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Introduction

1 Introduction

Until 20 years ago, with the first discovery of a planet in orbit around an
extrasolar star, only the planets of our own system were known. The next
cornerstone was the discovery of the first planet around a solar type star,
51 Peg. Since than, the number of known planets has increased drastically,
more than 400 planets are known today. With these discoveries, challenges
were posed onto our understanding of solar system formation. New classes
of planets emerged to describe types far from what we were used to in our
solar system.

Due to observational restrictions, the first years especially saw the discov-
ery of planets of Jupiter mass or above, with the exception of planets around
pulsars. However, this limit is constantly pushed towards lower masses, the
goal being the discovery of planets with masses like Earth, especially in the
habitable zone around a solar type star. This is an important step towards
identifying the likelihood of appearance of the starting condition of life, at
least as known from our home planet. The overall number of planets be-
low one Jupiter mass today is more than 150. Of these, more than 20 have
masses ten times the mass of Earth or below. The current boundaries are
situated at about five Earth masses, around stars of type K. This limit will
be reduced even further by current and future observational programmes and
space missions.

In this thesis, the coexistence of low mass planets with more massive
companions in given mulitplanetary extrasolar systems are investigated. The
basic data of the systems is thereby taken from observations. Multiplanetary
systems themselves are interesting, since additional bodies are exposed to
perturbations by more than one object. Also, a lot data of systems with
more than one planet is available, and, at least with the planet formation
models used, it is likely that many systems have more than just one planet.

The aim is to investigate regions in the systems where stability of these
planets is given for a long time and thus providing information whether
Earth-mass objects could endure the perturbations for a long time. The two
systems selected for the testing were investigated only little before, thus the
general stability of test bodies was computed as well. Also, the two were
chosen to be quite different, in order to provide a better study of different
initial conditions. The methods used are numerical as well as analytical tools
that provide information of stability, namely n-body integrations, and secular
perturbation theory.
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The systems

2 The systems

As mentioned, the aim in this thesis is the investigation of the stability
of planets in two extrasolar planetary systems, both having more than one
discovered planet. Namely, these systems are HD 60532 and HD 40307,
both not well studied, especially the former. HD 60532 is situated in the
constellation Puppis, harbouring two super Jupiter mass planets, while HD
40307 is located in Pictor, and has three super Earths or mini Neptunes
orbiting. All planets are close to the host star, especially in the case of
HD 40307. The following two subsections give a quick overview of what is
published about the systems.

2.1 HD 60532

HD 60532 is a star with a mass exceeding Sun’s mass, and therefore has a
higher surface temperature as well, but curiously a lower metallicity. It is
also quite young with only about half the age of the Sun. The planets in the
system are both more massive than Jupiter, and close to the star, as men-
tioned above. The actual orientation of the planets inclinations with respect
to the star’s equator are unknown.

The two planets orbiting HD 60532 were originally found in 2008 with the
HARPS search for southern extra-solar planets, which is a survey among G -
K stars in the southern sky with the HARPS spectrograph at the 3.6 m ESO
telescope at La Silla. The selected group of stars is based on observations
of a sample starting in the year 1998 with the CORALIE spectrograph at
the EULER telescope in La Silla. The stars investigated with HARPS are
all rather inactive, making them interesting also for search of low mass plan-
ets, since the radial velocity changes due to the planet’s motion is very low,
and activity of the star is hindering the detection. Data was taken between
February 2006 and May 2008, with a total of 147 spectra. Orbital solutions
of these radial velocity measurements with a two Keplarian fit gave minimum
masses m sin i of 1.03 and 2.46 MJ . A possible 3 : 1 resonance was already
suggested (Desort 2008).

In 2009, another fit was used for the RV data. The planets were assumed
to be coplanar, and the inclination with respect to the plane of the sky was
included as a free parameter. The best stable fit gave an i of about 20°. Also,
the new fit provided a 3 : 1 resonance as well, and the stability given is for
at least Gyr time scale, as long as the inclination is in the range 15°≤ 90°
(Laskar & Correia 2009).
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2.1 HD 60532 The systems

The following basic data was given about the system (Schneider 2009 and
Süli et al. 2009). Note that the inclination is given with respect to the plane
of the sky.

HD 60532 - Star

Distance [pc] 25.7
Spectral Type F6 IV-V

Apparent Magnitude V 4.45
Mass [M�] 1.44(+0.03

−0.1 )
Age [Gyr] 2.7(±0.1)

Effective Temperature [K] 6095
Right Asc. Coord. (Eq. 2000) 07 34 03

Decl. Coord. (Eq. 2000) -22 17 46

HD 60532 - Planet b c

Discovered in 2008 2008
Mass [MJ ] 3.15 7.46

Semi-major axis [AU] 0.77 1.58
Orbital period [d] 201.83 (± 0.14) 607.06 (± 2.1)

Eccentricity 0.278 (± 0.006) 0.038 (± 0.008)
ω [°] 352.83 (± 1.05) 119.49(± 9.14)

Tperi (JD 2.400.000) 54000 54000
Inclination [°] ∼ 20 ∼ 20
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The systems 2.2 HD 40307

2.2 HD 40307

HD 40307 is a star with a mass smaller than Sun’s. The triple planetary
system planets are also very low mass compared with the other known ex-
trasolar planets, with HD 40307b the planet with the lowest mass around a
solar type star observed with the radial velocity method at the time of its
detection. Interestingly, the orbits are circular, or at least only very slightly
eccentric. It is still discussed whether the planets are super Earths or mini
Neptunes.

HD 40307 itself is a rather low mass star of type K2.5 V, with a mass
of 0.77 ± 0.05 M�. It is also rather poor in metallicity, with [Fe/H] =
−0.31±0.03. The attached planets b, c and d were detected with HARPS in
a total of 135 measurement. The rms of the radial velocity curve is 2.94 ms−1,
which is well above all noise. The planets masses range from roughly 5 to 10
M⊕. The periods are all less than 30 days (Mayor, Udry et al. 2009). Ratios
of the periodsPc

Pb
' 2 and Pc

Pb
' 2, which would allow Laplace resonances. The

data obtained is the following (Schneider 2009b and Holmberg 2007):

HD 40307 - Star

Distance [pc] 12.8 (±1)
Spectral Type K2.5 V

Apparent Magnitude V 7.17
Apparent Magnitude H 4.97
Apparent Magnitude J 5.41
Apparent Magnitude K 4.79

Mass [M�] 0.75(+0.03
−0.04)

Effective Temperature [K] 4977 (± 59)
Metallicity [Fe/H] -0.31 (± 0.03)

Right Asc. Coord. (Eq. 2000) 05 54 04
Decl. Coord. (Eq. 2000) -60 01 24

HD 40307 - Planet b c d

Discovered in 2008 2008 2008
Mass [MJ ] 0.0132 0.0216 0.0288

Semi-major axis [AU] 0.047 0.081 0.134
Orbital period [d] 4.31 (± 0.0006) 9.62 (± 0.02) 20.46 (± 0.01)

Eccentricity 0 0 0
TmaxV R (JD 2.400.000) 54562.77 (± 0.08) 54551.53 (± 0.15) 54532.42 (± 0.2)
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2.2 HD 40307 The systems

Barnes et al. (2009) investigated whether the planets of this system are
gaseous or rocky, as well as dynamical properties. According to his paper,
the initial zero value of the eccentricities would grow and interaction would
keep them above slightly zero. If they were on the other hand non zero in the
beginning, interaction would cause them to remain below 0.1 or even lower,
but the lower the momentarily eccentricities, the older the system, especially
for rocky planets. Eccentricity could also not have placed planet b into a
2 : 1 resonance with c, because this would lead to instability of the whole
system. This diminishes the chance of a Laplace resonance of 1 : 2 : 4 in the
system, which was also suggested unlikely by Mayor (2009).

With an assumption for the planets’ radii, also the heat fluxes were cal-
culated to be between Earth’s and Io’s. However, short term variations of
the eccentricities in the non zero starting case would lead to heat fluxes of
planet b reaching several times that of Io. In contrast, minimum eccentrici-
ties would provide values much lower.

For the planets to be rocky, formation of at least one planet had to take
place inside the 2 : 1 resonance and with moderate eccentricity, which would
require an unlikely amount of mass in the protoplanetary disk, even more
since HD 40307 is a rather low metallicity star, or the system must be young.
Considering the planets to be mini Neptunes would simplify the formation
and evolution, since the resonance crossing would not have been necessary,
nor is the tidal heat as high as in rocky planets. Formation could have taken
place further outside with the planets migrating inwards subsequently. In this
case, constrains must be made to the mass of planet b, since a too high mass
would again lead to resonance, causing highly inclined orbits. Yet another
possibility is that planet b started as mini Neptune and lost its atmosphere
due to evaporation, leaving the core in its current place. Evaporation could
take place on a Gyr time scale.

This is what is already known of the systems, and forms the basic paramters
of the numerical and analytical tests performed by the author during the
course of this master thesis, presented in the next sections.
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Stability analysis

3 Stability analysis

The analysis of the stability of the Earth-like planets were performed by
numerical Lie integration. This integrator was developed by A. Hanslmeier
and R. Dvorak, based on work done by W. Gröbner. The advantage of
this integrator is that the stepsize can be adjusted easily, making it a very
fast integrator, but with a high accuracy when needed. The accuracy can
also be customised by number of Lie terms used. For more information see
Hanslmeier & Dvorak (1984) and Dvorak et al. (2005).

The usual integration time with the Lie integrator was set with 106 years,
although in some cases a shorter time can occur. This specific time interval
was chosen due to its balance between CPU time usage and information
value, since in this time frame a planet in the position of Mercury would
orbit the sun about 4 · 106 times and a planet with the semi-major axis of
Uranus would still make about 12000 orbits. This counts even more for the
investigated systems, since all the planets have only small semi-major axes,
with HD 60532c having the largest with 1.58 AU. The furthest test bodies
were thus placed at a distance of about 15 AU, giving them about 17000
orbits in the integration time. Note also that the star is considered to be
a point mass object. However, before the test objects, the given systems
themselves had to be analysed.

3.1 HD 60532 - Stability of the massive planets

For the stability test of the HD 60532 planetary system, the two massive
planets were integrated for a period of 107 years. The mutual interaction is
quite significant, which can be seen in the broadening of the planets’ orbits,
with the inner planet having a deviation of around 0.02 AU, the outer about
0.04 AU. The movements of the planets stick to this range continuously for
the whole integration period. Both planets affect each others eccentricity e
as well. Especially the eccentricity of the outer planet is elevated. Although
it changes over a quite broad area between 0.00 and 0.19, it is mainly centred
to the area of 0.09, while planet b’s changes between 0.03 and 0.37, centred
in the area between 0.23 to 0.3. A slight coupling is visible, which will be
discussed in section 4.4. Inclination i of both objects stays the same over
time, as does the longitude of the ascending node Ω, which is expected, since
both planets have the same starting values in both i and Ω. There is a
constant change of the argument of the perihelion ω, and therefore of the
perihelion itself, which covers all the area between 0 and 360 degrees.
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3.1 HD 60532 - Stability of the massive planets Stability analysis

In a test with little differences in initial values of i and Ω of both planets
the results are changed. In this test, the difference in i is one degree, while in
Ω it is 10 degrees, and integration time is longer with 68 million years. Com-
pared to the test above, semi-major axis a, and ω behave the same way as
mentioned above. Big changes are in eccentricity; in the first 8 million years,
both planets show only little variation, but after that, variations increase
fast. The less massive inner planet experiences drastic changes in i, with
values between 3 and 13 degrees. The inner planet is also affected, although
on a smaller scale. The variations range from about zero to five degrees, and
coupling is visible again. The behaviour of Ω is interesting as well. While
in the first 7 million years both planets librate, with planet b again on a
larger scale than planet c, the less massive planet’s Ω starts rotating after
this time and keeps doing that until the end, with only one small pause where
it resumes librating again, at around 15 million years. Planet c on the other
hand keeps librating even after 7 million years, although on a larger scale as
before. At about 18 million years, it starts rotating as well, but soon librates
again. Until the end of the integration Ω keeps changing between rotation
and libration, but for different and varying time intervals.

Another test was performed with similar, but not same initial values as in
the second test. Differences between values however were the same, but with
a shorter integration time of 13 million years. The behaviour in semi-major
axis of both planets is the same as in both other integrations. Differences
already appeared in eccentricity, where the amplitude of the variation of the
eccentricity is much smaller than before, for planet b ∆e is about 0.07, while
for c it is 0.03. Therefore, there is less mutual excitement on both particles.
ω again behaves like in the other simulations and rotates. The two different
initial inclinations are again excited, like in simulation two, but at a much
smaller amplitude. Planet b, starting with an inclination of 1.5° finds this
starting value as lower boundary, the upper being 3.1°. Planet c is varying
between two and 2.5°, the starting value. Therefore, the average value of
both planets is the same, and planet c’s inclination is enclosed by b’s during
the whole integration. All movement seem very regular. Ω, again with both
planets having a difference of 10°, shows the same behaviour as i, with both
planets librating and c again having the smaller amplitude, between 23 and
35°, while b’s is between 5 and 50°. The initial values of both planets roughly
became average values, since b had a starting value of 20° and c 30°. This
test proved to be the most stable of all of the three mentioned, with both
planets showing only little interactions.
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Stability analysis 3.1 HD 60532 - Stability of the massive planets

Additional tests were performed, but all had results similar to the ones
mentioned above. The behaviour of the system seems to have chaotic fea-
tures, since little changes in the tests provided rather significant changes in
the outcome. Still, with the tests mentioned, the system can be considered
stable. Now, with the stability of the planetary system itself given, massless
test bodies can be introduced into the system. A graphical comparison of
the simulations described above is given in Figures 1 and 2.

Figure 1: The behaviour of HD 60532b and c with different initial conditions
in i and Ω. This plot shows the changes of a with time. The three simulations
have different integration times. The colours of the two planets in the same
simulations are similar, i.e. orange and red, green and olive, navy and violet.
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3.2 HD 60532 - Stability analysis of test bodies Stability analysis

Figure 2: Behaviour of e, i, ω and Ω in the three different integrations
described above. Colours are like in Fig 1.

3.2 HD 60532 - Stability analysis of test bodies

In order to investigate the stability of Earth mass planets, massless test bod-
ies were used in the simulations. This can be explained by the mass difference
between Jupiter and Earth, since the later has only little gravitational in-
fluence upon the former, so that it can be considered massless. The test
bodies were distributed in three different areas, inside both massive planets,
between and beyond them.
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Stability analysis 3.2 HD 60532 - Stability analysis of test bodies

Different inclinations for the massless bodies were also tested. Most tests
however were performed with an inclination of zero degrees and 20 degrees.
The reference plane to the different inclinations of the test bodies, i.e. 0°,
5°, 20° and 25°, is again with respect to the plane of the sky. Thus, the test
particles have inclinations of 20°, 15°, 0° and 5° with respect the the orbital
plane of the two massive planets. The other initial conditions used are the
following

� a is varied between about 0.1 and normally 6.0 AU, but in one case out
until 14.0 AU. The step size is unregular.

� e is between 0.0 and 0.1, with a stepsize of 0.01. Sometimes, not all
steps are used. The only exception are the 1:1 mean motion resonances,
where also the eccentricities of the massive planets were inserted.

� ω is always set zero. Exceptions are again the mean motion resonances,
where it is set to the value of the massive planets.

� Ω is also set zero almost all the time. In a few tests, it is set to a value
of ten degrees.

For exact values of a and the wether the whole range of e is covered, see
the tabulars in the appendix. These tabulars also show if a configuration is
stable, and if not, gives the escape time.

3.2.1 Tests with 0° inclination

As mentioned before, the test was divided into three areas. First, tests were
performed with objects in the range of 0.77 to 1.58 AU. In this region of the
system, the massless bodies are perturbed heavily by the two massive bodies,
especially since the eccentricity of the latter are increased such that planet
b can have an maximum aphelion at 1.05 AU and planet c an minimum
perihelion of 1.28 AU, which crosses a lot of possible orbits, and additionally
comes very close to the rest. This is confirmed by the results obtained with
the simulations. Of all the test objects place in this region, none is stable over
the whole period of ten million years. In fact, all test bodies are removed from
the system within 20000 years. The process of ejection begins immediately
with increase of the eccentricity of the test particles until they reach a value
close to one. The results of the integration of the systems are given in the
tabular in the appendix.
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3.2 HD 60532 - Stability analysis of test bodies Stability analysis

The inner section of this testing, i.e. between 0.0 and 0.77 AU, is acting
similar to the part between the planets, especially since the inner planets
has a minimum perihelion of 0.5 AU, which again destabilises a big section.
Stability is therefore only found very close to the central star, although there
exists a region where the stability depends on the eccentricity of the objects.

Generally, the results are that the objects between 0.3 and 0.77 AU are
removed very fast, within the first 1000 to 4000 years. Objects in a distance
of 0.2 to 0.3 AU are stable for a much longer time, between 40000 and 790000
years. Interestingly, in this simulation objects with larger eccentricities are
generally more stable than objects with little to no eccentricity. The planet
with the longest stable phase actually has an eccentricity of 0.1.

Beginning with a semi-major axis of 0.2 AU, planets become stable. The
situation however is reversed to the one in the section between 0.2 and 0.3
AU, since here planets with smaller and no eccentricity are stable. The high-
est stable eccentricity here is 0.6, while 0.0 is the lowest. In the range closer
to the star stability of all planets increases, while the change in position
between the starting point and the endpoint of the planets decreases and
reaches values of almost zero percent at a distance of 0.1233 AU for all given
eccentricities, which were 0.0 to 0.1. The eccentricity is also changed, with
a maximum difference of 0.02 to the starting value and no object on a cir-
cular orbit any more, the smallest eccentricity being 0.01. Additionally, the
objects are on strongly inclined orbits with values up to nearly 40°.

The stimulation process of the inclination is interesting; in the beginning,
all planets are equally excited very fast to a value of almost 40°, followed by a
phase of decrease of inclination to a value below 2°. This process is repeated
continually for the first 100000 years. In the next hundred thousand years,
the differences in inclination between test particles grow, leading to a less
uniformed behaviour. After even more time, the differences between the
particles is about 5 to 10°, so that they are distributed over all inclinations
between zero and forty degrees, even though there is a slight trend towards
higher values. Also, during the whole integration, the bodies constantly cover
all of the before mentioned area, never reaching the boundaries of 0 or 40
degrees.
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Stability analysis 3.2 HD 60532 - Stability analysis of test bodies

In this integration, the argument of the perihelion of the massless bod-
ies, ω, rotates, thus reaching all values between zero and 360 degrees. That
means that the perihelion is constantly changing in a rotating manner with
respect to the node. The longitude of the ascending node, Ω, on the other
hand is doing a libration, with boundaries being about 279 and 90 degrees.
Therefore, the node is always moving in the half circle around the vernal
equinox. The last-mentioned simulation is pictured in Figure 3. The tabular
of the inner region in section 7.1 displays the results of the integrations.

Figure 3: Massless planets at a semi-major axis of 0.1233 AU are given in
multiple colours. The central star is denoted *, and is not to scale. Massive
planet b is ploted in blue, c in green. Units are in AU, integration time is
106 years. The view from Earth is onto the x-y plane from above.

The situation outside both planets, with semi-major axes a larger than
1.58 AU is the reverse situation of the innermost part. Here, the first section
is dominated by the crossing of planet c, which can have a maximum aphelion
of 1.88 AU. Outwards is therefore again a zone of instability reaching to about
4 AU.
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3.2 HD 60532 - Stability analysis of test bodies Stability analysis

In this region of instability, the inner section is ejected very fast, within
the first 5000 years. Starting at distances of about 3 AU, the ejection time in-
creases from 30000 to 200000 years. The first stable planet for an integration
time of 106 years is located at 3.64 AU. This planet has a low eccentricity,
which is oscillating between 0.1 and 0.2, and deviation to initial value in
semi-major axis is lower than 10 percent. Inclinations are excited to 0 to 45°.
Both ω and Ω are librating, thus the massive planets still perturb this test
body heavily. The next test configuration was placed at 3.98 AU, and again
planets were stable for one million years. This time, stable planets have a
higher initial eccentricity, which behaved as above. Changes in a are already
as low as zero percent for the most stable planet, while for the least it is a
bit above 10 percent. At 4.32 AU, only one planet is instable, also Ω is only
librating, between values of 270 and 90°. The same properties are presented
by planets at 4.66 AU.

Finally, all planets are stable for an integration time of 106 years at a
semi-major axis of 5.0 AU. The deviation of these planets to their starting
position is between zero and three degrees. The eccentricity is raised for all
objects, with the most circular having an eccentricity of 0.057 and the most
eccentric having an eccentricity of 0.29. Inclination is varying between zero
and almost 40°, and in the beginning, variations are equal for all the planets
involved. Later on, the phases start to differ, while the amplitudes stay the
same. ω is rotating with the same frequency for all test objects in the begin-
ning, while later, like i, the phases of the different planets change among one
other. Ω is librating between values of 250 and 100 degrees. Interestingly,
the libration is, like with i, in the beginning equal for all test bodies, while
later the phases between them change. Planets at 6 AU act similar, only the
initial eccentricities are preserved better and the phases of the different i, ω
and Ω remain close for a longer time. Also, the oscillation periods are longer.
Figure 4 gives a graphic of this simulation.

Finally, the 1:1 resonance was also investigated for objects with zero ec-
centricity and eccentricities like the massive planets. The planets were situ-
ated in the Lagrangian points L4 and L5. These places are instable as well,
resulting in removal within less than 5000 years.
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Stability analysis 3.2 HD 60532 - Stability analysis of test bodies

Figure 4: Massless planets at a semi-major axis of 6.0 AU are given in several
colours according to their starting eccentricity. The massive planets are
symbolised in green and blue. Units are in AU. Integration time is one
million years.

Concluding, one could see that the tests performed with objects having
an inclination of zero degrees showed the instable sections of the system quite
well. Both massive planets give rise to heavy perturbations in their proximity.
Only the closeness to the central star on the inside, as well as enough distance
on the outside can provide stability for the test objects. The change from
stable to instable orbits is performed faster on the inside than on the outside,
even though some bodies showed much longer stability than other bodies in
the same area. Generally, there are no big differences between initial values
of eccentricity of the test bodies. Instability in this configuration is given
in the section between 0.2 and 3.6 AU, although these are boundaries where
not all bodies remain for the entire integration, so stability for all planets are
given further in and out respectively.
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3.2 HD 60532 - Stability analysis of test bodies Stability analysis

Figure 5: Results of the integrations with zero degree inclination. The left
graph gives an overview of all integrations, with the colour of the points
according to their stability. The right graph gives a closer look to the instable
zone and the borders where stability is again achieved. The mesh gives the
approximate changes in stability. Positions of the massive planets are given
by the blue and green lines.

Figures 5 to 6 give graphical representations of the results. In Fig 5, the
integration time, or, in case of instability, the time of ejection, is pictured.
The colour of the points represents the deviations between initial and final
values in semi-major axis. Note that even though green dots indicate a
change of up to 5 percent, most planets in this category have changes of three
percent or less, and can therefore still be considered very stable. Instability
is definitely given for all planets having a deviation of more than 20 percent.
The blue and green lines mark the positions of the massive planets, while the
grey graph represents the course of the integration or escape time. If, for the
same initial configuration of an object, two calculations were performed with
different integration times, with the shorter one stable, but the longer one
not, both are given. Note also that some tests were run only for 100k or 480k
years. The right graph in Fig 5 focuses on the inner, instable part. Also,
in case of stability at the end, only planets with an integration time of 106

years are represented. The mesh gives the approximate changes in stability.
Colour code of the points is the same as in the picture left. Finally, Fig 6
is a simple log a vs e plot, showing the region of instability. Finally, Table 1
shows the chance of a test particle being stable at a certain semi-major axis.
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Stability analysis 3.2 HD 60532 - Stability analysis of test bodies

Figure 6: Stability chart that gives an overview which initial conditions of a
and e are stable or instable. Colours are like in Fig 5.

Semi-major axis [AU]
< 0.20 0.20 0.27 - 3.30 3.64 3.98 4.32 - 4.66 > 4.66

Lower e (0.00 - 0.05) 100 50 0 17 33 67 100
Higher e (0.06 - 0.10) 100 20 0 0 60 87 100

Table 1: Overview of how many of the test planets in a configuration are
stable, in percent. Higher values mean more stability. The eccentricities are
divided into lower and higher values.

3.2.2 Tests with 5° inclination

In this simulation, the test particles were placed with 5° inclination with
respect to the plane of the sky, thus with 15° with respect to the orbital
plane of both massive planets. The middle section of this configuration, with
objects between 0.77 and 1.58 AU behaves as the one with no inclination.
The escape time is below 5000 years. Again, the eccentricity of all objects
increases until it reaches values of almost one.

The inner section proves to be highly instable as well, down to a semi-
major axis of 0.2 AU. Here, all planets are stable for 106 years, although some
show deviations between initial and final value of 10 to 20 percent. Also, the
eccentricity changes quite drastically. For lower initial values, which is 0.00
to 0.04, the biggest change is from 0.04 to 0.26, while the lowest is from 0.02
to 0.06. For higher initial values, the changes are even higher, with values
between 0.21 to 0.72.
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Figure 7: a, e, i and Ω of two planets at 0.13 AU with an eccentricity of 0.04
in orange, and 0.07 in wine. The massive planets are again given in blue and
green.

Inclinations are increased as well, normally oscillating between 5 to 35
degrees, although in the case of the higher starting eccentricities, they can
reach values of up to 45° at the end of the simulation. There also is a slight
trend towards the higher end of i. ω is rotating, while Ω is librating between
values of 310 and 50°, but for the higher e sample, in the end there seems
to be a transformation from libration to rotation. Moving closer to the host
star, the orbital deviations decrease to values close to zero at distances of
0.13 AU. Here, the eccentricity is also increased at low or high initial values,
while it is almost constant at average. Inclination variates between 5 and 35
degrees. ω rotates again, while Ω librates between 310 and 50°. Of the test
bodies with semi-major axes higher than 0.2, none were left in the systems
after 20000 years. The behaviour of test objects is given by Fig 7.
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Figure 8: This graph gives test planets at two different initial a. The blue
plane in the left graph is the orbital plane of massive planet b, while test
bodies at 0.13 AU are coloured violet and orange. All other colours are
planets at 0.2 AU. Units are again in AU.

Pictures of the inner section are given by Figure 8. In the left, the plane
of massive planet b is pictured as well. Planets with a semi-major axis of
0.13 AU, with initial eccentricities 0.0 and 0.1, are violet and orange, all
other colours represent planets at 0.2 AU.

Planets beyond both massive planets are instable in the first part of the
section, reaching to 4.5 AU, although one planet is also stable at 3.59 AU.
The stable planets at 4.5 AU have deviations of up to five percent of the
starting value. Going out further decreases the deviation, there is however
still a planet with a deviation of four percent at 6.0 AU. For these objects
however, eccentricity stays almost constant over the whole integration period,
with deviations of about 0.01. Inclination is raised to six to 30 degrees.

18



3.2 HD 60532 - Stability analysis of test bodies Stability analysis

Figure 9: a, i, ω and Ω of three planets at 6.0 AU with an eccentricity of 0.00
in orange, 0.05 in wine and 0.10 in purple. The massive planets are again
given in blue and green.

Figure 9 shows three planets at 6.0 AU, with eccentricities of 0.00, 0.05
and 0.10. Here, deviations are almost zero in a, while in e they are very small.
Inclination again varies between 5 and 35 degrees, and all test particles show
the same phase in the beginning, while they later change. The same thing
happens in Ω, where oscillation is limited to the area between 310 and 50°,
and ω, which rotates.

In conclusion, the instability in these tests are between 0.2 and 4.5 AU,
although one planet is again stable at 3.6 AU, thus making this zone the outer
boundary between stability and instability, especially since all planets at 4.5
AU are very stable. This can be seen in the local maxima in right Figure 10.
The inner change between stable and instable section is again steeper than
the outer. The following figures, 10 and 11 again give a graphical overview.
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Figure 10: Results of the integrations with five degrees inclination. The left
picture gives an overview of the stability and escape times of all integrations,
while the right one presents a closer look onto the instable zone and the
borders of stability.

The first figure gives a good impression of the variations of stability at
the outer border. The wire frame in Fig 10 again gives the approximate
changes between the sections. Finally, Fig 11 shows stability in a log a vs e
plot. Table 2 again gives the possibility of stability in relation to a and e.
The colour code again represents the deviations in a.

Figure 11: Stability chart.

20



3.2 HD 60532 - Stability analysis of test bodies Stability analysis

Semi-major axis [AU]
<= 0.20 0.33 - 3.12 3.58 - 4.06 > 4.06

Lower e (0.00 - 0.05) 100 0 8 100
Higher e (0.06 - 0.10) 100 0 0 100

Table 2: Overview of how many of the test planets in a configuration are
stable, in percent. Higher values mean more stability. The eccentricities are
divided into lower and higher values.

3.2.3 Tests with 20° inclination

In this case, the test planets are moving in the same plane as both massive
planets, which makes it especially interesting. The section between both
planets shows no stability again, with all objects gone after 5000 years.

More stability than the middle section is again given in the inner section.
Here, again at a value of 0.2 AU, bodies with higher eccentricity are stable
for the whole integration period of 106 years, with only little deviations of
semi-major axis. The eccentricities of the stable planets are increased little
in most cases, and are oscillating in two stripes; one oscillating between 0.1
and 0.2, the other between 0.05 and 0.1. Inclination is constant, and so is Ω.
ω rotates again. Going to even smaller values of a, the change in semi-major
axis is almost zero, as is in inclinations. Eccentricities oscillate in clearly
definable boundaries, with each test particle’s e separated from the others.
ω and Ω behave just like above. The situation of three bodies with eccen-
tricities of 0.03, 0.07 and 0.09 are given in Figure 12.

First stable planets in the outer section appear at 3.6 AU. The deviations
in semi-major axis of the stable planets after the 106 year integration are
four and seven percent, and eccentricities oscillate between 0.05 and 0.2.
Inclinations are constant. ω is rotating, Ω is librating in a very small band.
At 3.98 AU, all planets are instable again. This distance is a 4:1 mean motion
resonance of planet c and the test objects. All planets except one are stable
at 4.6199 AU, which is a resonance as well, namely the 5:1 with planet c.
Planets in mean motion resonances will be discussed more detailed below.
At 5.0 AU, all planets are stable, although changes in distance to the host
star are up to 16 percent, also eccentricity is changed to values between 0.05
and 0.4. Inclination is constant, so is Ω. ω rotates, with all particles having
slight differences in phase.
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Figure 12: Zoomed on the inner section showing three planets with an a of
0.1233 AU, and different eccentricities. Massive plant b’s orbit is given in
blue. Units in AU.

At 6.0 AU, the variation in semi-major axis is down to zero to four per-
cent, inclination is constant again. Eccentricity is between 0.0 and 0.1, with
the objects oscillating between these values in a non uniform way; however,
trend is towards lower e. i, Ω and ω behave as above. Fig 13 shows two of
the integrations.

Finally, as mentioned above, also objects in mean motion resonances were
studied, especially in a 1:1 resonance of the objects in either L4 or L5 of both
massive planets. Results are also given in the table in the appendix. For both
massive planets, several MMR were studied, again with varying eccentricity.
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Figure 13: Left picture shows all stable planets of the tests with semi-major
axes of 4.6199, in orange, and 6.0 AU, in wine. The planets at 6.0 AU are
much less perturbed, as one can see. Right is the edge-on view. The massive
planets are coloured green and blue. Units are in AU.

The objects in these configurations behave roughly according to the sec-
tions given above, in the way that they are only stable if they are in a stable
region anyway. This however does not count for the 4:1 resonance, which is
instable with ejection times of up to 490000 years, despite two stable planets
on more inward orbits. All planets at 4.6199 AU, which is a 5:1 resonance of
the outer planet, were stable for the whole integration time of 1000000 years,
except for an eccentricity of 0.07. Objects in a 1:6 to 1:1 resonance with the
more massive planet were ejected within the first 1000 years, objects with 2:1
lasted for less than 10000 years, in 3:1 for 280000 years. Still, if one considers
the ejection times, it can be seen that stability increases outwards.

The test bodies in resonance with the inner planet were also placed in
1:6 to to 1:2 and 2:1 to 6:1 difference orbital period. These particles however
have their orbits completely in the instable region of the planetary system,
and thus are ejected. The earliest removals start at 1000 years, the longest
particle lasts for 74000 years.

10 Planets in a 1:1 resonance with both massive bodies were placed into
each L4 and L5, again with eccentricities from 0.0 to 0.1. However, also
these bodies prove to be instable, and are ejected rapidly within the first
1000 years.
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Figure 14: Results of the integrations with twenty degrees inclination. For
explanations see text.

Closing, the boundaries of stability in this configuration are again given
by 0.2 and 3.6 AU, but again some planets are instable at these boundaries.
The gradient of the inner boundary is also much steeper than the outer one’s,
where again the escape times increase in a wider zone, which can be seen in
Fig 14. The three figures showing the stable and instable regions are as in
the sections above. Table 3 again correlates a and e with the stability.

Figure 15: Stability chart.
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Semi-major axis [AU]
< 0.20 0.20 0.23 - 3.28 3.58 - 3.98 4.61 > 4.61

Lower e (0.00 - 0.05) 100 17 0 17 83 100
Higher e (0.06 - 0.10) 100 60 0 0 80 100

Table 3: Overview of how many of the test planets in a configuration are
stable, in percent. Higher values mean more stability. The eccentricities are
divided into lower and higher values.

3.2.4 Tests with 25° inclination

Last in this system, planets with 25 degrees inclination were positioned in
the system. In this configuration, like in all others investigated before, no
stability is found between planets b and c. The objects are removed within
5000 years.

Also, like before, 0.2 AU proves to be the barrier of stability in the sys-
tem. Further out, the planets are ejected within 1000 to 30000 years. In this
case, at 0.2 AU however, only two planets are stable, both with low eccentric-
ity, and both with only little discrepancy to the initial values in semi-major
axis. Eccentricity of both are moving between 0.05 and 0.2. Inclination is
also changed, and is now oscillating between 15 and 25°. Ω is librating in a
rather small area between 345 and 25°, while ω is rotating again. At 0.1233,
all planets are stable, with almost no deviation in distance to the host star,
eccentricities are between 0.01 and 0.10, with each test body oscillating in
a specific band, which is separated from other’s. Inclinations are oscillating
again, between 15 and 24 degrees. Ω and ω show the same behaviour as
with the stable plants above. The left graph in Figure 16 displays the log(x)
vs log(y) situation of the stable systems above. The two planets with 0.2
AU, eccentricities 0.01 and 0.04 are in violet and wine. Of the four plan-
ets with 0.1233 AU, the difference in starting eccentricities is clearly visible,
with the ones with the low eccentricities 0.0 and 0.01 pictured in orange and
yellow respectively, while the ones with higher eccentricities, 0.09 and 0.10,
are coloured magenta and olive. The right graph in Figure 16 shows the
log(x) vs log(z) plot. Again, the planets are coloured in the same way as
above. Here, the separation between the two groups of planets with differ-
ent semi-major axis is not as clear as before any more, as is the situation
with the two different groups in eccentricity of the system with at 0.1233 AU.
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Figure 16: The left graph displays a log(x) vs log(y) plot of the stable planets
of the systems with 0.2 and 0.1233 AU. The right one is a log(x) vs log(z)
plot. Two planets at 0.2 AU are given in violet and wine, the four at 0.1233
AU are orange and yellow, for lower initial eccentricities, and magenta and
olive for higher. The massive planets are blue and green. Units are in AU.

Outside both planets, the first stable planets in a 106 year integration ap-
pear at 3.586 AU, both with average eccentricities. During the integration,
both eccentricities are in the area between 5 and 25°, and inclinations are
moving between 15 and 25°. Ω is librating between 345 and 25°, although
during testing the lower value is shifted a bit to lower degrees. ω is rotating
again, and there seems to be a coupling of the rotation of all planets, at least
in the beginning. Afterwards, the angles are shifted to each other. Deviations
in distances are also low, having values of five and six percent. Going fur-
ther outside, one planet is stable at 4.057 AU, again with average eccentricity.
The outcome of the integration is similar to the one of the two planets above.

At 4.5 AU, most planets except the ones with an e of 0.07 to 0.09 are
stable, although the ones with 0.06 and 0.10 eccentricity have a deviation
of 8 and 11 percent respectively to the initial value. All others are between
zero and one percent. The eccentricities remain between 0.01 and 0.15, and
again the inclinations are oscillating between 15 and 25°. The picture at 5.0
AU is practically the same as with 4.5 AU, only the planet at an eccentricity
of 0.06 is more stable.
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At 5.5 AU, all planets are on regular orbits, the changes in distances
are one to four percent, eccentricities are also moderate between 0.07 and
0.15, only the highest initial eccentricity is elevated to 0.24, with small vari-
abilities in all e. Inclinations behave as before, having values of 15 to 25
degrees. Like with other initial inclinations, the oscillations have same phase
and slight differences in frequencies in the beginning, therefore the phases
later change. Same is for ω, where there seems to be only little differences
in the frequencies, since the are aligned in the beginning, while in half the
simulation they appear to be mixed, later they are aligned again. Ω is equal
to i, with libration between 348 and 10°. At 6.0 AU, all variances decrease,
with eccentricities of all test planets between almost zero and 0.11. i and Ω
behave as with the bodies at 5.0 AU, as does ω, only here the frequencies
are much closer together. Therefore, they all seem aligned during the whole
integration.

Figure 17 again show the log(x) vs log(y) and log(x) vs log(z) plot. The
two planets at 3.586 AU, with eccentricities of 0.04 and 0.06 are presented in
violet and wine respectively, while the one at 4.057 AU with an eccentricity
of 0.05 is coloured orange. Four planets at 6.0 AU are also showed, with
eccentricities 0.0, 0.03, 0.07 and 0.1 are pictured in yellow, red, olive and
magenta respectively. The outer system is well separated in the log(y) plot,
though the difference in initial eccentricity is well visible. The two inner
systems are in almost the same space. In the log(z) plot, all systems are
much closer again, especially at higher z. Also, the difference in eccentricity
is not as visible as before.

Figure 17: Left: the stable planets at 3.586, in violet and wine, 4.057, in
orange, and 6.0 AU, coloured yellow and red for lower eccentricities, olive
and magenta for higher, in a log(x) vs log(y). Right: the same planets in a
log(x) vs log(z) plot. The massive planets are blue and green, units are in
AU.
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Figure 18: Results of the integrations with 25 degrees inclination.

Concluding, like in the three other configurations, the inner boundary
between stability and instability is 0.2 AU. However, on the outside, objects
are stable for one million years at semi-major axes of 3.6 AU. This leads to
strong variations in stability and escape time in the zone between 3.0 and
5.0 AU, which can be seen in Figure 18, where in the right graph the wire
frame again gives the approximate changes between data points. General
stability is achieved at 5.5 AU. Table 4 compares the chances of stable orbits
in relation to a and e.

Figure 19: Stability chart.
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Semi-major axis [AU]
< 0.20 0.20 0.33 - 3.11 3.58 - 4.06 4.52 - 5.00 > 5.00

Lower e (0.00 - 0.05) 100 33 0 17 100 100
Higher e (0.06 - 0.10) 100 0 0 10 40 100

Table 4: Overview of how many of the test planets in a configuration are
stable, in percent. Higher values mean more stability. The eccentricities are
divided into lower and higher values.

Finally, the different configurations in i can be compared. Generally, all
behave similar, thus there is only little dependence on inclination. All sys-
tems inner boundary of stability is 0.2 AU, although the stability of some
planets provides differences. Most stability at this border is provided at an
five degrees inclination, with two of the eleven data points having a deviation
of 20 percent or less, while the rest is at ten or less percent. Least stability
at this point is given at 25° inclination, with only two planets stable. Also,
0° inclination provides more stable results than 20°, thus lower inclinations
with respect to the plane of the sky, which are higher i with respect to the
plane of the massive planets, are more a bit more stable at this point.

The outer boundary is at around 3.6 AU, with all planets having at least
one stable planet at this distance. 20° and 25° configurations prove to be
the most stable here, with one very and one average stable planet. General
stability is given outside of 4.6 AU. The variations at the outer boundary are
the least for zero and 20°, although both show peaks as well, due to the stable
planets. 5° shows more variations, and even stronger 25°. This means that
there are big differences in escape time between the stability of the different
initial eccentricities, as well as between small changes in initial semi-major
axes for these systems.
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3.3 HD 40307 - Stability of the massive planets

The first task in this system was again to test the stability of the system itself.
As it can be seen in the data, this system is very different from HD 60532,
with three relatively low mass planets in circular orbits around a rather low
mass star. The planets themselves are very close to the central star, with
the outermost having only about one third of the distance between Sun and
Mercury.

Integration of the system for 106 years showed that the system is indeed
very stable. The beginning values of eccentricity changed after the start to
values between 6 · 10−7 and 8.8 · 10−4, which means that absolute circular
orbits are not possible over time in this system. This is in accordance with
the result of Barnes et al. (2009), although one must admit that even the
maximum value reached is still very close to a circle, much closer than any
planet in our solar system.

Inclination of the system is constant over the whole integration time with
a value of 0.0°, therefore movement is restricted to a plane. Maximum differ-
ence in eccentricity for the planets is also very low, with a maximum deviation
of all planets of 4.3 · 10−5. The following table gives the maximum and min-
imum of all massive planets in eccentricity (e) and deviations in semi-major
axis in AU from initial values (a) after the start. Figure 20 gives a graphical
display of the integration.

Planet e min e max ∆a min ∆a max

b 2.4 · 10−6 7.2 · 10−4 −1.3 · 10−5 +2.5 · 10−6

c 4.1 · 10−6 8.8 · 10−4 −9.8 · 10−6 +1.1 · 10−5

d 6.0 · 10−7 3.8 · 10−4 −1.0 · 10−5 +4.3 · 10−5
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Figure 20: Massive planets of the HD 40307 system, during a 106 year in-
tegration. Planet b is blue, c is green and d is red. Units are in AU. The
central star is indicated by *, and is not scaled.

3.4 HD 40307 - Stability analysis of test bodies

After ensuring the general stability of the massive planets in the system, test
planets were again inserted into the system. Since the planets of this system
are very close to the central star and the planets are near each other, the
system will only be divided into two sections, one including inside all planets
and between them, the other one outside all planets. Additionally, mean
motion resonances were tested.

The tests themselves were similar to the ones in the HD 60532 system,
with most integrated for 106 years. Only further out, some test were done
for a shorter time. It is noteworthy that in this system, due to the very close
semi-major axes of the massive planets, integrations take up much more
CPU time than in the system before. This is the main reason why some
tests did not include all eccentricities but only three different ones, one with
circular orbits, one with average and one with a higher eccentricity, namely
an eccentricity of 0.00, 0.05 and 0.10.
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Different from the system above, test of this were only performed with
an inclination of zero degrees. This is partly due to the planets themselves
having no inclination, partly due to the longer CPU time. The other initial
conditions are

� a is varied between 0.02 and 10.0 AU, in unregular intervals.

� ω and Ω are always set zero degrees.

Since the three massive planets in this system are situated very close to
the central star, the inner and middle section, which were explained sepa-
rately in the HD 60532 system, are mentioned here together. Generally, all
test bodies in this section show a very stable behaviour. The inner most ob-
jects were placed at 0.02 AU, which is roughly half way in from the innermost
massive planet. This proves to be far enough from the massive planets to
be exposed to any major perturbations. For the three tested eccentricities,
0.00, 0.05 and 0.10, the changes in semi-major axes are very close to zero
and eccentricity is also almost constant, showing only very slight variation.
Inclination is constant at zero degrees for the whole integration period of
106 years, meaning that the movement of the test bodies is restricted to the
x-y plane in a Cartesian coordinate system. Thus the z component of the
massless planets’ position vectors is always zero, same as the massive bodies.

Planets are also stable at semi-major axes of 0.03 and 0.04 AU, again for
the afore mentioned eccentricities. Tests of planets with average and higher
eccentricities at 0.054 AU however proof to lead to instable results, with the
planets being ejected in a time between 2000 and 176000 years, higher eccen-
tricities are ejected faster. This behaviour can be explained due to proximity
to planet b and to the 4:1 resonance with planet d. At 0.1, only one planet
of the four tested is stable, which is the one with the smallest eccentricity of
0.05; at 0.108 AU the two stable planets’ e are also below that value.

Curiously, all the integrations of the inner section show one of two be-
haviours. Either the system is instable, in which case the planet is ejected
very fast, within less than 30000 years; the only exception is one planet
which lasted for 176000 years. On the other hand, if the planet is stable,
the deviations at the end of the integration are very close to zero. Figure
21 gives a graphical representation of two of the before mentioned configura-
tions. The different broadenings due to the different initial eccentricities are
clearly visible.
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Figure 21: The left graph shows a log(x) vs log(y) plot of HD 40307 with two
sets of test bodies, at 0.02 and 0.04 AU with an eccentricity of 0.00, given
in green and pink, 0.05, in orange and yellow, and 0.1, in wine and purple.
The right one zooms on the massless planets. Massive planets are coloured
blue, green and red. Units are in AU.

The outer part of this system proves to be even more stable than the
inner part. However, the first test bodies at the beginning of this section
with a semi-major axis of 0.160 AU are instable. Reasons for this are the
higher eccentricities of the objects, reaching from 0.05 to 0.10, as well as the
closeness to the massive planet, which is located at 0.134 AU. Interestingly,
only two of these planets are ultimately ejected from the system, after 103000
and 377000 years, while the others remain in the system until the end of
the integration, which is 1000000 years. They have, however, too much
deviation to their initial values to be classified stable, putting them in sticky
orbits. Even with such a deviation, all movement of the test particle is still
only taking place in the plane drawn by the three massive planets, thus the
inclination is still zero degrees. Figure 22 shows the behaviour of one of these
test planets moving on a sticky orbit during the integration.
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Figure 22: Picture of a test planet with a semi-major axis of 0.16 AU and
an eccentricity of 0.08, coloured orange, from the side and top. The massive
planets are blue, green and red. Units are in AU.

Top view of the the simulation is given in the right graph in Figure 22,
and the central area is given in Fig 23. The paths indicate that some eccentric
orbits are run many times by the test planet. In the picture of the central
area, the stable orbits at the beginning of the integration are clearly visible,
while outwards the area is filled randomly.

Further out, all planets are stable over whole integration time. At 0.17
AU, a test body with an eccentricity of 0.07 has deviations in both eccen-
tricity an semi-major axis almost zero percent. Compared to the maximum
changes of the planets, discussed above, the massless body shows stronger
perturbations, as expected, with its maximum deviations in semi-major axis
in AU being −2.4 · 10−4 and +3.1 · 10−4, and in eccentricity −2.8 · 10−3 and
+3.3 · 10−3. All these values, although still small, are at least a magnitude
higher than the one of the massive planets.

At greater distances to the central star, the deviations decrease. At 0.442
AU, they are about half the amount in semi-major axis and about a mag-
nitude smaller in e than the planet at 0.17 AU. Generally, all the planets
present a very stable behaviour, with only slight deviations, as mentioned.
Figure 24 shows a typical orbit of such a body. The orbit is closed, as one
can see.
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Figure 23: Enhancement of the
central section of the right fig-
ure in Fig 22.

Figure 24: Top view of a test
body with an eccentricity of
0.08 at 0.442 AU in orange.
Units in AU.

Of certain interest in the study of this system is the behaviour of test
planets in mean motion resonances, since stability is given even in between
the planets. This is increased even more, since the massive planets them-
selves are close to a Laplace resonance, even though this is ruled out quite
clearly by the discoverers of the planetary system. The massive planets ratio
in orbital period according to the information given is Tb : Tc ' 1 : 1.7 and
Tc : Td ' 1 : 1.7, which definitely is too far from this special resonance. One
of the major questions therefore was, whether massless planets are stable in
mean motion resonances, and if yes, if a Laplace resonance is possible be-
tween the test bodies and one of the massive planets.

The Laplace resonance has some interesting characteristics. As mentioned
before, it is a special configuration, in which the orbital periods of the plan-
ets would be in 1 : 2 : 4 resonances. This was first seen with three of the
Galilean satellites of Jupiter, namely Io, Europa and Ganymede. However,
no other objects have been found in such a set up.

The 1 : 2 : 4 resonance imposes certain restrictions on the bodies. Beside
the general properties of resonances, with the integer period ratios pi : p(i+1),
which are

piλi − p(i+1)λ(i+1) + ωi = const (1)

where λi is the mean longitude and ωi the longitude of pericenter, and
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pini − p(i+1)n(i+1) + ω̇i = 0 (2)

where ni describes the mean motion; in case of the Galilean satellites

λI − 2λE + ωI = 0

λI − 2λE + ωE = π

λE − 2λG + ωE = 0 (3)

and

nI − 2nE + ω̇I = 0

nI − 2nE + ω̇E = 0

nE − 2nG + ω̇E = 0 (4)

there is the Laplace relation

ΦL = λ1 − 3λ2 + 2λ3 = π

n1 − 3n2 + 2n3 = 0 (5)

ΦL is the orbital phase. In the case of the Galilean satellites, the resonant
argument ΦL is not fixed to π, but librates around this value. In addition,
due to ΦL, no triple conjunction is possible. Conjunction can happen in the
following three situations pictured in Figure 25 (Murray & Dermott 1999 and
Ferraz-Mello 1979):

(a) The two inner bodies 1 and 2 are in conjunction. Therefore, λ3−λ1 = π
2

(modulo π), and consequently the position of body 3 is right-angled to
the conjunction line of the other two bodies.

(b) Bodies 1 and 3 are in conjunction. λ1−λ2 = π
3

(modulo 2π
3

). As a result,
body 2 is either in opposition to the two other bodies, or at an angle
of 60 degrees before or after the two conjugating bodies.

(c) Bodies 2 and 3 are in conjunction, giving λ1−λ2 = π (modulo 2π), hence
body 1 is in opposition.
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3.4 HD 40307 - Stability analysis of test bodies Stability analysis

(a) (b) (c)

Figure 25: Possibilities of conjunctions in a Laplace resonance. Filled circles
are the orbiting bodies, while the filled square is the central object.

The stability of the tested mean motion resonances was first investigated
for the most massive of the planets, which is d. The test bodies inserted into
the system were placed in a 6:1 to 2:1, in 1:1 resonance in L4, and 1:2 to 1:6
resonance between the test bodies and HD 40307d. All of these resonances
were tested with the test bodies having an eccentricity of 0.00 and 0.05. The
other outer resonances, including the 1:1 resonance were checked with plan-
ets having an eccentricity of 0.10 as well.

The results of the numerical tests done are astonishing. For circular or-
bits, only two resonances, namely the 2:1 and 5:1 resonance are instable, all
other mean resonances are very stable for the whole integration time. For an
eccentricity of 0.05, these two, as well as the 4:1 resonance are instable. All
other are stable, especially also all outer resonances, even for an eccentricity
of 0.10. Most interesting, all three tested eccentricities, 0.00, 0.05 and 0.10,
are stable in the 1:1 resonance with planet d. As a result, bodies are possible
in planet d’s L4.

The instabilities can be explained due to perturbations by planet d, as
well as by the closeness to the other two massive bodies, since for the 2:1
resonance, the orbital separation with planet c is only 0.003 AU, for the 5:1
resonance the separation is 0.001 AU. This may also be the reason for the
test planet with an eccentricity of 0.05 being instable at the 4:1 resonance,
since it again approaches planet b up to a distance of 0.003 AU. Here, it can
be seen again that planets are only instable if they move close to one of the
massive planets.
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Stability analysis 3.4 HD 40307 - Stability analysis of test bodies

Interpreting the results obtained from the tests with respect to a Laplace
resonance, one can see that no resonance is possible with planets inside planet
d, since the 2:1 resonance is instable. On the other hand, a Laplace resonance
is possible between planet d and the test bodies at the 1:2 and 1:4 resonance,
which were stable for all tested eccentricities. Since there is also no massive
planet further outside, such a configuration, once achieved, could be stable
for a long time. Figure 26 shows the behaviour of the stable test bodies with
an eccentricity of 0.00 and 0.05 during the integration.

(a) (b) (c)

Figure 26: The figure (a) gives the face-on view on the outer mean motion
resonances of the test planets with an eccentricity of 0.05. Due to better
visibility, in this plot, the points of the 1:1 resonance are smaller than the
others’. The graph (b) is a log-log plot of one quadrant of the left one. (c)
shows the stable inner resonances of the test planets with an eccentricity of
0.00. Units are in AU, and massive planets are again given by blue, green
and red.

Tests have also been performed with the outer resonances of planet c,
namely the 1:1 resonance, with the test particle in L4, as well as the 1:2
to 1:4 resonances. Curiously, like with planet d, the 1:1 resonance is stable
as well, and so are the 1:3 and 1:4. The deviations in a are almost nil,
eccentricity remains almost circular for the whole integration of 106 years, as
does the inclination, which remains at zero. The 1:2 mean motion resonance
proves to be highly instable, with an ejection time of less than 5000 years,
which is probably again due to the perturbations of planet d. With the
1:2 resonance instable, no Laplace resonance with the outer resonances is
possible for c.
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3.4 HD 40307 - Stability analysis of test bodies Stability analysis

Figure 27: Results of the integrations of the test particles in the HD 40307
system. The massive planets are given by green, blue and pink. The test
bodies are coloured according to their stability.

Concluding, this system is very stable, both in random placement as in
mean motion resonances. This is pictured in Figures 27 and 28. Note that
the outermost planet is now given in magenta instead red for reasons of better
distinctions between the planet and instable test particles. Instabilities only
arise in the in close proximity to the planets, especially with higher initial
eccentricities. Also, some mean motion resonances proved to be instable.
Zones of stability and instability are very close, which can especially be seen
in the right graph of Fig 27, where the mesh gives the approximate changes
between the points. Table 5 gives a comparison of the stability in different
regions.

Figure 28: Stability chart.
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Secular perturbation

Semi-major axis [AU]
< 0.042 0.46 - 0.1 0.10 - 0.17 > 0.17

Lower e (0.00 - 0.03) 100 83 80 100
Average e (0.03 - 0.07) 100 22 100 100
Higher e (0.08 - 0.10) 100 0 17 100

Table 5: Overview of how many of the test planets in a configuration are
stable, in percent. Higher values mean more stability. The eccentricities are
divided into lower and higher values.

4 Secular perturbation

The general N-body problem in celestial mechanics is non integrable, if N
is larger than two. However, secular perturbation theory can be used to
find analytical solutions for certain problems. First, however, the Lagrange
equations and Laplace coefficients must be found. The derivations closely
follow Dvorak et al. (2005).

4.1 Lagrange equations

The perturbing function

fi = k2

n∑
j=1,j 6=i

mj(
1

rij
− ~qi~qj

r3
j

) (6)

which is a scalar, can used for the equations of motion of a planet perturbed
by others. k2 denotes the gravitational constant, ~qk the position vector of
the planets and rij = |~qj − ~qi|. fi can be divided into two parts, one being
1
rij

, which is the direct part. The indirect part is the inner product of the

two ~qk. The direct part of one planet being disturbed by another one is

1

r12

=
1

r2
(1− 2ζ cos θ + ζ2)

1
2 (7)

where θ is the angle between the ~qk, and ζ = r1
r2

. Additionally, r1 < r2 is
set , and therefore ζ < 1. Thus, an inner planet is perturbed by an outer one.
Developing the former equation into a power series and with aid of Legendre
polynomials, the perturbing function of a planet with mass m1 perturbed by
a planet with mass m2 can be written as
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4.2 Laplace coefficients Secular perturbation

f12 =
k2m2

r2

∞∑
n=2

ζn℘(cos θ) (8)

℘ stands for the Legendre polynomials. Developing the equation above
into a Fourier series in time gives

f12 = k2m2

∞∑
l=−∞

∞∑
m=−∞

Alm cos((l n1 +m n2)t+Blm) (9)

Alm = Alm(a1, a2, e1, e2, i1, i2) are polynomials and can be derived from de-
velopment into Legendre polynomials. Blm depends on ω1, ω2,Ω1 and Ω2.
In a system with more than two planets, perturbation of the other plan-
ets on a planet with mass m1 is the addition of the perturbing functions
f1 = m2f12 + · · · + mnf1n. The orbital elements ai, ei, ii,Ωi, ωi,Mi, where
Mi is the mean anomaly, influenced by other planets are achieved with a set
of first order differential equations. These are the Lagrange equations, and
f =

∑n
m=1 fm.

da

dt
=

2

na

∂f

∂M
de

dt
= −

√
1− e2
na2e

∂f

∂ω
+

1− e2

na2e

∂f

∂M
di

dt
= − 1

na2
√

1− e2 sin i

∂f

∂Ω
+

cos i

na2
√

1− e2 sin i

∂f

∂ω

dΩ

dt
=

1

na2
√

1− e2 sin i

∂f

∂i

dω

dt
=

√
1− e2
na2e

∂f

∂e
− cos i

na2
√

1− e2 sin i

∂f

∂i

dM

dt
= n− 2

na

∂f

∂a
− 1− e2

na2e

∂f

∂e
(10)

In addition to the Lagrange equations, knowledge of the Laplace coefficients
is needed to derive the secular perturbations.

4.2 Laplace coefficients

The direct part of the perturbing function is given in (7). Expanding this
into a Fourier series gives
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Secular perturbation 4.3 Perturbations by two planets

1

r2
(1− 2ζ cos θ + ζ2)

1
2 =

1

2
b
(0)
s/2 +

∞∑
i=1

b
(i)
s/2 cos iθ (11)

s denotes a positive odd integer. The Laplace coefficients b
(i)
s/2 can be calcu-

lated by the following formulae

1

2
(b

(i)
s+1 + b

(i+1)
s+1 ) =

(i+ s)b
(i)
s − (i− s+ 1)b

(i+1)
s

2s(1− ζ)2

1

2
(b

(i)
s+1 − b

(i+1)
s+1 ) =

(i+ s)b
(i)
s + (i− s+ 1)b

(i+1)
s

2s(1 + ζ)2
(12)

For numerical values of the Laplace coefficients see Dvorak et al. (2005).

4.3 Perturbations by two planets

With the Lagrange equations and the Laplace coefficients, it is now possible
to derive the secular perturbation theory for two bodies. Once this is done,
the perturbations upon a third, massless body can be derived. The deriva-
tions are according to the ones given in Murray & Dermott (1999).

Imagine two planets with masses m1 and m2 moving around a central
mass m∗, with m1 << m∗ and m2 << m∗. f1 and f2 are the disturbing func-
tions, which are functions of the osculating orbital elements of both planets,
characterising the perturbations on both planets’ orbits. The Lagrangian
equations (10) specify the perturbations on the orbital elements.

Secular perturbations can be gained by selecting the terms of the dis-
turbing functions that do not depend on the mean longitudes. Hence, the
semi-major axis does not contribute, which can be seen in the Lagrange equa-
tions. The general, averaged, secular direct part of the disturbing function,
after using only terms in second order in eccentricities and inclinantions and
first order in masses that do not contain the mean longitude, is

f
(sec)
D =

1

8
(2α12D + α2

12D
2)b

(0)
1
2

(e21 + e22)−
1

2
α12b

(1)
3
2

(s2
1 + s2

2)

+
1

4
(2− 2α12D − α2

12D
2)b

(1)
1
2

e1e2 cos(ω1 − ω2)

+ α12b
(1)
3
2

s1s2 cos(Ω1 − Ω2) (13)
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4.3 Perturbations by two planets Secular perturbation

whereas α12 = a1

a2
, with a1 < a2, and sn = sin 1

2
in. Deriving f1 and f2

from f
(sec)
D gives

f1 =
Gm2

a2

f
(sec)
D =

Gm2

a1

α12f
(sec)
D

f2 =
Gm1

a2

f
(sec)
D =

Gm1

a1

α12f
(sec)
D (14)

With help of the following relations of the Laplace coefficients and their
derivations

2α
db

(0)
1
2

dα
+ α2

d2b
(0)
1
2

dα2
= αb

(1)
3
2

2b
(1)
1
2

− 2α
db

(1)
1
2

dα
− α2

d2b
(1)
1
2

dα2
= −αb(2)

3
2

(15)

and Gm∗ ' n2
1a

3
1 ' n2

2a
3
2 one receives for the perturbation functions

f1 = n2
1a

2
1

m2

m∗ +m1

(
1

8
α2

12b
(1)
3
2

e21 −
1

8
α2

12b
(1)
3
2

i21

− 1

4
α2

12b
(1)
3
2

e1e2 cos(ω1 − ω2)

+
1

4
α2

12b
(1)
3
2

i1i2 cos(Ω1 − Ω2))

f2 = n2
2a

2
2

m1

m∗ +m2

(
1

8
α12b

(1)
3
2

e22 −
1

8
α12b

(1)
3
2

i22

− 1

4
α12b

(1)
3
2

e1e2 cos(ω1 − ω2)

+
1

4
α12b

(1)
3
2

i1i2 cos(Ω1 − Ω2)) (16)

The assumption in these equations is a small enough in so that the ap-
proximation sn = sin 1

2
in ' 1

2
in can be used. Combining equations (16)

to

fj = nja
2
j(

1

2
Ajje

2
j + Ajke1e2 cos(ω1 − ω2)

+
1

2
Bjji

2
j +Bjki1i2 cos(Ω1 − Ω2)) (17)
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Secular perturbation 4.3 Perturbations by two planets

in which j = 1, 2; k = 2, 1 (j 6= k) and

Ajj = +nj
1

4

mk

m∗ +mj

α12α12b
(1)
3
2

(α12) (18)

Ajk = −nj
1

4

mk

m∗ +mj

α12α12b
(2)
3
2

(α12) (19)

Bjj = +nj
1

4

mk

m∗ +mj

α12α12b
(1)
3
2

(α12) (20)

Bjk = +nj
1

4

mk

m∗ +mj

α12α12b
(1)
3
2

(α12) (21)

with α12 = α12 if j = 1, which is the case in external perturbations
and α12 = 1 if j = 2, which takes place with internal perturbations. The
expressions above can also be written into matrices, in which the elements
only depend on the masses and semi-major axes of the two bodies.

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
(22)

Using the lowest order terms of e and i in the Lagrange equations one
can express the time variation of the elements

ėj = − 1

nja2
jej

∂fj
∂ωj

(23)

ω̇j = +
1

nja2
jej

∂fj
∂ej

(24)

i̇j = − 1

nja2
j ij

∂fj
∂Ωj

(25)

Ω̇j = +
1

nja2
j ij

∂fj
∂ij

(26)

(27)

The above equations can become problematic in cases of small i and e.
Consequently, new variables are introduced

hj = ej sinωj (28)

kj = ej cosωj (29)

pj = ij sin Ωj (30)

qj = ij cos Ωj (31)
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4.3 Perturbations by two planets Secular perturbation

Equation (17) can now be written in the following form

fj = nja
2
j(

1

2
Ajj(h

2
j + k2

j ) + Ajk(hjhk + kjkk)

+
1

2
Bjj(p

2
j + q2

j ) +Bjk(pjpk + qjqk)) (32)

The perturbation equations can be written in the new variables as

ḣj = +
1

nja2
j

∂fj
∂kj

(33)

k̇j = − 1

nja2
j

∂fj
∂hj

(34)

ṗj = +
1

nja2
j

∂fj
∂qj

(35)

q̇j = − 1

nja2
j

∂fj
∂pj

(36)

(37)

It can be seen in the above equations that, at least for the lowest order,
the time derivatives of hj and kj are decoupled from the pj and qj and vice
versa. Since these are linear differential equations with constant coefficients,
using the eigenvalues and eigenvectors brings the solutions

hj =
2∑
i=1

eji sin(git+ βi) (38)

kj =
2∑
i=1

eji cos(git+ βi) (39)

pj =
2∑
i=1

iji sin(fit+ γi) (40)

qj =
2∑
i=1

iji cos(fit+ γi) (41)

The frequencies gi designate matrix A’s eigenvalues, fi matrix B’s. Do
not mistake the eigenvalue fi with the disturbing function. eij and iij are
the elements of the corresponding eigenvectors. βi and γi are phases defined
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Secular perturbation 4.4 The HD 60532 configuration

by the initial conditions. The solutions given by equations (38) to (41) are
known as the classical Laplace-Lagrange secular solution.

An interesting feature worth mentioning is that the characteristic equa-
tion for B is ∣∣∣∣B11 − f B12

B21 B22 − f

∣∣∣∣ = 0 (42)

That can be reduced to

f(f − (B11 +B22)) = 0 (43)

and means that one solution is f = 0, which gives a degeneracy prob-
lem. This is a difference between h, k variables, which involve eccentricity,
and p, q, which involve inclination. An eccentric orbit provides an asymme-
try and thus a reference line, a point-mass body gives no natural reference
plane. Consequently, only mutual inclinations are meaningful.

Also, the solution given above is not depending upon the mean longitude.
As a result, only variations in eccentricities, inclinations, pericenters and
nodes are predictable, not the actual positions of the planets themselves.

4.4 The HD 60532 configuration

Following the steps given above, the perturbations of both massive planets
of the HD 60532 system can be investigated. For this purpose, the inclina-
tion and longitude of the ascending node of both planets were changed to
be slightly unequal, namely one degree difference in i and ten degrees in Ω.
The reference plane of the inclination was changed as well, such that the
inner planet has an inclination with respect to the new plane of 1.5°, while
the outer one’s is 2.5°. The calculation was performed with the program
Wolfram Mathematica.

In this configuration, α12 = a1

a2
= 0.48734, thus the values for the Laplace

coefficients are

b
(1)
3
2

= 2.43759

b
(2)
3
2

= 1.43722 (44)
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4.4 The HD 60532 configuration Secular perturbation

The calculation of the Laplace coefficients was done with Mathematica
packages provided by F. Zugno (2002). The matrix elements of the disturbing
functions then have the following values

A =

(
+0.380633 −0.224423
−0.0659659 +0.111881

)
and

B =

(
−0.380633 +0.380633
+0.111881 −0.111881

)
Solving the characteristic equations gives the eigenvalues of A and B.

g1 = +0.0649807° yr−1

g2 = +0.427533° yr−1

f1 = +0.0° yr−1

f2 = −0.492514° yr−1 (45)

The next step is to calculate the eigenvectors of both matrices. However,
each eigenvector is determined only up to a scaling constant. Therefore, the
normalised eigenvectors are

~ε1 =

(
+0.579455

+0.815005

)
~ε2 =

(
+0.978853

−0.204564

)
~ι1 =

(
−0.707107

−0.707107

)
~ι2 =

(
−0.959413

0.282005

)
(46)

The scaling constant can be found with the boundary conditions. Setting
t=0 for equations of the new variables, (28) to (31), as well as for the solutions
of these, (38) and (41), one receives four sets of simultaneous linear equations.
These are used to determine the unknown numbers. Denoting that Xi is the
scaling factor of ~εi and Yi of ~ιi one receives
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Secular perturbation 4.4 The HD 60532 configuration

X1 = 0.049912 and X2 = 0.262323

Y1 = 0.055991 and Y2 = 0.014839 (47)

The phase angles given in the solutions are determined to be the following
values

β1 = −29.5° and β2 = 15.5°

γ1 = 151.5° and γ2 = −44.3° (48)

The corrected eigenvectors are thus

~e1 =

(
+0.028922

+0.040679

)
~e2 =

(
+0.256776

−0.053662

)
~i1 =

(
−0.039592

−0.039592

)
~i2 =

(
−0.014236

+0.004185

)
(49)

The ~ij are given in degrees. With all the values now determined, ej(t),
ωj(t), ij(t) and Ωj(t), with j = 1, 2 for the two planets, can now be calculated
by

ej(t) =
√
h2
j + k2

j

ωj(t) = arccos
kj
ej

ij(t) =
√
p2
j + q2

j

Ωj(t) = arccos
qj
ij

(50)

In case of rotating angles, one must take care of the switches between the
arccos branches. Using the cosine rule for e and i, one finally receives

ej(t) =
√
e2j1 + e2j2 + 2ej1ej2 cos((g1 − g2) · t+ β1 − β2)

ij(t) =
√
i2j1 + i2j2 + 2ij1ij2 cos((f1 − f2) · t+ γ1 − γ2) (51)
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or, inserting digits

e1(t) =
√

0.06677 + 0.0148528 · cos(0.362553 · t+ 44.9391°)

e2(t) =
√

0.00453− 0.0043658 · cos(0.362553 · t+ 44.9391°)

i1(t) =
√

0.00177 + 0.0011273 · cos(0.492514 · t+ 195.782°)

i1(t) =
√

0.00159− 0.0003313 · cos(0.492514 · t+ 195.782°) (52)

As one can see, the frequency of the planets are rather short, with both
having an period in eccentricity of about 1000 years and about 750 years in
inclination. Figure 29 shows the interactions in eccentricity between the two
planets. The inner planet has the colour blue, while the outer one is green.
Note that an outer planets maxima of eccentricity is aligned with the inner’s
minima and vice versa. Remember that a mean motion resonance exists as
well between the planets, introducing additional perturbations on a shorter
timescale, which are not accounted for in secular resonances.

Figure 29: Secular perturbations in eccentricity between the two massive
bodies in HD 60532. Planet b is coloured blue, while c is green. For expla-
nations see text.

Figure 30 gives a comparison between the results of the secular perturba-
tion approach and a numerical integration. Note that the integration displays
a longer time. Interestingly, planet c’s changes given by secular perturba-
tions are reduced little, while planet b experiences additional excitement.
Additionally, the lower boundary of both coincides with the secular solution.
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Secular perturbation 4.4 The HD 60532 configuration

Figure 30: The left picture shows the secular perturbations in eccentricity
between the two bodies for a time of 50000 years. The right is shows a
numerical integration of the two bodies.

Figure 31 shows the perturbations in inclination. Again, the minima of
one planet correlates with the maxima of the other. Note also the good
accordance between numerical and analytical solutions in Fig 32.

Figure 31: Secular perturbations in inclination between the two bodies.
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4.4 The HD 60532 configuration Secular perturbation

Figure 32: The left picture shows the secular perturbations in inclination
between the two bodies for a time of 50000 years. The right is shows the
results in inclination of a numerical integration of the two bodies.

Figure 33: The left picture shows the secular perturbations in ω. The right
in Ω.

The changes of ω and Ω are given in Fig 33. The former rotates like in the
integrations. Note that planet c shows changes in ω, while b does not. The
latter, like i, is presented very well again with secular perturbation effects,
with integrations having the inner planet oscillating between 4 and 51°, while
the outer one is in the range between 23 to 35°.
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Secular perturbation 4.5 Inserting a massless body

4.5 Inserting a massless body

The equations above can now be used to see the perturbations upon a third,
massless body. The disturbing function for a test object with the orbital
elements a, e, i, ω, Ω and n is

f = na2(
1

2
Ae2 +

1

2
Bi2 +

2∑
j=1

Ajeej cos(ω − ωj) +

+
2∑
j=1

Bjiij cos(Ω− Ωj)) (53)

in which

A = +n
1

4

2∑
j=1

mj

m∗
αjαjb

(1)
3
2

(αj) (54)

Aj = −n1

4

mj

m∗
αjαjb

(2)
3
2

(αj) (55)

B = −n1

4

2∑
j=1

mj

m∗
αjαjb

(1)
3
2

(αj) (56)

Bj = +n
1

4

mj

m∗
αjαjb

(1)
3
2

(αj) (57)

and

αj =

{
aj

a
if aj < a

a
aj

if aj > a

αj =

{
1 if aj < a
a
aj

if aj > a
(58)

The new variables for the massless body are

h = e sinω (59)

k = e cosω (60)

p = i sin Ω (61)

q = i cos Ω (62)
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4.5 Inserting a massless body Secular perturbation

The variables of the massive bodies perturbing the test object, denoted
hj, kj, pj and qj are given in (28) to (31). The disturbing function in new
variables is

f = na2(
1

2
A(h2 + k2) +

1

2
B(p2 + q2)

+
2∑
j=1

Aj(hhj + kkj) +
2∑
j=1

Bj(ppj + qqj)) (63)

leading to the following equations of motion

ḣ = +
1

na2

∂f

∂k
(64)

k̇ = − 1

na2

∂f

∂h
(65)

ṗ = +
1

na2

∂f

∂q
(66)

q̇ = − 1

na2

∂f

∂p
(67)

By inserting equation (63) in equations (64) to (67), one can rewrite the
equations of motion to

ḣ = +Ak +
2∑
j=1

Ajkj (68)

k̇ = −Ah−
2∑
j=1

Ajhj (69)

ṗ = +Bq +
2∑
j=1

Bjqj (70)

q̇ = −Bp−
2∑
j=1

Bjpj (71)

Using the hj, kj, pj and qj from equations (38) to (41) gives

53



Secular perturbation 4.5 Inserting a massless body

ḣ = +Ak +
2∑
j=1

Aj

2∑
i=1

eji cos(git+ βi) (72)

k̇ = −Ah−
2∑
j=1

Aj

2∑
i=1

eji sin(git+ βi) (73)

ṗ = +Bq +
2∑
j=1

Bj

2∑
i=1

iji cos(fit+ γi) (74)

q̇ = −Bp−
2∑
j=1

Bj

2∑
i=1

iji sin(fit+ γi) (75)

By differentiating these equations one more time with respect to the time
one obtains

ḧ = −A2h−
2∑
j=1

ηi(A+ gi) sin(git+ βi) (76)

k̈ = −A2k −
2∑
j=1

ηi(A+ gi) cos(git+ βi) (77)

p̈ = −B2p−
2∑
j=1

ςi(B + fi) sin(fit+ γi) (78)

q̈ = −B2q −
2∑
j=1

ςi(B + fi) cos(fit+ γi) (79)

using

ηi =
2∑
j=1

Ajeji

ςi =
2∑
j=1

Bjiji (80)

One can see that equations (76) to (79) are a system of uncoupled differ-
ential equations with the solutions
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4.5 Inserting a massless body Secular perturbation

h = efree sin(At+ β) + h0(t) (81)

k = efree cos(At+ β) + k0(t) (82)

p = ifree sin(Bt+ γ) + p0(t) (83)

q = ifree cos(Bt+ γ) + q0(t) (84)

The constants efree, ifree, β and γ are determined from the boundary
conditions, and

h0(t) = −
2∑
i=1

ηi
A− gi

sin(git+ βi) (85)

k0(t) = −
2∑
i=1

ηi
A− gi

cos(git+ βi) (86)

p0(t) = −
2∑
i=1

ςi
B − fi

sin(fit+ γi) (87)

q0(t) = −
2∑
i=1

ςi
B − fi

cos(fit+ γi) (88)

These functions only depend on the semi-major axes of the test objects,
which are constant, but they do vary with time, since there is a dependence
upon the secular solution of the perturbators. Thus, the elements of the
massless bodies are a combination of both the initial elements of the mass-
less object, as well as the forced ones by the massive bodies.

The forced amounts on the particles orbital elements are given by

eforced =
√
h2

0 + k2
0

iforced =
√
p2

0 + q2
0

ωforced = arccos(
k0

eforced
)

Ωforced = arccos(
q0

iforced
)

(89)
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4.6 Massless body in HD 60532

In order to calculate the perturbations on a massless test body in the HD
60532 system, the first thing to do is to calculate the elements of the dis-
turbing function A, Aj, B and Bj. Note that, as used in this case, B = −A
for a point source central object. These are all functions of the the massive
planets’ mass, and αj, the ratio of the planets’ and test particle’s semi-major
axis. Figure 34 gives a graphical representation of A. The singularity arises
from the Laplace coefficients, which go to infinity as αj approaches one. Also,
since both planets are very close together, both overlap and create only one
singularity, with both peaks only separated for values of 2.3° yr−1 or higher.

Figure 34: Behaviour of the element A of the disturbing function. The dashed
lines denote the two eigenvalues of matrix A, while the doted represents
matrix B’s.

Having achieved this, these elements are inserted into equations (85) to
(88). Problems will also arise in these equations, when the values of A and
B reach these of the eigenvalues, since the denominator tends to zero, given
by the intersection between the graph and the doted and dashed lines in Fig
34. The eigenvalues were already calculated in section 4.4, and are namely
g1 = 0.065° yr−1 and g2 = 0.428° yr−1, as well as f2 = −0.493° yr−1. There-
fore, since there are two non zero eigenvalues, four singularities are expected
for e and ω; two for i and Ω.
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4.6 Massless body in HD 60532 Secular perturbation

The following figures give a graphical overview of the forced changes of
the test particles. These give changes to the test particles orbital elements
due to secular perturbations. Remember that there are changes with time,
therefore the figures give a representation at t = 0.

Figure 35: Forced eccentricity of massless bodies in the HD 60532 system.
The massive planets are given in blue and green.

The four singularities of forced eccentricity are located at 0.117, 0.34,
2.4 and 3.5 AU. The latter three peaks, especially the first of these, have a
rather wide extension, thus adding to the destabilisation of the inner part
of the system. The second and third also account for the instabilities in
the outer section of the system, with the first stable planets appearing only
outside of both. The first singularity however lies in the already stable section
inside 0.2 AU. It is on the other hand restricted to a small area, with forced
eccentricities above 0.1 only in the section between 0.11 and 0.12 AU. Also,
even with a high eccentricity, objects in this region would still lie below the
0.2 AU boundary, and sustainability could still be possible for most particles.
The forced eccentricity reaches values near zero at 5 AU.
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Secular perturbation 4.6 Massless body in HD 60532

The singularities appear at the same locations for ω. Most distances show
excitement between 80 and 120°. Since both massive planets rotate with time,
also the massless planets are rotating, as can be seen in integrations. The
graph below shows the situation at the initial condition.

Figure 36: Forced longitude of the perihelion of massless bodies in the HD
60532 system.

For i of the massless bodies, the inclinations as above were used, namely
1.5 and 2.5°, since if no difference is set between the two massive bodies,
also none arises for the massless. Like mentioned above, there are only two
singularities, which are also confined to a small area. The general forced
inclination is situated at about 2.2° for the massless bodies.
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4.6 Massless body in HD 60532 Secular perturbation

Figure 37: Forced inclination of massless bodies in the HD 60532 system.

Again, the singularities of Ω are located at the same place as i’s, which is
located in the instable zone as investigated in the n-body integrations. The
forced longitude of the ascending node is at 28° in the stable zones.

Figure 38: Forced longitude of the ascending node of massless bodies in the
HD 60532 system.
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5 Conclusion

This thesis investigates the stability of possible Earth-mass planets in two
extrasolar systems where two and three planets respectively had already been
found. Methods used were both n-body integration, as well as secular per-
turbation theory. The systems involved were HD 60532 and HD 40307. Both
systems were discovered in 2008, and have massive bodies close to the central
star, in case of the former Jupiter-sized, while in the latter mini Neptunes or
super Earths. Integration was performed with a Lie integrator.

Results of the integrations performed during this thesis showed that the
HD 60532 planetary system, harboring two planets with 3.15 and 7.46 Jupiter
masses, is stable for a long time, with the longest integration lasting for more
than 65 million years, although strong interactions happen between the two
planets. Changing the inclination of both planets away from coplanar orbits
to slight inclinations towards each other can reduce these interactions. Gen-
erally, both planets’ argument of the perihelion ω rotates, while the longitude
of the ascending node Ω librates in most cases, however, rotation also hap-
pened in some cases. With a different starting inclination i, the outcome is
either that planet c’s i is the average of planet b’s, or that the more massive
planet c is having a low i compared to b, which is excited. The most stable
solution was found with planet b having an inclination of 1.5° and longitude
of the ascending node of 20°, while planet c’s inclination was 2.5° and Ω 30°.
Due to the eccentricity especially of the inner planet, a large section between
the two planets is covered by the orbits of both planets. This has a negative
effect on the stability of the massless bodies inserted.

Instability for test bodies in this system located during the integrations
indeed extended over a large section, between 0.2 and 3.6 AU, where particles
are perturbed heavily by the massive planets. Inside respectively outside
these borders, stability is possible and increasing with distance to the massive
planets. Tests were performed with different initial inclinations of test bodies,
namely zero, five, 15 and 20 degrees with respect to the plane of the massive
planets, but these variations only showed little effects. Stability for all test
particles, which were inserted within an range of 0.0 to 0.1 with steps of
0.01 in eccentricity, was reached at 5.0 to 6.0 AU. On the inside, all particles
were stable at semi-major axes of 0.123 AU. Between these distances and
the instable zone, some planets are stable, while others are not. There is no
certain trend depending on the eccentricity e of the massless planets on the
inside, on the outside stable planets mainly have a low or average e.
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Tests on mean motion resonances were done for zero and 20° inclination
configurations, though results normally were only stable if placed in an al-
ready stable region. Also, 1:1 resonance in both Lagrangian points L4 and
L5 proved to be instable.

As second part done in this thesis, secular resonance investigations of the
system revealed a period of about 1000 years in the variations of eccentricity
and 750 years for the inclination. Both planets show opposite movement, i.e.
a maxima of planet b occurs at c’s minima and vice versa. These resonances
only make up for a part of the integrations changes of eccentricity, since the
massive planets’ 3:1 mean motion resonances are not accounted, which acts
on a shorter timescale. However, the inner border of both planets’ eccentric-
ity in the n-body integrations coincides with the secular’s. Inclination and
longitude of the ascending nodes are represented well by secular perturba-
tions, and the longitude of perihelion rotates as it does in integrations, with
c’s altering in speed.

Inserting massless bodies into the configuration with secular theory shows
that there exists a space of instability inside the inner boundary of stability
given by the integrations, at 0.117 AU. However, it is confined to a small
space. Between the bodies and only little outside planet c, stable zones
would exist, however other effects give rise to instabilities, since none was
found with integrations. In the other stable zones given by the integrations,
forced eccentricity is down to almost zero. Forced inclination rises the bodies
to almost the values of planet c, as does forced longitude of the ascending
node and of perihelion. In the latter however, since the massive planets ro-
tate, this incitation only plays a subordinate role over a long time scale.

The HD 40307 system harbors three planets with masses between 0.0132
and 0.0288 Jupiter masses, in orbits very close to the central star. Inte-
grations performed of the massive planets showed stability is given, with
deviations in orbital elements being almost nil. However, orbits of the plan-
ets do not remain circular but become very slightly elliptic. Since the other
orbital elements are the same, no changes occur, especially since all planets
move on the same plane.
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Conclusion

The bodies inserted in the tests were placed between 0.02 and 10.0 AU,
and eccentricities were specified zero, 0.05 and 0.10 in most cases, although
also others were chosen. The stability in this system is given for most config-
urations, with limits only applying to test particles close to the given planets,
especially with higher initial eccentricities, again leading to close encounters.

Certain mean motion resonances however are instable, even with an e
of 0.0. Simulations showed that bodies are stable in most mean motion
resonances, even with an eccentricity of 0.05, or, where tested, 0.10. Particles
placed into Lagrangian points L4 of two of the massive planets remain on
regular orbits, for planet d even with eccentricities of up to 0.10. Also, a
Laplace resonance is possible in this system between planet d and bodies in
outer mean motion resonances, though not the same applies for planet c. If
planets are stable, the deviations in semi-major axis and eccentricity remain
close to zero. This concludes the research done during this thesis. Study
of the stability of multiplanetary systems will however continue to be an
important part of astrophysics, since the formation of more than one planet
is very likely in most cases.
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6 Zusammenfassung

Ziel dieser Magisterarbeit ist die Untersuchung der Stabilität von möglichen
Planeten mit Erdmassen in zwei extrasolaren Systemen, in denen bereits
zwei bzw. drei Planeten entdeckt wurden. Die verwendeten Methoden sind
n-Körper Integrationen sowie säkulare Störungstheorie. Die betrachteten
Systeme sind HD 60532 und HD 40307, beide wurden im Jahr 2008 entdeckt
und haben massereiche Körper nahe dem Zentralstern, im Falle des ersten
in Jupitergrößenordnung, im letzteren Mini-Neptun oder Super-Erden. Die
Integration wurde mit einem Lie-Integratior durchgeführt.

Die Resultate der hier betriebenen Integrationen zeigten, dass HD 60532,
mit zwei Planeten von 3.15 und 7.46 Jupitermassen, über lange Zeiträume
stabil ist, obwohl starke Wechselwirkungen zwischen den Planeten auftreten.
Die längste Integration dauerte 65 Millionen Jahre. Werden die Inklinationen
beider Planeten nicht als koplanar angenommen, sondern leicht zueinander
verändert, kann eine Abschwächung der Wechselwirkungen auftreten. Im
Allgemeinen rotiert das Argument des Periapsis ω beider Planeten, während
das Argument des Knotens Ω in den meisten Fällen libriert. Es gibt jedoch
auch Fälle, in denen eine Rotation stattfindet. Das Ergebnis bei zueinander
verschiedenen Startinklinationen ist entweder, dass die Inklination i von c
den Mittelwert von b bestimmt, oder dass der massivere c ein kleines i hat,
während b angeregt wird. Die stabilste Konfiguration war eine Inklination
von 1.5° und ein Ω von 20° für b und 2.5° Inklination und ein Ω von 30° für c.
Ein großer Teil der Raumes zwischen den Planeten wird von den Orbits bei-
der Planeten abgedeckt, was sich negativ auf die Stabilität von Probekörpern
auswirkt.

Die in den Integrationen gefundenen Instabilitäten dieses Systems bre-
iten sich weiträumig aus, nämlich zwischen 0.2 und 3.6 AE. Hier werden die
Testkörper stark von den massiven Planeten gestört. Innerhalb und ausser-
halb dieser Grenzen ist jedoch Stabilität möglich und steigt mit zunehmenden
Abstand. Unterschiedliche Startwerte der Inklination der Probekörper, genauer
gesagt null, fünf, 15 und 20 Grad in Bezug auf die Bahnebene der Planeten,
ändern die Ergebnisse nur geringfügig. Stabilität aller Testkörper, welche
mit Exzentrizitäten von 0.0 bis 0.1 und einer Schrittweite von 0.01 eingefügt
wurden, ergibt sich bei einer großen Halbachse a von 5.0 bis 6.0 AE auf der
Außenseite, und 0.123 AE auf der Innenseite.
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Zwischen diesem Bereich und der instabilen Zone wird für manche Körper
Stabilität erreicht, für andere hingegen nicht. Auf der Innenseite ist kein von
der Exzentrizität e abhängiger Trend erkennbar, während auf der Außenseite
stabile Planeten eher kleine bis mittlere e haben. Für die Konfigurationen
mit Inklinationen von null und 20° wurden auch Bahnresonanzen getestet,
wobei herausgefunden wurde, dass diese normalerweise nur dann stabil sind,
wenn sie bereits in einer stabilen Region liegen. Auch die 1:1 Resonanz, mit
Testkörpern in den Lagrangepunkten L4 und L5, ist instabil.

Als zweiter Teil dieser Arbeit wurden die säkularen Störungseffekte im
System berechnet, was als Ergebnis eine Variation der e beider Planeten
mit einer Periode von 1000 Jahren ergab, in i von 750 Jahren, wobei das
Maximum eines Planeten mit dem Minimum des anderen zusammenfällt.
Diese Resonanz macht jedoch nur einen Teil der in der Integration gefunde-
nen Änderungen aus, da die bestehende 3:1-Resonanz zwischen den Planeten
nicht einbezugen ist, welche auf kürzeren Zeiträumen stattfindet. Die innere
Grenze beider e in den Integrationen stimmt aber mit der in der säkular
bestimmten Grenze überein. i und Ω werden gut durch säkulare Störungen
abgebildet, die Länge des Periapsis rotiert so wie in den Integrationen, wobei
sich die Rotationsgeschwindigkeit von c ändert.

Das Einfügen von masselosen Körpern zeigt, dass es einen sehr kleinen,
instabilen Bereich in der inneren stabilen Zone des Systems bei 0.117 AE
gibt. Stabile Zonen könnten zwischen den Körpern und außerhalb existieren,
jedoch führen andere Effekte zur Destabilisierung, da in den Integrationen
nichts bestehen blieb. In den anderen stabilen Bereichen liegt die durch die
massiven Planeten erzwungene Exzentrizität bei nahezu null, während die
erzwungene Inklination ungefähr den Wert von c annimmt. Ebenso verhal-
ten sich das Argument des Knotens und die Länge des Periapsis. Bei der
letzteren spielt diese Anregung aber nur eine untergeordnete Rolle, da die
massiven Planeten rotieren.

Im System HD 40307 befinden sich drei Planeten mit Massen zwischen
0.0132 und 0.0288 Jupitermassen in sehr nahen Orbits um den Zentralstern.
Durchgeführte Integrationen zeigten, dass die Stabilität der massiven Plan-
eten gegeben ist, wobei die Bahnänderungen nahezu null sind. Die kre-
isförmigen Orbits werden jedoch sehr leicht elliptisch. Da die anderen Ele-
mente gleich sind, ändert sich bei ihnen nichts.
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Probekörper wurden in Distanzen von 0.02 bis 10.0 AE eingefügt, die
Exzentrizität wurde in den meisten Fällen auf drei verschiedene Werte, nämlich
null, 0.05 und 0.10 gestellt, es wurden aber teilweise auch andere e getestet.
Stabilität ist im allgemeine für fast alle Testkörper gegeben, die einzigen Ein-
schränkungen gibt es bei Startwerten in a, die sehr nahe an den massiven
Planeten liegen, insbesondere für höhere e.

Instabilität besteht auch für gewisse Bahnresonanzen, sogar auf kreisförmigen
Orbits. Die meisten Bahnresonanzen sind aber stabil, sogar mit e von 0.05
oder 0.10. Gefunden wurde in dieser Arbeit auch, dass Körper im L4 zweier
massiver Planeten auf regulären Orbits bleiben , für Planet d sogar mit e
von bis zu 0.10. Eine Laplace-Resonanz ist ebenfalls möglich, nämlich zwis-
chen d und Körper in äußeren Bahnresonanzen. Bei Planet c ist keine solche
Resonanz möglich. Sind Testkörper stabil, bleiben die Abweichungen in a
und e nahezu null. Dies schließt die im Zusammenhang mit dieser Arbeit
betriebenen Untersuchungen ab. Das Studium von extrasolaren Systemen
mit mehreren Planeten wird jedoch in der Zukunft ein wichtiges Gebiet der
Astrophysik bleiben, da die Formation von mehr als einem Körper in den
meisten Fällen wahrscheinlich ist.
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7 Appendix

7.1 HD 60532 - Results of tests with 0° inclination

The following tables show the results of the tests of HD 60532, with the test
bodies having an eccentricity of 0° inclination with respect to the plane of
the sky. The tables are again separated into the three sections, as well as
one with the 1:1 mean motion resonance. The columns are semi-major axis
in AU (a), eccentricity (e), time of simulation, or in case of ejection, time
until escape, in 1000 years (t) and whether the object was still in the system
at the end of the test (E?). If there were several testsc in the same configu-
ration, and the longer one was not stable but the shorter one was, both are
mentioned.

Inner section

a e t E? a e t E? a e t E?

0.100 0.00-0.10 <= 100 y 0.200 0.07 <= 100 y 0.338 0.01 <= 50 n
0.114 0.00-0.10 <= 100 y 0.200 0.07 736 n 0.338 0.02 <= 20 n
0.123 0.00-0.10 1000 y 0.200 0.08 <= 100 y 0.338 0.03 <= 100 n
0.136 0.00-0.10 <= 100 y 0.200 0.08 682 n 0.338 0.04 <= 20 n
0.158 0.00-0.10 450 y 0.200 0.09 694 n 0.338 0.05 <= 50 n
0.180 0.00-0.10 <= 100 y 0.200 0.09 <= 100 y 0.338 0.06-0.10 <= 20 n
0.200 0.00 872 y 0.200 0.10 <= 100 y 0.342 0.00-0.10 <= 5 n
0.200 0.01 <= 100 y 0.200 0.10 804 n 0.397 0.00-0.10 <= 1 n
0.200 0.01 809 n 0.269 0.00 <= 50 n 0.406 0.00-0.10 <= 1 n
0.200 0.02 815 n 0.269 0.01 <= 50 n 0.475 0.00-0.10 <= 1 n
0.200 0.02 <= 100 y 0.269 0.03 324 n 0.481 0.00-0.10 <= 1 n
0.200 0.03 872 y 0.269 0.05 <= 100 n 0.544 0.00-0.10 <= 1 n
0.200 0.04 872 y 0.269 0.07 187 n 0.613 0.00-0.10 <= 1 n
0.200 0.05 <= 100 y 0.269 0.09 <= 50 n 0.630 0.00-0.10 <= 1 n
0.200 0.05 695 n 0.269 0.10 789 n 0.681 0.00-0.10 <= 1 n
0.200 0.06 1000 y 0.338 0.00 <= 20 n 0.750 0.00-0.10 <= 1 n

Middle section

a e t E? a e t E? a e t E?

0.950 0.00-0.10 <= 1 n 1.050 0.00 <= 20 n 1.250 0.00-0.10 <= 5 n
1.000 0.00 <= 5 n 1.050 0.01-0.09 <= 5 n 1.300 0.00-0.10 <= 5 n
1.000 0.01 <= 1 n 1.050 0.10 <= 20 n 1.350 0.00 <= 5 n
1.000 0.02 <= 1 n 1.100 0.00-0.09 <= 5 n 1.350 0.01 <= 5 n
1.000 0.03 <= 5 n 1.100 0.10 <= 20 n 1.350 0.02 <= 20 n
1.000 0.04 <= 5 n 1.150 0.00 <= 20 n 1.350 0.03-0.10 <= 20 n
1.000 0.05 <= 1 n 1.150 0.01-0.08 <= 5 n 1.400 0.00-0.07 <= 5 n
1.000 0.06 <= 5 n 1.150 0.09 <= 20 n 1.400 0.08 <= 20 n
1.000 0.07 <= 5 n 1.150 0.10 <= 5 n 1.400 0.09 <= 5 n
1.000 0.08 <= 1 n 1.200 0.00-0.03 <= 5 n 1.400 0.10 <= 5 n
1.000 0.09 <= 5 n 1.200 0.04 <= 20 n 1.550 0.00-0.10 <= 1 n
1.000 0.10 <= 5 n 1.200 0.05-0.10 <= 5 n
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Outer section

a e t E? a e t E? a e t E?

1.587 0.00-0.10 <= 5 n 3.640 0.09 418 n 4.620 0.07 890 n
1.600 0.00-0.10 <= 5 n 3.640 0.10 494 n 4.620 0.08 1000 y
1.700 0.00-0.10 <= 1 n 3.980 0.00 385 n 4.620 0.09 1000 y
1.940 0.00-0.10 <= 5 n 3.980 0.01 386 n 4.620 0.10 1000 y
2.080 0.00-0.10 <= 5 n 3.980 0.02 375 n 4.660 0.00-0.04 1000 y
2.280 0.00-0.10 <= 5 n 3.980 0.03 1000 y 4.660 0.05 549 n
2.520 0.00-0.10 <= 5 n 3.980 0.04 729 n 4.660 0.06-0.09 1000 y
2.620 0.00-0.10 <= 5 n 3.980 0.05-0.08 1000 y 4.660 0.10 647 n
2.924 0.00-0.10 <= 5 n 3.980 0.09 366 n 5.000 0.00-0.10 1000 y
2.960 0.00-0.10 <= 50 n 3.980 0.10 346 n 6.000 0.00-0.10 1000 y
3.300 0.00-0.10 <= 50 n 4.320 0.00 1000 y 7.000 0.00-0.10 <= 100 y
3.640 0.00 277 n 4.320 0.01 772 n 8.000 0.00-0.10 <= 100 y
3.640 0.01 1000 y 4.320 0.02-0.10 1000 y 9.000 0.00-0.10 <= 100 y
3.640 0.02 528 n 4.620 0.00 980 n 10.000 0.00-0.10 <= 100 y
3.640 0.03 433 n 4.620 0.01 1000 y 11.000 0.00-0.10 <= 100 y
3.640 0.04 171 n 4.620 0.02 957 n 12.000 0.00-0.10 <= 100 y
3.640 0.05 320 n 4.620 0.03 1000 y 13.000 0.00-0.10 <= 100 y
3.640 0.06 538 n 4.620 0.04 1000 y 14.000 0.00 <= 100 y
3.640 0.07 521 n 4.620 0.05 925 n
3.640 0.08 854 n 4.620 0.06 1000 y

1:1 Mean motion resonance

The double mentioning of both planets is due to placing the test bodies
in L4 and L5.

a e t E? a e t E? a e t E?

0.770 0.000 <= 5 n 0.770 0.278 <= 1 n 1.580 0.038 <= 5 n
0.770 0.000 <= 5 n 1.580 0.000 <= 1 n 1.580 0.038 <= 1 n
0.770 0.278 <= 1 n 1.580 0.000 <= 5 n
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7.2 HD 60532 - Results of tests with 5° inclination

Results of the systems with an inclination of 5° with respect to the plane of
the sky. Abbrevitations are the same with the same units as in section 7.1.

Inner section

a e t E? a e t E? a e t E?

0.123 0.00-0.03 642 y 0.406 0.04 <= 10 n 0.613 0.02 <= 10 n
0.123 0.05 589 y 0.406 0.05 <= 5 n 0.613 0.03 <= 10 n
0.123 0.08-0.10 589 y 0.406 0.06 <= 5 n 0.613 0.04-0.06 <= 5 n
0.130 0.00 1000 y 0.406 0.07-0.10 <= 10 n 0.613 0.07 <= 10 n
0.130 0.04 1000 y 0.475 0.00-0.03 <= 5 n 0.613 0.08-0.10 <= 5 n
0.130 0.07 1000 y 0.475 0.04 <= 10 n 0.681 0.00-0.02 <= 5 n
0.130 0.10 1000 y 0.475 0.05 <= 10 n 0.681 0.03 <= 10 n
0.200 0.00-0.10 1000 y 0.475 0.06 <= 20 n 0.681 0.04 <= 10 n
0.338 0.00 <= 5 n 0.475 0.07 <= 5 n 0.681 0.05 <= 20 n
0.338 0.01 <= 10 n 0.475 0.08 <= 5 n 0.681 0.06-0.09 <= 5 n
0.338 0.02 <= 5 n 0.475 0.09 <= 10 n 0.681 0.10 <= 20 n
0.338 0.03 <= 20 n 0.475 0.10 <= 5 n 0.750 0.00 <= 5 n
0.338 0.04 <= 10 n 0.544 0.00-0.03 <= 5 n 0.750 0.01 <= 5 n
0.338 0.05 <= 5 n 0.544 0.04 <= 20 n 0.750 0.02 <= 10 n
0.338 0.06-0.09 <= 10 n 0.544 0.05 <= 5 n 0.750 0.03-0.05 <= 5 n
0.338 0.10 <= 20 n 0.544 0.06-0.08 <= 10 n 0.750 0.06 <= 10 n
0.350 0.00-0.10 <= 1 n 0.544 0.09 <= 5 n 0.750 0.07 <= 5 n
0.406 0.00 <= 10 n 0.544 0.10 <= 20 n 0.750 0.08 <= 10 n
0.406 0.01 <= 10 n 0.600 0.00-0.10 <= 1 n 0.750 0.09 <= 5 n
0.406 0.02 <= 20 n 0.613 0.00 <= 5 n 0.750 0.10 <= 5 n
0.406 0.03 <= 10 n 0.613 0.01 <= 5 n

Middle section

a e t E? a e t E? a e t E?

0.800 0.00-0.10 <= 5 n 1.150 0.00-0.10 <= 5 n 1.500 0.00-0.10 <= 5 n
0.975 0.00-0.10 <= 5 n 1.325 0.00-0.10 <= 5 n

Outer section

a e t E? a e t E? a e t E?

1.700 0.00-0.05 <= 10 n 3.586 0.02 700 n 4.057 0.00-0.05 150 n
1.700 0.06-0.10 <= 5 n 3.586 0.03 760 n 4.057 0.06 800 n
2.171 0.00-0.05 <= 10 n 3.586 0.04 370 n 4.057 0.07 300 n
2.171 0.06-0.10 <= 5 n 3.586 0.05 1000 y 4.057 0.08 170 n
2.643 0.00-0.05 <= 10 n 3.586 0.06 <= 100 n 4.057 0.09 300 n
2.643 0.06-0.10 <= 5 n 3.586 0.07 500 n 4.057 0.10 170 n
3.114 0.00-0.10 <= 100 n 3.586 0.08 800 n 4.529 0.00-0.10 1000 y
3.586 0.00 335 n 3.586 0.09 190 n 5.000 0.00-0.10 1000 y
3.586 0.01 335 n 3.586 0.10 630 n 6.000 0.00-0.10 1000 y
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7.3 HD 60532 - Results of tests with 20° inclination

Results of the integrations with test planets having an inclination of 20° with
respect to the plane of the sky. Table variables are the same as in section 7.1.

Inner section

a e t E? a e t E? a e t E?

0.123 0.00 970 y 0.200 0.04 447 y 0.475 0.00-0.09 <= 5 n
0.123 0.03 1000 y 0.200 0.04 500 n 0.475 0.08 <= 50 n
0.123 0.05 970 y 0.200 0.05 1000 y 0.475 0.09 <= 5 n
0.123 0.07 1000 y 0.200 0.06 1000 y 0.475 0.10 <= 5 n
0.123 0.09 1000 y 0.200 0.07 435 n 0.544 0.00 <= 5 n
0.123 0.10 970 y 0.200 0.08 1000 y 0.544 0.01 <= 10 n
0.200 0.00 447 y 0.200 0.09 1000 y 0.544 0.02-0.10 <= 5 n
0.200 0.00 480 n 0.200 0.10 447 y 0.613 0.00-0.04 <= 5 n
0.200 0.01 447 y 0.200 0.10 671 n 0.613 0.05 <= 10 n
0.200 0.01 689 n 0.338 0.00-0.09 <= 5 n 0.613 0.06-0.10 <= 5 n
0.200 0.02 447 y 0.338 0.10 <= 20 n 0.681 0.00-0.10 <= 5 n
0.200 0.02 500 n 0.406 0.00-0.08 <= 5 n 0.750 0.00-0.08 <= 5 n
0.200 0.03 447 y 0.406 0.09 <= 10 n 0.750 0.09 <= 10 n
0.200 0.03 470 n 0.406 0.10 <= 5 n 0.750 0.10 <= 5 n

Middle section

a e t E? a e t E? a e t E?

0.800 0.00-0.10 <= 5 n 0.975 0.10 <= 5 n 1.500 0.00-0.10 <= 5 n
0.975 0.00-0.08 <= 5 n 1.150 0.00-0.10 <= 5 n
0.975 0.09 <= 20 n 1.325 0.00-0.10 <= 5 n

Outer section

a e t E? a e t E? a e t E?

1.700 0.00 <= 1 n 2.171 0.05 <= 5 n 3.114 0.07 243 n
1.700 0.01 <= 5 n 2.171 0.06 <= 1 n 3.114 0.08-0.10 <= 100 n
1.700 0.02 <= 5 n 2.171 0.07-0.10 <= 10 n 3.586 0.00 1000 y
1.700 0.03 <= 10 n 2.643 0.00 <= 10 n 3.586 0.01 322 n
1.700 0.04 <= 1 n 2.643 0.01-0.04 <= 5 n 3.586 0.02 1000 y
1.700 0.05 <= 5 n 2.643 0.05 <= 1 n 3.586 0.03 474 n
1.700 0.06 <= 1 n 2.643 0.06 <= 10 n 3.586 0.04 566 n
1.700 0.07 <= 1 n 2.643 0.07 <= 20 n 3.586 0.05 320 n
1.700 0.08 <= 10 n 2.643 0.08-0.10 <= 10 n 3.586 0.06 191 n
1.700 0.09 <= 1 n 3.114 0.00 105 n 3.586 0.07 272 n
1.700 0.10 <= 1 n 3.114 0.01 <= 100 n 3.586 0.08 268 n
2.171 0.00 <= 10 n 3.114 0.02 105 n 3.586 0.09 296 n
2.171 0.01 <= 5 n 3.114 0.03 105 n 3.586 0.10 432 n
2.171 0.02 <= 10 n 3.114 0.04 <= 100 n 5.000 0.00-0.10 1000 y
2.171 0.03 <= 1 n 3.114 0.05 105 n 6.000 0.00-0.10 1000 y
2.171 0.04 <= 5 n 3.114 0.06 243 n
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Mean motion resonances

The mean motion resonances with both massive planets. In the 1:1 resonance,
all test bodies were placed in L4 and L5, thus the double mentioning.

a e t E? a e t E? a e t E?

0.233 0.00-0.02 <= 10 n 0.485 0.02-0.04 <= 5 n 1.602 0.08 <= 5 n
0.233 0.03 <= 5 n 0.485 0.05-0.06 <= 1 n 1.602 0.09 <= 1 n
0.233 0.04 <= 20 n 0.485 0.07-0.08 <= 5 n 1.602 0.10 <= 5 n
0.233 0.05 <= 5 n 0.485 0.09 <= 1 n 1.940 0.00-0.01 <= 1 n
0.233 0.06 <= 100 n 0.485 0.10 <= 10 n 1.940 0.02 <= 10 n
0.233 0.07 <= 20 n 0.540 0.00-0.10 <= 1 n 1.940 0.03 <= 5 n
0.233 0.08-0.09 <= 10 n 0.627 0.00-0.10 <= 1 n 1.940 0.04-0.05 <= 1 n
0.233 0.10 <= 100 n 0.760 0.00-0.10 <= 1 n 1.940 0.06-0.08 <= 5 n
0.263 0.00-0.02 <= 10 n 0.770 0.00-0.10 <= 1 n 1.940 0.09-0.10 <= 1 n
0.263 0.03 <= 5 n 0.770 0.00-0.10 <= 1 n 2.251 0.00-0.01 <= 5 n
0.263 0.04 <= 20 n 0.770 0.278 <= 1 n 2.251 0.02 <= 1 n
0.263 0.05 <= 5 n 0.770 0.278 <= 1 n 2.251 0.03-0.04 <= 10 n
0.263 0.06 <= 10 n 0.995 0.00-0.10 <= 1 n 2.251 0.05-0.06 <= 5 n
0.263 0.07 <= 50 n 1.222 0.00-0.03 <= 1 n 2.251 0.07 <= 10 n
0.263 0.08-0.09 <= 5 n 1.222 0.04 <= 10 n 2.251 0.08 <= 5 n
0.263 0.10 <= 10 n 1.222 0.05-0.06 <= 1 n 2.251 0.09-0.10 <= 1 n
0.306 0.00 <= 5 n 1.222 0.07 <= 10 n 2.508 0.00-0.10 <= 5 n
0.306 0.01 <= 10 n 1.222 0.08-0.09 <= 1 n 2.542 0.00-0.01 <= 1 n
0.306 0.02-0.06 <= 5 n 1.222 0.10 <= 5 n 2.542 0.02 <= 5 n
0.306 0.07-0.09 <= 10 n 1.580 0.00-0.10 <= 1 n 2.542 0.03-0.04 <= 1 n
0.306 0.10 <= 20 n 1.580 0.00-0.10 <= 1 n 2.542 0.05-0.06 <= 5 n
0.370 0.00-0.03 <= 5 n 1.580 0.038 <= 1 n 2.542 0.07 <= 10 n
0.370 0.04-0.05 <= 10 n 1.580 0.038 <= 1 n 2.542 0.08-0.10 <= 1 n
0.370 0.06-0.09 <= 5 n 1.602 0.00-0.03 <= 1 n 3.287 0.00-0.10 273 n
0.370 0.10 <= 10 n 1.602 0.04 <= 5 n 3.981 0.00-0.10 489 n
0.479 0.00-0.10 <= 1 n 1.602 0.05 <= 1 n 4.620 0.00-0.06 1000 y
0.485 0.00 <= 10 n 1.602 0.06 <= 5 n 4.620 0.07 950 n
0.485 0.01 <= 10 n 1.602 0.07 <= 1 n 4.620 0.08-0.10 1000 y
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7.4 HD 60532 - Results of tests with 25° inclination

Test planets with an inclination of 25° with respect to the plane of the sky.
Tabular parameters are the same as in section 7.1.

Inner section

a e t E? a e t E? a e t E?

0.100 0.00-0.10 <= 100 y 0.406 0.01 <= 1 n 0.613 0.00 <= 1 n
0.123 0.00-0.10 1000 y 0.406 0.02-0.04 <= 10 n 0.613 0.01 <= 50 n
0.133 0.00-0.10 <= 100 y 0.406 0.05 <= 1 n 0.613 0.02 <= 1 n
0.167 0.00-0.10 <= 100 y 0.406 0.06 <= 20 n 0.613 0.03 <= 1 n
0.200 0.00 744 n 0.406 0.07 <= 1 n 0.613 0.04 <= 10 n
0.200 0.01 1000 y 0.406 0.08 <= 10 n 0.613 0.05 <= 1 n
0.200 0.02 761 n 0.406 0.09 <= 1 n 0.613 0.06 <= 1 n
0.200 0.03 744 n 0.406 0.10 <= 1 n 0.613 0.07 <= 10 n
0.200 0.04 1000 y 0.475 0.00 <= 1 n 0.613 0.08-0.10 <= 1 n
0.200 0.05 580 n 0.475 0.01 <= 1 n 0.681 0.00-0.06 <= 1 n
0.200 0.06 938 n 0.475 0.02 <= 10 n 0.681 0.07 <= 10 n
0.200 0.07 722 n 0.475 0.03 <= 1 n 0.681 0.08 <= 1 n
0.200 0.08 932 n 0.475 0.04 <= 10 n 0.681 0.09 <= 1 n
0.200 0.09 904 n 0.475 0.05 <= 10 n 0.681 0.10 <= 10 n
0.200 0.10 825 n 0.475 0.06-0.08 <= 1 n 0.750 0.00 <= 10 n
0.338 0.00 <= 10 n 0.475 0.09 <= 10 n 0.750 0.01 <= 10 n
0.338 0.01 <= 10 n 0.475 0.10 <= 1 n 0.750 0.02-0.05 <= 1 n
0.338 0.02 <= 20 n 0.544 0.00 <= 20 n 0.750 0.06 <= 20 n
0.338 0.03 <= 50 n 0.544 0.01 <= 20 n 0.750 0.07 <= 1 n
0.338 0.04-0.07 <= 10 n 0.544 0.02-0.04 <= 1 n 0.750 0.08 <= 10 n
0.338 0.08 <= 1 n 0.544 0.05 <= 20 n 0.750 0.09 <= 1 n
0.338 0.09 <= 20 n 0.544 0.06-0.08 <= 1 n 0.750 0.10 <= 1 n
0.338 0.10 <= 1 n 0.544 0.09 <= 10 n
0.406 0.00 <= 10 n 0.544 0.10 <= 10 n

Middle section

a e t E? a e t E? a e t E?

0.800 0.00-0.10 <= 5 n 1.150 0.00-0.10 <= 5 n 1.500 0.00-0.10 <= 5 n
0.975 0.00-0.10 <= 5 n 1.325 0.00-0.10 <= 5 n

Outer section

a e t E? a e t E? a e t E?

1.700 0.00-0.10 <= 5 n 3.586 0.02 214 n 4.057 0.07 270 n
2.171 0.00-0.10 <= 5 n 3.586 0.03 421 n 4.057 0.08 <= 100 n
2.643 0.00-0.10 <= 5 n 3.586 0.04 1000 y 4.057 0.09 607 n
3.114 0.00 130 n 3.586 0.05 299 n 4.057 0.10 735 n
3.114 0.01 <= 50 n 3.586 0.06 1000 y 4.529 0.00-0.06 1000 y
3.114 0.02 <= 100 n 3.586 0.07 539 n 4.529 0.07 617 n
3.114 0.03 130 n 3.586 0.08 <= 100 n 4.529 0.08 742 n
3.114 0.04 130 n 3.586 0.09 130 n 4.529 0.09 539 n
3.114 0.05 <= 100 n 3.586 0.10 180 n 4.529 0.10 1000 y
3.114 0.06 <= 50 n 4.057 0.00 539 n 5.000 0.00-0.06 1000 y
3.114 0.07 <= 50 n 4.057 0.01 130 n 5.000 0.07 539 n
3.114 0.08 <= 100 n 4.057 0.02 892 n 5.000 0.08 539 n
3.114 0.09 <= 50 n 4.057 0.03 892 n 5.000 0.09 617 n
3.114 0.10 <= 100 n 4.057 0.04 240 n 5.000 0.10 1000 y
3.586 0.00 546 n 4.057 0.05 1000 y 5.500 0.00-0.10 1000 y
3.586 0.01 546 n 4.057 0.06 421 n 6.000 0.00-0.10 1000 y
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7.5 HD 40307 - Results

These tables show the results of the integrations of the HD 40307 system.
Columns are semi-major axis in AU (a), eccentricity (e), simulation duration
or, in case of instability of the planet time of escape, in 1000 years (t) and
whether the planet was still stable in the system at the end of the integration
(E?).

Inner/middle section

a e t E? a e t E? a e t E?

0.020 0.000 1000 y 0.040 0.000 1000 y 0.054 0.100 <= 5 n
0.020 0.050 1000 y 0.040 0.050 1000 y 0.100 0.050 1000 y
0.020 0.100 1000 y 0.040 0.100 1000 y 0.100 0.070 200 n
0.025 0.000 401 y 0.054 0.000 1000 y 0.100 0.090 <= 5 n
0.025 0.050 401 y 0.054 0.020 873 y 0.100 0.080 <= 10 n
0.025 0.100 401 y 0.054 0.050 176 n 0.108 0.010 1000 y
0.030 0.000 312 y 0.054 0.060 <= 50 n 0.108 0.030 915 y
0.030 0.050 219 y 0.054 0.070 <= 5 n 0.108 0.100 <= 5 n
0.030 0.100 217 y 0.054 0.080 <= 5 n

Outer section

a e t E? a e t E? a e t E?

0.160 0.050 1000 y 0.442 0.020 880 y 1.000 0.030-0.090 125 y
0.160 0.070 1000 y 0.442 0.030 1000 y 1.000 0.100 1000 y
0.160 0.080 1000 n 0.442 0.040 695 y 1.080 0.000 549 y
0.160 0.090 103 n 0.442 0.080 1000 y 3.250 0.000-0.100 <= 50 y
0.160 0.095 1000 n 0.442 0.090 772 y 5.500 0.000-0.100 <= 50 y
0.160 0.100 377 n 1.000 0.000 1000 y 7.750 0.000-0.100 <= 50 y
0.170 0.070 1000 y 1.000 0.010 125 y 10.000 0.000-0.100 <= 50 y
0.200 0.000 1000 y 1.000 0.020 <= 50 y

Mean motion resonance

a e t E? a e t E? a e t E?

0.041 0.000 1000 y 0.129 0.000 <= 5 n 0.279 0.100 1000 y
0.041 0.050 1000 y 0.134 0.000 1000 y 0.338 0.000 1000 y
0.046 0.000 <= 5 n 0.134 0.050 1000 y 0.338 0.050 1000 y
0.046 0.050 <= 5 n 0.134 0.100 1000 y 0.338 0.100 1000 y
0.053 0.000 1000 y 0.168 0.000 1000 y 0.392 0.000 1000 y
0.053 0.050 <= 5 n 0.204 0.000 1000 y 0.392 0.050 1000 y
0.064 0.000 1000 y 0.213 0.000 1000 y 0.392 0.100 1000 y
0.064 0.050 1000 y 0.213 0.050 1000 y 0.442 0.000 1000 y
0.081 0.000 1000 y 0.213 0.100 1000 y 0.442 0.010 862 y
0.084 0.000 <= 1 n 0.279 0.000 1000 y 0.442 0.050 1000 y
0.084 0.050 <= 1 n 0.279 0.050 1000 y 0.442 0.100 1000 y

7.6 Mathematica calculations
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