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Zusammenfassung

Diese Arbeit behandelt eine Klasse von Abbildungen, genannt wave maps, vom

Minkowski-Raum auf die 3-Sphäre. Solche Abbildungen genügen einer nichtlinea-

ren Wellengleichung, für die eine selbstähnliche Lösung, genannt der Grundzu-

stand, in geschlossener Form bekannt ist. Diese Lösung entwickelt in endlicher

Zeit eine Singularität (blow-up). Numerische Untersuchungen legen nahe, dass der

Grundzustand einen Attraktor für generische Anfangsdaten darstellt. In dieser

Arbeit werden lineare Störungen des Grundzustands untersucht, wobei das Ziel

ist, die lineare Stabilität mit analytischen Methoden zu beweisen.

Die linearisierte Gleichung wird als Operatorgleichung formuliert und in zwei ver-

schiedenen Funktionenräumen betrachtet - im Energieraum und in einem Raum,

in dem die Norm mit einer höheren Energie assoziiert werden kann. Mit Metho-

den aus der Theorie starkstetiger, ein-parametriger Halbgruppen und durch Unter-

suchung des Spektralproblems kann eine Abschätzung für die zeitliche Entwicklung

der Energie der Störung angegeben werden. Der Grundzustand ist linear stabil,

wenn die Energie der Störung mit der Zeit abnimmt. Es wird gezeigt, dass nur eine

Formulierung des Problems im höheren Energieraum zum gewünschten Ergebnis

führt.
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Abstract

This work studies a particular class of maps, called wave maps, from Minkowski

space to the three-sphere. Such maps fulfill a nonlinear wave equation, for which a

self-similar solution, called the ground state, is known in closed form. This solution

develops a singularity in finite time (blow-up). Numerical investigations suggest

that the ground state is an attractor for generic smooth initial data. In this work

linear perturbations of the ground state solution are investigated. The aim is to

prove linear stability with analytic methods.

We give an operator formulation of the linearized equation and consider it in two

different functions spaces - in the energy space and in a higher energy space, where

the norm can be associated with a higher energy. With methods from the theory of

strongly continuous one-parameter semigroups and by investigation of the spectral

problem an estimate for the temporal evolution of the energy of the perturbation

can be found. The ground state solution is linearly stable if the energy of the

perturbation decreases in time. It will be shown that only a formulation of the

problem in the higher energy space leads to the intended result.
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1. Introduction

The development of partial differential equations (PDEs) as a mathematical tool

to describe the dynamics of systems by infinitesimal changes of physical quantities

certainly marks one of the cornerstones for the enormous success of natural sci-

ences. The theory of linear PDEs is well established with numerous applications

in different scientific fields. However, as systems and the interactions within get

more complex, nonlinearities arise naturally in the equations. Therefore, insights

gained from the mathematical investigation of nonlinear PDEs are of tremendous

importance and provide the key to a deeper understanding of many questions aris-

ing in physics, chemistry or biology. One of the central questions in the analysis

of partial differential equations is known as well-posedness of the Cauchy problem.

Given the initial state of a system one wants to ensure that the equation provides a

unique solution. Furthermore, small changes of the initial state should only cause

small changes of the solution. However, it is possible that these requirements are

fulfilled only for a finite time interval after that break down of solutions occurs.

Singularity formation in finite time from smooth initial data, also called blow-up

of solutions, is a feature that many nonlinear PDEs seem to have in common and

it is particularly interesting how such a break down occurs.

In this work a nonlinear wave equation, called the wave maps equation, will be

considered and aspects of singularity formation will be investigated. Wave maps

are defined on a pseudo-Riemannian manifold with values in a Riemannian mani-

fold. The field equations, generally a system of semilinear wave equations, can be

derived from an action principle. Wave maps can be considered as a generalization

of the ordinary wave equation, which is a wave map from (3 + 1)-Minkowski space

to the one-dimensional Euclidean space R. For non-flat targets, which are often

chosen to be spherical or hyperbolic, the resulting field equations turn out to be

nonlinear. From a pure mathematical point of view, wave maps provide a rich
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1. Introduction

source of interesting and challenging problems. In regard to singularity formation

and global existence of solutions much progress has been made in the past years

(see [22] for a survey).

In this work we focus on wave maps from (3 + 1)-Minkowski space to the three-

sphere. In particle physics this model was introduced by Gell-Mann and Levy (see

[17]) in 1960 and is known as SU(2)-σ model. By imposing additional symmetry,

the wave maps equation turns out to be a single semilinear wave equation, which

was intensively studied in the last two decades with analytic and numerical tools.

In 1988 J. Shatah showed the existence of self-similar solutions that blow up in

finite time (see [33]) and an explicit example, called the ground state solution was

found by Turok and Spergel [39] in 1999. Numerical investigations of the wave

maps equation started around 2000, mainly performed by P. Bizon and collabo-

rators ([7], [6]). They showed the existence of a family of self-similar solutions,

denoted by fn. The ground state solution is given by f0 and it is the only one

that is known is closed form. It turned out that these solutions play an important

role in the dynamics of the system. Evolution of initial data either disperses or

blows up in finite time. Numerical investigations performed for large classes of

initial data depending on a single parameter revealed the existence of a threshold

between these two endstates. It was observed that the profile of the solutions near

this threshold is given by the first excited state f1, therefore called the critical

solution, before either dispersion or singularity formation takes place.

In the early nineties, similar phenomena were found in gravitational physics and

are known as critical gravitational collapse. Important discoveries in this field are

due to numerical investigations performed by M. Choptuik [8]. He considered a

massless scalar field coupled to gravity, where the only possible endstates of the

system are dispersion to flat space or formation of a black hole. Among other

remarkable features that characterize critical collapse (see [18] for a survey), the

existence of a universal self-similar critical solution was demonstrated. Since the

the Einstein equations are very difficult to handle, the wave maps equation serves

as a toy model for critical phenomena in gravitational physics.

This work is dedicated to another suggestion that was made on the basis of nu-

merical studies performed by P. Bizon, T. Chmaj and Z. Tabor in [7] and which

concerns blow-up from smooth initial data. They investigated large classes of ini-
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tial data that become singular in finite time and showed that the asymptotic shape

near the singularity is locally given by the ground state solution f0. Moreover, they

were not able to find initial data, for which this was not the case. It is therefore

believed that the ground state solution is a local attractor for singularity forma-

tion. If this is true it should be stable under small linear (and further nonlinear)

perturbations. Thus, the investigation of stability of the ground state solution

is rather mathematically than physically motivated. The wave maps equation,

which is studied in this work, as well as the Einstein equations belong to the class

of super-critical equations. The hope is that the techniques developed in the anal-

ysis of the super-critical wave maps equation may also shed some light on more

involved problems.

In regard to the problem of linear stability of f0 important numerical and analytic

results have been obtained in the past years, mainly by P. Bizon (see for example

[5],[4]) as well as by P. C. Aichelburg and R. Donninger ( [1], [13], [11]). However,

a rigorous proof turned out to be a tedious task and not even mode stability could

be established so far. The aim of this work is to show linear stability of the ground

state solution with methods from functional analysis, operator theory and the

theory of strongly continuous one-parameter semigroups.

In chapter 2 wave maps on Minkowski space will be defined and we derive the field

equations for co-rotational maps from (3+1)-Minkowski space to the three-sphere.

We discuss the behavior of the wave maps equation under scaling and put this into

the context of criticality classes and scaling heuristics. Then, well-posedness results

for general wave maps will be briefly summarized. Finally we introduce self-similar

solutions and discuss the ground state solution in more detail.

In the third chapter two different coordinate systems adapted to the problem of

linear stability will be presented, self-similar hyperbolic coordinates and CSS-

coordinates. For reasons that will be explained below, we choose the latter and

derive the linearized equation. Due to the nature of the new time variable, linear

stability of f0 becomes a problem of asymptotic stability. We review the results ob-

tained so far and also present new results in regard to mode stability and solutions

of the eigenvalue equation.

In chapter 4 we give an operator formulation of the linearized equation in CSS-

coordinates and show well-posedness of the system in the energy space. With
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1. Introduction

spectral analysis and semigroup theory we derive a growth estimates for the per-

turbation field, which turns out to be not sufficient to prove stability.

In chapter 5 we will overcome the hurdles of the previous chapter by formulating

the problem in a different function space. We require higher differentiability of the

solutions and operate on a space with a norm inspired by a higher energy. We will

show that the system is well-posed and that we can derive an appropriate growth

estimate, such that asymptotic stability of the ground state solution can be shown.
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2. Self-similar wave maps from

Minkowski space to S3

In this section we derive the field equation for co-rotational wave maps from

Minkowski space to the three-sphere. Then self-similar solutions and their im-

portance for the time evolution of the system will be discussed. For the basic

definitions related to the theory of smooth manifolds, which will be used in this

section, we refer to an overview given in [11] as well as to textbooks on the subject

(see for example [27]).

2.1. Derivation of the field equation

In general, wave maps are defined as maps on a pseudo-Riemannian manifold

(M, η) taking values in a Riemannian manifold (N, g) (both of arbitrary dimen-

sion), where η and g denote the metrics on domain and target space, respectively.

First we discuss wave maps from (n + 1)-dimensional Minkowski space, denoted

by Rn+1, to an arbitrary n-dimensional Riemannian manifold. Then we focus on

maps on R3+1 where the target is given by the three-sphere. Finally, by impos-

ing additional symmetry, the field equation for co-rotational wave maps will be

derived.

2.1.1. Wave maps on Minkowski space

Let M := Rn+1 denote the (n+1)-dimensional Minkowski space with metric η. We

define the signature of the metric to be (−,+, ...,+). In standard coordinates the

components of η are given by ηµν =diag(−1, 1, ..., 1), with indices running from

0 to n. Let Ψ : M → N be a smooth mapping from Minkowski space to an
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2. Self-similar wave maps from Minkowski space to S3

n-dimensional Riemannian manifold (N, g). The components of the metric g in

chosen coordinates are denoted by gAB and we write ΨA for the components of the

coordinate representation of Ψ, where A = 1, ..., n.

The wave maps functional S is defined as

S(Ψ) :=

∫
Rn+1

ηµν(∂µΨA)(∂νΨ
B)gAB(Ψ) (2.1)

with ∂µ := ∂
∂xµ

. A detailed discussion of this expression can be found for example

in [11]. The map Ψ is called a wave map if it is a critical point of the action

functional S. Such points can be formally calculated by considering compactly

supported variations where the condition δS = 0 yields a system of nonlinear wave

equations

�ΨA + ηµνΓABC(Ψ)(∂µΨB)(∂νΨ
C) = 0 (2.2)

called the wave maps equation (see [34] for a derivation). The wave operator is

defined by

�ΨA := ηµν∂µ∂νΨ
A

and

ΓABC :=
1

2
gAD(∂BgCD + ∂CgBD − ∂DgBC)

denote the Christoffel symbols on N .

In regard to the above analysis it is common to define a Lagrange density L(Ψ, ∂Ψ),

which is related to the action by

S(Ψ) =

∫
L(Ψ, ∂Ψ).

It can be shown (see for example [16]) that the map, in order to be a critical point,

must satisfy the Euler-Lagrange equations

∂µ
∂L

∂(∂µΨA)
− ∂L
∂ΨA

= 0.

Here the Lagrange density is given by

L(Ψ, ∂µΨ) := ηµν(∂µΨA)(∂νΨ
B)gAB(Ψ).
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2.1. Derivation of the field equation

2.1.2. Co-rotational wave maps to the three-sphere

We consider wave maps on M := R3+1 and introduce spherical coordinates

(t, r, θ, φ) on the Minkowski space, which are related to the standard coordinates

by

x0 = t

x1 = r sin θ cosφ

x2 = r sin θ sinφ

x3 = r cos θ

with r > 0, 0 < θ < π, 0 ≤ φ < 2π. In these coordinates the components of the

metric are given by

ηµν(t, r, θ, φ) =


−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ


Let the target manifold N be the three-sphere S3 ⊂ R4 defined by

S3 := {(x0, x1, x2, x3) ∈ R4 : x2
0 + x2

1 + x2
2 + x2

3 = 1}.

The three-sphere with a metric induced by the ambient Euclidean metric is a three-

dimensional Riemannian manifold (S3, g). We choose hyperspherical coordinates

(ψ,Θ,Φ), which are related to the Cartesian coordinates on R4 by

x0 = sinψ sin Θ cos Φ

x1 = sinψ sin Θ sin Φ

x2 = sinψ cos Θ

x3 = cosψ

13



2. Self-similar wave maps from Minkowski space to S3

where 0 < ψ < π, 0 < Θ < π, 0 ≤ Φ < 2π and

gAB(ψ,Θ,Φ) =

 1 0 0

0 sin2 ψ 0

0 0 sin2 ψ sin2 Θ

 .

Let Ψ: R3+1 → S3 be a smooth map from Minkowski space to the three-sphere. In

coordinates it assigns 4-tuples (t, r, θ, φ) on Minkowski space to 3-tuples (ψ,Θ,Φ)

on S3.

Henceforth we only consider co-rotational maps, i.e. we require

ψ = ψ(t, r) Θ ≡ θ Φ ≡ φ. (2.3)

With these assumptions it can be shown (cf. [11]) that the action functional given

by (2.1) reduces to

S(ψ) = 4π

∫ ∞
0

∫ ∞
−∞

(
−ψ2

t (t, r) + ψ2
r(t, r) +

2 sin2 ψ(t, r)

r2

)
r2dtdr (2.4)

In the above expression we again abbreviate

ψi := ∂iψ =
∂ψ

∂xi.

A Lagrange density can be defined by

L = −r2ψ2
t + r2ψ2

r + 2 sin2 ψ.

and the Euler-Lagrange equations then yield the semilinear wave equation

ψtt − ψrr −
2

r
ψr +

sin(2ψ)

r2
= 0. (2.5)

In the following, when we talk about the wave map equation without further spec-

ifying domain and target, we have equation (2.5) in mind.
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2.1. Derivation of the field equation

With the Lagrange density an energy density can be assigned to the system by

E = −
(
∂L
∂ψt

ψt − L
)
.

Integration over the radial variable yields the conserved energy

Eψ(t) =

∫ ∞
0

(
ψ2
t + ψ2

r +
2 sin2(ψ)

r2

)
r2dr. (2.6)

2.1.3. The Cauchy problem

The main problem for evolution equations is known as the Cauchy problem. Con-

sider for example the wave maps equation (2.5). Given data at t = 0

ψ|t=0 = ψ0 ∂tψ|t=0 = ψ1 (2.7)

one wants to ensure that the problem is well-posed. Loosely speaking, this means

that there exists a unique solution, which depends continuously on the initial data

(the last requirement ensures that small changes in the data cause only small

changes in the solution). If this is the case for a finite time interval, the problem is

locally well-posed, whereas for global well-posedness the above properties hold at

all times. If a solution ceases to exist after some time, one is naturally interested

in the details of the break-down. The notion of well-posedness has of course to be

made mathematically precise, and we will do this when we consider an operator

formulation of an evolution equation in the following chapters.

In a proper definition it has to be specified what kind of solutions are admitted,

i.e. the degree of regularity. In the above derivation of the wave maps equation

we required the solution to be a smooth function (this is also called a classical

wave map). From the view point of partial differential equations this is a rather

restrictive assumption, which is usually dropped. In PDE theory it is common to

only require a very low degree of regularity (at the start) and to consider weak

solutions of the corresponding equation.
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2. Self-similar wave maps from Minkowski space to S3

Criticality with respect to energy scaling

The wave maps equation is invariant under dilation. If ψ(t, r) is a solution, then

for r → r/λ

ψλ(t, r) := ψ(t/λ, r/λ) (2.8)

also solves eq. (2.5) for arbitrary λ > 0.

It turns out that invariance under scaling is a property that applies to many non-

linear evolution equations, although the scaling of the solutions might be slightly

different to (2.8). The scaling-behavior of conserved quantities associated with

such equations gives rise to a classification known as criticality with respect to the

considered quantity.

To illustrate this, we consider the energy associated with the wave maps equation

given by (2.6). Under the above defined transformation the energy scales as

Eψλ(t) = λEψ(t/λ). (2.9)

This is a special case of the more general scaling behavior

Eψλ(t) = λαEψ(t/λ).

Distinguishing between α < 0, α = 0, α > 0, the corresponding field equations are

then called energy sub-critical, energy critical or energy super-critical (see [38]).

It is widely believed that the criticality class is strongly connected with the pos-

sibility of singularity formation during the evolution. Sub-critical equations are

supposed to be globally well-posed, whereas in the super-critical case blow-up of

solutions is expected. Qualitatively the argument goes as follows: A solution ψ(t, r)

has a fine-scale counterpart for λ� 1, which is more concentrated and highly os-

cillating (hence less regular), whereas for λ � 1 the scaled solution is smoother

than the original one. Given initial data with a certain amount of energy, then in

the super-critical case, fine-scale solutions have smaller energy than the original

one due to the scaling law (2.9). Thus, shrinking the solution decreases the energy

locally, which favours the blow-up. In contrast, in the sub-critical case shrinking

would require more energy.
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2.2. Self-similar solutions

Global and local well-posedness for wave maps

The Cauchy-Problem for wave maps on Minkowski space has been studied ex-

tensively in the past years. Since the technical requirements, which would be

necessary to discuss the results in detail, go beyond the scope of this work, we

refer to a survey by Krieger an the references therein [22].

For n = 1 the wave maps equation is sub-critical and global well-posedness has

been established. For n ≥ 2 a sharp local well-posedness result (independent of

the target manifold) has been obtained in [20],[21] for data in suitable Sobolev

spaces.

In two spatial dimensions the wave maps equation is critical, which means that

the energy is invariant under scaling. In regard to global existence of solutions

substantial progress has been made in the last years and we refer again to [22] and

to [23], [30], [36] for more recent results.

For the super-critical case n ≥ 3 many questions remain unresolved. For wave

maps from Rn+1 to Sm−1 (where m,n ≥ 2) it was shown by Tao in [37] that global

existence is provided if the initial data are small enough in a particular norm (the

energy norm). The Cauchy problem and the question of global well-posedness for

wave maps from (3+1)-Minkowski space to the three-sphere was studied earlier in

[24] and [35]. For the particular case of co-rotational wave maps that is considered

here, we refer to a result obtained by Shatah and Tahvildar-Zadeh in [32]. Again,

global existence of solutions can only be shown if the data are small. For eq. (2.5)

an explicit example of singularity formation in finite time is known and will be

presented in the next section.

2.2. Self-similar solutions

Since eq. (2.5) is scale invariant it is reasonable to look for solutions that share

this property, as it is provided by self-similar solutions.

2.2.1. The ground state solution

In [33] Shatah considered solutions of the form

17



2. Self-similar wave maps from Minkowski space to S3

ψ(t, r) = f
(

r
T−t

)
for an arbitrary constant T > 0.

Defining a radial coordinate adapted to self-similarity

ρ :=
r

T − t

the wave maps equation reads

f ′′ +
2

ρ
f ′ − sin(2f)

ρ2(1− ρ2)
= 0 (2.10)

where ′ := d
dρ

, t ≤ T and 0 ≤ ρ < ∞. At ρ = 0 and ρ = 1 one has regularity

conditions

f(0) = 0 f(1) =
π

2
. (2.11)

Shatah proved that such solutions exist and later Turok and Spergel [39] found an

example in closed form, which is given by

f0(ρ) = 2 arctan(ρ) (2.12)

In the following we will refer to (2.12) as the ground state solution. It turns out that

it is sufficient to consider eq. (2.10) only for ρ ∈ [0, 1] (see [6]). This can be seen by

the argument of finite speed of propagation: Calculating the characteristics of eq.

(2.5) (this was done for example in [11]) one observes that information propagates

with velocity equal to one along straight lines in the spacetime diagram with slope

−1 and 1. This means that the point (T, 0) can only be influenced by information

contained in its past lightcone, the boundary of which is given by r = T − t

corresponding to ρ = 1.

Set ψ0(t, r) := f0( r
T−t) and define smooth initial data

ψ(0, r) := ψ0(0, r) ∂tψ(0, r) = ψ0,t(0, r)

then the ground state solution provides a solution of the wave maps equation,
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2.2. Self-similar solutions

which is smooth for t < T . However, the spatial derivative at the origin

∂rψ0(t, 0) ∼ (T − t)−1

becomes singular for t→ T . Thus, it is an explicit example for a blow-up solution.

Numerical studies of solutions of eq. (2.10), first performed by Ammineborg and

Bergstrom in [3] and later by Bizon, Chmaj and Tabor in [7], suggested that f0 is

a member of a family of self-similar solutions. This is given in the next theorem,

obtained by Bizon in [6].

Theorem 1. There exists a countable family of smooth solutions fn of eq. (2.10)

satisfying the boundary conditions (2.11). The index n = 0, 1, 2, ... denotes the

number of intersections of fn(ρ) with the line f = π
2

on ρ ∈ [0, 1).

The only member of this family, which is known is closed form, is the ground state

solution. The others have to be constructed numerically.

2.2.2. The role of self-similar solutions in the time evolution

For given initial data, there are two possible endstates for the dynamics governed

by the wave maps equation: dispersion, that is convergence to the vacuum solution,

or formation of a singularity. In regard to this, the ground state solution as well

as the first excited state seem to play an important role. Bizon et al. [7] evolved

families of initial data depending on one parameter p. By adjusting the parameter

they were able to identify the critical value p∗, which marks the threshold between

the two endstates. It was shown that for large classes of initial data with values

p close to p∗, the solution f1 is approached locally before finally dispersion or

singularity formation takes place.

Another conjecture that was made in [7], and which is of major importance here,

concerns the ground state solution f0. It was observed that for large sets of data,

which become singular after a finite time, the asymptotic shape near the singularity

is given by f0. It is therefore believed that the blow-up is universal and that the

ground state solution acts as a local attractor for singularity formation (local in the

sense that it is approached near the centre of spherical symmetry). To prove this

conjecture it has to be shown that the ground state solution is stable under small
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2. Self-similar wave maps from Minkowski space to S3

linear (and further nonlinear) perturbations. Although in the last years numerical

and analytic arguments have been obtained that point in this direction (they will

be presented in the next chapter), there was no rigorous proof of linear stability.
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3. Linear stability of the ground

state solution

The basic idea of linear stability analysis is to linearize the evolution equation for

small perturbations around the ground state solution. Then it has to be shown

that the perturbing field (measured by a suitable norm) converges to zero as the

time approaches the blow-up time. In this section we first introduce coordinate

systems adapted to the problem and review the results obtained so far. In regard

to mode stability in CSS-coordinates (see below) new results for solutions of the

eigenvalue equation will be presented.

3.1. Adapted coordinates

We have already defined a radial coordinate adapted to self-similarity

ρ =
r

T − t
.

3.1.1. Self-similar hyperbolic coordinates

One can define a new time variable σ by

σ := − log
√

(T − t)2 − r2

for r < T − t, which corresponds to the interior of the backward lightcone of

the blow-up point (t, r) = (T, 0). Since the lines σ = const. are hyperbolae in

the spacetime diagram, the coordinates (σ, ρ) are called self-similar hyperbolic

coordinates. The system is orthogonal by construction (see [11] for a derivation).

The wave maps equation (2.5) in (σ, ρ) reads
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3. Linear stability of the ground state solution

ψσσ − 2ψσ − (1− ρ2)2ψρρ −
2(1− ρ2)2

ρ
ψρ +

(1− ρ2) sin(2ψ)

ρ2
= 0. (3.1)

Linear stability of the ground state solution in hyperbolic coordinates was rigor-

ously studied by Donninger in [11] and by Aichelburg and Donninger in [13]. With

an appropriate operator formulation of the linearized equation well-posedness of

the Cauchy problem in a particular Sobolev space (the energy space) was shown

and an upper bound for the growth rate of the perturbation was obtained (given

by the growth rate of the gauge mode, see section 3.2.1). An explanation, why

this result is the best that can be achieved in these coordinates can be found in

[11]: Generic inital data leads to outgoing wave packets that leave the backward

lightcone after some time. However, in hyperbolic coordinates this is troublesome

because the time coordinate σ breaks down at the boundary of the lightcone,

hence outgoing wave packets will never leave this spacetime region and eventually

cumulate near ρ = 1. This leads to exponential growth of solutions.

3.1.2. CSS-coordinates

Another possibility is to define

τ := − log(T − t)

for t < T . This coordinate exists not only in the interior of the backward lightcone

of the blow-up point, but also on the boundary and outside of it. The coordinates

(τ, ρ) are called continuously self-similar and in the following we refer to them as

CSS-coordinates or simply similarity coordinates.

The inverse transformation is given by

t = T − e−τ r = ρe−τ .

Derivatives transform to

∂r = eτ∂ρ ∂t = eτ (∂τ + ρ∂ρ).

The wave maps equation in (τ, ρ) reads
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3.2. Mode stability in CSS-coordinates

ψττ − (1− ρ2)ψρρ + 2ρψτρ + ψτ − 2
1− ρ2

ρ
ψρ +

sin(2ψ)

ρ2
= 0 (3.2)

Note that there are mixed derivatives, which is due to the fact that the coordinate

system is not orthogonal.

3.2. Mode stability in CSS-coordinates

The wave maps equation in similarity coordinates can be linearized around the

ground state solution by making the ansatz

ψ(τ, ρ) = f0(ρ) + ψ̃(τ, ρ)

where ψ̃(τ, ρ) denotes a small perturbation.

Neglecting quadratic and higher order terms, the resulting linear time evolution

equation for the perturbation field reads

ψ̃ττ − (1− ρ2)ψ̃ρρ + 2ρψ̃τρ + ψ̃τ − 2
1− ρ2

ρ
ψ̃ρ +

2 cos(2f0)

ρ2
ψ̃ = 0 (3.3)

with regularity conditions (cf. [10])

ψ̃(τ, 0) = ψ̃τ (τ, 0) = 0

and initial data ψ̃(0, ρ), ψ̃τ (0, ρ).

With the above argument of finite speed of propagation it is sufficient to consider

the equation only in the backward lightcone of (r, t) = (0, T ), that is for

τ ≥ − log T 0 ≤ ρ ≤ 1

As solutions we admit smooth complex-valued functions

ψ̃ : [− log T,∞)× [0, 1]→ C.

Since t → T corresponds to τ → ∞, asymptotic stability of f0 has to be shown.

By this we mean that the perturbation converges to zero as τ approaches infinity.
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3. Linear stability of the ground state solution

3.2.1. The eigenvalue equation - known results

We consider mode solutions

ψ̃(τ, ρ) = eλτu(ρ)

for λ ∈ C and u:[0, 1] → C a smooth function. A necessary condition for asymp-

totic stability is the nonexistence of such solutions with Reλ > 0. Inserting the

above ansatz in the linearized equation yields

u′′ +

(
2

ρ
− 2λρ

1− ρ2

)
u′ −

(
2 cos (2f0)

ρ2(1− ρ2)
+
λ(λ+ 1)

1− ρ2

)
u = 0 (3.4)

Although this equation is not a standard eigenvalue problem, those λ ∈ C for

which it admits smooth solutions are called eigenvalues.

The gauge mode

A particular solution of eq. (3.4) corresponding to λ = 1 can be found in closed

form and we refer to it as the gauge mode. It is given by

ug(ρ) =
2ρ

1 + ρ2
.

Obviously, the gauge mode is a growing mode solution. However, in the dynamics

of the system it does not have a physical meaning. Its existence is related to

the time translation symmetry of the problem, since the ground state solution f0

denotes in fact a family of solutions depending on the blow-up time T .

We illustrate this with the following abstract argument given by Donninger in [12].

Consider a nonlinear equation

F (u) = 0

where F is nonlinear partial differential operator, which maps elements of an open

subset in a Banach space X to elements in another Banach space Y .

u 7→ F (u) : U ⊂ X → Y

Further we assume that F is Fréchet differentiable (see A.1). Suppose there exists
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3.2. Mode stability in CSS-coordinates

Figure 3.1.: The gauge mode

a one-parameter family of solutions {us ∈ U : s ∈ (a, b)} such that the mapping

s 7→ us : (a, b)→ X

is differentiable at s0 ∈ (a, b). Then

0 =
d

ds

∣∣∣∣
s=s0

F (us) = DF (us0)
d

ds

∣∣∣∣
s=s0

us

Hence d
ds
|s=s0us ∈ X is a solution of the linearized problem

DF (us0)u = 0

where DF denotes the Fréchet derivative of F .

With this argument we can give a qualitative explanation of the gauge mode. Here,

the one-parameter family of solutions for the nonlinear problem corresponds to the

ground state solution (2.12), which depends on the blow-up time T . Calculating

the derivative with respect to T yields

d

dT
f0

(
r

T−t

)
=

2r
(T−t)2

1 + ( r
T−t)

2
.
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3. Linear stability of the ground state solution

Switching to similarity coordinates and defining

ψ̃(τ, ρ) :=
2ρ

1 + ρ2
eτ = ug(ρ)eτ

provides a solution of the linearized equation (3.2). Thinking in terms of mode

solutions, the eigenvalue corresponding to the gauge mode is given by λ = 1. Due

to its nature, we are only interested in asymptotic stability of the ground state

solution modulo this instability.

Analytic results

The eigenvalue equation (3.4) has singularities in the complex plane at ρ = 0,

ρ = ±1 and ρ =∞. By rewriting the term

cos (4 arctan(ρ)) =
1− 6ρ2 + ρ4

(1 + ρ2)2
(3.5)

it becomes obvious that there are additional singular points at ρ = ±i. From the

view point of ODE theory the high number of singularities makes the equation

extremely difficult to handle. Neverthless one can obtain information about the

solutions in the interval [0, 1] by applying Frobenius method (see [2]) at ρ = 0 and

ρ = 1.

Given an ordinary differential equation in C of the form

u′′(z) + p(z)u′(z) + q(z)u(z) = 0

and assume that p and/or q have a singular point at z0. Then z0 is called a regular

singular point if it is a pole of order 1 for p and a pole of order 2 for q (at most). If

this is the case, one can obtain a power series expansion of the solution. The series

converges within a circle of radius r, which is given by the distance to the next

singular point in the complex plane. For the eigenvalue equation the points ρ = 0

and ρ = 1 are regular singular points and at each endpoint Frobenius method

provides a pair of linearly independent solutions that converge in [0, 1) and (0, 1],

respectively. A detailed derivation of the power series expansions can be found in

[10].
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3.2. Mode stability in CSS-coordinates

The behavior of the solutions near the endpoints of [0, 1] is given in table (3.1)

(cf. [1]). At ρ = 0 there is an analytic solution ua0(·, λ) and a non-analytic solution

un0 (·, λ). At ρ = 1 the situation is more complicated: ua1(·, λ) is analytic, but the

regularity of un1 (·, λ) depends on the value of λ. Since these solutions are linearly

independent it follows that for ρ ∈ (0, 1) the solutions are connected by the relation

ua0(ρ, λ) = a(λ)ua1(ρ, λ) + b(λ)un1 (ρ, λ).

Unfortunately the explicit expressions for the coefficients are not known for ordi-

nary differential equations with more than three singularities (cf. [4]).

Table 3.1.: Asymptotic estimates for (3.4)

ρ λ Analytic solution Non-analytic solution
ρ→ 0 any ua0 ∼ ρ un0 ∼ ρ−2

ρ→ 1 λ 6∈ Z ua1 ∼ 1 un1 ∼ (1− ρ)1−λ

λ ∈ Z, λ > 1 ua1 ∼ 1 un1 ∼ c log(1− ρ) + (1− ρ)1−λ

λ ∈ Z, λ ≤ 1 ua1 ∼ (1− ρ)1−λ un1 ∼ c log(1− ρ)(1− ρ)1−λ + 1

The above asymptotic estimates for the solutions of the eigenvalue equation provide

one of the key ingredients for the proofs of the results, which have been obtained

so far. First, we cite a result given by Bizon et al. in [7] and later by Aichelburg

and Donninger in [13].

Theorem 2. The eigenvalue problem given by equation (3.4) has no solutions that

are analytic at both endpoints ρ = 0 and ρ = 1 for λ ∈ C with Reλ > 1 .

Another theorem, also obtained by Aichelburg and Donninger, can be found in [1].

Theorem 3. Eq. (3.4) does not have regular solutions for λ ∈ (0, 1).

Here, a solution is called regular when it is continuous on [0, 1], an element of

C2(0, 1) and when the first derivative can be continuously extended to the whole

interval [0, 1]. Finally we present another result recently obtained by Donninger

[14]. The underlying idea of the proof can be found in [9].
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3. Linear stability of the ground state solution

Theorem 4. The eigenvalue equation (3.4) does not have analytic solutions for

λ ∈ C with Reλ = 1 and Imλ 6= 0.

Proof. Set

v(ρ) := ρ(1− ρ)
λ
2 u(ρ).

Then eq. (3.4) reads

v′′ − 2 cos(2f0)

ρ2(1− ρ2)
v =

λ(λ− 2)

(1− ρ2)2
v. (3.6)

The asymptotic estimates for the solutions of the eigenvalue equation given in table

(3.1) show that there is a solution ua1(·, λ), which is analytic around ρ = 1. We

denote the corresponding solution of eq. (3.6) by v1(·, λ), where v1 ∼ (1−ρ)
λ
2 . The

solution, which is analytic around ρ = 0 is given by ua0(·, λ) and the corresponding

solution of eq. (3.6) will be denoted by v0(·, λ). In the following we will sometimes

omit the argument and write for example v1 instead of v1(·, λ).

If the two solutions ua0 and ua1 (v0 and v1, respectively) are linearly dependent for

a given λ and ρ ∈ (0, 1), i.e. their Wronskian vanishes, then λ is an eigenvalue.

Note that the expression on the right hand side of equation (3.6) is real for Reλ = 1.

λ(λ− 2) = −(1 + (Imλ)2)

Thus v1 amd v1 are both solutions of the same equation. In general, for a second

order ODE of the form

y′′(x) + p(x)y′(x) + q(x)y(x) = 0

with solutions y1, y2 one can find an expression for the Wronskian given by

W (y1, y2)(x) = W (y1, y2)(x0)e
R x
x0
p(s)ds

Now consider the Wronskian of v1and v1. Since eq. (3.6) does not depend on the

first derivative, the Wronskian must be constant and for Reλ = 1 and Imλ 6= 0

one finds

W (v1, v1)(ρ) = W (v1, v1)(1) = iImλ.
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3.2. Mode stability in CSS-coordinates

Thus v1 and v1 are linearly independent and v0 must be of the form

v0(·, λ) = a(λ)v1(·, λ) + b(λ)v1(·, λ) (3.7)

for ρ ∈ (0, 1) and complex constants a, b depending on λ.

Since eq. (3.6) is real for Reλ = 1 we assume without loss of generality that v0 is

a real valued function. Then we get

0 = W (v0, v0) = W (a(λ)v1 + b(λ)v1, a(λ)v1 + b(λ)v1) =

= |a|2W (v1, v1) + |b|2W (v1, v1) = (|a|2 − |b|2)W (v1, v1).

Since W (v1, v1) does not vanish it follows that

|a|2 − |b|2 = 0. (3.8)

Now we turn back to the original equation. Suppose eq. (3.4) has a nontrivial

analytic solution for a λ ∈ C with Reλ = 1 and Imλ 6= 0. This means that

W (ua0, u
a
1) = 0. The transformed solution is a solution of eq. (3.6) and we have

W (v0, v1) = 0. Inserting the above relation for v0 yields

0 = W (v0, v1) = W (a(λ)v1 + b(λ)v1, v1) = b(λ)W (v1, v1).

W (v1, v1) does not vanish and it follows that b(λ) = 0. From eq. (3.8) we conclude

that a(λ) = 0. Eq. (3.7) implies that the eigenfunction corresponding to the

eigenvalue λ is identically zero and the proof follows by contradiction.

�

Numerical results

In [7] Bizon et al. numerically studied solutions of the linearized equation around

representatives of the family of self-similar solutions {fn}. Their results imply that

every fn has exactly n+ 1 positive eigenvalues

λ
(n)
1 > λ

(n)
2 > ... > λ

(n)
n+1 = 1.
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3. Linear stability of the ground state solution

In [5] Bizon focused on equation (3.4). The eigenvalues that were found are real

and the only positive one corresponds to λ = 1 (see table (3.2)).

Table 3.2.: First 5 analytic eigenvalues

λ1 λ2 λ3 λ4 λ5

1.00 -0.54 -2.00 -3.40 -4.77

3.2.2. The nonexistence of eigenvalues for Re λ ≥ 1/2

In this section a new result for solutions of eq. (3.4) obtained by R. Donninger and

the author will be presented.

Theorem 5. Eq. (3.4) does not have nontrivial smooth solutions for λ ∈ C with

Reλ ≥ 1/2 except for λ = 1.

To prove this assertion, we first have to study another equation, which looks very

similar to the linearized equation (3.3) written in the original coordinates (t, r),

but which has some nice properties.

Transformed back to original coordinates (t, r) eq. (3.3) reads

ψ̃tt − ψ̃rr −
2

r
ψ̃r +

V0

r2
ψ̃ = 0 (3.9)

for smooth ψ̃ : [0, T ) × [0, T − t] → C and arbitrary T = const. The potential V0

depending on t and r is given by

V0

(
r

T−t

)
:= 2 cos

(
4 arctan

(
r

T−t

))
=

2(1− 6
(

r
T−t

)2
+
(

r
T−t

)4
)(

1 +
(

r
T−t

)2
)2 .

Now consider a similar evolution equation

ψtt − ψrr −
2

r
ψr +

V1

r2
ψ = 0 (3.10)
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3.2. Mode stability in CSS-coordinates

for smooth ψ : [0, T )× [0, T − t]→ C and a potential V1 defined by

V1

(
r

T−t

)
:=

6− 2( r
T−t)

2

1 + ( r
T−t)

2
.

This potential is a strictly positive function, whereas V0 changes sign. This can

be seen in fig. (3.2), where the potentials are plotted as functions of ρ := r
T−t for

ρ ∈ [0, 1].

Lemma 1. Equation (3.10) does not have nontrivial mode solutions for Reλ ≥ 1
2
.

Proof. We consider the local energy in the backward lightcone associated with

eq. (3.10) given by

Eloc(t) =
1

2

∫ T−t

0

(
r2|ψt(t, r)|2 + r2|ψr(t, r)|2 + V1

(
r

T−t

)
|ψ(t, r)|2

)
dr. (3.11)

We calculate

dEloc(t)

dt
=

1

2

d

dt

(∫ T−t

0

(
r2|ψt(t, r)|2 + r2|ψr(t, r)|2 + V1

(
r

T−t

)
|ψ(t, r)|2

)
dr

)
=

= −1

2

[
r2|ψt(t, r)|2 + r2|ψr(t, r)|2 + V1

(
r

T−t

)
|ψ(t, r)|2

]
r=T−t

+

+ Re

(∫ T−t

0

(
r2ψt(t, r)ψtt(t, r) + r2ψr(t, r)ψrt(t, r) + V1

(
r

T−t

)
ψ(t, r)ψt(t, r)

)
dr

)
+

+
1

2

∫ T−t

0

r

(T − t)2
V ′1
(

r
T−t

)
|ψ(t, r)|2dr.

Inserting eq. (3.10 and integrating per parts yields

Re

(∫ T−t

0

(
r2ψt(t, r)ψtt(t, r) + r2ψr(t, r)ψrt(t, r) + V1

(
r

T−t

)
ψ(t, r)ψt(t, r)

)
dr

)
=

= Re
([
r2ψt(t, r)ψr(t, r)

]
r=T−t

)
.
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3. Linear stability of the ground state solution

V0

V1

0.2 0.4 0.6 0.8 1.
Ρ

-2

2

4

6

Figure 3.2.: Potential functions V0 and V1

Hence

dEloc(t)

dt
= −1

2
(T − t)2

[
|ψt(t, r)− ψr(t, r)|2

]
r=T−t −

− 1

2
V1(1)

[
|ψ(t, r)|2

]
r=T−t +

1

2

∫ T−t

0

r

(T − t)2
V ′1
(

r
T−t

)
|ψ(t, r)|2dr.

Observe that

V ′1
(

r
T−t

)
=
−16

(
r

T−t

)(
1 + ( r

T−t)
2
)2 .

Now we consider mode solutions

ψ(t, r) = (T − t)−λu( r
T−t)

with λ ∈ C and smooth functions u : [0, 1]→ C We get

ψt(t, r) = (T − t)−λ−1

(
λu( r

T−t) +
r

T − t
u′( r

T−t)

)
ψr(t, r) = (T − t)−λ−1u′( r

T−t)
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3.2. Mode stability in CSS-coordinates

and

dEloc(t)
dt

= −1
2
(T − t)−2λ

[∣∣λu( r
T−t) +

r

T − t
u′( r

T−t)− u
′( r
T−t)

∣∣2]
r=T−t

−

− (T − t)−2λ|u(1)|2 − 1
2
(T − t)−2λ

∫ 1

0

16ρ2

(1 + ρ2)2
|u(ρ)|2dρ =

= −1
2
(T − t)−2λ

(
|u(1)|2(|λ|2 + 2) +

∫ 1

0

16ρ2

(1 + ρ2)2
|u(ρ)|2dρ

)

hence dEloc(t)
dt

< 0 for all t ≤ T . We conclude that the energy of mode solutions is

a positive, monotone decreasing function in the backward lightcone. Inserting the

ansatz for mode solutions into the energy (3.11) implies

E(t) ∝ (T − t)−2λ+1.

Since the energy is decaying it follows that

Reλ <
1

2
.

�

We consider eq. (3.10) in similarity coordinates (τ, ρ).

ψττ − (1− ρ2)ψρρ + 2ρψτρ + ψτ − 2
1− ρ2

ρ
ψρ +

V1(ρ)

ρ2
ψ = 0

where the potential is given by

V1(ρ) =
6− 2ρ2

1 + ρ2
.

In these coordinates mode solutions are of the form ψ(τ, ρ) = eλτu(ρ), for complex

valued λ and smooth u : [0, 1] → C. Plugging this ansatz into the above equa-

tion yields an equation for u, where the only difference to the original eigenvalue

equation is the different potential function. Applying the transformation

ũ := (1− ρ2)
λ
2 u
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3. Linear stability of the ground state solution

we get

− (1− ρ2)2ũ′′ − 2(1− ρ2)2

ρ
ũ′ +

(
(1− ρ2)V1(ρ) + ρ2λ(λ− 2)

ρ2

)
ũ = 0 (3.12)

Proposition 1. Equation (3.12) does not have nontrivial, smooth solutions for

Reλ ≥ 1/2.

This follows immediately from Lemma 1.

Implications on the eigenvalue equation

Now we are ready to prove the main theorem

Proof (of Theorem 5). Suppose there exists an eigenvalue with Reλ ≥ 1/2,

λ 6= 1 and an associated eigenfunction u 6= ug satisfying the eigenvalue equation

u′′ +

(
2

ρ
− 2λρ

1− ρ2

)
u′ −

(
2 cos (2f0(ρ))

ρ2(1− ρ2)
+
λ(λ+ 1)

1− ρ2

)
u = 0.

Then with

ũ = (1− ρ2)
λ
2 u

the transformed eigenfunction is a solution of

aũ :=
1

ω
(−(pũ′)′ + qũ) = −(λ− 1)2ũ

where

ω(ρ) :=
ρ2

(1− ρ2)2
, p(ρ) := ρ2, and q(ρ) :=

2(1− ρ2) cos (2f0)− ρ2

(1− ρ2)2
.

The above equation was studied by Donninger and Aichelburg in [13]. They showed

that there exists a factorization

aũ = b̂bũ

where the formal differential expression b and b̂ are defined by

bũ(ρ) := (1− ρ2)ũ′(ρ)− 1− 3ρ2

ρ(1 + ρ2)
ũ(ρ)
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3.2. Mode stability in CSS-coordinates

and

b̂ũ(ρ) := −(1− ρ2)ũ′(ρ)− 3− ρ2

ρ(1 + ρ2)
ũ(ρ).

Consider the equation

bb̂bũ = −(λ− 1)2bũ.

We define ṽ := bũ, which is again a transformed eigenfunction and a solution of

bb̂ṽ = −(λ− 1)2ṽ.

Calculating the above expression yields

−(1− ρ2)2ṽ′′ − 2(1− ρ2)2

ρ
ṽ′ +

(
(1− ρ2)V1(ρ) + ρ2λ(λ− 2)

ρ2

)
ṽ = 0

with V1(ρ) = 6−2ρ2

1+ρ2
. This equation corresponds to eq. (3.12). It was shown above

that this equation does not have solutions for Reλ ≥ 1
2
, what is a contradiction

to the initial assumption. The case λ = 1 and u = ug is excluded because the

differential expression b annihilates the transformed gauge mode, i.e.

bũg = 0.

�

At this point one is far from a rigorous result on asymptotic stability. First, not

even mode stability of the ground state solution can be shown. Even if the gauge

mode is not taken into account, growing mode solution can’t be excluded. More-

over, it has to be shown that the linearized equation is well-posed. Thus it is

reasonable to consider an operator formulation of the linearized equation and to

study both the Cauchy problem and the problem of asymptotic stability in a suit-

able function space. In hyperbolic coordinates there is a self-adjoint formulation of

the problem, which is not the case for CSS-coordinates. This further complicates

the situation because a lot of results, which are available for this class of operators,

do not apply.
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3. Linear stability of the ground state solution
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4. Well-posedness and growth

estimates in the energy space

In this section we give an operator formulation of the linearized equation in simi-

larity coordinates. By applying results from semigroup theory (see A.2) we show

that the problem is well-posed in the energy space, which is in this formulation

a weighted L2-space. Then we analyze the spectrum of the generator and derive

a growth estimate for the energy of the perturbation. The work of Donninger

[12], concerning the problem of linear stability for the wave equation with power

non-linearity, provides a base frame for the following program.

Henceforth smoothness assumptions for solutions of the linearized equation will be

dropped.

4.1. First order system - similarity coordinates

We start with the linearized equation (3.9) transformed to the original coordinates

(t, r), which is given by

ψ̃tt − ψ̃rr −
2

r
ψ̃r +

V0

r2
ψ̃ = 0 (4.1)

and V0(t, r) = 2 cos (2f0( r
T−t)). Recall that this equation is considered in the

the backward lightcone of the blow-up point (T, 0), that is for 0 ≤ t ≤ T and

0 ≤ r ≤ T − t and in general solutions are complex-valued functions. The last

term in the above equation is singular for r = 0. We expand the potential and

split off the part that causes the singular behavior.
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4. Well-posedness and growth estimates in the energy space

We define a bounded potential function

V (t, r) :=
2 cos (2f0

(
r

T−t

)
)− 2

r2

and rewrite eq. (4.1). Then we get

ψ̃tt − ψ̃rr −
2

r
ψ̃r +

2

r2
ψ̃ + V ψ̃ = 0.

We give initial data ψ̃(0, r), ψ̃t(0, r), which has to satisfy the regularity condition

ψ̃(t, 0) = 0 for all t. To simplify the system we apply the transformation

ψ(t, r) := r2ψ̃(t, r).

This yields

ψtt − ψrr +
2

r
ψr + V ψ = 0 (4.2)

with initial data ψ(0, r), ψt(0, r) and

ψ(t, 0) = ψr(t, 0) = ψrr(t, 0) = 0,∀t.

We introduce new variables

Ψ(t, r) := (ψ1(t, r), ψ2(t, r))T

where

ψ1 :=
ψt

T − t
ψ2 :=

ψr
T − t

.

Since ψ vanishes at r = 0, it can be obtained by integration.

ψ(t, r) = (T − t)
r∫

0

ψ2(t, s)ds
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4.2. Energy space - Operator formulation

A first order formulation of eq. (4.2) then reads

∂tΨ(t, r) =

(
1

T−t ∂r − 2
r

∂r
1

T−t

)
Ψ(t, r) +

−V (t, r)
r∫

0

ψ2(t, s)ds

0

 .

Our aim is to study the system in similarity coordinates (τ, ρ). In these coordinates

the above system transforms to

∂τΦ(τ, ρ) =

(
1− ∂ρ ∂ρ − 2

ρ

∂ρ 1− ∂ρ

)
Φ(τ, ρ) +

−V (ρ)
ρ∫
0

φ2(τ, ξ)dξ

0


where Φ(τ, ρ) := Ψ(T − e−τ , ρe−τ ). The original field in similarity coordinates is

given by

φ(τ, ρ) = e−2τ

ρ∫
0

φ2(τ, ξ)dξ.

Note that the potential V (ρ) can be simplified to

V (ρ) =
2 cos (4 arctan(ρ))− 2

ρ2
= − 16

(1 + ρ2)2
.

4.2. Energy space - Operator formulation

In the following we want to define a suitable function space, such that the norm

corresponds to the energy of the system. The energy of eq. (4.2) reads

Efull(t) =

∞∫
0

r−2
(
|ψt(t, r)|2 + |ψr(t, r)|2 + V

(
r

T−t

)
|ψ(t, r)|2

)
dr.

This quantity is not well-suited because the potential has negative sign. Moreover

it is time dependent, thus the energy is not conserved
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4. Well-posedness and growth estimates in the energy space

dEfull(t)

dt
= (T − t)−2

∫ ∞
0

V ′( r
T−t)

r
|ψ(t, r)|2dr =

=
64

(T − t)3

∫ ∞
0

(
1 +

(
r

T−t

)2
)−3

|ψ(t, r)|2dr.

A common approach is to consider a norm associated with the (globally) conserved

energy of the free equation

ψtt − ψrr +
2

r
ψr = 0, (4.3)

which is given by

E(t) =

∞∫
0

(
r−2|ψt(t, r)|2 + r−2|ψr(t, r)|2

)
dr

with dE(t)
dt

= 0. We are only interested in the behavior of solutions in the backward

lightcone of the blow-up point, this means we consider the energy only for 0 ≤ r ≤
T − t. In the new variables and transformed to similarity coordinates we get the

following expression for the local energy associated with the free equation

Eloc(τ) := e−τ
∫ 1

0

(
1

ρ2
|φ1(τ, ρ)|2 +

1

ρ2
|φ2(τ, ρ)|2

)
dρ.

The hope is that the solution can still be controlled by this quantity when the

potential term is added to the free equation as a perturbation. We define the

weighted Lebesgue space L2
w := L2 ((0, 1), ρ−2dρ) as the completion of C∞c (0, 1)

with inner product

(f |g)L2
w

=

∫ 1

0

1

ρ2
f(ρ)g(ρ)dρ.

Let H denote the productspace L2
w(0, 1)2 where the norm is given by

||f ||2H :=

∫ 1

0

1

ρ2
|f1(ρ)|2dρ+

∫ 1

0

1

ρ2
|f2(ρ)|2dρ
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4.2. Energy space - Operator formulation

for f = (f1, f2)T ∈ H. We define an operator (Ã0,D(Ã0)) by

D(Ã0) := {u ∈ C1[0, 1]2 : u1(0) = u2(0) = 0}

where

Ã0u :=

(
u1 + u′2 − ρu′1 − 2

ρ
u2

u2 + u′1 − ρu′2

)
.

The operator Ã0 is densely defined and we get an operator formulation of the free

equation for Φ(τ, ρ) = Φ(τ)(ρ)

d

dτ
Φ(τ) = Ã0Φ(τ)

Φ(τ0) = Φ0

with Φ : [τ0,∞)→ H and τ0 := − log T . The local energy can be obtained by

Eloc(τ) = e−τ ||Φ(τ, ·)||2H . (4.4)

This function space is therefore called the energy space. Our aim is to derive a

growth estimate for solutions of the full equation of the form ||Φ(τ, ·)||H ≤ Ceµτ .

This implies

Eloc(τ) = e−τ ||Φ(τ, ·)||2H ≤ Ce2(µ− 1
2

)τ .

Definition. The ground state solution is asymptotically stable in the energy space,

if the local energy of the perturbation field in the backward lightcone given by (4.4)

is decreasing for τ →∞.

This implies that we have to find a growth estimate with µ < 1
2
.
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4. Well-posedness and growth estimates in the energy space

4.3. Well-posedness

4.3.1. The free equation

We now want to show that the above defined operator (its closure, respectively)

generates a one-parameter semigroup. Therefore we need the following Lemma.

Lemma 2. Ã0 satisfies Re(Ã0u|u) ≤ 1
2
||u||2H for all u ∈ D(Ã0).

Proof. A straightforward calculation yields

Re(Ã0u|u)H = Re

 1∫
0

1
ρ2

(
u1(ρ)− ρu′1(ρ) + u′2(ρ)−

2
ρ
u2(ρ)

)
u1(ρ)dρ

+

+ Re

 1∫
0

1
ρ2

(
u2(ρ)− ρu′2(ρ) + u′1(ρ)

)
u2(ρ)dρ


=

1
2
||u||2H −

1
2
|u1(1)|2 − 1

2
|u2(1)|2 +

+ Re

( 1∫
0

1
ρ2
u′2(ρ)u1(ρ)dρ−

1∫
0

2
ρ3
u2(ρ)u1(ρ)dρ+

1∫
0

1
ρ2
u′1(ρ)u2(ρ)dρ

)
=

=
1
2
||u||2H −

1
2
|u1(1)− u2(1)|2 +Re

2iIm

 1∫
0

1
ρ2
u′1(ρ)u2(ρ)dρ


≤ 1

2
||u||2H

�

Lemma 3. The range of 1− Ã0 is dense in H.

Proof. Let f ∈ C∞c (0, 1)2. We define u := (u1, u2)T by

u2(ρ) =
ρ2

1− ρ2

1∫
ρ

1

ρ2
F (ξ)dξ
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4.3. Well-posedness

with F (ρ) = f1(ρ) + ρf2(ρ) and

u1(ρ) = ρu2(ρ)−
ρ∫

0

u2(ξ)dξ −
ρ∫

0

f2(ξ)dξ

Obviously u1(0) = u2(0) = 0 and u ∈ C1[0, 1]2. Thus u ∈ D(Ã0) and (1−Ã0)u = f .

Lemma 3 follows from the density of C∞c (0, 1)2 in H.

�

Proposition 2. The operator Ã0 is closable and the closure A0 generates a

strongly continuous one-parameter semigroup S0 : [0,∞)→ B(H) with

||S0(τ)|| ≤ e
1
2
τ .

Proof. Apply Lemma 2, Lemma 3 and the Lumer-Phillips Theorem (see A.2).

4.3.2. The full system

We define an operator on H by

A′u(ρ) :=

−V (ρ)
ρ∫
0

u2(ξ)dξ

0

 .

Lemma 4. A′ : H → H is bounded.

Proof. Applying Hardy’s inequality (see [26]) yields

||A′u||2H =

1∫
0

ρ−2

∣∣∣∣V (ρ)

ρ∫
0

u2(ξ)dξ

∣∣∣∣2dρ ≤ sup
ρ∈[0,1]

|V (ρ)|2
1∫

0

ρ−2

(∫ ρ

0

|u2(ξ)|2dξ
)
dρ

.

1∫
0

|u2(ρ)|2dρ ≤ ||u||2H .

�
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4. Well-posedness and growth estimates in the energy space

We define A := A0 + A′ with domain D(A) = D(A0) and get an operator formu-

lation of eq. (4.2).

d

dτ
Φ(τ) = AΦ(τ)

Φ(τ0) = Φ0

Φ : [τ0,∞)→ H and τ0 := − log T .

Proposition 3. The operator A = A0 + A′ generates a strongly continuous one-

parameter semigroup S : [0,∞)→ B(H) with

||S(τ)|| ≤ e( 1
2

+||A′||)τ .

Proof. The assertion follows from Proposition 2, Lemma 4 and the Bounded

Perturbation Theorem (see A.2).

�

We conclude that the full system is well-posed in the energy space (see A.2). How-

ever, the growth estimate is not very satisfactory because it does not imply asymp-

totic stability. In order to improve this result we analyze the spectral properties

of the generator.

4.4. The spectrum of A0

Lemma 5. The domain of A0 is given by

D(A0) = {u ∈ H : u ∈ H1
loc(0, 1)2, a0u ∈ H, u1(0) = u2(0) = 0}

where the formal differential expression a0 is defined by

a0u :=

(
u1 + u′2 − ρu′1 − 2

ρ
u2

u2 + u′1 − ρu′2

)

and A0u = a0u.
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4.4. The spectrum of A0

Proof. Let u ∈ D(A0). This implies that there exists a sequence (uj) ⊂ D(A0)

such that

(uj) → u (4.5)

Ã0uj → A0u (4.6)

in H.

It follows that ((1 − ρ2)u′1j) and ((1 − ρ2)u′2j) are Cauchy sequences in L2(0, 1).

Thus, u1 and u2 are elements of H1(0, 1−δ). With the Sobolev embedding theorem

(see for example [31]) we conclude that H1(0, 1 − δ) ↪→ C[0, 1 − δ], which yields

the boundary conditions u1(0) = u2(0) = 0. Conversely consider an element

u ∈ H with u ∈ H1
loc(0, 1)2, a0u ∈ H, u1(0) = u2(0) = 0 then (1 − a0)u is an

element of the Hilbert space. From semigroup theory we know that the spectrum

of A0 is contained in some left half plane. The growth estimate implies that the

resolvent map RA0(λ) : H → D(A0) is a well defined object for λ = 1. We set

v := RA0(1)(1 − a0)u, which is an element of D(A0). It follows that (1 − a0)v =

(1 − a0)u hence (1 − a0)(v − u) = 0. The only solution of this equation in H is

trivial and therefore v = u.

�

Now we show that the spectral analysis of the operator A0 can be reduced to the

invertibility of an operator-valued function. First we introduce another function

space. Let H denote Sobolev space H1,2
(
(0, 1), ρ,−2

)
(for a definition see [25], p.

67) with singular power weights and a norm given by

||u||2H :=

∫ 1

0

1

ρ4
|u(ρ)|2dρ+

∫ 1

0

1

ρ2
|u′(ρ)|2dρ.

For λ ∈ C we define the formal differential expression

t0(λ)u(ρ) := −(1− ρ2)u′′(ρ) +

(
2(λ− 1)ρ+

2

ρ

)
u′(ρ) + (λ− 1)(λ− 2)u(ρ)

and set

D(T0(λ)) := {u ∈ H : u ∈ H2
loc(0, 1), t0(λ)u ∈ L2

w(0, 1), u(0) = u′(0) = 0}
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4. Well-posedness and growth estimates in the energy space

where T0(λ)u := t0(λ)u.

Proposition 4. The operator λ−A0 is bounded invertible for λ ∈ C if and only if

T0(λ) is invertible, further λ ∈ σp(A0)⇐⇒ dim kerT0(λ) = 0. If λ is an eigenvalue

of A0 then the eigenfunction is given by u = (u1, u2)T with

u1(ρ) = (λ− 2)u(ρ) + ρu′(ρ) u2(ρ) = u′(ρ)

for u ∈ kerT0(λ).

Proof. Suppose λ ∈ σp(A0) and u is the associated eigenfunction. Then the

(λ− A0)u = 0 yields

u′1(ρ) = (λ− 1)u2(ρ) + ρu′2(ρ)

⇒ u1(ρ) = (λ− 2)

ρ∫
0

u2(ξ)dξ + ρu2(ρ).

Inserting in

(λ− 1)u1(ρ) + ρu′1(ρ)− u′2(ρ) +
2

ρ
u2(ρ) = 0

implies

−(1− ρ2)u′2(ρ) +

(
2(λ− 1)ρ− 2

ρ

)
u2(ρ) + (λ− 1)(λ− 2)

ρ∫
0

u2(ξ)dξ = 0.

Set u(ρ) :=
ρ∫
0

u2(ξ)dξ, then it has to be shown that u ∈ kerT0(λ). First we

observe that we can apply Hardy’s inequality for functions v ∈ C∞c (0, 1) to get the

following estimate

∫ 1

0

1

ρ4

∣∣∣∣
ρ∫

0

v(ξ)dξ

∣∣∣∣2dρ . ∫ 1

0

1

ρ2
|v(ρ)|2dρ. (4.7)

Smooth functions with compact support are dense in L2
w(0, 1) and thus the in-

equality holds for elements of L2
w(0, 1). From the properties of u2 we obtain the
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4.4. The spectrum of A0

boundary conditions u(0) = u′(0) = 0. Since u′ = u2 ∈ L2
w(0, 1) we use (4.7) to

show that u ∈ H. Further we have u′′ = u′2 ∈ L2
loc(0, 1) from what follows that

u ∈ H ∩H2
loc(0, 1). The above equation yields t0(λ)u = 0 thus u ∈ kerT0(λ).

Conversely let u ∈ kerT0(λ), u 6= 0. Define u1(ρ) = (λ − 2)u(ρ) + ρu′(ρ) and

u2(ρ) = u′(ρ), then u = (u1, u2)T ∈ H ∩ H1
loc(0, 1)2, u1(0) = u2(0) = 0 and

(λ− a0)u = 0. Thus u ∈ ker(λ− A0) and λ ∈ σp(A0).

Suppose λ−A0 is surjective and set f = (f, 0)T ∈ H. Then there exists a u ∈ D(A0)

such that (λ − A0)u = f . This implies that u(ρ) :=
ρ∫
0

u2(ξ)dξ ∈ D(T0(λ)) and

T0(λ)u = f . Thus T0(λ) is surjective.

Conversely, if T0(λ) is surjective we can find a u ∈ D(T0(λ)) satisfying

T0(λ)u(ρ) = f1(ρ) + ρf2(ρ) + (λ− 1)

ρ∫
0

f2(ξ)dξ

for any f = (f1, f2)T ∈ H.

Defining u by u1(ρ) = (λ − 2)u(ρ) + ρu′(ρ) and u2(ρ) = u′(ρ) we observe that

u ∈ D(A0) and (λ− A0)u = f , which shows the surjectivity of λ− A0.

Thus we have shown that λ− A0 is bijective if and only if T0(λ) is bijective. The

closed graph theorem states that (λ − A0)−1 is bounded if it exists. From ODE

theory it follows that kerT0(λ) is at most one-dimensional.

�

Lemma 6. The spectrum of A0 is given by σ(A0) = {λ ∈ C : Reλ ≤ 1
2
} where

σp(A0) =

{
λ ∈ C : Reλ <

1

2

}
σc(A0) =

{
λ ∈ C : Reλ =

1

2

}
σr(A0) = {∅}

Proof. From semigroup theory and the growth estimate we know that for λ ∈ C
with Reλ > 1/2 ⇒ λ ∈ ρ(A0). To determine the point spectrum we consider the

equation t0(λ)u = 0, which can be solved explicitly. The solution satisfying the
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4. Well-posedness and growth estimates in the energy space

boundary conditions u(0, λ) = u′(0, λ) = 0 for λ = 0 reads

u0(ρ) = (1− ρ2) arctanhx− x (4.8)

and for λ ≤ 1
2
, λ 6= 0 we have

uλ(ρ) = (1− ρ)1−λ(ρ(λ− 1)− 1) + (1 + ρ)1−λ(ρ(λ− 1) + 1) (4.9)

u0(ρ) := u(ρ, 0) and uλ(ρ) := u(ρ, λ) for λ 6= 0. u0 is an element of D(T0(λ)). Near

ρ = 0 we have uλ ∼ ρ3 and near ρ = 1 the solution behaves like uλ ∼ (1 − ρ)1−λ.

The condition

uλ ∈ D(T0(λ))⇐⇒ Reλ <
1

2

determines the point spectrum of A0. The spectrum of an operator is a closed

set and it is known (c.f. [15], p. 55) that the topological boundary 1
2

+ iR of the

spectrum is contained in the approximate point spectrum given by σp(A0)∪σc(A0).

We conclude that σc(A0) = 1
2

+ iR.

�

The spectrum of A0 reveals a very interesting structure. Every point in the com-

plex plane with Reλ < 1/2 is an eigenvalue and for λ = {−1,−2,−3, ...} the

corresponding eigenfunctions are analytic.

4.5. The spectral problem for the operator A

For the analysis of the the spectral properties of A = A0 +A′ we need the following

result.

Lemma 7. A′ : H → H is compact

Proof. First we define an operator U : L2
w(0, 1)→ L2(0, 1) by

u→ Uu(ρ) =
u(ρ)

ρ
:= ũ(ρ).

This is a unitary transformation, which is in particular bounded, since

(Uf |Ug)L2 = (f |g)L2
w
. The inverse transformation U−1 : L2(0, 1) → L2

w(0, 1) is
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4.5. The spectral problem for the operator A

given by

U−1ũ(ρ) = ρũ(ρ).

Consider an integral operator K : L2
w(0, 1)→ L2

w(0, 1) where

Ku(ρ) =

ρ∫
0

u(ξ)dξ

We define K̃ : L2(0, 1)→ L2(0, 1) by

K̃ = UKU−1

and

K̃ũ(ρ) =
1

ρ

ρ∫
0

ξũ(ξ)dξ =
1

ρ

1∫
0

Θ(ρ− ξ)ξũ(ξ)dξ.

The integral kernel k̃(ρ, ξ) : (0, 1)× (0, 1)→ C defined by

k̃(ρ, ξ) = Θ(ρ− ξ)ξ
ρ

is Hilbert-Schmidt, since ∫ 1

0

∫ 1

0

|k̃(ρ, ξ)|2dρdξ <∞.

Thus, K̃ is compact and, as a product of compact and continuous operators, K is

compact as well. To complete the proof we define a few more operators:

T1 : H → L2
w(0, 1) T1u(ρ) = u2(ρ)

M : L2
w(0, 1)→ L2

w(0, 1) Mu(ρ) = −V (ρ)u(ρ)

T2 : L2(0, 1)→ H T2u(ρ) = (u, 0)T .

Now A′ can be constructed in the following manner

A′ = T2 ·M · U−1 · K̃ · U · T1.
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4. Well-posedness and growth estimates in the energy space

Since A′ is a product of compact and continuous operators, it is compact as well.

�

A priori we don’t know, how the spectrum of A0 changes under the perturbation A′.

However, we will show that for Reλ > 1
2

we only get additional point spectrum,

i.e. in this case the investigation of the eigenvalue problem is sufficient to fully

determine the spectrum. Suppose that λ is a spectral point of A, such that it

belongs to the resolvent set of A0, then the followung Lemma holds.

Lemma 8. λ ∈ C : λ ∈ σ(A) \ σ(A0)⇒ λ ∈ σp(A)

Proof. With the definition of the resolvent RA0(λ) : H → D(A0),

RA0(λ)u = (λ− A0)−1u.

for λ ∈ ρ(A0) we get the following identity:

(λ− L) = (1− A′RA0(λ))(λ− A0)

For every λ ∈ σ(A) \ σ(A0) we know that (λ − A) is not bounded invertible.

Since the inverse of (λ − A0) for λ ∈ ρ(A0) exists per definition, it follows that

(1 − A′RA0(λ)) is not bounded invertible. Now we use compactness of the A′ to

define the compact operator

B(λ) := A′RA0(λ).

With the above observation it is clear that (1 − B(λ)) is not invertible and with

the result for the spectral properties of compact operators (see A.1) we conclude

that 1 must be an eigenvalue. Thus one can find an eigenfunction f ∈ H with

(1−B(λ))f = (1− A′RA0(λ))f = 0.

Defining u := (λ− A0)−1f , which is an element of D(A0), it follows that

(λ− A)u = (1− A′RA0(λ))(λ− A0)u = (1−B(λ))f = 0.

We conclude that λ must be an eigenvalue of the operator A.
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4.5. The spectral problem for the operator A

4.5.1. The eigenvalue equation

We define

D(T (λ)) := {u ∈ H : u ∈ H2
loc(0, 1), t0(λ)u ∈ L2

w(0, 1), u(0) = u′(0) = 0}

and

t(λ)u(ρ) := −(1−ρ2)u′′(ρ)+

(
2(λ− 1)ρ+

2

ρ

)
u′(ρ)+((λ− 1)(λ− 2) + V (ρ))u(ρ)

where T (λ)u := t(λ)u. The potential was defined above and reads

V (ρ) = − 16

(1 + ρ2)2
.

Proposition 5. The operator λ−A is bounded invertible for λ ∈ C if and only if

T (λ) is invertible, further λ ∈ σp(A) ⇐⇒ dim kerT (λ) = 0. If λ is an eigenvalue

of A then the eigenfunction is given by u = (u1, u2)T with

u1(ρ) = (λ− 2)u(ρ) + ρu′(ρ) u2(ρ) = u′(ρ)

for u ∈ kerT (λ)

The proof of the above Proposition will be omitted since it consists of obvious

modifications to the proof of Proposition 4. For Reλ > 1
2

the spectrum of A is

fully determined by solutions of the eigenvalue equation t(λ)u = 0, which reads

u′′(ρ)−
(

2

ρ
+

2λρ

(1− ρ2)

)
u′ −

(
(λ− 1)(λ− 2) + V (ρ)

(1− ρ2)

)
u(ρ) = 0. (4.10)

Set ũ = u
ρ2

, then the above equation transformes to eq. (3.4). It is not surprising

that there is a solution of eq. (5.7) for λ = 1, which corresponds to the the gauge

mode.

ug(ρ) =
2ρ3

1 + ρ2
. (4.11)

The transformation only influences the behavior of solutions near ρ = 0, thus

we can adapt the asymptotic estimates (see table (3.2)) to the above eigenvalue
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4. Well-posedness and growth estimates in the energy space

equation. The behavior near the endpoints ρ = 0 and ρ = 1 is given in table (4.1).

Table 4.1.: Asymptotic estimates for (5.7)

ρ→ 0 all λ ua0 ∼ ρ3 un0 ∼ 1
ρ→ 1 λ 6∈ Z ua1 ∼ 1 un1 ∼ (1− ρ)1−λ

λ ∈ Z, λ > 1 ua1 ∼ 1 un1 ∼ c log(1− ρ) + (1− ρ)1−λ

λ ∈ Z, λ ≤ 1 ua1 ∼ (1− ρ)1−λ un1 ∼ c log(1− ρ)(1− ρ)1−λ + 1

We only consider the case Reλ > 1
2
. We see that admissible solutions, i.e. solutions

belonging to D(T (λ)), are analytic at both endpoints. With the results derived in

chapter 3 we obtain the following Lemma.

Lemma 9. Equation (5.7) does not have nontrivial analytic solutions for

Reλ >
1

2
,

except for λ = 1.

Proof. Suppose there is an analytic solution u for λ ∈ C with Reλ > 1
2
. Then

ũ = u
ρ2

is a solution of eq. (3.4) and by applying theorem 5 the assertion follows

by contradiction.

Proposition 6. The spectrum of A consists of the single eigenvalue λ = 1 for

Reλ > 1
2
.

4.5.2. Implications on asymptotic stability

In the following we will qualitatively explain that is not possible to prove asymp-

totic stability in the energy space. The growth estimate for the perturbation field

was given by

||S(τ)|| ≤ e( 1
2

+||A′||)τ .

Suppose we can remove the eigenvalue λ = 1 in order to operate on a subspace

N ⊂ H, where AN is the restriction of A to N with spectral bound s(AN) = 1
2
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4.5. The spectral problem for the operator A

(see (A.2) for a definition). This can be achieved by defining a spectral projection

as will be described in the next chapter. It can be shown that AN generates a

semigroup SN with growth estimate ||SN(τ)|| ≤ e( 1
2

+||A′||)τ . This can be optimized

by considering the spectral properties of the generator, cf. (A.2). At best one gets

the result

s(AN) = ω0 =
1

2

where ω0 denotes the growth bound of the subspace semigroup. However, ω0 is

defined as an infimum, which is generally not attained. However, for every ε > 0

one can find an ω > s(A) such that ω < ω0 + ε.

We formulate the Cauchy problem on the subset N

d

dτ
Φ(τ) = ANΦ(τ) (4.12)

Φ(τ0) = Φ0 (4.13)

with Φ : [τ0,∞)→ N ⊂ H, Φ0 ∈ N and τ0 := − log T . The time evolution is then

determined by SN(τ).

Φ(τ) = SN(τ − τ0)Φ(τ0)

Set ω = 1
2

+ ε
2
, then this yields

||Φ(τ)||H = ||S(τ − τ0)Φ(τ0)||H . e
1
2

(1+ε)τ ||Φ(τ0)||H .

Finally we get the energy estimate

EΦ(τ) ≤ e−τ ||Φ(τ)||2H . eετ .

To summarize, it was shown above that for Reλ > 1
2

the spectral problem for the

generator of the full system can be reduced to the investigation of the eigenvalue

equation by using the spectral properties of A0 and compactness of A′. Further it

was demonstrated that in this case there are no eigenvalues except for λ = 1, which

is not a problem because it can be removed by a spectral projection. Despite this,

it is not possible to derive an appropriate growth estimate that leads to decreasing

energy. Thus, the main problems are given by the spectral bound of A0 and by
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4. Well-posedness and growth estimates in the energy space

the eigenvalue equation as an ODE problem. In the following it will be shown

that by formulating the problem in another function space these obstacles can be

overcome.
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5. Higher energy space -

Asymptotic stability

We formulate the main result of the following analysis.

Theorem 6. The ground state solution (2.12) of the wave maps equation (2.5) is

asymptotically stable.

5.1. First order formulation

For convenience we define variables slightly different to the ones we used above

and therefore get a different first order formulation of the problem. We start with

the evolution equation for the (transformed) pertubation field (cf. eq. (4.2)), which

reads

ψtt − ψrr +
2

r
ψr + V ψ = 0 (5.1)

with initial data ψ(0, r), ψt(0, r) and

ψ(t, 0) = ψr(t, 0) = ψrr(t, 0) = 0,∀t.

The potential is given by V (t, r) :=
2 cos (4 arctan( r

T−t ))−2

r2
.

We define variables Ψ := (ψ1, ψ2)T by

ψ1 :=
ψt

(T − t)
ψ2 :=

ψr
r
.
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5. Higher energy space - Asymptotic stability

The field can again be obtained by integration

ψ(t, r) =

∫ r

0

sψ2(t, s)ds.

The first order formulation in CSS coordinates (τ, ρ) then reads

(
∂τφ1

∂τφ2

)
=

 φ1 − ρ∂ρφ1 + ρ∂ρφ2 − φ2 − V (ρ)
ρ∫
0

ξφ2(ξ)dξ

1
ρ
∂ρφ1 − ρ∂ρφ2

 (5.2)

where φj(τ, ρ) := ψj(T − e−τ , ρe−τ ) for j = 1, 2 and Φ = (φ1, φ2)T . The potential

is given by

V (ρ) = − 16

(1 + ρ2)2

and regularity conditions are

φ1(τ, 0) = ∂ρφ1(τ, 0) = ∂ρρφ1(τ, 0) = 0 and φ2(τ, 0) = 0

for all τ . The field can be calculated by

φ(τ, ρ) = e−2τ

ρ∫
0

ξφ2(τ, ξ)dξ.

5.1.1. Higher energy

We consider the energy in the backward lightcone of (t, r) = (T, 0) associated with

the free equation

ψtt − ψrr +
2

r
ψr = 0. (5.3)

Transformed to the above defined variables and written in CSS-coordinates it reads

Eloc
φ (τ) := e−τ

∫ 1

0

(
ρ−2|φ1(τ, ρ)|2 + |φ2(τ, ρ)|2

)
dρ. (5.4)

Let HE denote the energy space defined as the productspace

HE := L2
(
(0, 1), ρ−2dρ

)
× L2(0, 1).
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5.2. Higher energy space

An estimate for the field of the form ||Φ(τ, ·)||2HE ≤ Ceµτ implies the energy esti-

mate

Eφ(τ) = e−τ ||Φ(τ, ·)||2HE ≤ Ce2(µ− 1
2

)τ .

It was shown above that an operator formulation in the energy space is not very

fruitful in the sense that we cannot derive an appropriate growth bound. In order

to improve this result we require higher differentiablity of the solutions. First we

motivate the choice of the function space and the inner product we will use. The

derivative of eq. (5.3) with respect to r yields

ψrtt − ψrrr +
2

r
ψrr −

2

r2
ψr = 0.

With φ̃ = ψr
r

the above equation transforms to the 1+1 wave equation with energy

density Eφ̃ = |φ̃t|2 + |φ̃r|2. This yields a conserved quantity for eq. (5.3) given by

Ediff (t) :=

∫ ∞
0

(∣∣∣ψtr(t,r)r

∣∣∣2 +
∣∣∣∂r (ψr(t,r)r

)∣∣∣2) dr. (5.5)

We will show that by introducing a norm inspired by this quantity the spectrum

of the generator for the free equation can be shifted towards the left. The aim is

to derive a growth estimate in the higher energy space and to show that this yields

an estimate for the original energy given by (5.4).

5.2. Higher energy space

We define two Hilbert spaces, denoted by Ẋ(0, 1) and Ẋ2(0, 1), as the completion

of C∞{0}(0, 1) with inner products

(f |g)Ẋ :=

∫ 1

0

f ′(ρ)g′(ρ)dρ,

(f |g)Ẋ2
:=

∫ 1

0

1

ρ2
f ′(ρ)g′(ρ)dρ.

The index in Ẋ2(0, 1) indicates the exponent of the weight function ρ−e.
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5. Higher energy space - Asymptotic stability

We define a product space H := Ẋ2(0, 1)× Ẋ(0, 1) with norm

||u||2H =

∫ 1

0

1

ρ2
|u′1(ρ)|2dρ+

∫ 1

0

|u′2(ρ)|2dρ

for u = (u1, u2)T ∈ H.

Next we study the properties of the above defined spaces and prove some embed-

ding thoerems, which turn out to be very useful for further application.

Lemma 10. Ẋ(0, 1) and Ẋ2(0, 1) are continuously embedded in H1(0, 1).

Proof. Let H1(0, 1) denote a Sobolev space with norm

||f ||2H1 :=

∫ 1

0

|f(ρ)|2dρ+

∫ 1

0

|f ′(ρ)|2dρ.

First we prove the assertion for Ẋ(0, 1). Consider the following inequality on the

dense subset C∞{0}(0, 1):

|u(ρ)| =
∣∣∣∣∫ ρ

0

u′(ξ)dξ

∣∣∣∣ ≤ ∫ ρ

0

|u′(ξ)|dξ ≤
∫ 1

0

|u′(ρ)|dρ ≤
(∫ 1

0

|u′(ρ)|2dρ
) 1

2

= ||u||Ẋ ,

where Cauchy-Schwarz inequalitity was applied. Integrating |u(ρ)|2 then yields

||u||2L2 ≤ ||u||2Ẋ .

Thus

||u||2H1 =

∫ 1

0

|u(ρ)|2dρ+

∫ 1

0

|u′(ρ)|2 ≤ 2 ||u||2Ẋ

for all u ∈ Ẋ(0, 1). The continuous embedding of Ẋ2(0, 1) in H1(0, 1) follows from

||u||2Ẋ ≤ ||u||
2
Ẋ2

for all u ∈ Ẋ2(0, 1).

�
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5.2. Higher energy space

Lemma 11. Let u ∈ H. Then uj ∈ C[0, 1] and uj(0) = 0 for j = 1, 2.

Proof. The claim follows from Lemma 10, the continuous embedding of H1(0, 1)

in C[0, 1] and the composition of continuous mappings.

�

We denote the weighted Lebesgue spaces L2((0, 1), ρ−4dρ) and L2((0, 1), ρ−2dρ) by

L2
4(0, 1) and L2

2(0, 1).

Lemma 12. Ẋ(0, 1) and Ẋ2(0, 1) are continuously embedded in L2
2(0, 1) and

L2
4(0, 1), respectively.

Proof. Operating on the dense subset C∞{0}(0, 1) and applying Hardy’s inequality

yields

||u||2L2
2

=

∫ 1

0

1

ρ2
|u(ρ)|2dρ . ||u||2Ẋ

||u||2L2
4

=

∫ 1

0

1

ρ4
|u(ρ)|2dρ . ||u||2Ẋ2

for all u ∈ Ẋ(0, 1) and Ẋ2(0, 1), respectively.

�

Lemma 13. The space Ẋ(0, 1) is compactly embedded in L2(0, 1) and

||u||2L2 ≤ ||u||2Ẋ

for all u in Ẋ(0, 1).

Proof. From Lemma 10 we know that Ẋ(0, 1) ↪→ H1(0, 1) holds. Since H1(0, 1)

is compactly embedded in L2(0, 1) (see e.g. [16]), it follows that the inclusion

I : Ẋ(0, 1) → L2(0, 1), Iu = u can be constructed as a product of compact and

continuous operators and is therefore compact as well. The inequality was already

shown in the proof of Lemma 10.

�
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5. Higher energy space - Asymptotic stability

Lemma 14. H is continuously embedded in the energy space, i.e.

||u||HE ≤ C ||u||H

for all u ∈ H.

Proof. The assertion follows from Lemma 13, the inequalitity

||u||2L2
2
. ||u||2Ẋ ≤ ||u||

2
Ẋ2

for all u ∈ Ẋ2(0, 1) and the construction of H as a product space.

�

At the end of this list of properties another useful relation should be mentioned

Lemma 15. The multiplication operator M1 defined by M1u := ρu is a bounded

operator from Ẋ(0, 1)→ Ẋ2(0, 1).

Proof. With Lemma 12 we get

||M1u||Ẋ2
= ||ρu||Ẋ2

=
∣∣∣∣u′ + ρ−1u

∣∣∣∣
L2

≤ ||u′||L2 +
∣∣∣∣ρ−1u

∣∣∣∣
L2 = ||u||Ẋ + ||u||L2

2
. ||u||Ẋ .

�

5.3. Well-posedness

5.3.1. The free equation

We set

D(L̃0) := {u ∈ H : u1, u2 ∈ C1(0, 1), `0u ∈ H, u′1(0) = 0}

and L̃0u := l0u, where the formal differential expression l0 is given by

l0u(ρ) :=

(
u1(ρ)− ρu′1(ρ) + ρu′2(ρ)− u2(ρ)

u′1(ρ)

ρ
− ρu′2(ρ)

)
.
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5.3. Well-posedness

Then the operator (L̃0,D(L̃0)) is densely defined and we get an operator formula-

tion of the free equation by

d

dτ
Φ(τ) = L̃0Φ(τ)

Φ(τ0) = Φ0

where Φ : [τ0,∞)→ H and τ0 := − log T .

We will show that the operator is closable and that the closure generates a one

parameter semigroup. The next Lemma follows from straightforward calculation

(see proof of Lemma 2).

Lemma 16. L̃0 satisfies Re(L̃0u|u) ≤ −1
2
||u||2H for all u ∈ D(L̃0)

Lemma 17. The range of 1− L̃0 is dense in H.

Proof. Let f ∈ C∞{0}(0, 1)2. We define u := (u1, u2) by

u2(ρ) =
ρ

1− ρ2

1∫
ρ

F (ξ)

ξ2
dξ

with F (ρ) = f1(ρ) + ρ2f2(ρ) and

u1(ρ) = ρ2u2(ρ)−
ρ∫

0

ξu2(ξ)dξ −
ρ∫

0

ξf2(ξ)dξ

Then u1(0) = u2(0) = 0 and u ∈ H. Furthermore, u ∈ C1(0, 1)2 and u′1(0) = 0.

We conclude that u ∈ D(L̃0). The claim follows from the density of C∞{0}(0, 1)2 in

H.

�

Proposition 7. The operator L̃0 is closable and the closure L0 generates a strongly

continuous one-parameter semigroup S0 : [0,∞)→ B(H) with

||S0(τ)|| ≤ e−
1
2
τ .
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5. Higher energy space - Asymptotic stability

Proof. Lemma 16, Lemma 17 and Lumer-Phillips Theorem.

�

5.3.2. Well-posedness of the full system

Consider the perturbation operator

(L′u)(ρ) :=

−V (ρ)
ρ∫
0

ξu2(ξ)dξ

0

 .

Lemma 18. The operator L′ : H → H is compact and in particular bounded.

Proof. First we define an integral operator K : Ẋ(0, 1)→ Ẋ2(0, 1) by

(Ku)(ρ) =

ρ∫
0

ξu(ξ)dξ

The operator K is compact if and only if given a bounded sequence (uj) in Ẋ(0, 1)

it follows that (Kuj) has a convergent subsequence (Kujk) in Ẋ2(0, 1).

From Lemma 13 we know that any bounded sequence (uj) in Ẋ(0, 1) has a sub-

sequence (ujk), which converges in L2(0, 1), i.e. ∀ε > 0,∃N(ε) ∈ N such that

∀jk ≥ N(ε) : ||ujk − u∗||L2 < ε.

This implies

||ujk − u∗||L2 =

∫ 1

0

|ujk(ρ)− u∗(ρ)|2dρ =

∫ 1

0

1

ρ2
|ρujk(ρ)− ρu∗(ρ)|2dρ =

=

∫ 1

0

1

ρ2

∣∣∣∣∣∣
 ρ∫

0

ξujk(ξ)dξ −
ρ∫

0

ξu∗(ξ)dξ

′∣∣∣∣∣∣
2

dρ =

=

∫ 1

0

1

ρ2

∣∣(Kujk(ρ)− û(ρ))′
∣∣2 dρ =

= ||Kujk − û||Ẋ2
< ε

where û(ρ) :=
ρ∫
0

ξu∗(ξ)dξ is the limit of (Kujk) in Ẋ2(0, 1).
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5.4. The spectrum of L0

Next we construct L′ as a product of continuous and compact operators.

T1 : H → Ẋ(0, 1) T1u(ρ) = u2(ρ)

M2 : Ẋ2(0, 1)→ Ẋ2(0, 1) M2u(ρ) = −V (ρ)u(ρ)

T2 : Ẋ2(0, 1)→ H T2u(ρ) = (u, 0)T

L′ = T2 ·M2 ·K · T1

�

Defining L := L0 + L′ with domain D(L) = D(L0) then the operator formulation

of eq. (5.1) reads

d

dτ
Φ(τ) = LΦ(τ)

Φ(τ0) = Φ0

with Φ : [τ0,∞)→ H and τ0 := − log T .

Proposition 8. The operator L generates a strongly continuous one-parameter

semigroup S : [0,∞)→ B(H) with

||S(τ)|| ≤ e(− 1
2

+||L′||)τ .

Proof. Proposition 7, Lemma 18 and the Bounded Perturbation Theorem.

�

5.4. The spectrum of L0

We describe the operator L0 in more detail and analyze its spectrum.

Lemma 19. The domain of the operator (L0,D(L0)) generated by l0 is given by

D(L0) = {u ∈ H : u′ ∈ H1
loc(0, 1)2, l0u ∈ H, u′1(0) = 0}
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5. Higher energy space - Asymptotic stability

Proof. Following the definition, for every u ∈ D(L0) there exists a sequence

(uj) ∈ D(L̃0) with

uj → u

L̃0uj → L0u

in H.

In the norm we have to consider derivatives and the first condition yields

u′1j
ρ
→ u′1

ρ

u′2j → u′2

in L2(0, 1).

The second condition implies

u′′2j − u
′′
1j
→ u′′2 − u′′1

u′′1j
ρ
−
u′1j
ρ2
− ρu′′2j − u

′
2j
→ u′′1

ρ
− u′1
ρ2
− ρu′′2 − u′2

in L2(0, 1).

A suitable combination ob the above statements shows that ((1 − ρ2)u′′1j) and

((1 − ρ2)u′′2j) are Cauchy sequences in L2(0, 1). Therefore u′ is an element of

H1(0, 1− δ)2 for any δ ∈ (0, 1). The Sobolev embedding H1(0, 1− δ) ↪→ C[0, 1− δ]
then yields the boundary condition u′1(0) = 0.

Conversely, if u ∈ H,u′ ∈ H1
loc(0, 1)2, l0u ∈ H and u′1(0) = 0 then (1 − l0)u ∈

H. The above growth estimate for the semigroup shows that the resolvent map

RL0(λ) : H → D(L0) is a well defined object for λ = 1.

We set v := RL0(1)(1 − l0)u, which is an element of D(L0). It follows that

(1 − l0)v = (1 − l0)u hence (1 − l0)(v − u) = 0. The only solution for this

equation in H is the trivial solution and v = u.

�
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5.4. The spectrum of L0

Let H denote the Sobolev space H2,2((0, 1); ρ;−2) (cf. [25], p. 67) with norm

||u||2H :=

∫ 1

0

1

ρ6
|u(ρ)|2dρ+

∫ 1

0

1

ρ4
|u′(ρ)|2dρ+

∫ 1

0

1

ρ2
|u′′(ρ)|2dρ

Lemma 20. Let u ∈ H. Then u ∈ C1[0, 1] and

u(0) = u′(0) = 0.

Proof. It is known that H2,2((0, 1); ρ;−2)=W 2,2((0, 1); ρ;−2) (see [25], p. 73),

where W 2,2((0, 1); ρ;−2) is a weighted Sobolev space with norm

||u||2W 2,2
−2

:=

∫ 1

0

1

ρ2
|u(ρ)|2dρ+

∫ 1

0

1

ρ2
|u′(ρ)|2dρ+

∫ 1

0

1

ρ2
|u′′(ρ)|2dρ

Since ||u||H2 ≤ ||u||W 2,2
−2

for u ∈ W 2,2((0, 1); ρ;−2) we have

W 2,2((0, 1); ρ;−2) ↪→ H2(0, 1).

The assertion follows from the continuous embedding H2(0, 1) ↪→ C1[0, 1] and the

density of C∞{0}(0, 1) in H ([25] p. 73).

�

We define an operator valued function (T0(λ),D(T0(λ))) generated by the formal

differential expression

t0(λ)u(ρ) := −(1− ρ2)u′′(ρ) +

(
2(λ− 1)ρ+

2

ρ

)
u′(ρ) + (λ− 1)(λ− 2)u(ρ)

where T0(λ)u := t0(λ)u. We set

D(T0(λ)) := {u ∈ H : u ∈ H3
loc(0, 1), t0(λ)u ∈ Ẋ2(0, 1), u′′(0) = 0}.
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5. Higher energy space - Asymptotic stability

Lemma 21. The operator λ − L0 for a λ ∈ C is bounded invertible if and only

if T0(λ) is invertible. Furthermore λ ∈ σp(L0) ⇐⇒ dim kerT0(λ) = 1 and for

λ ∈ σp(L0) the vector u = (u1, u2)T defined by

u1(ρ) = (λ− 2)u(ρ) + ρu′(ρ) u2(ρ) =
u′(ρ)

ρ

for u ∈ kerT0(λ) is an eigenfunction of L0.

To prove the above Proposition we show that

(1) u ∈ ker(λ− L0)⇐⇒ u ∈ kerT0(λ).

(2) (λ− L0) is surjective ⇐⇒ T0(λ) is surjective.

Proof. (1) For λ ∈ σp(L0) and u being the associated eigenfunction, (λ−L0)u = 0

yields

u′1(ρ) = λρu2(ρ) + ρ2u′2(ρ),

⇒ u1(ρ) = (λ− 2)

ρ∫
0

ξu2(ξ)dξ + ρ2u2(ρ).

Inserting this in

(λ− 1)u1(ρ) + ρu′1(ρ)− ρu′2(ρ) + u2(ρ) = 0

we get

−ρ(1− ρ2)u′2(ρ) + ((2λ− 1)ρ2 + 1)u2(ρ) + (λ− 1)(λ− 2)

ρ∫
0

ξu2(ξ)dξ = 0.

Define u(ρ) :=
ρ∫
0

ξu2(ξ)dξ. Then the above equation reads

−(1− ρ2)u′′(ρ) +

(
2(λ− 1)ρ+

2

ρ

)
u′(ρ) + (λ− 1)(λ− 2)u(ρ) = 0.

From Lemma 15 we know that u′ = ρu2 is an element of Ẋ2(0, 1) and with Lemma

12 we have u′ ∈ L2
4(0, 1) and u′′ ∈ L2

2(0, 1). With Hardy’s inequaltity we get
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5.4. The spectrum of L0

∫ 1

0

1

ρ6

∣∣∣∣
ρ∫

0

ξu2(ξ)dξ

∣∣∣∣2dρ . ∫ 1

0

1

ρ2
|u2(ρ)|2dρ .

∫ 1

0

|u′2(ρ)|2dρ <∞

Hence u is an element of H. Further we have u′′(0) = 0 and

u′′′(ρ) = ρu′′2(ρ) + 2u′2(ρ) ∈ L2
loc(0, 1)

It follows that u ∈ D(T0(λ)) and t0(λ)u(ρ) = 0, thus u ∈ kerT0(λ).

Conversely let u ∈ kerT0(λ), u 6= 0. Define

u1(ρ) = (λ− 2)u(ρ) + ρu′(ρ)

u2(ρ) =
u′(ρ)

ρ

then u1 and u2 are elements of Ẋ2(0, 1) and Ẋ(0, 1), respectively. The boundary

conditions yield u1(0) = u2(0) = u′1(0) = 0. Thus u = (u1, u2)T ∈ H and l0u = λu.

Since u′ ∈ H1
loc and we conclude that u ∈ D(L0), u ∈ ker(λ−L0) and λ ∈ σp(L0).

�

Proof. (2) Suppose λ−L0 is surjective and set f = (f, 0)T ∈ H. Then one can find

a u ∈ D(L0) such that (λ−L0)u = f . Again define u(ρ) :=
ρ∫
0

ξu2(ξ)dξ ∈ D(T0(λ)),

then the above equation yields T0(λ)u = f . Thus T0(λ) is surjective.

Conversely, if T0(λ) is surjective we can find a u ∈ D(T0(λ)) satisfying

T0(λ)u(ρ) = f1(ρ) + ρ2f2(ρ) + (λ− 1)

ρ∫
0

ξf2(ξ)dξ

for any f = (f1, f2)T ∈ H. Then for u := (u1, u2) with u1(ρ) = (λ−2)u(ρ)+ρu′(ρ)

and u2(ρ) = u′(ρ)
ρ

it follows that u ∈ D(L0) and (λ − L0)u = f which shows

surjectivity of λ− L0.

We complete the proof with the closed graph theorem, which states that (λ−L0)−1

is bounded if it exists. Furthermore ODE theory states that the kernel of T0(λ) is

at most one-dimensional.

�
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5. Higher energy space - Asymptotic stability

Solving the above ordinary differential equation t0(λ)u = 0 we derive the following

result for the spectrum of L0.

Lemma 22. The spectrum of L0 is given by σ(L0) = {λ ∈ C : Reλ ≤ −1
2
} where

σp(L0) =

{
λ ∈ C : Reλ < −1

2

}
σc(L0) =

{
λ ∈ C : Reλ =

1

2

}
σr(L0) = {∅}

Proof. From the growth estimate for S0(τ) we know that λ ∈ C with Reλ > −1
2

belong to the resolvent set. The solutions of the eigenvalue equation for Reλ < −1
2

are given by

u(·, λ) = (1− ρ)1−λ(ρ(λ− 1)− 1) + (1 + ρ)1−λ(1 + ρ(λ− 1))

and u(·, λ) ∈ D(T0(λ)) ⇐⇒ Reλ < −1
2
. For the continuous spectrum we refer to

the proof of Lemma 6.

�

5.4.1. Resolvent estimates

We calculate the resolvent RL0(λ) of the operator L0 using the inverse of the above

defined T0(λ). We define an operator B(λ) : H → Ẋ2(0, 1) by

B(λ)f(ρ) := f1(ρ) + ρ2f2(ρ) + (λ− 1)

ρ∫
0

ξf2(ξ)dξ.

The resolvent RL0(λ) then reads

RL0(λ)f(ρ) =

(λ− 2)(T−1
0 (λ)B(λ)f)(ρ) + ρ(T−1

0 (λ)B(λ)f)′(ρ)−
ρ∫
0

ξf2(ξ)dξ

1
ρ
(T−1

0 (λ)B(λ)f)′(ρ)

 .
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5.4. The spectrum of L0

The growth bound for the semigroup provides an upper bound for the resolvent

(see A.2),

||RL0(λ)|| ≤ 1

Reλ+ 1
2

for all λ ∈ C with Reλ > −1
2
.

This estimates implies

∣∣∣∣∣∣∣∣(λ− 2)(T−1
0 (λ)B(λ)f) + ρ(T−1

0 (λ)B(λ)f)′ −
ρ

∫
0
ξf2(ξ)dξ

∣∣∣∣∣∣∣∣
Ẋ2

≤ 1

Reλ+ 1
2

||f ||H

for the first component of RL0(λ). It follows that

∣∣∣∣(λ− 2)(T−1
0 (λ)B(λ)f)

∣∣∣∣
Ẋ2
−
∣∣∣∣ρ(T−1

0 (λ)B(λ)f)′
∣∣∣∣
Ẋ2
≤

≤
∣∣∣∣(λ− 2)(T−1

0 (λ)B(λ)f) + ρ(T−1
0 (λ)B(λ)f)′

∣∣∣∣
Ẋ2
≤

≤
∣∣∣∣∣∣∣∣(λ− 2)(T−1

0 (λ)B(λ)f) + ρ(T−1
0 (λ)B(λ)f)′ −

ρ

∫
0
ξf2(ξ)dξ

∣∣∣∣∣∣∣∣
Ẋ2

+

∣∣∣∣∣∣∣∣ ρ∫
0
ξf2(ξ)dξ

∣∣∣∣∣∣∣∣
Ẋ2

≤

≤
(

1

Reλ+ 1
2

+ 1

)
||f ||H

where Lemma 13 was used in the last step. The second component of RL0(λ) and

Lemma 15 yield

∣∣∣∣ρ(T−1
0 (λ)B(λ)f)′

∣∣∣∣
Ẋ2
≤

∣∣∣∣(T−1
0 (λ)B(λ)f)′

∣∣∣∣
Ẋ2
≤

≤ c
∣∣∣∣ρ−1(T−1

0 (λ)B(λ)f)′
∣∣∣∣
Ẋ
≤ c

Reλ+ 1
2

||f ||H

with constant c > 0.

Finally we get an estimate which will turn out to be very useful

∣∣∣∣(T−1
0 (λ)B(λ)f)

∣∣∣∣
Ẋ2
≤ 1

|λ− 2|

(
C

Reλ+ 1
2

+ 1

)
||f ||H (5.6)

for C > 0.
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5. Higher energy space - Asymptotic stability

5.5. The spectrum of the generator for the full

system

Adding the perturbation L′ we have the following important result (for a proof see

Lemma 8).

Proposition 9. λ ∈ C : λ ∈ σ(L) \ σ(L0)⇒ λ ∈ σp(L).

We define (T (λ),D(T (λ)) by

D(T (λ)) := {u ∈ H : u ∈ H3
loc(0, 1), t0(λ)u ∈ Ẋ2(0, 1), u′′(0) = 0},

t(λ)u(ρ) := −(1−ρ2)u′′(ρ)+

(
2(λ− 1)ρ+

2

ρ

)
u′(ρ)+((λ− 1)(λ− 2) + V (ρ))u(ρ)

and T (λ)u := t(λ)u.

Proposition 10. The operator λ − L for λ ∈ C is bounded invertible if and

only if T (λ) is invertible. λ ∈ σp(L) ⇐⇒ dim kerT (λ) = 1 and for λ ∈ σp(L)

u = (u1, u2)T defined by

u1(ρ) = (λ− 2)u(ρ) + ρu′(ρ) u2(ρ) =
u′(ρ)

ρ

for u ∈ ker(T (λ)) is an eigenfunction of L.

For a proof see Lemma 21 with obvious modifications.

5.5.1. The eigenvalue equation

For Reλ > −1
2

the spectrum of L is fully determined by solutions of the eigenvalue

equation.

u′′ −
(

2

ρ
+

2λρ

(1− ρ2)

)
u′ −

(
(λ− 1)(λ− 2) + V (ρ)

(1− ρ2)

)
u = 0 (5.7)

This equation has already been discussed in the previous chapter.
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5.6. Asymptotic stability

Note that for Reλ > −1
2

all solutions that belong to D(T (λ)) are analytic solutions

(cf. table (4.1)). λ = 1 is an eigenvalue with the gauge mode ug (see (4.11)) as the

corresponding eigenfunction.

The proof of the next result is analog to the proofs of Lemma 9 and Proposition

6, respectively. The only difference is that now we also consider the case Reλ = 1
2
.

Proposition 11. The spectrum of L consists of the single eigenvalue λ = 1 for

Reλ ≥ 1
2
.

Note that the resolvent set ρ(L) is always an open set in the complex plane (see

[19], p. 174). We define two sets Σ(L) and P (L) by

Σ(L) := {λ ∈ C : Reλ ≤ 1

2
− ε} ∪ {1}

P (L) := {λ ∈ C : Reλ >
1

2
− ε, λ 6= 1}

for ε > 0. Then we know that

σ(L) ⊆ Σ(L)

P (L) ⊆ ρ(L)

5.6. Asymptotic stability

In the third chapter we discussed the gauge mode and showed that we do not

consider it as a physical instability due to its origin in the freedom of choosing

the blow up time T . λ = 1 is an isolated eigenvalue according to Proposition 11.

Thus, it is possible to find a circle γ in the complex plane with center λ = 1 and

suitable radius, such that the rest of the spectrum lies in the exterior. Then the

decomposition theorem ([19] p. 178) holds and the operator L can be decomposed

via spectral projection. To this aim one defines the bounded operator

P :=
1

2πi

∫
γ

RL(λ)dλ. (5.8)

P defines a projection on M = PH along N = (1 − P )H and the Hilbert space

can be decomposed according to H = M ⊕N . The parts of the operator L on the
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5. Higher energy space - Asymptotic stability

closed subspaces N and M are denoted by (LN ,D(L) ∩N) and (LM ,D(L) ∩M),

respectively.

The spectrum of LM is given by σ(LM) = {1}. Since we are not able to determine

the spectrum of L completely we have Σ(LN) := {λ ∈ C : Reλ ≤ 1
2
− ε} and

P (LN) := {λ ∈ C : Reλ > 1
2
− ε}. Again

σ(LN) ⊆ Σ(LN)

P (LN) ⊆ ρ(LN)

The resolvent of LN is given by RL(λ)|N . LN is densely defined and since the

operator L is closed, the same is true for LN (see [19]). It follows that LN generates

a strongly continuous semigroup SN on the subspace N with

||SN(τ)|| ≤ e(− 1
2

+||L′||)τ .

We can improve the above growth estimate for the subspace semigroup by using

the spectral properties of the generator and applying the formula for the growth

bound ω0 (see A.2) which is given by

ω0 = inf{κ > s(LN) : sup
ω∈R
||RL(κ+ iω)|N || <∞} (5.9)

We know that

s(LN) ≤ 1

2
− ε.

For our purpose it is sufficient to consider the above formula for κ > 1
2
− ε. This

yields a growth bound Ω0 ≥ ω0. This, however, does not yield a sharp growth

estimate as was discussed in the previous chapter.

Lemma 23. For the growth bound ω0 of the semigroup SN(τ) generated by the

operator LN ,

ω0 ≤ Ω0 =
1

2
− ε

holds.

72



5.6. Asymptotic stability

Proof. For λ ∈ C with Reλ > 1
2
− ε and λ 6= 1 we use the identity

λ− L = (I − L′RL0(λ))(λ− L0).

It follows that

RL(λ) = RL0(λ)(I − L′RL0(λ))−1.

The resolvent of the generator of the free equation is given in section (5.4.1) and

we have

L′RL0(λ)f =

(
−V T0(λ)−1B(λ)f

0

)
(5.10)

Now estimate (5.6) implies

||L′RL0(λ)|| ≤ sup |V (ρ)|2

|λ− 2|

(
C

Reλ+ 1
2

+ 1

)
(5.11)

with C > 0.

For |Imλ| → ∞ we observe that ||L′RL0(λ)|| → 0. Then (I − L′RL0(λ))→ I and

(I −L′RL0(λ))−1 → I. The claim then follows from the boundedness of ||RL0(λ)||
for Reλ > −1

2
(cf. section (5.4.1)).

�

Now we are ready to prove the main theorem.

Proof (of Theorem 6). We formulate the Cauchy problem for equation (5.1) in

CSS-coordinates on the subset N ⊂ H.

d

dτ
Φ(τ) = LNΦ(τ)

Φ(τ0) = Φ0

with Φ : [τ0,∞)→ N ⊂ H, Φ0 ∈ N and τ0 := − log T .

Then the solution is given by

Φ(τ) = SN(τ − τ0)Φ(τ0).
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5. Higher energy space - Asymptotic stability

It was shown that the energy Eloc(τ) of the perturbation field in the backward

lightcone of the blow-up point (T, 0) is given by the norm of Φ(τ, ·) in the energy

space. Using the embedding given in Lemma 14 we get

Eloc(τ) ≤ e−τ ||Φ(τ)||2HE . e−τ ||Φ(τ)||2H

The above derived growth bound for the semigroup SN(τ) yields

||Φ(τ)||H = ||SN(τ − τ0)Φ(τ0)||H . e(ω0+ ε
2

)τ ||Φ(τ0)||H . e( 1
2
−ε+ ε

2
)τ = e

1
2

(1−ε)τ

and finally

Eloc(τ) . e−ετ . (5.12)

The energy of the perturbation field converges to zero as τ →∞ and we conclude

that the ground state solution is asymptotically stable.

�
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6. Discussion and outlook

We studied the linearization of the wave maps equation around the ground state

solution f0 and considered an operator formulation in CSS-coordinates in two

different function spaces. Applying semigroup theory we showed that the equation

is well-posed. In regard to asymptotic stability we have seen that in the energy

space formulation the spectral properties of the generator of the free equation spoil

the result. By formulating the problem in a weighted Sobolev space, where first

derivatives appear in the norm, it has been demonstrated that the spectrum of

the generator can be shifted towards the left in the complex plane, such that the

spectral bound is negative. Applying the new results for solutions of the eigenvalue

equation we were able to show that the generator of the full system does not have

eigenvalues for Reλ ≥ 1
2

except for the gauge mode. We removed this instability by

spectral projection and derived a growth estimate for the semigroup in the higher

energy space. Continuous embedding finally implied that the physical energy of

the perturbation field decreases in the backward lightcone of the blow-up point.

This shows that the ground state solution is asymptotically stable.

Although this is what we wanted to prove, the result is not optimal. It is known

(see [7]) that the energy of the ground state solution decreases linearly in the

backward lightcone with T − t. For the energy of the perturbation field we get a

decay

Eloc(t) . (T − t)ε

for ε � 1. This means that the energy of f0 decreases faster for t → T than the

energy of the perturbation. Actually, it would be desirable to show the converse.

This, however hinges on the spectral bound of the operator LN . If we could prove

that the eigenvalue equation has no solutions for Reλ ≥ 0, then this would imply

that the perturbation field decays with (T − t)1+ε, hence faster than then ground
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6. Discussion and outlook

state solution.

The analysis presented in this work can easily be extended to more general cases.

Co-rotational wave maps are a special case of equivariant wave maps (see [32]),

for which the wave maps equation is given by

ψtt − ψrr −
2

r
ψr +

m(m+ 1)

2

sin(2ψ)

r2
= 0. (6.1)

The number m ∈ N is called the equivariance index and in the co-rotational case we

have m = 1. It was shown by Bizon in [6] that for each m there exists a countable

family of self-similar solutions fn,m with analogous properties for all m. Thus, the

analysis of linear stability for the ground state solution in the co-rotational case

can be generalized to the investigation of the linearization of eq. (6.1) around f0,m.

The resulting equation can be written as

ψ̃tt − ψ̃rr −
2

r
ψ̃r +

m(m+ 1)

r2
ψ̃ + Vmψ̃ = 0

where ψ̃ denotes the perturbation and the (bounded) potential is given by

Vm(t, r) :=
m(m+ 1) cos (2f0,m( r

T−t))−m(m+ 1)

r2
.

With a formulation of this problem in a generalized (higher) energy space and

sufficient knowledge of solutions of the corresponding eigenvalue equation it should

be possible to derive an analogous result.
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A. Mathematics

A.1. Operator theory

In this section we collect the basic definitions and results from operator theory,

which are used in this work. The proofs of the results can be found for example

in [31] or [40].

Definition (Linear operators on Banach spaces). Let X and Y be Banach

spaces. A linear operator (A,D(A)) is a linear transformation A defined on its

domain D(A) ⊂ X with

A : D(A)→ Y.

The range of (A,D(A)) is a subspace rg(A) ⊂ Y defined by

rg(A) := {y ∈ Y : y = Ax, for some x ∈ D(A)}.

The subspace ker(A) ⊂ X is given by

ker(A) := {x ∈ X : Ax = 0}.

An operator is called densely defined if its domain is a dense subset of X, i.e. for

every x ∈ X there exists a sequence (xn) ∈ D(A) such that xn → x.

Definition (Extension). An operator (Ã,D(Ã)) is called an extension of

(A,D(A)) if D(A) ⊆ D(Ã) and

Ax = Ãx

for every x ∈ D(A).

77



A. Mathematics

Definition (Bounded operators). A linear operator (A,D(A)) is bounded if

there exists a constant C such that

||Ax||Y ≤ C ||x||X

for every x ∈ D(A). The operator is unbounded if no such constant exists. The

operator norm is the smallest C for which the above inequality holds, i.e.

||A|| := sup
x∈D(A),||x||X 6=0

||Ax||Y
||x||X

.

Theorem (Domain of bounded operators). If X is a Hilbert space then any

bounded operator (A,D(A)) can be extended such that D(Ã) = X without chang-

ing its norm. Therefore, the domain of a bounded operator is in most cases assumed

to be the entire Hilbert space X.

Definition (Closed operators, closure). A linear operator (A,D(A)) is closed

if for every sequence (xn) ∈ D(A) with

xn → x and Axn → y

it follows that

x ∈ D(A) and Ax = y.

An operator is said to be closable if for every sequence (xn) ∈ D(A) such that

xn → 0, either

Axn → 0 or lim
n→∞

Axn does not exist.

The smallest closed extension of a closable operator is called the closure.
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A.1. Operator theory

Definition (Resolvent and spectrum of closed operators). The set

ρ(A) := {λ ∈ C for which λ− A : D(A)→ X is bijective}

is called the resolvent set of the operator (A,D(A)) and for λ ∈ ρ(A) the resolvent

is given by

RA(λ) := (λ− A)−1.

The spectrum of the operator (A,D(A)) is defined as the complement of the resol-

vent set,

σ(A) := C\ρ(A).

One distinguishes between

• the point spectrum

σp(A) := {λ ∈ C : λ− A is not injective},

• the continuous spectrum

σc(A) := {λ ∈ C : λ− A injective, not surjective and rg(λ− A) dense},

• and the residual spectrum

σr(A) := {λ ∈ C : λ− A injective , rg(λ− A) not dense}.

Each λ ∈ σp(A) is called an eigenvalue and each non-trivial u ∈ D(A) satisfying

(λ − A)u = 0 is an eigenvector of A. By the approximate point spectrum one

understands σp(A) ∪ σc(A).

Definition (Compact operators). An operator (A,D(A)) is compact if given

any bounded sequence (xn) ∈ D(A) it follows that A(xn) has a convergent subse-

quence. It can be shown that every compact operator is bounded.

Theorem (Spectrum of compact operators). Consider a compact operator

on a Hilbert space A : H → H. In regard to its spectrum the following properties,

known as the Fredholm alternative theorem, hold:
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• σ(A) is a compact set having no limit point except perhaps λ = 0,

• for λ ∈ σ(A)\{0}, either

λ ∈ ρ(A), or

λ ∈ σp(A) is an eigenvalue of finite multiplicity.

Definition (Integral operators). Let L2(Ω) denote the space of square inte-

grable functions on Ω and consider an integral operator K : L2(Ω) → L2(Ω)

defined by

Ku :=

∫
Ω

k(x,y)u(y)dy

where k : Ω× Ω→ C is called the kernel. If∫
Ω

∫
Ω

|k(x,y)|2dxdy <∞

holds, the kernel is called Hilbert-Schmidt.

Theorem (Compactness of integral operators). Let k : Ω × Ω → R be

Hilbert-Schmidt. Then the above defined integral operator K is compact and in

particular bounded.

Definition (Fréchet derivative). Let X and Y be Banach spaces, U ⊂ X

an open subset and F : U → Y a non-linear mapping. F is called Fréchet-

differentiable at x0 ∈ U if there exists a bounded linear operator T : X → Y such

that

lim
||h||X→0

||F (x0 + h)− Fx0 − Th||Y
||h||X

= 0

By the limit we mean that given an ε > 0 there exists a δ > 0 such that for

||h||X < δ

||F (x0 + h)− Fx0 − Th||Y ≤ ε ||h||X .

DF (x0) := T is called the Fréchet derivative of F at x0.
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A.2. Strongly continuous one-parameter semigroups

In this section we discuss the basic ideas from the theory of strongly continuous

one-parameter semigroups of bounded linear operators, also called C0 -semigroups,

and the application to partial differential equations. For a detailed analysis and

the proofs of the results, which will be presented here, we refer to textbooks such

as [15] or [29].

As a motivation consider a linear ordinary differential equation with constant co-

efficients of the form

y′(t) = Au(t)

y(0) = y0

where A is (n × n)-matrix on Rn (or Cn, respectively) and y0 is the initial value.

The solution is given by

y(t) = eAty0.

The matrix exponential is well-defined by

eAt :=
∞∑
k=0

tkAk

k!
.

Linear partial differential equations can also be written in such a form, but then A

is usually an unbounded linear operator on an infinite dimensional function space.

To make this more precise we consider the abstract Cauchy problem on a Banach

space X.
d

dt
u(t) = Au(t) (A.1)

with initial value u(0) = u0 ∈ X, u : [0,∞)→ X a Banach space valued function

and A : D(A) ⊂ X → X a linear operator.

The core of the theory of one-parameter semigroups is to give a precise meaning

to the intuitive notion of the solution ”u(t) = eAtu0” for the above stated problem.

This is a subtle matter, especially when the operator A is unbounded, as will be

assumed in the following.
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Semigroups and generators

Definition (C0-semigroup). Let S(t) be family of bounded linear operators on

a Banach space X depending on one parameter t ∈ R, t ≥ 0. Then S(t) is called

a strongly-continuous one-parameter semigroup iff

S(0) = I,

S(t+ s) = S(t)S(s),

and

||S(t)x0 − x0||X → 0

for all x0 ∈ X and t→ 0.

Definition (Generators of a semigroups). The infinitesimal generator of a

C0-semigroup S(t) is an operator (A,D(A)) on a Banach space X defined by

Ax := lim
t→0+

S(t)x− x
t

,

D(A) := {x ∈ X : lim
t→0+

S(t)x− x
t

exists}.

Theorem (Properties of the generator). For the generator (A,D(A)) of a

strongly continuous one-parameter semigroup S(t), t ≥ 0 the following properties

hold:

• A : D(A) ⊂ X → X is a linear operator,

• if u ∈ D(A), then S(t)u ∈ D(A) and

d

dt
S(t)u = S(t)Au = AS(t)u

for all t ≥ 0.

Theorem (Growth estimates). For every C0-semigroup S(t) there exist con-

stants ω ∈ R and M ≥ 1 such that

||S(t)|| ≤Meωt,∀t ≥ 0
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We have seen that given a C0-semigroup one can find an infinitesimal generator.

For application to partial differential equations the following question is even more

interesting: Given an unbounded, linear operator (A,D(A)) on a Banach space X.

Is it possible to find a C0-semigroup with A as infinitesimal generator?

In the literature there are various theorems to answer this question, where the

most general one is the Hille-Yosida generation theorem. Here, another well-known

theorem should be cited which does apply for semigroups on Hilbert spaces.

Theorem (Lumer-Phillips Theorem). Let H be a Hilbert space and let

(A,D(A)) be a linear operator satisfying the following conditions:

1. A is densely defined.

2. Re(Au|u) ≤ ω(u|u) for every u ∈ D(A).

3. rg(λ− A) is dense in H for some λ > ω.

Then it follows that A is closable and the closure of A generates a strongly con-

tinuous one-parameter semigroup with

||S(t)|| ≤ eωt

for all t ≥ 0.

Another useful result concerns bounded perturbations of infinitesimal generators.

Theorem (Bounded Perturbation Theorem). Let (A,D(A)) be the generator

of a C0-semigroup S0(t) satisfying

||S0(t)|| ≤ eωt

for all t ≥ 0. If B is a bounded operator then

C := A+B with D(C) = D(A)

generates a C0-semigroup S(t) with

||S(t)|| ≤ e(ω+||B||)t
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for all t ≥ 0.

Properties of a semigroup are related to spectral properties of its generator.

Definition (Spectral bound). The spectral bound of a closed linear operator

(A,D(A)) on a Banach space X is defined as

s(A) := sup{Reλ : λ ∈ σ(A)}.

Theorem (Spectral properties and resolvent estimates). In regard to the

resolvent of the generator (A,D(A)) the following properties hold:

• If Reλ > ω, then λ is an element of the resolvent set ρ(A),

• ||RA(λ)|| ≤ M
Reλ−ω .

Definition (Growth Bound). For a strongly continuous, one parameter semi-

group the growth bound is defined as

ω0 := inf{ω ∈ R : there ∃Mω ≥ 1 such that ||S(t)|| ≤Mωe
ωt}.

For the spectral bound of the generator and the growth bound of the semigroup

we have

−∞ ≤ s(A) ≤ ω0 <∞

Theorem (Gearhart-Prüss). According to [28] (or see [15]) the growth bound

can be calculated by

ω0 = inf{κ > s(A) : sup
ω∈R
||R(κ+ iω)|| <∞}.

Well-Posedness of evolution equations

Now we turn back to the abstract Cauchy problem (A.1) and define what we mean

by solutions.

Definition (Classical solution). Assume that u0 ∈ D(A). A function u :

[0,∞) → X is a classical solution of (A.1) if u is continuously differentiable with

respect to X and u(t) ∈ D(A) for all t ≥ 0.
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A.2. Strongly continuous one-parameter semigroups

By well-posedness of the Cauchy problem we mean that there exists a unique

solution, which depends continuously on the initial data. With the above stated

properties of the generator the following result can be derived.

Theorem (Well-posedness). Let X be a Banach space and let (A,D(A) be

the generator of a strongly continuous one-parameter semigroup S(t), t ≥ 0 with

||S(t)|| ≤Meωt. Then, for every u0 ∈ D(A)), the function

u : t 7→ u(t) := S(t)u0

is the unique classical solution of (A.1) and

||u(t)||X = ||S(t)u0||X ≤Meωt ||u0||X

Furthermore, for every sequence (un0 ) ⊂ D(A) with n ∈ N satisfying lim
n→∞

un0 = 0

one has lim
n→∞

u(t, un0 ) = 0 uniformly in compact intervals [0, t0].
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A.3. Notation and conventions

N The natural numbers {1, 2, ...}.
Z The integer numbers {...,−2,−1, 0, 1, 2, ...}.
R; C; K The real numbers; the complex numbers; R or C.

Rez; Imz The real part of z ∈ C; the imaginary part of z ∈ C.

z The complex conjugate of z ∈ C.

[a, b] {x ∈ R : a ≤ x ≤ b}.
(a, b) {x ∈ R : a < x < b}.
[a, b) {x ∈ R : a ≤ x < b}.
(a, b] {x ∈ R : a < x ≤ b}.
(·|·)X ; ||·||X ; ||·|| Scalar product in X; norm in X; operator norm (see A.1).

. A . B ⇔ A ≤ cB with c = const.

supp(f) Support of a function f : Ω→ K defined as

supp(f) := {x ∈ Ω : f(x) 6= 0}.
C[0, 1] {f : [0, 1]→ C : f is continuous}.
Ck(0, 1) {f : (0, 1)→ C : f is k-times continuously differentiable}.
C∞(0, 1) The set of smooth functions defined as

{f : (0, 1)→ C : f has continuous derivatives of all orders}.
C∞c (0, 1) The set of smooth functions f with supp(f) ⊂ (0, 1) compact.

C∞{0}(0, 1) The set of smooth functions with supp(f) ∩ {0} = ∅.
L2(0, 1) The space of square-integrable functions f with norm

||f ||L2 :=
(∫ 1

0
|f(x)|2dx

)1/2

.

L2((0, 1), ω(x)dx) Weighted L2-space with norm ||f ||L2
ω

:=
(∫ 1

0
ω(x)|f(x)|2dx

)1/2

and weight function ω : (0, 1)→ R continuous and positive.

Hk(0, 1) The set of all functions with k weak derivatives in L2(0, 1),

||f ||Hk :=

(
k∑

n=0

∫ 1

0
|f (n)(x)|2dx

)1/2

.

L2
loc(0, 1) The set of locally square integrable functions defined as

{f : (0, 1)→ C : f ∈ L2(0, 1) for all [a, b] ⊂ (0, 1)}.
Hk
loc(0, 1) The set of all functions with k weak derivatives in L2

loc(0, 1).
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Hochschulschriften, Februar 2009

[12] R. Donninger. The Radial Wave Operator in Similarity Coordinates.

preprint, arXiv:0805.0520, 2009

[13] R. Donninger, P.C. Aichelburg. Spectral Properties and Linear Stability of

Self-Similar Wave Maps. Journal of Hyperbolic Differential Equations, Vol-

ume: 6, Issue: 2, 359-370, 2009

[14] R. Donninger. Private Communication, 2009, unpublished.

[15] K.-J. Engel, R. Nagel. One-Parameter Semigroups for Linear Evolution

Equations. Springer New York. 1.Aufl, 1999

[16] L.C. Evans. Partial differential equations, volume 19 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, 1998.

[17] M. Gell-Mann, M. Levy. The axial vector current in beta decay. Nuevo Ci-

mento (10), 16:705-726, 1960

[18] C. Gundlach. Critical phenomena in gravitaitonal collapse. Adv. Theor.

Math. Phys. 2, 1, 1997

[19] T. Kato. Perturbation Theroy for Linear Operators. Reprint of the 1980

Edition. Springer-Verlag Berlin Heidelberg New York

[20] S. Klainerman, M. Machedon. Smoothing estimates for null forms and ap-

plications. Duke Math.J., 81, 99-133, 1995

[21] S. Klainerman, S. Selberg. Remark on the optimal regularity for equations of

wave maps type. Communications in Partial Differential Equations, Volume

22, Issue 5 & 6, pp. 99 - 133 , 1997

[22] J. Krieger. Global regularitiy and singularity development for wave maps.

Surveys in Differential Geometry, Vol. XII, 167-201, 2007

88



Bibliography

[23] J. Krieger, W. Schlag. Concentration compactness for critical wave maps.

preprint, arXiv:0908.2474, August 2009

[24] M. Kovalyov. Long-time behaviour of solutions of a system of nonlinear equa-

tions. Comm. PDE 12, 471-501, 1987

[25] A. Kufner. Weighed Sobolev Spaces. John Wiley + Sons, Chichester-New

York-Brisbane-Toronto-Singapore, 1985.

[26] A. Kufner, L.-E. Persson. Weighted inequalities of Hardy type. World Scien-

tific Publishing Co. Pte. Ltd., 2003

[27] J.M. Lee. Introduction to Smooth Manifolds. Graduate texts in Mathematics

218, Springer Verlag New York, Inc., 2003

[28] J. Pruess. On the spectrum of C0-Semigroups. Transactions of the American

Mathematical Society, Vol. 284, No. 2, pp. 847-857, 1984

[29] A. Pazy. Semigroups of Linear Operators and Apllications to Partial Dif-

ferential Equations. Applied Mathematical Science, v. 44, Springer-Verlag,

New-York Inc., 1983

[30] P. Raphael and I. Rodnianski. Stable blow up dynamics for the critical

co-rotational Wave Maps and equivariant Yang-Mills problems. preprint,

arXiv:0911.0692, November 2009

[31] M. Renardy, R. C. Rogers. An Introduction to Partial Differential Equations.

Second Edition. Springer-Verlag Berlin Heidelberg New York

[32] J. Shatah and A. Tahvildar-Zadeh. On the Cauchy problem for equivariant

wave maps. Comm. Pure Appl. Math., 47(5):719-754, 1994

[33] J. Shatah. Weak-solutions and development of singularities of the SU(2) σ-

model. Comm. Pure Appl. Math 41, 459-469, 1988

[34] J. Shatah and M. Struwe. Geometric wave equations, volume 2 of Courant

Lecture Notes in Mathematics. New York University Courant Institute of

Mathematical Sciences, New York, 1998.

89



Bibliography

[35] T. Sideris. Global existence of harmonic maps in Minkowski space. Comm.

Pure. Appl. Math. 42, 1-13, 1989

[36] J. Sterbenz, D. Tataru. Regularity of wave maps in dimension 2+1, preprint,

arXiv:0907.3148v1, July 2009

[37] T. Tao. Global regularity of wave maps II. Small energy in two dimensions.

Comm. Math. Phys., 224(2): 443-544, 2001

[38] T. Tao. Global behaviour of nonlinear dispersive and wave equations. Current

developments in mathematics, Volume 2006 (2008) 255-340.

[39] N. Turok and D. Spergel. Global texture and the microwave background.

Phys. Rev. Lett. 64, 2736-2739, 1999

[40] D. Werner. Funktionalanalysis. 6. Aufl. Springer-Verlag Berlin Heidelberg

New York

90



Curriculum Vitae
Birgit Schörkhuber

Geboren am 01. Dezember 1981 in Steyr, Oberösterreich
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