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Chapter 1

Introduction

In recent years the number of court cases involving speech recordings of suspects

as evidence, for example taken from telephone conversations, has seen a substan-

tial increase. Forensic speech evidence is expected to gain even more importance,

as speech communication technologies have become ubiquitous. Likewise the role

of expert opinion given by forensic phoneticians is sought more often, as it is nec-

essary to specify the degree of identity between the speaker on the given offending

recording and the suspect.

The methods used for identifying speakers by their voice must be steadily

developed and evolved to satisfy the new requirements and conditions imposed

on them. On the one hand these requirements are referring to the legal role in

the judicial system that institutes forensic speaker recognition in the pursuit of

reaching a verdict. On the other hand these approaches must be tested under

all possible technical circumstances that can arise to ensure proper evaluation of

speech evidence.

Only recently, biometric systems for speaker identification are adapted and

marketed as tools for forensic laboratories and scientists. They enable fully au-

tomatic analysis of audio samples and deliver a score or a categorial decision of

speaker identity. Their primary advantage is the reduction of time needed for

analysis. However, their black box-like functioning bears the risk of misapplica-

tion and misjudgement.

In the present work an approach is presented and subsequently evaluated

that combines in some sense traditional phonetic analysis and automatic methods

to discriminate between speakers. The Bayesian approach is used for evidence
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CHAPTER 1. INTRODUCTION

evaluation in the light of a coming paradigm shift in the forensic sciences which

is driven by many practitioners in the field.

The aim of this thesis is first to investigate the discriminatory potential of

the the use of parametric representations of dynamic features of diphthongs in

a likelihood ratio approach of evidence evaluation, based on a speech corpus of

Viennese German speakers and secondly to evaluate which diphthong offers the

best discriminatory power.

Furthermore, the duration aspects of diphthongs in different prosodic posi-

tions for the use in this approach are investigated.

1.1 Thesis outline

The thesis is organised as follows: Chapter 2 gives an overview of the field of

forensic speaker recognition in order to familiarise the reader with the basic con-

cepts applied when identifying speakers by their voice. Chapter 3 discusses the

methods used for the experiment and the evaluation of the results. Chapter 4

presents the experimental setup and the results obtained, using the tools for

evaluation outlined in the previous chapter. Chapter 5 discusses the results and

gives an interpretation, as well as directions for further research which became

apparent while conducting this study.
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Chapter 2

Foundations

This chapter provides an overview of the field of forensic speaker recognition as

well as methods for the general assessment of evidence in court cases. After defin-

ing the basic terminology, the field of forensic speaker recognition is integrated

into the larger discipline of phonetics. The different kinds of parameters used

for acoustic-phonetic speaker discrimination are discussed with respect to tradi-

tional acoustic-phonetic and automatic analysis. Finally, the Bayesian approach

is described as a general framework for the evaluation of evidence, followed by a

discussion of its implications and the difficulties yet to overcome.

2.1 Forensic Speaker Recognition

Forensic speaker recognition refers to the analysis and comparison of speech

recordings with the goal of reaching a decision on the question of speaker identity.

The outcome of the analysis is expressed either as a categorial statement or in

terms of probabilities.

The methods developed for forensic speaker recognition are primarily applied

in court casework that involves evidence in form of speech recordings, e.g. incrim-

inating phone calls like bomb threats.

Forensic speaker recognition involves the use of mainly two different ap-

proaches, namely auditory- and acoustic-phonetic analysis. At the Bundeskrim-

inalamt in Germany these approaches are in use for preparing expert reports for

police stations and prosecutors since 1985 (Gfroerer 2006:3).

In recent times automatic systems originally designed for biometric applica-

3



CHAPTER 2. FOUNDATIONS

tions that assess the similarity between two speakers for the use in commercial en-

vironments like physical or information access control have started to be adapted

for the use as forensic tools. This trend to include fully automatic analysis of

acoustic parameters should on the one hand be seen as beneficial, due to the

high standard of technical performance. On the other hand, the uncritical use

of automatic speaker identification systems may lead to potentially unexpected

errors, especially when the method-specific constraints are neglected or the chain

of causality is broken. Phonetic expertise is therefore still needed, especially in

order to select segments of speech that can be compared against each other.

2.1.1 Terminology

Forensic speaker recognition can be subdivided into naive and technical speaker

recognition (Nolan 1983:7). The former describes the situation where a layperson

without any training in phonetics or hearing sciences derives a judgement of

speaker similarity or dissimilarity. This kind of speaker recognition is basic to

human perception and can be performed by virtually every hearing person.

The latter term describes the scientific pursuit of performing the task of iden-

tifying or discriminating speakers by their voice using forensic-phonetic analysis

methods. This is performed by forensic practitioners who usually have received

phonetic and linguistic training.

Technical speaker recognition itself can be further sub-categorised. Speaker

verification refers to deciding whether a claim of identity between two given

recordings, one of them known and one unknown, is valid, using a predetermined

similarity threshold (Rose 2002:90). This is applied in biometric systems used for

physical access control or in telephone based banking applications.

In Speaker identification the speech on a recording from an unknown speaker is

ascribed to one of a set of known speakers. This constitutes the general forensic

case where a speech sample of an offender should be attributed to one of the

known suspects. Nolan (1983:9) cites three kinds of tests that can be performed:

• Closed tests imply that the unknown speaker is contained in the set of

known speakers and thus can be positively identified as one of them.

• Open tests on the contrary do not make this assumption which yields an

additional potential outcome, namely that none of the known speakers is

4



2.1. FORENSIC SPEAKER RECOGNITION

sufficiently similar to be identified as the unknown speaker.

• Discrimination tests deal with the situation where recordings of two speak-

ers are available and it must be decided if there is enough correspondence be-

tween the two samples to declare that they originate from the same speaker.

Nolan (1983:9) notes that while ‘speaker discrimination most closely resembles

speaker verification’, it is associated with identification because it faces different

circumstantial characteristics. In verification tasks speakers are cooperative and

possible impostors will try to imitate the voice of a speaker while in general

speaker discrimination co-operation cannot be expected.

2.1.2 Forensics in the context of phonetics and linguistics

Forensic phonetics refers to the application of phonetics and more generally lin-

guistics for forensic-scientific purposes during police investigations and in court

cases that handle speech evidence. It applies acoustic and auditory phonetic

techniques and methodology to describe the differences between speakers and

involves knowledge of properties of languages and dialects into the process of

speaker identification.

The field confines itself to the analysis of spoken language and is not concerned

with linguistic authorship identification or profiling which is a major task in

general forensic linguistics (Broeders 2001, Olsson 2004).

Another area of application except forensic speaker recognition is given during

the process of police investigations where it can be used for voice profiling (often

called voice analysis) in which a crude profile of the speaker is created by a trained

phonetician based on one or several speech recordings. This profile includes

information about sex, age and possible origin up to the countries or areas where

he or she has been brought up or has lived.

The application of phonetic and linguistic knowledge in the domain of foren-

sics and specifically speaker identification has been quite controversial. Nolan

(1997:746-747) notes that the priority in phonetic research has been on the ‘shared

linguistic system’ between speakers which led to the view that inter-speaker differ-

ences were practically noise, ‘rather than developing a theory of “speaker space”

[. . . ]’. Thus, it was questioned whether phoneticians are in the right position

to give their testimonial for the use as evidence in court. Nolan (1997:747) on
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CHAPTER 2. FOUNDATIONS

the other hand states that if phoneticians do not take their responsibility, people

much less knowledgeable in the domain of speech would nevertheless be consulted.

2.1.3 The different levels of variability in speech

Speakers exhibit substantial phonetic and phonological variation in their utter-

ances. This simple fact is recognised in the basis of phonology as variation is used

to encode distinctions in meaning in the conveyance of information. Structuralist

approaches build an abstraction from the continuous nature of the actual physical

phenomenon by dividing speech into segmental units, disregarding temporal in-

formation, and by the postulation of a set of abstract (possibly feature-bearing)

units that act as a system in an individual language, not accounting for the

variation in speech exhibited between and within speakers (Keating 1990). The

sources of this variability can be presented along the following dimensions.

Between-speaker variation

First there exists considerable variation in utterances of (linguistically) identical

words and sounds between different speakers. In the acoustic domain this varia-

tion is explained by the acoustic theory of speech production (Fant 1960) along

with the source-filter theory which states that the voicing perceived in a vowel

is produced by the vibration of the vocal cords and the vocal tract acts as a

filter that changes the voicing waveform into a complex periodic waveform. The

acoustical difference between the realisations of the same utterance produced by

different people can therefore be ascribed to the physiological differences between

the vocal tracts of different people. These include the length and condition of

the vocal cords themselves as well as the length of the vocal tract.

However, in addition to this base assumption, the fact that people use different

settings of the vocal tract during articulation of the same speech segment has to

be recognised, too. Thus, speaker identity rests on both the physiological as well

as on the behavioural properties.

These aspects constitute the basis of between-speaker variation or inter-speaker

variation.

6



2.1. FORENSIC SPEAKER RECOGNITION

Within-speaker variation

The fact that speakers themselves exhibit a substantial amount of variation be-

tween utterances of linguistically identical material has long been recognised in

the acoustic-phonetic literature (Harrington & Cassidy 1999). Rose (2002:10)

remarks that ‘[it] is a phonetic truism that no-one ever says the same thing in

exactly the same way’. This is due to the fact that the articulatory organs cannot

produce identical settings of the vocal tract at each utterance of the same sound.

The notion of degrees of freedom is often used to describe the flexibility of the

speech organs while producing speech. They ‘may be manipulated at will [. . . ] or

may be subject to variation due to external factors such as stress, fatigue, health,

and so on’ (Nolan 2001:2).

These degrees of freedom become relevant in connection with the realisation

of abstract phonological units. The received theory is that of phonetic targets

associated with each phonological unit which have to be achieved in order to

convey the signalled information, which is also incorporated into segmental ap-

proaches to speech synthesis. These targets are in turn connected up to construct

an utterance, which results in co-articulation effects (Keating 1990:454).

Depending amongst other things on extralinguistic circumstances, as for ex-

ample the emotional state of the speaker, the speaking rate and other factors build

up to a phenomenon called target undershoot1 in which the segmental target is

not attained during the articulatory transition between units (Rose 2002:233). In

consequence of this and the aforementioned co-articulation effects, a quantitative

acoustic assessment of the speaker’s sound qualities will yield different values for

each measurement, aside from the error induced by the measuring instrument

and the recording equipment.

Inter-session variability

The concept of inter-session variability extends the notion of within-speaker vari-

ation and is caused by different linguistic as well as extralinguistic factors that

influence speech depending on the speech situation and circumstances.

Speech is highly influenced by the social situation in which it takes place. The

choice of register, style and dialect depend on whom we are talking to (or rather

1The concept of target undershoot is not undisputed. See Moosmüller (2007a:490) and
Moosmüller (2007b:174) for an account of the notion’s shortcomings and theoretical problems.
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who is possibly listening). Additionally, general voice characteristics can vary

a great deal between sessions depending on health, fatigue and other factors.

Therefore, it is important to recognise, especially in the forensic context, that

speakers can vary in their speech to a large degree and also that this variation

can be exhibited in a non-uniform way between two recordings of different sessions

which differ in respect to social situation or emotional state.

Variability is not constrained to the kind of diverging realisations of sounds,

but also includes idiosyncrasies performed in other linguistic areas, for example

the use of characteristic lexemes found in specific dialect regions or aberrant

meanings of common words used in close social groups. These facts must be

accounted for during the process of speaker discrimination, as the range spanned

by the acoustic correlates of speech of one speaker overlaps to some extent with

the one of other speakers.

The following section presents a model that tries to account for the range of

information conveyed in an utterance.

2.1.4 A ‘voice model’ for sources of variability

To account for the variability exhibited by speakers, an explicit model of the

different mechanisms that convey information, intentionally or otherwise, during

an utterance, is needed. Nolan (1983) provides an approach that covers the

linguistic as well as the vocal (motoric) mechanism. Figure 2.1 gives an overview

of the faculties involved.

McDougall (2005:6) summarises the model as follows.

In overview, the model explains the multiple types of information
conveyed by speech as originating from a speaker’s communicative
intent which is transmitted via the interaction of the speaker’s lin-
guistic mechanism with his or her vocal mechanism. The linguistic
mechanism is made up of a number of components which determine
a phonetic plan that is implemented by the vocal mechanism to pro-
duce a speech signal. The vocal and linguistic mechanisms are each
affected by a number of indexical factors also shown in the model.

According to McDougall (2005:8) the communicative intent ‘demarcat[es] this

component of information in the model as information which the speaker voli-

tionally conveys, while any additional “informative” information comes under the

“indexical factors” [. . . ]’.

8



2.2. PARAMETERS FOR SPEAKER DISCRIMINATION

Cognitive Affective Self-
Presentational

Social Regulatory

Communicative Intent

Lexicon
(including
morphology)

Syntax Phonology
(including
prosody)

'Tone of 
voice'

Linguistic Mechanism

Phonetic
Plan

Vocal
Mechanism

Speech
Signal

Social background

Indexical factors

Age

Sex

Psychological state

Health

Physique

Figure 2.1: Nolan’s model of the types of information (McDougall 2005)

The present work makes references to this model at several instances to put

in perspective the assumptions underlying different methods for forensic speaker

recognition.

2.2 Parameters for speaker discrimination

In order to discriminate between speakers, parameters have to be defined which

objectively allow to characterise a speaker. The choice of parameters used in the

comparison of speech recordings depends largely on their respective quality and

the language of the speech samples to be compared.

As described in the previous section, variation exists between speakers as well
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as within utterances produced by the same speaker. The logical consequence must

therefore be that, to be able to differentiate between speakers, the inter-speaker

variation must usually be larger than the intra-speaker variation.

Table 2.2 taken from Rose (2002:34) gives an overview and a rough categori-

sation of forensic phonetic parameters.

Linguistic Non-linguistic

Auditory Auditory-Linguistic Auditory-non-linguistic

Acoustic Acoustic-Linguistic Acoustic-non-linguistic

Table 2.1: Categorisation of forensic-linguistic parameters (Rose 2002:34)

Acoustic vs. auditory parameters

Forensic phonetic parameters can first be categorised along the distinction be-

tween auditory and acoustic parameters.

The focus in auditory analysis lies on comparing samples with respect to the

sound system and language used by the speaker. Initially this procedure involves

the task of listening to the speech recording, which should ideally be performed

by a trained phonetician, to detect certain cues present in the speech sample

which are of use to speaker identification. These characteristics include aspects

of voice quality as well as the language variety or dialect used by the speaker.

The phonetic segmentation and transcription of the utterance using notations

like the International Phonetic Alphabet (IPA 1999) forms the basis for acoustic

analysis.

Acoustic analysis includes the extraction of acoustic parameters of the speech

signal using computational models. Features derived from the parameters can

be used to create a statistical model of a speaker to account for the variability

inherent to utterances of one speaker. These models are in turn compared against

each other in a statistical evaluation2. An account of the acoustic properties used

within acoustic analysis is given in section 2.2.2.

2It is important to consider the statistical distributions of the parameters at the beginning
in order to decide on the applicability of the statistical models.
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Rose (2002:35) states that ‘[...] the auditory analysis of a forensic sample

is of equal importance to its acoustic analysis which the auditory analysis must

logically precede’. The idea is that in order to proceed with a detailed acoustic

analysis first a decision has to be made whether the recording can be used for

identification at all, depending on its quality, and which parts or items of speech

sounds can be compared against each other.

This highlights the need for using both kinds of analysis when dealing with

forensic phonetic speech recordings. Jessen (2008) describes the use of both kinds

of analysis for forensic speaker identification as follows.

An acoustic-phonetic approach [. . . ] builds upon an auditory-perceptual
sound categorization and then investigates the acoustic manifestations
of the perceptual categories. Acoustic phonetic analysis usually re-
veals that in acoustic reality, sound distinctions and sound separations
in time are more gradient and less categorial in perception. Within
a forensic context acoustic-phonetic analysis has the advantage that
very accurate quantitative values can be provided, which would be
impossible with auditory-perceptual analysis. However, it might not
always be the case that additional accuracy actually increases the
performance of speaker identification (Jessen 2008:17).

Automatic computerised systems constitute another kind of analysis form

that relies entirely on statistical pattern recognition techniques applied to acous-

tic measurements. Speakers are statistically modelled using high-dimensional

representations of features extracted from the speech recordings. These methods

are used in biometric speaker verification and identification systems.

The statistical technique mostly applied are Gaussian Mixture Models (GMMs)

where each feature vector dimension is modelled by a number of mixtures, i.e. sums

of Gaussian distributions which represent the variation observed in the acoustical

measurements. The measures used are described in detail in section 2.2.5.

Linguistic vs. non-linguistic parameters

Another distinction can be made between linguistic and non-linguistic parame-

ters.

Features and cues in the speech sample can be linguistic in the sense of sec-

tion 2.1.3 that they ‘signal a contrast, either in the structure of a given language

11
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or across languages or dialects’ (Rose 2002:44). An example for a linguistic audi-

tory parameter is presented by a case where the realisations of a certain speech

sound differ consistently between the samples being compared, which would im-

ply a higher probability that the samples were spoken by different speakers than

by the same.

Non-linguistic parameters are cues which are not relevant for the linguistic

structure of the language being spoken. These include properties that signal the

emotional state of the speaker, such as stress, fatigue etc.

2.2.1 Criteria for speech parameter selection

The choice of parameters in a particular case depends largely on the quantity

and quality of the sound data available. For the development of new methods

and to set criteria for testing them it is useful to consider which characteristics

ideal speech parameter should attain.

Nolan (1983:11) proposes six characteristics that are highly desirable for foren-

sic phonetic and acoustic parameters in general.

1. High between-speaker variability

2. Low within-speaker variability

3. Resistance to attempted disguise or mimicry

4. Availability

5. Robustness in transmission

6. Measurability

The first two criteria have already been discussed in section 2.1.3.

Resistance to attempted disguise or mimicry refers to the need for properties

that are not easily manipulable by will. This is attained by parameters which

are tied to the specifics of the speaker’s physiology or typically go by ‘unnoticed’

in the attempt to imitate one’s voice.

Availability refers to the need of parameters that can be gained from ordinary

speech and do not rely on items or circumstances that are rather unlikely to

appear in the samples used in a forensic case.

Robustness in transmission follows from the fact that the majority of forensic

phonetic evidence descends from recordings of telephone speech which are lim-

ited in their frequency band. Parameters used for speaker discrimination should

12
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therefore remain unaffected by signal coding and recording to be of use, since

comparability between speech sources must be maintained despite of different

equipment (i.e. microphones) used. This affects especially modern telephone sys-

tems which are optimised to transmit spoken information in terms of parameters

of a speech model, rather than speech as it can be recorded by a microphone.

The last characteristic, measurability, emphasises the need for parameters that

can be extracted with relative ease. This is not restricted to manual extraction of

features, which is very time-consuming, but also applies to automatic methods,

e.g. if a parameter relies on finding the exact location of particular phonetic

events, which cannot be done straightforwardly.

However, easy automatic measurement of features bears the risk of the fea-

tures being used uncritically for estimating statistical models of speakers, despite

not following the presupposed distribution functions.

In the following sections, a further distinction of acoustic features is being

made which will segue from these general considerations into the characterisation

of dynamic parameters that are used in the method outlined in chapter 3.

2.2.2 Traditional acoustic features

Rose (2002:41) defines traditional acoustic features as ‘[t]he acoustic cues that re-

late to differences between language sounds - either within a language or between

languages’. These parameters have the beneficial property of being related in a

straightforward way to the physiological basis of speech production: the different

shapes and sizes of speakers’ vocal tracts.

The features typically used in forensic phonetics are the fundamental fre-

quency f0 and the formant centre-frequencies Fi.

2.2.3 Fundamental frequency f0

The fundamental frequency f0 is described by Ladefoged (2000:164) as ‘the num-

ber of complete repetitions (cycles) of variations in air pressure occurring in a

second’. Consequently, it labels the frequency of opening and closing states of

the glottis.

In the acoustic waveform of voiced sounds f0 can be measured from the cycles

in the quasi-periodic wave. It is often associated with pitch in the auditory
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domain which is correlated with the fundamental frequency.

It is considered a traditional acoustic parameter because it bears a linguistic

function within language systems in that the presence of voicing indicates dif-

ferences in meaning, e.g. between /s/ and /z/. The rate of vibration expresses

linguistic contrast as well in that it signals stress. Furthermore, changes in fun-

damental frequency give rise to intonation.

The fundamental frequency f0 has successfully been used for forensic speaker

identification. The criteria for parameters (see section 2.2.1) are met in part,

as it can be robustly extracted using auto-correlation techniques, and is readily

available because voiced material is present in virtually every recording. However,

the variability exhibited within and between speakers raises concerns as to its

viability with regards to its use in forensic speaker recognition. Rose (2002:246)

cites several factors influencing f0 that were introduced in Braun (1995).

• Technical factors (sample size, tape speed)

• Physiological factors (race, age, smoking and intoxication)

• Psychological factors (emotional state and situational factors, including

background noise level and time of day)

This summary, however, delivers a very imprecise picture of factors and is at

least debatable if not precarious. First of all the claim of race as a physiological

factor cannot be upheld on a scientific basis. Whilst there are studies3 of vocal

tract dimension which claim that, beside gender, race is ‘one of the most impor-

tant factors affecting the oral and nasal structures’ (Xue & Hao 2006:392), this

cannot readily be relayed to factors of variability in f0.

Furthermore, situational factors include aspects that cannot be subsumed un-

der psychological factors and, thus, deserves a category of its own. Individual

language differences present another category along which the fundamental fre-

quency varies, as it fulfils various differing functions within the language’s system.

Hence, to control for the factors that generate variability in the domain of

f0, sociological factors such as gender, situation, and sociolects must be deter-

mined. These aspects must be controlled for in order to ensure a legitimate basis

3The study measures vocal tract dimension by acoustic pharyngometry. The subjects were
controlled for age, gender, height and weight. ‘Race was found to be a significant variable for
oral volume and total vocal tract volume’ (Xue & Hao 2006:395)
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for forensic speaker comparison and emphasise the importance of preliminary

auditory analysis.

2.2.4 Formants Fi

The formants Fi represent the acoustic resonances produced by the dynamics of

the vocal tract. As already mentioned, the formant values exhibit correlation with

the production and perception of speech sounds. The formant centre-frequencies

are usually given by the maximum amplitudes in the LPC spectrum of a speech

sound which results from specific articulatory vocal tract settings.

The aforementioned source-filter theory of speech production (Fant 1960) as

well as the perturbation theory (Chiba & Kajiyama 1958) present approaches for

relating formant frequencies to the articulatory state of the vocal tract. These

two theories are described below.

The tube model

The vocal tract is modelled as a series of uniform cross-sectional tubes. The

formant frequencies can be calculated and therefore predicted given the length of

each tube using the formula Fn = (2n−1)·c
4·length , where c is the speed of sound.

Figure 2.2 provides an illustration of a tube model for the vocal tract config-

uration for [A].

Figure 2.2: A two tube model approximation of the vocal tract for [A] (Johnson
2003)

The model gives support for the assumption that formant centre-frequencies
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of a speech sound are related to the characteristics of the speaker’s vocal tract in

that it relates the physical dimensions of the idealised tubes between the larynx

and the lips to the acoustic output.

It must be noted, however, that the example given in figure 2.2 is the most ba-

sic configuration and that sounds exist that cannot be modelled by this approach

due to its inherent limitations4.

The perturbation theory

The perturbation theory models vowel acoustics using the relationship between

air pressure and velocity. The consequences of vocal tract constrictions on for-

mant frequencies are summarized in (Johnson 2003:110).

The perturbation theory [. . . ] relates vocal tract constrictions to for-
mant frequencies by taking into account the kinetic energy present
at points of maximum velocity and the potential energy present at
points of maximum pressure

Figure 2.3 shows the locations of the points of maximum velocity (Ni) and

maximum pressure (Ri) in a straight tube and the relation to the human vocal

tract.

Both theories describe the correlation between the positioning of articulators

and hence the properties of the speaker’s vocal tract, and the formant frequencies

in the acoustic domain.

The relationship between formant frequencies and articulation

Since the inception of acoustic phonetic analysis techniques a pursuit was un-

dertaken to find a model that relates acoustic cues with vocal tract settings and

articulation. Correlation between the first and second formant and the tongue tip

position was noted early on. ‘The convention of representing the formant data of

vowels in an F1/F2 plot goes back to Joos (1948) [. . . ]’ (Moosmüller 2007b:31).

This relationship was presented in a plot of frequencies of the first and second

formant of different vowels in which the ‘the scales [. . . ] were deliberately set

up so as to enhance the resemblance of the acoustic chart to the tongue-position

chart’ (Joos 1948:53).

4See for example Holmes (2001) for a discussion of problems related to the modelling of
higher resonances.
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Figure 2.3: A depiction of the points of maximum velocity (N ′i) and pressure (Ri)
in perturbation theory (after Chiba & Kajiyama (1958))

Figure 2.2.4 shows the simplified relation between the formant frequencies

and the articulation as it is still commonly described. This model is useful to

somewhat characterise tendencies in formant behaviour with respect to the posi-

tion of the tongue, yet fails to give an accurate depiction of the aspects that have

an effect on formant frequencies, such as lip rounding and protrusion Ladefoged

(2000:35).

As already brought forward by Fant (1960:11) ‘[t]he highest point of the

tongue is well correlated with the relevant acoustic data but does not uniquely

define the resonator dimensions’. Thus, the IPA quadrilateral should not be

seen as being strictly based on articulation, but also on auditory and acoustical

definitions (IPA 1999:12).

Further evidence against this simplistic picture is brought forward by the
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(a) Acoustic vowel space

              THE INTERNATIONAL PHONETIC ALPHABET (revised to 2005)
CONSONANTS (PULMONIC)

´

A Å

i y È Ë ¨ u

Pe e∏ Ø o

E { ‰ ø O

a ”
å

I Y U

�Front�                       Central                           �Back

Close

Close-mid

Open-mid

Open

Where symbols appear in pairs, the one 
to the right represents a rounded vowel.

œ

ò

Bilabial Labiodental Dental Alveolar Post alveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive p  b t  d Ê  ∂ c  Ô k  g q  G /
Nasal m µ n = ≠ N –
Trill ı r R
Tap or Flap     v |  «
Fricative F  B f   v T  D  s   z S  Z ß  Ω ç  J x  V X  Â ©  ? h  H
Lateral
fricative Ò  L
Approximant √ ®  ’ j ˜
Lateral
approximant l   ¥ K

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

SUPRASEGMENTALS

VOWELS

OTHER SYMBOLS

Clicks Voiced implosives Ejectives

> Bilabial ∫ Bilabial ’ Examples:

˘ Dental Î Dental/alveolar p’ Bilabial

! (Post)alveolar ˙ Palatal t’ Dental/alveolar

¯ Palatoalveolar ƒ Velar k’ Velar

≤ Alveolar lateral Ï Uvular s’ Alveolar fricative

 " Primary stress

 Æ Secondary stress

ÆfoUn´"tIS´n
 … Long              e…
 Ú Half-long       eÚ

  * Extra-short     e*
˘ Minor (foot) group

≤ Major (intonation) group

 . Syllable break    ®i.œkt
   ≈  Linking (absence of a break)

          TONES AND WORD ACCENTS
       LEVEL CONTOUR

e _or â Extra
high e

ˆ

 or ä     Rising

e! ê   High e$ ë     Falling

e@ î   Mid e% ü High
rising

e~ ô   Low efi ï Low
rising

e— û Extra
low e&  ñ$ Rising-

falling

Õ Downstep ã Global rise

õ Upstep Ã Global fall

© 2005 IPA

 DIACRITICS     Diacritics may be placed above a symbol with a descender, e.g. N(
  9 Voiceless                n9    d9   ª Breathy voiced      bª  aª   1 Dental                     t 1 d1
  3 Voiced                 s3  t 3   0 Creaky voiced       b0  a0   ¡ Apical                     t ¡ d¡
 Ó Aspirated             tÓ dÓ   £ Linguolabial          t £   d£      4 Laminal                  t 4 d4
  7 More rounded     O7  W Labialized             tW dW   ) Nasalized                      e)
  ¶ Less rounded      O¶  ∆ Palatalized            t∆  d∆  ˆ Nasal release                dˆ
  ™ Advanced           u™  ◊ Velarized              t◊  d◊  ¬ Lateral release              d¬
  2 Retracted            e2  ≥ Pharyngealized     t≥   d≥  } No audible release        d}
     · Centralized         e·  ù Velarized or pharyngealized      :
  + Mid-centralized  e+   6 Raised                  e6         ( ®6    = voiced alveolar fricative)

  ̀ Syllabic              n`   § Lowered              e§       ( B§  = voiced bilabial approximant)

  8 Non-syllabic       e8   5 Advanced Tongue Root          e5
 ± Rhoticity             ´± a±   ∞ Retracted Tongue Root           e∞

∑    Voiceless labial-velar fricative Ç Û Alveolo-palatal fricatives

w    Voiced labial-velar approximant   » Voiced alveolar lateral flap

Á     Voiced labial-palatal approximant Í Simultaneous  S  and   x
Ì     Voiceless epiglottal fricative

 ¿      Voiced epiglottal fricative
Affricates and double articulations
can be represented by two symbols

 ÷      Epiglottal plosive
 joined by a tie bar if necessary.

kp  ts
(

(

(b) The IPA vowel chart

Figure 2.4: Simplified relation between formant frequencies & articulation

quantal theory of speech production (Stevens 1989) which suggests a non-linear

relation between the acoustic and the auditory domain by defining three zones of

acoustical stability under differing articulation.

These and many other aspects5 show that the purported relationship estab-

lished using the acoustic vowel space and the vowel quadrilateral cannot be upheld

on a scientific basis. Nevertheless, there exists of course a relationship between

articulation and acoustics which is of a more complex nature.

This relationship has its merits with regards to the use of these parameters

in court. As Alderman (2005:13) notes ‘[t]he correlations between formants and

physiology are supposed to make the concepts more understandable to laypersons,

such as members of the jury, or even magistrates, judges and lawyers, and thus

make the deciphering of expert evidence an easier task’.

In practice, formant frequencies are extracted from speech recordings by for-

mant tracking algorithms. As formant frequencies build the basis of the pa-

rameters used in the present work one common algorithm is briefly outlined in

chapter 3.

Limitations of traditional acoustic parameters

In forensic practice, a severe limitation exists when using formant frequencies, as

the overwhelming amount of speech samples under considerations are recordings

of telephone conversations. The technical constraints involved consequently limit

the bandwidth of frequencies transmitted over telephone networks to approxi-

mately 300-3400 Hz, which renders the formants above the third and usually

5For a thorough discussion see Moosmüller (2007b:32).
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also the first formant virtually useless for speaker comparison. This addition-

ally decreases the dimensions which speakers can be discriminated in, as higher-

frequency formants are regarded as bearing more speaker-specific information

because they ‘[. . . ] often reflect the resonances of relatively fixed smaller cav-

ities in the vocal tract, for example the larynx tube, which are assumed to be

relatively unaffected by the gross configurational changes of the vocal tract [. . . ]’

(Rose 2002:237).

Furthermore, several studies suggest the existence of a so called telephone ef-

fect (Künzel 2001), in which formant frequencies are shifted in a non-uniform way,

rendering speaker comparison based on formants a delicate task. The causes and

extent of this phenomenon are still rather unclear. Fecher (2008:82), while study-

ing the effects of Voice-over-IP transmission technologies on traditional acoustic-

phonetic parameters, noted band-pass filtering of the signal as a possible cause.

Guillemin & Watson (2008) examined the effects of coders used in the GSM

mobile phone network on the speech signal. They applied each coder for the whole

speech sample and found significant impact on formant frequencies, especially for

low pitch male speech. The situation is exacerbated by the fact that, in real GSM

telephone transmissions, the coder can be changed every 20 ms to compensate for

poor channel conditions (Guillemin & Watson 2008:300) Furthermore, if packet

loss occurs, mechanisms are employed that interpolate the signal or reinsert the

last speech frame, leading to a speech signal that partially differs from the original.

The range of traditional features can be subdivided based on their role within

the linguistic system of the language at hand.

Acoustic linguistic parameters

Acoustic linguistic parameters subsume the use of traditional features like the

fundamental frequency and formant centre-frequencies in forensic speaker recog-

nition, taking into account their role in the linguistic system.

As described in the previous sections, formant frequency values result from

the physiological condition and articulatory setting of the speech organs during

the production of speech sounds. Speakers’ formant frequencies differ because

of their physiology and habitual aspects in the movement of the articulators

while achieving phonetic targets, but they exhibit some degree of within-speaker

variability.
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This variability and the behaviour of formant frequencies in general depend

on the linguistic item to be produced and of course on its context. To compare

recordings of speakers, comparable units have to be found to perform an acous-

tic linguistic analysis. These must be controlled for similar context and stress

position to limit the variability exhibited by the parameters within each speaker.

Formants have long been used in this regard. Acoustic analysis based on tra-

ditional acoustic parameters derived from a vowel is often conducted by either

calculating the mean of the formant measurements or by using a measurement

during the steady state (usually near or at the midpoint) of the vowel for com-

parison. The latter is based on the notion of phonetic targets.

Extending the account given in section 2.1.3, the notion of the phonetic target

is more thoroughly discussed. A definition can be found in Lindblom (1963).

A target is specified by the asymptotic values of the first two formant
frequencies of the vowel [. . . ] (Lindblom 1963:1773).

A target was found to be independent of consonantal context and
duration and can thus be looked upon as an invariant attribute of
the vowel. Although a phoneme can be realized in a more or less
reduced fashion, the talker’s ”intention” that underlies the pronun-
ciation of the vowel is always the same, independent of contextual
circumstances. A vowel target appears to represent some physiologi-
cal invariance (Lindblom 1963:1778).

Moosmüller (2007b:174) argues that this definition essentially implies that

‘the target is identical with the phoneme’ and, thus, ‘more or less to a pronun-

ciation under ideal conditions’. This, however, leads to problems regarding the

variability of speech which was solved by introducing the concept of target under-

shoot in an attempt to account for the fact that the allegedly contextual invariant

target is almost never reached.

Other characterisations and solutions have been put forward, including the

window model of coarticulation which proposes an articulatory window for fea-

tures, a ‘range of minimum and maximum value that the observed values must

fall within’ (Keating 1990:455).

Moosmüller (2007a) delineates the approach within the framework of Natural

Phonology (Donegan & Stampe 1979, Dressler 1984).

In Natural Phonology, the phoneme is an invariant mental represen-
tation of a sound, and the way from phoneme to phonetic output is
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determined by phonological processes, which are, in any case, pho-
netically motivated and which follow certain universal preferencies,
e.g. the preference for figure-ground contour sharpening (Moosmüller
2007a:498).

If and to what extent these phonological processes are applied is, however,

language dependent. Consequently, the target is variant whereas the phoneme is

invariant.

The notion adopted in the present work follows this view of phonetic targets.

[. . . ] there is no standard method for identifying where the vowel
target occurs partly because many monophthongal vowels often have
no clearly identifiable steady-state or else the steady-state, or inter-
val that changes the least, may be different for different formants.
(Harrington in press:85)

These measurements are in turn used for comparing segments of different

speakers.

Acoustic non-linguistic parameters

Acoustic non-linguistic parameters can be characterised as features that have no

inherent function within a single language system. These are usually based on

averaging over the traditional acoustic parameter measurements of whole utter-

ances.

The long-term average f0 (LTF0 ) method is used for the comparison of speak-

ers based on the statistical distributions of their fundamental frequency values.

As noted in Rose (2006b), it depends on and reflects non-linguistic information

which, using Nolan’s voice model (see section 2.1.4), can be ascribed to the in-

dexical factors like the state of health and physiological aspects as well as affect

and self-presentation. However, studies by Kinoshita (2005) show that the use

of the LTF0 method is rather limited due to the wide range of variation of the

f0 parameter within a speaker, especially if the recording was taken under detri-

mental circumstances like noise which causes increased vocal effort and thus a

rise in mean f0 (Jessen et al. 2005). Mismatch of speaking style among the com-

parison samples also has a strong deteriorating effect on the performance of these

methods (Becker 2008).
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The long-term formant distribution (LTF ) is a method that averages over

the formant values of all vowels produced by a speaker. For each formant in a

recording a LTF value is calculated by taking the arithmetic mean of all formant

centre-frequency measurements. Studies based on this method (Nolan & Grigo-

ras 2005, Grigoras 2006) show that LTF satisfies the criteria proposed by (Nolan

1983) (see section 2.2). A study by Moos (2008) investigated the applicability

of this method on samples taken under different recording and transmission con-

ditions and concluded that separation of the speakers was attainable. However,

as with most other (semi-)automatic or summary methods, this approach has to

be used in combination with other procedures in order to gain a more complete

picture of speaker differences. Grigoras et al. (2009) compares two kinds of LTF

methods with other automatic approaches and found their performance close to

GMM-based methods (see section 2.2.5).

Another acoustic non-linguistic method for forensic speaker recognition is

called the long-term (average) spectrum (LTS or LTAS) (Nolan 1983:130). It is

calculated by taking the average of a series of short time spectra, which results in

a measure of the distribution of acoustic energy. Studies employing this method

have shown that several criteria for forensic phonetic parameters are not met.

Rose (2002:261) notes its sensitivity to voice disguise and channel mismatch as

well as substantial inter-session variability if the samples originate from sessions

several days apart.

Lindh (2004), however, ascribes ‘promising performance’ to a method based

on graphic representations of LTAS. The study involved closed-set speaker iden-

tification tests using recordings of speakers employing different kinds of voice

disguise like dialect, accent, whisper and falsetto.

2.2.5 Automatic-acoustic features

Automatic-acoustic features are parameters extracted automatically from the sig-

nal by a computer algorithm. They form the basis of commercial biometric au-

tomatic speaker verification and identification systems used for physical access

control or voice authentication over telephone. Only recently they have started

being used in the forensic domain.

The most commonly used parameters are derived from the cepstrum of a

signal (Bogert et al. 1963). Its initial use was the estimation of f0 because of the
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fact that it ‘effectively decoupled the part of the speech wave that were due to

the glottal excitation from those that were due to the supralaryngeal response’

(Rose 2002:262). Later it was applied to speaker as well as speech recognition.

The most widely used automatic-acoustic parameters are Mel Frequency Cep-

strum Coefficients (MFCCs), which are similar to the Cepstrum, but the fre-

quency scale used for the calculation of the MFCCs is not in Hertz (Hz) but in

Mel which is a perceptual unit of pitch (Stevens et al. 1937).

They are derived from a signal by applying the following steps.

1. Amplitude normalisation

To compensate for absolute acoustic energy differences the average am-

plitude of all samples in the signal is subtracted from each sample and

subsequently divided by the maximum amplitude.

2. Windowing

The signal is divided into frames of equal length, often overlapping each

other by a specified amount. Subsequently a windowing procedure like the

Hanning window is applied to the samples of each frame.

3. Fourier transform

The Fourier transform is applied to each frame to calculate the spectrum

which is in turn squared to arrive at the power spectrum.

4. Mel frequency scale

The power spectrum is then warped to the Mel frequency scale and loga-

rithmised.

5. Discrete Cosine Transform

The discrete cosine transform is applied to the resulting logarithmised and

Mel-transformed spectrum.

The amplitudes of the resulting spectrum constitute the MFCCs. The effect

of applying this method to the signal is to smooth its spectrum which leads to

the discount of frequency components that are introduced by noise. This quite

abstract representation of the speech signal has been shown to be very successfully

applicable to speaker identification tasks, resulting in very low error rates.

One critical point is that there does not seem to exist a specific relation of the

particular MFCC coefficients to the perceptual properties of the speech apparatus

of the respective speaker. It has been shown that certain coefficients correlate to
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aspects of the vocal tract (Rose 2002), however the interpretation of these values

is not straightforward. However, an explanation of why the combination of a

perceptual scale (Mel) with the smoothing of amplitude spectra performs better

than alternative scales to be applied is still lacking.

2.2.6 Dynamic features based on traditional acoustic fea-

tures

The central notion assumed in this study is that speakers are less constrained in

their articulatory movements and behaviour while they move from one phonetic

target to the next. They carry out a phonetic plan which, according to Nolan’s

model of the information comprising a voice, is the outcome of the linguistic

mechanism and the speaker’s communicative intent.

Within the framework of Natural Phonology the subject area is contrived as

part of social interaction. Hence, ‘[t]he two main functions of segmental phonol-

ogy are to make language pronounceable and perceptible’ (Dressler 1984:32).

Moosmüller (1997b:32) elaborates the relationship between phonemes as phono-

logical units and the speaker’s intention.

Following Baudouin de Courtenay (1894), phonemes, the outputs
of language-specific processes (based on universal phonological pro-
cesses), are defined as intentions. Any intended phoneme is accom-
panied by an additional social intention. The phonetic output may
diverge from this intention, phonologically (in the sense of a phonolog-
ical process), socially (in the sense of a variety not intended) or both
(in the sense of socially evaluated processes) (Moosmüller 1997b:32).

Following the train of thought that speakers can be identified by the dynamics

exhibited during the realisation of their intention, this framework provides useful,

as it incorporates these aspects to account for factors of variability.

Regarding the phonetic implementation within Natural Phonology, Donegan

(2002:58) states that ‘[t]he phonological representations specify combinations of

features in relative time, rather like a musical score, and the vocal organs ‘inter-

polate’ as they move from one target or gesture to the next’. However, ‘[s]peakers

do not simply line up a sequence of phonemic targets and allow the articulators

to get from one to another as best as they can; instead the activity of articulation
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is centrally planned, so that features spread (or gestures overlap) in regular ways’

(Donegan 2002:69).

This is supported by the findings of a study by Whalen (1990) which inves-

tigated coarticulation effects by requiring test persons to start reading nonsense

strings in which consonants and vowels were inserted only after the speaker be-

gan to read, i.e. before the whole utterance was shown. The author concluded

that ‘[c]oarticulation, though presumed to be due to the constraints of producing

speech in real time, is largely a result of planning an utterance rather than an au-

tomatic consequence of successfully producing that utterance’ (Whalen 1990:29).

As has been elaborated in the preceding sections there exist differences be-

tween humans with respect to their physique that has effects on the dynamic

properties of speech. Nolan (1983:60-61) states that ‘[. . . ] it is reasonable to

assume that different speakers may have differential agility in speech production,

in the same way that speed of movement and coordination differ in other physical

skills [. . . ]’.

In the pursuit of finding useful parameters for robust forensic speaker recogni-

tion based on speech segments, the notion of phonetic targets (see section 2.2.4)

has been adopted. In the case of vowels these are usually stated in terms of

formant frequencies that have to be maintained at some point in time during the

segment in order to enable the perception of the phonological unit. In monoph-

thongal vowels only one phonetic target is assumed that ‘can be thought of as a

single point that [. . . ] typically occurs nearest near the temporal midpoint [. . . ]’

(Harrington in press:85). The onset and offset of the vowel are subject to coar-

ticulation effects depending on the context. Thus the time-dynamic properties

of the formant features under consideration are to a large extent subject to the

surroundings of the vowel.

In the case of diphthongs the assumption was made that two targets were

involved in the production which have to be achieved to attain correct perception.

A study by Watson & Harrington (1999) showed, however, that these targets are

not sufficient on their own to allow discrimination between diphthongs and vowels

in general, indicating that the linguistic information is conveyed by means of other

more dynamic properties, as ‘vowels can vary in length, in the relative timing of

the target, and in whether vowels are specified by one target or two’ (Harrington

in press:88).
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Diphthongs have often been characterised by and divided into an onset steady

state, the glide and an offset steady state, assuming that relative timing and du-

ration are decisive factors for the language-specific diphthong perception and

discrimination. However, when applied to real formant data, ‘steady state’ is

often a rather inappropriate term. For example McDougall (2005:51) notes that

her Australian English /aI/ data rather shows ‘a relatively steady onset compo-

nent followed by a strong glide movement’, which applies to Austrian Standard

German /aE/ data as well.

The fact that diphthongs occur with a relatively high frequency in speech

and that the dynamic properties exhibited in the spectral change over time are

measurable in a straightforward way are properties that place them in a position

of high interest for forensic speaker recognition.

Several studies have investigated the use of diphthongs for discriminating

speakers. Previous research concentrated mostly on instantaneous features to

capture the notion of phonetic targets and their realisation. In monophthongs

or liquids this approach was quite successfully applied by concentrating on pa-

rameters taken from the steady state or by calculating the mean of the measured

values (see Rose (2006a), Rose et al. (2006), Alderman (2005)).

However, as noted by Kinoshita & Osanai (2006:112), the formant contours

exhibit substantial style-specific behaviour and are, thus, subject to rather high

inter-session variability which renders methods depending on formant values of

the two targets inapplicable. Kinoshita & Osanai correspondingly investigate the

use of other features derived from the formant trajectories. They use a likelihood

ratio approach (see section 2.3.2) to evaluate combining formant target values

with the slope of the glide of the second formant, yet conclude that ‘the slope of

F2 was not found to be particularly robust against differences in speech styles.

However, the angle of the glide was at least as useful as the two targets of the

diphthongs [. . . ]’ (Kinoshita & Osanai 2006:117).

Recent studies employed more complex parametric representations of formant

trajectories based on parametric functions fitted to formant contours. McDougall

(2005) first described the use of linear regression techniques to adapt polynomial

functions of different degrees to vowel trajectories in order to discriminate be-

tween speakers. In her study she investigated several methods to characterise

dynamic properties of speech based on formant frequency measurements of /aIk/
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and of the coarticulation between vowels and schwa as well as intervocalic /r/

produced by speakers of Standard Southern British English (SSBE). The meth-

ods used were measurements at temporal midpoints, measurements taken at 10

percent steps throughout the diphthong, as well as linear regression to fit poly-

nomials to formant trajectories.

McDougall & Nolan (2007) extended this approach by fitting polynomial func-

tions to formant measurements at 10% intervals obtained from /u:/ produced by

male speakers of Standard Southern British English (SSBE). They performed

discriminant analysis to find the best-performing parametric representation. The

results indicated that the quadratic polynomial best captures speaker-specific

dynamic properties.

Studies conducted by Morrison & Kinoshita (2008), Morrison (2008), and

Morrison (2009b) made use of parametric representations along the lines of Mc-

Dougall & Nolan (2007) combined with a likelihood ratio approach (see sec-

tion 2.3.2) to perform speaker discrimination tests based on data of male speakers

of Australian English.

Morrison (2008) investigated the use of parametric representations for foren-

sic speaker comparison based on recordings of 27 male speakers of Australian

English. The samples were taken in two sessions where the speakers were asked

to read sentences like ‘bide, B-I-D-E spells bide’. Of each sentence, two record-

ings were made in each session. He then used quadratic and cubic polynomial

functions to model the formant dynamics exhibited during the production of /aI/

and compared the obtained likelihood ratio scores with those obtained by apply-

ing traditional dual-target approaches. The results showed that the parametric

representations outperformed other methods.

Morrison & Kinoshita (2008) again used audio recordings collected from 27

male speakers of Australian English aged 20 to 63 years who were asked to speak

sentences of the form ”Hoe, H-O-E spells hoe.” The /oU/ diphthong of the first

and final word were segmented manually. The formant frequency trajectories of

the first three formants were tracked using a standard formant tracking algorithm

and were manually corrected where necessary.

Quadratic and cubic polynomial functions as well as the first three and four

coefficients derived from discrete cosine transform (DCT) were used as para-

metric representations of the diphthongal formant contours. The two kinds of
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parametric representations were compared against each other in terms of the Cllr

metric (see section 3.4.6) with respect to several conditions, namely applying

time-normalisation to the formant contours as well as using a logarithmic fre-

quency scale. The likelihood ratios were calibrated post-hoc by applying linear

calibration techniques (see section 3.5).

Morrison (2009b) finally also used recordings of 27 male Australian English

speakers who read similar sentences containing the diphthongs /aI/, /eI/, /oU/,

/aU/, and /OI/. He used the same types of representations as in the previous

study. The resulting likelihood ratios from the individual segments were once

again calibrated as well as fused using logistic regression fusion (see section 3.6).

2.3 Evaluation of forensic speech evidence

Acknowledging the problems posed by forensic speaker recognition, amongst oth-

ers by between- and within-speaker variability, the question arises as to how

forensic speech evidence should be evaluated and interpreted in court.

As noted by Aitken (1995:4), scientific observations give rise to random varia-

tion. The resulting uncertainty must be accounted for by using probabilistic and

statistical measures when assessing the strength of evidence.

In criminalistics, however, the concept of identification used in court or by the

police prefers individualisation, i.e. a categorial decision of similarity or dissimi-

larity, guilt or innocence. Strictly speaking the certainty of the decision which is

strived for requires a feature that is so rare that it can be concluded that there

exists only one person bearing that feature, as it is the case with fingerprint

analysis (Champod & Meuwly 2000:1).

Nolan (2001) states that it has yet not been scientifically proven ‘whether

absolute discrimination is even theoretically attainable’, as speakers’ ranges of

variation overlap in the multidimensional feature space. However, as noted in

section 2.1.2, phoneticians nevertheless should offer their opinion before court,

but it comes down to how to express their testimony.

The following section discusses an approach which tries to solve the situation.

It is commonly known as the Bayesian approach and represents the framework

which is adopted in this thesis.
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2.3.1 The Bayesian approach

The Bayesian approach provides a conceptual framework of how to evaluate the

strength of evidence given two competing hypotheses. The name is taken from

the Bayes’ Theorem (Bayes 1763) which basically allows to inverse conditional

probabilities.

The question usually asked in court is most commonly phrased as ‘Is the

speaker heard on the incriminating recording the defendant?’, or quite similar

‘How probable is it that the offending sample comes from the defendant?’. As

noted in Rose (2002:56) this question cannot be answered by the forensic phonetic

expert for logical and legal reasons.

First of all the probability of the offender being the defendant cannot be stated

for legal reasons, as the forensic phonetician exceeds his authority and role in the

judicial process, as it is the role of the judge or jury to reach a decision of guilt

or innocence. Rather he should be concerned with giving an assessment of the

strength of the evidence (Rose 2006a:64).

Then, on the basis of logical reasons he cannot make a statement of probability

concerning the identity of speakers. The forensic expert does not have access to

all the information available to the judge or jury that is necessary to make that

statement, as there could be strong evidence otherwise against the defendant’s

involvement in the crime (Robertson & Vignaux 1995).

The Bayesian approach alleviates the situation by making explicit the role

of the forensic scientist and to allow for easy combination of different types of

forensic evidence. First it is acknowledged and made explicit that there exist two

hypotheses concerning the guilt or innocence of the defendant.

• The prosecution hypothesis, denoted as HSS, represents the claim that the

speech on the offending recording originates from the defendant.

• The hypothesis of the defence, denoted as HDS, states that there are dif-

ferent speakers involved.

The question asked by the court is now rephrased as a ratio of probability of

the two competing hypotheses given the evidence of the forensic scientist.

p(HSS |ESp)

p(HDS |ESp)
= p(HSS)

p(HDS)
· p(ESp|HSS)

p(ESp|HDS)

Posterior Odds Prior Odds Likelihood Ratio
(2.1)
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Equation 2.1 shows the Bayes’ Theorem in its odds form, as it is applied

in the case of forensic speech evidence (Rose 2002:63). ESp denotes the speech

evidence while HSS and HDS represent the prosecution and defence hypotheses,

respectively.

Odds are basically the same as probability but expressed in a slightly different

but often more comprehensible form. For example, an event that occurs with the

probability of 75% is expressed in odds as 3:1, which means that it is three times

more likely to happen than not to happen. The expression p(E)
1−p(E)

performs a

conversion between probabilities and odds.

Central to the Bayes’ Theorem is that the prior odds, which are the odds in

favour of the prosecution hypothesis against the defence hypothesis before the

evidence is considered, are updated to posterior odds by multiplying them by the

likelihood ratio, which is ‘the ratio of the probabilities of evidence assuming guilt

and assuming innocence of the suspect’ (Aitken 1995:46). The role of the forensic

phonetic expert is to provide his assessment of the strength of evidence expressed

as a likelihood ratio value.

As can be seen from the formula it is not sufficient to only look at the prob-

ability of evidence under the prosecution hypothesis or only under the defence

hypothesis. The following section explains this reasoning and further describes

the concept of the likelihood ratio.

2.3.2 The likelihood ratio

As introduced in the previous section, the concept of the likelihood ratio is the

practical solution to the question of how to make a logically and legally cor-

rect assessment of the speech evidence by the forensic expert, as it provides a

continuous numerical expression of the strength of evidence under consideration.

In the calculation of the likelihood ratio the forensic practitioner expresses the

ratio of the probability of evidence assuming the prosecution hypothesis HSS,

that is, the samples originate from the same speaker, and the probability of

evidence given the hypothesis of the defence, usually that the samples originate

from different speakers (Aitken 1995, Lindley 1977). However, it can also be

specified in a different way, as explained below.

30



2.3. EVALUATION OF FORENSIC SPEECH EVIDENCE

Equation 2.2 shows how the likelihood ratio is expressed.

LR =
p(ESp|HSS)

p(ESp|HDS)
(2.2)

ESp again denotes the speech evidence while HSS and HDS represent the

prosecution and defence hypotheses, respectively.

The expression can be seen as a balance of similarity to typicality6 (Rose

2006b:168). In the numerator, a score is given of how similar the parameters of

the evidence are, and in the denominator a value is derived for how likely it is

to find the evidence in a specified reference population. This in turn depends

on the hypothesis of the defence, which can read simply as ‘it was a different

speaker’, or be more specific as in ‘it was the accused’s brother’. This concept

of balance of probabilities is vital to the likelihood ratio as there are properties

which distinguish speakers more certain than others.

A problem remains in the process of defining a reference population. If the

defence states that it was the accused’s brother then it is very simple, as the

objective turns into the identification of a speaker in a closed set. Yet, if the

assertion is made that it was a different speaker who sounds similar to the accused

then the task becomes less trivial, as it is difficult to obtain data from speakers

that fit that criterion for each case. A possible approximation for this hypothesis

is to use the data of speakers of similar sex, age and body height with the same

first language and possibly dialect as a reference population which relate to the

acoustic parameters discussed in section 2.2.2.

However, as the judge or jury is not supposed to be given evidence in form

of numerical representations like the likelihood ratio scales of verbal equivalents

have been proposed that re-introduce a rather categorial notion but are in turn

more readily understandable by the finder-of-fact. Table 2.2 shows such a list of

verbal equivalents used at the Forensic Science Service as it is presented in Rose

(2002:61).

6It must be noted that both terms do not equally correspond to homophonous concepts in
statistical nomenclature and should not be taken as denoting the same strict formalisation as in
their use in statistics. They should rather imply a more intuitive understanding of the purpose
of the likelihood ratio concept.
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LR value Verbal equivalent
> 10000 Very strong evidence
1000-10000 Strong evidence
100-1000 Moderately strong evidence
10-100 Moderate evidence
1-10 Limited evidence

supporting same speaker hypothesis
1-0.1 Limited evidence
0.1-0.01 Moderate evidence
0.01-0.001 Moderately strong evidence
0.001-0.0001 Strong evidence
< 0.0001 Very strong evidence

against same speaker hypothesis

Table 2.2: Verbal equivalents of likelihood ratio values (Rose 2002:61)

Logarithm of the likelihood ratio

Taking the logarithm of the likelihood ratio has theoretical as well as practical

advantages.

The theoretical gain from using a logarithmic form is related with the inter-

pretation of the value as a measure of strength of evidence. As noted in Aitken

(1995:45) the prior probability in favour of HSS are multiplied with the likelihood

ratio in the odds form of the Bayes’ theorem (see equation 2.1). By applying the

logarithm this turns into an additive relationship which facilitates the interpreta-

tion of the likelihood ratio as a weight. As Aitken puts it, ‘[a] positive weight may

be thought to tip the scales of justice one way, a negative weight may be thought

to tip the scales of justice the other way’. A likelihood ratio of one becomes zero

when the logarithm is applied, leading to the correct interpretation of neither

adding weight to the prosecution hypothesis nor to the hypothesis of the defence.

The practical use is to increase numerical precision in the calculation of the

likelihood ratio using computers, as the resulting values can theoretically get

infinitely large or small. Taking the logarithm alleviates this problem as the

resulting values are scaled down. Furthermore, uncorrelated likelihood ratios

from several methods can be combined by multiplication, which can lead to loss

of precision due to underflow in the floating point presentation used in computers

if very low likelihood ratios are involved.
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2.3.3 Discussion

The explicitness of the Bayesian approach prevents a wide range of errors in

interpretation, including the following fallacies noted in (Aitken 1995:36-44).

• Fallacy of the transposed conditional

This fallacy describes the case where the probability of evidence assuming

the prosecution hypothesis p(ESp|HSS) is calculated but is taken to be the

probability of the prosecution hypothesis given the evidence p(HSS|ESp).

• Defender’s fallacy

This type of error occurs if it is stated that the evidence has little relevance

because the suspect is one of a rather large number of people with a similar

property, but it is neglected that before the adduction of evidence the prior

probability would have been nearly nil.

• Probability (another match) error

In this common fallacy the probability of evidence assuming the defence

hypothesis is equated to the probability that at least one other person has

the same property.

As the consequences following from these misinterpretations can be rather

grave, the benefits of stating the evidence as a likelihood ratio instead of some

other form of probability statement become clear.

The application of the Bayesian approach to the problem of evaluating evi-

dence has not yet been embraced by the whole community of forensic phonetic

theorists and practitioners. Currently its utilisation is strongly debated by pro-

ponents and opponents working in the field.

The UK Position Statement on forensic speaker comparison accepts the pre-

supposition of the Bayesian approach that it is not the forensic expert’s role to

make an identification claim, but rather to perform a speaker comparison (French

& Harrison 2007:138), however finally rejects the framework as it was presented

here because of the lack of data for reference populations and proposes a two-stage

speaker comparison procedure. Rose & Morrison (2009), in a response to the UK

Position Statement, criticise this proposal in that it in fact faces the same prob-

lem with respect to reference populations and the distribution of forensic phonetic

parameters within the demographic.
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A central difficulty stated by many opponents of this approach is how to assess

the prior odds in practice. This problem is well-recognised, as Rose (2002:73-74)

discusses this question but finally does not state a solution. However, the role

of the forensic phonetician within the Bayesian framework is to calculate the

likelihood ratio, which can nonetheless be reported in court as the strength of

evidence.

The very basis of the Bayesian approach, that is the combination of prior

odds with an estimate of the strength of evidence given by the likelihood ratio

is incompatible with many legislations around the world, especially in western

Europe. This is because of the fact that the finder-of-fact must specify prior odds

which basically state how likely it is that the suspect is actually the offender, prior

to adducting the information gained by the evidence. This, of course, collides

with the presumption of innocence. But, as argued by Rose (2002:75) it can be

‘shown by NSM7 analysis that incompatibility of prior odds with presumption of

innocence is not a valid criticism of the legal use of Bayes’ theorem’.

Given the criticism presented above, a comparison with other probability

statements for speaker identification is due. Statistical tests of significance pre-

suppose a null hypothesis which usually states that there is no difference in the

mean and variance of parameters of both speakers. Aitken & Lucy (2004:112)

cites a method involving multiple significance tests where each parameter is in-

dividually tested. The prosecution (null) hypothesis is rejected ‘if any of the

individual variable mean differences is greater than three standard errors’, under

the assumption that the parameters are uncorrelated, i.e. statistically indepen-

dent. An other test presented is Hotelling’s T 2-test, a multivariate generalisation

of Student’s t-test.

These kinds of tests share the problem concerning the presumption of inno-

cence, as the null hypothesis states that both speakers are the same. Further-

more, the principal difference between likelihood ratio tests and significance tests

is that in the latter, the prosecution hypothesis can only be rejected but, in a

strict sense, not verified, whereas the former signals the strength of support for

each hypothesis by it’s deviation from unity (or zero, for log likelihood ratios).

That is because statistical tests never introduce causality, but provide a decision

between two hypotheses.

7Natural Semantic Metalanguage
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However, the deviation of likelihood ratios from one is also the source of

another point of criticism, as it necessarily does not have an upper and lower

bound. Therefore it is difficult to interpret the scores and one has to adhere

to the range of scores given during extensive tests with very similar cases and

conditions to rely on its validity.

The straightforward combination of different sources of evidence through mul-

tiplication of likelihood ratios is cited by Robertson & Vignaux (1997) as another

practical advantage of this approach, who state that ‘[s]ignificance tests and prob-

abilities of paternity cannot logically be combined with other evidence at all’.

Nevertheless, many forensic practitioners see a coming paradigm shift, not

only regarding the evaluation and presentation of speech evidence but of foren-

sic evidence in general to build a framework for forensic identification based on

rigorously tested methods. Saks & Koehler (2005:892) note that forensic science

was based on the assumption that ‘two indistinguishable marks must have been

produced by a single object [. . . ], leaning on the assumption of discernible unique-

ness’. Yet, because of experience gained by DNA typing and a change in legal

admissibility standards, the forensic sciences are undergoing a paradigm shift.

During the rise of DNA analysis this new technique was applied to cases where

a suspect had already been convicted. Further inspection of 86 cases where the

DNA tests resulted in post-conviction exonerations showed that ‘forensic science

expert testimony is the second most common contributing factor to wrongful

convictions, found in 63% of those cases’ (Saks & Koehler 2005:893).

Thus, forensic practitioners including scientists from the phonetic domain are

pushing towards the adoption of a more rigorous approach to evaluating evi-

dence based on population statistics (Drygajlo 2007, Morrison 2009a). Gonzalez-

Rodriguez et al. (2007) present the results of different forensic acoustic-phonetic

systems and analyses based on the Bayesian approach in order to emulate DNA-

like transparency and testability of the methods. They calculate likelihood ratios

using traditional forensic phonetic features using a generative likelihood ratio for-

mula developed by Aitken & Lucy (2004) (see section 3.3) as well as an automatic

forensic speaker recognition system with scores calibrated to give likelihood ratio

outputs.

Eckert & Wright (1997:79) state the following test as to ‘whether the science

or scientific tests employed are of such a level of validity as to be allowed into
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evidence’:

1. Whether the type of evidence can be and has been tested by scientific

methodology

2. Whether the underlying theory or techniques has been subjected to peer

review and has been published in the professional literature (although this

is not a sine qua non)

3. How reliable the results are in terms of potential error rate

4. General acceptance (the old Frye test) can have a bearing on the inquiry

Consequently, the aim of forensic speaker recognition must be to attain the

level given by this test. The calculation of a likelihood ratio in terms of a Bayesian

approach accomplishes this by being easily testable, yet has to be verified based

on other languages and background populations in order to ascertain levels of

confidence for the values being calculated. Most importantly, the tests have to

be made based on real forensic casework, as the methods are heavily dependent

on models estimated from real data. Testability must therefore not only hold on

a theoretical level but must also include the very same data it will be applied on

in forensic science.
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Chapter 3

Methods

In this chapter the methods used for the experiment and the evaluation of results

are described in detail. The following section deals with the parameters used

for the speaker discrimination process. The subsequent sections provide insights

into the calculation of the likelihood ratios, given the kind of multivariate data

provided by the parameters, as well as methods to combine several scores into a

single fused score. At the end of the chapter an outline is given of the methods

used to evaluate the performance of the system as a whole, in terms of discrimi-

natory power and calibration properties of the likelihood scores delivered by the

system.

3.1 Formant feature extraction

The formant measurements which the method relies on are extracted from the

signal by a formant-tracking algorithm. It is based on linear predictive coding

(LPC) which is a method used extensively in digital speech processing. It makes

use of a linear prediction (all-pole) model which rests upon the idea of estimat-

ing values in a discrete time series from the preceding output values (Markel &

Gray 1976). The purpose of this procedure is to form a model of a vocal tract

configuration during a given time frame as a linear time-invariant system.

x̃(n) =

q∑
i=1

αix(n− i) ε(n) = x(n)− x̃(n) (3.1)
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The above equation shows the prediction of the present sample from the pre-

ceding output samples denoted by x(n − i). ε represents the error made by the

prediction with respect to the actual value of x(n).

In the formant tracking procedure the speech input is presented as a dis-

cretised digital waveform and divided into frames. These frames containing the

sampled values are preprocessed by a pre-emphasis filter and windowed. The

samples are in turn used to arrive at a model of a specific vocal tract configura-

tion, which is defined by the linear prediction coefficients αi. For the estimation

of the coefficients, the error ε is taken as a signal and is minimised. Methods for

deriving a solution for the equations are the covariance and the autocorrelation

methods (Markel & Gray 1976:166). The latter formulation produces a system

of linear equation which can be solved by a very efficient recursive algorithm

wherein each calculated coefficient is used for obtaining the following.

Following this procedure, initial formant estimates are obtained (raw data)

which are in turn used by a tracking algorithm that fills the formant slots with

the best candidate raw values to obtain the formant tracks.

This procedure represents the first basic feature extraction step applied in the

method employed in the present work.

3.2 Parametric models of formant trajectories

This section deals with the processing of the formant tracks obtained by the

aforementioned procedures to obtain final features for speaker discrimination that

capture the speech dynamics in time of the uttered segments.

The method used for this study replicates the procedures outlined in Morrison

& Kinoshita (2008) and Morrison (2009b) where it was applied to Australian

English diphthongs.

Following the procedures used in these studies, parametric curves were fitted

to each trajectory of the formant values extracted from the data. They used

second and third order polynomials as well as discrete cosine transforms (DCT)

to derive a parametric representation of the dynamic aspects of vocal tract move-

ment during the production of the diphthong.

The coefficients of the parametric curves were then used as parameters in the

likelihood ratio calculation using the multivariate kernel density formula devel-
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oped by Aitken & Lucy (2004) which is described in the subsequent section.

The following sections give an in-depth description of the two types of repre-

sentations.

3.2.1 Polynomial curves

A polynomial function is denoted by the sum of powers of its argument multi-

plied by coefficient values. Equation 3.2 shows the generic form of a polynomial

function.

y(x) = α0 + α1x+ α2x
2 + . . .+ αkx

k (3.2)

A polynomial of kth degree has k+ 1 degrees of freedom which are expressed

as the k+1 coefficient values α0,...,k which determine the shape of the polynomial.
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Figure 3.1: Polynomial fitting applied to formant data

Figure 3.1 shows the formant measurements of the second formant taken from

one of the speakers in the corpus. The superimposed coloured lines represent

polynomial functions fitted to the observed values, each using a different order.

The red line shows a polynomial of the form of a linear function α+β1x, which

is a rather poor approximation and captures little speaker-specific properties.

The green and blue functions take the form of a quadratic and cubic function,

respectively, where another term βix
i, i ≥ 2 is added. These functions give a

quite good account of the dynamic behaviour expressed in the formant trajectory

without fitting too close to the particular observation.

The cyan curve shows the polynomial of fourth order. As has been shown in

previous studies (McDougall & Nolan 2007), the use of this higher-order represen-

tation yields no gain in performance or even a decline, as it models the individual
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representations with too much detail, causing overfitting, and thus fails to provide

a good generalisation of the speaker’s time-dynamic speech properties.

Automatic fitting of polynomials

One method for fitting polynomials to a series of data points is commonly known

as the method of least squares. Central to this procedure is the sum of squared

residuals, which is derived by equation 3.3.

R2 ≡
n∑
i=1

[yi − (α0 + α1xi + . . .+ αkx
k
i )]

2 (3.3)

The best approximating polynomial is assumed to have the minimal sum of the

deviations squared from the data points observed. For this the partial derivatives

of the polynomial coefficients ∂α0, . . . , ∂αk must yield zero.

The present work uses the built-in functions for linear regression models within

the R statistics software package (R Development Core Team 2009) to derive the

polynomial coefficients from the individual formant trajectory measurements.

3.2.2 Discrete cosine transform (DCT)

The discrete cosine transform (DCT) uses the sum of cosine functions with differ-

ent frequencies and amplitudes to express a finite set of data points descending

from some arbitrary function or a digitalised signal. It is used in modern im-

age compression algorithms. The principle advantage of the DCT is to remove

redundancy in the data, leading to decorrelated transform coefficients.

Equation 3.4 shows the formula to construct a DCT curve from the coefficients

(inverse DCT ).

y(x) = α0
1√
N

+
K∑
k=1

αk
2√
N
cos

(
(2x+ 1)πk

2N

)
(3.4)

The αk represent the coefficient values, N is the number of data points, and

K denotes the order of the curve. Each coefficient represents one cosine base

function. The first produces a straight line at the height of the mean of the data

points, the second a cosine of a half cycle which gives the direction and the mag-

nitude of the formant trajectory’s tilt, and the third cosine captures the curvature
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of the trajectory. A prior study by Watson & Harrington (1999) investigated the

use of DCT coefficients to model the dynamic behaviour of formants for classify-

ing vowel and diphthong phonemes, which concluded that monophthongal vowels

could be discriminated by static targets alone while diphthongs required more

dynamic information.
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Figure 3.2: DCT applied to formant data

Figure 3.2 shows the same formant trajectory as is shown in the polynomial

fitting example (figure 3.1), with curves constructed by using inverse DCTs of

different orders. The red curve is obtained by applying inverse DCT with only

two coefficients (α0 and α1), yielding a cosine of a half cycle. The other curves of

higher degrees are created the same way, but with additional coefficients. As can

be seen by comparing the polynomial and DCT curves they show a rather similar

behaviour in respect to how well they align to the trajectory with increasing order

of the curve.

Morrison & Kinoshita (2008), Morrison (2009b) used this kind of parametric

representation in their studies and concluded that ‘[t]here were trends indicating

that DCTs generally outperformed polynomials [. . . ]’. However, this observation

depends very much on the data which the methods are applied to and it is

expected to find variability in performance between different diphthong segments

of other language varieties.

Calculation of discrete cosine transform coefficients

The discrete cosine transform was calculated using the package dtt1 (Komsta

2007) for the R statistics software package (R Development Core Team 2009),

which provides functions for several discrete trigonometric transformations.

1http://cran.r-project.org/web/packages/dtt/dtt.pdf (retrieved 2009-05-12)
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The vector of measurements is transformed into its DCT components. Of

these, the coefficients three to four are used as parameters in tests denoted as DCT

order 2 or 3, respectively. This is done in analogy to the polynomial functions of

different degrees which use the same number of coefficients as features.

3.3 Likelihood ratio calculation

As noted in section 2.3.2 the outcome of the approach outlined in this thesis

should ideally be expressed as a likelihood ratio which gives an assessment of the

strength of evidence for use in the Bayesian approach.

An analytic formula for obtaining likelihood ratios from continuous multivari-

ate data has been developed and described in Aitken & Lucy (2004). It assesses

the difference between the samples taken from the suspect and the offender sam-

ple with respect to a background distribution estimated from a given population.

(2π)−p|D1|−
1
2 |D2|−

1
2 |C|−

1
2 (mhp)−1|D−11 +D−12 + (h2C)−1|−

1
2

× exp{−1

2
(ȳ1−ȳ2)T (D1 +D2)

−1(ȳ1 − ȳ2)}

×
m∑
i=1

exp[−1

2
(y∗ − x̄1)T{(D−11 +D−12 )−1 + (h2C)}−1(y∗ − x̄1)]

(2π)−p|C|−1(mhp)−2
2∏
l=1

[|Dl|−
1
2 |D−1l + (h2C)−1|−

1
2

×
m∑
i=1

exp{−1

2
(ȳl−x̄i)

T (Dl + h2C)−1(ȳl − x̄i)}]

(3.5)

y∗ = (D−11 +D−12 )−1(D−11 ȳ1 +D−12 ȳ2)−1 (3.6)

h =

(
4

2p+ 1

)1/(p+4)

m−1/(p+4) (3.7)

Equation 3.5 shows the likelihood ratio multivariate kernel density formula as

it was presented in Aitken & Lucy (2004). A detailed characterisation is given

hereinafter.

The population of p characteristics of items, that is the set of parameters
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3.3. LIKELIHOOD RATIO CALCULATION

taken from realisations of a diphthong, is denoted as Ω. The background data is

taken as a random sample of m members from Ω, with n measurements of the

characteristics each, and is labelled as xij = (xij1, . . . , xijp)
T , i = 1, . . . ,m, j =

1, . . . , n. The total number of measurements is denoted by N = nm.

The suspect and offender measurements are denoted by {yl} = (ylj, j =

1, . . . , nl, l = 1, 2), where ylj = (ylj1, . . . , yljp)
T . Their distributions conditional

on the source are assumed to be normal, with the theoretical mean θl, l = 1, 2

and variance-covariance matrix Dl, l = 1, 2.

The Gaussian distribution’s parametric nature enables its use on quantita-

tively rather limited data which is the case commonly faced in forensic cases,

provided that the parameters in fact follow a normal distribution. As with pa-

rameters used in speaker recognition, trace evidence displays within-source and

between-source variation. The likelihood ratio formula takes this into account by

deriving statistical models from the data given to calculate a score.

The within-speaker variance is also modelled by a Gaussian distribution with

the theoretical mean θi, estimated from the measurements {xij} for speaker i,

and the within-speaker variance-covariance matrix U , which is estimated from

the background data as follows.

Û =
Sw

N −m
Sw =

m∑
i=1

n∑
j=1

(xij − x̄i)(xij − x̄i)
T (3.8)

The between-speaker variance models the distribution of the within-speaker

theoretical means θi. This distribution is not necessarily normal. Therefore, the

formula described in Aitken & Lucy (2004) uses a kernel distribution for modelling

between-speaker variability. In this technique a probability density function is

estimated by taking the sum of Gaussian functions for each observation, with its

parameters mean and variance set to the observed value and a smoothing factor,

respectively, normalized by the number of observations.

Figure 3.3 shows a histogram of non-normally distributed data and a kernel

density estimation which provides a better fit than a Gaussian distribution. The

advantage of a kernel density estimate lies in its non-parametric nature which

allows a better approximation of the data. Given a representative dataset of the

background population, the actual distribution of features can be more accurately
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Kernel density estimation
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Figure 3.3: Example of kernel density estimation

modelled. Furthermore, as a rather technical convenience, it is always guaranteed

to be a proper probability density function, i.e. is non-negative and integrates to

one.

For modelling the between-speaker variability a multivariate normal density

function is used as the kernel density function. The parameters to this function

are the empirical within-speaker means x̄i and the covariance matrix h2C which

is detailed below.

Ĉ =
S∗

m− 1
− Sw
n(N −m)

S∗ =
m∑
i=1

(x̄i − x̄)(x̄i − x̄)T (3.9)

The estimation of the smoothing parameter h was declared in equation 3.7.

The overall probability density function for the between-speaker variance is given

in the following equation.

f(θ|x̄1, . . . , x̄m, C, h) =
1

m

m∑
i=1

K(θ|x̄i, C, h) (3.10)

The parameters for the Gaussian distribution of the suspect and the offender
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models are estimated from the data. The theoretical means θl are estimated

from the measurements yl, but the variance-covariance matrices Dl, l = 1, 2 are

adapted from the within-group covariance matrix U by division with the number

of measurements used for the suspect or offender.

The formula’s original formulation was intended for the quantitative numerical

evaluation of trace evidence in form of glass fragments found at a crime scene

and on a suspect (Aitken & Lucy 2004), but it has subsequently been shown

to be applicable in the domain of speech evidence, using formant measurements

as multivariate data (Rose 2005). This formula has successfully been applied

to forensic phonetic data (see for example Rose et al. (2006), Morrison (2008,

2009b), Morrison & Kinoshita (2008)).

The multivariate data used in the method outlined in this chapter is com-

prised of the coefficients derived by approximating the polynomial functions to

the formant trajectories as well as using the first three or four DCT coefficients,

as outlined in the preceding sections.

3.4 Evaluation of performance

The question of how to evaluate and compare the performance of recognition

and classification systems in general is by far not trivial. For the task of speaker

recognition, several metrics and representations have been developed. These in-

clude the equal error rate (EER) as a single-number assessment of performance,

the detection error trade-off (DET) plot as a comprehensive summary representa-

tion of discrimination performance, the Tippett plot and the Applied Probability

of Error (APE) plot along with the log likelihood ratio cost metric (Cllr) which

quantify the loss in performance due to discrimination errors and the calibration

of the system.

To evaluate recognition systems, a series of trials are performed in which

the system under evaluation must give either a categorial decision, i.e. it must

determine whether the speech recorded in the training (suspect) sample and the

test (offender) sample originate from the same speaker, or a score indicating a

“strength of belief” of speaker similarity or dissimilarity. These trials can be

categorised into the following two groups.

• target trials, where the target speaker is indeed the speaker on the test
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sample.

• impostor trials, where different speakers are involved.

The system should ideally give a positive response in the former case and a

negative in the latter, which can take the form of a likelihood ratio score as a

measure of strength of the decision or a categorial accept/reject answer which is

often derived by setting a threshold on the score scale.

The performance is then assessed by measuring the decision errors made by

the system. The two errors generated are missed decisions, meaning that a target

trial has been rejected as not originating from the same speaker, and false alarms,

where the system returns a positive result for a impostor trial. The probabilities

of error corresponding to these errors are denoted by Pmiss|target and PFA|Impostor,

respectively (Przybocki et al. 2007).

Figure 3.4 shows a plot of the distributions of log likelihood ratios typically

assigned to speaker detection trials. The target trial distribution overlaps with

the impostor trial distribution. The definition of a decision threshold yields the

two error rates described above.
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Figure 3.4: The log likelihood ratio distributions for target and impostor trials
(after van Leeuwen & Brümmer (2007:334))

The evaluation metrics listed at the beginning of this section have been incor-

46



3.4. EVALUATION OF PERFORMANCE

porated into the evaluation plan of the last NIST2 speaker recognition evaluation

(SRE) in 2008 (NIST 2008) and have been widely adopted in the field of auto-

matic speaker recognition. For the reason of comparability to other approaches

to (forensic) speaker recognition systems these measures are adopted in this the-

sis. The subsequent sections give a detailed account of their evaluation focus and

capability.

3.4.1 Discrimination

The performance of a system is preeminently assessed in terms of its discrimina-

tory potential, i.e. how well it can discriminate between speakers. This property

is evaluated by comparing error rates for the two detection errors described in

the previous section. However, as there are two types of errors involved, a com-

parison between systems cannot be achieved straightforwardly, because the two

errors are in a trade-off relation to each other, as the number of misses natu-

rally increases and the number of false alarms decreases as the decision threshold

moves upwards the LR scale, and vice-versa.

3.4.2 Calibration

Calibration refers to the relation between the information gained by the output of

a system and its interpretation by the finder-of-fact, i.e. the judge or jury (Ramos

2007:99). The decision of the court is made on a statement of the strength of evi-

dence, either in favour or against the defendant. Therefore, it should be presented

in a consistent and precise way that enables a straightforward interpretation.

The calibration properties of a system describe how well-aligned the output

scores are with respect to a scale that is used for interpretation by the finder-

of-fact. In case of likelihood ratios, the scale applied is the one described in

section 2.3.2 where values greater than one support the prosecution hypothesis

while values less than one give support for the hypothesis of the defence (see 2.2).

The score produced by a system has no absolute meaning in itself, even if they

approximate the likelihood ratio scale. Values can get indefinitely large or small.

To produce values that adhere to a consistent scale the scores can be scaled and

2National Institute of Science and Technology

47



CHAPTER 3. METHODS

shifted. This will not affect discrimination performance, as the decision threshold

is shifted with the scores (van Leeuwen & Brümmer 2007:339).

3.4.3 Equal Error Rate (EER)

The EER gives a characterisation of a system as a single value which can be

directly used for comparison. Since, as outlined above, the error rates are in a

trade-off relation, there is a point where they are equal. This value is called the

Equal Error Rate or EER.

This figure is used to compare the discrimination performance and is indepen-

dent of the scale of the scores which are produced by the system, meaning that

the value can be the same for systems that yield a likelihood ratio as for ones

that deliver some form of distance scores as it is depends only on the number of

matches and mismatches of the two types of trials.

Being a single value, this measure does not provide sufficient information with

regard to the scores output by the system as well as their distribution. Therefore,

other tools must be additionally provided that give a more detailed picture at

different operation points.

3.4.4 The Detection Error Trade-off (DET) plot

The Detection Error Trade-off plot (Martin et al. 1997) is a graphical represen-

tation of the inherent trade-off between the two error types. It gives a charac-

terisation of a system over the whole range of possible decision threshold values.

Figure 3.5 gives an example based on scores from a speaker recognition system.

The axes are warped according to the quantile function of the Gaussian dis-

tribution. In figure 3.4 the distributions of the likelihood ratios were presented

along with the threshold that yielded the trade-off between the two types of er-

rors. In the DET plot, instead of plotting the miss and false alarm probabilities,

the standard deviations corresponding to these probabilities are plotted (Martin

et al. 1997:2). The scales of the standard deviation are plotted on the top and

left of the figure.

As a consequence the DET plot of a system approximates a straight line if

the two error rates are normally distributed. The slope of the line depends on

the ratio of the standard deviations of the impostor and target trial distributions
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Figure 3.5: Example of a Detection Error Trade-off (DET) plot

(van Leeuwen & Brümmer 2007:334). Random performance is indicated as a

straight diagonal line at y = −x. The detection error trade-off plot shows only

the lower left quartile because the performance of the systems under comparison

is usually better than random.

A main property of the DET plot is that the performance of several methods

for speaker identification can be easily compared in one figure. Better perfor-

mance is indicated by curves further to the lower left and even small improve-

ments are easily perceived. It also has to be noted that, although thresholds are

used to calculate the error rates, the performance expressed by the DET plot

can be assessed without the need that the systems compared actually involve

the setting of a threshold or arriving at a categorial decision. This is important

for the use of the likelihood ratio as a probability statement of the strength of

evidence, as has been mentioned in chapter 2.3.2.
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As with the EER the DET plot is a measure of discrimination performance

based on error rates and is not bound to scores that adhere to the likelihood ratio

scale.

3.4.5 The Tippett plot

Tippett plots are a graphical representation of Pmiss|target and PFA|Impostor as

a function of the (log) likelihood ratio. In the plot two curves are displayed

that indicate the probability for the respective hypotheses, H0 representing the

hypothesis of the prosecution and H1 expressing the competing hypothesis of the

defence, given a log likelihood ratio score. The name refers ‘to the concepts of

“within-source comparison” and “between-source comparison” defined by Tippett

(1968)’ (Alexander et al. 2004:97). An example is given in figure 3.6.
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Figure 3.6: Example of a Tippett plot

The red curve of the prosecution hypothesis represents the distribution of the

scores calculated for target-speaker trials and the blue curve of the hypothesis
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of the defence shows the distribution of non-target-trial scores. They represent

the proportion of likelihood ratios greater than a given likelihood ratio for each

hypothesis.

The Tippett plot provides a solid graphical evaluation tool for the calibration

properties of a system, as the curves representing the respective hypotheses will

saturate much faster for likelihood ratios deviating from zero if the scores are

well-calibrated. It is a measure of quality for the scores produced by the system

during a test, as the meaning inherent to the scores and their distribution is

important in order to be able to state how certain it is that the same speaker

was involved if the system reports a specific score. For example, in the Tippett

plot in figure 3.6 one can be to almost 90% sure that if the log likelihood ratio

calculated by the system is -15 the offending speech sample was produced by

a different speaker. It is however important to keep in mind that this is only

applicable to scores produced in a test and the example given is not extendible

to future scores, unless the conditions of the training and the real case data are

comparable.

3.4.6 The log likelihood ratio cost function Cllr

The Cllr function has been introduced by Brümmer & du Preez (2006) to provide a

metric that simultaneously measures discrimination and calibration performance.

Like the Tippett plot it is a quality measure for speaker detector scores, but

particularly for values adhering to the log likelihood ratio scale.

Prior to its inception, the Decision Cost Function Cdet was used for the

same purpose which required specifying the prior probability of targets (see sec-

tion 2.3.1) and the costs of Pmiss|target and PFA|Impostor errors as application-

dependent parameters (van Leeuwen & Brümmer 2007:337).

The scores produced by a speaker classifier can spread over any range and

can be scaled and shifted accordingly. As van Leeuwen & Brümmer (2007:339)

notes ‘[t]here is no meaning in the scores, other than an ordering’.

The Cllr metric represents a function that attaches costs to log likelihood ratios

based on their position on the likelihood ratio scale, which in principle ranges from

negative to positive infinity with zero as a threshold. The basic assumption is that

target-trials should yield high LLR values and non-target-trials should produce

low (i.e. negative) LLR values. Deviations from this concept are ‘punished’ with
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a higher cost.

The log likelihood ratio cost function ‘sample[s] Cdet over an infinite “spec-

trum” of operating points and then to simply integrate over them’ (van Leeuwen

& Brümmer 2007:341). This makes the error probabilities a function of the

threshold and thus represent the information provided by the Decision Cost Func-

tion over the whole range of thresholds.

Cllr =
1

2

(
1

Nss

Nss∑
i=1

log2(1 +
1

LRssi

) +
1

Nds

Nds∑
j=1

log2(1 + LRdsj)

)
(3.11)

Equation 3.11 shows the analytical form of the Cllr metric as it is presented in

Morrison & Kinoshita (2008). Nss and Nds are the number of target and impostor

trials. LRss and LRds are the likelihood ratios of the trials, respectively.

The value for Cllr for a system that returns infinite LR values for target-trials

and zero for non-target-trials would be zero, meaning a perfect system. However,

a system that produces same-speaker likelihood ratios close to one or even lower

is qualified with a high value.

To assess the calibration properties of a system the Cmin
llr value is calculated

which is the minimum loss possible if the system were optimally calibrated and

is therefore a measure of discrimination. Ccal
llr is the the calibration loss which is

the difference between Cllr and Cmin
llr .

The Cmin
llr value is assessed by deriving values for a monotonic rising warping

function w which scales and shifts the likelihood ratio values output by the sys-

tem. This warping function is derived by applying the Pool Adjacent Violators

(PAV) algorithm (Brümmer 2004). The Cllr value calculated for likelihood ratio

values after applying this algorithm constitutes Cmin
llr .

3.4.7 The Applied Probability of Error (APE) plot

The Applied Probability of Error (APE) plot is a graphical representation of the

error probability over the range of possible operating points, i.e. thresholds. In the

Bayesian framework these are represented by the prior odds (see section 2.3.1).
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This error probability is given by the following formula.

Pe(θ) = P̃tar(θ)Pmiss(θ) + (1− P̃tar(θ))PFA(θ) (3.12)

Pe is a function of the prior log odds, i.e. the logarithm of the prior probability

in odds form. The APE plot graphs this function against an interval of the logit

prior θ close to zero.
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Figure 3.7: Example of an Applied Probability of Error (APE) plot

Figure 3.7 shows an example of an APE plot. The horizontal axis represents

the logit prior and the vertical axis shows the error probability.

Three curves are plotted which represent three kinds of information.

• The solid curve represents the error probability of the system under eval-

uation. The area beneath is proportional to the log likelihood ratio cost

function Cllr.

• The dotted curve represents the reference detector which always returns a

likelihood ratio of 1 and, thus, the decision is based solely on the prior.
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This is useful as it shows that, if the solid curve crosses the dotted line the

system gives more decremental information than a system that does not

incorporate the speech data into its decision. For a logit prior of zero, i.e. a

prior probability of one, the probability of error for this reference detector

is 50%, hence chance level.

• The dashed curve shows the probability of the system with the warping

function applied to its output scores. The area beneath is proportional to

the discrimination loss Cmin
llr .

The lower part is essentially a bar plot of the Cllr values of the systems under

comparison. The grey area represents the discrimination loss, i.e. Cmin
llr , and the

black portion is the loss of information ascribed to less-than-optimal calibration.

The APE plot is used in the evaluation to show both the discrimination prop-

erties as well as the calibration properties of the method used in this thesis.

3.5 Post-hoc calibration of likelihood ratio scores

In automatic speaker recognition systems there usually exists a calibration stage

that transforms the output difference scores into well-behaved likelihood ratios,

meaning that the resulting values are in fact aligned to the likelihood ratio scale

in that higher values are returned indicating stronger evidence in favour of the

prosecution hypothesis and lower values are returned indicating stronger evidence

against it (see section 3.4.2).

As Morrison & Kinoshita (2008:1502) state ‘[t]he aim of calibration [...] is to

present the information in such a way as to best aid the finder of fact in making

appropriate decisions’. This is done to ensure that the score returned by the

system is more consistent and more easily interpretable in court.

As has been shown by Morrison & Kinoshita (2008) and Morrison (2009b) this

procedure can also be applied to likelihood ratios obtained by the multivariate

kernel density formula described above (see section 3.3).

Calibration can be attained either by defining a fixed function that warps out-

put scores into likelihood ratios or by using discriminative methods that optimise

a given objective function.
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One representing the latter is the S-cal method which performs linear map-

ping, i.e. shifting and scaling, as well as sigmoid saturation step. This is performed

by the following equation.

llr(s) = log
(logit−1α)(ea·s+b + 1) + 1

(logit−1β)(ea·s+b − 1) + 1
(3.13)

Following the formula, the score (represented by s) is scaled and shifted by the

parameters a and b. The effect of the subsequent sigmoid saturation depends on

α and β, which leads to monotonically increasing mapping if α > β or decreasing

mapping if α < β. If α is much greater than zero and β is much lower than

zero then the minimum and maximum of the resulting monotonically increasing

sigmoid are defined in terms of α and β. If, however, both α and β are equal

then the resulting score is zero.

These conditions are best described graphically. Figure 3.8 shows the effect

of calibration by S-cal using two different sets of parameters. The curve has a

sigmoid form, hence the initial letter S. As can be seen the sigmoid form yields

calibrated scores that are saturated at both extremes.
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Figure 3.8: Effect of S-cal calibration on log likelihood ratios
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The parameters needed for calibration are obtained by training on develop-

ment scores of supervised calibration targets, which must be carefully selected

using the following criteria.

• The selected trials should be as similar to real targets that the calibration

will be applied in the future.

• The number of trials must be sufficiently large

• The trials should not be used for other system-wide training, such as for

fusion weights (see section 3.6).

The training methods are included in the FoCaL toolkit (Brümmer & du Preez

2006) which perform numerical optimisation on the scores of target and non-

target calibration trials to minimise the Cllr metric (see section 3.4.6).

3.6 Fusion approaches for combining likelihood

ratio scores

The term fusion refers to applying a function on likelihood ratios or, more general,

real-valued scores of any kind supplied by several different systems to arrive at a

single likelihood ratio for a system which incorporates the results of all individual

systems.

Likelihood ratio scores can also be combined by multiplying their output

scores. Due to the fact that the scores produced are possibly highly correlated,

this often results in very extreme combined likelihood ratio scores that massively

overstate the strength of the evidence, leading rather to confusion than easily

interpretable scores.

The form of the fusion function can take many different forms. One is the use

of linear combination of the individual scores which is employed in this thesis.

sf = s(x,w) = w0 +
N∑
i=0

wisi(x) (3.14)

Equation 3.14 describes the principle of linear fusion in which the fused score

is the sum of scores, e.g. log likelihood ratios, si weighted by fusion weights wi.

The individual scores can be scaled and shifted to yield a resulting score

that shows better discriminatory potential and is properly calibrated, i.e. allows
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for easy interpretation of the output. The fusion weights must be trained on

supervised likelihood ratio scores given a function that must be optimised against

during the training stage. Afterwards they can be used to fuse new likelihood

ratio results by the same systems.

These training scores must be available from all systems whose outputs should

be fused. The underlying training trials must be selected carefully, as they define

how future likelihood ratios should be scaled and shifted, and thus modified,

without actual reference to the data at hand.

The procedure described is called linear logistic regression fusion which is

implemented within the FoCaL toolkit (Brümmer & du Preez 2006). The name

originates from the logistic regression objective which must be optimised against.

This objective is stated in equation 3.15.

Cwlr =
Ptar
‖χtar‖

∑
x∈χtar

log(1 + e−s(x,w)−logitPtar)

+
1− Ptar
‖χnon‖

∑
x∈χnon

log(1 + es(x,w)+logitPtar)

(3.15)

This objective represents a cost function which must be minimised. Ptar repre-

sents a given prior which, if set to 0.5, results in the objective to resemble the Cllr

metric, which is used for evaluating calibration performance (see section 3.4.6).

The function is convex, meaning that, pictorially, it lies below a straight line

connecting any two points of the function, which results to it having only one

global minimum. Within the FoCaL toolkit, a conjugate gradient algorithm is

used for finding this minimum.
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Chapter 4

Experiment and results

This chapter presents the experimental setup and results based on the method

outlined in the previous chapter. The first section presents the data corpus on

which the inquiry is based. The subsequent sections deal with the evaluation of

the results in terms of the discriminatory potential and the calibration properties

of the method.

4.1 Corpus of Austrian German - OeD

The data used for this study consists of recordings of 30 male speakers of Viennese

Austrian German, aged 20 to 70, which has been collected over several years

at the Acoustics Research Institute (ARI)1. The speakers were recorded while

performing several tasks:

• Repeat sentences (standard and dialect variety)

• Reading standard and dialectal texts

• Spontaneous speech

The data used for this experiment was taken from the word kreidebleich

/"kraEdEblaEC/ (‘chalk-white’) in the following repeated (standard variety) sen-

tence.

(1) Nach einer Feier liegen alle kreidebleich am Boden

After a party everybody is lying on the floor, white as chalk

1http://www.kfs.oeaw.ac.at/
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The word contains the diphthong /aE/ in a primary and a secondary stressed

position. Within the analysis they were treated separately, as they differ in stress

and phonetic context. Each speaker was recorded while repeating this sentence

ten times.

4.1.1 Motivations for using Viennese German /aE/

The first point to mention regarding the motivation of this study is that the

time-dynamic properties of diphthongs encode a fair amount of speaker specific

characteristics. Several studies have dealt with diphthongs and studied different

kinds of representations for capturing this information (see section 2.2.6).

The language specificity of these characteristics, e.g. differences in relative

timing and duration of onset, glide and offset sub-segments, requires investigation

of the actual performance of methods proposed for discriminating speakers. As

the method used in this study has still to be tested in terms of applicability on

the diphthongs and vowels of other languages than the ones that were examined

in previous papers, the present study provides insight into its use on Viennese

German diphthongs.

Additionally, the effects of stress position and phonetic context on the ex-

tracted parameters that this method depends on require further study, as the

dynamics of unstressed or secondary stressed diphthongs as well as their dura-

tion are clearly reduced. Thus, two different contexts and stress positions were

chosen from the data available to acquire data about the performance of this

method applied under these conditions.

4.1.2 Between- and within-speaker variation exemplified

by Viennese diphthong dynamics

To provide insight into the range and extent of the variation between as well

as within speakers this section will provide a characterisation of the dynamic

differences exhibited by the speakers in terms of formant frequency trajectories.

Figure 4.1 provides a visualisation of time-equalised mean formant trajecto-

ries. As can be seen the trajectory of the first formant shows less between-speaker

variability than the other two formants. Furthermore, the second and third for-

mant display much diversity in the form of the trajectory contour.
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Figure 4.1: Time-equalised mean formant trajectories of the 30 speakers

Differences between the two segments can be readily recognised, again espe-

cially in the movement of the second and third formants. F2 displays a rather

gliding shift in the secondary stressed /aE/ in bleich while more genuine diph-

thongal properties can be located in the trajectory of the primary stressed /aE/

in kreide.

The extent and difference in magnitude of within-speaker variability can be

seen in figure 4.2. Here the formant trajectories of two speakers are displayed,

along with their mean frequency trajectory. Speaker p044 exhibits rather large

variability, whereas speaker p035 shows only slight differences in the contours

of the individual formant progressions. This is of particular importance with

reference to the fact that speakers’ formant trajectories are to be modelled by

Gaussian distributions parametrised by the empirical sample mean and variance
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Figure 4.2: Formant trajectories of individual utterances of two speakers

of the respective features.

4.2 Experimental setup

This section presents the experimental setup which includes the list of methods

used for comparison as well as a detailed account of tasks that where defined for
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this purpose.

The following methods were applied to the data corpus to allow for comparison

which are described below.

• Arithmetic mean of the formant measurements in the trajectory

• 10% measurement intervals (McDougall 2005, 2006)

• Dual-Target model, using relative (but fixed) time points within the trajec-

tory (at 10% and 90% of the segment length)

• Fitting of polynomials of second and third degree (see section 3.2.1)

• Discrete cosine transform (DCT), using second and third order curves (see

section 3.2.2)

To perform the speaker discrimination tests, the methods for approximating

parametric functions to the formant trajectories and for the evaluation of the

system performance that have been outlined in chapter 3 were implemented as

computer programs using the R statistics package (R Development Core Team

2009)2.

To enable a comparison between the different methods several different tasks

were defined, which can be categorised by means of the number of features they

incorporate.

Trials were run using data either from the first three formants or from only the

second and the third. This distinction has been made because, as noted before, it

is very often the case in forensic phonetics that recordings have been taken from

telephone conversations, which are band-pass filtered at approximately 300-3400

Hz due to technical reasons. The first formant is often affected by this filtering,

especially in vowels and diphthongs with very low F1, rendering it unusable as a

feature. Thus, separate trials have been performed on both sets of data to assess

the loss of speaker discriminating information by discarding F1, denoted as f1-2-

3 for all three formant measurements, and f2-3 when using only the second and

the third formant.

The following trials were performed along these dimensions. At the end of

each condition the number of included parameters is given in parentheses.

2The evaluation procedures provided by the FoCaL toolkit (Brümmer & du Preez 2006)
were ported from MATLAB to R by Timo Becker.
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• Formant means

The following tasks utilise the mean of the formant values in the trajectory

as features

f1-2-3 mean Incorporates the mean of all three formant trajectories (3 p.)

f2-3 mean Incorporates the mean of the trajectories of the second and

third formant (2 p.)

Secondly, to capture the differences in overall duration of the speakers, the

raw segment length in seconds was used as an additional explicit duration fea-

ture. Trials incorporating this parameter are tagged with the identifier dur. The

following tasks were performed and evaluated twice, with and without explicit

duration information.

• Interval and target measurements

In the following tasks measurements at relative targets or intervals are taken

of each of the individual segments.

f1-2-3 int10 Formant measurements taken at 10% intervals using all three

formants (27 p.)

f1-2-3 target Formant measurements taken at relative targets (at the 10%

and 90% measurement) using all three formants (6 p.)

f2-3 int10 Formant measurements taken at 10% intervals using formants

F2 & F3 (18 p.)

f2-3 target Formant measurements taken at relative targets (at the 10%

and 90% measurement) intervals using formants F2 & F3 (4 p.)

These tasks were also performed with duration information incorporated as

an additional feature.

f1-2-3 int10 dur Formant measurements taken at 10% intervals using all

three formants (28 p.)

f1-2-3 target dur Formant measurements taken at relative targets (at the

10% and 90% measurement) using all three formants (7 p.)

f2-3 int10 dur Formant measurements taken at 10% intervals using for-

mants F2 & F3 (19 p.)

f2-3 target dur Formant measurements taken at relative targets (at the

10% and 90% measurement) intervals using formants F2 & F3 (5 p.)
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The methods using parametric representations of formant trajectories as out-

lined in the previous chapter were split into several categories of tasks along the

following dimensions.

First of all, the curves can be fitted to raw formant trajectories (denoted as

raw) as well as time-equalised (interpolated, denoted eq) trajectories. This has

been shown to have an impact on the performance (Morrison 2008, 2009b). The

functions approximated to raw measurements encode to some extent temporal

information in their representation, as the functions are scaled along the abscissa

to the length of segment. Hence, considering the additional explicit duration

feature, 8 different tasks can be defined per parametric function of each degree,

resulting in the following 32 tasks.

• Polynomial fitting

In the following tasks the polynomial fitting method is used on each of the

individual segments.

f1-2-3 poly2 eq Polynomial fitted to time-equalised formant trajectory of

all three formants (9 p.)

f1-2-3 poly2 raw Polynomial fitted to raw formant trajectory of all three

formants (9 p.)

f1-2-3 poly2 dur eq Polynomial fitted to time-equalised formant trajec-

tory of all three formants, including duration information (10 p.)

f1-2-3 poly2 dur raw Polynomial fitted to raw formant trajectory of all

three formants, including duration information (10 p.)

f2-3 poly2 eq Polynomial fitted to time-equalised formant trajectory of

the second and third formants (6 p.)

f2-3 poly2 raw Polynomial fitted to raw formant trajectory of the second

and third formants (6 p.)

f2-3 poly2 dur eq Polynomial fitted to time-equalised formant trajectory

of the second and third formants, including duration information (7

p.)

f2-3 poly2 dur raw Polynomial fitted to raw formant trajectory of the

second and third formants, including duration information (7 p.)

The tasks using cubic polynomials (poly3) and discrete cosine transform

curves of second (dct2) and third (dct3) order are defined in the same manner.

65



CHAPTER 4. EXPERIMENT AND RESULTS

The total number of tasks defined aggregates to 42. As these tasks are per-

formed for the two instances of /aE/ in kreidebleich both separately and com-

bined, not all task performances can straightforwardly be compared with each

other. The relevant comparisons will therefore be picked out and demonstrated,

but an exhaustive listing of single-number evaluation results (EER, Cllr) for all

tasks is provided in tabular form in appendix A.

The tests based on the individual segments are denoted by aErdB and

aElCS, which indicates the diphthong /aE/ denoted by aE, the immediate con-

text of the segment (r d in kreide and l ç in bleich) and the stress position, with

B indicating a primary and S a secondary stress position. The tests based on all

segments combined are simply labelled aE.

The results are presented by first looking solely at the discriminatory potential

of the methods and parameters chosen and then the calibration properties. The

results of applying calibration and fusion techniques are shown at the end of the

chapter.

4.3 Results

This section presents the actual results evaluated by the graphical and numerical

methods outlined in the previous chapter. The presentation will follow along the

following guideline.

• Evaluation and comparison of the performance obtained by different kinds

of parametric representations, applied to the individual /aE/ segments as

well as combined.

• Performance comparison between parametric representations and other meth-

ods previously used on diphthongs in forensic speaker recognition

4.3.1 Effect of sample size on evaluation results

Before actual results are shown it is important to note the effects of the sample

size. The data available consists of 20 utterances of /aE/ of each of the 30

speakers, one half in primary stress position (kreide) and the other in secondary

stress position (bleich), which amounts to 600 tokens in total. The low number of
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samples per speaker severely limits the options concerning the count of samples

used for each trial.

For trials based on segments controlled for same stress position and context

there are only ten tokens per speaker. Thus, trials can therefore be constructed

using one to ten measurement tokens for modelling the speaker in the likeli-

hood ratio formula. For evaluation purposes, however, target-speaker as well as

non-target-speaker trials are needed to obtain meaningful error estimates and

confidences.

As the likelihood ratio formula models speakers using Gaussian distributions,

a minimum of one measurement is possible, yet not reasonable. Of course, the

more measurements are used to represent a speaker the better is the chance of

capturing the variability he exhibits in his utterances. The problem, therefore, lies

in the question of how to balance the number of measurements and the number

of target-trials construed from the data.

Figure 4.3 preliminarily shows the performance of cubic polynomials on /aE/

in kreide (aErdB) with varying number of measurements and target-trials.
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Figure 4.3: DET and APE plots comparing results with respect to the balance
of trials versus measurements

• The black line uses only one measurement for modelling the speaker, thus

allows for 45 target trials

67



CHAPTER 4. EXPERIMENT AND RESULTS

• The red line uses two measurements which results in ten target trials

• The green line uses three measurements as well as three target trials

As can be seen there is quite an increase in performance with higher numbers

of measurements per trial, yet a sizeable number of target trials is necessary

to perform conclusive evaluations of methods. This is also true for a post-hoc

calibration stage, where an extensive amount of trials is needed to find good

estimates for the parameters used in the calibration procedure.

In the following presentation of results a trade-off has been made to ensure

proper evaluation by using two measurements to model a speaker, leading to

evaluations based on ten target trials, as well as 145 non-target trials built from

the other 29 speakers. This balance is used throughout the present study.

4.3.2 Comparison of parametric representations

This section presents the results concerning the main topic of the present work,

the evaluation of parametric representations. This includes parameters derived

from both the polynomial functions and the discrete cosine transform of second

and third degree. The performance of these representations was tested under

following different conditions.

• Using F1-F3 versus using only F2 & F3

• Using time-equalised (interpolated) or raw formant trajectories

These conditions were tested on each individual segment (ten utterances per

speaker of /aE/ in kreide and in bleich) as well as both pooled together (20

utterances per speaker). The following results deal with the difference in perfor-

mance in relation to the number of formants used. The two other conditions are

investigated in later sections.

Discriminatory potential

This section presents the comparative results of different parametric represen-

tations by means of the DET plot (see section 3.4.4). In figures 4.4 and 4.5

the discriminatory potential of polynomial functions as well as discrete cosine

transform curves fitted to time-equalised formant trajectories of the first three

formants of both segments are displayed.
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Figure 4.4: DET plot comparing parametric representations of time-equalised
formant trajectories in /aE/ in kreide
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Figure 4.5: DET plot comparing parametric representations of time-equalised
formant trajectories in /aE/ in bleich

As can be seen from the plots useful information can be gained by incorporat-

ing the first formant. However, as material obtained from telephone conversations

is commonplace in forensic phonetics, the first formant is often compromised by

69



CHAPTER 4. EXPERIMENT AND RESULTS

the band-pass filtering and, thus, often cannot be factually used in real casework.

time-equalised
EER

aErdB aElCS aE
P

ol
y
n
om

. Formants quadratic 0.09 0.07 0.108
F1, F2, F3 cubic 0.083 0.078 0.11
Formants quadratic 0.11 0.091 0.132
F2, F3 cubic 0.103 0.093 0.13

D
C

T

Formants quadratic 0.09 0.07 0.108
F1, F2, F3 cubic 0.087 0.07 0.113
Formants quadratic 0.121 0.097 0.133
F2, F3 cubic 0.11 0.087 0.13

Table 4.1: EER results of polynomial curves fitted to time-equalised formant
trajectories

Table 4.1 compares the performance of the curves using EER. Over all seg-

ments the difference in performance in terms of absolute EER is only 2% (/aE/

in kreide) to 2.4% (pooled /aE/) in the best-performing tests, i.e. polynomial of

second and third degree. Especially noteworthy is the fact that, when compar-

ing the segments against each other, no type of parametric representation stands

out as performing best in all cases. The use of the first three formants tested

against using only the second and the third delivers systematically better perfor-

mance, yet no such pattern can be observed with regard to the type of functions.

However, there seems to be a slight dominance of polynomial functions, as they

generally provide slightly better results.

Calibration performance

The calibration properties of different parametric representations are compared

by means of the APE plot (see section 3.4.4). Figures 4.6 and 4.7 compare the

calibration properties of the different parametric representations.

With regards to calibration performance the overall picture is slightly im-

paired. For /aE/ in kreide the tests based on using all three formant trajectories

exhibit worse calibration properties than those using only F2 and F3, however,

thanks to their better discriminatory potential their respective Cllr values are

lower. In terms of this metric, the cubic polynomial representation of the second

and third formant achieves as good as the representations derived from all three

formants.
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Figure 4.6: APE plot comparing parametric representations of time-equalised
formant trajectories in /aE/ in kreide
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Figure 4.7: APE plot comparing parametric representations of time-equalised
formant trajectories in /aE/ in bleich

However, for /aE/ in bleich the Cllr values are generally lower in tests us-

ing only the second and third formants, although, as indicated by Cmin
llr , their

discriminatory potential is indeed higher.
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time-equalised
Cllr

aErdB aElCS aE

P
ol

y
n
om

. Formants quadratic 0.3919 0.4186 0.4355
F1, F2, F3 cubic 0.4044 0.4343 0.4242
Formants quadratic 0.4334 0.4002 0.5228
F2, F3 cubic 0.4077 0.3803 0.5088

D
C

T

Formants quadratic 0.4041 0.4286 0.437
F1, F2, F3 cubic 0.4107 0.4368 0.4332
Formants quadratic 0.4718 0.4112 0.524
F2, F3 cubic 0.4370 0.4035 0.515

Table 4.2: Cllr results of polynomial curves fitted to time-equalised formant tra-
jectories

Table 4.2 compares the performance of the curves using Cllr. As with the EER

values, no pattern emerges that signalises uniformly better performance in terms

of calibration as well as discrimination. However, a slight advantage is exhibited

by the polynomial representations over the representations derived from DCT.

4.3.3 Effect of time-normalisation on performance

One question that arises is the effect of implicit duration modelling which is

inherent in approximating parametric functions to formant trajectories as the

curves are scaled along the abscissa to the length of the segment when time-

normalisation is not applied.

Prior studies (see Morrison (2008, 2009b)) suggest that fitting to time-equalised

trajectories shows better performance than when applied to raw formant data.

This section investigates this issue and tests if the findings of previous studies

hold using Viennese diphthong data.

Figure 4.8 shows comparative DET plots of parametric representations of for-

mant trajectories in /aE/ in kreide. The left sub-figure shows the performance

using data from the first three formants while the right one uses only the second

and third formant. The red coloured DET curves represent the tests using raw,

non-time-equalised formant trajectories, the blue coloured ones show the perfor-

mance of parametric representations derived from time-normalised contours.

The performance of the methods applied to non-time-equalised data shows

extensive spread, suggesting that the parametric functions differ in their ability

to generalise over segments of differing length. In this regard the quadratic poly-
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Figure 4.8: DET plots comparing parametric representations based on formant
trajectories in /aE/ in kreide

nomial behaves best, surpassing all other parametric functions, and even slightly

surpasses the performance exhibited when using time-equalised data.
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Figure 4.9: DET plots comparing parametric representations based on formant
trajectories in /aE/ in bleich

Figure 4.9 shows comparative DET plots of parametric representations of for-
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mant trajectories in /aE/ in bleich. As with the previous figure, the methods

show better performance when applied to time-normalised data than to raw tra-

jectories. Here, however, the latter tests show less cluttered DET curves, with

the curves rather clustered together depending on their respective underlying

trajectory data.

4.3.4 Comparison against other approaches

In this section the best-performing parametric representations are compared with

other methods applied to the same formant data. As no single parametric func-

tion seems to display generally superior behaviour the representations derived

from second and third order polynomials fitted to time-equalised trajectories are

used to represent the method treated in the present work.

These two are compared to tests based on instantaneous measurements at

10% intervals throughout the formant trajectories (see section 2.2.6, McDougall

& Nolan (2007), McDougall (2006)), a dual-target setting emulated by using the

10% as well as the 90% measurement as phonetic targets, and formant means.

The performance was tested using F1-F3 as well as only F2 & F3 on each

individual segment (10 utterances per speaker of /aE/ in kreide and in bleich) as

well as both pooled together (20 utterances per speaker).

Discriminatory potential

As before the discriminatory potential of the methods is first displayed by means

of the DET plot. Figures 4.10 and 4.11 compare the five methods previously

discussed.

As follows from the DET plots the parametric representations generally per-

form better than the other methods explored. The measurements at 10% inter-

vals as well as the dual-target tests are the second-best choice, followed by using

formant means.

The overall superior performance of the parametric representations holds for

both segments and and both the conditions using all three formants or only F2

& F3. For a comparison of the individual EER values the same conditions must

apply, e.g. the number of formant trajectories used in the tests must be the same.
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Figure 4.10: DET plot comparing parametric representations on time-equalised
trajectories with interval, dual-target and means using F1-F3 of /aE/ in kreide
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Figure 4.11: DET plot comparing parametric representations on time-equalised
trajectories with interval, dual-target and means using F1-F3 of /aE/ in bleich

Calibration properties

The calibration properties of the different methods are again compared by means

of the APE plot. Figures 4.12 and 4.13 compare the calibration properties of the
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EER
aErdB aElCS aE

Formants quadratic 0.09 0.07 0.108
parametric F1, F2, F3 cubic 0.083 0.078 0.11

representations Formants quadratic 0.11 0.091 0.132
F2, F3 cubic 0.103 0.093 0.13

Formants 10% intervals 0.109 0.08 0.131
instantaneous F1, F2, F3 dual-target 0.099 0.093 0.115
measurements Formants 10% intervals 0.122 0.105 0.15

F2, F3 dual-target 0.124 0.114 0.147

formant means
Formants F1, F2, F3 0.115 0.097 0.127

Formants F2, F3 0.165 0.13 0.161

Table 4.3: Comparison of parametric representations on time-equalised trajecto-
ries with interval, dual-target and means based on EER values

different parametric representations.

−6 −2 2 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

f1−2−3_means_eq

P1

P
em

in
      

      
    P

e

−6 −2 2 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

f1−2−3_int10_eq

P1

−6 −2 2 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

f1−2−3_target_eq

P1

−6 −2 2 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

f1−2−3_poly2_eq

P1

f1−2−3_means_eq f1−2−3_int10_eq f1−2−3_target_eq f1−2−3_poly2_eq

C
llrm

in
      

      
    C

llr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f1−2−3_means_eq f1−2−3_int10_eq f1−2−3_target_eq f1−2−3_poly2_eq

C
llrm

in
      

      
    C

llr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

calibration loss
discrimination loss

(a) F1−3

−6 −2 2 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

f2−3_means_eq

P1

P
em

in
      

      
    P

e

−6 −2 2 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

f2−3_int10_eq

P1

−6 −2 2 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

f2−3_target_eq

P1

−6 −2 2 6
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35

f2−3_poly2_eq

P1

f2−3_means_eq f2−3_int10_eq f2−3_target_eq f2−3_poly2_eq

C
llrm

in
      

      
    C

llr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

f2−3_means_eq f2−3_int10_eq f2−3_target_eq f2−3_poly2_eq

C
llrm

in
      

      
    C

llr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

calibration loss
discrimination loss

(b) F2−3

Figure 4.12: APE plot comparing parametric representations of time-equalised
formant trajectories in /aE/ in kreide

As can be seen the calibration of the parametric representation is good, but

this is the case for the other methods too, with the exception of the interval mea-

surements in the condition using all three formants which displays a rather high

calibration loss. Another property that becomes visible is that the calibration

loss decreases with lower numbers of parameters involved when only using F2 &
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Figure 4.13: APE plot comparing parametric representations of time-equalised
formant trajectories in /aE/ in bleich

Cllr
aErdB aElCS aE

Formants quadratic 0.3919 0.4186 0.4355
parametric F1, F2, F3 cubic 0.4044 0.4343 0.4242

representations Formants quadratic 0.4334 0.4002 0.5228
F2, F3 cubic 0.4077 0.3803 0.5088

Formants 10% intervals 0.5475 0.4854 0.4986
instantaneous F1, F2, F3 dual-target 0.4246 0.4237 0.5054
measurements Formants 10% intervals 0.4628 0.4299 0.5456

F2, F3 dual-target 0.5053 0.4343 0.596

formant means
Formants F1, F2, F3 0.4604 0.4725 0.5438

Formants F2, F3 0.5657 0.5058 0.6052

Table 4.4: Comparison of parametric representations on time-equalised trajecto-
ries with interval, dual-target and means based on Cllr values

F3, which affects most the methods depending on more features, as with the 10%

interval approach which uses 27 parameters for all three formants and 18 for the

second and third.
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4.3.5 Modelling duration using an explicit parameter

Observing the differences displayed in the time-normalisation condition and given

that the results indicate better performance for the parametric representations

derived from time-equalised formant trajectories in terms of speaker discrimina-

tion than for the ones derived from raw formant contours, the question arises

how to incorporate duration information into the speaker model, and how much

information could be gained from this procedure.

McDougall used the raw duration of the diphthong as another predictor in

the discriminant analysis performed in her study, resulting in an improvement of

classification rates of 1-5% (McDougall 2005:195). This procedure is applied in

the following tests, where the length of the segment is used as another parameter

entering the multivariate kernel density formula.

Discrimination performance

Figure 4.14 shows the DET curves for the two best-performing parametric rep-

resentations, the methods based on instantaneous measurements (10% intervals

and dual-target), and the formant means based on the formant trajectories of

/aE/ in kreide. For each method two tests have been made, one including the

raw duration in seconds and one in its original form. They are grouped by colors

(red, blue, green and yellow/orange).

As can be seen the addition of the duration parameter readily increases the

discriminatory potential. The method based on 10% interval measurements shows

the lowest increase (EER 0.103 versus 0.109), while the other methods benefited

more from the duration information.

Figure 4.15 shows the performance on data from /aE/ in bleich. As is apparent

from the plot the difference in performance gain by adding the duration parameter

is much larger than in the other /aE/ segment. The cause of this difference

between the two segments predominantly lies in the fact that they are in different

stress positions, leading to greater variability in the secondary stressed position

in bleich than in the diphthong under primary stress in kreide. A more thorough

account based on Natural Phonology is given in section 5.2.1.
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Figure 4.14: DET plot evaluating the addition of an explicit duration parameter
based on formant trajectories of /aE/ in kreide
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Figure 4.15: DET plot evaluating the addition of an explicit duration parameter
based on formant trajectories of /aE/ in bleich

Calibration properties

After investigating the potential gain from adding an explicit duration param-

eter to the model of a speaker the question remains if and how this affects the
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calibration properties displayed by the different methods. The APE plot as well

as Cllr is used to quantify the loss due to less-than-optimal LR scale alignment.
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(a) instantaneous measurements, F1−3
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(b) parametric representations, F1−3
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(c) instantaneous measurements, F2−3
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(d) parametric representations, F2−3

Figure 4.16: APE plot evaluating the addition of an explicit duration parameter
based on formant trajectories of /aE/ in kreide

Figure 4.16 compares the calibration of the different methods as they were

previously used in the other conditions with tests that incorporate the same

method as well as the explicit duration feature when applied to /aE/ in kreide.

The pictures to the left display the change in performance of both the instanta-
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4.3. RESULTS

neous methods (interval measurements and dual-target) whereas the right side

compares the performance of the second and third order polynomials.

As can be seen in the figure the calibration loss indicated by the black section

of the bar plot remains more or less constant over all methods and even slightly

increases for 10% interval measurements.
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(a) instantaneous measurements, F1−3
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(b) parametric representations, F1−3
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(d) parametric representations, F2−3

Figure 4.17: APE plot evaluating the addition of an explicit duration parameter
based on formant trajectories of /aE/ in bleich

Figure 4.17 provides a similar picture in terms of calibration loss, yet clearly
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displays the gain in discrimination performance achieved when applied to formant

data from /aE/ in bleich. The difference in calibration loss between the conditions

using all formants or just the second and third formant are very noticeable.

4.4 Automatic calibration

This section displays the effective gain from applying post-hoc automatic cali-

bration techniques to the likelihood ratios obtained in the tests. The procedure

adopted in the present work was laid down in Morrison (2009b), where calibration

was performed using cross-validation. This means that for each trial the parame-

ters needed for the calibration stage were trained from the scores of matches and

mismatches of all other trials that did not include the speaker (or speakers, in

case of non-target trials) involved in the specific trial. This approach was taken to

emulate a more realistic picture in that the calibration parameters are estimated

from unseen data (see Morrison (2009b:2391)).

In order to show the effect of applying automatic calibration, this section will

utilise Tippett plots (see section 3.4.5) as well as the APE plots (section 3.4.7).

The presentation is restricted to calibrating the results of polynomials of third

degree on time-equalised data based on both individual segments.

Figure 4.18 compares the original performance of cubic polynomials fitted to

the trajectories of the first three formants of /aE/ in kreide with its calibrated

counterpart.

As can be seen in the Tippett plot the curve indicating the probability of

the defence hypothesis being true saturates much faster than the original curve.

The smallest log likelihood ratio value obtained was -87.24 before calibration,

which was reduced to -5.05. The extent of reduction results from the parameters

specified and obtained by the calibration parameter training stage.

The APE plot shows the reduction in calibration loss, yet indicates a slight loss

in discrimination performance. This can also be explained by less-than-optimal

calibration parameters, as trials for the training step should be carefully selected

for the use in an automatic system to avoid this problem.

Figure 4.19 juxtaposes pre- and post-calibrated likelihood ratios of /aE/ in

bleich. As in the previous plots the Tippett plot shows a very steep curve for the

probability of the defence hypothesis being true. Here, the smallest log likelihood

82



4.4. AUTOMATIC CALIBRATION

−20 −15 −10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tippett Plot

Log Likelihood Ratio

p

H0 true
H1 true
H0 true
H1 true

aErdB
aErdB S−cal

−6 −4 −2 0 2 4 6

0.
00

0.
10

0.
20

0.
30

aErdB

P1

P
em

in
      

      
    P

e

−6 −4 −2 0 2 4 6

0.
00

0.
10

0.
20

0.
30

aErdB S−cal

P1

aErdB aErdB S−cal

C
llrm

in
      

      
    C

llr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

aErdB aErdB S−cal

C
llrm

in
      

      
    C

llr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

calibration loss
discrimination loss

Figure 4.18: Effects of post-hoc calibration on the performance of parametric
representation methods based on /aE/ in kreide

ratio value obtained was -53.8 before calibration, which was reduced to -4.74.

Likewise a small loss in discrimination performance can also be observed in the

APE plot.
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Figure 4.19: Effects of post-hoc calibration on the performance of parametric
representation methods based on /aE/ in bleich

Table 4.5 compares the resulting EER and Cllr values before and after the
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application of the calibration stage for cubic polynomial representations fitted

to time-equalised trajectories of the individual segments as well as the pooled

segments.

cubic polynomial aErdB aElCS aE
F1, F2, F3 EER Cllr EER Cllr EER Cllr

pre-calibration 0.083 0.4044 0.078 0.4343 0.11 0.4242
post-calibration 0.083 0.3357 0.08 0.3152 0.113 0.4050

Table 4.5: Comparison of EER and Cllr before and after calibration

4.5 Automatic fusion of likelihood ratios

This section presents the results obtained by applying the automatic fusion tech-

nique based on logistic regression to the discrimination results of the method

applied to individual segments. For a detailed description of the procedures in-

volved see section 3.6.

To show the effect of automatic fusion, the likelihood ratio values obtained

by this procedure are compared to the sum of the log likelihood ratios of the two

segments using the evaluation methods used in the previous sections. The sum

of the log likelihood ratios represents the regular method of combining likelihood

ratios in the Bayesian approach when independence of the scores of two methods

is assumed.

Discriminatory potential

First the added discriminatory potential is considered. Figure 4.20 shows the

DET curves produced in the evaluation of performance of the cubic polynomial

representation fitted to time-equalised formant trajectories of both individual

segments as well as two curves representing the combination of the two segments.

The green line describes the performance of taking the sum of the log likeli-

hood ratios, and the blue line shows the effect of logistic regression fusion.

As can be seen, the two lines representing combination of scores are almost

identical. This indicates that the likelihood ratios calculated for the two individ-

ual segments tend to agree in their general judgement.
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Figure 4.20: DET plot evaluating the effect of automatic fusion

Calibration properties

As in the previous sections the calibration properties are inspected by means of

the APE plot. Figure 4.21 compares the individual segments with their combi-

nations, the log likelihood ratio sum as well as the fused scores.
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Figure 4.21: APE plot evaluating the effect of automatic fusion
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As can be seen, the automatic calibration stage integrated in the fusion proce-

dure greatly reduces the calibration loss indicated by the black section in the bar

plot. The discrimination performance, however, stays the same. The somewhat

ample reduction of the calibration loss indicates that the information contributed

by the individual segments is quite correlated, yielding astronomically high log

likelihood ratios for some trials.

The calibration side-effect of the fusion procedure is also displayed in the

Tippett plot in figure 4.22, in which the curve showing the probability of the

defence hypothesis being true is much steeper for the fused scores than for the

scores combined by addition.
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Figure 4.22: Tippett plot evaluating the effect of automatic fusion
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Chapter 5

Discussion

In this chapter the results obtained during the course of the evaluation process

are discussed and interpreted. First, a general overview over the performance of

the system is given which states general facts concerning the properties of the

results. Subsequently, an attempt is made to explain the behaviour of the system

depending on characteristics found in the data (section 5.2).

Section 5.3 gives a conclusion of the study presented in this work and finally

leads over to section 5.4, which provides for directions for further research.

5.1 General overview

As can be seen from the figures presented in the previous chapter the method

described in this study provides consistently better results compared to methods

relying on static measurements at particular targets or mean values of the formant

values in one trajectory, in terms of its ability to discriminate between speakers as

well as of calibration results. This has been expected as previous studies suggested

similar improvements in comparison to the other methods, in particular the first

study by Morrison (2008) employing polynomial functions as well as a dual-target

approach in a likelihood ratio based analysis.

Additionally, the representations derived from polynomial functions generally

outperform those from discrete cosine transform (DCT), yet only very slightly.

This contrasts to a small extent to the conclusion in Morrison (2009b:2395) which

states that ‘[t]here were trends indicating that the DCTs generally outperformed

polynomials [. . . ]’, although the difference in performance found in the present
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study is not convincing to signal a contradiction to Morrison’s results. Rather,

as he himself notes ‘the parametric curve with the best performance [. . . ] could

only be determined on a case-to-case basis’ Morrison (2009b:2395).

The quadratic and cubic polynomials show quite comparable performance,

each leading the way in some of the tests. Generally, however, the third order

polynomial outperforms the second order polynomial. This can also be observed

for the two DCT curves which compares with the results by Morrison (2009b).

The evaluation based on the Cllr metric and the Applied Probability of Error

(APE) plots show that the likelihood ratio scores delivered by the system are

in general well-calibrated in the sense that they are already aligned to the (log)

likelihood ratio scale. However, as noted in section 4.4, the values obtained for

the non-target-trials reach down to 5.75× 10−88 before calibration, meaning that

they are exorbitantly low, particularly when compared to the numbers calculated

for target-speaker trials. A post-hoc calibration stage is therefore advisable to

scale the values to a range that is more easily interpretable, as such low and

likewise high values can lead to a misleading statement of strength of evidence if

they are not handled with care.

Morrison & Kinoshita (2008) note considerable calibration loss in their study

of Australian English /oU/, with Cllr values ranging between 0.6 and more than

1.2. This is in contrast to the results obtained in the present work. Morrison

& Kinoshita (2008:1504) state the low number of recordings per speaker as a

possible reason. However, the present work is based on only 10 repetitions of

kreidebleich and therefore uses even less utterances per speaker compared to the

study which used 28 recordings of /oU/ in different phonemic contexts.

The calibration performed using the sigmoid-based transformation method (S-

cal, see section 3.5) shows the effect of a post-hoc calibration stage, in which values

deviating from the likelihood ratio scale are scaled and shifted, mitigating against

possible misinterpretation of the statement given by the score. The method

successfully transforms the values down to a range between 8.9× 10−6 and 3.3×
105.

The conclusions drawn here apply to both sets of tests performed using the

first three formant tracks as well as only the second and third formant. Needless to

say there is some decline in discrimination ability when using only two formants

instead of three, but as outlined in section 4.3.2 the performance loss is quite
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limited. This is important for the application to recordings taken under less-

than-optimal conditions, as it is common in forensic phonetic casework, like for

example in telephone conversations and other conditions where the signal is band-

pass filtered in any way.

5.2 Interpretation of the results

The results show some rather interesting tendencies. First of all, the system

performed generally better when applied only to the formant trajectories of the

diphthong /aE/ in bleich instead of in kreide. This finding is consistent for each

method applied to the data. The actual difference is rather small in terms of

error rate, yet, as it is constant over all tests, the cause is likely to be linked with

the underlying formant trajectories.

The most apparent differences between the segments are their context and

stress positions. The former is especially relevant in this case, as the /r/ phoneme

of Viennese German can be realised in several ways. Given the velar plosive

context /k/ in kreide the most common realisations are an uvular trill [ö] or a

voiced uvular fricative [K], although alveolar trills [r] are possible as well.

The choice of the particular variant is regarded as dependent on the speaker,

the context and the variety or dialect used and therefore is expected to be constant

over utterances of one speaker during one recording session. Nevertheless, the /r/

context evidently added variability to the onset of the segment, as explicated in

figure 5.1, which shows the raw formant trajectories of both segments for speaker

p013.

The variation in part (a) of the figure causes a sizeable increase in within-

speaker variability quantified by the resulting coefficient values of the fitted

curves, while this is not the case for /aE/ in bleich, shown in part (b). Though

there are outliers in the latter too, as well as quite much variability in the third

formant, the overall behaviour of the formants is less variable, leading to a safer

estimation of models in the speaker discrimination process. This contextual in-

fluence could only be reduced by discarding the first part of the trajectory, but

the ensuing question about how much should be removed is a delicate one which

cannot be answered beforehand.

Returning to stress as the second difference between the two segments, the
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Figure 5.1: Raw formant trajectories of both /aE/ segments of speaker p013

monophthongisation process in Viennese German is introduced in the following

section, which can be of use to give an account of the increase in performance in

terms of error rate when an additional explicit duration parameter is added.

5.2.1 The Viennese monophthongisation process

As has long been noted (Wiesinger 1995:456), there exists a monophthongisation

process that is said to have begun around 1900 in Vienna in the speech of the lower

social classes which led to a total generalisation. During this process the Standard

Austrian German diphthongs /aE/ and /AO/ changed into the monophthongs

/æ:/ or /E:/ and /6:/ or /O:/ in the Viennese German dialect. Concerning the

diphthongs’ durational properties, Moosmüller (1997a:787) notes that they ‘are

said to have been compensated by a lengthening of the resultant monophthongs’.

Acoustic phonetic studies dealing with this process show that ‘great variability

(from an articulatory point of view) and tolerance (from the point of view of

perception) with regard to diphthong articulation can be observed within the

Austrian varieties’ (Moosmüller 1998:12). In Standard Austrian German only

three phonologically relevant diphthongs exist (/aE/, /OE/, and /AO/). Due to
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the pervasive nature of the monophthongisation process ‘any rising movement in

the front or the back vowel space will be interpreted correctly as /aE/ or /AO/

respectively’ (Moosmüller 1998:12).

The features resulting from this monophthongisation process are currently

spreading to other parts of Austria (Moosmüller 1998:10), which adds to the

variability that is to be expected in the general Austrian population.

As Vollmann (1996) points out, a distinction has to be made between the Vi-

ennese German dialect and Standard Viennese German which have to be analysed

as two independent systems. Speakers of the Viennese Dialect do not produce

diphthongs at all due the diachronic development, whereas in Viennese Standard

German the monophthongisation seems to be rather gradual (Vollmann 1996).

In the dialectal variety all diphthongs historically originating from Middle High

German /̂ı/ and /û/ are monophthongised to /E:/ and /O:/. Those diphthongs

tracing to MHG /ei/ and /ou/ turned into /a:/. This distinction, however, does

not appear in Standard Viennese German, where they are realised as /aE/ and

/AO/ (Moosmüller & Vollmann 2001a:44).

In the framework of Natural Phonology, the relation between dialect and stan-

dard can be described by the two-competence model (Dressler & Wodak 1982),

since all speakers of Austrian German are familiar with both systems and their

(socio-)phonological implications (Moosmüller & Vollmann 2001a:43). Interac-

tions between these systems can be accounted for by input-switch rules which

refer to opposing forms without being connected by a phonological process. Syn-

chronously there does not exist a relationship between both forms and there are

no gradual in-between forms (Moosmüller & Vollmann 2001a:44).

Due to prosodic conditions, monophthongisation can also occur in the Stan-

dard Viennese variety. Diphthongs in prosodically weak positions can be pro-

duced as monophthongs which, however, are short as compared to dialectal

monophthongs in which duration retains it’s distinctive role (Moosmüller 1996:1).

The observation that speakers of the Viennese Dialect who are not able to

articulate the diphthongs /aE/ and /AO/ use monophthongised forms /E:/ and /O:/

(Moosmüller & Vollmann 2001a:45) is of particular interest with respect to the

results obtained in the tests using time-equalised and raw formant trajectories,

as well as in the condition using an additional explicit duration parameter. It

was assumed, based on the phonological models set forth in Vollmann (1996) and
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Moosmüller & Vollmann (2001b), that the lengthening and thus the duration of

the segment was rather invariant for one speaker but highly variable between

speakers.

Furthermore, as /aE/ in bleich is in a prosodically weak position it can be

assumed that there are speakers of the Standard variety who produce monoph-

thongised forms that are short in comparison to dialectal realisations. Therefore,

the duration can be expected to provide useful additional information to discrim-

inate between users of monophthongs in Viennese German.

5.2.2 Duration differences between segments

As was shown in section 4.3.5, the additional duration parameter resulted in an

improvement of performance measured in error rates, which was more substantial

for the segment /aE/ in bleich. To investigate this result the patterns of duration

for both segments have to be examined.
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Figure 5.2: Stripchart displaying the durations of both segments for each speaker
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Figure 5.2 shows the durations for each speaker in a strip chart, which is ba-

sically a one-dimensional scatterplot. Duration measurements of both segments

of dialectal and standard speakers are indicated by red and black symbols, re-

spectively. As can be seen there are several speakers who show different duration

patterns for each segment.

The question whether there is a difference between duration patterns of di-

alectal and standard speakers is discussed in the following. Figure 5.3 shows two

plots that visualise the interaction between the factor segment and (a) the indi-

vidual speakers, as well as (b) standard versus dialect. Again, red lines represent

the interactions of dialectal speakers and black those of standard speakers. Par-

allel lines would indicate that there is no variation in average duration between

the two segments. However, as can be seen from the plots, there are quite big

differences for some speakers, but when comparing averages of dialectal and stan-

dard speakers there seems to be only a rather small difference, which suggests

that standard speakers produce on average slightly longer /aE/ segments in bleich

than the dialectal speakers, in comparison to the difference in /aE/ segments in

kreide.
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Figure 5.3: Interaction charts displaying the durations of both segments

To test if there is a statistically significant difference between the durations
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of the two segments between standard versus dialect speakers, analysis of vari-

ance (ANOVA) was performed using a mixed-effects model with standard versus

dialect as a between factor and the segment as a within factor, while the speaker

was modelled as a factor with random effects. A 5% level of significance was

chosen for the test. The F-statistic yielded a value of 5.88 corresponding to a p-

value of 0.0156 for the segment as fixed factor, indicating that, at the preassigned

level, the null hypothesis of equal average durations between the two segments is

rejected. Thus, the difference shown in part (b) of figure 5.3 is significant.

This result suggest that the difference in improvement in terms of error rate

when adding an explicit duration parameter can be attributed to the special

situation in Viennese German and the monophthongisation process, but further

study is needed to check if this outcome also applies to a more general population

of Viennese speakers. Concerning the task of speaker discrimination it must be

noted, however, that the performance observed in section 4.3.5 must be taken with

a grain of salt when the interest is specifically in forensic speaker recognition,

as the variability of segment duration within speakers is greatly amplified, for

example due to psychological and emotional factors like stress. Thus, it’s direct

use as a forensic phonetic parameter must be discouraged.

5.3 Conclusion

The method applied in the present work tries to replicate and extend the find-

ings of earlier studies concerning the use of parametric representations of time-

dynamic properties of speech as features for the task of forensic phonetic speaker

recognition, using data from speakers of Viennese German. As can be seen from

the discussion of the evaluation, the results obtained by this method are quite

promising, yielding affirming error rates and good calibration properties. In di-

rect comparison with features based on formant means and instantaneous formant

measurements at different positions, the two phonetic targets assumed for a diph-

thong as well as measurements at 10% time intervals throughout the segment,

which were chosen as other segmental methods for the evaluation in the present

work, it provides a better discriminatory potential and is thus favourable in as-

sessing speaker similarities based on time-dynamic properties within a segment.

Various test involving modified feature extraction procedures were performed to
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assess the influence of difference in trajectory lengths as well as the exclusion of

the first formant measurement to emulate conditions like band-pass filtering of

the signal.

The expression of the outcome as a likelihood ratio is directed towards the

adoption of the Bayesian approach in courts, which is strived for by many prac-

titioners (see Gonzalez-Rodriguez et al. (2007), Rose & Morrison (2009)). It’s

logical and legal properties have been explained in section 2.3.3. The methods

outlined and applied in this work combine traditional forensic phonetic parame-

ters with computerised methods of modelling speaker variability using Aitken &

Lucy’s likelihood ratio formula. The evaluation and the procedures to calibrate

and combine outputs of different systems are incorporated from research on au-

tomatic speaker recognition systems in the biometric domain. This emphasises

the benefit and need for interdisciplinary research which leads to the utilisation

of different types of models and knowledge developed in individual areas in a

system which links these techniques to a new application.

The findings presented in this work are in accordance with the results of

similar studies by Morrison (2008, 2009b), Morrison & Kinoshita (2008) which

applied the method to data from speakers of Australian English, yet are not fully

comparable due to the fact that these studies used speech of different recording

sessions to account for inter-session variability (see section 2.1.3). However, the

true applicability and performance of the method in a forensic phonetic setting

can only be assessed when directly applied to real casework data. This study

does not satisfy this criterion, as it uses speech recordings that were made under

controlled conditions, but it shows the general ability of this approach to discrim-

inate between speakers of Viennese German, given only formant trajectories of

diphthongs. The investigation of explicit duration information as an additional

parameter must be regarded as a part of this proposition, as it would necessarily

provide of less use in realistic forensic conditions.

5.4 Future Research

While the results obtained are indeed promising, extended studies are needed

to investigate the performance of the method on other diphthongs as well as

monophthongs. Findings like the superiority of the method on data from the
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secondary stressed diphthong should be taken as an additional incentive to ex-

plore other possible aspects in different dialects and sociolects that could affect

the performance of these methods. This finding has important implications on

its own in that it shows what additional gain in accuracy can be expected of the

method given these peculiar circumstances involving specific knowledge of the

dialectal situation within the reference population.

To further investigate the applicability of the method and to increase its use

in forensic cases to as much material as possible, extended studies will also need

to concentrate on the dynamics of other speech sounds than vowels, especially

liquids.

As this study is based on studio recordings to test the method’s overall appli-

cability, its practical use applied to realistic forensic speech material has yet to be

shown. This includes the need for same-speaker recordings taken in different ses-

sions as well as recordings taken under detrimental conditions, like in telephone

speech. This last factor is especially noteworthy, as the formant measurements

which the method relies on can be severely distorted by band-pass filters, an

effect which several studies have shown since (see Künzel, 2001). But, as has

been noted in the conclusion, to get insights in the performance of the method

for forensic use, the only route is to apply it to real casework data.

As has already been proposed by McDougall (2005:215), future studies should

engage in the application of the method to fundamental frequency contours,

though less discrimination ability is to be expected due to the very different func-

tions the fundamental frequency fulfils in speech, which, in contrast to formant

trajectories, convey non-linguistic information as well.

A last point to mention is the inherent problem of feature correlation not

sufficiently treated by this study. The parametric representations applied in the

likelihood ratio calculation achieve a great deal of decorrelation which would be

present when using several static formant measurements within the trajectory of

a diphthong, yet there also exists a correlation between the individual formants

incorporated into the analysis. One possible solution to this problem is to adapt

the method of likelihood ratio calculation to incorporate prior knowledge about

the correlation between these features. This could be achieved by models outlined

in Aitken et al. (2006, 2007), where a graphical model estimating the dependency

structure is employed to lessen the problem of dimensionality. However, it’s
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applicability to speech data has not yet been shown.

The findings of the present work show that there is much speaker-specific

information encoded in the time-dynamic properties of speech segments, which

can readily be assumed to be of use when dealing with forensic phonetic casework.

This fact is increasingly recognised in recent years and much work has already

been devoted to develop methods which exploit this type of information. Yet

there is still much potential to be attained by further studies to approach a state

of better ability of speaker discrimination.
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Appendix A

Task performance results

A.1 Formant means

aErdB aElCS aE
EER Cllr EER Cllr EER Cllr

Formants F1, F2, F3 0.115 0.4604 0.097 0.4725 0.127 0.5438
Formants F2, F3 0.165 0.5657 0.13 0.5058 0.161 0.6052

Table A.1: Results based on formant mean values

A.2 Interval and target measurements

aErdB aElCS aE
EER Cllr EER Cllr EER Cllr

dur
10% intervals 0.103 0.5516 0.07 0.4392 0.12 0.4616

Formants Dual-Target 0.091 0.3763 0.076 0.3408 0.109 0.4551
F1, F2, F3 10% intervals 0.109 0.5475 0.08 0.4854 0.131 0.4986

Dual-Target 0.099 0.4246 0.093 0.4237 0.115 0.5054

dur
10% intervals 0.113 0.4441 0.083 0.3564 0.127 0.4904

Formants Dual-Target 0.107 0.4569 0.096 0.3561 0.129 0.529
F2, F3 10% intervals 0.122 0.4628 0.105 0.4299 0.15 0.5456

Dual-Target 0.124 0.5053 0.114 0.4343 0.147 0.596

Table A.2: Results based on instantaneous measurements (10% intervals, dual-
target)
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A.3 Parametric representations

A.3.1 Polynomial functions

time-equalised
aErdB aElCS aE

EER Cllr EER Cllr EER Cllr

dur
quadratic 0.087 0.3708 0.057 0.362 0.103 0.4015

Formants cubic 0.083 0.3775 0.065 0.3717 0.099 0.3877
F1, F2, F3 quadratic 0.09 0.3919 0.07 0.4186 0.108 0.4355

cubic 0.083 0.4044 0.078 0.4343 0.11 0.4242

dur
quadratic 0.097 0.3896 0.08 0.3392 0.119 0.4689

Formants cubic 0.093 0.3662 0.07 0.318 0.115 0.4482
F2, F3 quadratic 0.11 0.4334 0.091 0.4002 0.132 0.5228

cubic 0.103 0.4077 0.093 0.3803 0.13 0.5088

Table A.3: Results of polynomial curves fitted to time-equalised formant trajec-
tories

raw trajectories
aErdB aElCS aE

EER Cllr EER Cllr EER Cllr

dur
quadratic 0.087 0.4153 0.09 0.4242 0.121 0.4825

Formants cubic 0.097 0.4833 0.093 0.4653 0.123 0.5119
F1, F2, F3 quadratic 0.083 0.4132 0.107 0.4932 0.13 0.5303

cubic 0.103 0.4961 0.103 0.5437 0.14 0.5617

dur
quadratic 0.087 0.3699 0.102 0.3932 0.128 0.5028

Formants cubic 0.093 0.405 0.097 0.4859 0.125 0.5095
F2, F3 quadratic 0.097 0.4023 0.114 0.48 0.147 0.5993

cubic 0.118 0.4627 0.104 0.5849 0.144 0.6057

Table A.4: Results of polynomial curves fitted to raw, non-time-equalised formant
trajectories
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A.3.2 Discrete cosine transform (DCT)

time-equalised
aErdB aElCS aE

EER Cllr EER Cllr EER Cllr

dur
2nd order 0.089 0.3828 0.057 0.3706 0.101 0.4018

Formants 3rd order 0.086 0.3803 0.063 0.3714 0.1 0.3953
F1, F2, F3 2nd order 0.09 0.4041 0.07 0.4286 0.108 0.437

3rd order 0.087 0.4107 0.07 0.4368 0.113 0.4332

dur
2nd order 0.093 0.3944 0.083 0.3431 0.121 0.4691

Formants 3rd order 0.093 0.3744 0.07 0.3221 0.117 0.4556
F2, F3 2nd order 0.121 0.4718 0.097 0.4112 0.133 0.524

3rd order 0.11 0.4370 0.087 0.4035 0.13 0.515

Table A.5: Results of discrete cosine transform (DCT) representations derived
from time-equalised formant trajectories

raw trajectories
aErdB aElCS aE

EER Cllr EER Cllr EER Cllr

dur
2nd order 0.118 0.5083 0.097 0.4262 0.147 0.5484

Formants 3rd order 0.13 0.5411 0.102 0.4321 0.145 0.5386
F1, F2, F3 2nd order 0.113 0.4942 0.1 0.4414 0.143 0.5411

3rd order 0.127 0.5123 0.102 0.4477 0.143 0.5348

dur
2nd order 0.17 0.5712 0.133 0.496 0.167 0.6278

Formants 3rd order 0.15 0.5635 0.131 0.484 0.216 0.6851
F2, F3 2nd order 0.17 0.5766 0.128 0.5148 0.171 0.6405

3rd order 0.157 0.5738 0.133 0.5006 0.17 0.6362

Table A.6: Results of discrete cosine transform (DCT) representations derived
from raw, non-time-equalised formant trajectories
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Abstract

English

The present work investigates the performance of an approach for forensic speaker

recognition that is based on parametric representations of formant trajectories.

Quadratic and cubic polynomial functions are fitted to formant contours of diph-

thongs. The resulting coefficients as well as the first three to four components

derived from discrete cosine transform (DCT) are used in order to capture the

dynamic properties of the underlying speech acoustics, and thus of the speaker

characteristics. This results in a representation based on only a small number

of decorrelated parameters that are in turn used for forensic speaker recognition.

The evaluation conducted in the study incorporates the calculation of likelihood

ratios for use in the Bayesian approach of evidence evaluation. The advantages

of this framework and its current limitations are discussed.

For the calculation of the likelihood ratios a multivariate kernel density for-

mula developed by Aitken & Lucy (2004) is used which takes both between-

speaker and within-speaker variability into account. Automatic calibration and

fusion techniques as they are used in automatic speaker identification systems are

applied to the resulting scores. To further investigate the importance of duration

aspects of the diphthongs for speaker recognition an experiment is undertaken

that evaluates the effect of time-normalisation as well as modelling segment du-

rations using an explicit parameter. The performance of the parametric represen-

tation approach compared with other methods as well as the effects of calibration

and fusion are evaluated using standard evaluation tools like the detection error

trade-off (DET) plots, the applied probability of error (APE) plot, the Tippett

plot as well as numerical indices like the EER and the Cllr metric.
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ABSTRACT

Deutsch

Die vorliegende Arbeit untersucht das Leistungsverhalten eines Ansatzes der

forensischen Sprechererkennung, der auf parametrischen Repräsentationen von

Formantverläufen basiert. Quadratische und kubische Polynomfunktionen wer-

den dabei an Formantverläufe von Diphthongen angenähert. Die resultieren-

den Koeffizienten sowie die ersten drei bzw. vier Komponenten der Diskreten

Kosinustransformation (DCT) werden in Folge verwendet, um die dynamischen

Eigenschaften der zugrundeliegenden akustischen Merkmale der Sprache und

damit der Sprechercharakteristika zu erfassen. Am Ende steht eine Repräsen-

tation bestehend aus wenigen dekorrelierten Parametern, die für die forensische

Sprechererkennung verwendet werden. Die in der Untersuchung durchgeführte

Evaluierung beinhaltet die Berechnung von Likelihood-Ratio-Werten für die An-

wendung im Bayesschen Ansatz für die Bewertung von forensischen Beweisstücken.

Die Vorteile dieses Systems und die derzeitigen Beschränkungen werden behan-

delt.

Für die Berechnung der Likelihood-Ratio-Werte wird eine von Aitken & Lucy

(2004) entwickelte multivariate Kernel-Density-Formel verwendet, die sowohl Zwi-

schen-Sprecher- als auch Inner-Sprecher-Variabilität berücksichtigt. Automa-

tische Kalibrierungs- und Fusionstechniken, wie sie in Systemen zur automa-

tischen Sprecheridentifikation verwendet werden, werden auf die Ergebniswerte

angewendet.

Um die Bedeutung von Längenaspekten von Diphthongen für die forensische

Sprechererkennung näher zu untersuchen wird ein Experiment durchgeführt, in

dem der Effekt von Zeitnormalisierung sowie die Modellierung der Dauer durch

einen expliziten Parameter evaluiert werden.

Die Leistungsfähigkeit der parametrischen Repräsentationen verglichen mit

anderen Methoden sowie die Effekte der Kalibrierung und Fusion werden unter

Verwendung üblicher Bewertungswerkzeuge wie des Erkennungsfehlerabwägungs-

(DET)-Diagramms, des Tippett-Diagramms und des angewandten Fehlerwahr-

scheinlichkeits-(APE)-Diagramms, sowie numerischer Kennziffern wie der Gleich-

fehlerrate (EER) und der Cllr-Metrik evaluiert.
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