles, fish, arthropods, and plants 

(Razin, 1992). Many of them are pathogenic and play a proven primary role in certain 

infectious diseases. The number of established mollicute species is continuously increasing 

and it is widely agreed that the species defined to date are only a minor part of all mollicutes 

living in nature. Helpful tools for species and strains identification are, besides serology, 

molecular-biological techniques such as ribotyping, comparison of other conserved gene 

sequences, and restriction fragment length polymorphism (RFLP). Genetic evidence 

indicates that mycoplasmas arose by degenerative evolution from Gram-positive eubacteria 

with DNA of a low GC content. Ribosomal transfer – RNA analysis suggests a relationship to 

bacteria of the genus Clostridium. The mycoplasma genome consists of a circular dsDNA 

molecule with a size ranging between 600 kb to over 2.200 kb. The genome sizes are 

variable not only within the same genus but even among strains of the same species (Carle 

et al., 1995; Huang, Robertson, and Stemke, 1995; Robertson et al., 1990). This is due to the 

frequent occurrence of repetitive elements, which are often subject of chromosomal 

rearrangements (see below) (Dybvig and Voelker, 1996). Hence, mycoplasmas are 

organisms with the smallest genome size among all known self-replicating organisms. 

Despite of the marked reduction of mycoplasma genomes, the gene density remained the 

same. Interestingly, some promoter regions were detected within the C-terminal coding 

sequence of the upstream gene. But such overlaps appear to be few and short and hence do 
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not appear to have a significant effect on genome thickness in mollicutes (Bork et al., 1995; 

Peterson et al., 1995). 

The fast development in genome-sequencing methodology has brought new light into the 

mycoplasmatology. The first mycoplasmas, whose genome was completely sequenced, were 

the closely related human pathogens Mycoplasma genitalium (Fraser et al., 1995) and 

Mycoplasma pneumoniae (Himmelreich et al., 1996). The comparison of M. genitalium and 

M. pneumoniae sequences to that of Haemophilus influenzae (Fleischmann et al., 1995) 

suggested the set of genes, which are essential for a minimal cell (Mushegian and Koonin, 

1996). Most striking are the results concerning genes of biosynthetic pathways. M. genitalium 

and M. pneumoniae have lost all the genes involved in amino acid biosynthesis during their 

evolution, and thus require the full spectrum of essential amino acids from the host or from 

the artificial culture medium. Significant savings in genetic information resulted also from the 

loss of genes involved in cell wall biosynthesis. Furthermore, mycoplasma energy and 

protein metabolism has undergone reductions as well. Mycoplasmas lack many systems 

such as tricarboxylic acid cycle, quinones and cytochromes, the electron transport system is 

reduced, and ATP is produced by substrate-level phosphorylation (Razin, Yogev, and Naot, 

1998). Most mycoplasmas have also an unique requirement for cholesterol and lipids for 

membrane synthesis. They also lack the enzymatic pathways for the synthesis of purines 

and pyrimidines. As a result of these reductions, mycoplasmas require complex culture 

media such as for example beef-heart infusion, broth supplemented with horse serum, yeast 

extract and nucleic acids for cultivation. When grown on solid media, mycoplasmas slowly 

form a dome-shaped colony on the surface of agar. The central part of the colony grows 

down into the agar, producing a denser central core. When viewed from above the colony 

resembles a fried egg in appearance. The colonies are very small and therefore require 

dissecting microscopes for their visualisation. The growth speed is slower in comparison to 

other prokaryotes. A doubling time of one to six hours means that up to three weeks may be 

necessary before colony formation becomes visible.  
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On the contrary to all genome reductions, some repetitive elements were found in the 

mycoplasma genome. These segments of genetic information enable homologous 

recombination and genomic rearrangements that may play a role in the antigenic variation of 

the mycoplasmal cell surface and this subsequently helps the parasite to evade the host 

immune response. Repetitive elements consisting of short segments of the cytadhesin 

operon are distributed over the whole genome of M. genitalium and M. pneumoniae (Su, 

Chavoya, and Baseman, 1988). Other examples are the vlhA genes in M. gallisepticum 

(MG), encoding for immunogenic haemagglutinins, which occupy about 16% of the MG 

genome (Baseggio et al., 1996; Glew et al., 1995; Markham et al., 1994). Recombination 

between the vlhA genes generates changes in antigenic determinants and hence helps to 

evade the host immune response.  

The obligatory parasitic lifestyle requires special associated properties – mycoplasma cells 

possess surface components enabling their attachment to the host cells. Intimate contact of 

the mycoplasmas with their host is required to furnish nutrients and specific growth factors, 

especially nucleic acid precursors, which mycoplasmas are unable to synthetize. In some 

cases, including M. genitalium and M. pneumoniae and MG, the mycoplasmas developed 

special attachment organelles (AO), best studied in M. pneumoniae (Hahn, Willby, and 

Krause, 1998; Krause, 1998; Krause and Balish, 2001; Seto et al., 2001; Willby et al., 2004). 

The AO is a terminal structure, a tapered membrane protrusion involved in several processes 

essential to the cell in vivo (Balish, 2002; Krause and Balish, 2001). Mediation of attachment 

to host cell (cytadherence) is the best-characterized function (Krause, 1998). The AO 

renders mycoplasma cells asymmetric and functions as a leading end for gliding motility of 

M. pneumoniae (Henderson and Jensen, 2006). This organelle also may have a role in 

initiating cell division (Miyata and Seto, 1999; Seto et al., 2001). The AO and the polar 

filamentous cell shape of M. pneumoniae are thought to be stabilized by intracellular 

cytoskeleton-like structures, which have been observed in electron micrographs of M. 

pneumoniae (Shimizu and Miyata, 2002). The most remarkable architectural feature of the 

cytoskeleton-like structures is the electron-dense core, a rod-like structure that exists at the 
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center of the AO. The rod-like structure has a knob at the distal end (terminal button) (Balish, 

2005).  

Lacking a cell wall and intracytoplasmic membranes, the mollicutes have only one type of 

membrane, the plasma membrane. Proteins constitute over two-thirds of the mycoplasma 

membrane mass, with the rest being membrane lipids. Furthermore, membrane lipoproteins 

are among the most dominant antigens in mollicutes, and a majority of the mycoplasma cell 

surface antigens known to undergo antigenic and/or size variation are lipoproteins. In M. 

hyorhinis, elongated surface lipoproteins also may protect mycoplasma cells from growth-

inhibiting antibodies (Citti, Kim, and Wise, 1997). The unusually large number of lipoproteins 

in mollicutes may be attributed to the absence of a periplasmic space in the wall-less 

mollicutes. Mollicutes possess typical eubacterial signal peptides that direct the newly 

synthesized proteins into a secretory pathway for transport across the cell membrane (Yogev 

et al., 1991b). 

 

3.2. Mycoplasma pathogenicity  

Mycoplasmas usually exhibit a rather strict host and tissue specificity, probably reflecting 

their exact nutitional requirement and obligate parasitic mode of life. M. pneumoniae is found 

preferentially in the respiratory tract and M. genitalium is found primarily in the urogenital 

tract, although exceptions are possible (Goulet et al., 1995).  

The primary habitats of human and animal mycoplasmas are the mucous surfaces of the 

respiratory and urogenital tracts, the eyes, alimentary canal, mammary glands, and joints. 

The obligatory anaerobic anaeroplasmas have so far been found in the bovine and ovine 

rumen only (Razin, Yogev, and Naot, 1998). Infections with pathogenic mycoplasmas usually 

follow a chronic course with low mortality.  

Adhesion of mollicutes to host cells is a prerequisite for colonization and for infection (Razin 

and Jacobs, 1992). The loss of adhesion capacity by mutation results in a loss of infectivity, 

and reversion to the cytadhering phenotype is accompanied by regaining infectivity and 

virulence (Krause, Leith, and Baseman, 1983; Romero-Arroyo et al., 1999). The critical role 
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of cytadherence in virulence is reflected by the inability of noncytadhering mycoplasma 

strains to cause disease in experimentally infected animals (Much et al., 2002; Papazisi et 

al., 2002). The cytadherence process appears to be multifactorial involving a number of 

accessory membrane proteins (Baseman et al., 1982). These accessory proteins act in 

concert with cytoskeletal elements to facilitate the lateral movement and concentration of the 

adhesin molecules at the attachment tip organelle. The best studied example is the cascade 

of accessory proteins properly localizing the main cytadhesin P1 of M. pneumoniae (Krause 

and Balish, 2001).  

To meet the challenges imposed by host defence mechanisms and changing environments, 

microorganism populations possess mechanisms and strategies allowing them to sense 

environmental changes and to rapidly respond and adapt to the new surroundings. Such 

mechanisms may include mimicry of host antigens, survival within professional phagocytes, 

and generation of phenotypic plasticity.  The latter has been defined as the ability of a single 

genotype to produce more than one alternative form of morphology, physiological state, 

and/or behaviour in response to environmental conditions. One of the most common 

examples for phenotypic plasticity is antigenic variation. The term “antigenic variation” or 

“phenotypic switching” refers to the ability of a microbial species to alter the antigenic 

character of its surface components including flagella, pili, outer membrane proteins, and 

capsules (Barbour and Restrepo, 2000; Finlay and Falkow, 1997; Henderson, Owen, and 

Nataro, 1999). The above mentioned cell components are the major targets of host antibody 

response; therefore, the ability of a microorganism to rapidly change the immunogenicity of 

these structures and consequently to vary the surface antigenic repertoire allows to 

effectively avoid recognition of the immune system. One of the mechanisms for surface 

antigenic variation is based on the ability of a microbial population to spontaneously and 

randomly generate distinct cell populations with different antigenic phenotypes. The 

frequency of occurrence of such antigenic variants is strikingly high (10-4 to 10-2) per cell per 

generation (Citti, 2005; Wise, 1993; Yogev et al., 1991a) compared to 10-6 to 10-8 for other 

normally occurring mutations. The molecular switching events leading to the generation of 
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these heterotypes are reversible, and the escape variants produced through random genetic 

variation must inherit the ability to produce, at high frequency, a wide range of antigenic 

phenotypes. It may also provide the pathogen, during the course of infection, the flexibility 

within the host to reach and adapt to different niches where distinctive receptors may be 

required for colonization. 

The discovery made by comparative genomics that the minute mycoplasmas possess an 

impressive capability of maintaining a surface architecture that is antigenically and 

functionally versatile has placed the mycoplasmas in the “elite” group of bacterial pathogens 

and parasites distinguished by remarkable antigenic variability (Robertson and Meyer, 1992). 

The extreme variability of mycoplasma cell surface composition among clonal populations 

(Citti, 2005; Citti and Rosengarten, 1997; Dybvig and Voelker, 1996; Razin, Yogev, and 

Naot, 1998; Rosengarten et al., 2000; Wise, 1993) is based on two types of variation, both of 

which occur spontaneously at a high frequency: (i) phase-variation, known as ON and OFF 

switching, where a certain component undergoes variation in expression, (ii) size variation, 

which affects the structure of these components, in most cases by altering the length of their 

carboxyl-terminal region and (iii) epitope masking/demasking. A given cell component may 

be subject to either of these types of variation, or to both in an independent manner. The 

variable cell surface components that have been described to date in mycoplasmas are 

proteins and are products of either gene families or single genes (Citti, 2005). 

A well-established test for determining whether a particular surface antigen undergoes high-

frequency phenotypic switching is the colony immunoblot technique. Immunostaining with 

monoclonal or polyclonal antibodies allows the identification of colonies exhibiting variation in 

the expression of surface proteins (Rosengarten and Wise, 1990). One of the most 

conspicious ways this heterogeneity takes shape in in vitro studies is by colony sectoring 

(Athamna et al., 1997; Rosengarten and Wise, 1990). A sector is defined as an 

immunologically distinct region within a single colony in which a change in protein expression 

has occurred. 
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3.3. Mycoplasma gallisepticum 

MG is an avian pathogen belonging to the phylogenetic cluster of M. pneumoniae. It causes 

chronic respiratory disease (CRD) in chickens (Jordan, 1979; Stipkovits and Kempf, 1996) 

and infectious sinusitis in turkeys (Davidson et al., 1982), and is therefore imposing a major 

problem for the poultry industry worldwide. Infection with this bacterium is spread by aerosol 

exposure or via egg transmission. Outbreaks spread rapidly through flocks, establish chronic 

infections, and are difficult to control with antimicrobial therapy. The disease causes 

substantial economic losses from decreased egg production and hatchability and 

condemnation of the infected flocks. Like many other members of the mycoplasma group, 

this avian pathogen colonizes its host via the mucosal surfaces of the respiratory tract and 

must adhere to the epithelial cells to withstand clearance by the host. This intimate contact is 

mediated by a unipolar terminal organelle that is similar to the tip structure of the two human 

pathogens, M. genitalium and M. pneumoniae. The chronic nature of the mycoplasma 

infection demonstrates a failure of the host immune system to deal effectively with these 

organisms. Antigenic variation of surface proteins allows MG to evade the host’s immune 

response through the generation of escape variants (Glew et al., 2000; Gorton, Goh, and 

Geary, 1995; Levisohn, Rosengarten, and Yogev, 1995). Intracellular invasion and survival 

within eucaryotic cells by MG may contribute to this organism’s resistance to the host’s 

immune response and antimicrobial therapy (Vogl et al., 2008; Winner, Rosengarten, and 

Citti, 2000). 

MG colonizes the respiratory system of chickens but has also been isolated from the inner 

organs, brain and eyes of several avian species (Fischer et al., 1997; Much et al., 2002). 

These finding would suggest that MG has the capability to translocate across the respiratory 

mucosal barrier and disseminate throughout the body. The virulence factors that promote 

MG infection and induce disease are not well understood and are most likely influenced by 

the host and environment. Early studies revealed that MG strains differ markedly in their 

pathogenicity for chickens (Levisohn, 1985), and that in vitro passages in culture medium of 

a particular MG strain affect its virulence (Levisohn, 1985). More specifically, the evaluation 
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of the pathogenic effects of MG on the respiratory tract by infection of chickens revealed that 

a low (Rlow) as well as a high laboratory passage (Rhigh) of the MG prototype strain R (Lin and 

Kleven, 1984) both colonize the trachea, while only Rlow induces air sac lesions. Recently, it 

was also shown that these two passages also differ in their ability to invade non-phagocytic 

eucaryotic cells in vitro: while Rlow was capable to enter and survive within the host cell, the 

ability to establish intracellular residence of Rhigh was decreased (Winner, Rosengarten, and 

Citti, 2000). Experimental aerosol infection of chickens demonstrated the attenuated 

virulence of Rhigh, which was isolated from the upper respiratory tract only and was unable to 

induce air sacculitis and systemic infection. On the contrary, the low passage Rlow was 

colonizing the whole respiratory tract, inducing air sac lesions and spreading throughout the 

body by crossing the mucosal barrier and entering the bloodstream. Re-isolations revealed 

the presence of Rlow in inner organs – i. e. spleen, heart, kidney and brain (Much et al., 

2002). 

The molecular basis of the diminished cytadherence and attenuated virulence of Rhigh was 

elucidated by a study (Papazisi et al., 2000), which showed the lack of at least two proteins, 

GapA and CrmA. The cytadhesin gene gapA (Goh et al., 1998), also referred to as mgc1 

(Keeler et al., 1996), is not expressed in Rhigh due to a insertion of single adenine in the 

beginning of the gapA gene thereby causing a frameshift mutation. As a consequence, a 

stop codon is created soon after resulting in premature termination of translation (Papazisi et 

al., 2000). Lack of the cytadhesin-related molecule, CrmA, was described as a consequence 

of the premature termination of translation of GapA. (Papazisi et al., 2000). A reversible 

mutational event occurring at a high frequency within the coding region of gapA has a polar 

effect on the expression of the crmA gene, which is located downstream as a part of the 

same transcriptional unit (Winner et al., 2003). Expression of these two components has 

been correlated with binding to erythrocytes (Winner et al., 2003) and to efficient attachment 

to cultured MRC-5 human fetal lung fibroblasts (Papazisi et al., 2002). As mentioned above, 

also Rhigh was re-isolated from the respiratory tract of chickens after experimental infection 

suggesting that other factors are involved in initiating a local infection (Much et al., 2002). 
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Several other putative cytadhesion-related molecules have been characterised in MG, 

including PvpA, which independently undergoes both phase and size variation and which is 

localised in the AO (Boguslavsky et al., 2000; Rosengarten et al., 2000).  
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Mycoplasma gallisepticum is a flask-shaped organism that commonly induces chronic respiratory disease in
chickens and infectious sinusitis in turkeys. Phenotypic switching in M. gallisepticum hemadsorption (HA) was
found to correlate with phase variation of the GapA cytadhesin concurrently with that of the CrmA protein,
which exhibits cytadhesin-related features and is encoded by a gene located downstream of the gapA gene as
part of the same transcription unit. In clones derived from strain Rlow, detailed genetic analyses further
revealed that on-off switching in GapA expression is governed by a reversible base substitution occurring at the
beginning of the gapA structural gene. In HA� variants, this event generates a stop codon that results in the
premature termination of GapA translation and consequently affects the expression of CrmA. Sequences
flanking the mutation spot do not feature any repeated motifs that could account for error-prone mutation via
DNA slippage and the exact mechanism underlying this high-frequency mutational event remains to be
elucidated. An HA� mutant deficient in producing CrmA, mHAD3, was obtained by disrupting the crmA gene
by using transposition mutagenesis. Despite a fully functional gapA gene, the amount of GapA detected in this
mutant was considerably lower than in HA� clonal variants, suggesting that, in absence of CrmA, GapA might
be subjected to a higher turnover.

Mycoplasma gallisepticum is a round flask-shaped organism
commonly inducing chronic respiratory disease in chickens (14,
26, 32) and infectious sinusitis in turkeys (7). Like a large
number of other mycoplasmas, this avian pathogen colonizes
its host via the mucosal surfaces of the respiratory tract and
must adhere to the epithelial cells to withstand clearance by
the host. This intimate contact is mediated by a bleb-like struc-
ture (27, 28), a unipolar terminal organelle that is similar to the
tip structure of the two human pathogens, M. pneumoniae and
M. genitalium also involved in adhesion to host cells. Both
mycoplasma species were shown to enter epithelial cells (2,
13), and recent in vitro assays have revealed that M. gallisep-
ticum is likewise capable of establishing intracellular residence
in nonphagocytic eukaryotic cells (29). During infection of
highly immunocompetent hosts, the ability to enter and survive
within host cells may provide these mycoplasmas with a sur-
vival strategy that relies first on adhesion. Cytadhesins and
related components have been extensively studied in M. pneu-
moniae (17), and the data emerging from similar studies in M.
gallisepticum suggest the occurrence of a family of cytadhesin
genes conserved among pathogenic mycoplasmas that colonize
widely divergent hosts. The identification and the character-
ization of M. gallisepticum surface-exposed components with
adhesive properties are therefore of major importance in un-
derstanding the factors involved in promoting successful infec-
tion.

In recent years, a large collection of data has underlined the
versatility of the mycoplasma surface architecture, which is
mediated via spontaneous high-frequency variation in the ex-
pression and structure of surface proteins (6, 24). In M. galli-
septicum, systems generating phase variation of cytadhesins or
cytadhesin-related molecules have been identified. These in-
clude the pMGA genes encoding a family of hemagglutinins
(21, 22) that are subjected to phase variation (9, 23) and the
single-copy pvpA gene (3), encoding a potential cytadhesin-
related molecule that is localized at the tip structure of the
organism and undergoes variation in size and expression inde-
pendently (33). Binding of erythrocytes to M. gallisepticum
strain A5969 was shown to occur via several surface-exposed
proteins that undergo high-frequency variation in expression,
although the exact nature of these products could not be
clearly established (1). Three clustered genes have also been
identified in the M. gallisepticum genome as encoding for prod-
ucts with homology to adhesin-related molecules of M. pneu-
moniae. These are, from 5� to 3�, (i) mgc2, which encodes a
32-kDa product with homology to the P30 of M. pneumoniae
(12); (ii) mgc1 (15), also referred to as gapA (8), which encodes
a 105-kDa protein and presents homology to the M. pneu-
moniae P1 adhesin; and (iii) mgc3 (34), also referred as crmA,
which encodes a 116-kDa product with homology to M. pneu-
moniae open reading frame 6 (ORF6) and is cotranscribed
with gapA (24). Whether any of these three cytadhesin-related
products is subject to phase variation and is involved in he-
madsorption (HA) has still to be assessed; nevertheless, the
presence of multiple adhesin genes in M. gallisepticum might
emphasize the multifactorial nature of the cytadherence pro-
cess. Interestingly, Yoshida et al. (34) showed that the product
encoded by mgc3 contained epitopes that could induce anti-
bodies capable of inhibiting growth and metabolic activities of
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M. gallisepticum strain R, suggesting that the function of the
CrmA product might not be strictly restricted to adherence.

Recently, it was shown that low (Rlow) and a high (Rhigh)
laboratory passages of the prototype strain R (19), which
markedly differ in their pathogenicities (18), also differ in the
expression of the GapA and the CrmA proteins (24). More
specifically, these proteins are expressed in the virulent Rlow,
whereas they are both lacking in the avirulent Rhigh.

In the present study, we have revisited the capability of M.
gallisepticum to bind erythrocytes by using Rlow and Rhigh and
assessed the nature of the products involved in HA of strain R.
Results showed that in Rlow the GapA and CrmA products
concomitantly undergo phase variation and are responsible for
the binding of erythrocytes to M. gallisepticum cells in the HA
assay. The genetic mechanism underlying this variation is a
nonsense mutation that is occurring in the gapA gene and
affects the expression of gapA and that of the crmA gene
located downstream. In contrast to other previously reported
high-frequency mutations generating phase variation in myco-
plasmas or in other bacteria, the sequence surrounding the
hotspot for mutation has no particular genetic feature such as
repeated elements or homopolymeric nucleotide tracts that
could promote error prone mutations by DNA slippage.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The M. gallisepticum laboratory pas-
sages Rlow and Rhigh used in the present study were kindly provided by S.
Levisohn, Kimron Veterinary Institute, Bet Dagan, Israel. Rlow and Rhigh cor-
respond to the prototype strain R propagated 10 and 160 times in artificial
medium, respectively (19). RlowP3 was previously described (29) and corre-
sponds to three passages of Rlow in HeLa cells. Mycoplasma cultures were grown
at 37°C in modified Hayflick medium (30) containing 20% (vol/vol) heat-inacti-
vated horse serum (Invitrogen Life Technologies, San Diego, Calif.) to mid-
exponential phase, as indicated by the metabolic color change of the medium.

Clonal variants were obtained from Rlow as follows. An optimal concentration
of M. gallisepticum Rlow cells was seeded onto modified Hayflick containing 1%
(wt/vol) Noble agar and grown for 5 to 7 days at 37°C. Colonies that did or did
not bind erythrocytes were picked, expanded in 1 ml of liquid medium, and
plated onto solid medium at appropriate dilutions. Five to ten isolated colonies
of the second generation were picked and grown in 1 ml of culture. An aliquot
of each culture was then seeded onto agar plates, and the resulting colonies were
subjected to the HA assay to assess the purity of the clones, whereas the remain-
ing culture was frozen at �20°C for further analysis. Isolated colonies presenting
GapA� or GapA� phenotypes were selected, grown in 1 ml of liquid broth, and
stored at �80°C for further analysis.

Competent Escherichia coli DH10B (Invitrogen) was used as host to clone
recombinant products and grown at 37°C in Luria-Bertani broth supplemented
with 100 �g of ampicillin per ml for plasmid preparation.

Colony immunoblotting and HA assay. Colony immunoblotting was per-
formed as previously described (5) with the antibodies and under the conditions
described below for Western blot analyses. The HA assay was conducted directly
on agar plate. After partial lifting of the mycoplasma colonies onto nitrocellulose
membranes, the colonies were overlaid with 15 ml of fresh sheep blood washed
and resuspended in phosphate-buffered saline (PBS) solution (2.7 mM KCl, 1.2
mM KH2PO4, 138 mM NaCl, 8.1 mM Na2HPO4 � 7H2O; pH 7.4) to a final
concentration of 0.5% (vol/vol). After incubation at 37°C for 30 min, the sus-
pension was then carefully discarded, and unbound erythrocytes were gently
removed by a wash with PBS. Mycoplasma colony immunostaining and binding
of the erythrocytes were observed by using an SMZ-U stereomicroscope (Nikon
Corp., Tokyo, Japan).

SDS-PAGE and Western blot analysis. Protein profile analysis of the strains,
clones, and mutant used in the present study was performed by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by Coomassie
staining or Western blotting as previously described (5), by using the whole-cell
extract or fractions obtained by Triton X-114 (Sigma) partitioning as described
elsewhere (31). Antibodies used for immunostaining were previously reported
and correspond (i) to rabbit anti-GapA (24) diluted 1:8,000 and (ii) to mono-

clonal antibody (MAb) 1E5 (33) diluted 1:50. Detection of antibody binding was
achieved by using peroxidase-conjugated swine antiserum to rabbit immunoglob-
ulin (Dako, Copenhagen, Denmark) or to mouse immunoglobulin M (Jackson
Immunoresearch Laboratories, Inc., West Grove, Pa.). Antibodies were diluted
in Tris-buffered saline solution (150 mM NacCl, 10 mM Tris base) containing
0.05% (vol/vol) Tween 20.

Transposition mutagenesis of M. gallisepticum and selection of the mHAD3
mutant. The plasmid pISM2062 used below for transformation was kindly pro-
vided by C. Minion (Iowa States University, Ames, Iowa) and carries Tn4001, in
which a BamHI restriction site has been previously inserted in the left inverted
sequence (16). Prior to transformation, this plasmid was modified for other
studies not reported here by inserting into the BamHI restriction site random
tag-oligonucleotide sequences generated as previously described by Hensel et al.
(11) by using the oligonucleotide 5�-CTAGGTACCTACAACCTCAAGCTT
(NK)20AAGCTTGGTTAGAATGGGTACCATG-3� (the BamHI restriction
sites are indicated in boldface). The resulting tagged transposon and correspond-
ing plasmids were designated in the present study as Tn4001 mod and pISM2062-
tag, respectively.

A culture of M. gallisepticum RlowP3 containing ca. 109 CFU was centrifuged
and washed three times with electroporation buffer (8 mM HEPES [pH 7.4], 272
mM sucrose). The cells were then resuspended in 100 �l of electroporation
buffer, incubated on ice for 10 min with 10 �g of the pISM2026-tag (see below),
and subjected to electroporation (2.5 kV, 100 �, 25 �F). After electroporation,
the cells were resuspended in 1 ml of chilled Hayflick medium and incubated on
ice for 10 min and at 37°C for 90 min. Gentamicin was then added to the cell
culture to a final concentration of 100 �g/ml, and aliquots of 25 to 100 �l were
plated onto solid Hayflick medium containing 50 �g of gentamicin/ml. After
incubation at 37°C for 8 days, 2,200 colonies were picked and individually grown
in 96-well microtiter plates containing 200 �l of Hayflick medium per well. Using
a replicator (Sigma Chemical Co., St. Louis, Mo.), the 2,200 cultures were
transferred onto solid agar plates and were then subjected to the HA assay after
7 days of growth at 37°C as described above. HA� cultures were then grown in
1 ml of Hayflick medium and seeded onto agar plates at high density, and the
resulting colonies were subjected to the HA assay to define whether mutants
were stable for the HA� phenotype. One mutant designated mHAD3 was se-
lected for analysis described in the present study.

DNA manipulations. Standard methods were used for DNA manipulations,
including agarose gel electrophoresis, restriction endonuclease digestion, liga-
tion, chemical transformation, and electroporation as described elsewhere or
according to the manufacturer’s instructions. Southern hybridizations were per-
formed according to the Genius System User’s Guide for Membrane Hybridization,
version 3.0 (Roche Molecular Biochemicals, Mannheim, Germany). In-gel pu-
rification of DNA fragments was performed by using Quantum Prep
Freeze’N�Squeeze DNA gel extraction spin column (Bio-Rad, Hercules, Calif.).

Cloning and sequencing analysis. Chromosomal DNA of the RCL2 clonal
variant was digested to completion with XbaI. The resulting fragments were
inserted into XbaI-restricted, dephosphorylated pUC18 vector, and the ligation
mixture was used to transform competent E. coli DH10B cells by electroporation.
Recombinant clones were detected by hybridization of colonies by using a digoxi-
genin-labeled gapA probe generated by PCR as described below. One recombi-
nant plasmid (pRCL2) containing a 4.6-kbp XbaI insert that hybridized with the
gapA probe (see Fig. 4B) was selected, and the region containing the gapA
sequence was determined by primer walking.

For the cloning and sequencing of regions flanking the integrated Tn4001 of
mHAD3, 50 �g of genomic DNA was digested to completion with the XbaI
enzyme. DNA fragments of ca. 7.3 kbp that hybridized with the transposon-
specific probe were gel purified and precipitated with 0.1 volume of 3 M sodium
acetate (pH 5.2) and 2 volumes of cold ethanol. An aliquot containing �5 ng was
incubated with T4 DNA ligase (Roche) overnight at 16°C and subjected to
long-range PCR (LR-PCR) by using the expand long template PCR system
(Roche) and primer pIS256rev. The LR-PCR cycling conditions were as follows:
2 min at 94°C; 10 cycles of 30 s at 94°C, 30 s at 66°C, and 4 min at 68°C; 20 cycles
of 30 s at 94°C, 30 s at 66°C, and 4.5 min at 68°C, with cycle elongation of 20 s
per cycle; and finally 7 min at 68°C. The resulting LR-PCR fragments were
cloned into the pGEM-T Easy (Promega, Madison, Wis.) vector, and one re-
combinant clone, selected by the size of its DNA insert, was sequenced. The gapA
gene of the mutant mHAD3 was obtained by LR-PCR with genomic DNA
template and the primers GAPA0 and GAPA6, cloned into pGEM-T Easy, and
sequenced. The cycling conditions for the LR-PCR were as follows: 2 min at
94°C; 10 cycles of 30 s at 94°C, 30 s at 56°C, and 4 min at 68°C; 20 cycles of 30 s
at 94°C, 30 s at 56°C, and 4 min at 68°C, with cycle elongation of 20 s per cycle;
and finally 7 min at 68°C.

DNA sequencing was performed at VBC-Genomics Bioscience Research-
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GmbH, Vienna, Austria, with IRD 700 or IRD 800 dye-labeled sequencing
primers, dideoxy PCR, and a Li-COR DNA 4200 sequencer.

PCR assays. PCR assays were performed by using 1 to 3 U of Taq DNA
polymerase (Promega) in 1� buffer supplied by the manufacturer, 1.5 to 2.5 mM
MgCl2, 0.2 mM deoxynucleoside triphosphate (dNTP; Promega), a 1 nM con-
centration of each primer listed in Table 1, and ca. 100 ng of chromosomal DNA
as a template. The same conditions were used to generate digoxigenin labeling by
PCR except that the dNTP mix contained a digoxigenin-11-dUTP (Roche)/dTTP
ratio of 1:19.

Termocycling conditions were as follows: (i) for GAPA1/GAP2, 1 cycle at 95°C
for 1 min; 30 cycles at 94°C for 30 s, 55°C for 30 s, and 72°C for 1 min; and (ii)
for GAPA4/GAPA5, 1 cycle at 95°C for 3 min; 30 cycles at 95°C for 1 min, 94°C
for 1 min, 45°C for 1 min, and 72°C for 1 min, and a final extension cycle at 72°C
for 5 min.

The PCR probe was incubated with the membrane in Church buffer (0.5 M
Na2HPO4 [pH 7.2], 7% [wt/vol] SDS, 1% [wt/vol] bovine serum albumin, 1 mM
Na2EDTA) at 50°C overnight, washed two times for 5 min at room temperature
in 2� SSC containing 0.1% (wt/vol) SDS, and then washed two times for 20 min
at 50°C in 0.1� SSC containing 0.1% (wt/vol) SDS.

RT-PCR assays. Total RNA was extracted from 10 ml of mycoplasma broth
culture as described elsewhere (5). RNA samples were incubated for 30 min at
37°C with 2 U of RGQ1 DNase (Promega) in a final volume of 20 �l of 1�
RGQ1 buffer. After inactivation of the enzyme at 65°C for 10 min, RNAs were
subjected to one-tube reverse transcription-PCR (RT-PCR) by using the Access
RT-PCR System (Promega) and the primers TufG15 and TufC26, together with
the primer pairs IF-IR or JF-JR. RT-PCR was performed as recommended by
the manufacturer in a 50-�l final volume containing (i) 1 �l of RNA template
(ca. 70 ng) obtained after DNase digestion; (ii) 48 �l of a master mix containing
5 U of Tfl DNA polymerase, 0.2 mM dNTPs, 1.3 mM MgSO4, and 1 � buffer;
and (iii) 50 pmol of each primer, in the presence or absence of 1 �l of avian
myeloblastosis virus reverse transcriptase at 5 U/�l. Thermocycling was per-
formed in a Perkin-Elmer DNA Thermo Cycler under the following cycling
conditions: 1 cycle at 48°C for 45 min; 1 cycle at 95°C for 3 min; 30 cycles at 94°C
for 1 min, 50°C for 1 min, and 72°C for 2 min; and a final extension cycle at 72°C
for 5 min.

RESULTS

Difference in HA between Rlow and Rhigh. The HA capability
of M. gallisepticum was first assessed by using low (Rlow) and
high (Rhigh) laboratory passages of strain R (19), which have

been shown to differ in their pathogenicity potentials (18).
Binding of erythrocytes to the mycoplasma cells was monitored
directly on colonies and revealed that Rlow generates HA�,
HA�, and sectored colonies (Fig. 1A), indicating that in Rlow,
as in strain A5969 (1), surface components undergoing high-
frequency phase variation are involved in HA. In contrast,
Rhigh appeared to exhibit exclusively the HA� phenotype (Fig.
1B) even when a high number of colonies were tested. This
suggests that in Rhigh, the mutation(s) affecting the expression
of the component(s) involved in HA is irreversible or reverses
with a low frequency.

Correlation between binding of erythrocytes and expression
of GapA and CrmA. Recently, the expression of two proteins
displaying homology to known cytadhesins of M. pneumoniae,
namely, GapA and CrmA, was detected in Rlow but not in
Rhigh (24). To assess whether these two products are directly or
indirectly involved in the binding of erythrocytes, single clones
derived from Rlow and presenting the HA� or HA� phenotype
were picked, and their protein content was analyzed by SDS-
PAGE after Triton X-114 partitioning of the whole-cell ex-
tract. The results showed that all HA� clones tested so far
lacked two proteins of ca. 116 and 105 kDa that partitioned
into the insoluble fraction. This is illustrated in Fig. 2A for
three clonal variants derived from Rlow, namely, RCL1, RCL2,
and RCL3. In the HA� clones, RCL1 (lane 1) and RCL3 (lane
2), as well as in the parental strain Rlow (lane 4), the two
products were detected, whereas they were both missing in the
HA� RCL2 clone (lane 3) and in Rhigh (lane 6). Indeed,
Western blot analysis revealed that rabbit anti-GapA antibod-
ies (24) bind the 105-kDa protein, and this was exclusively
detected in RCL1, RCL3, and Rlow. The 116-kDa protein
expressed in HA� clones most likely corresponds to the CrmA
protein since (i) it displayed a migration in SDS-PAGE similar
to that of the CrmA product detected in Rlow (24), (ii) it

TABLE 1. Oligonucleotide primers used in this study

Oligonucleotide Nucleotide sequence (5� to 3�)a Description and localizationb (nt position) Source or
referencec

GAPA0 GGCAGGACCAAGAGCTGG Forward primer located upstream of the gapA gene
(183–200)

This study

GAPA1 GGATTAGCAGTTTCTGGAGC Forward primer located at the beginning of the gapA gene
(457–476)

This study

GAPA2 TGTTCTTGTTGAACCGCTGC Reverse primer located at the beginning of the gapA gene
(881–861)

This study

GAPA4 TTCGGAAAATCCCTTTGCAGTAG Forward primer located in the gapA gene (1275–1297) This study
GAPA5 TAGAGGAGTAGTTGTTTGAGTTTC Reverse primer located in the gapA gene (1491–1467) This study
GAPA6 CTTGCAGAACCAAGAGCTCC Reverse primer located at the beginning of the crmA gene

(3854–3835)
This study

TufG15 TTCGATCGTAGTAAACCTCACG Forward primer located in the tuf gene (107–128) 9
TufC26 GACGATTTTGAGTTGCGTATTC Reverse primer located in the tuf gene (296–317) 9
Tn1 ACATGAATTACACGAGGGC Forward primer located in the Tn4001 (2440–2458) This study
Tn2 GTTCTTCTTCTGACATAGTAG Reverse primer located in the Tn4001 (2840–2820) This study
IS256rev GGTCATGTAAAAGTCCTCCTGGG Primer located in the IS256 of Tn4001tag in mHAD3

(340–318 and 4694–4715)
This study

IF GCCGGATTGATTTGTATG Forward primer located in the gapA gene (644–661) 24
IR CAGAAGTAGAAGCAGTAGGA Reverse primer located in the gapA gene (1105–1086) 24
JF TAAGAAGACTCCACAAATGCT Forward primer located in the gapA gene (2718–2738) 24
JR TAGCATCTAGCGTTCTTGCTTG Reverse primer located in the crmA gene (3928–3907) 24

a Oligonucleotides were designed based on previously published sequences.
b Nucleotide positions are indicated with regard to the sequence previously published (AF214004).
c References are indicated when primers have been previously used by others in similar studies.
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partitioned into the insoluble fraction (24), and (iii) disruption
of the crmA gene by transposition results in a HA� mutant
lacking the 116-kDa product (see below). These data suggested
that the GapA and/or the CrmA proteins are involved in the
binding erythrocytes and that they are undergoing high-fre-
quency variation in expression. To confirm this hypothesis,
colonies of clonal variants derived from Rlow were partly trans-
ferred onto nitrocellulose and incubated with rabbit anti-GapA
antibodies. The remainder of the colonies was then incubated
with erythrocytes and results showed a perfect correlation be-
tween the binding of the anti-GapA antibodies and that of
erythrocytes (Fig. 3A to D). The presence of multiple, corre-
sponding HA� GapA� sectors within a single colony of the
HA� clonal variant, RCL2, confirmed that the GapA product
is undergoing high-frequency variation in expression and cor-
relates with the HA phenotype (Fig. 3C and D). The same
experiment was performed with MAb 1E5, which binds to the
surface exposed PvpA protein that was previously shown to
undergo phase variation (33) and to share common motifs with
the P30 cytadhesin accessory protein of M. pneumoniae (3).
The results illustrated in Fig. 3E and F indicate that the vari-
ability in expression of PvpA does not correlate with that of the
product(s) involved in HA since colonies presenting the HA�

phenotype were not all immunostained with the MAb 1E5.

This was confirmed by Western blot analysis (data not shown).
We further demonstrated that the HA� phenotype of RCL2 is
spontaneously reversible by generating a clonal lineage from
RCL2 that is composed of successive generations with alter-
nating HA phenotypes, i.e., HA� (RCL2) 3 HA� (RCL2-2)
3 HA� (RCL2-2-2). SDS-PAGE and Western blot analyses
confirmed that all HA� revertant clones expressed GapA and
CrmA. Switching in the HA phenotype appeared to differ
among clones and occurred at a frequency ranging from 5 �
10�2 to 2 � 10�4 per cell per generation.

Coordinated on-off switching of GapA and CrmA expression
and its genetic basis. All of the clones tested so far that ex-
hibited the HA� or HA� phenotype showed a coordinated
on-and-off switching of the two products, GapA and CrmA.
Recent work has shown that the gapA gene of Rhigh contains a
frameshift mutation at nucleotide (nt) 769 that results in the
premature termination of the GapA synthesis and in the ab-
sence of mRNA corresponding to the crmA gene located im-
mediately downstream as part of the same transcription unit
(24). In order to define whether an identical mutational event
is responsible for the lack of GapA expression in HA� clonal
variants derived from Rlow, a 4.6-kbp genomic XbaI-DNA frag-
ment that contained 83% of the gapA gene of RCL2 (see Fig.
4B) and hybridized with a gapA-specific probe was cloned into

FIG. 1. Binding of erythrocytes to M. gallisepticum colonies. Mycoplasma colonies were partially transferred onto nitrocellulose and incubated
with erythrocytes as described in Materials and Methods. Hemadsorbing colonies (�) and nonhemadsorbing colonies (�) were observed under
a stereomicroscope (magnification, �50). (A) Colonies derived from Rlow. Note that, although erythrocytes binding to mycoplasma cells delineate
the periphery of the colony, only the center of the nonhemasorbing colonies is visible after lifting. (B) Colonies derived from Rhigh.

FIG. 2. Identification of proteins involved in HA of M. gallisepticum strain R. Whole organisms were subjected to Triton X-114 phase
fractionation, and insoluble proteins were analyzed by SDS-PAGE, followed by Coomassie blue staining (A) or Western blot analysis (B), with a
rabbit polyclonal antibodies raised against GapA (24). Lanes 1 to 6 correspond to proteins from clones RCL1 (lane 1), RCL3 (lane 2), and RCL2
(lane 3) or from strain Rlow (lane 4), the mHAD3 mutant (lane 5), or strain Rhigh (lane 6). Arrows above panel A indicate that RCL1, RCL2, and
RCL3 all derived from Rlow. “�” and “�” indicate whether the organisms were shown to hemadsorb (HA). Except for clone RCL3, all selected
clones expressed the PvpA protein. Molecular mass markers (at 94 and 67 kDa) and the protein band corresponding to GapA are indicated.
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the plasmid pUC18 and sequenced. Sequencing data revealed
that in the HA� variant RCL2 a mutation had occurred at nt
1393 that differed from the one previously described in Rhigh

(24). As shown in Fig. 4B, the mutation in RCL2 corresponds
to a nucleotide change (C into T) and generates a stop codon
and an MseI restriction site that are not present in the wild-
type gapA gene. Using the GAPA4 and GAPA5 primers, a
region of 217 bp encompassing the point mutation was ampli-
fied by PCR from the genomic DNA of Rlow and from RCL2,
respectively (Fig. 4B). Comparison of the MseI restriction pro-
files of the resulting PCR products confirmed the presence of
an additional MseI site in the gapA gene of RCL2 (Fig. 5, lane
3b) and demonstrated that the mutation detected in the se-
quenced XbaI DNA fragment did not occur in E. coli. Indeed,
the same experiment performed with PCR products generated
from a set of clonal variants derived from Rlow (Fig. 6) re-
vealed that all HA� clones (i) displayed identical MseI restric-
tion profiles and (ii) present an additional MseI restriction site
at the same position (Fig. 5, lanes 3b, 4b, and 7b) compared to
the profiles obtained with their HA� siblings or progeny (Fig.
5, lanes 2b, 5b, and 6b). Finally, sequencing of the 217-bp
fragment amplified from the RCL1 (HA�) and RCL4 (HA�)
genomic DNA, respectively, by the GAPA4 and GAPA5 prim-
ers showed identical sequence except for the presence of the
nonsense mutation in the RCL4 variant (data not shown).

Disruption of the M. gallisepticum crmA gene results in a
mutant deficient in HA. A library of mutants derived from Rlow

was generated by random transposition by using the
Tn4001mod (4). Mutants were then screened for their capa-
bility to bind erythrocytes on colonies and one, namely,
mHAD3, was selected for its stable HA� phenotype. As illus-

trated in Fig. 2, the protein profile of mHAD3 revealed the
absence of both the GapA and the 116-kDa products (lane 5)
that are detected in the HA� variants (lanes 1 and 2) and in
the original Rlow population (lane 4). Further Western blot
analyses revealed that mHAD3 did indeed express GapA;
however, its detection required at least five times the amount
of proteins used for the detection of GapA in Rlow or in the
HA� clonal variant RCL1 (data not shown). Comparison of
the Triton X-114 phase fraction of the HA� RCL2 variant and
mHAD3 mutant with that of the HA� RCL1 and RCL3
clones, indicate that neither of the mutations occurring in gapA
or in crmA seems to affect the partitioning of GapA or CrmA
(data not shown). Southern blot analysis showed that the trans-
poson occurred as a single copy in the mHAD3 genome and
that it is carried by an XbaI DNA fragment of ca. 7.3 kbp.
Cloning and sequencing of the regions flanking the transposon
revealed that the insertion has taken place within the crmA
gene, 1,548 nt downstream of the ATG start codon (Fig. 4A).
Using two primers GAPA0 and GAPA6, a fragment of 2,629 nt
that encompasses the entire gapA gene of mHAD3 (Fig. 4A)
was amplified by LR-PCR, cloned, and sequenced. Sequencing
analyses showed that the gapA gene of mHAD3 encodes a fully
functional ORF and that it is identical to its counterpart se-
quenced in RCL2, except for the nonsense mutation detected
in RCL2 (Fig. 4B). Comparison of the mHAD3 gapA gene
sequence with that previously published for strain R (15, 8, 24)
revealed the presence of six nucleotide changes in mHAD3
that do not affect the gapA ORF. Overall, these results sug-
gested that disruption of the crmA gene, which is located
downstream of the gapA gene as part of the same transcription
unit, influences the level of expression of GapA and confirmed

FIG. 3. Correlation between HA of erythrocytes to M. gallisepticum colonies and surface expression of GapA. Colonies derived from Rlow (A,
B, E, and F) or from RCL2 (C and D) were partially transferred onto nitrocellulose and then incubated with erythrocytes (A, C, and E), although
the corresponding membranes were immunostained with a rabbit anti-GapA polyclonal antibody (B and D) or with MAb 1E5 that binds the PvpA
surface protein (F). “�” and “�” indicate hemadsorbing and nonhemadsorbing colonies or positive and negative immunostaining, respectively.
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that the binding of erythrocytes to M. gallisepticum is linked to
these two products.

Analysis of gapA and crmA transcription. The presence of
the polycistronic mRNA corresponding to the gapA and crmA
genes in the total RNA of RCL1 (HA�), RCL2 (HA�), and
mHAD3 (HA�) was assessed by RT-PCR. This was performed
by using a multiplex RT-PCR assay in which the primer cou-
ples (i) I (IF and IR) corresponding to a 5�-end region of the
gapA gene (24) or (ii) J (JF and JR) encompassing the end of
gapA and the beginning of crmA (24) were used in combination
with a pair of primers (TufG15 and TufC26) shown to detect
the tuf mRNA (9).

Using one primer combination or the other, RT-PCR assays
performed with the total RNA extracted from the HA� RCL1
variant resulted in the detection of two PCR products (Fig. 6):
one of 250 bp corresponding to the tuf mRNA and a second of
460 or 350 bp corresponding to the gapA (lane 1a) or to the
gapA-crmA (lane 6a) mRNAs, respectively. Indeed, RT-PCR
assays performed with any of the RNA templates all generated
the 250-bp product corresponding to the tuf mRNA, which was
not detected in duplicate samples assayed without reverse tran-
scriptase (Fig. 6, lanes 1b, 2b, 3b, 6b, 7b, and 8b). This result
showed the presence of intact mRNA in the total RNA prep-
arations and the absence of residual DNA that could generate

false-positive results. A PCR product of 460 bp, corresponding
to the gapA mRNA, was also obtained in the presence of
primer I with all templates independently of the HA pheno-
type (Fig. 6, lanes 1a, 2a, and 3a). However, its amount relative
to that corresponding to the tuf mRNA appeared to be lower
for RCL2 (Fig. 6, lane 2a) than for RCL1 (lane 1a) or mHAD3
(lane 3a), suggesting that in RCL2 the gapA mRNA might be
less abundant or less stable. Results obtained with primers J
indicated that, in the RCL2 clone (lane 7a), mRNA corre-
sponding to crmA is lacking or present at a concentration too
low to be detected by our assay since a PCR product corre-
sponding to the 350-base region of the gapA-crmA mRNA was
only detected in RCL1 (lane 6a) and in mHAD3 (lane 8a).
Interestingly, in the HA� mHAD3 mutant, the detection level
of mRNAs with any primer combination (lanes 3a and 8a) was
comparable to that of the HA� RCL1 variant (lanes 1a and
6a), suggesting that the low amount of GapA product detected
in this mutant was not due to the absence or to a limiting
amount of the corresponding transcript.

DISCUSSION

This study demonstrates that in M. gallisepticum strain R the
GapA cytadhesin (8), also described as MGC1 in strain S6

FIG. 4. (A) Schematic representation of the gapA and crmA gene organization based on the sequence published by Papazisi et al. (24) and
localization of the transposon Tn4001mod in the mHAD3 mutant. Arrows below the solid line represent the primers used in the present study.
(B) The sequence alignment represents the wild-type gapA gene sequenced in mHAD3 (upper line) and the corresponding portion sequenced from
RCL2 (lower line). The arrowhead indicates the nucleotide that differs in between the two sequences. Boldface letters indicate the presence of MseI
restriction sites. Underlined nucleotides indicate the position of the nonsense mutation. Numbering was based on the entire sequence deposited
in GenBank (AF214004) by Papazisi et al. (24), which is composed of 8,354 nt and contains the gapA and the crmA genes at position indicated
in panel A. Arrows above or below the sequence indicate the positions of GapA4 and GapA5 primers used for amplifying the region in which the
mutation occurred.
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(15), undergoes phase variation in expression, providing this
avian pathogen with variable adhesive properties while it prop-
agates. Whether this phenomenon that was observed in vitro
also occurs in vivo is not yet known; however, variation in
attachment of the avian pathogen to host cells may promote
consecutive colonization of several hosts or of various niches
within a single host. Phenotypic switching of the capacity of M.
gallisepticum to bind erythrocytes was found to correlate with
GapA phase variation concurrently with that of a second prod-
uct, CrmA, which exhibits cytadhesin-related features and is

encoded by a gene located downstream of the gapA gene as
part of the same transcription unit (24). Detailed genetic anal-
yses revealed that the mutational event underlying the GapA
on-off switching in clones derived from Rlow is a point mutation
that consequently affects the expression of CrmA. Papazisi et
al. (24) have shown that the failure of Rhigh to express GapA
and CrmA is due to a frameshift mutation at the 5�end of the
gapA gene that generates a nonsense mutation leading to the
premature termination of GapA translation. As in Rhigh, the
absence of GapA expression in HA� variants derived from
Rlow is due to a mutation occurring at the beginning of the
gapA gene, but downstream of the sequence mutated in Rhigh.
In mycoplasmas, the on-and-off expression state of a large
number of genes encoding surface components is governed by
reversible mutations occurring by slipped-strand mispairing (6,
25). One common feature of these mutational events is that
they are taking place in so-called mutator regions character-
ized by a short tract composed of a single nucleotide or directly
repeated trinucleotides. For instance, on-off switching of the
pMGA-hemagglutinin family of M. gallisepticum is driven by
spontaneous insertion or deletion of trinucleotide unit(s) oc-
curring within a (GAA)n motif whose length governs the tran-
scription of a given pMGA gene (10, 20). A short tract of
five-repeated GAA motif was recently identified at the begin-
ning of the structural gene of the phase-variable, cytadhesin-
related PvpA protein of M. gallisepticum. In PvpA-negative
variants, a base substitution (G into T) precisely affects the
guanine of the fourth GAA motif (3) and results in a prema-
ture termination of the translation. In their report the authors
suggest that this mutation is either irreversible or occurs at a
very low frequency, since attempts to obtain a PvpA positive
revertant failed. Data collected in our study also revealed that
GapA-negative variants are spontaneously generated after a
base substitution that creates a nonsense mutation at the be-
ginning of the gapA structural gene. Remarkably, this mutation
is reversible, since GapA positive progeny clones could be
isolated that displayed the wild-type gene feature. In contrast
to the previous variable genes identified in M. gallisepticum, no
GAA repeated motif was observed in the gapA gene sequence
flanking the mutated base. The only feature displayed by this
region is the presence of three TTC trinucleotides (or GAA on
the cDNA strand), two of which are directly repeated and
separated from the third one by two adenosine residues [5�-T
TCTT(C/T)AATTC-3�]. The high-frequency mutational event
governing the GapA on-and-off switching is a reversible base
substitution whose occurrence cannot be explained by slipped-
strand mispairing. Based on the sequence data obtained in the
present study and previously by two other independent groups
(8, 15, 24), there is no evidence for the presence of more than
three TTC motifs in this region. If, indeed, GAA (or TTC on
cDNA strand) repeated motifs are preferential targets for mu-
tation in M. gallisepticum then the question arises whether the
length of the TTC repeated motif observed in the gapA gene is
sufficient to promote such an event. Since no DNA rearrange-
ment was observed around the single-copy gene encoding
GapA between GapA-negative and -positive clonal variants
(data not shown), the exact molecular mechanism promoting
the mutational event governing the GapA on-and-off switching
in expression has yet to be elucidated.

In the HA� variant, RCL2, the nonsense mutation identified

FIG. 5. Detection of an additional MseI restriction site in HA�

clones. The DNA region that encompassed the mutation detected in
clone RCL2 was amplified in HA� and HA� variants and subjected to
MseI digestion. Undigested (lanes a) and digested (lanes b) PCR
fragments were analyzed by electrophoresis in a 10% polyacrylamide
gel. The predominant HA phenotype of Rlow or of the clones is indi-
cated above the gel by “�” and “�.” The pedigree of the clones is
represented by arrows above the panel. The samples correspond to
Rlow (lane 1), RCL1 (lane 2), RCL2 (lane 3), RCL2-1 (lane 4), RCL2-2
(lane 5), RCL2-2-1 (lane 6), and RCL2-2-2 (lane 7). M, DNA size
marker.

FIG. 6. Analyses of the gapA and crmA mRNA. A multiplex RT-
PCR was applied to total RNA extracted from clones RCL1 (lanes 1
and 6), and RCL2 (lanes 2 and 7), and mutant mHAD3 (lanes 3 and
8) by using the Tuf primers in combination with the I or the J primers
as indicated above the gel. Assays were performed in presence (a) or
absence (b) of reverse transcriptase (RT). Controls include assays
performed in absence of RT with the genomic DNA of RCL2 (lane 4)
or with no template (lane 5). M, DNA size marker.

VOL. 71, 2003 PHASE VARIATION OF GapA DICTATES HEMADSORPTION 1271



in the gapA gene is likely to result in a premature disassembling
of the translational apparatus that might result in a high turn-
over of the untranslated mRNA and/or in an early termination
of the transcription. This might explain the lack of mRNA
corresponding to the end of gapA and to the crmA gene and
subsequently to the absence of a CrmA product in the RCL2
variant. From the data collected in the present study, it is
unlikely that the CrmA product is directly subjected to phase
variation in expression independently of the GapA variation;
however, this possibility cannot be ruled out. Disruption of the
crmA gene by transposition mutagenesis resulted in a mutant,
mHAD3, which failed to hemadsorb, suggesting the involve-
ment of the CrmA product in adherence of erythrocytes to
mycoplasma cells. Despite a fully functional and efficiently
transcribed gapA ORF, the amount of GapA detected in this
mutant was considerably lower than in HA� clonal variants
and raised the question of whether the HA� phenotype dis-
played by mHAD3 is directly linked to the lack of CrmA. One
hypothesis that would explain such observation is that GapA
may be subjected to an accelerated turnover in the absence of
CrmA. In M. pneumoniae, the cell shape of which is reminis-
cent of that of M. gallisepticum, the complex sequence of events
leading to the assembly of the attachment organelle has begun
to emerge (17). In this human pathogen, several cytadhesin
accessory proteins are required for the proper localization of
the main adhesin P1 at the tip structure of the organism.
During this process, the absence of a key component required
by other molecular players downstream of the cascade results
in their accelerated turnover and in the loss of M. pneumoniae
cytadherent properties (17). M. gallisepticum proteins involved
in bleb formation have not been identified yet, but it is most
likely that they will interact after a sequence of events in which
both GapA and CrmA might be involved. So far, only two
products with homology to known cytadhesins of M. pneu-
moniae have been shown to localize at the terminal structure of
the avian mycoplasma. These are the MGC2 (12), the corre-
sponding gene of which is localized upstream of gapA, and the
phase-variable PvpA molecule, whose gene is located at a
different locus (3, 33). The results presented in our study
showed that the binding of erythrocytes to M. gallisepticum is
independent of the PvpA expression status, whereas the role of
MGC2 in this process has yet to be investigated. Finally, our
hypothesis that both GapA and CrmA are required in HA is
supported by the finding of Papizisi et al. (24) showing that
introduction of the wild-type gapA gene alone into the HA�

Rhigh failed to restore adherence to MCR-5 cells.
Data emerging from M. gallisepticum studies indicate that

several cytadhesin or related components have yet to be iden-
tified, defined, and characterized, a step which is crucial to
understand the exact contribution of each of these molecules
in promoting and maintaining a successful infection in the
avian host. As well, the understanding of the role of cell inva-
sion in vivo requires the identification of the molecular players
that allow the avian mycoplasma to enter nonphagocytic eu-
karyotic cells, which is directly linked to adhesion.
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4.2.   Role of the GapA and CrmA cytadherence prote ins in cell invasion and 
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Abstract 

In this study it was shown that M. gallisepticum is able to cross CaCo-2 cell monolayers with 

tight junctions and that this event relies on particular phenotypes. While the virulent, cell-

invasive [INV+] Rlow population was able to cross the CaCo-2 epithelial barrier, the avirulent, 

cell-invasion deficient [INV-]  Rhigh was not, a finding that correlates with previous in vivo 

data showing the dissemination of Rlow from the respiratory tract to the inner organs of the 

chicken host, while Rhigh only generates local infection. In contrast, testing of the RhighP10 

population (derived from Rhigh by 10 times passaging in cell cultures) revealed an 

intermediate translocation efficiency, a result which also correlates with our previous 

findings showing that RhighP10 is enriched with cell-invasive organisms and better 

disseminates throughout the host than Rhigh. Taken together, these data suggest that M. 

gallisepticum cell invasion appears to be involved in translocation through tight cell 

monolayers, a phenomenon that could participate in colonization of various host organs, if 

occurring in vivo. Although M. gallisepticum cell invasion surprisingly appeared to be 

independent of the presence of the GapA and CrmA cytadhesion-related products 

(corresponding to the hemadsorption-positive [HA+] phenotype), results obtained with the 

translocation assay suggest that these two proteins might play a role for crossing epithelium 

with tight cell junctions via transcytosis, as both the [INV+] and the [HA+] phenotypes are 

required. 

 

Introduction 

Organisms belonging to the genus Mycoplasma have often been portrayed as “simple” or 

“primitive” bacteria due to their lack of cell wall, the small size of their genome and the 

paucity of their metabolic pathways. Despite these apparent handicaps, several 

Mycoplasma species are successful pathogens of man and animals in which they cause 

mild to severe diseases often characterized by their morbidity and their chronic nature 

(Minion 2002, Ishihara et al. 2004, Waites and Talkington 2004). While data of entire 

mycoplasma genomes have shed lights on important aspects of mycoplasmas evolution and 

cell biology (Razin et al. 1998), very little has been gathered regarding the genetic 

information contributing to mycoplasma-host interactions and virulence. Indeed, filling this 

gap might be more difficult to achieve than expected, as these so-called simple organisms 

seem to have elaborated complex strategies to colonize and survive within their 

immunocompetent hosts, some of which involved spontaneous, high-frequency variation of 

their surface components (Citti and Rosengarten 1997, Razin et al. 1998, Rosengarten et al. 

2000, Citti et al. 2005). Defining the exact nature of mycoplasma virulence factors requires 

the concomitant development of methods for targeted mutagenesis and in vivo and in vitro 

modeling.  

In recent years, a better understanding of the strategies developed by M. gallisepticum to 

establish successful infection in its natural chicken host has started to emerge (Markham et 
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al. 1998, Papazisi et al. 2000, Winner et al. 2000, Yoshida et al. 2000, Papazisi et al. 2002, 

Winner et al. 2003) and offers a basis for appreciating the overall approaches taken by 

pathogenic mycoplasmas to subvert infected animals or human. Interestingly, M. 

gallisepticum and the human pathogens M. genitalium, M. pneumoniae and M. penetrans 

belong to the Mycoplasma pneumoniae phylogenetic group (Weisburg et al. 1989) and are 

among the few Mycoplasma species described so far as facultative intracellular organisms 

(Lo et al. 1993, Jensen et al. 1994, Baseman et al. 1995, Winner and al. 2000). Attachment 

of M. gallisepticum to host cells is thought to occur via a terminal organelle (Uppal and Chu 

1977, Tajima et al.1979) also displayed by M. genitalium (Mernaugh et al. 1993) and by M. 

pneumoniae (Feldner et al. 1982, Krause and Balish 2001) and to involve surface proteins 

presenting similarities to cytadhesins described in M. pneumoniae (Papazisi et al. 2000, 

Boguslavsky et al. 2000). Like many other pathogenic mycoplasmas, M. gallisepticum 

displays a predilection for the mucosal surface of the respiratory tract of its natural host, and 

this surface colonization typically results in chronic respiratory disease. From this niche, this 

avian pathogen is also able to disseminate throughout the body to colonize several inner 

organs (Much et al. 2002), an event that requires the mycoplasma to cross the mucosal 

epithelial barrier. Recent sequencing of the M. gallisepticum genome revealed that the keys 

to this complex infection pattern resides within a total of 742 predicted coding DNA 

sequence, 39% of which do not fit into the current database of conserved orthologous 

groups (COGs; Papazisi et al. 2003).  

Health and economic damages caused to the poultry industry by M. gallisepticum infections 

(Mohammed, et al.. 1987, Stipkovits and Kempf. 1996) have stimulated a number of studies 

related to the factors involved in virulence of this pathogen. Several of these have attempted 

to identify the molecular players responsible for the difference in pathogenicity observed 

between a low laboratory passage (Rlow) and a high laboratory passage (Rhigh) in artificial 

culture media of the prototype strain R representing, respectively, virulent (Rlow) and 

avirulent (Rhigh) populations, (Levisohn et al. 1986, Much et al. 2002). In vivo, Rlow was 

shown to induce local and systemic infections accompanied by air sac lesions while 

colonization of chickens by Rhigh appeared to be restricted to the respiratory tract resulting in 

very mild to no damage (Much et al. 2002). Two M. gallisepticum cytadhesin related 

components identified in Rlow, namely GapA and CrmA, are lacking in Rhigh (Papazisi et al. 

2000). Restoration of the GapA and CrmA expression in Rhigh by introducing the 

corresponding genes of the wildtype did not result in tracheal lesions in infected birds but 

generated significant air sac lesions with an overall score lower than in chickens infected 

with Rlow, suggesting that other factors might be responsible for M. gallisepticum 

pathogenicity (Papazisi et al. 2002). Interestingly, in vitro analyses have demonstrated that 

Rlow is capable of establishing intracellular residence in non-phagocytic eukaryotic cells, 

while Rhigh remains extracellular (Winner et al. 2000). Once internalised, M. gallisepticum is  

capable to escape the intracellular space and leave the cell. These results, however, were  
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based on infection of conventional semi-confluent monolayers which did not mimic the 

polarized arrangement of mucosal cells in vivo. This raised the question of whether M. 

gallisepticum cell invasion could provide a basis for systemic infection by allowing the 

organism to cross epithelial layers with tight junctions. These intercellular junctions 

represent a rate-limiting barrier against passive flux of small and large solutes but also 

against bacteria which must disassemble the junctional complexes or enter the eukaryotic 

cells to resurface on the other side in order to translocate through the polarized epithelium 

(McCormick 2003).  

The present study has assessed the capacity of M. gallisepticum to cross a cell monolayer 

with tight junctions using a classical in vitro translocation assay system. Results showed that 

M. gallisepticum translocates through a tight monolayer and further suggested that this 

process is occurring via transcytosis. It was also shown that translocation might be 

depending on the presence of the GapA and CrmA cytadhesion-related products which 

surprisingly did not appear to be essential for cell invasion. The role of M. gallisepticum cell 

adhesion and cell invasion in translocation through epithelial barriers is further addressed 

and discussed.  

 

MATERIALS AND METHODS 

Mycoplasma strains and growth conditions. M. gallisepticum laboratory passages Rlow 

and Rhigh used in these and earlier studies were kindly provided by S. Levisohn, Kimron 

Veterinary Institute, Bet Dagan, Israel. Rlow and Rhigh correspond to the prototype strain R 

propagated by 10 and 160 passages in artificial culture medium, respectively (Lin and 

Kleven 1984). RhighP10 was previously described and derived from Rhigh after 10 passages 

in the presence of HeLa cells (Winner et al. 2000). The RCL2 clonal variant was isolated 

from Rlow and shown to display the hemadsorption negative phenotype [HA-] and to lack the 

GapA and the CrmA products (Winner et al. 2003). Mycoplasmas were grown at 37°C in 

modified Hayflick medium (Wise and Watson 1983) containing 20% (v/v) heat-inactivated 

horse serum (Life Technologies, Inc., Rockville, MD) to mid-exponential phase, as indicated 

by the metabolic color change of the medium. The number of viable mycoplasmas in a 

suspension was determined by plating serial dilutions onto modified Hayflick medium 

containing 1 % (wt/vol) Noble agar. After six to eight days of incubation at 37°C, the number 

of colony forming units (CFU) was counted using an SMZ-U stereomicroscope (Nikon Corp., 

Tokyo, Japan). M. gallisepticum clones used in this study were picked from solid media, 

expanded in 1 ml of liquid medium and kept at -80°C  for further analyses. Competent cells 

of Escherichia coli DH10B (Invitrogen) were used as host to clone recombinant products 

and grown at 37ºC in Luria-Bertani (LB) broth supplemented with 100 µg ampicillin per ml 

for plasmid preparation.  

Colony immunoblotting and hemadsorption assay. Colony immunoblotting was 

performed as previously described (5) using antibodies and conditions described below for 
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Western blot analyses. The hemadsorption assay was conducted directly on agar plate. 

After partially lifting the mycoplasma colonies onto nitrocellulose membranes, the colonies 

were overlaid with 15 ml of fresh sheep blood washed and resuspended in phosphate-

buffered saline (PBS) solution (2.7mM KCl, 1.2mM KH2PO4, 138mM NaCl, 8.1mM 

Na2HPO47H2O, pH 7.4) to a final concentration of 0.5 % (vol/vol). After incubation at 37 °C 

for 30 min, the suspension was then carefully discarded and unbound erythrocytes were 

gently removed by washing with PBS. Mycoplasma colony immunostaining and binding of 

the erythrocytes were observed using a SMZ-U stereomicroscope (Nikon Corp., Tokyo, 

Japan). 

SDS-PAGE and Western blot analysis. Protein profile analysis of M. gallisepticum 

populations and clones used in this study was performed by SDS-PAGE followed by 

Coomassie staining or Western blotting using the whole cell extract or fractions obtained by 

Triton-X114 (Sigma) partitioning as described elsewhere (Wise and Watson 1993).  

Antibodies.  Antibodies (Abs) used for Western blot analysis were previously reported and 

included (i) a rabbit anti-GapA antiserum (Goh et al. 1998), diluted 1:8,000, and (ii) the anti-

Pvpa monoclonal antibody (MAb) 1E5 (Yogev et al. 1994), diluted 1:50. Detection of 

antibody binding was achieved using peroxidase-conjugated swine antiserum to rabbit 

immunoglobulin (Ig) (Dako, Copenhagen, Denmark) or to mouse IgM (Jackson Immuno 

Research Laboratories Inc. West Grove, PA). Abs were diluted in tris-buffered saline 

solution (150 mM NacCl, 10 mM Tris-base) containing 0.05 % (vol/vol) Tween 20. 

Immunological reagents used in the double immunofluorescence (DIF) assay were also 

previously described and included an anti-M. gallisepticum antiserum, diluted 1:150 in PBS-

BSA, as well as Texas Red-labeled and fluoresceinisothiocyanate (FITC)-labeled goat 

antibodies to rabbit Ig (Harlan Sera-Lab, LTD, Loughborough, England), diluted 1:150 in 

PBS-BSA (Winner et al. 2000).    

Cell cultures. All cell culture reagents were obtained from Gibco BRL, Life Technologies. 

The human epithelial-like cell line HeLa-229 (ATCC CCL-2.1) and the human colonic cell 

line CaCo-2, (ATCC CRL-1590), were both purchased from the American Type Culture 

Collection (ATCC, Manassas, VA). Both cell lines were grown in a 5% CO2 atmosphere at 

37°C, HeLa cells in minimum essential medium contai ning 2 mM L-glutamine and Earl’s 

balanced salts, supplemented with 7.5% (v/v) fetal calf serum, 5% (v/v) tryptose phosphate 

broth, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 100 U/ml of penicillin, 100 

µg/ml of streptomycin and 10 mM Hepes buffer (MEMS) and CaCo-2 cells in Dulbecco´s 

modified Eagle´s medium (DMEM) supplemented with 10%(v/v) fetal calf serum, 0.1 mM 

non-essential amino acids, 100 U/ml of penicillin, and 100 µg/ml of streptomycin. 

Propagation of the cell lines was performed in cell culture flasks (Iwaki Glass Co., LTD, 

Gyoda, Japan). Cell monolayers were detached from cell culture vials by trypsinization as 

recommended by ATCC and seeded at 10 to 20% confluency into Lab Tech II chamber 

slides (Nalge Nunc International, Naderville, IL) for confocal laser scanning microscopy (see 
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below) 24 hours prior to mycoplasma infection, and at 30 to 40% confluency into 24-well 

microdilution dishes (Corning Costar Europe, Badhoeverdorp, The Netherlands) for the 

gentamicin assay (see below) three days prior to infection. Translocation assays basically 

followed the protocol described by Konkel et. al. 1992. Briefly, filter units (Millicell-PCF, PITP 

012 50, Millipore, Bedford, MA) containing 0.6 cm2 membranes with 3 µm pore-size were 

placed into the wells of a 24-well microdilution dish. After 30 min of pre-incubation in DMEM, 

the filter units were transferred into fresh medium and inoculated with 2x 105 CaCo-2 cells. 

The medium in both, the upper and the lower chamber was changed every three days. The 

monolayer integrity was measured using the dextran blue exclusion assay described by 

Birkness et al. 1999. Briefly, filter units were placed into fresh medium and 0.5 ml of a 0,5% 

(w/v) solution of blue dextran 2000 (Amersham Pharmacia Biotech, Uppsala, Sweden) was 

added to the upper chambers. After 2 h of incubation in a 5% CO2 atmosphere at 37°C, the 

optical density (OD) of the medium of the lower chamber was measured at 620 nm with 

DMEM only as standard OD. Filter units without cells or seeded with HeLa cells were used 

as negative controls. Tight monolayers were usually ready (OD≤0.08) for translocation 

experiments after 14 days. Cell cultures were regularly shown to be free of mycoplasma 

contamination by plating the eukaryotic cells on mycoplasma agar medium as described 

above. 

Cell invasion assays.  The capacity of different M. gallisepticum strain R subpopulations or 

clones to enter eukaryotic cells was assessed using the gentamicin invasion (Elsinghorst 

1994) and/or the double immunofluorescence assays (Heesemann and Laufs 1985), as 

previously described for this mycoplasma species (Winner et a.. 2000). With the gentamicin 

assay, the frequency of invasion was estimated as the ratio between the number of 

organisms that have survived the antibiotic treatment and the number of mycoplasmas used 

as inoculum. Each experiment was done with HeLa cells and was performed in triplicate. In 

the double immunofluorescence assay, detection of intracellular and extracellular 

mycoplasmas was carried out as previously described using rabbit anti-M. gallisepticum 

antiserum in combination (i) with FITC-labeled anti-rabbit Ig as secondary antibody to stain 

extracellular organisms before permeabilization of the cells,  and (ii) with Texas Red-labeled 

anti-rabbit Ig as secondary antibody to stain extracellular and intracellular mycoplasmas 

after permeabilization.  

Translocation assays.  Mycoplasma cells were suspended in cell culture medium using a 

syringe as described elsewhere (Winner et al. 2000) to a final concentration of 

approximately 107 CFU/ml. CaCo-2 monolayers were washed in antibiotic-free DMEM and 

infected on the apical side with 250µl of the mycoplasma solution, giving a multiplicity of 

infection of approximately 20:1 (mycoplasmas to cells). The filter units were placed into a 

well containing fresh antibiotic-free DMEM and incubated for 2 h in a 5% CO2 atmosphere 

at 37°C. Serial dilutions of medium of the lower ch amber were plated on solid medium as 

described above to assess the number of mycoplasmas that have crossed the monolayer. 
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The number of CFUs of the inoculum was calculated before incubation following the same 

procedure.   

DNA manipulations. Standard methods were used for DNA manipulations including 

agarose gel electrophoresis, restriction endonuclease digestion, ligation, chemical 

transformation, and electroporation as described or according to manufacturer’s instructions. 

Southern hybridizations were performed according to the Genius System User’s Guide for 

Membrane Hybridization, Version 3.0 (Roche Molecular Biochemicals, Mannheim, 

Germany).  

Tagging of selected clonal variants. The plasmid pISM2026 was kindly provided by Dr. C. 

Minion (Iowa States University, Ames, IA) and carries the Tn4001 in which a BamH1 

restriction site has been previously inserted in one inverted sequence (IS) (Knudtson and 

Minion. 1993). This plasmid was modified for other studies not reported here by inserting, 

into the BamH1 restriction site, random tag-oligonucleotide sequences generated as 

previously described by Hensel et al. (1995) using the oligonucleotide 

5´CTAGGTACCTACAACCTCAAGCTT(NK)20AAGCTTGGTTAGAATGGGTACCAG´ 

(BamHI restriction sites are indicated in bold letters). The resulting tagged plasmids, 

pISM2026-tag, were used to transform E. coli. Sequence analyses of several recombinant 

plasmids showed that each carried a specific distinct Tag sequence. Five of these tagged 

recombinant plasmids containing the unique oligonucleotide Tag7 

(5´AGGTAGTTCGCTTGTAGCT 3´), Tag 9 (5´GAG AGTTGTTTCGGTATGG 3´), Tag 10 (5´ 

ATCGAGGTA TCGGTTGCTA 3´), Tag17 (5´ CGAGTGTTCAGGGTTGGG 3´), or Tag 20 

(5´AGAGATGCTGATTTAGCGG 3´) were individually used to transform M. gallisepticum 

clones as listed in Table 3 and as previously reported (Winner et al. 2003). Briefly, M. 

gallisepticum cells (approximately 109 CFU) washed three times and resuspended in 100 µl 

of electroporation buffer (8 mM HEPES pH: 7.4, 272 mM sucrose) were incubated on ice for 

10 min with 10 µg of a pISM2026-tag. The mixture was then subjected to electroporation 

(2.5 kV, 100 Ω, 25 µF), resuspended in 1 ml of chilled Hayflick medium and incubated on ice 

for 10 min and at 37 °C for 90 min. Gentamicin was then added to the mycoplasma cell 

suspension to a final concentration of 100 µg/ml, and aliquots of 25 to 100 µl were plated 

onto solid Hayflick medium containing 50µg/ml of gentamicin. After incubation at 37 °C for 8 

days, colonies were picked, individually grown and analysed. Tagged M. gallisepticum 

clones (i) that have retained the parental phenotype in terms of hemadsorption, protein 

profile and cell invasion, and (ii) that displayed a single Tn4001-tag chromosomal insertion, 

were selected for further studies.  

In vivo infection experiments. Experimental infections of chickens with M. gallisepticum 

were performed as previously described (Much et al. 2002). Briefly, a total of 121 one-day 

old Arbor Acress chickens, were selected as previously described from a flock certified free 

of M. gallisepticum and of M. synoviae. A total of 21 chickens were slaughtered and 

examined for pathological lesions as well as for the presence of mycoplasmas. No 
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pathological lesion characteristic of mycoplasma infection was found, and cultivation for 

mycoplasmas was negative. At the age of 21 days, the remaining chickens were weighted, 

marked and divided into four groups of 24 or 25 chickens, so that the average body weight 

of each group did not significantly differ based on the Student t-test. Each group was placed 

into an aerosol chamber of 0.224 m3 and inoculated respectively with 10 ml of culture media 

containing (i) no mycoplasmas (group 1), (ii) 9.2 x 108 CFU ml-1 of Rlow (group 2), (iii) 8.6 x 

108 CFU ml-1 of Rhigh (group 3), and (iv) 9.8 x 108 CFU ml-1 of the same mixture of genetically 

tagged clones (group 4) used for in vitro translocation assays, as described in Table 3. Each 

inoculum was pulverized into fine aerosol particles of 7 to 10 µm and sprayed for 2 min into 

the chamber. Birds were maintained in the unventilated aerosol chamber for an additional 

15 min before they were transferred to their isolation units. Feeding and cleaning of the four 

groups were then performed by four individual crews to avoid risks of cross-contamination. 

After nine days, each bird was weighted, slaughtered, and necropsy was performed for 

pathomorphological lesions. The lesions were documented by a scoring system 

characterized by the amount of fibrous exudates on the serous membrane of the thoracic air 

sacs. Gross lesions were scored on a scale from 0 (no lesions) to 8 (severe bilateral lesions) 

(Czifra et al. 2000). During necropsy, swabs were collected from (i) the trachea, (ii) the lung, 

(iii) the left air sac, (iv) the liver, (v) the spleen, (vi) the kidney, (vii) the brain, and (viii) the 

heart, and directly seeded into 5 ml of Hayflick medium. After three and six days of growth, 

the metabolic color change of each culture was recorded and an aliquot was plated onto 

solid media to monitor the presence or absence of mycoplasmas as previously described 

(Much et al. 2002).  

Statistical analysis. Invasion and translocation frequencies are expressed as mean ± 

standard deviation of n independent values. Frequencies of invasion and translocation were 

analyzed using the Student´s t test while air sac lesions scores were analyzed using the 

Chie Square test. The probability for significance was p ≤ 0.05. 

 

RESULTS 

Factors involved in M. gallisepticum cell invasion. In a previous study, invasion of non-

phagocytic eukaryotic cells by a low (Rlow) passage in culture media of the prototype strain R 

was demonstrated, while organisms of a high passage of the same strain remained outside 

of the cells. Ten times propagation of Rhigh in HeLa cell monolayers further resulted in a 

population RhighP10 (Fig.1) that was enriched in invasive organisms (Winner et al. 2000). In 

an attempt to identify the molecular factors that could account for M. gallisepticum cell 

invasion, the protein profiles of single colonies randomly picked from RhighP10 before and 

after gentamicin treatment in cell invasion assays were compared by SDS-PAGE analyses. 

Results indicated that the only consistent detectable difference was the presence of two 

proteins in several clones derived from the population which has survived the antibiotic 

treatment (RhighG11) which were absent from all clones randomly picked from RhighP10. 
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These products of about 105 and 120 kDa, respectively, were identified by Western blot 

analysis as the GapA and CrmA cytadhesins, two proteins encoded by the same operon 

and not expressed in Rhigh (Papazisi et al. 2000). Since it has been previously shown that 

binding of erythrocytes to M. gallisepticum colonies correlates with the expression of GapA 

and CrmA (Winner et al. 2003), clones derived from RhighP10 and RhighG11 were subjected 

to the hemadsorption (HA) assay. As expected, results confirmed that clones derived from 

RhighG11 that expressed the two cytadhesins were HA positive [HA+] while those derived 

from RhighP10 were HA negative [HA-].   

To better understand the role of GapA and CrmA in host cell invasion, two [HA-] clones, 

namely RHG11K5 and RHG11K6, and one [HA+] clone, namely RHG11K8, that derived 

from RhighG11 (Fig. 1 and Table 1) were subjected to the double immunofluorescence and to 

the gentamicin cell invasion assays. While the two clones RHG11K6 and RHG11K8 

displayed a cell-invasive ability similar to that of Rlow (further referred to as [INV+]), the 

RHG11K5 clone was unable to invade non-phagocytic cells (further referred to as [INV-]). 

Taking into account that RHG11K6 is [HA-] and does not express the two major cytadhesins 

GapA and CrmA, these data were unexpected and indicated that cell invasion, at least in 

vitro, may be independent from the presence of one or both proteins. To confirm this finding, 

the [HA-] RCL2 clone which derived from Rlow and previously shown to lack both GapA and 

CrmA (Winner et al. 2003), was subjected to the gentamicin and double immunoflurescence 

assays. Results revealed that RCL2 was able to enter non-phagocytic eukaryotic cells with 

efficiency similar to that of Rlow supporting the hypothesis that the GapA and CrmA are not 

required in vitro for M. gallisepticum cell invasion.  

In Rlow, the expression of GapA and CrmA undergoes phase variation in expression, an 

event that is driven by a highly reversible point mutation occurring in the beginning of the 

gapA gene (Winner et al. 2003).  In the [HA-] Rhigh population, a point mutation located in the 

beginning of gapA also is responsible for the absence of GapA and CrmA but is located 

elsewhere (Papazisi et al. 2002)  and is reversible with a low frequency. Sequencing of the 

5’ end of the RHG11K5 and RHG11K6 gapA genes revealed the presence of a point 

mutation identical to that found in Rhigh. 

Translocation of M. gallisepticum through cell monolayers with tight junctions. In the 

chicken host, M. gallisepticum cell invasion has been proposed to play a role in escaping the 

host immune defenses but also in allowing the pathogen to cross epithelial barriers in order 

to disseminate throughout the body and to cause systemic infection (Winner et al. 2000, 

Much et al. 2002). This observation prompted us to assess in vitro the ability of Rlow and 

Rhigh to pass through an epithelial barrier with tight junctions. For this purpose, CaCo-2 cells 

were grown in a two-chamber system onto a permeable support membrane until formation 

of tight intercellular junctions, so that the resulting intact monolayer represented a limiting 

barrier against passive diffusion of small and large molecules. Infection of intact CaCo-2 

monolayers was performed with Rlow and Rhigh, respectively, by the apical side of the system 
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(upper chamber), and the presence of mycoplasmas in the lower chamber was assessed 

after 2 h by direct plating of serial dilutions of the medium onto agar plates. Controls 

included chamber systems without cells and with confluent HeLa cell monolayers, which 

unlike the CaCo-2 cells are unable to form tight junctions. Results presented in Table 2 

indicate that Rlow and Rhigh significantly differ (P <0.01) in their capacity to translocate 

through the polarized CaCo-2 cell monolayer. While about 4 % of the inoculum of Rlow were 

recovered in the lower chamber after 2 h of infection, only 0.2% of the inoculum of Rhigh were 

recovered. In contrast, controls showed that about 19% and 29 % or 34% and 28% of the 

inoculum of Rlow and Rhigh, respectively, transferred from the upper to the lower chamber 

when confluent HeLa cell monolayers or the permeable support membrane alone were used 

in the assay (see Table 2). Since Rlow is able to established intracellular residence in a 

variety of non-phagocytic cells (Winner et al. 2000), including the CaCo-2 cell line (data not 

shown), while Rhigh remains extracellular, these results suggested that M. gallisepticum 

translocation through a monolayer with tight junctions correlates with cell-invasion. This 

hypothesis was further supported by performing the translocation assay (i) with the RHC3 

cell-invasive negative clone that derived from Rhigh by random picking, and (ii) with the 

RhighP10 population which was previously obtained by 10 serial passages of Rhigh in HeLa cell 

monolayers and which was described as being enriched in invasive organisms (Winner et al. 

2000). Results indicate that RCH3 behaved as the parental Rhigh (Table 2), whereas the 

number of mycoplasmas recovered in the lower chambers was significantly higher (P <0.01) 

with RhighP10 as inoculum (Table 2). 

Factors influencing translocation of M. gallisepticum through an epithelial barrier. 

Strategies employed by M. gallisepticum to translocate through epithelial barriers could 

involve passage via the cell by transcytosis or via the cell junctions, or by killing of the cells. 

In order to better understand which translocating route is taken by the avian pathogen and 

the nature of the factors involved in this process, the translocation assay was performed 

with a mixture of clones all derived from Rhigh but displaying different [HA] and [INV] 

phenotypes. This mixture includes (i) [HA-/INV-] RHC3, (ii) the [HA-/INV-] RHC3P10 clone 

derived from RCH3 by random picking after 10 times passaging through HeLa cell 

monolayers, and (iii) the RHG11K5, RHG11K6, and RHG11K8 clones described above that 

display the [HA-/INV-], [HA-/INV+] and [HA+/INV+], respectively, (see Tables 1 and 3). Prior 

to the assay, each clone was genetically tagged by chromosomal insertion of the 

Tn4001mod carrying a unique oligonucleotide tag-sequence for further identification. 

Expression of GapA and CrmA, growth, and invasion capability of each tagged clone was 

shown not to differ from that of its respective parent.  

The translocation assay was performed as described above with the tagged-clones mixed in 

the proportion indicated in Table 3, and mycoplasmas recovered in the lower chamber after 

2 h of infection were plated onto solid media. From the grown colonies, 91 were randomly 

picked and subjected to dot-blot hybridization with tag-specific oligonucleotide probes to 
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identify those that have crossed the tight monolayer. Results revealed (Fig. 2 and Table 3) 

that 96.70 % of the mycoplasmas that are detected in the lower chamber possessed the 

Tag17 carried by clone RHG11K8. This result suggests that translocation of mycoplasmas 

through CaCo-2 cells forming tight intercellular junctions does not affect the overall integrity 

of the monolayer as the clone, RHG11K8, recovered in the lower chamber was the less 

represented in the inoculum (8.00%). This specific translocation almost excluded the cell-

invasive RHG11K6 clone which only represented 2.19% of the mycoplasmas that have 

translocated. Since this clone lacks GapA and CrmA, this raised the question of the direct 

influence of these two molecules in the translocation process. To further assess this 

question, the translocation assay was performed with the [HA-/INV+] RCL2 clone (Table 1). 

Results indicated that RCL2, like RHG11K6, is unable to cross the epithelial barrier 

composed of tight CaCo-2 cells (see also Table 2).   

Factors involved in M. gallisepticum host colonization.  Data described above were 

obtained using in vitro assays and might not reflect the in vivo situation. We therefore 

assessed their relevance in experimental infection using the natural host, the chicken, as 

infection model. Four groups of chickens were aerosol inoculated as previously described 

(Much et al. 2002), with (i) media alone (group 1), (ii) Rlow (group 2), (iii) Rhigh (group 3), and 

(iv) with the exact same mixture (mix) of genetically tagged clones (group 4) used in the in 

vitro translocation assays and described above (see also Table 3). After nine days of 

infection, the presence of air sac lesions was assessed and their severity was scored (Table 

4). As well, swabs were taken from the respiratory tract and from inner organs to define the 

presence of M. gallisepticum in different body sites by cultivation in liquid media followed by 

plating onto agar plates. Results showed that the severity of the air sac lesions is lower in 

birds infected with the mixed clones than in birds infected with Rlow, but is significantly higher 

than that recorded in birds infected with Rhigh (Table 4). Overall, frequencies of mycoplasma 

re-isolation from the respiratory tract was similar in all infected groups although it is worth 

mentioning that it was lower in samples collected from the lung and the air sacs of birds 

infected with Rhigh. In contrast, the overall frequency of re-isolation from inner organs 

observed with samples collected from birds infected with Rhigh (2/25) dramatically differs 

from that obtained with groups infected with Rlow (24/24) or with the mixed clones (24/24).  

In order to define the nature of the clones recovered in samples collected from birds infected 

with the mixture of clones, 94 individual colonies were randomly selected from all M. 

gallisepticum positive samples collected from four birds displaying the highest rate of re-

isolation from both the respiratory tract and inner organs. A total of 2,350 colonies were then 

individually arrayed in 96-well plates and analyzed by dot blot hybridization using tag-

specific probes. Results showed that all colonies tested displayed the specific Tag17 

sequence originally inserted into clone RGH11K8, indicating that this clone is predominantly 

if not exclusively present in the mycoplasma population re-isolated from birds infected with 

the mixed population of five clones. Individual colonies deriving from these four infected 
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birds prior to cloning were additionally subjected to immunostaining with anti-GapA 

antibodies and/or to the hemadsorption assay. Results indicated that colonies randomly 

selected from the infected birds exhibited a GapA+ and [HA+] phenotype in accordance with 

that of the RHG11K8.  

 

DISCUSSION 

In this study it was shown that M. gallisepticum is able to cross in vitro a cell monolayer with 

tight junctions and that this event relies on particular phenotypes. The assay performed here 

is based on the well-described CaCo-2 human colonic cell line and has often been used to 

assess the translocation of enteric bacteria through the intestinal epithelium (Konkel et al. 

1992, Cruz et al. 1994). The CaCo-2 cell line is one of the very few that is able to form 

monolayer with tight junctions in vitro and is the most thoroughly described in the literature 

as a rate-limiting barrier against passive flux of small, large solutes (Birkness et al. 1999) or 

bacteria (Konkel et al. 1992). Since M. gallisepticum is mainly a respiratory pathogen, this 

cell line might not reflect the exact situation encountered in the chicken host. Despite this 

concern, the fact that M. gallisepticum nonclonal or clonal subpopulations derived from the 

same strain were shown to behave differently in this assay, is an important finding. Indeed, 

the virulent, cell-invasive Rlow population was able to cross the CaCo-2 epithelial barrier, 

while the avirulent, cell-invasion deficient Rhigh was not. Interestingly, these findings correlate 

with previous in vivo data showing the dissemination of Rlow from the respiratory tract to the 

inner organs of the chicken host, while Rhigh only generates local infection (Much et al. 

2002). Furthermore, testing of the RhighP10 population (derived from Rhigh by 10 times 

passaging in cell cultures) revealed an intermediate translocation efficiency, a result which 

also correlates with our previous findings showing that RhighP10 is enriched in cell-invasive 

organisms (Winner et al. 2000) and better disseminates throughout the host than Rhigh 

(Much et al. 2002). Altogether, these data tend to suggest that M. gallisepticum cell invasion 

could be involved in translocation through tight cell monolayers, a phenomenon that could 

participate in colonization of various host organs, if occurring in vivo.  

At the molecular level, Rlow expresses two products, GapA and CrmA ([HA+] phenotype) 

which have been described as major adhesins and are lacking in Rhigh. Our previous in vitro 

data showing Rhigh in close contact at the surface of HeLa cells or chicken embryo 

fibroblasts  (Winner et al. 2000) have suggested that other specific or unspecific factors of 

M. gallisepticum are involved in cell adhesion. In this study, close examination of RhighP10 

displaying the [HA-/INV+] phenotype has indicated that GapA and CrmA are not critical in 

cell invasion (see Table 1). This hypothesis was further supported by testing a [HA-] clone 

derived from Rlow, namely RCL2, that also turned out to be cell-invasive despite the lack of 

expression of the two cytadhesins. Since Rhigh has been obtained by serial passaging of Rlow 

in artificial culture medium and is not per se a clonal population it presumably contains minor 

subpopulations with different adhesive and/or cell-invasive properties which were enriched 



 45

following serial passaging in cell monolayers. This would explain the presence of clones in 

RhighP10 displaying the [HA+/INV+] and [HA-/INV+] phenotypes not previously detected in 

Rhigh but selected by the gentamacin cell invasion assay (clones RHG11K6 and RHG11K8, 

see Fig. 1 and Table 1). The gapA gene sequences of the two [HA-] clones selected in this 

study from RhighP10 (clones RHG11K5 and RHG11K6) revealed a point mutation that has 

already been described for Rhigh and that is responsible for the absence of GapA and CrmA 

products (Papazisi et al. 2002). One of these [HA-] clones, RHG11K6, is [INV+]  while the 

other, RHG11K5 is [INV-], implicating that independent mutational events are responsible 

for the two phenotypes. 

Although M. gallisepticum cell invasion appeared to be independent of the GapA/CrmA 

expression, results obtained with the translocation assay suggest that these two proteins 

might play a role in the ability of the avian pathogen to cross epithelium with tight cell 

junctions. Indeed, [HA-/INV+] or [HA-/INV-] clones were unable to efficiently translocate 

through tight CaCo-2 cell monolayers indicating that the invasive phenotype alone is not 

sufficient to promote translocation. Due to the lack of an appropriate screening method 

[HA+/INV-] clones have not been isolated in this study. This raised the questions of whether 

the [HA+] phenotype alone would allow such event to occur and which translocating route 

are taken by the mycoplasma. A partial answer was provided by performing the 

translocation assay with a mixture of [HA-/INV+] and [HA+/INV+] clones. In one scenario, 

mycoplasmas displaying the [HA+/INV+] phenotype could cross the epithelium by damaging 

the integrity of the monolayer either by killing the cells or by breaking the tight junctions. This 

would result in a permeable monolayer and all mycoplasmas, regardless of their 

phenotypes, would then be expected to translocate. However, results obtained within two 

hours suggest another picture, as almost all mycoplasmas that have crossed the 

monolayers displayed the [HA+/INV+] phenotype. Taking into account that [HA+/INV+] 

clones only represented 8% of the inoculum used to infect the apical side of the cell 

monolayer, this rather suggests that the route taken by the mycoplasmas involves passage 

via the cell by transcytosis and would then imply that both the [INV+] and [HA+] phenotypes 

are required. Whether GapA and/or CrmA play a direct or indirect role in this event, has still 

to be elucidated. One has also to bear in mind that CaCo-2 cells when completely polarized 

present a different surface architecture at the apical side (Guignot et al. 2001) than when 

grown individually for cell invasion assays. Whether non-translocating [HA-/INV+] clones do 

not bind to CaCo-2 tight cell monolayers or whether they are trapped into the cells after 

invasion has still to be elucidated.  

Transepithelial cell monolayer models are reductionist systems that have both the 

advantage and the inconvenience to mimic only part of the complex host mucosal surfaces. 

Aerosol inoculation of the chicken host with the same mixture of clones used in the 

translocation assay has shown that only the [HA+/INV+] clone is able to generate systemic 

infection. At the same time, [HA-/INV+] or [HA-/INV-] mycoplasmas could not be re-isolated 



 46

from the trachea. This was unexpected because the Rhigh displaying the [HA-/INV-] 

phenotype is colonizing the trachea, when used alone as inoculum in a parallel experiment 

(see Table 4). Insertion of the transposon used for tagging into a mycoplasma gene required 

for in vivo survival cannot be ruled out, but is unlikely to explain this observation since the 

[HA-/INV+] or [HA-/INV-] clones used in the in vivo infection experiment have inserted the 

Tn4001mod in different genomic locations some of which mapped into a silent gene of the 

large VlhA family (Papazisi et al. 2003) or in hypothetical proteins. Rather, re-isolation from 

all organs of only the clone displaying the wildtype phenotype [HA+/INV+] which was even 

under-represented in the inoculum used for infection might reflect a more predictable 

situation in which mycoplasmas with the highest fitness overtake their less competitive 

siblings. Nevertheless, these in vivo results correlate with the in vitro data and indicate that a 

classical translocation assay can be relevant to assess mycoplasma factors involved in 

pathogen-host cell interactions.  

This is the first time that a strategy combining in vitro translocating assays and in vivo 

experimental infection experiments with mixed, genetically tagged organisms as inoculum 

have been applied to mycoplasma studies. These approaches are promising as they offer 

the option to track down in in vitro or in vivo experiments organisms that only slightly differ in 

their genetic background and to assess the behavior of complex mycoplasma populations in 

interactions with their respective hosts.  
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TABLE 1.  Phenotypic features of subpopulations and clones derived from M. gallisepticum 
strain R. 
 

Phenotype Cell invasion d Designation Origin a 

HA b GapA/CrmA c  

Uncloned subpopulations  

Rlow R  + (v) + + 

Rhigh R - -  (1) - 

RhighP10 Rhigh - - + 

Clonal subpopulations 

RCL2 Rlow - -  (2) + 

RHC3 Rhigh - - - 

RHC3P10 RHC3 - - - 

RHG11K5 RhighG11 - - (1) - 

RHG11K6 RhighG11 - - (1) + 

RHG11K8 RhighG11 + +  + 

 
a Rlow and Rhigh derived from the original strain R by passaging in artificial media; RhighP10 
derived from Rhigh after 10 times passaging through HeLa cell monolayers, and RGH11 
corresponds to RhighP10 after gentamicin treatment in cell invasion assays.  
b Hemadsorption based on binding of erythrocytes on the surface of mycoplasma colonies. + 
and – indicate positive or negative binding of erythrocytes; (v) indicates that in Rlow, proteins 
involved in HA (GapA and CrmA) are undergoing phase variation in expression, however in 
Rlow the  [HA+] phenotype predominates. 
c Based on SDS-PAGE and Western blot analyses. The presence of GapA and CrmA was 
previously shown to correlate with the ability of the mycoplasma cells to bind erythrocytes. 
(1) and (2) indicate the presence of nonsense mutations in the gapA gene at nt 769 and nt 
1393, respectively (Papazisi et al 2000, Winner et al. 2003). Nucleotide positions 
correspond to the sequence published by Papazisi et al. 2000. 
d As defined by the gentamicin cell invasion assay and by double immunofluorescence (DIF) 
followed by confocal laser scanning microscopy using HeLa cells. + intracellular sighting 
using DIF and frequency of invasion similar to Rlow  as defined in Winner et al. 2000, - no 
intracellular sighting using DIF and frequency of invasion similar to Rhigh as defined in 
Winner et al. 2000 (see Materials and Methods).  
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TABLE 2.  Translocation frequencies of subpopulations and clones derived from M. 

gallisepticum strain R.  

 

 % Translocation a 

Strain R 
subpopulations 

and clones   CaCo-2 

Permeable 
support 

membrane 

 

HeLa-229 

Rlow  3.73 ± 0.77 34.27 ± 5.31 18.74 ± 3.31 

Rhigh  0.19 ± 0.05* 28.59 ± 3.05 28.97 ± 4.59 

RhighP10  2.11 ± 0.20§ 38.53 ± 6.32 35.33 ± 1.61 

RHC3  0.18 ± 0.06* 31.42 ± 6.78 n.d.c 

RCL2   0.19 ± 0.04* 23.33 ± 3.06 18.83 ± 2.97 

Mix b  0.87 ± 0.15*§ 24.50 ± 4.24 14.85 ± 3.28 

 
a  SD calculated with n>12 
b  Proportions of individual clones contained in the mixture and their phenotypes are 
indicated in Tables 3 and 1, respectively 
c  not done 
* Values that are significantly different from those obtained with Rlow.  
§ Values that are significantly different from those obtained with Rhigh.  
 
 
TABLE 3.  Outcome of translocation assays using a mixture of genetically tagged clones 
derived from M. gallisepticum Rhigh. 
 

    Proportion (%) 

Designation  Cell Invasion a Tag b HA c in inoculum   after 
translocation 

after 
infection 

RHC3 

RHC3P10 

RHG11K5 

RHG11K6 

RHG11K8 

-  (0.36±0.09) 

- (4.72±1.16) 

- (0.14±0.03) 

+ (5.70±1.00) 

+ (5.20±1.60) 

10 

20 

9 

7 

17 

- 

- 

- (1) 

- (1) 

+ 

30.8 

16.0 

25.5 

19.7 

8.0 

1.1 

0.0 

0.0 

2.2 

96.7 

0.0 

0.0 

0.0 

0.0 

100.0 

 
a See Table 1; SD calculated before tagging for HeLa cells with n =9  
b Tags are detailed in Materials and Methods 

c See Table 1; (1) Mutations in the gapA gene are identical to that of Rhigh  
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TABLE 4.  Outcome of aerosol inoculation of chickens with M. gallisepticum Rlow, Rhigh or a 
mixture of genetically tagged clones derived from Rhigh. 
 

Inoculum Control a Rlow Rhigh Mix b 

Group 

Total number of birds 

1 

25 

2 

24c 

3 

25 

4 

24c 
 

Number of chickens presenting air 
sacculitis: 

    

Total lesion scores per group 0 187 2 96 

Mean lesion score per bird  0 7.79 0.08 4 

Number of birds with air sacculitis 0 24 2 18 

Mean lesion score per bird with air 
sacculitis 
 

0 7.79 0.08 4.57 

Frequency of re-isolation from:     

Trachea 0/25 24/24 18/25 21/24 

Lung 0/25 23/24 13/25 22/24 

Air Sac 0/25 17/24 9/25 19/24 

Liver 0/25 13/24 0/25 5/24 

Spleen 0/25 12/24 0/25 9/24 

Kidney 0/25 21/24 2/25 20/24 

Heart 0/25 22/24 0/25 19/24 

 
Total frequency of re-isolation from: 

    

Respiratory tract 0/25 24/24 23/25 24/24 

Inner organs 0/25 24/24 2/25 24/24 

     

 
a Sterile broth medium used for aerosol inoculation 
b  Proportions of individual clones contained in the mixture and their phenotypes are 
indicated in Tables 3 and 1, respectively 
c Rlow- and mix- infected groups were composed of 25 chickens. In each of these groups, 
one bird died and the corresponding values were not included 
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Figure Legends  

 

FIG. 1. Panel A : Flow chart representing the relationship between subpopulations derived 

from M. gallisepticum strain R. Rlow, Rhigh and RhighP10 have been previously described 

(Winner et al. 2000) and derived from strain R by serial laboratory passage in artificial 

culture media or through HeLa cell cultures. RhighG11 was obtained after subjecting HeLa 

cells infected with RhighP10 to gentamicin treatment. Clones that were selected from M. 

gallisepticum populations are indicated by an asterisks. Panel B : The expression of the 

GapA and PvpA proteins was assessed by Western blotting and is illustrated for RHG11K5 

(lane 1), RHG11K6 (lane 2), RHG11K8 (lane 3), RHC3 (lane 4), and RHP10 (lane 5). 

 

FIG. 2. Identification of M. gallisepticum clones that have translocated through CaCo-2 cell 

monolayers by hybridization. A translocation assay was performed using a mix of five clonal 

variants described in Table 3, each carrying a different oligonucleotide tag (Tag 7, 9, 10, 17 

and 20). After translocation, mycoplasmas contained in the lower chamber were recovered, 

plated and 91 single colonies were randomly picked and cultured into a 96-well microtiter 

plate (Panel A). The 91 cultures were analyzed by dot blot hybridization using 

oligonucleotide probes P7, P9, P10, P17 and P20 corresponding to each tag, as indicated 

below Panels B through D. Except for the experiment illustrated in Panel D, the membrane 

was stripped in between hybridization with the different probes. Controls in positions D12, 

E12, F12, G12 and H12 (boxed) corresponded to clones containing individual Tags 7, 9, 10, 

17 and 20 as indicated.  
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4.3. Role of the GapA and CrmA cytadherence protein s in vivo 
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Abstract 

Mycoplasma gallisepticum is an important avian pathogen that commonly induces chronic 

respiratory disease in chickens. To better understand the mycoplasma factors involved in 

host-colonization, chicken were infected via aerosol with two hemadsorption negative [HA-] 

mutants, mHAD3 and RCL2, that derived from a low passage of the pathogenic strain R, 

Rlow, and are both deficient in the two major cythadhesin, GapA and CrmA. After 9 days of 

infection, chickens were monitored for air sac lesions and for the presence of mycoplasmas 

in various organs. Data showed that the mHAD3 in which the crmA gene has been disrupted 

does not promote efficient colonization or significant air sac lesions. In contrast, the 

spontaneous [HA-] RCL2 mutant which contains a point mutation mutation in the gapA 

structural gene successfully colonized the respiratory tract and display an attenuated 

virulence when compared to Rlow. In a previous study, the RCL2 point mutation was shown in 

vitro to spontaneously revert with a high-frequency resulting in ON and OFF switching of the 

HA phenotype. Detailed analyses further revealed that such event is not responsible of the 

observed in vivo outcome since 98.4% of the mycoplasma populations recovered from 

RCL2-infected chicken still display the mutation and the associated phenotype. Unlike Rlow, 

RCL2 was however unable to colonize inner organs. These findings demonstrate the major 

role played by the GapA and CrmA products in M. gallisepticum host colonization and 

virulence.  
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Introduction  

The wall-less bacterium M. gallisepticum is an important avian pathogen that commonly 

induces chronic respiratory disease in chickens (16, 18, 27, 33) and sinusitis in turkeys (9). In 

chickens, other clinical manifestations such as arthritis and salpingitis can also be observed 

(1). M. gallisepticum infections are responsible for considerable economic losses worldwide 

and consequently a large number of studies have been dedicated to the better understanding 

of its biology and of the factors involved in host-interactions.  

M. gallisepticum mainly colonizes its host via the muscosal surfaces of the respiratory tract 

causing air sacculitis within a few days (20). The mycoplasma propensity to then disseminate 

throughout the body and to generate systemic infection is reflected by the high rate of M. 

gallisepticum re-isolation from inner organs such as the liver, the heart, the spleen or the 

kidney, in birds experimentally infected via aerosol (20). M. gallisepticum successful infection 

may rely on two independent phenomenons that may provide M. gallisepticum with means to 

circumvent the specific host defenses. These are the high versatility of its surface 

architecture that occurs via phase variable expression of vlhA family members (7, 22), and 

the mycoplasma ability to establish facultative intracellular residence in non phagocytic host-

cells (29).  

For colonization, dissemination or cell invasion, the attachment of M. gallisepticum to host-

cells is a crucial event that is mediated via a unipolar terminal organelle or bleb-like structure 

containing at least two potential cytadhesin-related proteins. These are the phase variable 

PvpA molecule (3) and a 32 kDa product encoded by the mgc2 gene (15) that both display 

homology to the P30 adhesin of the human pathogen M. pneumoniae (26). Interestingly, 

mgc2 is located a few hundred nucleotides upstream of a cluster of four cytadherence 

related genes designated (from 5’ to 3’) gapA (or mgc1) (13, 17), crmA (or mgc3) (25, 35), 

crmB and crmC (24). While the role of CrmB and CrmC in adherence has only been 

predicted in silico (24), several independent in vitro studies have shown that the GapA and 

CrmA products are two major cythadhesins of M. gallisepticum strain R (25, 28). Indeed, a 

high, avirulent passage of strain R (Rhigh) that lacks both GapA and CrmA has a diminished 

capacity in adhering to MRC5 human cells (25) and is deficient in binding erythrocytes on 

colonies (28) when compared to a low, virulent passage of the same strain (Rlow). In Rhigh, the 

lack of GapA and CrmA is due to an additional adenine residue in the beginning of the 

structural gapA gene that results in a premature stop codon and has a negative polar effect 

on the transcription of the crmA gene located downstream (25). Interestingly, 

complementation of Rhigh with wild-type gapA or crmA genes did not restore in vitro adhesion 

to MRC5 cells while introduction of the wild-type gapA-crmA operon did (23). Although Rhigh 

transformants that have reacquired expression of both products induce air sacculitis in 

chickens, lesion scores were lower than those observed with Rlow and no tracheal lesions 
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were detected (23). Collectively, these data suggest that both GapA and CrmA are required 

for adhesion but also that other factors lacking in Rhigh may contribute to virulence.  

Recently, a reversible point mutation occurring at beginning of the structural gapA gene and 

corresponding to a base substitution was shown to govern the spontaneous high-frequency 

phase variation in expression of GapA (28). This mutational event, which is distinct from that 

described above for Rhigh, also has a polar effect on the transcription of the crmA resulting in 

the concomitant phase variation of the CrmA product. Oscillation in expression of the GapA 

and CrmA products is responsible for the variable binding of erythrocytes (HA) on MG 

colonies (28). This was demonstrated using by a lineage derived from Rlow and composed of 

clonal variants that alternatively displayed the [HA+] and [HA-] phenotype and expressed, or 

not, the two cythadesines, respectively. Phase variation in expression of surface components 

in pathogenic mycoplasma species has been extensively described and a collection of 

genetic systems generating high-frequency has been reported (5, 7, 30, 34). These mainly 

include gene family encoding related surface proteins and single-copy gene encoding 

molecules with adhesive properties. However, the significance and consequences of this 

phenomenon have been rarely addressed in vivo and only in the case of complex gene 

family (11, 14).  

The aim of this study was to assess in vivo the colonizing ability and the virulence of a well 

characterized [HA-] variant, namely RCL2 that was part of the clonal lineage described 

above, lacks the GapA and CrmA products and displays a base substitution in the gapA 

gene (28). For this purpose, chickens were experimentally inoculated via aerosol to monitor 

the virulence of RCL2 and the nature of the organs that were colonized. Since the two GapA 

and CrmA cythadhesins are believed to be important in infection we postulated that a back-

switching from [HA-] to [HA+] might confer a selective advantage in vivo, and therefore we 

also monitored the presence of these products and of the gapA gene mutation, in 

populations re-isolated from RCL2 infected chickens. The same experiment was conducted 

with the parental Rlow strain, with Rhigh and with the previously described mHAD3 mutant that 

derived from Rlow by insertion of the Tn4001mod in the crmA structural gene (28). In this 

mutant, disruption of the crmA gene lead to a [HA-] phenotype identical to that of RCL2 due 

to the lack of CrmA product and to the production of minute amount of GapA. Results 

presented in this study revealed that RCL2 and mHAD3 differ in virulence and in colonization 

of the birds. Interestingly, mHAD3 showed no virulence and a low frequency of re-isolation 

when compared to RCL2. Populations recovered and analyzed from RCL2 infected chickens 

all displayed the [HA-] phenotype but one. The role of GapA and CrmA in colonization of the 

lower and upper respiratory tract of chickens is discussed.  
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MATERIAL AND METHODS 

Mycoplasma strains and growth conditions. M. gallisepticum laboratory passages Rlow 

and Rhigh used in this study were kindly provided by S. Levisohn, Kimron Veterinary Institure, 

Bet Dagan, Israel. Rlow and Rhigh correspond to the prototype strain R propagated 10 and 160 

times in culture medium, respectively (19). The clonal variant RCL2 and the mutant mHAD3 

derived from Rlow by spontaneous mutation in the gapA gene (RCL2) or by insertion of the 

Tn4001mod in the crmA gene (mHAD3), respectively (28). Consequently these two mutants 

display the hemadsorption negative phenotype that correlates with the lack of expression the 

gapA and crmA genes. Specific rabbit antisera against the CrmA protein were produced as 

described below using antigens prepared from the clonal variant RCL1 which has been 

previously described and shown to express the CrmA product (28).   

Mycoplasmas were grown at 37°C in modified Hayflick  medium (32) containing 20% (v/v) 

heat-inactivated horse serum (Invitrogen Life Technologies, Rockville, MD) to mid-

exponential growth phase, as indicated by the metabolic color change of the medium. The 

number of viable mycoplasmas in a suspension was determined by plating serial dilutions on 

Hayflick medium containing 1% (w/v) agar, followed by incubation at 37°C. After 6-8 days, 

the number of colony forming units (CFU) was counted using an SMZ-U stereomicroscope 

(Nikon, Tokyo, Japan). The presence of the Tn4001mod in mycoplasma populations 

recovered from infected chickens was assessed by plating appropriate dilutions on solid 

media without or with 100 µg per ml of gentamicin. 

Escherichia coli DH10B (Invitrogen) was used as host to clone recombinant products and 

grown at 37°C in Luria-Bertani broth supplemented w ith 100 µg of ampicillin per ml for 

plasmid preparation. 

Experimental infection procedure. The experimental infection procedure performed in this 

study is identical to that previously described by our group (20). Briefly, one hundred and fifty 

Arbor acress chickens of 21-day old and certified free of mycoplasmas were divided into five 

groups of 30 birds each.  Each group was placed in an aerosol chamber and inoculated with 

10 ml of culture medium pulverized into fine aerosol particles of 7 to 10 µm and sprayed for 2 

min into the chamber. Inoculum consisted of (i) 9.6x 109 CFU of Rhigh, (ii) 10.5x109 CFU of 

Rlow, (iii) 9.7x109 CFU of mHAD3, (iv) 4x109 CFU of RCL2 or (v) medium alone with no 

mycoplasma. Infected birds were slaughtered nine days post-infection and necropsy was 

performed for pathomorphological lesions of the thoracic and abdominal air sacs that were 

documented by a scoring system previously described (8) with a maximum theoretical score 

of 12 per bird.  

During necropsy, swabs were collected from several body sites of the respiratory tract (the 

trachea, the lung and the left thoracic air sac) and of deeper inner organs (the spleen, the 

liver, the kidney and the heart). Samples were directly transferred into culture medium and 
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incubated at 37°C. Samples that showed a metabolic color-change within 14 days were 

further processed while the remainings were kept at 37°C for six additional days. All samples 

were stored at –80°C for further analysis after an aliquot from each grown culture was plated 

in two dilutions onto Hayflick agar plates. Mycoplasmas were identified as M. gallisepticum 

on randomly selected cultures by colony immunobloting using anti-M. gallisepticum rabbit 

polyclonal serum in dilution 1:300 (29) and then during phenotyping of the mycoplasma 

populations. 

Antibodies to CrmA. M. gallisepticum clonal variant RCL1 was subjected to Triton X-114 

fractionation as previously described (31) and proteins that partitioned into the insoluble 

pellet were resolved by 9% SDS polyacrylamide gel electrophoresis (SDS-PAGE). The 116 

kDa CrmA protein of interest was localized by Negative staining using the Zinc Stain Kit 

(BioRad, Hercules, CA) and the corresponding gel slice was excised, lyophilized and 

homogenized in an equal volume of 0.9% NaCl. Half of this solution was then injected to to 

both Popliteal Lymph Node of New Zealand White rabbits while the remaining was inoculated 

subcutaneously in three different locations. The rabbits were given subcutaneously two 

booster injections of the protein in NaCl at monthly intervals so that each rabbit had received 

a total amount of protein corresponding to approximately 1.5x1011 CFU. Eleven days 

following the last inoculation, the rabbits were anesthetized with ketamine hydrochloride (25 

mg per kg of body weight) and Xalazine (3 mg per kg of body weight) and bled by cardiac 

puncture. The specificity and the working dilution of the rabbit antibodies directed against 

CrmA were assessed by Western blot using proteins extracted from CrmA-negative and 

CrmA-positive clones, namely RCL2 and RCL1, respectively.   

Colony immunoblotting and hemadsorption assay. Colony immunoblotting was 

performed as described elsewhere (4) with the antibodies and under the conditions 

described below for Western blot analyses. The hemadsorption (HA) assay was used to 

confirm that mycoplasmas reisolated from infected chickens have conserved the phenotype 

of the inoculum. To avoid artifacts due to removal of surface material through washing, 

colonies were first blotted on nitrocellulose discs (Schleicher & Schuell, Protran BA 83, 

Dassel, Germany) and remaining of the colonies left on the agar plate were overlaid with a 

0.5% (vol/vol) suspension of sheep erythrocytes in 1x phosphate-buffered saline solution 

(PBS: 2.7 mM KCl, 1.2 mM KH2PO4, 138 mM NaCl, 8.1 mM Na2HPO4. 7H2O, pH 7.4) and 

incubated for 30 min at 37°C. After two gentle wash es with PBS, the colonies were examined 

microscopically for hemadsorption. 

SDS-PAGE and Western blot analysis. Protein profile analyses of populations and clones 

used in this study were performed by SDS-PAGE followed by Coomassie staining and/or 

Western blotting using fractions obtained after Triton-X114 (Sigma-Aldrich, St. Louis, MO) 

partitioning as described elsewhere (31). After blocking with 2% Non Fat Dry Milk (BioRad, 

Hercules, CA, USA) in Tris-buffered saline solution (TBS) (150m M NaCl, 10mM Tris-base) 
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for 1 h at room temperature, the membranes were incubated overnight at 4°C with gentle 

rocking (i) with rabbit anti-GapA antibodies (25) and/or (ii) with rabbit anti-CrmA antibodies 

diluted 1:8000. After three washes with 1x TBS membranes were incubated with peroxidase-

conjugated swine anti-rabbit immunoglobulin (Dako, Copenhagen, Denmark) at a final 

dilution of 1:2000 for 2 h at room temperature with gentle rocking, followed by three 

consecutive washings with 1x TBS. Reactions were visualized by addition of 4-chloro-1-

naphtol and hydrogen peroxide (BioRad, Hercules, CA).  

DNA manipulations. Mycoplasma genomic DNA was extracted as previously described (6). 

Plasmid DNA was extracted using the PeqLab E.Z.N.A. Plasmid Miniprep Kit II (PeqLab 

Biotechnologie GmbH, Erlangen, D). Restriction endonuclease (Promega GmbH, Madison, 

WI) digestion, ligation, electroporation were preformed according to manufacturer’s 

instructions and to standard procedure.  

PCR assays. The presence of the transposon in mycoplasma populations recovered from 

infected birds was assessed using a PCR assay previously described (28) that contained (i) 

1 mM of the forward Tn1 primer (5’ ACATGAATTACACGAGGGC 3’) and 1 mM the reverse 

Tn2 primer (5’ GTTCTTCTTCTGACATAGTAG 3’), (ii) 100 ng of chromosomal DNA as 

template, (iii) Taq DNA polymerase (Promega) in 1x buffer supplied by the manufacturer and 

supplemented with 1,5 mM of MgCl2, and (v) 0.2 mM dNTP (Promega). Thermocycling was 

performed in a Perkin-Elmer DNA Thermo Cycler with the following conditions: 3 min of 

denaturation at 95°C followed by 30 cycles of 1min denaturation at 94°C, 1 min annealing at 

50°C and 2 min extension at 72°C, and finally 5 min  of final extension at 72°C. As an internal 

control, two primers TufG15 (TTCGATCGTAGTAAACCTCACG) and TufC26 

(GACGATTTTGAGTTGCGTATTC) which amplify a 210 bp of the house keeping tuf gene 

(12) were added before starting the PCR cycles. 

The localization of the transposon was confirmed by long-range PCR (LR-PCR) using the 

Expand ™ Long Template PCR system (Roche, Basel, Switzerland) to amplify the region 

located between the beginning of crmA gene and the IS sequence of the Tn4001mod. For 

this purpose, primers pIS256rev (GGTCATGTAAAAGTCCTCCTGGG) (28) and pJF 

(TAAGAAGACTCCACAAATGCT) (25) were used at a final concentration of 1.5 mM each in 

1x buffer (System I) and 0.35 mM dNTPs using the following conditions: denaturation step at 

94°C for 2 min, followed by 10 cycles of 30 s denat uration at 94°C, 30 s annealing at 48°C,   

4 min extension at 68°C; 20 cycles of 30 s denatura tion at 94°C, 30 s annealing at 48°C,      

4 min extention at 68°C with cycle elongation for 2 0 s per cycle, and a final extension cycle at 

68°C for 7 min. 

The presence of the point mutation located at nucleotide 1393 of the RCL2 gapA gene 

((position defined based on Papazisi et al. (25)) was assessed using a PCR assay followed 

by digestion of the PCR product by MseI (NEB Inc., USA) and the resulting fragments were 

resolved on a 10% polyacrylamide gel as described elsewhere (28). Briefly, the PCR assay 
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was performed using 100 ng of chromosomal DNA as template, 1 mM forward primer GapA4 

(TTCGGAAAATCCCTTTGCAGTAG) and 1 mM reverse primer GapA5 

(TAGAGGAGTAGTTGTTTGAGTTTC), and in 1x buffer containing 2mM MgCl2 and 0.2 mM 

dNTP. Thermocycling conditions were the followings: one denaturation step at 95°C for 3 

min, followed by 30 cycles of 1 min denaturation at 94°C, 1 min annealing at 45°C, 1 min of 

extension at 72°C; and a final extension cycle at 7 2°C for 5 min (28).  

Statistical analysis. The free SISA software was used for statistical analysis. The numbers 

of infected birds, air sac lesion scores and the frequency of re-isolations were analyzed by 

the Fisher exact test (n = 30). Both challenged groups (birds infected with RCL2 or mHAD3) 

were compared to control groups (Rlow and Rhigh) and to each other. Otherwise indicated in 

the text, the probability for significance was p ≤ 0.05. 

 

RESULTS 

Virulence of the two distinct [HA-] M. gallisepticum mutants. To better understand the 

role of the two cytadhesins GapA and CrmA in M. gallisepticum virulence and host-

colonization, two groups of chickens (Table 1) were infected by aerosol with the RCL2 and 

the mHAD3 mutants, respectively. Three additional control groups were included in the 

experiment and corresponded to chickens inoculated with (i) sterile broth media, (ii) the 

virulent parental strain, Rlow, or (iii) a high passage of the strain R, Rhigh, which has lost its 

virulence properties and lacks both the GapA and CrmA products.  

Nine days after inoculation, chickens were slaughtered and air sacs lesions (AS) were 

scored as described in Material and Methods. As illustrated in Table 2, control groups 

behaved as expected (20) since (i) no AS lesions were found in birds of the group inoculated 

with media, (ii) 30 birds out of 30 displayed air sacculitis in the Rlow-infected group, with a 

total lesion score of 220 and (iii) only 3 out of 30 birds of the Rhigh-infected group presented 

mild AS lesions with a total score of 4. Results obtained with the mHAD3-infected group 

revealed that only 8 out of 30 chickens displayed air sac lesions with a total score of 12. A 

closer examination revealed that among these, mycoplasma populations recovered from one 

bird exhibiting severe air sac lesions (score of 5) had lost the transposon and reverted to the 

parental Rlow phenotype (see below). These data indicates that the number of birds 

presenting AS lesions and the severity of the lesion did not significantly differ between 

groups infected by Rhigh and by mHAD3* (Table 2). In contrast, more than half of the RCL2-

infected chickens (19 out of 30) displayed air sac lesions with a total score of 40. These 

values are significantly higher than those observed in groups inoculated with mHAD3 or Rhigh 

(p<0.05), however they are also significantly lower than that obtained with the parental Rlow 

strain suggesting that RCL2 displayed an attenuated virulence.  

Host colonization ability of the two distinct [HA-]  M. gallisepticum mutants. In order to 

define the ability of the two M. gallisepticum [HA-]mutants to colonize the chicken host, swab 
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samples were collected at necropsy from the respiratory tract and from the inner organs. A 

total of 150 swabs from the trachea, the left thoracic air sac, the lung, the liver, the spleen, 

the kidney or the heart were grown in media until metabolic color-change and plated on solid 

media. A large number of samples showed color change within the first week of incubation 

and samples were considered negative after no color change was observed for 14 days of 

incubation. The identity of M. gallisepticum was assessed on randomly selected cultures by 

colony immunobloting using anti-M. gallisepticum rabbit polyclonal serum (29) and further 

confirmed during phenotyping of the recovered mycoplasmas (see below).  

The frequency of re-isolation of M. gallisepticum in each group is presented in Tables 3 and 

4, and shows that (i) no mycoplasma was recovered from chickens inoculated with media, (ii) 

Rhigh predominantly colonizes the upper respiratory tract, (iii) Rlow colonizes the respiratory 

tract and various inner organs, and (iii) that the degree of colonization varies among birds of 

a same group (i. e. not all birds displayed mycoplasmas in all organs). Overall, the highest 

frequency of MG reisolation was observed in the group infected by Rlow with 70% of positive 

samples. In contrast, the mHAD3-infected group displayed the lowest frequency, 13.2 % (ca 

10% for mHAD3*), a value representing less than half of that obtained with the Rhigh-infected 

group (29.7 %). Finally, MG was reisolated in 43.0 % of the samples collected from RCL2-

infected birds suggesting that mHAD3 and RCL2 significantly differ (p<0.05) in their ability to 

colonize or to survive the host although both derived from Rlow and displayed a similar GapA 

and CrmA negative phenotype.  

Overall, mHAD3-infected birds displayed the lowest frequency of mycoplasma re-isolation 

from the respiratory tract (ca. 20 %, see table 3) when compared to that calculated in groups 

infected by RCL2 (ca. 80 %) or even by Rhigh (ca. 60%). Most specifically, the frequency of 

re-isolation from the lung was particularly low in the mHAD3 group in respect to that obtained 

from the trachea.    

Finally, re-isolation from the inner organs was lower in all groups than that of the respiratory 

tract, with Rlow presenting the highest rate and mHAD3 the lowest. This suggests that the 

ability of MG to colonization or persist within the respiratory tract might correlate with its 

dissemination throughout the body.  

In vivo reversion of the mHAD3 and RCL2 mutations. Data described above suggested 

that RCL2 exhibits attenuated virulence properties when compared to the parental Rlow while 

mHAD3 that derived from the same strain is avirulent. This raised the question of whether 

these difference may be explained by the presence in RCL2-infected chickens of 

mycoplasma populations that have reverted to the HA positive phenotype.  

To assess this question, we first monitored the 27 mycoplasma-positive samples that were 

collected from mHAD3-infected group (i) for their resistance to gentamicin [GmR/S] by plating 

appropriate dilutions on solid agar plates with and without gentamicin, (ii) for the detection of 

GapA and CrmA in SDS-PAGE and Western blot analysis [GapA+/- CrmA+/-] and (iii) for the 
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presence of the Tn4001mod and its location within the crmA gene by PCR using the two 

couples of primers described in Material and Methods [Tn+/-]. Results revealed that 7 out of 

27 positive samples contained mycoplasmas that were gentamicin sensitive [GmS], did not 

contain the transposon and produced both GapA and CrmA. Most particularly, populations 

recovered from bird #8076 which exhibited the highest AS lesion score, all expressed the 

GapA and CrmA products regardless of the origin of the sampling (trachea, air sac, lung, 

liver and heart). This is illustrated in Figure 1 that shows a perfect correlation between the 

expression of GapA and CrmA (Panel A, lanes 2 and 3) and the absence of the transposon 

within the crmA gene in population recovered from the trachea and the heart of bird #8076 

(panels B and C, lanes 2 and 3). Interestingly, the same picture was obtained for samples 

collected from the trachea of two birds from which positive samples composed of 

mycoplasmas exhibiting the original mHAD3 features [GmR, GapA-CrmA-, Tn+] were also 

recovered from another body site. This is illustrated in Fig. 1 for the two samples recovered 

from the trachea (lane 4) and from the kidney (lane 5) of bird #8079 that respectively 

presented the Rlow- and the original mHAD3-features  

Similarly, we monitored 62 out of the 86 samples (72 %) which were positive for M. 

gallisepticum in birds infected by RCL2 (i) for the expression of GapA and CrmA and (ii) for 

the presence of the point mutation located at the beginning of the structural gapA gene by 

combining PCR with restriction analyses as previously described (28). This analysis revealed 

that 61 samples displayed molecular features identical to the RCL2 inoculum. This is 

illustrated in Fig. 2A and 2B lanes 1-4, 6 and 7. In one bird, bird #9607, from which 

mycoplasmas were reisolated from the trachea, the air sac and the lung, analysis of the 

sample of the trachea (#A673) revealed the presence of a mycoplasma population that was 

different from the RCL2 inoculum. Plating of this sample and analysis of 10 randomly picked 

colonies revealed that one colony displayed the CrmA and GapA products and no additional 

MseI restriction site within the beginning of the structural gapA gene. This indicates that 

sample #A673 is composed of a mixed population, ca. 10% of which displayed the parental 

Rlow features. Although the in vitro ON and OFF switching of the gapA gene expression has 

been previously estimated to 5x10-2 to 2x10-4 per cell per generation, the emergence of 

revertants in sample #A673 is likely to reflect an in vivo event as it not been observed for any 

other sample.   

As controls, samples derived from Rlow and Rhigh were also analysed. No difference was 

observed between the Rlow inoculum and samples recovered in Rlow infected chickens. Two 

samples re-isolated from the trachea and the air sac of one chicken infected by Rhigh exhibit 

the GapA and CrmA products. As discussed below, these results are not surprising since 

Rhigh is not a clonal population per se and was previously suspected to contain a minor sub-

population presenting the Rlow phenotype (20, 29).  
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Overall, most phenotypic changes were recorded in MG population recovered from birds 

infected by mHAD3 and it is noteworthy to mention that in more than 50 % (6 out of 11) of 

the samples presenting a phenotype different from the inoculum were collected from the 

trachea.    

 

DISCUSSION 

Data presented in this study demonstrate that the GapA and CrmA adhesins of M. 

gallisepticum play a key role in colonization and virulence of the natural chicken host. 

Infections of chicken with two mutants presenting a same phenotype but distinctive mutations 

led to different outcomes in vivo. More specifically, the [HA-] mHAD3 mutant in which the 

crmA gene has been disrupted (28) is unable to promote efficient colonization of the chicken-

host following inoculation via aerosol. Results were particularly striking when considering that 

mHAD3 could be re-isolated from the air sacs in only one bird while the frequency of re-

isolation from the trachea was approximately 10 times higher in the same group of infected 

birds. In one mHAD3-infected chicken (#8076), the lesion score was surprisingly higher than 

for others of the same group. Detailed analysis of mycoplamas reisolated from #8076 

revealed that they display the wild type phenotype and that they have lost the transposon 

Tn4001mod initially inserted in crmA. In vitro, the Tn4001mod, which carries its own 

transposase, is stable, however the selection pressure imposed in vivo by the host may 

promote the emergence of survivor, wild-type populations. Whether undetected wild-type 

mycoplasmas pre-existed in the mHAD3 inoculum cannot be ruled out. In such scenario, one 

would have expected the wild-type mycoplasmas to quickly overtake the mutant and be 

transmitted to other birds of the same confined group resulting in predominant reisolation of 

wild-type M. gallisepticum. The picture, which we observed in our experiment, rather 

suggests that loss of the transposon has occurred over time. This is supported by a previous, 

independent work by Mudahi-Orenstein and collaborators (21), in which infection of chicken 

with a M. gallisepticum mutant also containing the Tn4001 in the crmA gene was performed. 

Data presented in this study were limited to analyzing tracheal colonization but revertants 

were also noted several days after intratracheal inoculation and evaluation of mycoplasma 

CFU recovered over time from this body site was significantly lower than in birds infected 

with the wild-type strain.   

Aerosol inoculation of chicken with the spontaneous [HA-] RCL2 mutant that contains a 

nonsense mutation in the gapA structural gene offers a different picture. In contrast to the 

situation previously described, RCL2 successfully colonized the upper and lower respiratory 

tract although frequency of reisolation from the air sacs was slightly lower than in birds 

infected by Rlow. The overall lesion score indicates that RCL2 display an attenuated virulence 

compared to Rlow but is significantly higher than in birds infected by Rhigh. Once again, 

appearance of the lesions seems to correlate with the ability of M. gallisepticum to reach or 
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to survive within the air sacs. As well, RCL2 better performed than Rhigh or mHAD3 in 

reaching inner body sites however with less efficiency than the “wild-type”, Rlow. Overall, this 

suggests that RCL2 exhibits a pattern of infection that reflects an intermediate situation when 

compared to Rlow and to Rhigh or mHAD3 and that RCL2 might only be impaired in virulence. 

Point mutations located in the gapA gene of RCL2 and Rhigh are distinct but both affect the 

stability of the polycistronic mRNA that encode GapA and CrmA and both result in absence 

of these two products (25, 28). Besides of their exact location, the only attribute that 

distinguishes these mutations is their frequency of reversion. In vitro, the point mutation in 

gapA of RCL2 was shown to spontaneously revert with a high-frequency resulting in ON and 

OFF switching of the gapA expression while that of Rhigh is reversible with a low frequency 

(28). Unexpectedly, the infection outcome observed with RCL2 when compared to Rhigh 

cannot be attributed to such an event as 98.4% of the populations recovered from RCL2-

infected birds still possess the non-sense mutation. This indicates that switching ON of the 

gapA and crmA expression via a reverse mutation does not spontaneously occur with a high 

frequency in vivo, over a period of 9 days. This unexpected finding raised the question of 

whether the mutation is stable in the chicken host or of whether it provides the organism with 

an advantage in the beginning of the infection, before a specific immune response is built up. 

Our data indicate that other factors than GapA and/or CrmA might be required in order for M. 

gallisepticum to promote successful infection. This supports the finding by Papazisi et al. (23) 

showing that complementation of Rhigh by wild type GapA and CrmA does not fully restore 

virulence. In this respect, RCL2 derived from Rlow which one was shown to differ from Rhigh by 

its capacity to establish intracellular residence in non-phagocytic cells. Since RCL2 is also 

cell-invasive (data not shown), this property may provide the organism with a means to better 

disseminate from the respiratory tract to the inner organs. In vivo, colonizing microorganisms 

are faced to a hostile environment. Under these stress conditions, the occurrence in RCL2, 

within the context of the point mutation, of unconventional events that would result in a 

temporary production of GapA and/or CrmA products cannot be rule out. For instance, 

misreading of termination codons has been extensively described for viruses and usually 

involves unusual modification of normal cellular tRNAs and depends on sequences 

neighboring the leaky stop codon (2). As well, tRNA hopping by re-pairing of tRNA on 

cognate or near-cognate codon can generate frameshift by increment as large as 50 nt and 

is stimulated by the sequence context (10).  

A common trend observed between RCL2, mHAD3 and Rhigh infected birds is the reduced 

colonization of the air sacs when compared to Rlow. This observation suggests that GapA and 

CrmA might be particularly required for M. gallisepticum to reach, to adhere or to maintain 

himself in this particular body site. As well, there is a correlation between colonization of the 

air sacs and re-isolation from the inner organs suggesting that this site maybe be a portal for 

dissemination of the avian mycoplasma.  
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The presence of mycoplasmas in body sites other than the mucosal surfaces has long been 

underestimated although this occurrence could have important consequences for treatment 

and diagnosis. Understanding how mycoplasmas are able to spread from the mucosal 

surface to deeper organs may provide new valuable information for the control of 

mycoplasmosis.   
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TABLE 1. Phenotype of M. gallisepticum populations and mutants used as inoculum in 

experimental infection. 

 

Infection 

groups 

Inoculum HA Expression of 

GapA and CrmA 

Presence of an 

additional MseI site 

Presence of 

Tn4001 by PCR 

I media nd * nd nd. nd 

II Rlow + + - - 

III Rhigh - - - - 

IV RCL2 - - + - 

V mHAD3 - - - + 

* not done  

 

TABLE 2.  Number of chickens presenting air sacculits and/or infected by M. gallisepticum.  

 

 
Infection 
group 

 
Number of 
birds with 
AS lesions 
(per group)  

 
Scoring of AS lesions  

 
 

Total             per bird 

 
Number of birds in which MG was 

recovered 
 

Total              RT                IO 
 

       
Media 0  0 0 0 0 0 

Rlow 30  220 7.33 30 30 28 

Rhigh 3  4  1.33 26 26 7 

RCL2 19† 40† 2.1 30 30 14 

mHAD3 8  12  1.5  
 

18‡ 17  5 

mHAD3* 
 

7¶ 7¶ 1.0 17  14** 4 

 

*In one birds all M. gallisepticum populations reisolated from five body sites were shown to 

displayed the wild type parental Rlow phenotype (See text) 

** Mycoplasma samples recovered from the trachea of two birds displayed the Rlow parental 

[HA+] phenotype while samples recovered in the same birds from other organs displayed the 

mHAD3 [HA-] phenotype  

¶ Significantly different (p≤0.05) from values obtained with Rlow- or RCL2-infected birds; Not 

significantly different (p=0.272) from obtained with Rhigh-infected birds.  

† Significantly different (p≤0.01) from values obtained with Rlow-infected birds and 

significantly different (p≤0.05) from values obtained with Rhigh- or mHAD3-infected birds.  

‡ Significantly different (p≤0.05) from values obtained with Rlow-, Rhigh- or RCL2-infected birds 

which displayed among themselves no significant differences.  
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TABLE 3.  Frequency of re-isolation of M. gallisepticum from the respiratory tract and from 

inner organs after 9 days of infection. 

 

Inoculum† Organs 

Media Rlow Rhigh RCL2 mHAD3 mHAD3* 

RT trachea 0/30 23/23 23/26 25/25 15/29 12/29 

 AS 0/29 27/30 7/30 16/30 2/30* 1/30* 

 Lung 0/29 29/29 21/30 27/30 4/29* 3/29* 

 Total 0/88 79/82 51/86 68/85 21/88 16/88 

 Total % 0.0 96.3 59.3 80.0 23.9 18.2 

IO Spleen 0/30 7/30 0/27 1/29 0/28 0/28 

 Liver 0/30 8/29 0/30 1/29 2/28 1/28 

 Heart 0/30 18/30 2/30 6/29 1/30 0/30 

 Kidney 0/30 28/29 7/29 10/28 3/30 3/30 

 Total 0/120 61/118 9/116 18/115 6/116 4/116 

 Total% 0.0 51.7 7.8 15.7 5.2 3.5 

RT+IO Total 0/208 140/200 60/202 86/200 27/204 20/204 

 Total% 0.00 70.0 29.7 43.0 13.24 9.80 

* The number of samples from which mycoplasmas were re-isolated is significantly lower in 

the group infected by mHAD3 than in that infected by RCL2 

†Contaminated samples were withdrawn  
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TABLE 4. Phenotype of the mycoplasmas recovered after infection. 

 

 

Infection 

group 

 

Number of MG* 

positive samples / 

total 

 

Number of 

samples 

analyzed  

 

Number of samples 

presenting the phenotype of 

the inoculum (%)  

    

Media 0/208 0 0 

Rlow 140/200 24  24 (100%) 

Rhigh 60/202 29  27 (93%) 

RCL2 86/200 62  61 (98.4%) 

mHAD3 27/204 27  19 (70.4%) 

*MG: M. gallisepticum 
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Figure Legends 

 

FIG. 1. Analyses of mycoplasma populations recovered from mHAD3-infected chickens. 

Panel A : Total proteins of mycoplasma populations were separated by SDS-PAGE and 

stained with Coomassie blue. Panel B : Total DNA from mycoplasma populations analyzed in 

Panel A were subjected to a multiplex PCR assay and the resulting products specific of the 

Tn4001 (tn) and of the house keeping EfTu gene (tuf) were detected by ethidium bromide 

staining after agarose gel electrophoresis. Panel C : Total DNA from mycoplasma 

populations (analyzed in Panel A) were subjected to a Long Range PCR assay using a 

forward primer located in the crmA gene and a reverse primer located in the Tn4001 to 

amplify a 1.6 kb DNA which was detected by ethidium bromide staining after agarose gel 

electrophoresis. Mycoplasma populations were recovered from the trachea (T), the kidney 

(K) or the heart (H) of mHAD3-infected chickens as described in Materials and Methods. Rlow 

and mHAD3 were used as controls. Numbers above the lanes correspond to the number that 

was assigned to each bird.  

 

FIG. 2. Analyses of mycoplasma populations recovered from RCL2-infected chickens. 

Panels A and C:  Total proteins of mycoplasma populations (A) or clones (C) were separated 

by SDS-PAGE and stained with Coomassie blue. Panels B and D : Total DNA from 

mycoplasma populations (B) or clones (D) analyzed in Panel A and C were subjected to a 

PCR assay to amplify the gapA region containing the RCL2 point mutation and the resulting 

products were digested by MseI. Restriction fragments were detected by ethidium bromide 

staining after agarose gel electrophoresis. Mycoplasma populations were recovered from the 

left air sac (AS), the trachea (T), the lung (L), or the kidney (K) of RCL2-infected chickens as 

described in Materials and Methods. Numbers above the lanes correspond to number that 

were assigned to each bird. RCL2 and RCL1 that are two isogenic variants derived from Rlow 

that differ by (i) their HA phenotype, (ii) the expression of GapA and CrmA and (iii) a base 

substitution at the beginning of the gapA gene, were used as controls. Lanes 1 to 10 

correspond to individual clones randomly selected from the mycoplasma population collected 

from the trachea of bird #9607. Asterisks point out restriction DNA fragments that are only 

detected in [HA-] variants lacking the GapA and CrmA products.   
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5. MANUSCRIPTS IN PREPARATION  

 

 

5.1. Targeted disruption of cytadherence-related ge nes of Mycoplasma gallisepticum  

 

Collection of Data (see attached) 

 

5.2. Preparation of antibodies against cytadherence -related proteins of Mycoplasma 

gallisepticum  

 

Collection of Data (see attached) 
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5.1. Targeted disruption of cytadherence-related ge nes of Mycoplasma gallisepticum 

(Collection of Data) 

 

 

Introduction 

In contrast to the large wealth of data obtained from the analyses of mycoplasmal genome 

sequences (Dandekar et al., 2000; Fraser et al., 1995; Herrmann and Reiner, 1998; 

Himmelreich et al., 1996; Chambaud et al., 2001; Jaffe, Miyata, and Berg, 2004; Papazisi et 

al., 2003; Sasaki et al., 2002), there is still a general need of efficient genetic tools when it 

comes to study the functional genomics of mollicutes. The generation of mutants by gene 

disruption is a crucial step for the understanding of protein function and for uncovering their 

involvement in complex processes such as pathogenesis. However, gene disruption in 

mycoplasmas involving any method to transfer DNA into the bacteria, was not practical until 

1987. It was Dybvig and Cassell (Dybvig and Cassell, 1987) who described for the first time 

the transformation of a member of the mollicutes. Using the streptococcal transposon Tn916, 

they succeeded to transform Acholeplasma laidlawii and Mycoplasma pulmonis. Since that 

time transposon-based strategies have been used to generate random insertion mutants also 

in other Mycoplasma species. A certain disadvantage of this method is the laborious and 

time-consuming screening for mutants carrying the transposon in a specific locus of the 

mycoplasma genome.  

The targeted gene knock-out is an important strategy that can help to unravel the function of 

a particular protein in the organism.  Recently, the targeted inactivation of a gene by site-

directed homologous recombination has been described for A. laidlawii (Dybvig and 

Woodard, 1992), M. gallisepticum (MG) strain S6 (Markham et al., 2003), and M. genitalium 

(Dhandayuthapani et al., 2001; Dhandayuthapani, Rasmussen, and Baseman, 1999). In 

these studies suicide vectors carrying a resistance gene were used which are unable to 

replicate in the target organism, hence the drug-resistant transformants could be obtained 

only after successful integration of the plasmid into the chromosomal DNA. In S. citri (Duret 

et al., 1999) and M. pulmonis (Cordova et al., 2002), for which gene inactivation using non-

replicating plasmids could never be obtained, vectors carrying sequences of the 

chromosomal origin of replication, oriC, have been successfully used to drive the 

homologous recombination.  The aim of this study was to find out the prerequisite of 

homologous recombination and the construction of gene knock-outs in MG strain R in order 

to study the involvement of several genes in cytadherence. 
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Material and Methods 

Bacterial strains and growth conditions 

Mycoplasma gallisepticum (MG) RCL1 (Winner et al., 2003) selected from strain Rlow (Lin 

and Kleven, 1984) was grown at 37°C in a modified H ayflick medium (Wise and Watson, 

1983) containing 500 U/ml of penicillin. Mycoplasma tranformants were selected on Hayflick 

agar plates containing 4 µg/ml of tetracycline (Hayflick/Tet). Escherichia coli 

DH10β (Invitrogen, Paisly, UK) and GM119 (NEB, Frankfurt am Main, 

Germany) were grown at 37°C in LB (10 g/l tryptone,  5 g/l NaCl, 5 g/l yeast extract, pH 7) 

broth. Transformants were selected on LB agar plates containing 100 µg/ml of ampicillin 

(LB/Amp) or both, 50 µg/ml Amp and 7 µg/ml Tet (LB/Amp,Tet). 

DNA Isolation, Manipulations, Southern Blotting  

Recombinant plasmid DNA was isolated from E. coli cultures using PeqLab E.Z.N.A. Plasmid 

Mini Kit (PEQLAB Biotechnologie GMBH, Erlangen, Germany) according to the 

manufacturer’s protocol. Mycoplasma genomic DNA was obtained by standard methods as 

described previously (Winner et al., 2003). Restriction endonucleases (Promega, Mannheim, 

Germany) were used in accordance to the manufacturer´s instructions. Neutral Southern 

blotting was performed using nitrocellulose membrane (Amersham, GE Healthcare Europe 

GmbH, Vienna, Austria) according to the manufacturer’s instructions.  Southern blot 

hybridizations using digoxigenin (DIG)-labelled probes corresponding to either a part of the 

oriC region of MG, or partial gapA and tetM sequences were performed according to the 

Genius System User’s Guide for Membrane Hybridization, Version 3.0 (Roche Molecular 

Biochemicals, Mannheim, Germany). 

PCR 

Long-range PCR (LR-PCR) using the ExpandTM Long Template PCR System (Roche, 

Vienna, Austria) was used to amplify selected genes from 300 ng of chromosomal DNA of 

RCL1. For this purpose, primers listed in Table 1 were used. The amplification mixture 

consisted of the appropriate primer pair at a final concentration of 1.5 mM each in 1x buffer 

(System 1) and 0.35 mM dNTPs. The following conditions for an amplification were used: a 

denaturation step at 94°C for 2 min followed by 10 cycles of 30 s denaturation at 94°C, 30 s 

annealing at 56°C and 4 min extension at 68°C; then  followed 20 cycles of 30 s denaturation 

at 94°C, 30 s annealing at 56°C, 4 min extension at  68°C with a cycle elongation for 20 s per 

cycle, and a final extension cycle for 7 min at 68°C. The tetracycline resistance gene tetM 

was obtained by amplification of the full-length gene using plasmid pMM20-1 (Chopra-

Dewasthaly et al., 2005) as the source and the primers McTetfor and McTetrev at the same 

conditions as described above.  
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Table 1.  Oligonucleotide primers used in this study. Highlighted sequences (bold) represent 
restriction sites.  
 
 
Designation 

 
Sequence 

 
Restriction 
Site(s) 
 

 
Ori1 

 
CTTTGTTGTCGATCGTAATATAAAG 

 
PvuI 

Ori2 TATTAATAGAAAAACGATCGTCTATAAAC PvuI 
Ori3 TGATGCCGATCGCATTAGGTTTTTTC PvuI 
McTetfor GATTTGATATCAGATCTGAACGGGAGTAATTGGAAG EcoRV, BglII 
McTetrev CTTATAGATCTGATATCCATATTTATATAACAACAT EcoRV, BglII 
TetF CATGTGGAGATAGAAC  
TetR GATATTCCTGTGGCGC  
Mgc2_1 ATGGATTCAAGTTGGTAATTGTTCAATC  
Mgc2_2 TAGGATCCTAATGCACCTGGGTTGG  
GapA10 ATATTACTCGAGGAAATGAATTCACAAGGCCAATC XhoI 
GapA11 ATTTAACTCGAGGAAGTCATTGGTTGCTCTAGAACG XhoI 
CrmA3 ATCGTTCTAGAGCAACCAATGAC  
CrmA4 TCATTTCTAGACCGTTTGGATTTG  
CrmB3 TAATGTTAAAAGCTCACATCAAAAG  
CrmB4 CTAATTAGTATTTATTTTCACTAATC  
CrmC1 CAATGATTAAAAAACAACTAAGAC  
CrmC2 CTATTGATTGGGTTGTTTAGTTC  
H2f ATTCACAAGGCCAATCTAATC  
H2r TTGATCTTGAGTAGCTTCTAC 

 
 

 

The presence of the tetM gene in the transformants was confirmed by PCR using primers 

TetF and TetR as described elsewhere (Chopra-Dewasthaly et al., 2005). Briefly, a 

denaturation step was performed at 94°C for 5 min, followed by 30 cycles of denaturation at 

94°C for 40 s, annealing at 54°C for 40 s, extensio n at 72°C for 40 s, and a final extension 

step at 72°C for 5 min. 

A fragment of the oriC origin of MG was amplified using genomic DNA of strain RCL1 and 

primers Ori1 and Ori2. The conditions for the PCR amplification were as followed: a 

denaturation step at 95°C for 2 min, followed by 30  cycles of denaturation at 94°C for 30 s, 

annealing at 55°C for 30 s and extension at 72°C fo r 1 min, and a final extension step at 

72°C for 5 min.  

Cloning procedure – basic vectors, disruptor vector s 

To confirm that only the selected gene fragments were amplified by the PCR process, 

samples of the PCR products were digested using appropriate restriction endonucleases, 

namely PvuII and EcoRI for “mgc2”, PvuII for “gapA”, EcoRI and HindIII for “crmA”, HindIII for 

“crmB”, EcoRV and HindIII for “crmC”, and HindIII and SacI for “tetM”. PCR products were 
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purified by agarose gel electrophoresis using the QiaQuick Gel Extraction Kit (QIAGEN, 

Vienna, Austria) according to the manufacturer’s instructions and eluted by ddH2O. Purified 

fragments were subcloned into the pGEM-T Easy Vector (Promega, Mannheim, Germany) 

following the manufacturer´s instruction manual for T/A cloning or into the vector pGEM-

5Zf(+) (Promega, Mannheim, Germany) via the newly introduced restriction sites (details see 

below). The resulting plasmids were transformed into the E. coli strain DH10β (Invitrogen, 

Paisly, UK) and selected on LB/Amp or LB/Amp,Tet agar plates. 

In case of using the Klenow fragment of DNA polymerase I (Promega, Mannheim, Germany) 

to fill in 5´ protruding ends, the desalted digestion mixture (pCC1 digested by EcoRI or 

pISMTet digested by BamHI/SmaI) was incubated with 7.5 U of the enzyme in a Klenow 

buffer containing 40 µM of dNTPs and 20 µg/ml BSA. After formation of the blunt ends, the 

insert and vector, both purified by agarose gel electrophoresis, were ligated (vector:insert 

ratio 1:3) using 1 U of T4 ligase (Roche Vienna, Austria) for 16 h at 4°C. After electroporation 

into E. coli DH10β, the resulting transformants were checked for the orientation of the 

inserted genes by performing a double-digest of the plasmids with HinDIII/PstI. 

Those plasmids bearing the target genes in both, positive and negative, orientations in 

respect to the lacPO promoter were chosen for further use. After confirming the orientation 

by sequencing the region around the insertion site, the target genes were disrupted by 

inserting a tetR cassette consisting of the gene tetM under its native promoter tetPO in the 

middle of the target gene. The tetracycline resistance gene tetM was obtained by 

amplification of the full-length gene using plasmid pMM20-1 (Chopra-Dewasthaly et al., 

2005) Finally, disruptor plasmids bearing the tetR cassette in both orientations were 

produced. For purification of recombinant plasmid DNA the Plasmid E.Z.N.A. Minikit I 

(PEQLAB Biotechnologie GmbH, Erlangen, Germany) was applied. DNA sequencing was 

performed at VBC Genomics BIOSCIENCE Research GmbH, Vienna, Austria.  

Transformation of mycoplasmas  

Mycoplasmas were transformed as described previously (Winner et al., 2003). Briefly, a 

frozen stock of MG RCL1 was cultivated overnight in 1 ml of liquid medium at 37°C and then 

transferred into 4 ml of fresh prewarmed medium; after 24 and 36 h 1 ml aliquots were used 

to inoculate 9 ml of fresh medium and all samples were cultivated along overnight. 

Afterwards, the two overnight cultures were combined, centrifuged (9,400 g, 10 min, 4°C) 

and washed three times in 20 ml, 10 ml and 1 ml of ice-cold electroporation buffer (8 mM 

HEPES pH 7.4; 272 mM sucrose). The final 1 ml suspension of electrocompetent MG cells 

was divided into 100 µl aliquots (approx 108-109 cells per 100 µl). Aliquots were mixed with 2-

10 µg of plasmid DNA, incubated on ice for 1-10 min and subjected to electroporation (2.5 

kV, 100 Ω, 25µF) in a Bio-Rad Gene-PulserRII Apparatus using 1 mm gap electroporation 
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cuvettes. After electroporation, cells were immediately resuspended in 1 ml of chilled Hayflick 

medium and incubated on ice for 10 min, before placing them at 37°C for 30-90 min. After 

regeneration, 100 µl aliquots were plated on Hayflick agar plates at a 10-6 dilution to 

determine the numbers of total CFU. The remaining transformed cells were plated on 

Hayflick/Tet agar, and incubated at 37°C in the dar k. The plates were examined 10 to 14 

days later using a stereomicroscope. Single colonies were picked and seeded in 1 ml of 

Hayflick/Tet broth for further analysis. 

 

Results  

This study attempted to develop a system with which to inactivate a specific gene of MG by 

homologous recombination. This process involves the alignment of identical sequences, a 

crossover between the aligned DNA strands, and breaking and repair of the DNA resulting in 

an exchange of material between the strands. Such a targeted gene disruption has been 

described for many bacterial species, although for MG done only by Markham and co-

workers (Markham et al., 2003) in which the authors succeeded to inactivate specific gene of 

MG S6 by homologous recombination.  

In order to target the sequences of genes in the gene cluster around the cytadherence gene 

gapA, namely mgc2, gapA, crmA, crmB and crmC, it was decided to create plasmids in 

which the target gene would be disrupted by insertion of the tetracycline resistance cassette, 

tetR, consisting of the tetM gene under its native promoter tetPO. In general, the target gene 

fragment was amplified by PCR, purified by agarose gel electrophoresis and inserted via T/A 

cloning into the pGEM-T Easy vector. This procedure takes advantage from the fact that the 

Taq DNA polymerase used to create the PCR product adds a single adenine nucleotide to 

the 3´ end of the otherwise blunt end PCR fragment which perfectly fits to the pGEM-T Easy 

vector that has been linearized with EcoRV and equipped with thymidine overhangs at the 3´ 

termini. This cloning routine results in plasmids carrying the insert in both orientations with 

respect to the lacPO promoter of the pGEM-T Easy vector. In the next step, the tetR cassette 

was inserted within the target gene by using suitable restriction sites in both orientations with 

respect to the lacPO. The names of resulting plasmids were designated in such a way that 

the gene or insert (tetR cassette) running in the same (positive) or opposite (negative) 

orientation as lacPO was given even or odd number, recpectively (for the scheme see 

Appendix 1).  

Construction of the disruptor plasmids 

pTet 

The gene supposed to disrupt the genomic target sequence and to be used as a marker in 

the subsequent selection process is one of the two resistance genes most commonly used in 

mycoplasma recombinant DNA work, the tetM gene of Steptococcus faecalis (Franke and 
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Clewell, 1981). In order to obtain the gene with its upstream promoter tetPO a LR-PCR was 

performed using primers McTetfor and McTetRev (Table 1) and plasmid pMM20-1 (Chopra-

Dewasthaly et al., 2005) as a template. A PCR product of the expected size of 2.38 kb was 

obtained and subjected to a control restriction digest using enzymes HindIII and SacI. As 

expected, digestion with HindIII resulted in fragments of 1.9 kb and 0.48 kb. Similarly, 

fragments of correct sizes (1.8 kb and 0.58 kb) were obtained with SacI, thus confirming the 

specificity of the PCR reaction. At the same time the PCR product was subcloned into the 

pGEM-T Easy vector by T/A cloning. Two of the resulting plasmids carrying the tetM gene in 

different orientations with respect to the lacPO promoter of pGEM-T Easy were designated 

pTet1 and pTet2 (for the plasmid map see Appendix 2). To obtain an insert usable for the 

creation of the disruptor plasmids, the plasmid pTet2 was digested by EcoRV or BglII 

creating fragments with either blunt or sticky ends. These fragments of 2.37 kb containing the 

tetM gene under control of its native promoter were purified by agarose gel electrophoresis 

and stored for further use. 

pISM-TetII 

In order to prove that the tetR cassette used to disrupt the target genes is indeed conferring 

resistance to tetracycline in MG, plasmid pISM-TetII was constructed.  The pISMTet plasmid 

(kindly provided by W. Jechlinger, unpublished data) was used as a donor for the tetR 

cassette. This plasmid contains the Tn4001mod transposon with its gentamicin-resistance 

conferring aadC-aphD gene (Knudtson and Minion, 1993) and was modified by inserting a 

tetM gene with its tetPO promoter in the same orientation to extend the applicability of this 

transposon. Plasmid pISMTet was digested by BamHI and SmaI in order to delete the 2.8 kb 

fragment containing the original tetR cassette. Incubation with the Klenow fragment of DNA 

polymerase I made the DNA ends blunt and the vector was ligated with the EcoRV-digested  

2.37 kb fragment of pTet2 containing the shorter version of the tetR cassette. The resulting 

transformants were screened for the plasmids carrying the insert in the same direction of the 

gentamicin resistance gene to resemble the situation of the original pISMTet. 

Mgc2 

To create a plasmid for disrupting the mgc2 gene of MG, plasmid pMC2 harbouring the full 

length mgc2 gene was used. Genomic DNA of MG strain RCL1 was used as a template for 

LR-PCR together with primers mgc2_1 and mgc2_2 (Table 1) to amplify a sequence of 1.8 

kb, covering the entire coding sequence for the mgc2 structural gene, and upstream and 

downstream flanking sequences. The upstream sequence of about 0.5 kb contained the 3´ 

end of the structural gene licA and a short 58 bp intragenic region. The downstream 

sequence of about 0.4 kb consisted of the 156 bp mgc2-gapA intragenic region and 5´ 

fragment of a gapA structural gene.  
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The PCR product was subcloned into the pGEM-T Easy vector, and the resulting 

recombinant plasmids carrying the insert in different orientations with respect to the lacPO 

promoter were named pMC1 and pMC2. The further cloning required the plasmids to be 

transformed into the methylase-negative E. coli strain GM119 (dam-, dcm-). Subsequently, 

plasmid DNA was cut by BsaBI (NEB) and ligated with the 2.37 kb pTet2/EcoRV fragment 

resulting in the fission of the mgc2 sequence into a 0.27 kb 5´ box and a 0.44 kb 3´ box. 

Recombinant disruptor plasmids were named pDMC1-1, pDMC1-2, pDMC2-1 and pDMC2-2 

(see plasmid maps in Appendix 2).  

GapA 

A disruption plasmid targeting the major cytadherence gene gapA of MG was constructed as 

followed: Primers GapA10 and GapA11 (Table 1) were used to amplify a fragment of 2.75 kb 

covering an internal part of the gapA gene. The PCR product was subjected to a control 

restriction digest using enzyme PvuII resulting in fragments of 1.64 kb and 1.11 kb, thus 

confirming the specificity of the PCR reaction. The DNA was then digested by XhoI and 

subsequently ligated into the vector pGEM-5Zf(+) previously linearized by SalI. The digestion 

of the resulting plasmids pGA1 and pGA2 with HincII resulted in 5.35 kb fragment dividing 

the gapA sequence into 0.75 kb box and 2.62 kb box. In between the 2.37 kb pTet2/EcoRV 

fragment (see above) was cloned. Resulting disruptor plasmids were designated pDGA1-1, 

pDGA1-2 and pDGA2-1, pDGA2-2, respectively (see plasmid maps in Appendix 2).  

CrmA 

The construction of the crmA disruptor plasmid started with the amplification of a great part of 

the crmA gene of MG RCL1. Primer CrmA3, located 550 bp upstream of the crmA start 

codon to cover up a hypothetical promoter, and primer CrmA4 (Table 1), located within the 3´ 

region of the crmA coding sequence, were used to amplify a 2.56 kb fragment coding for 

most of the 3.2 kb crmA gene. The PCR product was subjected to a control restriction digest 

using enzymes EcoRI and HindIII. As expected, digestion with EcoRI resulted in fragments of 

1.55 kb and 1 kb. Similarly, fragments of correct sizes (1.15 kb, 0.75 kb and 0.67 kb) were 

obtained with HindIII, thus confirming the specificity of the PCR reaction. The PCR product 

was subcloned via T/A cloning into the pGEM-T Easy vector yielding plasmids pCA1 and 

pCA2 differing in the orientation of the insert with respect of the lacPO promoter. The 

plasmids were digested with BglII cutting inside the crmA gene (see plasmid map, Appendix 

2) releasing a 0.37 kb fragment and thereby dividing the crmA gene into a 0.3 kb 5´ box and 

a 1.36 kb 3´ box. The 5.22 kb DNA-fragment of the BglII-digested pCA1 or pCA2 plasmid, 

respectively, was ligated with the 2.37 kb fragment of the BglII-digested pTet2 plasmid 

carrying the tetR cassette. The resulting disruptor plasmids were named pDCA1-1, pDCA1-2, 

pDCA2-1 and pDCA2-2. 
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CrmB 

To amplify the crmB gene, primer pair CrmB3 and CrmB4 (Table 1) was used in a PCR 

reaction generating a fragment of 2.76 kb, which covers the complete crmB gene sequence. 

A control restriction digest of the PCR product using HindIII resulted in the expected 

fragments of 1.55 kb and 1.23 kb. The desalted amplicon was ligated with the linear pGEM-T 

Easy vector resulting in plasmids pCB1 and pCB2 differing in the orientation of the insert with 

respect to the lacPO promoter. Digestion of the plasmids pCB1 and pCB2, respectively, by 

BglII led to a loss of 0.44 kb fragment and thereby dividing the crmB gene into a 1.8 kb 5´ 

box and a 0.5 kb 3´ box. In order to create knock-out vectors for the crmB coding sequence, 

the 2.37 kb BglII-fragment of the pTet2 ligated with the 5.32 kb BglII fragments of plasmids 

pCB1 and pCB2.  The resulting disruptor plasmids were designated pDCB1-1, pDCB1-2, 

pDCB2-1, and pDCB2-2 (for plasmid maps, see Appendix 2). 

CrmC 

The entire crmC gene of MG strain RCL1 was amplified by using primers CrmC1 and CrmC2 

(Table 1) yielding an amplicon of 2.6 kb. The PCR product was subjected to a control 

restriction digest using enzymes EcoRV and HindIII. Digestion with EcoRV resulted in 

fragments of 1.4 kb and 1.2 kb. Similarly, fragments of correct sizes (1.63 kb and 0.95 kb) 

were obtained with HindIII, thus confirming the specificity of the PCR reaction. The purified 

amplicon was subcloned into the pGEM-T Easy resulting, surprisingly, in recombinant 

plasmids carrying the insert exclusively oriented against the transcription direction of the 

lacPO promoter in all transformants screened. Hence, this plasmid was named pCC1. To 

obtain the crmC in the same orientation like the lacPO, another cloning strategy was 

followed: EcoRI was used to excise the crmC sequence from plasmid pCC1. Purified 

fragments of the crmC´ insert and of the vector backbone were subjected to a fill-in reaction 

using the Klenow fragment of DNA polymerase I and then religated to force a frameshift of 

the lacZ´ part. A selected recombinant plasmid with the crmC in the same orientation like the 

lacPO was designated pCC2. 

To finally disrupt the crmC gene, the EcoRV-linearized plasmids pCC1 and pCC2 were 

ligated with the 2.37 kb EcoRV fragment of the pTet2 harbouring the tetR cassette. The 

resulting disruptor plasmids were denominated pDCC1-1, pDCC1-2, pDCC2-1, and pDCC2-

2 (for plasmid maps see Appendix 2). 

Transformation of Mycoplasma gallisepticum 

Transformation with suicide plasmids 

Before transformation with tetM-containing suicide disruptor plasmids, the sensitivity of MG 

strain RCL1 to the antibiotic Tet was assessed. A Tet concentration of 4 µg/ml was found to 

completely suppress the growth of MG RCL1 both on plates or in liquid broth. This result is in 
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accordance with other studies, where tetracycline was used as a selection marker at the 

same concentration (Dybvig, French, and Voelker, 2000; Markham et al., 2003) 

Several preliminary transformation experiments were conducted using the tetracycline-

resistance conferring plasmid pISMTet, which was also used as a transformation control 

throughout all following experiments. This plasmid is based on pISM2062 (Knudtson and 

Minion, 1993), with a tetM resistance gene inserted into the BamHI/SmaI-site of transposon 

Tn4001mod in the same orientation as the gentamicin resistance gene. The best 

transformation frequencies were obtained with 6 µg of pISMTet, yielding in average 5x10-6 

tet-resistant colonies per µg DNA. Similarly, the construct pUCTnTet was tested (kindly 

provided by W. Jechlinger, unpublished data). This construct is based on the pUC18 

backbone and contains Tn4001, whereas the original gentamicin resistance gene was 

replaced by the tetracycline resistance gene tetM. The transformation with the pUCTnTet 

gave results comparable to the pISMTet. The morphology of transformed colonies grown on 

Hayflicks/Tet plates resembled that of nontransformed mycoplasmas (see below). Also, the 

plasmid pISM-TetII was tested to confirm that the tetR cassette used for creation of the 

disruption plasmids is conferring resistance to tetracycline in MG. The transformation 

efficiencies were in average 5.5x10-5 per µg DNA. The transformants grown on Hayflick/Tet 

plates formed colonies with the typical “fried-egg” character of MG. The presence of the tetM 

gene in the colonies was confirmed by PCR as described previously (Chopra-Dewasthaly et 

al., 2005). 

Several of the suicide constructs (pDGA1-1, pDGA2-2, pDCB2-2, pDCC1-1 and pDCC1-2) 

described above containing genes of the “mgc region” disrupted by the tetracycline 

resistance cassette tetR were used in a number of independent transformations. A large 

number of MG colonies were observed on selective plates after transformation even when no 

DNA was used (ddH2O instead) for transformation. Likewise, such colonies were observable 

on the plates when plasmid DNA was present in the transformation mixture as well. The 

morphology of these colonies was different from non-transformed mycoplasma colonies, 

which are smooth, circular and may have a dense central area (“fried-egg appearance”). 

Whereas the transparent colour and size (0.2-0.3 mm in diameter) were as expected, the 

characteristic shape was not seen and no centre of the colony could be detected. Moreover, 

these colonies failed to grow further in liquid Hayflick/Tet broth. To avoid growth of such 

colonies, transformed cultures were incubated for 2.5 hour in a non-selective broth, then 

were brought up to 5 ml of medium with Tet at 4 µg/ml and grown overnight in the presence 

of the antibiotic. Plating was performed either directly or the cultures were harvested and 

cells were resuspended in a suitable amount of fresh selective broth.  Unfortunately, no 

transformant showing the characteristic mycoplasma morphology with the ability to grow 

further onto the agar plate was found during all transformations.  
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Site-directed mutagenesis via homologous recombination in MG was described only in a 

single report in which strain S6 was mutagenized via PEG-mediated transformation with a 

suicide vector carrying a tetM-disrupted p47 gene (Markham et al., 2003). From the two 

transformants that came out in total, one was tested positive for site-specific integration in 

the p47 gene. Although the author did not disclose the number of independent 

transformations, it seems that the frequency of integration might be rather low. Our attempts 

to reproduce the results of the above mentioned study have not been successful. When 

plasmid tetM/p47/pGEM-T was used In our laboratory, transformation of MG strain R failed, 

too. Although it might be conceivable that the different outcomes of Markham´s and our 

transformations are due to the different MG strain used in the study, other reasons cannot be 

ruled out.   

Transformation with OriC- modified disruptor plasmids 

As the effort of homologous recombination in MG using suicide vectors was not successful, it 

was decided to upgrade the disruptor plasmids by adding a fragment of MG´s origin of 

replication. The idea behind was not to create a replicative plasmid as this might not lead to 

integrate any sequence into the genome, but rather to prolong the residence of the disruptor 

plasmid so that the neccessary homologous recombination events acquire more time. The 

fragment was selected based on the publication of Papazisi and co-workers (Papazisi et al., 

2003), where the authors speculated about the MG origin of replication on the basis of AT-

rich sequences, containing AT-repeats and DnaA boxes, which are – at least in E. coli – 

necessary to bind the DnaA protein known to be the initiator of replication. It was assumed 

that a plasmid containing a part of the putative MG oriC could longer exist in the cell than a 

suicide vector. Thereofore two PCR approaches were designed. However, despite multiple 

attempts, no PCR reaction using primers Ori1 and Ori3 (Table 1) with RCL1 genomic DNA of 

as template did result in the expected 1.15 kb product. However, a smaller PCR product of 

0.42 kb could be amplified using the primer pair Ori1 and Ori2 (Table 1). The PCR product 

was subcloned via T/A cloning into the pGEM-T Easy vector resulting in plasmid pGEM-oriC. 

This plasmid was then digested by SacII and FspI and the 2 kb fragment carrying the MG-

oriC as well as the plasmid´s ColE1 origin was ligated with the 4.9 kb fragment of pDGA1-1 

(described above) obtained by digestion with SacII and BsrBI containing the gapA gene 

disrupted by tetM (Fig. 1). The resulting final construct, pDGA-oriC (6.9 kb), was used for 

transformation of MG RCL1.  
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Fig. 1. Scheme of cloning of the pDGA-oriC´ vector.  (A) Plasmid pGEM-oriC carrying a small 
fragment of MG oriC was digested by FspI and SacII. (B) Plasmid pDGA1-1 carrying a part of the MG 
gapA gene disrupted by tetM was digested by BsrBI and SacII. (C) The 2 kb fragment of pGEM-oriC 
was ligated with the 4.8 kb fragment of pDGA1-1 generating plasmid pDGA-oriC. 
 

When MG strain Rlow was electroporated with plasmid pDGA-oriC, transformation 

frequencies were rather low resulting in 1-10 transformants per 108 competent cells. Twenty 

tetracycline-resistant colonies arising from the transformation with pDGA-oriC were isolated 

and propagated in Hayflick/Tet medium. Genomic DNA from strain Rlow and the pDGA-oriC 

transformants was prepared and digested by EcoRV. The digests were analysed by 

Southern blot technology and probed with a specifically Dig-labelled internal fragment of the 

tetM gene obtained by PCR using primers TetF and TetR (Table 1). As expected, no signal 

was observed for the EcoRV-digested DNA of Rlow. Surprisingly, a band of approx. 9.1 kb 

was detected in all pDGA-oriC transformants (data not shown). The size of the fragment did 

not correspond to the 10.8 kb of the expected EcoRV-fragment harbouring the gapA gene. 

This suggested that the recombination event took place in another genomic region than 

around gapA. Since the plasmid used for transformation carried also another homologous 

MG sequence, a fragment of the oriC´region, we thought to investigate whether the 

recombination took place in this locus. 

Bsr BI, 
SacII 

Fsp I, 
 SacII 

3.4 kb 

pGEM-OriC  

SacII 47 

EcoRI, 53 
EcoRI 498 

FspI 1990 

FspI 3340 

lacPO 

blaPO 

T7 
MG ori 

colE1 AmpR 

f1 

BsrBI 6008 

pDGA-oriC  

EcoRI 53 
BsrBI 6249 

SacII 6837 

lacPO 
5´gapA 

tetM 

3'gapA 

colE1 

MG ori 

6.8 kb 

pDGA1-1 

SacII 46 

EcoRI 53 

BsrBI 4943 

BsrBI 
5184 

BsrBI 6985 

BsrBI 7482 

lacPO 

blaPO 

T7 5´gapA 

tetM 

3'gapA 

colE1 

AmpR 

f1 

7.75 
kb 

A B 

C 



 
 

 
 

90 

Therefore the genomic DNA of Rlow or Rhigh and pDGA-oriC transformants was digested by 

ClaI and probed with a specifically Dig-labelled oriC probe, obtained by PCR using primers 

Ori1 and Ori2 (Table 1). As a result, a band of 5.8 kb, corresponding to the native ClaI-

fragment containing the oriC region of MG, was detected in strain Rlow only. In contrast, a 

band of approx. 12 kb was detected in all the transformants, strongly indicating that a 

recombination event occurred within the oriC region, therefore increasing the size of the oriC-

fragment for the size of the plasmid (Fig. 2).  

 

 

 

Fig. 2. Southern blot using Dig-oriC probe.  The genomic DNA of MG Rlow or Rhigh and pDGA-
oriC transformants was digested by ClaI and probed with a Dig-labelled oriC probe. A band of 5.8 kb 
corresponding to the fragment containing the native oriC of MG was detected in strain Rhigh. In all the 
transformants, a band of 12 kb was detected. (M) Molecular size marker, (C) DNA of MG Rhigh, (lanes 
1-14) DNA of pDGA-oriC´ transformants, (P) plasmid pDGA-OriC´ 
 

This finding was further confirmed by an additional Southern blot using a Dig-labelled gapA 

probe, obtained by PCR using primers H2f and H2r (Table 1). As expected, two bands of 

about 14 kb and 12 kb, representing the genomic gapA as well as the gapA being part of the 

pDGA-oriC vector were detected in all the tested transformants (data not shown). To our 

surprise, no recombination event took place in the gapA region and no transformants were 

found having an extrachromosomally replicating plasmid. Moreover, in all transformants 

analyzed no deletions occurred in the plasmid DNA, which is integrated in the very same 

location for every colony tested in its entire length, presumably by a single cross-over 

recombination event. 
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In this study we have verified that the disruption of a given target gene by means of 

homologous recombination is an extremely rare event in MG, although it might be still 

feasible as the addition of a small fragment of 0.4 kb directed the integration of a 7 kb 

plasmid into the genomic DNA in every single transformant analyzed. To circumvent the 

limitations of the existing suicide disruption vectors it might be sufficient to modulate the 

length of the homologous target sequences. The full length gene was subcloned order to 

facilitate the expected homologous recombination events. Contrary to our first assumptions, 

we finally observed that for homologous recombination to take place also a shorter sequence 

is sufficient. Further attention will be focused on the targeted disruption of genes in the “mgc 

cluster” to obtain mutants for further elucidation of the complex cytadherence process. 
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5.2. Preparation of antibodies against cytadherence -related proteins of Mycoplasma 

gallisepticum 

(Collection of Data) 

 

Introduction 

The investigation of MG cytadherence requires the identification of molecular players directly 

or indirectly involved in this process and their localization within the cell. Determination of 

mycoplasma genome sequences (Dandekar et al., 2000; Fraser et al., 1995; Herrmann and 

Reiner, 1998; Himmelreich et al., 1996; Chambaud et al., 2001; Jaffe, Miyata, and Berg, 

2004; Sasaki et al., 2002) together with the deciphering of the total genome of one MG strain 

(Papazisi et al., 2003) have provided the basis to predict gene products potentially involved 

in cytadherence-related processes, e. g. by comparing the genome of MG with other 

mycoplasms allowing the identification of functional homologues involved in various 

processes including cytadherence. The identified orthologues are good candidates for the 

development of antisera. The antibodies can then be used for determination of gene 

expression in various types of assays e. g. colony immunoblotting, Western blots, nearest-

neighbour analysis, immunostaining, immuno-fluorescence microscopy and confocal laser-

scanning microscopy.  

For the generation of antibodies specific for MG proteins mainly two methods of choice can 

be followed: either the preparation and purification of MG proteins from a polyacrylamide 

(PAA) gel that has been used to separate proteins contained in the cell lysate of a freshly 

grown MG culture or the recombinant expression of specific MG genes in e. g. E. coli with 

the subsequent purification of the recombinant protein. The use of epitope tags in 

recombinant DNA techniques simplifies the purification of recombinant proteins by affinity 

chromatography. An epitope tag is a small peptide sequence, typically 3-14 amino acids in 

length, and encoded by the expression vector either upstream or downstream of the cloning 

site for the gene of interest. Protein synthesis finally produces the target protein with the 

epitope tag as a hybrid protein, whereas the epitope tags do not generally affect normal 

protein folding or function. Another important advantage is the availability of antibodies 

specific for the tag that allow the detection of the fusion protein. 

The most widely used tags for purifying proteins expressed in bacteria, yeast, insect and 

mammalian systems are the polyHis-tags allowing the purification under both, native or 

denaturing, conditions and the Maltose Binding Protein (MBP), allowing the easy purification 

of stable fusion products from bacterial extracts under mild conditions.  

Though, expression of mycoplasma sequences in E. coli is often hindered by an unusual 

mycoplasmal codon usage pattern: the UGA codon is utilized for tryptophan by all 

mycoplasmas resulting in the truncation of recombinant MG-specific proteins if expressed in 
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E. coli that uses this codon as a stop codon. This premature termination often makes it 

impossible to obtain MG gene products in the proper conformation or with the proper 

functionality in E. coli expression systems.  

The aim of this study was to generate polyclonal antisera against proteins encoded within 

and surrounding the cytadherence-associated “mgc locus”, namely mgc2, crmB and crmC 

using recombinant DNA technology. To circumvent the translation barrier, each of the 

tryptophan-encoding TGA codons that were contained at least once in each of the genes 

was mutagenized to the tryptophan encoding TGG triplet that is legible for E. coli. The 

modified sequences were then subcloned downstream of the N-terminal poly-His tag of 

plasmid pRSET or downstream of the MBP of vector pMal-c2 to enable the purification of the 

expressed proteins, which were subsequently used for the immunization of rabbits.  

 

Material and Methods 

Bacterial strains, growth conditions and media 

Mycoplasma gallisepticum (MG) strains Rlow, Rhigh (Lin and Kleven, 1984), RCL1, RCL2, 

RCL3, RCL4, mHAD3 (Winner et al., 2003), RhighA3 (picked as a single clone from strain 

Rhigh) and RhighGT5 (Papazisi et al., 2000) were cultivated at 37°C  in modified Hayflick 

medium (Wise and Watson, 1983) containing 500 U/ml of penicillin. E. coli strain DH10β 

(Invitrogen, Paisly, UK), SCS110 (NEB, Frankfurt am Main, Germany) and TB1 (NEB, 

Frankfurt am Main, Germany) were cultivated in LB broth (10 g/l tryptone, 5 g/l NaCl, 5 g/l 

yeast extract, pH 7) at 37°C with vigorous shaking.  Special strains of E. coli such as XL10-

Gold (Stratagene, La Jolla, USA) were cultivated according to the manufacturer’s instructions 

(LB, 10 g/l tryptone, 10 g/l NaCl, 5 g/l yeast extract, pH 7). After transformation, the E. coli 

cells were stabilized in SOC medium (20 g/l tryptone, 5 g/l yeast extract, 10 ml 1M NaCl, 2.5 

ml 1M KCl, 10 ml sterile 2M Mg++ (stock solution 1M MgCl2.6H2O + 1M MgS04.7H2O); 10 ml 

sterile 2M glucose, pH 7). For the production of the fusion protein His-Mgc2 superbroth (32 

g/l tryptone, 20 g/l yeast extract, 5g/l NaCl) (Minion, VanDyk, and Smiley, 1995) was used. E. 

coli BL21(DE3)pLysStar(pRCC) were grown on SOB agar plates (20 g tryptone, 5 g yeast 

extract, 0.5 g NaCl; pH 7; 15 g agar, 10 ml sterile 2M Mg++ /stock solution 1M MgCl2.6H2O + 

1M MgS04.7H2O/). In case of selective media, antibiotics were used at final concentrations of 

(i) ampicillin (Amp) 100 µg/ml, and (ii) chloramphenicol (Cam) 35 µg/ml. 

DNA manipulation 

Standard methods were used for DNA manipulations. For screening numbers of E. coli 

transformants crude plasmid extractions were performed as follows: After harvesting 1 ml of 

the bacterial culture, cells were collected by centrifugation (6,000 g) and the pellet was 

resuspended in 250 µl of the resuspension buffer (50 mM Tris-Cl, pH 8; 10 mM EDTA, pH 8; 

100 µg/ml RNaseA). 300 µl of the lysis buffer (200 mM NaOH; 1% SDS (w/v)) was added 



 
 

 
 

96 

and mixed by inversion followed by addition of 300 µl of the neutralization buffer (3 M 

potassium acetate, pH 5.5). The solution was centrifuged (10 min, 10,000 g, 4°C) in order to 

remove bacterial proteins and chromosomal DNA. The supernatant was then mixed with 600 

µl isopropanol and centrifuged (30 min, 16,000 g, 4°C). The pellet containing plasmid DNA 

was washed with 70% EtOH, air-dried, and resuspended in 15 µl ddH2O. Other plasmid DNA 

extractions were performed by using the following commercial kits according to the 

manufacturers´ instructions: Plasmid Miniprep PeqLab Kit I (PEQLAB Biotechnologie GmbH, 

Erlangen, Germany), QiaQuick Gel Extraction Kit (QIAGEN, Vienna, Austria), Wizard Clean 

Up System and restriction endonucleases from Promega (Mannheim, Germany) or NEB 

(Frankfurt am Main, Germany). Electrotransformation of E. coli was performed according to 

standard procedure. Sequence analysis of DNA was performed at the VBC-Genomics 

BIOSCIENCE Research GmbH, Vienna, Austria.  

PCR 

In order to introduce restriction sites suitable for cloning into vector pRSET-B, the mgc2 

sequence of the plasmid pWMC was amplified using primers mgc2_3 and mgc2_4 (Table 1) 

and the following conditions: denaturation at 94°C for 2 min, 30 cycles of denaturation at 

94°C for 30 s, annealing at 50°C for 30 s, extensio n at 68°C for 1 min, and a final extension 

step at 68°C for 2 min. 

 
Table 1.  Oligonucleotide primers used in this study to enable cloning of DNA fragments into 
expression vectors. 
 

 
Primer 

 
Sequence 

 

 
Restriction site 

mgc2_3 ACGCAGGAATTCATAACAATTATG EcoRI 
mgc2_4 TTTACAAAGCTTGTCTTATCTAGG HindIII 
B1F AGGAATTCAATGCTAATTTTTCATC EcoRI 
B1R ATGTCGACTAATCATGTAATGAG SalI 
B2F AGGAATTCTATATTACTAATTTAGC EcoRI 
B2R ATGTCGACAAAGTTGTTGTTCAAG SalI 
B3F AGGAATTCCAACCTAATATTGATGC EcoRI 
B3R ATGTCGACTCAATTGTTCTGTAACTC SalI 
B4F AGGAATTCCAGAACAATGAAACGATC EcoRI 
B4R ATGTCGACTATTCACTAATCATTTTGG SalI 

The highlighted sequences (bold letters) represent the newly introduced restriction sites 

Fragments of the crmB gene were amplified using primer pairs B1F/B1R, B2F/B2R, 

B3F/B3R, B4F/B4R, B2F/B3R and B3F/B4R (Table 1) applying the following conditions: 

denaturation step at 93°C for 2 min, 25 cycles of d enaturation at 93°C for 1 min, annealing at 

50°C for 1 min, extension at 72°C for 2 min, and a final extension step at 72°C for 5 min. 
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Site-directed mutagenesis  

A single-site mutagenesis was performed to correct the stretch of adenines in plasmid pRCB. 

This PCR-based mutagenesis employed 3 U Pfu polymerase (Promega, Mannheim, 

Germany) and primers CB5Afw and CB5Arev (Table 2) at a final concetration of 1.5 mM, 

each introducing restriction sites facilitating direct screening for the desired mutation, 300 ng 

of plasmids pRCB1 and pRCB2, and 0.2 mM dNTPs. The thermal cycling conditions implied 

a denaturing step at 94°C for 1 min and 30 cycles o f denaturation at 94°C for 30 s, annealing 

at 55°C for 30 s and elongation at 68°C for 12 min.  A 19 µl of the PCR product was subjected 

to a ligation reaction using 1 U of T4 DNA ligase (Roche, Vienna, Austria). Butanol-

precipitated ligated products were transformed by electroporation into E. coli DH10β 

(Invitrogen, Paisly, UK), which were plated on LB/Amp agar plates.  

 

Table 2.  Synthetic oligonucleotides primers used for site-directed mutagenesis. 
 

Designation Sequence Position 
Gene / 

Restriction site 
 

 

mgc_tga 

 

GAAAGATTACCTCCGAACCATGGTTTTATCCAGTAGTGGG 

 

172-210 

 

mgc2 / NcoI 

cb_1tga CTTTAGATTCGATTAGATGGAATGCTAATGCTAATTTTTC 185-224 crmB / BsmI 

cb-2tga GATTCTAATTTTATCTCATTACCATGGTTACAATATATTAC 766-806 CrmB / NcoI 

cb_3tga CGTTTCGCTTAATTGCACCATGGACAACAACTTTAGCC 1400-1437 crmB / NcoI 

cc_1tga GGGACAACCAACCTTAACTGGGCGTTAAATAATATTAG 808-845 crmC / BsrI 

cc_2tga CGCACTAAAAGATGGGAAATGGTACCTAAGTTTCTTTG 1443-1480 CrmC / KpnI 

cc_3tga CTCCTGGTGAGATCGACTGGAAACCTAGAGTAGAAG 1892-1927 crmC / BsrI 

CB5Afw TTTATTAATAATGTTTCGAAAAAAGTGGTAGCTGAAG 415-451 crmB / Csp45I 

CB5Arev CTTCAGCTACCACTTTTTTCGAAACATTATTAATAAA 415-451 crmB / Csp45I 

 

Mutated nucleotides are shown in bold, introduced restriction sites are underlined. The positions of the 
primers are according to GenBank entry AE015450, with the coodinate 1 corresponding to the 
beginning of each gene. 
 

The QuikChange Multi system (Stratagene, La Jolla, USA) allows the mutagenesis of a DNA 

sequence at multiple sites at the same time, using a single oligonucleotide per site. The 

single steps of this method are outlined in Fig. 1.  

Mutagenic oligonucleotide primers mgc_tga for mgc2, cb_1tga, cb_2tga and cb_3tga for 

crmB and cc_1tga, cc_2tga and cc_3tga for crmC genes were designed according to the 

manufacturers´ instructions (Table 2). Briefly, all the primers anneal to the same strand of the 

template plasmid, the GC content is 40-50%, and the desired mutations are in the middle of 

the primer with 15 nucleotides being complementary to the template at both sides. The 
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length of the designed primers is between 36 and 41 nucleotides. Additionally, each primer 

introduces a restriction site facilitating direct screening of transformants for the mutation. 

 

 

 

Fig. 1.  Scheme of the  QuikChange Multi site-directed mutagenesis method 
(Stratagene, La Jolla, USA).  Step 1 consists of a thermal cycling procedure that results in multiple 
rounds of mutant strand DNA synthesis. Components of the PCR reaction include the supercoiled and 
methylated dsDNA template, one or more synthetic oligonucleotide primers containing the desired 
mutations, and an enzyme blend containing Pfu Turbo DNA polymerase and a thermostable T4 DNA 
ligase provided with the kit. First, the mutagenic primers, which are designed to bind the same strand 
of the template, are annealed to the corresponding strand of the denatured template DNA. In step 2 of 
the procedure, primers become elongated to longer fragments, which are ligated to establish the full-
length circles containing the desired mutations. During step 3, the endonuclease DpnI, which is 
specific for methylated and hemimethylated DNA digests the parental template DNA leaving behind 
full-length single strand DNA circles, which harbour the desired mutations. In step 4, the reaction 
mixture is transformed into E. coli XL10 Gold. 
 

The kit also provided an internal control reaction, which was processed simultaneously to 

verify that all components were working properly. The control reaction is based on the 4 kb 

pBluescript® II SK (-) phagemid harbouring the lacZ´ gene that encodes the first 146 amino 

acids of the β-galactosidase. This LacZ´ alpha peptide is responsible for the production of 

blue colonies when expressed in the appropriate E. coli background (lacZ ∆ M15) and grown 

on media containing X-gal and IPTG. The QuikChange Multi control template was modified 

to contain stop codons at three positions in the lacZ coding sequence. Each of the mutations 

  

   

 

 

+ + 

thermal cycles 

predominant product 
from step one  

transformation  
transform mutated ssDNA into XL 10 
gold ultracompetent cells 

Dpn I digestion of template DNA  
Digest methylated and hemimethylated 
DNA with DpnI 

Mutant strand synthesis (thermal cycling)  
Perform themal cycling to: 
1) Denature DNA template 
2) Anneal mutagenic primers (all primers bind 

to the same strand) 
3) Extend primers and seal nicks with 

QuickChange Multi enzyme mix 



 
 

 
 

99 

should prevent the production of active β-galactosidase. The QuikChange Multi control 

primer mix consists of three primers, each of which reverts one of these stop codons to the 

codon found in the original lacZ gene. Restoration of active β-galactosidase requires that all 

three stop codons get mutagenized in the same molecule. 

For the multi-site mutagenesis of the selected MG genes, all the plasmids used as templates 

were of similar size (pMC2 4.8 kb, pCC2 5.6 kb, pCB2 5.8 kb), so the same conditions were 

used. A mutant strand synthesis reaction and a control reaction were performed according to 

the manufacturer’s recommendations (Table 3). 

 

Table 3 .  Components used in the control and the experimental reactions 

 
Mutagenesis Reactions Component 
 

Control Reaction 
 

pMC2 
 

pCB2/pCC2 
 

10x QuikChange Multi reaction buffer 2.5 µl 2.5 µl 2.5 µl 

ddH2O to a final volume 25 µl 18.5 µl 14.25 µl 12.25 µl 

QuikSolution 0 µl 0.75 µl 0.75 µl 

ds-DNA template (100 ng) 1 µl 4 µl 4 µl 

Mutagenic primers (100 ng/µl each) 0 µl 1 µl 3 µl 

Mutagenic control primers mix 1 µl 0 µl 0 µl 

dNTP mix (10mM each) 1 µl 1 µl 1 µl 
 
QuikChange Multi enzyme blend 
 

1 µl 
 

1 µl 
 

1 µl 
 

 

The cycling parameters were the same for all four reactions: a denaturing step at 95°C for 1 

min followed by 30 cycles of denaturation at 95°C f or 1 min, annealing at 55°C for 1 min and 

elongation at 65°C for 8 min. 

After the PCR, 1 µl of restriction enzyme DpnI (10 U/µl) (cutting specifically methylated and 

hemimethylated DNA and therefore suitable for degrading the parental plasmid DNA used as 

the template for the PCR) was added directly to each amplification reaction, which was 

gently mixed and incubated at 37°C for 1 h. A 45 µl  aliquot of electrocompetent frozen E. coli 

XL10-Gold cells was thawed on ice and mixed with 2 µl of β-mercaptoethanol (provided with 

the kit) in 15 ml polypropylen tubes (Sterilin, Staffordshire, UK) for 2 min. Then, 1.5 l of the 

digestion mixture was transferred into the E. coli XL10 Gold cells. After 30 min of incubation 

on ice the cell mixture was transferred into the 42°C water bath. The tubes were heat-

shocked for 30 s, cooled immediately on ice for 2 min and gently resuspended in 500 µl SOC 

medium preheated to 42°C. The transformed culture w as incubated at 37°C for 1 h under 
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gentle agitation at 240 rpm.  Finally, cells were plated at different amounts onto LB/Amp 

(Stratagene) agar plates containing 80 µg/ml X-gal and 20 mM IPTG. From the mutagenesis 

control sample 10 and 20 µl were plated whereas from the experimental mutagenesis 150 µl 

were used per plate. 

Induction of MBP-fusion protein expression (NEB) 

Vectors carrying malE-crmB sequences were maintained in E. coli TB1. Expression of the 

MBP fusion proteins was induced according to the manufacturer’s instructions, briefly: clones 

grown on LB/Amp-plates were picked and cultured overnight in broth for 16 hours. One ml of 

each overnight culture was used to inoculate 10 ml of fresh LB/Amp broth. When the cultures 

reached OD600 0.3, they were induced by IPTG at a final concentration of 0.3 mM and 

aliquots were collected in 1 h intervals. Induction was tested by SDS-PAGE of cell lysates 

followed by Western blotting using an anti-MBP antiserum (NEB) in dilution 1:10,000 

Protein purification with magnetic beads  

This rapid method for purification of polyhistidine (poly-His) tagged proteins is based on 

paramagnetic precharged nickel particles used to isolate the protein directly from a crude cell 

lysate of bacterial cells (Fig. 2). Fusion proteins can be purified under native and/or 

denaturing conditions. 

For the purification, cells from an induced bacterial culture (500 ml) were harvested by 

centrifugation (6,000 g, 5 min, RT). The pellet was resupended in 50 ml FastBreakTM cell 

lysis reagent and DNaseI (5 µg/ml) was added to the lysate to reduce the viscosity. Aliquots 

of 5 ml were then gently mixed by inversion with 20 µl magnetic particles (5 min, RT). The 

mixture was placed into a magnetic stand to recover the particles coated with His-tag fusion 

protein. The supernatant was aspirated, and another aliquot of the lysate was mixed with the 

beads. These steps were repeated until the whole cell lysate was mixed with the beads. 

Finally, the magnetic particles were washed three times with 2 ml MagneHisTM 

binding/washing buffer (100 mM HEPES, 10 mM imidazol, pH 7.5) and the His-tagged fusion 

protein was eluted using 150 µl MagneHisTM elution buffer (100 mM HEPES, 500 mM 

imidazol, pH 7.5).  

To improve the efficiency of this method, the bacterial lysate was prepared as follows: 

pelleted cells of a 500 ml culture were resuspended in 50 ml binding/washing buffer, 

sonicated on ice using ten bursts of 10 s (BANDELIN SONOPULS HD2070, titan microtip 

MS73, 70% power) with a cooling period of 10 s between each burst. The 5 ml aliquots were 

then treated with MagneHisTM Ni-particles as described above. 
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Fig. 2. Scheme of the MagneHis TM Protein Purification System  (Promega, Mannheim, 
Germany). Bacterial cells containing a poly-His tagged protein are lysed directly in the culture medium 
or after centrifugation using the provided FastBreakTM cell lysis reagent (A). MagneHisTM Ni-particles 
are then added to the lysate, which are said to bind poly-His tagged proteins in a matter of minutes 
(B). Unbound proteins are washed away (C), and the target protein is recovered by elution with 
imidazole (D). 
 

Resin-based purification 

The ProBondTM purification system (Invitrogen, Paisly, UK) is designed for purification of 

poly-His tagged recombinant proteins produced by bacteria utilizing the high affinity and 

selectivity of ProBondTM nickel-chelating resin for recombinant fusion proteins containing six 

tandem histidine residues (poly-His).  
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The method described below is the general method; modifications used for purifying selected 

fusion proteins in this study are described in the Results section. 

Preparation of resin  

2 ml of the ProBond nickel-chelating resin (Invitrogen, Paisly, UK) was gently resuspended 

before use in the bottle, transferred onto a 10 ml column provided with the kit and allowed to 

settle completely by gravity. The supernatant was gently aspirated. Six ml of sterile water 

was added and mixed with the resin by gently inverting or tapping the column. Again, the 

resin was allowed to settle by gravity. Additional two washes were performed using either the 

native or the denaturing binding buffer and the supernatant was aspired. 

Preparation under native conditions 

Cells from a 50 ml culture were harvested by centrifugation (6,000 g, 5 min, 4°C), and 

resuspended in 8 ml of native binding buffer (50 mM NaH2PO4, pH 8, 0.5 M NaCl, 10 mM 

imidazol, pH 6). The solution was sonicated on ice using six bursts of 10 s (BANDELIN 

SONOPULS HD2070, titan microtip MS73, 70% power) with a cooling period of 10 s 

between each burst. The lysate was centrifuged at 3,000 g for 15 min to pellet the cellular 

debris. At this point the lysate was either stored at –20°C or further processed immediately. 

The lysate was then incubated with the resin in the previously prepared column by gentle 

agitation for 30-60 min. The resin with the bound fusion protein was then allowed to settle by 

gravity for 15 min and the supernatant was aspirated and stored for further SDS-PAGE and 

Western blot analysis. The resin coated with the fusion protein was washed three times with 

8 ml native wash buffer (50 mM NaH2PO4, pH 8, 0.5 M NaCl, 20 mM imidazol, pH 6) as 

described above. Finally, the column was clamped in a vertical position, the cap was 

removed and the fusion protein was eluted using app. 10 ml native elution buffer (50 mM 

NaH2PO4, pH 8, 0.5 M NaCl, 250 mM imidazol, pH 6). Fractions of 1 ml were collected and 

analyzed with SDS-PAGE. Fractions containing eluted protein were concentrated using an 

evaporator (Univapo 100 H, UniEquip), if necessary. 

Preparation under hybrid conditions  

For hybrid conditions, the lysate was first prepared under denaturing conditions (see below) 

followed by the binding of the fusion protein to the resin and a first wash under denaturing 

conditions. The last washes and the elution were performed with native buffers which should 

allow a refolding of the protein. The preparation of the lysate followed the same steps as 

described before (native conditions), with the following exceptions: Bacterial cells were 

resuspended in guanidinium lysis buffer (6 M guanidine hydrochloride, 20 mM NaH2PO4, pH 

7.8, 500 mM NaCl) and rocked for 10 min at RT to ensure thorough cell lyses. The resin was 

washed in denaturing binding buffer (8 M urea, 20 mM NaH2PO4, pH 7.8, 500 mM NaCl). 

After the incubation of the resin with the cell lysate, the column was washed twice with 6 ml 

denaturing binding buffer, twice with denaturing wash buffer (8 M urea, 20 mM NaH2PO4, pH 
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6, 500 mM NaCl) and twice with native wash buffer.  The protein was eluted with app. 10 ml 

native elution buffer (250 mM imidazol).  

Recharging the resin 

To recharge 2 ml of the resin in a purification column, the column was washed twice with 8 

ml 50 mM EDTA (pH 8) to strip away the chelated nickel ions, twice with 8 ml sterile water 

and twice with 8 ml NiCl2.6H2O (5 mg/ml in sterile water) to recharge the resin. Finally, the 

recharged resin was rinsed two times with 8 ml sterile water. The column containing the 

recharged resin was preserved with 20% ethanol and stored at 4°C. 

Protein dialysis 

A dialysis membrane (Invitrogen, Paisly, UK) was swiftly washed in deionized water, boiled 

for 10 min in distilled water to remove traces of ethanol, cooled and briefly washed in distilled 

water. The protein solution was filled with a glass pipette into the dialysis membrane with a 

fixed clip on one end and the membrane was closed. The membrane loaded with the protein 

solution was placed into 2 l of sterile phosphate buffered saline (PBS) at 4°C for 12 h. 

Consequently, two additional washes in 1 l PBS were performed for three hours each. 

Finally, the protein solution was concentrated by placing the membrane in PEG powder 

(Roth, Lauterbourg, France) for 45 min. The final volume was 3 ml and the concentration was 

assessed either by SDS-PAGE analysis or by using the BCATM Protein Assay (Pierce, 

Illinois, USA). 

Electro-elution of proteins 

Electro-elution of proteins was performed in an Electro-Eluter (BioRad, Model 422). The 

assembly of the cell followed the manufacturer’s instructions. A gel slice of a zinc-stained 

(BioRad) SDS-PAA gel containing the protein of interest was minced and all pieces were 

loaded into the Electro-Eluter as described by the manufacturer using freshly prepared 

volatile buffer (50 mM NH4HCO3, 0.1% SDS,). The protein was eluted at a constant current of 

10 mA/glass tube for 6 h. After the elution, the volatile buffer was lyophilized in a spin-

vacuum (Univapo 100 H, UniEquip), leading to a concentrated protein solution.  

Immunization of the rabbits, bleeding 

One ml of the solution containing the fusion protein content of 150 µg was injected to the 

popliteal lymph nodes of New Zealand White rabbits (approx. 0.3 ml per one lymph node) 

while the remaining (approx. 0.4 ml) was inoculated subcutaneously around the spine of the 

animal. Depending on the intensity of the immune response which was checked by Western 

blotting, the rabbits were given several booster injections (100 µg of the protein each) 

subcutaneously at monthly intervals. Ten days following the last booster immunization, the 

rabbits were anaesthetised with ketamine hydrochloride (25 mg per kg of body weight) and 

xalazine (3 mg per kg of body weight) and bled by cardiac puncture. The blood was 

centrifuged (300 g, 5 min, RT) and the serum was collected. The specificity and the titre of 
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the working dilution of the rabbit antibodies directed against MG proteins were assessed by 

Western blot analyses using whole cell lysates of various MG variants. 

 

Results 

Anti-Mgc2  

The gene mgc2 of MG strain R contains one TGA codon (amino acid no. 65 out of 297 in 

total) that is translated as the amino acid tryptophan in the mycoplasma context. In order to 

express an untruncated Mgc2 protein in E. coli, the mycoplasma TGA codon had to be 

replaced with another tryptophan-encoding triplet, most favourable with the codon TGG. In 

order to do so, plasmid pMC2 (described under 4.1.) harbouring the full length mgc2 

sequence was subjected to a site-directed mutagenesis using the primer mgc_tga and 

thermal cycling conditions as described under Materials and Methods. Primer mgc_tga 

introduces two nucleotides substitutions (ccc tga to cca tgg) thereby replacing the original 

TGA codon with TGG and, at the same time, creating a NcoI restriction site, thus allowing to 

distinguish a mutation carrying construct from the parental plasmid. Transformation of E. coli 

XL10 Gold gave rise to hundreds of transformants. To identify the clones carrying the 

mutated plasmid, randomly selected colonies were cultivated in LB/Amp medium, and the 

purified plasmids were digested by NcoI. While digestion of the parental plasmid gave rise to 

a single DNA fragment of 4.8 kb, digestion of the plasmids carrying the desired mutations 

resulted in two DNA fragments of about 1.1 kb and 3.7 kb. Screening of 8 randomly selected 

transformants resulted in five clones with the desired mutation where the TGA codon was 

replaced by the codon TGGTrp. One of them was selected for further use and named pWMC. 

In order to subclone the mutated mgc2 coding sequence into the expression vector pRSET-

B, LR-PCR was employed using primers mgc2_3 and mgc2_4 (Table 1) providing 

recognition sequences for restriction enzymes EcoRI and HindIII, respectively. The purified 

PCR product was then subcloned into the EcoRI-HindIII sites of expression vector pRSET-B 

resulting in plasmid pRMC.  

Several preliminary experiments were conducted to identify the proper conditions under 

which the expression of the fusion protein His-Mgc2 could be detected. An induction of the 

protein expression was initially tested in the E. coli strains DH10β and BL21(DE3)pLys, 

respectively. Since in these initial attempts no expression of the recombinant protein could 

be observed, it was decided to test the expression in the genetic background of the E. coli 

strain BL21(DE3)pLys Star. This bacterial strain is said to be especially suitable for the 

production of proteins exerting a toxic effect on E. coli cells, as it contains a mutation in the 

RNase E gene (rne) enhancing the stability of mRNA transcripts and thus increasing protein 

yield. Additionally, the pLysS plasmid carried by this strain constitutively produces a T7 

lysozyme, thereby reducing basal levels of T7 RNAP, which is also encoded on the host 
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genome. As a consequence, no basal expression of recombinant genes that are under the 

control of the T7 promoter should take place.  

Clones of freshly transformed E. coli BL21(DE3)pLys Star(pRMC) were cultivated for 16 h in 

LB/Amp,Cam containing 1% glucose. The overnight cultures were used for inoculation of a 

superbroth/Amp, Cam (Minion, VanDyk, and Smiley, 1995) containing 0.25% glucose to a 

final OD600 of approximately 0.1. At the OD600 0.3-0.6, the recombinant protein production 

was induced by addition of IPTG (0.5 mM) for 15 min. Cells were then harvested by 

centrifugation (6,000 g,  5 min) and the cell pellet was resuspended in PBS (25 ml per 1 l 

culture). Aliquots of the non-induced and induced culture were analysed by SDS-PAGE 

followed by Western blot using Anti-XpressTM antibodies, which revealed a protein of 

approximately 32 kDa in the induced culture only. Prolonged cultivation of the His-Mgc2-

producing cells after induction led to the lysis of the bacterial cells indicated by a decrease of 

the OD600 values. Similarly, the amount of the fusion protein produced was decreasing with 

higher OD600 values (0.5 - 0.7) of the non-induced cultrure. Once the culture reached an 

OD600 higher than 0.8, the induction by IPTG did not result in any detectable His-Mgc2 

production.  

In order to retain a wide applicability of the antibodies, it was tried to obtain the fusion protein 

preferentially in its native form. The metal binding domain of the fusion protein should allow a 

simple purification of the recombinant proteins. Two methods for the purification of native 

protein were tested in parallel: (1) MagneHisTM Protein Purification System (Promega, 

Mannheim, Germany) and (2) Immobilized Metal Affinity Chromatography using ProBondTM 

Nickel-Chelating Resin (Invitrogen, Paisly, UK). While with the MagneHisTM system a crude 

cell lysate can be used, the resin works with a soluble fraction only. Therefore, the solubility 

of the fusion protein His-Mgc2 was tested. A 10 ml culture was centrifuged (6,000 g), the 

pelleted cells were resuspended in 1 ml PBS, sonicated, and after an additional 

centrifugation samples of the supernatant and the cell debris were collected. The SDS-PAGE 

analysis followed by Western blotting using the Anti-Xpress™ Antibodies (dilution 1:5,000) 

revealed that approximately 60% of the fusion protein was present in the insoluble fraction. 

An overview and a schematic representation of the MagneHisTM protein purification system 

are given in the Materials and Methods section (Fig. 2). The bacterial lysate was prepared 

according to the manufacturer’s instructions supplied with the system, with the following 

exception: the volume of the induced culture was dramatically increased from 50 ml 

recommended by the manufacturer to 1,000 ml on account of the rapid cell lysis and low 

OD600 of the culture susceptible for induction (see above). To utilize the full binding capacity 

of the magnetic beads, the particles were allowed to incubate with several aliquots of the cell 

lysate prior to the first washing. As the elution of the His-tagged proteins is based on highly 

concentrated imidazol, the eluted protein had to be dialyzed against PBS before the 
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immunization of rabbits. The purification method based on magnetic Ni-particles appeared to 

be effective in matters of the purity of the His-tagged protein, but the amount of the eluted 

protein was poor in relation to the volume of the culture. Additionally, the magnetic particles 

gradually lost their binding capacity and the amount of the pellet could not be increased, 

therefore the method was not considered suitable for the purification of a fusion protein which 

is present only at a low concentration in the soluble fraction of the cell lysate (Fig. 3, Panel 

A).  

A second method used for the purification of the His-Mgc2 fusion protein was the ProBondTM 

nickel-chelating resin. The soluble fraction of the cell lysate used for protein isolation was 

prepared as follows: the transformed cells grown in superbroth to a density of OD600 0.3-0.6 

were induced by IPTG and after 15 minutes the cells were harvested by centrifugation. The 

pellet from a 2 litres of culture was resuspended in 50 ml of native binding buffer and 

subsequently sonicated. The cell debris was removed by centrifugation and the supernatant 

was used for protein isolation. The ProBondTM nickel-chelating resin (300 µl) was applied into 

the test tube (50 ml, Sterilin), washed twice with 5 ml ddH2O and twice with 5 ml native 

binding buffer. After washing, 50 ml of the soluble fraction of the cell lysate was mixed with 

the washed resin and incubated for 2 h at RT. The solution was mixed in the tube by soft 

inversion approximately every 10 min. Afterwards, the mixture was applied onto a column (8 

ml, Invitrogen, Paisly, UK) and the resin with the bound His-Mgc2 fusion protein was let to 

settle by gravity. The supernatant was carefully aspirated and collected in a fresh tube. The 

resin was washed four times with 8 ml native wash buffer and the supernatants were stored 

for SDS-PAGE and Western blot analysis. At the end, the His-tagged protein was eluted with 

4 ml of an elution buffer containing 250 mM imidazol. The fractions containing lower amounts 

of the fusion protein were concentrated in an evaporator (Univapo 100 H, UniEquip). This 

method was found to be suitable for the purification of a His-tagged protein, which is present 

in the soluble fraction of the lysate, although at a low concentration. Although the elutions 

contained satisfying amounts of the His-Mgc2 protein (Fig. 3., Panel C), some contaminating 

proteins were present as well (Fig. 3, Panel B). Those contaminants were most likely derived 

from E. coli and therefore might not give rise to cross-reacting antibodies. 
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Fig. 3. The purification of His-Mgc2 fusion protein  using the MagneHis TM protein 
purification system (Panel A) and the ProBond TM Nickel-Chelating Resin (Panel B, C).  
The non-induced E. coli cells (lanes 1 and 7), bacterial lysates after incubation with magnetic beads 
(lane 2) or resin (lane 8), washing steps (lanes 3-5 and 10-12) and elution (lanes 6, 12-15) were 
separated onto a 10% SDS-PAA gel and stained with Coomassie Blue (Panel A, B). Western blot 
corresponding to the SDS-PAA gel (Panel B) was stained using the Anti-Xpress™ Antibodies (dilution 
1:5,000) (Panel C). The His-Mgc2 protein is indicated by arrows. (M) Molecular weight marker. 
 

Purified His-Mgc2 protein obtained by either method was then used for immunization of two 

rabbits. The animals received 3 and 4 injections of the native fusion protein (100 µg per 

injection), respectively. The protein used for the second booster injection was a mixture of 

the native His-Mgc2 purified on the resin-based column and a denatured His-Mgc2. The 

latter was isolated from a SDS-PAA gel (as described below for His-CrmC) loaded with the 

insoluble fraction of the induced producer cells containing a high yield of the His-Mgc2 by 

electro-elution.  

The reactivity of the obtained antisera to the Mgc2 protein of MG was tested by 

immunoblotting. A total cell lysate of the His-Mgc2 producing E. coli BL21(DE3)pLys 

Star(pRMC) as well as lysates of MG Rlow and Rhigh were separated on a 10% denaturating 

PAA gel and transferred onto a nitrocellulose membrane. The blots were probed with the 

sera obtained from the immunized rabbits in dilutions ranging from 1:100 to 1:2,000. A 

protein of the expected size of 34 kDa was detected in lysates of IPTG-induced, pRMC-

transformed E. coli cells but not in lysates of non-transformed counterparts. The best staining 

results showing the lowest background at the same time were obtained with a serum dilution 

of 1:1,000.  
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A slightly smaller protein of about 30 kDa was also detected in lysates of both strains of MG, 

Rlow and Rhigh. The size of 30 kDa corresponds to the Mgc2 protein lacking the N-terminal 

poly-His tag. To test the expression of the mgc2 gene in clonal variants and mixed 

populations of MG, equivalent amounts of cell lysates of the strains Rlow, RhighA3, RCL1 

RCL2, RCL3, RCL4, mHAD3 and RhighGT5 were analyzed on Western blots with the anti-

Mgc2 serum. A protein of about 30 kDa was detected in all the strains tested (Fig. 4). 

Localization of the Mgc2 protein was assessed by colony immunobloting and by Triton X-114 

phase partitioning followed by Western immunoblotting. The assays suggested that the Mgc2 

protein (i) is a membrane protein as it was detected in the hydrophobic and insoluble phases 

of the MG cell lysate, while no protein was observed in the aqueous phase, and (ii) that the 

protein is localized on the cell surface as the colonies were stained with the anti-Mgc2 

antibodies by colony immunoblotting. These results are in good agreement with a previously 

reported study (Hnatow et al., 1998). 

 

 

Fig. 4. Western blot analysis using anti-Mgc2 antib odies.  Equivalent amounts of cell lysates 
of the strains Rlow (lane 1), RCL1 (lane 2), RCL2 (lane 3), RCL3 (lane 4), RCL4 (lane 5), Rhigh A3 (lane 
6), mHAD3 (lane 7) and RhighGT5 (lane 8) were separated by SDS-PAGE and Western blots were 
probed with the anti-Mgc2 serum in dilution 1:1,000. A protein of about 30 kDa was detected in all the 
strains tested. M: molecular weight marker. 
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Anti-CrmC  

Gene crmC of MG strain R carries three TGATrp codons at positions 276, 488 and 637 of the 

855 aa protein. The plasmid pCC2 (see Collecton of data under 4.1.) carrying the entire 

crmC gene was subjected to a multi-site directed mutagenesis using primers CC_1tga, 

CC_2tga and CC_3tga (Table 2). Approximately 70 randomly selected transformants were 

screened for the presence of restriction site KpnI. Since neither KpnI nor BsrI restriction sites 

were present in the parental, non-mutated plasmid pCC2, their presence directly indicated a 

successful mutagenesis procedure. Plasmids which were linearized by KpnI were 

consequently digested with BsrI. The finally selected plasmid pWCC1 displayed a restriction 

pattern corresponding to the desired mutations of all three TGATrp codons. After digestion 

with EcoRI a 2.6 kb-fragment of plasmid pWCC1 containing the corrected crmC was 

subcloned into the expression vector pRSET-B linearized by EcoRI. In the resulting plasmid 

pRCC, the crmC gene was supposed to be located downstream of the poly-His tag. The 

proper orientation of the crmC and the correct fusion to the poly-His tag coding sequence of 

pRSET-B was confirmed by control restriction digests with BglII, BsrI, EcoRI, KpnI and PvuII 

(Fig. 5). In parallel, the plasmid pRCC was transformed into E. coli BL21(DE3)pLys Star and 

recombinant expression was induced by adding 0.5 mM IPTG to the bacterial culture. 

However, the restriction digest by KpnI did not result in the expected fragment pattern (Fig. 

5., lane 5) suggesting that the second TGATrp codon was not mutated. Similarly, Western blot 

analysis with the antibody specific for the poly-His tag revealed a protein of only 

approximately 54 kDa, instead of the expected length for the entire fusion product of about 

70 kDa. Taking these two results together, it was concluded that the second TGA codon 

remained unchanged, thus terminating the translation of the His-crmC gene in E. coli. This 

unexpected binding most probably resulted from a mistaken description of the primary digest 

by KpnI. There the linearized form of the plasmid pWCC1 wawhen the partial digest was 

most probably caused by contamination present in the digestion mixture.  
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Fig. 5. Restriction digest of pRCC.  Plasmid pRCC (line 1, undigested) was submitted to the 
control restriction digest using enzymes BglII (lane 2, fragments 3.3 kb, 1.7 kb, 0.3 kb), BsrI (lane 3, 
fragments 1.2 kb, 1.08 kb, 0.7 kb, 0.57 kb, 0.4 kb, etc.), EcoRI (lane 4, fragments 2.9 and 2.6 kb), KpnI 
(lane 5, fragments 4 kb and 1.5 kb) and PvuII (lane 6, fragments 4.1 kb and 1.4 kb). M – 1 kb 
molecular marker, Gibco 
 

In order to finally create a crmC gene with all 3 TGA codons corrected, two randomly 

selected plasmids from the first multi-site mutagenesis approach, namely pWCC61 and 

pWCC63, were used. Both plasmids carry the crmC gene in which only the second TGATrp is 

mutated to TGGTrp codon as confirmed by digestion with KpnI. The constructs pWCC61, 

pWCC63 and pRCC were transformed into E. coli strain SCS 110 (dam-) and the non-

methylated plasmid DNA was subsequently digested by the methylatioín-sensitive restriction 

enzyme ClaI along with EcoRV. Then, a 0.2 kb fragment of pWCC61 and pWCC63, 

respectively, containing an internal part of the crmC gene was ligated with the 5.3 kb 

fragment of the EcoRV/ClaI-digested plasmid pRCC. This ligation should assemble a full 

crmC gene with all three TGA codons corrected. However, despite the fact that sequence 

analysis confirmed the desired mutation in the second TGATrp of the crmC in the final 

constructs pR2CC1 and pR2CC2, no production of the His-CrmC fusion protein was 

detected after IPTG induction of transformed E. coli BL21(DE3)pLys Star even though 

several experiments under various conditions were performed. Considering all difficulties 

which were experienced during the construction of the plasmid pCC2 (see Collection of Data 

under 4.1.), when the in frame ligation of the TGGTrp-corrected crmC gene with the lacZ´ 

gene starting codon was not successful, it was assumed that a full-length CrmC protein is 

most likely harmful to the E. coli host. Since the expression of the full-length His-CrmC 

protein could not be achieved it was decided to produce truncated His-CrmC´ fusion proteins 

using the pRCC construct. The best induction of the His-CrmC´ protein was obtained when 
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LB medium was inoculated directly with colonies grown on SOB/Amp,Cam plates to reach a 

starting OD600 of 0.1-0.2 and when this culture was induced by IPTG (0.5 mM) at an OD600 of 

0.4-0.6. The induced culture was harvested by centrifugation 60 min after induction as a 

prolonged cultivation resulted in a decrease of the OD600 of the bacterial culture. To test the 

solubility of the fusion protein His-CrmC´, the bacterial pellet was sonicated as described for 

the generation of Mgc2 antibodies. A consequent SDS-PAGE with Western blot analysis 

using the polyHis-specific antibodies revealed that the majority of the fusion protein remains 

in the insoluble fraction. Despite of that, the purification based on nickel-chelating resin was 

employed in order to purify the remaining of the soluble His-CrmC´ protein under native 

conditions. Unfortunately, all attempts to purify the truncated fusion protein failed. 

Additionally, also the purification under hybrid conditions (see Materials and Methods) was 

not successful. Thus, the His-CrmC´ fusion protein was extracted directly from the PAA-gel. 

The gel pieces were lyophilized, powdered, resuspended in saline and mixed with Freund´s 

adjuvant, and thereafter used for the immunization of two rabbits. For the booster injections, 

the His-CrmC´ was purified from the PAA-gel by electro-elution. One animal was sacrificed 

after the second booster injection as it developed abscesses; the second animal did not 

develop adverse reactions and was sacrificed after six immunizations. 

The reactivity of the generated anti-CrmC serum was assessed similarly as described for the 

Mgc2-specific rabbit serum. A total cell lysate of the His-CrmC´-producing E. coli 

BL21(DE3)pLys Star(pRCC) as well as lysates of MG Rlow and Rhigh were separated on a 

SDS-PAA gel and transferred onto a nitrocellulose membrane. The blots were probed with 

sera obtained from the immunized rabbits in dilutions ranging from 1:100 to 1:2,000. The 

best results with the lowest background were obtained with the serum dilution 1:400.  

The CrmC protein should display a molecular weight of 97kDa as it was deduced from the 

sequence of the crmC gene disclosed by Papazisi and coworkers (Papazisi et al., 2003). To 

test the expression of the crmC gene in different clonal variants and mixed populations of 

MG, equivalent amounts of the total cell lysates of strains Rlow, RCL1, RCL2, RCL3, RCL4, 

RhighA3, mHAD3 and RhighGT5 were analyzed on Western blots. Several bands were 

detected (Fig. 6) representing proteins with estimated molecular weights of 50, 97, 116 and 

120 kDa. The protein p97 follows the same characteristic of ON/OFF switching as seen with 

GapA of the MG variants tested. The only exception is RhighGT5, which is GapA-positive 

(Papazisi et al., 2000) but appears to be negative for the p97 product. Whether the p97 

protein really represents the crmC gene product, remains to be elucidated by other 

techniques, such as 2D-gel electrophoresis or MALDI-TOF analysis. 

The protein p116 which migrates through the gel at the same speed as CrmA shows also a 

similar ON/OFF switching pattern. Hence, one might speculate that this protein is indeed the 

CrmA. Expression of crmA was found to be linked with the expression of gapA (Papazisi et 
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al., 2002; Winner et al., 2003) meaning that its transcription is disturbed in GapA-negative 

strains.  The proteins p120 is present in all the clones tested as well as the protein p50.  

 

 

Fig. 6. Western blot analysis using anti-CrmC antib odies.  Equivalent amounts of cell lysates 
of the strains Rlow (lane 1), RCL1 (lane 2), RCL2 (lane 3), RCL3 (lane 4), RCL4 (lane 5), Rhigh A3 (lane 
6), mHAD3 (lane 7) and RhighGT5 (lane 8) were separated on SDS-PAGE and Western blots were 
probed with the anti-CrmC serum at a dilution of 1:400. Several proteins have been detected using this 
serum: p120 and p50 that are present in all the clones tested, p116 and p97 that could represent 
CrmC. M: molecular weight marker. 
 

Anti-CrmB  

In order to express the MG crmB gene in E. coli, plasmid pCB2 (see Collection of Data under 

4.1.) harbouring the complete crmB gene sequence inserted downstream of and in frame 

with the lacZ´ gene of pGem-T Easy was used. However, the 921 aa encoding crmB gene 

contains three TGATrp codons amino acids at positions 73, 271 and 474. Therefore, plasmid 

pCB2 was subjected to a multi-site directed mutagenesis using three TGA-changing primers 

as listed in Table 2. Plasmids of about 50 randomly selected clones were screened by 

digestion with NcoI, which should directly indicate successful mutagenesis of the second 

TGATrp codon. Those plasmids carrying NcoI sites were further digested by BsmI to identify 

the mutations in the first and third TGA codons. Three clones with a proper restriction profile 

were selected and named pWCB1 to pWCB3. A direct attempt to induce the expression in 

the E. coli DH10β cells by addition of 1 mM IPTG, however, failed. Thus, in order to subclone 

the mutated crmB into an expression vector, the 2.8 kb EcoRI fragment of plasmid pWCB2 

was ligated into the EcoRI-linearized pRSET-B. The resulting constructs pRCB1 and pRCB2 
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crmB  

1000 2000 2767 
W W W 

CB1 
CB2/3 
CB3 
CB3/4 
CB4 

580  bp 
1300  bp 
700  bp 

1400  bp 
660  bp 

21,3  kDa 
47,7  kDa 
25,7  kDa 
51,3  kDa 
24,2  kDa 

64  kDa 
90,4 kDa 
68,4 kDa 
94  kDa 
66,9 kDa 

Length Length PCR PCR Protein size Protein size Fusion protein size Fusion protein size 

CB1 CB2 CB3 CB4 

CB3/4 

CB2/3 

were transformed into E. coli BL21(DE3)pLys Star. Several clones grown on SOB/Amp,Cam-

plates were tested for the ability to produce the recombinant protein His-CrmB. Though 

several concentrations of glucose and/or different growth temperatures were tested, no His-

CrmB was detected after induction of expression by addition of IPTG. 

Sequencing of the original plasmid pCB2 revealed a point mutation in the position 433 of the 

crmB gene. Deletion of an A nucleotide in a stretch of 6 adenines resulted in a frameshift 

event combined with the creation of a stop codon leading to a premature termination of 

translation. To restore the original coding sequence, single-site mutagenesis was applied 

onto plasmid pRCB using primers CB5Afw and CB5Arev (Table 2). The correct sequence in 

the resulting plasmid pRCB-X was confirmed by sequence analysis. Nevertheless, also with 

the corrected gene still no induction was detectable in transformed E. coli BL21(DE3)pLys 

Star(pRCB-X) during several attempts. 

 

Fig. 7. Scheme of the crmB  fragments.  The crmB gene was divided into four fragments, which 
were amplified using primer pairs B1F/B1R, B2F/B2R, B3F/B3R, B4F/B4R, B2F/B3R and B3F/B4R, 
which were subsequently clonec into pMalE vector using introduced EcoRI/SalI restriction sites. 
Matrice is shown with corrected TGA codons (W represents Tryptophan). 
 

A potential explanation for the unsuccessful creation of CrmB-expression vectors might be 

toxic effects onto the E. coli host cells, which was also seen before with CrmC-expression 

vectors. Thus, the gene crmB was divided into four fragments (Fig. 7), which were amplified 

using primer pairs B1F/B1R, B2F/B2R, B3F/B3R, B4F/B4R, B2F/B3R and B3F/B4R (see 

Table 1). The fragments were subsequently cloned into the EcoRI/SalI-sites of the pMalE 

expression vector (di Guan et al., 1988) using newly introduced restriction sites, and the 

resulting plasmids were sequenced to verify the correct ligation with the malE sequence. 
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Plasmids pMalCB1, pMalCB2/3, pMalCB3, pMalCB3/4 and pMalCB4 were introduced into 

the E. coli strain TB1 and expression was induced by IPTG according to the manufacturer’s 

instructions. The expression was detected by Western blotting using an anti-pMal antiserum 

(Fig. 8). A protein band with the expected size of 64 kDa for the CB1 fusion protein was 

observed in a culture carrying plasmid pMalCB1, while the culture containing the plasmid 

pMalCB4 displayed only a protein band corresponding to the MBP alone (42.7 kDa). Protein 

bands for the full length MBP-CB3 (68.4 kDa) and MBP-CB2/3 (90.4 kDa) as well as for 

smaller proteins most likely corresponding to processed forms of the fusion proteins, were 

observed in the protein profiles of E. coli TB1(pMalCB3) and E. coli TB1(pMalCB2/3), 

respectively. Testing the solubility of the fusion proteins of pMalCB1, pMalCB 2/3 and 

pMalCB3 revealed that most of the fusion proteins were part of the insoluble fraction of the 

bacterial lysate. 

Finally, clones carrying plasmids pMalCB1 and pMalCB2/3 were selected to produce 

material for the immunization. The full-length fusion proteins MBP-CB1 and MBP-CB2/3 were 

excised from the SDS-PAA gel and electro-eluted. One rabbit was immunized four times with 

150 µg of the MBP-CB1 and MBP-CB2/3 mixture (ratio 1:1). 

 

 

Fig. 8. Western blot analysis of the expression of MBP-CrmB proteins . The expression of 
MBP-CB1 (lane 1 and 2), MBP-CB4 (lane 3 and 4), MBP-CB3 (lane 5 and 6) and MBP-CB2/3 (lane 7 
and 8) proteins was followed by Western bloting using bacterial extracts prepared either from IPTG-
induced (lanes 2, 4, 6 and 8) or non-induced (lanes 1, 3, 5 and 7) cells and anti-MBP antibodies 
(1:10,000).  
 

The reactivity of the obtained CrmB-antiserum to the proteins of MG was tested by Western 

blot analysis. Cell lysates of the E. coli TB1 producing MBP-CrmB1 and MBP-CrmB2/3, 

respectively, were probed with the CrmB-antiserum in dilutions ranging from 1:100 to 

1:2,000. Proteins of 64 and 90 kDa, respectively, were detected in lysates of MBP-CrmB-

producing E. coli but not in lysates of non-transformed counterparts. The best result with the 

lowest background was obtained when using the serum in a dilution 1:1,000. With this 

dilution, the expression of the crmB gene in cell lysates of the strains Rlow, RCL1, RCL2, 

RCL3, RCL4, RhighA3, mHAD3 and RhighGT5 was analyzed by Western blotting (Fig. 9). 
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Several proteins were detected. A protein of 50 kDa was detected in all the clones tested as 

well as proteins of molecular sizes of approx. 70 kDa, 80 kDa, 85 kDa and 95 kDa (based on 

the sequencing data, the size of the CrmB protein was predicted to be 97 kDa). The most 

prominent band, however, appeared at 116 kDa which is also the size of the CrmA protein. 

Interestingly, also aprotein of 140 kDa was observed in all clones tested except the mutants 

carrying transposon, mHAD3, which carries a transposon inserted into the crmA gene, and 

Rhigh GT5, which is a clonal variant of Rhigh complemented by a gapA –carrying transposon. 

Further analysis MS/MS-analysis of the stained protein bands should help to explain this 

result. 

 

 

Fig. 9. Western blot analysis using anti-CrmB antib odies. Equivalent amounts of cell lysates 
of the strains Rlow (lane 1), RCL1 (lane 2), RCL2 (lane 3), RCL3 (lane 4), RCL4 (lane 5), RhighA3 (lane 
6), mHAD3 (lane 7) and RhighGT5 (lane 8) were separated on SDS-PAGE and Western blots were 
probed with the anti-CrmB serum in dilution 1:1,000. The protein of 116 kDa was detected in Rlow, 
RCL1, RCL3, RhighA3 and RhighGT5 strains of MG. The proteins p50, p70, p80, p85 and p95 were 
detected in all the clones tested. The protein p140 is detected in all clonal variants of MG except the 
mutants generated by insetion of a transposon (lane 7 and 8). M: molecular weight marker. 
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Appendix 1: Scheme of cloning of disruptor plasmids 
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Appendix 2: Maps of selected disruptor plasmids 
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