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1 Abstract — Zusammenfassung

We study three-dimensional rapidly rotating Bose-Einstein condensates in a theoretical context.
The main results are lower and upper bounds on the Gross-Pitaevskii energy of the dilute Bose gas
in the Thomas-Fermi limit. Similar results were already obtained for strongly anharmonic external
potentials in 2D [CRDY07b, CY08] and homogeneous external potentials in 2D [CRDY07a] and
3D [BCPY08] whereas we present the treatment of partially anisotropic traps in 3D. Furthermore
a complete description and illustration of the Thomas-Fermi density in this limit is given. We also
supply the source code for the generation of the illustrations.

Wir untersuchen dreidimensionale schnell rotierende Bose-Einstein Kondensate in einem theo-
retischen Kontext. Die Hauptresultate sind untere und obere Schranken an die Gross-Pitaevskii
Energie des verdünnten Bose Gases im Thomas-Fermi Limes. Ähnliche Resultate wurden bereits
für stark anharmonische äußere Potentiale in 2D [CRDY07b, CY08] und homogene äußere Poten-
tiale in 2D [CRDY07a] und 3D [BCPY08] entwickelt wohingegen wir die Betrachtung von teilweise
anisotropen Fallen in 3D präsentieren. Weiters geben wir eine komplette Beschreibung und Illus-
tration der Thomas-Fermi Dichte in diesem Grenzwert an. Wir stellen auch den Quelltext zur
Erstellung der Illustrationen zur Verfügung.
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[I]f in other sciences we should arrive at certainty without
doubt and truth without error, it behooves us to place the
foundations of knowledge in mathematics, in so far as dis-
posed through it we are able to reach certainty in other
sciences and truth by the exclusion of error.

Roger Bacon1

2 Introduction

The underlying topic of this thesis are Bose-Einstein condensates (BECs), named after Satyendra
Nath Bose and Albert Einstein. The first step toward their prediction was done by Bose in 1924,
who found out that a new kind of particle statistics enable him to derive Planck’s law of radiation
without any reference to classical physics. At first rejected by journals he was able to publish
this seminal work with the help of Albert Einstein [Bos24]. His work was then generalized by
Einstein who discovered that an ideal gas, which is governed by Bose-Einstein statistics, would
condense into the lowest accessible quantum state when sufficiently cooled [Ein25]. This process
was later named Bose-Einstein condensation. While theoretically compelling, an experimental
validation of the theory took 70 years due to the technical difficulties that had to be mastered. A
partial result was already obtained in 1938 when Pjotr L. Kapitza [Kap38], John F. Allen and Don
Misener [AM38] discovered superfluidity in helium-4 at temperatures less than 2.17K. It already
showed typical properties of a BEC such as vanishing viscosity and quantized vortices when being
rotated but the strong interactions between the liquid’s particles prevented a full condensation.
Only around 10% of the atoms are in the ground state [Lon38, PO56, SS95].

In 1995 the realization of a true BEC was obtained as the goal in a race between the experi-
mental groups around Eric Cornell and Carl Wiedman at the Boulder NIST-JILA lab [AEM+95]
and Wolfgang Ketterle at MIT [DMA+95]. Cornell and Wiedman achieved the condensation of
approximately 2000 87Rb atoms at temperatures below 170nK while Ketterle obtained the conden-
sation of approximately 105 23Na atoms two months later. Both used laser cooling and magnetic
evaporation cooling to achieve such low temperature — technologies that had to be developed over
the span of 70 years to allow such a feat. All three were awarded the Nobel Prize in Physics for
their achievement in 2001 [CW02, Ket02].

Refinement of the experiments allowed the study of rotating BECs [MAH+99, MCWD00,
CMD00, ARVK01] — the main interest of this thesis. Related areas of research are the ‘bose-
nova’ — the spontaneous im- and explosion of a certain BEC [RCC+01] —, BECs consisting of
molecules [JBA+03] or Cooper pairs [GRJ03], the drastic slowing down of light beams even so far
as to temporarily stopping them [HHDB99, LDBH01] and the attempt to model black hole physics
with vortices in rotating BECs [LIB+09, MP09].

The original theory of BECs was greatly expanded by the work of Bogoliubov on weakly inter-
acting Bose gases [Bog47a, Bog47b] in 1947. By an approximation to the system’s Hamiltonian he
obtained the energy of the ground state. The usual framework in which condensates are theoreti-
cally examined was developed by Gross [Gro61, Gro63] and Pitaevskii [Pit61] and has at its core
the Gross-Pitaevskii (GP) energy functional [DGPS99] which has a non-linear cubic Schrödinger
equation as its variational equation. Since this functional is evaluated on a single complex conden-
sate wavefunction φ : R3 → C it is much easier to handle than the full many-particle Hamiltonian

1Translation by Robert Burke, Opus Majus of Roger Bacon (1928), vol 1, 124. In Fred R. Shapiro, The Yale
Book of Quotations (2006), 39.
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of the Bose gas and we will make great use of it in this work. A rigorous derivation of the GP
framework from the full quantum-mechanical Hamiltonian with repulsive particle interactions was
done for systems at rest [LSY00] and rotating systems [LS06] by Elliot Lieb, Robert Seiringer and
Jakob Yngvason. For an overview of the mathematical modeling of BECs we refer to the works of
Amandine Aftalion [Aft07] and Alexander L. Fetter [Fet09].

For condensates that are trapped by an external potential that grows faster than harmonic it
is theoretically possible to rotate the condensate arbitrarily fast without losing the confinement.
The mathematical treatment of such cases was already done for strongly anharmonic traps in
2D [CRDY07b, CY08] and homogeneous traps in 2D [CRDY07a] and 3D [BCPY08] by Michele
Correggi, Tanja Rindler-Daller, Jean-Bernard Bru, Peter Pickl and Jakob Yngvason. In this thesis
we will extend this field by the treatment of partially anisotropic potentials of the form rs + |z|t
with s > 2 and t > 0.

If one takes a harmonic trap several new features arise. At first there exists a critical angular
velocity which is the fastest a condensate can rotate without flying apart. Close to this limit one
finds an analogy to theory of Lowest Landau Levels of charged particles in magnetic fields. This
regime is an active field of research and there exist predictions that for high angular momenta new
effects such as similarities to the Fractional Quantum Hall Effect or the emergence of anyonic and
perhaps non-abelian particle statistics can be found. We refer to the review article by Nigel R.
Cooper for an overview [Coo08].
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3 General Setting

3.1 The Hamiltonian

We start with the Hamiltonian of N interacting bosonic particles given by the operator2

HN ≡
N∑
i=1

H
(i)
0 +

∑
1≤i<j≤N

v(~xi − ~xj), ~xi, ~xj ∈ R3 (3.1)

acting on the symmetric product of Hilbert spaces of wave functions, i.e., L2(R3)⊗sN . H(i)
0 denotes

the one-body Hamiltonian of particle i and will be defined below. The interaction is modeled by
the two-particle interaction potential v. We demand v to be spherically symmetric (v(~x) = v(|~x|)),
non-negative and of finite range (∃R > 0 such that v(~x) = 0 for |~x| > R). This yields a repulsive
two-body interaction which can be assigned a characteristic parameter of the interaction.

The scattering length α of a potential ν(|~x|) with finite range R is defined as follows: The
solution Ψ(~x) of the zero energy scattering Schrödinger equation

−∆Ψ(~x) + 1
2ν(|~x|)Ψ(~x) = 0

with the boundary condition Ψ(~x)→ 1 as |~x| → ∞ has the form

Ψ(~x) = 1− α

|~x|
for |~x| > R

which we use as the definition of the scattering length α.
Since we are interested in a description of spinless bosons in a rotating external trap we define

the one-body Hamiltonian in the rotating frame as

H0 = −∆ + ~L · ~Ω + V (~x) (3.2)

where ~L = i(~∇× ~x) is the angular momentum operator and ~Ω denotes the angular velocity of the
rotating trapping potential V . As we model identical particles each one-body Hamiltonian H

(i)
0

in (3.1) is given by H0. We assume uniform particle mass m and scale our units for convenience
such that 2m = ~ = 1. We fix the axis rotation as the z-axis, i.e., ~Ω = (0, 0,Ω) = Ω~ez with the
scalar angular velocity Ω. It is convenient to add and subtract the term 1

2 (Ω× ~x) to H0 so that it
can be rewritten by completion of the square as

H0 =
(
−i~∇− ~AΩ(~x)

)2

+ V (~x)− 1
4Ω2r2 (3.3)

with r = |~r | = |~x× ~ez| and a vector potential ~AΩ(~x) ≡ 1
2Ω(~ez × ~x). The vector potential can be

thought of as the ‘Coriolis force’ in the rotating frame and is the main reason for the formation of
vortices.

The choice of the external potential is now a fundamental aspect of this thesis as it determines
the special case for which we calculate the ground state energy asymptotics. In general, V has
to be bounded from below and has to be confining in the sense that V (~x) → ∞ as |~x| → ∞ to
render the Hamiltonian sufficiently well behaved. Since we are interested in limits of large angular
velocity Ω the external potential must not be overwhelmed by the centrifugal ‘force’ Ω2r2. All
these requirements are met by our choice of an anisotropic external potential

V (~x) ≡ rs + |z|t , s > 2, t > 0.

In radial direction this potential grows faster than harmonic and thus our system does not fly apart
at arbitrarily high angular velocities Ω.

2For vectors in R3 we use the notation ~x = (x, y, z) = (~r , z) throughout this thesis.
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3.2 The Gross-Pitaevskii (GP) Functional

The GP energy functional of a function φ in the rotating frame is given by

EGP
g,Ω[φ] ≡ 〈φ|H0|φ〉+ g

∫
R3

d~x |φ|4

=
∫

R3
d~x
{∣∣∣(~∇− i ~AΩ

)
φ
∣∣∣2 +

(
rs + |z|t

)
|φ|2 − 1

4Ω2r2|φ|2 + g|φ|4
}

with the GP parameter
g ≡ 4πaN (3.4)

and defined on the domain of functions from R3 to C

DGP ≡
{
φ : φ ∈ L2(R3) ∩ L4(R3), ~∇φ ∈ L2(R3),

(
rs + |z|t

)
φ ∈ L1(R3)

}
.

We have omitted the argument (~x) of both ~AΩ and φ for convenience and will continue to do so.
We will be interested in the lowest attainable energy of this functional, i.e.,

EGP
g,Ω ≡ inf

φ∈DGP,‖φ‖2=1
EGP
g,Ω[φ]

which we call the GP energy. It can be shown that the infimum exists and is a minimum [LSY00].
We denote a corresponding minimizer by φGP

g,Ω such that EGP
g,Ω = EGP

g,Ω[φGP
g,Ω]. Note that such a

minimizer is not necessarily unique in the rotating case [LS06]. Naturally it obeys the Euler
Lagrange equation of the GP energy — the GP equation —(

−
(
~∇− i ~AΩ

)2

+ rs + |z|t − 1
4Ω2r2 + 2g

∣∣φGP
g,Ω

∣∣2)φGP
g,Ω = µGP

g,Ωφ
GP
g,Ω. (3.5)

The Lagrange multiplier µGP
g,Ω is called the GP chemical potential and given by

µGP
g,Ω ≡ EGP

g,Ω + g

∫
R3

d~x
∣∣φGP
g,Ω

∣∣4 .
It ensures the normalization of the minimizer in (3.5) and corresponds to the energy per particle
to add a small number of particles to the system.

The GP functional was obtained by Gross [Gro61, Gro63] and Pitaevskii [Pit61] from the full
quantum mechanical Hamiltonian by heuristic arguments. In recent years a strictly mathematical
proof of the validity of such an approximation was given for an interacting Bose gas at rest [LSY00]
and a rotating one [LS06]. The main results are limit theorems of the form

lim
N→∞

EQM(N,Ω)
N

= EGP
g,Ω

with EQM the ground state energy of a N -body Hamiltonian such as (3.1) and (3.2) in the sector
of bosonic (symmetric) N -body wavefunctions. The GP parameter g is kept of order O(1) in the
limit N → ∞. This immediately demands that the scattering length a ∝ g/N of the two-body
interaction potential v of the Hamiltonian has to be of order O(N−1). We can achieve such a
behavior by setting v(~x) = N2vg(N~x) with a fixed potential vg. We call this the GP limit or
dilute limit since the scattering length a of order O(N−1) together with the mean GP density ρ̄ of
order O(N) (see (3.6)) gives a3ρ̄ = O(N−2). The last term tells us that the interparticle distances
become large with respect to the range of the interaction potential (given by the scatter length a)
as N →∞.
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The mean GP density for a given number of particles N is defined by

ρ̄ ≡ N
∫

R3
d~x
∣∣φGP
g,Ω

∣∣4 . (3.6)

Having outlined the fundamentals of the GP theory an essential clarification is still missing —
the precise physical definition of Bose-Einstein condensation. We will give this shortly but need a
definition in beforehand. Let Ψ be the normalized ground state wavefunction of the operator (3.1)
with ~Ω = ~0. We define the one-particle density matrix of Ψ as

γ(~x, ~x′) ≡ N
∫

R3(N−1)
d ~X Ψ(~x, ~X)Ψ(~x′, ~X)

where ~X ≡ (~x2, . . . , ~xN ) and d ~X ≡
∏N
j=2 d~xj . Complete Bose-Einstein condensation is then the

property that in the limit of N → ∞ the density matrix 1
N γ(~x, ~x′) becomes a product φ(~x)φ(~x′)

of a so-called condensate wave function φ.
It can be shown that in the GP limit (N → ∞ with g fixed) on has full condensation of the

many body ground state into the GP minimizer, i.e.

lim
N→∞

γ(~x, ~x′)
N

= φGP
g,0 (~x) φGP

g,0 (~x′) (3.7)

where the limit is meant to be taken in the trace norm. This was proved by Elliot H. Lieb and
Robert Seiringer [LS02] who also showed a similar result for the rotating case. In the latter case
the solution of the GP equation is not generally unique and γ(~x, ~x′) can not be assumed to be a
pure state. It was then shown that the limit points of a set of approximate ground state is always
a convex combination of projections onto the various GP minimizers. Due to technical details the
precise statement is rather lengthy and we refer to [LS06, Thm. 2] for a rigorous definition.

3.3 The Scalings of the GP Functional

We are interested in the behavior of the GP energy and GP minimizer in the limit of rapid rotation.
It is quiet clear that for a fixed external potential such a limit would cause the condensate to
expand in all directions and become increasingly dilute. To counteract this process we will scale
our coordinates according to the relation between g and Ω and between s and t. The exact nature
of these scalings is the topic of this section.

Starting with the standard GP functional in the rotating frame

EGP
g,Ω[φ] ≡

∫
R3

d~x
{∣∣∣(~∇− i ~AΩ

)
φ
∣∣∣2 +

(
rs + |z|t

)
|φ|2 − 1

4Ω2r2|φ|2 + g|φ|4
}

(3.8)

we scale both the radial and the z-direction independently. We set ~r ≡ λ~r ′ and z ≡ µz′ to get3

EGP
g,Ω[φ] =

∫
R3

d~x′
{∣∣∣(λ−1~∇~r ′ + µ−1~∇z′ − iλ ~AΩ

)
φ′
∣∣∣2

+
(
λsr′

s + µt |z′|t
)
|φ′|2 − 1

4Ω2λ2r′
2|φ′|2 + gλ−2µ−1|φ′|4

}
(3.9)

with
φ′(~r ′ , z′) ≡ λµ1/2φ(~r , z)

3We use the abbreviation ~∇~r for (∂x, ∂y , 0) and ~∇z for (0, 0, ∂z).
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by normalization. In the following investigations it will be necessary to differentiate two cases
that depend on the general form of the external potential, which is determined by the exponents s
and t. If s > t the potential grows faster in radial direction than along the rotational axis.
The relation s < t gives the converse case. If the external potential is completely homogeneous
(V (λ~x) = λsV (~x)), thus s = t, the results of [BCPY08] can be applied. To make the notation
more transparent, we will use the same letters for variables in both cases but with an underline
for the case s > t and an overline for s < t. In (3.9) we will set either

µ = λs/t or λ = µt/s.

Both choices ensure that the term of the external potential has only a single prefactor, which
implies that its qualitative shape does not change with the scaling parameter. We arrive at

EGP
g,Ω[φ] = λ−2

∫
R3

d~x′
{∣∣∣(~∇~r ′ + λ(t−s)/t~∇z′ − i ~Aλ2Ω

)
φ′
∣∣∣2

+λs+2
((
r′
s + |z′|t

)
|φ′|2 − 1

4Ω2λ2−sr′
2|φ′|2 + gλ−(s+(s+2)t)/t|φ′|4

)}
(3.10)

and

EGP
g,Ω[φ] = µ−2

∫
R3

d~x′
{∣∣∣(µ(s−t)/s~∇~r ′ + ~∇z′ − i ~Aµ(s+t)/sΩ

)
φ′
∣∣∣2

+µt+2
((
r′
s + |z′|t

)
|φ′|2 − 1

4Ω2µ−((s−2)t)/sr′
2|φ′|2 + gµ−(s+(s+2)t)/s|φ′|4

)}
. (3.11)

In the course of our examinations we will need an additional scaling depending on the relation
between the rotational energy term ∝ Ω2r′

2|φ′|2 and the interaction energy term ∝ g|φ′|4. If the
contribution to the total energy of the rotational term dominates it will be convenient to choose
the scaling parameter λ and µ in a way such that the prefactor of the interaction term |φ′|4 is set
to one, i.e., either gλ−(s+(s+2)t)/t = 1 or gµ−(s+(s+2)t)/s = 1. This sets the scaling parameters to

λ ≡ gt/(s+(s+2)t) or µ ≡ gs/(s+(s+2)t). (3.12)

To simplify the notation we will define additional variables ε
¯
, ε̄ and ω. In the case of s > t we set

ε
¯
−2 ≡ g(s+2)t/(s+(s+2)t) = λs+2 (3.13)

and obtain the expression of the GP functional we will work with, namely,

EGP
g,Ω[φ] = ε

¯
4/(s+2)

∫
R3

d~x′
{∣∣∣(~∇~r ′ + ε

¯
α~∇z′ − i ~Aω/ε

¯

)
φ′
∣∣∣2

+ε
¯
−2
((
r′
s + |z′|t

)
|φ′|2 − 1

4ω
2r′

2|φ′|2 + |φ′|4
)}

≡ ε
¯

4/(s+2)ĒGP
ε
¯
,ω [φ′] (3.14)

with α ≡ 2(s− t)/((s+ 2)t) > 0. The case of s < t leads to the definition

ε̄−2 ≡ gs(t+2)/(s+(s+2)t) = µt+2 (3.15)

and the functional

EGP
g,Ω[φ] = ε̄ 4/(t+2)

∫
R3

d~x′
{∣∣∣(ε̄ β ~∇~r ′ + ~∇z′ − i ~Aω/ε̄

)
φ′
∣∣∣2

+ε̄−2
((
r′
s + |z′|t

)
|φ′|2 − 1

4ω
2r′

2|φ′|2 + |φ′|4
)}

≡ ε̄ 4/(t+2)ĒGP
ε̄ ,ω[φ′] (3.16)

10



where β ≡ 2(t− s)/(s(t+ 2)) > 0. In both cases the parameter

ω2 ≡ Ω2g−(s−2)t/(s+(s+2)t) (3.17)

denotes the strength of the rotation with respect to the interaction. The precise definition of the
regime where effects arising from the particle interactions dominate is ω ≤ C < ∞ as g (and
perhaps Ω) tend to infinity. We note that for g →∞ both ε

¯
and ε̄ tend to zero. This is the main

reason for the need of the different scalings, because the vanishing prefactors in the kinetic term
allow the derivation of an upper bound on the energy.

The case of a dominating rotational energy contribution is then described as ω → ∞ as
both Ω, g → ∞. Hence we need yet another scaling, which turns out as more convenient in
the treatment of the associated TF functional (see section 4.5). Starting with (3.10) and choosing

λ ≡ Ω2/(s−2) (3.18)

sets the term Ω2λ2−s to one and yields

EGP
g,Ω[φ] = Ω

¯
−4/(s+2)

∫
R3

d~x′
{∣∣∣(~∇~r ′ + Ω

¯
−α~∇z′ − i ~AΩ

¯

)
φ′
∣∣∣2

+Ω
¯

2
((
r′
s + |z′|t

)
|φ′|2 − 1

4r
′2|φ′|2 + γ|φ′|4

)}
≡ Ω

¯
−4/(s+2)E. GP

γ,Ω
¯
[φ′] (3.19)

with
Ω
¯

2 ≡ Ω2(s+2)/(s−2) (3.20)

and
γ ≡ gΩ−2(s+(s+2)t)/((s−2)t). (3.21)

For s < t we take (3.10) and apply
µ ≡ Ω2s/((s−2)t) (3.22)

to get

EGP
g,Ω[φ] = Ω̄−4/(t+2)

∫
R3

d~x′
{∣∣∣(Ω̄−β ~∇~r ′ + ~∇z′ − i ~AΩ̄

)
φ′
∣∣∣2

+Ω̄ 2
((
r′
s + |z′|t

)
|φ′|2 − 1

4r
′2|φ′|2 + γ|φ′|4

)}
≡ Ω̄−4/(t+2)ĖGP

γ,Ω̄ [φ′] (3.23)

where
Ω̄ 2 ≡ Ω2s(t+2)/((s−2)t) (3.24)

and γ as in (3.21). The limit ω →∞ is thus equivalent to γ → 0 due to the relation

γ = ω−(s−2)t/(s+(s+2)t). (3.25)

Note that the prefactors Ω
¯
−α and Ω̄−β in the kinetic term vanishing as Ω→∞.

11



4 The Thomas-Fermi (TF) Framework

We will show that in the limit of g →∞ the magnetic-kinetic term of the GP functional (3.8) will
become negligible and the situation can be described in terms of the TF functional

ETF
g,Ω[ρ] ≡

∫
R3

d~x
{(
rs + |z|t

)
ρ− 1

4Ω2r2ρ+ gρ2
}

(4.1)

defined on the domain

DTF ≡
{
ρ ∈ L2

(
R3
)∣∣∣ρ ≥ 0,

(
rs + |z|t

)
ρ ∈ L1

(
R3
)}
. (4.2)

4.1 Scaling of the TF Functional

By the same scalings that were used for the GP functionals (see (3.9)-(3.11)) we get matching
expressions for the TF functionals. An essential property of these scalings is the fact that they
reduce the TF problem to a one-parameter theory as the dependence of both Ω and g is combined
into either ω or γ.

Using the independent scalings of ~r and z we obtain the relation

ETF
g,Ω[ρ] =

∫
R3

d~x′
{(
λsr′

s + µt |z′|t
)
ρ′ − 1

4Ω2λ2r′
2
ρ′ + gλ−2µ−1ρ′

2
}

with ρ(r, z) = λ−2µ−1ρ′(r′, z′). For a dominating interaction energy contribution to the total
energy we set the parameters λ and µ as in (3.12) and get the scaled TF functional

ETF
g,Ω[ρ] = gst/(s+(s+2)t)

∫
R3

d~x′
{(
r′
s + |z′|t

)
ρ′ − 1

4ωr
′2ρ′ + ρ′

2
}

≡ ε
¯
−2s/(s+2)ETF

1,ω [ρ′].

The corresponding TF energy is defined as the functional’s infimum over all functions in DTF, i.e.,

ETF
1,ω ≡ inf

ρ∈DTF,‖ρ‖1=1
ETF

1,ω [ρ]. (4.3)

It is known that this minimization problem has a unique solution, the TF density, given by

ρTF
1,ω (~x) =

1
2

[
µTF

1,ω + 1
4ω

2r2 − rs − |z|t
]

+
(4.4)

where [·]+ denotes the positive part and µTF
1,ω is the TF chemical potential fixed by the normaliza-

tion ‖ρTF
1,ω‖1 = 1.

The relation
µTF

1,ω = ETF
1,ω + ‖ρTF

1,ω‖22 (4.5)

can be obtained by multiplying (4.4) by ρTF
1,ω and integrating the expression. The relationship

between the scaled entities and the original ones is given by

ε
¯

2s/(s+2)ETF
g,Ω = ETF

1,ω and ε
¯

2s/(s+2)µTF
g,Ω = µTF

1,ω.

The TF density scales with

ε
¯
−2(s+2t)/((s+2)t)ρTF

g,Ω

(
ε
¯
−2/(s+2)~r , ε

¯
−2s/((s+2)t)z

)
= ρTF

1,ω(~r , z). (4.6)
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If the rotational energy contribution is dominant, we use a different scaling akin to (3.18)
and (3.22) to arrive at

ETF
g,Ω[ρ] = Ω2s/(s−2)

∫
R3

d~x′
{(
r′
s + |z′|t

)
ρ′ − 1

4r
′2ρ′ + γρ′

2
}

≡ Ω
¯

2s/(s+2)ETF
γ,1 [ρ′]. (4.7)

The corresponding TF density is given by

ρTF
γ,1 (~x) =

1
2γ

[
µTF
γ,1 + 1

4r
2 − rs − |z|t

]
+

(4.8)

and its energy, defined as in (4.3), exhibits the relation

µTF
γ,1 = ETF

γ,1 + γ‖ρTF
γ,1‖22

with µTF
γ,1 fixed again by normalization of the density. The scalings of these quantities are given by

Ω
¯
−2s/(s+2)ETF

g,Ω = ETF
γ,1 , Ω

¯
−2s/(s+2)µTF

g,Ω = µTF
γ,1

and
Ω
¯

2(s+2t)/((s+2)t)ρTF
g,Ω

(
Ω
¯
−2/(s+2)~r ,Ω

¯
−2s/((s+2)t)z

)
= ρTF

γ,1(~r , z).

The energies we defined in this section so far will give the leading order term of the GP energy as g
and possibly Ω tend to infinity. To further illustrate this framework we derive additional properties
of the TF density and show plots of the density with different parameter choices.

4.2 The Support of the TF Densities

To simplify the notation throughout this section we will write ρTF whenever a statement holds for
both ρTF

1,ω and ρTF
γ,1. Furthermore we denote with the constant c1 either ω2 or 1, whichever is appro-

priate for the choice of the density in the same context. The same holds for c2, which is either 1 or γ.
Both constants are positive since Ω and g are positive. The TF densities given by (4.4) and (4.8)
are rotationally symmetric and we can abbreviate with ρTF(r, z) the expression ρTF(r, φ, z) for an
arbitrarily but fixed angular component φ of the cylindrical coordinates.

Since s > 2 and t > 0 the expressions
(

1
4c1r

2 − rs
)

and (− |z|t) tend to −∞ for r → ∞
and z → ±∞. This ensures that ρTF is compactly supported4, i.e. supp(ρTF) ⊂ BR for some R <
∞ depending on ω or γ.

For our further investigations of the support we define the function

f (y, w) ≡ 1
2c2

(
µTF + 1

4c1y − y
s/2 − w2

)
(4.9)

using cylindrical coordinates. Choosing the respective values for the constants c1 and c2 one can
easily see that ρTF =

[
f(r2, |z|t/2)

]
+

.

Taking the second partial derivatives of f with respect to y and w we see that

∂2f

∂y2
= −s(s− 2)

8c2
y(s−4)/2 < 0, for y ≥ 0 (4.10)

4BR denotes a three-dimensional ball centered at the origin with radius R.
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and
∂2f

∂w2
= − 1

c2
< 0 for w ∈ R. (4.11)

This implies that f is strictly concave along radial rays5 (that are perpendicular to the w-axis)
and along lines parallel to the w-axis.

If we assume that f is positive at a point ~x0, then concavity ensures that along a line, parallel
to the w-axis that contains ~x0, the function f vanishes at two points. Due to the symmetry of f
in w these two points’ w-coordinates differ only by sign. The same procedure with respect to a
radial ray yields that, depending on the value of f at y = 0, f has one or two zeros along the ray.
In the case of f ≤ 0 at the w-axis it vanishes at two points and in the case of a strictly positive
value it has only one zero. By construction f is radially symmetric and with the results above
this implies that the support of f is connected since f (as well as ρTF) are continuous. Note that
ρTF(r, 0) =max

z′∈R
ρTF(r, z′) because ∂ρTF/∂z = − 1

2 t |z|
t−1

< 0 for z 6= 0. In the origin we have

f(0) = µTF/(2c2) and thus the number of zeros along a ray in the z = 0 plane is governed by the
sign of µTF.

If µTF > 0, then there exists a unique yout > 0 such that f(yout, 0) = 0. By the definition of f
we see that the support of ρTF along such a ray is the interval [0, Rout], with Rout ≡

√
yout. To

abbreviate the notation we define the {z = 0}-plane as

P =
{

(r, z) ∈ R3|z = 0
}
. (4.12)

By the radial symmetry of the TF density we see that the support in P is, in fact, a disc with
radius Rout centered at the origin.

In the case of µTF < 0 there exist two distinct radii yin and yout such that f(yin, 0) = f(yout, 0) =
0. Hence the support of ρTF in P is a ring with inner radius Rin and outer radius Rout, where Rout

is defined as above and Rin ≡
√
yin.

Since the density vanishes at these points we have that µTF = Rsout − 1
4c1R

2
out and, in the case

of µTF < 0, µTF = Rsin − 1
4c1R

2
in. If µTF = 0, the density is zero in the origin and the support

of ρTF intersected with P is the disc with radius Rout.
Having established a rough description of the density’s support in P, we have to exam-

ine its properties in the z-direction. We start by defining the circle of maximum density by
{(Rmax, φ, 0)|0 ≤ φ < 2π} with

Rmax ≡
( c1

2s

)1/(s−2)

(4.13)

justified by ∂ρTF/∂r = 0 at r = Rmax. The density’s decrease in z-direction is independent
of r and therefore it has its largest elongation 2Zout (parallel to the rotational axis) at radial
coordinate Rmax with

Zout ≡
(
µTF + 41/(s−2)(s− 2)

( c1
4s

)s/(s−2)
)1/t

. (4.14)

Let ζ(r) be the function that assigns every radius (max{0, Rin} ≤ r ≤ Rout) the smallest mod-
ulus of the z-coordinate at which the density vanishes, i.e., ζ(r) ≡ inf

z∈R

{
|z| | ρTF(r, z) = 0

}
. Since

the density is strictly positive on {(r, φ, 0) | r ∈ (Rin, Rout) ∧ φ ∈ [0, 2π)}, the same holds for ζ by
continuity of ρTF. On the support of the TF density we can solve f(r2, ζ(r)t/2) = 0 explicitly and
get

ζ(r) =
(
µTF + 1

4c1r
2 − rs

)1/t
. (4.15)

Not surprisingly we have ζ(Rmax) = Zout and ∂ζ/∂r = 0 at r = Rmax.
5A radial ray is a set

{
(r, φ, z) ∈ R3

∣∣r ≥ 0, φ const., z const.
}

in cylindrical coordinates.
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4.3 The Behavior of the Support near z = 0

By looking at the derivative of ζ we can derive statements about the smoothness of the density’s
envelope, i.e. the border of its support, close to P. Evaluating

ζ ′(r) =
1
t

(
µTF + 1

4c1r
2 − rs

)(t−1)/t ( 1
2c1r − sr

s−1
)

c1 as above (4.16)

shows that this behavior depends on the value of the exponent (t−1)/t. Since the term under this
exponent vanishes at Rout and, if µTF ≤ 0, at Rin, one has three different limits listed below. Note
that interesting properties arise for t ≤ 1 due to the non-differentiability of the external potential
at z = 0. Since the main results in Section 5 are proved even for this case we will need a clear
picture of the possible complications we will face.

• 0 < t < 1
implies that the exponent (t − 1)/t is positive and
ζ ′(r) → 0 as r → Rout. If µTF ≥ 0 we also have that
ζ ′(r) → 0 as r → 0 whereas, if µTF < 0 we see that
ζ ′(r)→ 0 as r → Rin. Thus the envelope has infinitely
sharp edges at the circles with radii Rout and (possibly)
Rin where it intersects P (see figure 1). From µTF > 0
follows ζ(0) > 0 and the envelope has a local minimum
around the origin (since ζ ′′(0) = c1µ

TF(t−1)/t
/(2t) > 0

).

• t > 1
gives a negative exponent and ζ ′(r)→ −∞ as r → Rout,
showing that the envelope of the density intersect P
perpendicularly (see figure 2).

The sign is due to the term
(

1
2c1r − sr

s−1
)

which is
negative at r = Rout. We easily see that by realizing
that its roots are at r = 0 and r = Rmax. Furthermore
it tends to −∞ as r →∞ and we have that 0 < Rmax <
Rout.

If µTF > 0 we get that ζ ′(r) → 0 as r → 0 and,
as in the case above, the envelope has a local min-
imum around r = 0. For µTF = 0 the same holds
by l’Hôspital’s rule. If µTF < 0 we have an inner ra-
dius at which the first derivative diverges and we get,
as above for Rout, that the density’s envelope and P
meet at a normal angle, i.e., ζ ′(r) → ∞ as r → Rin

since 0 < Rin < Rmax.

Fig. 1: infinitely sharp edge

Fig. 2: orthogonal intersection
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• t = 1
zeros the exponent and the derivative simplifies to

ζ1
′(r) =

(
1
2c1r − sr

s−1
)
/t. (4.17)

At Rout it takes a finite strictly negative value, which
can be pictured as the density’s envelope having a sharp
(but not infinitely sharp) edge where it intersects P (see
figure 3). If µTF < 0 the same holds at Rin (but with
opposite sign).

For µTF = 0 we have the infinitely sharp edge at the
origin and µTF > 0 the density’s envelope has again a
minimum at the r = 0.

Fig. 3: sharp edge

4.4 Explicit Calculations of the TF Densities

To get an explicit expression of the TF density one has to calculate the exact dependency of µTF

on g and Ω. While such formulas are in general not available it is nevertheless possible to obtain
them in two important special cases.

4.4.1 The Non-Rotational Case, Ω = 0

For this case we use the scaled density ρTF
1,ω since Ω = 0 implies 1/γ = ∞. In the following we

calculate the full dependency of µTF
1,0 on s and t.

To achieve this we use the normalization condition ‖ρTF
1,0‖1 = 1 after we have determined the

domain of integration. By (4.13) it is clear that µTF
1,0 > 0 and by section 4.2 we know that our

support in P is a disc with radius r+ = (µTF
1,0)1/s. In z-direction we get the upper and lower limit

by ρTF
1,0(r, z±) = 0, yielding z± = ±

(
µTF

1,0 − rs
)1/t. The normalization condition gives

1 =
1
2

∫ 2π

0

∫ r+

0

∫ z+

z−

(
µTF

1,0 − rs − |z|
t
)
rdz dr dφ

and by symmetry in z-direction

= 2π
∫ r+

0

∫ z+

0

(
µTF

1,0 − rs − |z|
t
)
rdz dr

=
2πt
t+ 1

∫ r+

0

(
µTF

1,0 − rs
)1+1/t

rdr

=
2πt

s(t+ 1)
B
(

2
s
, 2 +

1
t

)
µTF

1,0

1+2/s+1/t

=
2π
s

Γ
(

2
s

)
Γ
(
1 + 1

t

)
Γ
(
2 + 2

s + 1
t

) µTF
1,0

(s+(s+2)t)/(st)
.

where B(·, ·) is the Beta function and Γ(·) the Gamma function. By solving the equality we get

µTF
1,0 =

(
2πt

s(t+ 1)
B
(

2
s
, 2 +

1
t

))−st/(s+(s+2)t)

(4.18)

and thus the full description of ρTF
1,0 .
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4.4.2 The Emergence of a ‘hole’, µTF
1,ω = 0

Another special case for which the full evaluation can be obtained is for µTF
1,ω = 0. As seen

in section 4.2 this is the smallest value of the chemical potential such that the support of the
density intersected with P does not have a hole around the origin. This allows us to calculate the
relationship ω0 between g and Ω such that µTF

1,ω0
= 0. As in the section above we easily obtain the

limits as r+ = (ω0/2)1/(s−2) and z± = ±( 1
4ω0

2r2 − rs)1/t and we get

1 =
1
2

∫ 2π

0

∫ r+

0

∫ z+

z−

(
1
4ω0

2r2 − rs − |z|t
)
rdz dr dφ

and by symmetry in z-direction

= 2π
∫ r+

0

∫ z+

0

(
1
4ω0

2r2 − rs − |z|t
)
rdz dr

=
2πt
t+ 1

∫ r+

0

(
1
4ω0

2r2 − rs
)1+1/t

rdr

=
2πt

(s− 2)(t+ 1)
B
(

2(2t+ 1)
(s− 2)t

, 2 +
1
t

)(ω0

2

)2(s+(s+2)t)/((s−2)t)

.

By solving the equation we get the precise value of ω0, namely,

ω0 = 2
(

2πt
(s− 2)(t+ 1)

B
(

2(2t+ 1)
(s− 2)t

, 2 +
1
t

))−(s−2)t/(2(s+(s+2)t))

. (4.19)

The relation (3.25) determines the value γ0 such that µTF
γ0,1 = 0, i.e.,

γ0 = 2−2(s+(s+2)t)/((s−2)t) 2πt
(s− 2)(t+ 1)

B
(

2(2t+ 1)
(s− 2)t

, 2 +
1
t

)
. (4.20)

4.4.3 The General Case

For arbitrary values of ω an explicit calculation is not possible and we will briefly show the arising
problems. For ρTF

1,ω and ρTF
γ,1 we can still derive the lower and upper integration limits in z, namely,

z± = ±(µTF
1,ω + 1

4ω
2r2 − rs)1/t (resp. z± = ±(µTF

γ,1 + 1
4r

2 − rs)1/t) but the equations determining
the limits in r are not explicitly solvable in general, i.e.,

µTF
1,ω + 1

4ω
2r±

2 − r±s = 0 resp. µTF
γ,1 + 1

4r
±2 − r±s = 0

due to the possibilities of s /∈ {3, 4, 6, 8}, ω > 0, µTF
1,ω 6= 0 or µTF

γ,1 6= 0.
Evaluating the integrations in φ and z yields

1 =
1
2

∫ 2π

0

∫ r+

r−

∫ z+

z−

(
µTF

1,ω + 1
4ω

2r2 − rs − |z|t
)
rdz dr dφ

=
2πt
t+ 1

∫ r+

r−

(
µTF

1,ω + 1
4ω

2r2 − rs
)1+1/t

rdr

resp.

1 =
1

2γ

∫ 2π

0

∫ r+

r−

∫ z+

z−

(
µTF
γ,1 + 1

4r
2 − rs − |z|t

)
rdz dr dφ

=
2πt

γ(t+ 1)

∫ r+

r−

(
µTF
γ,1 + 1

4r
2 − rs

)1+1/t
rdr ,
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whereas it is not generally possible to explicitly calculate the remaining integration in r.

4.5 Limit of the TF Density as ω →∞ (γ → 0)

In the case of a dominating rotational energy contribution to the total energy the parameter ω
diverges as Ω and g tend to infinity. To clarify this behavior we will derive the asymptotics for
both the density’s support and the corresponding TF energy. This will show a convergence of the
support to a circle in the {z = 0} plane and a convergence of the energy to

ETF
0,1 ≡ min

~x∈R3

{
rs + |z|t − 1

4r
2
}
< 0 as γ → 0.

This behavior is illustrated by the plots in Fig. 16-21 in section 4.6.

Lemma 4.1 (Support of the TF density as ω →∞) For γ → 0 the density ρTF
γ,1 becomes con-

centrated around a circle in P centered at the origin with radius (2s)−1/(s−2). More precisely, for
decreasing γ the density vanishes at every point with strictly positive distance from this circle.

Proof: By normalization of the TF density we have that

1 =
∥∥ρTF

γ,1

∥∥
1

=
1

2γ

∫
R3

d~x
[
µTF
γ,1 − rs − |z|

t + 1
4r

2
]

+

and see that the integrand has to vanish with decreasing γ. This, and the fact that the density
has to be positive somewhere, demand that µTF

γ,1 → ETF
0,1 from above as γ → 0. The set where the

density attains its maximum is given by{
(~r , z) ∈ R3

∣∣∣−rs − |z|t + 1
4r

2 = −ETF
0,1

}
=
{

(~r , z) ∈ R3
∣∣∣ r = (2s)−1/(s−2) ∧ z = 0

}
(4.21)

and is the circle described in the lemma above. By simple substitution we obtain the limit of the
chemical potential, namely,

µTF
γ,1

γ→0−−−→ (2s)−s/(s−2) − 1
4 (2s)−2/(s−2) ≡ µTF

0,1

(
= ETF

0,1

)
.

If we take a point ~x′ = (~r ′ , z′) with strictly positive distance from this circle, we see that(
µTF
γ,1 − r′

s − |z′|t + 1
4r
′2
)

γ→0−−−→
(
µTF

0,1 − r′
s − |z′|t + 1

4r
′2
)
< µTF

0,1 − ETF
0,1 = 0

and the density vanishes for γ small enough (due to the function [ · ]+).

�

We can use this result to derive the asymptotics of the TF energy.

Lemma 4.2 (TF energy as ω →∞) For γ → 0 we have

ETF
γ,1 = ETF

0,1 +

{
O
(
γ1/2

)
if t ≥ 2

O
(
γt/(t+2)

)
if t ≤ 2

(4.22)
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Proof: Inspired by lemma 4.1 we will evaluate the TF functional on a radially symmetric trial
function, the support of which becomes concentrated around a circle. Let f(x, y) be a continuous,
nonnegative function with support in the unit disc D around the origin in R2. Furthermore we
demand that

∫∫
f(x, y) dx dy = (2πr0)−1 and

∫∫
f(x, y)x dxdy = 0 where r0 ≡ (2s)−1/(s−2). Our

trial function defined in cylindrical coordinates is

ρ̃τ (r, φ, z) ≡ τ−2f

(
r − r0

τ
,
z

τ

)
for 0 < τ < r0. (4.23)

We immediately see the support of ρ̃τ lies in a torus with main radius r0 and inner radius τ . The
circle that lies at the center of the torus’ tube is the same circle as in (4.21). The additional
demands on f ensure that

∫
ρ̃τ = 1 for all 0 < τ < r0. We are interested in the value of the TF

functional (4.7) evaluated on ρ̃τ in the limit of τ → 0; in which the support of the trial function
becomes concentrated around the circle described in lemma 4.1.

At first we consider the case t ≥ 2. We see that rs + |z|t − 1
4r

2 is twice differentiable and thus
Taylor expansion around r = r0 yields

ETF
γ,1 ≤ ETF

γ,1 [ρ̃τ ] =
∫

R3
d~x
{(
rs + |z|t − 1

4r
2
)
ρ̃τ + γρ̃2

τ

}
≤ ETF

0,1 + Cτ2 + γτ−22πr0‖f‖22

and, by choosing τ = γ1/4,

≤ ETF
0,1 + Cγ1/2.

In the case of t ≤ 2 we have that

ETF
γ,1 ≤ ETF

0,1 + Cτ t + γτ−22πr0‖f‖22
≤ ETF

0,1 + Cγt/(t+2)

where we chose τ = γ1/(t+2). The lower bound ETF
γ,1 ≥ ETF

0,1 comes from the trivial fact that
ETF
γ,0 [ρ] ≤ ETF

γ,1 [ρ] for every function ρ (see (4.1)).
With a simpler trial function that has different growth rates in radial and z-direction it is

possible to obtain a better bound. This function will not be used in further calculations however
and therefore we give only a very short outline thereof. Using the function

ρ̃sτ (r, z) ≡

{
(8πr0τν)−1 if r0 − τ ≤ r ≤ r0 + τ ∧ −ν ≤ z ≤ ν
0 otherwise,

(4.24)

the support of which is a hollow cylinder, we can explicitly calculate ETF
γ,1 [ρ̃sτ ] . Setting τ ≡ γt/(3t+2)

and ν ≡ γ2/(3t+2) yields
ETF
γ,1 = ETF

0,1 +O
(
γ2t/(3t+2)

)
. (4.25)

This is obviously a stronger bound but its underlying trial function proves unsuitable for subsequent
calculations in Theorem 5.4.

�
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4.6 Illustrations of the TF Density

To clarify the influence of s and t on the shape of the TF density (and therefore the asymptotic
shape of the GP density) we show various plots of the TF density with different values of s, t, g
and Ω. A gray-shade coded value of the density and the contour of its support will be depicted for
radial slices.

The plots in this section were generated with the help of a self-developed Mathematica program.
Its full source code can be found in appendix A.

Both ρTF
g,Ω and ρTF

1,ω are not suitable for the illustrations as the former’s support diverges in all
directions and the latter’s support is scaled differently in radial and z-direction. As a compromise
we use a uniformly scaled variant of ρTF

g,Ω, namely ρ̂, which stays finite in the radial direction. Since
the support of ρTF

1,ω stays bounded for finite values of ω we use it as starting point for subsequent
rescalings. By (4.6) it is clear which scaling of the radial direction has to be used. Denoting by ~r
and z the original coordinates (which are used in (3.8)) we define the scaled coordinates as

~r ′ ≡ g−t/σ~r and z′ ≡ g−t/σz (4.26)

where σ ≡ s+ (s+ 2)t. This allows us to rewrite (4.6) as

g(s+2t)/σρTF
g,Ω (~r , z) = ρTF

1,ω(~r ′ , g−(s−t)/σz′) ≡ g(s−t)/σρ̂(~r ′ , z′)

with ρ̂ being a normalized function on R3.
Solving the equation

ρTF
1,ω(~r ′ , g−(s−t)/σz′) = 0

for z′ we get, by using the explicit form of the scaled density (4.4),

|z′| ≥ g(s−t)/σ
[
µTF

1,ω + 1
4ω

2r′
2 − r′s

]1/t
+

. (4.27)

From the calculations in section 4.2 we already know that for each radial distance r′ the smallest
value of |z′| in (4.27) lies on the border of the density’s support, as long as the point (r′, 0) lies in
the support.

The prefactor g(s−t)/σ shows the main dependence of the border’s shape on the external poten-
tial’s parameters s and t. For s > t, the confinement of the density is stronger in radial direction
and thus the density’s support will grow more rapidly in z-direction as the rotational velocity is
increased. Since we scaled the density to have a constant radial elongation we expect the support’s
border to grow in both positive and negative z-directions. This is indeed the case as g(s−t)/σ →∞
as g →∞. In the converse case of s < t the density’s support grows faster in radial direction and
thus we expect a shrinking in z-direction. This is again backed up by g(s−t)/σ → 0 as g →∞. For
a completely homogeneous external potential, i.e. s = t, the shape of the scaled density’s support
does not change with g.

In the following pictures the smallest value of |z′| that satisfy the inequality (4.27) will be
represented by the thick black outline of the density whereas the actual value of ρ̂ will be depicted
as a gray scale. The following plots show a radial slice of the density ρ̂ for the angles φ = 0
and φ = π in the cylindrical coordinates.

With fixed values for s and t the value of the chemical potential µTF
1,ω decreases with increasing ω

and we show the cases of it being larger than, equal to and smaller than zero.
For Fig. 4 to 6 we use s = 4, t = 2 and g = 1.
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Fig. 4: ω = 2, µTF
1,ω = 0.4104 Fig. 5: ω = 2.5265, µTF

1,ω = 0 Fig. 6: ω = 3, µTF
1,ω = −0.6290

To illustrate the case of s < t we choose s = 4, t = 8 and again g = 1. The same cases of µTF
1,ω

as above are shown in Fig. 7 to 9 with similar values of ω .

Fig. 7: ω = 2, µTF
1,ω = 0.2174 Fig. 8: ω = 2.3226, µTF

1,ω = 0 Fig. 9: ω = 3, µTF
1,ω = −0.8109

For all previous figures a white plot point indicates a vanishing density whereas the darkest
shade of gray indicates the value ρ̂ = 0.3302 which stems from the largest value of the densities in
all previous illustrations. The gray scale is then a linear interpolation between these two colors.

The next two sequences show the transformation of the density as g increases. For the case
of s > t we take the same values for ω and µTF

1,ω as in Fig. 4 but plot additional values of g = 1, 102

and 104 resulting in Fig. 10-12. Note that Fig. 10 is the same as Fig. 4 but with a different scale
in the z-direction.

Fig. 10: g = 1 Fig. 11: g = 102 Fig. 12: g = 104

Again the highest depicted density of all three plots is ρ̂ = 0.3302.
The converse case of s < t is shown by Fig. 13-15 with the same progression of g as above.

Using Fig. 9 as the originating plot we can now observe the stronger confinement in z-direction.
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Fig. 13: g = 1 Fig. 14: g = 102 Fig. 15: g = 104

Due to the concentration of the density we use a different gray scale in the last three pictures
with black indicating ρ̂ = 0.4617.

In the rest of this section we will show plots similar to the ones above but for the case of a
diverging parameter ω. With the same intentions as in (4.26), i.e. to derive a suitable scaling of
the density for our illustrations, we choose new coordinates

~r ′′ ≡ Ω2/(s−2)~r and z′′ ≡ Ω2/(s−2)z

which we use for the definition of the normalized density ρ̌

Ω2(s+2t)/((s−2)t)ρTF
g,Ω (~r , z) = ρTF

γ,1(~r ′′ ,Ω2(s−t)/((s−2)t)z′′)

≡ Ω−2(s−t)/((s−2)t)ρ̌(~r ′′ , z′′). (4.28)

We already know from lemma 4.1 that for decreasing γ the support of ρTF
γ,1 becomes concentrated

around a circle in P centered at the origin with radius (2s)−1/(s−2). By our scaling in z-direction
we will see a different behavior for ρ̌. Depending on the relative magnitudes of s and t it is possible
for the support of ρ̌ to diverge in z-direction. The exact relation between these parameter which
we would need to determine the respective cases depends on the knowledge of the explicit form
of ρTF

γ,1, i.e. the explicit dependence of µTF
γ,1 on s and t. In general this is not known but we can

give an approximate relation by using the asymptotics of the TF energy (4.25). By scaling the
associated trial function (4.24) as in (4.28) we see that the support of ρ̌ stays bounded if s > 3t2

4t+3 .
To illustrate this case we take s = 6 and t = 8 for figures 16- 18. All the following graphs will

have a gray scaling of their own due to the great differences in the maximal density. This means
that the value of ρ̌ at the darkest shade of gray is given by ρmax.

Fig. 16: Ω = 1, ρmax = 0.277 Fig. 17: Ω = 102, ρmax = 5.889 Fig. 18: Ω = 106, ρmax = 8310
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The support’s divergence in z-direction is shown for s = 6 and t = 10 in Fig. 19-21.

Fig. 19: Ω = 1, ρmax = 0.269 Fig. 20: Ω = 102, ρmax = 3.438 Fig. 21: Ω = 106, ρmax = 1769

This concludes our illustrations on the TF density and we will continue with the main task of
proving the asymptotics of the GP energy.
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5 The TF Limit of the GP Functional

In this section we derive the asymptotics of the GP energy as g and possibly Ω tend to infinity.
The different scalings in section 3.3 already outlined the cases that arise. We will obtain several
limits depending on the asymptotic value of ω and the relative magnitude of s and t.

5.1 TF Limit for ω <∞
In the case of a dominating interaction energy contribution to the GP energy we have to take
account of the vortex lattice that arises with rapid rotations. In the proof of the following theorem
a first order approximation on its spacing will be given.

Theorem 5.1 (GP energy asymptotics for ω <∞) Using the notation and relations prepared
in sections 3.3 and 4.1 we demand that ω either vanishes or stays fixed (and finite) in the TF limit
(i.e. g →∞). It then follows that the GP energy is asymptotically

g−st/σEGP
g,Ω = ETF

1,ω +


O
(
g−(s+2)t/(2σ) log g

)
if s > t ∧ t ≥ 1

O
(
g−(s+2)t2/(2σ)

)
if s > t ∧ t < 1

O
(
g−s(t+2)/(2σ) log g

)
if s ≤ t

(5.1)

with ω ≡ Ωg−(s−2)t/(2σ) and σ ≡ s+ (s+ 2)t.

Proof:
In the following we will denote with Cω a positive constant that is dependent on the value of ω

but independent of ε
¯

or ε̄ . It can change its value from line to line and is not meant to be global
variable.

We prove this theorem by calculating suitable lower and upper bounds on the GP functional
following [BCPY08] and [CRDY07a]. The lower bound can be trivially found by ignoring the
contributions of the positive magnetic-kinetic energy term and we immediately get

g−st/σEGP
g,Ω ≥ ETF

1,ω.

For the upper bound we have to evaluate the GP functionals (3.14) and (3.16) on a trial function
of the form

φ̃(~x) = cε
¯

√
%̃ε

¯
(~x)χε

¯
(~r )gε

¯
(~r ) (5.2)

where cε
¯

is a normalization constant, %̃ε
¯

a regularization of the TF density, gε
¯

a phase factor and χε
¯

a function that vanishes at the singularities of ~∇gε
¯
. Functions χε

¯
and gε

¯
as well as %̃ε

¯
depend on ε

¯and so does the normalization constant. We recall that ε
¯

is a negative power of g (see (3.13)) and
thereby the TF limit corresponds to ε

¯
→ 0.

The regularized density %̃ε
¯

is given by the convolution of the TF density ρTF
1,ω with the function

jε
¯
(~x) ≡ 1

8πε
¯

3
exp

(
−|~x|
ε
¯

)
.

Since ‖jε
¯
‖1 = 1 we see that

√
%̃ε

¯
is bounded with respect to the L2-norm. Furthermore jε

¯
becomes

concentrated around the origin for decreasing ε
¯

and we have uniform convergence of %̃ε
¯

to ρTF
1,ω

as ε
¯
→ 0, i.e., ∥∥%̃ε

¯
− ρTF

1,ω

∥∥
∞ ≤

{
Cωε¯

if t ≥ 1
Cωε¯

t if t ≤ 1
(5.3)
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where the latter case stems from the fact that ρTF
1,ω is not differentiable at z = 0 (for t < 1).

As s > 2, the radial part of the TF density (see (4.4)) can be expanded in a Taylor series, whereas
the gradient of |z|t diverges as z → 0 and t < 1. Nevertheless the second case of (5.3) can be
obtained by∣∣∣∣ρTF

1,ω(~x)−
∫

R3
d~y jε

¯
(~y)ρTF

1,ω(~x− ~y)
∣∣∣∣ ≤ Cωε¯ + 1

16π

∫
R3

d~y e−|~y|
∣∣∣|z~x|t − |z~x − ε¯z~y|t∣∣∣

≤ Cωε¯ + 1
16π

∫
R3

d~y e−|~y| |ε
¯
z~y|t

≤ Cωε¯
t

where we used that |a− b|t ≤ |a|t + |b|t for 0 < t ≤ 1 by Jensen’s inequality.
The support of jε

¯
is the whole space R3 and thus %̃ε

¯
is not compactly supported like ρTF

1,ω;
nevertheless it decreases exponentially fast outside the support of the TF density, which we will
denote with S. Indeed, for ~x /∈ S, we have

%̃ε
¯
(~x) =

1
4πε

¯
3

∫
S

d~x′
{

exp
(
−|~x− ~x

′|
ε
¯

)
ρTF

1,ω(~x′)
}
≤ 1

4πε
¯

3
exp

(
−dist (~x,S)

ε
¯

) =1︷ ︸︸ ︷∥∥ρTF
1,ω

∥∥
1
. (5.4)

where dist (~x,S) is the minimal distance between a point ~x ∈ R3 and the set S ⊂ R3. We finish
our preliminary discussion of the regularized density with two estimates of its gradient. First, by
using that |~∇jε

¯
| = ε

¯
−1jε

¯
, we easily get that

|~∇%̃ε
¯
| = |(~∇jε

¯
) ? ρTF

1,ω| ≤ |~∇jε
¯
| ? ρTF

1,ω = ε
¯
−1%̃ε

¯
. (5.5)

To obtain a bound on
∥∥~∇%̃ε

¯

∥∥
1
, we use the boundedness of

∥∥~∇ρTF
1,ω

∥∥
1
, i.e.,

∥∥~∇%̃ε
¯

∥∥
1
≤
∫

R3
d~x
∫

R3
d~x′ |~∇ρTF

1,ω(~x− ~x′)|jε
¯
(~x′) =

∥∥~∇ρTF
1,ω

∥∥
1
‖jε

¯
‖1 ≤ Cω. (5.6)

To simulate the characteristic vortex distribution we introduce a finite regular lattice Lε
¯
, which

can have either a triangular, rectangular or hexagonal pattern. It consists of points ~r j in P and
is confined to the support of ρTF

1,ω. Each point is the center of a lattice cell Qjε
¯

and the spacing `ε
¯

between two neighboring cells is chosen in a way such that the area of each cell Qjε
¯

is

∣∣Qjε
¯

∣∣ ≡ 2πε
¯
ω
. (5.7)

This fixes the spacing to
`ε
¯

= Cω
√
ε
¯

(5.8)

and gives the number of lattice points as

Nε
¯

=
Cω
ε
¯

(1 +O(
√
ε
¯
)) . (5.9)

Identifying P with the complex plane C enables us to define the phase factor as6

gε
¯
(~r ) ≡

∏
ζj∈Lε

¯

ζ − ζj
|ζ − ζj |

. (5.10)

6We denote with ζ = x+ iy the equivalent of ~r = (x, y) in the complex plane.
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The corresponding phase function is given by

θε
¯
(~r ) ≡

∑
ζj∈Lε

¯

arg(ζ − ζj) (5.11)

such that gε
¯
(~r ) = exp(iθε

¯
(~r )).

The points ζj are the centers of the lattice cells defined in (5.7) and if we treat gε
¯

as a function
on R3 we see that it carries a vortex line of degree 1 through every point of the lattice Lε

¯
. To

model the vanishing particle density close to vortex lines we introduce a cut-off function χε
¯

defined
as

χε
¯
(~r ) ≡


1 if |~r − ~r j | ≥ ε¯ for all ~r j ∈ Lε

¯

|~r − ~r j |
ε
¯

if |~r − ~r j | ≤ ε¯.
(5.12)

It is clear that this function vanishes at every lattice point and is 1 outside the union of balls B jε
¯with radius ε

¯
centered at these points. Note that this function will mitigate the mathematical

difficulties that would arise from the singularities of ~∇gε
¯

at the lattice points.
We should mention that additional accuracies in regard to experimental data, such as a strictly

hexagonal pattern or bended vortex lines have no influence on the orders of the approximation we
examine; nevertheless they will come into play if one wants to determine higher orders.

Prior to investigating the energy of the trial function, we derive lower and upper bounds for
the normalization constant cε

¯
. By

∥∥φ̃∥∥
2

= 1 and the fact that |χε
¯
(~r )gε

¯
(~r )| ≤ 1 on R2 we get that

1 = c2ε
¯

∫
R3

d~x %̃ε
¯
(~x) |χε

¯
(~r )gε

¯
(~r )|2

≤ c2ε
¯
‖%̃ε

¯
‖1 = c2ε

¯

∥∥jε
¯
? ρTF

1,ω

∥∥
1

Young

≤ c2ε
¯
‖jε

¯
‖1
∥∥ρTF

1,ω

∥∥
1

= c2ε
¯
.

The upper bound can be derived by omitting the contributions by the regions ∪B where χε
¯
< 1

and using the trivial bound ∫
R

dz %̃ε
¯
≤ Cω. (5.13)

This leads to

1 ≥ c2ε
¯

∫
R2\∪B

d~r
∫

R
dz %̃ε

¯
(~x) = c2ε

¯
‖%̃ε

¯
‖1 − c

2
ε
¯

∫
∪B

d~r
∫

R
dz %̃ε

¯

≥ c2ε
¯

(
1− Cωε¯

2Nε
¯

)
≥ c2ε

¯
(1− Cωε¯)

and by Taylor expansion of (1− x)−1 we get

c2ε
¯
≤ 1 + Cωε¯

Combining the two results yields the desired bounds on the normalization constant

1 ≤ c2ε
¯
≤ 1 + Cωε¯

. (5.14)

We now proceed with the main part of the proof — the evaluation of the scaled GP functional
on the trial function φ̃. As we have two different functionals to consider, namely (3.14) and (3.16),
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it is convenient to use a special notation. A term in angle brackets 〈·〉 will denote a value that is
only applicable for one of these two functionals, i.e.,

〈ε̄ β〉~∇~r + 〈ε
¯
α〉~∇z (5.15)

means that the terms ε̄ β and ε
¯
α are only used by one of the functionals. We will explicitly separate

these cases if their treatment differ substantially. Otherwise consult (3.14) and (3.16) to look up
to which functional a given term belongs. We furthermore recall that both ε

¯
and ε̄ tend to 0 for

large g and that the exponents α and β are positive in their respective cases.
The functionals evaluate to

EGP
〈ε
¯
,ε̄ 〉,ω[φ̃] = c2ε

¯

∫
R3

d~x
{∣∣∣~∇′ (√%̃ε

¯
χε

¯

)
gε

¯
+
√
%̃ε

¯
χε

¯

(
~∇′ − i ~Aω/〈ε

¯
,ε̄ 〉

)
gε

¯

∣∣∣2}+ 〈ε
¯
−2, ε̄−2〉ETF

1,ω [
∣∣φ̃∣∣2]

= c2ε
¯

∫
R3

d~x
∣∣∣~∇′ (√%̃ε

¯
χε

¯

)∣∣∣2︸ ︷︷ ︸
I

+c2ε
¯

∫
R3

d~x
{
%̃ε

¯
χ2
ε
¯

∣∣∣(~∇′ − i ~Aω/〈ε
¯
,ε̄ 〉

)
gε

¯

∣∣∣2}︸ ︷︷ ︸
II

+ 〈ε
¯
−2, ε̄−2〉 ETF

1,ω [
∣∣φ̃∣∣2]︸ ︷︷ ︸

III

(5.16)
where ~∇′ denotes 〈ε̄ β〉~∇~r + 〈ε

¯
α〉~∇z. In the last equality we used that∣∣∣~∇′ (√%̃ε

¯
χε

¯

)
gε

¯
+
√
%̃ε

¯
χε

¯

(
~∇′ − i ~Aω/〈ε

¯
,ε̄ 〉

)
gε

¯

∣∣∣2
=
∣∣∣~∇′ (√%̃ε

¯
χε

¯

)
+ i
√
%̃ε

¯
χε

¯

(
~∇′θε

¯
− ~Aω/〈ε

¯
,ε̄ 〉

)∣∣∣2 |gε
¯
|2︸︷︷︸

=1

=
∣∣∣~∇′ (√%̃ε

¯
χε

¯

)∣∣∣2 + %̃ε
¯
χ2
ε
¯

∣∣∣(~∇′ − i ~Aω/〈ε
¯
,ε̄ 〉

)
gε

¯

∣∣∣2 / |igε
¯
|2︸ ︷︷ ︸

=1

(5.17)

We will proceed to estimate the three terms I–III separately.

• Estimate of I
Applying the product rule and (a+ b)2 ≤ 2a2 + 2b2 we get

I ≤ 2
∫

R3
d~x
∣∣∣~∇′√%̃ε

¯

∣∣∣2 χ2
ε
¯

+ 2
∫

R3
d~x %̃ε

¯

∣∣∣~∇χε
¯

∣∣∣2
which can be easily estimated by

∫
R3

d~x
∣∣∣~∇′√%̃ε

¯

∣∣∣2 χ2
ε
¯
≤
∫

R3
d~x
∣∣∣~∇′√%̃ε

¯

∣∣∣2 ≤ ∫
R3

d~x

∣∣∣~∇′%̃ε
¯

∣∣∣2
4%̃ε

¯

(5.5)

≤ 1
4ε
¯

∥∥∥~∇′%̃ε
¯

∥∥∥
1

(5.6)

≤ Cω
ε
¯

and ∫
R3

d~x %̃ε
¯

∣∣∣~∇χε
¯

∣∣∣2 =
∫

R2
d~r
∣∣∣~∇χε

¯

∣∣∣2 ∫
R3

d~y jε
¯
(~y)
∫

R
dz ρTF

1,ω(~x− ~y)︸ ︷︷ ︸
≤Cω

≤ Cω
∫

R2
d~r
∣∣∣~∇~r χε

¯

∣∣∣2 = ε
¯
−2

∫
∪B

d~r 1 ≤ CωNε
¯
≤ Cω

ε
¯

(5.18)

yielding

I ≤ Cω
ε
¯
. (5.19)

We denote with ∪B the union of all discs B jε
¯

(centered at lattice points ~r j ∈ Lε
¯

with radius ε
¯
).
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• Estimate of II
This term incorporates the energy contribution of the vortices, which we will estimate by
splitting the domain of integration into several parts, where we can treat the integrals dif-
ferently. The motivation for such a procedure mainly stems from two properties of the trial
function. Firstly, the intersection points of the vortex lines with P (see (4.12)) are confined
to the support of the TF density ρTF

1,ω. Secondly, the regularization of the TF density %̃ε
¯

is
exponentially small in ε

¯
if evaluated at a point outside the support S of ρTF

1,ω (see (5.4)).
The phase factor gε

¯
and the cut-off function χε

¯
, while functions on R3, do not vary in z-

direction and thus it will be convenient to project the required subsets of R3 onto P and
denote them by ·2D. Furthermore we will use the notation ·cyl for the Cartesian product of
a subset of P with the z-axis. This gives us the following definitions

S ≡
{
~x ∈ R3

∣∣ρTF
1,ω(~x) > 0

}
S2D ≡

{
~r ∈ R2

∣∣(~r , 0) ∈ S
}

Scyl ≡
{

(~r , z) ∈ R3
∣∣~r ∈ S2D

} (5.20)

and we note that all vortex lines are contained in Scyl. The exponential smallness of %̃ε
¯can only be utilized on a subset of R3 which has positive distance from S. Thus it will be

necessary add a small neighborhood to the support of ρTF
1,ω and use its complement. The

neighborhoods are given by

O ≡
{
~x ∈ R3

∣∣0 < dist (~x,S) ≤ C√ε
¯
}

O2D ≡
{
~r ∈ R2

∣∣(~r , 0) ∈ O
}

=
{
~r ∈ R2

∣∣0 < dist (~r ,S2D) ≤ C√ε
¯
}

Ocyl ≡
{

(~r , z) ∈ R3
∣∣~r ∈ O2D

}
=
{

(~r , z) ∈ R3
∣∣0 < dist (~r ,S2D) ≤ C√ε

¯
} (5.21)

and we will mainly use the complementary sets R3 \ (S ∪ O), R2 \ (S2D ∪ O2D) and R3 \
(Scyl ∪Ocyl), all of which allow us to use (5.4). The constant C is chosen as a small fraction
of the scaled cell spacing `ε

¯
ε
¯

such that O2D is covered by the cells as ε
¯
→ 0.

Now we are set to split the domain of integration and write

II ≤
∫
Scyl∪Ocyl

d~x %̃ε
¯
χ2
ε
¯

∣∣∣(〈ε̄ β〉~∇~r − i ~Aω/〈ε
¯
,ε̄ 〉

)
gε

¯

∣∣∣2
+
∫

R3\(Scyl∪Ocyl)

d~x %̃ε
¯

∣∣∣(〈ε̄ β〉~∇~r − i ~Aω/〈ε
¯
,ε̄ 〉

)
gε

¯

∣∣∣2 (5.22)

where ~∇~r denotes (∂x, ∂y, 0). To examine the last integral we need two preliminary estimates.
Using (a+ b)2 ≤ 2a2 + 2b2 earns us∣∣∣(〈ε̄ β〉~∇~r − i ~Aω/〈ε

¯
,ε̄ 〉

)
gε

¯

∣∣∣2 ≤ 2〈ε̄ 2β〉
∣∣∣~∇~r gε

¯

∣∣∣2 + 2
∣∣∣ ~Aω/〈ε

¯
,ε̄ 〉gε

¯

∣∣∣2
≤ 2〈ε̄ 2β〉

∣∣∣~∇~r gε
¯

∣∣∣2 + Cω〈ε¯
−2, ε̄−2〉 |~r |2 . (5.23)

On R3 \ (Scyl ∪ Ocyl) the gradient of the phase can be bounded by

∣∣∣~∇gε
¯
(~r )
∣∣∣ =

∣∣∣∣∣∣
∑
ζj∈Lε

¯

~∇
(
ζ − ζj
|ζ − ζj |

)∏
j 6=k

ζ − ζk
|ζ − ζk|

∣∣∣∣∣∣ ≤
∑
ζj∈Lε

¯

∣∣∣∣~∇( ζ − ζj
|ζ − ζj |

)∣∣∣∣
≤
∑
~r j∈Lε

¯

1
|~r − ~r j |

≤ Nε
¯

(
inf

~r j∈Lε
¯

|~r − ~r j |
)−1

≤ Cω
Nε

¯√
ε
¯

(5.9)

≤ Cωε¯
−3/2 (5.24)
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where the next to last inequality depends on or choice ofOcyl. Finally we are set to apply (5.4)
and get∫

R3\(Scyl∪Ocyl)

d~x %̃ε
¯

∣∣∣(〈ε̄ β〉~∇~r − i ~Aω/〈ε
¯
,ε̄ 〉

)
gε

¯

∣∣∣2
≤
∫

R3\(Scyl∪Ocyl)

d~x
(
Cω〈ε̄ 2β〉ε

¯
−3 + C ′ω〈ε¯

−2, ε̄−2〉 |~r |2
) 1
ε
¯

3
exp

{
−dist (~x,S)

ε
¯

}
≤
∫

R3\(S∪O)

d~x
(
Cω〈ε̄ 2β〉ε

¯
−3 + C ′ω〈ε¯

−2, ε̄−2〉 |~r |2
) 1
ε
¯

3
exp

{
−dist (~x,S)

ε
¯

}
.

(5.25)

For the last inequality we used that S ∪ O ⊂ Scyl ∪ Ocyl and that the integrand is non-
negative. If we take all points with distance d from S, we see that the exponential term
evaluates to ed/ε¯ on this surface. We have already shown in section 4 that the support
of ρTF

1,ω is compact and its envelope E - when treated as a two-dimensional surface in R3 -
is C2 almost everywhere and has a finite area which depends only on ω. This implies that
Gaussian and mean curvature are finite everywhere on the surface save the ring (or rings)
where it intersects P, if t ≤ 1. We then take all points with distance d from E on the outside
of E and denote the new surface with Ed. At a point ~x ∈ E where both curvatures are finite
such a transition changes the area element around ~x as

dA (~x+ ~nd) = dA (~x)
(
1 + 2Md+Gd2

)
, ~x ∈ E , κ1d > −1, κ2d > −1 (5.26)

where ~n is the unit normal in point ~x (pointing outwards) whereas κ1 and κ2 are the principal
curvatures of E in ~x. This gives us the mean curvature as M = (κ1 + κ1)/2 and Gaussian
curvature as G = κ1κ2.

As already indicated by the constraints κid ≥ −1 we have to take a closer look at the case of
a negative principal curvature in a point ~x. A negative value of κi would shrink the surface
in the principal direction of κi as we increase d. The principal curvature of the new surface
in point ~x + ~nd is given by κi/(1 + κid) which diverges as κid → −1. In the limit case a
sharp edge arises that ‘points’ in direction of −~n. A further increase in d thus leads to an
areal growth that is less than given in (5.26) because self intersection of Ed are not allowed.

In the case of t ≤ 1 (see section 4.3) we have one or two rings in P at which E has infinite
mean and Gaussian curvature. To expand the surface we take all points with distance d from
these rings; the area of the resulting surface is clearly smaller than the surface area of tori
with inner radii d around those rings. Thus we get an upper bound on the expanded surface’s
area, namely 4π2d(Rin +Rout) ≤ Cωd.

Summarizing the last evaluations, we have seen the area of the surface Ed, consisting of all
points with distance d from S, can be bounded by Cω(1 + d + d2). We will use this result
to evaluate the integral (5.25). The domain of integration, R3 \ (S ∪ O), can be partitioned
into shells of constant distance d from (S ∪ O). On a shell with distance d the exponential
term of (5.25) evaluates to the constant value e−d/ε¯ and we can bound |~r |2 by (Rout + d)2.
Such a procedure yields∫

R3\(S∪O)

d~x %̃ε
¯

∣∣∣(〈ε̄ β〉~∇~r − i ~Aω/〈ε
¯
,ε̄ 〉

)
gε

¯

∣∣∣2
≤ Cω

ε
¯

3

∫ ∞
C
√
ε
¯

dd (1 + d+ d2)
(
〈ε̄ 2β〉ε

¯
−3 + 〈ε

¯
−2, ε̄−2〉(Rout + d)2

)
e−d/ε¯
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which evaluates to

≤ Cω
∑

(ε
¯
, ε̄ , ε

¯
)e−C/

√
ε
¯ (5.27)

where
∑

(. . . ) is a finite sum of arbitrary powers of the given arguments. In our desired limit
this sum does not matter since the whole expression vanishes exponentially fast as ε

¯
→ 0.

Such a bound suffices for our needs and we proceed to estimate the integral over Scyl ∪Ocyl

in (5.22). From (5.3) follows that∫
Scyl∪Ocyl

d~x %̃ε
¯
χ2
ε
¯

∣∣∣(〈ε̄ β〉~∇~r − i ~Aω/〈ε
¯
,ε̄ 〉

)
gε

¯

∣∣∣2
≤
(

1 + Cωε¯
min(1,t)

)
〈ε̄ β〉

∫
S2D∪O2D

d~r χ2
ε
¯

∣∣∣(~∇~r − i ~Aω/ε
¯

)
gε

¯

∣∣∣2 ∫
R

dz ρTF
1,ω︸ ︷︷ ︸

≡ρTF,2D
1,ω

(5.28)

and we are set to use proposition 5.3 which yields

II ≤ 〈ε̄ β〉
(
ω

2
|log ε

¯
|

ε
¯

+O(ε
¯
−1)
)
. (5.29)

• Estimate of III
In this part we show the convergence of the TF functional on the trial function, ETF

1,ω

[∣∣φ̃∣∣2],
to the actual TF energy ETF

1,ω in the limit ε
¯
→ 0. We will achieve this by an intermediate

step, namely the evaluation of the TF functional on the regularized TF density, e.g.,

ETF
1,ω

[∣∣φ̃∣∣2]− ETF
1,ω = ETF

1,ω

[∣∣φ̃∣∣2]− ETF
1,ω [%̃ε

¯
] + ETF

1,ω [%̃ε
¯
]− ETF

1,ω

[
ρTF

1,ω

]︸ ︷︷ ︸
=ETF

1,ω

. (5.30)

In the treatment of the difference of the first two terms our previously established bounds
on cε

¯
(see (5.14)) become handy. By defining with

Wω(r, z) ≡ rs − 1
4ω

2r2 + |z|t

an effective potential we can write

ETF
1,ω

[∣∣φ̃∣∣2]− ETF
1,ω [%̃ε

¯
] =

∫
R3

d~x
{
Wω%̃ε

¯

(
c2ε
¯
|χε

¯
gε

¯
|2 − 1

)
+ %̃2

ε
¯

(
c4ε
¯
|χε

¯
gε

¯
|4 − 1

)}
≤
∫

R3
d~x
{
Wω%̃ε

¯

(
c2ε
¯
− 1
)

+ %̃2
ε
¯

(
c4ε
¯
− 1
)}

(5.14)

≤ Cωε¯

∫
R3

d~x
{
Wω%̃ε

¯
+ %̃2

ε
¯

}
= Cωε¯

ETF
1,ω [%̃ε

¯
]

= Cωε¯
(
ETF

1,ω [%̃ε
¯
]− ETF

1,ω

)
+ C ′ωε¯

(5.31)

The first summand of (5.31) and the second difference in (5.30) can be bounded by applying
already developed methods. To evaluate

ETF
1,ω [%̃ε

¯
]− ETF

1,ω =
∫

R3
d~x
{
Wω

(
%̃ε

¯
− ρTF

1,ω

)
+ %̃2

ε
¯
− ρTF

1,ω

2
}
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we have to split the domain of integration in the same manner as in the estimate of II. Here,
we will use the sets S ∪ O and R3 \ (S ∪ O). On the first set we can use (5.3) while on the
second set the inequality (5.4).

The interaction term evaluates to∫
R3

d~x
(
%̃2
ε
¯
− ρTF

1,ω

2
)

=
∫
S∪O

d~x
(
%̃ε

¯
− ρTF

1,ω

) (
%̃ε

¯
+ ρTF

1,ω

)
+
∫

R3\(S∪O)

d~x %̃2
ε
¯

≤ 2
∥∥%̃ε

¯
− ρTF

1,ω

∥∥
∞ + Cω

∥∥%̃ε
¯
− ρTF

1,ω

∥∥2

∞ + C ′ω
∑

(ε
¯
)e−2/

√
ε
¯

≤ Cωε¯
min(1,t) (5.32)

where
∑

(ε
¯
) is defined as in (5.27). The remaining integral is estimated by shifting the

regularizing function jε
¯

onto the effective potential and using its regularity. We see that∫
R3

d~xWω

(
%̃ε

¯
− ρTF

1,ω

)
=
∫
S

d~x ρTF
1,ω (jε

¯
? Wω −Wω)

≤ 1
8π

∫
S

d~x ρTF
1,ω(~x)

∫
R3

d~y e−|~y| |Wω(~x− ε
¯
~y)−Wω(~x)|

where the estimate of the last term depends on the value of t. For t > 1 the potential Wω(r, z)
is differentiable with

Wω(~x− ε
¯
~y)−Wω(~x) = ε

¯
~y · ~∇Wω(~x) +O(ε

¯
2)

whereas for t < 1 it exhibits the same kind of non-differentiability as ρTF
1,ω. With essentially

the same calculation as in (5.3) we get∫
R3

d~xWω

(
%̃ε

¯
− ρTF

1,ω

)
≤

{
Cωε¯

if t ≥ 1
Cωε¯

t if t ≤ 1.
(5.33)

By combining (5.31), (5.32) and (5.33) we obtain the overall convergence

ETF
1,ω

[∣∣φ̃∣∣2]− ETF
1,ω ≤ Cωε¯

min(t+1,2) + C ′ωε¯
min(t,1) + C ′′ωε¯

≤ Cωε¯
min(t,1).

(5.34)

This concludes our treatment of I–III and we collect our labor’s fruits. The three esti-
mates (5.19), (5.29) and (5.34) together with the bound on the normalization constant (5.14)
yield

EGP
〈ε
¯
,ε̄ 〉,ω[φ̃] ≤ (1 + Cωε¯

)
(
C ′ωε¯

−1 + 〈ε̄ β〉ω
2
|log ε

¯
|

ε
¯

+ C ′′ω〈ε̄ β〉ε¯
−1

)
+ 〈ε

¯
−2, ε̄−2〉

(
ETF

1,ω + C ′′′ω ε¯
min(t,1)

)
which implies in the case of s > t

ε
¯

2ĒGP
ε
¯
,ω [φ̃] ≤ ETF

1,ω + ω
2 ε¯
|log ε

¯
|+ Cωε¯

if t ≥ 1

ε
¯

2ĒGP
ε
¯
,ω [φ̃] ≤ ETF

1,ω + Cωε¯
t if t ≤ 1.
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If t > s we can use that ε̄ β+2ε
¯
−1 = ε̄ and obtain

ε̄ 2ĒGP
ε̄ ,ω[φ̃] ≤ ETF

1,ω + ω
2 ε̄ |log ε

¯
|+ Cω ε̄ .

Inserting the definitions for ε
¯
, ε̄ and the functionals gives

g−st/σEGP
g,Ω ≤ ETF

1,ω +
ω

2
(s+ 2)t

2σ
g−(s+2)t/(2σ) log g + Cωg

−(s+2)t/(2σ) if s > t ∧ t ≥ 1

g−st/σEGP
g,Ω ≤ ETF

1,ω + Cωg
−(s+2)t2/(2σ) if s > t ∧ t < 1

g−st/σEGP
g,Ω ≤ ETF

1,ω +
ω

2
(s+ 2)t

2σ
g−s(t+2)/(2σ) log g + Cωg

−s(t+2)/(2σ) if s < t

with ω ≡ Ωg−(s−2)t/(2σ) and σ ≡ s+ (s+ 2)t.

�

This result can immediately be used to derive the asymptotics of the scaled GP minimizer φGP
ω

given by
φGP
g,Ω(~r , z) ≡ g−(s+2t)/(2σ)φGP

ω

(
gt/σ~r , gs/σz

)
. (5.35)

Note that φGP
ω is the minimizer of the scaled GP functionals ĒGP

ε
¯
,ω and ĒGP

ε̄ ,ω.

Corollary 5.2 (GP density asymptotics for ω <∞) With the same preconditions as in The-
orem 5.1 we have

∥∥∥∣∣φGP
ω

∣∣2 − ρTF
1,ω

∥∥∥
L2(R3)

=


O
(
g−(s+2)t/(2σ) log g

)
if s > t ∧ t ≥ 1

O
(
g−(s+2)t2/(2σ)

)
if s > t ∧ t < 1

O
(
g−s(t+2)/(2σ) log g

)
if s ≤ t

(5.36)

with ω ≡ Ωg−(s−2)t/(2σ) and σ ≡ s+ (s+ 2)t.

Proof: Following the calculations in [CRDY07a, Col. 3.1] we define with

ς(~r , z) ≡ 1
2

(
µTF

1,ω + 1
4ωr

2 − rs − |z|t
)

a function equivalent with ρTF
1,ω on the support of ρTF

1,ω. From the negativity of ς on all points
outside the support we infer that∫

R3
d~x
(∣∣φGP

ω

∣∣2 − ρTF
1,ω

)2

≤
∥∥φGP
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∥∥4

4
+
∥∥ρTF

1,ω

∥∥2

2
− 2

∫
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d~x ς
∣∣φGP
ω

∣∣2 .
Additionally we need

ETF
1,ω

[∣∣φGP
ω

∣∣2]− µTF
1,ω =

∥∥φGP
ω

∥∥4

4
− 2

∫
R3

d~x ς
∣∣φGP
ω

∣∣2
and by using (4.5) we conclude that∫

R3
d~x
(∣∣φGP

ω

∣∣2 − ρTF
1,ω

)2

≤ ETF
1,ω

[∣∣φGP
ω

∣∣2]− ETF
1,ω ≤ gst/σEGP

g,Ω − ETF
1,ω.

The result is then obtained by applying Theorem 5.1.

�
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5.2 The Electrostatic Analogy

In this section we adapt a result by Michele Correggi and Jakob Yngvason [CY08] for use in the
proof of theorem 5.1. It will enable us to get an upper bound on the kinetic energy contribution
of the vortex lattice to the value of the GP functionals (3.14) and (3.16) on a chosen trial func-
tion (5.2). In its proof we will follow the implications of a fascinating insight by Correggi and
Yngavson. At its core is the analogy between the vortices’ contribution to the kinetic energy and
a problem from electrostatics. In this picture the vortices will assume the role of unit charges on a
plane and the vector potential ~Aω (see (3.14)) will transform to an electric field of a uniform charge
distribution. Our aim is to place the ‘vortex’ unit charges in a way such that their field cancel
out the uniform field as far as possible. This will lead to the regular vortex pattern Lε

¯
as defined

in (5.7) and we will see that the dipole moments of the lattice cell will vanish — the essential idea
of [CY08]. A more detailed description of the analogy can be found in the proof of the following
proposition.

Proposition 5.3 (Electrostatic analogy) Let the phase factor gε
¯

be defined as in (5.10), ρ ≡
ρTF,2D

1,ω as in (5.28), the cut-off function χε
¯

as in (5.12) and the vector potential ~Aω/ε
¯

be given
by (3.3) and (3.13); then7∫

D
d~r ρ χ2

ε
¯

∣∣∣(~∇− i ~Aω/ε
¯

)
gε
¯

∣∣∣2 ≤ ω

2
|log ε

¯
|

ε
¯

+O(ε
¯
−1) (5.37)

with D ≡ S2D ∪ O2D a subset of R2 defined in (5.20) and (5.21).

Proof: As in (5.17) we have that∣∣∣(~∇− i ~Aω/ε
¯

)
gε

¯

∣∣∣2 =
∣∣∣~∇θε

¯
− ~Aω/ε

¯

∣∣∣2
with θε

¯
denoting the phase function of gε

¯
(see(5.11)). As a first step to establish the analogy we

define with
φε

¯
(~r ) =

∑
~ri∈Lε

¯

log |~r − ~ri|

the potential of the electric field of (two-dimensional) point charges located at the lattice centers ~ri,
i.e.,

~∇φε
¯
(~r ) =

∑
~ri∈Lε

¯

~r − ~ri
|~r − ~ri|2

.

Note that we use scaled units such that 2πε0 = 1. It turns out that φε
¯

is the conjugate harmonic
function of our phase function θε

¯
, i.e., ∂xφε

¯
= ∂yθε

¯
and ∂yφε

¯
= −∂xθε

¯
. This allows us to write

∣∣∣~∇θε
¯
− ~Aω/ε

¯

∣∣∣2 =
∣∣∣∣(∂xθε¯∂yθε

¯

)
+
ω

2ε
¯

(
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x

)∣∣∣∣2 =
∣∣∣∣(−∂yφε¯∂xφε

¯

)
+
ω

2ε
¯

(
−y
x

)∣∣∣∣2 =
∣∣∣∣~∇φε¯ − ω

2ε
¯
~r

∣∣∣∣2
where ω/(2ε

¯
)~r can be seen as the electric field of a (two-dimensional) uniform charge distribution

with density ω/(2πε
¯
). Hence we define our imaginary electric field as

~E(~r ) ≡ ~∇φε
¯
(~r )− ω

2ε
¯
~r

7Since all the used functions are defined on R2 we will denote with ~∇ the two-dimensional gradient (∂x, ∂y).
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which allows us to restate the goal of this proposition as the bound∫
D

d~r ρ χ2
ε
¯

∣∣ ~E∣∣2 ≤ ω

2
|log ε

¯
|

ε
¯

+O(ε
¯
−1). (5.38)

Later on we will partition the domain of integration into the lattice cells Qiε
¯

and evaluate the
integral on each one separately.

The potential of the electric field in cell Qiε
¯

is given by

Φi(~r ) ≡
∫
D

d~r ′ σi(~r ′ ) log |~r − ~r ′ |

with the charge density

σi(~r ′ ) ≡ δ(~r ′ − ~ri)−
ω

2πε
¯
χi(~r ′ )

= δ(~r − ~ri)−
∣∣Qiε

¯

∣∣−1
χi(~r ′ )

where χi is the characteristic function of the lattice cell Qiε
¯

and δ(·) the two-dimensional Dirac
distribution. We see that the charge distribution of a single cell is neutral and we have chosen the
size of a lattice cell (5.7) in a way such that ~E(~r ) =

∑
~ri∈Lε

¯

~∇Φi(~r ) ≡ ~∇Φ(~r ) holds. Through
appliance of the coordinate transformation

~r = ε
¯

1/2~κ (5.39)

the lattice scaling becomes independent of ε
¯

and we denote the new cells with Qi1. We use the
same scaling on the various quantities we defined above and get

σi(~r ′ ) = ε
¯
−1
(
δ(~κ′ − ~κi)−

∣∣Qi1∣∣−1
χi,1(~κ′)

)
= ε

¯
−1σi(~κ′) (5.40)

as well as
~Ei(~r ) = ε

¯
−1/2 ~Ei,1(~κ)

= ε
¯
−1/2~∇Φi,1(~κ) = ~∇

∫
D

d~κ′ σi,1(~κ′) log |~κ′ − ~κ| .
(5.41)

For a point ~κ ∈ Qi1 we have two distinct contributions to the potential Φ1(~κ) — the potential Φi,1
of its own cell and the contribution of all other cells’ potentials. To estimate the latter quantity
we can use our knowledge about the cells’ shape and their charge density. Let Q0

1 be a cell with its
center at the origin — an assumption we make only for the sake of a more simple notation since the
following observations can be transfered to arbitrary cells Qi1 and Qiε

¯
by translation and scaling.

For points ~κ /∈ Q0
1 we have the (cylindrical) multipole expansion of the associated potential Φ0,1

given by

Φ0,1(~κ) = q log r −
∞∑
m=1

Cm cosmθ + Sm sinmθ
rm

with polar coordinates (r, θ). The multipole moments are defined as

q =
∫
Q0

1

d~κσ0,1(~κ)

Cm =
1
m

∫
Q0

1

d~κσ0,1(~κ) rm cosmθ
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Sm =
1
m

∫
Q0

1

d~κσ0,1(~κ) rm sinmθ.

From the neutral charge distribution (5.40) follows that the lowest moment vanishes, i.e. q = 0.
Since we have assumed a regular lattice (see (5.7)) the dipole moments C1 and S1 evaluate to zero.
This implies that the potential Φ0,1 is of order O(r−2) or lower and that the electric field ~E0,1

decays at least as r−3. We note that for square or hexagonal lattices even higher moments vanish
and the decay is even faster. Mind that this conclusion is independent of ε

¯
due to the scaling (5.39).

We infer that if we have two distinct (unscaled) cellsQiε
¯

andQjε
¯

with a mutual distanceO(ε
¯

1/2n),
then the electric field of one cell, ~Ei, evaluated at a point of the other cell, ~r ∈ Qjε

¯
, is at most

O(ε
¯
−1/2n−3). This follows directly from the scalings (5.39) and (5.41). This allows us to estimate

the contributions of all other cells
⋃
j 6=iQ

j
ε
¯

to the electric field ~E(~r ) at points of the cell Qiε
¯
, namely,

for ~r ∈ Qiε
¯

we obtain ∣∣∣ ~E(~r )− ~Ei(~r )
∣∣∣ ≤∑

j 6=i

∣∣∣ ~Ej(~r )
∣∣∣ ≤ O(ε

¯
−1/2)

since the number of cells with distance O(ε
¯

1/2n) from Qiε
¯

is O(n). We derive an upper bound on
the electric field by the simple equality∣∣ ~E∣∣2 =

∣∣ ~Ei∣∣2 + 2
(
~E − ~Ei

)
· ~Ei +

∣∣ ~E − ~Ei
∣∣2

and the observation that ~Ei(~r ) ≤ |~r − ~ri|−1 for ~r ∈ Qiε
¯

as∣∣ ~E(~r )
∣∣2 ≤ ∣∣ ~Ei(~r )

∣∣2 + Cω

(
ε
¯
−1/2 |~r − ~ri|−1 + ε

¯
−1
)
. (5.42)

Recalling our goal, the estimate of (5.38), we are able to split the integration into the respective
contribution of the lattice cells, namely,∫

D
d~r ρ(~r ) χε

¯
(~r )2
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∣∣2

≤
∑
i

(
sup
~r ′∈Qi
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∣∣2

where the summation
∑
i is meant to be taken over all lattice cells with centers at ~ri ∈ Lε

¯
. In

the right hand term we substituted the integration of the density over the lattice cells with its
supremum in the respective cells; we will show later on that the errors such an approximation
introduces are controllable. Denoting with B iε

¯
the disc with radius ε

¯
around ~ri and adding the

term
∣∣ ~Ei∣∣2 − ∣∣ ~Ei∣∣2 yields
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+
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(5.43)
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the integrals of which we will estimate separately. We have∫
Qi

ε
¯
\B i

ε
¯

d~r
∣∣ ~Ei(~r )

∣∣2 ≤ 2π
∫ Cωε

¯
1/2

ε
¯

dr r r−2 = π |log ε
¯
|+O(1) (5.44)

and ∫
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¯
(~r )2
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¯
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From (5.42) follows that∫
Qi

ε
¯
\B i

ε
¯

d~r
(∣∣ ~E(~r )

∣∣2 − ∣∣ ~Ei(~r )
∣∣2) ≤ Cω ∫ Cωε

¯
1/2

ε
¯

dr r
(
ε
¯
−1/2r−1 + ε

¯
−1
)

= O(1)

and ∫
B i

ε
¯

d~r χε
¯
(~r )2

(∣∣ ~E(~r )
∣∣2 − ∣∣ ~Ei(~r )

∣∣2) ≤ Cω ∫ ε
¯

0

dr r
(
r

ε
¯

)2 (
ε
¯
−1/2r−1 + ε

¯
−1
)

= O(ε
¯

1/2).

To complete the estimate on (5.43) we have to bound the the error of the Riemann approximation

R ≡
∣∣Q0

ε
¯

∣∣∑
i

sup
~r∈Qi

ε
¯

ρ(~r )−
∫
D

d~r ρ(~r )︸ ︷︷ ︸
=1 (see (5.28))

≤
∣∣Q0

ε
¯

∣∣∑
i

(
sup
~r∈Qi

ε
¯

ρ(~r )− inf
~r∈Qi

ε
¯

ρ(~r )

)
.

The difference between the supremum and infimum is of order ε
¯

1/2 since sup~r∈D dρ /dr ≤ Cω
(see section 4.4.3) and the cell spacing is O(ε

¯
1/2) (see (5.8)). The number of cells is bounded

by Cωε¯
−1
(
1 +O(ε

¯
1/2)

)
(see (5.9)) and thus we get

R ≤ Cω ε¯ ε¯
1/2 ε

¯
−1(1 + ε

¯
1/2) ≤ ε

¯
1/2(1 + ε

¯
1/2).

Combining these results we can estimate the right hand side terms of (5.43) and arrive at∫
D

d~r ρ χ2
ε
¯

∣∣ ~E∣∣2 ≤ ∣∣Q0
ε
¯

∣∣−1
(R+ 1)(π |log ε

¯
|+O(1)) ≤ ω

2
|log ε

¯
|

ε
¯

+O(ε
¯
−1)

which completes the proof.

�

5.3 TF Limit for ω →∞
In the regime of a dominating rotational energy contribution to the GP energy we have to take
account of the fact that the TF density becomes highly concentrated in the limit of g → ∞. An
exact description of this behavior is given in lemma 4.1 and lemma 4.2. Furthermore we do not
encounter a vortex lattice anymore but we see a giant vortex in its stead.

Theorem 5.4 (GP energy asymptotics for ω →∞) Using the notation and relations prepared
in sections 3.3 and 4.1 we demand that ω →∞ in the TF limit (i.e. g →∞). It then follows that
the GP energy is asymptotically

Ω−2s/(s−2)EGP
g,Ω = ETF

0,1 +


O
(

Ω
¯
−4/3 + γ1/2

)
if s ≥ t ∧ t ≥ 2

O
(

Ω
¯
−2t/(t+1) + γt/(t+2)

)
if s ≥ t ∧ t < 2

O
(
Ω̄−4/3 + γ1/2

)
if s < t

(5.45)
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with Ω
¯
≡ Ω(s+2)/(s−2), Ω̄ ≡ Ωs(t+2)/((s−2)t) and γ = ω−(s−2)t/(s+(s+2)t). Note that with ω →∞ in

the TF limit we automatically get Ω→∞.

Proof:
The proof will mainly consist of the evaluation of the scaled GP functional on a suitable function

to gain an upper bound on the asymptotic GP energy. Similarly to lemma 4.2 we will use a radially
symmetric trial function of which the support becomes concentrated around the circle described
in lemma 4.1. To compensate for the additional magnetic-kinetic term in the GP functional a
complex phase will be needed.

The lower bound is gained by simply ignoring the kinetic term in (3.19) or (3.23), i.e.,

Ω−2s/(s−2)EGP
g,Ω ≥ ETF

γ,1 ≥ ETF
0,1

where we used lemma 4.2.
The trial function will be a modified variant of (4.23), namely8,

φτ,∆(~x) ≡
√
ρ̃τ (~x) exp

{
i

[
r2
0∆
2

]
φ

}
(5.46)

where [·] denotes the integer part. The definitions of ρ̃τ and r0 are the same as in lemma 4.1
and lemma 4.2 with the additional requirement that

∥∥~∇√f∥∥
2
< ∞. As in theorem 5.1 the

relative magnitudes of the external potential’s exponents s and t decide which of the scaled GP
functionals (3.19) or (3.23) has to be used. The parameter ∆ will then be chosen accordingly to
be either Ω

¯
or Ω̄ β . The evaluation of both functionals on the trial function φτ,∆ is very similar in

both cases; thus we show the explicit calculations only with the functional E. GP
γ,Ω

¯
(which corresponds

to s > t) and note the differences to the second one. Note that this choice corresponds to s > t.
We have that

Ω
¯
−2E. GP

γ,Ω
¯
[φτ,Ω

¯
] = Ω

¯
−2

∫
R3

d~x
{∣∣∣(~∇′ − i ~AΩ

¯

)
φτ,Ω

¯

∣∣∣2}+ ETF
γ,1 [ρ̃τ ] (5.47)

with the scaled gradient ~∇′ ≡ ~∇~r + Ω
¯
−α~∇z. We have already shown in lemma 4.2 that the last

term is bounded by ETF
0,1 +O

(
τmin(t,2)

)
+O

(
γτ−2

)
. The magnetic-kinetic term evaluates to

Ω
¯
−2

∫
R3

d~x
{∣∣∣(~∇′ − i ~AΩ

¯

)
φτ,Ω

¯

∣∣∣2}
= Ω

¯
−2

∫
R3

d~x
∣∣~∇′√ρ̃τ ∣∣2 + Ω

¯
−2

∫
R3

d~x
∣∣∣∣(~∇′ − i ~AΩ

¯

)
exp

{
i

[
r2
0Ω

¯
2

]
φ

}∣∣∣∣2 ρ̃τ
and we can estimate the gradient of the TF density by

Ω
¯
−2

∫
R3

d~x
∣∣~∇′√ρ̃τ ∣∣2 ≤ Ω

¯
−2τ−1

∥∥~∇√f∥∥
2

= O
(
Ω
¯
−2τ−1

)
. (5.48)

Here we used that
∣∣~∇′h∣∣ ≤ ∣∣~∇h∣∣ for a differentiable function h since the scaling factor Ω

¯
−α vanishes

as Ω→∞. In the case of s < t we would have used the scaling given by the functional ĖGP
γ,Ω̄

in (3.23)
and ∆ = Ω̄ β obtaining Ω̄−β → 0 in the limit Ω→∞. A straightforward calculation of the second

8We use cylindrical coordinates and write ~x = (r, φ, z).
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term yields

Ω
¯
−2

∫
R3

d~x
∣∣∣∣(~∇′ − i ~AΩ

¯

)
exp

{
i

[
r2
0Ω

¯
2

]
φ

}∣∣∣∣2 ρ̃τ
≤ Ω

¯
−2

∫
R3

d~x
(

1
r

[
r2
0Ω

¯
2

]
− Ω

¯
2
r

)2

︸ ︷︷ ︸
≡K

ρ̃τ = O
(
τ2
)

+O
(
Ω
¯
−2
)

+O
(
τΩ

¯
−1
)

where we expanded K into a Taylor series around the circle with radius r0 and used the fact that
the distance between the border of the support of ρ̃τ and this circle is τ . The additional terms
which arise by taking the integer part of the first term in the integrand vanish faster than the
given orders as Ω

¯
→ ∞. In the same limit we observe that K tends to zero for r = r0 which is

the precise reason for our choice of ∆ in the phase factor of φτ,Ω
¯
. In the case of s < t we have to

choose ∆ = Ω̄ β to obtain the same results as it cancels the prefactor Ω̄−β in the functional ĖGP
γ,Ω̄

.
Having arrived at

Ω−2s/(s−2)EGP
g,Ω ≤ ETF

0,1 +O
(
τmin(t,2)

)
+O

(
γτ−2

)
+O

(
Ω
¯
−2τ−1

)
+O

(
τΩ

¯
−1
)

(5.49)

the choice of τ depends on the relative magnitudes of Ω
¯

and γ. We optimize the error terms by
equating the first three orders of the right hand side of (5.49). The last term, O

(
τΩ

¯
−1
)
, will

always be dominated by O
(
Ω
¯
−2τ−1

)
for our choices of τ .

If t ≥ 2 and Ω
¯
−1 ≤ γ3/8 we chose τ ≡ γ1/4 and arrive at

Ω−2s/(s−2)EGP
g,Ω ≤ ETF

0,1 +O
(
γ1/2

)
whereas for Ω

¯
−1 > γ3/8 we demand that τ ≡ Ω

¯
−2/3 and get

Ω−2s/(s−2)EGP
g,Ω ≤ ETF

0,1 +O
(

Ω
¯
−4/3

)
.

In the case of t < 2 a similar procedure yields

Ω−2s/(s−2)EGP
g,Ω ≤ ETF

0,1 +O
(
γt/(t+2)

)
for Ω

¯
−1 ≤ γ(t+1)/(2(t+2))

and
Ω−2s/(s−2)EGP

g,Ω ≤ ETF
0,1 +O

(
Ω
¯
−2t/(t+1)

)
for Ω

¯
−1 > γ(t+1)/(2(t+2))

For s < t the evaluation of ĖGP
γ,Ω̄

on the trial function yields an equivalent estimate to (5.49)
with all occurrences of Ω

¯
replaced by Ω̄ . Thus the final choices of τ stay the same with the sole

difference being the impossibility of the case t < 2.

�
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A Source code

In this section we supply the Mathematica source code which is used to generate the illustrations
of the TF densities in section 4.6. The code has major differences for the cases ω <∞ and ω →∞
as g →∞ and both version are given in the following subsections.

The code has been tested and used with Mathematica 6 and runs if copied to a Notebook file
(.nb). To generate the different graphs one has to enter the desired values for s, t, ω and g, resp. s, t
and Ω. It is possible to set the range of the graphs manually and we supply the values we used in
section 4.6.

A.1 ω <∞
\[Rho]\[Omega][r_, z_, s_, t_, \[Omega]_, \[Mu]\[Omega]_] :=
1/2 (\[Mu]\[Omega] + 1/4 \[Omega]^2 r^2 - r^s - Abs[z]^t)

z1 = z /.
Solve[\[Rho]\[Omega][r, z, s, t, \[Omega], \[Mu]\[Omega]] == 0,
z][[1]] // Quiet

z\[Omega]1[r_, s_,
t_, \[Omega]_, \[Mu]\[Omega]_] := (-r^s + \[Mu]\[Omega] + (
r^2 \[Omega]^2)/4)^(1/t)

r\[Omega]1in[z_, s_, t_, \[Omega]_, \[Mu]\[Omega]_] :=
Block[{zeros = Select[Chop /@

(r /.
NSolve[\[Rho]\[Omega][r, z, s, t, \[Omega], \[Mu]\[Omega]] ==

0, r])
, (Im@# == 0 && Re@# > 0) &]}

, If[Length@zeros == 1, Null, Min@zeros]
]

r\[Omega]1out[z_, s_, t_, \[Omega]_, \[Mu]\[Omega]_] :=
Max@Select[Chop /@

(r /.
NSolve[\[Rho]\[Omega][r, z, s, t, \[Omega], \[Mu]\[Omega]] == 0,
r])

, (Im@# == 0 && Re@# > 0) &]

2*Integrate[\[Rho]\[Omega][r, z, s, t, \[Omega], \[Mu]\[Omega]], {z,
0, z\[Omega]1[r, s, t, \[Omega], \[Mu]\[Omega]]},
Assumptions -> {Re[t] > -1, r >= 0}] //

PowerExpand // FullSimplify

VolZ[r_, s_, t_, \[Omega]_, \[Mu]\[Omega]_] := (
t (-r^s + \[Mu]\[Omega] + (r^2 \[Omega]^2)/4)^(1 + 1/t))/(1 + t)

Rout[s_, t_, \[Omega]_, \[Mu]\[Omega]_] :=
Max@Select[
Chop /@ (r /.

39



NSolve[\[Rho]\[Omega][r, 0, s, t, \[Omega], \[Mu]\[Omega]] == 0,
r])

, (Im@# == 0 && Re@# >= 0) &]

Rin[s_, t_, \[Omega]_, \[Mu]\[Omega]_] :=
With[{zeros = Select[

Chop /@ (r /.
NSolve[\[Rho]\[Omega][r, 0, s, t, \[Omega], \[Mu]\[Omega]] ==
0, r])

, (Im@# == 0 && Re@# >= 0) &]}
, If[Length@zeros == 1, 0, Min@zeros]
]

Vol[s_, t_, \[Omega]_, \[Mu]\[Omega]_] :=
2 \[Pi]*NIntegrate[VolZ[r, s, t, \[Omega], \[Mu]\[Omega]]*r
, {r
, Rin[s, t, \[Omega], \[Mu]\[Omega]],
Rout[s, t, \[Omega], \[Mu]\[Omega]]}]

\!\(
\*SubscriptBox[\(\[PartialD]\), \(r\)]\ z1\)

RZmax[s_, t_, \[Omega]_, \[Mu]\[Omega]_] := Select[
Chop /@ (r /. NSolve[\!\(

\*SubscriptBox[\(\[PartialD]\), \(r\)]\ \(z\[Omega]1[r, s,
t, \[Omega], \[Mu]\[Omega]]\)\) == 0, r])

, (Im@# == 0
&& Re@# > Rin[s, t, \[Omega], \[Mu]\[Omega]]
&& Re@# < Rout[s, t, \[Omega], \[Mu]\[Omega]]) &

][[1]]

Zmax[s_, t_, \[Omega]_, \[Mu]\[Omega]_] :=
z\[Omega]1[RZmax[s, t, \[Omega], \[Mu]\[Omega]], s,
t, \[Omega], \[Mu]\[Omega]]

\[Rho]\[Omega]Max[s_,
t_, \[Omega]_, \[Mu]\[Omega]_] := \[Rho]\[Omega][
RZmax[s, t, \[Omega], \[Mu]\[Omega]], 0, s,
t, \[Omega], \[Mu]\[Omega]]

\[Mu][s_, t_, \[Omega]_] :=
If[Vol[s, t, \[Omega], 0] > 1, \[Mu]Neg[s, t, \[Omega]], \[Mu]Pos[s,
t, \[Omega]]]

\[Mu]PosNext[s_, t_, \[Omega]_, \[Mu]Last_] := \[Mu]Last/
Vol[s, t, \[Omega], \[Mu]Last]

\[Mu]Pos[s_, t_, \[Omega]_] := Monitor[
FixedPoint[\[Mu]PosNext[s, t, \[Omega], n = #] &, 1,
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SameTest -> (Abs[#1 - #2] < 1*^-5 &)]
, n];

\[Mu]NegNext[s_, t_, \[Omega]_, \[Mu]Last_] :=
Block[{\[Mu]NextMax = \[Mu]Last/2, \[Mu]NextMin = (\[Mu]Last -

2 \[Rho]\[Omega]Max[s, t, \[Omega], 0])/2,
V = Vol[s, t, \[Omega], \[Mu]Last]}
, (-\[Mu]Last \[Mu]NextMax +
V \[Mu]Last \[Mu]NextMin + \[Mu]NextMax \[Mu]NextMin -
V \[Mu]NextMax \[Mu]NextMin)/((-1 + V) \[Mu]Last -
V \[Mu]NextMax + \[Mu]NextMin)
]

\[Mu]Neg[s_, t_, \[Omega]_] := Monitor[
FixedPoint[\[Mu]NegNext[s, t, \[Omega],

n = #] &, -\[Rho]\[Omega]Max[s, t, \[Omega], 0] 0,
SameTest -> (Abs[#1 - #2] < 1*^-8 &)]

, n];

gst[g_, s_, t_] := g^((t - s)/(s + (s + 2) t))

Gst[g_, s_, t_] :=(*g^((s+2t)/(s+(s+2)t))**)gst[g, s, t]

Block[{s = 4, t = 8, \[Omega] = 2.3225928310183153‘, \[Mu]\[Omega],
Ri, Ro, Rm, Zm, \[Rho]m, g = 1}
, \[Mu]\[Omega] = \[Mu][s, t, \[Omega]];
Ri = Rin[s, t, \[Omega], \[Mu]\[Omega]];
Ro = Rout[s, t, \[Omega], \[Mu]\[Omega]];
Rm = RZmax[s, t, \[Omega], \[Mu]\[Omega]];
Zm = Zmax[s, t, \[Omega], \[Mu]\[Omega]];
\[Rho]m = \[Rho]\[Omega]Max[s, t, \[Omega], \[Mu]\[Omega]];
Print["Inner Radius: ", Ri]; Print["Outer Radius: ", Ro];
Print["Radius maximal Z: ", Rm];
Print["Maximal Z: ", Zm/gst[g, s, t]];
Print["Z prefactors: ", gst[g, s, t] // N];
Print["Density prefactors: ", Gst[g, s, t] // N];
Print["Largest Densities: ", Gst[g, s, t]*\[Rho]m];
Print["Probability: ", Vol[s, t, \[Omega], \[Mu]\[Omega]]];
Print["Chemical Potential: ", \[Mu]\[Omega]];

Print@DensityPlot[
Gst[g, s, t]*\[Rho]\[Omega][Abs[r], gst[g, s, t] *z, s,
t, \[Omega], \[Mu]\[Omega]]

, {r, -1.475519796771867‘(*-1.1*Ro*), 1.475519796771867‘(*1.1*
Ro*)}

, {z, -1.0002367852634897‘(*-1.1*Zm/gst[g,s,t]*),
1.0002367852634897‘(*1.1*Zm/gst[g,s,t]*)}

, PlotRange -> {0, 1.1 Gst[g, s, t]*\[Rho]m}
, ColorFunction ->
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Function[f,
Blend[{{0, GrayLevel[0.92]}, {0.3301944449975971‘(*Gst[g,s,

t]*\[Rho]m*), Black}}, f]]
, ColorFunctionScaling -> False
, MeshFunctions -> {#3 &},
Mesh -> {{{0, Directive[Black, Thick, Opacity[1]]}}}
, FrameLabel -> {{Style["z", Black, Plain, Bold,

FontSize -> Medium], None}
, {Style["r", Black, Plain, Bold, FontSize -> Medium], None}}

, RotateLabel -> False, Ticks -> Automatic, Axes -> True
, MaxRecursion -> 15, PlotPoints -> 200, WorkingPrecision -> 50];

1.1*Zm/gst[g, s, t]
]

A.2 ω →∞
\[Rho]\[Gamma][r_, z_, s_, t_, \[Gamma]_, \[Mu]\[Gamma]_] :=
1/(2 \[Gamma]) (\[Mu]\[Gamma] + 1/4 r^2 - r^s - Abs[z]^t)

z1 = z /.
Solve[\[Rho]\[Gamma][r, z, s, t, \[Gamma], \[Mu]\[Gamma]] == 0,
z][[2]] // Quiet

z\[Gamma]1[r_, s_,
t_, \[Gamma]_, \[Mu]\[Gamma]_] := (r^2/4 - r^
s + \[Mu]\[Gamma])^(1/t)

2*Integrate[\[Rho]\[Gamma][r, z, s, t, \[Gamma], \[Mu]\[Gamma]], {z,
0, z\[Gamma]1[r, s, t, \[Gamma], \[Mu]\[Gamma]]},
Assumptions -> {Re[t] > -1, r >= 0}] //

PowerExpand // FullSimplify

VolZ[r_, s_, t_, \[Gamma]_, \[Mu]\[Gamma]_] := (
t (r^2/4 - r^s + \[Mu]\[Gamma])^(1 + 1/t))/((1 + t) \[Gamma])

Rout[s_, t_, \[Gamma]_, \[Mu]\[Gamma]_] :=
Max@Select[
Chop /@ (r /.

NSolve[\[Rho]\[Gamma][r, 0, s, t, \[Gamma], \[Mu]\[Gamma]] ==
0])

, (Im@# == 0 && Re@# >= 0) &]

Rin[s_, t_, \[Gamma]_, \[Mu]\[Gamma]_] :=
With[{zeros = Select[

Chop /@ (r /.
NSolve[\[Rho]\[Gamma][r, 0, s, t, \[Gamma], \[Mu]\[Gamma]] ==
0, r])

, (Im@# == 0 && Re@# >= 0) &]}
, If[Length@zeros == 1, 0, Min@zeros]
]
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Vol[s_, t_, \[Gamma]_, \[Mu]\[Gamma]_] :=
2 \[Pi]*NIntegrate[VolZ[r, s, t, \[Gamma], \[Mu]\[Gamma]]*r
, {r
, Rin[s, t, \[Gamma], \[Mu]\[Gamma]],
Rout[s, t, \[Gamma], \[Mu]\[Gamma]]}]

\!\(
\*SubscriptBox[\(\[PartialD]\), \(r\)]\ z1\)

RZmax[s_, t_, \[Gamma]_, \[Mu]\[Gamma]_] := Select[
Chop /@ (r /. NSolve[\!\(

\*SubscriptBox[\(\[PartialD]\), \(r\)]\ \(z\[Gamma]1[r, s,
t, \[Gamma], \[Mu]\[Gamma]]\)\) == 0, r])

, (Im@# == 0
&& Re@# > Rin[s, t, \[Gamma], \[Mu]\[Gamma]]
&& Re@# < Rout[s, t, \[Gamma], \[Mu]\[Gamma]]) &

][[1]]

Zmax[s_, t_, \[Gamma]_, \[Mu]\[Gamma]_] :=
z\[Gamma]1[RZmax[s, t, \[Gamma], \[Mu]\[Gamma]], s,
t, \[Gamma], \[Mu]\[Gamma]]

\[Rho]\[Gamma]Max[s_,
t_, \[Gamma]_, \[Mu]\[Gamma]_] := \[Rho]\[Gamma][
RZmax[s, t, \[Gamma], \[Mu]\[Gamma]], 0, s,
t, \[Gamma], \[Mu]\[Gamma]]

\[Mu][s_, t_, \[Gamma]_] :=
If[Vol[s, t, \[Gamma], 0] > 1, \[Mu]Neg[s, t, \[Gamma]], \[Mu]Pos[s,
t, \[Gamma]]]

\[Mu]PosNext[s_, t_, \[Gamma]_, \[Mu]Last_] := \[Mu]Last/
Vol[s, t, \[Gamma], \[Mu]Last]

\[Mu]Pos[s_, t_, \[Gamma]_] := Monitor[
FixedPoint[\[Mu]PosNext[s, t, \[Gamma], n = #] &, 1,
SameTest -> (Abs[#1 - #2] < 1*^-5 &)]

, n];

\[Mu]NegNext[s_, t_, \[Gamma]_, \[Mu]Last_] :=
Block[{\[Mu]NextMax = \[Mu]Last/2, \[Mu]NextMin = (\[Mu]Last -

2 \[Gamma] \[Rho]\[Gamma]Max[s, t, \[Gamma], 0])/2,
V = Vol[s, t, \[Gamma], \[Mu]Last]}
, (-\[Mu]Last \[Mu]NextMax +

V \[Mu]Last \[Mu]NextMin + \[Mu]NextMax \[Mu]NextMin -
V \[Mu]NextMax \[Mu]NextMin)/((-1 + V) \[Mu]Last -
V \[Mu]NextMax + \[Mu]NextMin)

]
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\[Mu]Neg[s_, t_, \[Gamma]_] := Monitor[
FixedPoint[\[Mu]NegNext[s, t, \[Gamma],

n = #] &, -\[Gamma] \[Rho]\[Gamma]Max[s, t, \[Gamma], 0],
SameTest -> (Abs[#1 - #2] < 1*^-8 &)]

, n];

\[CapitalOmega]st[\[CapitalOmega]_, s_, t_] := \[CapitalOmega]^((
2 (s - t))/((s - 2) t))

Block[{s = 6, t = 10, \[Gamma], \[Mu]\[Gamma], Ri, Ro, Rm,
Zm, \[Rho]m, g, \[CapitalOmega] = 100}
, g = 1*Sqrt[\[CapitalOmega]^((2 (s + (2 + s) t))/((-2 + s) t))];
\[Gamma] = g \[CapitalOmega]^(-((2 (s + (s + 2) t))/((s - 2) t)));
\[Mu]\[Gamma] = \[Mu][s, t, \[Gamma]];
Ri = Rin[s, t, \[Gamma], \[Mu]\[Gamma]];
Ro = Rout[s, t, \[Gamma], \[Mu]\[Gamma]];
Rm = RZmax[s, t, \[Gamma], \[Mu]\[Gamma]];
Zm = Zmax[s, t, \[Gamma], \[Mu]\[Gamma]];
\[Rho]m = \[Rho]\[Gamma]Max[s, t, \[Gamma], \[Mu]\[Gamma]];
Print["\[Gamma] : ", \[Gamma] // N];
Print["Inner Radius: ", Ri]; Print["Outer Radius: ", Ro];
Print["Radius maximal Z: ", Rm];
Print["Maximal Z: ", Zm/\[CapitalOmega]st[\[CapitalOmega], s, t]];
Print["Z prefactors: ", \[CapitalOmega]st[\[CapitalOmega], s, t] //
N];

Print["Density prefactors: ", \[CapitalOmega]st[\[CapitalOmega], s,
t] // N];

Print["Largest Densities: ", \[CapitalOmega]st[\[CapitalOmega], s,
t]*\[Rho]m];

Print["Probability: ", Vol[s, t, \[Gamma], \[Mu]\[Gamma]]];
Print["Chemical Potential: ", \[Mu]\[Gamma]];

Print@DensityPlot[
\[CapitalOmega]st[\[CapitalOmega], s, t]*\[Rho]\[Gamma][
Abs[r], \[CapitalOmega]st[\[CapitalOmega], s, t] *z, s,
t, \[Gamma], \[Mu]\[Gamma]]

, {r, -1.0398358728215993‘(*-1.1*Ro*), 1.0398358728215993‘(*1.1*
Ro*)}

, {z, -2.668560649906518‘(*-1.1*
Zm/\[CapitalOmega]st[\[CapitalOmega],s,t]*),
2.668560649906518‘(*1.1*Zm/\[CapitalOmega]st[\[CapitalOmega],s,
t]*)}

, PlotRange -> {0,
1.1*\[CapitalOmega]st[\[CapitalOmega], s, t]*\[Rho]m}

, ColorFunction ->
Function[f,
Blend[{{0,

GrayLevel[
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0.92]}, {\[CapitalOmega]st[\[CapitalOmega], s, t]*\[Rho]m,
Black}}, f]]

, ColorFunctionScaling -> False
, MeshFunctions -> {#3 &},
Mesh -> {{{0, Directive[Black, Thick, Opacity[1]]}}}
, FrameLabel -> {{Style["z", Black, Plain, Bold,

FontSize -> Medium], None}
, {Style["r", Black, Plain, Bold, FontSize -> Medium], None}}

, RotateLabel -> False, Ticks -> Automatic, Axes -> True
(*,MaxRecursion->15,PlotPoints->200,WorkingPrecision->50*)
, MaxRecursion -> 5, PlotPoints -> 100, WorkingPrecision -> 50];

Zm/\[CapitalOmega]st[\[CapitalOmega], s, t]
]

B Acknowledgments

I would like to express my gratitude to my supervisor, Prof. Dr. Jakob Yngvason, whose expertise
and patience were very helpful and enlightening during my studies and the writing this thesis.
Furthermore I thank my parents for their financial support and JB for her helpful hints.

45



References

[AEM+95] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cor-
nell. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science,
269:198–201, July 1995.

[Aft07] A. Aftalion. Vortices in Bose-Einstein condensates. Progress in nonlinear differential
equations and their applications. Birkhauser, Boston, MA, 2007.

[AM38] J. F. Allen and A. D. Misener. Flow of Liquid Helium II. Nature, 141:75, January
1938.

[ARVK01] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle. Observation of Vortex
Lattices in Bose-Einstein Condensates. Science, 292:476–479, April 2001.

[BCPY08] J.-B. Bru, M. Correggi, P. Pickl, and J. Yngvason. The TF Limit for Rapidly Rotating
Bose Gases in Anharmonic Traps. Communications in Mathematical Physics, 280:517–
544, June 2008.

[Bog47a] N. N. Bogoliubov. On the Theory of Superfluidity. Izv. Academii Nauk USSR, 11(1):77,
1947.

[Bog47b] N. N. Bogoliubov. On the Theory of Superfluidity. Journal of Physics, 11(1):23–32,
1947.

[Bos24] S. N. Bose. Plancks Gesetz und Lichtquantenhypothese. Zeitschrift fur Physik, 26:178–
181, December 1924.

[CMD00] F. Chevy, K. W. Madison, and J. Dalibard. Measurement of the Angular Momen-
tum of a Rotating Bose-Einstein Condensate. Physical Review Letters, 85:2223–2227,
September 2000.

[Coo08] N. R. Cooper. Rapidly rotating atomic gases. Advances in Physics, 57:539–616,
November 2008.

[CRDY07a] M. Correggi, T. Rindler-Daller, and J. Yngvason. Rapidly rotating Bose-Einstein
condensates in homogeneous traps. Journal of Mathematical Physics, 48(10):102103,
2007.

[CRDY07b] M. Correggi, T. Rindler-Daller, and J. Yngvason. Rapidly rotating Bose-Einstein
condensates in strongly anharmonic traps. Journal of Mathematical Physics,
48(4):042104, 2007.

[CW02] E. A. Cornell and C. E. Wieman. Nobel Lecture: Bose-Einstein condensation in a
dilute gas, the first 70 years and some recent experiments. Reviews of Modern Physics,
74:875–893, August 2002.

[CY08] M. Correggi and J. Yngvason. Energy and vorticity in fast rotating Bose-Einstein con-
densates. Journal of Physics A: Mathematical and Theoretical, 41(44):445002 (19pp),
2008.

[DGPS99] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of Bose-Einstein
condensation in trapped gases. Reviews of Modern Physics, 71:463–512, April 1999.

46



[DMA+95] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle. Bose-Einstein condensation in a gas of sodium atoms. Physical
Review Letters, 75:3969–3973, November 1995.

[Ein25] A. Einstein. Quantentheorie des einatomigen idealen Gases (Zweite Abhandlung).
Sitzungsber. Kgl. Preuss. Akad. Wiss., 1925.

[Fet09] A. L. Fetter. Rotating trapped Bose-Einstein condensates. Reviews of Modern Physics,
81:647–691, April 2009.

[GRJ03] M. Greiner, C. A. Regal, and D. S. Jin. Emergence of a molecular Bose-Einstein
condensate from a Fermi gas. Nature, 426:537–540, December 2003.

[Gro61] E. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento,
20(3):454–477, May 1961.

[Gro63] E. P. Gross. Hydrodynamics of a Superfluid Condensate. Journal of Mathematical
Physics, 4:195–207, February 1963.

[HHDB99] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi. Light speed reduction to 17
metres per second in an ultracold atomic gas. Nature, 397:594–598, February 1999.

[JBA+03] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Den-
schlag, and R. Grimm. Bose-Einstein Condensation of Molecules. Science, 302:2101–
2104, December 2003.

[Kap38] P. Kapitza. Viscosity of Liquid Helium below the λ-Point. Nature, 141:74, January
1938.

[Ket02] W. Ketterle. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation
and the atom laser. Reviews of Modern Physics, 74:1131–1151, November 2002.

[LDBH01] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau. Observation of coherent optical
information storage in an atomic medium using halted light pulses. Nature, 409:490–
493, January 2001.

[LIB+09] O. Lahav, A. Itah, A. Blumkin, C. Gordon, and J. Steinhauer. A sonic black hole in
a density-inverted Bose-Einstein condensate. ArXiv e-prints, June 2009.

[Lon38] F. London. The λ-Phenomenon of Liquid Helium and the Bose-Einstein Degeneracy.
Nature, 141:643–644, April 1938.

[LS02] E. H. Lieb and R. Seiringer. Proof of Bose-Einstein Condensation for Dilute Trapped
Gases. Physical Review Letters, 88(17):170409, April 2002.

[LS06] E. H. Lieb and R. Seiringer. Derivation of the Gross-Pitaevskii Equation for Rotating
Bose Gases. Communications in Mathematical Physics, 264:505–537, June 2006.

[LSY00] E. H. Lieb, R. Seiringer, and J. Yngvason. Bosons in a trap: A rigorous derivation of
the Gross-Pitaevskii energy functional. Physical Review A, 61(4):043602, April 2000.

[MAH+99] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A.
Cornell. Vortices in a bose-einstein condensate. Phys. Rev. Lett., 83(13):2498–2501,
Sep 1999.

47



[MCWD00] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard. Vortex Formation in
a Stirred Bose-Einstein Condensate. Physical Review Letters, 84:806–809, January
2000.

[MP09] Jean Macher and Renaud Parentani. Black-hole radiation in bose-einstein conden-
sates. Phys. Rev. A, 80(4):043601, Oct 2009.

[Pit61] L. P. Pitaevskii. Vortex Lines in an Imperfect Bose Gas. Soviet Physics J. Experi-
mental and Theoretical Physics, 13:451–454, 1961.

[PO56] O. Penrose and L. Onsager. Bose-Einstein Condensation and Liquid Helium. Physical
Review, 104:576–584, November 1956.

[RCC+01] J. L. Roberts, N. R. Claussen, S. L. Cornish, E. A. Donley, E. A. Cornell, and C. E.
Wieman. Controlled Collapse of a Bose-Einstein Condensate. Physical Review Letters,
86:4211–4214, May 2001.

[SS95] W. M. Snow and P. E. Sokol. Density and temperature dependence of the momentum
distribution in liquid helium 4. Journal of Low Temperature Physics, 101:881–928,
December 1995.

48



Curriculum Vitae

Thomas Auzinger, geboren am 24. Jänner 1982 in Wien

1988 - 1992 Volksschule Gramatneusiedl

1992 - 2000 AHS Neulandschule, Wien (Abschluß mit Matura)

2000 - 2001 Wehrdienst

2001 - Diplomstudium Mathematik

2001 - 2009 Diplomstudium Physik (Ummeldung auf Bachelor-, Masterstudium)

2009 - 2010 Bachelorstudium Physik (Abschluß mit Auszeichnung)

2010 - Masterstudium Physik

(alle Studien an der Universität Wien)

49


	1 Abstract --- Zusammenfassung
	2 Introduction
	3 General Setting
	3.1 The Hamiltonian
	3.2 The Gross-Pitaevskii (GP) Functional
	3.3 The Scalings of the GP Functional

	4 The Thomas-Fermi (TF) Framework
	4.1 Scaling of the TF Functional
	4.2 The Support of the TF Densities
	4.3 The Behavior of the Support near z=0
	4.4 Explicit Calculations of the TF Densities
	4.4.1 The Non-Rotational Case, 
	4.4.2 The Emergence of a `hole', mu TF omega = 0 
	4.4.3 The General Case

	4.5 Limit of the TF Density as omega to infinity 
	4.6 Illustrations of the TF Density

	5 The TF Limit of the GP Functional
	5.1 TF Limit for omega < infinity
	5.2 The Electrostatic Analogy
	5.3 TF Limit for omega to infinity

	A Source code
	A.1 omega < infinity
	A.2 omega to infinity

	B Acknowledgments
	References

