

DIPLOMARBEIT

Titel der Diplomarbeit

 “The Traveling Repairman Problem
- A Review”

Verfasserin

Miriam Lechmann

Angestrebter akademischer Grad

Magistra der Sozial- und

Wirtschaftswissenschaften

(Mag. rer. soc. oec.)

Wien, im November 2009

Studienkennzahl lt. Studienblatt: A 157

Studienrichtung lt. Studienblatt: Internationale Betriebswirtschaftslehre
Betreuer: O.Univ.Prof.Dipl.-Ing. Dr. Richard F. Hartl

 II

 III

I. TABLE OF CONTENTS

II. LIST OF FIGURES ..V

III. LIST OF TABLES ...VI

1 INTRODUCTION .. 7

2 PROBLEM DESCRIPTION AND DEFINITIONS .. 8

2.1 The Traveling Salesman Problem (TSP) ... 8

2.2 The Traveling Repairman Problem (TRP) ... 12
2.2.1 Definition .. 12

3 A SOLUTION METHOD FOR THE “CLASSICAL” TRP 15

3.1 Notation and Definitions.. 15

3.2 Problem Formulation.. 17

3.3 Branch and Bound Algorithm .. 19
3.3.1 Lower Bounds.. 19
3.3.2 Upper Bound.. 20
3.3.3 Branch and Bound .. 21
3.3.4 Dominance Rules.. 22

3.4 Dynamic Programming Algorithm .. 24

3.5 Dynamic Programming Heuristic .. 25

3.6 Computational Results .. 26

4 VARIANTS OF THE TRP WITH ONE REPAIRMAN 27

4.1 The Line-TRP with and without Deadlines ... 27
4.1.1 The Line-TRP without Deadlines.. 28
4.1.2 The Line-TRP with Deadlines ... 29

4.2 The Weighted Line-TRP ... 31

4.3 The Directed TRP... 34

4.4 The TRP on Weighted Trees... 37

4.5 The Weighted TRP (WTRP) ... 39

4.6 The On-Line TRP (OL-TRP)... 41
4.6.1 The Net Latency-OL-TRP (NL-OL-TRP) ... 41
4.6.2 The Weighted OL-TRP .. 42

5 THE TRP WITH MULTIPLE REPAIRMEN (THE k -TRP) 44

 IV

5.1 The k -TRP ... 45

5.2 The k -TRP with Repairtimes (GKTRP) .. 48
5.2.1 The GKTRP with Non-Uniform Repairtimes..48
5.2.2 The GKTRP with Uniform Repairtimes ..50

5.3 The On-Line k -TRP (OL-KTRP) .. 53

6 APPLICATIONS OF THE TRP .. 55

6.1 An Emergency Vehicle Dispatching System ... 56
6.1.1 The Weights α and β ...57
6.1.2 The Weight o f Priorities iP ...57
6.1.3 The Forecast for Daily Demands ..58
6.1.4 The Implementation of the Algorithm ...58

6.2 A Technician and Task Scheduling Problem (TTSP) 60

7 BASIS AND SOLVING METHODS FOR THE TRAVELING
REPAIRMAN PROBLEM .. 64

7.1 Branch and Bound .. 64

7.2 Dynamic Programming .. 64

7.3 Graph Theory ... 65

7.4 Lagrangean Relaxation.. 67

7.5 Monge Array ... 68

8 SUMMARY .. 69

IV. REFERENCES .. 72

ABSTRACT.. 77

CURRICULUM VITAE.. 79

 V

II. List of Figures

Figure 1: Example of a graph ...9

Figure 2: TSP solution .. 10

Figure 3: TRP solution .. 14

Figure 4: Example of a tour divided into f -path and b -path............................... 16

Figure 5: An example for a generated tour .. 23

Figure 6: The line-TRP ... 27

Figure 7: Possible tour for the line-TRP... 28

Figure 8: Original graph G and transformed graph G* .. 49

Figure 9: A directed graph.. 65

Figure 10: An undirected graph... 66

Figure 11: A Hamiltonian circle ... 66

Figure 12: Spanning tree .. 67

Figure 13: A Eulerian graph ... 67

 VI

III. List of Tables

Table 1: Number of possible tours with a given number of customers................11

Table 2: Weighted factors iP according to breakdown priorities58

Table 3: A Monge array ...68

 7

1 Introduction

When a salesman starts to plan his tour he has to decide in which order he

wants to visit his customers. This he has to do in the most efficient way possible

to minimize the time spent on traveling and the costs which are associated with

this. Additionally he will be able to visit more customers in the given time limit if

he is able to find the optimal tour and this will increase his profits, too.

This problem is called the Traveling Salesman Problem (TSP) and is one of the

most frequently researched in the area of operations research because it has

many applications not only in the above described way and is typical of other

problems in combinatorial optimization. There exist a lot of variations of it

depending on the variables that are included. One of them is the so called

Traveling Repairman Problem (TRP).

This diploma thesis wants to give a review about the characteristics and the

different model approaches of the TRP and its variations. In Chapter 2 a short

overview of the TSP and the TRP is given, and in Chapter 3 there is a detailed

description of some solving methods for the “classical” TRP. In Chapter 4 some

variations of the TRP with a single repairman are examined while Chapter 5

describes variants of the TRP with several repairmen. This is followed by a

summary of the possible applications for the TRP with the more detailed

examination of two cases. In Chapter 7 some basis and solving methods for the

TRP are outlined.

 8

2 Problem Description and Definitions

As described above the Traveling Repairman Problem (TRP) is a special form

of the Traveling Salesman Problem (TSP). So to examine the TRP it is

necessary to investigate the characteristics of the TSP first.

2.1 The Traveling Salesman Problem (TSP)

Every day a traveling salesman faces the challenge of planning his tour. He has

to visit a given number of customers exactly once starting from his home city or

a depot and to return at the end of the day. Naturally he tries to select the order

of the customer visits in a way which allows him to spend as little time as

possible on traveling. In other words he wants to find the tour which minimizes

the total of the distances to save time and costs.

The problem can be defined on a graph ()EVG ,= with a set of n vertices

{ }nvvvV ,,, 21 K= and an arc set VVE ×⊆ (see Figure 1). The vertices

correspond to the customers or the cities the traveling salesman has to visit

during his tour while the arcs represent the streets he may use to get to them. It

is assumed that the distances between each pair of customers are known in

advance, so for each arc ()ji vv , there are known costs ijc . If there is no

connection between customer i and customer j , then ijc will be set to infinite.

The underlying graph of the TSP can take a lot of different forms depending on

the problem formulation or on the characteristics of the problem one tries to

solve. It could be a line, a directed or undirected graph, the metric space and so

on.

 9

Figure 1: Example of a graph1

The mathematical formulation is as follows:2

∑∑
= =

→
n

i

n

j
ijij xc

1 1

min (2.1)

As stated above the objective is to minimize the total of the distances.

{ }1,0∈ijx (2.2)

For this purpose the binary variable ijx is introduced which determines whether

the vertex j is visited right after the vertex i (1=ijx) or not (0=ijx).

niforx
n

j
ij ,,11

1

K==∑
=

 (2.3)

To guarantee that each vertex is visited only once two further equations have to

be introduced. First every customer must have exactly one successor.

1 Sarubbi et al., 2007, p. 1
2 Lawler et al., 1985, pp. 25-26

2

6
1 3

5 4

12

12

15

9

16

10

10

19

17

16 21

 10

njforx
n

i
ij ,,11

1

K==∑
=

 (2.4)

Then it has to be ensured that every customer also has a predecessor.

Additionally there has to be a constraint which forbids any subtours. It could be

for example

∑ ∑
∈ ∈

−≤
Si Sj

ij Sx 1 (2.5)

for every proper, nonempty subset { }nNS ,,1 K=⊆ with S denoting the

cardinality of S .

The solution of the example above is depicted in Figure 2. The optimal TSP-tour

has a length of 8112122117109 =+++++ .

Figure 2: TSP solution3

Although the TSP seems to be simple it is rather difficult to solve optimally.

There exist ()!1−n possible tours, so even if the number of costumers n is

relatively small there is a huge number of possible solutions (see Table 1).

3 Sarubbi et al., 2007, p. 1

2

6
1 3

5 4

12

12

15

9

16

10

10

19

17

16 21

 11

n ()!1−n

3 2

4 6

5 24

6 120

7 720

8 5.040

9 40.320

10 362.880

Table 1: Number of possible tours with a given number of customers

Therefore it seems to be impossible to solve the TSP optimally through

complete enumeration during an acceptable amount of time if the value of n is

rather high. It is one of the most prominent problems that is NP -hard for the

general metric.

 12

2.2 The Traveling Repairman Problem (TRP)

The TRP is a variant of the TSP with the same task but the objective is a

different one. It looks at the same problem from another point of view by turning

its attention more to the satisfaction of the customers. This could be necessary

because the order of the customer is urgent and therefore needs to be

completed as soon as possible. So the objective is not to minimize the traveling

time of the repairman but to minimize the sum of the latencies of the customers.

For this reason the TRP is often also referred to as the Minimum Latency

Problem in the literature. There also exist other names for it, for example the

“Delivery Problem”, the “Deliveryman Problem” or the “TSP with Cumulative

Costs”.

2.2.1 Definition

The TRP can be mathematically formulated as follows.4

∑∑
= =

→
n

i

n

j
ijij xc

1 1

min (2.6)

The objective function looks the same as above but the variables are defined

differently and therefore it is subject to other constraints.

{ }1,0∈ijy (2.7)

nifory
n

j
ij ,,11

1

K==∑
=

 (2.8)

njfory
n

i
ij ,,11

1

K==∑
=

 (2.9)

These three constraints introduce the necessary binary variable which should

indicate whether arc ()ji vv , is part of the tour and make sure that each vertex

will be visited.

4 Fischetti et al., 1992, pp. 1055-1056

 13

∑
=

=
n

i
ix

2
1 1 (2.10)

Equation (2.10) makes sure that the starting point 1v has exactly one

predecessor, so that the tour ends at the origin.

∑∑
== 





=

=−
=−

n

j
kj

n

i
ik nkfor

kforn
xx

11 ,,21

11

K
 (2.11)

Contraint (2.11) ensures that there will be no subtour which is disconnected of

the starting point 1v and gives ijx the value 1+− kn if arc ()ji vv , appears in

position k on the tour together with (2.10).

0≥ijx (2.12)

This is the necessary non-negativity constraint for ijx .

ijijij yrx ≤ (2.13)

with










−

=

=

=

otherwisen

iifn

jif

rij

1

1

11

 (2.14)

Constraint (2.13) makes sure that ijx only takes a positive value if ijy is positive

and the variable ijr represents an upper bound on ijx .

 14

The difference of the TRP-model to the one for the TSP is that the distances

from one vertex to another are not simply added to get a final solution but that

for example the distance from the starting point to the first vertex must be added

1−n times as it will influence the latencies of all the other customers. Therefore

the variable ijx will take either the value 0 if the corresponding edge is not part

of the tour or the value 1+− kn if it lies on position k of the tour.

The solution of the TRP with the same underlying graph as in Chapter 2.1 is

25983675031199 =+++++ (see Figure 3). The optimal TRP-tour has a length

of 83 which is slightly longer than the TSP-tour, but the sum of the customers’

latencies are smaller than the one of the TSP (27181695736199 =+++++).

Figure 3: TRP solution5

Naturally the TRP is NP -hard for the general metric as well because it is a

variant of the TSP, but in some aspects it is also very different from the TSP. If

there is only a small change in the structure of a metric space, this can lead to

highly non-local changes in the structure of the TRP, which would not be the

case for the TSP. As we will discuss later in Chapter 4.1 this has a huge effect

for example for the Line-TRP.

5 Sarubbi et al., 2007, p. 2

2

6
1 3

5 4

12

12

15

9

16

10

10

19

17

16 21

 15

3 A Solution Method for the “Classical” TRP

For a better understanding we now examine a few approaches for solving the

“classical” TRP at more detail. “Classical” means that the underlying graph is a

metric space and that there are no more constraints than described above in

Chapter 2.2.

In 1993, Bianco et al. developed two exact algorithms using lower bounds

generated by a Lagrangean relaxation of the problem. The first one is a branch

and bound approach while the second uses dynamic programming to reduce

the dimensionality of the state space graph. Additionally they presented a

heuristic procedure that is also able to calculate the distance from the optimal

solution.6

3.1 Notation and Definitions

First we introduce the variable kl indicating the distance from the origin to
ki

v

(i.e. the latency) , the vertex occupying the position k in the tour

{ }
121

,...,,,
+

=
nn iiii vvvvH . As the traveling repairman has to return to the starting

point, we have to add the vertex
1+ni

v to the tour which represents the starting

point
1i

v at the same time. The costs
1+kk iic represent the distance between the

two vertices on positions k and 1+k . Therefore kl is given by

01 =l ,
212 iicl = ,

32213 iiii ccl += , ... ,
kk iiiiiik cccl

13221
...

−
+++= , ... ,

113221
......1 +−

+++++=+ nnkk iiiiiiiin ccccl

and the cost ()Hz of the tour H is given by

() ()∑∑
=

+

−
+

+−==
n

k
ii

n

k
k kk

cknlHz
1

1

1
1

1 .

6 Bianco et al., 1993, p. 81-91

 16

Now we divide the tour at the position s into two paths F and B (see Figure 4)

so that BFH += , where the “forward path” is given by

{ }
ss iiii vvvvF ,...,,,

121 −
=

and the “backward path” is given by

{ } { }
12111

,...,,,,...,,,
+++

==
BBnnss jjjjiiii vvvvvvvvB

with

111
,,

++
==

nBs ijij vvvv K .

Figure 4: Example of a tour divided into f -path and b -path

V1

s

f-path F

b-path B

 17

3.2 Problem Formulation

To describe the problem we introduce the binary variable k
ijx which takes the

value 1 if the arc ()ji vv , is in position k on the tour and 0 otherwise. If it

occupies this position, the costs of adding it to the tour are indicated by () ijckp

with () ()1+−= knkp .

The mathematical formulation is7

() min
1 11

→= ∑∑∑
= ==

n

i

n

j

k
ijij

n

k

xckpz (3.1)

The objective function minimizes the sum of the customer’s waiting times.

∑ ∑
= =

− =−
n

j

n

l

k
li

k
ij xx

1 1

1 0 nkifor ...,,2, = (3.2)

This constraint makes sure that the tour will not be interrupted, so that for every

customer there exists a successor and a predecessor.

∑
=

=
n

j
jx

1

1
1 1 (3.3)

1
1

1 =∑
=

n

i

n
ix (3.4)

These equations state that the tour has to start and end at the starting point 1v .

∑∑
= =

=
n

k

n

i

k
ijx

1 1

1 njfor ...,,1= (3.5)

∑∑
= =

=
n

k

n

j

k
ijx

1 1

1 nifor ...,,1= (3.6)

∑∑
= =

=
n

i

n

j

k
ijx

1 1

1 nkfor ...,,1= (3.7)

7 Bianco et al., 1993, p. 82

 18

These constraints make sure that each vertex will be visited exactly once and

that on each position k there will be exactly one edge. As the tour starts at

position 1=k , then crosses all the other edges in the order of their positions

until it reaches nk = , equation (3.7) prevents any subtours.

{ }1,0∈k
ijx (3.8)

Finally we also have to determine that k
ijx can only take the values 0 or 1.

This model varies from the one of Chapter 2.2 only at first sight. In fact it just

defines the variables differently which makes it necessary to formulate the

constraints in another way.

 19

3.3 Branch and Bound Algorithm

3.3.1 Lower Bounds

As this model is too complex to be solved for a problem with numerous vertices,

Bianco et al. derived lower bounds with the help of a Lagrangean relaxation.8

First equations (3.5) and (3.6) are dualized, so that the relaxed problem is

()[]

() () () () ()







→−++∑ ∑

= =

8.3,7.3,4.3,3.3,2.3

min2
1,, 1

stconstraintosubject

xckp
RP

n

kji

n

i
i

k
ijjiij λλλ

Obviously every feasible solution of RP will be a path visiting all n vertices, that

starts and ends at 1v . We solve this problem by dynamic programming. First we

introduce the variable ()ivkh , as the cost of the shortest b -path with the

starting point iv and the ending point 1v which visits exactly k vertices. It can

be computed recursively by

()
{ }

(){ }k
ijjvVvi cvkhvkh

ij

+−=
−∈

,1min, nk ...,,1=∀

with jiij
k
ij kcc λλ ++= . We initialize the recursion by

()






≠∞

=
=

1

10
,0

vvallfor

vvif
vh

i

i
i

Now we see that the lower bound LB , which corresponds to the optimal

solution we derived from RP , is

() ∑
=

−=
n

i
ivnhLB

1
1 2, λ .

8 Bianco et al., 1993, pp. 83-84

 20

Because this solution may include loops when constraints (3.5) and (3.6) get

violated, we define the following penalties iλ for each vertex iv .

() ()

()
21

1

22

2









−

−−
+=

∑
=

n

j
j

iUB
ii

d

dLBz
δλλ

whereδ is a constant and UBz is an upper bound for the original problem (see

Chapter 3.3.2). The variable id represents the degree of a vertex i , i.e. the

number of edges connected to it that are used in the tour . This leads to a

penalty if a vertex is visited more than once (2>id).

When starting the algorithm we define jii βαλ += with { }ij
j

i cmin=α and

{ }iijij c αβ −= min . Naturally we have to update iλ at each iteration.

3.3.2 Upper Bound

Now we have to derive the upper bound UBz by using the “nearest neighbor”

heuristic and improving it at each iteration. First we denote

{ }11 ,...,,,,...,,,,,,
1112

vvvvvvvvvH niiiiii kkkrr +−+
= K as a feasible solution for the

original problem generated by a nearest neighbor heuristic. At each iteration we

take a vertex
ki

v from its current position k and put it back in between vertices

ri
v and

1+ri
v (kr <) getting a new tour H ′ with costs

() () ()
kir vsHzHz −=′

where

() () () () () () () ()[]
11111111

11,
+−++−−++

+++−+−++=
kkrkkrkkkkkrrrk iiiiiiiiiiiiiiir ckpcrpcrpckpckpvvLcrpvs

 21

and ()ji vvL , is the length of the path that goes from iv to jv . So just the costs of

the edges that are not used any more are replaced by the costs of the “new”

edges.

Now we can choose a vertex
*ki

v and a position *r at each iteration so that

() (){ }
kk irkrir vsvs

,* max
*

=

Then we reposition
*ki

v between the vertices
*ri

v and
1*+ri

v if () 0
** >

kir vs . If this is

not the case, the search for an upper bound is completed as there is no

possibility any more to get a better solution.

3.3.3 Branch and Bound

Finally we can solve the problem using a classical branch and bound approach,

with a simple depth-first tree search algorithm.

For each node µ at level k there exists an f -path { }
kk iiii vvvvF ,,,,

121 −
= Kµ of

cardinality 1−k with the starting point 11
vv i ≡ ending at

ki
v . The cost of this path

is given by

() () () ()
kk iiiiii ckpcpcpFf

13221
121

−
−+++= Kµ .

Now we denote µFVV −= as the set of nodes, which have not yet been visited.

If we want to branch forward from µ at level k , we have to choose nodes out of

V , each generating an f -path of cardinality k

{ }
1121

,,...,,,
+−

=
kkk iiiiir vvvvvF Vv

ki
∈∀

+1
.

Then we can eliminate the node µ from the tree search whenever

() () *2,1 zvknhFf
Vi

iik
≥−+−+ ∑

∈

λµ

 22

with *z as the cost of the best solution we were able to achieve up to this point.

3.3.4 Dominance Rules

To make the algorithm work better, we can discard more nodes from the tree

search with the help of some dominance criterias.

3.3.4.1 Dominance Rule I

First we take two nodes 1µ and 2µ at level k of the tree corresponding to two

f -paths
1µF and

2µF of cardinality 1−k , which both end in the same vertex

after visiting the same vertices. If

() ()
21 µµ FfFf ≤

this means that 2µ is dominated by 1µ and the node can be removed from the

tree. So the cost of adding 1µ will be smaller than that of adding 2µ and we can

therefore disregard 2µ from our decision.

3.3.4.2 Dominance Rule II

We denote an f -path { }*1 ,,,,,,
12 jiii vvvvvF

rr
KK

+
= and insert the vertex

FVVvk −=∈ between the vertices Fvv
rr ii ∈
+1

, . If

() () ()
11

1
++

++>
rrrr kikiii crpcrpccrp

then F can not be part of the optimal solution as the costs of the tour with the

integrated vertex kv is smaller than that of the original one. Therefore the node

on the tree corresponding to F can be eliminated.

 23

3.3.4.3 Dominance Rule III

We denote an f -path { }*1 ,,,,,,
12 jiii vvvvvF

rr
KK

+
= and a b -path

{ }1** ,,,,,,,
111

vvvvvvB
ss kkkkj KK
+−

= and try to insert the vertex FVVvk −=∈*

between Fvv
rr ii ∈

+1
, getting { }**1 ,,,,,,,

12 jikii vvvvvvF
rr

KK
+

=+ . Naturally this

will leave the corresponding b -path { }1* ,,,,,,
111

vvvvvB
ss kkkj KK
+−

=− (see

Figure 5). If

() () () ()
111 ***** 1,

+++
++>++

rrrrr ikkikjjiii crpcrpcvvLcrp

then F can not lead to an optimal solution because its costs are higher than

that of +F and we can eliminate the corresponding node on the tree.

Figure 5: An example for a generated tour9

9 Bianco et al., 1993, p. 85

Vk*

V1

Vir

Vir+1

Vj*

Vks-1

Vks+1

f-path F

b-path B

f-path F+

b-path B-

 24

3.4 Dynamic Programming Algorithm

The second algorithm Bianco et al. developed is a dynamic programming

procedure which uses bounding functions to reduce the dimensionality of the

state space graph.10

First we denote ()ivSC , as the minimum cost of an f -path with the usual

starting point 1v which visits every vertex of S and ends at a vertex Sv i ∈ . The

dynamic programming recursion is

() () ()[]jijivSvi cSpvvSCvSC
ij

+−=
−∈

,min, { }1vVVS −=′∈∀ , Svi ∈∀ (3.9)

The initial value is { }() iii ncvvC 1, = for all Vv i ′∈ , which means that the cost of

traveling from the starting point s to the first vertex has to be counted n times

as it will influence the latencies of all the other customers.

At the end the repairman has to return to the origin so the optimal solution for

this problem is given by

()[]1,min ii
Vv

cvVC
i

+′
′∈

.

Additionally Bianco et al. introduced bounding criteria to increase the size of

problems that can be solved by this method as the number of vertices of the

state space group is too big for problems with 15>n .11 All states satisfying the

equation

() () ∑
−∈

≥−−+
SVi

UBiii zvSnhvSC λ2,,

can be eliminated.

10 Bianco et al., 1993, pp. 86-87
11 Bianco et al., 1993. p. 87

 25

3.5 Dynamic Programming Heuristic

In the dynamic programming algorithm in Chapter 3.4 a rather high number of

states are produced. To reduce them Bianco et al. introduced a heuristic which

does not necessarily generate an optimal solution but is able to produce lower

bounds that are often better than the lower bound LB created in Chapter

3.3.1.12

Equation (3.9) is able to generate the states ()ivS , for increasing values of the

cardinality of S . If states of cardinality 1+k are generated, that means to

expand all states of cardinality k which quickly leads to an enormous number of

states the algorithm can not handle in reasonable time. To avoid this we

introduce a state space reduction.

First we denote () (){ }K,,,,
21 21 iik vSvS=ϕ as the family of all states of cardinality

k and kkm ϕ= . For each state () kir r
vS ϕ∈, we define a bound k

rθ for each

solution in this state with k
m

kkk
k

θθθθ ≤≤≤≤ ...321 .

() () ∑
−∈

−−+=
ri

rr
SVv

iirir
k
r vSnhvSC λθ 2,,

Now we introduce the constant maxR , which is defined in advance, and eliminate

from kϕ all states ()
rir vS , with kmRr ,,max K= and k

R
k
r max

θθ ≥ .

Then we define

{ }max1min max
min Rmk

k
Rnk

>=
≤<

θθ

and let z be the value of the best solution the algorithm has found. Finally, we

can state that if minθ>z , then minθ is a proper lower bound.

12 Bianco et al., 1993, pp. 87-88

 26

3.6 Computational Results

Bianco et al. developed a computer program to evaluate the algorithms

described above.13 They randomly generated coordinates for the vertices

according to a uniform distribution in a 150 x 150 square and calculated the

costs belonging to each arc with the Euclidean distance between the according

vertices. They assumed a complete graph and introduced a time limit of 600

seconds to compute a solution.

Exact solutions for problems up to 35=n vertices were produced with the help

of the algorithm discussed in Chapter 3.3, while the one discussed in Chapter

3.4 failed once to find the optimum with 35=n within the time limit. The second

one is also a little bit faster when solving problems with more vertices.

For the dynamic programming heuristic (see Chapter 3.5) the algorithm was

able to produce optimal solutions for problems up to 25=n vertices and

200max =R , while for problems with a number of vertices between 30 and 35

and 400max =R it was able to do that only six out of ten times. If there are more

than 55 vertices to visit, the distance from optimality increases dramatically, but

below this value it is at most 3%. It seems that with 55=n vertices the limit of

the algorithm has been reached.

13 Biano et al., 1993, pp. 88-91

 27

4 Variants of the TRP with One Repairman

This chapter gives a review of the variants of the TRP with exactly one

repairman. Because of the characteristics of the TRP it can be used not only for

the planning of a tour but also for a variety of other problems such as machine

scheduling or in the area of computer networks. Therefore there exists a variety

of articles which describe special forms of the TRP as the weighted TRP, the

directed TRP or the on-line TRP. Some concentrate on different forms of the

underlying graph, for example a path. And there are others which introduce

additional constraints for the TRP like time windows or deadlines. Some of

these variants will be descibed below.

4.1 The Line-TRP with and without Deadlines

The line-TRP is a one-dimensional version of the TRP, in which all vertices lie

on a straight line (see Figure 6). This is a variant of the TRP that can be easily

solved optimally because of the characteristics of the underlying graph.

Figure 6: The line -TRP

Once more s represents the starting point and corresponds to 0v and 0u while

mvv ,,1 K are the customers on the left and nuu ,,1 K on the right of the origin.

For the TSP the solution is rather simple. The salesman would just go straight

ahead in one direction until he reaches the end and would then turn around to

serve the customers on the other side of the origin. It is interesting to observe

that the traveling repairman on the contrary may cross his own way several

times, he will go back and forth to finish his tour in an optimal way (see

Figure 7).

 mv …… 2v 1v s 1u 2u ….. nu

 28

Figure 7: Possible tour for the line-TRP 14

In 1986, Afrati et al. developed dynamic programming algorithms which are able

to solve the line-TRP optimally with as well as without deadlines.

4.1.1 The Line-TRP without Deadlines

We determine that []ji uv , represents the state when the repairman is currently

at point iv and already visited all the vertices between iv and ju . We can

assume this as it would not be optimal for the repairman to visit iv without

visiting 1−iv before. The repairman starts at []00 ,uv and ends either at []nm uv , or

[]mn vu , . It is also clear that in an optimal tour he will reach []ji uv , either from

the state []ji uv ,1− or []1, −ij vu .

Now we let []ji uvc , denote the sum of the latencies of all customers already

visited by the repairman. We could also say that it is the cost of reaching the

state []ji uv , . Following all these considerations we can introduce the following

equations.

[] [] 0,, 0000 == vucuvc (4.1)

[] [] () []
[] () [] 











−−+++

−−+++
=

−

−−

ijij

iiji
ji vutjinmvuc

vvtjinmuvc
uvc

,1,

,,1,
min,

1

11
 (4.2)

[] [] () []
[] () [] 











−−+++

−−+++
=

−

−−

jiji

jjij

ij uvtjinmuvc

uutjinmvuc
vuc

,1,

,,1,
min,

1

11 (4.3)

14 Afrati et al., 1986, p. 81

 mv ….. 2v 1v s 1u 2u ….. nu

 29

with []ji uvt , representing the number of vertices the traveling repairman has not

yet visited when being at state []ji uv , . The explanation of equations (4.2) and

(4.3) is the following: If we want to find out the minimum total delay of reaching

a certain state we first have to compute which one of the two possible preceding

states can be reached with a smaller total delay and allows us to complete the

rest of the tour with a minimum of effort. Therefore we take the cost of reaching

the preceding state and add the distance of reaching the last locations on the

line multiplied by the number of unvisited locations at the preceding state.

Finally we can calculate the minimum cost of the optimal tour by

[] []{ }mnnm vucuvcC ,,,min= . (4.4)

So we just have to record during each step of the algorithm which of the two

possible preceding states provides the better value and reconstruct the optimal

path. This dynamic programming algorithm is able to solve the line-TRP in

()mnO time.15

4.1.2 The Line-TRP with Deadlines

Sometimes it is necessary for the traveling repairman to reach his customers at

or before a given time. This could be the case because the customer is only

available or the order must be completed until this point of time. Therefore we

now introduce for each customer i a deadline id which indicates that the

customer has to be served before this deadline expires. Unlike the version

without deadlines the line-TRP with deadlines is NP-complete.16

Now that we do not only have to know where the traveling repairman is located

but also at what time he is there we let []tuv ji ,, denote the state that he is at

customer iv at time t and already served all the customers in the opposite

15 Afrati et al., 1986, p. 81
16 Afrati et al., 1986, p. 80

 30

direction until ju . This state has the cost []tuvc ji ,, which we compute through

the following equation.

[] [][] () []
[][] () [] 






























−−+++−

−−+++−

>∞

=

−

−−−
otherwise

vutjinmvuttvuc

vvtjinmvvttuvc

dvtif

tuvc

ijijij

iiiiji

i

ji

,1,,,

,,1,,,
min

,,

1

111 (4.5)

In general this equation is the same as (4.2) but if the deadline of vertex iv at

which the repairman is located at time t has already expired, the cost will be set

to infinite, so this subtour can not be feasible.

To calculate the optimum of the total cost the following equation needs to be

solved.

[] []{ }DttvuctuvcC mnnm ,,1,0:,,,,,min K== (4.6)

where D denotes the longest deadline of all customers.

This algorithm can solve the problem in ()mnDO time.17 Although Afrati et al. do

not give a measurement for the accuracy of the algorithm they state that given a

relative error at most ε there exists a fully polynomial approximation scheme

with the time bound ()()εnmmnO + .18

17 Afrati et al., 1986, p. 87
18 see footnote 17

 31

4.2 The Weighted Line-TRP

The weighted line-TRP differs from the “ordinary” line-TRP only because of the

weights 0≥iw , which are associated to each vertex iv of the graph. This way

the traveling repairman can make sure his tour takes into account that some

customers are more important and do not have to wait too long for his visit.

Another interpretation for the implementation of weights could be that the

vertices are locations for machines that have to be repaired in which case the

weights indicate the number of machines situated at each vertex.

In 2002, García et al. developed a linear algorithm that should solve this

problem with the help of a Monge path-decomposable tridimensional array. 19

The notations are

0vs = ... the starting point

jv ... the vertices on the left side of s with mv as the vertex farthest

away from s

ku ... the vertices on the right side of s with nu nearest s

() 0≥jvw ... the weight of vertex jv

T ... a feasible tour starting at s and visiting all points on the line

()jT vsc , ... waiting time for vertex jv in tour T

1j
v ... the vertices jv which are visited right after s before turning

around where mjjjj hh =<<<<≤ +121 ...0

1ku ... the vertices ku which are visited right after
1j

v before once more

turning around where 1...21 =>>>≥ hkkkn

The objective is to minimize the latency of T according to the following

equation.

() () () () min,,
11

→+= ∑∑
==

n

k
kTk

m

j
jTjT uscuwvscvwL .

19 García et al., 2002, pp. 27-29

 32

Obviously the optimal tour could end either at mv or at 1u but it is reasonable to

examine only the first possibility as the other one is calculated the same way

and in the end one can choose the solution with the smaller costs.

We denote the tour { }mjkjkjkj vvuvuvuvT
hhh

==
+12211

,,,,,,, K and start by

solving the problem under the assumption that from all vertices iu only 1u has a

positive weight () 01 >uw , then doing the same with () 01 >uw and () 02 >uw and

so on until all vertices iu have positive weights. ()iT will represent the optimum

path for ni ,,1,0 K= , when all the points nii uuu ,,, 21 K++ have zero weight

and the other keep their original weights, and iE will be the latency of ()iT .

Now we define the sum of the weights of the vertices 1v to jv as () ()∑
=

=
j

l
lj vwvd

1

and the latency of ku as () () ()∑
=

=
k

l
llk uscuwul

1

, and assume that the vertices

1
,, kn uu K have zero weight. Then the increment of latency of the vertices

mj vv ,,11
K+ is given by twice the distance from

1j
v to

1ku (as we have to move

first in the one, then in the other direction) times the sum of the weights of

mj vv ,,
1

K .

() () () ()[]
111

,2, 111 jmkj vdvduvckj −=∆ with ik ≤1

The increment of latency of the vertices 11 ,, uu
ik K− can be calculated by twice

the distance from
1j

v to
1ku times the weights of 11 ...,, uu

ik −

() () ()1112 111
,2, −=∆ kkj uduvckj .

 33

Finally the latency of the vertices ikk uuu ,,, 111
K+ is given by

() () ()[] () () ()[] () ()11113 111

1

1
,2,,2,, −−

=

−+−=+=∆ ∑ kikijl

i

kl
lj ululududvscwuscvscikj .

It is also necessary to define that () 00 =ul and () 00 =ud , as it is possible that

11 =k .

If we now substitute 1j by jm − and let be

() () () () ()1113 1
,2,,, −−− ++−∆=

ikkjm uludvscikjmjia

and

() () () () () ()1112111 1
,2,,, −−− −−−∆+−∆=

ikkjm uludvsckjmkjmkjb

then we finally have the following scheme of dynamic programming:20

() () () (){ }11
1

,,1minmin
1

kjbjiakEiE
ikmj

++−=
≤≤≤

 ni ,,2,1 K=

Because the distances between the vertices and the weights are nonnegative

numbers we can see that (){ }jiaA ,= and (){ }1,kjbB = are Monge matrices (see

Chapter 7.5) and their entries can be calculated in constant time.

García et al. gave an algorithm which is able to solve this problem in ()mnO +

time in 1998.21

20 Garc ía et al., 2002, p. 29
21 García et al., 1998, pp. 3-9

 34

4.3 The Directed TRP

In this chapter we examine the TRP whose underlying graph is directed, which

means that ()uvc , , the cost of traveling from vertex v to vertex u , is not

necessarily the same as the cost of crossing the edge in the opposite direction

()vuc , . In reality this could be necessary because there are one-way streets on

the way and the repairman can not use the same route if he changes the

direction.

In 2008, Nagarajan et al. developed an algorithm which starts by guessing

break-points on the basis of the distances along the optimal path. Then the

vertices will be split into sets situated between these break-points using a linear

program and the algorithm calculates local tours for each set. Finally the sets

will be connected again to a feasible tour and the minimum latency can be

calculated.

We have a directed graph ()EVG ,= and the notations are

0vs = ... the starting point

vu, ... vertices of the graph G

n ... number of vertices of G

()uvc ,π ... the distance from v to u with () ∞=uvc ,π , if u is not reachable

from v

π ... the optimal tour starting at s and visiting all vertices v and u

VS ⊆ ... a subset of the vertex set V

()S+δ ... the arcs leaving set S with (){ }SvSuEuv ∉∈∈ ,,

()S−δ ... the arcs entering set S with (){ }SvSuEuv ∈∉∈ ,,

iO ... the set of vertices which are visited between iv and 1+iv

iz ... the edge values corresponding to π restricted to iO

()πcL = ... the length of the optimal tour

i
uy ... decision variable denoting if iOu ∈ (1=i

uy) or not (0=i
uy)

 35

Additionally the number of vertices 



=
ε
1

l , representing the break points as

defined above, and the vertex iv are introduced for which the following holds:

for each li ,,2,1 K= , the vertex iv is the last vertex with ()
n
L

nvsc i
i

επ ≤, . Here

ε is a constant which can be chosen in advance and helps evaluate the

performance of the algorithm (see below). If we let { }lvvvF ,,, 10 K= , then lv

will be the last vertex visited by π . The algorithm starts by guessing the length

L and the number of vertices l .

Nagarajan et al. also present a theorem which states that in a Eulerian directed

multi-graph ()AsUD ,+= there exists for each arc () Avsf ∈= , an arc

() Asue ∈= , so that it is possible to swap the arcs e and f with the arc ()vu,

without destroying the directed connectivity between every pair of vertices in

U .22

The mathematical formulation of the model is23:

() min
1

0

1 →







∑∑
∉

−

=

+

Fu

i
u

l

i

i y
n
L

n ε (4.7)

subject to the following constraints:

()[] ()[]uzuz ii −+ = δδ Vu ∈∀ \{ }1, +ii vv , 1,,0 −=∀ li K (4.8)

()[] ()[] 11 == +
−+

i
i

i
i vzvz δδ 1,,0 −=∀ li K (4.9)

()[] ()[] 01 == +
+−

i
i

i
i vzvz δδ 1,,0 −=∀ li K (4.10)

()[] i
u

i ySz ≥−δ { } VSu ⊆⊆∀ \{ }iv , Vu ∈∀ \ F ,

 1,,0 −=∀ li K (4.11)

() ()

n
L

nezc i

e

i
e

ε1+≤∑ 1,,0 −=∀ li K (4.12)

22 Nagarajan et al., 2008, p. 197
23 Nagarajan et al., 2008, p.196

 36

∑
−

=

≥
1

0

1
l

i

i
uy Vu ∈∀ \ F (4.13)

() 0≥ez i earcs∀ , 1,,0 −=∀ li K (4.14)

0≥i
uy Vu ∈∀ \ F , 1,,0 −=∀ li K (4.15)

Constraint (4.8) makes sure that as many arcs enter the subset S as leave it

while equations (4.9) and (4.10) guarantee that iv is the first vertex that is

visited in the subset S and 1+iv the first after leaving it. With constraint (4.11) we

ensure that at least as many arcs are entering the subset S as there are

vertices inside it, while inequality (4.13) states that at least one vertex has to be

inside S . Constraint (4.12) ensures that the cost of using the arcs from vertices

inside S to the starting and end point s should not be bigger than the costs of

reaching 1+iv . Finally inequalities (4.14) and (4.15) represent the necessary non-

negativity constraints for ()ezi and i
uy . In the objective function (4.7) the optimal

combination of vertices is determined.

For any 1
log

1
<< ε

n
 this algorithm has an approximation ratio of 








3ε

ρ
εn

O with

ρ as the integrality gap for the asymmetric trave ling salesman path problem for

which Nagarajan et al. also developed an algorithm on the same basis. The

time bound is given by ()ε1On .24

24 Nagarajan et al., 2008, p. 196

 37

4.4 The TRP on Weighted Trees

In this chapter we examine the TRP with a weighted tree T as the underlying

graph, where the positive weights on its edges correspond to the distances

between the vertices. In 1998, Goemans et al. developed a constant-factor

approximation algorithm using solutions for the k -traveling salesman problem.25

The idea behind this concept is that one first tries to find several shortest

subtours which include at least k points of the vertex set { }nvvvV ,,, 21 K= for

each value of k . These are finally concatenated to a tour which is rooted at the

starting point 1v , visits all the vertices and therefore provides a feasible solution.

As stated above the algorithm will first solve the k -TSP on V for nk ,,3,2 K=

receiving tours nTTT ,,, 32 K with lengths nccc ≤≤≤ K32 . We start with tour 2T

because 1T simply consists of visiting the starting point 1v at a cost of 0.

Naturally we can not simply connect the so found subtours because each of

them starts and ends at 1v and some of the points would be visited more than

once which can not lead to an optimal solution. Therefore we introduce an

increasing set of indices njjj m =<<<< K211 which will lead to the

concatenated tour
mjjj TTTT ,,,

21
K= . Starting from 1v the repairman will cross

1j
T , afterwards

2jT and so on until he traverses
mj

T and can finally return to the

starting point.

For defining this tour the algorithm uses shortcuts to avoid visiting vertices

which have already been visited. Additionally it determines the direction the

subtour
ij

T has to be traversed to minimize the total latency of the vertices,

which have not yet been visited in this subtour.

25 Goemans et al., 1998, p. 114

 38

Goemans et al. formulate this algorithm as follows:26

(i) For nk ,,3,2 K= , compute kT , the minimum-length k -TSP tour on

V rooted at 1v . Let kc denote the length of kT .

(ii) Let nG denote the complete graph on the vertex set { }n,,2,1 K ;

turn nG into a directed graph by orienting the edge ()ji, from ()ji,min

to ()ji,max .

(iii) Assign a length function to each directed arc of nG ; the length of arc

()ji, will be jc
ji

n 





 +

−
2

.

(iv) Compute the shortest n−1 path in nG ; suppose that it goes through

vertices njjj m =<<<= K101 .

(v) Output the concatenated tour
mjjj TTTT ,,,

21
K= .

The explanation for step (ii) and (iii) is as follows:

First all the edges of nG are oriented in one direction and then costs are

associated with them, so that the cost of the subtour
ij

T will be added to the

latency of each of the following vertices, which have not yet been visited.

Furthermore at most half of its cost contributes to the latency of the vertices

which are first visited in this subtour. For this cost we can calculate as upper

bound

() () ∑∑ ∑ 





 +

−=−+− −
−

i
j

ii

i i
jiiji iii

c
jj

ncjjcjn
22

1 1
1 .

We can do this because we do not deduct the vertices appearing in a following

subtour, which have already been visited before, so the optimal latency will be

smaller than this term.

The approximation ratio of this model is 5912,3 27 and it can be formulated as a

linear program with ()nO variables and ()2nO constraints.28

26 Goemans et al., 1998, pp. 115-116
27 Goemans et al., 1998, p. 113
28 Goemans et al., 1998, p. 118

 39

4.5 The Weighted TRP (WTRP)

As stated above in Chapter 4.2 the WTRP assigns weights to each vertex to

indicate the importance of some customers or the urgency of visiting them as

soon as possible. In this chapter we examine the WTRP when the underlying

graph is a metric space.

In 2000, Wu developed an exact algorithm which solves the WTRP on a metric

space through dynamic programming in polynomial time.29 It consists of splitting

off subtours and calculating the lengths of each of them. Then they are

concatenated again in the order that guarantees an optimal solution.

We have a graph ()EVG ,= and the notations are30

s ... the starting point

u , v ... vertices of G

n ... number of vertices of G

()uvcG , ... the length of the shortest path from v to u on G

()vw ... the weight of vertex v

()Gw ... the sum of the weights of all the vertices in G

P ... a subtour of G starting at s

r ... the vertex which is the connection between two subtours

If we have a subtour P of G we denote ()PL as the weighted latency of P with

() () ()
()

∑
∈

=
PVv

P vscvwPL ,

and the weighted latency of P on G with

() () () ()[] ()PcPwGwPLPGd −+=, .

29 Wu, 2000, pp. 225-228
30 see footnote 18

 40

As we can see ()PGd , depends not only on the sum of the weighted latencies

of the vertices which have already been visited but also on the weights of the

unvisited ones.

First we define two subtours 1P and 2P with the same configuration, i.e. they

both start and end at the same point and also visit the same vertices. Now we

assume that () ()21 PcPc ≤ and denote a third subtour 0P which represents a

complete tour if put together with either 1P or 2P . We denote that by 011 // PPY =

we mean that 0P will start at the vertex r , which is the vertex where 1P ends,

and that the connecting of the two subtours will generate a complete tour. If we

let 1Y be the tour obtained by concatenating 0P and 1P , and 2Y be the one

obtained by concatenating 0P and 2P , then () ()21 YLYL ≤ . Therefore we

calculate the best subtour for every possible configuration starting with the one

containing only the starting point and continuing with attaching one more vertex

until we finally have a complete tour.

This algorithm is able to solve the problem in ()nnO 22 time and is therefore very

time consuming. In 2004, Wu et al. used it to develop an exact algorithm for the

the classical TRP without weights.31 For this purpose a pruning technique is

presented that is very similar to a branch and bound algorithm as it uses upper

and lower bounds to identify the subtours which can be eliminated.

The upper bound will be established through a simple greedy algorithm, which

always searches the nearest vertex when deciding where to go next. The lower

bound will be generated through a family of special functions. Both will be

updated in every iteration.

Although the computing of the lower bounds is very time-consuming it is only

done once in a preprocessing stage and will therefore not strain the time

complexity of the entire algorithm too much. It will need ()TnnO k 21 ++ time to

calculate the results where T is the number of generated subtours.

31 Wu et al., 2004, pp. 303-309

 41

4.6 The On-Line TRP (OL-TRP)

The OL-TRP is a special form of the TRP in which the number and locations of

the requests which are released over time are not known in advance as this is

the case in the offline version. This is a realistic assumption as in many

applications the orders of the customers arrive over time.

An on-line algorithm is usually evaluated by comparing it with its off-line version.

This is done by competitive analysis with the help of a competitive ratio. An

algorithm is c -competitive if the cost of the on-line version is at most c times

the cost of its optimal off-line counterpart.32

4.6.1 The Net Latency-OL-TRP (NL-OL-TRP)

In 2008, Allulli et al. analysed the NL-OL-TRP in a metric space which tries to

minimize the net latency, the sum of the times the requests have to wait before

being served.33 If we introduce the release time it , which is the time at which

the request iσ is announced, and the latency il of vertex iv , then the net

latency can be defined as

() Tltl
n

i
i

n

i
ii −








=− ∑∑

== 11

where T denotes the sum of the release times it . This makes sense as the

waiting time of the customer actually begins when the request is made.

Throughout their work, Allulli et al. presented the proof that there exists no

algorithm with a competitive ratio for the NL-OL-TRP in a metric space.34

32 Allulli et al., 2008, p. 116
33 Allulli et al., 2008, pp. 116-128
34 Allulli et al., 2008, p. 118

 42

4.6.2 The Weighted OL-TRP

In 2003, Krumke et al. developed two competitive algorithms for the weighted

OL-TRP in a metric space.35 In this place we will only discuss the one of them

which delivers better results.

We assume that the traveling repairman is allowed to wait when there are no

current requests that have to be served. He does not know how many requests

there will come in or when the next one arrives. Obviously the requests can only

be served after their release time.

As usual we have a graph),(EVG = and the notations are

s ... the origin of G

it ... the release time of request ir

iw ... the weight of request ir

()uvc , ... the distance from v to u

il ... the latency of iv , i.e. the time iv gets served

The objective is to minimize the weighted latency.

min
1

→∑
=

n

i
ii lw

In the initialization phase the algorithm first searches for requests that have

already been released at time 0 . If there are none, the traveling repairman

waits until 1t , when the first requests come in and we set 1: tL = . Then the

minimum time T at which the already released requests can be served is

computed. When no further requests are released before T is reached, the

repairman waits once more and we set TL =: . If on the other hand some

requests arrive at time t with Tt <<0 , we set tL =: . Additionally a random

number]]1,0∈x according to the uniform distribution gets chosen during the

initialization phase.

35 Krumke et al., 2003, pp. 279-294

 43

Now the algorithm works in phases. First we set
2

:0
L

B = , LB x−= 2:1 and

LB xi
i

−−= 12: for every 2≥i . For 1≥i the i th phase starts at time iB , at which

the algorithm searches for a way to satisfy the requests that already have come

in but have not yet been scheduled with the following constraints:36

i. The schedule has to start and end in the starting point s .

ii. The length of the schedule should be at most 12 += ii BB .

iii. The weights of the requests which are served among all schedules

should be maximized without violating (i) and (ii).

The calculated schedule has to be followed from time 1+iB until 2+iB according

to the algorithm.

Because of constraint (ii) it is guaranteed that the tour computed by the

algorithm can be finished before the next phase starts while constraint (iii)

ensures that requests with large weights are favored.

Krumke et al. do not give a competitive ratio for the OL-TRP, but for the on-line

dial-a-ride problem, of which the OL-TRP is a special case. The on-line dial-a-

ride problem also minimizes the weighted latency but has a few more

restrictions. First the traveling repairman has a certain capacity C because he

needs to deliver items. Therefore each request not only has one position at

which it has to be served, but a source and a destination between which the

objects have to be transported. For this problem the above described algorithm

is c -competitive with 7708.5
2ln

4
≈=c .

The competitive analysis is often criticized because it concentrates on the on-

line versions of the problems. Therefore the input instance is usually generated

in a way that can discriminate the off-line version, while the on-line adversary

can serve it rather effectively. 37

36 Krumke et al. 2003, p. 287
37 Allulli et al., 2008, p. 118

 44

5 The TRP with Multiple Repairmen (The k -TRP)

The k -TRP tries to solve the problem when there is a number of k repairmen

available to fulfill the requests. Each one starts at the depot s and makes his

tour, and all together they have to serve each of the n customer requests.

These tours have to be disjoint except for s because obviously it would not be

optimal if one customer would be served by more than one repairman. As

before the goal is to minimize the average time the customers have to wait until

their requests have been answered.

This problem has first been examined by Fakcharoenphol et al. in 2007 when

they developed a polynomial-time approximation algorithm to solve it.38 Below

we will examine it in more detail.

As the k -TRP is a variant of the TRP there also exist a lot of special forms with

differing underlying graphs or additional constraints. In the next chapters we will

look more closely at the k -TRP with repairtimes and the on-line k -TRP.

38 Fakcharoenphol et al., 2007, pp. 40:1-40:16

 45

5.1 The k -TRP

In 2007, Fakcharoenphol et al. introduced an algorithm for the k -TRP in a

metric space using the concept of the i -Minimum Spanning Tree problem (i -

MST problem) and improved it with the help of the i -stroll problem.39 The i -

MST problem consists of finding the least expensive tree starting at s and

visiting exactly i vertices (see Chapter 7.3), while the i -stroll problem finds the

least expensive path with the same requirements. Both problems are NP-hard,

so we can only use approximation algorithms for this technique.

First we give a short problem description. If we have a tour S visiting the

vertices mvvvs ,,, 10 K= and distances ()1, +jj vvc from jv to 1+jv , then the cost

of S is given by

∑
=

m

i
il

0

, where ()∑
−

=
+=

1

0
1,

i

j
jji vvcl .

Because there are k tours we have to summarize the costs of all of them to

calculate the final result.

Now we describe a subroutine which gives back an i -MST, a tree of cost at

most Bα spanning at least i vertices.

Subroutine ()BBudgetTree :40

[]treeemptyT =

for 1=i to n do:

 if ()iM has cost at most Bα then

 ()iMT =

return T

39 see footnote 27
40 Fakcharoenphol et al., 2007, p. 40:6

 46

where ()iM is an α -approximation algorithm covering i vertices for the i -MST

and B is a constant previously fixed.

The result of this subroutine depends heavily on the ability to produce some

good i -MSTs. If the approximation ratio α is too high, then the computed

BudgetTree will influence the result of the whole algorithm negatively.

Now we introduce the constant b , for which Fakcharoenphol et al. give the

optimal value of 616,1=b 41, and the random variable U , which is selected by

the uniform distribution on []1,0 and can describe the following algorithm for

solving the problem.

Algorithm:42

Choose Ubc = according to the random variable U , which has a uniform

distribution on []1,0 . For each :0≥j

 For kl ,,1 K=

Let ()jj
l cbBudgetTreeT = . Remove the vertices of j

lT other than s

from the graph.

 Arbitrarily give each repairman one of the k trees from this stage.

Tell each repairman to traverse his trees in increasing order of j , and to

traverse each tree either in the forward Euler tour direction or the backward

Euler tour direction according to the flip of an unbiased coin.

This algorithm computes trees of cost at most cα , cbα , 2cbα , ... covering as

many vertices as possible. Every BudgetTree gives back a set of trees for each

of the k repairmen with nearly exponentially increasing length (as Ubc =),

which they have to traverse without visiting a vertex more than once.

41 Fakcharoenphol et al., 2007, p. 40 :
42 Fakcharoenphol et al., 2007, p. 40:12

 47

This algorithm has an approximation ratio of α497.8 43, but can be replaced by

using the i -stroll instead of the i -MST with an approximation ratio of 497.8 as

Chaudhuri et al. showed in 2003.44

43 Fakcharoenphol et al., 2007, p. 40:15
44 Chaudhuri et al., 2003, pp. 36-45

 48

5.2 The k -TRP with Repairtimes (GKTRP)

In all the models already discussed we assumed that there are no repairtimes

for the customers. Now we would like to examine the k -TRP with variable

repairtimes associated to each vertex (GKTRP). This is a realistic assumption

because the repairman may have to spend some time at the customer’s house

in order to satisfy his request.

In 2006, Jothi et al. presented approximation algorithms for the GKTRP with

variable and uniform repairtimes respectively. 45

5.2.1 The GKTRP with Non-Uniform Repairtimes

First we would like to examine the GKTRP with different repairtimes associated

to each customer.

We have an undirected graph ()EVG ,= and the notations are

s ... starting point

vu, ... vertices of graph G

()vuc , ... distance between u and v

ir ... repairtime of vertex iv

()ivl ... latency of vertex iv

kt ... one of the k tours which cover together all the vertices of G

First we denote { }kvvvM ,,, 21 K= as the set of vertices which have the k

largest repairtimes and as G′ the graph G without these vertices. Then we

change the graph G′ such that we add half of the repairtimes of iv and jv to

()ji vvc , , set all the repairtimes ir to 0 and introduce the new graph as *G (see

Figure 8).

45 Jothi et al., 2006, pp. 294-303

 49

Figure 8: Original graph G and transformed graph G*46

Now the procedure will be to seek a β -approximate solution for *G using the

best algorithm currently known to solve the k -TRP without repairtimes and get

as result the set of tours kttt ,,, 21 K . We transfer the so found tours into G′ ,

so that they visit the same vertices in the same order and can calculate the sum

of the latencies of the customers xap ′ by

∑
∈

−=′
M\

i

2
r

*
Vi

optxap β

where *opt is the optimal solution for the k -TRP in *G .

This can be easily explained as in *G half of the repairtimes of iv have been

added to the distance between its predecessor and itself and is therefore part of

the latency of iv . If we subtract this amount once more we get the latency of

this vertex in G′ .

46 Jothi et al., 2006, p. 294

Depot

Graph G*

85

61 40

16

41 70

10 6

50 100

10 2

Depot

Graph G

10

10 10

10

15 15

5 5

 50

Finally we add to each tour it a vertex iv out of M for all i and get a set of k

feasible tours in the original graph G . The sum of the latencies of the

customers in G is then given by

()∑
=

+′=
k

i
ivlxapapx

1

which is the optimal solution of G′ plus the latencies of the customers which

have previously been subtracted from the original graph.

The approximation ratio of this algorithm is 





 +

2
1

2
3

β , which depends heavily

on the algorithm used to create the optimal tour for *G .47 The currently best

achievable approximation ratio for the k -TRP without repairtimes has been

reached by Chaudhuri et al. and is given by 49,8=β 48 (see Chapter 5.1)

leading to an approximation ratio of 235,13 for this algorithm.

5.2.2 The GKTRP with Uniform Repairtimes

In this chapter we examine the special case when the repairtimes are all the

same for each vertex iv . Jothi et al. gave two approximation algorithms to solve

this problem, one with an approximation ratio which decreases with increasing

n
k

 (algorithm 1), while the approximation ratio of the other increases with
n
k

(algorithm 2).49 Depending on this factor one can choose which algorithm to use

to get an approximation ratio as small as possible.

5.2.2.1 Algorithm 1

The first algorithm works on a case-by-case basis meaning that there are

different procedures depending on the value of k . The notations are the same

as in the model with non-uniform repairtimes, but we build the new graph *G

47 Jothi et al., 2007, p. 298
48 Chaudhuri et al., 2003, p. 38
49 Jothi et al., 2007, pp. 299-301

 51

directly out of G , once more adding half of the repairtimes of iv and jv to

()ji vvc , and setting all repairtimes ir to zero. Then we arrange the vertices iv

according to their distances to the starting point, so that

() () ()nvscvscvsc ,,, 21 ≤≤≤ K .

Case 1:
2
n

k ≥

In this case we assign to each repairman i the vertex iv for all ki ≤ and let the

repairmen 1 to kn − visit a second one of the remaining vertices. This way it is

ensured that customers with smaller distances to the origin are visited earlier

and the latencies of the remaining customers do not get too high.

The approximation ratio of the algorithm in this case is at most 2.

Case l:
l
n

k
l

n
<≤

+1
 1>∀ l

In this case the assignment of vertices to the k repairmen works the same way

as above. First each repairman i visits the vertex iv , then one of the vertices

{ }kkk vvv 221 ,,, K++ and so on until all the vertices have been visited.

Here the approximation ratio depends on the value of l , so for values of

5,4,3=l the ratios are 1.8,43.6,83.4 .50

5.2.2.2 Algorithm 2

This algorithm works in the same way as the one examined in Chapter 5.2.1 but

without eliminating the set of vertices M to get the graph G′ . We create *G

directly out of G by once again adding half of the repairtimes of iv and jv to

()ji vvc , and setting ir to 0 . As before we then search for a β -approximate

solution to *G using the best known procedure for finding a solution for the k -

TRP.

50 Jothi et al., 2007, p. 301

 52

For this algorithm the β -approximation ratio is given by


















−

−
+

1

1

k
n
β

β . Once more

assuming 49,8=β , this leads to an approximation ratio of at most 2283,10 for

nk 188364.0≥ which decreases with an increasing value of
k
n

. If k is smaller

than n188364.0 , then it will be better to use algorithm 1 to solve the problem. 51

51 Jothi et al., 2007, p. 301

 53

5.3 The On-Line k -TRP (OL-KTRP)

The OL-KTRP is a special form of the k -TRP where the repairmen do not know

in advance when there will be a request of a customer. As in Chapter 4.6 the

requests will be released over time and have to be served as quickly as

possible to minimize the average latencies experienced by the customers. But

this time we have k repairmen to satisfy them.

In 2006, Bonifaci et al. presented a c -competitive algorithm for the OL-KTRP

which first divides the k repairmen into groups of *k repairmen, where the

value of *k is given in advance.52 At a previously defined point of time iB one

group starts to serve the requests already released while the others wait at the

origin. Some time later the next group starts their tours and so on. Bonifaci et al.

call their algorithm Group Interval.

Algorithm Group Interval53

Divide the servers into 



=

*k
k

g disjoint sets (groups) of *k servers each. Any

remaining server is not used by the algorithm.

Let L be the earliest time that any request can be completed (wlog 0>L). For

K,1,0=i , define LB i
i α= where g

1

3=α .

At time iB , compute a set of paths { }i
k

i
i PPS *1 ,, K= for the set of yet unserved

requests released up to time iB with the following properties:

(i) every i
jP starts at the origin s ;

(ii) i
i
jj BP ≤max ;

(iii) iS maximizes the number of requests served among all schedules

satisfying the first two conditions.

Starting at time iB , the j -th server in the (i mod g)-th group follows path i
jP ,

then returns to s at full speed.

52 Bonifaci et al., 2006, pp. 87-89
53 Bonifaci et al., 2006, p. 88

 54

As stated above the k repairmen get divided into g groups. Then the constant

α gets introduced which decreases with an increasing number of groups. As

the algorithm computes schedules at time iB (depending on α), then at 1+iB

and so on, the repairmen have the period of 11 BBi −+ to serve all the already

released but not yet visited customers. This period gets smaller with an

increasing number of groups as the lengths of the tours get shorter. After all the

requests have been satisfied, the repairmen return to the starting point and wait

for the release of new ones.

The competitive ratio c for this algorithm is given by g
1

32 ⋅ .54

54 Bonifaci et al., 2006, p. 88

 55

6 Applications of the TRP

Because of the structure of the TRP there exist a lot of applications for the TRP.

Many different problems can be described and calculated by using the model or

at least part of it. Naturally the most obvious group of problems is that of the

delivery problems, for example the pizza delivery, where one puts together

several orders and has to find a tour which minimizes the average arrival time at

the customers so that the pizzas will not get cold in the meantime. Another

application would be that of finding a route for automated guided vehicles

through the cells of a flexible manufacturing system. One can also interpret

certain scheduling problems as TRPs (see Chapter 6.2).

In the field of computer networks one can also find applications for the TRP, for

example in the area of diskhead scheduling, where the objective is to minimize

the wasted time by hard disk seeks. The model of the TRP can also be used

when one tries to find a certain information which is located somewhere in the

network.

Below we will examine two possible applications at more detail, first an

emergency vehicle dispatching system for an electric utility company in Chile,

then a technician and task scheduling problem.

 56

6.1 An Emergency Vehicle Dispatching System

In this chapter an example of an application of the TRP will be described at

more detail. We will especially examine the factors which have to be taken into

account when solving problems in reality.

Chilectra is the electric utility responsible for Santiago, the capital of Chile, and

incorporates a special emergency services division which takes care of

electrical breakdowns in the metropolitan area. In 1999, Weintraub et al.

developed a computerised system helping to organize the dispatching of

vehicles to the emergency locations served by the emergency unit responsible

for three out of the sixteen municipalities in Santiago.55 Before an operator

decided which vehicle served which emergency in which order only with the

help of his experience and intuition.

The geography of the affected part of the city determines the underlying graph

needed to describe the problem. The nodes of it represent areas of two to five

blocks and the distances between them are calculated with the help of the

actual travel times under traffic scenarios depending on the time of day. In order

to predict future emergencies a model was created using an exponential

smoothing approach based on experience with earlier breakdowns. Additionally

a priority factor is assigned to each emergency which can be interpreted as a

weight.

The notations of the model developed by Weintraub et al. are

I ... the set of the already known breakdowns

J ... the set of zones

iP ... the weight of the priority factor for breakdown i

iT ... the service time including the time needed to reach breakdown i

jF ... the expected number of breakdowns for zone j

jtK ... the penalty factor depending on the distance to zone j in time t

55 Weintraub et al., 1999, pp. 690-696

 57

The objective function developed by Weintraub et al. is56

min→+ ∑∑∑
∈∈ t Jj

jtj
Ii

ii KFTP βα

The first term of the equation can be interpreted as the already familiar sum of

waiting times of the customers times the correspondent prioritiy levels, i.e. the

weights. The second term takes the future demands into account. The

parameters α and β determine the weight of each of the two terms.

Now we will take a closer look at some parameters which are part of the model

and some of the factors which influence the decision in particular.

6.1.1 The Weights α and β

The weights α and β can be interpreted as the service quality for the

breakdowns that are already known and the penalty that is imposed on the

vehicle if it is located far away of future breakdowns. Weintraub et al. chose to

define the values of the two weights through a process of simulation to get

adequate solutions in all likely events and then validated them to maximize the

level of global service quality.

6.1.2 The Weight of Priorities iP

The priorities iP of the breakdowns are defined by Chilectra. There are five

priority levels with weights which do not grow linear (see Table 2). A critical

breakdown that could also endanger humans would be classified as priority 1,

while a domestic loss of power would be of priority 5. Additionally a breakdown

will move up a level every 30 minutes if it has not been served until this time, so

that it is ensured that no emergency will be neglected for a long time.

56 Weintraub et al., 1999, p. 691

 58

Priority Weight iP

1 10

2 5

3 3

4 3

5 1

Table 2: Weighted factors iP according to breakdown priorities

6.1.3 The Forecast for Daily Demands

To predict future breakdowns effectively the development in previous years

must be examined. First one can see that there exists a rather strong

seasonality effect, so that in winter an increase in the number of breakdowns

due to more wind and rain can be observed while in the summer months they

become less because people tend to leave the city for vacation. At the daily

level the emergency calls decrease during the night hours while they increase

during the evening. Additionally there is a rise of breakdowns noticeable

throughout the years because of the growth of the population and the

construction of new houses. All these factors have to be taken into account

when defining the future demand.

6.1.4 The Implementation of the Algorithm

Weintraub et al. used an approach to implement the algorithm where they first

grouped the requests together according to the geographical sector they were

situated in and then assigned vehicles to these groups. Now they defined the

tours for each of them by adding only one node at a time which they took out of

a predefined group of neighbors. Before inserting a new node, all possible

combinations of sequences including this node are tested to find the one that

leads to minimal cost. Additionally Weintraub et al. had to make sure that

requests with high priority have to be visited early. Finally they improved the

solution by using a load balancing approach where they compared the workload

of each vehicle and tried to balance it.

 59

The model of Weintraub et al. proved to be rather efficient in the testing phase.

It resulted in an improvement of 16% in response time and even 53% during

rainy days when the number of breakdown increased significantly.57

57 Weintraub et al., 1999, p. 690

 60

6.2 A Technician and Task Scheduling Problem (TTSP)

In the TTSP we have a set of tasks which have to be fulfilled by technicians with

specified skills. The level of a technician in a skill is given by an integer from 0

to p , with 0 meaning that he has no knowledge at all in this area. The tasks to

be completed require different skill levels and some additionally have to be

fulfilled by more than one technician. The problem consists of assigning to each

task the necessary technicians with convenient skill levels in a most effective

way. For this purpose technicians are grouped together according to their skill

levels and have to stay together for all day. It is also possible that some

technicians are not available on some days .

An additional constraint is given by the fact that some tasks cannot be

completed before others are performed, so that each task has a set of

predecessors and a set of successors. All tasks have given values for the

duration it takes to fulfil them, the outsourcing cost, for which a certain budget is

available , and a priority level, where a weight is assigned to each priority level.

In 2008, Cordeau et al. developed a heuristic to solve the above described

problem.58

The notations are

N ... the set of tasks with pN as the set of tasks with priority p and σN as

... the set of tasks with successors

T ... the set of technicians with kT as the set of available technicians at day

k

iσ ... the set of successors of task i

id ... the time required to fulfill task i

ic ... the cost of outsourcing task i

C ... the budget for outsourcing costs

ip ... the priority level of task i with { }4,3,2,1∈ip

58 Cordeau et al., 2008, pp. 1-25

 61

iw ... the weight according to the priority level of task i with

{ }1,4,14,28∈iw

jkrx ... the binary variable indicating whether technician j is part of the team

r on day k or not

ikry ... the binary variable indicating whether task i is assigned to team r on

day k or not

iz ... the binary variable indicating whether task i is outsourced or not

iiu ′ ... the binary variable indicating whether task i has been fulfilled before

task i′ starts

pe ... the time when the last task of priority p has been fulfilled

ib ... the starting time of task i

isαβ ... element of the skill requirement matrix indicating the number of

technicians with a skill level of at least α in the domain β required to

fulfill the task i
jvαβ ... element of the skill matrix indicating the skill level α in the domain β

of technician j

M ... a large number

The objective is to minimize the weighted makespan of each priority level, so it

is given by59

min
4

1

→∑
=p

ppew . (6.1)

This is the same objective function as that of the weighted TRP.

59 Cordeau et al., 2008, p. 5

 62

The constraints are the following60

iip dbe +≥ { }3,2,1∈∀ p , pNi ∈∀ (6.2)

ii dbe +≥4 Ni ∈∀ (6.3)

Czc ii ≤∑ (6.4)

∑
∈′

′≤
ii

iii zz
σ

σ σNi ∈∀ (6.5)

1
1

≤∑
=

m

r
jkrx Kk ∈∀ , kTj ∈∀ (6.6)

0
1

=∑
=

m

r
jkrx Kk ∈∀ , Tj ∈∀ \ kT (6.7)

1
1

=+ ∑∑
∈ =Kk

m

r
ikri yz Ni ∈∀ (6.8)

∑
∈

≤
kTj

jkr
ii

ikr xvsy αβαβ Ni ∈∀ , Kk ∈∀ , { }mr ,,1 K∈∀ ,

{ }p,,1 K∈∀ α , { }q,,1 K∈∀ β (6.9)

iiii Mzbdb +≤+ ′ σNi ∈∀ , ii σ∈′∀ (6.10)

() i

m

r
ikr byk ≤− ∑

=1

1120 Ni ∈∀ , Kk ∈∀ (6.11)

ii

m

r
ikr dbyk +≥∑

=1

120 Ni ∈∀ , Kk ∈∀ (6.12)

() iiiii bMudb ′′ ≤−−+ 1 Nii ∈′∀ , , ii ′≠ (6.13)

1≤−−+ ′′′ iiiikriikr uuyy Nii ∈′∀ , , ii ′≠ , Kk ∈∀ , { }mr ,,1 K∈∀ (6.14)

{ }1,0∈jkrx Tj ∈∀ , Kk ∈∀ , { }mr ,,1 K∈∀ (6.15)

{ }1,0∈ikry Ni ∈∀ , Kk ∈∀ , { }mr ,,1 K∈∀ (6.16)

{ }1,0∈iz Ni ∈∀ (6.17)

{ }1,0∈′iiu Nii ∈′∀ , , ii ′≠ (6.18)

0≥pe { }4,3,2,1∈∀ p (6.19)

0≥ib Ni ∈∀ (6.20)

60 see footnote 59

 63

The constraints (6.2) and (6.3) define the ending time of all tasks of priority p .

Inequalities (6.4) and (6.5) ensure that no more than the available budget is

used for outsourced tasks and all successors of an outsourced task are

outsourced, too. Restrictions (6.6) and (6.7) state that every technician is only

part of one team per day and that no unavailable technician is used. Equality

(6.8) ensures that every task is either fulfilled by a technician or outsourced

while (6.9) assigns to each task that is not outsourced a team with necessary

skills. Constraint (6.10) makes sure that a task is fulfilled before its successors

start. Restrictions (6.11) and (6.12) introduce a lower and an upper bound for

the starting time of the tasks. Inequality (6.13) ensures that if task i′ should be

fulfilled after task i then the starting time of i′ has to be after the starting time of

i , while (6.14) states that if both tasks are performed by the same team on the

same day, they have to be fulfilled one after the other. Finally restrictions (6.15)

to (6.18) introduce the binary variables and (6.19) and (6.20) define the

nonnegativity constraints.

Cordeau et al. developed a construction heuristic to build teams and assign

tasks to them and then an adaptive large neighborhood search heuristic (ALNS)

which is able to further improve the initial solution. The construction heuristic

first chooses seed tasks according to predefined criteria and builds teams to

fulfill them. Then further tasks are assigned to the selected teams. The ALNS

heuristic finally tries to improve the so found solution by destroying and

afterwards repairing it. This means that first a subset of tasks is removed from

the solution and then it will be reinserted again. For this purpose five different

destroy and two repair heuristics are implemented into the algorithm.

As the above described heuristics have been developed for a challenge the test

instances were predefined. They varied from 5 to 800 tasks with 5 to 150

technicians available. The ALNS heuristic achieved the second place by

differing on average only 5,9% from the best known solutions for the test

instances.

 64

7 Basis and Solving Methods for the Traveling
Repairman Problem

This chapter gives a description of the basis and the most common solving

methods used for examining the TRP.

7.1 Branch and Bound61

The branch and bound technique is used for generating optimal solutions for

optimization problems. It was first introduced by A. H. Land and A. G. Doig in

1960, who used it in the field of linear programming.

First the set of candidates S is split into several smaller sets K,, 21 SS which

will lead to a tree structure (the search tree) with nodes as the corresponding

subsets of S (branching). Then upper and lower bounds for each subset are

generated (bounding). Now the bounds for the tree nodes are compared to

each other and the “worse” ones get eliminated from the tree search (pruning).

If there is only one candidate left or an upper bound for the set of candidates

matches the lower bound, the recursion finally stops.

7.2 Dynamic Programming62

The concept of dynamic programming in its actual form was developed by

Richard Bellman in 1953. It consists of breaking down a complex problem into

simpler subproblems, which means splitting it up into several decision steps that

can be solved more easily. Dynamic programming can only be used as a

solving method when the problem has two specific properties: the overlapping

subproblems and the optimal substructure.

A problem has an optimal substructure if it can be broken down recursively,

which means that by solving its subproblems over time the original problem can

61 http://en.wikipedia.org/wiki/Branch_and_bound; 05.06.2009
62 http://en.wikipedia.org/wiki/Dynamic_programming; 18.08.2009

 65

be solved. If these subproblems can be reused multiple times then it also has

the property of overlapping subproblems.

7.3 Graph Theory63

As the TRP is usually described on a graph a short overview over graph theory

is given in this chapter.

A graph ()EVG ,= has a set of n vertices { }nV ,,2,1 K= and an edge set

VVE ×⊆ . Every vertex represents a customer the traveling repairman has to

visit. For each edge ()ji, there are known costs ijc which can be interpreted as

the distance between the vertices i and j .

The graph can be directed or undirected. A graph is directed if the TRP is

asymmetric and all edges are pointing in one direction, so they can be

represented by an arrow (see Figure 9). The traveling repairman is only allowed

to travel from i to j but not from j to i .

Figure 9: A directed graph

A graph is undirected if the TRP is symmetric and all edges are undirected (see

Figure 10). So the traveling repairman is allowed to travel from i to j and also

the other way round.

63 http://en.wikipedia.org/wiki/Graph_(mathematics)#Undirected_graph; 05.06.2009

1

2

3

4

5

6

 66

Figure 10: An undirected graph

A Hamiltonian circle is a path which visits each vertex exactly once and then

returns to the starting point (see Figure 11). It is the graphic equivalent to the

tour the traveling repairman has to make.

Figure 11: A Hamiltonian circle

A spanning tree of an undirected graph connects all the vertices without forming

a cycle (see Figure 12). The spanning tree with the smallest costs is called the

minimum spanning tree (MST).

1

2

3

4

5

6

1

2

3

4

5

6

 67

Figure 12: Spanning tree

A Eulerian graph is a graph which allows to construct a Eulerian circuit, i.e. it is

possible to use each edge exactly once starting and ending at the same vertex

(see Figure 13).

Figure 13: A Eulerian graph

7.4 Lagrangean Relaxation64

The Lagrangean Relaxation bases on the idea that many hard problems can be

seen as easy problems which are too complex because of a relatively small

number of constraints. If these are dualized, an easily solved Lagrangean

problem is generated. Its optimal solution can now be used for a lower bound in

the original problem in a branch and bound algorithm.

64 Fisher, 2004, p. 1861

A

D
C

E

F

I

J
K G

H

B

1

2

3

4

5

6

 68

In 1970 Held and Karp used a Lagrangean relaxation for solving an algorithm

for the traveling salesman problem which has been extremely successful. This

constitutes the “birth” of the Lagrangean technique.

The concept behind this approach is that hard capacity constraints are moved

into the objective function and penalty costs, the so called Lagrangean

multipliers, are imposed on their violation. This way the problem can be solved

rather easily.

7.5 Monge Array65

A Monge array is an m x n array for which the following property holds:

[] [] [] []jkAliAlkAjiA ,,,, +≤+ lkji ,,,∀

if mki ≤<≤1 and mlj ≤<≤1 . One can also say that if we choose two rows

and two columns of the array the sum of the upper-left and lower-right

intersecting elements will be less or equal to the sum of the lower-left and

upper-right intersecting elements. Table 3 shows an example of a Monge array.

10 17 13 28 23

17 22 16 29 23

24 28 22 34 24

11 13 6 17 7

45 44 31 37 23

36 33 19 21 6

75 66 51 53 34

Table 3: A Monge array66

If we take the rows 3 and 5 and the columns 2 and 5 then we can see that the

first sum 512328 =+ is smaller than the second sum 682444 =+ . The same

property holds if we make another choice.

65 Cormen et al., 2001, p. 88
66 Cormen et al., 2001, p. 88

 69

8 Summary

In this diploma thesis the Traveling Repairman Problem (TRP) has been

examined. First an overview of the Traveling Salesman Problem (TSP) was

given, of which the TRP is a variation. Then the characteristics and the

mathematical formulation of the TRP have been described. In the next chapter

some solving methods for the TRP have been introduced to get a better

understanding for the problem, a branch and bound algorithm which leads to an

optimal solution, an exact algorithm and a heuristic both based on dynamic

programming.

Afterwards some variations of the TRP with a single repairman were presented,

of which the line-TRP was the first. It is a variant of the TRP with a line as the

underlying graph and the versions with and without deadlines were examined,

meaning that the customers have deadlines at which they must have been

served. Then the line-TRP with weights has been introduced, where a weight is

assigned to each customer. This ensures that some customers, which are more

important, are served earlier than others. In the next subchapter the variant of

the TRP with a directed underlying graph was presented. Here the distances

between two vertices depend on the direction the repairman travels. Then the

TRP on weighted trees has been examined. Here the weights on the edges of

the tree represent the distances between any two vertices. Afterwards the

weighted TRP on a metric space has been introduced, where once again the

weights assigned to the vertices show the importance of the corresponding

customers. The last model described in this chapter was the on-line TRP where

the orders of the customers are not known in advance but come in over time.

The next chapter examined variants of the TRP with more than one repairman

available to serve the orders of the customers (the k -TRP). First a general

problem has been described, then the k -TRP with repairtimes was introduced,

where a repairtime is assigned to each customer which can differ from one to

another. Finally the on-line k -TRP was presented.

Afterwards some applications for the TRP have been described of which two

have been examined in more detail. The first was an emergency vehicle

 70

dispatching system which has been established for an electric utility company in

Chile and the second described the technician and task scheduling probem

(TTSP) which also uses parts of the TRP.

In the last chapter some basis, for example graph theory or the definition of a

Monge Array, and solving methods as the branch and bound technique or the

lagrangean relaxation have been presented.

The TRP is very challenging and is even currently examined frequently because

of its many application possibilities. Additionally it is NP-hard which also makes

it to an issue of general interest in the literature. For these problems it is very

difficult to find an optimal solution in a reasonable amount of time. Furthermore

one can expand the model by adding constraints depending on the part of the

problem on which one concentrates or depending on the problem one tries to

solve. By combining them it is possible to create a model which exactly suits the

desired characteristics of the problem that has to be solved.

 71

 72

IV. References

1. Literature in alphabetical order:

• Afrati, F., Cosmadakis, S., Papadimitriou, C. H., Papageorgiou, G.,

Papakostantinou, N., The Complexity of the Traveling Repairman

Problem, Rairo – Theoretical Informatics and Applications, Vol. 20, No. 1,

1986, pp. 79-87

• Allulli, Luca, Ausiello, Giorgio, Bonifaci, Vincenzo, Laura, Luigi, On the

Power of Lookahead in On-Line Server Routing Problems, Theoretical

Computer Science, Vol. 408, No. 2-3, 2008, pp. 116-128

• Bianco, Lucio, Mingozzi, Aristide, Ricciardelli, Salvatore, The Traveling

Salesman Problem with Cumulative Costs, Networks, Vol. 23, No. 2,

1993, pp. 81-91

• Blum, Avrim, Chalasani, Prasad, Coppersmith, Don, Pulleyblank, Bill,

Raghavan, Prabhakar, Sudan, Madhu, The Minimum Latency Problem,

Proceedings of the 26th ACM Symposium on the Theory of Computing,

1994, pp. 163-171

• Bonifaci, Vincenzo, Stougie, Leen, Online k -Server Routing Problems,

Lecture Notes in Computer Science, WAOA 2006, Vol. 4368, 2006, pp.

83-94

• Chaudhuri, Kamalika, Godfrey, Brighten, Rao, Satish, Talwar, Kunal,

Paths, Trees, and Minimum Latency Tours, Proceedings of the 44th

Annual IEEE Symposium on Foundations of Computer Science, 2003,

pp. 36-45

• Cordeau, Jean-François, Laporte, Gilbert, Pasin, Frederico, Ropke,

Stefan, Scheduling Technicians and Tasks in a Telecommunications

Company, 2008, pp. 1-25

• Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., Stein,

Clifford, Introduction to Algorithms, Second Edition, MIT Press, 2001

• Fakcharoenphol, Jittat, Harrelson, Chris, Rao, Satish, The k -Traveling

Repairmen Problem , ACM Transactions on Algorithms, Vol. 3, No. 4,

2007, Article 40, pp. 40:1-40:16

• Fischetti, Matteo, Laporte, Gilbert, Martello, Silvano, The Delivery Man

Problem and Cumulative Matroids, Operations Research, Vol. 41, No. 6,

1993, pp. 1055-1064

 73

• Fisher, Marshall L., The Lagrangian Relaxation Method for Solving

Integer Programming Problems, Management Science, Vol. 50, No. 12,

2004, pp. 1861-1871

• García, Alfredo, Jodrá, Pedro, Tejel, Javier, A Note on the Travelling

Repairman Problem , Networks, Vol. 40, No. 1, 2002, pp. 27-31

• García, Alfredo, Jodrá, Pedro, Tejel, Javier, An Efficient Algorithm for

On-Line Searching of Minima in Monge Path-Decomposable

Tridimensional Arrays, Information Processing Letters, Vol. 68, 1998, pp.

3-9

• Goemans, Michel, Kleinberg, Jon, An Improved Approximation Ratio for

the Minimum Latency Problem , Mathematical Programming, Vol. 82, No.

1-2, 1998, pp. 111-124

• Jothi, Raja, Raghavachari, Balaji, Approximating the k -Traveling

Repairmen Problem with Repairtimes, Journal of Discrete Algorithms,

Vol. 5, No. 2, 2007, pp. 293-303

• Jothi, Raja, Raghavachari, Balaji, Minimum Latency Tours and the k -

Traveling Repairmen Problem , Lecture Notes in Computer Science,

LATIN 2004, Vol. 2976, 2004, pp. 423-433

• Krumke, S. O., de Paepe, W. E., Poensgen, D., Stougie, L., News from

the Online Traveling Repairman, Theoretical Computer Science, Vol.

295, No. 1-3, 2003, pp. 279-294

• Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., Shmoys, D. B., The

Traveling Salesman Problem, John Wiley & Sons Ltd., Great Britain,

1985

• Nagarajan, Viswanath, Ravi, R., The Directed Minimum Latency

Problem, Lecture Notes in Computer Science, Vol. 5171, 2008, pp. 193-

206

• Sarubbi, J. F. M., Luna, H. P. L., A New Flow Formulation for the

Minimum Latency Problem , In: International Network Optimization

Conference (INOC), Spa, Belgium, 2007

• Weintraub, A., Aboud, J., Fernandez, C., Laporte, G., Ramirez, E., An

Emergency Vehicle Dispatching System for an Electric Utility in Chile,

The Journal of the Operational Research Society, Vol. 50, No. 7, 1999,

pp. 690-696

 74

• Wu, Bang Ye, Polynomial Time Algorithms for Some Minimum Latency

Problems, Information Processing Letters, Vol. 75, No. 5, 2000, pp. 225-

229

• Wu, Bang Ye, Huang, Zheng-Nan, Zhan, Fu-Jie, Exact Algorithms for the

Minimum Latency Problem , Information Processing Letters, Vol. 92, No.

6, 2004, pp. 303-309

 75

2. Internet:

• http://en.wikipedia.org/wiki/Branch_and_bound; 05.06.2009

• http://en.wikipedia.org/wiki/Graph_(mathematics)#Undirected_graph;

05.06.2009

• http://en.wikipedia.org/wiki/Dynamic_programming; 18.08.2009

 76

 77

Abstract

Diese Magisterarbeit gibt einen Überblick über das Traveling Repairman

Problem (TRP), das eine Spezialform des Problems des Handlungsreisenden

(Traveling Salesman Problem – TSP) darstellt. Beide Modelle werden benutzt,

um die Tour eines Handlungsreisenden zu planen, der in einer vorgegebenen

Zeitspanne eine bestimmte Anzahl von Kunden besuchen soll. Während das

TSP sich darauf konzentriert, die Länge der Tour zu minimieren, versucht das

TRP, die Summe der Wartezeiten der Kunden so gering wie möglich zu halten.

Der Hauptteil der Arbeit beschäftigt sich mit der Definition und den Varianten

des TRP und beschreibt mögliche Modelle und Verfahren, mit deren Hilfe diese

zu lösen sind. Dabei werden zuerst die Problemstellungen definiert und dann

die mathematischen Formulierungen bzw. die Algorithmen dargestellt.

Zu Beginn der Arbeit werden das TSP und das TRP näher definiert und kurz

anhand eines Beispiels illustriert (in Kapitel 2). Danach werden das allgemeine

TRP und einige Lösungsverfahren dazu näher erläutert (in Kapitel 3).

Im Hauptteil werden zuerst einige Variationen des TRP mit einem einzelnen

Repairman und Algorithmen zur Lösung dieser Modelle beschrieben (in

Kapitel 4). Dann werden das TRP mit mehreren Repairmen sowie einige

Spezialformen hierzu erläutert (in Kapitel 5).

Zusätzlich werden in dieser Arbeit Anwendungsmöglichkeiten beschrieben, von

denen zwei genauer untersucht werden (in Kapitel 6). Schließlich werden noch

einige Basisbegriffe und Lösungsmethoden erläutert (in Kapitel 7).

 78

 79

Curriculum vitae

Name: Miriam Lechmann

Geboren: 16.3.1978, in Wien

Staatsbürgerschaft: Österreich

Familienstand: ledig

Schulbildung:

1984-1988 Volksschule, Wien

1988-1996 Neusprachliches Gymnasium, Wien

 1996 Matura (mit gutem Erfolg abgeschlossen)

Studium:

1997-2009 Diplomstudium IBWL Universität Wien (BWZ)

KFKs: KFK Produktionsmanagement
 am Lehrstuhl für Produktion und Logistik

KFK Kapitalmarktforschung und
Investmentanalyse

 am Lehrstuhl für Finanzwirtschaft und Banken

Beruflicher Werdegang:

1997–2001 AXA Nordstern Colonia Versicherung, Wien
 geringfügige Tätigkeit im Sekretariat der

Generaldirektion

2001–2004 Verlag Carl Ueberreuter, Wien
geringfügige Tätigkeit in der Rechte- und
Lizenzabteilung

2004–2006 Verlag Carl Ueberreuter, Wien
 Lektoratsassistentin

2006–2008 OSRAM, Wien
Controlling-Mitarbeiterin und Assistentin des
Compliance-Officers

2009 Verlag Carl Ueberreuter, Wien
 Assistentin der Geschäftsführung

