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Abstract

We investigate relative oscillation theory for one-dimensional Dirac operators
H0, H1 with separated boundary conditions. Our main results read:

If λ ∈ R and λ < inf σess(H0), then the difference of the the dimensions of the
spectral projections PH1

(−∞, λ) and PH0
(−∞, λ] equals the number of weighted

sign flips of W (ψ1,∓(λ1), ψ0,±(λ1)), where ψ0,± respectively ψ1,± denotes the
corresponding Weyl solutions and W the Wronskian. Moreover, if λ0, λ1 ∈
R and σess(H0) ∩ [λ0, λ1] = ∅, then the difference of the dimensions of the
spectral projections PH1

[λ0, λ1) and PH0
(λ0, λ1] equals the number of weighted

sign flips of W (ψ1,∓(λ1), ψ0,±(λ1)) minus the number of weighted sign flips of
W (ψ1,∓(λ0), ψ0,±(λ0)). In an additional result the difference of the spectral
projections is replaced by Krein’s Spectral Shift function. Finally we derive
relative oscillation criteria.

Zusammenfassung

Wir behandeln relative Oszillationstheorie für eindimensionale Dirac-Operatoren
H0, H1 mit getrennten Randbedingungen. Unsere Hauptresultate lauten wie
folgt:

Sei λ ∈ R und λ < inf σess(H0), dann ist die Differenz der Dimensionen
der Spektral-Projektionen PH1

(−∞, λ) und PH0
(−∞, λ] gleich der Anzahl der

gewichteten Vorzeichenwechsel vonW (ψ1,∓(λ1), ψ0,±(λ1)), wobei ψ0,± bzw. ψ1,±
die entsprechenden Weyl-Lösungen sind und W die Wronski ist. Weiters, falls
λ0, λ1 ∈ R und σess(H0) ∩ [λ0, λ1] = ∅, dann ist die Differenz der Dimensio-
nen der Spekral-Projektionen PH1 [λ0, λ1) und PH0(λ0, λ1] gleich der Anzahl
der gewichteten Vorzeichenwechsel von W (ψ1,∓(λ1), ψ0,±(λ1)) minus der An-
zahl der Vorzeichenwechsel von W (ψ1,∓(λ0), ψ0,±(λ0)). Schließlich leiten wir
noch relative Oszillationskriterien her.
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Chapter 0

Introduction

Our object of investigation is the Dirac differential expression

τ =
1

i

(
0 −i
i 0

)
d

dx
+ φ, (1)

where φ represents a potential. To be more precise, in φ the mass, the scalar
potential, the electrostatic potential, and the anomalous magnetic moment are
included (see (1.2)).

The corresponding Dirac differential equation is a relativistic quantum mechan-
ical wave equation, which describes the characteristics of an electron (and other
spin-1/2-particles). It is consistent with both the principles of quantum me-
chanics and the theory of special relativity. This theory was developed by the
British physicist Paul Dirac in 1928.

The main objective of this thesis is to relate the number of eigenvalues of two
different self-adjoint Dirac operators with the number of (weighted) zeros of the
Wronskian. In terms of our notation this reads

dim RanPH1
(−∞, λ)− dim RanPH0

(−∞, λ] = #(ψ1,∓(λ0), ψ0,±(λ0)), (2)

where λ < inf σess(H0). Here PH denotes the projection-valued measure of an
selfadjoint operator H (cf. Notation 2.12) and #(u0, u1) counts the weighted
sign flips of the Wronskian W (u0, u1) (cf. Notation 2.4).

Furthermore, considering an essential spectral gap [λ0, λ1] ∩ σess(H0) = ∅, we
will derive the following result:

dim RanPH1 [λ0, λ1)− dim RanPH0(λ0, λ1]

= #(ψ1,∓(λ1), ψ0,±(λ1))−#(ψ1,∓(λ0), ψ0,±(λ0)). (3)

In Chapter 1 we will state some essential standard results and make some useful
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Chapter 0. Introduction

definitions such as e.g., regular respectively singular endpoints, limit point re-
spectively limit circle endpoints and Wronskians. Furthermore, we fix boundary
conditions (if necessary) to obtain a self-adjoint operator.

Chapter 2 is devoted to the Prüfer variables and weighted sign flips of Wron-
skians in order to finally obtain our main result at least for regular operators.
To extend this result to the general case, more effort will be needed. For this
purpose we will demonstrate two different approaches. This will be the topic of
Chapter 4 and Chapter 5 respectively.

Chapter 3 discusses the definition of relative oscillation theory. At the end of
this chapter we get a first estimate of our main result.

Chapter 4 illustrates the first approach using approximation of an operator by
a sequence of regular operators. The standard approximation technique only
implies strong convergence, which unfortunately is not sufficient for our purpose.
Hence we will derive convergence of spectral projections in the trace norm for
suitably chosen regular operators.

Chapter 5 provides an alternative approach, which connects our theory with
Krein’s spectral shift function. Firstly we prove our main result for a pertur-
bation supported on a compact interval. In the final result the left hand side
in (2) will be substituted by Krein’s Spectral Shift function.

In Chapter 6 we derive some relative oscillation criteria.

Appendix A derives the main properties of Krein’s Spectral Shift function. This
appendix is adopted from [8] aside from a few modifications.

I wish to point out that my thesis is related to the paper Relative oscilla-
tion theory, weighted zeros of the Wronskian and the spectral shift function [8]
by H. Krüger and G. Teschl, who developed an analogous theory for Sturm–
Liouville operators. Also the paper Renormalized oscillation theory for Dirac
operators [18] is related. In this paper the case of equal operators H0 = H1 but
different spectral parameters λ0 6= λ1 is covered. For related work see also [1].

Thanks

First and foremost, I thank my advisor Gerald Teschl for his support and the
various useful advices he gave me while writing my thesis.

I further wish to thank my colleagues Christian Haderer, Georg Jantschy and
Roman Valenta, who motivated me during my studies.

This work was supported by the Austrian Science Fund (FWF) via the START
project Y330 ”Spectral Analysis and Applications to Soliton Equations” and
the Faculty of Mathematics of the University of Vienna, which provided me
with excellent research conditions.
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Chapter 1

Basic facts

1.1 The Dirac differential equation

We collect some basic facts from [9, 22, 18, 21, 25, 26].

A Dirac1 differential expression is a differential expression of the form

τ =
1

i
σ2

d

dx
+ φ. (1.1)

Here
φ(x) := φel(x)1l + φam(x)σ1 + (m+ φsc(x))σ3, (1.2)

where σ1, σ2, σ3 denote the Pauli2 matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
, (1.3)

and m, φsc, φel, and φam are interpreted as mass, scalar potential, electro-
static potential, and anomalous magnetic moment. We require m ∈ [0,∞) and
φsc, φel, φam ∈ L1

loc(I,R) real-valued, I := (a, b), with −∞ ≤ a < b ≤ ∞.

Explicitly we have

τf =

(
φ11 − d

dx + φ12
d
dx + φ12 φ22

)(
f1
f2

)
=

(
−f ′2 + φ12f2 + φ11f1
f ′1 + φ12f1 + φ22f2

)
, (1.4)

where primes denote derivatives with respect to x and φ11 := φel + m + φsc,
φ12 := φ21 := φam, φ22 := φel −m− φsc.

Definition 1.1.
A finite end point is called regular if φ11, φ12, φ22 are integrable near this end
point. In this case boundary values for all functions exist at this end point. In
particular, τ is called regular if both end points are regular, that is, a, b ∈ R and
φ11, φ12, φ22 ∈ L1(I,R). Otherwise τ is called singular.

1Paul Dirac (1902–1984)
2Wolfgang Pauli (1900–1958)
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Chapter 1. Basic facts

The maximal domain of definition for τ is given by

D(τ) := {f ∈ L2(I,C2)|f ∈ ACloc(I,C2), τf ∈ L2(I,C2)}. (1.5)

We formulate the following important theorem which gives us some information
when solutions of our corresponding Dirac equation

τu = λu, λ ∈ C, (1.6)

exist.

Theorem 1.2 (cf. [27, Korollar 15.2]).
Let g ∈ L1

loc(I,C2). Then for all z ∈ C, x0 ∈ I and (y1, y2) ∈ C2, there is a
unique solution of the initial value problem

(τ − z)u = g, u(x0) = (y1, y2). (1.7)

For all x ∈ I the solution u(z, x) is an entire function with respect to z.
Moreover, u is R2-valued if (y1, y2) ∈ R2.

For more information on Dirac operators see [21, 27].

1.2 Wronskians

Notation 1.3.
In C2 we define the scalar product via

〈x, y〉 := x∗1y1 + x∗2y2, (1.8)

and the corresponding norm via

‖x‖ :=
√
〈x, x〉. (1.9)

Definition 1.4.
The Wronskian3 of two functions f, g ∈ ACloc(I,C2) is defined by

Wx(f, g) := i〈f(x)∗, σ2g(x)〉 = f1(x)g2(x)− f2(x)g1(x), x ∈ (a, b). (1.10)

Furthermore, we define Wa(f, g) := limx→aWx(f, g) and analogously for b pro-
vided this limit exists (this is the case e.g. if f, g ∈ L2).

Differentiating the Wronskian of solutions of τu = λ0u0 and τv = λ1v1 gives

W ′x(u, v) = (λ0 − λ1)〈u(x), v(x)〉. (1.11)

So Wx(u, v) = 0 if u(x) and v(x) are parallel and W ′x(u, v) = 0 if u(x) and v(x)
are orthogonal. In addition the Wronskian of two solutions can only have simple
zeros unless λ0 = λ1 and u = v or u ≡ 0 (resp. v ≡ 0) of course. In particular
note that the Wronskian of two solutions of τu = λu is constant.

Once found a solution u, the following lemma shows how we can get a second
solution v with W (u, v) ≡ 1.

3Joseph Marie Wronski (1778–1853)
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Chapter 1. Basic facts

Lemma 1.5 ([12, Lem. 1]).
Under the general hypothesis on φsc, φam, φel, let u : (a, b)→ C2 be a nontrivial
solution of (1.6) and choose x0 ∈ (a, b). Then

v(x) :=

(
2

∫ x

x0

〈(m+ φsc)(t)σ3 + φam(t)σ1)u(t), u(t)〉
‖u(t)‖4

dt− i σ2
‖u(x)‖2

)
u(x),

(1.12)
(x ∈ (a, b)), is a second linearly independent solution. Moreover, the fundamen-
tal system (u, v) has Wronskian equal to 1.

Proof. Let φ̆ = φamσ1 + (m + φsc)σ3. Applying the commutator [A,B] :=

AB −BA, we see [σ2, φ] = 2σ2φ̆ and obtain

v′ = −iσ2φv +
2

‖u‖4
(−〈u, φ̆u〉 − σ2〈u, σ2φu〉+ φ̆‖u‖2)u.

A calculation shows (−〈u, φ̆u〉−σ2〈u, σ2φu〉+φ̆‖u‖2)u = 0, so τv = 1
i σ2v

′+φv =
1
i σ2(−iσ2φv) = 0. W (u, v) ≡ 1 is straightforward, so v is a second linearly
independent solution.

1.3 Boundary conditions

We want to obtain a self-adjoint operator from τ . Using integration by parts a
straightforward calculation shows the Lagrange4 identity:∫ b

a

〈g(t), (Hf)(t)〉dt = Wa(g∗, f)−Wb(g
∗, f) +

∫ b

a

〈(Hg)(t), f(t)〉dt. (1.13)

So H is symmetric if and only if Wa(g∗, f) = Wb(g
∗, f) for all g, f ∈ D(H).

Definition 1.6.
We call τ limit circle at a if there is a v ∈ D(τ) with Wa(v∗, v) = 0 such
that Wa(v, f) 6= 0 for one f ∈ D(τ). Otherwise τ is called limit point at a.
Analogously for b.

If τ is limit point at both endpoints a and b, then τ gives rise to a unique self-
adjoint operator H when defined maximally (cf. e.g., [9], [25], [26]). Otherwise
we fix a boundary condition at each endpoint where τ is limit circle:

BCa(f) := Wa(v, f),
BCb(f) := Wb(w, f),

(1.14)

with v (resp. w) a function as in Definition 1.6 at a (resp. b).

Then H is given by
H : D(H) → L2(I,C2),

f 7→ τf,
(1.15)

where

D(H) := {f ∈ L2(I,C2)|f ∈ ACloc(I,C2), τf ∈ L2(I,C2),
BCa(f) = BCb(f) = 0 if τ is limit circle at a resp. b}.

(1.16)

4Joseph-Louis de Lagrange (1736–1813)
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Chapter 1. Basic facts

Notation 1.7.
From now on we will denote the associated self-adjoint operator of τ by H. By
ψ±(λ, x) we will denote solutions of the differential equation τu = λu, λ ∈ C (if
they exist), which satisfy the following conditions:

(i) ψ±(λ, x) ∈ ACloc(I,C2),

(ii) ψ+(λ, x) (resp. ψ−(λ, x)) is square integrable near b (resp. a) and fulfills
the boundary condition (cf. (1.14)) of H at b (resp. a) if any (i.e., if τ is
limit circle at b (resp. a)) and

(iii) ψ±(λ, .) 6≡ 0.

The functions ψ±(λ, x) are called Weyl5 solutions. In Lemma 1.16 we provide
a condition on their existence.

Remark 1.8.
Looking at equation (1.13) we infer that Wa(g∗, f) = Wb(g

∗, f) for all g, f ∈
D(τ) if τ is limit point. Otherwise this is ensured by the additional boundary
conditions.

Lemma 1.9 (cf. [22, Thm. A.4]).

(i) A regular endpoint is limit circle.

(ii) If b =∞ then b is limit point. Analogously, if a = −∞ then a is limit
point.

Theorem 1.10 (Weyl alternative, cf. [27, Satz 15.15]).
The operator τ is limit circle at a ⇔ ∀ λ ∈ C all solutions u of τu = λu are
square integrable near a. Similary for b.

Corollary 1.11.
All eigenvalues of H are simple.

Proof. If τ is limit point at a then there is at most one (linearly independent)
solution of τu = λu which is square integrable near a. If τ is limit circle at a
then the Wronskian of two solution, which satisfy the same boundary condition,
vanishes. So they are linearly dependent. Similary for b.

1.4 The resolvent

Cf. [18, Sec. 1].

Notation 1.12.
Let u, v ∈ R2. We define

u⊗ v :=

(
u1v1 u1v2
u2v1 u2v2

)
. (1.17)

5Hermann Weyl (1885–1955)
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Chapter 1. Basic facts

The resolvent RH(z) := (H − z)−1 of H can be expressed in terms of ψ±(z, .)
as follows:

RH(z)f(x) =

∫ b

a

G(z, x, y)f(y)dy, z ∈ ρ(H), (1.18)

where

G(z, x, y) =
ψ±(z, x)⊗ ψ∓(z, y)

W (ψ+(z), ψ−(z))
, ±(x− y) > 0, (1.19)

denotes the Green6 Function of H. Recall that Wx(ψ+(z), ψ−(z)) is indepen-
dent of x (cf. (1.11)). In addition, we set G(z, x, x) = limε→0(G(z, x + ε, x) +
G(z, x− ε, x))/2.

Remark 1.13.
Note that Wx(ψ+(z), ψ−(z)) only vanishes if ψ+(z, .) and ψ−(z, .) are linearly
depended. But then ψ±(z, .) satisfy both boundary conditions, that is z ∈ σ(H).

Lemma 1.14 (First resolvent identity, [19, Equation (2.81)]).
If z, z′ ∈ ρ(A), we have the first resolvent formula:

RA(z)−RA(z′) = (z − z′)RA(z)RA(z′) = (z − z′)RA(z′)RA(z). (1.20)

Proof. We have

(A− z)−1 − (z − z′)(A− z)−1(A− z′)−1 =

(A− z)−1(1− (z −A+A− z′)(A− z′)−1) = (A− z′)−1

which proves the first equality. The second follows after interchanging z and z′.

Lemma 1.15 (Second resolvent identity, [19, Lem. 6.4]).
Suppose A and B are closed and D(A) ⊆ D(B). Then we have the second
resolvent formula

RA+B(z)−RA(z) = −RA(z)BRA+B(z) = −RA+B(z)BRA(z) (1.21)

for z ∈ ρ(A) ∩ ρ(A+B).

Proof. We compute

RA+B(z) +RA(z)BRA+B(z) = (1l +RA(z)B)RA+B(z) =

(A− z)−1(A+B − z)RA+B(z) = RA(z). (1.22)

The second identity is similar.

Denote by Hx,− (resp. Hx,+), x ∈ I, self-adjoint operators associated with τ
on L2((a, x),C2) (resp. L2((x, b),C2)) obtained from H by imposing the addi-
tional boundary condition f1(x) = 0. Then Hx,−⊕Hx,+ is a rank one resolvent
perturbation of H and hence σess(H) = σess(Hx,−) ∪ σess(Hx,+) (cf. [28, Ko-
rollar 6.2]). If Gx,±(z, ., ..) denotes the resolvent kernel of Hx,± we define the
Weyl m-functions m±(z, x) (w.r.t. the base point x) by

Gx,±(z, x, x) =:

(
0 ± 1

2
± 1

2 mx,±(z)

)
. (1.23)

6George Green (1793–1841)
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Chapter 1. Basic facts

The first resolvent identity shows that m±(z, x) are Herglotz7 functions (cf.,
e.g., [22]).

We have not said anything about the existence of the Weyl solutions ψ±(z, x)
yet. The next lemma shows that they exist if we are away from the essential
spectrum.

Lemma 1.16 (cf. [18, Lem. 1.1]).
The solutions ψ±(z, x) exist for z ∈ C\σess(Hx0,±). They can be assumed an-
alytic with respect to z ∈ C\σ(Hx0,±) and ψ±(z, x)∗ = ψ±(z∗, x) holds. In
addition, we can include a finite number of isolated eigenvalues in the domain
of holomorphy of ψ±(z, x) by removing the corresponding poles.

Proof. If U(z, x, x0), z ∈ C, is a fundamental matrix solution for τu = zu (i.e.,
U(z, x0, x0) = 1l, x0 ∈ I) and m±(z, x0) are the Weyl m-functions with respect
to the base point x0. Then we can choose

ψ±(z, x) = U(z, x, x0)

(
1

±m±(z, x0)

)
. (1.24)

By removing the corresponding poles of mx0,±(z) we can include a finite number
of isolated eigenvalues in the domain of holomorphy of ψ±(z, x).

Note that there are also Weyl solutions ψ±(z, x) if z ∈ σess(H) is an eigenvalue.

Theorem 1.17 (cf. [25, Satz 15.16]).
Let τ be limit circle at both endpoints. Then the resolvent is a Hilbert8-Schmidt9

operator. In particular the spectrum of any self-adjoint extension is purely dis-
crete.

7Gustav Herglotz (1881–1953)
8David Hilbert (1862–1943)
9Erhard Schmidt (1876–1959)
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Chapter 2

Prüfer variables and the
case of regular operators

2.1 Prüfer variables

We introduce Prüfer1 variables ρu and θu for u ∈ C(I,R2), I = (a, b), defined
by

u1(x) =: ρu(x) sin(θu(x)), u2(x) =: ρu(x) cos(θu(x)). (2.1)

If u is never (0, 0) and u is continuous, then the Prüfer radius

ρu(x) =
√
u21(x) + u22(x) > 0, (2.2)

and the Prüfer angle θu is uniquely determined once a value of θu(x0), x0 ∈ I,
is chosen by the requirement θu ∈ C(I,R).

Note that for solutions u of τu = λu the case u(x) = (0, 0) cannot occur unless
u ≡ 0 of course.

If f, g ∈ C(I,R2), linking the Prüfer angles with the definition of Wronskians,
(1.10) also reads

Wx(f, g) = −ρf (x)ρg(x) sin(θg(x)− θf (x)). (2.3)

2.2 Weighted zeros of Wronskians

In this section we will establish the concept of weighted zeros of Wronskians.
For this purpose the PrŸfer variables defined in the previous section will be
adjuvant. See [18, Chap. 2] for the Sturm2-Liouville3 case.

In the following we will investigate solutions ui of τiui = λiui, i ∈ {0, 1}. Since
we can replace φ 7→ φ− λ1l we will assume λ0 = λ1 = 0 without restriction.

1Heinz Prüfer (1896–1934)
2Charles-François Sturm (1803–1855)
3Joseph Liouville (1809–1882)
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Chapter 2. Prüfer variables and the case of regular operators

Notation 2.1.
For a matrix A we will write A > 0 (resp. A ≥ 0) if it satisfies 〈ψ,Aψ〉 > 0,
(resp. 〈ψ,Aψ〉 ≥ 0) ∀ ψ 6= 0. Similary, we will write A < 0 and A ≤ 0. By
A > B we mean A − B > 0, similary for ≥,≤, < of course. Furthermore we
denote A+ := PA[0,∞)A and A− = PA(−∞, 0)A.

So we have A+ ≥ 0 and A− ≤ 0.

The following generalization of (1.11) is true:

Lemma 2.2.
Suppose ui satisfies τiui = 0, i ∈ {0, 1}, then

W ′x(u0, u1) = 〈u0(x), (φ1 − φ0)u1(x)〉. (2.4)

Proof. The result follows by a straightforward calculation.

Lemma 2.3 (Weighted zeros, cf. [18, Lem. 2.1]).
Let ui solve τjuj = 0, i ∈ {0, 1}, abbreviate ∆1,0(x) = θu1

(x) − θu0
(x) and

suppose ∆1,0(x0) ≡ 0 mod π. If φ0(x)−φ1(x) is (i) negative, (ii) zero, or (iii)
positive for a.e. x ∈ (x0, x0 + ε) respectively for a.e. x ∈ (x0 − ε, x0) for some
ε > 0, then the same is true for (∆1,0(x)−∆1,0(x0))/(x− x0).

Proof. By (2.4) we have

Wx(u0, u1) = −ρ0(x)ρ1(x) sin(∆1,0(x))

= −
∫ x

x0

〈u0(t), (φ0(t)− φ1(t))u1(t)〉dt.

If we have ∆1,0(x0) ≡ π mod 2π then sin(x) behaves like x 7→ −x at x0 and
(sin(θu0(x0)), cos(θu0(x0))) = −(sin(θu1(x0)), cos(θu1(x0))), therefore

sgn(〈u0(x0), (φ0(x0)− φ1(x0))u1(x0)〉) =

sgn

(〈(
sin(θu0

(x0))
cos(θu0

(x0))

)
, (φ0(x0)− φ1(x0))

(
sin(θu1

(x0))
cos(θu1

(x0))

)〉)
=

−sgn(φ0(x0)− φ1(x0)),

and the claim follows. In the case ∆1,0(x0) ≡ 0 mod 2π the claim follows
analogously by removing the minus.

Notation 2.4.
We will denote

#(c,d)(u0, u1) := d∆1,0(d)/πe − b∆1,0(c)/πc − 1,
for (c, d) ⊆ (a, b) if τi are regular and (c, d) ⊂ (a, b) else.

(2.5)

So by Lemma 2.3 #(c,d)(u0, u1) counts the weighted sign flips of the Wronskian
Wx(u0, u1) inside of (c, d), where a sign flip is counted as +1 if φ0−φ1 is positive
in a neighborhood of the sign flip, it is counted as −1 if φ0 − φ1 is negative in
a neighborhood of the sign flip. If φ0 − φ1 changes sign (i.e., it is positive on
one side and negative on the other) the Wronskian will not change its sign. In
particular, we obtain:

8



Chapter 2. Prüfer variables and the case of regular operators

Corollary 2.5 (cf. [18, Lem. 2.2]).
Let ui solve τiui = 0, i ∈ {0, 1}, and φ0 − φ1 ≥ 0, then #(c,d)(u0, u1) equals the
number of sign flips of W (u0, u1) inside the interval (c, d).

Remark 2.6.
In the case φ0 − φ1 ≤ 0 we get of course the corresponding negative number
except for the fact that zeros at the boundary points are counted as well since
b−xc = −dxe. That is, if φ0 − φ1 > 0, then #(c,d)(u0, u1) equals the number of
zeros of the Wronskian in (c, d) while if φ0−φ1 < 0, it equals minus the number
of zeros in [c, d]. In addition, note that #(u, u) = −1.

2.3 More on Prüfer angles and the case of reg-
ular operators

Our presentation in this section follows [8, Sec. 5].

We will derive our main result for regular operators τi, i ∈ {0, 1}. At first
we require an analysis of the behaviour of the PrŸfer angles when using linear
interpolation between τ0 and τ1.

Notation 2.7.
For functions y0, y1 we define yε := (1 − ε)y0 + εy1 to denote the linear inter-
polation between y0 and y1.

In the regular case the resolvent of H is Hilbert-Schmidt and hence the spec-
trum is purely discrete (i.e., σess(H) = ∅, cf. Theorem 1.17). In this case the
boundary conditions (1.14) also read

BCa(f) = cos(α)f1(a)− sin(α)f2(a),
BCb(f) = cos(β)f1(b)− sin(β)f1(b),

(2.6)

cf. [25, Satz 15.12] for example. Note that α (resp. β) depends on v (resp. w)
in (1.14) (cf. [19, Sec. 9.2] for the Sturm-Liouville case).

Hence we can choose ψ±(λ, x) such that ψ−(λ, a) = (sin(α), cos(α)), respectively
ψ+(λ, b) = (sin(β), cos(β)). In particular, we may choose

θ−(λ, a) = α ∈ [0, π), −θ+(λ, b) = π − β ∈ [0, π), (2.7)

where we have abbreviated θψ±(λ)(x) by θ±(λ, x).

If uε solves τεuε = 0, then the corresponding Prüfer angles satisfy

θ̇ε(x) = −Wx(uε, u̇ε)

ρ2ε(x)
, (2.8)

where the dot denotes a derivative with respect to ε.

Lemma 2.8.
For two Dirac operators τi, i ∈ {0, 1}, we have

Wx(ψε,±, ψ̇ε,±) =

{ ∫ b
x
〈ψε,+(t), (φ0(t)− φ1(t))ψε,+(t)〉dt,

−
∫ x
a
〈ψε,−(t), (φ0(t)− φ1(t))ψε,−(t)〉dt,

(2.9)

where the dot denotes a derivative with respect to ε and ψε,±(x) = ψε,±(0, x).

9



Chapter 2. Prüfer variables and the case of regular operators

Proof. Integrating (2.4) we obtain

Wx(ψε,±, ψε̃,±) = (ε̃− ε)
{ ∫ b

x
〈ψε,+(t), (φ0(t)− φ1(t))ψε̃,+(t)〉dt,

−
∫ x
a
〈ψε,−(t), (φ0(t)− φ1(t))ψε̃,−(t)〉dt.

Now use this to evaluate the limit

lim
ε̃→ε

Wx

(
ψε,±,

ψ±,ε − ψε̃,±
ε− ε̃

)
.

Corollary 2.9.
Denoting the Prüfer angles of ψε,±(x) = ψε,±(0, x) by θε,+(x) = θε,+(0, x), for
φ0 − φ1 ≥ 0, the previous lemma implies

θ̇ε,+(x) = −
∫ b
x
〈ψε,+(t), (φ0(t)− φ1(t))ψε,+(t)〉dt

ρε,+(x)2
≤ 0,

θ̇ε,−(x) =

∫ x
a
〈ψε,−(t), (φ0(t)− φ1(t))ψε,−(t)〉dt

ρε,−(x)2
≥ 0, (2.10)

with strict inequalities if φ0 − φ1 > 0 on a subset of positive Lebesgue measure
of (x, b), respectively (a, x).

Corollary 2.10.

∂θε,+
∂λ

(x) = −
∫ b
x
‖ψε,+(t)‖2dt
ρε,+(x)2

≤ 0,

∂θε,−
∂λ

(x) =

∫ b
x
‖ψε,−(t)‖2dt
ρε,−(x)2

≥ 0. (2.11)

Proof. Consider τ1 = τ0 − λ.

Now we are ready to investigate the associated operators H0 and H1. In addi-
tion, we will choose the same boundary conditions for Hε as for H0 and H1.

Lemma 2.11.
Suppose φ0 − φ1 ≥ 0 (resp. φ0 − φ1 ≤ 0). Then the eigenvalues of Hε are
decreasing (resp. increasing) with respect to ε.

Proof. First of all the Prüfer angles θε,±(λ, x) are analytic with respect to ε
since τε is by a well-known result from ordinary differential equations (see e.g.,
[23, Thm. 13.III]). Moreover, λ ∈ σ(Hε) is equivalent to θε,+(λ, a) ≡ α mod π
(resp. θε,−(λ,b) ≡ β mod π), where α (respectively β) generates the boundary
condition. By Corollary 2.9 and Corollary 2.10 the implicit function theorem
implies:

∂λ(ε)

∂ε
= −

∂θ+
∂ε
∂θ+
∂λ

≤ 0.

Note that the same inequality is true if we replace θ+ by θ−.

Notation 2.12.
Let H be a self-adjoint operator. We denote the corresponding projection-valued
measure by PH . Cf. [19, Thm. 3.7] for example.

10



Chapter 2. Prüfer variables and the case of regular operators

Remark 2.13.
In particular, Lemma 2.11 implies that dim RanPHε

(−∞, 0) is continuous from
below (resp. above) in ε if φ0 − φ1 ≥ 0 (resp. φ0 − φ1 ≤ 0).

After this preparations we are ready for the announced main result of this
chapter.

Theorem 2.14.
Let Hi, i ∈ {0, 1}, be regular operators associated with the same boundary con-
ditions at a and b. Then the following equation holds:

dim Ran PH1(−∞, λ1)− dim Ran PH0(−∞, λ0] = #(a,b)(ψ0,±(λ0), ψ1,∓(λ1)).
(2.12)

Proof. It suffices to prove the result for λ0 = λ1 = 0 and #(ψ0,+(0, .), ψε,−(0, .)).
We consider τi, i ∈ {0, 1}, and split φ0 − φ1 according to

φ0 − φ1 = φ+ − φ−, φ+, φ− ≥ 0,

and introduce the operator τ− = τ0 − φ−. Then τ− is a negative perturbation
of τ0 and τ1 is a positive perturbation of τ−.

Furthermore define τε by

τε =

{
τ0 + 2εφ−, ε ∈ [0, 1/2],

τ− + 2(ε− 1/2)φ+, ε ∈ [1/2, 1].

Let us look at

N(ε) = #(a,b)(ψ0,+, ψε,−) = d∆ε(b)/πe−b∆ε(a)/πc−1, ∆ε(x) = ∆ψε,−,ψ0,+
(x),

with ψε,− = ψε,−(0, .) and consider ε ∈ [0, 1/2]. At the left boundary ∆ε(a)
remains constant whereas at the right boundary ∆ε(b) is increasing by Corol-
lary 2.9. Moreover, it hits a multiple of π whenever 0 ∈ σ(Hε). So N(ε) is a
piecewise constant function which is continuous from below and jumps by one
whenever 0 ∈ σ(Hε). By Lemma 2.11 the same is true for

P (ε) = dim Ran PHε
(−∞, 0)− dim Ran PH0

(−∞, 0]

and since we have N(0) = P (0), we conclude N(ε) = P (ε) for all ε ∈ [0, 1/2].
To see the remaining case ε = (1/2, 1], simply replace increasing by decreasing
and continuous from below by continuous from above.
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Chapter 3

Relative oscillation theory

Our presentation in this chapter follows [8, Sec. 3].

We will now shed some light on the title of this thesis. That is we determine
the meaning of two operators being relatively oscillating.

Definition 3.1.
For τ0, τ1 possibly singular Dirac operators as in (1.1) on I = (a, b) and two
solutions ui of τjuj = λjuj , j ∈ {0, 1}, we define

#(u0, u1) := lim inf
d↑b, c↓a

#(c,d)(u0, u1) and #(u0, u1) := lim sup
d↑b, c↓a

#(c,d)(u0, u1).

(3.1)
If #(u0, u1) = #(u0, u1), we define

#(u0, u1) := #(u0, u1) = #(u0, u1). (3.2)

Remark 3.2.
If φ0 − φ1 has the same definite sign near the endpoints a and b, we infer by
Lemma 2.3 that #(u0, u1) exists. On the other hand, note that #(u0, u1) might
not exist even if both a and b are regular, since the difference of Prüfer angles
might oscillate around a multiple of π near an endpoint. In addition, even if it
exists, it is not sure whether #(u0, u1) = #(a,b)(u0, u1), except the cases when
there are no zeros at the endpoints or if φ0−φ1 ≥ 0 at least near the endpoints.

Theorem 3.3 (Comparison theorem for Wronskians).
Suppose uj satisfies τjuj = λjuj, j ∈ {0, 1, 2}, where λ0−φ0 ≤ λ1−φ1 ≤ λ2−φ2.

If c < d are two zeros of Wx(u0, u1) such that Wx(u0, u1) does not vanish
identically, then there is at least one sign flip of Wx(u0, u2) in (c, d). Simi-
larly, if c < d are two zeros of Wx(u1, u2) such that Wx(u1, u2) does not vanish
identically, then there is at least one sign flip of Wx(u0, u2) in (c, d).

Proof. We assume λ0 = λ1 = λ2 = 0 w.l.o.g. Let c, d be two consecutive zeros
of Wx(u0, u1). We consider τε = (2 − ε)τ1 + (ε − 1)τ2, ε ∈ [1, 2], restricted to
(c, d) with boundary condition generated by the Prüfer angle of u0 at c. For
ψε,−(x) = ψε,−(0, x) we have ∆u0,ψε,−(c) ≡ 0 mod π for all ε and hence we can
even assume ∆u0,ψε,−(c) = 0. By (2.10) ∆u0,ψε,−(d) is increasing, implying that
Wx(u0, ψε,−) has at least one sign flip in (c, d) for ε > 1.

12



Chapter 3. Relative oscillation theory

Since Wx(ψ2,−, u2) is constant, we can assume 0 < ∆u2,ψ2,−(x) < π. This im-
plies ∆u2,u0

(c) = ∆u2,ψ2,−(c) < π and ∆u2,u0
(d) = ∆u2,ψ2,−(d) + ∆ψ2,−,u0

(d) >
π. Consequently Wx(u0, u2) also has at least one sign flip in (c, d).

The second claim is proven analogously.

Theorem 3.4 (Triangle inequality for Wronskians).
Suppose ui, i ∈ {0, 1, 2} satisfy τiui = 0. Then

#(u0, u1) + #(u1, u2)− 1 ≤ #(u0, u2) ≤ #(u0, u1) + #(u1, u2) + 1, (3.3)

and similarly for # replaced by #.

Proof. Take a < c < d < b. By definition

#(c,d)(u0, u2) = d∆2,0(d)/πe − b∆2,0(c)/πc − 1,

and using bxc + byc ≤ bx + yc ≤ bxc + byc + 1 respectively dxe + dye − 1 ≤
dx+ ye ≤ dxe+ dye and ∆2,0 = ∆2,1 + ∆1,0, we obtain

#(c,d)(u0, u2) ≤ #(c,d)(u0, u1) + #(c,d)(u1, u2) + 1.

Thus the result follows by taking the limits c ↓ a and d ↑ b.

Corollary 3.5.
Let τjuj = τjvj = 0, j ∈ {0, 1}. Then

|#(u0, u1)−#(v0, v1)| ≤ 3, |#(u0, u1)−#(v0, v1)| ≤ 3. (3.4)

Proof. Using Theorem 3.4 we obtain

#(u0, u1)−#(v0, v1) ≤ #(u0, v1) + #(v1, u1) + 1−#(v0, u0)−#(u0, v1) + 1 =

#(v1, u1)−#(v0, u0) + 2 =


1 if #(v0, u0) = 0, #(v1, u1) = −1,

3 if #(v0, u0) = −1, #(v1, u1) = 0,

2 else.

The first claims follows using this inequality and replacing ui by vi. The second
claim is proven analogously by replacing # by #.

Definition 3.6.

(i) An operator τ1 is called relatively nonoscillatory with respect to τ0
if #(u0, u1) and #(u0, u1) are finite for all solutions τjuj = 0, j ∈ {0, 1}.

(ii) An operator τ1 is called relatively oscillatory with respect to τ0, if
#(u0, u1) or #(u0, u1) is infinite for two (and hence for all (cf. Corollary
3.5)) solutions τjuj = 0, j ∈ {0, 1}.

This definition of course induces a symmetric relation. So we can also say
that two operators τj, j ∈ {0, 1}, are relatively nonoscillatory (resp. relatively
oscillatory).

In the following theorem we will connect operators’ property of being relatively
nonoscillatory with the spectra of self-adjoint operators.

13
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Theorem 3.7.
Let Hj be self-adjoint operators associated with τj, j ∈ {0, 1}, and λ0 < λ1.

Then

(i) τ0 − λ0 is relatively nonoscillatory with respect to τ0 − λ1 if and only if
dim RanPH0

(λ0, λ1) <∞.

(ii) Suppose dim RanPH0
(λ0, λ1) < ∞ and τ1 − λ is relatively nonoscilla-

tory with respect to τ0 − λ for one λ ∈ [λ0, λ1]. Then we have:
τ1−λ is relatively nonoscillatory with respect to τ0−λ for all λ ∈ [λ0, λ1]
⇔ dim RanPH1(λ0, λ1) <∞.

Proof. (i) This is [18, Thm. 4.5].
(ii) Let λ, λ̃ ∈ [λ0, λ1], τjuj(λ) = λuj(λ), τjuj(λ̃) = λ̃uj(λ̃), j ∈ {0, 1} and
τj − λ, relatively nonoscillatory. Then applying our triangle inequality twice
implies

#(u0(λ̃), u0(λ)) + #(u0(λ), u1(λ)) + #(u1(λ), u1(λ̃))− 2 ≤

#(u0(λ̃), u1(λ̃)) ≤

#(u0(λ̃), u0(λ)) + #(u0(λ), u1(λ)) + #(u1(λ), u1(λ̃)) + 2

and similar estimates with # replaced by #. Hence due to (i), ”⇒” follows by
the first inequality and ”⇐” by the second.

The case of equal operators H0 = H1 but different spectral parameters λ0 6= λ1,
as in item (i) in the above theorem, is called renormalized oscillation theory by
Gesztesy, Simon, and Teschl (see [3]).

Remark 3.8.
We remark that A ≥ α1l and B ≥ β1l imply that A + B ≥ (α + β)1l because
〈φ, ((A+B)−(α+β))φ〉 = 〈φ, (A−α)φ〉+〈φ, (B−β)φ〉 ≥ 0+0 = 0. Furthermore
we point out that ‖A‖ ≤ α implies −α1l ≤ A ≤ α1l.

For a practical use of the previous theorem we require criteria when τ1 − λ is
relatively nonoscillatory with respect to τ0− λ for λ inside an essential spectral
gap. Therefore we establish the following lemma:

Lemma 3.9.
Let limx→a ‖φ0(x) − φ1(x)‖ = 0 if τ0 or τ1 is not regular at a and similarly,
limx→b ‖φ0(x) − φ1(x)‖ = 0 if τ0 or τ1 is not regular at b. Then σess(H0) =
σess(H1) and τ1 − λ is relatively nonoscillatory with respect to τ0 − λ for λ ∈
R\σess(H0).

Proof. We can write τ1 as τ1 = τ0+ φ̃0+ φ̃1, where φ̃0 has compact support near
singular endpoints and ‖φ̃1‖ < ε, for arbitrarily small ε > 0. Using [24, Satz 9.9]
and Theorem 5.4 we infer that RH1

(z) − RH0
(z) is the norm limit of compact

operators. Thus RH1(z)−RH0(z) is compact and hence σess(H0) = σess(H1).
Let δ > 0 be the distance of λ to the essential spectrum and choose a < c <

d < b, such that

‖(φ1(x)− φ0(x))‖ ≤ δ/2, x 6∈ (c, d).

14
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Clearly #(c,d)(u0, u1) <∞, since both operators are regular on (c, d). Moreover,
observe that

φ0 − λ+1l ≤ φ1 − λ1l ≤ φ0 − λ−1l, λ± = λ± δ/2,

on I = (a, c) or I = (d, b). Then Theorem 3.7 (i) implies #(u0(λ−), u0(λ+)) <
∞ and invoking Theorem 3.3 shows #(u0(λ±), u1(λ)) <∞. From Theorem 3.4
and Theorem 3.7 (i) we infer

#(u0(λ), u1(λ)) ≤ #(u0(λ), u0(λ+)) + #(u0(λ+), u1(λ)) + 1 <∞,

and similarly for #(u0(λ), u1(λ)). This shows that τ1 − λ is relatively nonoscil-
latory with respect to τ0.

Our next goal is to relate the number of weighted sign flips with the spectra of
H1 and H0. The special case H0 = H1 is covered by [18]:

Theorem 3.10 (cf. [18, Thm. 4.5]).
Let H be a self-adjoint operator associated with τ and suppose (ψ+(λ0), ψ−(λ1))
or (ψ−(λ0), ψ+(λ1)) exist.

Then
dim RanP(λ0,λ1)(H) = #(ψ∓(λ0), ψ±(λ1)). (3.5)

If H is limit point at a (resp. b) we can replace ψ−(λi) (resp. ψ+(λi)), i ∈ {0, 1},
by any solution of τu = λiu.

Remark 3.11.
Note that both sides in (3.5) equal ∞ if (λ0, λ1) ∩ σess(H0) 6= ∅, which follows
from Theorem 3.7 (i).

Combining this theorem with the triangle inequality (3.3) we obtain a first
estimate:

Lemma 3.12.
Let Hi, i ∈ {0, 1} be a self-adjoint operator associated with τi and separated
boundary conditions. Suppose that (λ0, λ1) ⊆ R\(σess(H0) ∪ σess(H1)), then

dim RanPH1(λ0, λ1)− dim RanPH0(λ0, λ1)

≤ #(ψ1,∓(λ1), ψ0,±(λ1))−#(ψ1,∓(λ0), ψ0,±(λ0)) + 2,

(3.6)

respectively,

dim RanPH1(λ0, λ1)− dim RanPH0(λ0, λ1)

≥ #(ψ1,∓(λ1), ψ0,±(λ1))−#(ψ1,∓(λ0), ψ0,±(λ0))− 2.

(3.7)

Proof. By the triangle inequality (cf. Theorem 3.4) we have

#(c,d)(ψ1,−(λ1), ψ1,+(λ0))−#(c,d)(ψ0,−(λ1), ψ0,+(λ0))

≤ #(c,d)(ψ1,−(λ1), ψ0,+(λ1)) + #(c,d)(ψ1,−(λ1), ψ0,+(λ1)) + 2.
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The result now follows by taking limits using that

lim
c↓a,d↑b

#(c,d)(ψ1,−(λ1), ψ1,+(λ0)) = dim RanPH1
(λ0, λ1)

and
lim

c↓a,d↑b
#(c,d)(ψ0,−(λ0), ψ0,+(λ1)) = − dim RanPH0

(λ0, λ1)

by the previous theorem. The second claim follows similarly.
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Chapter 4

Approximation by regular
operators

Our presentation in this chapter follows [8, Sec. 6]. See also [26, Chap. 14].

In this chapter we want to extend some of our results for regular operators to
the general case. The key to achieve this is the approximation of an operator
by a sequence of regular operators.

We abbreviate in the following L2((c, d),C2) as L2(c, d). Fix functions u, v ∈
D(τ) and pick sequences (cn)n ↓ a, (dn)n ↑ b. We define

H̃n : D(H̃n) → L2(cn, dn)
f 7→ τf

, (4.1)

where

D(H̃n) = {f ∈ L2(cn, dn)| f, pf ′ ∈ AC((cn, dn),C2), τf ∈ L2(cn, dn),
Wcn(u, f) = Wdn(v, f) = 0}.

(4.2)

Take Hn = α1l⊕ H̃n⊕α1l on L2(a, b) = L2(a, cn)⊕L2(cn, dn)⊕L2(dn, b), where
α is a fixed real constant. Then we have the following result:

Lemma 4.1.
Suppose that either H is limit point or that u fulfills the boundary condition at
a and similarly, that either H is limit point or v fulfills the boundary condition
at b. Then Hn converges to H in strong resolvent sense as n→∞.

To estimate the dimension of the eigenspaces of Hn the following result will be
valuable in the sequel of this chapter.

Lemma 4.2 (Estimating eigenspaces, cf. [19, Thm. 4.12(ii)]).
Suppose A is a self-adjoint operator and ψj ∈ D(A) , 1 ≤ j ≤ k, are linearly
independent. Let λ0 < λ1.

If

‖(A− λ1 + λ0
2

)ψ‖ < λ1 − λ0
2

‖ψ‖ (4.3)
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for any 0 6= ψ ∈ span{ψj}kj=1, than

dim Ran(PA(λ0, λ1)) ≥ k. (4.4)

Remark 4.3.
We remark that for a self-adjoint projector P we have

dim Ran(P ) = tr(P ) = ‖P‖J 1 , (4.5)

where ‖.‖J 1 denotes the trace class norm. If P is not finite-rank, all three
numbers equal ∞.

The standard approximation technique only implies strong convergence (Cf.
Lemma 4.1), which unfortunately is not sufficient for our purpose. Hence our
argument is based on a refinement of a method by Stolz and Weidmann [16]
which will provide convergence of spectral projections in the trace norm for
suitably chosen regular operators (see [27] for a nice overview).

Lemma 4.4 (cf. [17, Lem. 2], see also [16]).
Let An → A in strong resolvent sense and tr(PAn(λ0, λ1)) ≤ tr(PA(λ0, λ1)).

Then,
lim
n→∞

tr(PAn
(λ0, λ1)) = tr(PA(λ0, λ1)), (4.6)

and if tr(PA(λ0, λ1)) <∞, we have

lim
n→∞

‖ tr(PAn
(λ0, λ1))− tr(PA(λ0, λ1))‖J 1 = 0. (4.7)

Proof. This follows from (see e.g. [3, Lem. 5.2])

tr(P(λ0,λ1)(A)) ≤ lim inf
n→∞

tr(P(λ0,λ1)(An)), (4.8)

together with Grümm’s theorem ([14, Thm. 2.19]).

Lemma 4.5 ([16]).
Suppose [λ0, λ1]∩σess(H) = ∅ and let Hn be defined as in (4.1) with α 6∈ [λ0, λ1],
u = ψ−(λ−), v = ψ+(λ+) and λ± ∈ [λ0, λ1].

Then,
tr(PH̃n

(λ0, λ1)) ≤ tr(PH(λ0, λ1)). (4.9)

Furthermore, if H is limit point at a (resp. b), we can replace u (resp. v) by
any solution of τu = λ−u (resp. τu = λ+u).

Proof. Abbreviate P = PH(λ0, λ1), Pn = PH̃n
(λ0, λ1). For ψ̃1, . . . , ψ̃k being

eigenfunctions of H̃n corresponding to eigenvalues in (λ0, λ1), construct

ψj(x) =


ηju(x), x < cn,

ψ̃j(x), cn ≤ x ≤ dn,
νjv(x), x > dn,

where ηj , νj are chosen such that ψj is continuous. According to Lemma 4.2
we have to investigate

‖(H − λ1 + λ0
2

)ψ‖,
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where 0 6= ψ ∈ span{ψj}kj=1.
Therefore, we split its square into three parts:

∫ cn

a

‖(H − λ1 + λ0
2

)ψ‖2︸ ︷︷ ︸
=:(1)

+

∫ dn

cn

‖(H − λ1 + λ0
2

)ψ‖2︸ ︷︷ ︸
=:(2)

+

∫ b

dn

‖(H − λ1 + λ0
2

)ψ‖2︸ ︷︷ ︸
=:(3)

For the first term we have

(1) =

∣∣∣∣λ− − λ1 + λ0
2

∣∣∣∣2 ∫ cn

a

‖ψ‖2 ≤
(
λ1 − λ0

2

)2 ∫ cn

a

‖ψ‖2

and similary for the third.
Moreover,

(2) <

(
λ1 − λ0

2

)2 ∫ dn

cn

‖ψ‖2

since the {ψj}kj=1 correspond to eigenvalues in (λ0, λ1). Altogether we have the
required inequality (4.3).

Remark 4.6.
The requirement [λ0, λ1] ∩ σess(H) = ∅ on the one hand ensures the existence
of the Weyl solutions ψ−(λ−) and ψ+(λ+). On the other hand for this reason
we of course have tr(PH(λ0, λ1)) <∞.

Corollary 4.7.
Suppose [λ0, λ1]∩σess(H) = ∅ and let Hn be defined as in (4.1) with α 6∈ [λ0, λ1],
u = ψ−(λ−), v = ψ+(λ+) and λ± ∈ [λ0, λ1].

Then,
lim
n→∞

tr(PH̃n
(λ0, λ1)) = tr(PH(λ0, λ1)). (4.10)

Furthermore, if H is limit point at a (resp. b), we can replace u (resp. v) by
any solution of τu = λ−u (resp. τu = λ+u).

Proof. This follows by the last three lemmas.

Lemma 4.8 ([16]).

Suppose [λ0, λ1] ∩ σess(H) = ∅. Let τ̂ = τ + φ̂, where ‖φ̂(x)‖ is bounded, and
pick the same boundary conditions for Ĥ as for H (if any). Abbreviate

Qa := [la, ra] :=[lim inf
x→a

E<(φ̂(x)), lim sup
x→a

E>(φ̂(x))],

Qb := [lb, rb] :=[lim inf
x→b

E<(φ̂(x)), lim sup
x→b

E>(φ̂(x))], (4.11)

where E<(φ̂(x)) ≤ E>(φ̂(x)) are the eigenvalues of φ̂(x). Choose λ− such that
one of following conditions holds:

(i) λ− −Qa ⊆ (λ0, λ1), or

(ii) λ− −Qa ⊆ [λ0, λ1) and E>(φ̂(x)) ≤ ra near a, or
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(iii) λ− −Qa ⊆ (λ0, λ1] and E<(φ̂(x)) ≥ la near a.

Similarly, choose λ+ to satisfy one of these conditions with a replaced by b.
Then, Hn defined as in (4.1) with α 6∈ [λ0, λ1], u = ψ̂−(λ−), v = ψ̂+(λ+),

satisfies
lim sup
n→∞

tr(P(λ0,λ1)(H̃n)) ≤ tr(P(λ0,λ1)(H)). (4.12)

Again u (resp. v) can be replaced by any solution of τ̂u = λ−u (resp. τ̂u = λ+u)
if τ̂ is limit point at a (resp. b).

Proof. Any of our three conditions implies ‖λ−1l− φ̂(x)− (λ1+λ0)
2 1l‖ ≤ (λ1−λ0)

2

for x sufficiently close to a, respectively ‖λ+1l− φ̂(x)− (λ1+λ0)
2 1l‖ ≤ (λ1−λ0)

2 for
x sufficiently close to b.

We again consider a splitting as in the proof of the previous lemma and
obtain:

(1) =

∫ cn

a

‖(λ− − φ̂−
λ1 + λ0

2
)ψ‖2 ≤

(
λ1 − λ0

2

)2 ∫ cn

a

‖ψ‖2

and similary for (3). The strict inequality for the second term resembles that
one of the previous lemma and hence the second claim follows.

Since our results involve projections to half-open intervals, we need one further
step.

Corollary 4.9.
Assume the same requirements as in the previous lemma, apart from the con-

ditions

λ− −Qa ⊆ (λ0, λ1], λ+ −Qb ⊆ (λ0, λ1] and E<(φ̂(x)) ≤ la, lb near a and b,

then
lim sup
n→∞

tr(PH̃(λ0, λ1]) ≤ tr(PH(λ0, λ1]). (4.13)

And similarly, if

λ− −Qa ⊆ [λ0, λ1), λ+ −Qb ⊆ [λ0, λ1) and E>(φ̂(x)) ≥ ra, rb near a and b,

then
lim sup
n→∞

tr(PH̃n
[λ0, λ1)) ≤ tr(PH [λ0, λ1)). (4.14)

Proof. We just prove the first claim. The second is similar.
Choose ε > 0 so small that we have tr(PH(λ1, λ1 + ε)) = 0 (which is possible

because the eigenvalues of H cannot accumulate at λ1 6∈ σess(H)). Thus by the
previous lemma

lim sup
n→∞

tr(PH̃n
(λ0, λ1 + ε)) ≤ tr(PH(λ0, λ1 + ε))

and
lim sup
n→∞

tr(PH̃n
(λ1, λ1 + ε)) ≤ tr(PH(λ1, λ1 + ε)) = 0.

So the lim supn→∞ can be replaced by limn→∞ in the second inequality.
Hence the result follows from P(λ0,λ1] = P(λ0,λ1+ε) − P(λ1,λ1+ε).
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Corollary 4.10.
Suppose [λ0, λ1] ∩ σess(H) = ∅. Let τ̂ = τ + φ̂, where limx→a φ̂(x) = 0 and

limx→b φ̂(x) = 0. Furthermore, we pick the same boundary conditions for Ĥ as
for H (if any).

Define Hn as in (4.1) with α 6∈ [λ0, λ1], u = ψ̂−(λ) and v = ψ̂+(λ), λ ∈
{λ0, λ1}. If λ = λ1 and E<(φ̂(x)) ≤ 0 (near a and b), then

lim sup
n→∞

tr(PH̃n
(λ0, λ1]) ≤ tr(PH(λ0, λ1]), (4.15)

and if λ = λ0 and E>(φ̂(x)) ≥ 0 (near a and b), then

lim sup
n→∞

tr(PH̃n
[λ0, λ1)) ≤ tr(PH [λ0, λ1)). (4.16)

Proof. This follows immediately from Corollary 4.9.

In the next theorem this corollary allows eigenvalues at the boundary of the
spectral intervals in the essential spectral gaps. But before this we state the
following lemma:

Lemma 4.11.
Suppose τjuj = λjuj, j = 0, 1, with φ1−λ1−φ0+λ0 ≤ 0 near singular endpoints.
If τjuj,n = λj,nuj,n, where λj,n → λj and uj,n → uj, uniformly on compact sets
[c, d] ⊆ (a, b), then

lim inf
n→∞

#(u0,n, u1,n) ≥ #(u0, u1). (4.17)

Proof. Let N ∈ N0 be any finite number with N ≤ #(u0, u1). Choose a
compact set [c, d] containing N sign flips of W (u0, u1). Then, for n suffi-
ciently large, W (u0,n, u1,n) has N sign flips in [c, d]. Hence #(u0,n, u1,n) ≥
#(c,d)(u0,n, u1,n) ≥ N and the claim follows.

After this preparations we are ready for

Theorem 4.12.
Let H0, H1 be self-adjoint operators associated with τ0, τ1, respectively, and
separated boundary conditions. Suppose

(i) φ1 − φ0 ≤ 0 near singular endpoints,

(ii) limx→a ‖φ0(x)−φ1(x)‖ = 0 if a is singular and limx→b ‖φ0(x)−φ1(x)‖ =
0 if b is singular,

(iii) H0 and H1 are associated with the same boundary conditions near a
and b, that is, ψ0,−(λ) satisfies the boundary condition of H1 at a (if any)
and ψ1,+(λ) satisfies the boundary condition of H0 at b (if any).

Suppose λ0 < inf σess(H0). Then

dim RanPH1
(−∞, λ0)− dim RanPH0

(−∞, λ0] = #(ψ1,∓(λ0), ψ0,±(λ0)).
(4.18)

Suppose σess(H0) ∩ [λ0, λ1] = ∅. Then τ1 − λ0 is nonoscillatory with respect to
τ0 − λ0 and

dim RanPH1 [λ0, λ1)− dim RanPH0(λ0, λ1]

= #(ψ1,∓(λ1), ψ0,±(λ1))−#(ψ1,∓(λ0), ψ0,±(λ0)). (4.19)
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Proof. It suffices to show the #(ψ1,−(λj), ψ0,+(λj)) case. Define H̃j,n, j = 0, 1,
as in (4.1) with u = ψ1,−(λ0) and v = ψ0,+(λ0).

Denote by ψnj,±(λ), j ∈ {0, 1}, the solutions of the approximating problems.
Then, by Theorem 2.14,

tr(PH̃1,n)
(−∞, λ0)− tr(PH̃0,n

(−∞, λ0]) = #(cn,dn)(ψ
n
1,−(λ0), ψn0,+(λ0))

and we need to investigate the limits as n→∞.
First of all ψn1,−(λ0, x) = ψ1,−(λ0, x), ψn0,+(λ0, x) = ψ0,+(λ0, x) for x ∈

(cn, dn) implies

lim
n→∞

#(cn,dn)(ψ
n
1,−(λ0), ψn0,+(λ0)) = lim

n→∞
#(cn,dn)(ψ1,−(λ0), ψ0,+(λ0))

= #(ψ1,−(λ0), ψ0,+(λ0)).

This takes care of the number of sign flips and it remains to look at the spectral
projections. Let λ0 < inf σess(H0), that is H0 and hence also H1 are bounded
from below (cf. [24, Korollar 8.25]). Replacing PHj

(−∞, λ0) by PHj
(λ, λ0) with

some λ below the spectrum of both H0 and H1 we infer from Corollary 4.10

lim
n→∞

tr(P(−∞,λ0)(H̃1,n)) = tr(P(−∞,λ0)(H1))

and
lim
n→∞

tr(P(−∞,λ0](H̃0,n)) = tr(P(−∞,λ0](H0)).

This settles the first claim (4.18), where λ0 < σess(H0).
For the second claim (4.19), we first note that τ1 − λ0 is relatively nonoscil-

latory with respect to τ0 − λ0 by Lemma 3.9. Next note that ψn0,+(λ1, .) →
ψ0,+(λ1, .) pointwise, since we have

un0,+(λ, x) = U(λ, x, x0)

(
1

mn
0,+(λ, x0)

)
, (4.20)

by (1.24), where U(z, x, x0) is a fundamental system of solutions for τ0 − λ,
and mn

0,+(λ) are the corresponding Weyl m-functions. Next, strong resolvent
convergence implies convergence of the Weyl m-function and hence uniform
convergence of ψn0,+(λ1, x) → ψ0,+(λ1, x) on compact sets. Clearly the same
applies to ψn1,−(λ1, x)→ ψ1,−(λ1, x). Thus, by Lemma 4.4, Corollary 4.10, and
Lemma 4.11,

tr(P[λ0,λ1)(H1))− tr(P(λ0,λ1](H0)) (4.21)

≥ #(ψ1,−(λ1), ψ0,+(λ1))−#(ψ1,−(λ0), ψ0,+(λ0)).

Repeating the argument with u = ψ1,−(λ1) and v = ψ0,+(λ1) shows that

tr(P[λ0,λ1)(H1))− tr(P(λ0,λ1](H0)) (4.22)

≤ #(ψ1,−(λ1), ψ0,+(λ1))−#(ψ1,−(λ0), ψ0,+(λ0)).

This proves the second claim.
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Chapter 5

Approximation in trace
norm

Our presentation in this chapters generalizes [8, Sec. 7] to the case of Dirac
operators.

Now we begin with an alternative approach toward singular differential opera-
tors by proving the case where φ1 − φ0 has compact support. The next lemma
would follow from Theorem 4.12, but to demonstrate that this approach is in-
dependent of the last, we will provide an alternative proof.

Lemma 5.1.
Let Hj, j ∈ {0, 1}, be Sturm–Liouville operators on (a, b) associated with τj,
and suppose that φ1−φ0 has support in a bounded interval (c, d) ⊆ (a, b), where
a < c if a is singular and d < b if b is singular. Moreover, suppose H0 and H1

have the same boundary conditions (if any).
Suppose λ0 < inf σess(H0). Then,

dim RanPH1
(−∞, λ0)−dim RanPH0

(−∞, λ0] = #(ψ1,∓(λ0), ψ0,±(λ0)). (5.1)

Suppose σess(H0) ∩ [λ0, λ1] = ∅. Then,

dim RanPH1
[λ0, λ1)− dim RanPH0

(λ0, λ1]

= #(ψ1,∓(λ1), ψ0,±(λ1))−#(ψ1,∓(λ0), ψ0,±(λ0)). (5.2)

Proof. By splitting φ1 − φ0 into a positive and negative part as in the proof of
the regular case (Theorem 2.14), we can reduce it to the case where φ1 − φ0
is of one sign, say φ1 − φ0 ≥ 0. Define Hε = εH1 + (1 − ε)H0 and observe
that ψε,−(λ, x) = ψ0,−(λ, x) for x ≤ c, respectively, ψε,+(λ, x) = ψ0,+(λ, x) for
x ≥ d. Furthermore, ψε,±(λ, x) is analytic with respect to ε and λ ∈ σp(Hε)
if and only if Wd(ψ0,+(λ), ψε,−(λ)) = 0. Now the proof can be done as in the
regular case.

Definition 5.2.
Let A be a densely defined closed linear operator. The self-adjoint operator |A|
is defined (as usual) by

|A| :=
√
S∗S ≥ 0. (5.3)
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Lemma 5.3 ([2, Thm. 2.7]).
Let T : D(T )→ H2, D(T ) ⊆ H1, be a densely defined closed operator with polar
decomposition

T = U |T | = |T ∗|U = UT ∗U on D(T ) = D(|T |). (5.4)

In addition, assume that φ and ψ are Borel functions on R such that φ(λ)ψ(λ) =
λ, λ ∈ R, and D(|T |) ⊆ D(ψ(|T |)). Then T has the representation

T = φ(|T ∗|)Uψ(|T |) on D(T ) = D(|T |), (5.5)

with U a partial isometry.
In particular, for each α ∈ [0, 1],

T = |T ∗|αU |T |1−α on D(T ) = D(|T |). (5.6)

Lemma 5.4.
Suppose Hε are defined as in the previous Lemma 5.1 and satisfy the same
assumptions. Then,

‖
√
|φ1 − φ0|RHε(z)‖J2 ≤ C(z), ε ∈ [0, 1]. (5.7)

In particular, the resolvent difference of H0 and H1 is trace class and

ξ(λ,H1, H0) = #(ψ1,∓(λ), ψ0,±(λ)) (5.8)

for every λ ∈ R ∩ ρ(H0) ∩ ρ(H1). Here ξ(H1, H0) is assumed to be constructed
such that ε 7→ ξ(Hε, H0) is a continuous mapping from [0, 1] → L1(R, (λ2 +
1)−1dλ).

Proof. Denote by

Gε(z, x, y) =
ψε,−(z, x<)⊗ ψε,+(z, y>)

W (ψε,−(z), ψε,+(z))
,

where x< = min(x, y), y> = max(x, y), the Green function of Hε. As pointed
out in the proof of the Lemma 5.1, ψε,±(z, x) is analytic (i.e. in particular
continuous) with respect to ε. Thus we have the following estimate:∫ b

a

∫ b

a

‖Gε(z, x, y)‖2‖φ1(y)− φ0(y)‖dx dy ≤ C(z), ε ∈ [0, 1],

which establishes the first claim.
Furthermore the second resolvent formula (1.21) (with A = Hε(z) and B =

(ε′ − ε)(φ1 − φ0)) implies

Gε′(z, x, y) = Gε(z, x, y) + (ε− ε′)
∫ b

a

Gε′(z, x, t)(φ1(t)− φ0(t))Gε(z, t, y)dt.

Hence, using Lemma 5.3, we can carry out the following calculation:
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1

ε− ε′
(RHε′ (z)−RHε

(z))f(x) =∫ b

a

∫ b

a

Gε′(z, x, t)(φ1(t)− φ0(t))Gε(z, t, y) dt f(y) dy =∫ b

a

∫ b

a

Gε′(z, x, y)
√
|φ1(y)− φ0(y)|U(y)

√
|φ1(y)− φ0(y)|Gε(z, y, t)f(t) dt dy =∫ b

a

Gε′(z, x, y)
√
|φ1(y)− φ0(y)|U(y)

∫ b

a

√
φ1(y)− φ0(y)Gε(z, y, t)f(t) dt dy =

RHε′

√
|φ1 − φ0|U

∫ b

a

√
|φ1(x)− φ0(x)|Gε(z, x, t)f(t) dt =

RHε′ (z)
√
|φ1 − φ0|U

√
|φ1 − φ0|RHε

(z)f(x),

i.e., RHε′ (z) − RHε
(z) can be written as the product of two Hilbert–Schmidt

operators and a partial isometry. Now we can estimate its norm by the first
claim:

‖RHε′ (z)−RHε(z)‖J1 ≤ |ε′ − ε|C(z)2. (5.9)

Thus ε 7→ ξ(Hε, H0) is continuous by Lemma A.5. The rest follows from (A.4).

Remark 5.5.
Compared to the case of Sturm–Liouville operators the proof of Lemma 5.4 is
a bit more delicate because we had to state Lemma 5.3 to manage to extract a
root of a matrix.

Hypothesis 5.6.
Suppose H0 and V are self-adjoint such that:

(i) V is relatively bounded with respect to H0 with H0-bound less than one

(ii) |V |1/2RH0
(z) is Hilbert–Schmidt for one (and hence for all) z ∈ ρ(H0).

We recall that (i) means that D(V ) ⊇ D(H0) and for some a < 1, b ≥ 0,

‖V ψ‖ ≤ a‖H0ψ‖+ b‖ψ‖, ∀ ψ ∈ D(H0). (5.10)

It will be shown in Appendix A that these conditions ensure that we can in-
terpolate between H0 and H1 using operators Hε, ε ∈ [0, 1], such that the
resolvent difference of H0 and Hε is continuous in ε with respect to the trace
norm. Hence we can fix ξ(λ,H1, H0) by requiring ε 7→ ξ(λ,Hε, H0) to be con-
tinuous in L1(R, (λ2 + 1)−1dλ), where we of course set ξ(λ,H0, H0) = 0 (see
Lemma A.7). While ξ is only defined a.e., it is constant on the intersection of
the resolvent sets R ∩ ρ(H0) ∩ ρ(H1), and we will require it to be continuous
there. In particular, note that by Weyl’s theorem the essential spectra of H0

and H1 are equal, σess(H0) = σess(H1). Now we are ready for:

25



Chapter 5. Approximation in trace norm

Theorem 5.7.
Let H0, H1 be self-adjoint operators such that H0 and V := φ0 − φ1 satisfy
Hypothesis 5.6. Then for every λ ∈ R ∩ ρ(H0) ∩ ρ(H1) we have

ξ(λ,H1, H0) = #(ψ0,±(λ), ψ1,∓(λ)). (5.11)

Proof. We first assume that we have compact support near one endpoint, say
a. Define by Kε the operator of multiplication by χ(a,bε]1l with bε ↑ b as ε ↑ 1.
Then Kε satisfies the assumptions of Lemma A.7. Introduce Hε = H0 −KεV ,
and denote by ψε,−(λ, x) the corresponding solutions satisfying the boundary
condition at a.

By Lemma A.7 we have ξ(., Hε, H0) → ξ(., H1, H0) as ε ↑ 1 in L1(R, (λ2 +
1)−1dλ). Moreover, Hε → H1 in (trace) norm resolvent sense and hence λ ∈
ρ(H1) implies λ ∈ ρ(Hε) for ε sufficiently close to 1. Since ξ(λ,Hε, H0) ∈ Z
is constant near every λ ∈ R ∩ ρ(H0) ∩ ρ(Hε), we must have ξ(λ,Hε, H0) =
ξ(λ,H1, H0) for ε ≥ ε0 with some ε0 sufficiently close to 1.

Now let us turn to the Wronskians. We first prove the #(ψ1,−(λ), ψ0,+(λ))
case. By Lemma 5.4 we know

ξ(λ,Hε, H0) = #(ψε,−(λ), ψ0,+(λ)

for every ε < 1. Concerning the right-hand side observe that

Wx(ψε,−(λ), ψ0,+(λ)) = Wx(ψ1,−(λ), ψ0,+(λ))

for x ≤ bε and that Wx(ψε,−(λ), ψ0,+(λ)) is constant for x ≥ bε. This implies
that for ε ≥ ε0 we have

ξ(λ,H1, H0) = ξ(λ,Hε, H0) = #(ψε,−(λ), ψ0,+(λ))

= #(a,bε)(ψε,−(λ), ψ0,+(λ)) = #(a,bε)(ψ1,−(λ), ψ0,+(λ)).

In particular, the last item #(a,bε)(ψ1,−(λ), ψ0,+(λ)) is eventually constant and
thus has a limit which, by Definition 3.1, is #(ψ1,−(λ), ψ0,+(λ)).

For the corresponding #(ψ1,+(λ), ψ0,−(λ)) case one simply exchanges the
roles of H0 and H1.

Hence the result holds if the perturbation has compact support near one
endpoint. Now one repeats the argument to remove the compact support as-
sumption near the other endpoint as well.

Corollary 5.8.
Under the assumptions of Theorem 5.7 we have that τ1−λ is relatively nonoscil-
latory with respect to τ0 − λ for every λ in an essential spectral gap.
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Chapter 6

Relative oscillation criteria

Our presentation in this chapter uses results from [7, 12].

Now we want to apply relative oscillation theory to obtain criteria for when
an edge of an essential spectral gap is an accumulation point of eigenvalues for
Dirac operators.

We will assume that a ∈ R and that b = ∞. Furthermore, we always assume
the usual local integrability assumptions on the coefficients (see Section 1.1).

Let H0 be a given background operator associated with

φ0(x) = φel(x)1l + φam(x)σ1 + (m+ φsc(x))σ3 (6.1)

and suppose that E is a boundary point of the essential spectrum of H0 (which
is not an accumulation point of eigenvalues). Then we want to know when a
perturbation

φ1(x) = (φel(x)+φ̃el(x))1l+(φam(x)+φ̃am(x))σ1+(m+φsc(x)+φ̃sc(x))σ3 (6.2)

gives rise to an infinite number of eigenvalues accumulating at E. By The-
orem 3.7(ii), this question reduces to the question of when a given operator
τ1 − E is relatively oscillatory with respect to τ0 − E. That is, we have to
investigate if the difference of Prüfer angles ∆1,0 = θ1 − θ0 is bounded or not.

Hence the first step is to derive an ordinary differential equation for ∆1,0. While
this can easily be done, the result turns out to be not very effective for our
purpose. However, since the number of weighted sign flips #(c,d)(u0, u1) is all
we are eventually interested in, any other Prüfer angle which gives the same
result will be as good:

Definition 6.1.
We will call a continuous function ψ a Prüfer angle for the Wronskian W (u0, u1),
if #(c,d)(u0, u1) = dψ(d)/πe − bψ(c)/πc − 1 for any c, d ∈ (a, b).

Hence we will try to find a more effective Prüfer angle ψ than ∆1,0 for the
Wronskian of two solutions.
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Notation 6.2.
For a function A : R→ R we will denote lim infx→∞A(x) by A− and
lim supx→∞A(x) by A+.

In the following theorem we denote the Dirac operator associated with (6.1) by
τ0 and the Dirac operator associated with (6.2) by τ1.

Theorem 6.3.
Let a ∈ R and b =∞. Assume that

φ̃sc(x) ∼ φ̂sc
x2
, φ̃am(x) ∼ φ̂am

x2
, φ̃el(x) ∼ φ̂el

x2
, (x→∞), (6.3)

with constants φ̂sc, φ̂am, φ̂el ∈ R.
Let E be a boundary point of the essential spectrum such that there is a solu-

tion u of the unperturbed Dirac equation τ0u = Eu satisfying

‖u‖ = O(1) and ‖u‖−1 = O(1). (6.4)

Let ` > 0, then we define

A(x) :=− 2

`

∫ `+x

`

〈((m+ φsc(t))σ3 + φam(t)σ1)u(t), u(t)〉
‖u(t)‖4

dt, (6.5)

B(x) :=
1

`

∫ `+x

`

〈u(t), φ̂u(t)〉dt,

where φ̂ := φ̂el1l + φ̂amσ1 + φ̂scσ3.
Then τ0 − E is relatively non-oscillatory with respect to τ1 − E at ∞ if

(i) 0 < A− ≤ A+ <∞ and 4A+B+ < 1 or

(i)’ −∞ < A− ≤ A+ < 0 and 4A−B− < 1,

and relatively oscillatory if

(ii) 0 < A− ≤ A+ <∞ and 4A−B− > 1 or

(ii)’ −∞ < A− ≤ A+ < 0 and 4A+B+ > 1.

The special case of periodic Dirac operators is treated by Karl Michael Schmidt
in [12]. In this case we can choose the (anti-)periodic solution for u which clearly
satisfies (6.4) and for ` the period length which implies that A(x) and B(x) are
constant functions.

The proof will be given at the end of the chapter. Firstly we state the following
Lemmata.

Notation 6.4.
Let ` > 0. We denote by

g(x) =
1

`

∫ x+`

x

g(t)dt (6.6)

the average of g over an interval of length `.
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Lemma 6.5 ([7, Lem. 5.3]).
Let ϕ obey the equation

ϕ′(x) = ρ(x)f(x) + o(ρ(x)), x ∈ (a,∞), (6.7)

where f(x) is bounded. If

1

`

∫ `

0

|ρ(x+ t)− ρ(x)| dt = o(ρ(x)) (6.8)

then
ϕ′(x) = ρ(x)f(x) + o(ρ(x)). (6.9)

Moreover, suppose ρ(x) = o(1). If f(x) = A(x)g(ϕ(x)), where A(x) is bounded
and g(x) is bounded and Lipschitz continuous, then

f(x) = A(x)g(ϕ) + o(1). (6.10)

Proof. To show the first statement observe

ϕ′(x) =
ϕ(x+ `)− ϕ(x)

`
=

1

`

∫ x+`

x

ρ(t)f(t)dt+ o(ρ(x))

= ρ(x)f(x) +
1

`

∫ x+`

x

(ρ(t)− ρ(x))f(t)dt+ o(ρ(x)).

Now the first claim follows from (6.8) since f is bounded. Note that (6.8) implies
that the o(ρ) property is preserved under averaging.

To see the second, we use

f(x) =
1

`

∫ x+`

x

A(t)g(ϕ(t))dt

= A(x)g(ϕ(x)) +
1

`

∫ x+`

x

A(t)(g(ϕ(t))− g(ϕ(x)))dt.

Since g is Lipschitz we can use the mean value theorem together with

|ϕ(x+ t))− ϕ(x)| ≤ C sup
0≤s≤`

ρ(x+ s)

to finish the proof.

Condition (6.8) is a strong version of saying that ρ(x) = ρ(x)(1 + o(1)) (it
is equivalent to the latter if ρ is monotone). It will be typically fulfilled if ρ
decreases (or increases) polynomially (but not exponentially). For example, the

condition holds if supt∈[0,1]
ρ′(x+t)
ρ(x) → 0.

Corollary 6.6 ([7, Cor. 5.4]).
Let ϕ obey the equation

ϕ′(x) = ρ(x)

(
A(x) sin2(ϕ(x))+sin(ϕ(x)) cos(ϕ(x))+B(x) cos2(ϕ(x))

)
+o(ρ(x))

(6.11)
with A,B bounded functions and assume that ρ = o(1) satisfies (6.8).
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Then the averaged function ϕ obeys the equation

ϕ′(x) = ρ(x)

(
A(x) sin2(ϕ(x))+sin(ϕ(x)) cos(ϕ(x))+B(x) cos2(ϕ(x))

)
+o(ρ(x)).

(6.12)

Lemma 6.7 ([7, Lem. 5.1]).
Let A,B ∈ R, a > 0 and ϕ : (a,∞)→ R. The equation

ϕ′(x) =
1

x

(
A sin2(ϕ(x))+cos(ϕ(x)) sin(ϕ(x))+B cos2(ϕ(x))

)
+o

(
1

x

)
(6.13)

has only unbounded solutions at ∞ if 4AB > 1 and only bounded solutions if
4AB < 1.

Proof. By a straightforward computation we have

A sin2(ϕ)+sin(ϕ) cos(ϕ)+B cos2(ϕ) =
A+B

2
+

√
1 + (A−B)2

2
cos(2(ϕ−ϕ0)).

for some constant ϕ0 = ϕ0(A,B). Hence ψ(x) = ϕ(x)− ϕ0 satisfies

ψ′(x) = ρ(x)

(
A+B

2
+

√
1 + (A−B)2

2
cos(2ψ(x))

)
+ o(ρ(x)) (6.14)

If 4AB < 1, we have |A + B| <
√

1 + (A−B)2 from which it follows that the
right-hand side of our differential equation is strictly negative for ψ(x) (mod π)
close to π/2 and strictly positive if ψ(x) (mod π) close to 0. Hence any solution
remains in such a strip.

If 4AB > 1, we have |A+B| >
√

1 + (A−B)2 and thus the right-hand side
is always positive, ψ′(x) ≥ Cρ(x), if A,B > 0 and always negative, ψ′(x) ≤
−Cρ(x), if A,B < 0. Since ρ is not integrable by assumption, ψ is unbounded.

In order to derive the asymptotics, rewrite (6.14) as

ψ′(x) = ρ(x)

(
C +D

2
cos2(ψ(x)) +

C −D
2

sin2(ψ(x))

)
+ o(ρ(x)),

where C = A+B and D =
√

1 + (A−B)2. Now, introduce

ψ̃(x) = arctan

(√
C −D
C +D

tan(ψ(x))

)

and observe |ψ − ψ̃| < π. Moreover,

ψ̃′(x) =
ρ(x)

2
sgn(C +D)

√
C2 −D2 + o(ρ(x)).

Hence the claim follows since by assumption 4AB > 1, which implies sgn(C +
D) = sgn(A).
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Corollary 6.8 ([7, Cor. 5.2]).
Let a > 0 and ϕ : (a,∞) → R. Suppose 0 < A− ≤ A+ < ∞ and −∞ < B− ≤
B+ <∞. All solutions of the equation

ϕ′(x) =
1

x

(
A(x) sin2(ϕ(x)) + cos(ϕ(x)) sin(ϕ(x)) +B(x) cos2(ϕ(x))

)
+ o

(
1

x

)
(6.15)

are unbounded at ∞ if

4A−B− > 1 (6.16)

and bounded if

4A+B+ < 1 (6.17)

Proof. If 4A−B− > 1, there is a ε > 0 such that (A−− ε)(B−− ε) > 1. Choose
ã > a such that A(x) ≥ A− − ε and B(x) ≥ B− − ε for x ∈ (ã,∞) holds. The
solution ϕ−(x) of

ϕ′−(x) =
1

x

(
(A− − ε) sin2(ϕ−(x)) + cos(ϕ−(x)) sin(ϕ−(x))+

(B− − ε)) cos2(ϕ−(x))

)
+ o

(
1

x

)
with ϕ−(ã) < ϕ(a), is an unbounded subsolution of ϕ. Hence by [20, Lemma
1.1], ϕ(x) ≥ ϕ−(x) for x ≥ ã. So ϕ(x) is unbounded.

If 4A+B+ < 1, then there is a ε > 0 such that (A+ +ε)(B+ +ε) < 1. Choose
ã > a such that A(x) ≤ A+ + ε and B(x) ≤ B+ + ε for x ∈ (ã,∞). Now the
solution ϕ+(x) of

ϕ′+(x) =
1

x

(
(A+ + ε) sin2(ϕ+(x)) + cos(ϕ+(x)) sin(ϕ+(x))+

(B+ + ε)) cos2(ϕ+(x))

)
+ o

(
1

x

)
with ϕ+(ã) > ϕ(a), is a bounded supersolution of ϕ(x). Hence ϕ(x) ≤ ϕ+(x) ≤
C+ for x ≥ ã. So ϕ(x) is bounded from above.

Similary, there are ε > 0 and ã > a such that A(x) ≥ A−− ε, B(x) ≥ B−− ε
for x ≥ ã and (A− − ε)︸ ︷︷ ︸

>0

(B− − ε)︸ ︷︷ ︸
>0

≤ A−B− ≤ A+B+ < 1,

if B− > 0 (otherwise trivial). So we can find a bounded subsolution ϕ−(x) with
ϕ(x) ≥ ϕ−(x) ≥ C− for x ≥ ã. So ϕ(x) remains bounded from below.

Remark 6.9.
The case A+ < 0 can be reduced to A− > 0 by the transformation
(ϕ(x), A(x), B(x)) 7→ (−ϕ(x),−A(x),−B(x)).

Now we turn to the proof of our main theorem in this chapter.

Proof of Theorem 6.3. Let u be a R2-valued solution of the unperturbed Dirac
system with spectral parameter E0 and v given by Lemma 1.5. Furthermore, let
w be a R2-valued solution of the perturbed system. Then, denoting the PrŸfer

31



Chapter 6. Relative oscillation criteria

angles of u, v and w by θ1, θ2 and θ and by ρ1, ρ2 and ρ the corresponding
PrŸfer radii.

Trough the ansatz w(x) =: a(u(x) sin(γ(x))− v(x) cos(γ(x))), i.e.

ρ

(
sin(θ(x))
cos(θ(x)))

)
=:

(
ρ1 sin(θ1(x)) ρ2 sin(θ2(x))
ρ1 cos(θ1(x)) ρ2 cos(θ2(x))

)(
a sin(γ(x))
−a cos(γ(x))

)
we find(

ρ(x) sin(θ(x)) ρ1(x) sin(θ1(x))
ρ(x) cos(θ(x)) ρ1(x) cos(θ1(x))

)
=(

ρ1(x) sin(θ1(x)) ρ2(x) sin(θ2(x))
ρ1(x) cos(θ1(x)) ρ2(x) cos(θ2(x))

)(
a sin(γ(x)) 1
−a cos(γ(x)) 0

)
.

Taking determinants showsWx(w, u) = a cos(θ(x)). Similarly we obtainWx(w, v) =
a sin(θ(x)). We follow

a

(
sin(γ(x))
− cos(γ(x))

)
= ρ(x)

(
−ρ2(x) sin(θ(x)− θ2(x))
ρ1(x) sin(θ(x)− θ1(x))

)
.

Here γ is the PrŸfer angle for the Wronskian. Through further calculation we
find

tan(γ(x)) =
ρ2(x)

ρ1(x)
· sin(θ(x)− θ2(x))

sin(θ(x)− θ1(x))
=

ρ2(x)

ρ1(x)
sin(θ2(x)− θ1(x))

cos(θ(x)− θ2(x) + π
2 )

sin(θ(x)− θ1(x)) sin(θ2(x)− θ1(x))
=

ρ2(x)

ρ1(x)
sin(θ2(x)− θ1(x))

cos(θ(x)− θ1(x) + π
2 − θ2(x) + θ1(x))

cos(θ(x)− θ1(x) + π
2 ) sin(θ2(x)− θ1(x))

=

ρ2(x)

ρ1(x)
sin(θ2(x)− θ1(x))

(
cos(θ2(x)− θ1(x)) cos(θ(x)− θ1(x) + π

2 )

cos(θ(x)− θ1(x) + π
2 ) sin(θ2(x)− θ1(x))

+

sin(θ(x)− θ1(x) + π
2 ) sin(θ2(x)− θ1(x))

cos(θ(x)− θ1(x) + π
2 ) sin(θ2(x)− θ1(x))

)
=

ρ2(x)

ρ1(x)
sin(θ2(x)− θ1(x))

(
tan

(
θ(x)− θ1(x) +

π

2

)
+ cot(θ2(x)− θ1(x))

)
.

As the Wronskian W (u, v) = −ρ1ρ2 sin(θ2 − θ1) = 1, and thus cot(θ2 − θ1) is
locally bounded

θ(x) = θ1(x) + γ(x) +O(1), (x→∞).

Therefore (6.2) is relatively oscillatory at∞ if |γ| tends to∞, and it is relatively
non-oscillatory is γ remains bounded.

A straightforward calculation shows that

γ′(x) = 〈u(x) sin(γ(x))− v(x) cos(γ(x)), φ̃(x)(u(x) sin(γ(x))− v(x) cos(γ(x)))〉.

Expressing v in terms of u according to Lemma 1.5 and applying the Kepler
transformation

32



Chapter 6. Relative oscillation criteria

ϕ(x) = arctan

(
1

x

(
tan(γ(x))− 2

∫ x

a

〈((m+ φsc(t))σ3 + φam(t)σ1)u(t), u(t)〉
‖u(t)‖4

dt

))
,

we obtain

ϕ′(x) =− 1

x
sin(ϕ(x)) cos(ϕ(x))−

2

x

〈((m+ φsc(x))σ3 + φam(x)σ1)u(x), u(x)〉
‖u(x)‖4

cos2(ϕ(x))+

cos2(ϕ(x))

x

〈
u(x)x tan(ϕ(x))− iσ2

u(x)

‖u(x)‖2
,

(φ̃sc(x)σ3 + φ̃am(x)σ1 + φ̃el(x))

(
u(x)x tan(ϕ(x))− iσ2

u(x)

‖u(x)‖2

)〉
=

1

x

(
A(x) cos2(ϕ(x))− sin(ϕ(x)) cos(ϕ(x)) + B(x) sin2(ϕ(x))

)
+

Q(x)

x
sin2(ϕ(x)) +O

(
1

x2

)
, (x→∞),

where

A(x) := −2
(〈(m+ φsc(x))σ3 + φam(x)σ1)u(x), u(x)〉

‖u(x)‖4
and

B(x) := 〈u(x), φ̂(x)u(x)〉

are locally integrable and

Q(x) := 〈u(x), (φ̃(x)x2 − φ̂)u(x)〉 = o(1), (x→∞).

Introducing the averages A := Ā and B := B̄, the claim now follows by applying
Corollary 6.6 and Corollary 6.8.
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Appendix A

Krein’s Spectral Shift

This appendix is adopted from [8, Sec. 8] apart from only a few slight modifi-
cations.

In what follows we collect some facts on Krein’s1 spectral shift function which
are of relevance to us. Most results are taken from [29] (see also [13] for an easy
introduction). For historical purposes also see the paper by Krein [6].

Definition A.1.
Two operators H0 and H1 are called resolvent comparable, if

RH1
(z)−RH0

(z) (A.1)

is trace class for one z ∈ ρ(H1) ∩ ρ(H0). By the first resolvent identity (1.20)
then (A.1) holds for all z ∈ ρ(H1) ∩ ρ(H0).

Theorem A.2 (Krein [6]).
Let H1 and H0 be two resolvent comparable self-adjoint operators, then there
exists a function

ξ(λ,H1, H0) ∈ L1(R, (λ2 + 1)−1dλ) (A.2)

such that

tr(f(H1)− f(H0)) =

∫ ∞
−∞

ξ(λ,H1, H0)f ′(λ)dλ (A.3)

for every smooth function f with compact support.

Remark A.3.
Equation (A.3) holds in fact for a much larger class of functions f . See [29,
Thm. 8.7.1] for this and a proof of the last theorem.

The function ξ(λ) = ξ(λ,H1, H0) is called Krein’s spectral shift function and is
unique up to an additive constant. Moreover, ξ(λ) is constant on every interval
(λ0, λ1) ⊂ ρ(H0) ∩ ρ(H1). Hence, if dim RanP(λ0,λ1)(Hj) < ∞, j = 0, 1, then
ξ(λ) is a step function and

dim RanP(λ0,λ1)(H1)− dim RanP(λ0,λ1)(H0) = lim
ε↓0

(
ξ(λ1 − ε)− ξ(λ0 + ε)

)
.

(A.4)

1Mark Grigorjewitsch Krein (1907–1989)
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Chapter A. Krein’s Spectral Shift

This formula explains the name spectral shift function.

Before investigating further the properties of the SSF, we will recall a few things
about trace ideals (see for example [14]). First, for 1 ≤ p <∞ denote by J p the
Schatten p-class, and by ‖.‖J p its norm. We will use ‖.‖ for the usual operator
norm. Using ‖A‖J p = ∞ if A /∈ J p, we have the following inequalities for all
operators:

‖AB‖J p ≤ ‖A‖‖B‖J p , ‖AB‖J 1 ≤ ‖A‖J 2‖B‖J 2 . (A.5)

Furthermore, we will use the notation of J p-converges to denote convergence in
the respective ‖.‖J p -norm.

The following result from [4, Thm. IV.11.3] will be needed.

Lemma A.4 ([8, Lem. 8.2]).

Let p > 0, A ∈ J p, Tn
s−→ T , Sn

s−→ S be sequences of strongly convergent
bounded linear operators in some separable Hilbert space, then

‖TnAS∗n − TAS∗‖J p → 0. (A.6)

We will also need the following continuity result for ξ. It will also allow us to
fix the unknown constant.

Lemma A.5 ([8, Lem. 8.3]).
Suppose Hε, ε ∈ [0, 1], is a family of self-adjoint operators, which is continuous
in the metric

ρ(A,B) = ‖RA(z0)−RB(z0)‖J 1 , (A.7)

for some fixed z0 ∈ C\R and abbreviate ξε = ξ(Hε, H0). Then there exists a
unique choice of ξε such that ε 7→ ξε is a continuous map [0, 1] → L1(R, (λ2 +
1)−1dλ) with ξ0 = 0.

If Hε ≥ λ0 is bounded from below, we can also allow z = λ ∈ (−∞, λ0).

Proof. The first statement can be found in [29, Lem. 8.7.5]. To see the second
statement, let λ < λ0 and |λ − z| < λ0 − λ for some z ∈ C\R. Abbreviate
Rε(z) = RHε(z). Now using the first resolvent identity (1.20) gives

‖Rε(z)−Rε′(z)‖J 1 ≤‖Rε(λ)−Rε′(λ)‖J 1

+ |z − λ|‖Rε(z)‖‖Rε(λ)−Rε′(λ)‖J 1

+ |z − λ|‖Rε′(λ)‖‖Rε(z)−Rε′(z)‖J 1

and our conditions imply

|z − λ|‖Rε′(λ)‖ ≤ |z − λ|
λ0 − λ

< 1

and thus

‖Rε(z)−Rε′(z)‖J 1 ≤
1 + |z−λ|

| Im(z)|

1− |z−λ|
|λ0−λ|

‖Rε(λ)−Rε′(λ)‖J 1 ,

from which the statement follows.
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Definition A.6.
A family {Φ(t), t ∈ [0,∞]}, of operators on a Banach space B is called strongly
continuous if it fulfills

∀ x ∈ B : lim
t→t0

Φ(t)x = Φ(t0)x.

Our final aim is to find some conditions which allow us to verify the assumptions
of this lemma. To do this, we derive some properties of relatively bounded oper-
ators multiplied by strongly continuous families of operators. The key example
for these operators will be multiplication operators by characteristic functions
strongly converging to the identity operator. Now we take Hypotheses 5.6 into
our considerations as announced in Chapter 5.

Lemma A.7 ([8, Lem. 8.5]).
Let ε 3 [0, 1] → Kε be a strongly continuous family of bounded self-adjoint
operators which commute with V and 0 = K0 ≤ Kε ≤ K1 = 1l.
Assume Hypothesis 5.6. Then

Hε = H0 +KεV (A.8)

are self-adjoint operators such that the assumptions of Lemma A.5 hold.

Proof. We will abbreviate Vε = KεV and Rε(z) = RHε
(z).

By the Kato2–Rellich3 Theorem ([10, Thm. X.12]) Hε is well-defined and
self-adjoint. Moreover, there is a z with Im(z) 6= 0 such that ‖V R0(z)‖ ≤ a <
1. Hence ‖VεR0(z)‖ ≤ a and a straightforward calculation using the second
resolvent identity 1.21,

V Rε(z) = V R0(z)(1 + VεR0(z))−1,

shows that
‖V Rε(z)‖ ≤

a

1− a
.

Furthermore, again using the second resolvent identity, we have

|V |1/2Rε(z) = |V |1/2R0(z)(1− VεRε(z)),

which shows that

‖|V |1/2Rε(z)‖J2
≤ 1

1− a
‖|V |1/2R0(z)‖J2

.

To show J 1-continuity at some fixed ε ∈ [0, 1] observe

Rε′(z)−Rε(z) = Rε′(z)|V |1/2
(

(Kε′ −Kε) sgn(V )|V |1/2Rε
)
,

where the first term Rε′(z)|V |1/2 ⊆ (|V |1/2Rε′(z∗))∗ is uniformly J 2-bounded
in ε′ by our previous argument and the second term J 2-converges to 0 as ε′ to
ε by Lemma A.4.

2Tosio Kato (1917–1999)
3Franz Rellich (1906–1955)
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Notation

ACloc(I,C2) the set of all functions I → C2,
which are locally absolutely continuous

|A| cf. Definition 5.2
A∗ the adjoint of A
χM (x) the characteristic function of the set M
C the complex numbers
C(X,Y ) the continuous functions f : X → Y
z∗ the complex conjugate of z
D(τ) the domain of τ
E<, E> the eigenvalues of a matrix of size two
f ′ the derivative of f in x
#(c,d)(u0, u1) the weighted sign flips of the Wronskian

Wx(u0, u1) inside of (c, d)
G(z, x, y) the Green Function, cf. Notation 1.4
idB the identity operator on B
N the positive integers
N0 the non-negative integers
⊕ orthogonal sum of linear spaces or operators

#(u0, u1), #(u0, u1)
and #(u0, u1) cf. Notation 3.1
b c, d e the Gaussian brackets
1l the identity matrix of size two
L1 the space of all integrable functions
L1
loc(I,C2) the set of all functions I → C2,

which are locally integrable
L2 the space of all square integrable functions
L(B) the linear and bounded operators from B to itself
‖B‖ the operator norm of an operator B
ψ±(λ, x) the solutions of τu = λu, λ ∈ C, satisfying

the boundary conditions, cf. Notation 1.7
⊗ cf. Notation 1.12
PH the projection-valued measure of H
R the real numbers
RH(z) the resolvent of H
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ρ(A) the resolvent set of A
J p the Schatten-p-class
sgn(x) the sign of x ∈ R
σess(A) the essential spectrum of A
σ1, σ2, σ3 the Pauli matrices
span(V ) the linear span of a set V of vectors
θu the Prüfer angle of u
tr(A) the trace of an operator A
W (u, v) the Wronskian
∼ asymptotic similar
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