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Abstract 
 

The C-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP 

II) consists of multiple tandem heptapeptide repeats (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-

Ser7).  The CTD undergoes dynamic phosphorylation on Ser2 and Ser5 residues during 

transcription. Changes in the CTD phosphorylation pattern orchestrate recruitment of 

different transcription, mRNA-processing and histone-modifying factors. 

Rct1, a nuclear multidomain cyclophilin from Schizosaccharomyces pombe, 

consists of a peptidyl-prolyl cis-trans isomerase (PPIase) domain, an RNA recognition 

motif (RRM) and a C-terminal domain enriched in arginine-serine/arginine-aspartic acid 

(RS/RD) repeats. Previous work has shown that Rct1 negatively regulates RNA 

polymerase II (RNAP II) C-terminal domain (CTD) phosphorylation and associates with 

transcriptionally active chromatin.  However, the mechanism of this regulation remained 

elusive. Therefore, in this work Rct1 interactions with the RNAP II CTD and CTD kinases 

and phosphatases were checked. In vitro pull-downs indicate that the PPIase domain of 

Rct1 is responsible for binding to the RNAP II CTD as well as to CTD kinases Cdk9 and 

Lsk1. Cdk9 and Lsk1, which are known to regulate transcription by phosphorylating Ser2 

of the CTD, bind Rct1 with the help of their non-kinase parts. The performed kinase 

assays have revealed that Rct1 negatively controls specific activity of Cdk9 towards the 

RNAP II CTD via its PPIase domain. Chromatin immunoprecipitation (ChIP) analysis of 

RNAP II occupancy along transcription units indicates that amount of RNAP II bound to 

chromatin during transcription elongation and termination steps is significantly increased 

in Rct1 overexpressing cells and decreased in Rct1 depleted cells. ChIP of histone H3 

acetylated at lysines 9 and 12 (an active transcription mark) has revealed that the 

acetylation is reduced in both cases (Rct1 overexpression and depletion). However, the 

reduction is more pronounced when Rct1 is overexpressed. Moreover, the outcome of 

nuclear run-on experiment shows that under the conditions of either Rct1 over- or 

underexpression mRNA production is decreased. The evidence presented suggests that 

although over- and underexpression of Rct1 cause opposite effect on the amount of RNAP 

II bound to chromatin, both changes in Rct1 expression level negatively regulate 

transcription. 
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Zusammenfassung 
 

Die größte Untereinheit der RNA Polymerase II (RNAP II) wird in ihrer C-

terminalen Domäne (CTD) aus multiplen heptameren Peptidsequenzwiederholungen 

(Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7) aufgebaut. Die CTD wird während der 

Transkription an Ser2 und Ser5 phosphoryliert, Unterschiede in diesem 

Phosphorylierungsmuster bewirken differentielle Regulierungen von Transkription, 

mRNA-Prozessierung und Histonmodifizierung. 

Rct1, ein nukleäres Cyclophilin der Spalthefe Schizosaccharomyces pombe, enthält 

eine Peptidyl-Prolyl cis-trans Isomerase (PPIase) Domäne, ein RNA Erkennungsmotif 

(RRM) und eine CTD mit Arg-Ser/Arg-Asp (RS/RD) Sequenzwiederholungen. Es wurde 

bereits nachgewiesen, dass Rct1 die Phosphorylierung der CTD von RNAP II negativ 

reguliert und mit transkriptionell aktivem Chromatin assoziiert ist. Die zugrunde liegenden 

Mechanismen wurden jedoch nicht erforscht. In dieser Arbeit wurden sowohl die 

Interaktionen zwischen Rct1 und der CTD von RNAP II als auch von Rct1 mit den 

beschriebenen RNAP II Kinasen und Phosphatasen durchgeführt. Mit in vitro 

Experimenten konnte nachgewiesen werden, dass die PPIase Domäne von Rct1 sowohl für 

die Interaktion mit der RNAP II CTD als auch für die Interaktionen mit den RNAP II CTD 

Kinasen Cdk9 und Lsk1 verantwortlich ist. Cdk9 und Lsk1, welche die Transkription 

durch Phosphorylierung des Ser2 der CTD regulieren, interagieren mit Rct1 über ihre 

nicht-katalytischen Domänen. Kinase-Aktivitätsmessungen ergaben, dass Rct1 über die 

PPIase Domäne die Aktivität von Cdk9 auf die RNAP II CTD negativ reguliert. Mit Hilfe 

von Chromatin-Immunopräzipitation (ChIP) konnte gezeigt werden, dass die Assoziation 

von RNAP II an Chromatin während Elongation und Termination der Transkription durch 

Rct1 beeinflusst wird. Eine ChIP-Analyse des Histons H3 konnte nachweisen, dass die 

Azetylierung der Lysinreste 9 und 12 sowohl bei Rct1-Überexpression als auch bei -

Verminderung reduziert ist, wobei jedoch die Reduktion durch Rct1-Überexpression 

stärker betont ist. Nuclear run-on Experimente bestätigten weiters eine Reduktion der 

mRNA-Transkriptionsrate, welche sowohl unabhängig von Rct1-Überexpression als auch 

von Rct1-Reduktion war. Diese Ergebnisse zeigen, dass veränderte Rct1-Expression 

unterschiedliche Effekte auf die Bindung von RNAP II an Chromatin ausübt, die 

Transkription jedoch immer negativ reguliert wird.  
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1. Introduction 
 

1.1. Peptidyl-prolyl cis-trans isomerases 

 

The peptide bond has approximately 40% double-bond character, therefore it can 

exist in two forms: cis and trans (Fig. 1.1.). During translation most peptide bonds are 

connected in energetically favorable trans conformation and this form also dominates in 

native structures of peptides (Ramachandran & Sasisekharan, 1968). However, in case of 

peptide bond on the N-terminal side of proline residues (peptidyl-prolyl bond), both cis 

and trans forms exist, because the free energy difference between these two conformations 

is much smaller for proline than for any other amino acid. In fact, the frequency of the cis 

form occurrence in proteins is 5-6% (Stewart et al, 1990), (Pal & Chakrabarti, 1999). In 

addition to that, a great number of cis isoforms occur on the surface of proteins. The 

structural difference between these two distinct forms can be crucial in case of change 

between functional states of the protein or distinguishing between binding partners 

(Schiene & Fischer, 2000).  

 

 
Fig. 1.1. A schematic illustration of the cis and trans isomers of the peptide bond on 

the N-terminal side of proline residues. 

 

Spontaneous isomerization of the peptidyl-prolyl bond is a slow reaction that 

requires free energy. The process is rate limiting (Gothel & Marahiel, 1999) and can be 

accelerated by peptidyl-prolyl cis-trans isomerases (PPIases). PPIases, also called 

rotamases, can be classified into four structurally unrelated families: cyclophilins, FK506 
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binding proteins (FKBP), parvulins and protein phosphatase 2A phosphatase activator 

(PTPA). Cyclophilins and FKBP were first discovered PPIases (Handschumacher et al, 

1984), (Fischer et al, 1984), (Fischer et al, 1989), (Harding et al, 1989), (Siekierka et al, 

1989). They are also known as immunophilins for their ability to bind immunosuppressive 

drugs: cyclophilins form complexes with cyclosporin A (CsA) and FKBP bind FK506 and 

rapamycin (Schreiber, 1991), (Gothel & Marahiel, 1999) (Fig. 1.2.). Later, an irreversible 

inhibitor of several parvulins, juglone, was discovered as well (Hennig et al, 1998).  

In addition to mentioned PPIases, dual-family PPIases in lower organisms have 

been lately described. The proteins possess both cyclophilin and FKBP-like domains 

(Adams et al, 2005). 

 

 
 

Fig. 1.2. Immunosuppressive actions performed by the CyPA (Cyclophilin A) – CsA 

and FKBP-FK506 complexes. Increase of the free intracellular calcium during T-cell activation 

causes interaction between calmodulin (CaM) and phosphatase calcineurin (CN). The complex 

dephosphorylates nuclear factor of activated T-cells (NF-AT), as a result NF-AT can cross the 

nuclear membrane and activate transcription of interleukin-2 (IL-2). The Cyp-CsA complex 

disables phosphatase activity of CN-CaM complex by interacting with CN. The FKBP-FK506  

complex inhibits phosphatase activity of CN-CaM in the similar way. From: (Gothel & Marahiel, 

1999). The FKBP-ramapycin complex binds to mammalian target of rapamycin (mTOR) instead 

of CaM (Sharma et al, 1994).   
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1.1.1. FKBPs 

 

FKBPs were discovered in all organisms investigated. FKBP12, the prototype of 

the FKBP family, contains a single FKBP domain evolutionary conserved in most of 

FKBPs. The structure of the domain, responsible for both PPIase- and FK506/rapamycin-

binding activities, corresponds to an amphipathic five-stranded β-sheet (Fig.1.3.), (Itoh & 

Navia, 1995). By contrast, FKBP51 and 52 consist of tandem FKBPs and multiple 

tetratricopeptide repeat (TPR). In both proteins only the N-terminal FKBP domains are 

able to perform PPIase- and FK506/rapamycin-binding activities, while C-terminal FKBP 

domains are responsible for interactions with different binding partners (Sinars et al, 

2003), (Wu et al, 2004). Studies of a noncanonical FKBP, FKBP38, reveal that its 

structure is similar to FKBP12 and closely resembles C-terminal FKBP domains of 

FKBP51 and 52. Although FKBP38 FKBP domain lacks conserved amino acids required 

for FK506-binding and PPIase activities, it preserves rotamase activity in calmodulin 

(CaM) presence. Besides FKBP domain, FKBP38 has also TPR domain, prolyl 

hydroxylase (PHD2)-interacting region, putative calmoduline and transmembrane motifs 

(Maestre-Martinez et al, 2006), (Edlich et al, 2006), (Kang et al, 2005), (Kang et al, 2008). 

 

 

 

Fig. 1.3. Structure of FKBP12 bound to 

FK506. From: (Itoh & Navia, 1995). 

 

 

 

 

 

 

 

 

 

FKBPs mediate various cellular processes. For example, FKBP12 is enrolled in 

protein-protein interactions and orchestrates its partners’ activities. It functions as a 
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constituent component of the intracellular calcium release channel. It binds members of 

this calcium release family: the ryanodine receptors (RyRs), modulating RyR complexes, 

and the inositol 1,4,5-triphosphate receptor (IP3R), enabling its binding to CN (Marks, 

1996). FKBP12 is also known to interact with transforming growth factor-β (TGF-β), 

which is implicated in many cellular processes (Wang et al, 1994). Numerous FKBPs 

function as chaperons. For instance, FKBP51 and FKBP52 act as co-chaperons in steroid 

receptor signaling, their TPR domains serve as binding sites of the ubiquitous molecular 

chaperone Hsp90 (Sinars et al, 2003), (Davies & Sanchez, 2005). FKBP38 also interacts 

with Hsp90, but its main function is protection from apoptosis. FKPB38 performs targets 

anti-apoptotic proteins Bcl-XL and Bcl-2 to the mitochondrial membrane (Kang et al, 

2005), (Shirane & Nakayama, 2003), (Edlich et al, 2007). Besides, numerous FKBPs, 

including the mentioned ones, are highly expressed in neuronal tissues after nerve injury. 

They take part in synaptic vesicle assembly, axonal transport and maybe in 

neuroprotection against abnormal protein aggregation, suggesting potential treatment. 

Immunosuppressive ligands such as GPI-1046 and N-cycloheximide bind to FKBP12 and 

FKBP38, respectively, and show neuroprotective and neuroregenerative effects (Avramut 

& Achim, 2003), (Poulter et al, 2004).  

 

1.1.2. Protein phosphatase 2A phosphatase activator 

 

Protein phosphatase 2A (PP2A) is a major group of serine/threonine (Ser/Thr) 

phosphatases involved in the regulation of numerous cellular pathways; i.e. cell growth 

and signaling (Janssens & Goris, 2001). Protein phosphatase 2A phosphatase activator 

(PTPA) is an essential and evolutionary conserved protein. Its two homologues in S. 

cerevisiae have been described so far, Rdr1 and Rdr2 (Rempola et al, 2000). PTPA and its 

homologues activate the phosphoserine/threonine-specific activity of PP2A and PP2A-like 

phosphatases (Van Hoof et al, 1994), (Fellner et al, 2003), (Van Hoof et al, 2005), 

(Hombauer et al, 2007). It was also shown that PTPA and its S. cerevisiae homologues 

have PPIase activity, which is similar to the activity of cyclophilin A (CypA) and 

FKBP12. Therefore, it was suggested that PTPA could use PPIase mechanism in order to 

regulate PP2A phosphatase activity (Jordens et al, 2006).  
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1.1.3. Cyclophilins 

 

Cyclophilins have been found in numerous organisms including vertebrates, plants, 

fungi and bacteria. They all have one structurally conserved domain, which possesses 

PPIase activity (Wang & Heitman, 2005). First discovered cyclophilin, CypA, has only 

one PPIase domain, which corresponds to an eight-stranded antiparallel β-barrel enclosed 

by two α helixes (Fig. 1.4.), (Ke et al, 1991), (Kallen et al, 1991). Unlike single domain 

CypA, other cyclophilins can be more complex and include amino-terminal signal 

peptides directing them to endoplasmitic reticulum (ER) or mitochondria, transmembrane 

domains, TPR repeats and serine/arginine (Ser/Arg) rich domains (SR) (Wang & Heitman, 

2005). For example, human Cyp358 (Nup358), largest cyclophilins known so far, apart 

from the PPIase domain, has also a Leucine (Leu) rich domain, a Zinc-finger and Ran-

binding domains. It is a Ran-binding component of nuclear pores (Wu et al, 1995). Human 

cyclophilin Cyp40 has PPIase domain at N-terminus and TPR repeats at C-terminus. As 

other cyclophilins it is evolutionally conserved and the structure is preserved in its S. 

cerevisiae, Cpr6 and Cpr7, and S. pombe, SpCyp5, homologues (Arevalo-Rodriguez et al, 

2004),(Pemberton & Kay, 2005). 

Cyclophilins are expressed in most tissues and fulfill various functions. CypA, 

apart from immunosuppressive actions performed by CypA – CsA complexes (Fig. 1.2.), 

also performs other functions via its PPIase activity. For example, it promotes formation 

of human immunodeficiency virus (HIV) virions (Bosco et al, 2002). CypA is also 

involved in maturation of oligometic receptors (Helekar et al, 1994) and in regulation of 

activity of essential Zn-finger proteins (Ansari et al, 2002). CypA was indentified recently 

as a mediator of endothelial activation and linked to rheumatoid arthritis (Kim et al, 2004), 

(Pap, 2005). Another cyclophilin family member, Cyp358, is a nucleoporin. It is required 

for nuclear import and plays important role in cell polarization (Hutten et al, 2009), 

(Murawala et al, 2009). Cyp40 is a well-studied cyclophilin and regulates the activity of 

transcriptional factor c-Myb (Leverson & Ness, 1998). Like FKBP51 and FKBP52 

(Section 1.1.2.), Cyp40 has also been indentified in steroid receptor complexes as co-

chaperon. It is also most abundant in progesterone receptor complexes (Freeman et al, 

1996).  
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  Fig. 1.4. Ribbon 

presentation of CypA structure. 

From: (Barik, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.3.1. Cyclophilins with Ser/Arg rich domains. 

 

An interesting member of cyclophilin family is human SRcyp – a Ser/Arg-rich 

nuclear matrix associated cyclophilin. The protein has an RS domain (serine/arginine rich 

domain) similar to the domain found in SR protein family of pre-mRNA splicing 

regulators. It has been shown to interact specifically with the phosphorylated C-terminal 

domain (CTD) of RNA Polymearse II (RNAP II) (Section 1.2.). Therefore, it was 

suggested that SRcyp links RNA transcription to pre-mRNA processing (Bourquin et al, 

1997). Two similar SR cyclophilins were discovered in A. thaliana, CypRS64 and 

CypRS92. They consist of an N-terminal PPIase domain and a C-terminal RS domain, that 

has many Ser/Arg and serine/proline (Ser/Pro) repeats. They were shown to interact with 

A. thaliana SR proteins and U1 and U11 small nuclear ribonucleoprotein (snRNP)-

associated proteins U1-70K and U11-95K, respectively. The fact that interaction between 

CypRS64 and SRp34/SR1 is phosphorylation dependent is noteworthy (Lorkovic et al, 

2004). Studies of SR cyclophilins U4/U6 snRNP-associated cyclophilin USA-Cyp as well 

as several others cyclophilins associated with different spicosomal complexes indicate 

their involvement in the dynamic organization of splicing machinery (Horowitz et al, 

1997), (Lorkovic et al, 2004), (Mesa et al, 2008).  
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One of the most complex cyclophilins is Kin241 from Paramecium tetraurelia. 

Similar to the above described SR cyclophilins, it has a PPIase domain at its N- terminus 

and an RS domain – at its C-terminus. These two domains are separated with an RNA 

recognition motif (RRM). Kin241 is a conserved protein involved in cell morphogenesis 

(Krzywicka et al, 2001). One of Kin241 homologues, AtCyp59 from Arabidopsis thaliana, 

was isolated in a yeast two hybrid (Y2H) screen with SR protein SCL33/SR33 as bait. It 

has same domain arrangement as Kin241. In addition, there is a zinc knuckle motif in front 

of the RS domain (Fig. 1.5.) and this feature seems to be specific for plant homologues 

only (Gullerova et al, 2006). 

 

PPIase                                 RRM               Zn              RS/RD
 

Fig. 1.5. AtCyp59 domain composition. PPIase – peptidyl-prolyl cis/trans isomerase 

domain; RRM – RNA recognition motif; Zn - Zinc knuckle; RS/RD – domain, rich in RS/RD 

(arginine, serine/arginine, aspartic acid) repeats. 

 

Orthologues of AtCyp59 were found in the majority of eukaryotic genomes, such 

as H. sapiens (PPIL4), M. musculus, D. melanogaster and S. pombe (Rct1) (Zeng et al, 

2001), (Carninci et al, 2000), (McKee et al, 2005), (Adams et al, 2000), (Mount & Salz, 

2000), (Gullerova et al, 2007). Proteins from different organisms exhibit particularly high 

conservation in the RRM domains. As AtCyp59 was shown to bind RNA in vitro, this 

motif most probably mediates AtCyp59 interaction with RNA. RS domain is the least 

conserved one and is responsible for nuclear localization of the protein and its interaction 

with Arabidopsis SR proteins. The study also revealed that AtCyp59 not only interacts 

with the CTD of RNAP II, but also affects its phosphorylation (Gullerova et al, 2006), 

(Section 1.3.).  

As there was no T-DNA insertion Arabidopsis mutant available, further 

investigation of AtCyp59 was continued on its S. pombe homologue Rct1, which is 49% 

identical and 66% similar to AtCyp59 (Gullerova et al, 2007). There is no homologue of 

AtCyp59 in S. cerevisiae and in general the similarity level of S. pombe cyclophilin 

repertoire is higher to metazoans than to that of S. cerevisiae (Pemberton & Kay, 2005). In 

addition to that, in S. cerevisiae all the cyclophilins have been individually and 
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collectively knocked out showing no effect on cell viability (Dolinski et al, 1997). Rct1, 

on the contrary, turned out to be an essential gene (Gullerova et al, 2007). 

 Rct1 is a nuclear protein and has same domain order as AtCyp59, but like Kin241 

lacks Zinc knuckle. Knocking out one of rct1 alleles caused pleiotropic phenotype 

resulting in growth, morphological and meiotic defects. Last ones are manifested by 

enhanced sporulation of rct1+/- cells in EMM-N. Observed phenotypes are clearly a 

consequence of the reduced Rct1 levels, as they can be rescued by Rct1 episomal 

expression. Moreover, Rct1 has been shown to affect CTD phosphorylation status and 

RNAP II transcription (Gullerova et al, 2007), (Section 1.3.).  

 

1.1.4. Parvulins 

 

Another group of proteins that has PPIase activity are pavulins. First parvulin 

Par10 was discovered in E. coli (Rahfeld et al, 1994). Later, parvulins were found in 

prokaryotic and eukaryotic organisms. Prokaryotic parvulins, apart from PPIase activity, 

demonstrate chaperon-like functions (Missiakas & Raina, 1997). 

Human Pin1 is the most extensively studied parvulin so far. It was identified as an 

interaction partner of A. nidulans NIMA (never in mitosis), a mitotic kinase (Lu et al, 

1996). Pin1 is evolutionary conserved and has homologues in many eukaryotes including 

Dodo in D. melanogaster, Pin1 in A. nidulans, Pin1 in M. musculus, Ess1 in S. cerevisiae  

and Pin1 in S. pombe (Maleszka et al, 1996), (Crenshaw et al, 1998), (Hanes et al, 1989), 

(Huang et al, 2001). Structural studies of Pin1 have shown that it is the only PPIase that 

specifically recognizes phosphorylated serine/threonine-proline (pSer/Thr-Pro) sequences. 

Pin1 WW domain binds to specific motifs and the PPIase domain accelerates 

isomerization of pSer/Thr-Pro sequences (Fig.1.6.), (Yaffe et al, 1997), (Ranganathan et 

al, 1997), (Lu & Zhou, 2007). 

Ser/Thr-Pro is a main regulatory phosphorylation motif in cells and kinases, 

responsible for its phosphorylation, play crucial role in different cellular processes. That is 

why Pin1 discovery was a breakthrough in understanding the importance of the pSer/Thr-

Pro isomerization. A new signaling mechanism was proposed, where Pin1 regulates 

isomerization of its substrates after phosphorylation in order to control their function 

(Zhou et al, 1999), (Wulf et al, 2005). Subsequent studies revealed an important impact of 
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Pin1-catalyzed conformation on numerous proteins involved in such processes as cell 

cycle, transcription, stress and immune responses, embryo development, neuronal function 

and aging (Xu & Manley, 2007a), (Xu & Manley, 2007c), (Yeh & Means, 2007), (Section 

1.2.1.2.), (Xu & Manley, 2007b), (Shaw, 2007), (Xu & Manley, 2004), (Zheng et al, 

2002), (Goutagny et al, 2006), (Atchison & Means, 2004), (Becker & Bonni, 2007), (Liou 

et al, 2003), (Lu et al, 2007), (Lu & Zhou, 2007),(Wulf et al, 2005). Moreover, Pin1 

deregulation was shown to play a critical role in an increasing number of pathologies 

including cancer, Alzheimer’s disease, asthma and infection (Lu, 2004), (Maudsley & 

Mattson, 2006), (Butterfield et al, 2006), (Yeh & Means, 2007), (Balastik et al, 2007), 

(Wang et al, 2007), (Takahashi et al, 2008), (Eckert et al, 2005), (Goutagny et al, 2006), 

(Lu et al, 2007), (Lu & Zhou, 2007),(Wulf et al, 2005).  

 

 

 

Fig. 1.6. Molecular structure of Pin1. 

PPIase domain is green, WW domain – red, 

linker region – yellow. From: (Lippens et al, 

2007).  

 

 

 

 

 

 

 
 

1.2. RNAP II transcription 

 

RNAP II is responsible for transcription of protein-coding genes and small non-

coding RNA in eukaryotes. The RNAP II transcription cycle include following steps: 

initiation, elongation and termination. During the initiation, RNAP II forms complex with 

general transcription factors and cofactors at promoter region, followed by the alignment 

of the DNA template to the active RNAP II site. Nucleotides are paired to the template and 
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form an RNA transcript during elongation. Final step is the termination, when the mature 

messenger RNA (mRNA) is released and transcription complex dissociates from the 

DNA. Formation of mature mRNA requires several processing events: capping, splicing 

and polyadenylation. They are tightly connected to transcription and often happen in 

parallel to it. Capping results in addition of a methylated guanosine to the 5’ end of the 

transcript. Splicing removes introns from the transcript. During polyadenylation 3’ end of 

the mRNA precursor is cleaved and supplied with poly(A) tail. Capping and 

polyadenilation stabilize transcript (Saunders et al, 2006), (Sims et al, 2004), (Hirose & 

Manley, 2000).    

Histone modifications, so called histone code, are tightly associated with 

transcription (Jenuwein & Allis, 2001). Covalent histone changes can alter properties of 

chromatin and influence RNAP II progression along a transcription unit. The best studied 

modifications are acetylation and methylation. Besides, histone ubiquitination, 

phosphorylation and biotinylation play important roles in chromatin turnover (Kouzarides, 

2007), (Berger, 2007). Histones are reversibly acetylated on lysine (K) residues by histone 

acetyltransferases, whereas histone deacetylases remove the acetyl groups. Acetylation of 

histones H3 and H4 typically correlates with active genes and dominates at the promoters 

and 5’-end regions, however it is also important at coding regions (Kurdistani & 

Grunstein, 2003), (Liu et al, 2005), (Pokholok et al, 2005), (Munshi et al, 2009). Histone 

acetylation is a dynamic process, whereas histone methylation is considered as a stable 

mark. Lysine and arginine residues are mono-, di- and tri-methylated by a large family of 

methyltransferases, which are specific for individual residues. Demethylation is performed 

by demethylases, which also reveal substrate specificity. Together, two groups of enzymes 

provide a transcription unit with a distinctive pattern of methylation, which can correlate 

with either activation, or repression of transcriptional activity. Thus, trimethylated H3 

lysine 4 (H3K4me3) prevails at promoter-proximal regions and correlates strongly with 

active transcription, dimethylated H3 lysine 4 (H3K4me2) is associated with the 5’-end 

and middle of a gene and monomethylated H3 (H3K4me) lysine 4 peaks at the 3’-end, 

marking transcriptional inhibition. Histone H3 lysine 36 tri- and di-methylations 

(H3K36me3 and me2) are present throughout open reading frames (ORFs) of active genes 

(Schneider et al, 2004), (Liu et al, 2005), (Pokholok et al, 2005), (Rao et al, 2005), 

(Munshi et al, 2009). Another histone modification, ubiquitination, has been recently 

described. Monoubiquitylated H2B (H2Bub1) is localized at the promoter and the coding 
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region. This histone modification is associated with actively transcribed genes. H2A 

monoubiquitinitaion, however, is found at silenced promoters (Weake & Workman, 2008), 

(Suganuma & Workman, 2008).   

 

1.2.1. The CTD 

 

RNAP II consists of 12 subunits (Rpb1-Rbp12) that comprise together about 0.5 

MDa. The largest subunit Rpb1 possesses a very unusual C-terminal domain (the CTD). It 

is a unique eesential structure consisting of heptapeptide repeats Tyr1-Ser2-Pro3-Thr4-

Ser5-Pro6-Ser7. The motif is conserved among most eukaryotes, although number of 

repeats grows with the genome complexity: 26 in S. cerevisiae, 29 in S. pombe, 45 in D. 

melanogaster and 52 in H. sapiens (Egloff & Murphy, 2008). In many eukaryotes, for 

example in yeast, the sequence in the most repeats is strictly conserved, whereas in 

mammals proximal 26 repeats closely correspond the consensus and sequences of distal 

ones are more diverse. Previous studies have revealed that Tyr1, Ser2 and Ser5 are 

essential and deletion of more than two-thirds of the CTD heptads makes cells non-viable 

(Bartolomei et al, 1988), (Nonet et al, 1987), (Corden, 1990), (West & Corden, 1995). 

Moreover, it was shown that functional unit of the CTD lies within heptapeptide pairs 

(Stiller & Cook, 2004), (Chapman et al, 2008).     

The CTD serves as a platform for a broad range of factors and plays a crucial role 

in transcription and its coupling to histone modifications and RNA processing. The CTD 

interacts dynamically with various factors at different time points of the RNAP II 

transcription cycle. Reversible CTD modifications, especially its phosphorylation, define 

efficient transcript synthesis and recruitment of transcription and processing factors. In 

other words there is a “CTD code” that determines RNAP II position in the transcription 

cycle (Buratowski, 2003), (Fig. 1.7.). 

This code is defined by such modifications of the heptapeptade residues as 

phosphorylation of tyrosine, threonine and all three serines, glycosylation of serines and  
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Fig. 1.7. The CTD modifications during the transcription cycle. (A) RNAP II 

recruitment at the promoter, the CTD is unphosphorylated, might be glycosilated. Phosphorylation 

of RNAP II prior to initiation is thought to block the recruitment. (B) Phosphorylation of Ser5 by 

Cdk7, component of TFIIH, helps to recruit capping enzymes. (C) Cdk9, component of p-TEFb, 

phosphorylates Ser2, that reaction activates RNA elongation and processing. Ser7 gets also 

phosphorylated by TFIIH (Kim et al, 2009), (Akhtar et al, 2009), (Glover-Cutter et al, 2009). Ser5 

gets dephosphorylated during the elongation. (D) Once the cleavage and polyadenilation are over, 

CTD dephosphorylation prepares RNAP II for a new round of transcription. Adopted from: (Egloff 

& Murphy, 2008).     

 

threonines and isomerization of prolines (Meinhart et al, 2005). Nonconsesus repeats of 

the CTD add complexity as well. They are preferred substrates for Cdc2 and cyclin-
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dependent kinase 7 (Cdk7) kinases in vitro and their substitution to the consensus repeats 

does not affect cell viability (Rickert et al, 1999), (Chapman et al, 2005), (Chapman et al, 

2007). Besides, a short motif at the very C-terminus of the CTD was found to play a role 

in the stability and functions (transcription, splicing, 3’ end processing) of the RNAP II 

CTD (Fong et al, 2003), (Chapman et al, 2004).  

 

1.2.1.1. CTD phosphorylation 

 

Phosphorylation of CTD residues is the best studied modification so far (Phatnani 

& Greenleaf, 2006). First, two distinct fractions of RNAP II were identified: RNAP IIA – 

hypophosphorylated and RNAP IIO – hyperphosphorylated. Later it was shown that in 

vivo mainly Ser2 and Ser5 residues of the heptapeptide repeats get phosphorylated by 

cyclin-dependent proline-directed Ser/Thr kinases. Serine 5 phosphorylation correlates 

with transcription initiation and early elongation whereas Ser2 phosphorylation correlates 

with elongation and termination (Komarnitsky et al, 2000), (Palancade & Bensaude, 

2003), (Phatnani & Greenleaf, 2006). 

The transcription cycle starts with recruitment of hypophophosphorylated RNAP II 

to a promoter (Fig. 1.7.). Phosphorylation of Ser5 CTD residue by Cdk7 (Kin28 in S. 

cerevisiae, Mcs6 in S. pombe), a component of TFIIH transcription factor, is necessary for 

promoter escape and transcript capping (Komarnitsky et al, 2000), (Ho & Shuman, 1999). 

The initiating RNAP II complex is unstable and could abort transcription after few 

nucleotides. Once escaped from promoter, RNAP II progresses to pausing site where it is 

suppressed by negative factors. The pause release and subsequent productive elongation 

onset require phosphorylation of CTD Ser2 residue by Cdk9 (Ctk1/Bur1 in S. cerevisiae, 

Cdk9/Lsk1 in S. pombe), catalytic subunit of positive transcription elongation factor b (p-

TEFb). TFIIH phosphorylation of the CTD and capping assists recruitment of p-TEFb 

(Lolli, 2009), (Guiguen et al, 2007), (Pei et al, 2003), (Viladevall et al, 2009), (Qiu et al, 

2009). Besides, p-TEFb was reported to phosphorylate Ser5 as well (Jones et al, 2004), 

(Zhou et al, 2000a), (Pei et al, 2006), (Viladevall et al, 2009). Phosphorylation of Ser2 

increases towards the 3’ end of the gene and it seems to be involved in recruitment of 

splicing and polyadenylation factors to a nascent transcript (Proudfoot et al, 2002). For 
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example, elongation factor Spt6 binds specifically to Ser2-phosphorylated heptads in order 

to direct splicing (Yoh et al, 2007). During transcription the CTD was also found to be 

phosphorylated on both Ser2 and Ser5 residues by budding yeast Srb10, a subunit of the 

Mediator complex, and on Ser5 residues by its human homologue Cdk8 (Hengartner et al, 

1998), (Rickert et al, 1999), (Sun et al, 1998).  

Phosphorylation of Ser7 residues, identified in S. cerevisiae and H. sapiens, is less 

understood. Serine 7 phosphorylation is performed by Cdk7 (Kin28). It peaks at promoter 

and 3’ end of the gene, suggesting its role in transcription and 3’ end processing 

(Chapman et al, 2007), (Akhtar et al, 2009), (Glover-Cutter et al, 2009), (Kim et al, 2009). 

Additionally, it is essential for small nuclear RNA (snRNA) transcription (Egloff et al, 

2007).  

CTD phosphatases are required to perform RNAP II dephosphorylation, which is 

necessary to start a new cycle of transcription. Fcp1 is a conserved and essential protein, 

which dephosphorylates both the free and the DNA bound CTD. Fcp1 was reported to 

dephosphorylate Ser2 and Ser5 in humans (Lin et al, 2002). In fission and budding yeast, 

however, Fcp1 was shown to remove phosphates from Ser2 residues (Hausmann & 

Shuman, 2002), (Cho et al, 2001). It is recruited at early transcription stages and 

stimulates elongation (Cho et al, 2001), (Mandal et al, 2002). Small CTD phosphatases 

(Scp1), characterized recently in mammals, also belong to the Fcp1 family and 

preferentially dephosphorylate Ser5 of the CTD, suggesting their role in initiation-

elongation transition phase (Yeo et al, 2003), (Zhang et al, 2006). Another new CTD 

phosphatase, Rtr1, from S. cerevisiae has similar function. It targets Ser5 as well and was 

reported to direct the RNAP II CTD transition from pSer5 (phosphorylated Ser5) form to 

pSer2 stage (Mosley et al, 2009). Ssu72 is also a conserved and essential phosphatase that 

is required for elongation and termination. In budding yeast it is a subunit of a cleavage-

polyadenilation factor (CPF) and was shown to dephosphorylate Ser5 residue of the CTD 

(Steinmetz & Brow, 2003), (Krishnamurthy et al, 2004). Mammalian Ssu72 was reported 

to bind another subunit of yeast CPF, Pta1 (St-Pierre et al, 2005).  
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1.2.1.2. Proline izomerization 

 

The CTD of RNAP II is rich in Ser/Thr-Pro motifs, that are specific targets of 

certain Cdks. Importantly, Pro-directed kinases and phosphatases were reported to 

functions only on the trans conformation of Ser/The relative to Pro (Weiwad et al, 2000), 

(Brown et al, 1999), (Zhou et al, 2000b). The proline residues of the RNAP II CTD 

perform the conformational change of the CTD and thereby assist binding of its partners. 

Recent structural studies support the idea of the CTD dynamic structure, as capping 

enzyme Cgt1, Pin1 and 3’-end processing factor Pcf11 bind the C-terminus only in trans 

proline conformation (Meinhart et al, 2005). As the prolyl peptide bond shows a slow rate 

of cis/trans isomerization, this step could be rate limiting in transcription and its coupling 

with RNA processing. Therefore, the CTD appears to be an optimal target for the PPIases 

due to the multiple binding motifs.  

Human Pin1 and its homologue from budding yeast, Ess1, were shown to bind and 

isomerize specifically pSer/Thr-Pro motifs (Section 1.1.4.), (Yaffe et al, 1997), (Hani et al, 

1999). Pin1 and Ess1 were reported to interact with the phosphorylated CTD (Verdecia et 

al, 2000), (Morris et al, 1999), (Wu et al, 2000), showing in vitro preference for Ser5 

phosphorylated heptapeptides (Albert et al, 1999), (Gemmill et al, 2005). Pin1 

overexpression causes CTD hyperphosphorylation, RNAP II release from active genes 

and, consequently, transcription and splicing inhibition (Xu & Manley, 2007b). Ess1 

mutants, however, are suppressed by Fcp1 phosphatase overexpression and accumulate 

Ser5 phosphorylated form of the CTD, whereas Ess1 overexpression leads to Ser5 

dephosphorylation (Wu et al, 2000), (Krishnamurthy et al, 2009), (Singh et al, 2009). Pin1 

affects transcription initiation stage, inhibiting transition to elongation. This data go in line 

with the facts that Pin1 inhibits Fcp1 dephosphorylation of the CTD and associates with 

Spt5 (Kops et al, 2002), (Xu et al, 2003), (Lavoie et al, 2001), (Shaw, 2007). Spt5 is an 

essential protein rich in Ser/Thr-Pro repeats. Together with Spt4, Spt5 comprises a 5,6-

dichloro-1-b-D-ribofuranosylbenzimidazole (DRB) sensitivity factor (DSIF) and is 

required for the onset of productive elongation (Section 1.2.2.). Moreover, Fcp1, as 

mentioned above, might be responsible for transition from initiation to elongation. Unlike 

Pin1, Ess1 affects multiple transcription stages (Wu et al, 2000), (Wu et al, 2003), 

(Krishnamurthy et al, 2009). Genetic interactions of Ess1 with general transcription factor 

TFIIB, component of RNAP II preinitiation complex, and Ser5 kinase Kin28 suggest 
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involvement of this PPIase in transcription initiation. Ess1 is also engaged in elongation 

phase, as it has been reported to interact genetically with Ser2 CTD kinases, Ctk1 and 

Bur1, and Ser2 CTD phosphatase, Fcp1. Functional interactions of Ess1 with components 

of CPF, Ssu72 and Pta1, provide evidence for its role in termination of transcription 

(Wilcox et al, 2004), (Krishnamurthy et al, 2009). Ess1 function in pre-mRNA 3’-end 

processing was reported (Hani et al, 1999), (Morris et al, 1999), but the authors of the 

recent article claim that Ess1 is not required for 3’-end processing (Krishnamurthy et al, 

2009). Recent studies demonstrate Ess1 function in Nrd1-dependant termination of small 

nuclear RNAs (snoRNA), cryptic unstable transcripts (CUTs) and upstream regulatory 

RNA (uRNA) (Singh et al, 2009).  

Many experiments provided the evidence that interaction of different transcription 

and processing factors with the CTD is mediated by enzymatic proline isomerization. 

However, it has not been shown unequivocally yet. 

 

1.2.2. The CTD code meets the histone code 
 

Chromatin state of a transcribed gene is tightly connected to RNAP II CTD 

phosphorylation (Berger, 2007). Histone methylation is a good example for this link. In S. 

cerevisiae histone methyltransferase Set1, that catalyzes H3K4me3, interacts with the Ser5 

phosphorylated CTD through the PAF (polymerase associated factor) complex. 

Methyltransferase Set2, which is responsible for H3K36 methylation, binds directly the 

Ser2/Ser5 phosphorylated CTD. Accordingly, H3K4me3 and the pSer5 CTD are 

associated with early transcribed regions of a gene, hence transcription initiation, whereas 

H3K36me and the Ser2/Ser5 phosphorylated CTD correlate with elongation and 

termination steps (Hampsey & Reinberg, 2003).   

 

1.2.3. P-TEFb and its role in promoter-proximal stalling and mRNA 

capping 

 

P-TEFb in humans is a heterodimer composed of one of four C-type cyclins (T1, 

T2a, T2b or K) and Cdk9 (represented by two isoforms – 42 kDa and 55 kDa). An inactive 

form of pTEFb in bound to 7SK snRNA, which in turn associates with specific 7SK 
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snRNA methylphosphate capping enzyme (MePCE) and La-related protein 7 (LARP7), 

that stabilizes 7SK snRNA. The 7SK snRNA is highly conserved in vertebrates and plays 

one of the key roles in RNAP II transcription by mediating the interaction between 

inactive p-TEFb and either HEXIM1 or HEXIM2 proteins (Marz et al, 2009), (Diribarne 

& Bensaude, 2009). Cooperative binding of Cdk9/cyclin/7SK snRNA/HEXIM1 or 

HEXIM2/MePCE/LARP7 has been identified as inactive p-TEFb form (Kohoutek, 2009). 

Three major cellular substrates of p-TEFb are the RNAP II CTD, DSIF and negative 

elongation factor (NELF) (Marshall et al, 1996), (Kim & Sharp, 2001),  (Fujinaga et al, 

2004), (Yamada et al, 2006), (Peterlin & Price, 2006). 

In fission and budding yeast functions of p-TEFb are split between an essential 

kinase/cyclin dimmer, Cdk9/Pch1 in fission yeast and Bur1/Bur2 in budding yeast, and a 

nonessential trimer complex, kinase/cyclin/regulatory subunit, Lsk1/Lsc1/Lsg1 in fission 

yeast and Ctk1/Ctk2/Ctk3 in budding yeast. Lsk1/Lsc1/Lsg1 and Ctk1/Ctk2/Ctk3 appear 

to be primarily responsible for Ser2 phosphorylation (Pei & Shuman, 2003), (Wood & 

Shilatifard, 2006), (Karagiannis & Balasubramanian, 2007), (personal communication 

with Sukegawa). At the same time Cdk9/Pch1 and Bur1/Bur2 promote productive 

elongation providing high level of the Ser2 phosphorylated CTD (Viladevall et al, 2009), 

(Qiu et al, 2009). Cdk9/Pch1 in fission yeast and Bur1/Bur2 in budding yeast activate 

Spt5, a subunit of DSIF,  which is critical for transcriptional elongation, mRNA 

processing and cotranscriptional histone modifications (Pei & Shuman, 2003), (Schwer et 

al, 2009), (Liu et al, 2009), (Chen et al, 2009), (Zhou et al, 2009), (Chen et al, 2009). 

Additionally to that, Cdk9/Pch1 complex is stably associated with Pcm1, guanine-N7 

methyltransferase component of mRNA capping machinery in fission yeast in 1:1 

stoichiometry. Besides, if during Cdk9 complex purification protein extracts are treated 

with RNase A, Cdk9/Pch1/Pcm1 complex shifts to a smaller size, suggesting a 

ribonucleoprotein constituent. However, the putative RNA does not seem to affect the 

kinase activity of the recovered fraction (Pei et al, 2006).  

P-TEFb was also reported to regulate histone modifications such as H2Bub1, 

H3K4me3 and H3K36me3 through pSer2- and DSIF-dependent mechanisms (Pirngruber 

et al, 2009a), (Pirngruber et al, 2009b). In budding yeast these functions are split between 

Bur1 and Ctk1. Ctk1 launches H3K36me3 modification by catalyzing Ser2 

phosphorylation of the CTD (Krogan et al, 2003), (Xiao et al, 2003). Ctk1 also specifically 

regulates H3K4 trimethylation localizing it to the 5’ ends of genes (Xiao et al, 2007). Bur1 
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was shown to regulate H2Bub1 and H3K4me3 by phosphorylating Rad6 (E2 ubiquitin 

conjugase), Spt5 and the RNAP II CTD (Kao et al, 2004), (Liu et al, 2005), (Laribee et al, 

2005), (Wood et al, 2005), (Zhou et al, 2009), (Chu et al, 2007).  

Phosphorylation of cyclin and Cdk9 is crucial for p-TEFb activation. The most 

important step for full activation of Cdk9 is phosphorylation of its conserved Thr residue 

in the T-loop. In mammals it is autophosphorylated whereas PPM1A phosphatase 

regulates its dephosphorylation (Li et al, 2005), (Baumli et al, 2008), (Wang et al, 2008). 

In yeast, however, p-TEFb activation is regulated by upstream kinases, Cak1 (budding 

yeast) and Csk1 (fission yeast) (Yao & Prelich, 2002), (Ostapenko & Solomon, 2005), (Pei 

et al, 2006). Besides, human p-TEFb activity was reported to be controlled by 

ubiquitination and acetylation of Cdk9, cyclin T1 and HEXIM1 (Kiernan et al, 2001), 

(Barboric et al, 2005), (Fu et al, 2007), (Sabo et al, 2008), (Lau et al, 2009), (Cho et al, 

2009), (Kohoutek, 2009). 

Promoter-proximal stalling occurs when RNAP II pauses after transcribing 20 to 

40 nucleotides and needs to be stimulated to continue into productive elongation phase 

(Fig. 1.8.). It was first found in heat-shock inducible Drosophila genes (Gilmour & Lis, 

1986) and later confirmed in an abundant number of both inducible and housekeeping 

genes in eukaryotes and during viral transcription. Recent findings support the idea that 

promoter-proximal stalling might even be an obligatory step for RNAP II transcription 

(Core et al, 2008). It can provide a check point for correctly prepared elongation complex 

and rapid gene expression regulation (Lis, 1998), (Wu & Snyder, 2008), (Core & Lis, 

2008), (Fuda et al, 2009). 

Main pausing factors are DSIF, conserved from yeast to humans (Hartzog et al, 

1998), (Wada et al, 1998), (Yamaguchi et al, 2002) and negative elongation factor 

(NELF), which consists of four subunits A, B, C/D and E. NELF is conserved between D. 

melanogaster and mammals. As it is not present in S. cerevisiae and S. pombe, it might be 

a less general elongation factor than DSIF (Yamaguchi et al, 1999), (Narita et al, 2003).   

The first pre-mRNA processing event, the 5’-end capping of a nascent RNAP II 

transcript, occurs during promoter-proximal pausing, which might facilitate the process  

(Rasmussen & Lis, 1993), (Pei et al, 2003). The unique structural properties of the cap 

play important role in further gene expressing steps (Maniatis & Reed, 2002), (Orphanides 

& Reinberg, 2002). Three enzymatic activities are necessary for capping of the mRNA 5’ 

end. RNA triphosphatase removes the first nucleotide γ-phosphate, RNA 
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guanylyltransferase transfers GMP to the remaining diphosphate and RNA 

methyltransferase adds a methyl group at the N7 position on the guanine. In metazoans 

there are a bifunctional triphosphatase-guanylyltransferase (Mce1 in mammals) and a 

methyltransferase (Hcm1 in mammals). Yeast has three separate enzymes: triphosphatase 

(Cet1 in S. cerevisiae and Pct1 in S. pombe), guanylyltransferase (Ceg1 in S. cerevisiae 

and Pce1 in S. pombe) and methyltransferase (Abd1 in S. cerevisiae and Pcm1 in S. 

pombe). Capping occurs cotranscriptionally and is facilitated by interactions of capping 

proteins with RNAP II and transcription factors. Capping enzymes including mammalian 

Mce1, Ceg1 and Abd1 from budding yeast and fission yeast Pct1 and Pce1 interact with 

the Ser5 phosphorylated CTD. Besides, the human and fission yeast capping enzymes 

(Mce1, Pct1 and Pce1, respectively) bind Spt5 (Moteki & Price, 2002), (Mandal et al, 

2004), (Schroeder et al, 2000), (Rodriguez et al, 2000), (Pei & Shuman, 2002), (Pei et al, 

2003), (Pei et al, 2006). 

Ser5 phosphorylated RNAP II is responsible for initiation step of the transcription, 

but not for productive elongation. DSIF binds to RNAP II during or straight after 

initiation, followed by NELF interaction with DSIF to pause RNAP II. In the meanwhile 

Spt5 as well as TFIIH via the pSer5 CTD recruit the capping machinery (Egloff & 

Murphy, 2008), (Fuda et al, 2009). The pre-mRNA transcript is getting capped, followed 

by the cap methylation. Later, the negative effects of DSIF and NELF on RNAP II 

elongation are relieved by p-TEFb. Phosphorylation of NELF, Spt5 and Ser2 of the CTD 

by p-TEFb as well as capping enzyme activity facilitate the release of stalled RNAP II into 

productive elongation (Sims et al, 2004), (Saunders et al, 2006), (Peterlin & Price, 2006), 

(Fujita et al, 2009). 

In human cells several specific regulators and a general chromatin remodeling 

bromodomain-containing protein Brd4 are known to be responsible for the p-TEFb 

recruitment to the transcription unit (Yaffe et al, 1997), (Garriga & Grana, 2004), (Jang et 

al, 2005). In fission yeast, however, Pcm1 fulfills this function (Guiguen et al, 2007). 

Additionally, fission yeast Cdk9 was shown to interact with Pct1 in Y2H screen (Pei et al, 

2003). Another example of p-TEFb recruitment is its role in HIV-1 transcription. P-TEFb 

associates with an early RNAP II elongation complex via cyclin T binding to the HIV-1 

encoded Tat protein, which in turn interacts with the transactivation response (TAR) 

element in the HIV-1 transcript (Price, 2000), (Barboric & Peterlin, 2005), (Kohoutek, 

2009).  
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RNA chain cleavage factor TFIIS is also important for RNAP II escape from the 

pause. It stimulates the intrinsic RNA-cleavage activity of RNAP II, which is responsible 

for creating a new 3’-OH end at the active site of RNAP II after its backtracking (Adelman 

et al, 2005). Spt5 methylation and Fcp1 phosphatase activity were reported to mediate 

RNAP II release from the pause as well (Cho et al, 2001), (Kwak et al, 2003). As a result 

NELF dissociates from the transcription complex where as TSIIF, DSIF and p-TEFb stay 

within the complex along the gene. Moreover, in humans such factors as eleven-nineteen 

lysine-rich in leukemia (ELL), general transcription factor IIF (TFIIF) and  

elongin are also involved in RNAP II escape from the stalling phase (Sims et al, 2004), 

(Saunders et al, 2006), (Peterlin & Price, 2006), (Fujita et al, 2009). 

 

 
(a) Capping and pausing                                        (b) Productive elongation 

 

Fig. 1.8. RNAP II pausing. (a) Recruitment of human capping enzymes (HCE) 

(Mce1 and Hce1), capping of the 5’-end of the nascent transcript and RNAP II pausing. 

(b) Recruited p-TEFb phosphorylates DSIF and Ser2 of the CTD. Start of the productive 

elongation and processing by splicing (SR) and polyadenilation (pA) machineries. From: 

(Peterlin & Price, 2006).  

 

1.3. Aims of the thesis 

 

1. Main aim of the thesis was to define the role of Rct1 in RNAP II 

transcription 

1.1. Specific aim 1: Interaction of Rct1 with the CTD, CTD kinases and 

phosphatases 
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Both A. thaliana AtCyp59 and its S. pombe homologue Rct1 were shown to 

interact with the RNAP II CTD. In addition, overexpression of both homologues resulted 

in the decrease of CTD phosphorylation whereas reduced levels of Rct1 in heterozygous 

cells rct1+/- lead to increased CTD phosphorylation and reduction of RNAP II 

transcriptional activity (Gullerova et al, 2006), (Gullerova et al, 2007), (Section 1.1.3.). 

These findings indicated that Rct1 regulates CTD phosphorylation status. However, the 

Rct1 target(s) were not identified. The abundance of proline residues in the CTD makes it 

a very good substrate for Rct1 PPIase activity. During transcription the RNAP II CTD 

undergoes phosphorylation and dephosphorylation of its 2nd and 5th serines, which define 

the functional state of the CTD. These modifications are performed in S. pombe by CDK 

kinases/cyclin pairs Msc6/Msc2, Lsk1/Lsc1, Cdk9/Pch1 and Srb10/Srb11, and by 

phosphatases Fcp1, Ssu72 and Scp1. CDK kinases phosphorylate specifically pSer/Thr-

Pro sequences. Besides, Pro-directed kinases were reported to act only on trans 

conformation (Sections 1.2.1.1. and 1.2.1.2.). Thus, Rct1 could either inhibit or promote 

interaction of the CTD kinases and phosphatases with CTD by changing its conformation. 

The cyclophilin could also target the enzymes and/or their interaction partners (i.e. 

cyclins) directly and affect the activity of kinases/phosphatases towards the CTD.  

I planned to study interactions between Rct1 and the CTD, CTD kinases, their 

cyclins and CTD phosphatases using Y2H and GST pull-downs of full-length and mutants 

proteins.  

Kinase assays were planned for studying Rct1 effect on the activity of the CTD 

kinases/phosphatases. 

 

1.2. Specific aim 1: Step(s) of an RNAP II transcription cycle affected by Rct1 

 

CTD phosphorylation state correlates with RNAP II position along transcribing 

gene. RNAP II is recruited to a promoter in a hypophosphorylated state. Its escape from 

promoter requires Ser5 phosphorylation by TFIIH. Later, Ser2 phosphorylation enables 

the onset of productive elongation. The Ser2 phosphorylated CTD is also required for 

further stages of transcription cycle. Finally, RNAP II becomes dephosphorylated and able 

to re-enter next initiation step (Section 1.2.1.1.). Phosphorylation of the CTD is tightly 

interconnected with covalent histone modifications, which regulate transcriptional activity 

of genes. Rct1 was shown to regulate negatively CTD phosphorylation and activity of 
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RNAP II. Rct1 was reported to interact with the RNAP II CTD and be associated with 

transcriptionally active chromatin during the whole RNAP II transcription cycle 

(Gullerova et al, 2006), (Gullerova et al, 2007). However, the exact step(s) regulated by 

Rct1 remained unclear. 

The step(s) of the transcription controlled by Rct1 were planned to be studied using 

chromatin immunoprecipitation (ChIP) method on a single gene under conditions of Rct1 

over- and underexpression. ChIP with antibodies against the total RNAP II CTD 

(phospho- and nonphosphorylated) would show how Rct1 affects the RNAP II occupancy 

profile along a transcription unit. Performing ChIP with antibodies against phosphorylated 

forms of RNAP II would reveal phosphorylation changes of actively transcribing RNAP 

II. Transcriptional activity of the analyzed genes would be studied by doing ChIP with 

antibodies against total and covalently modified histones (acetylated or methylated), as 

such histone marks as acetylated H3K4 or H3K9 correlate strongly with active 

transcription. Complementary approach was planned - nuclear run on (NRO) on a single 

transcription unit. NRO would provide the information on the amount of RNA produced at 

a certain time in wt and under the conditions of Rct1 over- and underexpression.  

 

2. I was also involved in determination of functions of Rct1 domains  

 

Rct1 is an essential multidomain protein and consists of a PPIase domain, an RRM 

motif and a C-terminal domain enriched in RS/RD repeats. It has been previously shown 

that Rct1 expression depletion causes strong growth and morphological defects (Gullerova 

et al, 2007). It was important to find out functions of individual domains. 

Deletion and mutational analysis of Rct1 was expected to reveal essential 

domain(s) and function(s) of each domain.  
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2. Materials and methods 
 

2.1. S. pombe strains and handling of cells 
 

Genotypes of S. pombe strains used are listed in Table 2.1.  

General genetic methods, media and growth conditions were used as described 

previously (Moreno et al, 1991) and (Forsburg, http://www-rct.usc.edu~forsburg/). 

ClonNat (BioAgents) and Geneticin G418 (Gibco) were used at the final concentration of 

100 μg/ml. Thiamine was added to repress nmt1 promoter at the final concentration of 100 

μg/ml. 

 

Table 2.1. Genotypes of S. pombe strains. 

Strain Genotype Reference 
Diplods 
wt diploid 
 

h+/h- ade6/ade6-704 leu1/leu1-32 ura4/ura4-
27  

rct1+/- 
 

h+/h- rct1/rct1::ClonNat ade6/ade6-704 
 leu1/leu1-32 ura4/ura4-27 

(Gullerova et al, 2006) 
 

rct1+/-pMG1 

 
h+/h- rct1/rct1::ClonNat(pMG1 ade6/ade6-704 
leu1/leu1-32 ura4/ura4-27 

(Gullerova et al, 2006) 
 

rct1+/-pMG2 

 
h+/h- rct1/rct1::ClonNat(pMG2) ade6/ade6-
704 leu1/leu1-32 ura4/ura4-27 

(Lorkovic et al, 2009) 

rct1+/-pMG3 

 
h+/h- rct1/rct1::ClonNat(pMG3) ade6/ade6-
704 leu1/leu1-32 ura4/ura4-27 

(Lorkovic et al, 2009) 

rct1+/-pMG4 

 
h+/h- rct1/rct1::ClonNat(pMG4) ade6/ade6-
704 leu1/leu1-32 ura4/ura4-27 

(Lorkovic et al, 2009) 

rct1+/-pMG5 

 
h+/h- rct1/rct1::ClonNat(pMG5) ade6/ade6-
704 leu1/leu1-32 ura4/ura4-27 

(Lorkovic et al, 2009) 

rct1+/-pMG6 

 
h+/h- rct1/rct1::ClonNat(pMG6) ade6/ade6-
704 leu1/leu1-32 ura4/ura4-27 

(Lorkovic et al, 2009) 

rct1+/-pMG4R3 

 
h+/h- rct1/rct1::ClonNat(pMG4R3) ade6/ade6-
704 leu1/leu1-32 ura4/ura4-27 

(Lorkovic et al, 2009) 

rct1+/-pMG1F 

 
h+/h- rct1/rct1::ClonNat(pMG1Flag) 
ade6/ade6-704 leu1/leu1-32 ura4/ura4-27 

this study 

rct1+/-pMG4F 

 
h+/h- rct1/rct1::ClonNat(pMG4Flag) 
ade6/ade6-704 leu1/leu1-32 ura4/ura4-27 

this study 
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Cdk9-HA, 
rct1Δ pMG1F 

h+ rct1::ClonNat(pMG1Flag) cdk9-
3HA::KanR ade6-704 

this study 

Cdk9-HA, 
rct1Δ pMG4F 

h+ rct1::ClonNat(pMG4Flag) cdk9-
3HA::KanR ade6-M210  

this study 

Haploids 
wt haploid h+ ade6-704  
rct1Δ pMG1 

 
h- rct1::ClonNat(pMG1) ura4-27 
 (Gullerova et al, 2006) 

rct1Δ pMGR1 

 
h+ rct1::ClonNat(pMGR1) ade6-704 leu1 ura4
 

(Lorkovic et al, 2009) 

rct1Δ pMGR2 

 
h+ rct1::ClonNat(pMGR2) ade6-704 leu1 ura4
 

(Lorkovic et al, 2009) 

rct1Δ pMGR3 

 
h+ rct1::ClonNat(pMGR3) ade6-704 leu1 ura4
 

(Lorkovic et al, 2009) 

rct1Δ pMG2 

 
h+ rct1::ClonNat(pMG2) ade6-704 ura4-27 
 

(Lorkovic et al, 2009) 

wt pMG4 

 
h+ (pMG4) ade6-704 leu1 ura4 
 

(Lorkovic et al, 2009) 

rct1Δ pMG4 

 
h+ rct1::ClonNat(pMG4) 
 

(Lorkovic et al, 2009) 

rct1Δ pMG4R3 

 
h+ rct1::ClonNat(pMG4R3) ade6-704 
 

(Lorkovic et al, 2009) 

rct1Δ pMG1F 

 
h+ rct1::ClonNat(pMG1Flag) ade6-704 
 

this study 

rct1Δ pMG4F h+ rct1::ClonNat(pMG4Flag) ade6-704  this study 

lsk1-HA 
 

h- lsk1-3HA::ura4 ura4-D18 leu1-32 
 

(Karagiannis & 
Balasubramanian, 
2007) 

cdk9-HA 
 

h- cdk9-3HA::KanR ura4-D18 ade6-M210 
leu1-13 

(Guiguen et al, 2007) 
 

mcs6-HA 
 

h+ mcs6-3HA::CloNat ura4-D18 ade6-216 
leu1-32  

Kind gift of D. 
Hermand 

 

2.2. Other strains 
 

Genotypes of E. coli and S. cerevisiae strains used are listed in Table 2.2. 

Table 2.2. Genotypes of E. coli and S. cerevisiae strains. 

Strain Genotype 
E. coli  
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XL1-Blue          endA1 gyrA96(nalR)thi-1 recA1 lac glnV44 F’[::Tn10 
proAB+lacIqΔ(lacZ)M15] hsdR17(rk

-m k
+) 

BL21 (DE3) F-ompT hsdSB (rB-mB-) gal dcm 
C41 (DE3) Derived from BL21 (DE3), has at least one uncharacterized mutation 

allowing synthesis of some proteins at high levels 
S. cerevisiae 
HF7c MATa, ura3-52, his3-200, ade2-101, lys2-801, trp1-901, leu2-3, 112, 

gal4-542, gal80-, 538, LYS2::GALuas-GAL1tata-HIS3       
PJ69-4A            MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, 

LYS2::GALuas-GAL1tata- HIS3, GAL2uas-GAL2tata-ADE2, MEL1 
AH109 MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, 

LYS2::GALuas-GAL1tata-HIS3,MEL1, GAL2uas-GAL2tata-ADE2, 
URA3::MEL uas-MEL1tata-lacZ   

 

2.3. Plasmids construction  
 

2.3.1. GST- tagged plasmids 
 

Plasmids encoding GST-Cdk9, GST-Cdk9 kinase domain (residues 35-339) and 

GST-Cdk9 C-terminus (residues 340-591) were created by amplifying cDNA of cdk9 and 

its corresponding parts with respective primers: Cdk9 Y2H fw, Cdk9 GST rev, Cdk9 kin 

fw, Cdk9 kin rev, Cdk9 C-t fw and Cdk9 C-t rev. The fragments were cut with BamHI and 

SalI and ligated into pGEX-5X-2 plasmid. 

To obtain GST tagged Msc6, its cDNA was amplified with Mcs6 Y2H fw and 

Mcs6 Y2H rev oligonucleotides and inserted into XmaI/SalI lianerized pGEX-5X-2. 

GST-Srb10, GST-Lsk1, GST-Lsk1 kinase domain and C-terminus (residues 276-

594), GST-Lsk1 kinase domain (residues 276-560), GST- Lsk1 N-terminus (residues 1-

275) and GST-Scp1encoding vectors were made by cloning corresponding cDNAs using 

following primers: Srb10 Y 2H fw, Srb10 Y2H rev, LskI Y2H fw, LskI Y2H rev, Lsk1 

kin+C-t fw, Lsk1 kin+C-t rev, Lsk1 kin fw, Lsk1 kin rev, Lsk1 N-t fw, Lsk1 N-t rev, Scp1 

Y2H fw and Scp1 Y2H rev, respectively. The PCR fragments were ligated into EcoRI and 

SalI sites of pGEX-4T-1. 
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To generate plasmids expressing Lsc1 and Pch1 fused to GST, products of the PCR 

reactions performed with Lsc1 GST fw, Lsc1 GST rev, Pch1 GST fw and Pch1 GST rev 

oligonucleotides were inserted into pGEX-5X-2 plasmid cut with BamHI/XhoI. 

Plasmid expressing Fcp1-GST was Nakamura’s kind gift. 

 

2.3.2. Yeast-two hybrid plasmids 
 

All genes of interest were cloned into vectors from Clontech pGAD424 and 

pGBT9.  

Yeast-two hybrid (Y2H) plasmids encoding Msc6, Srb10, Scp1 and Lsk1 were 

created using same primers as for GST-tagged versions of the proteins (see Section 2.3.1. 

and Table 2.3.), resulting in pGAD424-Msc6, pGBT9-Msc6, pGAD424-Srb10, pGBT9-

Srb10, pGAD424-Scp1, pGBT9- Scp1, pGAD424-Lsk1 and pGBT9-Lsk1. 

In order to make pGAD424-Cdk9 and pGBT9-Cdk9 vectors, product of the PCR 

reaction performed with Cdk9 Y2H fw and Cdk9 Y2H rev primers was inserted into 

BamHI/Pst1 cut pGAD424 and pGBT9, respectively. 

Fcp1 and Ssu72 were amplified with the corresponding oligonucleotides: Fcp1 

Y2H fw, Fcp1 Y2H rev, Ssu72 Y2H fw and Ssu72 Y2H rev, and inserted into pGAD424 

and pGBT9, opened with EcoRI and PstI. Created vectors were called pGAD424-Fcp1, 

pGBT9-Fcp1, pGAD424-Ssu72 and pGBT9-Ssu72.  

Plasmids expressing Lsc1 and Pch1 (pGAD424- Lsc1, pGBT9- Lsc1, pGAD424- 

Pch1 and pGBT9- Pch1) were obtained by amplifying corresponding genes with following 

primers: Lsc1 Y2H fw, Lsc1Y2H rev, Pch1 Y2H fw and Pch1 Y2H rev, respectively. 

Products were ligated into pGAD424 and pGBT9 opened with EcoRI and BamHI. 

pGAD424-Rct1 and pGBT9-Rct1 vectors were created by performing PCR 

reaction with following primers: Rct1 Y2H fw and Rct1 Y2H rev. Amplified DNA was 

inserted into pGAD424 and pGBT9 cut with XmaI and Pst1I.    

Plasmids pA2S5-HA and pA2S2-HA have been described (Ursic et al, 2008). 

Plasmids pGST-AtCyp59, pBD-AtCTD and pAD-AtCTD have been described 

(Gullerova et al, 2006). 

Oligonucleotides used for cloning are listed in Table 2.3. 
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Table 2.3. Oligonucleotides for cloning. 
Name Restriction 

site 
Sequence In vector 

CTD kinases 
Mcs6 Y2H 
fw 

XmaI gactagcccgggggatatcgaaaagtctgacaagtg
g 

pGAD424, 
pGBT9, pGEX-
5X-2 

Mcs6 Y2H 
rev 

SalI gactaggtcgacttaaacaaatttaatatttgcacgca pGAD424, 
pGBT9, pGEX-
5X-2 

Mcs6 HA 
fw 

XhoI gactagctcgagatggatatcgaaaagtctgacaagt pMG 

Mcs6 HA 
rev 

SalI gactaggtcgacttatgcgtagtcaggcacatcatacg
gataaacaaatttaatatttgcacgcatt 

pMG 

Srb10 Y2H 
fw 

EcoRI gactaggaattcaaagacggttataaaattattgggttt pGAD424, 
pGBT9, pGEX-
4T-1 

Srb10 Y2H 
rev 

SalI gactaggtcgacttaaaaatgggctaaaaagtgagttag pGAD424, 
pGBT9, pGEX-
4T-1 

Srb10 HA 
fw 

XhoI gactagctcgagatgaaagacggttataaaattattgg
g 

pMG 

Srb10 HA 
rev 

XmaI gactagcccgggttatgcgtagtcaggcacatcatac
ggataaaaatgggctaaaaagtgagttagtaa 

pMG 

Cdk9 Y2H 
fw  

BamHI gactagggatccggaaacgctcaagcagcgtt pGAD424, 
pGBT9, pGEX-
5X-2 

Cdk9 Y2H 
rev 

PstI gactagctgcagtcatttaggagtgtcatcaacgtt pGAD424, pGBT9

Cdk9 GST 
rev 

SalI gactaggtcgactcatttaggagtgtcatcaacgtt pGEX-5X-2 

Cdk9 HA 
fw 

SalI gactaggtcgacatgaaacgctcaagcagcg pMG 

Cdk9 HA 
rev 

XmaI gactagcccgggttatgcgtagtcaggcacatcatac
ggatatttaggagtgtcatcaacgttgg 

pMG 

Cdk9 kin 
fw 

BamHI gactagggatccggtatcatttaatggaaaaattagga
gaagg 

pGEX-5X-2 

Cdk9 kin 
rev 

SalI gactaggtcgactcaaaaatattcatgctctaaagcc pGEX-5X-2 

Cdk9 C-t 
fw 

BamHI gactagggatccggacaacaccaccatatccagcaa
accc 

pGEX-5X-2 

Cdk9 C-t SalI gactaggtcgactcatttaggagtgtcatcaacgt pGEX-5X-2 
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rev 
LskI Y2H 
fw 

EcoRI gactaggaattctcatactcgaagagtacaatttatcgc pGAD424, 
pGBT9, pGEX-
4T-1 

LskI Y2H 
rev 

SalI gactaggtcgacttatcttttagattttcgttttttactttc pGAD424, 
pGBT9, pGEX-
4T-1 

LskI HA 
fw 

SalI gactaggtcgacatgtcatactcgaagagtacaatttat
cg 

pMG 

LskI HA 
rev 

XmaI gactagcccgggttatgcgtagtcaggcacatcatac
ggatatcttttagattttcgttttttactttcccattcatgcc 

pMG 

Lsk1 
kin+C-t fw 

EcoRI gactaggaattctatgagaaaatcgaccaaattggag
aagg 

pGEX-4T-1 

Lsk1 
kin+C-t rev 

SalI gactaggtcgacttatcttttagattttcgttttttactttc pGEX-4T-1 

Lsk1 kin 
fw 

EcoRI gactaggaattctatgagaaaatcgaccaaattggag
aagg 

pGEX-4T-1 

Lsk1 kin 
rev 

Sal1 gactaggtcgacttaatactcatgcatcaaggtctcatg
agc 

pGEX-4T-1 

Lsk1 N-t 
fw 

EcoRI gactaggaattctatgagaaaatcgaccaaattggag
aagg 

pGEX-4T-1 

Lsk1 N-t 
rev 

Sal1 gactaggtcgacttaggcaggctttggatatgtatatgt
ataaattgg 

pGEX-4T-1 

CTD phosphatases 
Fcp1 Y2H 
fw 

EcoRI gactaggaattctcgaaacgattgacaccaatt pGAD424, pGBT9

Fcp1 Y2H 
rev 

PstI gactagctgcagtcaagctgtatctttggacaattc pGAD424, pGBT9

Ssu72 Y2H 
fw 

EcoRI gactaggaattcgctcccaaaaccaacctc 
 

pGAD424, pGBT9

Ssu72 Y2H 
rev 

PstI gactagctgcagttaaaaaaaatgaatagtatacaata
caggaag 

pGAD424, pGBT9

Ssu72 GST 
fw 

EcoRI gtcagtgaattcatggctcccaaaaccaacctccagat
c 

pGEX-4T-1 

Ssu72 GST 
rev 

SalI gtcagtgtcgacttaaaaaaaatgaatagtatacaata
c 

pGEX-4T-1 

Ssu72 HA 
fw 

SalI gactaggtcgacatggctcccaaaaccaacctc pMG 

Ssu72 HA 
rev 

BamHI gactagggatccttatgcgtagtcaggcacatcatacg
gataaaaaaaatgaatagtatacaatacaggaag 

pMG 

Scp1 Y2H 
fw 

EcoRI gactaggaattcaaatcaacgaaaacccaaccctc pGAD424, 
pGBT9,  
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pGEX-4T-1 
Scp1 Y2H 
rev 

SalI gactaggtcgacttataactgaagattaaggacagtac
taacatc 

pGAD424, 
pGBT9, pGEX-
4T-1 

Scp1 HA  XhoI gactagctcgagatgaaatcaacgaaaacccaac pMG1 
Scp1 HA XmaI gactagcccgggttatgcgtagtcaggcacatcatac

ggatataactgaagattaaggacagtactaac 
pMG1 

Lsc1 and Cdk9 cyclins 
Lsc1 Y2H 
fw 

EcoRI gactaggaattcgcagaaaatgagaatcatg pGAD424, pGBT9

Lsc1 Y2H 
rev 

BamHI gactagggatccttaaaccgtacctttatttctcc pGAD424, pGBT9

Lsc1 GST 
fw 

BamHI gactagggatccgggcagaaaatgagaatc pGEX-5X-2 

Lsc1 GST 
rev 

XhoI gactagctcgagttaaaccgtacctttatttctcc pGEX-5X-2 

Pch1 Y2H 
fw 

EcoRI gactaggaattcagtgaagtaataaaatctgtacccc pGAD424, pGBT9

Pch1 Y2H 
rev 

BamHI gactagggatccttatgaagcttccgtctcc pGAD424, pGBT9

Pch1 GST 
fw 

BamHI gactagggatccggagtgaagtaataaaatctg pGEX-5X-2 

Pch1 GST 
rev 

XhoI gactagctcgagttatgaagcttccgtctcc pGEX-5X-2 

Rct1 
Rct1 GST 
fw 

SalI gactagggtcgactgtctgtactaattgaaactaca pGEX-4T-1 

Rct1 GST 
rev 

XhoI gactagctcgagtcatcgatatctatcatctctata pGEX-4T-1 

Rct1 ΔPPI 
GST fw 

BamHI gacaacggatccatggaggcagaagcagag 
 

pGEX-4T-1 

Rct1 ΔPPI 
GST rev 

SalI gacggcgtcgacttatcgatatctatcatctctataacg 
 

pGEX-4T-1 

 

2.3.3. pMG plasmids encoding Rct1 and its deletion and point mutants 
 

All the plasmids were constructed by inserting rct1 or its deletion or point mutants 

tagged with either hemagglutinine (HA) or FLAG (Fig. 2.2.) into multicloning site of 

pMG (Fig. 2.1.) and pMG1 (Gullerova et al, 2007).   
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Rct1 lacking RS/RD domain encoding vector was produced by amplifying 

respective part of pMG1 with following primers: Rct1 ΔRS fw, which introduced XhoI 

before the ATG codon, and Rct1 ΔRS rev, which encoded HA tag, stop codon and SalI 

site, in described order. The PCR product was cloned into XhoI and SalI opened pMG, 

resulting in pMG2. 

 

pMG
10547 bp

KanMXterm

KanMX

KanMXprom

nmt1 promoter

Amp

nmt1 term

LEU2

ars1

BamHI (3699)Nco I (5755)

SmaI (3706)

XmaI (3704)

XhoI (3681)

SalI (3687)

ClaI (1663)

ClaI (5639)

PstI (2483)

PstI (5936)

ApaLI (8366)

ApaLI (8863)

ApaLI (10109)

Eco RI (1176)

Eco RI (6471)

Eco RI (7671)

AvaI (3681)

AvaI (3704)

AvaI (4061)

AvaI (8243)

HindIII (235)

HindIII (2467)

HindIII (3490)

HindIII (5210)  
Fig. 2.1. Map of pMG vector. 

 

To construct the plasmid containing HA tagged PPIase domain of Rct1, 

corresponding domain was amplified by PCR with forward oligonucleotide Rct1 PPI fw, 

which introduces XhoI site in front of ATG codon, and reverse -  Rct1 PPI rev, which 

encodes HA, stop codon, and XmaI site. The PCR product was ligated into XhoI/SalI cut 

pMG, resulting in pMG3.    
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Overexpression plasmid encoding Rct1 without PPIase domain was created by 

amplifying respective rct1 part using pMG1 as a template. The forward oligo used was 

Rct1 ΔPPI fw, which had XhoI site in front of ATG condon, and reverse oligo - Rct1 rev, 

which primes to pMG1 downstream of HA tag. Resulting PCR product was inserted into 

XhoI/XmaI linearized pMG, resulting in pMG4.  

Plasmid pMG4R3, that expresses Rct1 without PPIase domain and has mutated 

RRM domain, was produced the same way as pMG4, but with pMG1R3 as a template. 

pMG1R3 was constructed by the site-directed mutagenesis of rct1 within pMG1 plasmid. 

The following mutations were introduced into RRM domain of Rct1 Y287D, F289D, 

F292D (Lorkovic et al, 2009). 

PPIase                   RRM              RS     HA/FLAG

LQYAFIEF

LQDADIED

pMG1

pMG2

pMG4

pMG4R3

pMG5

pMG6

pMG3

 
Fig. 2.2. Schematic representation of Rct1 deletion and point mutants. Names of the 

plasmids expressing the mutants are indicated on the right side. 

 

Plasmid expressing Rct1 without RRM domain was created by fusing same PCR 

product used for pMG3 construction – PPIase domain of Rct1, which has also SpeI site in 

front of HA. The PCR product was cut with XmaI and SpeI, which cut off HA. RS domain 

of Rct1 was amplified using pMG1 as a template. Olidonucleotides used for RS domain 

amplification were: Rct1 RS fw, which introduces SpeI site, and Rct1 rev. Amplified RS 

domain was cut with SpeI and XhoI, ligated with PCR product mentioned above (PPIase 

domain) through SpeI site. The product of ligation was introduced into XmaI/XhoI opened 

pMG1 resulting in pMG5 plasmid. 

To generate plasmid expressing RRM domain of Rct1 fused to HA, RRM encoding 

region was amplified with following oligonucleotides: Rct1 ΔPPI fw and Rct1 RRM rev, 
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which introduces HA, XmaI site and stop codon, sequentially. The PCR product was 

cloned into XmaI/XhoI digested pMG1, resulting in pMG6 plasmid. 

Plasmid encoding FLAG-tagged Rct1 was constructed by amplifying Rct1 cDNA 

with following primers: Rct1 FLAG fw, which binds upstream ATG site and encodes 

XhoI site, and Rct1 FLAG rev, which introduces FLAG, XmaI site and stop codon, 

respectively. Amplified DNA was inserted into XmaI/XhoI cut pMG1. Resulting plasmid 

was named pMG1F.   

To obtain pMG4F, plasmid expressing FLAG-tagged Rct1 without PPIase domain, 

corresponding sequence was amplified using pMG1F plasmid as a template and following 

primers: Rct1 ΔPPI fw and Rct1 rev. Product of the PCR reaction was ligated into 

XmaI/XhoI digested pMG1. 

Oligonucleotides used for cloning are listed in Table 2.4. 

 

Table 2.4. Oligonucleotides for cloning. 

Name Restriction 
site 

Sequence in 
vector 

new 
vector 

Rct1 FLAG 
fw 

XhoI gactagctcgagatgtctgtactaattgaaactacag
ttgg 

pMG1 pMG1F 

Rct1 FLAG 
rev 

XmaI gactagcccgggctatttatcatcgtcatctttataat
ctcgatatctatcatctctataacg 

pMG1 pMG1F 

Rct1 ΔRS 
fw 

XhoI gtcagtctcgagatgtctgtactaattgaa pMG1 pMG2 

Rct1 ΔRS 
rev 

SalI gtcagtgtcgactcatgcgtagtcaggcacatcata
cggatacacgctttcccaaaaatctacgtg 

pMG1 pMG2  

Rct1 PPI 
fw 

XhoI gactagctcgagatgtctgtactaattgaaactacag
ttgg 

pMG1 pMG3, 
pMG5 

Rct1 PPI 
rev 

SpeI 
XmaI 

gactagcccgggtcatgcgtagtcaggcacatcat
acggataactagtttccttctctctttgcaatttatcttc
cg 

pMG1 pMG3 

Rct1 ΔPPI 
fw 

XhoI gacgacctcgagatggaggcagaagca 
 

pMG1 pMG4, 
pMG4R3, 
pMG4F, 
pMG6 

Rct1 rev XmaI ctcatctaaaccactttctaa pMG1 pMG4, 
pMG4R3, 
pMG4F, 
pMG5 

Rct1 RS fw SpeI gactagactagtgctcgttacagacaatattacaact pMG1 pMG5 
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cc 
Rct1 RRM 
rev 

XmaI gactagcccgggtcatgcgtagtcaggcacatcat
acggatacacgctttgggaaaaatctacg 

pMG1 pMG6 

Rct1 Y2H 
fw 

XmaI gactagcccgggatctgtactaattgaaactacagtt
ggtg 

pGAD 
424, 
pGBT9 

Rct1 Y2H 
rev  

PstI gactagctgcagctatcgatatctatcatctctataac
gtct 

pGAD 
424, 
pGBT9 

pGAD424
-Rct1, 
pGBT9-
Rct1 

 

2.4. Generation of strains 
 

2.4.1. Rct1ΔpMG1F 

 

Rct1+/- (Gullerova et al, 2007) cells were grown until mid-exponential phase in 

YES medium containing ClonNat at 320C. Two milliliters of culture were centrifuged at 

13,000 rpm for 2 min at RT (room temperature). Pellet was washed with 1 ml of LiAc/TE 

and resuspended in 100 μl of LiAc/TE. One and a half micrograms of pMG1F plasmid and 

2 μl of salmon sperm DNA (10 mg/ml) were added to the mixture and incubated for 10 

min at RT. After addition of 360 μl of PEG/LiAc, solution was vortexed and incubated for 

30 min at RT. Forty three microliters of DMSO (dimethylsulphoxide) were mixed into the 

reaction, which was then incubated for 5 min at 420C. Cells were spinned down, 

resuspended in 1 ml YES medium and incubated for 5 h at 300C. Afterwards cells were 

plated on selective YES Agar medium containing Geneticin and ClonNat. To confirm 

successful plasmid transformation few colonies were subjected to Western blot analysis. 

For this, cells were grown overnight in EMM2 medium with Geneticin and ClonNat, 1 ml 

of each culture was spinned down and 100 μl of 2 × LB were added to each sample. Rct1-

FLAG expression was checked by Western blotting. Cells with pMG1F plasmid were 

streaked on EMM2-N (EMM2 media lacking nitrogen) plate and left for 3 days at 300C to 

sporulate. Strains with rct1 knocked out allele were identified with the help of random 

spore analysis. For this, a three day old cross was checked for the presence of asci under 

the light microscope. A loopful of the cross was inoculated in 1 ml of sterile dH2O and 

glusalase (Dupont/NEN) was added to a final concentration of 0.5%. The mixture was 
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incubated on rotary shaker overnight at RT. Spores were plated on YES agar medium 

containing Geneticin and ClonNat and in parallel on the same medium with addition of 5 

mg/L phloxin B (Sigma). The plates were incubated at 320C for 3 days. Selected colonies, 

replicas of which turned light pink on phloxin B plates, were checked for Rct1-FLAG 

expression again and genotyped (see Table 2.5. for oligonucleotides) for rct1 knock-out 

allele with forward primers: SpCypcon fw (wt) and SpCloncon fw (rct1 knock out) and 

common reverse primer Spcheck3 rev, and for mating type with standard primers MM, 

MP and MT1 (Moreno et al, 1991).  

 

Table 2.5. Oligonucleotides for genotyping. 
Name Sequence 
MM tacgttcagtagacgtagtg 
MP acggtagtcatcggtcttcc 
MT1 agaagagagagtagttgaag 
SpCypcon fw gaggcagaagcagaggctgttacac 
SpCloncon fw gcgtggggacaattcaacgc 
Spcheck3 rev aacgtgccgcatttatggag 

 

2.4.2. Rct1ΔpMG4F 

 

This haploid strain was created in the same way as rct1ΔpMG1F (Section 2.4.1.), 

pMG4F plasmid was used instead of pMG1F. 

 

Buffers (always prepared fresh ones from stock solutions): 

10 × TE 

100 mM Tris–HCl 

10 mM EDTA, pH 7.5 

 

LiOAc/TE  

100 mM LiOAc 

1 × TE 
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PEG/LiAc  

40 % PEG 3355 

1 × TE  

100 mM LiAc, pH 4.9 

 

2 × LB buffer 

4% SDS  

20% glycerol  

10% β-mercaptoethanol  

0.004% bromphenol blue  

0.125 M Tris – HCl, pH 6.8  

 

2.4.3. Cdk9-HA, rct1ΔpMG1F, lsk1-HA, rct1ΔpMG1F and cdk9-HA, rct1ΔpMG4F 
 

Rct1ΔpMG1F was crossed with either cdk9-HA or Lsk1-HA on EMM2-N plate for 3 

days at 300C. In order to get desired strains, random spore analysis was performed as 

described previously (Section 2.4.1.). Cdk9-HA rct1ΔpMG1F and lsk1-HA rct1ΔpMG1F were 

identified with the help of genotyping (Section 2.4.1.) and Western blot analysis (Section 

2.7.). 

Cdk9-HA rct1ΔpMG4F strain was obtained in the same way except that rct1ΔpMG4F 

was used for crossing instead of rct1ΔpMG1F.  

 

2.5. Overexpression and purification of GST fusion proteins 
 

The plasmids pGST-Rct1, pGST-Rct1ΔPPIase, pGST-CTD, pGST-Mcs6, pGST-

Srb8, pGST-Cdk9, pGST-Cdk9 kin, pGST-Cdk9 C-t, pGST-Lsk1, pGST-Lsk1kin+C-t, 

pGST-Lsk1kin, pGST-Lsk1 N-t, pGST-Scp1, pGST-Ssu72, pGST-Fcp1, pGST-Lsc1 and 

pGST-Pch1 were transformed into E.coli strain BL21(DE3). Overnight cultures were 

grown at 37oC in the presence of 100 μg/ml of ampicillin, diluted 100 times and grown 

further to 0.6 OD (optical density) at 600 nm. Protein synthesis was induced with 1 mM 

isopropyl-β-D-thiogalactopyranoside (IPTG) at 28oC for 3 hours. Pellets from 200 ml of 



- 45 - 

 

cells were resuspended in 10 ml of lysis buffer and sonicated (Bandelin HD 200 Sonoplus) 

on ice 3 times for 10 sec, at power of 200 W, 50 cycles. Cell lysates were centrifuged at 

14,000 rpm for 10 min at 4oC. The supernatant was mixed with 200 μl glutathione 

Sepharose beads (GE Healthcare) and mixed for 30 min at 4oC. The sepharose was washed 

three times with 15 ml of lysis buffer, buffer was exchanged to protoplast extraction buffer 

(PEB 200) and beads were stored at 4oC in 400 μl of PEB 200. Fifty microliters of beads 

were used for each pull-down. For kinase assays GST-Rct1, GST- Rct1ΔPPIase and GST-

CTD were eluted with elution buffer. Elution buffer was exchanged to kinase buffer 

(Section 2.8.) by overnight dialysis 1:20,000. GST-Rct1 was concentrated using Amicon 

Ultra-4 cetrifugal filters. Twenty microliters of each sample was resuspended in 60 μl of 2 

× LB, boiled for 5 min and 20 μl were loaded on 10% SDS-PAGE gel for analysis. 

 

Buffers (always prepared fresh ones from stock solutions): 

 

Lysis buffer 

20 mM Tris-HCl, pH 7.5 

1 M NaCl 

0.2 mM EDTA 

1 mM DTT 

1% Triton X-100 

EDTA-free protease inhibitor cocktail (Roche) 

 

PEB 200 

50 mM HEPES-KOH, pH 7.9    

200 mM KCl                     

1 mM DTT                            

0.1 % Triton X-100         

2.5 mM MgCl2          

1 mM EDTA, pH 8.0  

EDTA-free protease inhibitor cocktail (Roche) 
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Elution buffer 

50 mM Tris-HCl, pH 8.0 

10 mM reduced glutathione 

 

2.6. Preparation of whole cell extracts from S. pombe cells, pull-
down assay and immunoprecipitation 

 

Four hundred ml of cells were collected at exponential phase by centrifugation 

(4,000 rpm, 5 min, RT), frozen in liquid nitrogen and stored at -80oC until use. Cells were 

resuspended in 300 μl PEB 400 (the same as PEB 200, but with 400 mM KCl) and 

sonicated (Bandelin HD 200 Sonoplus) on ice six times for 5 sec, at power of 200 W, 50 

cycles. Cell lysates were centrifuged at 14,000 rpm for 15 min at 4oC. After that, 

supernatant was mixed with PEB without KCl to adjust KCl concentration to 200 mM.  

For pull-down assays whole cell extracts were mixed with glutathione Sepharose 

beads coated with recombinant proteins or with beads only and incubated for 4 hours at 

4oC. After three washings with PEB200, beads were resuspended in 60 μl of 2 × LB, 

boiled for 5 min, 25 μl were loaded on SDS-PAGE gel and analyzed by Western blotting.  

For immunoprecipitation with anti-HA (12CA5) antibody, 500 μl of the antibody 

(hybridoma supernatant) were incubated overnight pr at least 7 h during the day at 4oC 

with 30 μl of 50 % slurry of protein A Sepharose CL-4B (GE Healthcare) in PEB 200. 

Protein A Sepharose was washed three times with PEB 200 buffer and added to the protein 

extract. Same amount of extract was supplied with protein A Sepharose only as a negative 

control. The mixture was incubated again at 4oC, washed three times with PEB 200 and 

analyzed by Western blotting. 

 

2.7. SDS-PAGE and Western blotting 
 

Proteins were run on 10% SDS-PAGE and transfered onto PVDF membrane 

(Millipore) and Western blotting was performed according to standard procedure. See 

Table 2.6. the dilutions of the antibodies used. 
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 All secondary antibodies for Western were conjugated with horseradish 

peroxidase. Blots were developed using a chemiluminescence kit (GE Healthcare) and 

exposed to Kodak Biomax MR film. 

 

Table 2.6. Used antibodies for detection by Western blotting, IF and ChIP 

Name  Working dilution 

Primary 

Anti-HA, rat, monoclonal (Roche) 1:5,000 for Western 

1:100 for IF  

Anti-FLAG, mouse, monoclonal (Sigma) 1:10,000 

Anti-CTD (H5), mouse, monoclonal (Covance)  1:500 

Anti-Rct1, rabbit, polyclonal, 2 peptides (Gullerova et al, 

2007) 

1:1,000 

Anti-PSTAIR, mouse, monoclonal (abcam) 1:1,000 

Anti-phosphor-Cdc2 (Tyr 15), rabbit, polyclonal (Cell 

Signalling) 

1:1,000 

Anti-phospho RNAP II (S2), rabbit, polyclonal (Bethyl) used for ChIP 0.4 μg, Section 

2.11. 

Anti-phospho RNAP II (S5), rabbit, polyclonal (Bethyl) used for ChIP 0.4 μg, Section 

2.11. 

Anti-HA (12CA5) mouse, monoclonal used for IP, Section 2.6. 

Anti-RNAP II CTD repeat (4H8), mouse, monoclonal 

(Abcam) 

used for ChIP 5 μg, Section 

2.11. 

Anti-histone 3 (anti-H3), rabbit, polyclonal (Abcam) used for ChIP 4 μg, Section 

2.11. 

Anti- histone3 acetylated on lysine 9 (anti-AcH3K9K12), 

rabbit, polyclonal (Millipore) 

used for ChIP 19 μg, Section 

2.11. 

Anti- tubulin (α-TAT1), mouse, monoclonal (kind gift of 

K. Gull) 

1:10 

Secondary 

Rabbit anti-rat ImmunoglobulinG (IgG) (Sigma) 1:10,000 

Goat anti-mouse IgG (BioRad) 1:10,000 
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Goat anti-mouse IgM (Biosource) 1:10,000 

Goar anti-rabbit IgG (BioRad) 1:10,000 

Goat anti-mouse Alexa 568 (Molecular Probes) 1:100 

Goat anti-rat Alexa 568 (Molecular Probes) 1:100 

 

2.8. Kinase assay 
 

Cdk9-HA, rct1ΔpMG1F cdk9-HA, cdk9-HA rct1ΔpMG4F and msc6-HA cells were 

grown at 32oC in EMM2 media overnight, spinned down and diluted in YES media to 

OD600 0.2. cdk9-HA, msc6-HA first batch of cdk9-HA rct1ΔpMG1F and cdk9-HA 

rct1ΔpMG4Fwere harvested at OD600 0.5. Second batch of rct1ΔpMG1F was supplied with 

thiamine (100 μg/μl) upon transfer into fresh YES media and grown for 24 h with 

occasional dilution, after last dilution it was collected at OD600 0.5. Rct1 levels in samples 

were analyzed by Western blotting with anti-FLAG antibody.  

Immunoprecipitations of cdk9-HA and msc6-HA with anti-HA antibody were 

performed as described in Section 2.6., samples were additionally washed once with 

kinase buffer before kinase reaction was performed.  

For Rct1 depletion assay the protein A Sepharose with precipitated cdk9-HA was 

mixed with 10 μl kinase buffer, 0.2 μl 10 mM ATP, 1 μl [32p]γ-ATP (10 μCi/μl) and 10 μl 

GST-CTD or GST (about 2 μg). 

For kinase assays with increasing amounts of Rct1 or Rct1ΔPPIase 3 μl, 5 μl and10 

μl of either Rct1 or Rct1ΔPPIase (10 ng/μl) were added additionally into reaction tubes 

and the volumes were adjusted with kinase buffer. Same assay was performed with 1 μl of 

histone 1 (H1) 1 mg/ml as a control. 

Reactions were incubated for 30-40 min at 30oC, stopped by addition of 20 μl of 2 

× LB, boiled for 5 min at 95oC and loaded in 2 replicas on SDS-PAGE gels. One was 

analyzed by Western blotting for Cdk9-HA and Msc6-HA immunoprecipitaiton. Another 

was stained with Coomassie and after destaining dried in vacuum gel-dryer for 1 h and to 

exposed to X-ray film and sussequently to PhosphoImager for quantification. 
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Kinase buffer 

10 mM TRIS-HCL, pH 7.5 

1 mM DTT 

50 mM KCl 

10 mM MgCl2 

 

2.9. Nuclear run-on (NRO) 
 

S. pombe wt and rct1ΔpMG1Fcells were grown overnight in EMM2, spinned down, 

diluted in 60 ml of YES and harvested at OD600 0.3. For Rct1 depleted sample another 

batch of rct1ΔpMG1F cells after spinning down was again diluted in YES with addition of 

thiamine to final concentration of 100 μg/ml and further grown for 24 h (occasional 

dilution was performed) and also collected at OD600 0.3. After harvesting samples were 

washed with 1 ml of ice-cold TNM buffer. Pellet was resuspended in 0.9 ml of ice-cold 

water, 50 μl 10 % N-lauryl sarcosine sulfate was added and the solution was incubated on 

ice for 20 min. Pelleted cells after gentle centrifugation at 3000 rpm for 1 min were 

resuspended in 60 μl of NRO buffer containing 100 μCi of αP32-UTP. Cells were 

incubated 10 min at 30oC, washed with TNM and total RNA was extracted (Section 2.10.). 

RNA samples were boiled for 5 min, added to the prehybridized membranes and incubated 

for 2 days at 42oC. Membranes were washed twice with 2 × SSC 1% SDS mixture for 2 

min at 42oC, wrapped into plastic sheets and exposed to PhosphoImager for quantification. 

 

DNA preparation for application onto membrane 

Single gene NROs of act1 and cdc48 were performed. DsDNA was prepared by 

standard PCR (see Table 2.7. for oligonucleotides) and purified by phenol extraction. 10 

M NaOH and 0.5 M EDTA (pH 8.0) were added to final concentration of 0.4 M and 10 

mM, respectively, to 10 μg of prepared DNA. Mixture was boiled for 10 min and applied 

on membrane.  

 

Membrane preparation 

Nylon membrane (Hybond-N+, Amersham Biosciences) was soaked in distilled 

water for 10 min, placed on wet Whatmann paper and fixed in Bio-Dot Microfiltration 
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Apparatus (Bio-Rad). Each slot was washed with 500 μl of sterile water, prepared dsDNA 

was applied and slots were rinsed again with 0.4 M NaOH. Membrane was taken out of 

the apparatus, washed with 2 × SSC and dried. 

Membrane was transferred to glass tube and prehybridized in hybridization buffer 

for 2 h at 42oC. 

 
Table 2.7. Oligonucleotides for ChIP and NRO 

Name Sequence Product 
size (bp) 

For act1 
Act1 1 fw ggttgctcaatgttatccgtttc 
Act1 1 rev tgataaagccacacacagcgtta 

83 

Act1 2 fw ctcaaagcaagcgtggtattt 
Act1 2 rev tcttttccatatcatcccagttg 

81 

Act1 3 fw ccactatgtatcccggtattgc 
Act1 3 rev caatcttgaccttcatggagct 

81 

Act1 4 fw acaaggtggtaactgcgagatagtt 
Act1 4 rev actctacaggacgaaaagaaatggc 

81 

Act1 5 fw gcccgattagccagttgtatagt 
Act1 5 rev gtttatacagagaggcgtcgtca 

82 

Act1 6 fw cagctaatcattttcacggtaacac 
Act1 6 rev ccatgcattcaacatcccttt 

82 

Act1 7 fw agagggtgttaaatcagggacat 
Act1 7 rev accttcaagtcctacgctttctt 

82 

For TFIIB (ChIP) 
TFIIB 1 fw atcaatcctgcatctagcttgc 
TFIIB 1 rev tggacgtcttcccattctg 

83 

TFIIB 2 fw gttgcagatgtcttatctgcttt 
TFIIB 2 rev agacagtctctcccatctcattc 

84 

TFIIB 3 fw cgaaaaaatattggggaaaatc   
TFIIB 3 rev tgaaagaacttaagaaggagggc 

80 

TFIIB 4 fw gatttaatgcgtccgttattattc 
TFIIB 4 rev tcaatgcatggaaaagacca 

79 

TFIIB 5 fw catatcagattggttttgggtg 
TFIIB 5 rev ccactagcttcatcagagttgg 

83 

TFIIB 6 fw cacgagtacattcaaagcagttc 
TFIIB 6 rev caccgacataggaagcataagc 

84 

TFIIB 7 fw cgccttttacattgaggtcc 
TFIIB 7 rev gcgttcgataccagtgagg 

79 

For TFIIB (NRO) 
TFIIB 1 fw gtggtatagcgctttcaagc  
TFIIB 1 rev caaaaatttacaataaagtgctac  

219 
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TFIIB 2 fw gtagcactttattgtaaatttttg  
TFIIB 2 rev cacaaacggtatcaccactc 

218 

TFIIB 3 fw gagtggtgataccgtttgtg 
TFIIB 3 rev acgccattcacttctcgtat 

220 

TFIIB 4 fw atacgagaagtgaatggcgt 
TFIIB 4 rev gcgcctatctccttatatgc 

220 

TFIIB 5 fw gcatataaggagataggcgc 
TFIIB 5 rev gacattggtcaaggtgcata  

210 

TFIIB 6 fw tatgcaccttgaccaatgtc 
TFIIB 6 rev agctctacgagccagttcag 

229 

TFIIB 7 fw ctgaactggctcgtagagct 
TFIIB 7 rev gcaatccatttaggatcaatc  

209 

TFIIB 8 fw gattgatcctaaatggattgc  
TFIIB 8 rev gatgatacaatcgcaaatatcatc  

220 

TFIIB 9 fw gatgatatttgcgattgtatcatc  
TFIIB 9 rev gtatttcctgtaaagttgca  

212 

TFIIB 10 fw tgcaactttacaggaaatac 
TFIIB 10 rev attgaaatctaccgaactcg 

182 

For cdc48 
Cdc48 1 fw aaagactcaactgcttacagatgttat 
Cdc48 1 rev ttgctcaaaaaggtaaattatttctaa 

84 

Cdc48 2 fw cgtcgagggtcttactggtt 
Cdc48 2 rev gccctttcgaataggacgat 

82 

Cdc48 3 fw tgcagaagtccgtcgttatg 
Cdc48 3 rev cagccgaatcaaactggaat 

83 

Cdc48 4 fw tattttcaaggtgaactgctactatg 
Cdc48 4 rev gtagatttaacggggcgttg 

85 

Cdc48 5 fw tttgacggattcagaaagtttg 
Cdc48 5 rev aatcgtttttgaatgttttcactg 

80 

Cdc48 6 fw gtccttcacgtgccttgttt 
Cdc48 6 rev tcaagaggagaatcggaaatg 

80 
 

Negative control (ChIP) 
18S fw atggaagggtttgagtaagagca   
18S rev gtttcctctggcttcaccctatt   

83 

For rip1 (NRO) 
Rip1 1 fw gttcttatacggaacctagt 
Rip1 1 rev catatccgaagttctccgaa 

229 

Rip1 2 fw ggagaacttcggatatgtag 
Rip1 2 rev cgaagatgctaacgacttag 

224 

Rip1 3 fw ctaagtcgttagcatcttcg 
Rip1 3 rev cattgtgcctaccatggcat 

206 

Rip1 5 fw ccaagaagccaattctgtag 
Rip1 5 rev aagttaagaggtgcaggacc 

222 

Rip1 7 fw tttgtcctagctgatttcct 227 
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Rip1 7 rev gagaagggggtttgtatcag  
Rip1 9 fw ccttgagtactcttcttgcc 
Rip1 9 rev taagccagcttcatgattcc 

215 

 
 

Buffers (always prepared fresh ones from stock solutions): 

 

TNM 

10 mM Tris-HCl, pH 7.4 

5 mM MgCl 

100 mM NaCl 

 

20 × SSC 

3 M NaCl 

0.3 M sodium citrate 

pH 7.0 with 1M HCl 

 

Hybridization buffer 

50% formamide 

10 × Denhardt’s 

2 × SSPE 

0.2% SDS 

40 μg/ml tRNA 

 

10 × Denhardts 

1% Ficoll 400 

1% polyvinylpyrrolidone (MW 40,000) 

1% bovine serum albumin (BSA) 

Filtered and stored at -200C in aliquots.  

 

NRO buffer 

20 mM Tris-HCl, pH 7.5 

5 mM MgCl2 

100 mM KCl 
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2 mM DTT 

2.5 mM ATP 

2.5 mM GTP 

2.5 mM CTP 

Prepared fresh before use. 

 

20 × SSPE 

3 M NaCl 

200 mM NaH2PO4 × H2O 

200 mM EDTA 

Adjusted the pH to 7.4 with 10N NaOH. 

Sterilized by autoclaving. 

 

2.10. RNA isolation 
 

Pelleted cells were washed with sterile water and placed on ice. Cells were 

resuspended in 400 μl of AE buffer, 40 μl of 10 % SDS and 440 μl of AE phenol were 

added. Mixture was vortexed, incubated for 5 min at 65°C and left on dry ice until phenol 

crystallized. Cells were spinned down for 2 min at RT, liquid phase was transferred into a 

new tube and one volume of AE phenol/chlorophorm (1:1 freshly prepared mixture) was 

added. Samples were vortexed and centrifuged at 14,000 rpm for 5 min at RT. Liquid 

phase was transferred to new tube, 0.1 volume of 3M NaOAc, pH 5.3 and 2.5 volumes of 

96% ethanol were added and samples were kept at -20°C for 10 min. RNA was spinned 

for 10 min at 14,000 rpm at 4°C, pellet was washed with 500 μl of ice cold 70 % ethanol 

and spinned again at the same conditions for 5 min. Pellet was air dried and dissolved in 

30 μl of RNase-free water. 

 

Buffers (always prepared fresh ones from stock solutions): 

 

AE buffer 

50 mM NaOA 

10 mM EDTA 
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pH 5.0 adjusted with acetic acid  

 

AE Phenol (acidic phenol) 

liquified phenol was equilibrated with an equal volume of AE buffer    

 

2.11. Chromatin immunoprecipitation (ChIP) 
 

ChIP was performed as described in (Takahashi et al, 2000). Fifty milliliters of 

cells were cultured to OD 0.5, cells grown with thiamine were treated as outlined in 

Sections 2.8. and 2.9. One tenth volume of 11% formaldehyde solution was added to the 

culture and it was incubated for 10 min at 26°C with occasional shaking. Cell culture was 

chilled on ice for 50 min, pelleted by centrifugation at 1,000 × g at 4°C for 5 min and 

washed three times with ice-cold ChIP buffer I. Whole cell extract was prepared as 

described in Section 2.6., but 0.5 ml of ice-cold ChIP buffer I was used instead of PEB and 

sonicated three times for 6 sec, at power of 200 W, 50 cycles. The extract was incubated 

with protein A Sepharose at 4°C for 1 h. Solution was spinned down, equal amounts of 

supernatant were taken for IP with antibodies and protein A Sepharose only. The input 

sample was one sixth of the amount used for one IP. For IP 5 μg of anti-RNAP II CTD 

repeat (4H8), 0.4 μg of anti-phospho RNAP II (S2), 0.4 μg anti-phospho RNAP II (S5), 4 

μg anti-H3 or 19 μg anti-AcH3K9K12 (Table 2.6.) were mixed with 30 μl of protein A 

Sepharose and added to the whole cell extracts. Thirty microliters of protein A Sepharose 

only were mixed with the whole cell extracts as a negative control. Anti-HA antibody 

(12CA5) was prepared in advance by incubating 500 μl of hybridoma solution with 30 μl 

of protein A Sepharose o/n at 4°C. Bound antibody was washed with ChIP I buffer and 

then mixed with protein extracts. Samples were incubated with antibodies or protein A 

Sepharose only o/n at 4°C. Beads were pelleted and washed three times with ChIP buffer 

I, twice with ChIP buffer II and ChIP buffer III sequentially and once with TE. All buffers 

were ice-cold. One hundred microliters of TE containing 10 μg/ml RNase A was added to 

all samples including input and left at 37°C for 15 min. 2.5 μl of 10% SDS and 2.5 μl of 1 

mg/ml Proteinase K solution were added to all samples, probes were incubated 8 h at 37°C 

and 6 h at 65°C. After that samples were supplemented with 10 μl of 3 M sodium acetate 

(pH 5.2) and 100 μl of phenol/chloroform/isoamyl alcohol, vortexed and centrifuged at 
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14,000 rpm for 5 min at RT. The upper aqueous phase was transferred to new tube, 

supplemented with 40 μg of glycogen and 250 μl of 100% ethanol and incubated o/n at -

20°C. The DNA was precipitated by centrifuging for 15 min at 14,000 rpm at RT, washed 

with 1 ml of 70% ethanol, spinned down again and air-dried. The pellets were resuspended 

in TE buffer (50 μl if 50 ml of cells were taken) and stored at −20°C. The amount of 

precipitated DNA was quantified by real-time PCR (qRT-PCR). 18 μl of PCR reaction 

cocktail were added to 2 μl of DNA. PCR program: 1 cycle: 95°C - 2 min; 40 cycles: 95°C 

- 15 sec, annealing temperature depending on primers used - 15 sec, 68°C - 1 min; 1 cycle: 

95°C - 15 sec, 60°C - 15 sec, 10 min, 95°C - 15 sec. Each reaction was run in triplicates. 

Results were calculated according to formula E (primer efficiency)^ (mean Ct(input)/6 - 

mean Ct(IP sample)). Primer efficiency was estimated by running real time PCR reactions 

with following dilutions of genomic S. pombe DNA: 1000 ng/μl, 200 ng/μl, 40 ng/μl, 8 

ng/μl and 1.6 ng/μl. A logarithmic curve was built using mean Ct values and the trendline 

plotted. The gradient of the graph trendline was taken for further calculation. E = 

gradient/2 + 1. In ChIPs performed with anti-phospho RNAP II (S2) and anti-phospho 

RNAP II (S5) antibodies results for all primer pairs were normalized to the corresponding 

values obtained with anti-RNAP II CTD repeat (4H8) antibody. Same was done to 

calculate ChIP results with anti-AcH3K9K12 antibody. The values were normalized to 

corresponding values obtained with anti-H3 antibody. 

 

Buffers (always prepared fresh ones from stock solutions): 

Formaldehyde Solution 

11% Formaldehyde (v/v) 

100 mM NaCl 

1 mM EDTA-Na, pH 8 

0.5 mM EGTA-Na  

50 mM Tris-Cl, pH 8 

 

ChIP Buffer I 

50 mM HEPES-KOH, pH 7.5  

140 mM NaCl 

1 mM EDTA, pH 7.5  
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1% Triton X-100 (v/v) 

0.1% Sodium deoxycholate (w/v) 

 

ChIP Buffer II 

50 mM HEPES-KOH, pH 7.5  

500 mM NaCl  

1 mM EDTA, pH 7.5  

1% Triton X-100 (v/v) 

0.1% Sodium deoxycholate (w/v) 

 

ChIP Buffer III 

10 mM Tris-HCl, pH 8.0  

250 mM LiCl  

1 mM EDTA, pH 7.5  

0.5% Nonidet P-40 (v/v) 

0.5% Sodium deoxycholate (w/v) 

 

1 mg/ml Proteinase K Solution 

1 mg/ml Proteinase K  

50 mM Tris-HCl, pH 8.0 

1 mM CaCl2  

 

10 mg/ml RNase A solution 

10 mg/ml RNase A 

15 mM sodium acetate, pH 5.0 

1 mM Tris-HCl, pH 7.5 

 

PCR Reaction Cocktail 

10 μl 10 × PCR master mix (LightCycler 480 SYBR Green I Master, Roche) 

2 μl 40 μM primers (see Table 2.7.) 

6 μl distilled water  
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2.12. Immunofluorescence (IF) 
 

Cells were grown o/n in EMM2 medium and corresponding antibiotics, 200 μl 

were diluted 10 times in YES and grown to mid-exponential phase for about 8 h. Two 

hundred microliters of freshly prepared formaldehyde were supplemented to 2 ml of cell 

culture, cells were incubated for 70 min at 320C and spinned down. Pellet was washed 

three times with PEM, resuspended in 1 ml PEMS with 0.5 mg Zymolase (Seikagaku 

corporation) and incubated at 37°C for 1 h. Afterwards cells were washed three times with 

PEMS, resuspended in 1ml of PEM containing 1% Triton X-100, left at RT for 2 min and 

washed three times with PEM. At this stage experiment was stopped, cell were kept in 100 

μl of 0.1% NaN3 in PEM at 40C. For IF with α-TAT1 antibody (Table 2.6.) cells were 

spinned down and resuspended in 1ml of 1 mg/ml fresh sodium borohydride in PEM, 

incubated for 5 min and pelleted. The step was repeated two more times and after that cells 

were washed with PEM three times. Next, cells for IF with either anti-TAT1, or HA 

antibodies were resuspended in 100 μl of PEMBAL and incubated for 1 h at RT on a 

rotating wheel with tubes wrapped in aluminium foil. Pelleted samples were resuspended 

in 100 μl of PEMBAL with either α-TAT1, or anti-HA, rotated o/n at RT and washed 

three times with 100 μl of PEMBAL. Afterwards, cells were resuspended in 100 μL of 

PEMBAL with either anti-mouse Alexa 568 or anti-rat Alexa 568 secondary antibodies 

and incubated o/n at RT. Cells were washed four times with PEM and kept in 100 uL of 

0,1% NaN3 in PEM at 40C. In addition, cells were stained with Hoechst (Molecular 

probes) to visualize DNA. Samples were analyzed by microscopy (Zeiss, Axioplan 

epifluorescence microscope), images were taken by a CCD camera and further processed 

in  Adobe Photoshop. 

 

 

Buffers (always prepared fresh ones from stock solutions): 

 

38% formaldehyde 

Dissolved 380 mg paraformaldehyde in 700 uL PEM 

Added 48 μl 5M NaOH  
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Incubated 30 min at 650C, vortexed every 10 min, centrifuged 5 min at 13,000 rpm 

and used supernatant. 

 

PEM 

100 mM Pipes  

1 mM EGTA  

1 mM MgSO4  

Adjusted 6.9 pH with 5 M NaOH 

 

PEMS 

PEM 

1.2 M sorbitol 

 

PEMBAL 

PEM 

1% BSA  

100 mM lysine  

0.1% NaN3  

 

2.13. Y2H 
 

Y2H assay was performed according to manufacturer’s instructions (Clontech).  
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3. Results 

 

3.1. Rct1 interacts with the CTD of RNAP II and non-kinase parts 

of Cdk9 and Lsk1 in vitro via its PPIase domain  

 

3.1.1. Rct1 binds CTD kinases Cdk9 and Lsk1 in vitro 

 

It was previously shown that AtCyp59 from A. thaliana and its S. pombe 

homologue Rct1 interact with RNAP II and regulate phosphorylation status of the RNAP 

II CTD (Gullerova et al, 2006), (Gullerova et al, 2007). However, the mechanism of this 

regulation remained unclear. Rct1 could regulate the activities of CTD kinases and 

phosphatases. Therefore, I decided to check if Rct1 binds known CTD kinases and 

phosphatases by in vitro pull-down assays. GST fusions of CTD kinases Cdk7, Cdk9, 

Lsk1, Srb10 and phosphatases Fcp1, Scp1, Ssu72 were overexpressed in E. coli and 

purified on glutathione Sepharose beads (Fig. 3.1. A, lanes 1-8). Protein extracts from 

haploid S. pombe rct1ΔpMG1 cells, expressing HA tagged Rct1 from plasmid, were 

incubated with glutathione Sepharose beads coated with each of the GST tagged CTD 

kinases and phosphatases. Bound proteins were analyzed by SDS-PAGE and Western 

blotting with anti-HA antibody. Figures 3.1. B and C demonstrate that out of all tested 

proteins only Cdk9 and Lsk1 were able to bind Rct1 in vitro (Fig. 3.1. B, lanes 3 and 4). 

The interactions were specific as neither GST, nor glutathione beads alone were able to 

pull-down Rct1 (Fig. 3.1. B, lanes 5 and 6). As Rct1 has an RRM domain same 

experiment was repeated with an RNaseA treatment, but results did not change. This 

finding further supports the role of Rct1 in RNAP II transcription.  
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Fig. 3.1. Interaction of Rct1 with CTD kinases and phosphatases. (A) Coomassie blue-

stained gel of purified recombinant GST tagged kinases Msc6, Srb10, Cdk9 and Lsk1 (full-length 

proteins are marked with an asterisk on the left side) (lanes 1-4, respectively) and phosphatases 

Fcp1, Scp1 and Ssu72 (lanes 5-7, respectively). Lane 8, purified GST. Molecular mass standards 

in kilodaltons are indicated on the sides. (B) Rct1 interacts with certain CTD kinases in vitro. 

Whole cell extracts from S. pombe cells expressing HA-tagged Rct1 were incubated with 

glutathione Sepharose beads coated with GST-tagged CTD kinases Msc6 (lane 1), Srb10 (lane 2), 

Cdk9 (lane 3) and Lsk1 (lane 4). Proteins left on the beads after washing were analyzed by 

Western blotting with rat anti-HA monoclonal antibody. Lane 7, 10% of the input extract used for 

pull-downs with beads coated with GST-Msc6, GST-Srb10, GST-Cdk9, GST-Lsk1 and GST alone  

(lane 5) or with beads alone (lane 6). (C) Same pull-down as in Fig. 3.1. B was performed with 

CTD phosphatases Fcp1, Scp1 and Ssu72. Lane 6, 10% of the input extract used for pull-downs 

with beads alone (lane 5) or beads coated with GST-Fcp1 (lane 1), GST-Scp10 (lane 2), GST-

Ssu72 (lane 3) and GST alone (lane 4).                                                                                                                
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3.1.2. Rct1 interacts with non-kinase parts of Cdk9 and Lsk1 in vitro 
 

Cdk9 and Lsk1 consist of a kinase domain and a distinct non-kinase extension. 

Therefore, I asked which of the part(s) is (are) responsible for Rct1 binding. GST fusion 

deletion mutants of Cdk9 and Lsk1: Cdk9 kinase, Cdk9 C-terminus, Lsk1 kinase, Lsk1 

kinase together with C-terminus and Lsk1 N-terminus are schematically represented in 

Figure 3.2. A. The proteins were overexpressed in E. coli and purified (Fig. 3.2. B, lanes 

1-5). Same in vitro pull-downs as in Section 3.1.1 with protein extracts from rct1ΔpMG1 

cells were performed. Figure 3.3. (lanes 4 and 8) demonstrates interactions between non-

kinase parts of Cdk9 as well as of Lsk1 and Rct1. Full-length Cdk9 and Lsk1 (Fig. 3.3., 

lanes 2 and 5) were used as positive controls. As kinase domains did not show any 

interactions in several repetitions, I conclude that Rct1 binds to Cdk9 and Lsk1 through 

their non-kinase extensions. 
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Fig. 3.2. CTD kinases Cdk9 and Lsk1 and their mutants. (A) Schematic presentation of 

Cdk9, Lsk1 and their deletion mutants tagged with GST. (B) Coomassie blue-stained gel of 

purified recombinant GST tagged Cdk9 and Lsk1 deletion mutants. Lane 1, GST-Cdk9 kinase 

domain; lane 2, GST-Cdk9 C-terminus; lane 3, GST-Lsk1 kinase domain; lane 4, GST-Lsk1 

kinase domain with C-terminus; lane 5, and GST-Lsk1 N-terminus. Full-length proteins are 

marked with an asterisk on the left side. Molecular mass standards in kilodaltons are indicated on 

the right side.  
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Fig. 3.3. Interaction of Rct1 with CTD kinases Cdk9 and Lsk1.  Rct1 interacts with 

non-kinase parts of Cdk9 and Lsk1 in vitro. Pull-down experiment was performed with GST-

tagged Cdk9 and Lsk1 deletion mutants as described in Fig. 3.1. C. Lane 1, 10% of the input 

extract used for pull-downs with beads coated with GST-Cdk9 (lane 2), GST-Cdk9 kinase domain 

(lane 3), GST-Cdk9 C-terminus (lane 4), GST-Lsk1 (lane 5), GST-Lsk1 kinase domain (lane 6), 

GST-Lsk1 kinase domain and C-terminus (lane 7) and GST-Lsk1 N-terminus (lane 8). Western 

blot was probed with anti-HA antibody.  

 

3.1.3. PPIase domain of Rct1 is responsible for its interaction with the 
CTD and its kinases, Cdk9 and Lsk1 

 

Rct1 is a multidomain protein, consisting of a PPIase domain, followed by an RRM 

domain and an RS domain at the C-terminus (Gullerova et al, 2007). Therefore, it was 

important to find out which of the domain(s) is(are) responsible for the Cdk9, Lsk1 and 

the CTD binding. To address the question, following rct1 strains, expressing HA tagged 

deletion and point mutants of Rct1 from plasmids, were created: RS domain deleted - 

rct1+/-pMG2, expressing PPIase domain only - rct1+/-pMG3, PPIase domain deleted - 

rct1+/pMG4, PPIase domain deleted and with point mutation of the 3 conserved amino acids 

in RRM domain - rct1+/-pMG4R3, with no RRM - rct1+/-pMG5 and expressing RRM domain 

only rct1+/-pMG6 (Fig. 3.4. A). I used diploid cells for the subsequent experiments, because 

such haploid strains as rct1ΔpMG3 and rct1ΔpMG5 are barely viable (Lorkovic et al, 2009). 

The full-length GST tagged CTD was overexpressed in E. coli and purified (Fig. 3.4. B). 

The recombinant CTD, Cdk9 and Lsk1, bound to glutathione Sepharose beads, were  
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Fig. 3.4. Interaction of Rct1 deletion mutants with Cdk9, Lsk1 and the CTD. (A) 

Schematic representation of HA-tagged Rct1 deletion mutants. Names of the mutants correspond 

to the plasmid names, which are indicated on the right side. (B) Coomassie blue-stained gel of 

purified recombinant GST-CTD (full-length C-terminus of RNAP II Rpb1 subunit from 

A.thaliana). Molecular mass standards in kilodaltons are indicated on the left side. (C) Interaction 

of Rct1 deletion mutants with GST-Cdk9, GST-Lsk1 and GST-CTD. Pull-down experiments were 

performed as in Fig. 3.1. B with whole cell extracts from S.pombe cells expressing full-length or 

mutant Rct1. Rct1 versions used for each experiment are indicated on the left side. 10% of the 

input extract (lanes 1, 5) used for pull-downs with beads coated with GST-Cdk9 (lane 2), GST-

Lsk1 (lane 3), GST (lanes 4 and 6) and GST-CTD (lane 7). Western blot analysis was performed 

with anti-HA antibody. 
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incubated with the protein extracts from strains expressing Rct1 deletion mutants. As 

shown in Figure 3.4. C only Rct1 mutants with PPIase domain present (pMG2, pMG3 and 

pMG5) could bind the CTD, Cdk9 and Lsk1 (Fig. 3.4. C, lanes 2, 3 and 7). There is a 

signal in lane 4 on the Figure 3.4. C (pMG3), which represents the pull-down with GST 

only. This could be due to the mutant extensive overexpression. As none of the other 

tested mutants bound GST (Fig. 3.4. C, lanes 4 and 7), I concluded that PPIase domain of 

Rct1 mediates its interaction with the CTD and its kinases, Cdk9 and Lsk1, in vitro. 

 

3.1.4. Rct1 interacts with Lsk1 associated cyclin Lsc1 

 

The interaction shown by in vitro pull-downs between Rct1 and CTD kinases, 

Cdk9 and Lsk1 (Figs. 3.1., 3.3. and 3.4.) are not necessarily direct in vivo. Cdk9 and Lsk1 

are known to form complexes with cyclins Pch1 and Lsc1, respectively (Pei & Shuman, 

2003), (Pei et al, 2003), (Karagiannis et al, 2005). I decided to check Rct1 binding to the 

kinases and the cyclins by using yeast two-hybrid assay (Y2H). The results were not 

reliable (data not shown), because only one of the positive controls worked (Cdk9 and 

Pch1), whereas interaction between Lsk1 and Lsc1 was not confirmed by Y2H. This 

outcome shows that Y2H method may not be applicable in this case. Next step was to 

check if Rct1 binds cyclins Pch1 and Lsc1 using in vitro pull-downs. Both cyclins were 

GST-tagged, overexpressed in E. coli, purified (Fig. 3.5. A) and incubated with protein 

extract derived from rct1ΔpMG1 strain using Sepharose beads coated with GST-Pch1 and 

GST-Lsc1. Lsc1 (cyclin of Lsk1) interacts only weakly, but reproducibly with Rct1 in 

vitro (Fig. 3.5. B, lane 2). The low strength of the Lsc1-Rct1 association could be 

explained that the GST tag of Lsc1 interferes with the interaction and/or the interaction is 

indirect; i.e. Lsc1 pulls down Rct1 together with Lsk1. It also could be that Lsg1, a newly 

characterized subunit of Lsk1/Lsc1/Lsg1 trimeric complex, might be involved in this 

interaction (Karagiannis & Balasubramanian, 2007), (personal communication with 

Sukegawa). Although Cdk9 binds Rct1 and forms complex with cyclin Pch1, Rct1 was not 

pulled down by Pch1 (Fig. 3.5. B, lane 3). This suggests that Rct1 binds directly Cdk9 

and/or Pcm1 (cap-methyltransferase), a component of Cdk9/Pch1/Pcm1 complex (Pei et 
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al, 2003), (Pei et al, 2006). Thus, the mechanisms of Rct1 interactions with 

Cdk9/Pch1/Pcm1 and Lsk1/Lsc1/Lsg1 complexes are different. 
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Fig. 3.5. Interaction of Rct1 with Cdk9 and Lsk1 associated cyclins Pch1 and Lsc1, 

respectively. (A) Coomassie blue-stained gel of purified recombinant GST-Pch1, GST and GST-

Lsc1 (full-length proteins are marked with an asterisk on the left side). Molecular mass standards 

in kilodaltons are on the left side. (B) Rct1 interacts with Lsc1 in vitro, but not with Pch1. Pull-

down experiment was performed with GST-Lsc1 (lane 2) and GST-Pch1 (lane 3) as described in 

Fig. 3.1. B. Lane 1, 10% of the input extract; lane 4, pull-down with GST only; lane 5, pull-down 

with GST-Cdk9. Western was performed with anti-HA antibody. 

 

3.2. Rct1 negatively affects Cdk9 kinase activity towards the CTD 

 

3.2.1. Cdk9 kinase activity towards the CTD is upregulated under the 

conditions of Rct1 depletion 

 

As I have shown that Rct1 binds Cdk9, next question was if Rct1 affects the kinase 

activity of Cdk9 towards the CTD. To address this question, a strain cdk9-HA rct1ΔpMG1F 

was generated, that has an HA-tagged Cdk9 on chromosome and is expressing Rct1 fused 

to FLAG under the control of thiamine repressible promoter. Rct1 level analysis in cdk9-

HA rct1ΔpMG1F cells before and after thiamine treatment demonstrated significant depletion 
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of the protein in the letter case (Fig. 3.6. A, middle panel, lanes 2 and 3). This result is 

supported by the equal amounts of Cdk9-HA and tubulin in both samples (Fig. 3.6. A,  
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Fig. 3.6. Establishing system for Cdk9 kinase assay. (A) Western blots from cdk9-HA 

cells (lane 1) and cdk9-HA rct1ΔpMG1F cells grown in the absence (lane 2) / the presence (lane 3) of 

thiamine (B1) were probed with the antibodies indicated on the left. (B) Immunoprecipitation of 

Cdk9. Lane 1, input protein extract from cdk9-HA rct1ΔpMG1F cells. Lane 2, protein extract from 

cdk9-HA rct1ΔpMG1F cells incubated with protein A Sepharose. Lane 3, protein extract from wt cells 

incubated with anti-HA antibody and protein A Sepharose. Lane 4, extract from cdk9-HA 

rct1ΔpMG1F cells incubated with anti-HA antibody and protein A Sepharose. (C) Kinase assay with 

precipitated Cdk9-HA and recombinant GST or GST-CTD. Protein extracts were incubated with 

anti-HA beads and protein A Sepharose, supernatant was removed; proteins immobilized on 

protein A Sepharose were incubated with GST (lane 1), without GST-CTD or GST (lane 2) or with 

GST-CTD (lane 3) in the presence of γ-[32P]-ATP. Upper panels, western blot analyses of kinase 

reactions performed with anti-HA antibody. Middle panels, autoradiographies of kinase assays. 

Note that kinase assays with only GST (lane 1) or without both GST and GST-CTD (lane 2) did 

not result in detectable amount of radioactive signal. Lower panels, Coomassie blue-stained gels of 

the same kinase reactions. 

 

lanes 2 and 3 in upper and lower panels). HA antibody, bound to protein A Sepharose, was 

able to precipitate Cdk9-HA from cdk9-HA rct1ΔpMG1F cells efficiently (Fig. 3.6. B, lane 

4) and produced no background with wt cells (Fig. 3.6. B, lane 3). Additionally, there was 

no background after precipitating Cdk9-HA with protein A Sepharose only (Fig. 3.6. B, 

lane 2). Finally, kinase assay was successfully carried out with the precipitated Cdk9 and 
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the purified GST-CTD (Fig. 3.4. B) as a substrate (Fig. 3.6. C). As kinase assay performed 

without the CTD (Fig. 3.6. C, lane 2) did not show Cdk9 autophosphorylation, I conclude 

that both bands are indeed the phosphorylated CTD, which were defined as 

hypophosphorylated – pCTD (lower band) and hyperphosphorylated – hpCTD (upper 

band).  

Having established successful system for Cdk9 immunoprecipitation and kinase 

activity measurement, I decided next to analyze the effect of the Rct1 depletion on the 

Cdk9 kinase activity towards the CTD. Cdk9-HA rct1ΔpMG1F cells were grown in EMM 

overnight, diluted into YES and grown further till the mid-log phase. First batch was 

collected (-B) and the rest was diluted in YES+thiamine and grown 24 hours to deplete  
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Fig. 3.7. Effect of Rct1 depletion on Cdk9 activity towards the CTD. (A) Cdk9 activity 

towards the CTD is increased in Rct1 depleted cells. Protein extracts from cdk9-HA rct1ΔpMG1F 

cells grown in the absence (lanes 1 and 2) / the presence (lanes 3 and 4) of thiamine (B1) were 

incubated either with protein A Sepharose (lanes 1 and 3) only or with protein A Sepharose and 

anti-HA antibody (lanes 2 and 4).  Immobilized proteins were incubated with γ-[32P]-ATP and 

GST-CTD.  Upper panel, Western blot analysis of kinase reactions performed with anti-HA 

antibody. No detectable amount of Cdk9-HA was immunoprecipitated with protein A Sepharose 

only. Second panel from above, autoradiogram of Cdk9 kinase assay. Note that both 

phosphorylated and hyperphosphorylated CTD signals are stronger with Cdk9 precipitated from 

Rct1 depleted cells. Third panel from above, Coomassie blue-stained gel of kinase reactions. 

Lowest panel, Western blot analysis of kinase reactions performed with H5 antibody (against Ser-2 

phosphorylated RNAP II CTD (pSer2)). (B) Quantification of kinase assay shown in Fig. 3.7. A. 

Signals were quantified by Phosphoimaging and error bars indicate standard deviations from 5 

independent repeats. 
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Rct1 (+B). Kinase assays were performed with Cdk9-HA precipitated from the cdk9-HA  

rct1ΔpMG1F cells collected before and after thiamine treatment. Figure. 3.7. A (second 

panel from above, lanes 2 and 4) demonstrates the increase of the CTD phosphorylation in 

Rct1 depleted cells. Quantification of the phosphorylation signals (Fig. 3.7. B) reveals that 

kinase activity of Cdk9 increases two times in Rct1 depleted cells. Moreover, Western blot 

analysis of the same samples with the antibody against the Ser2 phosphorylated CTD (H5) 

(Fig. 3.7. A, lowest panel, lanes 2 and 4) was performed. The results demonstrate 

increased phosphorylation of Ser2 residue by Cdk9 immunoprecipitated from Rct1 

depleted cells. As the same amount of Cdk9 was precipitated for each reaction  (Fig. 3.7. 

A, upper panel, lanes 2 and 4) and the equal amount of the CTD was used (Fig. 3.7. A, 

third panel from above, lanes 1-4), I conclude that the decrease of Rct1 expression causes 

the increase of the Cdk9 kinase activity towards the CTD. 

 

3.2.2. Increasing amounts of Rct1 cause the decrease of Cdk9 kinase 

activity towards the CTD   

 

Having shown the increase of CTD phosphorylation by Cdk9 under the conditions 

of Rct1 depletion, I asked next whether a reverse effect would be observed in case of 

increasing Rct1 amount in vitro. GST tagged Rct1 was overexpressed in E. coli and 

purified (Fig. 3.8. A). Kinase assays were performed with Cdk9 immunoprecipitated from 

either cdk9-HA rct1ΔpMG1F Rct1 depleted cells, or from cdk9-HA cells. Reactions were 

supplemented with increasing GST-Rct1 amounts. The results of both kinase assays (Fig. 

3.8. B and C, second panels from above) revealed inhibition of Cdk9 activity as the 

amount of Rct1 increased. Quantification of the CTD phosphorylation signal revealed that 

pCTD signal decreases by more than 2.5 times, whereas hpCTD is more subjected to 

changes and its phosphorylation declines by more than 80% upon addition of 100 μg of 

GST-Rct1 (Fig. 3.8. B and C, lowest panels). The amounts of precipitated Cdk9 were 

equal in each reaction (Fig. 3.8. B and C, upper panels). Therefore, the obtained data 

provide further evidence that Rct1 negatively regulates kinase activity of Cdk9 towards 

the CTD.  
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Fig. 3.8. The influence of increasing amounts of recombinant Rct1 on Cdk9 mediated 

CTD phosphorylation. (A) Coomassie blue-stained gel of purified recombinant GST-Rct1. 

Molecular mass standards in kilodaltons are indicated on the left side. (B-C) Increasing amounts of 

Rct1 cause decrease in the Cdk9 dependent CTD phosphorylation. Kinase reactions were carried 

out with Cdk9-HA precipitated from either (B) Rct1 depleted cdk9-HA rct1ΔpMG1F or (C) cdk9-HA 

cells with addition of increasing amounts of GST-Rct1. Upper panel, Western blot analysis of 

kinase reactions performed with anti-HA antibody. Second panel from above, autoradiography of 

corresponding kinase assays. Note that both phosphorylated and hyperphosphorylated CTD signals 

decrease as the amount of Rct1 increases. Third panel from above, Coomassie blue-stained gel of 

kinase reactions (second panel). Lowest panel, quantification of kinase assay. Signals were 

measured by Phosphoimager, error bars indicate standard error of the mean.  
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Next step was to find out if Rct1 affects directly Cdk9. The kinase forms soluble 

complex with its cyclin Pch1 and methyltransferase Pcm1 (Pei et al, 2006), (Guiguen et al, 

2007). Binding of Pch1 by Rct1 was ruled out by the pull-down performed (Fig. 3.5. B, 

lane 3). Interaction of Rct1 with Pcm1, however, was not checked. Kinase assays with 

non-specific substrate, histone 1 (H1), instead of the CTD were performed. Figure. 3.9. A 

(middle panel) does not show any considerable change in histone H1 phosphorylation 

signal upon Rct1 addition. As usual, reactions were supplemented with the same amount 

of immunoprecipitated Cdk9 and same amount of substrate, H1 (Fig. 3.9. A, upper and 

lower panels, respectively). The data show that Rct1 might not act solely on Cdk9 

complex in vitro. 

The pull-down experiment (Fig. 3.1. B, lane 1) has shown that CTD kinase Mcs6 

does not bind Rct1. Thus, Rct1 should not affect the CTD phosphorylation via Msc6. 

Therefore, this kinase was a good candidate for the next kinase assay, designed to check if  
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Fig. 3.9. The specificity of Rct1 regulation of Cdk9 activity towards the CTD. (A) 

Activity of Cdk9 towards histone H1 does not change under conditions of increasing Rct1 

amounts. Kinase reactions were performed similarly to Fig. 3.8. B but instead of the CTD, H1 was 

used as a substrate. Upper panel, Western blot analysis of kinase reactions performed with anti-HA 

antibody. Middle panel, autoradiography of kinase assays. Note that no considerable changes in 

signal were observed. Lower panel, Coomassie blue-stained gel of kinase reactions. (B) Activity of 

Msc6 towards the CTD is not affected by the increasing amounts of Rct1. Kinase reactions were 

done by analogy to Fig. 3.8. B with precipitated Mcs6-HA instead of Cdk9-HA. Upper panel, 

Western blot analysis of kinase reactions performed with anti-HA antibody. Middle panel, 

autoradiography of kinase assay. Note that kinase assay with precipitated Msc6-HA and increasing 

amounts of recombinant GST-Rct1 did not result in CTD phosphorylation signal change. Lower 

panel, Coomassie blue-stained gel of kinase reactions. 
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Rct1 directly regulates CTD phosphorylation. The kinase assay was done with Msc6, 

immunoprecipitated from msc6-HA cells (Fig. 3.9. B). Again no significant changes in 

CTD phosphorylation were observed as Rct1 amount increased. The experiment suggests 

that Rct1 does not affect purely the CTD. 

Together, performed kinase assays (Figs. 3.8. and 3.9.) suggest that Rct1 

specifically mediates Cdk9 kinase activity towards the CTD. My hypothesis is that Rct1 

inhibits Cdk9 phosphorylation of the CTD by interacting with Cdk9 and the CTD 

simultaneously. Thus, formation a trimeric complex between Rct1, Cdk9 and the CTD 

suppresses RNAP II phosphorylation. 

 

3.2.3. PPIase domain is responsible for regulating Cdk9 kinase activity 
towards the CTD 

 

I showed that PPIase domain of Rct1 mediates interaction between the cyclophilin 

and its binding partners, Cdk9 and the CTD (Section 3.1.3.). I could also demonstrate that 

Rct1 affects the CTD phosphorylation by Cdk9 (Sections 3.2.1 and 3.2.2.). Therefore, I 

asked whether PPIase domain was responsible for the phosphorylation regulation as well. 

GST-Rct1ΔPPIase mutant was overexpressed in E. coli and purified (Fig. 3.10. A). Kinase 

assays with immunoprecipitated Cdk9-HA from either cdk9-HA rct1ΔpMG1F Rct1 depleted 

(Fig. 3.10. B) or cdk9-HA (Fig. 3.10. C) cells were performed. Increasing amounts of the 

GST-Rct1ΔPPIase protein were added to the reactions. Figures 3.10. B and C (middle 

panels) demonstrate that GST-Rct1ΔPPIase addition did not cause any significant change 

in the CTD phosphorylation status. Same amounts of precipitated Cdk9 and the CTD used 

in all reactions prove reliability of the results (Fig. 3.10. B and C, upper and lower panels, 

respectively). Next, kinase assay with H1 as a substrate was done by analogy with the 

assay described in Figure 3.9. A. Reactions were supplemented with the same amounts of 

Cdk9-HA immunoprecipitated from cdk9-HA rct1ΔpMG1F Rct1 depleted cells, equal 

amounts of H1 (Fig. 3.10. D, upper and lower panels, respectively) and increasing 

amounts of GST-Rct1ΔPPIase. However, no considerable change in H1 phosphorylation 

level was observed (Fig. 3.10. D, middle panel). Thus, the results of these kinase assays 

clearly show that PPIase domain is crucial for Rct1 regulation of Cdk9 kinase activity 

towards the CTD.  
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Fig. 3.10. Rct1 PPIase domain is responsible for Cdk9 kinase activity towards the 

CTD. (A) Coomassie blue-stained gel of purified recombinant GST-Rct1ΔPPIase. Molecular mass 

standards in kilodaltons are indicated on the right side.  (B-C) Increasing amounts of Rct1ΔPPIase 

do not affect Cdk9 dependent CTD phosphorylation. Kinase reactions were performed similarly to 

Fig. 3.8. B and C. Cdk9 was precipitated from either (B) Rct1 depleted cdk9-HA rct1ΔpMG1F or (C) 

cdk9-HA cells, but instead of GST-Rct1 increasing amounts of GST-Rct1ΔPPIase were added. 

Upper panels, Western blots of kinase reactions performed with anti-HA antibody. Middle panels, 

autoradiographies of corresponding kinase assays. Note phosphorylated CTD signals do not 

change as the amount of Rct1ΔPPIase increases. Lower panels, Coomassie blue-stained gels of 

kinase reactions. (D) Activity of Cdk9 towards H1 does not change in the conditions of increasing 

Rct1ΔPPIase amounts. Kinase reactions were carried out as described in Fig. 3.9. A. Rct1 depleted 

cdk9-HA rct1ΔpMG1F cells were used and reactions were supplemented with increasing amounts of 

GST-Rct1ΔPPIase. Upper panel, Western blot analysis of kinase reactions performed with anti-HA 

antibody. Middle panel, autoradiography of kinase assays. Note that no considerable change in 

signal is observed. Lower panel, Coomassie blue-stained gel of kinase reactions.   
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3.3. Rct1 regulates RNAP II recruitment to chromatin and genes’ 
activity  

 

3.3.1. Rct1 overexpression promotes RNAP II recruitment to chromatin 
 

It has been shown previously that ongoing RNAP II transcription is reduced in 

rct1+/- cells (Gullerova et al, 2007). Moreover, I could show here that Rct1 is required for 

regulation of Cdk9 kinase activity (Section 3.2.). Therefore, I decided to find out which 

stage(s) (initiation, elongation, termination) of RNAP II transcription is (are) affected by 

Rct1.  

To this end, chromatin immunoprecipitation (ChIP) with antibody against the 

RNAP II CTD was performed with the aim to determine RNAP II occupancy on 

transcriptionally active protein coding genes. I used the antibody which recognizes both 

phospho- and nonphosphorylated CTD (4H8) in order to determine total RNAP II engaged 

into active transcription. Regions including act1, cdc48 and TFIIB genes (Fig. 3.11. B-D) 

were chosen for ChIP analysis due to their constitutive transcription and location on 

chromosome with respect to neighbouring genes. As Rct1 could affect initiation and/or 

termination phases of transcription, the analyzed loci included intergenic regions between 

convergently (act1 and mei4) and divergently (cdc48 and rst2; tif45 and TFIIB) 

transcribed genes. Three sets of primers were designed, which covered sequences from 

act1 promoter to the 3’ end of mei4, from cdc48 promoter to the promoter of divergently 

expressed rst2 and from open reading frame (ORF) of tif45 to terminating regions of 

divergently expressed TFIIB (Fig. 3.11. B-D). ChIP analysis of RNAP II was performed 

with wt and rct1ΔpMG1 cells, collected before and after thiamine treatment.  

 Western blot analysis (Fig. 3.11. A) reveal that in the thiamine treated cells there 

was no or very little Rct1-HA detected with anti-HA antibody. However, the level of Rct1, 

measured with anti-Rct1 antibody, was almost the same as in wt. Although some genes 

were found to generate null phenotype under repressed nmt1 promoter (http://www-

rcf.usc.edu/~forsburg/plasmids.html#promoter), leaky expression is common due to not 

complete nmt1 repression (Forsburg, 1993).  
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Fig. 3.11. Rct1 affects RNAP II occupancy profile along transcription units. (A) 

Repression of Rct-HA expression under thiamine addition. Western blot from wt (lane 1) and 

rct1ΔpMG1 cells gown without (lane 2) and with (lane 3) thiamine were analyzed with anti-HA and 

anti-Rct1 antibody. (B-D) ChIPs of chromosome regions that include act1 (B), cdc48 (C), TFIIB 

(D) and 18S rRNA as negative control (B) were performed with 4H8 antibody (against phospho- 

and nonphosphorylated RNAP II) and protein extracts from wt cells (grey bars), rct1ΔpMG1 cells 

grown without (black bars; Rct1 overexpression) and with thiamine (white bars; Rct1 depletion). 

In the diagrams above, open reading frames (ORFs) are shown by arrows that define transcription 

direction and numbered bars below the genes represent the approximate positions of the real-time 

PCR (qRT-PCR) products. The numbers of the bars correspond to the numbers on the x-axes. The 

y-axes represents the ratio of immunoprecipitated DNA versus input (see Section 2.11. for 

calculation). Coimmunoprecipitated DNA was analyzed by qRT-PCR. Error bars indicate standard 

deviations from 3 biological repeats (9 PCR reactions). Values of the negative controls, run with 

protein A Sepharose beads only, did not exceed one tenth for all samples (data not shown).  



- 75 - 

 

A

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7

mok12       act1                     mei4      

_   _    _   _   _    _  _
1   2    3   4   5    6  7

knd1  ncRNA   cdc48                      rst2
_   _    _     _   _    _  
1   2    3     4   5    6  

B

tif45                      TFIIB SPAC16E8.17c

_       _    _    _    _    _     _
1       2    3    4    5    6     7

C

rct1ΔpMG1 -B1 / wt

rct1ΔpMG1 +B1 / wt

R
el

at
iv

e 
va

lu
e

R
el

at
iv

e 
va

lu
e

R
el

at
iv

e 
va

lu
e

 
Fig. 3.12. Stages of transcription affected by Rct1. Analysis of RNAP II occupancy 

along transcription units shown in Fig. 3.11. The calculated ChIP signals in either Rct1 

overexpressing (black bars) or underexpressing (grey bars) cells were normalized to the ChIP 

signals in wt cells for each point respectively. 

 

Precipitated DNA was analyzed with real-time PCR (qRT-PCR) and quantified by 

normalizing to the input. The trendlines of the RNAP II occupancy profiles in wt, 

rct1ΔpMG1 cells before and after thiamine treatment are similar in all examined regions 

(Fig. 3.11.) and RNAP II profile in wt for act1 1-4 points corresponds to the previous 

studies (Guiguen et al, 2007). However, in most of the checked loci amount of cross-

linked RNAP II is higher in cells with Rct1 overexpression than in wt. This ratio increases 

up to two-three times in the last ORF and/or terminating points (Fig. 3.12. B-D; see act – 

3-5; cdc48 - 4; TFIIB - 3,7 (also possible terminating region of SPAC15E8.17c, Section 

3.3.3.)). Although signals for Rct1 in wt and Rct1 depleted cells seem to be almost same 
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on Western blots, the amount of RNAP II recruited to chromatin is overall lower in 

thiamine treated than in wt cells. This might be explained by changes in cell metabolism 

due to significant Rct1 level decrease in comparison to its initial overexpression (Fig. 

3.11. A). The observed results show that (i) Rct1 affects the RNAP II occupancy along a 

whole transcription unit, (ii) the cyclophilin overexpression leads to increased binding of 

RNAP II to chromatin, especially towards the end of transcription and (iii) Rct1 depletion 

causes lower RNAP II binding to chromatin. 

 

3.3.2. Rct1 affects the amount of the Ser2 and the Ser5 phosphorylated 
RNAP II CTD recruited to chromatin during active transcription 

 

Phosphorylation state of RNAP II defines the stage of transcription (Palancade & 

Bensaude, 2003), (Egloff & Murphy, 2008). In previous study it was shown that Rct1 

negatively regulates the RNAP II CTD phosphorylation (Gullerova et al, 2007). Moreover, 

I demonstrated that connection of CTD kinases to Rct1; i.e. it mediates Cdk9 kinase 

activity and interacts with Lsk1. Therefore, I decided to check how Rct1 influences CTD 

phosphorylation during ongoing transcription. To answer this question, ChIP analysis was 

performed on the regions including highly-transcribed act1 and TFIIB genes (Fig. 3.13. A 

and D) with antibodies against the total RNAP II CTD (4H8) and the CTD phosphorylated 

on either Ser2 or Ser5 residues (pSer2 and pSer5, respectively) (Fig. 3.13. B, C, E and F). 

ChIP analysis of RNAP II was performed with wt and rct1ΔpMG1 cells, collected before 

and after thiamine treatment. Each experiment was done once with consequent qRT-PCR 

analysis run in triplicates. Real-time PCR was performed with the same sets of primers as 

in Section 3.3.1., as they cover ORFs and neighbouring regions. Precipitated DNA was 

quantified by normalizing to the input. The graphs represent pSer2 and pSer5 values 

normalized to total CTD values.  

The distribution of the Ser2 and Ser5 phosphorylated RNAP II CTD in wt cells in 

act1 (Fig. 3.13. B and C) is consistent with data shown by other groups (Mosley et al, 

2009), (Kim et al, 2009), i.e. Ser2 phosphorylation is low at initiation stage and increases 

towards the end, whereas Ser5 phosphorylation is high at promoters and decreases as 

RNAP II moves along a transcription unit. The occupancy profile of phosphorylated 

RNAP II in TFIIB is less conventional (Fig. 3.13. E and F). The increasing  
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Fig. 3.13. Rct1 affects recruitment of the pSer2 and pSer5 RNAP II CTD to 

chromatin during transcription. (A and D) Diagrams of the regions analyzed by ChIP (A – act1; 

D – cdc48). ORFs are depicted by arrows that define transcription direction. Numbered bars 

represent the approximate positions of the qRT-PCR products used. (B, C, E and F) ChIPs of the 

regions indicated on diagrams above (B and C – act1; E and F - TFIIB) were done with protein 

extracts from wt cells (grey bars), rct1ΔpMG1 cells gown without (black bars; Rct1 overexpression) 

and with thiamine (white bars; Rct1 depletion). Following antibodies were used: 4H8 antibody, the 

pSer2 and the pSer5 RNAP II CTD (against the Ser2 and the Ser5 phosphorylated CTD, 

respectively). The y-axes show the relative phosphorylation of either Ser2 (B and E), or Ser5 (C 

and F) residues normalized to the total RNAP II CTD (see Section 2.11. for calculation). The 

numbers on x-axes correspond to the bars on the diagrams above (A and D). 

Coimmunoprecipitated DNA was analyzed in triplicates by qRT-PCR. Values of the negative 

controls, run with protein A Sepharose beads only, did not exceed one tenth for all samples (data 

not shown).   
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amount of the pSer2 CTD towards TFIIB promoter might be explained by expression of an 

unknown non-coding RNA. 

Interestingly, the amount of cross-linked pSer2 RNAP II is very similar to wt in 

Rct1 overexpressing cells and significantly decreased in Rct1 depleted cells (Fig. 3.13. B 

and E). 

The profile of the cross-linked Ser5 phosphorylated CTD in Rct1 overexpressing 

cells is again similar to wt (Fig. 3.13. C and F). However, in act1 more RNAP II is bound 

to chromatin in case of Rct1 overexpression (Fig. 3.13. C). The amount of pSer5 RNAP II 

is decreased in Rct1 depleted cells in all analyzed loci (Fig. 3.13. C and F). Additionally to 

that, the profile of pSer5 RNAP II occupancy in these cells differs from wt in TFIIB (Fig. 

3.13. F).  

As a result, I came to conclusion that Rct1 depletion negatively affects recruitment 

of phosphorylated RNAP II to chromatin. Although expression levels of Rct1 in wt and 

Rct1 depleted cells are similar, the effect could be caused by the considerable change in 

the cyclophilin level from initial overexpression state (Fig. 3.11. A). These data does not 

support previous work where Rct1 depletion was shown to cause increase of CTD 

phosphorylation (Gullerova et al, 2007). However, different antibodies and methods were 

used. As the experiment was done once, it has to be repeated for more reliable 

conclusions. 

 

3.3.3. RNAP II transcription is reduced under the conditions of Rct1 
over- and underexpression 

 

To find out if the observed differences in RNAP II occupancy along transcription 

units result in enhanced or reduced transcription rates, I performed nuclear run-on (NRO) 

analysis to measure ongoing transcription on act1, TFIIB and rip1 genes (Fig. 3.14) in wt, 

Rct1 over- and underexpressing cells. For this, selected DNA probes (Fig. 3.14. A) were 

spotted on membrane and hybridized with α-[32p]-UTP-labelled RNA isolated from wt and 

rct1ΔpMG1 cells before (-B) and after (+B) Rct1 depletion.  Surprisingly, I observed that 

both overexpresison (-B) and depletion (+B) of Rct1 results in strongly reduced 

transcription rates as compared to wt cells (Fig. 3.14. B). The synthesis of TFIIB and rip1 

is decreased up to 60%. For act1 gene effect was less prominent in Rct1 overexpressing 
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cells (being 80% of that in wt cells), but it was comparable to that of TFIIB and rip1 in 

Rct1 depleted cells (Fig. 3.14. B). These data go in line with previous work, where RNAP 

II transcription was shown to be lower in rct1+/- than in wt cells (Gullerova et al, 2007). 
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Fig. 3.14. Nuclear run-on (NRO) analysis of act1, TFIIB and rip1 genes. (A) Diagrams 

of the regions analyzed by NRO. ORFs are depicted by arrows that define transcription direction. 

Numbered bars represent the approximate positions of the DNA probes used. (B) DNA probes, 

corresponding to the selected regions of the indicated genes (A), were spotted on membrane and 

hybridized with α-[32p]-UTP-labelled RNA. Signals were measured by Phosphoimager. The 

signals for each analyzed region (TFIIB, black bars; rip1, grey bars; act1, white bars) were 

summed up and normalized to background. Transcription rates in wt cells were set to one and 

those in rct1ΔpMG1 cells before (-B) and after (+B) Rct1 depletion are ratios to wt (y-axis). 

Presented data are mean values of two independent experiments. 

 

Figure 3.15. shows NRO analysis of the transcription rate along the whole TFIIB 

gene. Reduced NRO signal in the point 3 might be explained by decrease of transcription 

speed due to splicing, as this region contains an intron (Fig. 3.15.). Again there was a 

significant reduction of transcription in both Rct1 over- and underexpressing cells (Fig. 

3.15. A, lower panel, and B). Distribution profiles of the produced mRNA in wt cells 

correlate with the ones in rct1ΔpMG1 cells before and after thiamine treatment 

everywhere along the analyzed region (Fig. 3.15. C). Exceptions are points at the end of 

TFIIB ORF and putative SPAC16E8.17c terminating region (Fig. 3.15. C, points 8 and 10; 

point 9 seems to localize between poly(A) sites of both genes TFIIB and SPAC16E8.17c). 

NRO signals in points 8 and 10 are higher in Rct1 overexpressing cells comparing to wt 
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and Rct1 depleted cells. This increase in the amount of produced mRNA in Rct1 

overexpressing cells is more likely to be the result of numerous RNAP II molecules bound 

to chromatin (Fig. 3.11. D, TFIIB – 6 and 7); i.e. the rate of transcription as well as the 

amount of RNAP II decreases towards the end of the gene in wt and Rct1 underexpressing 

cells whereas the number of RNAP II molecules in Rct1 overexpressing cells grows 
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Fig. 3.15. NRO along the whole TFIIB gene. (A) DNA probes corresponding to different 

regions of TFIIB gene (exon-intron-exon) as indicated on the scheme (upper panel, NRO) were 

spotted on membrane and hybridized with α-[32p]-UTP-labelled RNA (lower panel). Primers that 

were used for ChIP with 4H8 antibody for this gene (Fig. 3.11. D) are shown at the bottom of the 

upper panel. Lower panel represents result of hybridization after four days exposure. (B and C) 

Quantification of the data presented in part A. (B) Radioactivity was quantified and normalized to 

background. Numbers on x-axis correspond to DNA probes as depicted in part A (upper panel). 

Numbers on y-axis in represent absolute signal intensities (normalized to background). (C) The 

same as in B, but values in each sample at the first position are set to one and others are expressed 

relative to position one. Numbers on x-axis correspond to DNA probes as depicted in part A 

(upper panel). Numbers on y-axis in B represent absolute signal intensities normalized to 

background intensities relative to position one. 
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significantly thereby producing more mRNA. Altogether NRO and ChIP analyses indicate 

that higher levels of RNAP II on chromatin in Rct1 overexpressing cells most likely 

correspond to its less processive form. 

 

3.3.3. Rct1 regulates histone acetylation during RNAP II transcription 
 

Results of total RNAP II ChIPs (Section 3.3.1.) showed that the amount of RNAP 

II bound to chromatin is increased under Rct1 overexpression and decreased in case of 

Rct1 underexpression. However, it was not clear how it affects the ongoing transcription. 

In order to answer this question, I decided to study transcriptional activity by monitoring 

histone H3 acetylated on lysines 9 and 12 (K9 and K12), as this histone mark strongly 

correlates with 5’ ends of actively transcribing genes (Liu et al, 2005). Thus, ChIP 

experiments were performed with antibodies against K9 and K12 acetylated H3 

(AcH3K9K12) and total H3 and with the aim to determine chromatin state in protein 

coding genes.  

Loci containing highly-transcribed cdc48 and TFIIB genes (Fig. 3.16. A and B, 

diagrams above; Section 3.3.1.) were chosen for the ChIP analysis. Same sets of primers 

described in Section 3.3.1. were used as they cover ORFs and neighbouring regions of the 

analyzed genes. The experiment was done in wt and rct1ΔpMG1 cells, collected before and 

after thiamine treatment. Each experiment was done once and followed by qRT-PCR 

analysis run in triplicates. Precipitated DNA was quantified by normalizing to the input. 

Resulting graphs represent AcH3K9K12 values normalized to total H3. 

Both graphs (Fig. 3.16. A and B) depict considerable reduction of H3 acetylation 

during transcription under the conditions of Rct1 overexpression; e.g. acetylation of 

H3K9K12 at promoter region is more than three times reduced in cdc48 (Fig. 3.16. A, 

point 1). Acetylation of H3K9K12 is also lower in Rct1 depleted cells than in wt, but in a 

lesser extent. The distribution pattern of H3K9K12 acetylation is very similar in Rct1 

depleted and wt cells. Besides, it also correlates with H3K9K12 acetylation distribution in 

Rct1 overexpressing cells.  
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Fig. 3.16. Rct1 affects acetylation of histone H3 at Lys 9 and 12 (K9 and K12). ChIPs 

of loci that include cdc28 (A) and TFIIB (B) were performed with anti-H3 antibody (against total 

H3), anti-AcH3K9K12 antibody (against acetylated Lys 9 and 12 of H3) and protein extracts from 

wt cells (grey bars), rct1ΔpMG1 cells gown without (black bars; Rct1 overexpression) and with 

thiamine (white bars; Rct1 depletion). In the diagrams above, ORFs are shown by arrows that 

define transcription direction and numbered bars below the genes represent the approximate 

positions of the qRT-PCR products. The numbers of the bars correspond to the numbers on the x-

axes. The y-axes show the relative H3K9K12 acetylation normalized to the total H3 (see Section 

2.11. for calculation). The experiment was done once. Coimmunoprecipitated DNA was analyzed 

in triplicates by qRT-PCR. Values of the negative controls, run with protein A Sepharose beads 

only, did not exceed one tenth for all samples (not shown).   
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The obtained results suggest that although upon Rct1 overexpression amount of 

RNAP II recruited to chromatin significantly increases, transcriptional activity is repressed 

and chromatin is deacetylated, hence, less active. Rct1 depletion seems to reduce both the 

amount of RNAP II cross-linked to DNA and gene activity. However, the influence of 

Rct1 underexpression on RNAP II cross-linking to chromatin and H3K9K12 acetylation is 

less significant compared to Rct1 overexpression most probably due to the insufficient 

depletion of Rct1.  
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4. Discussion 
 

Eukaryotic RNAP II is responsible for transcription of mRNAs and small non-

coding RNAs. The RNAP II CTD has a unique and evolutionary conserved sequence, 

which comprises multiple tandem heptapeptide repeats (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-

Ser7). Dynamic and reversible CTD phosphorylation turns it into a scaffold for the 

interaction of various transcription, mRNA-processing and histone-modifying factors. 

Ser2 and Ser5 residues were identified as main phosphorylation sites (Buratowski, 2009). 

Interestingly, PPIase Pin1/Ess1, which belongs to parvulin group, was found to recognize 

phosphorylated Ser-Pro pair of the CTD and it was suggested to change the conformation 

of the peptide bond (Xu & Manley, 2004), (Singh et al, 2009). 

Rct1, a nuclear multidomain cyclophilin from S. pombe, was reported to be 

involved in RNAP II transcription; i.e. Rct1 interacts with the CTD, negatively regulates 

CTD phosphorylation and RNAP II transcriptional activity (Gullerova et al, 2007). 

However, the mechanism of this regulation remained largely unknown. Therefore, I 

analyzed interaction of Rct1 with S. pombe CTD kinases and phosphatases. I could show 

that out of all known CTD kinases and phosphatases Rct1 interacts in vitro with Cdk9 and 

Lsk1, which represent p-TEFb in S. pombe (Fig. 3.1. B). Although Rct1 has an RRM 

motif, results of the same pull-downs, repeated with RNase A, indicated that the binding is 

not RNA mediated. Moreover, deletion analysis of Rct1 has revealed that only PPIase 

domain plays crucial role in interactions with the both kinases (Fig. 3.4. C). I also report 

that Rct1 binds non-kinase parts of Cdk9 and Lsk1 kinases (Fig. 3.3.). These domains 

have prolines, which can adopt either cis or trans conformations. Moreover, these 

prolines, which are potential targets of Rct1 PPIase activity, may be constituents of certain 

undefined motifs within Cdk9 and Lsk1. The PPIase activity is impossible to prove in vivo 

so far, however, it would be interesting to perform a bioinformatic analysis of Cdk9 and 

Lsk1 protein sequences/structures for the presence of putative Rct1 binding motifs. Thus, 

Rct1 might allosterically regulate Cdk9 and Lsk1, affecting their activity and ability to 

bind their interaction partners. These data suggest involvement of Rct1 in the processes 

regulated by these two kinases. P-TEFb is a major switch that facilitates RNAP II 

transition into productive elongation phase. Lsk1 is a main Ser2 kinase, whereas Cdk9 

seems to be responsible for multiple Ser2 phosphorylation. Besides, it phosphorylates Ser5 
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of the CTD as well as Spt5, transcription factor necessary for capping and escape from 

promoter-proximal pause into productive elongation (Pei & Shuman, 2003), (Wood & 

Shilatifard, 2006), (Karagiannis & Balasubramanian, 2007), (Viladevall et al, 2009), (Qiu 

et al, 2009), (Zhou et al, 2009), (Ni et al, 2008). 

In previous study Rct1 was reported to coprecipitate RNAP II (Gullerova et al, 

2007). Here I show that PPIase domain is crucial for the interaction between Rct1 and the 

RNAP II CTD (Fig. 3.4. C). Thus, PPIase domain of Rct1 might accelerate cis/trans 

isomerization of the proline residues in the CTD repeats. Recent structural studies support 

the importance of the CTD conformation; e.g. Pin1, capping enzyme Cgt1 and 3’-end 

processing factor Pcf1 bind the CTD only in trans proline conformation (Meinhart et al, 

2005). Moreover, the CTD is phosphorylated by Ser/Thr-Pro directed kinases, which 

might also be conformation specific. This assumption is supported by the fact that some of 

the known Ser/Thr-Pro directed kinases and phosphatases were shown to act only on the 

trans conformation  (Weiwad et al, 2000), (Brown et al, 1999), (Zhou et al, 2000b). As 

PPIase domain is responsible for Rct1 binding to the CTD, Cdk9 and Lsk1, it might also 

mediate interactions between the RNAP II CTD and its kinases Cdk9 and Lsk1.  

The interactions between Rct1 and CTD kinases Cdk9 and Lsk1, indentified 

through pull-downs, are not necessarily direct. Cdk9 is known to form stable complex with 

its cyclin Pch1 and methyltransferase Pcm1, whereas Lsk1 is a subunit of a trimeric 

complex, which also includes cyclin Lsc1 and newly found Lsg1 protein (Pei et al, 2003), 

(Pei et al, 2006), (Karagiannis & Balasubramanian, 2007), (personal communication with 

Sukegawa). The pull-downs of Rct1 with cyclins Pch1 and Lsc1 have shown that Rct1 

binds Lsc1, but not Pch1 (Fig. 3.5. B). I did not check if Pcm1 or Lsg1 interact with Rct1. 

Other possible Rct1 binding partner could be triphosphatase Pct1, a Cdk9 interaction 

partner detected in Y2H (Pei et al, 2003). Spt5 can also be an Rct1 target, because it is 

phosphorylated by Cdk9 and has similar to RNAP II C-terminal repeats (they also contain 

numerous Ser-Pro and Ser-Thr residues). Besides, phosphorylated Spt5 in humans was 

shown to bind Pin1 (Lavoie et al, 2001), (Kim & Sharp, 2001), (Pei & Shuman, 2003), 

(Yamada et al, 2006).    

Cdk9 facilitates transition of RNAP II into productive elongation phase by 

phosphorylating Ser2 residue of the RNAP II CTD and phosphorylating Spt5, hence, 

turning it into positive elongation factor (Pei et al, 2003), (Pei & Shuman, 2003), (Peterlin 

& Price, 2006), (Viladevall et al, 2009). Performed kinase assays revealed that Rct1 
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negatively regulates Cdk9 kinase activity towards the CTD. Addition of Rct1 to reaction 

mixture with Cdk9 and the RNAP II CTD caused reduction of CTD phosphorylation (Fig. 

3.8. B and C). The effect is most likely specific, as substitution of Cdk9 for Msc6 (Fig. 

3.9. B) or the CTD for H1 (Fig. 3.9. A) did not bring to any phosphorylation change of the 

substrates under the increasing amount of Rct1. The usage of Msc6 as a control might be 

questionable. Msc6 phosphorylates Ser5 of the CTD, whereas Cdk9 was shown to 

phosphorylate both Ser2 and Ser5 (Komarnitsky et al, 2000), (Lee et al, 2005), (Marshall 

et al, 1996), (Pei et al, 2003), (Zhou et al, 2000a), (Pei et al, 2006), (Viladevall et al, 

2009). One can argue that Rct1 does act directly on the CTD, but changes specifically 

conformation of the peptide bond between Ser2 and Pro3. This could explain the fact that 

Rct1 effect on the CTD is not detectable with Msc6 phosphorylation. However, previous 

study has shown an increase in Ser5 as well as Ser2 phosphorylation under the conditions 

of Rct1 decrease, providing the evidence for the fact that Rct1 influences phosphorylation 

of both serine residues (Gullerova et al, 2007). It is also important to note the questionable 

specificity of the antibodies used in the above-mentioned study: H14 and H5, against 

pSer5 and pSer2, respectively (Chapman et al, 2007), (Kim et al, 2009). Another 

performed kinase assay has shown that addition of Rct1ΔPPIase instead of full-length 

Rct1 did not cause any change in Cdk9 dependent CTD phosphorylation (Fig. 3.10. B and 

C). Together, the data suggest that Rct1 PPIase domain negatively mediates 

phosphorylation of the CTD by Cdk9.  

It also turned out that Cdk9 precipitated from Rct1 depleted cells showed increased 

kinase activity towards the RNAP II CTD (Fig. 3.7.). Rct1 does not seem to coprecipitate 

with Cdk9, as published data reveal that only Pch1 and Pcm1 form complex and 

coprecipitate with the kinase (Pei et al, 2006), (Guiguen et al, 2007). This suggests that 

Rct1 negatively affects Cdk9 kinase activity in vivo towards the CTD and probably Spt5, 

as a domain at Spt5 C-terminus is similar to the RNAP II CTD. It would be of high 

interest in future to test if Rct1 regulates phosphorylation of Spt5 by Cdk9.  

Based on the obtained data I suggest a model where PPIase domain of Rct1 binds 

Cdk9 and the RNAP II CTD simultaneously. These interactions and/or Rct1 PPIase 

activity restrain Cdk9 phosphorylation of the CTD. Cdk9 might also be specific to trans 

conformation of Ser2-Pro3 and Ser5-Pro6 peptide bonds in the CTD repeats and Rct1 

could inhibit its activity catalyzing isomerization of the bonds into cis conformation. 

Additionally, negative influence of Rct1 on Cdk9 activity in vivo under the conditions of 
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Rct1 overexpression could be explained by inaccessibility of Cdk9 to its activating kinase 

Csk1 (Pei et al, 2006).  

I could not perform same experiments described for Cdk9 with Lsk1 as there was a 

problem with Lsk1 expression in lsk-HA strain. Rct1 was shown to interact with this 

kinase; i.e. Rct1 binds non-kinase extension of Lsk1 with its PPIase domain (Fig. 3.2. B). 

Besides, Rct1 also interacts with cyclin of Lsk1, Lsc1 (Fig. 3.5. B). Therefore, I think it is 

important to pursue the study of Rct1 interaction with Lsk1/Lsc1. It would give more 

information on Rct1 regulation of RNAP II transcription. 

Previous data have shown that Rct1 negatively affects the CTD phosphorylation 

status and RNAP II transcription is reduced in rct1+/- cells (Gullerova et al, 2007). In this 

study the question of the exact transcription stage(s) (initiation, elongation or termination) 

affected by Rct1 was addressed. ChIP experiments performed with anti-RNAP II antibody 

on three genes revealed increased amount of RNAP II cross-linked to chromatin in cells 

overexpressing Rct1 and terminating regions turned out to be the most affected ones (Figs. 

3.11. and 3.12, B - 3-5; C - 4; C - 7). In contrast, in Rct1 depleted cells amount of RNAP 

II is decreased at all checked loci (Figs. 3.11. and 3.12). Thus, the data suggest that Rct1 

regulates transcription throughout whole gene. Rct1 overexpression, however, makes 

stronger impact on elongation and termination. This is in line with the results on Rct1 

interaction with Cdk9 and Lsk1, as they are also involved in these stages of transcription. 

The conclusion is also supported by the fact that RNAP II occupancy at initiation stage 

and behind predicted termination regions is similar in wt and Rct1 overexpressing cells 

(Figs. 3.11. and 3.12, A – 2 and 6; B – 5 and 6; C – 2 and 5), hence, initiation stage and 

RNAP II dissociating mechanism are less affected. Note that, although, Rct1 levels 

according to Western blot analysis with anti-Rct1 antibody (Fig. 3.11. A) are quite similar 

in wt and Rct1 depleted cells, RNAP II cross-linking is different especially in cdc48 and 

TFIIB (Fig. 3.11. C and B). This might be a result of metabolic changes caused by 

significant decrease of Rct1 level in cells initially overexpressing this protein. 

Performing ChIP analysis of Cdk9 recruitment under the conditions of Rct1 over- 

and underexpression in future would be a significant input into further studies of Rct1 role 

in RNAP II transcription. 

Surprisingly, ChIP analysis revealed that level and occupancy profile of pSer2 

RNAP II in Rct1 overexpressing cells is very similar to wt cells across the analyzed 

transcription units (Fig. 3.13. B and E). The trendlines of cross-linked pSer5 RNAP II in 
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mentioned samples are also in close agreement. Interestingly, the ratios of pSer5 RNAP II 

amounts between Rct1 overexpressing and wt cells are different in act1 and cdc48 genes. 

These results suggest that in cells with high Rct1 level Ser5 phosphorylation is more 

affected than that of Ser2. Occupancy of Ser2 phosphorylated RNAP II in Rct1 depleted 

cells undergoes significant alterations, i.e. in comparison to wt the amount is two to five 

times reduced. The cross-linking of Ser5 phosphorylated RNAP II in Rct1 

underexpressing cells is less affected in act1 than in cdc48, but the amount of the RNAP II 

is also lower than in wt cells. These data suggest that Rct1 overexpression does not cause 

significant changes in pSer2 RNAP II occupancy on a transcription unit. Under conditions 

of Rct1 depletion, however, the amount of the cross-linked pSer2 and pSer5 RNAP II 

reduces. Previous studies have shown that CTD phosphorylation increases under the 

conditions of Rct1 depletion (Gullerova et al, 2007). My data do not support the preceding 

article, but do not disprove it either. First, different antibodies were used in the studies. 

Second, in previous work total amount of phosphorylated RNAP II was measured, 

whereas I estimated phosphorylation of RNAP II bound to chromatin. The ChIP data do 

not contradict Rct1 ability to inhibit Cdk9 activity either, as Cdk9 is not the main RNAP II 

kinase. Rct1 binds both Lsk1, a major Ser2 kinase, and its cyclin Lsc1, therefore, it might 

positively regulate Lsk1 activity. The metabolic changes caused by Rct1 depletion could 

also affect CTD phosphatases. However, it would be necessary to repeat these experiments 

with different antibodies available for Ser2 and Ser5 phosphorylated RNAP II.    

Previous study has revealed reduction of RNAP II transcription in rct1+/- cells 

(Gullerova et al, 2007). RNAP II ChIP provides the information on RNAP II occupancy 

along transcription units, but not directly on the transcriptional activity of the analyzed 

genes. NRO analysis, that measures the ongoing transcription rate, has shown reduced 

transcription in both Rct1 over- and underexpressing cells (Figs. 3.14. and 3.15.). ChIP 

analysis of H3K9K12 acetylation (Fig. 3.16.), which is a mark for active transcription 

(Kurdistani & Grunstein, 2003), (Berger, 2007), reveals moderate decrease in histone 

acetylation in Rct1 depleted cells whereas in Rct1 overexpressing cells it decreases three 

to six times. Note that this ChIP experiment has been done once, but both genes show 

similar results. Together, the data suggest that in Rct1 overexpressing cells RNAP II loses 

its processivity and abundantly occupies inactive chromatin. In spite of the multiple RNAP 

II cross-linking across all analyzed genes the transcription is repressed, as RNAP II might 

have problems with forcing its way through transcription unit and might move very 
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slowly. The increased amount of RNAP II could be explained by two non-mutually 

exclusive mechanisms. On the one hand, positive feedback loop causes increased 

recruitment of the RNAP II to promoter due to the reduction of mRNA produced. On the 

other hand, as RNAP II occupancy at the initiation step seems to be the least affected by 

Rct1, new rounds of transcription proceed to start at a normal rate (note, analyzed genes 

are constitutively and highly transcribed), whereas at elongation and termination steps 

RNAP II confronts difficulties and loses its speed, hence, processivity. The absence of 

increased amounts of stalled RNAP II in the intergenic regions behind 3’ untranslated 

regions (Figs. 3.11. B and C and 3.12. A and B) supports the hypothesis that RNAP II has 

problems with moving along transcription unit, but not with dissociating from it. Note that 

data on H3 acetylation show that initiation phase is also affected by Rct1. More 

experiments will be performed to study the effect of Rct1 on the chromatin state by 

analyzing methylation marks.  

Cdk9 homologue in S. cerevisiae Bur1 was shown to regulate H2 

monoubiquitylation and H3K4 trimethylation (active transcription marks) via 

phosphorylation of its substrates Rad6 (E2 ubiquitin conjugase that modifies histone 

H2B), Spt5 and the RNAP II CTD (Kao et al, 2004), (Liu et al, 2005), (Laribee et al, 

2005), (Wood et al, 2005), (Zhou et al, 2009), (Chu et al, 2007). Thus, Rct1 inhibition of 

Cdk9 activity towards its specific substrates could affect transcription not only by direct 

influence on RNAP II or Spt5 phosphorylation, but also by causing histone modifications, 

which in turn could inhibit transcription. In addition, Rct1 could affect chromatin structure 

during transcription via its interaction with Lsk1. Its S. cerevisiae homologue Ctk1 is 

essential for trimethylation of H3K36, which is present throughout the coding regions of 

active genes (Krogan et al, 2003), (Xiao et al, 2003). Ctk1 also regulates H3K4 

trimethylation localizing it specifically to the 5’ ends of genes (Xiao et al, 2007). Thus, 

further studies on the Rct1 influence on Cdk9 activity towards the RNAP II CTD, Spt5 

and Rad6 as well as Rct1 interaction with Lsk1/Lsc1 should shed more light on the role of 

the cyclophilin in RNAP II transcription and histone modifications occurring in parallel. 
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Summary 

Rct1 is an essential and evolutionary conserved nuclear peptidyl-prolyl isomerase (PPIase) 

consisting of three distinct domains, the PPIase domain, an RNA recognition motif (RRM) and the 

C-terminal domain rich in arginine/serine and arginine/aspartate dipeptides (RS/RD). We 

performed mutational and deletion analysis and found that none of the domains alone is sufficient 

for the observed lethality upon rct1 deletion. However, strong phenotypes were observed upon 

deletion of either PPIase or RRM domain. Cells expressing Rct1 without the PPIase domain 

exhibit problems in mitotic cell cycle regulation, as revealed by the appearance of lagging 

chromosomes, entrance into second mitotic division without prior cell separation and septum 

formation, and sensitivity to mitotic spindle poison thiabendazole and DNA damage agents. We 

also demonstrate genetic interaction of Rct1 with the Dis2 phosphatase which is involved in 

mitotic chromosome segregation and which regulates activity of the G2 DNA damage checkpoint 

kinase Chk1. Altogether our data strongly suggest that Rct1, in addition to regulation of RNAP II 

transcription, is required for correct cell cycle progression by regulating one or more checkpoints. 
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Introduction 

Cyclophilins belong to a family of immunosuppressant receptor proteins called immunophilins, 

which in addition to cyclophilins include the FK506 binding proteins and the parvulins. 

Immunophilins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity; e.g. they catalyze cis 

to trans isomerisation of peptide bonds preceding proline (Barik, 2006; Schiene and Fischer, 

2000). As this could be a rate limiting step in protein folding the importance of this enzyme family 

is best highlighted by the fact that over 90% of prolyl imide bonds are in trans conformation 

(Barik, 2006; Schiene and Fischer, 2000). It is now clear that immunophilins are important cellular 

regulators of transcription (Gullerova et al., 2007; Shaw, 2007; Xu et al., 2003; Xu and Manley, 

2007a), pre-mRNA processing (Mesa et al., 2008), signalling and pathological changes (Bell et al., 

2006; Esnault et al., 2008; Finn and Lu, 2008; Lu, 2003; Lu, 2004; Lu and Zhou, 2007), chromatin 

modification and gene silencing (Arevalo-Rodriguez et al., 2000; Arevalo-Rodriguez and 

Heitman, 2005; Nelson et al., 2006), chromosome structure (Xu and Manley, 2007b), and genome 

stability (Wulf et al., 2002; Zacchi et al. 2002; Zheng et al., 2002; Hochwagen et al.  2005). 

Importantly, as best exemplified by the human parvulin Pin1, it seems that each immunophilin 

have multiple cellular targets and is therefore involved in regulation of multiple cellular processes 

(Esnault et al., 2008; Finn and Lu, 2008; Lu, 2003; Lu, 2004; Lu and Zhou, 2007; Lu et al, 2007; 

Wulf et al., 2005). However, in the yeast Saccharomyces cerevisiae none of the genes encoding 

immunophilins was found to be essential (Dolinski et al., 1997) which might indicate that they are 

not required under normal growth conditions or their functions are partially redundant. 

Most cyclophilins are small proteins, although complex proteins with several distinct domains 

have also been described (Pemberton and Kay, 2005; Romano et al., 2004). Multidomain 

cyclophilins from Arabidopsis AtCyp59 (Gullerova et al., 2006), Paramecium tetraurelia Kin241p 

(Krzywicka et al., 2001), and Schizosaccharomyces pombe Rct1 (Gullerova et al., 2007) have a 

unique domain organization, consisting of a PPIase domain at the N-terminus, followed by an 

RNA recognition motif (RRM) and a C-terminal domain enriched in charged amino acids and 
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serines or Arg/Ser (RS) and Arg/Asp (RD) dipeptides. P. tetraurelia Kin241p was identified as a 

protein involved in cell morphogenesis (Krzywicka et al., 2001). AtCyp59 is a nuclear protein and 

it was identified in a yeast two-hybrid screen as an interacting partner of Arabidopsis SR proteins 

(Gullerova et al., 2006), an important family of splicing regulators. As it also interacted with the 

C-terminal domain (CTD) of RNA polymerase II (RNAP II), a function for this protein at the 

interface between transcription and pre-mRNA splicing was proposed (Gullerova et al., 2006). 

Rct1 is the only immunophilin which is encoded by an essential gene. Interestingly, reduced levels 

of Rct1 in rct1 heterozygous cells resulted in considerably slower growth when compared to WT 

cells. Cell polarity and, as revealed by an enhanced entrance into meiosis under restrictive 

conditions, mitotic cell cycle were also affected in rct1+/- cells. As Rct1 protein levels were found 

to be decreased in rct1+/- cells deletion of one rct1 allele obviously led to haploinsufficiency, 

leading to a highly complex phenotype. Most strikingly, an increase in CTD phosphorylation at 

both Ser2 and Ser5 and an associated reduction of ongoing transcription have also been found in 

rct1+/- cells. Chromatin immunoprecipitation (ChIP) assays revealed that Rct1 is closely associated 

with the transcriptionally active chromatin. Ectopic expression of Rct1 in rct+/- cells resulted in 

complementation of all growth, morphological and CTD phosphorylation defects. Together, these 

data suggested that Rct1 is likely regulating several different processes in the cell (Gullerova et al., 

2007). 

Given that Rct1 is a multidomain cyclophilin, we set out to dissect function of individual Rct1 

domains. Therefore, we performed mutational and deletion analysis of Rct1. Surprisingly, we 

found that none of the domains alone is essential for cell viability. However, strong phenotypes 

were observed upon deletion of either PPIase or RRM domain. Here, we present data which 

indicate that, in addition to previously described effect of Rct1 depletion on RNAP II transcription 

(Gullerova et al., 2007) Rct1 likely regulates activities of several other proteins which are involved 

in cell cycle regulation. 
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Results 

Rct1 is a complex cyclophilin consisting of three structuraly distinct domains, the N-terminal 

PPIase domain, the RNA recognition motif (RRM) and the C-terminal domain rich is Arg/Ser (RS) 

and Arg/Asp (RD) dipeptides (Gullerova et al., 2007). Rct1 is the only cyclophilin which is 

encoded by an essential gene, raising the question whether the whole protein or only a specific 

Rct1 domain is required for cell viability. Therefore, we performed mutational and deletion 

analyses of Rct1. All constructs were made in a plasmid (Gullerova et al., 2007), where the 

expression of Rct1 is controlled by the thiamine repressible nmt1 promoter. Plasmids were 

transformed into rct1 heterozygous strain (Gullerova et al., 2007) and analyzed for 

complementation of the rct1 disruption by either tetrad dissection or random spore analysis. 

 

Mutational and deletion analyses of the PPIase domain 

As evident from the alignment in Fig. S1, most amino acids which are thought to be important for 

catalytic activity of cyclophilins, are not conserved in Rct1 (see also Pemberton and Kay, 2005). 

This raises an interesting question whether PPIase domain and its assumed PPIase activity are 

required for Rct1 function or the PPIase domain serves solely to interact with other proteins (thus 

acting as a chaperone; Barik, 2006), whereby the main function of Rct1 would be executed by the 

RRM and/or the RS/RD domain. Single and combined point mutations in the PPIase domain and 

possible consequences thereof are listed in Fig. S2A and mutated amino acids are highlighted in 

boxes in Fig. S1. Tetrad analysis of rct1 heterozygous cells expressing Rct1 with single or 

combined point mutations revealed that none of the mutations results in loss of viability or 

significant reduction of growth rates (Fig. S2D). Growth analysis at different temperatures (data 

not shown) and microscopic examination of cells stained with aniline blue (to visualise cell wall 

and septum) and Hoechst (Fig. S2C) did not reveal any difference between individual mutants and 

WT cells. From these analyses it seems that the PPIase domain of Rct1 is not essential and that the 

loss of viability upon rct1 deletion is mediated by other Rct1 domain(s). However, it is not 
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excluded that our mutagenesis approach did not hit the most important residues in the PPIase 

domain. Therefore, to get further insight into the function of the PPIase domain we constructed 

three Rct1 deletion mutants fused to HA tag (Fig. 1A) and transformed them into rct1 

heterozygous cells. All deletion mutants (including those lacking RRM domain; see Fig. S3A) 

were found to be expressed at similar levels in diploid cells, without evidence for protein 

instability (supplementary material Fig. S3B) and surprisingly produced viable haploids (Fig. 1B 

and Fig. S3A). Growth analysis revealed that haploid strains expressing Rct1 deletion without the 

PPIase domain (pMG4), and without PPIase and RS/RD domains (pMG6) are viable at 32oC. 

However, their growth was slightly inhibited at 20oC and rct1Δ[pMG6] cells were strongly 

affected at 36oC (Fig. 1B). In addition, liquid growth assay revealed that their generation times 

were approximately two times longer as compared to WT cells (Fig. 1C). Deletion of the RS/RD 

domain only (pMG2) did not show any effect on cell viability and growth which was similar to 

that of WT cells (Fig. 1B,C). 

Rct1 is a nuclear protein (Gullerova et al., 2007) and it remains in the nucleus throughout the cell 

cycle (Fig. 1D). Therefore, to find out whether growth defects observed with Rct1 deletion 

mutants are due to miss-localization of proteins, we performed localization analysis by using 

indirect immunofluorescence. Cells were grown overnight in EMM, fixed, and immunostained by 

using anti-HA antibodies. Clearly, deletion of RS/RD domain (pMG2) resulted in nuclear and 

cytoplasmic localization (Fig. 1D), indicating that this domain, like in its Arabidopsis homolog 

AtCyp59 (Gullerova et al., 2006), is important for efficient nuclear import. Expression of the RRM 

domain only (pMG6) resulted in predominant cytoplasmic localization of the protein, although low 

levels of nuclear staining were also observed (Fig. 1D). Finally, deletion of the PPIase domain 

(pMG4) did not affect nuclear localization of the protein (Fig. 1D) indicating that the observed 

growth defects are due to deletion of the PPIase domain. 
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Cell cycle and mitotic cell division are affected upon deletion of the PPIase domain 

Since rct1Δ[pMG4] and rct1Δ[pMG6] cells displayed strong growth defects we next analyzed 

their morphology. Cells were grown overnight in EMM medium, diluted to fresh EMM and YE5S 

medium and further grown to mid-exponential phase. Cells were fixed with ethanol and analyzed 

by microscopy after DNA and cell wall staining. As shown in Fig. 2A, rct1Δ[pMG2] cells 

expressing Rct1 without the RS/RD domain are of the same size as haploid WT or rct1Δ[pMG1] 

cell which express full length Rct1 protein. Deletion of the PPIase domain (rct1Δ[pMG4] strain), 

in contrast to PPIase domain point mutants caused severe phenotype characterised by high 

proportion of extremely elongated cells with the average length being up to five times that of WT 

cells. Many bi or tetranucleated-like cells without indication of septum formation or cells with 

irregular chromosome segregation, nuclear fragmentation or hyper-condensation were 

predominantly observed (Fig. 2A). Thus, the cell growth and mitosis and/or cell cycle seem to be 

uncoupled in cells lacking the PPIase domain of Rct1. Similar phenotype was observed with 

rct1Δ[pMG6] strain (Fig. 2A) or previously with rct1Δ cells expressing full length Rct1 after 

prolonged growth in the presence of thiamine (Gullerova et al., 2007). WT strains rct1[pMG1] and 

rct1[pMG4] overexpressing Rct1 or Rct1 without the PPIase domain, respectively did not show 

any aberrant morphology or DNA staining indicating that the observed phenotypes are due to the 

PPIase deletion and not due to the dominant negative effect caused by overexpression of truncated 

protein. In S. pombe major cell cycle regulator is Cdc2 kinase which is regulated by reversible 

phosphorylation on tyrosine 15 (Calonge and O’Connell, 2008; Hochegger et al., 2008; Karlson-

Rosenthal and Millar, 2005; Kelogg, 2003; O’Connell and Cimprich, 2005). Analyses of Cdc2 

levels and Tyr15 phosphorylation and Cdc2 activity towards the histone H1 in rct1Δ[pMG4] and 

rct1Δ[pMG6] cells did not reveal significant changes as compared to WT or rct1Δ[pMG1] and 

rct1Δ[pMG2] cells (Fig. 2B and data not shown). This data indicated that Cdc2 and its regulators 

Wee1 and Cdc25 are not likely candidates being affected by deletion of the PPIase domain of 

Rct1. 
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DNA staining of rct1Δ[pMG4] and rct1Δ[pMG6] cells revealed that many cells exhibit unusual 

DNA staining patterns (Fig. 4A). This phenotype is reminiscent of some DNA damage checkpoint 

mutants indicating that these cells might have defect in DNA repair and checkpoint responses to 

DNA damage. Therefore, we analyzed sensitivity of these strains to genotoxic drugs camptothecin 

(Cpt), hydroxyurea (HU), and 4-nitroquinoline 1-oxide (4-NQO). Serial dilutions of overnight 

cultures grown in EMM were spotted on YE5S plates containing indicated concentration of the 

above drugs. Plates were incubated for three days at 32oC. Figure 2C demonstrates that 

rct1Δ[pMG4] and rct1Δ[pMG6] strains are hypersensitive to Cpt and 4-NQO and less so to HU. 

As controls we used rad3Δ and chk1Δ strains which are known to be sensitive to HU and 4-NQO 

and which did not show any growth under conditions investigated here (Fig. 2C). Together, the 

data presented in Figure 2 indicate that Rct1, in particular its PPIase domain, is required for 

responses to DNA damage and correct cell cycle progression. 

 

Deletion of PPIase domain results in abnormal chromosome segregation 

From the DNA staining shown in Figure 2A it was not entirely clear whether deletion of 

the PPIase domain causes defects in mitotic chromosome segregation or the observed 

scattered DNA is a result of nuclear fragmentation or both. Therefore, mid-log phase cells 

were fixed and the chromosomal DNA and microtubules were stained with Hoechst and 

anti-tubulin antibodies, respectively. In WT cells several microtubules can be observed at 

the interphase, which upon mitotic entry reorganize and form mitotic spindle which 

separates sister chromatids to the opposite poles of the cell (Sawin and Tran, 2006; see 

Fig. 3A). Microtubules in rct1Δ[pMG4] cells did not show any aberrant morphology. 

However, staining of the DNA revealed lagging chromosomes/chromatides on mitotic 

spindle (Fig. 3B, i), scattered chromosomes along the spindle (Fig. 3B, ii) or disattached 

chromosomes from the kinetochore before the end of mitosis (Fig. 3B, iii). In addition, 
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many cells contained two (and in rare cases three) mitotic spindles, indicating that cells 

entered second and third mitotic division without prior cell separation (Fig. 3B, iv). In 

order to find out if this effect is due to incorrect localization or duplication of spindle pole 

body (SPB) we crossed rct1Δ[pMG1], rct1Δ[pMG2], and rct1Δ[pMG4] strains with cells 

expressing SPB marker Sid4 fused to GFP (Tomlin et al., 2002). As shown in Figure 4B, 

SPB in rct1Δ[pMG4] cells were, like in WT or rct1Δ[pMG1] and rct1Δ[pMG2] cells (Fig. 

4A), correctly duplicated and localized on the poles of the mitotic spindle (see also Fig. 

S3) although DNA staining revealed hyper-condensed chromatin (Fig. 4B, i), lagging 

chromosomes (Fig. 4B, ii), and all three chromosomes on one pole of the cell (Fig. 4Biii). 

Also, tetranucleated-like cells clearly contained four SPBs indicating that rct1Δ[pMG4] 

cells either entered (Fig. S3, iii) or finished (Fig. S3, iv) second mitotic division without 

septum formation and cell separation. 

Fission yeast mutants that are defective in kinetochore-microtubule attachment are usually 

hypersensitive to microtubule destabilizing drugs. Therefore, we examined sensitivity of 

rct1Δ[pMG4] and rct1Δ[pMG6] cells to thiabendazole (TBZ). Overnight cultures grown 

in EMM were serially diluted and spotted on YE5S plates with (10 µg/ml) or without 

TBZ. Clearly, both strains were hypersensitive to TBZ at 32oC (Fig. 4C). In contrast, 

rct1Δ[pMG1] and rct1Δ[pMG2] cells, which did not show any indication for defects in 

mitotic chromosome segregation as well as WT and WT cells overexpressing Rct1 

(rct1[pMG1]) were not sensitive (Fig. 4C). Altogether, the data presented in Figs. 3 and 4 

and in supplementary material Fig. S4 suggest that normal kinetochore-microtubule 

attachment is partially impaired in cells expressing Rct1 without the PPIase domain. 
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Genetic interaction of Rct1 with the Dis2 phosphatase 

Phenotype of the rct1Δ[pMG4] cells described above indicated that Rct1 is required for correct 

mitotic chromosome segregation and for responses of cells to DNA damage. Similarity of this 

phenotype with the previously described cold-sensitive (c.s.) mutants in dis1, dis2, and dis3 genes 

(Ohkura et al., 1988) raised a possibility that Rct1 interacts with some of them. To this end dis1Δ, 

dis2Δ, and dis3-54 strains were transformed with the plasmid expressing Rct1 fused to FLAG tag 

and analysed for complementation of the c.s. phenotype. Cells were grown in EMM media and 

serial dilutions were spotted on EMM plates and incubated at 32oC and 20oC. Figure 5 

demonstrates that overexpression of Rct1 does not rescue cold-sensitivity of dis1Δ (Fig. 5A) and 

dis3-54 (Fig. 5B) mutants but it does that of dis2Δ strain (Fig. 5C). In addition, sensitivity of dis2Δ 

strain, but not that of dis1Δ and dis3-54 strains, to TBZ was also rescued by Rct1 overexpression 

(Fig. 5). 

Dis2, in addition to its role in mitotic chromosome segregation, was also reported to regulate 

activity of the G2 DNA damage checkpoint kinase Chk1. Overexpression of Dis2 results in 

hypersensitivity to DNA damaging drugs MMS and 4-NQO. Consistent with this finding dis2Δ 

cells were also found to be hypersensitive to DNA damaging drugs MMS and 4-NQO, but not to 

HU which induces S-phase checkpoint (den Elzen and O’Connell, 2004). By contrast to previously 

published insensitivity of dis2Δ cells to HU we found that dis2Δ and chk1Δ cells are, like rad3Δ 

cells, hypersensitive to 7.5 mM HU. In addition, we also found that dis2Δ cells are hypersensitive 

to Cpt (Fig. 6). Therefore, we analysed sensitivity of Rct1 overexpressing dis2Δ strain to HU and 

Cpt. As shown in Figure 6, dis2Δ cells overexpressing Rct1 were no longer sensitive to either HU 

or Cpt further supporting involvement of Rct1 in regulation of DNA damage checkpoint responses. 
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Cytokinesis is affected upon deletion of the RRM domain or by introduction of three point 

mutations in the RNP1 motif of the RRM 

Sequence analysis of Rct1 revealed that the RRM domain is much more conserved between S. 

pombe and higher eukaryotes than the PPIase domain (Gullerova et al., 2006; see also Fig. S5A). 

Each RRM contains two highly conserved motifs, RNP1 and RNP2, and mutational analyses 

showed that aromatic amino acids in RNP1 at the positions 3, 5, and 8 are important for RNA 

binding (Mayeda, et al., 1994). Therefore, three point mutations in the RNP1 motif of Rct1 were 

introduced (Fig. S5A). All three mutant Rct1 proteins expressed in rct1 heterozygous cells 

produced viable rct1Δ spores. Haploid rct1Δ[pMGR1] and rct1Δ[pMGR2] cells expressing 

Rct1R1 and Rct1R2 proteins, respectively were comparable to WT cells in all growth assays (Fig. 

7A and B; cells expressing Rct1R2 did show slight decrease in growth rates in liquid medium at 

32ooC) and their morphology, as revealed by aniline blue and DNA staining, was also comparable 

to that of WT cells (Fig. 7C). By contrast, rct1Δ[pMGR3] strain expressing Rct1R3 protein 

mutated in all three aromatic residues in RNP1, although being able to complement rct1 deletion, 

resulted in strongly reduced growth (Fig. 7A and B) an effect which was further elevated by cold 

(Fig. 7A). Interestingly, microscopic examination of cells grown at 32oC revealed the inability of 

daughter cells to separate following mitosis resulting in branched chains of cells. Similarly, 

rct1Δ[pMG3] and rct1Δ[pMG5] strains expressing Rct1 without the RRM domain showed 

comparable cytokinesis defect. Like for rct1Δ[pMGR3] cells, their growth was inhibited at low 

temperature (Fig. 7A) and it was almost fully abolished in liquid medium growth assay (Fig. 7B). 

Because these cells strongly flocculated in liquid culture, this precluded further analysis. DNA 

staining on ethanol fixed cells revealed that in all three strains the morphology of nuclei was like 

in WT cells, indicating that the mitotic chromosome segregation was not affected (Fig. 7C). 

However, rct1Δ[pMGR3] cells were hypersensitive to the actin depolymerising drug Latrunculin 

A (Fig. 7D). In addition, rct1Δ[pMGR3] strain was also slightly sensitive to S-phase inhibitors Cpt 

and HU as well as to genotoxic drug 4-NQO (Fig. S5D). As all three mutated proteins as well as 

RMM deletion mutant (pMG5) localized to the nucleus (data not shown and Fig. 7E), and were 
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expressed at the comparable levels (Fig. S5C and Fig. S3B), the observed phenotypes of 

rct1Δ[pMGR3], rct1Δ[pMG3] and rct1Δ[pMG5] cells must be due to three mutations in Rct1 

RNP1 motif and deletion of the RRM domain. Finally, WT haploid or rct1+/- diploid cells 

expressing Rct1 with three point mutations or without the RRM domain were also analyzed but we 

could not find comparable phenotype (Fig. S5B and data not shown) which indicated that they do 

not confer dominant negative effect. 
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Discussion 

By using mutational and deletion approaches we analysed the role of PPIase and RS/RD domains 

of the essential S. pombe nuclear multidomain cyclophilin Rct1. Cells lacking RS/RD domain did 

not show any difference compared to WT cells in all physiological assays performed, although 

Rct1 without RS/RD domain is localised in both the nucleus and the cytoplasm. This is consistent 

with the results obtained with the Arabidopsis Rct1 homolog, AtCyp59, of which the C-terminal 

RS/RD domain is likewise required for efficient nuclear localisation of the protein (Gullerova et 

al., 2006). Mutational and deletion analysis revealed that both, PPIase and RRM domains are 

likewise not essential for cell viability. From the deletion and mutational analyses of Rct1 we can 

conclude that depletion of the whole Rct1 protein is necessary for the observed lethality (Gullerova 

et al., 2007). However, deletion of the whole PPIase domain does confer strong phenotype which 

is characterised by strongly elongated cells with multiple nuclei, incorrect chromosome 

segregation, and sensitivity to genotoxic and microtubule destabilising drugs. Many rct1Δ[pMG4] 

cells proceeded with the second nuclear division without cytokinesis, resulting in three- or tetra-

nuclear cells. As revealed by actin staining these cells do assemble contractile actomyosine ring 

but septation and/or septum degradation seem to be affected. This, together with their sensitivity to 

genotoxic drugs, indicates that Rct1 likely regulates component(s) of the various cell cycle 

checkpoints. 

Presented data indicate that cells lacking PPIase domain fail to regulate correct progression 

through the cell cycle. Control of the cell cycle progression is achieved by the Cdc2 kinase which, 

if active, can promote mitosis from any point in the cell cycle. The activity of Cdc2 depends on the 

phosphorylation status of Tyr15. Wee1 kinase phosphorylates Tyr15 during the G2 phase and this 

prevents entry into mitosis until cells reach appropriate mass and size. This inhibitory 

phosphorylation is removed by the Cdc25 phosphatase which itself is inactivated by the 

phosphorylation by the checkpoint effector kinases Chk1 (in case of DNA damage) and Cds1 (in 

case of replication block) (Calonge and O’Connell, 2008; Hochegger et al., 2008; Karlson-
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Rosenthal and Millar, 2005; Kelogg, 2003). Cell cycle checkpoints are activated if cells encounter 

problems in DNA replication, chromosome segregation or if the DNA damage occur (Calonge and 

O’Connell, 2008; Clarke and Allan, 2009; Hochegger et al., 2008; Karlson-Rosenthal and Millar, 

2005; Kelogg, 2003). From our current analyses it is difficult to predict which of the cell cycle 

regulators would be target for Rct1. Analysis of Cdc2 levels and phosphorylation status of Tyr15 

in rct1Δ[pMG4] and rct1Δ[pMG6] cells did not reveal significant changes as compared to WT, 

rct1Δ[pMG1], and rct1Δ[pMG2] cells. Therefore, it is unlikely that Rct1 directly regulates 

activities of Cdc2, Cdc25, and Wee1. However, we could show that Rct1 interacts genetically with 

Dis2, one of the two PP1-type phosphatases in fission yeast. Dis2 was identified in a genetic 

screen for factors required for normal chromosome segregation during mitosis (Ohkura et al., 

1988, 1989) and its activity is regulated by Cdc2-mediated phosphorylation (Yamano et al., 1994). 

More recently, it has been shown that Dis2 is also required for G2 checkpoint release (den Elzen 

and O’Connell, 2004). Dis2 dephosphorylates Chk1 kinase, which leads to Chk1 inactivation and 

re-entry into mitosis following repair of DNA damage in the G2 phase. The mechanism how Rct1 

contributes to chromosome segregation and genome stability remains elusive. As overexpression 

of Rct1 in dis2Δ cells rescued their cold-sensitivity, sensitivity to TBZ, HU, and Cpt it is unlikely 

that Rct1 regulates Dis2 itself. One possibility is that it could in some way change the activity of 

second PP1 phosphatase Sds21, which like Dis2 is not essential (Ohkura et al., 1989). 

Overexpression of Sds21 causes cell cycle delay indicating its involvement in cell cycle regulation 

and possible functional overlap with the Dis2. 

Involvement of PPIases in cell cycle regulation has already been reported. It has been shown that 

overexpression of parvulin-type PPIase Pin1 in S. pombe causes a severe growth defect and a 

significant G1 delay during cell cycle progression. However, pin1Δ cells were not sensitive to 

either UV-C or bleomycin suggesting that S. pombe Pin1 does not play a major role in DNA 

damage checkpoint control (Huang et al., 2001). Human Pin1 seems to be required for p53 

regulation in response to DNA damage (Wulf et al., 2002; Zacchi et al., 2002; Zhang et al., 2002). 

In addition, human Pin1 interacts and regulates the activities of several mitotic phosphoproteins 
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and inhibits G2/M progression in Xenopus extracts. Depletion and overexpression of Pin1 in HeLa 

cells results in mitotic arrest (Lu et al., 1996). An additional immunophilin, the S. cerevisae FK506 

binding protein Fpr3, was found to prevent premature adaptation to DNA damage by maintaining 

recombination checkpoint activity during meiosis. Interestingly, Fpr3 functions in the checkpoint 

by regulating PP1 localization and counteracting its activity in vivo (Hochwagen et al., 2005). 

Thus, these and our study clearly show that immunophilins are important regulators of diverse cell 

cycle components. The fact that neither Pin1 nor Fpr3 are essential for viability suggests that their 

functions might not be required under normal growth conditions. In addition, as in most cases 

effects of PPIases on cell cycle are rather mild it is also plausible that they have partially 

overlapping function.  

We could show previously that partial depletion of Rct1 causes deregulation in RNP II CTD 

phosphorylation which is accompanied by the reduction in the RNAP II transcriptional activity 

(Gullerova et al., 2007). Our unpublished data indicate that this effect is likely mediated by Rct1 

regulating activities of two CTD kinases Cdk9 and Lsk1 (T. Skrahina and Z. J. Lorkovic, 

unpublished). Both, Cdk9 and Lsk1 have conserved functions in the transcription cycle of RNAP 

II by regulating phosphorylation of CTD Ser2. However, it is unlikely that diverse phenotypic 

changes observed upon deletion of specific Rct1 domains are due to the reduced transcriptional 

activity of the RNAP II or changes in CTD phosphorylation. Rct1 probably has functions in 

several processes, as shown here by its involvement in cell cycle regulation and genome stability, 

in addition to transcription regulation. Our efforts to identify Rct1 interacting proteins by the TAP-

tagging approach failed, indicating that Rct1 regulates its targets by transient or weak interactions 

without assembly into stable protein complexes. Indeed, we found that Rct1 interacts either 

physically or genetically with several proteins involved in transcription, pre-mRNA splicing, cell 

cycle regulation and chromosome segregation (H. Kautmanova, T. Skrahina and Z. J. Lorkovic, 

unpublished and this work). One common characteristic of all Rct1 interacting proteins is that they 

are kinases, phosphatases or proteins which are regulated by phosphorylation, suggesting that Rct1 

has important role in regulating protein phosphorylation/dephosphorylation in diverse cellular 
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processes. What are the physiological consequences of these interactions and how Rct1 contributes 

to the described process mechanistically remains to be established. Yet, presented data clearly 

implicate Rct1 in regulation of several cellular processes, in particular in regulation of mitotic cell 

cycle and its connection with the RNAP II transcription. 
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Experimental procedures 

S. pombe strains and handling of cells 

Genotypes of strains used are listed in Table 1. Media as well as standard genetic methods used 

throughout were described previously (Moreno et al., 1991; Forsburg and Rhind, 2006). Rct1Δ 

haploid cells expressing mutated versions of the protein or its deletion mutants were generated by 

tetrad dissection (point mutants) or random spore analysis (deletion mutants). If not stated 

otherwise, cells for all experiments were grown at 32oC. Geneticin (G418, Gibco) and ClonNat 

(BioAgents) were used at the final concentration of 100 µg/ml. 

 

Plasmids 

All plasmids were prepared by inserting rct1 mutations or deletions tagged with hemagglutinine 

(HA) into pMG (Gullerova et al., 2007).  

Plasmid encoding Rct1 without RS/RD domain was created by amplifying respective rct1 part 

from pMG1 by using following primers: forward, 5’gtcagtctcgagatgtctgtactaattgaa-3’, which 

introduces XhoI site in front of ATG codon and reverse,  5’-

gtcagtgtcgactcatgcgtaaggcacatcatacggatacacgctttgggaaaaatctacgtg-3‘ which encodes HA tag, stop 

codon, and SalI site, in the described order. The PCR product was cut with XhoI and SalI and 

ligated into Xho/SalI cut pMG, resulting in pMG2. To construct the plasmid expressing HA tagged 

PPIase domain of Rct1, corresponding domain was PCR amplified with forward oligonucleotide 

5’-gactagctcgagatgtctgtactaattgaaactacagttgg-3’, which introduces XhoI site in front of ATG 

codon, and reverse oligonucleotide  

5‘gactagcccgggtcatgcgtagtcaggcacatcatacggataactagtttccttctctctttgcaatttatcttccg-3‘, which encodes 

HA tag, stop codon, and XmaI site, in the described order. The PCR product was cut with XhoI 

and XmaI and ligated into Xho/XmaI cut pMG, resulting in pMG3. Plasmid encoding Rct1 

without PPIase domain (pMG4) was created by amplifying respective rct1 part from pMG1 by 
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using following primers: forward 5’-gacgacctcgagatggaggcagaagca-3’, which introduces XhoI site 

in front of ATG codon, and reverse,  5’-ctcatctaaaccactttctaa-3‘ which primes downstream of the 

HA tag in the pMG1. PCR product was cut with XhoI and XmaI and ligated into XhoI/XmaI 

linearized pMG, resulting in pMG4. Plasmid encoding Rct1 lacking RRM domain was created by 

fusing same PCR product used for pMG3 construction, which also has SpeI site in front of HA tag. 

The PCR product was cut with XmaI and SpeI. RS domain of Rct1 was amplified using pMG1 as 

a template. Olidonucleotides used for RS domain amplification were: forward 5’-

gactagactagtgctcgttacagacaatattacaactcc-3’, that introduces SpeI site, and reverse 5’-

ctcatctaaaccactttctaa-3‘. Amplified RS domain was cut with SpeI and XmaI, ligated with PCR 

mentioned before (PPIase domain) through SpeI site. The product of ligation was cloned into 

XhoI/XmaI opened pMG resulting in pMG5 plasmid. To generate plasmid expressing RRM 

domain only, RRM encoding region was amplified with the same forward primer as described for 

pMG4 and with 5’-gactagcccgggtcatgcgtagtcaggcacatcatacggatacacgctttgggaaaaatctacg-3‘ reverse 

primer, which introduces XmaI site after HA tag and the stop codon. The PCR product was cloned 

into XmaI/XhoI digested pMG resulting in pMG6. To construct plasmid expressing Rct1 fused to 

FLAG tag Rct1 coding region was amplified with following primers: forward 5’-

gactagctcgagatgtctgtactaattgaaactacagtt-3’ and reverse 5’-

gactagcccgggctatttatcatcgtcatctttataatctcgatatctatcatctctataacg-3’ which encodes FLAG tag, stop 

codon, and XmaI site, in the described order. PCR product was cut with XhoI/XmaI and ligated 

into pMG resulting in pMG1F. 

 

In vitro mutagenesis 

Point mutations in PPIse domain of rct1 were introduced by using QuickChange II XL Site-

Directed Mutagenesis Kit from Stratagene. Rct1 coding region together with the HA tag was sub-

cloned from pMG1 into pGEX-4T-1 as an XhoI/XmaI fragment and resulting plasmid was used 

for PCR amplification using mutagenic oligonucleotides. PCR conditions used were: 1 min at 



- 139 - 

 

92oC; 20 sec 92oC, 30 sec 20oC, 30 min 68oC, 15 times; 45 min 68oC. After sequencing same 

fragment was cloned back into pMG plasmid, resulting in pMGM1-M9. Sequences of mutagenic 

oligonucleotides are available on request and the amino acids mutated are indicated in 

supplementary material Fig. S1 and S2A. 

 

Immunofluorescence and microscopy 

Cell wall and septum staining on living or ethanol fixed cells was done with aniline blue. If not 

stated otherwise cells were grown until mid-exponential phase in YE5S or EMM media and 

analyzed by microscopy (Zeiss, Axioplan epifluorescence microscope) by using differential 

interference contrast (DIC) optics and 100 × oil objective. Immunofluorescence for detection of 

HA tagged Rct1 point and deletion mutants was performed on formaldehyde fixed cells grown in 

EMM medium as described (Rabitsch et al., 2004). Rat anti-HA monoclonal antibody (3F10, 

Roche) was used at 1:100 dilution. Secondary antibody was goat anti-rat Alexa Flour 568 

(Molecular Probes) at 1:100 dilution. Immunodetection of tubulin with TAT1 antibody (1:10 

dilution; Woods et al., 1989) was carried out as described (Mata and Nurse, 1997). Secondary 

antibody was goat anti-mouse Alexa Flour 568 (Molecular Probes) at 1:100 dilution. DNA was 

visualised by Hoechst 33342 (Molecular Probes) staining. Images were acquired by a Zeiss 

Axioplan epifluorescence microscope equipped with CCD camera by using 100 × oil objective and 

they were further processed by using Adobe Photoshop. 

SDS-PAGE and Western blotting 

Protein extracts were prepared as described (Gullerova et al., 2007). Proteins were separated by 

SDS-PAGE (10% gels), transferred to the PVDF membrane (Millipore), followed by Western 

blotting according to standard procedures. Rat anti-HA mAb (3F10) (Roche), mouse anti-cdc2 

mAb (PSTAIR; SigmaAldrich), rabbit polyclonal anti-cdc2Y15 (Cell Signalling), mouse anti-

tubulin mAb (SigmaAldrich), and rabbit anti-Fcp1 (kind gift of M. Kimura) were used at 1:1,000 
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dilutions. Secondary antibodies, goat anti-rat (SigmaAldrich), goat anti-mouse (Bio-Rad), and goat 

anti-rabbit (Bio-Rad) IgGs conjugated with horseradish peroxidase, were used at 1:10,000 

dilutions. Chemiluminescence kit (AmershamPharmacia Biotech) was used for developing the 

blots. 
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Figure legends 

Fig. 1. Growth analyses of Rct1 deletion mutants lacking PPIase and RS/RD domains. 

A. Schematic presentation of all Rct1 deletion mutants fused to HA tag used in this study. 

B. Plate growth assay of PPIase and RS/RD domain deletion strains at different temperatures. 

Cells were grown overnight in EMM medium and serial dilutions were spotted on YE5S plates. 

Plates were incubated at indicated temperatures for three (32oC, and 36oC) or five days (20oC). 

C. Growth analysis in liquid medium. Overnight cultures grown in EMM were diluted to an OD600 

of 0.1 and further incubated in EMM at 32oC. ODs were measured every 2.5 hours. 

D. Cellular localization of Rct1 deletion mutants lacking PPIase and RS/RD domains. Cells were 

grown overnight in EMM medium, fixed, and processed for indirect immunoflourescence with 

anti-HA antibody. Images were acquired with the cooled CCD camera with the 100 × oil objective. 

WT cells were used as a negative control. Localization of full length Rct1 through the cell cycle is 

shown. Because of the strong growth defect of rct1Δ[pMG6] haploid strain in liquid medium we 

used rct1 heterozygous diploid cells transformed with pMG6. 

 

Fig. 2. Morphology and sensitivity to genotoxic drugs of strains expressing Rct1 deletions without 

PPIase and RS/RD domains. 

A. Indicated haploid strains were grown in EMM to mid-exponential phase (OD600 0.5), fixed with 

ethanol, and stained with aniline blue (cell wall and septa) and Hoechst (DNA). Images were 

acquired with the cooled CCD camera with the 100 × oil objective. Bar, 15 µm. 

B. Deletion of the PPIase domain does not affect Cdc2 levels and phosphorylation. Western blots 

of protein extracts prepared from indicated strains grown in EMM were probed with antibodies 
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against Cdc2 and phosphor-Tyr15 of Cdc2. Blots were also probed with anti-tubulin and anti-Fcp1 

antibodies as loading controls. 

C. Sensitivity of rct1Δ cells expressing Rct1 deletion mutants to Cpt, HU, and 4-NQO. Cells were 

grown overnight in EMM medium and serial dilutions were spotted on YE5S plates containing 

indicated amounts of drugs. Plates were incubated for four days at 32oC. 

 

Fig. 3. rct1Δ[pMG4] cells exhibit defects in cell cycle and mitotic chromosome segregation. 

A. WT, rct1Δ[pMG1], and rct1Δ[pMG2] cells exhibit normal DNA and microtubule staining. 

B. rct1Δ[pMG4] cells stained with TAT-1 antibody and Hoechst to visualise microtubules and 

DNA, respectively. Note lagging chromosomes (i), dispersed DNA staining (ii), detached 

chromosomes from the mitotic spindle (iii), and cells with two mitotic nuclei (iv). 

 

Fig. 4. Spindle pole bodies (SPBs) are correctly duplicated in rct1Δ[pMG4] cells. 

A. Spindle pole body and DNA staining in rct1Δ[pMG1] and rct1Δ[pMG2] cells. 

B. Spindle pole body and DNA staining in rct1Δ[pMG4] cells. A and B Cells were grown 

overnight in EMM, diluted to a fresh medium and grown further until mid-exponential phase. Cells 

were fixed with ethanol and analysed by microscopy to visualise DNA and SPBs. 

C. Sensitivity of Rct1 deletion mutants to TBZ. Cells were grown overnight in EMM and serial 

dilutions were spotted on YE5S plates containing indicated amount of TBZ. Plates were incubated 

for three days at 32oC. 
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Fig. 5. Synthetic interaction of Rct1 with dis2. Overexpression of Rct1 rescues cold and TBZ 

sensitivity of dis2Δ (C.) but not of dis1Δ (A.) and dis3-54 (B.) strains. Dis1Δ, dis2Δ, and dis3-54 

strains were transformed with a plasmid expressing FLAG-tagged Rct1. Overnight cultures were 

serially diluted and spotted on EMM plates or EMM plates containing 10µg/ml TBZ. Plates were 

incubated for three days at 32oC (to assay for normal growth of all strains and TBZ sensitivity of 

dis3-54 strain) or five days at 26oC (to assay for sensitivity of dis1Δ and dis2Δ cells to TBZ) and 

20oC (to assay for cold sensitivity of strains). 

 

Fig. 6. Overexpression of Rct1 in dis2Δ strain confers resistance to DNA damaging agents. 

Indicated strains were grown overnight in EMM and serial dilutions were spotted on EMM plates 

without or with indicated amounts of HU and Cpt. Plates were incubated for four days at 32oC. 

Two independent dis2Δ strains expressing Rct1-FLAG were analysed. 

 

Fig. 7. Analysis of rct1Δ strains expressing either Rct1 containing point mutation in the RNP1 

motif of RRM or deletion mutants lacking the whole RRM domain. 

A. Plate growth assay at different temperatures. Cells were grown overnight in EMM medium and 

serial dilutions were spotted on YE5S plates. Plates were incubated at indicated temperatures for 

three (26oC, 32oC, and 36oC) or five days (20oC). 

B. Growth analysis in liquid medium. Overnight cultures grown in EMM were diluted to an OD600 

of 0.06 and further incubated in EMM at 32oC. ODs were measured every 2.5 hours. 

C. Cell phenotype. Cells were grown in EMM to mid-exponential phase (OD600 of 0.5), fixed with 

ethanol, and stained with aniline blue (cell wall) and Hoechst (DNA). Images were acquired with 

the cooled CCD camera with the 100 × oil objective. Bar, 15 µm. 
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D. Sensitivity to latrunculin A. Cells were streaked on YE5S plates containing 0.2 µM latrunculin 

A and incubated at 32oC for three days. 

E. Localisation analyses of Rct1 deletion mutants lacking the RRM domain. As both strains do not 

grow well in liquid medium, we used rct1 heterozygous diploid strains grown in EMM. 

 

Fig. S1. Sequence alignment of Rct1 PPIase domain with the human cyclophilin A.  Amino acids 

important for the PPIase activity and for cyclosporine A binding are indicated in bold. Amino 

acids mutated in Rct1 are in boxes.  

 

Fig. S2. Analysis of rct1Δ strains expressing Rct1 containing point mutations in the PPIase 

domain. (A) List of point mutations introduced into PPIase domain and expected consequences 

thereof. (B) Expression analysis of Rct1 point mutants. Western blotting analysis was performed 

with anti-HA and anti-tubulin antibodies of overnight cultures grown in EMM. (C) Morphology of 

strains expressing Rct1 point mutants. Cells were grown in EMM to mid-exponential phase (OD600 

0.5), fixed with ethanol, and stained with aniline blue (cell wall) and Hoechst (DNA). Images were 

acquired with the cooled CCD camera with the 100 × oil objective. Bar, 15 µm. (D) Growth 

analyses in liquid medium. Overnight cultures grown in EMM were diluted to an OD600 of 0.06 

and further incubated in EMM at 32oC. ODs were measured every 2.5 hours.  

 

Fig. S3. (A) Schematic presentation of all Rct1 deletion mutants and their effect on cell survival. 

(B) Expression analysis of Rct1 deletion mutants in rct1 heterozygous diploid strains. Cells were 

grown overnight in EMM and protein extracts were subjected to Western blotting with anti-HA 

antibody.  
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Fig. S4. (A) Expression analysis of Rct1 deletion mutants in rct1Δ haploid strains expressing 

Sid4-GFP. Spindle pole body, tubulin, and DNA staining in rct1Δ[pMG1] sid4-GFP (B) 

and rct1Δ[pMG4] sid4-GFP (C) cells.   

 

Fig. S5. Analysis of rct1Δ strains expressing Rct1 containing point mutations in the RRM domain. 

(A) Multiple sequence alignment of RRM domains from Rct1 and homologous proteins different 

organisms. RNP1 and RNP2 motifs are in red boxes and three point mutations introduced into S. 

pombe Rct1 are indicated below. (B) Morphology of WT cells expressing Rct1 with three point 

mutations or WT cells expressing two deletion mutants without the RRM domain. (C) Expression 

analysis of Rct1 point mutants in RRM. Western blotting analysis of overnight cultures grown in 

EMM was performed with anti-HA and anti-tubulin antibodies. (D) Sensitivity to genotoxic drugs. 

Serially diluted overnight cultures grown in EMM are spotted onto YE5S plates containing 

indicated concentration of Cpt, 4-NQO, and HU. Plates were incubated for four days at 32oC.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure S1 

 

Cyp A MVNPTVFFDIAVDGEPLGRVSFELFADKVPKTAENFRALSTGEKGFGYKGSCFHRIIPGF 60 
Rct1  -------MSVLIET-TVGDLVIDLFVKEAPKTCENFLKLCKLKY---YNFCPFYNIQHNY 49 
             :.: ::  .:* : ::**..:.***.***  *.. :    *: . *:.*  .: 
 
Cyp A MCQGGDFTRHNGTGGKSIY-----GEKFEDENF--ILKHTGPGILSMANAGPNTN----- 113 
Rct1  TCQTGDPLGPTGDGGRCVWNVLNKGTRFFKAEFNPSLVHNKMGLVSMSTATISSRDDKLL 109 
       ** **    .* **:.::     * :* . :*   * *.  *::**:.*  .:       
 
Cyp A --GSQFFIC-TAKTEWLDGKHVVFGKVKEGMN-IVEAMERFGSRNGKTSKKITIADCGQL 164 
Rct1  VCGSQFIITLSDNLEGLDERYPIYGQVAEGFDTLLKINDAICDEEGQPYRDIRIKHTIIL 169 
        ****:*. : : * ** :: ::*:* **:: :::  : : ..:*:. :.* * .   *  
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Figure S2 

 

Mutation Effect
M1: N44A PPIase activity
M2: Y49K PPIase activity
M3: Q52L PPIase activity
M4: H88Y CsA binding
M5: Q114L No effect
M6: Y130Q PPIase activity
M7: M1+M3 PPIase activity
M8: M1+M4 PPIase activity
M9: M4+M5 CsA binding
M10: M4+M5+M6 PPIase activity
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Figure S3 

 

Construct
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pMG2 (Rct1ΔRS-HA)

pMG3 (Rct1ΔRSΔRRM-HA)

pMG4 (Rct1ΔPPIase-HA)

pMG5 (Rct1ΔRRM-HA)

pMG6 (Rct1ΔPPIaseΔRS-HA)

PPIase                  RRM             RS       HA

Viable

haploids

+

+

-/+

+

-/+

+

A

B

pM
G

1
pM

G
2

pM
G

3

pM
G

4
pM

G
5

pM
G

6

kDa
100 –
70 –
55 –

35 –
27 –

15 –  

 

 

 

 

 

 

 

 



162 

 

Figure S4 

 

rct1Δ[pMG1] sid4-GFP
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Figure S5 

 

Cim  245 KPPENVLFVCKLNPVTQDEDLNLIFSRFGPILSCEVIRDKRTGDSLQYAFIEFENQKDCEQAYFKMQGVLIDDHRIHVDFSQSV 
Cpo  245 KPPENVLFVCKLNPVTQDEDLNLIFSRFGPILSCEVIRDKRTGDSLQYAFIEFENQKDCEQAYFKMQGVLIDDHRIHVDFSQSV 
An   245 KPPENVLFVCKLNPVTQDEDLELIFSRFGKILSCEVIRDKRTGDSLQYAFIEFESQKDCEQAYFKMQGVLIDDHRIHVDFSQSV 
Nc   250 KPPENVLFVCKLNPVTTDEDLELIFSRFGKILSCEVIRDQKTGDSLQYAFIEFEDKKSCEEAYSKMDSVLIDDRRIHVDFSQSV 
Mg   254 KPPENVLFVCKLNPVTQDADLELIFSRFGKILSCEVIRDSKTGDSLQYAFIEFEDKAACETAYFKMQGVLIDDRRIHVDFSQSV 
Gz   248 KPPENVLFVCKLNPVTGDEDLELIFGRFGKILSCEVIRDQKTGDSLQYAFIEYEDKASCEAAYFKMQGVLIDDRRIHVDFSQSV 
Sp   241 APPENVLFVCKLNPVTQDEDLELIFSRFGKIISCQVIRDKETGDSLQYAFIEFDNKESVEKAYFKMQNVLIDDSRIHVDFSQSV 
Pc   243 RPPENVLFVCKLNPVTRDEDLELIFSRFGTIMSCQVIRDKRTGDSLQYAFIEFDRREDAEQAYFKMQNVLVDDRRIWVDLSQSV 
Cc   244 RPPENVLFVCKLNPVTRDEDLELIFSRFGPIMSCQVIRDKKTGDSLQYAFIEFDKREDAEQAYFKMQNVLVDDRRIWVDLSQSV 
Cn   240 RPPENILFVCKLNPVTQDEDLELIFSRFGKILSCEVVRDKKSGDSLQYAFIEFDEREAAEQAYFKMQNVLVDDRRIWVDFSQSV 
Um   259 RPPENILFVCKLNPVTRSDDLELIFSRFGKILSCEVIKDKKTGDSLQYAFIEFDKKDDAERAYFKMQNVLVDDRRIWVDFSQSV 
At   240 KPPDNVLFVCKLNPVTEDEDLHTIFSRFGTVVSADVIRDFKTGDSLCYAFIEFENKESCEQAYFKMDNALIDDRRIHVDFSQSV 
Os   239 KPPDNVLFVCKLNPVTQDEDLYTIFSRFGTVTSAEIIRGYKTGDSLCYAFIEFETKEACERALFKMDNCLIDDRRIHVDFSQSV 
Ch   229 KPPENVLFVCKLNPVTQDDDLELIFSRFGEVKSCNIIRDYKTGDSLQYAFIEFETKQQCEMAFLKMQNAVIDDRRIHVDFSQSV 
Cp   229 KPPENVLFVCKLNPVTQDDDLELIFSRFGEVKSCNIIRDYKTGDSLQYAFIEFETKQQCEMAFLKMQNAVIDDRRIHVDFSQSV 
Ce   238 VPPENVLFVCKLNPVTTDEDLEIIFSRFGKINNCEIVRDRRSGDSLQYAFIEFDNAKSCEQAFFKMDNVLIDDRRIHVDFSQSV 
Ag   237 APPENVLFVCKLNPVTTDDDLQIIFSRFGKIVGCEVIRDKLTGDSLQYAFIEFENQKSCEDAYFKMDNVLIDDRRIHVDFSQSV 
Dm   237 APPENVLFVCKLNPVTTDDDLEIIFSSFGVLKGCEVIRDRKTGDSLQYAFVEFEDQKSCEAAYFKMDNVLIDDRRIHVDFSQSV 
Mm   237 KPPENVLFVCKLNPVTTDEDLEIIFSRFGPIRSCEVIRDWKTGESLCYAFIEFEKEEDCEKAFFKMDNVLIDDRRIHVDFSQSV 
Rn   237 KPPENVLFVCKLNPVTTDEDLEIIFSRFGPIRSCEVIRDWKTGESLCYAFIEFEKEEDCEKAFFKMDNVLIDDRRIHVDFSQSV 
Hs   237 KPPENVLFVCKLNPVTTDEDLEIIFSRFGPIRSCEVIRDWKTGESLCYAFIEFEKEEDCEKAFFKMDNVLIDDRRIHVDFSQSV 
Gg   237 KPPENVLFVCKLNPVTTDEDLEIIFSRFGPIKICEVIRDWKTGESLCYAFIEFEKEEDCEKAYFKMDNVLIDDRRIHVDFSQSV 
Dr   237 KPPENVLFVCKLNPVTTDEDLEIIFSRFGLIKCCEIIRDWKTGESLCYAFIEFEKEEDCEKAYFKMDNVLIDDRRIHVDFSQSV 
Tn   214 RPPENVLFVCKLNPVTTDEDLEIIFSRFGSIKSCEVIRDWKTGDSLCYAFIEFEKQDDCEKAYFKMDNVLIDDRRIHVDFSQSV 
Ci   237 KPPDNVLFVCKLNAVTTDEDLEIIFSRFGTIISCEIIRDYKTGDSLQYAFVEFETPDMCEKAYQKMDNVLIDDRRIHVDFSQSV 
Pt   222 KPPENVLYVCKLNPITEEKDLEVIFSKFGLIKNCEVVRDWKTGSSLQYAFIEFETIAACEEAYMKMENVIIDERRIHVDFCQSA 
Dd   240 RPPDHVLFVCKLNPITEAEDLELVFSQCGTVKSCEVVRDKVTNDSLCYAFVEYSTKEECEKAYLKLENILIDERRIHVDFCQSV 
Eh   204 KPLENVLFICKMNPITNEEDLEEIFRKYGKIRSVEIIRDRKSKKSLGYGFIEFETKEGCENAYQKMDNVIIDERRIHVDFSQSI 
Yl   203 KPSETVLFVCKLNPVTEAEDLELIFSRFGEITGCQIVKDPVTGSSLQYGFIEYTTREDCERAYLKMEGVLIDDHRIHVDFSQSV 
Pf   174 KPPENILFVCKLNPVTEEEDLKIIFSRFGNIKSCKIIKDKVTNNSLQYGFIEFEKKEDCLNAYFEMDNVVIDDRRIHVDFCQSL 
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