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Abstract

Computing the eigenvalues and eigenvectors of a band or block tridiagonal ma-

trix is an important aspect of various applications in Scientific Computing. Most

existing algorithms for computing eigenvectors of a band matrix rely on a prior tridi-

agonalization of the matrix. While the eigenvalues and eigenvectors of tridiagonal

matrices can be computed very efficiently, the preceding tridiagonalization process

can be relatively costly. Moreover, many eigensolvers require additional measures

to ensure the orthogonality of the computed eigenvectors, which constitutes a sig-

nificant computational expense.

In this thesis we explore a new method for computing eigenvectors of block tridi-

agonal matrices based on twisted factorizations. We describe the basic principles

of an algorithm for computing block twisted factorizations of block tridiagonal ma-

trices. We also show some interesting properties of these twisted factorizations and

investigate the relation of the block, where the factorizations meet, to an eigenvec-

tor of the block tridiagonal matrix. This relation can be exploited to compute the

eigenvector in a very efficient way.

Contrary to most conventional techniques, our algorithm for the determination

of eigenvectors does not require a reduction of the matrix to tridiagonal form, and

attempts to compute a good eigenvector approximation with only a single step

of inverse iteration. This idea is based on finding a starting vector for inverse

iteration which minimizes the residual of the resulting eigenpair. One of the main

contributions of this thesis is the investigation and evaluation of different strategies

for the selection of a suitable starting vector.

Furthermore, we present experimental data for the accuracy, orthogonality and

runtime behavior of an implementation of the new algorithm, and compare these

results with existing methods. Our results show that our new algorithm returns

eigenvectors with very low residuals, while being more efficient in terms of compu-

tational costs for large matrices and/or for small bandwidths. Due to its structure

and inherent parallelization potential, the new algorithm is also well suited for ex-

ploiting modern and future hardware, which are characterized by a high degree of

concurrency.





Zusammenfassung

Die Berechnung von Eigenwerten und Eigenvektoren von blocktridiagonalen Ma-

trizen und Bandmatrizen stellt einen gewichtigen Aspekt von zahlreichen Anwen-

dungen aus dem Scientific Computing dar. Bisherige Algorithmen zur Bestimmung

von Eigenvektoren in solchen Matrizen basierten zumeist auf einer vorhergehen-

den Tridiagonalisierung der Matrix. Obwohl die Bestimmung von Eigenwerten und

Eigenvektoren in tridiagonalen Matrizen sehr effizient durchgeführt werden kann, ist

der notwendige Tridiagonalisierungsprozess jedoch sehr rechenintensiv. Des weiteren

benötigen zahlreiche Methoden noch Maßnahmen zur Sicherstellung der Orthogo-

nalität der resultierenden Eigenvektoren, was eine zusätzliche Bürde für die Rechen-

leistung darstellt.

In dieser Arbeit wird eine neue Methode zur Berechnung von Eigenvektoren in

blocktridiagonalen Matrizen untersucht, die im Wesentlichen auf der Verwendung

von Twisted Factorizations beruht. Hierfür werden die grundlegenden Prinzipien

eines Algorithmus zur Berechnung von geblockten Twisted Factorizations von block-

tridiagonalen Matrizen erläutert. Des weiteren werden einige interessante Eigen-

schaften von Twisted Factorizations aufgezeigt, sowie die Beziehung des Blocks, bei

dem sich die Faktorisierungen treffen, zu einem Eigenvektor erklärt. Diese Beziehung

kann zur effizienten Bestimmung von Eigenvektoren herangezogen werden.

Im Gegensatz zu bisherigen Methoden ist der hier vorgestellte Algorithmus nicht

auf eine Reduktion zur tridiagonalen Form angewiesen und beinhaltet nur einen

einzigen Schritt der inversen Iteration. Dies wird durch das Auffinden eines Startvek-

tors, der das Residuum des Eigenpaares minimiert, ermöglicht. Einer der Haupt-

punkte dieser Arbeit ist daher die Evaluierung verschiedener Strategien zur Selektion

eines geeigneten Startvektors.

Des weiteren werden im Rahmen dieser Arbeit Daten zur Genauigkeit, Orthog-

onalität und des Zeitverhaltens einer Computerimplementation des neuen Algorith-

mus vorgestellt und mit gängigen Methoden verglichen. Die gewonnenen Daten

zeigen nicht nur, daß der Algorithmus Eigenvektoren mit sehr geringen Residuen

zurückliefert, sondern auch bei der Berechnung von Eigenvektoren in großen Ma-

trizen und/oder Matrizen mit geringer Bandbreite effizienter ist. Aufgrund seiner

Struktur und dem inhärenten Parallelisierungspotential ist der neue Algorithmus



hervorragend dazu geeignet, moderne und zukünftige Hardware auszunutzen, welche

von einem hohen Maß an Nebenläufigkeit geprägt sind.
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An dieser Stelle möchte ich mich bei allen Personen bedanken, die mich bei der

Erstellung dieser Arbeit unterstützt haben.

Besonderer Dank gebührt meinen beiden Betreuern. Einerseits dem Betreuer dieser

Diplomarbeit, Prof. Wilfried Gansterer, für die zahlreichen Ideen und Anregun-

gen, durch die ich sehr viel dazugelernt habe, und den großen Zeitaufwand, den

er in dieses Projekt gesteckt hat, andererseits dem Betreuer meiner Dissertation,

Prof. Stefan Boresch, daß er mir nicht nur immer wieder mit Rat und Tat zur Seite

stand, sondern noch dazu die Freiheit gewährt hat, mich so tief in die informatischen

Gefilde zu begeben.
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Chapter 1

Introduction

In this thesis, we discuss strategies for efficiently computing block factorizations of

a block tridiagonal matrix W (p) with p square diagonal blocks. Based on these

factorizations, we investigate and empirically evaluate ways for approximating an

eigenvector of W (p), given a good approximation of the corresponding eigenvalue.

In the most general setting, W (p) does not have to be symmetric and can be

represented in block-wise fashion by a number of submatrices:

W (p) :=























B1 C1

A2 B2 C2

. . .
. . .

. . .

Ap−1 Bp−1 Cp−1

Ap Bp























. (1.1)

The dimensions bi of the p quadratic diagonal blocks Bi (i = 1, . . . , p) are in the

following called block sizes and determine shape and size of the p − 1 subdiagonal

blocks Ai (i = 2, . . . , p), and of the p − 1 superdiagonal blocks Ci (i = 1, . . . , p −
1). For eigenvector computations, the focus of this paper is on the special case of

symmetric W (p) where Bi = B⊤

i for i = 1, . . . , p, and Ci = A⊤

i+1 for i = 1, . . . , p− 1.

In the empirical evaluation, we also consider only equally sized blocks (i.e., all bi = b)

1.1 Motivation

Since the block tridiagonal structure can be considered a generalization of band

structures, matrices as defined in Equation (1.1) arise in various situations in Scien-
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tific Computing. One example is the solution of boundary-value problems of ordi-

nary differential equations (especially using the so-called finite difference method).

In particular, they can also be an intermediate result of a preprocessing step for

general dense matrices, for example, of a block tridiagonalization process[1] or of

a bandwidth reduction process[2, 3]. Such processes enhance the efficiency of sev-

eral matrix computations, since banded matrices also allow a significant reduction

of computational work and storage, by taking advantage of the structure of zeros

around the main diagonals.

For block tridiagonal matrices (and, therefore, also banded matrices) the block

tridiagonal divide-and-conquer (BD&C) method [4, 5] allows for efficiently approxi-

mating eigenvalues and eigenvectors of symmetric W (p) without tridiagonalizing it.

However, it turns out that the eigenvector accumulation in the divide-and-conquer

process can become the performance limiting factor for increasing accuracy require-

ments. This motivates efforts in investigating efficient alternatives for computing an

eigenvector of a symmetric block tridiagonal matrix, given an approximation of the

corresponding eigenvalue.

The idea pursued in this thesis is based on representing W (p) as a product of two

block bidiagonal matrices or, equivalently, as a product of three matrices (two block

bidiagonals with identities along the diagonal and a block diagonal, which would

correspond to the notation of some parts of the literature). This representation

allows for a fast and efficient inverse iteration process for computing the desired

eigenvector. More specifically, among all possible twisted block factorizations of

W (p), one factorization is selected as the representation to be used in a single step

of the inverse iteration process. This idea is motivated by central components of the

MRRR algorithm for computing eigenvectors of a symmetric tridiagonal matrix [6].

In the following chapters, we describe the basic principles of an algorithm for

computing block twisted factorizations of W (p). Moreover, we design and empir-

ically evaluate an algorithm for computing eigenvector approximations given ap-

proximations of the corresponding eigenvalues on the basis of these block twisted

factorizations. A central algorithmic question in this approach is how to select the

twisted block factorization and how to choose the starting vector for the inverse it-

eration process. We motivate and compare several strategies and empirically study



their effectiveness in terms of numerical accuracy and in terms of computational

performance.

1.2 Related Work

In 1990, Demmel and Kahan showed that the Cholesky factorization of a tridiagonal

matrix into two bidiagonals can be used to compute all eigenvalues of a symmetric

definite tridiagonal matrix to high accuracy [7], since small relative changes in the

bidiagonals cause only small relative changes in the small eigenvalues. Later, it was

also shown that most (bidiagonal) LDLT representations of tridiagonal matrices de-

termine the small eigenvalues to high relative accuracy despite possibly large entries

in L or D, if these entries are neutralized by small entries in the eigenvector [8].

This induced the development of very efficient methods for the calculation of

eigenvectors in tridiagonal matrices. Based on Fernando’s solution to Wilkinson’s

problem [9] (i. e., the search for the position of the largest entry in the eigenvec-

tor), Parlett and Dhillon [10] suggested to use twisted factorizations of tridiagonal

matrices to compute a good starting vector (i.e, with a small angle to the true eigen-

vector) for inverse iteration. This is justified by the fact that the position of the

largest component of the eigenvector is associated with the minimal twisted element

of the twisted factorizations. They could show that a good starting vector allows

for the determination of eigenvectors in a single step of inverse iteration, with the

additional benefit that further orthogonalization becomes unnecessary.

While several studies concerning the use of twisted factorizations for the efficient

calculation of eigenvectors of tridiagonal matrices exist [6, 8, 9, 10, 11, 12, 13],

relatively little work has been done on banded or block tridiagonal matrices. Parlett

and Dhillon [10] discussed a blocked extension of the tridiagonal case. Their selection

of the starting vector for inverse iteration is based on the twisted factorization

(W (p) = LU) using the subblock of LiUi with the minimal singular value (which

corresponds to strategy Sb4 in Section 3.1.6).

Very recently, Vömel and Slemons published a theoretical treatment of twisted

factorizations of banded or block-tridiagonal matrices [14]. Therein, they gave a

proof of the existence of two twisted factorizations of banded matrices by using a



double factorization of the twisted block. Also, the use of twisted factorizations for

inverse iteration was mentioned (however, without a practical application or a direct

suggestion for the selection of the starting vector) and the connections to the inverse

of the matrix were shown.

Thus, experimental data to evaluate the applicability of twisted factorizations in

case of block tridiagonal matrices still can not be found in literature. We, therefore,

wanted to compare different starting vector selection schemes and the associated

advantages and drawbacks of the use of twisted factorizations for inverse iteration.

1.2.1 Synopsis

In Chapter 2, unsymmetric twisted block factorizations of W (p) are discussed. The

computation of an eigenvector to a given eigenvalue approximation based on these

factorizations is discussed in Chapter 3. Numerical experiments with an implemen-

tation of these concepts are summarized in Chapter 4, while details of the imple-

mentation of the aforementioned techniques are discussed in Chapter 5. Finally,

some conclusions and suggestions for future work are given in Chapter 6.



Chapter 2

Factorizing a Block Tridiagonal

Matrix

2.1 Twisted Block LU Factorizations of a Block

Tridiagonal Matrix

In analogy to the approach pursued in the MRRR method for tridiagonal matrices[6],

we investigate the factorization of block tridiagonal W into two block bidiagonals.

LU factorizations of W (p), which yield (unsymmetric) representations of W (p), are

discussed in the following sections.

2.1.1 Scalar LU Factorization

In general, a (scalar) LU factorization (or Gaussian Elimination) decomposes a

square matrix M into a product of a unit lower triangular matrix L (with only zeros

above the diagonal) and an upper triangular matrix U (with only zeros below the

diagonal)[15]:

M = LU (2.1)

Such a factorization is motivated, e.g., by the ease of solving linear systems of

equations in triangular matrices (see Section 3.1.2). Also, triangular matrices have

various advantageous properties[15]:

• The inverse of a lower/upper triangular matrix is also lower/upper triangular.
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• The product of two lower/upper triangular matrices also stays lower/upper

triangular.

• The inverse of a unit lower/upper triangular matrix (e.g., L in the aforemen-

tioned LU factorization) is also unit lower/upper triangular.

• The product of such unit lower/upper triangular matrices is also a unit lower/upper

triangular matrix.

In case of a general 3× 3 matrix, the LU factorization takes the following form:











m11 m12 m13

m21 m22 m23

m31 m32 m33











=











l11 0 0

l21 l22 0

l31 l32 l33





















u11 u12 u13

0 u22 u23

0 0 u33











To create a upper triangular matrix, the subdiagonal elements of the original

matrix have to be eliminated. In the standard forward case, this is done by multi-

plication with elimination matrices Lk whose subdiagonal elements (i = k +1, ..., n)

of the respective row k equal lik = −mik/mkk. E.g.:

L1M = M1











1 0 0

−m21/m11 1 0

−m31/m11 0 1





















m11 m12 m13

m21 m22 m23

m31 m32 m33











=











m11,1 m12,1 m13,1

0 m22,1 m23,1

0 m32,1 m33,1











Note that e.g. m22 and m22,1 are not the same. In the next step

M2 = L2M1 = L2(L1M)










1 0 0

0 1 0

0 −m32,1/m22,1 1





















m11,1 m12,1 m13,1

0 m22,1 m23,1

0 m32,1 m33,1











=











m11,2 m12,2 m13,2

0 m22,2 m23,2

0 0 m33,2











After n-1 steps, all matrix elements below the main diagonal are eliminated. Thus,

Mn−1 is our sought upper triangular matrix U , while

M = L−1
1 L1M = L−1

1 M1 = L−1
1 L−1

2 L2M1 = L−1
1 L−1

2 M2 = L−1
1 L−1

2 U



which means that L = L−1
1 L−1

2 , or, for a general matrix, the product of all inverses

of the matrices: L =
n−1
∏

k=1

Lk. It is easy to see that the inverse L−1
k of Lk can be

obtained by simply changing the sign of the subdiagonal elements (τ (k)) of Lk, e.g.:











1 0 0

l21,1 1 0

l21,1 0 1





















1 0 0

−l21,1 1 0

−l21,1 0 1











=











1 0 0

l21,1 − l21,1 1 0

l21,1 − l21,1 0 1











=











1 0 0

0 1 0

0 0 1











If τ (k) is the vector of the subdiagonal multipliers of Lk, then L is defined by:

L =
(

I − τ (1)eT
1

)

· · ·
(

I − τ (n−1)eT
n−1

)

= I −
n−1
∑

k=1

τ (k)eT
k (2.2)

Thus, L can be formed by simply inserting the elements of the kth column of Lk

in the corresponding column of L.

However, problems may arise, if during the factorization process a zero is en-

countered in the main diagonal element (or, in floating-point arithmetic, stability

problems might arise if mkk is very small).

To evade this problem, pivoting strategies have been devised. It is possible

to interchange the current row with a subsequent row whose diagonal element is

not zero (Usually, the largest element in absolute value of the current column k

is selected and the corresponding rows of the submatrix yet to be processed are

interchanged in order to make mkk as large as possible.) . Such an action is called

(partial) pivoting, and can be represented as a multiplication of the factorization

with a pivoting matrix P from the left:

M = PLU

In the following, we generalize this scalar forward LU factorization process to a

block-based LU factorization process for block tridiagonal W (p).

2.1.2 Block LU Factorization

When generalized to a block tridiagonal matrix W (p), the resulting factors L and

U will be lower and upper block bidiagonal, respectively. We illustrate the process



for p = 4. Based on the ansatz

W (4) =

















B1 C1

A2 B2 C2

A3 B3 C3

A4 B4

















=

















P1

P2

P3

P4

































L1

M2 L2

M3 L3

M4 L4

































U1 N1

U2 N2

U3 N3

U4

















(2.3)

=

















P1L1U1 P1L1N1

P2M2U1 P2L2U2 + P2M2N1 P2L2N2

P3M3U2 P3L3U3 + P3M3N2 P3L3N3

P4M4U3 P4L4U4 + P4M4N3

















,

the defining equations for the block tridiagonal LU factorization process can be

derived block by block. Starting from the top left corner (in “forward” direction),

the first step is to factorize B1 = P1L1U1 using partial pivoting. Then, from the

equations

P1L1N1 = C1

P2M2U1 = A2 (2.4)

the matrices N1 and M ′

2 := P2M2 can be computed as solutions of two triangular

systems. Note, for arbitrary C1 and A2 these linear systems have a unique solution

only if B1 is non singular.

Rewriting the next equation B2 = P2L2U2 + M ′

2N1 into

B2 −M ′

2N1 = P2L2U2 (2.5)

reveals that the next step is to factorize B2 −M ′

2N1 with partial pivoting in order

to compute P2, L2, and U2. Note that only at this point P2 is computed explicitly

(so far, it was only contained implicitly in the solution of Equation (2.4)).

Now we can proceed with solving linear systems for N2 and M ′

3 := P3M3, factor-

izing B3−M ′

3N2, solving for N3 and M ′

4 := P4M4, and finally factorizing B4−M ′

4N3.

As a result, the entire block LU factorization (2.1.2) of W (4) has been constructed.



2.1.3 Backward Block LU Factorization

The block tridiagonal LU factorization can also be performed in reverse direction,

starting from the factorization of the lower right block Bp. In this case, the resulting

L and U will be upper and lower block bidiagonal, respectively. Again, we illustrate

the process for p = 4. Based on the ansatz

W (4) =

















P1

P2

P3

P4

































L1 M1

L2 M2

L3 M3

L4

































U1

N2 U2

N3 U3

N4 U4

















(2.6)

=

















P1L1U1 + P1M1N2 P1M1U2

P2L2N2 P2L2U2 + P2M2N3 P2M2U3

P3L3N3 P3L3U3 + P3M3N4 P3M3U4

P4L4N4 P4L4U4

















we factorize B4 = P4L4U4 using partial pivoting. From the equations

P3M3U4 = C3

P4L4N4 = A4 (2.7)

the matrices N4 and M ′

3 := P3M3 can be computed as solutions of two linear systems,

assuming (as before) that B4 is non singular. Now B3 can be rewritten as B3 =

P3L3U3 + M ′

3N4, which leads to

B3 −M ′

3N4 = P3L3U3.

Thus, factorizing B3 −M ′

3N4 with partial pivoting yields P3, L3, and U3. Pro-

ceeding analogously to the forward case discussed in Section 2.1.2 determines the

remaining unknown submatrices in (2.6).

2.1.4 Twisted Block LU Factorization

Twisted factorizations of W (p) combine f − 1 forward elimination steps with p− f

backward elimination steps, which we will denote as a TF (f) twisted factorization.

Thus, TF(f) denotes a twisted block factorization for f = 2 · · ·p − 1, while in the

special case f = p it denotes a pure forward factorization and f = 1 denotes a pure



backward factorization. In the following, we illustrate a block version of a TF (3)

twisted block factorization of W (4), where two elimination steps are done in forward

direction, and one in backward direction before calculating the block where the two

factorizations meet. In order to distinguish the steps done in forward and back-

ward direction, the blocks constructed in the forward direction are marked by the

superscript “+”, while the blocks constructed in the backward direction are marked

by the superscript “−”. Note that forward and backward elimination processes are

completely independent of each other until the computation of the blocks in the

row where the two directions meet (and, therefore, the two factorizations can be

parallelized).

Based on the ansatz

W (4) =

















P1

P2

P3

P4

































L+
1

M+
2 L+

2

M+
3 L3 M−

4

L−

4

































U+
1 N+

1

U+
2 N+

2

U3

N−

3 U−

4

















(2.8)

=













P1L
+

1 U
+

1 P1L
+

1 N
+

1

P2M
+

2 U
+

1 P2L
+

2 U
+

2 + P2M
+

2 N
+

1 P2L
+

2 N
+

2

P3M
+

3 U
+

2 P3L3U3 + P3M
+

3 N
+

2 + P3M
−

4 N
−

3 P3M
−

4 U
−

4

P4L
−

4 N
−

3 P4L
−

4 U
−

4













,

we again derive the defining equations block by block.

In analogy to the forward case, the first step is to factorize B1 = P1L
+
1 U+

1 . Then,

N+
1 and M

′+
2 := P2M

+
2 can be computed as solutions of two linear systems. After

updating B2 as in (2.5) the result is factorized for computing P2, L+
2 , and U+

2 . Using

this information, N+
2 and M

′+
3 := P3M

+
3 can be computed as solutions of two linear

systems. At this point, the forward part of the TF(3) twisted block factorization is

completed, and the next steps are conducted in backward direction. After factorizing

B4 = P4L
−

4 U−

4 , N−

3 and M
′
−

4 := P3M
−

4 can be computed as solutions of two linear

systems.

Finally, we can work on the third block row where both factorizations meet (we

denote this block as “twisted block“). The diagonal block B3 in this row can be

expressed as B3 = P3L3U3 + M
′+
3 N+

2 + M
′−

4 N−

3 . Thus, from factorizing

B3 −M
′+
3 N+

2 −M
′−

4 N−

3 = P3L3U3



we finally obtain P3, L3, and U3 and thus have determined all unknown submatrices

in (2.8).

For some purposes (for example, when computing eigenvectors of W (p) as dis-

cussed in Section 3.1) it is convenient to reformulate the factorization (2.8) as

W (4) = LDU

with block diagonal D and block tridiagonals L and U which have identity matrices

along the diagonal. In particular, for the TF(3) twisted block factorization

L =

















I

M+
2

(

L+
1

)−1
I

M+
3

(

L+
2

)−1
I M−

4

(

L−

4

)−1

I

















,

D =

















L+
1 U+

1

L+
2 U+

2

L3U3

L−

4 U−

4

















,

and

U =

















I
(

U+
1

)−1
N+

1

I
(

U+
2

)−1
N+

2

I
(

U−

4

)−1
N−

3 I

















.



Chapter 3

Inverse Iteration

3.1 Computing an Eigenvector of W (p)

In this section we discuss how to approximate an eigenvector v of W (p) based on the

twisted factorizations of a block tridiagonal matrix as introduced in Section 2.1.4

and assuming that an eigenvalue λ or an approximation λ̂ thereof is given. The

approach pursued is based on one step of inverse iteration on the shifted matrix

W (p) − λI based on a suitably chosen twisted factorization of W (p) − λI and a

starting vector determined accordingly.

3.1.1 Review Inverse Iteration

An eigenpair (λ, v) of W (p) satisfies the equation (W (p)− λI) v = 0. Given an

eigenvalue approximation λ̂ ≈ λ (λ̂ will be called “shift” in the following), an ap-

proximation v̂ for the eigenvector v can be found by inverse iteration.

1. initialize v̂(0), i := 0

2. repeat

3. solve
(

W (p)− λ̂I
)

y(i+1) = v̂(i)

4. v̂(i+1) := y(i+1)/‖y(i+1)‖2

5. i := i + 1

6. until convergence

The starting vector v̂(0) is usually chosen as a random vector [16].

12



3.1.2 Solving a System of Linear Equations in Inverse Iter-

ation

Solving a linear system Mx = y (of a square matrix M) like in step three of inverse

iteration is a central problem of scientific computing[15]. Traditional methods are

based on the conversion of the square system to a product of tridiagonal matrices

with the LU factorization discussed in Section 2.1.1 (M = LU). Due to their

structure, solving such systems of equations can be done in a very efficient way, as

we show in the next subsections.

Forward Substitution

If we consider the following 3-by-3 lower triangular system:











l11 0 0

l21 l22 0

l31 l32 l33





















x1

x2

x3











=











y1

y2

y3











The matrix-vector product can be reformulated to:

l11x1 + 0x2 + 0x3 = y1

l21x1 + l22x2 + 0x3 = y2

l31x1 + l32x2 + l33x3 = y3

The unknowns in these equations can be determined in the following fashion:

Solving the first equation is straightforward:

x1 =
y1

l11

With the result for x1, we can proceed to the next equation:

x2 =
y2 − l21x1

l22

and finally solve the last equation

x3 =
y3 − l31x1 − l32x2

l33

This sequential process (shown for an 3-by-3 example) is called forward substi-

tution. The general procedure for solving the ith line of Lx = y for xi is:



xi =

(

bi −
i−1
∑

j=1

lijxj

)

lii
(3.1)

Back Substitution

An analogous procedure can be applied to upper triangular systems:











u11 u12 u13

0 u22 u23

0 0 u33





















x1

x2

x3











=











y1

y2

y3











However, in case of an upper triangular matrix the simplest equation is located

in the last row and the equations are solved in reverse order. This is called back

substitution:

xi =

(

yi −
n
∑

j=i+1

uijxj

)

uii
(3.2)

The back substitution algorithm (as well as the forward substitution algorithm)

requires n2 floating point operations.

Using LU Factorizations for Solving a System of Linear Equations

For a given LU factorization of M , we can solve the system Mx = z by transforming

it to

LUx = z

Note that a matrix-vector multiplication yields another vector. If we replace Ux

by a yet to be determined vector y, the solution vector x of the system Mx = z

can be found by using a combination of two systems of linear equations. We simply

perform the forward substitution of the lower triangular matrix L:

Ly = z

followed by a backward substitution of the upper triangular matrix U

Ux = y



3.1.3 Inverse Iteration Based on Twisted Block Factoriza-

tions

Given a block twisted factorization W (p)− λ̂I = PLU as defined in Equation (2.8),

we can employ this factorization for solving the system of equations as required

in the third step of inverse iteration (
(

W (p)− λ̂I
)

y(i+1) = v̂(i)). This process is

performed (analogous to a normal LU factorization) in three steps:

1. Apply the inverse (P−1) of the pivoting matrix P (whose computation is trivial)

to both sides:

LUx = P−1v̂(i) = z

where we denote the resulting vector (P−1v̂(i)) on the right side by z.

2. Solve La = z for a via a combined forward and “back” substitution

3. Solve Uy(i+1) = a for y(i+1) via combined back and forward substitution.

Again, we illustrate this for the case p = 4 and TF(3). The subvectors (~ai,

veczi) of length b (corresponding to the matrix blocks) are marked with indices,

which correspond to the respective row of blocks (e.g., ~a1):

















L+
1

M+
2 L+

2

M+
3 L3 M−

4

L−

4

































~a1

~a2

~a3

~a4

















=

















~z1

~z2

~z3

~z4

















The process of solving a system of equations using a block twisted factorization

can be subdivided into multiple block-wise operations. Since both ~a2 and ~a4 have to

be known before we can solve the twisted block (i.e., the block where the factoriza-

tions meet), it is necessary to start at both ends and gradually solve the equations

in inward direction. First, we start by using forward substitution of the forward

factorization part (marked with +):

L+
1 ~a1 = ~z1

The solution of the first row (~a1) can now be used to solve the next row of blocks

L+
2 ~a2 = ~z2 −M+

2 ~a1



Since the next block is already the block where the factorization meet, we require

~a4 before we can proceed. Thus, we have to solve the equations associated with the

backward factorization beforehand (Note that on matrix level, this is actually done

by forward substitution, since L−

4 is lower triangular).

L−

4 ~a4 = ~z4

Thus, the row of blocks where the forward and the backward factorization meet

can be solved

L3~a3 = ~z3 −M+
2 ~a2 −M−

4 ~a4

A similar procedure has to be applied to the matrix U.

















U+
1 N+

1

U+
2 N+

2

U3

N−

3 U−

4

































~y1

~y2

~y3

~y4

















=

















~a1

~a2

~a3

~a4

















However, this time it is necessary to start at the block k where the factorizations

meet (in the above example, block number three) and proceed in outward direction,

since ~yk is necessary to solve both the row k − 1 and k + 1 (and, therefore, also all

other rows). In the familiar p = 4, TF(3) example, the back substitution takes the

following form. First, we solve

U3~y3 = ~a3

and, correspondingly, in outward direction:

U−

4 ~y4 = ~a4 −N−

3 ~y3

U+
2 ~y2 = ~a2 −N+

2 ~y3

U+
1 ~y1 = ~a1 −N+

1 ~y2

So far, we have not specified, which one of the p possible block twisted factoriza-

tions to use in the inverse iteration process. The choice of one of these factorizations



is closely related to the starting vector v̂(0) of inverse iteration. In fact, we will utilize

the information provided by all the block twisted factorizations of W (p) − λ̂I for

determining a suitable starting vector v̂(0). The idea which motivates this procedure

is that for a properly chosen starting vector a single step of the inverse iteration

process should suffice for determining a good approximation of the eigenvector v.

(In contrast to standard inverse iteration, which repeats the process of solving the

system of equations until convergence)

3.1.4 Connection of the Twisted Factorization to the In-

verse of the Matrix

In 1997, Parlett and Dhillon [10] defined a way to compute eigenvectors of tridi-

agonal matrices using only a single step of inverse iteration given a very accurate

approximation to the eigenvalue. For the purpose of determing the optimal starting

vector, they were using twisted factorizations, showing the connection of the element

where the forward and backward factorization meet with the corresponding diagonal

element of the inverse of the matrix and the residual of the resulting approximation

to the eigenvector. This approach can be extended to block tridiagonal matrices.

For each possible blocked twisted factorization TF (k), 1 ≤ k ≤ p with blocks of

dimension b× b, we define a b× b block Γk (which, therefore, corresponds in its size

to the blocks of the twisted factorization) and a n × b matrix Z (whereof the kth

block Zk = I, and the dimensions of Z+ and Z− depend on k. Z+ is a b(k − 1)× b

matrix, while Z− is a b(p− k)× b matrix). Let there be

W (p)











Z+

I

Z−











=











0

Γk

0











(3.3)

If we use (W (p)− λI) instead of W (p) in the above equation, it becomes clear

that Z must be a good approximation to the eigenvector corresponding to λ, if ‖Γk‖
is very small. We, therefore, in the following prove that Equation (3.3) exists.

By omitting the kth row of blocks in this equation, there are two remaining

homogeneous systems: One based on forward block LU factorization and the other

based on backward block LU factorization. In our notation, U1:k−1 denotes the whole



submatrix (1 : k − 1, 1 : k) of U in the LU factorization W (p) = LU (including the

blocks denoted by M or N):

U1:k−1 =

















U+
1 N+

1

U+
2 N+

2

. . .
. . .

U+
k−1 N+

k−1

















Uk+1:p =

















N−

k+1 U−

k+1

N−

k+2 U−

k+2

. . .
. . .

N−

p U−

p

















When referring to a particular block, it carries only a single index (e.g., Mk).

The two (independent) systems in Equation (3.3) are

L+
1:k−1U

+
1:k−1Z

+ = 0 (3.4)

and

L−

k+1:pU
−

k+1:pZ
− = 0 (3.5)

Assuming that the LU factorization exists, the matrices L+
1:k−1,U

+
1:k−1, L−

k+1:p and

U−

k+1:p must be invertable. We, therefore, can premultiply Equations (3.4) and (3.5)

by the respective inverses to obtain

U+
1:k−1Z

+ = 0 (3.6)

U−

k+1:pZ
− = 0 (3.7)

Recalling the structure of U in Equation (2.8) (for the example of W (4), TF (3)) :

















U+
1 N+

1

U+
2 N+

2

U3

N−

3 U−

4

































Z1

Z2

I

Z4

















=

















0

0

Γk

0



















(where





Z1

Z2



 = Z+ and Z4 = Z−) the last row of blocks of equations in Equa-

tion (3.6) is

U+
k−1Zk−1 + N+

k−1Zk = 0 (3.8)

while the first row of blocks of equations in Equation (3.7) is

N−

k+1Zk + U−

k+1Zk+1 = 0 (3.9)

Since Zk = I, we can solve for the respective blocks of Z:

Zk−1 = −
(

U+
k−1

)−1
N+

k−1 (3.10)

Zk+1 = −
(

U−

k+1

)−1
N−

k+1 (3.11)

With these solutions we draw our attention again on Equation (3.3)

















B1 C1

A2 B2 C2

. . .
. . .

. . .

Ap Bp

















.











Z+

I

Z−











=











0

Γk

0











and select the kth row of blocks. Thus, we obtain the following equation

AkZk−1 + Bk + CkZk+1 = Γk (3.12)

We can now substitute Zk−1 and Zk−1 by Equations( 3.10) and (3.11)

−Ak

(

U+
k−1

)−1
N+

k−1 + Bk − Ck

(

U−

k+1

)−1
N−

k+1 = Γk (3.13)

Recalling that according to Section 2.1.4 Ak = M+
k U+

k−1 and, therefore, M+
k =

Ak

(

U+
k−1

)−1
and M−

k = Ck

(

U−

k+1

)−1
. We obtain

Γk = −M+
k N+

k−1 + Bk −M−

k N−

k+1 (3.14)

which, in our notation, according to Section 2.1.4 also means



Γk = LkUk (3.15)

With the definition of Γk we can look at another aspect of Equation (3.3), which

can also be written as











Z+

I

Z−











= W (p)−1











0

Γk

0











By looking at the kth row of blocks

I = W (p)−1
(k,k)Γk

where W (p)−1
(k,k) denotes the kth block in the kth row of block of the inverse

(W (p)−1) of W (p) we can also find a relation of Γk to the corresponding diagonal

block of the inverse of the matrix W (p)

Γ−1
k = W (p)−1

(k,k) (3.16)

This means that the inverse of Γk is the main diagonal block of the kth row of

the inverse of W (p).

To use Equation (3.15) to approximate an eigenvector of (W (p)− λ̂I), according

to Parlett and Dhillon[10] we have to compute all Γ and find Γ̂k with the minimal

singular value. Let

Γ̂kv = uσmin, ‖u‖ = ‖v‖ = 1 (3.17)

define a minimal singular triple(σmin, u, v). Then

W (p) (Z~v) =











~0

u

~0











σmin (3.18)

If σmin is small enough, then Z~v is a good initial approximation to an eigenvector

of W (p).



An Alternative Derivation

The above block-wise derivation can, in principle, also be extended to a scalar choice

of the starting position (and, therefore, the starting vector for inverse iteration). To-

gether with the relation in Section 3.1.5, we can use twisted block LU factorizations

to evaluate the quality of each possible position of the starting vector. For this pur-

pose, we use a vector ~z of length n, which can be subdivided into p smaller vectors

of length b (instead of the n× b matrix Z of the above block-wise derivation):

~z =

















~z1

~z2

...

~zp

















, ~z(s) = 1, (k − 1)b + 1 ≤ s ≤ kb

On position s, the vector ~z equals 1 and s is located in the subvector ~zk (which

corresponds in its position to the kth row of blocks). This establishes the relation

to a single position of the eigenvector (by omitting the equation corresponding the

respective position of the eigenvector). Let there be

W (p)~z = ~esγs (3.19)

Where W (p) is our block tridiagonal matrix and ~es is a vector which, except for

the sth entry (located in the kth row of blocks) contains zeros (es(s) = 1, ‖~z‖ = 1)

If we omit the kth row of blocks of this equation, there are again two remaining

homogeneous systems (one corresponding to the forward factorization part, the other

corresponding to the backward factorization). We thus obtain

L+
1:k−1U

+
1:k−1~z1:k−1 = ~0 (3.20)

L−

k+1:pU
−

k+1:p~zk+1:p = ~0 (3.21)

We premultiply Equations (3.20) and (3.21) by the respective inverses to obtain

U+
1:k−1~z1:k−1 = ~0 (3.22)

U−

k+1:p~zk+1:p = ~0 (3.23)



Now the last row of blocks of equations in Equation (3.22) is

U+
k−1~zk−1 + N+

k−1~zk = 0 (3.24)

while the first row of blocks of equations in Equation (3.23) is

N−

k+1~zk + U−

k+1~zk+1 = 0 (3.25)

We now solve for the respective subvectors of ~z:

~zk−1 = −
(

U+
k−1

)−1
N+

k−1~zk (3.26)

~zk+1 = −
(

U−

k+1

)−1
N−

k+1~zk (3.27)

The kth row of blocks in Equation (3.19) is

Ak~zk−1 + Bk~zk + Ck~zk+1 = es((k − 1)b + 1 : kb)γs (3.28)

where we use Equations (3.24) and (3.25) to find

−Ak

(

U+
k−1

)−1
N+

k−1~zk +Bk~zk−Ck

(

U−

k+1

)−1
N−

k+1~zk = ~es((k−1)b+1 : kb)γs (3.29)

The left hand side of Equation (3.29) we can substitute by

−Ak

(

U+
k−1

)−1
N+

k−1~zk + Bk~zk − Ck

(

U−

k+1

)−1
N−

k+1~zk = Γk~zk (3.30)

where Γk is the same as in Equation (3.30). We thus obtain

Γk~zk = ~es((k − 1)b + 1 : kb)γs (3.31)

By premultiplying both sides with Γ−1
k and looking at the sth equation only we

can see that

γ−1
s = [Γ−1

k ]s,s (3.32)

which, according to Equation (3.16), is also related to the inverse of W (p).

However, the calculation of the inverse of W (p) is not a viable procedure to

determine γs. We therefore reformulate Equation (3.31) to find



Γk
~z

γs

= ~es

If ~g = ~z
γs

we can solve the equation

Γk~g = LkUk~g = es (3.33)

for each position s in each block twisted factorization k. Thus, we can calculate γs

with

γs =
~z(s)

~g(s)
=

1

~g(s)
(3.34)

The additional computational costs for this procedure would amount to only

2nb2 floating point operations (for all backward and forward substitutions only in

order to calculate ~z(s) from LkUkzs = es), since the LU-factorizations necessary for

solving the system of equations of each Γk were already computed for the twisted

factorization. Thus, it should be possible to find the position of the largest entry of

the eigenvector.

3.1.5 Connection of γ to the Eigenvector

For the computation of an eigenvector v we need to determine all γs (meaning, for

each possible position in the eigenvector we have to evaluate its suitability as a

starting position for inverse iteration) where

(W (p)− λI) ~zs = ~esγs , ~zs(s) = 1, s = 1, · · · , n (3.35)

If the shift λ is a good approximation to a true eigenvalue, for any s,

‖(W (p)− λI) ~zs‖ = |γs| (3.36)

Thus, by determining the position s with the minimal γs, we minimize the resid-

ual associated with the computed eigenvector zs.

In the next section, we will empirically evaluate different approaches to select

the starting vector based on γs and Γk



3.1.6 Choice of Starting Vector

In the following, we motivate and specify several strategies for determining the

starting vector v̂(0) for the inverse iteration process on W (p) − λ̂I. In Section 4.1,

these strategies are compared experimentally in terms of the resulting quality of the

eigenvector approximation if only one step of inverse iteration is performed.

Generally, we restrict ourselves to starting vectors v̂(0) with an element of value

one in position j and zeros in all other positions (except in reference implementation

Sr). When solving a block bidiagonal system with such a vector v̂(0) as the right

hand side, all entries of the solution vector below position j will be zero. Thus, in

the following we will call the position j “starting position” of the back- or forward

substitution process and often identify this starting position with the starting vector

v̂(0) (since j completely determines v̂(0)).

Scalar Strategies

• Strategy Sr: As a reference strategy, we picked a starting vector with random

entries between −1 and +1 at each position, which corresponds to standard

inverse iteration.

• Strategy Ss: For tridiagonal matrices, there is a correlation between the

components of the eigenvector and the corresponding diagonal elements of the

upper bidiagonal matrix U of the LU factorization [10]. Consequently, one

way for picking the starting vector v̂0 is to derive it from the position of the

diagonal element of U with the minimum absolute value over all possible block

twisted factorizations.

In block tridiagonal matrices this strategy is motivated by Equations 3.33 and

3.34. If ~g(s) is very large then γs (and, consequently, the residual of the ap-

proximation to the eigenvector) will be small. Now according to Equation 3.2

~g(s) is probably large, if Uss is very small, i.e., if Uss <<

(

~ci −
n
∑

j=/s+1

Uij~gj

)

,

where ,in this case, ~c denotes the solution to Lk~c = ~es. (Note that since the

determinant of a triangular matrix is given by the product of its main diagonal

entries, there is also a relation of the main diagonal entries to the eigenvalues

of the block. Thus, there might also be a relation to block strategy Sb4)



If |Umm| is minimum over all diagonal entries of the factors U of all possible

twisted factorizations, then v̂0 is defined as a vector of zero entries except for

position m, where the entry is one, and the factorization which contains this

minimum diagonal element |Umm| is used for solving the linear system.

Block Strategies

In addition to scalar strategies, it seems important to investigate block-oriented

strategies for block tridiagonal matrices. Most block strategies are motivated by

Equation 3.3. If a suitable norm of Γk is small, then the residual of the approximation

to the eigenvector should also be small.

Identifying a starting block instead of a scalar starting position in principle allows

for determining bi different scalar starting positions and thus potentially for approx-

imating bi different eigenvectors for an eigenvalue with multiplicity higher than one.

The basic idea is to use a n× b matrix of starting vectors which has a b× b matrix

with entries of value one along the main diagonal in the rows corresponding to the

starting block. The strategies defined in the following only differ in the heuristic for

determining the starting block m.

• Strategy Sb1: m is the block number for which the infinity norm (i.e., the

largest sum of the entries of a row : ||A||∞ = max
i

n
∑

j=1

|aij |) of ||LiUi||∞ is

minimum over all diagonal blocks over all possible twisted factorizations LU .

• Strategy Sb2: m is the block number for which ‖LiUi‖∞/‖Bi− λ̂I‖∞ is min-

imum over all diagonal blocks B over all possible twisted factorizations LU

(Bi is the corresponding diagonal block in the original matrix W (p)).

• Strategy Sb3: m is the block number for which ‖LiUi‖∞/‖Li+1Ui+1‖∞ is

maximum over all main diagonal blocks over all possible twisted factorizations

LU (strongest decrease in the norm of diagonal blocks).

• Strategy Sb4: m is the number of the block which has the smallest singular

value over all diagonal blocks LiUi over all possible twisted factorizations [10].



Chapter 4

Results and Discussion

4.1 Experimental Evaluation

In this section, we summarize extensive experimental evaluations of the concepts

outlined in Section 3.1. After a discussion of the test data used, the accuracy of the

twisted block factorization process (as outlined in Section 2.1), the residuals of the

computed eigenvectors, their orthogonality, and the subspaces spanned by subsets

of the computed eigenvectors are investigated. We also discuss the use of block

strategies for solving eigenvectors for multiple eigenvalues. Finally, the runtime

performance of the proposed method is evaluated and compared with competing

approaches.

4.2 Test Data

Seven different types of symmetric block tridiagonal matrices were generated and

used for testing purposes. The types denoted by A1 to A6 are characterized by a

certain distribution pattern of their eigenvalues and were generated using software

written by Y. Bai.

• Type R matrices contain random entries in [0, 1].

• Type A1 matrices have eigenvalues which are clustered around ±εmach .

• Type A2 matrices have eigenvalues which are clustered around ±1.
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• Type A3 matrices have eigenvalues which are geometrically distributed from

±1 to εmach .

• Type A4 matrices have eigenvalues which are arithmetically distributed from

±1 to εmach .

• Type A5 matrices have eigenvalues whose logarithms are uniformly distributed

from 1 to ±εmach .

• Type A6 matrices have eigenvalues which are random and uniformly dis-

tributed in [−1, 1].

The eigenvalue distributions for concrete test matrices of dimension n = 500 are

depicted in Figure 4.1. (Matrices of Type R are not depicted in Figure 4.1. Their

eigenvalues were distributed between -4 and 9, with the majority of eigenvalues

lying between -2 and 2. The minimal absolute gap between two eigenvalues in R

was 5.0 · 10−5).

While most matrix types (R, A3, A4, A5 and A6) are good test systems inas-

much as they represent most normal matrices, matrix types A1 and A2 prove to be

especially difficult test cases due to the tight clustering of eigenvalues.

4.3 Comparing Strategies for Selecting the Start-

ing Position

In order to determine the best strategy for the selection of the starting position

for the back substitution, 20 eigenvalues (every 25th eigenvalue in increasing order)

were selected from matrices of dimension n = 500 for all matrix types introduced

in Section 4.2 and the six different strategies for determining the starting vector v̂0

introduced in Section 3.1.6 were compared. The different strategies were evaluated

based on two criteria: First, the residual resulting from the selected start vector

(es). Second, the percentage of correctly computed eigenvectors: an eigenvector was

considered to be correct if it pointed in the same direction as the corresponding

eigenvector computed with LAPACK/dsyevd. This was considered the case if the

scalar product between the two vectors (i.e., once obtained with twisted factoriza-

tions and once by normal means) was greater than 0.99.
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Figure 4.1: (A) Eigenvalue distributions of all test matrix types with a bin width

of 0.02. (B) depicts the two very tight clusters of a Type A1 matrix around ±εmach

with a bin width of 2.0 · 10−19, while (C) illustrates the tight cluster of eigenvalues

around +1 of a Type A2 matrix with a bin width of 10−15 and α = 10−13. As in

illustration (A), the x-axis shows the value of the eigenvalue, while axis y denotes

the number of eigenvalues within each bin.



Table 4.1 summarizes the comparisons of the different strategies for determin-

ing the starting vector v̂0. Column “R̄” lists the average residual (i.e., R̄ =

‖(W (p)− λI)v̂‖) over all 140 eigenvector calculations for all matrix types. Column

“overall” lists the average percentage of correctly computed eigenvectors consider-

ing all 140 eigenvector calculations of all matrix types. Columns “R-5” to “A6”

list the average percentage of correctly computed eigenvectors over 20 eigenvector

calculations using the respective matrix type for the respective strategy for select-

ing the starting position (e.g., one correctly predicted eigenvector out of 20 would

yield a result of 5%). The first six rows in Table 4.1 represent the strategies intro-

duced in Section 3.1.6, whereas the last two rows show the results achieved with two

theoretical reference strategies which are not applicable in practice: row “Sminres”

corresponds to selecting the starting vector (es) which yields the smallest residual

over all possible starting positions (s) in all block twisted factorizations. There-

fore, it represents the highest theoretical accuracy which can be achieved by using

a starting vector for inverse iteration with all zeros except for the position s, where

es(s) = 1 and ‖es‖ = 1. Row “Soptevec”, on the other hand, corresponds to the

starting position which yields the largest scalar product (best agreement) with the

corresponding eigenvector computed using LAPACK/dsyevd over all possible starting

positions in all block twisted factorizations. This approach is necessary, since in

cases of very tight clusters of eigenvalues (i.e., with gaps close to machine preci-

sion εmach) it is possible to achieve a good residual by calculating the eigenvector

of a neighboring eigenvalue instead of the true eigenvector, which corresponds to

the eigenvalue closest to the shift (i.e., in these cases the residual is not a reliable

indicator for the quality of an eigenpair).

Both the scalar strategy Ss (based on the position s of the minimal diagonal

element in all U) and the strategy Sb4 (based on the block with the minimal ab-

solute eigenvalue) consistently yield the best residuals and percentages of correctly

computed eigenvectors, and their performance is very close to that of the theoret-

ical reference strategies. Compared to the reference implementation Sr (which is

based on a random vector with entries in each element between −1 and +1.) both

strategies Ss and Sb4 show a superior residual, surpassing the mean residual of Sr

by several orders of magnitude. In the light of these results, we can conclude that



Table 4.1: Comparison of five different strategies for selecting the starting position

for back substitution for seven different matrix types over 20 eigenvalue calculations

in terms of resulting residual and percentage of correctly computed eigenvectors.

All test matrices had dimension n = 500 and block size b = 5.

Strategy R̄ correctly computed eigenvectors [%]

overall R-5 A1 A2 A3 A4 A5 A6

Sr 1.89 · 10−11 69 100 5 0 90 100 90 100

Ss 1.53 · 10−15 72 100 5 10 90 100 95 100

Sb1 0.10 25 95 0 0 10 50 5 15

Sb2 0.02 48 100 0 0 75 100 15 45

Sb3 0.06 37 100 5 0 25 70 25 35

Sb4 1.77 · 10−14 70 100 5 0 90 100 95 100

Sminres 9.10 · 10−16 67 100 5 5 90 100 95 100

Soptevec 7.57 · 10−12 74 100 10 20 90 100 100 100

employing blocked twisted factorizations can significantly improve the performance

of the first step of inverse iteration.

On the other hand, all block strategies, with the noteable exception of strategy

Sb4, were unable to give consistently satisfactory results. While all strategies seem

to be effective in matrix type R-5, most block strategies fail in matrix types A1,

A2, A5 and A6. Selection scheme Sb2 seems to be more or less successful in matrix

types A3 and A4, but also fails in A5 and A6, so its overall performace is far from

adequate. Strategies Sb1 and Sb3 do not yield acceptable results in any matrix type

except matrix type R-5. We correspondingly conclude that the only viable block

strategy is Sb4, which is the computationally most costly strategy, depending on the

absolute values of the singular values of the block, contrary to simple matrix norms

(like, e.g., the infinity norm ‖X‖∞) in the cases Sb1 − Sb3.

As expected, Table 4.1 also illustrates that in cases with tightly clustered eigen-

values (test matrices A1 and A2) there are many instances where no starting posi-

tion yields accurate eigenvectors with a single step of inverse iteration (compared to

LAPACK/dsyevd, see row “Soptevec), even though the residuals in A1 and A2 are also



very small (data not shown). This demonstrates that the effectiveness of starting

vectors based on a single entry (as well as random starting vectors as in case of Sr) is

limited. While it possible to improve the results for the first step of inverse iteration,

there seem to be cases where a single step of inverse iteration is not enough to satisfy

a low residual and orthogonality of the eigenvectors. Other test matrices, e.g., ma-

trix type R-5 (which is filled with random entries) lead to good results irrespective

of the strategy for the selection of the starting vector for inverse iteration. These

matrix types are, therefore, unable to discriminate between effective and inadequate

selection schemes for the starting vector.

As mentioned before, an eigenvector was considered computed correctly if the

scalar product with the corresponding eigenvector as obtained from LAPACK/dsyevd

was larger than 0.99. Obviously, the choice of this threshold influences the percent-

age of correctly computed eigenvectors. If a more stringent criterion for “correct-

ness” is applied (a threshold for the scalar product of 0.999999 instead of 0.99), the

overall percentage of correctly computed eigenvectors over all matrix types using

the strategies Soptevec, Ss and Sb4 become almost equal (dropping to approximately

61.67%). This indicates that these two selection strategies yield the most accurate

results possible with a single step of inverse iteration.

We conclude that the strategies Ss and Sb4 yield in general the best results.

Whereas Ss is slightly cheaper than Sb4 (the difference depends on the block size),

it does not provide a guideline how to compute a basis for a subspace correspond-

ing to an eigenvalue with multiplicity greater than one. In the following, we will

focus on strategy Ss, except for Section 4.8, where we specifically consider higher

multiplicities of eigenvalues and discuss more experiments with strategy Sb4.

4.4 Accuracy of Twisted Block Factorization

The procedure outlined in Section 2.1.4 for computing the twisted LU factorization

of W (p) has been implemented in the Fortran routine DSYBTTWF. To test the

numeric reliability of such factorizations, multiple tests were conducted. Figure 4.2

depicts the common logarithms of the mean and standard deviation of the factor-

ization error ‖LU −W (p)‖∞ of factorizations conducted for fifty different shifts in



the respective matrix type based on selection strategy Ss (see Section 3.1.6). All

matrices used were of dimension n = 500, and the shifts used correspond to every

tenth eigenvalue.
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Figure 4.2: Variation of the factorization error ‖LU −W (p)‖∞ over fifty different

shifts for different matrix types and block sizes. The first part of the labels on the

x-axis denotes the matrix type (e.g., “A1” or “R”), and the second part after the

hyphen denotes the block size b.

With the notable exception of matrix type A1 (which generally contains smaller

entries than the other matrices), all factorization errors have approximately the same

order of magnitude. The mean factorization error grows slightly with increasing

block size, as can be seen on the right side of Figure 4.2 for increasing block sizes

of random matrices by drawing an imaginary regression line through A1-5, A1-50

and A1-500, while considering A1-100 to be an outlier. (Which is not surprising

since more floating point operations are involved in matrices with increasing block

sizes.). Therefore, we conclude that the numerical accuracy of the block twisted

factorization (which is generally quite high) will not significantly affect the final

result of inverse iteration.



Furthermore, we tested whether the quality of the blocked twisted factorization

is affected by selecting a shift within a cluster of eigenvalues or by choosing an

isolated eigenvalue. For this purpose, we calculated all twisted factorizations for

the smallest eigenvalue of matrix type A1, which is an isolated eigenvalue at −1

and for eigenvalue number 301 of matrix type A1, which is located in a cluster of

eigenvalues around +εmach , to determine the factorization errors.: While using an

isolated eigenvalue as shift resulted in an average factorization error of 4.26 · 10−17

±9.71 · 10−18, a shift from a cluster of eigenvalues resulted in an error of 4.21 · 10−17

±4.86 · 10−18. We, therefore, conclude that the selection of the shift does not have

a great impact on the quality of the twisted factorization.

4.5 Residuals

To verify the overall performance of the starting position prediction method Ss,

Figure 4.3 shows the distribution of the residuals of 9000 eigenvector calculations.

For data generation, all eigenvalues of all six matrix types with dimensions 500 and

1000 (thus in total 1500 data points per matrix type) were used. In Figure 4.3,

the frequency of the corresponding residual is plotted versus the common logarithm

of the residual. The residual ranges between 1.2 · 10−12 and 2.4 · 10−34. Overall,

the mean residual is 2.2 · 10−19, while the median is at 1.4 · 10−16 (which is slightly

higher than εmach = 1.1 ·10−16), a result which is quite satisfactory, since the largest

peak of the gaussian-like distribution lies below nεmach . The second peak at about

1.0 · 10−32 can be mainly attributed to the distribution of shifts in matrix type A1

(Obviously, the matrix entries in A1 are generally smaller than in other matrix types.

Therefore, the associated residuals are shifted to left on this plot). Since in normal

inverse iteration residuals up to
√

εmach can be expected (which, in our case, would

amount to 1.1 · 10−8), the shown data demonstrates that all eigenvectors calculated

with block twisted factorizations and starting vector selection strategy Ss surpass

this threshold by several orders of magnitude, leading to good residuals.

Also, the dependence of the residual on the quality of the shift was studied,

since the accuracy of the shift is a key factor for the algorithm. For this purpose, we

selected a type A6 matrix of dimension 500× 500 and calculated all 500 eigenvalues
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Figure 4.3: Distribution of the residuals of 9000 eigenvector calculations.

of this matrix. The shift were set to equal to all eigenvalues, the corresponding

eigenvectors were calculated and the mean residuals and their standard deviations

determined. In the next step, each shift was perturbed by a certain deviation (once

in positive, once in negative direction) and, again, the mean residuals and their stan-

dard deviations were determined. This was done for multiple orders of magnitude

of the shift perturbation. The results of this experiment are shown in Figure 4.4.

In Figure 4.4, the common logarithm of the perturbation of the shift is plotted

versus the corresponding mean residuals and their standard deviations. As shown

in this figure, a linear relationship between the perturbation of the shift and the

resulting residual exits. Thus, (at least in the case of matrix type A6) the quality

of the resulting eigenvector, as far as the residual is concerned, does not heavily

depend on the accuracy of the shift (i.e., the algorithm is quite stable as far as

this property is concerned, since the dependence is not quadratic or otherwise non-

linear). Based on this data, it would be admissible to implement the algorithm also

in other regimes of precision (e.g, single precision) without suffering disproportionate

penalties on accuracy. Also we can see that the curve of the residuals starts to flatten
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Figure 4.4: Dependence of the residual on the quality of the shift. Using a 500×500

matrix of type A6 the mean residuals and the corresponding standard deviations

were calculated for 500 different shifts. Each shift was perturbed by adding errors of

different magnitude in both positive and negative direction. Thus, each data point

is a mean of 1000 residuals.



after perturbations higher than 0.001, suggesting, on the other hand, that there is

a minimal acceptable precision of the eigenvalue.
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Figure 4.5: Dependence of the residual on the quality of the shift for multiple matrix

types.

To demonstrate that the linear relationship between perturbation and resulting

residual is also given in other matrices, a similar procedure as mentioned above

was conducted for other matrix types. The resulting data is shown in Figure 4.5.

However, this time only a single eigenvalue of each matrix type was selected (with

the exception of matrix type A1, where one isolated eigenvalue and one eigenvalue

located in a cluster of eigenvalues were selected as shifts) and the perturbations were

only conducted in negative direction (i.e., the amount of the perturbation of the

shift was always subtracted from the true eigenvalue). Although the data lines are

more noisy than in the previous plot (due to limited sampling) a linear relationship

between perturbation of the shift and resulting residual is clearly present in all

matrix types. Also, there does not seem to be any relation to the presence or

absence of clusters of eigenvalues in vicinity to the shift (as demonstrated by the

similar results for an isolated eigenvalue in matrix type A1, denoted as “A1.1000



Singleton“ and an eigenvalue from a cluster of eigenvalues, denoted as ”A1.1000

Cluster” in Figure 4.5), as far as the residual is concerned.

In Table 4.2, we give a short overview of some noteworthy examples of eigenvector

computations. The first column denotes the matrix type, the dimension n and the

block size b of the matrix. The second column indicates the index of the eigenvalue

that has been used as shift (all eigenvalues being indexed in increasing order). The

third column gives the residual of the eigenpair obtained for the predicted starting

position of the back substitution. The following column shows the ratio of the

residual of the predicted starting position to the minimal residual obtained over

all potentially possible starting positions and all factorizations (i.e., a “1.0” in this

column means that strategy Ss leads to the optimal starting vector, while higher

values show that there are -in theory- better starting vectors). The penultimate

column gives the number of starting positions (out of 500 possible positions for the

starting vector), which yield a smaller residual than the predicted starting position.

Finally, the last column shows the so-called “Computational Multiplicity”, which

is the number of different eigenvectors obtained by all possible starting positions

over all factorizations for a given shift. (Note that computational multiplicity of

different eigenvectors due the different starting positions es given a single shift is

not equivalent with the notion of geometric multiplicity in eigenvalues, i.e. the

dimension of the eigenspace associated to a single eigenvalue, or the number of

linearly independent eigenvectors with that eigenvalue.) For this purpose, the result

of each starting position with a residual below 8.5 · 10−13 was compared with all

eigenvectors calculated by LAPACK/dsyevd. If the scalar product between the result

of the starting position and the Lapack-eigenvector was above 0.7 (corresponding

to an angle below ∼ 45 degrees)1 , the result was considered to be corresponding

to this Lapack-eigenvector. Thus, computational multiplicity gives the number of

different Lapack-eigenvectors encountered over all starting positions.

The first two test cases in Table 4.2 were taken from matrix type A1, which

1Contrary to the first experiments in this section, we do not want to evaluate the accurateness

of the resulting eigenvectors using a single step of inverse iteration. Instead, this experiment is

supposed to determine how many different eigenvector can potentially be computed with a single

shift (e.g., using more steps of inverse iteration). For this purpose, the threshold for the scalar

product with the eigenvectors resulting from LAPACK/dsyevd had to be lowered in this context.



Table 4.2: Comparison of eigenvectors computed for different matrices and different

eigenvalues.

Matrix # EV Residual Res./min.res. # Better start. pos. Mult.

A1.500-5 1 1.0 · 10−16 1.0 0 1

A1.500-5 301 2.2 · 10−26 1.0 58 65

A3.500-5 1 2.9 · 10−16 1.5 4 1

A3.500-5 301 1.4 · 10−16 1.0 1 28

A6.500-5 1 1.1 · 10−15 2.8 5 1

A6.500-5 301 1.0 · 10−15 3.1 25 1

contains an isolated eigenvalue at -1 and two clusters of eigenvalues around ±εmach .

While the first line shows the aforementioned isolated eigenvalue, which results in

a good residual and no computational multiplicity, the second eigenvalue (301) was

taken from the middle of a cluster. The computational multiplicity determined as

described above is 65, which, however, does not reflect the actual size of the cluster

(ca. 250 eigenvalues, since there a two clusters in A1: One at −εmach and one at

+εmach). On the other hand, this experiment demonstrates that it is (in princi-

ple) possible to obtain multiple eigenvectors from a single shift, if the gaps of the

eigenvalues are relatively small. Interestingly, the residual of the eigenpair from a

cluster of eigenvalues is lower than in the isolated case, which indicates that the

residual is not necessarily a good measure for the quality of the result (as far as

other important issues like, e.g. orthogonality of the eigenvectors) are concerned.

Test cases three and four in Table 4.2 were taken from the matrix type A3, which

also contains an isolated eigenvalue at -1 and geometrically distributed eigenvalues

between ±1 and ±εmach . Again, using a shift corresponding to an isolated eigen-

value, as shown in line three of Table 4.2, leads to only a single eigenvector over all

possible starting positions with acceptable residual (i.e., without any computational

multiplicity), whereas the eigenvalue # 301 taken from a cluster of eigenvalues has

a higher computational multiplicity (in the sense that different starting positions of

the same shift lead to different eigenvectors). However, the computational multi-

plicity of the eigenvalue in row number four (A3.500-5 #301) of Table 4.2 is lower



than in row number two (A1.500-5 #301), which could be explained by the lower

density of eigenvalues in the cluster of matrix type A3 (because of their geometric

distribution). Also, the residuals of the isolated eigenvalue and the eigenvalue from

a cluster region do not differ as strongly as in the first two test cases. The final

two test cases were taken from matrix type A6, whose eigenvalues are randomly dis-

tributed between ± 1. In these two cases, computational multiplicity does not pose

any problem, which corresponds to our expectations (since no clusters of eigenvalues

are present in A6). Interestingly, although matrix type A6 is totally unproblematic

as far as computational multiplicity is concerned, the residuals of the eigenvectors

are slightly higher than in the previous examples.
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Figure 4.6: Distribution of the distances of the selected eigenvalues from the test

matrices in Table 4.2 to all other eigenvalues of these test matrices (the bin width

of the common logarithms is 0.1).

To better illustrate the dependency of computational multiplicity on the selection

of a shift which lies within a cluster, the distances between a selected eigenvalue and

all other eigenvalues in the matrix are shown in Figure 4.6. The curves are named

after the matrix type and the index of the selected reference eigenvalue (e. g., the



distance histogram of the isolated eigenvalue number 1 of matrix A1 is denoted as

A1-1). In this figure the common logarithm of the absolute gap between the eigen-

values is plotted versus the frequency at which a certain gap occurs (for a bin width

of the common logarithms of 0.1). While eigenvalues with a computational multi-

plicity of one (A1-1, A3-1, A6-1 and A6-301) correlate with gaps between 1.0 · 10−1

and 1.0·100, the gaps of eigenvalues with higher computational multiplicity (A1-301)

can be related to two main clusters (at 1.0 ·10−26 and 1.0 ·10−15) and some eigenval-

ues lying in between. However, in the case of A1-301, not always the eigenvectors

corresponding to the closest eigenvalues (with indices around 301) are included in

the “subspace“ for the shift (i.e., all different eigenvectors obtained from all possi-

ble starting positions using a single shift), but rather eigenvectors corresponding to

eigenvalues with indices between 69 and 493 (with corresponding absolute gaps of

2.2 ·10−16 and 3.1 ·10−17). Notably, the Lapack-eigenvector corresponding to eigen-

value 301 is not present in the subspace corresponding to the shift. This indicates

that below a certain gap there are some ”dominant“ eigenvectors which are easy

to compute, while other eigenvectors are more difficult to obtain, even if the shift

represents a good approximation to the eigenvalue. This means that below a certain

gap in a cluster of eigenvalues it is not guaranteed to obtain an eigenvector for every

eigenvalue in this cluster by means of inverse iteration with a general starting vector

es (which contains only a single non-zero entry at position s). In such a case, the

approach discussed in this thesis will most likely fail.

The computational multiplicity of A3-301 correlates with the size of the cluster

at ∼ 1.0 · 10−14, but the dimension of the subspace determined computationally

is actually lower than the number of eigenvalues in this cluster and the subspace

contains eigenvectors corresponding to eigenvalues between indices 208 and 323.

However, in this case, not only eigenvector 301, but also the neighboring eigenvectors

300 and 302 are included in the computational multiplicity. This also indicates

that small gaps lead to higher computational multiplicities, but not all eigenvectors

corresponding to the eigenvalues of the cluster are necessarily represented in the

computational multiplicity(i.e., all different eigenvectors obtained from all possible

starting positions using a single shift).



4.6 Orthogonality of the Computed Eigenvectors

Figure 4.7 shows the common logarithms of the scalar products of the eigenvectors

computed with strategy Ss for all different eigenvalues in all matrix types used (the

eigenvalues are sorted in ascending order, i.e. the first eigenvalue is the smallest).

The x and y axes show the corresponding indices of the eigenvectors involved, and

the colour scheme is scaled logarithmically.

The larger scalar products close to the diagonals from bottom left to top right in

the cases A1 to A5 indicate that closer eigenvalues tend to yield larger scalar prod-

ucts of their associated eigenvectors. This shows that smaller gaps lead to larger

scalar products of the resulting eigenvectors, i.e., the eigenvectors are not orthog-

onal. The same holds true for eigenvalues located within a cluster (corresponding

to rectangles in the plot), which is clearly illustrated in matrix types A1 and A2,

where the two clusters at ±εmach can be distinguished by two rectangular patterns

(associated with high scalar products, i.e., lack of orthogonality of the resulting

eigenvectors). Interestingly, also the eigenvectors corresponding to eigenvalues with

similar absolute value can have larger scalar products, as indicated by the top left to

bottom right diagonals in the x-like structures for matrices A3, A4 and A5. However,

whether this can be attributed to the method itself or to the way the matrix was

constructed remains elusive. Matrix A6, on the other hand, shows unproblematic

behavior with most scalar products in the same range for all possible combinations

of eigenvectors computed. This is obviously due to the random uniform distribution

(and, therefore, large relative gaps) of the eigenvalues of matrix A6.

For a visual comparison, we show the common logarithms of the associated

relative gaps between pairs of eigenvalues in Figure 4.8.

By comparing Figure 4.7 and Figure 4.8 it becomes clearly discernable that the

indices of eigenvalues with small relative gaps (the darkish areas in Figure 4.8)

correspond to indices with large scalar products of the resulting eigenvectors (the

dark areas in Figure 4.7).

Another perspective is shown in Figure 4.9, where the mean scalar product of

each eigenvector with all other eigenvector results in the matrix are given. In this

plot, it is easy to see that all eigenvectors in A1 and A2 (with the notable exception

of the eigenvectors corresponding to the isolated eigenvalues) are not orthogonal, but
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Figure 4.7: Scalar products of the computed eigenvectors for the different matrix

types using two different representations. While in the upper half all scalar products

above machine precision (εmach) are shown (in colour), only the most severe cases

(above
√

εmach) are shown in the lower plots (in greyscale). Also, the percentage

of correctly predicted eigenvectors is given. (An eigenvector was considered to be

correct, if the scalar product with an eigenvector as computed by LAPACK/dsyevd

was greater than 0.99)
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Figure 4.8: Log10 of the relative gaps between eigenvalues for the different matrix

types.
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Figure 4.9: Means of the common logarithms of the scalar products of each eigen-

vector with all other eigenvectors for each index of the eigenvalues.
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Figure 4.10: Orthogonality of computed eigenvectors depending on absolute gaps

between corresponding eigenvalues.

on average show scalar products near
√

εmach . Also the eigenvectors corresponding

to eigenvalues in the clusters of A3 and A5 are problematic, while the eigenvectors

of A4 and A6 are orthogonal to almost machine precision.

Finally, Figure 4.10 plots the scalar products of the eigenvectors depending on

the absolute gap between the corresponding eigenvalues. The data was collected

over all matrix types and all eigenvalues for each matrix using a dimension n = 500.

The relationship between the gap of the eigenvalues (|λi−λj |) and the scalar product

of the corresponding eigenvectors is clearly visible. Most large scalar products are

observed for small or very small absolute gaps between eigenvalues (seen on the

left side of Figure 4.10), while small scalar products (orthogonal eigenvectors) are

encountered when the gaps are relatively large. For the gaps between 10−15 and

10−5, there also seems to be a linear relationship between the magnitude of the gap

and the maximum scalar product in the plot. This gives us the possibility to predict
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Figure 4.11: Mean scalar products given a certain gap. The regression line is given

by f(x) = −0.53x− 16.29. R2 = 0.95

the worst to be expected scalar product of two eigenvectors given the gap of the two

corresponding eigenvalues.

To predict the average scalar product given a certain gap, we used data from

matrix types A3 and A5 and divided the common logarithms of the gaps into bins

of width 1 to calculate the average scalar product for each bin. The result is given

in Figure 4.11. The data was fitted with a linear regression curve of the form

f(x) = −0.53x− 16.29 (4.1)

yielding a good agreement with an R2 of 0.95. This function can now be used to

estimate the resulting scalar product based on the gap between the eigenvalues,

which allows us to set a threshold for the maximum allowable scalar product (and,

therefore, defining the quality of the resulting eigenvector. For example, for the

average scalar product to lie below 1.0 · 10−12, a minimum gap of approximately

1.0 · 10−8 is required).



4.7 Subspaces Identified

As illustrated in Section 4.6, in some cases (i.e., tight clusters of eigenvectors) the

eigenvector solutions obtained based on block twisted factorizations experience a

loss of orthogonality. However, a set VT ∈ R
n×m of m computed eigenvectors (with

m ≤ n) obtained with block twisted factorizations could still span the same subspace

as the set V ∈ R
n×m of the m corresponding actual eigenvectors (e. g., if VT is

rotated). If that is the case, V can be represented as a linear combination of the

columns of VT :

∃C ∈ R
m×m : VT C = V (4.2)

In order to test this hypothesis, we conduct a QR factorization of VT

VT = Q





R

0



 , (4.3)

yielding orthogonal Q ∈ R
n×n and upper triangular R ∈ R

m×m. By inserting (4.3)

into (4.2), we obtain

Q





R

0



C = V.

As QQT = I, we can reformulate this into




RC

0



 = QT V. (4.4)

Consequently denoting U = QT V , the norm of the submatrix U(m + 1 : n, 1 : m)

(which is supposed to equal zero) is a measure for the “incompleteness” of the

subspace spanned by VT relative to the one spanned by V .

In Figure 4.12, ‖U(m + 1 : n, 1 : m)‖1 for different sets of eigenvectors in all

matrix types are shown. For the data shown in this figure, each set VT contains five

eigenvectors (m = b = 5) corresponding to the respective neighboring eigenvalues

in ascending order (e.g., position one in Figure 4.12 denotes a set of the first five

eigenvectors of the matrix, while position 11 denotes a set of eigenvectors 11 to

15). The corresponding set V was calculated with LAPACK/dsyevd. Along the x

axis, the indices of the first eigenvector in each set are shown. If VT did not have

full rank (using the MATLAB definition of rank), the same eigenvector was computed

for different eigenvalues. Therefore, the results for ‖U(m + 1 : n, 1 : m)‖1 are not
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in all matrix types



meaningful. In such cases ‖U(m + 1 : n, 1 : m)‖1 was (arbitrarily) set to 1. The

dotted line in the middle of the plot shows
√

nεmach as a reference line.

For matrix types A1 and A2, VT most of the time was not of full rank (thus

forming a flat line at zero in Figure 4.12), indicating that several shifts in tight

clusters of eigenvalues lead to the same eigenvector. The opposite can be seen in

matrix types A4 and A6, where the eigenvalues are not clustered, as reflected by the

small values (around n ∗ εmach , with n = 500) of ‖U(m + 1 : n, 1 : m)‖1. In A3 and

A5, ‖U(m + 1 : n, 1 : m)‖1 increases with decreasing size of the gaps between the

eigenvalues. This further underlines the results of the previous sections, as it shows

directly that the resulting eigenvectors for eigenvalues in clusters of eigenvalues are

not orthogonal and, in cases of very tight clusters, the same eigenvector is obtained

for multiple eigenvalues.

4.8 Use of Blocked Strategies for the Determina-

tion of Eigenvectors Corresponding to Multi-

ple Eigenvalues

One potential advantage of blocked strategies (e.g., Sb4) would be a possible treat-

ment of the problem of multiple eigenvalues in banded matrices. In banded matrices

multiplicities of eigenvalues up to the block size b can occur (i.e., one eigenvalue can

have up to b associated eigenvectors) . By using scalar methods (which define a

single starting position for the starting vector in inverse iteration), we can only

compute one vector from the multidimensional subspace of this multiple eigenvalue.

However, by using a blocked approach, we have b possible starting vectors at our

disposal, once we identified a suitable block.

To check this possibility, a banded matrix with n = 500 and a half-bandwith of

five (which can be represented by a block tridiagonal matrix with block size b = 5)

was created which, in double precision, yields an eigenvalue of multiplicity five.

Such a matrix can be produced by constructing a diagonal matrix with the desired

eigenvalues (in this case equally spaced eigenvalues between −1 and +1, whereof

the last b eigenvalues were set to +1), which is then multiplied with an orthogonal



matrix. This results in a full matrix, which can be reduced to a banded matrix by

using DSYRDB[17].

After calculating the twisted factorization leading to the block LkUk with min-

imal absolute singular value, all positions within this block were used as starting

vectors for inverse iteration using the multiple eigenvalue for shift. Surprisingly,

all positions lead to the same eigenvector (with residuals of 1.01 · 1015, 8.36 · 1016,

3.03 · 1015, 8.19 · 1016 and 1.15 · 1015 and scalar products of 0.999260691520366,

0.999260691519269, 0.999260691519125, 0.999260691520492 and 0.999260691520351

with the corresponding eigenvector number 499 as calculated with LAPACK/dsyevd).

From this finding we infer that blocked strategies are also not able to cope with

multiple eigenvalues.

4.9 Runtimes

Finally, we evaluate the execution times of the eigenvector computation based on

block twisted factorizations. For this purpose, the eigenvectors of three different

eigenvalues in a matrix were calculated with four different processes:

1. Method BTW based on block twisted factorizations as computed with the

routine DSYBTEV (see Chapter 5): Given an eigenvalue of W (p), this method

computes all twisted factorizations of W (p)− λ̂I and then selects—according

to the strategy Ss introduced in Section 3—the twisted factorization with the

smallest diagonal element for performing back substitution (i. e., one step of

inverse iteration) in order to compute an eigenvector corresponding to λ̂.

2. Reference method M1 - standard tridiagonalization followed by inverse

iteration: Tridiagonalize the matrix with LAPACK/dsytrd and then calculate

all n eigenvectors with LAPACK/dstein, which calculates the eigenvectors only.

By dividing the total runtime by the dimension n, we obtain a virtual mean

time spent for the calculation of a single eigenvector.

3. Reference method M2 - standard tridiagonalization followed by divide-

and-conquer: The routine LAPACK/dsyevd first tridiagonalizes the matrix us-

ing LAPACK/dsytrd, and then uses tridiagonal divide-and-conquer to compute



eigenvalues and eigenvectors of the tridiagonal matrix. By subtracting the

time spent for the calculation of the eigenvalues and then dividing the total

runtime by the dimension n, we obtain a virtual mean time spent for the

calculation of a single eigenvector.

4. Reference method M3 - standard tridiagonalization followed by relatively

robust representations: Tridiagonalize the matrix with LAPACK/dsytrd and

then compute both eigenvalues and eigenvectors using LAPACK/dstegr. By

dividing the total runtime by the dimension n, we again obtain a virtual mean

time spent for the calculation of a single eigenpair (Note that in this process

the time spent for computing the eigenvalues is almost negligible and amounts

to approximately 1% of the time spent in LAPACK/dstegr).

5. Reference method M4 - band reduction to tridiagonal form followed by

relatively robust representations: Tridiagonalize the matrix with SBR/dsytrd

from the SBR toolbox for successive band reduction [17] and compute both

eigenvalues and eigenvectors using LAPACK/dstegr. By dividing the total run-

time by the dimension n, we again obtain a virtual mean time spent for the

calculation of a single eigenvector (This approach differs from method M3 by

the tridiagonalization process employed). .

Figures 4.13 and 4.14 show the average time spent for the computation of a sin-

gle eigenvector, if all eigenvectors have to be computed. However, it shall be noted

that all reference methods (except for the new BTW method) rely on a prior tridi-

agonalization of the matrix. While the computation of eigenvectors of tridiagonal

matrices can be conducted very swiftly, the prior tridiagonalization step constitutes

the most expensive part of the whole process. Since the tridiagonalization can nei-

ther be omitted nor satisfactorily divided or parallelized, the computation of a single

eigenvector is thus almost as expensive as the calculation of all eigenvectors (i.e.,

the plotted times for the calculation of a single eigenvector in all reference methods

are virtual). If only a particular eigenvector is desired, the discussed BTW method

is in all examples several orders of magnitude faster, since it does not require a prior

tridiagonalization.



Test Data and Hardware Used

Since the computational cost of the five processes compared does not depend on the

matrix type, we used random block tridiagonal matrices with varying dimensions n

and varying block sizes b. The experiments were performed using an Intel Pentium

4 with 3.00GHz and 1 GB of memory.

Runtimes for Varying Block Sizes

In Figure 4.13, the relation between block size b and mean execution time of three

runs with different shifts for the four different methods is shown for matrices with

a fixed dimension n = 6000.
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Figure 4.13: Mean execution times in seconds for varying block sizes using a random

square block tridiagonal matrix of dimension n = 6000

The BTW(Ss) method is obviously the fastest up to block sizes around 30.

However, with increasing block size, the computational cost of the current imple-

mentation of the computation of the twisted factorizations increases rapidly, while



the execution times of all other methods basically does not change with the block

size (except for small variations of the tridiagonalization process with the routine

SBR/dsbrdt). Further improvements in the computation of the twisted factoriza-

tions are expected to extend the range of block sizes where BTW(Ss) provides a

competitive alternative to existing methods.

Runtimes for Varying Problem Sizes

Figure 4.14 illustrates mean execution times in seconds for varying dimensions n for

different test matrices with a fixed block size b = 10.
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Figure 4.14: Mean execution times in seconds for varying problem sizes using a

random square block tridiagonal matrix with block size b = 10

While for small matrixes the computational costs of the algorithm described are

slightly higher, it is obvious that asymptotically BTW becomes more efficient than

the other methods, in larger matrices surpassing the computational efficiency of the

other methods many times over. (An advantage, which is especially important in



the field of Scientific Computing, where computations involving enormous matrices

are more the rule than the exception). For the current (not specifically optimized)

implementation, the break-even point for b = 10 is between n = 2000 and n =

3000. The execution time of the current implementation of BTW(Ss) is clearly

dominated by the computation of the twisted factorizations of shifted W (p), which

might become further optimized by clever incorporations of the shift or by modifying

the code to exploit certain matrix structures, while, on the other hand, the scope

for improvements in (the computationally less demanding) back substitution is very

narrow.



Chapter 5

Implementation

The goal of this chapter is to give an overview of the code. In Section 5.1, we describe

the highest level implementation of the code, characterize the data structures to be

used and also give an outline of the sequence of the computational and auxiliary

routines, which are described in more detail in Sections 5.2, 5.3, 5.4 and 5.5. Also,

since the code heavily relies on the performance of BLAS[18] and LAPACK[19], the

routines employed are described in Section 5.6.

The algorithm computes only the eigenvectors of quadratic block tridiagonal ma-

trices (thus the eigenvalues have to be obtained by other means), however, the use of

both symmetric and unsymmetric matrices is (in principle) admissible. By itself, it

is an improvement of the standard inverse iteration which employs twisted factoriza-

tions for the determination of a good starting vector. (The connections between the

twisted factorization and the inverse of the matrix are discussed elsewhere[14, 10])

To obtain reliable results for the eigenvector, two conditions must be met:

• The eigenvalues must be determined to high accuracy

• The gap between adjacent eigenvalues must be large enough (as specified by

Equation 4.1)

5.1 The main program BTEV

The highest level implementation is the Fortran90 program “BTEV”. All subrou-

tines necessary are collected in the module “STUFF”, which is collocated in the file

btev.f90. The main objectives of BTEV are as follows:
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1. Preparation of the data structures as shown in Table 5.1.

2. Reading a previously saved block tridiagonal matrix from a file, or generating

a block tridiagonal matrix filled with random numbers between 0 and 1.

3. Calculating the eigenvalues with LAPACK/dsyevd

4. Calling the driver routine DSYBTEV for the computation of a specified eigen-

vector

5. Comparison and analysis of the results

When executed, BTEV expects two command line arguments, which offer two

possibilities for the input:

• Read the matrix from a file. In that case, the first command line argument

should be “-f“, while the second command line argument should specify the file

name. (For further information on the matrix data format, see the following

Subsection 5.1.1)

• Generate a matrix filled with random numbers. In this case, the first command

line argument is the number of main diagonal blocks (p), while the second

command line argument states the number of columns/rows of per quadratic

block (b). The dimension n of the matrix is given by n = p · b.

In addition to the two command line arguments, an integer number has to be

passed on from STDIN, which specifies the index of the eigenvector to be calculated

by BTEV (the eigenvalues being sorted in ascending order).

5.1.1 Matrix data format

BTEV offers the ability to process previously saved matrices in a certain block-based

format. This file format is one-dimensional.

• The first entry (which is integer) specifies the number of main diagonal blocks

p.

• The following p integer entries specify the block size b of each block separately

(however, until now, only equal blocksizes are supported by BTEV). These

variables define the general shape of the block tridiagonal matrix.



Table 5.1: Main data structures

Variable name Type Shape Function

COUNT Int 1× 1 Number of blocks in the main diagonal (p)

STEPS Int 1× 1 Number of columns/rows per block (b)

CS Int 1× 1 Matrix dimension (n = p * b)

pivot Int n× p× 3 Saves the pivoting vectors of all LU factorizations.

The first dimension saves the pivot indices as re-

turned by LAPACK/dgetrf, the second dimension

denotes the number of the block, while the last

dimension states whether the block belongs to a

forward/backward or twisted factorization

A Double b× b× (p− 1)× 3 Before DSYBTEV, contains the subdiagonal

blocks of the original (unshifted) matrix, while

after DSYBTEV (on output), contains the subdi-

agonal blocks (denoted as M in the introduction)

of all twisted factorizations for a specified shift.

The first two dimensions contain the block, the

third dimension denotes the number of the block,

while the last dimension states whether the block

belongs to a forward/backward or twisted factor-

ization

B Double b× b× p× 3 Before DSYBTEV, contains the main diagonal

blocks of the original (unshifted) matrix, while af-

ter DSYBTEV (on output), contains the main di-

agonal blocks of all twisted factorizations (L and

U being combined as in LAPACK/dgetrf) for a

specified shift. The first two dimensions contain

the block, the third dimension denotes the num-

ber of the block, while the last dimension states

whether the block belongs to a forward/backward

or twisted factorization

C Double b× b× (p− 1)× 3 Before DSYBTEV, contains the superdiagonal

blocks of the original (unshifted) matrix, while

after DSYBTEV (on output), contains the super-

diagonal blocks (denoted as N in the introduc-

tion) of all twisted factorizations for a specified

shift. The first two dimensions contain the block,

the third dimension denotes the number of the

block, while the last dimension states whether the

block belongs to a forward/backward or twisted

factorization

ev Double n× 1 The computed eigenvector



• Next, the b×b entries of the first main diagonal block follow (the block being

saved in column-major-order in case of asymmetric matrices). After that, the

other p − 1 main diagonal blocks (of size b × b) follow in the same (column-

major-order) fashion.

• After the p main diagonal blocks outlined above, the p−1 subdiagonal blocks

follow.

• Finally, the p− 1 superdiagonal blocks are read.

Thus, in total, each file should contain 1 + p + (3× p− 2)× b2 entries.

5.1.2 Workspace requirements

The main portion of the workspace is required for real variables, while the integer

workspace is almost negligible (being restriced to scalars and the 3 × n pivoting

vector). For the calculation of the twisted factorizations, a workspace of approxi-

mately 9× b× n is necessary, since all factorizations have to be saved for later use.

In addition, the eigenvalue calculations with LAPACK/dsyevd temporarily require a

double array of 1 + 6× n + 2× n2 and an integer workspace of 3 + 5× n.

5.2 DSYBTEV

DSYBTEV is the main driver for the algorithm. It calculates the eigenvector for a

specified eigenvalue. Thus, in addition to the data shown in Table 5.1, which includes

the sub- main and superdiagonal blocks, the pivoting vector and an array for the

eigenvector, DSYBTEV also needs a shift to be passed on (which is subtracted from

the main diagonal elements within the routine).

The two major components of DSYBTEV are the calculation of all twisted fac-

torizations, as implemented in the subroutine DSYBTTWF (described in Subsec-

tion 5.3) and the back substitution as implemented in DSYBTBS (See Section 5.4).

Based on the results from DSYBTTWF, the driver routine DSYBTEV determines

the starting position for the back substitution and also incorporates the correct piv-

oting before starting DSYBTBS. Finally, the eigenvector is scaled to a length of

1.



5.3 DSYBTTWF

DSYBTTWF is the major subroutine of DSYBTEV. For a block tridiagonal matrix,

DSYBTTWF will calculate all twisted factorizations, as outlined in Section 2.1.

In this process it employs LAPACK/dgetrf to factorize the main diagonal blocks

and LAPACK/dtrsm to solve the equations for the sub- and superdiagonal blocks.

The computational costs of the LU-factorizations amount to O(n3) operations (the

partial pivoting adds a quadratic term only), thus constituting the main bottleneck

in the whole process of computing the eigenvectors.

5.4 DSYBTBS

DSYBTBS performs the back substitution and, for optimal performance, mainly re-

lies on LAPACK/dtrsm to obtain the solution to the system of equations by employing

a block-wise procedure. To determine the starting position for the back substitution,

is relies on the following parameters to be passed on: the index of the twisted factor-

ization to be employed (in the program denoted as fac), the block with the minimal

diagonal element (denoted as blocks. This corresponds to strategy Ss) and its exact

position within the block (denoted as ele). Contrary to the LU-factorization, the

time required for back substitution is O(n2) only.

5.5 Auxiliary routines

In addition to DSYBTTWF and DSYBTBS a number of additional routines where

necessary:

• PIVOTING: Applies the pivoting to matrix according to the corresponding

pivoting vector, as obtained from LAPACK/dgetrf.

• ANTIPIVOTING: Reverts the pivoting of matrix according to the corre-

sponding pivoting vector from LAPACK/dgetrf, thus re-establishing its original

form

• ANTIPIVOTINGVEC: A more efficient version of ANTIPIVOTING, in-

tended for vectors only



• UNITESUBS2TOTAL: Constructs a full n×n matrix from the sub- main-

and superdiagonal blocks (A,B,C). Intended for testing purposes and necessary

for the application of LAPACK/dsyevd, since all other procedures employ the

blocked data format.

5.6 BLAS/LAPACK routines

5.6.1 BLAS

BLAS (Basic Linear Algebra Subprograms)[20] is an efficient, portable, and widely

available library of standard routines for very fundamental vector and matrix oper-

ations using various data types. BLAS was first published in 1979[18], and enjoys

widespread use in high-performance supercomputing, since many producers of hard-

ware also offer highly optimized implementations of BLAS. (This can probably be

attributed to the fact that benchmarks for floating point computing power, like, e.g.,

LINPACK[21], which make use of BLAS, usually serve as a measure for ranking su-

percomputers in the TOP500 list of the world’s fastest computers.) For improved

performance, ATLAS (Automatically Tuned Linear Algebra Software)[22] has been

employed to generate an optimized BLAS library.

The BLAS functionality can be divided into three levels:

1. Scalar, vector and vector-vector operations of the form y ← αx+y (like scalar

dot products and vector norms)

2. Matrix-vector operations of the form y ← αAx + βy (like solving systems of

linear equations)

3. Matrix-matrix operations of the form C ← αAB + βC ( like the General

Matrix Multiply operation)

Two BLAS routines were regularly used in the code:

• xGEMV

Performs a matrix-vector multiplication of the form y = αAx + βy, which, in

our case, was always performed using double-precision:

DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)



where TRANS specifies whether A is transposed, M gives the number of rows

and N the number of columns of the matrix A. LDA specifies the leading

dimension of the matrix A in the memory, while INCX and INCY specify the

increment for the elements of the vectors x and y.

• xGEMM

Performs a matrix-matrix multiplication of the form C ← αAB + βC. Specif-

ically, the double-precision version has been employed:

DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA,

C, LDC )

where TRANSA and TRANSB state whether the matrices A and B are trans-

posed, M is the number of rows in matrix A and C. N is the number of columns

in matrix B and C. K is the number of columns in matrix A and rows in matrix

B. LDA, LDB and LDC specify the leading dimension of the matrices in the

memory.

5.6.2 LAPACK

LAPACK (Linear Algebra PACKage)[19, 23] is a linear algebra library written in

Fortran90 that contains routines for a plethora of numerical problems like solving

systems of simultaneous linear equations, least square solutions of linear systems of

equations, eigenpair calculation, and singular value decomposition for multiple data

(real/complex, single/double precision) and matrix types (e.g., band or tridiagonal).

Also, several kinds of matrix factorizations (such as LU, QR, SVD, Cholesky and

Schur decomposition ) are included. LAPACK exploits the functionality of BLAS,

which allows substantial performance gains.

LAPACK routines follow a characteristic naming convention in the form of pm-

maaa, where p denotes the data type (S, D stand for real, C and Z for complex single

and double precision arithmetic). mm is a two-letter code describing the form of the

matrix (e.g., GE for a general, unsymmetric matrix, TR for a triangular matrix and

SY for a symmetric matrix). The last three letters aaa describe the actual algorithm

(e.g., EVD for eigenvalue decomposition)

The following LAPACK routines were employed:



• DGETRF

DGETRF computes an LU factorization of a general matrix A using partial

pivoting with row interchanges (see Chapter 1). The factorization has the form

A = PLU , where P is a permutation matrix, L a is lower triangular matrix

with unit diagonal elements, and U is a upper triangular matrix. The routine

is called with the command:

DGETRF( M, N, A, LDA, IPIV, INFO )

where M and N are the number of rows/columns of the matrix A, LDA is its

associated leading dimension, IPIV is a vector containing the pivot indices and

INFO returns some useful information in case of errors. The original matrix

A is destroyed in the process and replaced by L and U from the factorization

(Note that it is not necessary to store the diagonal elements of L explicitly,

since they are by definition unit.)

• DTRSM

DTRSM solves one of the matrix equations

AX = αB or XA = αB

where α is a scalar, X and B are m × n matrices, while A is a upper or lower

triangular matrix, as obtained from LAPACK/dgetrf. The routine is called

with the command:

DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)

where SIDE specifies whether A appears on the left or right of X, UPLO

specifies whether A is upper or lower triangular, TRANSA defines whether A

is transposed, DIAG whether A is unit triangular, M and N are the number

of rows/columns of B, while LDA and LDB denote the leading dimensions of

A and B.

• DSYEVD

DSYEVD computes all eigenvalues and, optionally, eigenvectors of a real sym-

metric matrix A. (This routine has been employed for the determination of

the eigenvalues of W (p) for the subsequent determination of the eigenvalues)

In case eigenvectors are to be computed, a divide and conquer algorithm is

applied. The routine is called with the command:

DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LI-



WORK, INFO )

where JOBZ defines whether eigenvectors are desired, UPLO specifies, whether

A is stored in the upper or lower triangle, N is the order of the matrix A, LDA

is the leading dimension of A, W is the vector containing the eigenvalues after

successful completion, WORK is an double precision array of size LWORK,

IWORK is an integer array of size LIWORK. After completion, the matrix A

is replaced by the eigenvectors. DSYEVD requires 1 + 6n + 2n2 double and

3 + 5n integer space.

• DGESVD

DGESVD computes the singular value decomposition (SVD, as necessary for

strategy Sb4) of a real M-by-N matrix A, optionally computing the left and/or

right singular vectors: A = UΣV T

where Σ is an M-by-N matrix which is zero except for its min(m,n) diagonal

elements, U is an M-by-M orthogonal matrix, while V is an N-by-N orthogonal

matrix. The singular values in Σ are real and non-negative, and given in the

diagonal in descending order.

DGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,

LWORK, INFO )

JOBU and JOBVT specify, whether all or only parts of U/VT shall be com-

puted, S stands for Σ, LDA, LDU, LDVT are the leading dimension of the

associated matrices, while WORK is a double array of size 5∗MIN(M,N).

5.7 Compiling and Usage

All routines necessary are located in the file “btev.f90”. However, also two libraries

are necessary for compilation: LAPACK and BLAS. Using, e.g., the GNU Fortran

Compiler on a LINUX system, it is possible to compile btev.f90 with the following

command:

gfortran btev.f90 -lblas -llapack -o exec

After successful compilation, it is possible to calculate a specified eigenvector of

a matrix with the command

echo index | ./exec -f matrixfile



Where index gives the number of the eigenvector to be calculated (all eigenvalues

are indexed in increasing order), while matrixfile gives the location of a file, which

contains the target matrix in the format specified in Section 5.1 (e.g., “echo ”10”

| ./test -f TW50.A1.1000“ will calculate the eigenvector corresponding to the 10th-

smallest eigenvalue of a matrix specified in the file TW50.A1.1000)

Without the parameter ”-f“ as the first command line argument, a block tridi-

agonal matrix filled with random numbers between 0 and 1 will be generated:

echo index | ./exec blocks width

Here, blocks gives the number of main diagonal blocks (p) and width gives the

number of columns/rows per block (b), while index again defines the index of the

target eigenvector (e.g., echo ”1” | ./test 10 5 will generate an 500×500 matrix with

ten diagonal blocks and nine super/subdiagonal blocks of width five and calculates

the eigenvector corresponding to the smallest eigenvalue).



Chapter 6

Conclusions

6.1 Conclusions

In this thesis we described the basic principles of an algorithm for computing block

twisted factorizations of a block tridiagonal (or band) matrix W (p) = LU . Further-

more, we showed the connections of the twisted factorizations to the inverse of the

matrix (W (p)−1) and a method to compute the eigenvectors of a matrix (W (p)−λI)

in a single step of inverse iteration, given a good approximation to an eigenvalue

λ. This algorithm for computing eigenvectors of a block tridiagonal matrix was

implemented and empirically evaluated.

We first addressed the central algorithmic question of how to choose an appropri-

ate starting vector for the inverse iteration process. For this purpose, we motivated

and compared several strategies for their effectiveness in terms of numerical accu-

racy and computational performance. Our data suggests that two strategies are

viable: The scalar strategy Ss based on the minimal main diagonal element of Uk,

and the block strategy Sb4 based on the minimal singular value of the twisted block

LkUk. This finding was further confirmed by calculating the residuals for a number

of eigenvectors in various matrix types.

By considering all possible starting vectors of the form es(s) = 1 , ‖es‖ = 1

(for s = 1, . . . , n) we could also demonstrate that, in some cases, (i.e. in tight

clusters of eigenvalues) not a single starting vector es is able to produce the correct

eigenvector in a single step of inverse iteration (even though the residual of the

resulting eigenvectors is very low). However, the data also suggests that for all
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non-pathological cases, the strategies Ss and Sb4 return results, whose quality is

comparable to the most accurate eigenvectors possible with such kinds of starting

vectors and a single step of inverse iteration. To deal with the problem of wrongly

returned eigenvectors, we could show that problematic cases can be predicted on

basis of their gap to the neighboring eigenvalues. This allows us to turn to alternative

techniques in such cases.

Finally, we tested the performance of the algorithm and compared it to more

established techniques for the determination of eigenvectors. While the computa-

tional costs of the current version of our algorithm strongly depends on the block

size b, we could show that the dependency on the dimension n of the matrix is more

favorable than in all other methods. Thus, for larger matrices (and relatively small

block sizes), the calculation of eigenvectors with twisted factorizations is several

times more efficient than methods which rely on prior tridiagonalization.

6.2 Future Work

In addition to employing more steps of inverse iteration, the problem of “dominant”

eigenvectors (i.e., eigenvectors, which result from multiple shifts in a cluster of eigen-

values) might be solved by using starting positions, which correspond to very small

entries in the “dominant” eigenvector, but are relatively rich in the sought-after

eigenvector. Such an approach would also solve the problem of multiple eigenvalues

(if the dimension of the associated eigenspace to an eigenvalue is larger than one,

i.e. the number of linearly independent eigenvectors with that eigenvalue is higher

than one). This procedure would demand a very small modification of strategy Ss,

since it would have to incorporate an additional check, whether the selected starting

position is already rich in one of the eigenvectors that have already been calculated.

Another strategy could involve changing the nature of the starting vector. Based

on the results for the theoretical strategy Soptevec in Section 4.3, it is clear that in

some cases no starting vector of the form es with es(s) = 1 , ‖es‖ = 1 is able to

produce acceptable results. Instead of using es, it might, therefore, be fruitful to

use a starting vector that contains multiple entries, whose positions correspond to a

low gamma. This would mean that instead of using a single position, which is rich



in the resulting eigenvector, it could be possible to use multiple rich positions. How

this could be done, remains at this point unclear.

Furthermore, for improved performance on multicore structures or in the field of

Supercomputing, the algorithm could be parallelized on multiple levels:

• Firstly, each shift is totally independent of each other. Thus, for a computation

of all eigenvectors of a matrix (with dimension n), n different instances of

DSYBTEV can be employed in parallel without disadvantageous side effects.

• Secondly, both the forward and the backward factorization are independent of

each other, and, therefore, can be computed in parallel.

• Thirdly, once the forward and the backward factorization are computed, the

twisted factorizations can be computed in parallel, since they only depend

on the forward and the backward factorization, but not on each other. Also,

once the first half of the forward and the second half of the backward factor-

izations are computed, some sort of pipelining is conceivable for the twisted

factorizations.

• Parallelization is also possible on the level of back substitution, since in twisted

factorizations the parts corresponding to the forward factorization and the

parts corresponding to the backward factorization are independent.

• Finally, parallelized versions of the BLAS and LAPACK libraries (such as

PBLAS and ScaLAPACK) could be employed for the parallelization of the

basic linear algebra processes, which build the fundament of the algorithm

(e.g., matrix multiplication, scalar LU factorization and back substitution).

We want to stress that these multi-leveled possibilities for parallelization make

the block twisted factorization very powerful in comparison to other techniques for

determining the eigenvectors of block tridiagonal and band matrices, which are of

more scalar nature. Especially methods, which rely on prior tridiagonalizations of

the matrix are very difficult to parallelize. Thus, in the light of future hardware

developments (which are currently characterized by the development of higher num-

bers of multicores) the application of block twisted factorizations might become

increasingly attractive.
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