

MAGISTERARBEIT

Titel der Magisterarbeit

“Temporal behavior of defect detection
performance in design documents:

an empirical study on inspection and
inspection based testing”

Verfasser

Faderl Kevin, Bakk.

Angestrebter akademischer Grad
Magister der Sozial- und Wirtschaftswissenschaften (Mag. rer. soc. oec.)

Wien, 2009

Studienkennzahl lt. Studienblatt: A 066 926
Studienrichtung lt. Studienblatt: Wirtschaftsinformatik
Betreuer: ao. Prof. Dr. Stefan Biffl
Mitwirkung: Dipl.-Ing. Dietmar Winkler

I

Abstract
The quality of software requirements and design documents are success critical issues in soft-

ware engineering (SE) practice. Organizational measures, e.g., software processes, help struc-

turing the development process along the project life-cycle, constructive approaches support

building software products, and analytical approaches aim at investigating deliverables with

respect to defects and product deviations. Software inspection and testing are well-known and

common techniques in Software Engineering to identify defects in code documents, specifica-

tions, and requirements documents in various phases of the project life-cycle.

A major goal of analytical quality assurance activities, e.g., inspection and testing, is the detec-

tion of defects as early as possible because rework effort and cost increase, if defects are iden-

tified late in the project. Software inspection (SI) focuses on defect detection in early phases of

software development without the need for executable software code. Thus, SI is applicable to

written text documents, e.g., specification and requirements documents. Traditional testing

approaches focus on test case definition and execution in later phases of development be-

cause testing requires executable code. Thus, we see the need to combine test case genera-

tion and software inspection early in the software project to increase software product quality

and test cases.

Bundling benefits from early defect detection (SI application) and early test case definition

based on SI results can help identifying (a) defects early and (b) derive test cases definitions

for systematic testing based on requirements and use cases. Our approach – inspection-based

testing – leads to a test-first strategy on requirements level.

This thesis focuses on the investigation of an inspection-based testing approach and software

inspection with respect to the temporal behavior of defect detection with emphasis on critical

defects in requirements and specification documents.

The outcomes concerning the temporal behavior showed up some interesting results. UBR

performs in the time interval of the first 120 minutes very effective and efficient. UBT-i in con-

trary needs more time, about 44 % for its testing duration to achieve as good defect detection

results as UBR. The comparison of these two software fault detection techniques showed that

UBR is on the whole not the superior technique. Because of the inconsistent findings in the

experiment sessions a clear favorite cannot be named. Concerning the results for the fault posi-

tives the expected temporal behavior, which was that the fewest false positives were found in

the first 120 minutes, could not be investigated and the hypothesis on this had to be rejected.

A controlled experiment in an academic environment was made to investigate defect detection

performance and the temporal behavior of defect detection for individuals in a business IT soft-

ware solution.

The results can help project and quality managers to better plan analytical quality assurance

activities, i.e., inspection and test case generation, with respect to the temporal behavior of

both defect detection approaches.

II

Kurzfassung
Die Qualität der Software ist natürlich ein erfolgskritischer Faktor im Software Engineering (SE),

genauso wie die Design Dokumente in den frühen Softwareentwicklungsphasen. Organisatori-

sche Faktoren, wie etwa der verwendete Software-Entwicklungsprozess, helfen den Prozeß an

sich besser zu Strukturieren und zu Optimieren. Entwicklungsansätze unterstützen diesen Pro-

zeß, während analytische Ansätze darauf abzielen Fehler und Produktabweichungen zu ver-

meiden. Software Inspektionen (SI) und Tests sind bereits bekannte und anerkannte Techniken

im SE um Fehler im Software Code, in Spezifikationen oder Design Dokumenten, während

verschiedenster Phasen des Produktlebenszykluses, zu identifizieren.

Ein Hauptaugenmerk von analytischen Qualitätssicherungen wie SI und Tests liegt auf der

frühen Entdeckung von Fehlern. Denn je später ein Fehler im Produktentwicklungsprozess

gefunden wird, desto aufwendiger und teurer ist dessen Entfernung. SI fokussieren auf eine

Fehlerfindung in einer sehr frühen Phase des gesamten Prozesses ohne die Notwendigkeit

eines Ausführbaren Software Codes. Deshalb ist SI anwendbar auf geschriebene Text Doku-

ment wie Design Dokumente. Traditionelle Testansätze fokussieren auf die Erstellung von

Testfällen und deren Exekution in späteren Phasen des Prozesses, weil sie im Gegensatz zu

SI auf ausführbaren Code angewiesen sind. Folgernd ist es notwendig Testfallerstellung und SI

zu kombinieren, um in noch frühen Phasen die Qualität weiter verbessern zu können.

Die Vorteile beider Ansätze zu vereinen wird helfen um (a) Fehler sehr früh zu finden und (b)

Testfälle zu definieren, welche ein systematisches Testen erlauben, daß wiederum auf Anfor-

derungen und Use-Cases basiert. Der Ansatz in dieser These - auf Inspektionen basiertes Tes-

ten – wird zu einer „Zuerst Testen“ Strategie auf Anforderungsbasis führen

Diese These konzentriert sich auf einen auf Inspektionen basierten Test Ansatz, sowie auf SI

generell mit einer genaueren Untersuchung des zeitlichen Verhaltens dieser Techniken in De-

sign Dokumenten mit Hauptaugenmerk auf sehr kritische und kritische Fehler.

Die Ergebnisse der Untersuchungen des zeitlichen Verhaltens ergaben, daß UBR in dem Zeit-

intervall der ersten 120 Minuten äußerst effektiv und effizient agiert. UBT-i hingegen benötigt

mehr Zeit, ca. 44 % um ein gleichwertiges Ergebnis erzielen zu können. Der Vergleich der bei-

den Software Fehlerfindungstechniken zeigte weiters, daß UBR ganzheitlich gesehen nicht die

überlegene Technik ist. Wegen der inkonsistenten Resultate der Experiment Sessions kann

jedoch auch keine überlegene Technik definitiv genannt werden. Betreffend den Ergebnissen

der False Positives, konnte das erwartete zeitliche Verhalten, daß die wenigsten False Positi-

ves in den ersten 120 Minuten gefunden werden, nicht beobachtet werden. Deshalb mußte die

betreffende Hypothese verworfen werden.

Die These basiert auf einem Experiment, welches in einer kontrollierten akademischen Umge-

bung durchgeführt wurde um die Fehlerfindungseffizienz Einzelner zu untersuchen.

Die Ergebnisse werden Projekt- und Qualitätsmanagern helfen, um deren Qualitätsmaßnah-

men besser planen zu können und es weiters ermöglichen deren zeitliche Dauer und daraus

folgende Effizienz und Effektivität besser abschätzen zu können.

III

Table of Content
Abstract .. I

Kurzfassung .. II

Table of Content .. III

1 Introduction .. 1

2 Product and Process Improvement ... 8

2.1 Capability Maturity Model (CMM) ... 9

2.2 The Process of Software Inspection .. 11

2.3 Roles in inspections ... 17

2.4 Inspection Team Size ... 18

2.5 Selection of Inspectors ... 19

3 Best-Practice Software Inspection .. 20

3.1 Ad-hoc reading ... 21

3.2 Checklist-based reading ... 21

3.3 Perspective-based reading (PBR) ... 23

3.4 Usage-based reading (UBR) .. 24

3.5 Comparison of reading techniques .. 28

3.6 Temporal behavior ... 30

4 Software Testing and Test-First Development .. 32

4.1 Black-Box Testing .. 33

4.2 White-Box Testing .. 33

4.3 Unit Testing .. 34

4.4 Test-First Development .. 35

4.5 Usage-based testing (UBT).. 37

5 Research Approach ... 40

5.1 Variables .. 41

5.2 Hypotheses .. 43

5.2.1 Is UBR more Effective and Efficient than UBT-i? ... 44

5.2.2 Are the Techniques basically effective and efficient in the first 120 minutes? 44

5.2.3 During which time intervals will the fewest False Positives be found? 45

6 Experiment .. 46

6.1 Experiment Description .. 46

6.2 Planning and preparation ... 48

6.2.1 Software Artifacts .. 48

IV

6.2.2 Reference Defects .. 50

6.3 Operation.. 52

6.4 Evaluation... 53

6.5 Threats to validity ... 55

7 Results of the Experiment ... 57

7.1 Effort ... 57

7.2 Effectiveness .. 58

7.2.1 Combined Sessions – Combined Techniques .. 59

7.2.2 Temporal behavior of combined sessions and techniques 60

7.2.3 Temporal behavior of separated sessions and techniques 62

7.3 Efficiency .. 71

7.3.1 Combined Sessions – Combined Techniques .. 73

7.3.2 Temporal behavior of combined sessions and techniques 74

7.3.3 Temporal behavior of separated sessions and techniques 75

7.4 False positives ... 81

7.4.1 Combined Sessions – Combined Techniques .. 81

7.4.2 Temporal behavior of combined sessions and techniques 82

7.4.3 Temporal behavior of separated sessions and techniques 84

8 Discussion ... 91

8.1 Is UBR more Effective and Efficient than UBT-i?... 91

8.2 Are the Techniques basically effective and efficient in the first 120 minutes? 93

8.3 During which time intervals will the fewest False Positives be found? 94

9 Conclusions and Follow-Up ... 97

References ... 99

Table of Figures .. 104

List of Tables .. 106

Curriculum Vitae ... 107

Appendix ... 108

 - 1 -

1 Introduction

Software is an important part of many technical products available on the market in

these days and it will become even more important in the future. Software is used in a

variety of things, for example, mobile phones, cars, TV sets, coffee machines etc.

More complex software is used in more complex systems, like computers and the used

software is of course sensitive to any kind of defects made in any development phase.

The errors which come from human faults are making the software product fault-prone.

This lack of quality ends often in a lost of money as well as reputation, because cus-

tomers naturally don’t want to spend money for low quality software products. But until

yet many software products still ship late, with a fewer functionality than originally ar-

ranged, higher production costs and with poor quality. A number of factors exist, lead-

ing to such unwanted project results. The main contributor is of course the lack of con-

trols for removing defects. Faults are created and injected throughout the whole soft-

ware development project life cycle into several kinds of artifacts, which seems to be

an unfortunate fact of software development. Quality control is therefore very important

for organizations developing software products.

The removal of defects with inspections or tests can be a very expensive task, but

when the customers find the defects, costs tend to explode and sometime increase by

a factor of 100 or more as well as the reputation of the firm and the confidence in the

software products are decreased [70]. The costs to remove defects should be calcu-

lated just from the beginning and naturally included in the whole cost calculation. As

Radice R. [70] states out, that it can happen that these kinds of costs can in some

software projects conduct up to 65 % of the total estimated project costs. So there is of

course a large economic opportunity in reducing and improving the effectiveness of

quality assurance.

Fagan [32] strongly emphasizes that software inspections have a formal procedure

and therefore are able to produce repeatable results. On the contrary walkthroughs are

performed not so regularly and thoroughness. He also remarks that in some cases

walkthroughs may be identical to formal inspections, but in many cases they are infor-

mal and less efficient [48]. Wheeler et al. [101] point out some principal differences

between review processes. Knight and Myers [48] suggest that walkthroughs are used

to examine the source code and that formal reviews are the presentation of the work

 - 2 -

product to the rest of the team members and inspections are error detection tech-

niques that ensure particular coding standards and issues are enforced [5]. According

to these authors, Fagan’s inspection method is a combination of a walkthrough, formal

review and inspection [5]. IEEE Standard 1028-1997 [41] provides the following de-

scriptions:

• an inspection is ‘a visual examination of a software product to detect and

identify software anomalies, including errors and deviations from standards

and specifications’;

• a walkthrough is ‘a static analysis technique in which a designer or pro-

grammer leads members of the development team and other interested

parties through a software product, and the participants ask questions and

make comments about possible errors, violation of development standards,

and other problems’;

• a review is ‘a process or meeting during which a software product is pre-

sented to project personnel, managers, users, customers, user representa-

tives, or other interested parties for comment or approval’.

The software engineering process itself is a process, which has the reputation of being

very complex and therefore a number of different models exist, which are trying to im-

proving the process. Conventional models are for example the Waterfall Model, Spiral

Model, the V-Model and many others. There are lots of varieties which had been de-

veloped and how these models were put into practical work, but all these different ap-

proaches of these development models have some activities in their processes in

common.

The waterfall model, which was first formally described by Royce W. [72], shown in

Figure 1-1, consists of several sequential development phases and each of them can

include a verification step which can lead back to the previous phase. These steps

backwards give the possibility to correct and so to enhance the product’s quality. The

weakness of this model is that defect detection in late development phases leads to

high expenses.

 - 3 -

Figure 1-1 The Waterfall Model [43]

The spiral model, which can be seen in Figure 1-2, was developed by Boehm B. [16]

and is like the waterfall model one of the first development models for software engi-

neering. The phases of this model are more complex and have to be passed sequen-

tially whereas in each phase a prototype is developed. The model itself is split into four

areas which all phases have to run through:

1. Determine objectives, alternatives and constraints

2. Evaluate alternatives and identify and resolve risks

3. Develop and verify next level product

4. Plan next phase

All phases together try to avoid mistakes and wrong decisions in the development

process and therefore to enhance the product’s quality and at the same time to keep

the costs as minimal as possible [16].

 - 4 -

Figure 1-2 The Spiral Model [43]

The V-Model is shown in Figure 1-3. On the left side of the V the system’s specification

can be seen and on the right side of the V the verification and validation measure-

ments are listed. Starting from testing each unit step by step the whole system is

tested where various verification and validation activities are applied. The model em-

phasizes the fact, that the activities in the latter part of the project are all about testing

implementations of the specifications produces in the earlier part [64].

Figure 1-3 The V-Model [3]

 - 5 -

The three described models show that quality assurance is always somehow inte-

grated in the development processes. Software inspection is needed and should there-

fore applied to the process as early as possible to be able to detect defects. Thus in

early phases executable software is not present, written text documents, e.g., specifi-

cation and requirements documents have to be evaluated.

Software inspections and testing methods are mostly relative simple and straightfor-

ward to use. Radice R. [70] states out that the most important thing is for sure a belief

in its capabilities, application of necessary preconditions and a good management

support to make it work to a software organization’s best advantage. Because when

the management level doesn’t support the used software inspection or test method

then the programmers and managers will find countless excuses to cause the quality

assurance method to fail. When the software managers and software engineers of an

organization think that the process will not work, then there is a very good chance that

they will fulfill their expectations [70].

So, when the quality process is given a fair chance by the management and the soft-

ware engineers and some fundamental things are taken into account, like training of

the inspecting participants and a committed time frame for inspections and tests, then

the process will work effectively and efficiently [70]:

‘When practicing inspections one should always work to achieve ef-

fectiveness first, then, while maintaining high effectiveness, work to

improve the efficiency.’ [70]

Software inspections and tests have the same main goal, which is to detect faults. A

lot of different research activities has been made in these areas. They were mostly

conducted isolated, but a few studies were made which try to highlight the way on how

the methods could benefit from each other [6] [85].

UBR and UBT are focused on detecting the most critical faults from a user’s point of

view. UBR provides reviewers with prioritized use cases and UBT provides testers with

prioritized test cases. Although UBR and UBT are two complementary fault detection

techniques, in the software development they have a relationship to each other, which

is shown in Figure 1-4.

 - 6 -

Figure 1-4 The connection between UBR and UBT [3]

For the inspection based testing approach UBT has been improved. Winkler et al.

[108] added testing capabilities based on a modification by including inspection me-

thods into the standard usage based testing approach, called “Usage-based Testing

with inspection” (UBT-i). What means, that the generation of test cases is an additional

outcome in contradiction to the standard defect detection. This has some benefits;

UBT-i can now also be applied to design specification as well as the generation of test

cases has become an integral part of the testing process itself. Now it is therefore

possible to compare temporal behavior of the defect detection performance concerning

UBR and UBT-i in design documents, which is the main topic of this thesis.

The topic of this master thesis is based on the investigation of an inspection based

testing approach and software inspection. The software fault detection techniques

UBR and UBT-i will be investigated concerning their temporal behavior of defect detec-

tion performance. It should be examined if the most critical defects of the inspected

and tested artifacts will be found at the beginning, in the mid or at the end of the in-

spection and testing duration. This outcome should help project and quality managers

to better address and define the needed time to achieve their wanted quality assur-

ance arrangements. Knowing how much time is really needed to detect the most criti-

cal defects in software artifacts with the usage of UBR and UBT-i should add a useful

and cost reduction benefit to the software development life cycle.

The mentioned techniques will be measured concerning their performance defect de-

tection with effectiveness, efficiency and false positives. All these measures will be

 - 7 -

investigated in context of the temporal behavior, which will be addressed that the in-

spections and testing are split into similar time intervals. Each of these time intervals is

then examined separately to be able to make conclusions.

The study experiment was made in an academic environment, which provides the

base to derive the results from for the software fault detection technique UBR as well

as UBT-i and to investigate defect detection performance in context with their temporal

behavior.

In section 2, Product and Process Improvement, it is explained how the software in-

spection process works and what is basically needed to go on. Section 3, Best-

Practice Software Inspections, gives an overview about some often used and well

proved inspection techniques as well as section 4 ,Software Testing and Test-First

Development, gives some theoretical background information about the most common

testing techniques. In chapter 5, the Research Approach explains the variables that

exist in the experimental environment as well as the proposed hypotheses. The sub-

sequent chapter 6, Experiment, describes all the relevant things about the study de-

sign followed by the results made from it in the section 7, Results of the Experiment.

The Discussion in chapter 8, which concerns and addresses al made hypotheses fol-

lowed by the Conclusions in chapter 9 are the final of this master thesis.

 - 8 -

2 Product and Process Improvement

Successful software engineering requires the application of engineering

principles guided by informed management. The principles must themselves

be rooted in sound theory. While it is tempting to search for

miracles and panaceas, it is unlikely that they will appear. The best

course of action is to stick to age-old engineering principles. There simply

are no “silver bullets.” [19]

In the early engineering days ships sank and bridges collapsed [68]. Nowadays these

accidents occur only rarely because these engineering fields have very well evolved

and their procedures are grounded in age-old engineering principles [68].

Software engineering is in comparison a very young discipline and still seeks this kind

of evolvement and verified procedures and solutions. A vast majority of scientist re-

search some kind of design patterns to be able to develop proven solutions to common

design problems in the software product life cycle. Other computer scientists are also

researching in a mathematical way, which addresses methods to verify the correctness

and stability of software algorithms. In fact the software engineering community has

realized that it is in need of a high-quality software development process to be able to

produce high-quality software products [52]. Process standards such as ISO 9000, the

Capability Maturity Model (CMM) and the Software Process Improvement and Capabil-

ity Determination (Spice) have therefore been developed to aid enterprises and people

to achieve more predictable results by guiding them to incorporate proven procedures

into their process. Normally the companies who adopt the standards advocated in ISO

9000 and CMM have typically shown tremendous improvements in their software

quality output.

The term quality is however difficult to define. Therefore, the quality term has been

elaborated in terms of six attributes for easier explanation (ISO-9126) [82]. The expla-

nations of the quality attributes below are the ones used by Bass et al [10].

• Functionality: The ability of the software to do work for which it was intended

• Reliability: The ability of the software to keep operating over time

• Efficiency: The ability of the software to respond with appropriate speed to a

user’s requests

 - 9 -

• Usability: The ability of the software to satisfy the user

• Maintainability: The ability to make changes quickly and cost effectively in the

software

• Portability: The ability of the software to run under different computer envi-

ronments

The next chapter describes the Capability Maturity Model (CMM) and how the outcome

of this thesis should help to improve the outcome when using a Software Process and

Product Improvement reference model.

2.1 Capability Maturity Model (CMM)

The CMM for software is a reference model to examine software process maturity and

a normative model for helping software organizations progress along an evolutionary

path from ad hoc, chaotic processes to mature discipline software processes [40]. The

CMM is organized into five maturity levels as described: [40]

1. Initial: The software process itself can be characterized as ad hoc as well as in

some cases chaotic. Few processes are defined, and success depends on in-

dividual effort and heroics.

2. Repeatable: Basic project management processes are established to track

cost, schedule, and functionality. The necessary process discipline is in place

to repeat earlier successes on projects with similar applications.

3. Defined: The software engineering process for the management as well as the

engineering activities are very well documented, standardized, and integrated

into the software process for an organization. Projects use an approved, tai-

lored version of the organization's standard software processes for developing

and maintaining software.

4. Managed: Detailed measures of the software engineering process and their

quality are collected.

5. Optimizing: Continuous process improvement is facilitated by quantitative

feedback from the process and from piloting innovative ideas and technologies.

Except for Level 1 each of the described maturity levels is sub-divided into several key

process areas that indicate the areas an organization should focus on to improve its

software process [40]. These areas are shown in Table 2-1

 - 10 -

Table 2-1: CMM Level and Key Process Areas [40]

CMM Level Focus Key Process Areas

1
Initial

Competent
people and
heroics

2
Repeatable

Project man-
agement
processes

Requirements management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

3
Defined

Engineering
processes and
organizational
support

Organization process focus
Organization process definition
Training program
Integrated software management
Software product engineering
Intergroup coordination
Peer reviews

4
Managed

Product and
process quality

Quantitative process management
Software quality management

5
Optimizing

Continuous
process
improvement

Defect prevention
Technology change management
Process change management

The rating components of the CMM, for the purpose of assessing an organizations

process maturity, are its maturity levels, key process areas as well as their goals and

furthermore every key process area is described by informative components: key prac-

tices, sub practices and examples. The key practices are describing as the main infra-

structure and activities that contribute most to the effective implementation and institu-

tionalization of the key process area [40].

This thesis affects the CMM level 2: Repeatable in the context the key process areas

of software project planning and software quality assurance, level 4: Managed in area

software quality management and in level 5: Optimizing with are defect prevention.

There it should help the management to more precisely define the timely amount,

which has to be assigned to inspections and testing durations to get an adequate and

acceptable defect detection outcome. To improve the whole software quality manage-

ment process as well as to improve defect prevention with the capability to detect de-

fects in very early stages in the software process life cycle.

 - 11 -

2.2 The Process of Software Inspection

Software inspection is a static method to verify and validate a software artifact manual-

ly [34] [83]. Verification means checking if the product is developed correctly or fulfils

its specifications. Validation means checking if the correct product is developed or ful-

fils the customer’s needs [58]. It can be applied to hardly any artifact produced during

the whole software development life cycle. Unfortunately software inspection is not

always applied.

The software inspection is a peer review process, which is normally led by software

developers. These developers are normally very well trained in the used techniques

[101]. Fagan M. originally developed the software inspection process “out of sheer

frustration” [31]. It has been more than 30 years since Fagan M. published the inspec-

tion process in his famous article in 1976 [32]. Since then the importance of the soft-

ware inspection process has been raised and many different software firms and devel-

opers started using it. Many software developers and researchers engaged in improv-

ing the inspection process in the last years. Fagan’s inspection method has been stu-

died and presented by many researchers in various forms around the world [5].

The following figure shows the technical dimensions of software inspections. The in-

spections process, the inspected artifact, the team roles participants as well as their

team size and the reading technique. Since the inspections must be tailored to fit many

different development situations, it is essential to characterize the technical dimension

of current inspection methods and their refinements to grasp the similarities and differ-

ences between them.

 - 12 -

Figure 2-1 The Technical Dimensions of Software Inspections [62]

A software inspection is a well-structured technique that originally began on hardware

logic and moved to design and code, test plans and documentation [30]. The process

itself can be characterized in terms of its objective, number of participants, preparation,

participants’ roles, meeting duration, work product size, work maturity, output products

and the process discipline [31]. First it is needed that a very well defined software

process has been defined. Is this criterion available and also with an exit-option, then a

software product is needed that exactly meets this kind of criterion [12].

A reference model for software inspection processes is needed to be able to explain

the various similarities and differences between the inspection methods. To define

such a reference model, Laitenberger O. [62] argues, that the purpose of the various

activities within an inspection rather than their organization, with which it would be

possible to provide a different examination of these approaches. Six major process

phases are implemented as depicted in Figure 2-1.

 - 13 -

• Planning

• Overview

• Defect Detection

• Defect Collection

• Defect Correction

• Follow-up

The inspection is performed by a team in which every participant has its well defined

role. It is important that the people performing the inspection are familiar with the prod-

uct as well as having a basic knowledge about the inspection process. If this know-

ledge is not present they must be trained. The members of the inspection team ex-

amine the material individually to learn about the product. After this, the participants

attend a meeting in which they have to identify defects. The next step is, that the list of

defects found is sent back to the author of the documents. These documents will then

be repaired and removed during any of the later stages in the review process [5].

An effective software review process needs to address the relationships of all the re-

quired variables in terms of tasks involved, tools and methods used, and the skill, train-

ing and motivation of people [5]. Various researchers have made proposals which at-

tempt to improve upon the process of Fagan’s inspection method. A literature review

reveals two major areas of study, as illustrated in Figure 2-2.

A lot of research of different developers and organizations has been done on the struc-

ture of the inspection process. They have developed several new process and models

by restructuring the basic processes in Fagan’s inspection method [5].

This master thesis focuses on the methods and models that support the structure,

preparation of the inspection process.

 - 14 -

Figure 2-2: Evolution of the inspection process with change and support to structure [5].

Planning

In the planning phase the main goal is to organize a particular inspection when arti-

facts, which have to be inspected, pass specific entry criteria. For example, when a

source code successfully compiles without any syntax errors. This phase includes the

selection of inspection participants, their assignment to roles, the scheduling of the

inspection meeting and the partitioning and distribution of the inspection material [62].

Planning is very important to be a separate phase, because there must be a person

within a project or organization who is responsible for planning all inspection activities,

even if such an individual plays numerous roles [62].

Overview

The next step is the overview phase. In this phase a first meeting should be made and

the author should explain the inspected artifact to the participants. This phase should

mainly be used to provide a more transparent view of the inspected artifact to the par-

ticipants, what makes it easier for them to understand its functionality. Such a first

meeting could be particularly valuable for the inspection of early artifacts, such as a

requirements or design document, but also for complex source code [62]. On the other

 - 15 -

hand, does this meeting consumes some effort and therefore increases also the dura-

tion of any kind of inspection and it may therefore focus the participants attention on

particular issues. These limitations may be one reason why Fagan M. [34] states that

an overview meeting for code inspection is not necessary. This statement is supported

by Gilb et al. [37], who call the overview meeting the “Kickoff Meeting” and point out

that such a meeting can be held, if it is desired, but it is not mandatory for each inspec-

tion cycle. On the contrary other authors consider this phase essential for effectively

performing the subsequent inspection phases. Ackerman et al. [1] for example argued

that the overview brings all inspection participants to the point where they can easily

read and analyze the inspected artifact.

Laitenberger O. [62] claims, that there are three conditions under which an overview

meeting is definitely justified and beneficial:

1. When the inspected artifact is complex and difficult to understand. In this case,

declarations from the author over the inspected artifact make it easier to under-

stand it for the participants

2. If the inspected artifact belongs to a large software system, the author should

then explain the relationship between the inspected artifact and the whole soft-

ware system to the other participants.

3. When new team members join the inspection team, the author should explain

the inspected artifact so that the new team members are also able to inspect it.

Summarized can be said, that most published applications of inspections report per-

forming an overview meeting, but on the other hand he also says that there are also

examples that either did not perform one.

Defect Detection

The defect detection phase can be named as the core of an inspection. The main goal

of this phase is to identify the defects of a software artifact. How this phase should be

organized best, is still in debate in the literature. Laitenberger O. [62] says that the is-

sue is whether defect detection is more an individual activity and hence should there-

fore be conducted as part of a group meeting, that is, an inspection meeting. Fagan M.

[34] says that a group meeting has very positive influences on the achievement, be-

cause participants check the inspection artifact together. He makes the implicit as-

sumption that interaction contributes something to an inspection that is more than the

 - 16 -

mere combination of individual results. This effect is called the “phantom” inspector

[34].

In many cases, authors distinguish between a “preparation” phase of an inspection,

which is performed individually, and a “meeting” phase of an inspection, which is per-

formed within a group [1]. However, it is often not really clear for which purpose the

preparation phase is performed. It could be for the main goal, which is naturally to

detect defect, or just to be able to understand the artifact, which then leads in a later

meeting phase to detect defects. For example, Ackerman et al. [1] state that a prepa-

ration phase lets the inspectors thoroughly understand the inspected artifact. They say

that the main goal of the preparation phase is not explicitly the defect detection.

The literature on software inspection does not really provide a definitive answer on

which alternative is best; Laitenberger O. [51] took a look at some literature from the

psychology of small group behavior [79] [45] [53]. The conclusion of the psychologists

asked, regarding the question if individuals or groups are more effective, depends on

the past experience of the persons involved, the kind of task they are attempting to

complete, the process that is being investigated, and the measure of effectiveness,

because some of these parameters of course vary a little bit in the context of a soft-

ware inspection [51]. Finally it is recommended that the defect detection activity may

be organized as both individual and group activity with a strong emphasis on the indi-

vidual part [62].

Defect Collection

In most published inspection processes more than one person participates in an in-

spection and checks a software artifact for defects. Every detected must of course be

collected and documented. Also a decision has to be made about every reported de-

fect if it is really a defect, which is the main objective of the defect collection phase.

Another objective may be at the end of the phase if the artifact has to be inspected

again. The defect collection phase is mostly performed in a group meeting so the deci-

sion if the found defect really is a defect or not is often a group decision as well as if to

perform a re-inspection. To make the re-inspection decision a more objective one,

some authors suggest applying a statistical model, such as a capture-recapture model,

for estimating the remaining number of defects in the software product after inspection.

If the number is higher than a certain threshold, then the artifact needs to be inspected

again [62].

 - 17 -

Defect Correction

In the defect correction phase the author has to rework and correct the defects found.

To do this the author has to edit the artifact and deals with each reported defect. There

is only little discussion in the literature about this activity [60][54].

Follow-up

The main goal of this objective is to check that the author has resolved all defects

found in the defect collection phase. To do this, one of the inspection participant has to

verify the defect resolution. Apparently do many think, that the follow-up phase is an

optional one, like the overview phase [62].

Products

This dimension refers to the product, or artifact which is actually inspected. Boehm B.

[15] argues that one of the most prevalent and costly mistakes made in software

projects today are deferring the activity of detecting and correcting software problems

until late in the project. This statement points out, that software inspections should be

made also for early life-cycle documents. Also a look in the literature points out that in

most cases inspection was applied to code documents. Code inspection naturally

makes the quality of the code a better one and therefore reduces the overall costs, but

the reduction can be higher when inspection is used for early life-cycle artifacts [15].

2.3 Roles in inspections

There is not much disagreement regarding the definition of inspection roles in the lite-

rature. In the following the different roles are described [62]:

• Organizer: The organizer plans all inspection activities within a project or even

across projects.

• Moderator: The Moderator moderates the inspection meeting and he ensures

that the inspection procedures are followed and that team members perform

their duties. In this case the, moderator is the key person in a successful in-

spection as he manages all inspection team and must offer leadership. A spe-

cial training as well experience for the moderator role is mandatory.

 - 18 -

• Inspector: Inspectors are the backbone of each inspection and are responsible

for detecting the defects in the target artifact. Usually all team members can be

assumed to be inspectors, regardless of their other roles in the inspection

team.

• Reader / Presenter: If an inspection meeting is made, the reader will present

the inspected products at an appropriate pace and lead the team through the

material in a complete and logical fashion. The reader should also explain and

interpret he material / artifact rather than reading it literally.

• Author: The author is the one that developed the inspected artifact and is re-

sponsible for the correction of defects during rework. During an inspection

meeting, the author addresses specific questions the reader is not able to an-

swer. The author must not serve as moderator, reader or recorder.

• Recorder: The recorder’s responsibility is to log all kind of defects in an in-

spection defect list.

• Collector: His job is to collect all defects found by the inspectors, if an inspec-

tion meeting has not been made.

2.4 Inspection Team Size

Fagan M. [83] recommends keeping the inspection team quite small, that is, four

people and Bisant et al. [12] have found performance advantages in an experiment

with two persons: the inspector and the author, who can also be regarded as an in-

spector. Kusumoto et al. [50] also took a closer look at the two-person approach in an

educational environment. Weller [100], on the other hand, uses three to four inspectors

in his field study and from Madachy et al. [55] comes out that the optimal size is be-

tween three and five people and Bougeois K. [17] confirms these results in a different

study. Porter et al.’s [66] experimental results are, that the reduction of the attendant

inspectors from four to two significantly reduces the effort but does not increase the

effectiveness of the inspection.

It can be seen that in the literature there is unfortunately no definitive answer to the

optimal number of inspectors and team size. The size should better be modulated in

relationship to the type of the artifact and the environment in which the inspection is

performed as well as the costs associated with defect detection and correction in later

development phases. Normally it is recommended to start with one team, consisting of

three to four people: One must be the author, one or two inspection participants and

 - 19 -

also one moderator is needed. The Moderator should also play the role of the presen-

ter. When a few inspections are made the benefits of changing the team member size

can be empirically evaluated, but the question if the effort for the extra person really

pays off [62].

2.5 Selection of Inspectors

The best inspectors are of course the people, who are also involved in the develop-

ment process of the software artifact itself [96]. Also external inspectors could be taken

into account if they have special experience and or knowledge that would have a posi-

tive influence on the inspection [69]. The chosen inspectors should also have a good

experience as well as knowledge about the artifact [96] [46] [34]. This often limits the

possible inspectors to only a small number of developers working on similar artifacts.

Also personal with only little experience are mostly not chosen as inspectors although

they would learn about the artifact and so could profit a lot from inspections. With the

use of reading techniques this problem can widely be avoided.

Managers should mostly not attend or participate in an inspection [61] [69], because

they do not really concentrate on the quality of the artifact but more on the quality of

the people who created the artifact [96].

 - 20 -

3 Best-Practice Software Inspection

There exist a considerable high number of studies that focus on methods and tools to

support the preparation of the inspection process. This Section reviews different read-

ing techniques and states out why UBR is mainly used for this investigation.

It is very important that the inspector has an understanding of the artifact, which will be

inspected. Otherwise he wouldn’t be able detecting defects if the artifact tends to be

very complex, which is often the case. On the whole, a reading technique is just a pro-

cedural method for the individual inspector to detect defects in the inspected artifact.

At least, it is intended that inspectors use the available reading techniques since this

makes the result of the defect detection activity less dependent on human factors, for

example experience.

Multiple reviewers are able to identify several potential defects in the reviewed artifacts

when using a defined reading technique. A few techniques are available that are prov-

en to be more effective to support these kind of activities. Researchers all agree that

the choice of the reading techniques has a potential impact on the measured inspec-

tion performance and is therefore very import for the whole process [5].

To improve the quality as well as the amount and the fault searching process used for

software inspections, a number of different reading techniques have been developed.

Some of the most often used reading techniques are [65]:

• ad-hoc reading

• checklist-based reading

• perspective-based reading

• usage-based reading.

As different as these reading techniques are, they have a common general goal, which

is to help the reviewers to become and stay focused during the inspection of a certain

software document and thereby to detect more faults [65].

Reading techniques are classified as systematic techniques and non-systematic tech-

niques [66] [81]. The systematic reading techniques such as perspective-based read-

ing, apply a highly explicit and structural approach to the process. It provides a set of

 - 21 -

instructions to reviewers and explains how to read the software document and what

they should especially look for [37]. The non-systematic reading techniques, such as

ad hoc reading or checklists based reading on the other, apply to an intuitive approach

and offer little or no support to the reviewer. A number of empirical studies have also

been made to compare the performance of reading techniques by measuring the over-

all number of defects found from every inspected technique [5].

The following sections gives an overview of the most commonly used forms of reading

techniques.

3.1 Ad-hoc reading

Ad-hoc reading, by default, offers only very little reading support at all since a software

product is just given to an inspector without any comments, explanations or guidelines

on how to proceed through it and as well as on what a special look should be taken.

So this reading technique takes a very general viewpoint of reviewers and is denoted

when no specific reading technique is used. However, ad-hoc does not mean that in-

spection participants do not scrutinize the inspected product systematically. The re-

viewers don’t need to be trained and there is no defined procedure which they can

follow. Instead the reviewers have to use their own skill, knowledge and experience to

identify faults in the documents.

Laitenberger [62] argues that also training sessions in program comprehension as pre-

sented in [28] may help subjects develop some of these capabilities to alleviate the

lack of reading support. Also only a few times in the literature the ad-hoc reading ap-

proach was really used, but many articles were found in which only very little was men-

tioned about how an inspector should proceed in order to detect defects. He assumed

that in the most of these cases no particular reading technique was provided, because

otherwise it would have been stated [5]. Summarized: Ad hoc reading doesn’t have

any support to give to the reviewers [5].

3.2 Checklist-based reading

This reading technique is a more systematic and structured one than ad-hoc reading.

The original procedure developed by Fagan [32] included the use of checklists. The

reviewer works through a list, in which questions has to be answered or ticks a number

 - 22 -

of predefined issues that have to be checked. The questions are expected to guide the

reviewer throughout the whole inspection process [5].

The major goal is defining the responsibilities regarding the reviewers and providing

guidance to them helping to identify as many defects as possible. After Gilb et al. [37]

have the checklists to be developed from the project itself. The preparation of each

individual type of documentation has to be done for each different type of product and

also for each process role. The checklist is important, because it helps to concentrate

on questions that it is easier for reviewers to identify major defects or prioritize different

defects [5]. A checklist should be no more than one single page for each type of do-

cumentation [37]. In some cases the length of a checklist may exceed one page. In

these cases, it may be possible to make inspectors responsible for different parts of

the checklist [62].

Although reading support in the form of a list of questions is better than nothing (such

as ad-hoc reading), checklist-based reading has several weaknesses [62]. The given

questions are often kept in a general theme and are not sufficiently tailored to a partic-

ular development environment. So, the checklist often provides only very little support

for an inspector to understand the inspected artifact, which can often be essential to

detect, for example, major application logic defects. Also a detailed instruction on how

the checklist has to be used is often not made. Therefore in some cases it stays quite

unclear when and also based on what kind of information an inspector has to answer a

particular question of the list.

Actually several strategies are possible addressing all the questions in a checklist as

followed: The participant takes a question and then reads through the complete artifact

answering the questions. Afterwards the next question has to be taken. But this proce-

dure is also quite common: The participant reads through the complete document and

afterwards the questions of the checklist are answered. It is quite unclear which ap-

proach participants mostly follow when using a checklist and how they achieved their

results in terms of defects detected. Another problem of checklist-based reading is that

checklist questions are often limited to the detection of defects that belong to particular

defect types. Inspectors may often not focus on defect types not previously detected

and, therefore, may miss whole classes of defects [62].

With the discussed problems we are now able to develop a checklist according to the

following principles [62]:

 - 23 -

• The length of a checklist should not exceed one page.

• The checklist question should be phrased as precise as possible.

• The checklist should be structured so that the quality attribute is clear to the in-

spector and the question give hints on how to assure the quality attribute.

Although these actions can be taken, a checklist still provides only little guidance for

inspectors on how to perform the various checks. This weakness led to the develop-

ment of more procedural reading techniques [62].

3.3 Perspective-based reading (PBR)

Perspective-based reading (PBR) was originally developed and experimentally vali-

dated at NASA [51]. PBR is an enhanced version of scenario-based reading. The

technique focuses on the point of view or needs of the stakeholders [5]. Each scenario

consists of a set of questions and a scenario itself is a viewpoint of an algorithmic de-

scription. The description shows activities as well as questions of the inspected docu-

ment and from which an abstraction can be build. Afterwards finally this abstraction

has to be analyzed, which is developed based on the knowledge about the environ-

ment. In this environment the reading process then is applied: roles in the software

development process and defect classes as shown in the Figure 3-1.

Figure 3-1: Description of the PBR-Model [86]

M. Ciolkowski [86] describes the activity of a scenario should be a description on how

to build an abstraction of the inspected document. An activity should be typical for a

particular role within the software development process. The role has to determine the

perspective from which the reader is to inspect the document, typically a customer or

Operational scenario

Algorithmic description of activities

Questions
Defect classes of
problems in the en-
vironment

Role / Perspective
(Description of typi-
cal activities)

 - 24 -

consumer of the corresponding document. A question is an interrogation of the reader

about the activity [86], i.e. the process of building the abstraction or the result of the

activity. The questions are derived from defect classes or problems that are typical for

the product or for the environment. The question on the scenario should not be com-

pared to the tick-list of a checklist.

Basili et al. [51] made a number of different experiments at the NASA. These experi-

ments tried to investigate the effectiveness of PBR on, for example, requirements doc-

uments. Unfortunately they found no mentionable difference in the performance and in

the number of defects found of reviewers who used their own usual technique and

those who were using PBR, but reviewers performed significantly better on the generic

the generic documents [5]. Laitenberger et al. [92] also found no significant perfor-

mance differences when they ran a more detailed experiment using PBR on code doc-

uments at Robert Bosch GmbH. Shull et al. [37] pointed out that PBR is suited to re-

viewers with a certain range of experience. These authors argued that reviewers using

PBR on kinds of requirements documents detect more defects, in contrary to those wo

use, for example, less structured methods. They also emphasized that PBR has bene-

ficial qualities because it is systematic, focused, goal-oriented, customizable and trans-

ferable via training [5].

3.4 Usage-based reading (UBR)

The preparation of software inspections, which is made by individuals, enlarged its

focus from only comprehension, initially proposed by Fagan [33] to also comprise fault

searching. The aim of many reading techniques is to find as many faults as possible,

albeit of their importance. The inspection effectiveness in most cases measured in

numbers of faults detected, without taking into account that some defects in the in-

spected object tend to affect the system quality a lot more than eventually others do

[91]. What is again a very important point when costs should not exceed expectations,

because critical failures are mostly more complex than non-critical failures and there-

fore they will need more time to fix. So UBR can help to reduce costs.

The idea behind UBR is to focus on detecting the most critical faults in the inspected

artifact. The defects are not assumed to be of equal importance and therefore UBR

concentrates on finding the most critical ones from the users’ point of view, which are

 - 25 -

most dangerous to the overall system quality. The UBR method focuses the reading

effort guided by a prioritized, requirements-level use case model [91].

A use case represents how the system can be used, viewed as a set of related trans-

actions performed by an actor and the system in dialogue [34] [24]. The basic idea of

modeling usage from an external point of view by describing different usage scenarios

is practiced in industrial requirements engineering in various contexts and ways [42].

Industrial software development projects often produce a set of use cases that

represents the principal way of using the system, and the set of use cases typically

acts as a basis for system design and testing [63].

The background of UBR is from operational profile testing [74] and the user perspec-

tive in object-oriented development [9] [63]. UBR utilizes the set of use cases as a ve-

hicle for focusing the inspection effort, much the same way as a set of test cases fo-

cuses the testing effort [77]. The use cases should show the inspectors how to inspect

the document in a similar way as the test cases show the testers how to test the sys-

tem [91]. Figure 3-2 shows the input and results of UBR.

Figure 3-2: Input and Output of UBR. [91]

A very important thing concerning the inspection effort in UBR is the prioritization of

use cases. UBR assumes that a set of use cases is prioritized in a way which reflects

the desired focusing criterion. If the inspection is aimed at finding the faults that are

most critical to the system quality, the use cases should be prioritized correspondingly

use cases with
priorities

inspection object

UBR
usage-based reading

Check the inspection object
guided by use cases.
Focus the fault-finding effort on
the high-priority use cases.

list of faults

 - 26 -

[91]. The use cases may, for example, be prioritized through pair-wise comparison

using the analytical hierarchy process (AHP) [33] [96] with the criterion:

“Which use case will impact most negatively

on the system quality if it is not fulfilled?”

The use cases are prioritized before an inspection session and they should be made

by some potential users or by someone who is very familiar with the usage of the soft-

ware. The use cases can be utilized for hardly any kind of inspections, like require-

ments documents, design documents or source code. This applies to a specific project

and has to be done only once for the duration of the whole software project. The in-

spectors then read through the whole documents and manually execute the use cases

in the defined order. During this process they try to detect as many defects, which are

most critical and therefore important according to the prioritization and therefore also

to the users [65].

As told before, UBR is kind of operational profile testing, which takes the inspector into

the user perspective. This is quite the same way as a set of test cases focuses the

testing effort. The use cases give the reviewers the guidance how to inspect a design

or code document in a similar manner as the test cases tell the testers how to test the

system. The individual inspection of a design document using UBR is performed in the

following basic steps [65]:

• Before inspection: The use cases have to be prioritized in order of importance

from a user’s point of view.

• Preparation: To read through the whole design document to be inspected, the

use cases should try to guide the reading. The requirements document is used

as a reference to which the design is verified.

• Individual inspection: Inspect the design document by following the proce-

dure:

1. Select the use case with the highest priority.

2. Trace and manually executing the use case through the design docu-

ment and use the requirements documents as a reference.

3. Ensure that the document under inspection fulfills the goal of the use

case, that the needed functionality is provided, that the interfaces are

correct etc. indentify and report the issues found.

 - 27 -

4. Repeat the inspection procedure using the next use case until all use

cases are covered, or until a time limit is reached.

Two variants of the UBR method are defined, ranked-based reading and time-

controlled reading [65].

Ranked-based reading, which is the basic form of UBR, prioritizes the use cases with

respect to the importance from a user’s perspective. A reviewer who uses the ranked-

based reading variant follows the use cases in the order in which they appear in the

ranked use case document. Time-controlled reading adds a time budget to each use

case in order to force a reviewer to utilize a specific use case the specified time. Time

budgets are given to each use case and are normally longer for use cases which have

a higher rank and less time budgets for use cases with a lower rank. By using this kind

of prioritization method, it would be possible to derive the relative priority 𝑝𝑝𝑖𝑖 , (0 ≤ 𝑝𝑝𝑖𝑖 ≤

1,∑𝑝𝑝𝑖𝑖 = 1), of each use case 𝑈𝑈𝑖𝑖 . Based on this, UBR may be carried out as follows:

[91]

[1] Decide on the total time T to be spent on reading of artifact A

[2] Assign the time 𝑇𝑇𝑖𝑖 = 𝑝𝑝𝑖𝑖 ∗ 𝑇𝑇 to each use case 𝑈𝑈𝑖𝑖

[3] For each use case 𝑈𝑈𝑖𝑖 , inspect A for a period of 𝑇𝑇𝑖𝑖 by “walking through” the

events of 𝑝𝑝𝑖𝑖

and decide if A is correct with respect to 𝑈𝑈𝑖𝑖 [91].

UBR is a novel reading technique which differs a little bit from the other reading tech-

niques. Although UBR is related to PBR there are some differences between these two

techniques. The relation to PBR is the utilization of the user perspective. However,

UBR focuses only on the users and guides the reviewers based on the users’ needs

during an inspection by providing the reviewers with developed and prioritized use

cases [65]. In PBR on the other hand different perspectives are used to produce arti-

facts during an inspection. The reviewers that apply the user perspective develop use

cases based on the inspected artifact and thereby find faults. In UBR, the use cases

are used as a guide through the inspected artifact. The main goal of UBR is naturally

to improve the efficiency as well as the effectiveness by directing the inspection effort

to the most important use cases form a user’s viewpoint. Despite PBR has the goal of

improving the effectiveness by minimizing the overlap of defects that the reviewers

tend to find. The latter is, however, not always achieved [1].

 - 28 -

Another practical difference exists between PBR and UBR [65]. PBR is a reading

technique that can be used with hardly all artifacts produced during a software devel-

opment lifecycle, if the developed scenarios for PBR are general. In PBR, the term

scenario is a metalevel concept, denoting a procedure that a reader of a document

should follow during an inspection [65]. That means that for example scenarios which

have been developed for requirements documents may be used for all requirements

documents. However, the same scenarios cannot be used for design or code inspec-

tions. On the contrary, UBR scenarios are specific to each project, which means that

the used cases can only be utilized within the project they are developed for [65], but

on the other hand they can be used for requirements design as well as for code in-

spections in that project. In addition, they may also be used for test specification de-

velopment as well as inspection [65]. This is one of the greatest benefit and also the

reason why it is used in this master thesis.

3.5 Comparison of reading techniques

This section is about to give an overview about examined experiments and their re-

sults as well as a comparison of reading techniques made by Laitenberger [62]. A

general prescription about when to use which reading technique cannot really be done.

But a comparison between them has been set up following these criteria to provide

answers to the following questions [62]:

• Application Context: To which software artifact can this reading technique be

applied and to which software artifact has this reading technique already been

applied?

• Usability: Can the reading technique give you guidelines how the software arti-

fact can be checked for detecting defects?

• Repeatability: Are the results that the inspector found during inspection re-

peatable, that means, will another person detect the same defects in the soft-

ware artifact?

• Adaptability: Can the reading technique be adapted to particular aspects, for

example the notation of the document, or typical defect profiles in an environ-

ment?

• Coverage: Are all required quality properties of the software product, such as

correctness or completeness, verified in an inspection?

• Training required: Is it required that the inspectors are trained in the used

reading technique?

 - 29 -

• Validation: How was the reading technique validated, that is, how broadly has

it been applied so far?

Table 3-1 below shows the characteristics of each reading technique according to

these criteria. Question marks are used in cases for which no clear answer can be

provided at this time.

Table 3-1: Characterization of Reading Techniques [62]

Reading
Technique

Characteristics

Application
Context

Usa-
bility

Repeat-
ability

Adapt-
ability

Cover-
age

Training
required Validation

Ad-hoc All Products No No No No No Industrial Prac-
tice

Checklist All Products No No Yes
Case
depen-
dent

No Industrial Prac-
tice

Reading by
stepwise
Abstraction

All Products
allowing
abstraction,
Funct. Code

Yes Yes No

High for
correct-
ness
defects

Yes
Applied primar-
ily in Clean
room projects

Defect-based
reading

All Products,
Requirements Yes

Case
Depen-
dent

Yes High Yes Experimental
Validation

Perspective
based read-
ing

All Products,
Requirements,
Design, Code

Yes Yes Yes High Yes
Experimental
Validation and
Industrial Use

Traceability
based
reading

Design speci-
fications Yes No No High Yes Experimental

Validation

Usage based
reading

All Products,
Requirements,
Design, Code

Yes Yes Yes High Yes Experimental
Validation

It can be seen that UBR is achieving quite good results in all questions. Next, UBR will

be compared in already examined experiments and it will be shown, that this inspec-

tion technique is making good results here too, see Figure 3-3 below. Normally four

different variables are compared: effort, effectiveness, efficiency and false positives.

All these studies were conducted in a controlled academic environment.

 - 30 -

Figure 3-3: Studies on UBR

Study (author, title, year) Compared tech-
niques Superior technique

Thelin T. et al, “Prioritized Use Cases as a
Vehicle for Software Inspections”, 2003 [89] UBR – CBR UBR

Thelin T. et al, “An Experimental Compari-
son of Usage Based and Checklist-Based
Reading”, 2003 [92]

UBR – CBR UBR

Thelin T. et al, “A Replicated Experiment of
Usage Based and Checklist-Based Read-
ing”, 2004 [88]

UBR – CBR UBR

Winkler D. et al, “Investigating the Effect of
Expert Ranking of Use Cases for Design
Inspection”, 2004 [107]

UBR – UBR-i – CBR UBR

Winkler D. et al, “Investigating the impact of
Active Guidance on Design Inspection”,
2005 [106]

UBR – CBR UBR

The investigations of Thelin T. et al. [89], [92] and [88] figured out that UBR is regard-

ing efficiency and effectiveness significantly better than CBR. Defects were also classi-

fied by the defect severity classes and inspectors who had to apply UBR found mea-

surable more crucial as well as important defects than inspectors which had to deal

with CBR.

Winkler D. et al. observed in both studies [107] and [106] that effort of all investigated

techniques is quite similar. But when it comes to effectiveness and efficiency UBR is

performing better than CBR. False positives where also examined in these studies

were as a result UBR achieved also better results than CBR.

3.6 Temporal behavior

A lot of different investigations about reading techniques have been made so far, but

the temporal behavior is a point in which the related work searched, tends to have a

gap. Therefore this Thesis tries to find answers on when is which software fault detec-

tion technique basically performing at its peak level, meaning during which time inter-

vals, will the most critical defect be found by the participants.

 - 31 -

Summarized can be said that UBR achieved good results compared with several dif-

ferent reading techniques as well as compared with them in different experiments in-

vestigated in detail in the previous chapter. Thus this technique is worth to have a

closer look on its temporal behavior and in comparison with a testing method that also

focuses on the users’ perspective as well as on the most critical and important defects

in design documents. The temporal behavior of the software fault detection techniques

will be measured by effectiveness, which is the number of matched defects (= number

of seeded defects found by a participant) in relation to the overall number of seeded

defects per individual defect severity class in a certain time interval and efficiency,

which is the number of matched defects found per certain time interval, for example 60

minutes.

The main outcome of this thesis will be the temporal behavior, meaning in which time

interval, UBR and UBT-i are performing most effective and efficient as well as find the

most critical defects in the inspected software artifacts. This adds a benefit to the

knowledge about these software fault detection techniques, making it possible to better

define and more precisely determine the optimal inspection and test duration, or to be

able to control which kind of defects the inspectors should mainly search by only alter-

ing the duration of the inspection or test.

 - 32 -

4 Software Testing and Test-First Development

Testing has of course the same challenge that reading techniques have, to find defects

as early as possible in the specified artifacts and therefore to improve the quality of the

software product as well as to reduce the overall costs. This section gives an overview

about the typical testing approaches like black-box, white-box testing and unit testing,

test-first development as well as a detailed view on usage based testing and its adap-

tion.

Normally a test plan is made, which includes several test-cases [15]. These test-cases

define the work of the testers and covers the complete functionality of the project. It is

also important to say that trial and error testing during the implementing sessions is not

really testing. It is also important that in most cases the person who has the role of the

implementer not also gets the role of the tester.

The test protocol is the output when running test cases against a defined system. It is

of course necessary that the tester writes down the false behavior of the system and, if

available, the unique error number for the subsequent bug fixing processes that then

have to come.

Test reports are normally produced after testing, for example after one week. If the

testing process is automated, such reports can be produced periodically, for example

every week. These documents are of great importance for the management to be able

to make decisions, as well as for the development team to give them feedback about

the quality of their work.

Software testing methods are traditionally divided into black box testing and white box

testing. In some cases also the terms behavioral and structural are used, although

behavioral test design is a little bit different from black box testing. This is, because a

knowledge of the internal the tested system is not forbidden at all, but it is still discou-

raged. These two different methods are mostly used to describe the point of view that

a test engineer uses when designing his test cases. Black box and white box are test

design methods, whereas unit testing or usage based testing, which will also be ex-

plained in the following chapters, are testing processes which conduct a different level

of testing. Also each level of testing can use any test design method. But unit testing is

usually associated with white box testing, whereas usage based testing on the other

hand is usually associated with black box testing.

 - 33 -

4.1 Black-Box Testing

Black-box testing is also known as functional testing. These are testing techniques that

have an external view on the system and test cases are generated without knowledge

of the interior of the system, see Figure 4-1. Only the input and the output are of impor-

tance for the test cases. Therefore is a successful black-box test no guarantee that the

software is really faultless, because specifications made in early phases of the soft-

ware development life cycle cannot be proven if they have been implemented in the

right way. The developer of the test cases must not have knowledge about the functio-

nality of the system, therefore a separated team for the creation of the test cases is

necessary.

The tester takes for example the role of a user and proves the test cases which were

worked out in advance.

Figure 4-1: Black-Box Testing

4.2 White-Box Testing

White-box testing techniques take an internal view, as shown in Figure 4-2, and aim at

covering all paths in the code or all lines in the code in contrary to black-box tests.

White-box tests are made with knowledge about the internal functionality of the sys-

tem. So they focus on testing source code where the coverage is important.

Should also subparts of the system been tested, is it necessary to know a lot about

their functional behavior. So they are also very suitable to localize known defects in

those subparts of the system and therefore to identify the component which is respon-

sible for the defect. White-box tests alone are as well as black-box test insufficient to

Test Case
Black-

Box
Test

Software System

Test
OK

Test
fail

 - 34 -

guarantee a failure less software product. A meaningful test series should combine

black-box and white-box tests. The programmers of the code have of course a very

good knowledge about the system and its functionality and therefore it makes sense

that the same persons also develop the white-box tests. So it is normally that there is

no separated team needed that makes these test cases. It would also be very exten-

sive to instruct a new team to the software system that should be tested, what is not

needed for the system developers [102].

Figure 4-2: White-Box Testing

4.3 Unit Testing

In unit testing, which is traditionally a white box testing method; a programmer tests an

individual part or unit of a source if it is faultless. Therefore each unit is viewed and

tested isolated. The size of a unit in this correlation can be from the smallest parts of a

program to methods or even components [98]. These kind of tests are typically written

and run by the software developers itself. The implementation can vary from being

completely manual, like paper to being formalized as part of build automation, but

commonly it is automated. Normally a strict written contract is provided that the piece

of code must satisfy. Also all test cases are independent of each other [97]. The Figure

4-3 below, illustrates the unit testing procedure for the Junit approach.

Test Case

Software System

Test
OK

Test
fail

White-Box
Test

 - 35 -

Figure 4-3: Unit Testing Process for the Junit Approach [97]

Unit testing even provides a sort of living documentation for the specified system. The

software developers can take a look at the unit tests to get knowledge about how to

use the unit and also to get a basic understanding of the unit API [98]. The success

critical characteristics of the unit can naturally indicate if the use of it was appropriate

or inappropriate. On the other hand, an ordinary documentation, which has a kind of a

narrative character may sometimes drift away from the implementation of the program

and will therefore sooner be outdated. Especially when design changes happen or

relaxed practices are common when it comes to keep documents up to date [98].

4.4 Test-First Development

In Test-First Development (TFD), which is often also called Test-Driven Development

(TDD) the developer writes automated unit test cases before writing implementation

code for the new functionality they are about to produce. Therefore this testing process

is also usually associated with the white box testing method. When the developer has

written these test cases, which will generally not even be compiled, the developer then

starts to write the implementation code to pass these test cases created in advance.

 - 36 -

The developer writes some test cases, implements the code, writes some test cases,

implements the code, and so on, see Figure 4-4. The whole work is kept within the

developer’s intellectual control, because he is continuously making small design and

implementation decisions and increasing functionality at a relatively consistent rate

[56]. A new functionality will not be implemented unless any unit test case has been

written for the code and also run properly through the test.

Figure 4-4: Test-First Development [4]

These are some benefits of test-first development [56]:

• By using TFD the gap between decision (design developed) and feedback

(functionality and performance) can be reduced. Meaning that the fine granular

test-then-code cycle would be able to give a constant feedback to the develop-

ers.

• TFD intends the developers to write a kind of code which is automatically test-

able, such as having functions or methods returning a value, which can be

checked against expected results

• With the use of these automated test cases generated in advance, it is easily

possible to identify if a new change in the code breaks anything in the existing

system. This also allows a smooth integration of new functionality into the code

base of the system

 - 37 -

4.5 Usage-based testing (UBT)

Traditional testing is often concerned with the technical details in the implementation,

for example: branch coverage, path coverage and boundary-value testing [86]. UBT

[44] on the contrary takes the view of the end user, so UBT is a black box testing ap-

proach taking the actual operation behavior into account. The focus is not to test how

the software is implemented, but how it fulfills its intended purpose from the users’

perspective [73]. The same focus as UBR has and therefore the original definition of

UBT is similar to UBR. The workflow is defined by the prioritized test-cases in pre-

given order. As the v-model of Figure 1-4 on page 6 shows, UBR could be prior to im-

plementing, while UBT is normally conducted after implementing.

Several testing techniques have been empirically evaluated and also compared with

different inspection techniques [6] [85]. UBT again was developed to focus on the us-

ers and to estimate the reliability [75]. Andersson C. et al. [3] also compared testing

and inspection approaches and introduced as well usage-based testing concerning

expert prioritized use cases and test cases, which were applied to code documents.

But an additional work has to be done, because it is necessary to prioritize the use

cases and test cases, which were set up in advance.

UBT is used to certify a particular reliability level and to validate the functional re-

quirements [13] therefore UBT is to exercise the system under the same circums-

tances as the product is used in production [49].

UBT has two main objectives [73]

1. To find the faults which have the most influence on the reliability of the whole

system from the users’ point of view.

2. To produce data, which makes it possible to certify and predict the software re-

liability. Finally to know when testing can be stopped; the product is ready and

can be accepted as it is.

Normally when UBT is applied two kinds of models are needed, a model to specify the

usage and a reliability model [73].

 - 38 -

The usage specification is a model that describes how the software has to used during

operation. In the literature different types of models have been presented:

• Tree-structure models, which assign probabilities to sequences of events [57]

• Markov based models, which can specify more complex usage and model sin-

gle events [103]

The main purpose of such a usage specification is to describe the best way getting a

basis for the best practice to select test cases for UBT. This can also be used for two

things, first for the analysis of the intended software usage and second to plan the

software development itself. Knowing that some parts will have to be reused for some-

times they can be developed in earlier increments and therefore also be certified with

higher confidence. The development and the certification of such increments is de-

scribed in detail by Wohlin C. [109].

A kind of a reliability model will be needed to be able to analyze the defect data col-

lected during the statistical testing. During the last 20 years several different model

have been published and described, see Goel A. [38] for an overview, where models

of different complexity and possibility to estimate the software reliability have been

presented.

In this master thesis a different approach of UBT is used. UBT is typically located in

the implementation phase or even later of the software development life cycle. There-

fore Winkler et al. [108] improved the testing capabilities of UBT based on a modifica-

tion by including inspection methods into the standard usage based testing approach –

called “Usage-based Testing with Inspection” (UBT-i). This approach includes a two-

fold benefit:

1. UBT may also be applied to design specifications and code documents

2. The generation of test cases is an integral part of the testing process

What means, that the generation of test cases is an additional outcome in contradic-

tion to the standard defect detection.

When executing this UBT-i approach the inspectors have to perform four major steps:

1. Choosing the first prioritized use case

2. Finding equivalence classes as well as test cases equivalent to the selected

use case, afterwards applying guidelines for equivalence class derivation.

 - 39 -

3. Apply the test cases relating to the prioritized use cases and record the candi-

dates’ defects.

4. Go back to step 1 until all use cases and document coverage are executed or

the time limit is over.

Using this approach of UBT-i, this software fault detection technique can now be

tested on documents of the design specifications. So it is possible to get an impression

of its defect detection performance and can also be measured against a software in-

spection technique like UBR.

This thesis should add knowledge to the basic understanding of UBT-i about the per-

formance in context of its temporal behavior. By knowing in which time intervals UBT-i

is performing at its peak level tests can be better planned and organizations are there-

fore able to reduce efforts and costs for their software quality assurance work.

 - 40 -

5 Research Approach

The main focus in this thesis is on the temporal behavior of defect detection effective-

ness and efficiency between usage based reading – UBR – and usage based testing

with inspection – UBT-i – in design documents.

The investigation of an experiment which was conducted also from Biffl S. et al. [11]

will show how the results of these two software fault detection techniques will vary in

the asked context of defect detection effectiveness, efficiency and false positives after,

for example: 30 minutes, 60 minutes, 90 minutes and so on. Also the kind of defect

types and the defect severity classes are important factors and will therefore be taken

into analysis. By knowing the effectiveness, efficiency and false positives of each soft-

ware fault detection technique in the context of certain time intervals a conclusion can

be made if UBT-i with a little higher investment of time, because of the creation of the

test cases, also leads to a better quality, what should result in a higher effectiveness

than UBR.

Depending on the results that the investigation of the experiment will reveal different

inferences can be made. Apart of the question which software fault detection tech-

nique is the more effective and efficient, the crucial question is to know the time inter-

vals in which UBR and UBT-i are most effective and also efficient as well as in which

the least false positives will be found. If the research will give this information the most

defect detection effectiveness and efficiency in a temporal context can be identified. By

having the knowledge which technique finds between which time intervals for example,

the most crucial defects, companies are therefore able to give their inspections and or

tests the perfect duration for their individual expected defect-finding outcome. Will the

investigation not reveal a precise time intervals in which these software fault detection

techniques are highly effective or efficient; than this could for example mean that these

measures are tied to each individual inspector. If this happens a further deeper re-

search about the individual skill and experience level of each inspector has to be made

and hopefully by comparing participants with similar levels some commonness will be

found. But such a deeper investigation of individual skill and experience levels will not

be part of this thesis.

 - 41 -

To summarize three main research questions are asked:

1. Is UBR more Effective and Efficient than UBT-i?

2. Are the Techniques basically effective and efficient in the first 120 minutes?

3. During which time intervals will the fewest False Positives be found?

5.1 Variables

The types of variables defined for this experiment are independent and dependent

variables. They are explained in more detail in the following section.

Independent Variables
The qualification and the document location are the independent variables, so they do

not depend on other variables.

The Qualification of the subjects was detected by performing an entry assignment. In

relation to their results all subjects were divided in qualification classes. High, medium

and low qualified inspectors were distinguished. The assignment included in context to

reviews, inspection and usage-based reading a corresponding task.

The document location, through which the candidates had to go are of a different

kind of documents related to the used system. The defects were seeded in the source

code and design documents of the experiment. In this master thesis we concentrate on

the design documents only.

Dependent Variables
These variables capture the performance of the different software fault detection tech-

niques, which were applied in this experiment study. Following the standard practice in

several empirical studies and the specific experiment, the focus is especially on time

variables and performance measures. What concerns the time variables it will be ana-

lyzed the time spent on inspection and testing in minutes and the clock time when

each defect is found (in minutes, starting from the beginning of the inspections and

tests).

 - 42 -

As far as performance measures are concerned it will be concentrated on the defect

detection effectiveness and efficiency as well as false positives in a temporal context

(30 minutes, 60 minutes, 120 minutes etc.) what means the share of defects found by

each individual inspector and tester in a certain time interval in relation to the sum of

the defects of severity classes A+B, which were seeded into the several software arti-

facts.

The Effectiveness is the number of matched defects (= number of seeded defects

found by a participant) in relation to the overall number of seeded defects per individu-

al defect severity class in a certain time interval. It is expected that a difference in ef-

fectiveness between the inspectors and testers applying one of the two software fault

detection techniques UBR and UBT-i will be revealed. Effectiveness is further meas-

ured on the severity classes A+B and all seeded defects.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 [%] =
𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝑒𝑒 𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐸𝐸𝑡𝑡𝐸𝐸𝑚𝑚𝑡𝑡 𝐸𝐸𝑛𝑛𝑚𝑚𝑛𝑛𝐸𝐸𝑛𝑛 𝑡𝑡𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝑒𝑒 𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

The Efficiency is the number of matched defects (= number of seeded defects found

by a participant) found per certain time interval, for example 60 minutes.

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 [𝑝𝑝𝐸𝐸𝑛𝑛 𝐸𝐸𝑖𝑖𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑚𝑚𝑚𝑚𝐸𝐸] =
𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝑒𝑒 𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐸𝐸𝑖𝑖𝑚𝑚𝐸𝐸𝐸𝐸𝑛𝑛𝑚𝑚𝑚𝑚𝐸𝐸

False Positives are recorded defects, but these defects could not be associated to

any reference defects, which were seeded by the experts. So False positives are all

found but not matched defects.

𝐹𝐹𝑚𝑚𝑡𝑡𝐸𝐸𝐸𝐸 𝑃𝑃𝑡𝑡𝐸𝐸𝑖𝑖𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸 [%] = 𝐹𝐹𝑡𝑡𝑛𝑛𝐸𝐸𝑒𝑒 𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐸𝐸𝑡𝑡𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝑒𝑒 𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

The Effort records the time needed by all participant to get through the used software

fault detection technique and therefore to detect defects. The effort is calculated by

 - 43 -

adding the preparation time to the working time and subtracting the break time of the

candidates.

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑛𝑛𝐸𝐸 = 𝑃𝑃𝑛𝑛𝐸𝐸𝑝𝑝𝑚𝑚𝑛𝑛𝑚𝑚𝐸𝐸𝑖𝑖𝑡𝑡𝐸𝐸 𝑇𝑇𝑖𝑖𝑚𝑚𝐸𝐸 + 𝑊𝑊𝑡𝑡𝑛𝑛𝑊𝑊𝑖𝑖𝐸𝐸𝑊𝑊 𝑇𝑇𝑖𝑖𝑚𝑚𝐸𝐸 − 𝐵𝐵𝑛𝑛𝐸𝐸𝑚𝑚𝑊𝑊 𝑇𝑇𝑖𝑖𝑚𝑚𝐸𝐸

Defect Severity Classes are: class A (critical), these would have serious influence on

the fundamental functionality of the product. Class B (major), which are defects of me-

dium risk but also have an important influence on the functionality of the software sys-

tem. Defects which have the class C only have a minor influence on the functionality

and quality of the software product.

The Mann-Whitney Test is performed to examine if the results of two groups are sig-

nificantly different.

𝑈𝑈 = 𝐸𝐸1 ∗ 𝐸𝐸2 +
𝐸𝐸1 ∗ (𝐸𝐸1 + 1)

2
− 𝑅𝑅

𝑈𝑈 =
𝐸𝐸1 ∗ 𝐸𝐸2

2
− 𝑛𝑛(𝛼𝛼) ∗ �

𝐸𝐸1 ∗ 𝐸𝐸2 ∗ (𝐸𝐸1 ∗ 𝐸𝐸2 + 1)
12

The Kruskal-Wallis Test is quite the same like the Mann-Whitney Test, with the dif-

ference, that it can be used to test if more than only two groups are significantly differ-

ent.

𝐻𝐻 =
12

𝐸𝐸(𝐸𝐸 + 1)
�

𝑆𝑆ℎ2

𝐸𝐸𝑊𝑊
− 3(𝐸𝐸 + 1)

ℎ

5.2 Hypotheses

In the experimental study the performance in temporal behavior of two software fault

detection techniques will be observed and investigated: Usage based Reading – UBR

– and usage based testing with inspection – UBT-i. As the main goal of this thesis is to

reveal which of these two techniques is during which time interval more effective and

efficient. The number of false positives found will also be analyzed in a timely manner.

The focus on similar research hypotheses regarding effectiveness, efficiency and false

 - 44 -

positives will be made. The calculation of effectiveness has been adopted to reflect the

results in timely manner. In more detail the following research hypotheses will be eva-

luated:

5.2.1 Is UBR more Effective and Efficient than UBT-i?

This question involves two different measures, effectiveness and efficiency. It will give

clearance about which of these two software fault detection techniques will perform

better in the first 120 minutes.

H1: Effectiveness (UBR) > Effectiveness (UBT-i) for Design Documents in the first 120

minutes: This hypothesis is based on the prioritized use cases to use with UBR,

which were made from experts and on the other hand with the test cases which

each individual inspector had to made on their own. Therefore even though the

UBT-i inspectors have to make test cases, which also takes some time, the quality

i.e. the effectiveness of UBR should be higher for the first 120 minutes of inspec-

tion.

H2: Efficiency (UBR) > Efficiency (UBT-i) for Design Documents in the first 120 mi-

nutes: UBR inspectors don’t have to make test cases prior to start detecting de-

fects and they also have prioritized use cases, which are made by experts. So

UBR inspectors have several advantages compared to UBT-i inspectors, which

should in investigations be reflected in a higher efficiency of the first 120 minutes.

5.2.2 Are the Techniques basically effective and efficient in the first 120
minutes?

This assumption predicts that in the first 120 minutes of inspection and testing duration

the most defects of severity classes A+ B will be found and afterwards only fewer of

them.

H3: Are the techniques most effective and efficient in the time interval from 0 to 120

minutes for design documents: This hypothesis is based on the assumption that

the inspectors and testers are mostly concentrated for the first 120 minutes. Also

because of the prioritized use cases and test cases, which leads them to the de-

 - 45 -

fects and therefore not more than 120 minutes should be necessary to achieve an

effective and efficient inspection as well as testing performance.

5.2.3 During which time intervals will the fewest False Positives be
found?

As according the previous research question it will be assumed that in the first 120

minutes, from which is assumed to have a better effectiveness as well as efficiency, it

is further expected that also in these time intervals a smaller number of false positives

will be found by the participants.

H4: Will with UBR fewer false positives are found in the first 120 minutes than with

UBT-i: This hypothesis predicts that in the first 120 minutes of duration fewer false

positives will be found with the software fault detection technique UBR than with

UBT-i. This could be again because of the use of the prioritized use cases from

which the inspectors should get an advantage.

H5: Will the fewest false positives in UBR and UBT-i be produced in the first 120 mi-

nutes of inspection and testing: As approached in the hypothesis H3 it is further

assumed, that the most defects of the severity classes A+B will be found in the

first 120 minutes of the testing and inspection duration. The logical implication of

this would be that also in this time interval the fewest false positive will be pro-

duced by the inspectors as well as testers and on the contrary afterwards most of

them. This could be because inspectors or testers will find defects as a reason

why they think they have to and therefore the more defects they find and the later

it is in the inspection or test the more of them could be false positives.

The next section deals with the description and planning of the study experiment and

how it was hold and evaluated.

 - 46 -

6 Experiment

The Experiment itself is an extension of previous Experiments, which were concen-

trated on the usage based reading technique. They were made at Lund University in

Sweden by Thelin et al. [3] [88] [90].

First some of the key aspects of the experiment are described, which form the basis of

our empirical study including the overview and also which kind of expectations we

have for the experiment. Next the threats to validity we had to define will be explained

as well as the planning and preparation, then the operation of the experiment study

and finally the evaluation phase.

6.1 Experiment Description

The experiment consists of a taxi management system which was originally provided

by Thelin et al. [88] [90] who investigated different reading technique approaches. Be-

fore we go into detail a short overview of the system is necessary. The study describes

a system which consists of two parts, as shown in Figure 6-1, on the left side the taxi

part and on the right side the central part. These parts are connected to each other

with the communication link.

Figure 6-1: Taxi Management System – Overview [105]

Communication
LinkTaximoduleDriver Central Operator

Taxi Central

The Taxi module and the Driver represent the Taxi itself, which can be called and/or

directly occupied. The Central part is handling the entire number of incoming request,

for example: a taxi call. The central part knows also always all the states that each

individual taxi has. It consists of Central and the Operator. The two parts of the taxi

management system are linked together by the Communication Link.

 - 47 -

Each technique, UBR and UBT-i will be introduced to the inspectors separately so they

are able to apply the method in a correct way. The experiment is held in two sequential

sessions. Each of the sessions has a duration of approximately 5 hours. The complete

study design and workflow is visualized in Figure 6-3. In session one, which was the

first possibility for the subjects in practicing with UBR and UBT-i, the taxi part is in-

spected as well as tested and in session two the central part. The main task of the

subjects is to detect defects in the source code and design documents. This is of

course equal to UBR and UBT-i. The difference for UBT-i is that test cases must be

written which intend to be helpful in finding defects. The detailed workflow for UBR and

UBT-i, which was also handed out to the participants can be seen in the Appendix.

Afterwards a feedback questionnaire was done to bring the inspectors in the possibility

to reflect how well the method had been applied and how the inspectors dealt with the

tasks. Finally a data registration has to be done, where all paper-based results have to

be entered into a Web-tool so the evaluation of the results can be done.

The subjects in the study were 41 graduate software engineering students. At first they

made a PairProgrammig qualification test. This was made that we can be sure that for

the inspection participants they have sufficient implementation skills to make the tests

and inspections. All of the chosen participants were assigned randomly to the tech-

niques to be able to control the influence of inspector capability and to achieve a better

external validity. The experiment was integrated in a practical part of a software engi-

neering and quality assurance workshop.

Figure 6-2 shows the configuration concerning the subjects. Each group of participants

got the necessary documents, the complete design documents and the source code in

a document including all the seeded defects.

 - 48 -

Figure 6-2: Configuration of the Experiment

6.2 Planning and preparation

The used taxi management system was adopted from previous studies [88] [90] and

had to be reviewed and controlled. A big part of the artifacts were given but some had

to be prepared. This section gives an overview about all used artifacts and a descrip-

tion of seeded defects.

6.2.1 Software Artifacts

Artifacts have to be distinguished, because of their kind of purpose, on the one hand

documents for preparation and on the other hand documents which are needed for the

use for one of the software fault detection techniques.

The documents for the preparation phase were a tutorial and the guidelines:

• The guidelines were partly taken over but had to be reworked. The aim of this

document is to provide the subject with a step by step guidance to be able to

apply the used software fault detection technique.

Students reading & testing
(UBT-i)

Students reading
(UBR)

 - 49 -

• The tutorial was a presentation of the used software fault detection technique

and how to handle with all other needed documents. With an example it was

shown practically how to use the inspection record including one exemplary

filled line. Afterward open questions were discussed in the group.

The experiment setup consisting of:

1. a textual description of the requirements defines the terminology and all func-

tional requirements for both modules central and taxi

2. the design documents of the taxi management system presents more precisely

the entertained modules as well as the internal activities, which are for exam-

ple: interface descriptions, data structures and so on

3. the guideline for the techniques applied as well as questionnaires for determin-

ing inspector capability and feedback.

The following documents have been used to apply the software fault detection tech-

nique on the taxi management system:

• The textual requirements document consists of 8 pages including 2 UML2

component diagrams. These documents are describing the basic functionality

of the system in a very user-friendly way.

• The design documents consists also of 8 pages, which have about 2400 words,

2 component diagrams and 2 UML diagrams. An overview of the software

modules have been described as well as their context including the internal re-

presentation, which means the relationships between two or more modules and

an external representation. This in turn means the relationships between the

user and the system. Also a sum of 24 prioritized use case descriptions from

the users’ point of view and altogether a number of 23 sequence diagrams has

been provided. This artifact describes the technical dimension of the taxi man-

agement system.

• Guidelines for the correct use of the assigned techniques are also handed out

to the participants.

 - 50 -

Only one form was used in this study which was the inspection record.

• The inspection record is a form in which all detected defects by the subject had

to be written down. For each found defect the severity class, the defect type

and the document location had to be filled in.

Complementary questionnaires were handed out to all subjects.

• Feedback questionnaires handed out after each session, which gave the can-

didates the possibility to communicate their impressions and estimation about

their own detected defects.

• The experience questionnaire was provided online and filled in after the regis-

tration for this task. By this questionnaire we wanted to measures the candi-

dates’ implementation skills.

6.2.2 Reference Defects

This section gives an overview of all reference defects seeded into the design docu-

ments and how they were split in context to experiment sessions, defect severity

classes and also document locations.

Experiment Sessions

The reference defects were not randomly seeded into both experiment sessions, cen-

tral and taxi, but as good as possible equal between them. As the Table 6-1 visualizes

in number and in percent in the experiment session central there are 2 more defects

than in the taxi session.

Table 6-1: Reference Defects in both experiment sessions

 Number of Defects [num] Number of Defects [%]

Central part 31 51,67

Taxi Part 29 48,33

Summary 60 100

 - 51 -

Defect Severity classes and Document Location

Overall 60 faults have been seeded into the document packages as the Table 6-2

shows below. The figure presents the nominal number of seeded defects according to

defect severity classes and document location. These faults have been seeded by

highly experienced experts into the design specification and source code documents

[105]. In this thesis we focus only on the defect classes crucial and major, which

should naturally gain a higher weight.

Table 6-2: Allocation of Seeded Defects [105]

 Design Documents Source Code Sum

Crucial (class A) 10 (17%) 19 (32%) 29 (49%)

Major (class B) 12 (20%) 12 (20%) 24 (40%)

Less important
(class C) 5 (8%) 2 (3%) 7 (11%)

Summary 27 (45%) 33 (55%) 60 (100%)

Found defects of the class A (critical), in design documents 10 and in the source code

19, would have serious influence on the fundamental functionality of the product. De-

fects of the class B (major), in design documents 12 and in the source code also 12,

are only rarely occurring but also important defects or less important frequent defects

of medium risk. Defects which have the class C are rarely occurring and only have a

minor influence on the functionality and quality of the software product. All recorded

defects had to be classified by the subjects in the inspection record, which was a sub-

jective classification by the candidates, itself. As Table 6-2 further visualizes, exactly

55 % of all reference defects were strewed in the source code documents and 45 %

were strewed in the design specification documents. In this thesis only the defects of

classes A+B in the design documents are of importance.

 - 52 -

6.3 Operation

The complete study design and workflow is visualized in Figure 6-3. The knowledge

and the basic understanding of the subjects was given and proofed with a qualification

test so we can act with the assumption that everyone has some related knowledge.

Before the first of the two sessions was held, a tutorial was carried out which gave an

introduction to the concept of inspection and testing. All used artifacts presented and

explained as well as the inspection record.

The first session, which dealt with was the taxi part, it was also the first possibility for

practicing with the software fault technique for the participant as well as for ensuring

that all candidates are proceeding in a correct way. A guideline was also handed out to

all participants including a step by step instruction. The first session consists of three

parts which were the same duration for each used technique:

1. The tutorial lasts 15 minutes and the participants got another short introduction

in practicing with their technique and how they should operate with the record

sheet and so on.

2. Individual reading took 30 minutes for each candidate where they had to read

through all the provided documents.

3. Inspection or test took 120 minutes of the given documents.

In the second session, which was the central part, the same software fault detection

technique was used under same conditions without any task modification. Even the

same time intervals were maintained. The only difference was that the tutorial at the

beginning was passed. Also the same guideline as mentioned before was handed out

again to the participants. So it could be avoided that even when the candidate forgot

how to perform with the used software fault detection technique he had a detailed

guideline to follow.

 - 53 -

Figure 6-3: Experiment operation

The next chapter gives an overview about the evaluation phase of the experiment

study.

6.4 Evaluation

The process of the data evaluation can in detail be seen in Figure 6-4. The overall

process was not very complex but temporal quite extensive. The personal data of the

candidates and their experience questionnaire were entered into a data gathering tool

that was set up especially for this experiment. All paper based documents, which the

subjects had to fill in, were collected after each session. These papers were for exam-

ple the inspection record and the feedback questionnaire. The next step was that the

collected feedback questionnaires and the inspection records had to be entered into

the experiments Access database. During the entering process some data validation

was already made, e.g. some subjects were removed because the sessions were not

complete. Afterwards all data from the SQL database had to be converted. Finally

 - 54 -

when all data was completely available in the Access database various control queries

were made to ensure the consistency and plausibility as well as to examine all needed

fix values. For example subjects had to be removed who did not finish the task or per-

formed only one session.

Figure 6-4: Data evaluation process

The evaluation of all data records was made with Excel, Access queries and SPSS.

The Excel calculations were performed partly based on Access queries and visualized

 - 55 -

or analyzed in SPSS. Depending on the individual purpose these tools were also

mixed.

6.5 Threats to validity

A key issue when performing experiments is the validity of the results. Therefore this

section contains possible threats to internal and external validity of the experiment se-

tup and possible countermeasures. We tried to reduce all threats as much as possible

as in the following described.

Drew [25] defines internal validity as the technical soundness of a study. A study is

internally valid when all the potential factors that might eventually influence the data

are controlled except the one under study. This would mean that the main concept of

control had been successfully implemented. If, for example, two instructional methods

were being compared, internal validity would require that all differences between the

groups (e.g. intelligence, age) has to be removed except the differences in the instruc-

tional method, which is the experimental variable.

To address the internal validity some countermeasures have been implemented

[104].

• Communication between Individuals: The communications between individuals

during the study execution phase have been avoided, because this could have

an impact on experiment results. To achieve this, the experiment supervisors

paid special attention to the work of the work-units (Inspection, Testing). No

communication outside the natural work-units was allowed.

• Individual breaks: In order to increase inspector performance individual breaks

were allowed during the experiment sessions. The participants have to record

breaks to identify the real working effort.

• Duration: An upper time limit regarding the overall inspection duration has been

set. The inspectors were able to finish earlier but not later than the given max-

imum time limit.

• Skills: All candidates had to pass a PairProgramming qualification test to en-

sure their sufficient programming skills. 41 subjects of about 60 candidates

passed this test.

 - 56 -

• Experiment Proceeding: A feedback questionnaire was made at the end of the

experiment to be able to get some knowledge of the individual course of action

and to see if the participants followed the study process and guidelines proper-

ly.

• Document Package: An initial study to initially verify the experiment package

has been made. Also intensive reviews by experts of the study package were

made to verify the correctness of the document package, including modifica-

tions based on the initial study

Drew [25] defines external validity as the generalizability of results from a given study.

The External validity describes how the results of the experimental study will eventual-

ly apply to the world outside the academically controlled research situation. If a study

is externally valid or has considerable external validity, one can expect that the results

are generilizable to a considerable degree.

The following points were made to improve the external validity:

• Application domain: A well known application domain, the taxi management

system has been used to avoid general domain specific interpretation prob-

lems.

• Document Package: To be able to compare the results with real world settings,

the specification of the experiment has been a real world application. The given

design specification may be a limitation for IPP application in an industrial set-

ting, where only fragments of a design specification are given.

• Selection of participants: Students have been used as participants, so this

might not really be representative for industrial environment. Everyone of the

students got an intensive training, which was comparable to a real world setting

within their course. Furthermore most of the participating students work at least

part-time in industrial context. This information was recorded in the experience

questionnaire.

• Arrangement: A classroom setting has been used to be able to make the expe-

riment in controlled environment.

Several representative defects were seeded in the design specification and source

code documents according to different types of defects and defect locations. The

seeded defects were representative of defects found during the development of the

documents under study.

 - 57 -

7 Results of the Experiment

This section of the thesis summarizes the performance results of the empirical study

concerning the effort, effectiveness, efficiency and false positives in a temporal context

of the two software fault detection techniques usage based reading – UBR – and

usage based testing with inspection – UBT-i.

7.1 Effort

With the reported overall effort of the experiment it is possible to illustrate it in the eva-

luated scope. In the study context, effort is defined as the overall session duration in-

cluding individual preparation and execution time in minutes. The Individual prepara-

tion time contains the time used for reading the documents as well as getting familiar

with the software fault detection technique applied of the participating inspectors. For

UBR with expert ranking of use cases only little preparation time is needed [107]. The

effort of UBT-i should be measurably higher due to the fact that they have to produce

test-cases as an output.

The experiment preparation time has not been taken into account, because this has

been done by experts as preliminary work packages before the experiment started. In

this evaluation both time intervals, what means session one (Taxi part) and session

two (Central part) has been summarized for the effort calculation and illustration, be-

cause there is no additional effort within the inspection or testing execution. Table 7-1

displays the mean values as well as the standard deviation of the defect detection ef-

fort for UBR and the defect detection effort + test case generation for UBT-i in minutes.

Also the p-values are shown to investigate significance of difference between the two

techniques.

 - 58 -

Table 7-1: Defect Detection Effort (UBR) and Defect Detection Effort + Test Case genera-
tion (UBT-i) [min]

 UBR UBT-i

Mean Value 272.5 268.8

Standard Deviation 38.0 29.1

Mann-Whitney-Test 0,497 (-)

It can be seen that both techniques have an average similar effort. A great difference

concerning the effort of the two techniques cannot be recognized, but there is a little bit

higher mean value for UBR as well as also a higher standard deviation. The Mann-

Whitney test shows, that there is no significant difference concerning the effort be-

tween UBR and UBT-i.

7.2 Effectiveness

The effectiveness is the number of real defects found in relation to the overall number

of seeded defects per individual defect severity class in a certain time interval. Effec-

tiveness is measured on the severity classes important, which are A and B. The expe-

riment setup, as described in more detail in section 6, consists of an overall number of

60 seeded defects. 27 defects are seeded into the design documents, which are au-

thoritative for this investigation and 33 defects in the provided source code. As men-

tioned earlier, only defect severity classes A and B are taken into account, therefore

attention is paid to 10 critical defects (Class A) and 12 important defects (Class B) in

design documents. So we are able to view the results in the right context, because for

the calculation only these defects concerning the design documents are taken into

account. Defects of classes C will not influence the results, because of their unimpor-

tance they are not taken into account. The beginning of the analysis is also the real

beginning of the inspection or test, which means the “gross-processing time” will be

used here in contrary to the investigation of efficiency, where the “net-processing time”

will be used.

The calculation for effectiveness has also been adopted a little bit to be able to eva-

luate every timeframe independent from each other. Normally the matched defects are

 - 59 -

divided through the total amount of seeded defects. Using this formula would not be

able to give us information which timeframe would be the most effective one. There-

fore the found defects in the preceding time interval will be subtracted from the overall

number of seeded defects for the next time interval. Doing this, will bring each time

interval in the condition to be evaluated with the found defects of its own time interval

and the number of the overall seeded defects that can still be detected. With this adap-

tion of the common formula of effectiveness, it is possible to evaluate each time inter-

val with the right number of seeded defects that are responsible.

The conclusions of these results should answer, which of the two used software fault

detection techniques is the most effective one UBR or UBT-i in which time intervals.

Afterwards UBR and UBT-i will be investigated separately and we will take a closer

look at each time interval, each consisting of 30 minutes. The second part of this sec-

tion will show the investigation of each session of UBR and UBT-i completely sepa-

rated from each other, which should give clearance about which time interval of which

session will be the most effective one.

7.2.1 Combined Sessions – Combined Techniques

The first investigation will clarify which of these two software fault detection techniques

performs most effective. Therefore both sessions of UBR and UBT-i of the study expe-

riment are combined and only defect severity classes A and B of both sessions are

taken into account.

In the Box plot in Figure 7-1, in which the data of session 1 (taxi part) and session 2

(central part) are aggregated, can clearly be seen that UBR has a somewhat higher

median as well a higher maximum than UBT-i. The comparison of the Mean Value in

Table 7-2 shows the outcomes. UBR has a somewhat higher Mean Value 18,89 %

than UBT-i with 16,91 %. Although the difference is not really great UBR is a little bit

more effective than UBT-i. The Mann-Whitney test shows, that there is no significant

difference between UBR and UBT-i.

 - 60 -

Table 7-2: Effectiveness, UBR
vs. UBT-i [%]

 Mean
Value

Standard
Deviation

UBR 18.9 11.3

UBT-i 16.9 12.6

Mann-
Whitney Test 0.317 (-)

The next section gives an overview about the effectiveness of the software fault detec-

tion techniques UBR and UBT-i in a timely matter.

7.2.2 Temporal behavior of combined sessions and techniques

This section gives a detailed overview of both sessions of the study experiment, the

taxi and the central part for the techniques UBR and UBT-i. To be able to analyze each

session with each technique in a temporal behavior in a very detailed way, each ses-

sion has again be divided into eight time intervals. Each of these intervals has a dura-

tion of 30 minutes. With this kind of investigation it should be possible to determine

which time intervals are the most effective one between UBR and UBT-i in session one

and two of the study experiment. It will be analyzed which technique is during which

session the most effective one. Therefore the mean values of the separated sessions

of UBR and UBT-i are opposed to each other.

The box plot in Figure 7-2 shows the results of the first session. In this view it can be

seen that after the fifth time interval or after 150 minutes of duration the effectiveness

of UBR and UBT-i decreases, but it can clearly be seen that UBR in session one is

Figure 7-1: Effectiveness, UBR vs. UBT-i [%]

UBR UBT-i
Technique

10

20

30

40

E
ffe

ct
iv

en
es

s,
 R

is
k

A
+B

, S
es

se
io

n
1+

2,
 [%

]

 - 61 -

more effective in every timeframe than UBT-i. Whereas time intervals two and three

are very effective for UBR, UBT-i has a complete decrease. In the next interval effec-

tiveness rises again for UBT-i to a quite good value, but decreases again as men-

tioned before in the next time intervals.

Figure 7-2: Effectiveness, Session 1, UBR and UBT-i [%]

Session two is a little bit different in comparison to the first session. Effectiveness va-

ries extremely for the time intervals as well as for the investigated technique, which

can be seen in Figure 7-3. But it can be seen that in session two the most effective

technique seems to be UBT-i, which stays quite effective until the end of the testing

duration. Time interval number 1 and 3 are apparently the one with the least effective-

ness for UBT-i as well as for UBR.

UBR
UBT-i

Technique

0 - 30
30 - 60

60 - 90
90 - 120

120 - 150
150 - 180

180 - 210
210 - 240

Time Intervals [min]

10

20

30

40

Ef
fe

ct
iv

en
es

s,
 S

es
si

on
 1

, R
is

k
A+

B
 [%

]

 - 62 -

Figure 7-3: Effectiveness, Session 2, UBR and UBT-i [%]

The next investigations concentrate on finding the most effective time intervals for

each separated session of the software fault detection techniques UBR and UBT-i.

7.2.3 Temporal behavior of separated sessions and techniques

In this chapter each session will be analyzed separately for UBR and UBT-i to be able

to determine which technique is during which time intervals of the considered session

the most effective one.

The results of the first separated investigation can be seen in the bar chart in Figure

7-4 as well as in Table 7-3. Remarkable at the first view is of course the growth of the

mean value, because it rises higher even in the last two intervals of the inspection du-

ration. The first interval is the most ineffective one with 18.18 % in the first session of

UBR, what means that in contrary to the other frames the least defects according to

the overall number of defects, which could possibly be found, were detected. The

second and third time intervals are quite effective, but intervals four and five are out-

standing, because they both have the highest level of mean value with 33.33 % and

also no standard deviation, which is remarkable. Why the inspectors were not able to

find any defects after this timeframe is not obvious, although there were some seeded

defects that they hadn’t been detected by any of the participants. So the most effective

timeframes for UBR in session one of the experiment are time intervals four and five,

UBR
UBT-i

Technique

0 - 30
30 - 60

60 - 90
90 - 120

120 - 150
150 - 180

180 - 210
210 - 240

Time Intervals [min]

10

20

30

40
Ef

fe
ct

iv
en

es
s,

 S
es

si
on

 2
, R

is
k

A
+B

, [
%

]

 - 63 -

which is one hour from 90 to 150 minutes of the inspection duration. Although it is cer-

tainly not possible to only hold this time intervals of inspection, so the first five intervals

must be declared as the most effective one.

Figure 7-4: Effectiveness, UBR, Session 1, Risk A+B [%]

In Table 7-3 can also be seen that the Kruskal-Wallis Test shows, that there is no sig-

nificant difference concerning the time intervals in which defects were found. The time

intervals where no defects were found were not included.

0

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Ef
fe

ct
iv

en
es

s [
%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 64 -

Table 7-3: Effectiveness, Session 1, UBR [%]

Time Interval
[min]

Mean Value Standard Deviation

0 – 30 18.18 3.71

30 – 60 28.14 8.77

60 – 90 26.20 12.43

90 – 120 33.33 0

120 – 150 33.33 0

150 – 180 0 0

180 – 210 0 0

210 – 240 0 0

Kruskal-Wallis-Test 0.720 (-)

But although Figure 7-4 gives a detailed overview of the effectiveness, it should not be

forgotten that, because of the altered calculation method in the second time interval 15

defects were found and in both of the time intervals four and five only 3.

To ensure that with the adopted calculation method of the effectiveness, for these in-

vestigations, an accurate outcome has been produced, the standard calculation was

also made. Therefore Figure 7-5 shows the effectiveness with the standard calculation

method, in which it can be seen that the trend line is absolutely a different one, what

concerns only the time intervals number 4 and 5. Here the last two time intervals are

the least effective one, because only a minor number of defects were found in contrast

to the overall number seeded defects. Although of this different result it can also be

stated out, that the first five time intervals are very effective, because the last two in-

tervals are not so ineffective at all.

 - 65 -

Figure 7-5: Effectiveness (standard calculation), UBR, Session 1, Risk A+B [%]

The results of the first session of the investigated technique UBT-i can be seen in Fig-

ure 7-6 and Table 7-4. UBT-i starts with a quite good amount of mean value of 15.91

%, which is the second best value of this session, but also has the highest standard

deviation of session one with 11.36 %. The next two time intervals are absolutely inef-

fective with mean values of only 6.93 % and 5 %. Interval number 4 is by far the most

effective time intervals with a mean value 27.51 % and also a very low standard devia-

tion. The rest of the testing duration keeps at a quite ineffective level but also higher

than time intervals two and three.

UBT-i is therefore most effective, because of time interval four, in the first two hours in

inspection. But the time intervals afterwards should not be sent to coventry because

they are not ineffective at all, although they are not able to get a higher mean value

than 13.35 %.

0

5,00

10,00

15,00

20,00

25,00

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Ef
fe

ct
iv

en
es

s [
%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 66 -

Figure 7-6: Effectiveness, Session 1, UBT-i [%]

In Figure 7-3 can also be seen that the Kruskal-Wallis Test shows, that there is no sig-

nificant difference concerning the time intervals in which defects were found.

Table 7-4: Effectiveness, Session 1, UBT-i [%]

Time Interval
[min]

Mean Value Standard Deviation

0 – 30 15.91 11.36

30 – 60 6.93 2.16

60 – 90 5.00 0

90 – 120 27.51 9.33

120 – 150 11.11 5.56

150 – 180 11.32 6.32

180 – 210 13.35 8.08

210 – 240 10.00 0

Kruskal-Wallis-Test 0.064 (-)

To again ensure that the outcomes are accurate the standard calculation was made

another time for monitoring reasons. The standard calculation, see Figure 7-7 below,

0

5,00

10,00

15,00

20,00

25,00

30,00

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Ef
fe

ct
iv

en
es

s
[%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 67 -

of the effectiveness for session 1 of UBT-i shows, in contrary to UBR, exactly the same

trend line as the adopted calculation method.

Figure 7-7: Effectiveness (standard calculation), UBT-i, Session 1, Risk A+B [%]

Figure 7-8 and Table 7-5 show the results of UBR of session two of the experimental

study. The results of UBR are also very interesting, because it can again clearly be

seen in the bar chart of Figure 7-8 that the last two time intervals are the most effective

one, what is again caused by the method of calculation for the effectiveness and there-

fore the standard calculation method will also be taken into account. The first interval is

not very effective with a mean value of 9.09 % and also a very high value of standard

deviation of 7.87 %, which is hardly the same as the mean value. The second time

interval of the inspection is very effective with a mean value of 21.37 %. Effectiveness

falls down in the third interval to a very low level of mean value, which is 6.61 %. In the

fourth time interval effectiveness rises again to a very good mean value of 16.14 %.

The next two intervals of inspection are not very effective and are therefore not really

mentionable. The last two time intervals have again a very high amount of mean value.

The most effective intervals are for session two of UBR the first four timeframes of

testing duration.

0

5,00

10,00

15,00

20,00

25,00

30,00
0

-3
0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Ef
fe

ct
iv

en
es

s
[%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 68 -

Figure 7-8: Effectiveness, Session 2, UBR [%]

In Table 7-5 can also be seen that the Kruskal-Wallis Test shows, that there is no sig-

nificant difference concerning the time intervals.

Table 7-5: Effectiveness, Session 2, UBR [%]

Time Interval
[min]

Mean Value Standard Deviation

0 – 30 9.09 7.87

30 – 60 21.37 12.44

60 – 90 6.61 0.75

90 – 120 16.14 1.07

120 – 150 11.47 6.71

150 – 180 11.11 0

180 – 210 25.00 0

210 – 240 33.33 0

Kruskal-Wallis-Test 0.296 (-)

0

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Ef
fe

ct
iv

en
es

s
[%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 69 -

Figure 7-7 shows the bar chart for the standard calculation of effectiveness for UBR of

session two and has the same change in the trend line as session one. The last two

time intervals are not highly effective, although they are not ineffective at all. The first

four time intervals are still the most effective one, but this investigation changes the

results for intervals number 7 and 8 dramatically.

Figure 7-9: Effectiveness (standard calculation), UBR, Session 2, Risk A+B [%]

The results of the second session of UBT-i can be seen in the bar chart of Figure 7-10

as well as Table 7-6, which shows the exact outcomes. The first time interval is quite

ineffective and reaches therefore only a mean value of 13.64 %. Effectiveness rises in

time interval two to a very high mean value of 29.07 %, but standard deviation stays at

a remarkable low level of 2.75 %. Interval three is absolute an outlier and has only a

mean value of 7.14 %. Interval four has a very good amount of mean value, which is

40 % and this time interval is therefore very effective. The fifth interval of testing is not

very effective and reaches only a mean value of 24.49 %. Therefore are the most ef-

fective time intervals one to four, although interval five is also not completely ineffec-

tive.

0

5,00

10,00

15,00

20,00

25,00

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Ef
fe

ct
iv

en
es

s
[%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 70 -

Figure 7-10: Effectiveness, Session 2, UBT-i [%]

In Table 7-1 below can be seen that the Kruskal-Wallis test stated out, that there is no

significant difference between the time intervals.

Table 7-6: Effectiveness, Session 2, UBT-i [%]

Time Interval
[min]

Mean Value Standard Deviation

0 – 30 13.64 0

30 – 60 29.07 2.75

60 – 90 7.14 0

90 – 120 40.00 0

120 – 150 24.49 19.95

150 – 180 0 0

180 – 210 0 0

210 – 240 0 0

Kruskal-Wallis-Test 0.729 (-)

0
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Ef
fe

ct
iv

en
es

s
[%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 71 -

The standard calculation below in Figure 7-11, shows the same trend line as the

adopted calculation method. Exactly as in the session one of UBT-i the trend line of

the adopted calculation does not vary from the standard calculation.

Figure 7-11: Effectiveness (standard calculation), UBT-i, Session 2, Risk A+B [%]

In the next section of this master thesis the efficiency of the software fault detection

techniques will be analyzed in a temporal behavior. This section will give clearance

about in which time intervals the most seeded defects will be found by the inspection

and testing candidates.

7.3 Efficiency

The efficiency is the number of real defects found per certain time interval. Several

different intervals will be investigated, the overall time for the inspection and test as

well as the time divided into 4 time intervals which consist of each one hour. All inves-

tigations concerning the efficiency will be made only with the defect severity classes

A+B. Defects of classes C will not be taken into account, because of their unimpor-

tance. This section is also sub classified into the investigation of the efficiency of UBR

vs. UBT-i with sessions 1 and 2 combined. The second part of this section will show

the investigation of each session of UBR and UBT-i separately, which should give

clearance about which interval of which session will be the most efficient one.

0

5,00

10,00

15,00

20,00

25,00

30,00
0

-3
0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Ef
fe

ct
iv

en
es

s
[%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 72 -

An additional aspect is also the investigation of the average of the time when the can-

didates recorded their first found matched defect. In Figure 7-12 the box plot can be

seen when the average of the candidates of each session for UBR and UBT-i found

their first matched defect. In the Table 7-7 the exact data of mean value and standard

deviation give a more detailed view. It can be seen that the subjects using UBR are

able to find their first matched defect earlier in every experiment session than the other

participants using UBT-i. Mentionable is also that the participants using UBR were not

able to find their first defect earlier in the second session of the experiment. The exact

opposite occurred; they found their first defect later. UBT-i on the contrary showed an

outcome as expected, the subjects were able to reduce the time when the first defect

was found. Whereas the standard deviation does not reveal any mentionable differ-

ence between the two software fault detection techniques. The Mann-Whitney test,

which was made for each session separately does not show any significant difference

between UBR and UBT-i.

Table 7-7: First defect found [min]

 Mean
Value

Standard
Deviation

S1 UBR 12.17 10.59

S1 UBT-i 17.57 10.39

S2 UBR 15.44 10.93

S2 UBT-i 17.40 10.42

Mann-Whitney-Test
Session 1 0.473 (-)

Mann-Whitney-Test
Session 2 0.639 (-)

These outcomes are further used for the calculation of the efficiency in that way that

not the whole first hour of inspection or test duration7 will be used for calculation -

“gross-processing time”, but until the first defect is found – “net-processing time”.

Therefore the mean value of each session from UBR and UBT-i will be used, which

gives a more exact view on the efficiency of technique, most notably of course on the

first time interval.

Figure 7-12: First defect found

S1_UBR S1_UBT S2_UBR S2_UBT

Session and used Technique

10

20

30

D
ur

at
io

n
[m

in
]

S

 - 73 -

7.3.1 Combined Sessions – Combined Techniques

First let us take a look at which of these two software fault detection techniques per-

forms most efficient. Therefore both sessions of UBR and UBT-i are combined and

defect severity classes A and B are taken into account. As mentioned before only the

net-processing time is used for this analysis too.

Table 7-8: Efficiency, UBR vs.
UBT-i [%]

 Mean
Value

Standard
Deviation

UBR 7.96 2.35

UBT-i 7.62 2.63

Mann-Whitney-Test 0.773 (-)

As Figure 7-13 depicts UBR has a higher maximum than UBT-i and the same mini-

mum level, although UBT-i on the other hand has a somewhat higher median. In Table

7-8 it can also be seen that the difference in efficiency between the two software fault

detection techniques is only marginal. UBT-i has 0.34 % higher efficiency than UBR,

which is really not very great. The Mann-Whitney test shows also that there is no sig-

nificantly difference between UBR and UBT-i.

Figure 7-13: Efficiency, UBR vs. UBT-i [%]

UBR UBT-i

Technique

2,00

4,00

6,00

8,00

10,00

Ef
fic

ie
nc

y,
 R

is
k

A
+B

, S
es

si
on

 1
+2

, [
%

]

 - 74 -

7.3.2 Temporal behavior of combined sessions and techniques

This section of the paper gives a very detailed view over both sessions, taxi and cen-

tral, of UBR and UBT-i and its temporal behavior concerning the efficiency. This analy-

sis uses again four timeframes and each of these timeframes consists of a duration

time of one hour. Also the net-processing time is used for this investigation.

First it will be analyzed which used technique is during which session the most efficient

one. Figure 7-14 shows the combined results.

Afterwards each timeframe of each used software fault detection technique is analyzed

in detail separately, to be able to determine which timeframe is the most efficient one

of the investigated technique.

Figure 7-14: Efficiency, Session 1, UBR and UBT-i [%]

The box plot in Figure 7-14 shows clearly, that the most efficient timeframes for ses-

sion number 1 are the first two time intervals, or the first 120 minutes of inspection or

test duration. To declare an overall winner for session one is quite difficult, because in

interval number 1 UBR is much more efficient than UBT-i whereas UBT-i is performing

better than UBR in time interval number 2. In the third interval the techniques have

hardly the same mean value of efficiency and the last time interval is on the whole not

very efficient. So a definite winner cannot really be determined.

S1 UBR
S1 UBT-i

Technique

0 - 60 60 - 120 120 - 180 180 - 240

Time Intervals [min]

5

10

15

20

Ef
fic

ie
nc

y,
 S

es
sio

n
1,

Ri
sk

 A
+B

, [
%

]

 - 75 -

Figure 7-15: Efficiency, Session 2, UBR and UBT-i [%]

In session two, which can be seen in the box plot in Figure 7-15, the situation is a dif-

ferent one. UBT-i performs in the first two time intervals very efficient and at a higher

mean value than UBR does. UBR surprisingly raises the mean value to a quite high

level in the last of the four time intervals. So UBT-i is quite clear the more efficient

software fault detection technique in session two, which was the central part of the

study experiment.

7.3.3 Temporal behavior of separated sessions and techniques

The next investigations take a closer look at the efficiency of every session and tech-

nique separated from each other. This is done to be able to say which time interval of

which technique is the most efficient one.

The Figure 7-16 gives an isolated view on the technique UBR of session one and

shows the mean value of efficiency as well as the standard deviation in a bar chart. It

can be seen that the first hour of inspection is the most efficient one and has also a

very low value of standard deviation. In the next two time intervals the mean value de-

creases. Whereas the second hour has only the half of the mean value of the first

hour, it on the contrary has also a higher standard deviation, which is quite remarka-

S2 UBR
S2 UBT-i

Technique

0 - 60 60 - 120 120 - 180 180 - 240

Time Intervals [min]

4

8

12

16

Ef
fic

ie
nc

y,
 S

es
sio

n
2,

Ri
sk

 A
+B

 [%
]

 - 76 -

ble. In the next time interval efficiency falls again until in the last hour it reaches zero. It

can also be said, that the first three time intervals of UBR are mainly efficient, whereas

in the last hour not even one defect were found by the participants.

Figure 7-16: Efficiency, Session 1, UBR [%]

Table 7-9 shows the detailed outcomes of the calculation and depicts with the Kruskal

Wallis test, that there is no significant difference between the records of the time inter-

vals.

Table 7-9: Efficiency, Session 1, UBR [%]

Time Intervals
[min]

Mean Value Standard Deviation

0 – 60 15.56 3.42

60 – 120 8.56 4.64

120 – 180 6.25 0

180 - 240 0 0

Kruskal-Wallis-Test 0.304 (-)

0

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

0 - 60 60 - 120 120 - 180 180 - 240

Ef
fic

ie
nc

y
[%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 77 -

Next we take a closer look at the first session of UBT-i. Figure 7-17 gives in the form of

a bar chart overview about the progression of efficiency in the four time intervals. It

declares that the most efficient intervals are number two and three or the second and

third hour of testing duration. The value of standard deviation changes quite propor-

tionally with the mean value and is therefore unremarkable. It can therefore be said,

that the first three time intervals, or first three hours of UBT-i in session one are the

highly efficient.

Figure 7-17: Efficiency, Session 1, UBT-i [%]

Table 7-10 shows the exact data of the analysis and states out that whit the Kruskal-

Wallis test it can be declared, that there is no significant difference between the

records of the investigated time intervals.

0

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

0 - 60 60 - 120 120 - 180 180 - 240

Ef
fic

ie
nc

y
[]

%
]

Time Intervals [min]

Mean Value

Standard Deviation

 - 78 -

Table 7-10: Efficiency, Session 1, UBT-i [%]

Time Intervals
[min]

Mean Value Standard Deviation

0 – 60 5 2.36

60 – 120 14.54 7.87

120 – 180 7.08 3.63

180 - 240 3.22 1.22

Kruskal-Wallis 0.330 (-)

The next two investigations concentrate on the efficiency of session two, the central

part of the experiment study.

Figure 7-18 shows the outcomes of UBR for session two in form of bar chart, of the

most interesting investigation concerning the efficiency of this experiment study, al-

though it can easily be explained. Session two of UBR, which has similarly to session

one, two very efficient time intervals at the beginning of the inspection. What is highly

remarkable about this part is the last hour of inspection – time interval number 4. This

interval is called an outlier, because it has an abnormal high mean value and also no

standard deviation, which is a little bit curious by itself. Because all investigations

made, have a standard deviation when the mean value has a minimum of 6 %. This

circumstance can of course be declared too. It is the consequence when only one

group finds a quite high number of defects during the concerned time interval. An in-

vestigation of the data confirms this assumption. So the most efficient time intervals of

session two of UBR are also the first two intervals.

 - 79 -

Figure 7-18: Efficiency, Session 2, UBR [%]

Table 7-11 shows the detailed data of the investigated session and technique and en-

sures that there is no significant difference between the recorded data of these time

intervals.

Table 7-11: Efficiency, Session 2, UBR [%]

Time-
Frame

Mean Value Standard Deviation

0 – 60 8.33 4.59

60 – 120 6.83 2.26

120 – 180 1.89 0.19

180 - 240 10.64 0

Kruskal-Wallis-Test 0.557 (-)

In Figure 7-19 the bar chart for session two of UBT-i can be seen. This session is a

little bit different than the first session of UBT-i. In the first hour of testing the mean

value of efficiency reaches a very high level and standard deviation is remarkable low.

The second hour has also a quite good level of efficiency, but with a definite higher

value of the standard deviation. The outstanding thing is here that from the second

hour on, no participant was able to find any matched defect of the classes A or B. A

0

2,00

4,00

6,00

8,00

10,00

12,00

0 - 60 60 - 120 120 - 180 180 - 240

Ef
fic

ie
nc

y
[%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 80 -

deeper analysis of this part has to be made related to the false positives. But it can of

course be said, that for UBT-i the first two hours of inspection are the most efficient

one.

Figure 7-19: Efficiency, Session 2, UBT-i [%]

Table 7-12 shows the exact values of the calculations and also depicts with the

Kruskal Wallis test, that there is no significant difference between the records of the

time intervals.

Table 7-12: Efficiency, Session 2, UBT-i [%]

Time-
Frame

Mean Value Standard Deviation

0 – 60 13.33 1.67

60 – 120 10.27 8.60

120 – 180 0 0

180 - 240 0 0

Kruskal-Wallis-Test 0.439 (-)

The next part of the thesis deals with the number of false positives found, which are

also analyzed in a temporal context to find out in which period of time the candidates

found least of the matched defects.

0

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0 - 60 60 - 120 120 - 180 180 - 240

Ef
fic

ie
nc

y
[%

]

Time Intervals [min]

Mean Value

Standard Deviation

 - 81 -

7.4 False positives

These are defects which are registered by the inspectors, but do not belong to any

defined referenced seeded defect according to the overall number of seeded defects

by the experts. This section deals with them and will analyze its spreading in the dif-

ferent time intervals, sessions and used software fault detection techniques of the

study experiment. The sessions are again divided in eight time intervals, as used in

investigating the effectiveness before, each consisting of 30 minutes. In contrary to the

analysis of effectiveness and efficiency, all types of the defect severity classes, which

are A, B and C are taken into account. The beginning of the analysis is also the real

beginning of the inspection or test, which means the “gross-processing time” will be

used here.

A good software fault detection technique guides the inspectors or testers in identifying

only true defects and therefore it should reduce the overall number of false positives at

the same time. The more false positives that were found the more effort for defect re-

moval and post-inspection data analysis will be in the later software development life

cycle.

First a comparison between the overall number of false positives between the used

techniques UBR and UBT-i, with all data from both sessions will be made. Afterwards

a detailed look at every separated session of each technique of the experiment study

will be made.

7.4.1 Combined Sessions – Combined Techniques

The first investigation of the False Positives is the comparison between UBR and UBT-

i to find out with which of these two software fault detection techniques the fewest false

defects were found by the participants.

 - 82 -

Table 7-13: False Positives, UBR
vs. UBT-i [%]

 Mean
Value

Standard
Deviation

UBR 1.58 0.96

UBT-i 2.34 0.76

Mann-Whitney-
Test 0.541 (-)

When considering the outcomes of Figure 7-20 not a clear decision can be made. Al-

though UBR has an outlier the median of the techniques is hardly at the same level.

The results of Table 7-13 approve this statement with a somewhat higher mean value

of UBT-i 2.34 on the contrary to UBR 1.58. Although the difference is not very big UBR

has a lower mean value of 0.76 and therefore performs a little bit better than UBT-i.

The Mann-Whitney test shows, that there is no significant difference between these

two techniques.

7.4.2 Temporal behavior of combined sessions and techniques

This section of the thesis gives a very detailed overview of the sessions one and two,

taxi and central, of the used techniques UBR and UBT-i as well as its temporal beha-

vior concerning fault positives. So it should be possible to determine in which time in-

terval the most fault positives of the investigated techniques will be found. This analy-

sis uses again eight time intervals and each of these timeframes consists of duration of

30 minutes.

First it will be analyzed which technique performs best during which session, i.e. who

finds the least false positives. Afterwards each timeframe of each used software fault

detection technique is analyzed in detail separately, to be able to determine in which

timeframe the least false positives will be found

Figure 7-20: False Positives, UBR vs. UBT-i [%]

UBR UBT-i

Technique

0

2

4

6

8

Fa
ls

e
Po

si
tiv

es
, S

es
si

on
 1

+2
, R

is
k

A+
B

A

 - 83 -

To be able to investigate also which of the two techniques performs best concerning

false positives in which timeframe of session one or two, the next figures are con-

sulted.

Figure 7-21 concerns the session one, the taxi part of the study experiment and re-

veals that UBR performs better in the first three time intervals, or 90 minutes than

UBT-i, but the tide is turning in the fourth time interval. In this special timeframe UBT-i

performs much better than it’s counterpart. But this change doesn’t take very long. It

can be seen that after this interval only by candidates, who are using the UBT-i tech-

nique, a number of false positives were found. That happens, because the inspectors

using UBR were not able to find in these three time intervals any kind of defects and

also no fault positives, what can be seen in Figure 7-4. Therefore can be said, that in

session one of the experiment, UBR performs better than UBT-i.

Figure 7-21: False Positives, Session 1, UBR and UBT-i [%]

Figure 7-22 shows the results of session two, the central part. Which is different than

the results of session one. The amount of mean value of the technique UBR keeps on

a quite low level only until the first hour of inspection. Whereas UBT-i starts with a very

high number of faults positives it falls down to zero in the next four timeframes. Candi-

dates using UBT-i were after this time intervals not able to find any kind of defects and

S1_UBR
S1_UBT-i

Technique

0 - 30
30 - 60

60 - 90
90 - 120

120 - 150
150 - 180

180 - 210
210 - 240

Time Intervals [min]

1

2

3

4

5

6

Fa
ls

e
Po

si
tiv

es
, S

es
si

on
 1

 - 84 -

also no fault positives, what explains the rest of the time intervals. This can be seen in

detail in Figure 7-10. Although UBR does not perform as good as in session concern-

ing the number of false positives found it can again be said that in session two UBR is

performing better than UBT-i, at least for the first four time intervals.

Figure 7-22: False Positives, Session 2, UBR and UBT-i [%]

7.4.3 Temporal behavior of separated sessions and techniques

The next two investigations take a closer look at the fault positives of session one of

every software fault detection technique separated from each other. This is done to be

able to say which time intervals of which technique have the least fault positives.

Figure 7-23 shows the mean values, standard deviation and the aggregated number

of fault positives found by participants using UBR in the first session of the experiment

study in a combined bar and line chart. It can be seen that during the first three time

intervals a quite low number of fault positives were found, between 5 and 2. Remarka-

ble is that after the third interval the number of found fault positives rises up to the 7.

The conclusion is that UBR is performing at a good level concerning fault positives for

the first three time intervals or until 90 minutes of the first session of the experiment.

S2_UBR
S2_UBT-i

Technique

0 - 30
30 - 60

60 - 90
90 - 120

120 - 150
150 - 180

180 - 210
210 - 240

Time Intervals [min]

0

2

4

6

8

Fa
ls

e
Po

si
tiv

es
, S

es
si

on
 2

 - 85 -

Figure 7-23: False Positives, Session 1, UBR [%]

The exact values are below in Table 7-14, which also shows the outcome of the

Kruskal-Wallis test. The result is, that there is no significant difference between the

records of the time intervals of UBR of session one.

Table 7-14: False Positives, Session 1, UBR [%]

Time Interval
[min]

Mean Value Standard Deviation

0 – 30 2.50 0.50

30 – 60 1.67 0.47

60 – 90 1.00 0

90 – 120 3.50 2.50

120 – 150 1.00 0

150 – 180 0 0

180 – 210 0 0

210 – 240 0 0

Kruskal-Wallis-Test 0.269 (-)

0

1

2

3

4

5

6

7

8

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Fa
ls

e
Po

si
tiv

es

Time Intervals [min]

Mean Value

Standard Deviation

Aggregated

 - 86 -

The first session of UBT-i is a very interesting one when it comes to investigate the

temporal behavior of fault positives. Figure 7-24 below illustrates the results in form of

a combined bar and line chart. On the first view can already be seen that the mean

value starts good level for time interval one, which is hardly the same as for the first

session of UBR. Remarkable is a slump of the number of fault positives found in the

timeframes number 3, 4, 5 and 6. It must be said that UBT-i performs very well, espe-

cially until the sixth or seventh time interval concerning the number of false positives

found, but the least of them were found from the third to the sixth timeframe of testing

duration.

Figure 7-24: False Positives, Session 1, UBT-i [%]

Table 7-15 shows the exact values and the differences of the recorded time intervals

are again not significantly different, which can be seen by the result of the Kruskal-

Wallis test.

0

2

4

6

8

10

12

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Fa
ls

e
Po

si
tiv

es

Time Intervals [min]

Mean Value

Standard Deviation

Aggregated

 - 87 -

Table 7-15: False Positives, Session 1, UBT-i [%]

Time Interval
[min]

Mean Value Standard Deviation

0 – 30 2.33 1.89

30 – 60 2.67 0.47

60 – 90 1.00 0

90 – 120 1.00 0

120 – 150 1.00 0

150 – 180 3.00 0

180 – 210 5.00 1.00

210 – 240 2.00 1.00

Kruskal-Wallis-Test 0.364 (-)

The next two analyses concern the number of fault positives found of sessions 2 for

UBR and UBT-i. The two techniques are again separated from each other to be able to

make conclusions for every investigated time interval of the two sessions from the ex-

periment study.

UBR shows a little bit a different trend line in the bar and line chart in Figure 7-25 as it

did in the first session of the experiment. On the first view can already be seen that the

mean value of UBR for fault positives keeps a quite low level for the first two timer in-

tervals and then rises consequently until the third and fifth intervals. Although time in-

terval number 3 is an outlier, in which on the whole a quite low number of fault posi-

tives were found the mean value keeps at a quite high level. Remarkable is also inter-

val six in which no fault positive were found by the inspectors. So UBR performs quite

well for the first 120 minutes of inspection duration.

 - 88 -

Figure 7-25: False Positives, Session 2, UBR [%]

In Table 7-16 below the exact values of the investigation can be seen. Also the

Kruskal-Wallis test is contained, which shows that there is no significant difference

between the investigated records.

Table 7-16: False Positives, Session 2 UBR [%]

Time Interval
[min]

Mean Value Standard Deviation

0 – 30 1.67 0.94

30 – 60 1.75 0.83

60 – 90 2.50 0.50

90 – 120 2.50 1.50

120 – 150 3.67 3.09

150 – 180 0 0

180 – 210 1.00 0

210 – 240 0 0

Kruskal-Wallis-Test 0.190 (-)

0

2

4

6

8

10

12

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Fa
ls

e
Po

si
tiv

es

Time Intervals [min]

Mean Value

Standard Deviation

Aggregated

 - 89 -

The technique UBT-i is again very special in the second session of this experiment

study. The first 30 minutes of testing are performing very bad, which can be seen in

the combined bar and line chart of Figure 7-26 below, because of the high number of

fault positives found, which is 6. The next time interval is then a better one, only a few

fault positives were made, what goes along with a lower number of 2. The third interval

is again performing even better with 1 false positive found by the participants. After-

wards no false positives were found by the testers although some found defects were

recorded, what can be seen in Figure 7-10.Therefore UBT-i is performing good after

the third timeframe of testing duration, but the first time interval is a quite outstanding

one.

Figure 7-26: False Positives, Session 2, UBT-i [%]

The data values can be seen in the Table 7-17 below and also the Kruskal-Wallis test,

which depicts that there is no significant difference between the investigated records.

0
1
2
3
4
5
6
7

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Fa
ls

e
Po

si
tiv

es

Time Intervals [min]

Mean Value

Standard Deviation

Aggregated

 - 90 -

Table 7-17: False Positives, Session 2, UBT-i [%]

Time Interval
[min]

Mean Value Standard Deviation

0 – 30 6.00 0

30 – 60 2.00 0

60 – 90 1.00 0

90 – 120 0 0

120 – 150 0 0

150 – 180 0 0

180 – 210 0 0

210 – 240 0 0

Kruskal-Wallis-Test 0.368 (-)

The next chapter of the paper concentrates on the findings made and discusses them.

The analyses are also assembled together in a common context to be able to make

conclusions about the made investigations and to answer the hypotheses, which were

made in chapter 5.2.

 - 91 -

8 Discussion
In this section the results of the experiment as well as the practical implications are

discussed. The hypotheses of the experiment are summarized and interpreted as fol-

lows:

8.1 Is UBR more Effective and Efficient than UBT-i?

This chapter will give information about the performance of the investigated techniques

and shows the outcomes of the comparison.

H1: Effectiveness (UBR) > Effectiveness (UBT-i) for Design Documents in the
first 120 minutes:

The investigations of the experiment study were able to provide positive results for this

hypothesis in session one. The Figure 8-1 shows a combination of the results, which

were presented in detail in chapter 7. It can clearly be seen that in the first 120 minutes

of inspection and testing duration of session one UBR performs more effective than

UBT-i.

Figure 8-1: Mean Value of Effectiveness, Session 1, UBR and UBT-i

0

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Ef
fe

ct
iv

en
es

s,
 S

es
si

on
 1

, R
is

k
A+

B,
 [%

]

Time Intervals [min]

UBR S1

UBT-i S1

 - 92 -

The Figure 8-2 below shows the combined results of the investigation of effectiveness

for session two from the experiment study. It was therefore not possible to provide a

positive result for the hypothesis concerning session two. UBT-i performs more effec-

tive than UBR for the first 120 minutes of session two.

Figure 8-2: Effectiveness, Session 2, UBR and UBT-i

It is therefore not really possible to answer this hypothesis positively or negatively, be-

cause it depends on the experiment session. The outcomes of this hypothesis should

be analyzed in more detail in future thesis.

H2: Efficiency (UBR) > Efficiency (UBT-i) for Design Documents in the first 120
minutes of session one and two:

This hypothesis must be rejected. It can be seen in the combined bar charts below in

Figure 8-3, that UBR only performs more efficient in the first time interval of session

one. Afterwards UBT-i performs better in the asked first 120 minutes of inspection and

testing duration.

0
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00

0
-3

0

30
 -

60

60
 -

90

90
 -

12
0

12
0

-1
50

15
0

-1
80

18
0

-2
10

21
0

-2
40

Ef
fe

ct
iv

en
es

s,
 S

es
si

on
 2

, R
is

k
A+

B
[%

]

Time Intervals [min]

UBR S2

UBT-i S2

 - 93 -

Figure 8-3: Mean Value of Efficiency, Session one and two, UBR and UBT-i

UBT-i is therefore more efficient than UBR, what can bring positive effects on deci-

sions for project and quality managers concerning the choice when UBR or UBT-i

should be chosen as the software fault detection technique used.

8.2 Are the Techniques basically effective and efficient in the first
120 minutes?

This research approach should answer the question, if it is possible to shorten the du-

ration of inspections and tests, but to still provide a high level of the defect detection

performance of both techniques.

H3: Are the techniques most effective and efficient in the time interval from 0 to
120 minutes for design documents:

For UBR as well as for UBT-i concerning the efficiency this hypothesis is correct, what

can be seen in the Figure 8-3. But things get a little bit complicated when effectiveness

has to be analyzed, because of the different outcomes of the experiment sessions.

UBR is very effective in the requested time interval of session one and session two.

The results for UBT-i are not so good for the first 120 minutes of testing duration. It can

be said that UBT-i on the whole needs more time to perform really effective.

This hypothesis can therefore not really be answered with yes.

0
2,00
4,00
6,00
8,00

10,00
12,00
14,00
16,00
18,00

0
-6

0

60
 -

12
0

12
0

-1
80

18
0

-2
40

Ef
fic

ie
nc

y,
 S

es
si

on
 1

, R
is

k
A+

B
[%

]

Time Intervals [min]

UBR S1

UBT-i S1
0

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0
-6

0

60
 -

12
0

12
0

-1
80

18
0

-2
40

Ef
fic

ie
nc

y,
 S

es
si

on
 2

, R
is

k
A+

B
[%

]

Time Intervals [min]

UBR S2

UBT-i S2

 - 94 -

8.3 During which time intervals will the fewest False Positives be
found?

With a knowledge of the prediction when the fewest false positives will be found a fur-

ther prescription can be made about the defect detection performance of UBR and

UBT-i concerning their outcome of the first 120 minutes of inspection and testing dura-

tion.

H4: Will with UBR fewer false positives are found in the first 120 minutes than
with UBT-i:

The result of this hypothesis is also different in the experiment sessions. Whereas

UBR performs better concerning the number of false positives found in session one,

see Figure 8-4, UBT-i finds fewer false positives in session two, see Figure 8-5. The

two figures below are combined from the results of chapter 7. For session one the hy-

pothesis is correct, but for session two it has to be rejected.

Figure 8-4: False Positives, Session 1, UBR and UBT-i

0

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

0 - 30 30 - 60 60 - 90 90 -
120

120 -
150

150 -
180

180 -
210

210 -
240

Fa
ls

e
Po

si
tiv

es
 [%

]

Time Intervals [min]

UBR S1

UBT-i S1

 - 95 -

Figure 8-5: False Positives, Session 2, UBR and UBT-i

H5: Will the fewest false positives in UBR and UBT-i be produced in the first 120
minutes of inspection and testing:

For the software fault detection technique UBR this hypothesis has to be rejected. Al-

though in session two the trend line begins at a low level and rises in the time inter-

vals. It breaks in after the fifth timeframe. Session one has a completely different trend

line which starts with a higher number of found fault positives and gets lower in the

later time intervals.

For UBT-i the hypothesis also has to be rejected because in session two fault positives

were only found in the first three time intervals of testing and the trend line in session

one is also not very tending increase of found false positives.

Overview of hypotheses
The following Table 8-1 should give an overview about the final status of the made

hypotheses.

0

10,00

20,00

30,00

40,00

50,00

60,00

70,00

0 - 30 30 - 60 60 - 90 90 -
120

120 -
150

150 -
180

180 -
210

210 -
240

Fa
ls

e
Po

si
tiv

es
 [%

]

Time Intervals [min]

UBR S2

UBT-i S2

 - 96 -

Table 8-1: Overview of hypotheses

Hypotheses Description Status

H1 Effectiveness (UBR) > Effectiveness (UBT-i)

H2 Efficiency (UBR) > Efficiency (UBT-i)

H3.1 UBR most effective and efficient < 120 min

H3.2 UBT-i most effective and efficient < 120 min

H4 UBR fewer false positives than UBT-i < 120 min

H5 Fewest false positives of UBR & UBT-i < 120 min

 positively, rejected, cannot be answered (distinction in sessions)

 - 97 -

9 Conclusions and Follow-Up

In the first part of this thesis an introduction to the basic principles of software fault

detection techniques were given. These concepts help to understand how the investi-

gated techniques work and which differences and commons they may have. These

things are important to understand, so the different approaches of them are visible to

the reader. Afterward the experiment study, on which this thesis relies on, is described

in detail and visualized with a number of graphics, helping to get a better knowledge of

the planning, preparation and execution of the experiment held in an academically

environment. The next chapter is describing the investigated research approach and

the basic outcome of this paper. Following with the results of the experiment study and

the investigated measures are presented and described. Afterwards the examined

results are set in association with the made hypothesis as well as discussed concern-

ing several perspectives of these findings.

Inspection and testing are both very important and also often used approaches in the

software engineering practice, which addresses the same main goal – find as many

crucial defects in software products as possible. Software Inspection focuses mainly

on design specification documents in early phases of the software development life-

cycle, whereas traditional testing approaches concentrate more on the implementation

phases during the process or even later. Therefore this thesis uses another testing

variant, which is called UBT-i, it integrates the benefits of software inspection and

software testing. UBT-i is not in the need of executable code and is also a desk test,

which is different from traditional testing approaches. Another feature of UBT-i is that

the participants generate test cases during their inspection process.

The investigations of this thesis concentrate mainly on the temporal behavior of the

software fault detection techniques UBR and UBT-i. The outcomes concerning this

temporal behavior showed up some interesting results, but unfortunately not all ap-

proaches could be fulfilled concerning the hypotheses. UBR performs in the asked

time interval of 120 minutes very effective and efficient. UBT-i in contrary needs more

time for its testing duration to achieve as good defect detection results. This delivers

an important indicator for the planning of analytical quality assurances in consideration

of the scheduled inspection time for UBR as well as UBT-i in a not academically envi-

 - 98 -

ronment. The outcomes of this Thesis should therefore be able to help project as well

as quality managers to more precisely define their inspection and testing duration ef-

forts to gain the wanted results.

The comparison of the software fault detection techniques UBR and UBT-i showed

that UBR is on the whole not the superior technique as assumed. Concerning the in-

vestigated measures, effectiveness and efficiency, the findings were not consistent in

the two sessions of the experiment study. Whereas UBR tends to have a better defect

detection performance in session number 1 UBT-i did a better job in session number 2.

Therefore it cannot clearly state out, which of these techniques is the superior one in

the investigation of this thesis.

The assumed hypotheses concerning the number of false positives found in a tempor-

al context were not able to show the expected outcomes. It showed the complete op-

posite. To clarify these results further studies are needed with a higher number of par-

ticipants, more seeded defects and a greater number of software artifacts in which

defects have to be detected.

Also the differences between the experiment sessions, as mentioned several time be-

fore, were partially remarkable, in the context of the investigated measures used like,

effectiveness, efficiency and also false positives. To clarify these correlation further

studies will be needed. Also the learning effect for these software fault detection tech-

niques should be more investigated, because it was expected that session number 2

of the experiment study should perform better than session number 1 in all asked per-

formance measures.

To proof these results a larger evaluation should be conducted and further experimen-

tation should be planned to provide more understanding about the temporal behavior

of UBR and UBT-i. Also a study in a realistic environment or project should be made

based on this experiment study in an academically environment.

 - 99 -

References

[1] Ackerman, A. F., Buchwald, L.S., Lewsky, F.H., “Software Inspections: An Effective Verification
Process”, IEEE Software, 6(3): pp. 31-36, 1989.

[2] Andersson C, “Exploring the Software Verification Process with Focus on Efficient Fault Detection”,
Lund University, 2003

[3] Andersson C., Thelin T., Runeson P., Dzamashvili N.: “An experimental evaluation of inspection and
testing for detecting of design faults”, ISESE’ 03 – International Symposium of Empirical Software
Engineering, pp. 174-184, 2003.

[4] Augustin A, “Test-Driven Development: Concepts, Taxonomy and Future Direction”, Proseminar
Reliable Systems, Fakultät Informatik, Tehnische Universität Dresden, 2006

[5] Aurum A., Petersson H., Wohlin C., “State-of-the-art: software inspections after 25 years”, Softw.
Test. Verif. Reliab. 2002; 12: pp. 133–154.

[6] Basili V.R., Selby R.W., “Comparing the Effectiveness of Software Testing Strategies”, IEEE Vol. SE-
13, Issue 12, pp.: 1278-1296, Dec 1987

[7] Basili VR, Green S, Laitenberger O, Lanubile F, Shull F, S¨orumg°ard S, Zelkowitz M, “The empirical
investigation of perspective-based reading”, International Journal on Empirical Software Engineering
1996; 1(2): pp. 133–164.

[8] Basili, V. R., “Evolving and Packaging Reading Technologies”, Journal of Systems and Software,
38(1), Cockburn, A., Writing Effective Use Cases, Addison-Wesley, USA, 2001.

[9] Basili, V. R., Shull, F. and Lanubile, F., „Building Knowledge through Families of Experiments”, IEEE
Transactions on Software Engineering, 25(4): pp. 456-473, 1999.

[10] Bass, L., Clements, P. and Kazman, R., “Software Architecture in Practice”, Addison-Wesley, USA,
1998.

[11] Biffl S., Winkler D., Thelin T., Höst M., Russo B., Succi G.: “Investigating the Effect of V&V and Mod-
ern Construction Techniques on Improving Software Quality”, Poster presented at ISERN 2004.

[12] Bisant DB, Lyle JR, “A two person inspection method to improve programming productivity”, IEEE
Transactions on Software Engineering 1989; 15(10): pp. 1294–1304.

[13] Björn Regnell, Per Runeson, Claes Wohlin, „Towards integration of use case modelling and usage-
based testing“, The Journal of Systems and Software 50 (2000) pp. 117±130

[14] Blakely, F. W. and Boles, M. E., “A Case Study of Code Inspections,” Hewlett- Packard Journal,
42(4):58-63, 1991.

[15] Boehm, B. W., “Software Engineering Economics. Advances in Computing Science and Technology”,
Prentice Hall, 1981.

[16] Boem B, “A Spiral Model of Software Development and Enhancement”, Computer, IEEE, 21 (5) pp.:
61 – 72, May 1988

[17] Bourgeois, K. V., “Process Insights from a Large-Scale Software Inspections Data Analysis. Cross
Talk,” The Journal of Defense Software Engineering, 17-23, 1996.

[18] Briand, L., E -Emam, K., Fussbroich, T., and Laitenberger, O., „Using Simulation to Build Inspection
Efficiency Benchmarks for Development Projects”, Proceedings, 1998.

[19] C. Ghezzi, M. Jazayeri, and D. Mandrioli, “Fundamentals of Software Engineering”, Englewood Cliffs,
NJ: Prentice Hall, 1991.

[20] Cheng, B. and Jeffrey, R., “Comparing Inspection Strategies for Software Requirements Specifica-
tions”, Proceedings of the 1996 Australian Software Engineering Conference, pp: 203-211, 1996.

[21] Ciolkowski M, C. Differding, O. Laitenberger and J. Münch, “Empirical Investigation of Perspective-
based Reading: A Replicated Experiment”, Submitted to 7. Workshop on Empirical Studies of Pro-
grammers.

[22] Deck, M., “Cleanroom Software Engineering to reduce Software Cost”, Technical report, Cleanroom
Software Engineering Associates, 6894 Flagstaff Rd. Boulder, CO 80302, 1994.

[23] Dennis, A. and Valacich, J., “Computer brainstorms: More heads are better than one.” Journal of
Applied Social Psychology, 78(4): pp. 531-537, 1993.

 - 100 -

[24] Wohlin, C., Regnell., B., Wesslén, A. and Cosmo., H, „User-Centered Software Engineering – A
Comprehensive View of Software Development”, Proc. of the Nordic Seminar on Dependable Com-
puting Systems, pp. 229-240, 1994.

[25] Drew C, Hardman, Michael L. and Hart, Ann Weaver, “Designing and Conducting Research: Inquiry
in Education and Social Science”, Needham Heights, Massachusetts: Simon and Schuster Company,
1996.

[26] Dunsmore, A., Roper, M., Wood, M., “Object-Oriented Inspection in the Face of Delocalisation,” Pro-
ceedings of the 22nd International Conference on Software Engineering, Limerick, 2000.

[27] Dyer, M., “The Cleanroom Approach to Quality Software Development”, John Wiley and Sons, Inc,
1992.

[28] Dyer, M., “Verification-based Inspection”, Proceedings of the 26th Annual Hawaii International Con-
ference on System Sciences, pp: 418-427, 1992.

[29] Ebenau, R. G. and Strauss, S. H., Software Inspection Process, McGraw-Hill, USA, 1994.

[30] Fagan ME, “Advances in software inspections”, IEEE Transactions on Software Engineering 1986;
12(7): pp. 744–751.

[31] Fagan ME, “Design and code inspections to reduce errors in program development”, IBM Systems
Journal 1976; 15(3): pp. 182–211

[32] Fagan ME, Advances in software inspections, “IEEE Transactions on Software Engineering”, 1986,
12(7): pp. 744–751.

[33] Fagan, M. E. “Design and Code Inspections to Reduce Errors in Program Development”, IBM System
Journal, 15(3): pp. 182-211, 1976.

[34] Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Development”,
IBM Systems Journal, 15(3): pp. 182-211, 1976.

[35] Freimut B, O. Laitenberger, S. Biffl, “Investigating the Impact of Reading Techniques on the Accuracy
of Different Defect Content Estimation Techniques”, 2001.

[36] Fusaro P, Lanubile F, Visaggio G, “A replicated experiment to assess requirements inspection tech-
niques”, International Journal on Empirical Software Engineering 1997; 2(1): pp. 39–57.

[37] Gilb T, Graham D, “Software Inspection”, Addison-Wesley: Wokingham, U.K.

[38] Goel L. A, “Software Reliability Models: Assumptions, Limitations and Applicability”, IEEE Transac-
tion on Software Engineering Vol. 11, No 12, pp.: 1411 – 1423, 1985

[39] Gough PA, Fodemski FT, Higgins SA, Ray SJ, “Scenarios—an industrial case study and hypermedia
enhancements”, Proceedings 2nd IEEE International Symposium on Requirements Engineering,
IEEE Computer Society Press: Los Alamitos, CA, 1995; pp. 10–17.

[40] Herbsleb J., Zubrow D., Goldenson D., Hayes W. and Paulk M., „Software Quality and the Capability
Maturity Model“, Vol 40, No. 6 Communications of the ACM, June 1997.

[41] IEEE Standard, Standard for software reviews, 1028-1997, 1998.

[42] Jacobson, I., Christerson, M., Jonsson, P. and Övergaard G. Object-Oriented Software Engineering:
A Use Case Driven Approach, Addison-Wesley, USA, 1992.

[43] Jody P, Software Lifecycle Model, http://www.jodypaul.com/SWE/LCM/, 1999

[44] John D. Musa, “Operational Profiles in Software I Reliability Engineering”, IEEE, 1993

[45] Johnson, p.M., Tjahjono, D., “Does Every Inspection Really Need a Meeting”, Journal of Empirical
Software Engineering, vol. 3, no. 1, pp. 9-35, 1998

[46] Kaner, C., “The Performance of the N-Fold Requirement Inspection Method,” Requirements Engi-
neering Journal, vol. 2, no. 2, pp. 114-116, 1998.

[47] Karlsson, J. and Ryan, K., “A Cost-Value Approach for Prioritizing Requirements”, IEEE Software,
14(5): pp. 67-74, 1997.

[48] Knight JC, Myers AE, “An improved inspection technique”, Communications of ACM 1993; pp. 36(11):
pp. 50–69

[49] Kouchackjian A, R. Fietkiewicz, “Improving a product with usage-based testing”, Information and
Software Technology 42, pp: 809 – 814, 2000.

http://www.jodypaul.com/SWE/LCM/�

 - 101 -

[50] Kusumoto, S., Chimura, A., Kikuno, T., Matsumoto, K., Mohri, Y., “A Promising Approach to Two-
Person Software Review in an Educational Environment,” Journal of Systems and Software, no. 40,
pp. 115-123, 1998.

[51] Laitenberger O, DeBaud JM, “Perspective-based reading of code documents at Robert Bosch
GmbH”, Information and Software Technology 1997; 39(11): pp. 781–791.

[52] Williams L.A., “The Collaborative Software Process”, Dissertation, Department of Computer Science,
University of Utah, 2000.

[53] Levine, J. M. and Moreland, R. L., “Progress in Small Group Research,” Annual Review of Psycholo-
gy, 41: pp. 585-634, 1990.

[54] Linger RC, Mills HD, Witt BI, “Structured Programming: Theory and Practice”, Addison-Wesley: Read-
ing, MA, 1979.

[55] Madachy, R., Little, L., and Fan, S., “Analysis of a successful Inspection Program,” Procceding of the
18th Annual NASA Software Eng. Laboratory Workshop, pp: 176-198, 1993.

[56] Maximilien M, Williams L, “Assessing Test-Driven Development at IBM”, IEEE, 2003
[57] Musa J.D, “Operational profiles in software reliability engineering”, IEEE Software, March pp.: 14 –

32, 1993

[58] Musa, J. D., Software Reliability Engineering: More Reliable Software, FasterDevelopment and Test-
ing, McGraw-Hill, USA, 1998.

[59] Myers G. J, “The Art of Software Testing”, Wiley Interscience, 1979.

[60] Myers, G. J., “A controlled experiment in program testing and code walkthroughs/ inspections”,
Communications of the ACM, 21(9): pp: 760-768, 1978.

[61] National Aeronautics and Space Administration, “Software Formal Inspection Guidebook,” Technical
Report NASA-GB-A302, National Aeronautics and Space Administration.
http://satc.gsfc.nasa.gov/fi/fipage.html, 1993

[62] Laitenberger O., “A Survey of Software Inspection Technologies”, Handbook on Software Engineering
and Knowledge Engineering, Fraunhofer Institute for Experimental Software Engineering (IESE)

[63] Olofsson, M. and Wennberg, M., “Statistical Usage Inspection”, Master Thesis, Dept. of Communica-
tion Systems, Lund University, CODEN: LUTEDX (TETS-5244)/1-81/(1996), 1996.

[64] Ould M, “Managing Software Quality and Business Risk”, John Wiley & Sons Ltd, England,pp.: 105,
1999

[65] Porter A, Votta L, “Comparing Detection Methods for Software Requirements Inspection: A Replica-
tion Using Professional Subjects” Empirical Software Eng.: An Int’l J., vol. 3, no. 4, pp. 355-380, 1998.

[66] Porter AA, Votta LG, “An experiment to assess different defect detection methods for software re-
quirements inspections”, Proceedings 16th International Conference on Software Engineering, Sor-
rento, Italy, May 1994, IEEE Computer Society Press: Los Alamitos, CA, 1994; pp. 103–112.

[67] Porter AA, Votta LG, Basili V, “Comparing detection methods for software requirements inspection: A
replicated experiment”, IEEE Transactions on Software Engineering 1995; 21(6): pp. 563–575.

[68] R. L. Baber, “Comparison of Electrical "Engineering" of Heaviside's Times and Software "Engineer-
ing" of our Times,” IEEE Annals of the History of Computing, vol. 19, pp.: 5-17, 1997.

[69] Rifkin, S. and Deimel, L., “Applying Program Comprehension Techniques to Improve Software In-
spection”, Proceedings of the 19th Annual NASA Software Eng. Laboratory Workshop. NASA, 1994

[70] Radice R., “High quality Low Cost Software Inspections,” issue of Methods & Tools, Summer 2002.

[71] Roper M,Wood M, Miller J, “An empirical evaluation of defect detection techniques”, Information and
Software Technology 1997; 39(11): pp. 763–775.

[72] Royce W, “Managing the Development of Large Software Systems”, Proceedings of IEEE WESCON
26 (August): 1-9, 1970

[73] Runeson P, Wohlin C, “Statistical Usage Testing for Software Reliability Control”, Informatica Vol. 19
No. 2, pp: 195 – 207, 1995.

[74] Runeson P. and Regnell B., “Derivation of an Integrated Operational Profile and Use Case Model”,
Proc. of the 9th International Symposium on Software Reliability Engineering, pp. 70-79, 1998.

[75] Runeson P., Regnell B., “Derivation of an integrated operational profile and use case model”, Pro-
ceedings of the 9th International Symposium on Software Reliability Engineering, pp.: 70-79, 1998

http://satc.gsfc.nasa.gov/fi/fipage.html�

 - 102 -

[76] Russell, G. W., “Experience with Inspection in Ultralarge-Scale Developments”, IEEE Software,
8(1):25-31, 1991.

[77] Saaty, T. L., “The Analytic Hierarchy Process”, McGraw-Hill, USA, 1980.

[78] Sauer, C., Jeffery, R., Lau, L., and Yetton, P., “The Effectiveness of Software Development Technical
Reviews: A Behaviorally Motivated Program of Research”, IEEE Transactions on Software Engineer-
ing, vol. 26, no. 1, 2000.

[79] Seaman, C. B. and Basili, V. R., “Communication and Organization: An Empirical Study of Discussion
in Inspection Meetings”, IEEE Transactions on Software Engineering, 24(6): pp. 559-572, 1998

[80] Shirey, G. C., “How Inspections Fail”, Proceedings of the 9th International Conference on Testing
Computer Software, pages 151-159, 1992.

[81] Shull F, Rus I, Basili V, “How perspective-based reading can improve requirements inspections”,
IEEE Computer 2000; 33(7): pp. 73–79.

[82] Software Product Evaluation – General Guide, International Standard 9126, 1991.

[83] Sommerville, I., Software Engineering, Addison-Wesley, USA, 2001.

[84] Strauss, S. H. and Ebenau, R. G., “Software Inspection Process”, McGraw Hill Systems Design &
Implementation Series, 1993.

[85] Sun Sup So, “An Empirical evaluation of six methods to detect faults in software”, Software Testing,
Verification and Reliability, Vol. 12, Issue 3, pp.: 155-172, 2002.

[86] T. A. van Dijk, W. Kintsch, “Strategies of discourse comprehension”, Academic Press, Orlando, 1983.

[87] Testing definitions: http://www.faqs.org/faqs/software-eng/testing-faq/section-13.html

[88] Thelin T, Andersson C., Runeson P., Dzamashvili-Fogelström N.: „A Replicated Experiment of Us-
age-Based and Checklist-Based Reading“, Proceeding of 10th Int. Symp. on Software Metrics, 2004.

[89] Thelin T, Runeson P, Wohlin C, “Prioritized Use Cases as a Vehicle for Software Inspections”, IEEE
Software, vol. 20, no. 4, pp.: 30 – 33, July/Aug. 2003

[90] Thelin T., Runeson, P., Regnell B.: “Usage-Based Reading – An Experiment to Guide Reviewers with
Use Cases” Information and Software Technology, vol. 43, no. 15, pp. 925-938, 2001.

[91] Thelin T., „Empirical Evaluations of Usage-Based Reading and Fault Content Estimation for Software
Inspections“, Department of Communication Systems, Lund University, 2002.

[92] Thelin T, Runeson P., Wohlin C., “An Experimental Comparison of Usage-Based and Checklist-
Based Reading” IEEE transactions on software engineering, vol. 29, no. 8, August 2003

[93] Thelin T, Runeson P., Wohlin C., Olsson T., Andersson C., „How much Information is Needed for
Usage-Based Reading? – A Series of Experiments,“ Proceedings of the 2002 International Sympo-
sium on Empirical Software Engineering (ISESE’02).

[94] Thelin T, Runeson P., Wohlin C., Olsson T., Andersson C., “Evaluation of Usage-Based Reading –
Conclusions after Three Experiments”, Empirical Software Engineering, 9 (2004), pp. 77-110.

[95] Travassos, G., Shull, F., Fredericks, M., and Basili, V.R., “Detecting defects in object oriented de-
signs: Using reading techniques to increase software quality,” In the Conference on Object-oriented
Programming Systems, Languages & Applications (OOPSLA), 1999.

[96] Travassos, G., Shull, F., Fredericks, M., Basili, V. R., “Detecting Defects in Object-Oriented Designs:
Using Reading Techniques to Increase Software Quality”, Proc. of the International Conference on
Object-Oriented Programming Systems, Languages & Applications, 1999.

[97] Unit Testing – Junit Approach, Java Blog, http://javablog.info/2007/04/08/
[98] Unit Tests, Wikipedia, http://en.wikipedia.org/wiki/Unit_testing

[99] Weidenhaupt, K., Pohl, K., Jarke, M. and Haumer, P., „Scenarios in System Development: Current
Practice”, IEEE Software, 15(2): pp.: 34-45, 1998

[100] Weller, E. F., “Lessons from Three Years of Inspection Datal,” IEEE Software, 10(5): pp: 38-45,
1993.

[101] Wheeler DA, Brykczynski B, Meeson RN, “Peer review process similar to inspection. Software
Inspection: An Industry Best Practice”, IEEE Computer Society Press: Los Alamitos, CA, 1996.

[102] White-Box Tests, Wikipedia, http://de.wikipedia.org/wiki/White-Box-Test

http://javablog.info/2007/04/08/�
http://en.wikipedia.org/wiki/Unit_testing�
http://de.wikipedia.org/wiki/White-Box-Test�

 - 103 -

[103] Whittaker J. A, Poore H. J, “Markov Analysis of Software Specifications”, ACM Transactions on
Software Engineering Methodology, Vol 2, pp.: 93 – 106, 1993

[104] Winkler D, “Integration of Analytical Quality Assurance Methods into Agile Software Construction
Practice”, IDoEse 2006

[105] Winkler D, Biffl S, “An Empirical Study on Design Quality Improvement from Best-Practice Inspec-
tion and Pair Programming”, LNCS 4034, pp.: 319 – 333, 2006.

[106] Winkler D, Biffl S, Thurnher B, “Investigating the Impact of Active Guidance on Design Inspection”,
PROFES, LNCS 3547, 2005

[107] Winkler D, Halling M, Biffl S, “Investigating the effect of expert ranking of use cases for design
inspection”, Euromicro Conference, Rennes, France IEEE Comp. Soc., 2004

[108] Winkler D., Biffl S., Riedl B.: „Improvement of Design Specifications with Inspection and Testing”,
Proc. Of Euromicro 05, 2005.

[109] Wohlin C, “Managing Software Quality through Incremental Development and Certification”, Buld-
ing Quality into Software, Computations Mechanics Publications, pp.: 187 – 202, 1994

[110] Wohlin C, Runeson P, “Certification of softare components”, IEEE Transactions on Software Engi-
neering 20 (6), pp.: 494 – 499, 1994

 - 104 -

Table of Figures
Figure 1-1 The Waterfall Model [43] ... 3
Figure 1-2 The Spiral Model [43] .. 4
Figure 1-3 The V-Model [3] ... 4
Figure 1-4 The connection between UBR and UBT [3] .. 6
Figure 2-1 The Technical Dimensions of Software Inspections [62] .. 12
Figure 2-2: Evolution of the inspection process with change and support to structure [5]. 14
Figure 3-1: Description of the PBR-Model [86] .. 23
Figure 3-2: Input and Output of UBR. [91] .. 25
Figure 3-3: Studies on UBR .. 30
Figure 4-1: Black-Box Testing .. 33
Figure 4-2: White-Box Testing .. 34
Figure 4-3: Unit Testing Process for the Junit Approach [97] .. 35
Figure 4-4: Test-First Development [4] ... 36
Figure 6-1: Taxi Management System – Overview [105] ... 46
Figure 6-2: Configuration of the Experiment .. 48
Figure 6-3: Experiment operation ... 53
Figure 6-4: Data evaluation process... 54
Figure 7-1: Effectiveness, UBR vs. UBT-i [%] .. 60
Figure 7-2: Effectiveness, Session 1, UBR and UBT-i [%] ... 61
Figure 7-3: Effectiveness, Session 2, UBR and UBT-i [%] ... 62
Figure 7-4: Effectiveness, UBR, Session 1, Risk A+B [%] ... 63
Figure 7-5: Effectiveness (standard calculation), UBR, Session 1, Risk A+B [%] 65
Figure 7-6: Effectiveness, Session 1, UBT-i [%] .. 66
Figure 7-7: Effectiveness (standard calculation), UBT-i, Session 1, Risk A+B [%] 67
Figure 7-8: Effectiveness, Session 2, UBR [%] .. 68
Figure 7-9: Effectiveness (standard calculation), UBR, Session 2, Risk A+B [%] 69
Figure 7-10: Effectiveness, Session 2, UBT-i [%] .. 70
Figure 7-11: Effectiveness (standard calculation), UBT-i, Session 2, Risk A+B [%] 71
Figure 7-12: First defect found ... 72
Figure 7-13: Efficiency, UBR vs. UBT-i [%] .. 73
Figure 7-14: Efficiency, Session 1, UBR and UBT-i [%] ... 74
Figure 7-15: Efficiency, Session 2, UBR and UBT-i [%] ... 75
Figure 7-16: Efficiency, Session 1, UBR [%] .. 76
Figure 7-17: Efficiency, Session 1, UBT-i [%] .. 77
Figure 7-18: Efficiency, Session 2, UBR [%] .. 79
Figure 7-19: Efficiency, Session 2, UBT-i [%] .. 80
Figure 7-20: False Positives, UBR vs. UBT-i [%] ... 82
Figure 7-21: False Positives, Session 1, UBR and UBT-i [%] .. 83
Figure 7-22: False Positives, Session 2, UBR and UBT-i [%] .. 84
Figure 7-23: False Positives, Session 1, UBR [%] ... 85
Figure 7-24: False Positives, Session 1, UBT-i [%] .. 86
Figure 7-25: False Positives, Session 2, UBR [%] ... 88
Figure 7-26: False Positives, Session 2, UBT-i [%] .. 89
Figure 8-1: Mean Value of Effectiveness, Session 1, UBR and UBT-i 91
Figure 8-2: Effectiveness, Session 2, UBR and UBT-i ... 92

 - 105 -

Figure 8-3: Mean Value of Efficiency, Session one and two, UBR and UBT-i 93
Figure 8-4: False Positives, Session 1, UBR and UBT-i .. 94
Figure 8-5: False Positives, Session 2, UBR and UBT-i .. 95

 - 106 -

List of Tables
Table 2-1: CMM Level and Key Process Areas [40]. ... 10
Table 3-1: Characterization of Reading Techniques [7] ... 29
Table 6-1: Reference Defects in both experiment sessions ... 50
Table 6-2: Allocation of Seeded Defects [83] ... 51
Table 7-1: Defect Detection Effort (UBR) and Defect Detection Effort + Test Case generation

(UBT-i) [min] .. 58
Table 7-2: Effectiveness, UBR vs. UBT-i [%] ... 60
Table 7-3: Effectiveness, Session 1, UBR [%] ... 64
Table 7-4: Effectiveness, Session 1, UBT-i [%] .. 66
Table 7-5: Effectiveness, Session 2, UBR [%] ... 68
Table 7-6: Effectiveness, Session 2, UBT-i [%] .. 70
Table 7-7: First defect found [min] .. 72
Table 7-8: Efficiency, UBR vs. UBT-i [%] .. 73
Table 7-9: Efficiency, Session 1, UBR [%] ... 76
Table 7-10: Efficiency, Session 1, UBT-i [%] .. 78
Table 7-11: Efficiency, Session 2, UBR [%] ... 79
Table 7-12: Efficiency, Session 2, UBT-i [%] .. 80
Table 7-13: False Positives, UBR vs. UBT-i [%] .. 82
Table 7-14: False Positives, Session 1, UBR [%] .. 85
Table 7-15: False Positives, Session 1, UBT-i [%] ... 87
Table 7-16: False Positives, Session 2 UBR [%] ... 88
Table 7-17: False Positives, Session 2, UBT-i [%] ... 90
Table 8-1: Overview of hypotheses .. 96

 - 107 -

Curriculum Vitae

Persönliche Daten:

Name: Faderl Kevin
Anschrift: Mariahilfer Gürtel 37/14, 1150 Wien
Telefon: 0676 / 70 95 322
Geboren am/in: 12.01.1981 in Steyr

Schulische Ausbildung:

1991 – 1995 Realgymnasium Steyr
1995 – 2000 Handelsakademie Steyr
2000 – 2005 Wirtschaftsinformatik Bakkalaureatsstudium
2005 – Jetzt Wirtschaftsinformatik Magisterstidium

Titel der Bakkalaureatsarbeit:

Zusammenführung von mehreren Eclipse Plug-Ins

Berufserfahrung:

09/2000 – 10/2001: Webeditor und Quality Manager bei IDEAL Communications,

Neubaugasse 12-14, 1070 Wien.
2001 – 2004: Freelancer als Webeditor, Designer und Quality Manager bei Newton21

Austria (vormals AUnit), Porzellangasse 14/39, 1090 Wien.
2002 – 2005: Freelancer als Tonstudioassistent bei Fa. Home Music, Badgasse 19,

1090 Wien.
2003 - 2009: Freelancer als Webdeveloper bei Media 24, Scheideldorf 61, 3800

Göpfritz.
06/2005 – 12/2005: Freelancer als Webdeveloper und Quality Manager bei Fa. IT-

Park, Deutschstraße 1, 2331 Vösendorf
01/2006 bis 05/2007: Selbstständige Tätigkeiten im Rahmen der Fa. NCC
11/2007 bis 04/2009: SAP New Technology Consultant bei Phoron GmbH, Guglgasse

6/3, 1110 Wien
05/2009 bis 08/2009: IT-Projektmanager bei Allianz Versicherungs AG, Hietzinger Kai

101-105, 1130 Wien
08/2009 bis Jetzt: Technischer Projektmanager bei Wyeth Whitehall Export GmbH,

Storchengasse 1, 1150 Wien

 - 108 -

Appendix

Inspection Record Document:

 - 109 -

Workflow for UBR:

Steps To Do: Purpose and requirements

1. Log the time.

2. Read through the textual requirements.
Read the 5 first pages and just briefly
read the others.
MAX TIME: 20 minutes.

• Understanding.
• Locate the components.
• Get familiar with the structure of the

document.
3. Log the clock time.

4. Read through the design document.
Read the 2 first pages, and just briefly
read the others.
MAX TIME: 20 minutes.

• Understanding.
• Locate the components.
• Get familiar with the structure of the

document.
5. Log the clock time.

6. Compare method descriptions and
source code to find faults in the method
declarations. Do not yet read the code
inside the methods.

• Detect faults in the method declara-
tions or source code.

7. Start reading the first use case.
8. Follow the required methods for this

use case (see method descriptions and
sequence diagrams).

9. When reaching a method that has not
been checked before, work through the
source code, otherwise skip it.

10. Try to detect faults in the method de-
scriptions and the source code while fol-
lowing the use cases and log them.

• The use cases have to be utilized in
order.

• Detect faults in the method descrip-
tions and the source code.

• It is acceptable to return to a use
case that you have already worked
on.

11. Log the clock time •

12. When finished inspecting:
• Log the last use case used.
• Estimate the number faults left

(minimum, most probable, and
maximum).

• Answer the feedback questionnaire.
• Fill out the individual estimation.
• Hand in all material used.

• You are finished when you have
worked on each use case or time is
up.

 - 110 -

Workflow for UBT-i:

Steps To Do: Purpose and requirements

13. Log the time.

14. Read through the textual requirements. Read the first
pages and just briefly read the others.
MAX TIME: 20 minutes.

• Understanding.
• Locate the components.
• Get familiar with the

structure of the docu-
ment.

15. Log the time.

16. Read through the design document. Read the first
pages, and just briefly read the others.
MAX TIME: 20 minutes.

• Understanding.
• Locate the components.
• Get familiar with the

structure of the docu-
ment.

17. Log the time.

18. Compare method descriptions and source code to find
faults in the method heads. Do not yet read the code in-
side the methods.

19. For each method at the system’s border:
Find equivalent classes for method parameters and write
them next to the method declaration.

• Detect faults in the
method declarations or
source code.

• Find the equivalent
classes for each method.

20. Start reading the first use case.
21. Follow the required methods for this use case (see

method descriptions and sequence diagrams).
22. When reaching a method that has already been

checked, skip it.
23. When reaching a method that has not been checked

before, work through its source code:
• When the method is at the border of the system (the

method is supposed to check passed parameters),
create test cases with found equivalent classes.

• For ALL methods (also those at the system’s border):
create test cases for each fork (if/else) using condi-
tion chains (e.g.: C1T-C2F).
Be sure to check each fork of the code tree.

24. Try to detect faults in the method descriptions and the
source code while following the use cases and log them.

• The use cases have to
be utilized in order.

• Detect faults in the des-
igndocument and the
source code.

• It is acceptable to return
to a use case that you
have already worked on.

• Create testcases.
• Create only testcases

that are necessary to
cover all equivalent
classes.

• The use cases have to
be utilized in order.

25. Log the time. •
26. When finished inspecting:
• Log the last use case used.
• Estimate the number faults left

(minimum, most probable, and maximum).
• Answer the feedback questionnaire.
• Fill out the individual estimation.
• Hand in all material used.

• You are finished when
you have worked on
each use case or time is
up.

	Abstract
	Kurzfassung
	Table of Content
	1 Introduction
	2 Product and Process Improvement
	2.1 Capability Maturity Model (CMM)
	2.2 The Process of Software Inspection
	Planning
	Overview
	Defect Detection
	Defect Collection
	Defect Correction
	Follow-up
	Products

	2.3 Roles in inspections
	2.4 Inspection Team Size
	2.5 Selection of Inspectors

	3 Best-Practice Software Inspection
	3.1 Ad-hoc reading
	3.2 Checklist-based reading
	3.3 Perspective-based reading (PBR)
	3.4 Usage-based reading (UBR)
	3.5 Comparison of reading techniques
	3.6 Temporal behavior

	4 Software Testing and Test-First Development
	4.1 Black-Box Testing
	4.2 White-Box Testing
	4.3 Unit Testing
	4.4 Test-First Development
	4.5 Usage-based testing (UBT)

	5 Research Approach
	5.1 Variables
	5.2 Hypotheses
	5.2.1 Is UBR more Effective and Efficient than UBT-i?
	5.2.2 Are the Techniques basically effective and efficient in the first 120 minutes?
	5.2.3 During which time intervals will the fewest False Positives be found?

	6 Experiment
	6.1 Experiment Description
	6.2 Planning and preparation
	6.2.1 Software Artifacts
	6.2.2 Reference Defects

	6.3 Operation
	6.4 Evaluation
	6.5 Threats to validity

	7 Results of the Experiment
	7.1 Effort
	7.2 Effectiveness
	7.2.1 Combined Sessions – Combined Techniques
	7.2.2 Temporal behavior of combined sessions and techniques
	7.2.3 Temporal behavior of separated sessions and techniques

	7.3 Efficiency
	7.3.1 Combined Sessions – Combined Techniques
	7.3.2 Temporal behavior of combined sessions and techniques
	7.3.3 Temporal behavior of separated sessions and techniques

	7.4 False positives
	7.4.1 Combined Sessions – Combined Techniques
	7.4.2 Temporal behavior of combined sessions and techniques
	7.4.3 Temporal behavior of separated sessions and techniques

	8 Discussion
	8.1 Is UBR more Effective and Efficient than UBT-i?
	8.2 Are the Techniques basically effective and efficient in the first 120 minutes?
	8.3 During which time intervals will the fewest False Positives be found?

	9 Conclusions and Follow-Up
	References
	Table of Figures
	List of Tables
	Curriculum Vitae
	Appendix

