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1 Introduction 

When a salesman starts to plan his tour he has to decide in which order he 

wants to visit his customers. This he has to do in the most efficient way possible 

to minimize the time spent on traveling and the costs which are associated with 

this. Additionally he will be able to visit more customers in the given time limit if 

he is able to find the optimal tour and this will increase his profits, too. 

 

This problem is called the Traveling Salesman Problem (TSP) and is one of the 

most frequently researched in the area of operations research because it has 

many applications not only in the above described way and is typical of other 

problems in combinatorial optimization. There exist a lot of variations of it 

depending on the variables that are included. One of them is the so called 

Traveling Repairman Problem (TRP). 

 

This diploma thesis wants to give a review about the characteristics and the 

different model approaches of the TRP and its variations. In Chapter 2 a short 

overview of the TSP and the TRP is given, and in Chapter 3 there is a detailed 

description of some solving methods for the “classical” TRP. In Chapter 4 some 

variations of the TRP with a single repairman are examined while Chapter 5 

describes variants of the TRP with several repairmen. This is followed by a 

summary of the possible applications for the TRP with the more detailed 

examination of two cases. In Chapter 7 some basis and solving methods for the 

TRP are outlined. 
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2 Problem Description and Definitions 

As described above the Traveling Repairman Problem (TRP) is a special form 

of the Traveling Salesman Problem (TSP). So to examine the TRP it is 

necessary to investigate the characteristics of the TSP first. 

 

2.1 The Traveling Salesman Problem (TSP) 

Every day a traveling salesman faces the challenge of planning his tour. He has 

to visit a given number of customers exactly once starting from his home city or 

a depot and to return at the end of the day. Naturally he tries to select the order 

of the customer visits in a way which allows him to spend as little time as 

possible on traveling. In other words he wants to find the tour which minimizes 

the total of the distances to save time and costs. 

 

The problem can be defined on a graph ( )EVG ,=  with a set of n  vertices 

{ }nvvvV ,,, 21 K=  and an arc set VVE ×⊆  (see Figure 1). The vertices 

correspond to the customers or the cities the traveling salesman has to visit 

during his tour while the arcs represent the streets he may use to get to them. It 

is assumed that the distances between each pair of customers are known in 

advance, so for each arc ( )ji vv ,  there are known costs ijc . If there is no 

connection between customer i  and customer j , then ijc  will be set to infinite. 

 

The underlying graph of the TSP can take a lot of different forms depending on 

the problem formulation or on the characteristics of the problem one tries to 

solve. It could be a line, a directed or undirected graph, the metric space and so 

on. 
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Figure 1: Example of a graph1 

 

The mathematical formulation is as follows:2 

 

∑∑
= =

→
n

i

n

j
ijij xc

1 1

min          (2.1) 

 

As stated above the objective is to minimize the total of the distances. 

 

{ }1,0∈ijx           (2.2) 

 

For this purpose the binary variable ijx  is introduced which determines whether 

the vertex j  is visited right after the vertex i  ( 1=ijx ) or not ( 0=ijx ). 

 

niforx
n

j
ij ,,11

1

K==∑
=

       (2.3) 

 

To guarantee that each vertex is visited only once two further equations have to  

be introduced. First every customer must have exactly one successor. 

 

 

                                                                 
1 Sarubbi et al., 2007, p. 1 
2 Lawler et al., 1985, pp. 25-26 
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njforx
n

i
ij ,,11

1

K==∑
=

       (2.4) 

 

Then it has to be ensured that every customer also has a predecessor. 

 

Additionally there has to be a constraint which forbids any subtours. It could be 

for example  

 

∑ ∑
∈ ∈

−≤
Si Sj

ij Sx 1          (2.5) 

 

for every proper, nonempty subset { }nNS ,,1 K=⊆  with S  denoting the 

cardinality of S . 

 

The solution of the example above is depicted in Figure 2. The optimal TSP-tour 

has a length of 8112122117109 =+++++ . 

 

 

Figure 2: TSP solution3 

 

Although the TSP seems to be simple it is rather difficult to solve optimally. 

There exist ( )!1−n  possible tours, so even if the number of costumers n  is 

relatively small there is a huge number of possible solutions (see Table 1). 

 
                                                                 
3 Sarubbi et al., 2007, p. 1 
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n  ( )!1−n  

3 2 

4 6 

5 24 

6 120 

7 720 

8 5.040 

9 40.320 

10 362.880 

Table 1: Number of possible tours with a given number of customers 

 

Therefore it seems to be impossible to solve the TSP optimally through 

complete enumeration during an acceptable amount of time if the value of n  is 

rather high. It is one of the most prominent problems that is NP -hard for the 

general metric. 



 12 

2.2 The Traveling Repairman Problem (TRP) 

The TRP is a variant of the TSP with the same task but the objective is a 

different one. It looks at the same problem from another point of view by turning 

its attention more to the satisfaction of the customers. This could be necessary 

because the order of the customer is urgent and therefore needs to be 

completed as soon as possible. So the objective is not to minimize the traveling 

time of the repairman but to minimize the sum of the latencies of the customers. 

For this reason the TRP is often also referred to as the Minimum Latency 

Problem in the literature. There also exist other names for it, for example the 

“Delivery Problem”, the “Deliveryman Problem” or the “TSP with Cumulative 

Costs”. 

 

2.2.1 Definition 

The TRP can be mathematically formulated as follows.4 

 

∑∑
= =

→
n

i

n

j
ijij xc

1 1

min          (2.6) 

 

The objective function looks the same as above but the variables are defined 

differently and therefore it is subject to other constraints. 

 

{ }1,0∈ijy           (2.7) 

nifory
n

j
ij ,,11

1

K==∑
=

       (2.8) 

njfory
n

i
ij ,,11

1

K==∑
=

       (2.9) 

 

These three constraints introduce the necessary binary variable which should 

indicate whether arc ( )ji vv ,  is part of the tour and make sure that each vertex 

will be visited. 

 

                                                                 
4 Fischetti et al., 1992, pp. 1055-1056 
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∑
=

=
n

i
ix

2
1 1          (2.10) 

 

Equation (2.10) makes sure that the starting point 1v  has exactly one 

predecessor, so that the tour ends at the origin. 

 

∑∑
== 





=

=−
=−

n

j
kj

n

i
ik nkfor

kforn
xx

11 ,,21

11

K
     (2.11) 

 

Contraint (2.11) ensures that there will be no subtour which is disconnected of 

the starting point 1v  and gives ijx  the value 1+− kn  if arc ( )ji vv ,  appears in 

position k  on the tour together with (2.10).  

 

0≥ijx            (2.12) 

 

This is the necessary non-negativity constraint for ijx . 

 

ijijij yrx ≤           (2.13) 

 

with 

 










−

=

=

=

otherwisen

iifn

jif

rij

1

1

11

        (2.14) 

 

Constraint (2.13) makes sure that ijx  only takes a positive value if ijy  is positive 

and the variable ijr  represents an upper bound on ijx . 
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The difference of the TRP-model to the one for the TSP is that the distances 

from one vertex to another are not simply added to get a final solution but that 

for example the distance from the starting point to the first vertex must be added 

1−n  times as it will influence the latencies of all the other customers. Therefore 

the variable ijx  will take either the value 0  if the corresponding edge is not part 

of the tour or the value 1+− kn  if it lies on position k  of the tour.  

 

The solution of the TRP with the same underlying graph as in Chapter 2.1 is 

25983675031199 =+++++  (see Figure 3). The optimal TRP-tour has a length 

of 83  which is slightly longer than the TSP-tour, but the sum of the customers’ 

latencies are smaller than the one of the TSP ( 27181695736199 =+++++ ). 

 

 

Figure 3: TRP solution5 

 

Naturally the TRP is NP -hard for the general metric as well because it is a 

variant of the TSP, but in some aspects it is also very different from the TSP. If 

there is only a small change in the structure of a metric space, this can lead to 

highly non-local changes in the structure of the TRP, which would not be the 

case for the TSP. As we will discuss later in Chapter 4.1 this has a huge effect 

for example for the Line-TRP. 

                                                                 
5 Sarubbi et al., 2007, p. 2 
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3 A Solution Method for the “Classical” TRP 

For a better understanding we now examine a few approaches for solving the  

“classical” TRP at more detail. “Classical” means that the underlying graph is a 

metric space and that there are no more constraints than described above in 

Chapter 2.2.  

 

In 1993, Bianco et al. developed two exact algorithms using lower bounds 

generated by a Lagrangean relaxation of the problem. The first one is a branch 

and bound approach while the second uses dynamic programming to reduce 

the dimensionality of the state space graph. Additionally they presented a 

heuristic procedure that is also able to calculate the distance from the optimal 

solution.6 

3.1 Notation and Definitions 

First we introduce the variable kl  indicating the distance from the origin to 
ki

v  

(i.e. the latency) , the vertex occupying the position k  in the tour 

{ }
121

,...,,,
+

=
nn iiii vvvvH . As the traveling repairman has to return to the starting 

point, we have to add the vertex 
1+ni

v  to the tour which represents the starting 

point 
1i

v  at the same time. The costs 
1+kk iic  represent the distance between the 

two vertices on positions k  and 1+k . Therefore kl  is given by 

 

01 =l ,     
212 iicl = ,     

32213 iiii ccl += ,   ...  ,     
kk iiiiiik cccl

13221
...

−
+++= ,   ...  , 

113221
......1 +−

+++++=+ nnkk iiiiiiiin ccccl  

 

and the cost ( )Hz  of the tour H  is given by 

 

( ) ( )∑∑
=

+

−
+

+−==
n

k
ii

n

k
k kk

cknlHz
1

1

1
1

1 . 

 

                                                                 
6 Bianco et al., 1993, p. 81-91 
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Now we divide the tour at the position s  into two paths F  and B  (see Figure 4) 

so that BFH += , where the “forward path” is given by 

 

{ }
ss iiii vvvvF ,...,,,

121 −
=  

 

and the “backward path” is given by 

 

{ } { }
12111

,...,,,,...,,,
+++

==
BBnnss jjjjiiii vvvvvvvvB  

 

with 

 

111
,,

++
==

nBs ijij vvvv K . 

 

 

Figure 4: Example of a tour divided into f -path and b -path 

V1 

s 

f-path F  

b-path B 
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3.2 Problem Formulation 

To describe the problem we introduce the binary variable k
ijx  which takes the 

value 1 if the arc ( )ji vv ,  is in position k  on the tour and 0  otherwise. If it 

occupies this position, the  costs of adding it to the tour are indicated by ( ) ijckp  

with ( ) ( )1+−= knkp . 

 

The mathematical formulation is7 

 

( ) min
1 11

→= ∑∑∑
= ==

n

i

n

j

k
ijij

n

k

xckpz        (3.1) 

 

The objective function minimizes the sum of the customer’s waiting times. 

 

∑ ∑
= =

− =−
n

j

n

l

k
li

k
ij xx

1 1

1 0  nkifor ...,,2, =       (3.2) 

 

This constraint makes sure that the tour will not be interrupted, so that for every 

customer there exists a successor and a predecessor. 

 

∑
=

=
n

j
jx

1

1
1 1          (3.3) 

1
1

1 =∑
=

n

i

n
ix           (3.4) 

 

These equations state that the tour has to start and end at the starting point 1v . 

 

∑∑
= =

=
n

k

n

i

k
ijx

1 1

1 njfor ...,,1=        (3.5) 

∑∑
= =

=
n

k

n

j

k
ijx

1 1

1 nifor ...,,1=        (3.6) 

∑∑
= =

=
n

i

n

j

k
ijx

1 1

1 nkfor ...,,1=        (3.7) 

                                                                 
7 Bianco et al., 1993, p. 82 
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These constraints make sure that each vertex will be visited exactly once and 

that on each position k  there will be exactly one edge. As the tour starts at 

position 1=k , then crosses all the other edges in the order of their positions 

until it reaches nk = , equation (3.7) prevents any subtours. 

 

{ }1,0∈k
ijx           (3.8) 

 

Finally we also have to determine that k
ijx  can only take the values 0 or 1. 

 

This model varies from the one of Chapter 2.2 only at first sight. In fact it just 

defines the variables differently which makes it necessary to formulate the 

constraints in another way.  
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3.3 Branch and Bound Algorithm 

 

3.3.1 Lower Bounds 

As this model is too complex to be solved for a problem with numerous vertices, 

Bianco et al. derived lower bounds with the help of a Lagrangean relaxation.8 

First equations (3.5) and (3.6) are dualized, so that the relaxed problem is 

 

( )[ ]

( ) ( ) ( ) ( ) ( )







→−++∑ ∑

= =

8.3,7.3,4.3,3.3,2.3

min2
1,, 1

stconstraintosubject

xckp
RP

n

kji

n

i
i

k
ijjiij λλλ

 

 

Obviously every feasible solution of RP  will be a path visiting all n  vertices, that 

starts and ends at 1v . We solve this problem by dynamic programming. First we 

introduce the variable ( )ivkh ,  as the cost of the shortest b -path with the 

starting point iv  and the ending point 1v  which visits exactly k  vertices. It can 

be computed recursively by 

 

( )
{ }

( ){ }k
ijjvVvi cvkhvkh

ij

+−=
−∈

,1min,   nk ...,,1=∀  

 

with jiij
k
ij kcc λλ ++= . We initialize the recursion by 

 

( )






≠∞

=
=

1

10
,0

vvallfor

vvif
vh

i

i
i  

 

Now we see that the lower bound LB , which corresponds to the optimal 

solution we derived from RP , is 

 

( ) ∑
=

−=
n

i
ivnhLB

1
1 2, λ . 

                                                                 
8 Bianco et al., 1993, pp. 83-84 
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Because this solution may include loops when constraints (3.5) and (3.6) get 

violated, we define the following penalties iλ  for each vertex iv . 

 

( ) ( )

( )
21

1

22

2









−

−−
+=

∑
=

n

j
j

iUB
ii

d

dLBz
δλλ  

 

whereδ  is a constant and UBz  is an upper bound for the original problem (see 

Chapter 3.3.2). The variable id  represents the degree of a vertex i , i.e. the 

number of edges connected to it that are used in the tour . This leads to a 

penalty if a vertex is visited more than once ( 2>id ). 

 

When starting the algorithm we define jii βαλ +=  with { }ij
j

i cmin=α  and 

{ }iijij c αβ −= min . Naturally we have to update  iλ  at each iteration. 

 

3.3.2 Upper Bound 

Now we have to derive the upper bound UBz  by using the “nearest neighbor” 

heuristic and improving it at each iteration. First we denote 

{ }11 ,...,,,,...,,,,,,
1112

vvvvvvvvvH niiiiii kkkrr +−+
= K  as a feasible solution for the 

original problem generated by a nearest neighbor heuristic. At each iteration we 

take a vertex 
ki

v  from its current position k  and put it back in between vertices 

ri
v  and 

1+ri
v  ( kr < ) getting a new tour H ′  with costs 

 

( ) ( ) ( )
kir vsHzHz −=′  

 

where 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]
11111111

11,
+−++−−++

+++−+−++=
kkrkkrkkkkkrrrk iiiiiiiiiiiiiiir ckpcrpcrpckpckpvvLcrpvs
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and ( )ji vvL ,  is the length of the path that goes from iv  to jv . So just the costs of 

the edges that are not used any more are replaced by the costs of the “new” 

edges. 

Now we can choose a vertex 
*ki

v  and a position *r  at each iteration so that 

 

( ) ( ){ }
kk irkrir vsvs

,* max
*

=  

 

Then we reposition 
*ki

v  between the vertices 
*ri

v  and 
1*+ri

v  if ( ) 0
** >

kir vs . If this is 

not the case, the search for an upper bound is completed as there is no 

possibility any more to get a better solution. 

 

3.3.3 Branch and Bound 

Finally we can solve the problem using a classical branch and bound approach, 

with a simple depth-first tree search algorithm. 

 

For each node µ  at level k  there exists an f -path { }
kk iiii vvvvF ,,,,

121 −
= Kµ  of 

cardinality 1−k  with the starting point 11
vv i ≡  ending at 

ki
v . The cost of this path 

is given by 

 

( ) ( ) ( ) ( )
kk iiiiii ckpcpcpFf

13221
121

−
−+++= Kµ . 

 

Now we denote µFVV −=  as the set of nodes, which have not yet been visited. 

If we want to branch forward from µ  at level k , we have to choose nodes out of 

V , each generating an f -path of cardinality k  

 

{ }
1121

,,...,,,
+−

=
kkk iiiiir vvvvvF   Vv

ki
∈∀

+1
. 

 

Then we can eliminate  the node µ  from the tree search whenever 

 

( ) ( ) *2,1 zvknhFf
Vi

iik
≥−+−+ ∑

∈

λµ  
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with *z  as the cost of the best solution we were able to achieve up to this point. 

 

3.3.4 Dominance Rules 

To make the algorithm work better, we can discard more nodes from the tree 

search with the help of some dominance criterias. 

 

3.3.4.1 Dominance Rule I 

First we take two nodes 1µ  and 2µ  at level k  of the tree corresponding to two 

f -paths 
1µF  and 

2µF  of cardinality 1−k , which both end in the same vertex 

after visiting the same vertices. If 

 

( ) ( )
21 µµ FfFf ≤  

 

this means that 2µ  is dominated by 1µ  and the node can be removed from the 

tree. So the cost of adding 1µ  will be smaller than that of adding 2µ  and we can 

therefore disregard 2µ  from our decision. 

 

3.3.4.2 Dominance Rule II 

We denote an f -path { }*1 ,,,,,,
12 jiii vvvvvF

rr
KK

+
=  and insert the vertex 

FVVvk −=∈  between the vertices Fvv
rr ii ∈
+1

, . If 

 

( ) ( ) ( )
11

1
++

++>
rrrr kikiii crpcrpccrp  

 

then F  can not be part of the  optimal solution as the costs of the tour with the 

integrated vertex kv  is smaller than that of the original one. Therefore the node 

on the tree corresponding to F  can be eliminated. 
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3.3.4.3 Dominance Rule III 

We denote an f -path { }*1 ,,,,,,
12 jiii vvvvvF

rr
KK

+
=  and a b -path 

{ }1** ,,,,,,,
111

vvvvvvB
ss kkkkj KK
+−

=  and try to insert the vertex FVVvk −=∈*  

between Fvv
rr ii ∈

+1
,  getting { }**1 ,,,,,,,

12 jikii vvvvvvF
rr

KK
+

=+ . Naturally this 

will leave the corresponding b -path { }1* ,,,,,,
111

vvvvvB
ss kkkj KK
+−

=−  (see 

Figure 5). If 

 

( ) ( ) ( ) ( )
111 ***** 1,

+++
++>++

rrrrr ikkikjjiii crpcrpcvvLcrp  

 

then F  can not lead to an optimal solution because its costs are higher than 

that of +F  and we can eliminate the corresponding node on the tree. 

 

 

Figure 5: An example for a generated tour9 

                                                                 
9 Bianco et al., 1993, p. 85 
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3.4 Dynamic Programming Algorithm 

The second algorithm Bianco et al. developed is a dynamic programming 

procedure which uses bounding functions to reduce the dimensionality of the 

state space graph.10 

 

First we denote ( )ivSC ,  as the minimum cost of an f -path with the usual 

starting point 1v  which visits every vertex of S  and ends at a vertex Sv i ∈ . The 

dynamic programming recursion is 

 

( ) ( ) ( )[ ]jijivSvi cSpvvSCvSC
ij

+−=
−∈

,min,  { }1vVVS −=′∈∀ , Svi ∈∀  (3.9) 

 

The initial value is { }( ) iii ncvvC 1, =  for all Vv i ′∈ , which means that the cost of 

traveling from the starting point s  to the first vertex has to be counted n  times 

as it will influence the latencies of all the other customers. 

 

At the end the repairman has to return to the origin so the optimal solution for 

this problem is given by 

 

( )[ ]1,min ii
Vv

cvVC
i

+′
′∈

. 

 

Additionally Bianco et al. introduced bounding criteria to increase the size of 

problems that can be solved by this method as the number of vertices of the 

state space group is too big for problems with 15>n .11 All states satisfying the 

equation 

 

( ) ( ) ∑
−∈

≥−−+
SVi

UBiii zvSnhvSC λ2,,  

 

can be eliminated. 

                                                                 
10 Bianco et al., 1993, pp. 86-87 
11 Bianco et al., 1993. p. 87 
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3.5 Dynamic Programming Heuristic 

In the dynamic programming algorithm in Chapter 3.4 a rather high number of 

states are produced. To reduce them Bianco et al. introduced a heuristic which 

does not necessarily generate an optimal solution but is able to produce lower 

bounds that are often better than the lower bound LB  created in Chapter 

3.3.1.12 

 

Equation (3.9) is able to generate the states ( )ivS ,  for increasing values of the 

cardinality of S . If states of cardinality 1+k  are generated, that means to 

expand all states of cardinality k  which quickly leads to an enormous number of 

states the algorithm can not handle in reasonable time. To avoid this we 

introduce a state space reduction. 

 

First we denote ( ) ( ){ }K,,,,
21 21 iik vSvS=ϕ  as the family of all states of cardinality 

k  and kkm ϕ= . For each state ( ) kir r
vS ϕ∈,  we define a bound k

rθ  for each 

solution in this state with k
m

kkk
k

θθθθ ≤≤≤≤ ...321 . 

 

( ) ( ) ∑
−∈

−−+=
ri

rr
SVv

iirir
k
r vSnhvSC λθ 2,,  

 

Now we introduce the constant maxR , which is defined in advance, and eliminate 

from kϕ  all states ( )
rir vS ,  with kmRr ,,max K=  and k

R
k
r max

θθ ≥ . 

 

Then we define 

 

{ }max1min max
min Rmk

k
Rnk

>=
≤<

θθ  

 

and let z  be the value of the best solution the algorithm has found. Finally, we 

can state that if minθ>z , then minθ  is a proper lower bound. 

                                                                 
12 Bianco et al., 1993, pp. 87-88 



 26 

3.6 Computational Results 

Bianco et al. developed a computer program to evaluate the algorithms 

described above.13 They randomly generated coordinates for the vertices 

according to a uniform distribution in a 150 x 150 square and calculated the 

costs belonging to each arc with the Euclidean distance between the according 

vertices. They assumed a complete graph and introduced a time limit of 600 

seconds to compute a solution. 

 

Exact solutions for problems up to 35=n  vertices were produced with the help 

of the algorithm discussed in Chapter 3.3, while the one discussed in Chapter 

3.4 failed once to find the optimum with 35=n  within the time limit. The second 

one is also a little bit faster when solving problems with more vertices. 

 

For the dynamic programming heuristic (see Chapter 3.5) the algorithm was 

able to produce optimal solutions for problems up to 25=n  vertices and 

200max =R , while for problems with a number of vertices between 30  and 35  

and 400max =R  it was able to do that only six out of ten times. If there are more 

than 55  vertices to visit, the distance from optimality increases dramatically, but 

below this value it is at most 3%. It seems that with 55=n  vertices the limit of 

the algorithm has been reached. 

                                                                 
13 Biano et al., 1993, pp. 88-91 
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4 Variants of the TRP with One Repairman 

This chapter gives a review of the variants of the TRP with exactly one 

repairman. Because of the characteristics of the TRP it can be used not only for 

the planning of a tour but also for a variety of other problems such as machine 

scheduling or in the area of computer networks. Therefore there exists a variety 

of articles which describe special forms of the TRP as the weighted TRP, the 

directed TRP or the on-line TRP. Some concentrate on different forms of the 

underlying graph, for example a path. And there are others which introduce 

additional constraints for the TRP like time windows or deadlines. Some of 

these variants will be descibed below. 

 

4.1 The Line-TRP with and without Deadlines 

The line-TRP is a one-dimensional version of the TRP, in which all vertices lie 

on a straight line (see Figure 6). This is a variant of the TRP that can be easily 

solved optimally because of the characteristics of the underlying graph. 

 

 

Figure 6: The line -TRP 

 

Once more s  represents the starting point and corresponds to 0v  and 0u  while 

mvv ,,1 K  are the customers on the left and nuu ,,1 K  on the right of the origin. 

 

For the TSP the solution is rather simple. The salesman would just go straight 

ahead in one direction until he reaches the end and would then turn around to 

serve the customers on the other side of the origin. It is interesting to observe 

that the traveling repairman on the contrary may cross his own way several 

times, he will go back and forth to finish his tour in an optimal way (see       

Figure 7). 

 

 

  mv             ……          2v       1v        s        1u      2u                …..                nu  
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Figure 7: Possible tour for the line-TRP 14 

 

In 1986, Afrati et al. developed dynamic programming algorithms which are able 

to solve the line-TRP optimally with as well as without deadlines. 

 

4.1.1 The Line-TRP without Deadlines 

We determine that [ ]ji uv ,  represents the state when the repairman is currently 

at point iv  and already visited all the vertices between iv  and ju . We can 

assume this as it would not be optimal for the repairman to visit iv  without 

visiting 1−iv  before. The repairman starts at [ ]00 ,uv  and ends either at [ ]nm uv ,  or 

[ ]mn vu , .  It is also clear that in an optimal tour he will reach [ ]ji uv ,  either from 

the state [ ]ji uv ,1−  or [ ]1, −ij vu . 

 

Now we let [ ]ji uvc ,  denote the sum of the latencies of all customers already 

visited by the repairman. We could also say that it is the cost of reaching the 

state [ ]ji uv , . Following all these considerations we can introduce the following 

equations. 

 

[ ] [ ] 0,, 0000 == vucuvc         (4.1) 

[ ] [ ] ( ) [ ]
[ ] ( ) [ ] 











−−+++

−−+++
=

−

−−

ijij

iiji
ji vutjinmvuc

vvtjinmuvc
uvc

,1,

,,1,
min,

1

11
    (4.2) 

[ ] [ ] ( ) [ ]
[ ] ( ) [ ] 











−−+++

−−+++
=

−

−−

jiji

jjij

ij uvtjinmuvc

uutjinmvuc
vuc

,1,

,,1,
min,

1

11     (4.3) 

                                                                 
14 Afrati et al., 1986, p. 81 
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with [ ]ji uvt ,  representing the number of vertices the traveling repairman has not 

yet visited when being at state [ ]ji uv , . The explanation of equations (4.2) and 

(4.3) is the following: If we want to find out the minimum total delay of reaching 

a certain state we first have to compute which one of the two possible preceding 

states can be reached with a smaller total delay and allows us to complete the 

rest of the tour with a minimum of effort. Therefore we take the cost of reaching 

the preceding state and add the distance of reaching the last locations on the 

line multiplied by the number of unvisited locations at the preceding state.  

 

Finally we can calculate the minimum cost of the optimal tour by 

 

[ ] [ ]{ }mnnm vucuvcC ,,,min= .       (4.4) 

 

So we just have to record during each step of the algorithm which of the two 

possible preceding states provides the better value and reconstruct the optimal 

path. This dynamic programming algorithm is able to solve the line-TRP in 

( )mnO  time.15 

 

4.1.2 The Line-TRP with Deadlines 

Sometimes it is necessary for the traveling repairman to reach his customers at 

or before a given time. This could be the case because the customer is only 

available or the order must be completed until this point of time. Therefore we 

now introduce for each customer i  a deadline id  which indicates that the 

customer has to be served before this deadline expires. Unlike the version 

without deadlines the line-TRP with deadlines is NP-complete.16 

 

Now that we do not only have to know where the traveling repairman is located 

but also at what time he is there we let [ ]tuv ji ,,  denote the state that he is at 

customer iv  at time t  and already served all the customers in the opposite 

                                                                 
15 Afrati et al., 1986, p. 81 
16 Afrati et al., 1986, p. 80 
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direction until ju . This state has the cost [ ]tuvc ji ,,  which we compute through 

the following equation. 

 

[ ] [ ][ ] ( ) [ ]
[ ][ ] ( ) [ ] 






























−−+++−

−−+++−

>∞

=

−

−−−
otherwise

vutjinmvuttvuc

vvtjinmvvttuvc

dvtif

tuvc

ijijij

iiiiji

i

ji

,1,,,

,,1,,,
min

,,

1

111   (4.5) 

 

In general this equation is the same as (4.2) but if the deadline of vertex iv  at 

which the repairman is located at time t  has already expired, the cost will be set 

to infinite, so this subtour can not be feasible. 

 

To calculate the optimum of the total cost the following equation needs to be 

solved. 

 

[ ] [ ]{ }DttvuctuvcC mnnm ,,1,0:,,,,,min K==      (4.6) 

 

where D  denotes the longest deadline of all customers. 

 

This algorithm can solve the problem in ( )mnDO  time.17 Although Afrati et al. do 

not give a measurement for the accuracy of the algorithm they state that given a 

relative error at most ε  there exists a fully polynomial approximation scheme 

with the time bound ( )( )εnmmnO + .18 

                                                                 
17 Afrati et al., 1986, p. 87 
18 see footnote 17 



 31

4.2 The Weighted Line-TRP 

The weighted line-TRP differs from the “ordinary” line-TRP only because of the 

weights 0≥iw , which are associated to each vertex iv  of the graph. This way 

the traveling repairman can make sure his tour takes into account that some 

customers are more important and do not have to wait too long for his visit. 

Another interpretation for the implementation of weights could be that the 

vertices are locations for machines that have to be repaired in which case the 

weights indicate the number of machines situated at each vertex.  

 

In 2002, García et al. developed a linear algorithm that should solve this 

problem with the help of a Monge path-decomposable tridimensional array. 19 

 

The notations are 

0vs =   ... the starting point 

jv  ... the vertices on the left side of s  with mv  as the vertex farthest 

away from s  

ku   ... the vertices on the right side of s  with nu  nearest s  

( ) 0≥jvw  ... the weight of vertex jv  

T   ... a feasible tour starting at s  and visiting all points on the line  

( )jT vsc ,  ... waiting time for vertex jv  in tour T  

1j
v  ... the vertices jv  which are visited right after s  before turning 

around where mjjjj hh =<<<<≤ +121 ...0  

1ku  ... the vertices ku  which are visited right after 
1j

v  before once more 

turning around where 1...21 =>>>≥ hkkkn  

 

The objective is to minimize the latency of T  according to the following 

equation. 

 

( ) ( ) ( ) ( ) min,,
11

→+= ∑∑
==

n

k
kTk

m

j
jTjT uscuwvscvwL . 

                                                                 
19 García et al., 2002, pp. 27-29 
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Obviously the optimal tour could end either at mv  or at 1u  but it is reasonable to 

examine only the first possibility as the other one is calculated the same way 

and in the end one can choose the solution with the smaller costs. 

 

We denote the tour { }mjkjkjkj vvuvuvuvT
hhh

==
+12211

,,,,,,, K  and start by 

solving the problem under the assumption that from all vertices iu  only 1u  has a 

positive weight ( ) 01 >uw , then doing the same with ( ) 01 >uw  and ( ) 02 >uw  and 

so on until all vertices iu  have positive weights. ( )iT  will represent the optimum 

path for ni ,,1,0 K= , when all the points nii uuu ,,, 21 K++  have zero weight 

and the other keep their original weights, and iE  will be the latency of ( )iT . 

 

Now we define the sum of the weights of the vertices 1v  to jv  as ( ) ( )∑
=

=
j

l
lj vwvd

1

 

and the latency of ku  as ( ) ( ) ( )∑
=

=
k

l
llk uscuwul

1

,  and assume that the vertices 

1
,, kn uu K  have zero weight. Then the increment of latency of the vertices 

mj vv ,,11
K+  is given by twice the distance from 

1j
v  to 

1ku  (as we have to move 

first in the one, then in the other direction) times the sum of the weights of 

mj vv ,,
1

K . 

 

( ) ( ) ( ) ( )[ ]
111

,2, 111 jmkj vdvduvckj −=∆   with ik ≤1  

 

The increment of latency of the vertices 11 ,, uu
ik K−  can be calculated by twice 

the distance from 
1j

v  to 
1ku  times the weights of 11 ...,, uu

ik −  

 

( ) ( ) ( )1112 111
,2, −=∆ kkj uduvckj . 
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Finally the latency of the vertices ikk uuu ,,, 111
K+  is given by 

 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )11113 111

1

1
,2,,2,, −−

=

−+−=+=∆ ∑ kikijl

i

kl
lj ululududvscwuscvscikj . 

 

It is also necessary to define that ( ) 00 =ul  and ( ) 00 =ud , as it is possible that 

11 =k . 

 

If we now substitute 1j  by jm −  and let be 

 

( ) ( ) ( ) ( ) ( )1113 1
,2,,, −−− ++−∆=

ikkjm uludvscikjmjia  

 

and 

 

( ) ( ) ( ) ( ) ( ) ( )1112111 1
,2,,, −−− −−−∆+−∆=

ikkjm uludvsckjmkjmkjb  

 

then we finally have the following scheme of dynamic programming:20 

 

( ) ( ) ( ) ( ){ }11
1

,,1minmin
1

kjbjiakEiE
ikmj

++−=
≤≤≤

  ni ,,2,1 K=  

 

Because the distances between the vertices and the weights are nonnegative 

numbers we can see that ( ){ }jiaA ,=  and ( ){ }1,kjbB =  are Monge matrices (see 

Chapter 7.5) and their entries can be calculated in constant time. 

 

García et al. gave an algorithm which is able to solve this problem in ( )mnO +  

time in 1998.21 

                                                                 
20 Garc ía et al., 2002, p. 29 
21 García et al., 1998, pp. 3-9 
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4.3 The Directed TRP 

In this chapter we examine the TRP whose underlying graph is directed, which 

means that ( )uvc , , the cost of traveling from vertex v  to vertex u , is not 

necessarily the same as the cost of crossing the edge in the opposite direction 

( )vuc , . In reality this could be necessary because there are one-way streets on 

the way and the repairman can not use the same route if he changes the 

direction. 

 

In 2008, Nagarajan et al. developed an algorithm which starts by guessing 

break-points on the basis of the distances along the optimal path. Then the 

vertices will be split into sets situated between these break-points using a linear 

program and the algorithm calculates local tours for each set. Finally the sets 

will be connected again to a feasible tour and the minimum latency can be 

calculated. 

 

We have a directed graph ( )EVG ,=  and the notations are 

0vs =   ... the starting point 

vu,   ... vertices of the graph G  

n   ... number of vertices of G  

( )uvc ,π  ... the distance from v  to u  with ( ) ∞=uvc ,π , if u  is not reachable 

from v  

π   ... the optimal tour starting at s  and visiting all vertices v  and u  

VS ⊆  ... a subset of the vertex set V  

( )S+δ  ... the arcs leaving set S  with ( ){ }SvSuEuv ∉∈∈ ,,  

( )S−δ  ... the arcs entering set S  with ( ){ }SvSuEuv ∈∉∈ ,,  

iO  ... the set of vertices which are visited between iv  and 1+iv  

iz   ... the edge values corresponding to π  restricted to iO  

( )πcL =  ... the length of the optimal tour 

i
uy   ... decision variable denoting if iOu ∈  ( 1=i

uy ) or not ( 0=i
uy ) 
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Additionally the number of vertices 



=
ε
1

l , representing the break points as 

defined above, and the vertex iv  are introduced for which the following holds: 

for each li ,,2,1 K= , the vertex iv  is the last vertex with ( )
n
L

nvsc i
i

επ ≤, . Here 

ε  is a constant which can be chosen in advance and helps evaluate the 

performance of the algorithm (see below). If we let { }lvvvF ,,, 10 K= , then lv  

will be the last vertex visited by π . The algorithm starts by guessing the length 

L  and the number of vertices l . 

 

Nagarajan et al. also present a theorem which states that in a Eulerian directed 

multi-graph ( )AsUD ,+=  there exists for each arc ( ) Avsf ∈= ,  an arc 

( ) Asue ∈= ,  so that it is possible to swap the arcs e  and f  with the arc ( )vu,  

without destroying the directed connectivity between every pair of vertices in 

U .22 

 

The mathematical formulation of the model is23: 

 

( ) min
1

0

1 →







∑∑
∉

−

=

+

Fu

i
u

l

i

i y
n
L

n ε         (4.7)  

 

subject to the following constraints: 

 

( )[ ] ( )[ ]uzuz ii −+ = δδ    Vu ∈∀ \{ }1, +ii vv ,   1,,0 −=∀ li K  (4.8) 

( )[ ] ( )[ ] 11 == +
−+

i
i

i
i vzvz δδ   1,,0 −=∀ li K     (4.9) 

( )[ ] ( )[ ] 01 == +
+−

i
i

i
i vzvz δδ   1,,0 −=∀ li K     (4.10) 

( )[ ] i
u

i ySz ≥−δ    { } VSu ⊆⊆∀ \{ }iv ,   Vu ∈∀ \ F , 

     1,,0 −=∀ li K     (4.11) 

( ) ( )

n
L

nezc i

e

i
e

ε1+≤∑    1,,0 −=∀ li K     (4.12) 

                                                                 
22 Nagarajan et al., 2008, p. 197 
23 Nagarajan et al., 2008, p.196 
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∑
−

=

≥
1

0

1
l

i

i
uy     Vu ∈∀ \ F      (4.13) 

( ) 0≥ez i     earcs∀ ,   1,,0 −=∀ li K   (4.14) 

0≥i
uy     Vu ∈∀ \ F ,   1,,0 −=∀ li K   (4.15) 

 

Constraint (4.8) makes sure that as many arcs enter the subset S  as leave it 

while equations (4.9) and (4.10) guarantee that iv  is the first vertex that is 

visited in the subset S  and 1+iv  the first after leaving it. With constraint (4.11) we 

ensure that at least as many arcs are entering the subset S  as there are 

vertices inside it, while inequality (4.13) states that at least one vertex has to be 

inside S . Constraint (4.12) ensures that the cost of using the arcs from vertices 

inside S  to the starting and end point s  should not be bigger than the costs of 

reaching 1+iv . Finally inequalities (4.14) and (4.15) represent the necessary non-

negativity constraints for ( )ezi  and i
uy . In the objective function (4.7) the optimal 

combination of vertices is determined. 

 

For any 1
log

1
<< ε

n
 this algorithm has an approximation ratio of 








3ε

ρ
εn

O  with 

ρ  as the integrality gap for the asymmetric trave ling salesman path problem for 

which Nagarajan et al. also developed an algorithm on the same basis. The 

time bound is given by ( )ε1On .24 

                                                                 
24 Nagarajan et al., 2008, p. 196 
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4.4 The TRP on Weighted Trees 

In this chapter we examine the TRP with a weighted tree T  as the underlying 

graph, where the positive weights on its edges correspond to the distances 

between the vertices. In 1998, Goemans et al. developed a constant-factor 

approximation algorithm using solutions for the k -traveling salesman problem.25  

The idea behind this concept is that one first tries to find several shortest 

subtours which include at least k  points of the vertex set { }nvvvV ,,, 21 K=  for 

each value of k . These are finally concatenated to a tour which is rooted at the 

starting point 1v , visits all the vertices and therefore provides a feasible solution. 

 

As stated above the algorithm will first solve the k -TSP on V  for nk ,,3,2 K=  

receiving tours nTTT ,,, 32 K  with lengths nccc ≤≤≤ K32 . We start with tour 2T  

because 1T  simply consists of visiting the starting point 1v  at a cost of 0. 

Naturally we can not simply connect the so found subtours because each of 

them starts and ends at 1v  and some of the points would be visited more than 

once which can not lead to an optimal solution. Therefore we introduce an 

increasing set of indices njjj m =<<<< K211  which will lead to the 

concatenated tour 
mjjj TTTT ,,,

21
K= . Starting from 1v  the repairman will cross 

1j
T , afterwards 

2jT  and so on until he traverses 
mj

T  and can finally return to the 

starting point. 

 

For defining this tour the algorithm uses shortcuts to avoid visiting vertices 

which have already been visited. Additionally it determines the direction the 

subtour 
ij

T  has to be traversed to minimize the total latency of the vertices, 

which have not yet been visited in this subtour. 

 

 

 

 

                                                                 
25 Goemans et al., 1998, p. 114 
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Goemans et al. formulate this algorithm as follows:26 

(i) For nk ,,3,2 K= , compute kT , the minimum-length k -TSP tour on 

V  rooted at 1v . Let kc  denote the length of kT . 

(ii) Let nG  denote the complete graph on the vertex set { }n,,2,1 K ; 

turn nG  into a directed graph by orienting the edge ( )ji,  from ( )ji,min  

to ( )ji,max . 

(iii) Assign a length function to each directed arc of nG ; the length of arc 

( )ji,  will be jc
ji

n 





 +

−
2

. 

(iv) Compute the shortest n−1  path in nG ; suppose that it goes through 

vertices njjj m =<<<= K101 . 

(v) Output the concatenated tour 
mjjj TTTT ,,,

21
K= . 

 

The explanation for step (ii) and (iii) is as follows: 

First all the edges of nG  are oriented in one direction and then costs are 

associated with them, so that the cost of the subtour 
ij

T  will be added to the 

latency of each of the following vertices, which have not yet been visited. 

Furthermore at most half of its cost contributes to the latency of the vertices 

which are first visited in this subtour. For this cost we can calculate as upper 

bound 

 

( ) ( ) ∑∑ ∑ 





 +

−=−+− −
−

i
j

ii

i i
jiiji iii

c
jj

ncjjcjn
22

1 1
1 . 

 
We can do this because we do not deduct the vertices appearing in a following 

subtour, which have already been visited before, so the optimal latency will be 

smaller than this term. 

 

The approximation ratio of this model is 5912,3 27 and it can be formulated as a 

linear program with ( )nO  variables and ( )2nO  constraints.28 

                                                                 
26 Goemans et al., 1998, pp. 115-116 
27 Goemans et al., 1998, p. 113 
28 Goemans et al., 1998, p. 118 
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4.5 The Weighted TRP (WTRP) 

As stated above in Chapter 4.2 the WTRP assigns weights to each vertex to 

indicate the importance of some customers or the urgency of visiting them as 

soon as possible. In this chapter we examine the WTRP when the underlying 

graph is a metric space. 

 

In 2000, Wu developed an exact algorithm which solves the WTRP on a metric 

space through dynamic programming in polynomial time.29 It consists of splitting 

off subtours and calculating the lengths of each of them. Then they are 

concatenated again in the order that guarantees an optimal solution. 

 

We have a graph ( )EVG ,=  and the notations are30 

s   ... the starting point 

u , v   ... vertices of G  

n   ... number of vertices of G  

( )uvcG ,  ... the length of the shortest path from v  to u  on G  

( )vw  ... the weight of vertex v  

( )Gw  ... the sum of the weights of all the vertices in G  

P  ... a subtour of G  starting at s  

r  ... the vertex which is the connection between two subtours 

 

If we have a subtour P  of G  we denote ( )PL  as the weighted latency of P  with 

 

( ) ( ) ( )
( )

∑
∈

=
PVv

P vscvwPL ,  

 

and the weighted latency of P  on G  with 

 

( ) ( ) ( ) ( )[ ] ( )PcPwGwPLPGd −+=, . 

                                                                 
29 Wu, 2000, pp. 225-228 
30 see footnote 18 
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As we can see ( )PGd ,  depends not only on the sum of the weighted latencies 

of the vertices which have already been visited but also on the weights of the 

unvisited ones. 

 

First we define two subtours 1P  and 2P  with the same configuration, i.e. they 

both start and end at the same point and also visit the same vertices. Now we 

assume that ( ) ( )21 PcPc ≤  and denote a third subtour 0P  which represents a 

complete tour if put together with either 1P  or 2P . We denote that by 011 // PPY =  

we mean that 0P  will start at the vertex r , which is the vertex where 1P  ends, 

and that the connecting of the two subtours will generate a complete tour. If we 

let 1Y  be the tour obtained by concatenating 0P  and 1P , and 2Y  be the one 

obtained by concatenating 0P  and 2P , then ( ) ( )21 YLYL ≤ . Therefore we 

calculate the best subtour for every possible configuration starting with the one 

containing only the starting point and continuing with attaching one more vertex 

until we finally have a complete tour. 

 

This algorithm is able to solve the problem in ( )nnO 22  time and is therefore very 

time consuming. In 2004, Wu et al. used it to develop an exact algorithm for the 

the classical TRP without weights.31 For this purpose a pruning technique is 

presented that is very similar to a branch and bound algorithm as it uses upper 

and lower bounds to identify the subtours which can be eliminated. 

 

The upper bound will be established through a simple greedy algorithm, which 

always searches the nearest vertex when deciding where to go next. The lower 

bound will be generated through a family of special functions. Both will be 

updated in every iteration. 

 

Although the computing of the lower bounds is very time-consuming it is only 

done once in a preprocessing stage and will therefore not strain the time 

complexity of the entire algorithm too much. It will need ( )TnnO k 21 ++  time to 

calculate the results where T  is the number of generated subtours. 

 

                                                                 
31 Wu et al., 2004, pp. 303-309 
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4.6 The On-Line TRP (OL-TRP) 

The OL-TRP is a special form of the TRP in which the number and locations of 

the requests which are released over time are not known in advance as this is 

the case in the offline version. This is a realistic assumption as in many 

applications the orders of the customers arrive over time. 

 

An on-line algorithm is usually evaluated by comparing it with its off-line version. 

This is done by competitive analysis with the help of a competitive ratio. An 

algorithm is c -competitive if the cost of the on-line version is at most c  times 

the cost of its optimal off-line counterpart.32 

 

4.6.1 The Net Latency-OL-TRP (NL-OL-TRP) 

In 2008, Allulli et al. analysed the NL-OL-TRP in a metric space which tries to 

minimize the net latency, the sum of the times the requests have to wait before 

being served.33 If we introduce the release time it , which is the time at which 

the request iσ  is announced, and the latency il  of vertex iv , then the net 

latency can be defined as 

 

( ) Tltl
n

i
i

n

i
ii −








=− ∑∑

== 11

 

 

where T  denotes the sum of the release times it . This makes sense as the 

waiting time of the customer actually begins when the request is made. 

 

Throughout their work, Allulli et al. presented the proof that there exists no 

algorithm with a competitive ratio for the NL-OL-TRP in a metric space.34 

                                                                 
32 Allulli et al., 2008, p. 116 
33 Allulli et al., 2008, pp. 116-128 
34 Allulli et al., 2008, p. 118 
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4.6.2 The Weighted OL-TRP 

In 2003, Krumke et al. developed two competitive algorithms for the weighted 

OL-TRP in a metric space.35 In this place we will only discuss the one of them 

which delivers better results. 

 

We assume that the traveling repairman is allowed to wait when there are no 

current requests that have to be served. He does not know how many requests 

there will come in or when the next one arrives. Obviously the requests can only 

be served after their release time. 

 

As usual we have a graph ),( EVG =  and the notations are 

s   ... the origin of G  

it   ... the release time of request ir  

iw   ... the weight of request ir  

( )uvc ,   ... the distance from v  to u  

il   ... the latency of iv , i.e. the time iv  gets served 

 

The objective is to minimize the weighted latency. 

 

min
1

→∑
=

n

i
ii lw  

 

In the initialization phase the algorithm first searches for requests that have 

already been released at time 0 . If there are none, the traveling repairman 

waits until 1t , when the first requests come in and we set 1: tL = . Then the 

minimum time T  at which the already released requests can be served is 

computed. When no further requests are released before T  is reached, the 

repairman waits once more and we set TL =: . If on the other hand some 

requests arrive at time t  with Tt <<0 , we set tL =: . Additionally a random 

number ] ]1,0∈x  according to the uniform distribution gets chosen during the 

initialization phase. 

 
                                                                 
35 Krumke et al., 2003, pp. 279-294 
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Now the algorithm works in phases. First we set 
2

:0
L

B = , LB x−= 2:1  and 

LB xi
i

−−= 12:  for every 2≥i . For 1≥i  the i th phase starts at time iB , at which 

the algorithm searches for a way to satisfy the requests that already have come 

in but have not yet been scheduled with the following constraints:36 

 

i. The schedule  has to start and end  in the starting point s . 

ii. The length of the schedule should be at most 12 += ii BB . 

iii. The weights of the requests which are served among all schedules 

should be maximized without violating (i) and (ii). 

 

The calculated schedule has to be followed from time 1+iB  until 2+iB  according 

to the algorithm. 

 

Because of constraint (ii) it is guaranteed that the tour computed by the 

algorithm can be finished before the next phase starts while constraint (iii) 

ensures that requests with large weights are favored. 

 

Krumke et al. do not give a competitive ratio for the OL-TRP, but for the on-line 

dial-a-ride problem, of which the OL-TRP is a special case. The on-line dial-a-

ride problem also minimizes the weighted latency but has a few more 

restrictions. First the traveling repairman has a certain capacity C  because he 

needs to deliver items. Therefore each request not only has one position at 

which it has to be served, but a source and a destination between which the 

objects have to be transported. For this problem the above described algorithm 

is c -competitive with 7708.5
2ln

4
≈=c . 

 

The competitive analysis is often criticized because it concentrates on the on-

line versions of the problems. Therefore the input instance is usually generated 

in a way that can discriminate the off-line version, while the on-line adversary 

can serve it rather effectively. 37 

                                                                 
36 Krumke et al. 2003, p. 287 
37 Allulli et al., 2008, p. 118 
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5 The TRP with Multiple Repairmen (The k -TRP) 

The k -TRP tries to solve the problem when there is a number of k  repairmen 

available to fulfill the requests. Each one starts at the depot s  and makes his 

tour, and all together they have to serve each of the n  customer requests. 

These tours have to be disjoint except for s  because obviously it would not be 

optimal if one customer would be served by more than one repairman. As 

before the goal is to minimize the average time the customers have to wait until 

their requests have been answered. 

 

This problem has first been examined by Fakcharoenphol et al. in 2007 when 

they developed a polynomial-time approximation algorithm to solve it.38 Below 

we will examine it in more detail.  

 

As the k -TRP is a variant of the TRP there also exist a lot of special forms with 

differing underlying graphs or additional constraints. In the next chapters we will 

look more closely at the k -TRP with repairtimes and the on-line k -TRP. 

                                                                 
38 Fakcharoenphol et al., 2007, pp. 40:1-40:16 
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5.1 The k -TRP 

In 2007, Fakcharoenphol et al. introduced an algorithm for the k -TRP in a 

metric space using the concept of the i -Minimum Spanning Tree problem ( i -

MST problem) and improved it with the help of the i -stroll problem.39 The i -

MST problem consists of finding the least expensive tree starting at s  and 

visiting exactly i  vertices (see Chapter 7.3), while the i -stroll problem finds the 

least expensive path with the same requirements. Both problems are NP-hard, 

so we can only use approximation algorithms for this technique. 

 

First we give a short problem description. If we have a tour S  visiting the 

vertices mvvvs ,,, 10 K=  and distances ( )1, +jj vvc  from jv  to 1+jv , then the cost 

of S  is given by 

 

∑
=

m

i
il

0

, where ( )∑
−

=
+=

1

0
1,

i

j
jji vvcl . 

 

Because there are k  tours we have to summarize the costs of all of them to 

calculate the final result. 

 

Now we describe a subroutine which gives back an i -MST, a tree of cost at 

most Bα  spanning at least i  vertices. 

 

Subroutine ( )BBudgetTree :40 

[ ]treeemptyT =  

for 1=i  to n  do: 

 if ( )iM  has cost at most Bα  then 

  ( )iMT =  

return T  

 

                                                                 
39 see footnote 27 
40 Fakcharoenphol et al., 2007, p. 40:6 
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where ( )iM  is an α -approximation algorithm covering i  vertices for the i -MST 

and B  is a constant previously fixed.  

 

The result of this subroutine depends heavily on the ability to produce some 

good i -MSTs. If the approximation ratio α  is too high, then the computed 

BudgetTree  will influence the result of the whole algorithm negatively. 

 

Now we introduce the constant b , for which Fakcharoenphol et al. give the  

optimal value of 616,1=b 41, and the random variable U , which is selected by 

the uniform distribution on [ ]1,0  and can describe the following algorithm for 

solving the problem. 

 

Algorithm:42 

Choose Ubc =  according to the random variable U , which has a uniform 

distribution on [ ]1,0 . For each :0≥j  

 For kl ,,1 K=  

Let ( )jj
l cbBudgetTreeT = . Remove the vertices of j

lT  other than s  

from the graph. 

 Arbitrarily give each repairman one of the k  trees from this stage. 

Tell each repairman to traverse his trees in increasing order of j , and to 

traverse each tree either in the forward Euler tour direction or the backward 

Euler tour direction according to the flip of an unbiased coin. 

 

 

This algorithm computes trees of cost at most cα , cbα , 2cbα , ... covering as 

many vertices as possible. Every BudgetTree  gives back a set of trees for each 

of the k  repairmen with nearly exponentially increasing length (as Ubc = ), 

which they have to traverse without visiting a vertex more than once. 

 

                                                                 
41 Fakcharoenphol et al., 2007, p. 40 : 
42 Fakcharoenphol et al., 2007, p. 40:12 
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This algorithm has an approximation ratio of α497.8 43, but can be replaced by 

using the i -stroll instead of the i -MST with an approximation ratio of 497.8  as 

Chaudhuri et al. showed in 2003.44 

                                                                 
43 Fakcharoenphol et al., 2007, p. 40:15 
44 Chaudhuri et al., 2003, pp. 36-45 
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5.2 The k -TRP with Repairtimes (GKTRP) 

In all the models already discussed we assumed that there are no repairtimes 

for the customers. Now we would like to examine the k -TRP with variable 

repairtimes associated to each vertex (GKTRP). This is a realistic assumption 

because the repairman may have to spend some time at the customer’s house 

in order to satisfy his request. 

 

In 2006, Jothi et al. presented approximation algorithms for the GKTRP with 

variable and uniform repairtimes respectively. 45 

 

5.2.1 The GKTRP with Non-Uniform Repairtimes 

First we would like to examine the GKTRP with different repairtimes associated 

to each customer. 

 

We have an undirected graph ( )EVG ,=  and the notations are 

s   ... starting point 

vu,   ... vertices of graph G  

( )vuc ,   ... distance between u  and v  

ir   ... repairtime of vertex iv  

( )ivl   ... latency of vertex iv  

kt   ... one of the k  tours which cover together all the vertices of G  

 

First we denote { }kvvvM ,,, 21 K=  as the set of vertices which have the k  

largest repairtimes and as G′  the graph G  without these vertices. Then we 

change the graph G′  such that we add half of the repairtimes of iv  and jv  to 

( )ji vvc , , set all the repairtimes ir  to 0 and introduce the new graph as *G  (see  

Figure 8). 

 

                                                                 
45 Jothi et al., 2006, pp. 294-303 
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Figure 8: Original graph G and transformed graph G*46 

 

Now the procedure will be to seek a β -approximate solution for *G  using the 

best algorithm currently known to solve the k -TRP without repairtimes and get 

as result the set of tours kttt ,,, 21 K . We transfer the so found tours into G′ , 

so that they visit the same vertices in the same order and can calculate the sum 

of the latencies of the customers xap ′  by 

 

∑
∈

−=′
M\

i

2
r

*
Vi

optxap β  

 

where *opt  is the optimal solution for the k -TRP in *G . 

 

This can be easily explained as in *G  half of the repairtimes of iv  have been 

added to the distance between its predecessor and itself and is therefore part of 

the latency of iv . If we subtract this amount once more we get the latency of 

this vertex in G′ . 

 

                                                                 
46 Jothi et al., 2006, p. 294 
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Finally we add to each tour it  a vertex iv  out of M  for all i  and get a set of k  

feasible tours in the original graph G . The sum of the latencies of the 

customers in G  is then given by 

 

( )∑
=

+′=
k

i
ivlxapapx

1

 

 

which is the optimal solution of G′  plus the latencies of the customers which 

have previously been subtracted from the original graph. 

 

The approximation ratio of this algorithm is 





 +

2
1

2
3

β , which depends heavily 

on the algorithm used to create the optimal tour for *G .47 The currently best 

achievable approximation ratio for the k -TRP without repairtimes has been 

reached by Chaudhuri et al. and is given by 49,8=β 48 (see Chapter 5.1) 

leading to an approximation ratio of 235,13  for this algorithm.  

 

5.2.2 The GKTRP with Uniform Repairtimes 

In this chapter we examine the special case when the repairtimes are all the 

same for each vertex iv . Jothi et al. gave two approximation algorithms to solve 

this problem, one with an approximation ratio which decreases with increasing 

n
k

 (algorithm 1), while the approximation ratio of the other increases with 
n
k

 

(algorithm 2).49 Depending on this factor one can choose which algorithm to use 

to get an approximation ratio as small as possible. 

 

5.2.2.1 Algorithm 1 

The first algorithm works on a case-by-case basis meaning that there are 

different procedures depending on the value of k . The notations are the same 

as in the model with non-uniform repairtimes, but we build the new graph *G  

                                                                 
47 Jothi et al., 2007, p. 298 
48 Chaudhuri et al., 2003, p. 38 
49 Jothi et al., 2007, pp. 299-301 
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directly out of G , once more adding half of the repairtimes of iv  and jv  to 

( )ji vvc ,  and setting all repairtimes ir  to zero. Then we arrange the vertices iv  

according to their distances to the starting point, so that 

( ) ( ) ( )nvscvscvsc ,,, 21 ≤≤≤ K . 

 

Case 1: 
2
n

k ≥  

In this case we assign to each repairman i  the vertex iv  for all ki ≤  and let the 

repairmen 1 to kn −  visit a second one of the remaining vertices. This way it is 

ensured that customers with smaller distances to the origin are visited earlier 

and the latencies of the remaining customers do not get too high. 

 

The approximation ratio of the algorithm in this case is at most 2. 

 

Case l: 
l
n

k
l

n
<≤

+1
 1>∀ l  

In this case the assignment of vertices to the k  repairmen works the same way 

as above. First each repairman i  visits the vertex iv , then one of the vertices 

{ }kkk vvv 221 ,,, K++  and so on until all the vertices have been visited. 

 

Here the approximation ratio depends on the value of l , so for values of 

5,4,3=l  the ratios are 1.8,43.6,83.4 .50 

 

5.2.2.2 Algorithm 2 

This algorithm works in the same way as the one examined in Chapter 5.2.1 but 

without eliminating the set of vertices M  to get the graph G′ . We create *G  

directly out of G  by once again adding half of the repairtimes of iv  and jv  to 

( )ji vvc ,  and setting ir  to 0 . As before we then search for a β -approximate 

solution to *G  using the best known procedure for finding a solution for the k -

TRP. 

 

                                                                 
50 Jothi et al., 2007, p. 301 
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For this algorithm the β -approximation ratio is given by 


















−

−
+

1

1

k
n
β

β . Once more 

assuming 49,8=β , this leads to an approximation ratio of at most 2283,10  for 

nk 188364.0≥  which decreases with an increasing value of 
k
n

. If k  is smaller 

than n188364.0 , then it will be better to use algorithm 1 to solve the problem. 51 

                                                                 
51 Jothi et al., 2007, p. 301 
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5.3 The On-Line k -TRP (OL-KTRP) 

The OL-KTRP is a special form of the k -TRP where the repairmen do not know 

in advance when there will be a request of a customer. As in Chapter 4.6 the 

requests will be released over time and have to be served as quickly as 

possible to minimize the average latencies experienced by the customers. But 

this time we have k  repairmen to satisfy them. 

 

In 2006, Bonifaci et al. presented a c -competitive algorithm for the OL-KTRP 

which first divides the k  repairmen into groups of *k  repairmen, where the 

value of *k  is given in advance.52 At a previously defined point of time iB  one 

group starts to serve the requests already released while the others wait at the 

origin. Some time later the next group starts their tours and so on. Bonifaci et al. 

call their algorithm Group Interval. 

 

Algorithm Group Interval53 

Divide the servers into 



=

*k
k

g  disjoint sets (groups) of *k  servers each. Any 

remaining server is not used by the algorithm. 

Let L  be the earliest time that any request can be completed (wlog 0>L ). For 

K,1,0=i , define LB i
i α=  where g

1

3=α . 

At time iB , compute a set of paths { }i
k

i
i PPS *1 ,, K=  for the set of yet unserved 

requests released up to time iB  with the following properties: 

(i) every i
jP  starts at the origin s ; 

(ii) i
i
jj BP ≤max ; 

(iii) iS  maximizes the number of requests served among all schedules 

satisfying the first two conditions. 

Starting at time iB , the j -th server in the ( i  mod g )-th group follows path i
jP , 

then returns to s  at full speed. 

                                                                 
52 Bonifaci et al., 2006, pp. 87-89 
53 Bonifaci et al., 2006, p. 88 



 54 

As stated above the k  repairmen get divided into g  groups. Then the constant 

α  gets introduced which decreases with an increasing number of groups. As 

the algorithm computes schedules at time iB  (depending on α ), then at 1+iB  

and so on, the repairmen have the period of 11 BBi −+  to serve all the already 

released but not yet visited customers. This period gets smaller with an 

increasing number of groups as the lengths of the tours get shorter. After all the 

requests have been satisfied, the repairmen return to the starting point and wait 

for the release of new ones. 

 

The competitive ratio c  for this algorithm is given by g
1

32 ⋅ .54 

                                                                 
54 Bonifaci et al., 2006, p. 88 



 55

6 Applications of the TRP 

Because of the structure of the TRP there exist a lot of applications for the TRP. 

Many different problems can be described and calculated by using the model or 

at least part of it. Naturally the most obvious group of problems is that of the 

delivery problems, for example the pizza delivery, where one puts together 

several orders and has to find a tour which minimizes the average arrival time at 

the customers so that the pizzas will not get cold in the meantime. Another 

application would be that of finding a route for automated guided vehicles 

through the cells of a flexible manufacturing system. One can also interpret 

certain scheduling problems as TRPs (see Chapter 6.2). 

 

In the field of computer networks one can also find applications for the TRP, for 

example in the area of diskhead scheduling, where the objective is to minimize 

the wasted time by hard disk seeks. The model of the TRP can also be used 

when one tries to find a certain information which is located somewhere in the 

network. 

 

Below we will examine two possible applications at more detail, first an 

emergency vehicle dispatching system for an electric utility company in Chile, 

then a technician and task scheduling problem. 
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6.1 An Emergency Vehicle Dispatching System 

In this chapter an example of an application of the TRP will be described at 

more detail. We will especially examine the factors which have to be taken into 

account when solving problems in reality. 

 

Chilectra is the electric utility responsible for Santiago, the capital of Chile, and 

incorporates a special emergency services division which takes care of 

electrical breakdowns in the metropolitan area. In 1999, Weintraub et al. 

developed a computerised system helping to organize the dispatching of 

vehicles to the emergency locations served by the emergency unit responsible 

for three out of the sixteen municipalities in Santiago.55 Before an operator 

decided which vehicle served which emergency in which order only with the 

help of his experience and intuition. 

 

The geography of the affected part of the city determines the underlying graph 

needed to describe the problem. The nodes of it represent areas of two to five 

blocks and the distances between them are calculated with the help of the 

actual travel times under traffic scenarios depending on the time of day. In order 

to predict future emergencies a model was created using an exponential 

smoothing approach based on experience with earlier breakdowns. Additionally 

a priority factor is assigned to each emergency which can be interpreted as a 

weight.  

 

The notations of the model developed by Weintraub et al. are 

I  ... the set of the already known breakdowns  

J  ... the set of zones 

iP  ... the weight of the priority factor for breakdown i  

iT  ... the service time including the time needed to reach breakdown i  

jF  ... the expected number of breakdowns for zone j  

jtK  ... the penalty factor depending on the distance to zone j  in time t  

 

 
                                                                 
55 Weintraub et al., 1999, pp. 690-696 
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The objective function developed by Weintraub et al. is56 

 

min→+ ∑∑∑
∈∈ t Jj

jtj
Ii

ii KFTP βα  

 

The first term of the equation can be interpreted as the already familiar sum of 

waiting times of the customers times the correspondent prioritiy levels, i.e. the 

weights. The second term takes the future demands into account. The 

parameters α  and β  determine the weight of each of the two terms. 

 

Now we will take a closer look at some parameters which are part of the model 

and some of the factors which influence the decision in particular. 

 

6.1.1 The Weights α  and β  

The weights α  and β  can be interpreted as the service quality for the 

breakdowns that are already known and the penalty that is imposed on the 

vehicle if it is located far away of future breakdowns. Weintraub et al. chose to 

define the values of the two weights through a process of simulation to get 

adequate solutions in all likely events and then validated them to maximize the 

level of global service quality. 

 

6.1.2 The Weight of Priorities iP  

The priorities iP  of the breakdowns are defined by Chilectra. There are five 

priority levels with weights which do not grow linear (see Table 2). A critical 

breakdown that could also endanger humans would be classified as priority 1, 

while a domestic loss of power would be of priority 5. Additionally a breakdown 

will move up a level every 30 minutes if it has not been served until this time, so 

that it is ensured that no emergency will be neglected for a long time. 

 

 

 

                                                                 
56 Weintraub et al., 1999, p. 691 
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Priority Weight iP  

1 10 

2 5 

3 3 

4 3 

5 1 

Table 2: Weighted factors iP  according to breakdown priorities 

 

6.1.3 The Forecast for Daily Demands 

To predict future breakdowns effectively the development in previous years 

must be examined. First one can see that there exists a rather strong 

seasonality effect, so that in winter an increase in the number of breakdowns 

due to more wind and rain can be observed while in the summer months they 

become less because people tend to leave the city for vacation. At the daily 

level the emergency calls decrease during the night hours while they increase 

during the evening. Additionally there is a rise of breakdowns noticeable 

throughout the years because of the growth of the population and the 

construction of new houses. All these factors have to be taken into account 

when defining the future demand. 

 

6.1.4 The Implementation of the Algorithm 

Weintraub et al. used an approach to implement the algorithm where they first 

grouped the requests together according to the geographical sector they were 

situated in and then assigned vehicles to these groups. Now they defined the 

tours for each of them by adding only one node at a time which they took out of 

a predefined group of neighbors. Before inserting a new node, all possible 

combinations of sequences including this node are tested to find the one that 

leads to minimal cost. Additionally Weintraub et al. had to make sure that 

requests with high priority have to be visited early. Finally they improved the 

solution by using a load balancing approach where they compared the workload 

of each vehicle and tried to balance it. 
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The model of Weintraub et al. proved to be rather efficient in the testing phase. 

It resulted in an improvement of 16% in response time and even 53% during 

rainy days when the number of breakdown increased significantly.57 

 

                                                                 
57 Weintraub et al., 1999, p. 690 
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6.2 A Technician and Task Scheduling Problem (TTSP) 

In the TTSP we have a set of tasks which have to be fulfilled by technicians with 

specified skills. The level of a technician in a skill is given by an integer from 0  

to p , with 0  meaning that he has no knowledge at all in this area. The tasks to 

be completed require different skill levels and some additionally have to be 

fulfilled by more than one technician. The problem consists of assigning to each 

task the necessary technicians with convenient skill levels in a most effective 

way. For this purpose technicians are grouped together according to their skill 

levels and have to stay together for all day. It is also possible that some 

technicians are not available on some days . 

 

An additional constraint is given by the fact that some tasks cannot be 

completed before others are performed, so that each task has a set of 

predecessors and a set of successors. All tasks have given values for the 

duration it takes to fulfil them, the outsourcing cost, for which a certain budget is 

available , and a priority level, where a weight is assigned to each priority level. 

 

In 2008, Cordeau et al. developed a heuristic to solve the above described 

problem.58 

 

The notations are 

N  ... the set of tasks with pN  as the set of tasks with priority p  and σN  as 

... the set of tasks with successors 

T  ... the set of technicians with kT  as the set of available technicians at day 

k  

iσ  ... the set of successors of task i  

id  ... the time required to fulfill task i  

ic  ... the cost of outsourcing task i  

C  ... the budget for outsourcing costs 

ip  ... the priority level of task i  with { }4,3,2,1∈ip  

                                                                 
58 Cordeau et al., 2008, pp. 1-25 
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iw   ... the weight according to the priority level of task i  with 

{ }1,4,14,28∈iw  

jkrx  ... the binary variable indicating whether technician j  is part of the team 

r  on day k  or not 

ikry  ... the binary variable indicating whether task i  is assigned to team r  on 

day k  or not 

iz  ... the binary variable indicating whether task i  is outsourced or not 

iiu ′  ... the binary variable indicating whether task i  has been fulfilled before 

task i′  starts 

pe  ... the time when the last task of priority p  has been fulfilled 

ib  ... the starting time of task i  

isαβ  ... element of the skill requirement matrix indicating the number of 

technicians with a skill level of at least α  in the domain β  required to 

fulfill the task i  
jvαβ  ... element of the skill matrix indicating the skill level α  in the domain β  

of technician j  

M  ... a large number 

 

The objective is to minimize the weighted makespan of each priority level, so it 

is given by59 

 

min
4

1

→∑
=p

ppew .         (6.1) 

 

This is the same objective function as that of the weighted TRP. 

 

 

 

 

 

 

                                                                 
59 Cordeau et al., 2008, p. 5 
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The constraints are the following60 

 

iip dbe +≥    { }3,2,1∈∀ p , pNi ∈∀     (6.2) 

ii dbe +≥4    Ni ∈∀       (6.3) 

Czc ii ≤∑           (6.4) 

∑
∈′

′≤
ii

iii zz
σ

σ    σNi ∈∀       (6.5) 

1
1

≤∑
=

m

r
jkrx    Kk ∈∀ , kTj ∈∀      (6.6) 

0
1

=∑
=

m

r
jkrx    Kk ∈∀ , Tj ∈∀ \ kT     (6.7) 

1
1

=+ ∑∑
∈ =Kk

m

r
ikri yz   Ni ∈∀       (6.8) 

∑
∈

≤
kTj

jkr
ii

ikr xvsy αβαβ   Ni ∈∀ , Kk ∈∀ , { }mr ,,1 K∈∀ ,  

{ }p,,1 K∈∀ α , { }q,,1 K∈∀ β   (6.9) 

iiii Mzbdb +≤+ ′   σNi ∈∀ , ii σ∈′∀      (6.10) 

( ) i

m

r
ikr byk ≤− ∑

=1

1120   Ni ∈∀ , Kk ∈∀      (6.11) 

ii

m

r
ikr dbyk +≥∑

=1

120  Ni ∈∀ , Kk ∈∀      (6.12) 

( ) iiiii bMudb ′′ ≤−−+ 1  Nii ∈′∀ , , ii ′≠      (6.13) 

1≤−−+ ′′′ iiiikriikr uuyy  Nii ∈′∀ , , ii ′≠ , Kk ∈∀ , { }mr ,,1 K∈∀  (6.14) 

{ }1,0∈jkrx    Tj ∈∀ , Kk ∈∀ , { }mr ,,1 K∈∀   (6.15) 

{ }1,0∈ikry    Ni ∈∀ , Kk ∈∀ , { }mr ,,1 K∈∀   (6.16) 

{ }1,0∈iz    Ni ∈∀       (6.17) 

{ }1,0∈′iiu    Nii ∈′∀ , , ii ′≠      (6.18) 

0≥pe     { }4,3,2,1∈∀ p      (6.19) 

0≥ib     Ni ∈∀       (6.20) 

                                                                 
60 see footnote 59 
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The constraints (6.2) and (6.3) define the  ending time of all tasks of priority p . 

Inequalities (6.4) and (6.5) ensure that no more than the available budget is 

used for outsourced tasks and all successors of an outsourced task are 

outsourced, too. Restrictions (6.6) and (6.7) state that every technician is only 

part of one team per day and that no unavailable technician is used. Equality 

(6.8) ensures that every task is either fulfilled by a technician or outsourced 

while (6.9) assigns to each task that is not outsourced a team with necessary 

skills. Constraint (6.10) makes sure that a task is fulfilled before its successors 

start. Restrictions (6.11) and (6.12) introduce a lower and an upper bound  for 

the starting time of the tasks. Inequality (6.13) ensures that if task i′  should be 

fulfilled after task i  then the starting time of i′  has to be after the starting time of 

i , while (6.14) states that if both tasks are performed by the same team on the 

same day, they have to be fulfilled one after the other. Finally restrictions (6.15) 

to (6.18) introduce the binary variables and (6.19) and (6.20) define the 

nonnegativity constraints. 

 

Cordeau et al. developed a construction heuristic to build teams and assign 

tasks to them and then an adaptive large neighborhood search heuristic (ALNS) 

which is able to further improve the initial solution. The construction heuristic 

first chooses seed tasks according to predefined criteria and builds teams to 

fulfill them. Then further tasks are assigned to the selected teams. The ALNS 

heuristic finally tries to improve the so found solution by destroying and 

afterwards repairing it. This means that first a subset of tasks is removed from 

the solution and then it will be reinserted again. For this purpose five different 

destroy and two repair heuristics are implemented into the algorithm. 

 

As the above described heuristics have been developed for a challenge the test 

instances were predefined. They varied from 5 to 800 tasks with 5 to 150 

technicians available. The ALNS heuristic achieved the second place by 

differing on average only 5,9% from the best known solutions for the test 

instances. 
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7 Basis and Solving Methods for the Traveling 
Repairman Problem 

This chapter gives a description of the basis and the most common solving 

methods used for examining the TRP. 

 

7.1 Branch and Bound61 

The branch and bound technique is used for generating optimal solutions for 

optimization problems. It was first introduced by A. H. Land and A. G. Doig in 

1960, who used it in the field of linear programming. 

 

First the set of candidates S  is split into several smaller sets K,, 21 SS  which 

will lead to a tree structure (the search tree) with nodes as the corresponding 

subsets of S  (branching). Then upper and lower bounds for each subset are 

generated (bounding). Now the bounds for the tree nodes are compared to 

each other and the “worse” ones get eliminated from the tree search (pruning). 

If there is only one candidate left or an upper bound for the set of candidates 

matches the lower bound, the recursion finally stops. 

 

7.2 Dynamic Programming62 

The concept of dynamic programming in its actual form was developed by 

Richard Bellman in 1953. It consists of breaking down a complex problem into 

simpler subproblems, which means splitting it up into several decision steps that 

can be solved more easily. Dynamic programming can only be used as a 

solving method when the problem has two specific properties: the overlapping 

subproblems and the optimal substructure. 

 

A problem has an optimal substructure if it can be broken down recursively, 

which means that by solving its subproblems over time the original problem can 

                                                                 
61 http://en.wikipedia.org/wiki/Branch_and_bound; 05.06.2009 
62 http://en.wikipedia.org/wiki/Dynamic_programming; 18.08.2009 
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be solved. If these subproblems can be reused multiple times then it also has 

the property of overlapping subproblems. 

 

7.3 Graph Theory63 

As the TRP is usually described on a graph a short overview over graph theory 

is given in this chapter. 

 

A graph ( )EVG ,=  has a set of n  vertices { }nV ,,2,1 K=  and an edge set 

VVE ×⊆ . Every vertex represents a customer the traveling repairman has to 

visit. For each edge ( )ji,  there are known costs ijc  which can be interpreted as 

the distance between the vertices i  and j . 

 

The graph can be directed or undirected. A graph is directed if the TRP is 

asymmetric and all edges are pointing in one direction, so they can be 

represented by an arrow (see Figure 9). The traveling repairman is only allowed 

to travel from i  to j  but not from j  to i . 

 

 

Figure 9: A directed graph 

 

A graph is undirected if the TRP is symmetric and all edges are undirected (see 

Figure 10). So the traveling repairman is allowed to travel from i  to j  and also 

the other way round. 

 

                                                                 
63 http://en.wikipedia.org/wiki/Graph_(mathematics)#Undirected_graph; 05.06.2009 
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Figure 10: An undirected graph 

 

A Hamiltonian circle is a path which visits each vertex exactly once and then 

returns to the starting point (see Figure 11). It is the graphic equivalent to the 

tour the traveling repairman has to make. 

 

 

Figure 11: A Hamiltonian circle 

 

A spanning tree of an undirected graph connects all the vertices without forming 

a cycle (see Figure 12). The spanning tree with the smallest costs is called the 

minimum spanning tree (MST). 
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Figure 12: Spanning tree 

 

A Eulerian graph is a graph which allows to construct a Eulerian circuit, i.e. it is 

possible to use each edge exactly once starting and ending at the same vertex 

(see Figure 13). 

 

 

Figure 13: A Eulerian graph 

 

7.4 Lagrangean Relaxation64 

The Lagrangean Relaxation bases on the idea that many hard problems can be 

seen as easy problems which are too complex because of a relatively small 

number of constraints. If these are dualized, an easily solved Lagrangean 

problem is generated. Its optimal solution can now be used for a lower bound in 

the original problem in a branch and bound algorithm. 

 

                                                                 
64 Fisher, 2004, p. 1861 
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In 1970 Held and Karp used a Lagrangean relaxation for solving an algorithm 

for the traveling salesman problem which has been extremely successful. This 

constitutes the “birth” of the Lagrangean technique. 

 

The concept behind this approach is that hard capacity constraints are moved 

into the objective function and penalty costs, the so called Lagrangean 

multipliers, are imposed on their violation. This way the problem can be solved 

rather easily. 

 

7.5 Monge Array65 

A Monge array is an m  x n  array for which the following property holds: 

 

[ ] [ ] [ ] [ ]jkAliAlkAjiA ,,,, +≤+     lkji ,,,∀  

  

if mki ≤<≤1  and mlj ≤<≤1 . One can also say that if we choose two rows 

and two columns of the array the sum of the upper-left and lower-right 

intersecting elements will be less or equal to the sum of the lower-left and 

upper-right intersecting elements. Table 3 shows an example of a Monge array.  

 

10 17 13 28 23 

17 22 16 29 23 

24 28 22 34 24 

11 13 6 17 7 

45 44 31 37 23 

36 33 19 21 6 

75 66 51 53 34 

Table 3: A Monge array66 

 

If we take the rows 3 and 5 and the columns 2 and 5 then we can see that the 

first sum 512328 =+  is smaller than the second sum 682444 =+ . The same 

property holds if we make another choice.  
                                                                 
65 Cormen et al., 2001, p. 88 
66 Cormen et al., 2001, p. 88 
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8 Summary 

In this diploma thesis the Traveling Repairman Problem (TRP) has been 

examined. First an overview of the Traveling Salesman Problem (TSP) was 

given, of which the TRP is a variation. Then the characteristics and the 

mathematical formulation of the TRP have been described. In the next chapter 

some solving methods for the TRP have been introduced to get a better 

understanding for the problem, a branch and bound algorithm which leads to an 

optimal solution, an exact algorithm and a heuristic both based on dynamic 

programming. 

 

Afterwards some variations of the TRP with a single repairman were presented, 

of which the line-TRP was the first. It is a variant of the TRP with a line as the 

underlying graph and the versions with and without deadlines were examined, 

meaning that the customers have deadlines at which they must have been 

served. Then the line-TRP with weights has been introduced, where a weight is 

assigned to each customer. This ensures that some customers, which are more 

important, are served earlier than others. In the next subchapter the variant of 

the TRP with a directed underlying graph was presented. Here the distances 

between two vertices depend on the direction the repairman travels. Then the 

TRP on weighted trees has been examined. Here the weights on the edges of 

the tree represent the distances between any two vertices. Afterwards the 

weighted TRP on a metric space has been introduced, where once again the 

weights assigned to the vertices show the importance of the corresponding 

customers. The last model described in this chapter was the on-line TRP where 

the orders of the customers are not known in advance but come in over time. 

 

The next chapter examined variants of the TRP with more than one repairman 

available to serve the orders of the customers (the k -TRP). First a general 

problem has been described, then the k -TRP with repairtimes was introduced, 

where a repairtime is assigned to each customer which can differ from one to 

another. Finally the on-line k -TRP was presented. 

 

Afterwards some applications for the TRP have been described of which two 

have been examined in more detail. The first was an emergency vehicle 
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dispatching system which has been established for an electric utility company in 

Chile and the second described the technician and task scheduling probem 

(TTSP) which also uses parts of the TRP. 

 

In the last chapter some basis, for example graph theory or the definition of a 

Monge Array, and solving methods as the branch and bound technique or the 

lagrangean relaxation have been presented. 

 

The TRP is very challenging and is even currently examined frequently because 

of its many application possibilities. Additionally it is NP-hard which also makes 

it to an issue of general interest in the literature. For these problems it is very 

difficult to find an optimal solution in a reasonable amount of time. Furthermore 

one can expand the model by adding constraints depending on the part of the 

problem on which one concentrates or depending on the problem one tries to 

solve. By combining them it is possible to create a model which exactly suits the 

desired characteristics of the problem that has to be solved. 
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Abstract 

 

Diese Magisterarbeit gibt einen Überblick über das Traveling Repairman 

Problem (TRP), das eine Spezialform des Problems des Handlungsreisenden 

(Traveling Salesman Problem – TSP) darstellt. Beide Modelle werden benutzt, 

um die Tour eines Handlungsreisenden zu planen, der in einer vorgegebenen 

Zeitspanne eine bestimmte Anzahl von Kunden besuchen soll. Während das 

TSP sich darauf konzentriert, die Länge der Tour zu minimieren, versucht das 

TRP, die Summe der Wartezeiten der Kunden so gering wie möglich zu halten. 

 

Der Hauptteil der Arbeit beschäftigt sich mit der Definition und den Varianten 

des TRP und beschreibt mögliche Modelle und Verfahren, mit deren Hilfe diese 

zu lösen sind. Dabei werden zuerst die Problemstellungen definiert und dann 

die mathematischen Formulierungen bzw. die Algorithmen dargestellt. 

 

Zu Beginn der Arbeit werden das TSP und das TRP näher definiert und kurz 

anhand eines Beispiels illustriert (in Kapitel 2). Danach werden das allgemeine 

TRP und einige Lösungsverfahren dazu näher erläutert (in Kapitel 3). 

 

Im Hauptteil werden zuerst einige Variationen des TRP mit einem einzelnen 

Repairman und Algorithmen zur Lösung dieser Modelle beschrieben (in    

Kapitel 4). Dann werden das TRP mit mehreren Repairmen sowie einige 

Spezialformen hierzu erläutert (in Kapitel 5). 

 

Zusätzlich werden in dieser Arbeit Anwendungsmöglichkeiten beschrieben, von 

denen zwei genauer untersucht werden (in Kapitel 6). Schließlich werden noch 

einige Basisbegriffe und Lösungsmethoden erläutert (in Kapitel 7). 
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