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Abstract

Evolution in its modern sense is the dynamical description of a system composed of a vast
number of elements whose abundances change over time due to the accumulated interplay of
interactions between them. This reasoning applies in a multitude of contexts, be it biological,
ecological, economical or social, and gives rise to the observations that evolutionary systems are
subject to continual variations under selective forces.

Traditional evolutionary approaches to study these systems can be divided into two classes.
Their behavior can be modelled directly in the framework of differential equations, which makes
it necessary to prestate each possible interaction. In this framework it is hard or even impossible
to account for one of the main ingredients of evolutionary systems, the never-ending production
of innovations. Secondly, more abstract and stylized models are studied relying to a large extend
on ad hoc assumptions about the evolutionary processes at work. Thus they do not contribute
to our understanding of how observed effects like punctuated equlibria and evolutionary phase
transitions emerge from first principles.

In this work we propose a statistical physics model aimed at bringing together the ’best of
both worlds’. We adopt a diversity framework which makes it possible to formalize the most
general evolutionary interactions in a paradigmatic way. For these interactions (and also for a
much larger class of dynamical systems) we develop a variational principle allowing us to employ
the statistical mechanics machinery. The asymptotic diversity of such systems is worked out
analytically in the mean field approximation, other key observables are quantitatively assessed.
We succinctly incorporate specifying assumptions in our model and test its prediction against
real world data in economic, biological and social settings.



Abstrakt

Evolution im modernen Sinn ist die dynamische Beschreibung eines Systems, welches aus einer
sehr großen Anzahl von Elementen besteht, deren relative Häufigkeit sich durch das Zusammen-
spiel von Wechselwirkungen zwischen ihnen ändert. Dieses Verständnis kann in einer Vielfalt
von Zusammenhängen angewendet werden, sei es biologisch, ökologisch, ökonomisch oder sozial,
und führt zu den Beobachtungen dass diese Systeme ständig Variationen hervorbringen und
selektiven Kräften unterliegen.

Untersuchungen von evolutionären Systemen kann man in zwei Klassen einteilen. Ihr Ver-
halten kann mit Hilfe von Differentialgleichungen direkt modelliert werden, dies erfordert es
jedoch jede mögliche Wechselwirkung im vorhinein zu spezifizieren. Dadurch ist es schwer,
wenn nicht unmöglich, eine der Haupteigenschaften von evolutionären Systemen zu beschreiben,
die fortwährende Produktion von Innovationen. Zweitens kann man abstraktere und stilisiert-
ere Modelle untersuchen, die dann zu einem großen Teil auf ad hoc Annahmen über die vor-
liegenden evolutionären Prozesse beruhen. Dadurch tragen sie nicht dazu bei unser Verständnis
davon zu erweitern, wie beobachtete Effekte wie punktuierte Gleichgewichte und evolutionäre
Phasenübergänge von grundlegende Prinzipien aus emergieren.

In dieser Arbeit schlagen wir ein Modell der statistischen Physik vor, welches darauf abzielt
das ’Beste beider Welten’ zu vereinigen. Wir verwenden eine Diversitätsbeschreibung die es
ermöglicht die allgemeinste Form von evolutionären Wechselwirkungen paradigmatisch zu for-
mulieren. Für diese Wechselwirkungen (und auch für eine wesentlich größere Klasse von dy-
namischen Systemen) entwickeln wir ein Variationsprinzip durch welches wir Ergebnisse und
Methoden der Statistischen Mechanik benützen können. Die asymptotische Diversität solcher
Systeme kann in einer Mean Field Näherung analytisch berechnet werden, andere wichtige Ob-
servable werden quantitativ ausgewertet. Wir bauen dann schrittweise spezifizierende Annah-
men in unser Modell ein und testen seine Vorhersagen an gemessenen Daten aus ökonomischen,
biologischen und sozialen Umfeldern.
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Outline

This thesis compiles the published work of [1, 2, 3, 4, 5, 6] which contains the research efforts
of my two and a half year stay at the Complex Systems Research Group in cooperation with
Stefan Thurner, Rudolf Hanel and Renaud Lambiotte. We bring these research efforts here into
a coherent picture which reflects how we understand and think of systems subject to evolution
– a picture that sparked broad media interest. In particular we acknowledge the coverage by
various BBC radios (World Service, Radio 5, Scotland), as well as OE1, and the numerous articles
and editorials published for example in New Scientist, Nature News, Nature Physics, Sunday
Times, Daily Telegraph, Moscow Times, Berliner Morgenpost, Standard, Wirtschaftblatt and
Geo which helped in disseminating our ideas.

The structure of this work is as follows. After an informal historical introduction into evo-
lutionary thinking in chapter 0 we turn to an extensive literature review and introduce the
diversity framework in chapter 1. The general evolutionary interaction schemes are formulated
in chapter 2. In chapter 3 we propose a variational principle for evolutionary systems, this
part is not yet published, the manuscript is currently in preparation. In the latter chapters we
discuss the orignal and published research results of [1, 2, 3, 4, 5, 6]. In chapter 4 we describe
Schumpeterian economics as a quantifiable model of evolution [6]. We then discuss our model
in a biological setting in chapter 5 based on [3]. We study the evolution of beliefs in chapter 6
as done in [1]. As a light-hearted but yet interesting application we bring our ideas to the field
of governance in chapter 7 based on [4, 5]. We conclude with a summary in chapter 8.
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0 Evolution of Evolution

Wherever then all the parts came about
just the way they would have been if they had come to be for an end,
such things survived, being organized spontaneously in a fitting way;
whereas those which grew otherwise perished and continue to perish.

Aristotle, 350 BC

It would not be a bold conjecture to claim that there is no school of thought which can not
be traced back to the ancient Greeks. Let us make the case for evolutionary thought.

0.1 Pre-Darwin

One of the first documented evolutionary ideas is that life originated in deep sea and moved on
to land later, as described by Anaximander (610-546 BC). It was Empedocles (490-430 BC) who
was among the first to contemplate a non-supernatural origin for all living beings [7]. Aristotle
(384-322 BC) devoted four volumes to natural history comprising research he conducted on and
around the isle of Lesbos [8]. One of his remarkable results is the introduction of a hierarchical
organization of living beings into his scala naturae (’Ladder of Life’), where immutable organisms
are ranked according to the complexity of their structure, e.g. their ability to move. The field
of evolution was therefore started already 2500 years before a certain Englishman’s book would
formulate biology’s unifying central dogma.

Greek evolutionary ideas died out in Europe after the fall of the Roman Empire but were
preserved and elaborated on in the Islamic world. During contact in the 12thcentury Greek
writings have been re-introduced in the West and triggered a vast number of Latin translations.
Christian thinkers like Abelard and Aquinas combined Aristotle’s views with the work of Plato.
The latter earned himself a reputation as the ’anti-hero of evolution’. He claimed that all
animal life forms in the real world are reflections of eternal ideas or essences; variations are due
to imperfections of these reflections. This was combined with biblical Genesis and resulted in a
scala naturae with God as the most complex being and Hell at the other end of the ’Ladder of
Life’ [9]. In between was a perfect chain of all known life forms with no empty links, all species
could be represented by exactly one link. According to Genesis they remain forever fixed at their
position and can never change. That is why it was sinful for humans to act like lower animals or
equally seek a higher position, this would cut across the Christianized version of Plato’s perfect
universe.

The term ’evolution’ made its first appearances in the Renaissance and Enlightenment of the
17thand 18thcentury when the work by Rene Descartes fostered a mechanistic world view [10].
The emergence of physical sciences with the works of Galileo and Newton led scholars to think
about natural history in terms of material processes. The dominating contemporary view held
that evolution was a spiritual process. In fact, the term evolution was first used by Sir Matthew
Hale by arguing against such non-spiritual mechanisms, claiming that it is absurd to think that
the senseless collision of dead atoms bears the potential to lead to highly developed mammals
[11]. Therefore, following Hale, these collisions must have the principles of the configuration of
these life forms in evolution (from the Latin evolutio, ’to unroll like a scroll’) which is absurd
without divine interference. One of these absurdly theorizing thinkers was Erasmus Darwin,
Charles Darwin’s grandfather. He put forward that the great variety of living beings could have
arisen from a few number of organisms, as described in his poem Temple of Nature [12];
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First forms minute, unseen by spheric glass,
Move on the mud, or pierce the watery mass;
These, as successive generations bloom,
New powers acquire and larger limbs assume;
Whence countless groups of vegetation spring,
And breathing realms of fin and feet and wing.

Pre-Darwinian evolutionary theories of the 19thcentury refused the idea of immutable species
and advocated that some species share a common ancestor. Maybe the most notable example
of such a theory is Lamarckian evolution (after Jean-Baptiste Lamarck), which proposes that
simple life forms were generated spontaneously and, driven by an innate life force, complexify
and adapt to their environment [13]. This was assumed to happen in a linear, ascending manner
with man as the the pinnacle of evolution. This progressive transmutation of species became
widely popular by the anonymously published book Vestiges of the Natural History of Creation
by Robert Chambers [14] but suffered harsh critique from scholar circles, in part due to the lack
of concrete materialistic processes guiding this complexification.

The belief that simple life forms could be generated spontaneously from inanimate matter
was kept upright until the mid 19th-century. This theory, which was first compiled from prior
natural philosophers by Aristotle, was later subjected to empirical investigations. Most notably,
Jan Baptist van Helmont (1580 1644) describes a recipe for mice (a piece of soiled cloth plus
wheat for 21 days) and scorpions (basil, placed between two bricks and left in sunlight) [15].
Ultimately cell theory superseded spontaneous generation when Charles Cagniard de la Tour
and Theodor Schwann observed cell division in yeast and Louis Pasteur conducted experiments
which ruled out each other possible mechanism [16].

0.2 Darwin

Figure 0.1: Excerpt from Charles Darwin’s
notebook (July 1837). Under
the words ’I think’ he pictured
the first evolutionary tree.

Picture a young Englishman in the first half of the
19thcentury [17]. His father wants him to study
medicine – he finds the lectures dull and surgery
distressing. He shares great interest in geology,
where academic circles are currently deeply en-
gaged in a controversial debate over the origin of
minerals and rocks – neptunism (rocks formed from
water) versus plutonism (from fire). He comes in
touch with radical materialistic theories such as
Lamarck’s and rediscovers the work of his grandfa-
ther, but stays indifferent whether to accept such
a line of reasoning.

His father, however, is deeply unsatisfied with
him neglecting medical studies and sends him to
Cambridge to become an Anglican parson. But
first he prefers to spend his time riding, hunting
and collecting beetles. The latter hobby brings him
in touch with this time’s leading biologists which
saw scientific work as a religious discipline. He
becomes deeply engaged in natural theology and
works on the divine guidance of the adaptation of
life forms.

Let us hold in here and point out that we are
talking about a very diligent young Englishman.
Later in his life, when he was facing the decision
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Table 0.1: Transcription from one of Charles Darwin’s notebooks where he contemplates whether
to marry or not. He proofs the answer to be to marry.

This is the question
marry not marry

• Children – if it Please God

• Constant companion (& friend
in old age) who will feel inter-
ested in one

• object to be loved & played
with

• better than a dog anyhow

• Home, & someone to take care
of house

• Charms of music & female chit
- chat

• These things good for one’s
health

• Freedom to go where one liked

• choice of Society & little of it

• Conversation of clever men at
clubs

• Not forced to visit relatives, &
to bend in every trifle

• anxiety of children

• perhaps quarrelling

• Loss of time

• cannot read in the Evenings

• fatness & idleness

• anxiety and responsibility

• less money for books

• if many children forced to gain
one’s bread

Marry – Marry – Marry Q.E.D.

if to marry or not, he would assemble a list with
pros and cons, see Tab. 0.1. After compiling these
lists he weighs the argument that his wife might not like to live in London (which implies the
sentence to degrade into an indolent, idle fool) against a life with only working, working, and
nothing after all. This led Charles Darwin (1809-1882) finally to the proof that marrying is the
better option. With this decision being reached, thinking didn’t stop. ’It being proved necessary
to Marry’, he went on in his notebooks, ’When? Soon or Late’. We skip this discussion here,
but these notes are conjectured to be written six months before his marriage with his cousin
Emma Wedgwood.

Now it should be obvious that when such a diligent man faces the question of the creation
of life, he would not be satisfied dwelling on books inside the university, instead he went on
a voyage aboard the H.M.S. Beagle to chart the coastline of South America. With this trip
around the world he could not only pursue his fondness of geological studies, he was searching
for nothing less than the unique cradle of creation from which all life had spread around the
globe.

Alone, what he found during this voyage did not correspond well with the thesis of a centre of
creation. On the Galapagos islands he found tortoise shells to vary from island to island. Each
island had each own race of mockingbirds. The fauna of Australia seemed so strange to him that
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he was wandering if there was not a second creator at work. In South America he found fossils of
a recently extinct animal resembling a giant armadillo but no evidence for a catastrophic event
which might have triggered this extinction. One year after the return of the Beagle in 1836 he
started two notebooks on the transmutation of species, one of which contained the first drawing
of an evolutionary tree, see Fig.0.1. He played this close to the chest and continued to publish
on geological issues, what has already brought him to the status of a scientific celebrity by then.

Secretly, he kept on working on his theory of transmutation. He seeked the advice of breeders
concerning their experience with the variability of life. A pigeon breeder, for example, told
Darwin that he could produce him any given feather within three years, but need six years to
obtain head and beak. One key point in his theory, however, was still missing.

In 1838 he read ’for amusement’ Thomas Robert Malthus ’An Essay On The Principle Of
Population’ [18], one of this time’s most influential books. In it the Anglican clergyman Malthus
proposes the exponential growth model of populations, i.e. let P (t) be the size of a population
at time t, then starting with initial population P0 and growth rate λ the population will grow ac-
cording to P (t) = P0eλt. Since the earth possesses only a limited capacity to sustain human life,
he outlined the potential danger of population growth by predicting catastrophic consequences
when the carrying capacity will finally be reached, as e.g. wars over resource. Shortly afterwards
Pierre Francois Verhulst, after reading Malthus, worked out that in the presence of restricted
resources the population will grow according to the logistic function P (t) ∝ (1 + e−t)−1 [19],
thereby Malthus started the field of population ecology.

When Darwin read Malthus’ treatise, he realized that he had now a strong formal tool at hands
with which he could formulate his theories. As species breed beyond the available resources in
wildlife, a struggle for existence will be the consequence which selects favorable variations of the
descendants; he finally had a materialistic, non-spiritual mechanism at hands. He slowly began
to understand its power by explaining the abundance of observations concerning the geographical
distribution of species he made on his five year trip aboard the Beagle.

For twenty years he worked on the adaptation and variation of species without publishing a
word of it, only discussing his idea with some close colleagues. Darwin was well aware of the
harsh critiques other theories of transmutation, such as the Vestiges and Lamarckian evolution,
were exposed to. When he received a manuscript by Alfred Russell Wallace containing the main
ingredients of the very same theory he was working on for two decades, he quickly decided to go
for a joint publication with Wallace. Thus his book On the Origin of Species by Means of Natural
Selection, or The Preservation of Favoured Races in the Struggle for Life went in bookstores
on 22 November, 1859 [20]. Thanks to the advocacy of some of his colleagues the theory of
natural selection quickly diffused into scientific mainstream of the English speaking countries.
It triggered a small epistemological revolution by providing the first cogent, non-spiritual and
detailed mechanism able to account for a wealth of by then known facts about bio-geography.
His notions were also quickly adopted in Germany with the work of August Weismann and
Ernst Häckel, France, Southern Europe and Latin America followed later. By the end of the
19thcentury transmutation of species was widely accepted, upon its driving force, whether it was
natural selection or alternatives, less agreement was reached until the next quantum leap in the
evolution of evolution was reached.

0.3 Post-Darwin

With the widespread acceptance of the transmutation of species the biology community split up
into two factions. In one corner were the Mendelians, which advocated the discrete nature of
variations fueled by the rediscovery of Gregor Mendel’s laws of inheritance. In the other corner,
the biometricians rejected discrete units of heredity and measured and subjected the gradual
variations within a population to a statistical analysis. Both camps were reconciled with the
groundbreaking work of Ronald A. Fisher around the 1920s, showing that natural selection
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can change gene frequencies and the interplay of many genes can lead to continuous variations
[21]. J.B.S. Haldane applied this theory to real-world examples [22] and Wright introduced the
concept of an adaptive landscape on which a population moves around due to genetic drift and
via variations eventually spreads out on to different adaptive peaks [23].

In subsequent decades the so-called modern evolutionary synthesis took place. The empha-
sis was more and more put on natural selection than on genetic drift. Field-biologists closely
examined geological and local environmental factors and the actual genetic diversity of wildlife
populations. Botany and paleobiology were also reformulated in a unified, evolutionary frame-
work – the modern evolutionary synthesis, tyeing together many, if not all, biological disciplines.
By 1950 natural selection acting on genetic variations was the only feasible and plausible mech-
anism of evolution.

The 1940s to 1960s saw the rise of molecular biology accompanied with the discovery of the
DNA and the actual units of heredity – molecular evolution entered the picture. This gene-
centered view reached its climax in the late 20thcentury with works such as Richard Dawkins’
The Selfish Gene [24] which relies on work on kin selection by W.D. Hamilton [25], John Maynard
Smith [26] and George R. Price [27]. In the gene-centered view of evolution the molecular, i.e.
genetic level has become the only level on which evolution takes place and each other description
level of (organizations of) organism can be bootstrapped from it.

0.4 Evolution leaking out

From the very beginning the evolution of evolution (in the modern sense) was closely intertwined
with sociological studies. In fact the underlying formal framework, Malthus’ exponential growth
model, stemmed from this research area. Especially the work on kin selection (i.e. how altru-
istic behavior of living beings can be understood through genetic factors) started the fields of
sociobiology and evolutionary psychology. Evolution became a theoretical framework not only
to study the origin of animals and humans, but also their behavior.

With the advent of more powerful hardware and software more and more complex evolutionary
models could be studied and their predictions could be tested against ever growing amounts of
data – the fields of systems biology and various Omics were started. Consequently the develop-
ment of algorithms itself was subjected to evolution; algorithms get automatically modified and
checked whether they perform certain tasks better. Taking this analogy even further, studies
in artificial life try to mimick and understand biological evolution in terms of a huge computer
simulation. Today, it transpires, technological development is nothing else than an instance of
evolution.

The theory of evolution is currently thought of as not a theory in a strict scientific sense,
but as a catalogue of observations, a phenomenology, regarding the development of systems
composed of a large number of highly interdependent units. Whatever the actual realization of
these units might look like – be it species, human individuals, MP3-players, algorithms or the
idea of evolution – they come into existence through the interaction of other units and vanish
after possibly contributing to the origin of yet another units. Whatever the actual characteristics
of the interdepence might be – the units compete for natural or economic resources, computing
time or the wealth of observation they are able to explain, get accordingly selected and thereby
influence the selection of other units. The scope of these processes gets constantly enlargened.
If we want to make headway in the understanding of evolution we have to be aware that we are
dealing with the description of ubiquitious phenomena. We are describing a constantly shape-
shifting flow of abstract entities, progressively producing and discarding innovations, undergoing
gentle changes over time, accumulating them to seemingly erratic collective reorganizations.
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0.5 Re-picturing evolution

The emerging understanding of the universality of evolutionary processes guiding the develop-
ment of large, interconnected systems, the ever growing area of application of selection under
competition for resources, makes it advantageous to re-cast evolution in more general terms,
applicable to arbitrary fields of research. Let us call the basic units composing the system we
aim to describe simply items – these items may be species, individuals, molecules, technological
artefacts,... Note that these items, especially in biological applications, may but need not be
identical to the units of inheritance.

There are three possible relationships between two randomly picked items: An item may
benefit or suffer from the existence of another one or there may be no relation at all. Consider
a parasite: it benefits from the existence of a host who in turn suffers from the parasite, as
can be measured directly via the organisms’ reproduction rate. Consider a chemical reaction
A1 + A2 → B, the chemical species B benefits from A1 and A2 as can be measured by its
concentration [B], whereas [A1] and [A2] decline. Or consider the semiconductor industry driving
economic growth in the electronic market: both players benefit from each other. This can be
directly assessed by its market value: in 2004 the semiconductor industry was a market of $ 213
billion and enabled the generation of approximately $ 1200 billion in electronic system businesses
and $ 5000 billion in turn in services which amounts to 10% of world GDP [28]. However, for
the vast majority of items there is no direct relationship: Lower Austria’s asparagus production
will be relatively unaffected by whether HD or Blu-Ray is chosen as standard for high definition
video.

If item A benefits from the existence of item B we call B a complement for A henceforth.
If B’s existence is disadvantageous for A we call it a substitute for A [29]. Both, complements
and substitutes, can be sets of items, rather than a single one. As a trivial example consider
again the chemical reaction A1 + A2 → B. The reaction will not take place if A1 or A2 is not
available. This is to say, B is a substitute for the set {A1, A2}, but not for A1 or A2. This gives
us a first hint at where one of the key difficulties lies in a general treatment of evolutionary
systems. Items are manifestly contextual, i.e. the functional role of an item depends crucially
on which items exist in its surrounding – its context. In the context of only A1, for example, B
has no relationship to A1. If item A2 comes into existence, B is enabled to serve as substitute
for {A1, A2}. Thus the functional relationship between A1 and B can only be determined in the
context of A2.

A reader who is familiar with chemical kinetics will not be surprised by this observation and
maybe wonder why we adopt such an outlandish vocabulary for noting that the laws of mass
action are non-linear. This vocabulary becomes handy when we turn to a less obvious question
which, however, is one of the essential features of systems subject to evolution: How is a system
driven by innovations?

Consider a large collection of existing items, for example Australian fauna and flora, chemicals
in a pre-biotic pond or the set of all patents listed by the European Patent Office. Within this
set of items, all complements and substitutes can be joined by lines. Now consider the set of
all complements and substitutes which can possibly be produced from this already existing net
within one step . We call this set the adjacent possible . If we introduce an item X from the
adjacent possible into the existing net the contextual nature of the yet existing items comes
into play. Item X can now serve as complement or substitute, as well as get complemented
or substituted by any combination of existing items. Depending on if the beneficial influences
outweigh the disadvantageous influences item X might survive or not – selection at work. If
it gets selected it has ultimately changed the context of each other existing item and from
this new context a yet new adjacent possible can be constructed. Even more, within this new
context some of the existing items may lose their functionality and not be sustainable any more.
Thus the introduction of some new items may provoke a cascade of creations but a cascade of
destructions as well – a phenomenon referred to as Schumpeterian gales of destruction [30].
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Figure 0.2: Number of all U.S. patents in the period 1800-2004.

In this manner a system may enter a never-ending chain of innovations and accompanying
destructions which constantly alter the conditions under which newly produced and already
existing items are to be assessed. On the other hand if the set of existing items is too small to
allow an item from the adjacent possible to be a substitute or complement – or if the adjacent
possible contains no items at all – the system will not produce any innovations. We call a system
possessing the former characteristics supracritical and a system without the ability to produce
innovations subcritical. As an example for a supracritical system consider the number of all
patents listed in the U.S. Patent Office, see Fig.0.2, data from [31]. An exponential proliferation
of technological innovations is clearly visible. Compare this observation to a list of innovated
technologies within indigenous knowledge of an aboriginal people over the same timespan, this
corresponds to a subcritical system.

To summarize these first crude sketches of a formal theory of evolutionary mechanics, we
picture a system subject to evolution as a collection of items which can be replicated and/or
recombined to produce new items – innovations. The introduction of this item can have a bene-
ficial or suppressive influence on other, already existing items. We can quantify this influence by
considering the differential change of all influences which get re-interpreted in the context of this
new item, we thus obtain a fitness- or utility function from first principles. A rigorous formal-
ization of these concepts and a detailed study of the dynamic of innovation-driven evolutionary
systems is the goal and main result of this thesis.
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1 Evolutionary dynamics unified

...it was Darwins chief contribution,
not only to Biology but to the whole of natural science,

to have brought to light a process by which contingencies a priori improbable,
are given, in the process of time, an increasing probability,
until it is their non-occurrence rather than their occurrence

which becomes highly improbable.
Sir Ronald Aylmer Fisher, 1890 - 1962

From its very beginning the theory of evolution was closely intertwined with mathematical
models. One of the main influences for Darwin when he formulated his thoughts was Robert
Malthus’ exponential growth model of populations, as already mentioned in the introduction.
The school of biometricians, founded by W.F.R Weldon soon realized that Darwinian evolution
is a mathematical theory. It is a description of a dynamical system with kinetics driven by
(natural) selection. The influence of selection can be pictured as a force. Just like a gas can
be described through the accumulated collisional forces between all particles; just like our solar
system can be modelled through the accumulated gravitational forces between its celestial bodies,
the actions of selection, the advent and descent of entire ecosystems, can be understood through
the combined and accumulated interactions between single species.

1.1 Axiomatic formulation of evolution

Assume that the abundance of an item i is measured by a variable xi. We call the dynamic of a
system composed of a large number of items evolution if each interaction present in the system
can be understood as one of the following rules or a combination thereof [32, 34]:

• Replication: The abundance of items is variable and changes with a rate fi called the
Malthusian fitness of item i:

xi
fi−→ 2xi . (1.1)

At this point it is completely unspecified if item i is able to copy itself or not, or if it
replicates via sexual reproduction. In fact, as we will see later, in the framework we
develop here our findings are completely irrespective of this. This point will especially
become crucial when we will turn to a discussion of the emergence of organizations.

• Competition: An interaction between two items i and j is called competition iff there
exists a rate pij > 0 such that the abundance of only one of the two items proliferates,
with the other one decreasing:

xi + xj
pij−−→ xj . (1.2)

When we have a relation like this items i and j are competing with each other and item
j dominates over i in this case. The rate pij can be thought of quantifying a flow of
abundance from i to j.

• Mutation: Iff an item i and j are in a relation such that with a rate qij > 0 we find

xi
pij−−→ xj , (1.3)

we call this interaction mutation. In contrast to competition, item j is not required to be
abundant before the mutation happens – it is generated.
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Table 1.1: Five ’axioms’ from which mathematical micro-evolutionary formulations are built.

replication xi
fi−→ 2xi REP

competition xi + xj
pij−−→ xj COMP

mutation xi
qij−→ xj MUT

recombination xj + xl
αijl−−→ xi REC

development xj + xl
dijl−−→ pi DEV

• Recombination: Item i is produced through a interaction called recombination iff there
exists a αijl > 0 such that

xj + xl
αijl−−→ xi . (1.4)

In contrast to mutation, an item can be produced here only through the combination of
more than one other item. Note that from a pure axiomatic point of view, we could start
with a recombination process and by putting constraints on the right- and left-handside
of Eq.1.4 recover the relations replication, competition and mutation. We will turn to a
discussion of this later.

• Development: Suppose we are interested in the development of a certain trait or char-
acteristic pi which can be found in various items (a trait pi could be e.g. haircolor across
the world, the number of electrons a chemical species can donate or the number of red
squares found in paintings in museums of modern arts). The trait pi gets developed with
a rate dijl according to

xj + xl
dijl−−→ pi . (1.5)

We will refer to these five interactions as the ’axioms’ of evolutionary systems, see Tab.1.1. They
represent the highest level of detail under which such systems can be studied. For this reason
we refer to a description based only on these axioms as ’micro-evolutionary dynamic’.

1.2 Micro-evolutionary dynamics

We will now lay out a generic framework for dynamical systems which are interacting through
the above axioms. Therefore we will cast replication, competition, mutation, recombination
and development succinctly into rate or differential equations. By doing so, we will rederive
some basic equations of population genetics and game theory, thereby underpinning the claim
of generality of these axioms.

Consider a population of a total number of N items which are abundant with concentrations
ni, i = 1, . . . , N . Let us first assign to each item an unconstrained net growth γi = ṅi. From
now on we will work with normalized concentrations and work with variables xi = ni/

∑N
j=1 nj .

Then the net growth becomes

ẋi = γi − xi

N∑

j=1

γj . (1.6)

This is the generic form of a replicator equation. In this picture there is a compensation for
excess production in the system. The abundances get constantly normalized such that for
constant growth, γi = const ∀i, the system reaches a stationary state where the xi are sorted
according to their growth rate.

We will now incorporate axiom REP into Eq.1.6. Let us first imagine the most simple case
of replication – items are able to copy itself. The growth rate is now frequency dependent,
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γi → fixi with fi called the Malthusian fitness of item i. With this autocatalytic replication in
equation 1.6 we obtain

ẋi = xi


fi −

∑

j

fjxj


 = xi (fi − 〈f〉) , (1.7)

which is referred to as the frequency dependent replicator equation [35], a microscopic description
of axiom REP. Here the abundances get sorted and re-normalized until the mean value of the
fitness becomes identical to the maximal fitness value within the population – only one item
survives.

By axiom COMP the growth rate of items may not only depend on the actual frequency of
the item itself, it may be subject to competitions with other items. Since any two out of the
N given items can be in competition, we introduce a matrix P = (pij) with i, j = 1, . . . , N
quantifying these interactions. P is usually called a payoff matrix with the picture in mind that
when items i and j meet, i receives a payoff pij and j gets a payoff pji with respect to their
ability to reproduce. Summing over all evolutionary payoffs of item i, its Malthusian fitness
takes on the form fi =

∑
j pijxj . Substituting this into Eq.1.7 leads us to the game dynamical

equation [36]

ẋi = xi


∑

j

pijxj −
∑

j

xj

∑

k

xkpjk


 . (1.8)

Proceeding in a similar vein, let us take axiom MUT into account by defining a mutation
matrix Q = (qij), i, j = 1, . . . , N , with qij as the rate under which item i proliferates due to
mutations of item j. Summing over all possible mutations the growth rate for item i becomes
ẋi ∝

∑
j qijxj

∑
k pjkxk. In order to tighten the notation let us introduce the dilution flux Φ

ensuring that at any given time
∑N

i=1 ẋi = 0. Thus the dilution flux is nothing else than the
population average of the Malthusian fitness to which we compare the individual fitnesses of
the items. With this notation we obtain a combination of axioms REP, COMP and MUT, the
replicator-mutator equation [37]

ẋi =
N∑

j=1

qijxj

N∑

k=1

pjkxk − xiΦ . (1.9)

Before we continue with casting our evolutionary axioms in terms of differential equations, let
us discuss how Eq.1.9 is related to some well known population genetic and game-theoretic
equations. Let us first rewrite the frequency dependent replicator equation into the generic form
[38, 39]

ẋi = xi(fi(x)− Φ) . (1.10)

Here we allow the Malthusian fitness to be an arbitrary function of the abundances and have not
yet incorporated mutations. However, in the vast majority of studies this functional dependence
is assumed to be linear, just as we have done until now. The variable transformation

xi =
yi

1 +
∑N−1

i=1 yi

, i = 1, . . . , N − 1 , (1.11)

xN =
1

1 +
∑N−1

i=1 yi

, (1.12)

allows us to map the replicator equation Eq.1.10 onto the Lotka-Volterra equation for the N−1-
dimensional case in variables ẏi =

∑N−1
i=1 yifi(y). On the other hand, by assuming that fitness
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is constant and only taking mutations into account we rederive the quasi-species equation [40]
as a special case of Eq.1.9,

ẋi =
N∑

j=1

qijxjfj − xiΦ . (1.13)

As long as we restrict ourself to constant or linear frequency-dependent replicators, i.e. restrict
ourself to evolutionary systems described by only REP, COMP and MUT, the dynamic of the
items is simply driven by two independent transfer matrices P and Q. At each instance individual
fitness values are compared to the mean value, items with a fitness lower than average vanish.
However, since fitness can also be frequency dependent, this may lead to a complex dynamical
feedback which allows several items to co-exist – cooperation.

Let us recombine the frequency-dependent replicator equation Eq.1.10 with axiom MUT to
obtain the replicator-mutator equation [37] for arbitrary fitness functions,

ẋi =
N∑

j=1

xjfj(x)qij − xiΦ . (1.14)

We introduce now the simplest form of nonlinear frequency-dependent replicators, the recombi-
natory interaction of axiom REC. We can write this in compact form using the catalytic network
equation [41]

ẋi =
N∑

j,k=1

αijkxjxk − xiΦ . (1.15)

For the special case that the rate αijk factors according to αijk = qijpjk Eq.1.15 becomes the
replicator-mutator equation. The catalytic network equation encodes axioms REP, COMP,
MUT and REC. Here we can observe that from a pure axiomatic point of view REC would
suffice to derive REP, COMP and MUT. To this end we can split Eq.1.15 into a replication part
Ri(x) and an interaction part Ii(x) in the following way:

ẋi = Ri(x) + Ii(x) ,

Ri(x) = xi


∑

j

(αiij + αiji)xj −
∑

k,j

(αkkj + αkjk)xjxk


 , (1.16)

Ii(x) =
∑

j,k 6=i

αijkxjxk − xi

∑

l

∑

m,n6=l

αlmnxmxn .

Equations 1.6 to 1.14 or alternatively evolutionary dynamics according to a subset of the above
axioms can be derived from applying constraints to α acting on the individual terms in Eqs.1.16.

We can answer the question now how to formalize evolutionary systems in which items are not
able to copy itself, i.e. we abandon axiom REP. Consider a set K of species with the property
that for each item i ∈ K there exists a pair j, k ∈ K such that i gets produced by j and k via
a recombination. The set K maintains itself without copying itself, we will call this property
self-maintaining. Now consider a collection of disjoint self-maintaining sets J,K, L, . . . . We
allow interactions between these sets such that if two items of a productive pair reside in sets
J and K, the item they produce is different from them but again contained in J or K. We
can assign frequencies in terms of set variables by defining xK =

∑
k∈K xk∈K as the relative

frequency of set K. The frequency of item i within its own set is then given by yi∈K = xi∈K/xK .
Re-arranging the summation in Eq.1.15 according to this we get

ẋK = xK

(∑

J

CKJxJ − 〈CKJ〉
)

, (1.17)
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where we have introduced a growth coefficient CKJ on this set level given by

CKJ =
∑

i∈K

∑

j∈J

∑

k∈K

αi∈K,j∈J,k∈Kyi∈Kyj∈J . (1.18)

Most remarkably, this is nothing else than a replicator equation as introduced in Eq.1.7 with the
difference that the units on which this dynamic acts not individual, self-copying items are but
self-maintaining sets of non-replicating items. Selection acts here on the level of conglomerate
entities. Therefore we have encountered the first instance of organization – a collection of items
(the self-maintaining sets) assumes a different functional relation than its mere constituents.

So far we considered evolutionary dynamics only on the population space. Now suppose we
are interested in how this microscopic dynamic manifests on the dynamic of a phenotypic trait pi

(e.g. body mass, number of hairs or the IQ), i.e. we take axiom DEV into account and want to
trace the development of a trait over an entire population. DEV is typically treated by assigning
one value for the trait pi to each species xi. The population mean is then E(p) =

∑
i pixi. It

is now straightforward to compute Ė(p) =
∑

i piẋi +
∑

i ṗixi. The second term is E(ṗ) and
describes a change in the trait itself, the first term describes the influence of the underlying
population dynamics. We insert equation 1.15 for ẋi to obtain

Ė(p) =
∑

i,j,k

αijkpixjxk −
∑

i

pixiΦ

=
∑

i,j,k

αijkpjxjxk − E(p)Φ +
∑

i,j,k

αijk(pi − pj)xjxk .

Remember that we defined the dilution flux as the mean fitness, i.e. Φ = E(fi). By making
use of the definition of the covariance Cov(X, Y ) = E(X · Y )− E(X)E(Y ) we derive the Price
equation [42]

Ė(p) = Cov(Φ, p) + E(ṗ) + E(φ∆mp) , (1.19)

where we denote with E(φ∆mp) the expected drift over time in the trait values due to mutations,
E(φ∆mp) =

∑
i,j,k αijk(pi−pj)xjxk. With axiom DEV we can thus re-derive the Price equation

and describe how the application of evolutionary axioms REP, COMP, MUT and REC on an
underlying level accumulates to a trajectory of a phenotypic trait which is spread out over an
arbitrary number of items.

1.3 Macro-evolutionary dynamics

Studies of the above evolutionary equations have been often restricted to very special cases
of interactions or very small system sizes. Typically one is interested in their fixed points,
configurations of abundances which get restored after small disturbances. These states are
called evolutionary stable states and are a dynamic property of the system. If one adopts a
game-theoretic viewpoint one is usually interested in evolutionary stable strategies, a similar
yet different concept. A strategy is evolutionary stable if – once adopted by each member of a
population – it can not be invaded by any other strategy. For a discussion of these applications
and further related concepts of equilibria see [39].

Our focus here lies somewhere else. We will be interested in systems composed of an arbitrary
large number of items, which poses serious constraints on how we can build models. On a techni-
cal level the simulation of a macroscopic number of differential equations as given above can not
be tackled using today’s computing power, let alone the derivation of analytical solution. But
more strikingly, we run into severe limitations on a conceptual level. One of the main charac-
teristics of evolution is the continual production of innovations. The introduction of one item in
Eq.1.15 would force us to introduce N2 interaction terms. Besides the obvious impossibility to
measure and therefore specify these interactions, each already existing interaction would have to
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be re-assessed in the light of this innovation due to the contextual nature of evolutionary items.
A systematic study of how innovations drive evolutionary systems is not feasible within this
framework only. We will review some seminal and related work in the literature and examine
how they deal with these difficulties. This way of proceeding is necessary since we leave the
terrain on which research efforts of a multitude of groups over several decades can be put on
a formal common ground. The models which we will examine now share in common that they
aim at a description of complex collective behavior of evolutionary items which is not apparent
from the study of a small number of them – macro-evolutionary dynamics. Finally we discuss
how their levels of description are interrelated. We conclude this section by deducing a set of
properties which we demand for a well-sound model of evolution.

1.3.1 Random catalytic reaction network

A common strategy to tackle the large-system problem is to assume that the interactions are
to a large extend random, possibly under some constraints. This allows one to study generic
properties of the underlying model without needing to specify the enormous number of possible
relationships. We review here how this was done for Eq.1.15 in [41].

The problem amounts to specifying the αijk. Consider a system composed of N items. Re-
member that we can decompse Eq.1.15 into a replication and interaction term, see Eq.1.16.
We introduce p here as the probability that a randomly chosen αijk is zero, i.e. there is no
interaction rule for this triple of items. If there is an interaction, then with probability q it is
a replication and with (1 − q) a recombination. With this parametrization we wish to be able
to investigate the influence of replicator-mutator versus recombinatory dynamics. To this end
define αijk ≡ aijt

k
ij with aij drawn randomly from a uniform distribution on (0,1) and

tkij =





1 with probability 1
N−2(1− p)(1− q) for k 6= i, j ,

0 with probability 1
N p ,

1 with probability 1
2(1− p)q for k = i or j .

(1.20)

A dynamical simulation of this system with p = q = 0 mostly leads to a final stable configuration
within the concentration simplex given by

∑
xi = 1, sometimes the system reduces its dimension

and reaches a set of items with no closed subsets. In these cases the entire surviving system
becomes a single replicator.

To understand the behavior of this system at the stable point the authors investigated the
dilution flux Φ of the system, which can be thought of as the productivity of the system. Via a
mean field approach this can be estimated to be

〈Φ〉 =
1
2
(1− p)(1 + R) . (1.21)

Here the brackets denote an ensemble average (i.e. average over many realizations of α) and
R is a correlation term given by the second moments of the concentrations. Thus the density
of recombinatory interactions controls (almost linearly) the productivity of the system, whereas
self-replicatory interactions introduce positive correlations. The final diversity in the system
is always given by a self-maintaining subset of the items, which is often given by the entire
network.

The authors also investigated very special topologies, such as coupled hypercycles. However,
these structures are very unlikely to emerge randomly. In the generic case the system approaches
a stable fixed point, seldomly showing oscillatory behavior within constant diversity. Therefore,
these models are unable to explain or deal with innovations. This problem has subsequently be
tackled by other authors.
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1.3.2 Solé-Manrubia model

In the Solé-Manrubia model [43] species-species interactions are assumed to be linear, i.e. the
interactions can be decomposed into REP, COMP and MUT. Therefore the authors introduce
an explicit mechanism for creating innovations.

The interactions are recorded in an interaction matrix J whose elements Jij give the strength
of the coupling between two items. If Jij > 0 the existence of item i contributes to the survival
of item j, if Jij < 0 item i has a suppressing influence on j. At initialization of the system each
entry of J is nonzero and randomly drawn from the interval (−1, 1). The abundance of item
i is not described by a continuous concentration but by a binary variable σi(t) ∈ {0, 1}. Thus
species i receives at time t a ’net support’

∑
j Jjiσj(t). If this support drops below a certain

threshold θ item i vanishes. Thus the resulting dynamical system, mimicking replicator-mutator
dynamics, is given by

σi(t + 1) = Θ




N∑

j=1

Jjiσj(t)− θ


 , (1.22)

where Θ(x) is the Heaviside step function being defined as Θ(x) = 1 iff x > 0 and Θ(x) = 0
otherwise. In addition the authors impose two mechanisms: Firstly, the system is driven by
slow random mutations of the interaction matrix J . At each time step one connection for each
species is chosen randomly and assigned a new value from the interval (−1, 1) again at random.
With this driving force the authors circumvent that the system reaches a stable point in which
the global dynamic stops.

Secondly, innovations take place. After each iteration some items may vanish and are thought
of as to leave ’empty niches’ behind. These niches are immediately refilled by copies of a
randomly chosen surviving species. Speciation is introduced by mutating the interaction matrix
of these new item. Concrete, if item k is copied to replace item i the interactions are given by
Jij = Jkj + ηij and Jji = Jjk + ηji with the η’s drawn randomly from the interval (−ε, ε).

The key feature of the Solé-Manrubia model is that it is able to produce ’mass extinctions’.
For θ = 0 and ε = 0.05 the authors measured the probability p(s) that at a given iteration
s items become extinct to be p(s) ∝ s−γ with γ = 2.05 ± 0.06, i.e. the sizes of extinction
events follow a power-law distribution. This finding is consistent with observations from fossil
data. The model therefore reproduces a crucial property of evolutionary systems, the advent
of mutations can have system-wide effects – or no effect at all. However, this property turns
out to be parameter dependent. For θ 6= 0 the extinction size distribution has an exponential
cutoff. On a more conceptual level the model is not able to describe the influence of cooperating
organizations of items, its interactions take only place on the individual-item-level. This has the
effect that the driven dynamic and the innovation mechanism are ad hoc assumptions imposed
on the system in order to allow the observation of the desired phenomena and does not enlargen
our understanding on how such mechanisms may appear outside this simulation, emerging from
single interactions given by our evolutionary axioms.

1.3.3 Jain-Krishna model

Insights into how non-trivial structures can emerge in evolutionary systems were provided by
Jain and Krishna [44]. Their linear model describes the interactions between N items again by
an interaction matrix J . At initialization an entry Jij is nonzero with probability p. In this case
it is either chosen randomly from the intervall [−1, 1] if i 6= j or from [−1, 0] if i = j. Thus an
interaction between two different species is equally likely to be positive as negative and the link
from an item two itself can only be negative, i.e. items are not self-replicating. The items are
described by concentrations xi evolving in a replicator-mutator manner according to

ẋi = fi if xi = 0 or fi ≥ 0 ,

= 0 if xi = 0 and fi < 0 , (1.23)
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with the dynamic specified by

fi =
N∑

j=1

Jijxj − xi

N∑

k,j=1

Jkjxj . (1.24)

In addition the authors assume a second evolution on a larger time-scale. Within one time-step
of this simulation, Eqs.1.23 and 1.24 are iterated until the system approaches its attractor. In
this attractor configuration the set of the items with the least frequencies, i.e. smallest values
of xi is determined. They are called the ’least-fit’ items. One of them is randomly chosen
and removed along with all its incoming and outgoing links. This item is replaced by a new
item whose interactions are specified identical to the initial interaction matrix. This process is
iterated many times.

The system behaves most interestingly for values of p below the percolation threshold. For the
first couple of iterations the system remains in a state with a very low diversity. At some instance
this changes radically and the whole system becomes populated. Observed over long time-spans,
the diversity jumps erratically between states of full and very low diversity. This behavior can be
understood through the emergence of autocatalytic sets. Starting from the initial network and
subjecting it to mutation, at some point there may occur a configuration where, e.g., three items
are suddenly arranged in a positive feedback cycle. Their relative abundances will proliferate
and thus they will not be subject to a removal. As soon as a further item gets attached to
it, this item will survive too. In this manner – all of a sudden – the entire system is turned
into a single autocatalytic, self-maintaing set, the state of full diversity. Note that under the
percolation threshold the occurrence of such a configuration goes exponentially to zero. Since
the removal procedure continues to be at work, items from this set will constantly be removed.
It may then happen that the removal of a given node leads to the breakdown of the catalytic
set (the authors call such items ’keynode species’) and the system is thrown back into a state of
low diversity. Within this model the emergence of cooperation of items and their arrangement
in highly non-random structure can be understood. However, these phenomenology still rests
on some external assumptions in order to prevent the system from settling down into a fixed
point.

1.3.4 NK model

Another approach to study large-scale evolutionary dynamics is to simulate a system with inter-
actions given by the axioms directly rather than simulating the system of differential equations.
A famous example for this strategy is the NK-model [45] and its relatives.

One simple version of an NK-model can be described as follows. The items representing basic
units can be regarded as genes in this context. A genome is a sequence of N genes and each gene
is a letter from an alphabet of size 2, i.e. a bit. Each gene has a functional dependence on K
other genes within this genome. For each possible configuration of the K neighbors of each gene
i we assign a different random fitness value wi chosen from the interval (0, 1) to i. This choice
is quenched, i.e. at the beginning of the simulation we choose all possible fitness values under
the above constraint, then they remain fixed throughout the evolution of the system. Thus if
we encounter the same genome at two different instances of time it has the same fitness values.
We can now assign a fitness value W to the entire genome, a possible choice for this is to take
the average of the gene fitnesses,

W =
1
N

N∑

j=1

wj . (1.25)

The characteristics of this model are to a large extent independent on how we compose the
genome’s fitness from the individual fitnesses.
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We can impose a metric on the space of all possible genomes by defining two genomes which
vary in exactly one gene to have a distance of one. For a genome of length N this is a N -
dimensional grid. We can assign the genome fitness W to each gridpoint as its function values.
The resulting space is referred to as fitness landscape. In the following we assume that the
only evolutionary forces are single-point mutations under which the genome moves on to an
adjacent gridpoint on the fitness landscape if it possesses a higher value of W . How rugged
this landscape is, depends on K. For the extreme cases, if K = 0 there will be almost surely
a genome with a unique maximum in fitness. Since the contributions to W from each gene are
totally independent the genome can smoothly travel to the global maximum. In the other case,
K = N − 1, the fitnesses on adjacent gridpoints are totally uncorrelated with the fitness on
the actual gridpoint of the genome, the landscape is extremely rugged. A global maximum will
almost surely never by achieved, instead the genome will keep stuck in a local maximum. For
choices of K in between we will find different degrees of ’ruggedness’.

With this being defined, we can turn to the most interesting cases of the NK-model. In this
extensions we consider the co-evolution of multiple genomes. To this end we introduce Si as the
number of different genomes with which genome i interacts and C as the number of randomly
chosen genes which have an effect on the fitness of species i. The resulting model is sometimes
referred to as the NKCS-model.

In the course of a single mutation, a genome maximizes its fitness now taking account of the
K genes in its own genome and of the CSi genes which have an influence on it in the neighboring
genomes – co-evolution. Genomes are placed in space, usually a regular lattice was chosen for
this topology. In the one-dimensional case this implies Si = 2 ∀i, for two dimensions Si = 4 ∀i
and so on, one could study other more irregular topologies as well. In one case they were not
allowed to move and the authors were interested in if the population finds a maximum in fitness
in which the genomes rest and no further mutations take place. By varying K this behavior
undergoes a phase transition. For low K each genome tries to reach its global fitness maximum.
By doing so, it influences its neighbors and very likely ’pushes’ them in a direction away from
their maxima. In this regime co-evolutionary avalanches go on forever, the population is not able
to reach a maximum. this kind of dynamic was called ’chaotic’. For very high K in contrast,
each genome has a much shorter step length in its fitness landscape to reach a local maximum.
Therefore the population is much easier able to find a state in which all genomes can rest in a
local maximum. Co-evolutionary avalanches do not go on forever, the system is ’frozen’. Indeed,
the NKCS-model has a critical value Kc under which it undergoes a continuous phase transition
from the chaotic to the frozen regime.

In yet another variant of the NKCS-model genomes are allowed to move to adjacent lattice
points. If they are already occupied competitive replacement takes place: the genome with
higher fitness W survives. Additionally, genomes are also allowed to vary their K values. Two
things are worth noticing about this model variant: If we count the number of species becoming
extinct through replacement, their distribution over time is again a power-law. Further, by
keeping track of the values of K that individuals obtain during their evolution, it turns out that
they approach Kc over time. This poses some interesting questions. As Kauffman calls it, life
organizes itself at the ’edge of chaos’. However, research is hindered in the direction of NKCS-
model by their high complexity and the need to solely rely on computer simulations. This makes
it increasingly harder to identify the relevant mechanisms for such findings and whether they
are artefacts from a particular realization of this model or generic, universal features of a large
class of such models.

1.3.5 Bak-Sneppen model

Instead of focussing on a concrete micro-evolutionary dynamical setting as laid out through
variants of the catalytic network equation or extensively simulating systems like the NKCS-
models, authors were also interested in the development of more stylized models of evolution.
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The aim of the Bak-Sneppen model [46] is to single out the mechanism which generates the
critical behavior in NKCS-models.

As starting point the authors took the observation that each item is placed on a fitness
landscape, a possibly rugged function assigning to each item a chance of survival. A mutation
has the effect of altering the position of an item on this landscape. In this picture they will be
driven to adaptive peaks. Speciation is thought of as moving from one peak to an adjacent one
through a series of – at first glance – malevolent mutations. The Bak-Sneppen model assumes
that the time for such an speciation event can be modeled via the Arrhenius law of statistical
physics. If B is a numerical value representing the relative height of the fitness barrier an item
has to cross in order to reach an adjacent adaptive peak, the time t to get there will be given by

t = t0eB/T , (1.26)

where t0 sets the time-scale and T depends on the mutation rate, a concept reminiscent of
temperature. Now place many interdependent items on such a fitness landscape and ask for
which item the next speciation event is most likely to be observed if B is large compared to T .
This is the species i with the lowest barrier to mutation Bi, note that barriers are exponentially
separated. The dynamics of the Bak-Sneppen model is defined in the following way: The item
with lowest barrier to mutation Bi is picked and mutated. On this new adaptive peak it gets a
randomly assigned new barrier to mutation 0 ≤ Bi < 1. Each item is coupled to K neighbors.
Due to the new item introduced, the fitness barriers of these items will change too and we assign
new random values 0 ≤ Bi < 1 to them again. This process is iterated.

The observable of interest in this model is the number of items which get a new Bi assigned
after each speciation event. After a transient phase the typical value for the lowest barrier to
mutation approaches a critical value Bc ≈ 2/3. After approaching this regime each mutation
triggers a co-evolutionary avalanche with power-law distributed sizes. Therefore this model
displays self-organized criticality. Besides this and whether one accepts self-organized criticality
as a driving mechanism of evolutionary systems, the explanation of many other key features lies
clearly beyond the scope of this model.

1.3.6 λ-calculus

We have defined evolution as an ubiquituous framework to formally treat large systems of
interconneceted items. The treatments of such systems we have encountered so far where mostly
extensional in the sense that we pre-specified the entire set of dynamical rules and interactions
and – due to the high complexity of the arisen models – investigated the resulting system by
computer simulations. By doing so we have also encountered the ambiguity of how to specify this
vast number of possible interactions and mostly resolve this issue by defining them as random.
Another way to do this is to impose an inner structure on the evolutionary items out of which
their interactions can be algorithmically constructed. This approach is inspired by chemistry,
suppose you are given the number of protons, neutrons and electrons (inner structure) of two
elements i and j (evolutionary items). With the knowledge of quantum mechanics it would (in
principle) be possible to algorithmically work out if they react to form another chemical k, i.e.
to calculate the value of αijk. The following model was constructed as a toy model for such
systems, using λ-expressions as evolutionary items [32].

In this model the items are functions defined in the framework of the λ-calculus. The grammar
of a λ-expression E is

E ::= x | λx.E | (E)E , (1.27)

where x is a variable. The syntax is defined by two operations. The first, abstraction is written
λx.E and means that E is a function of x. The procedure application, (E)E, is the application of
a function to an argument. There is no syntactical distinction between function and argument.
These operations inherit their meaning through substitution: (λx.A)B → A [B/x] where the
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latter indicates the substitution of all occurrences of x in A with B. The process of carrying out
all possible substitutions is called reduction and yields, if existant, a unique expression called a
normal form. All expressions are reduced to their normal form in this model, if there is none
the expression is not allowed.

Now picture a reactor containing particles which are λ-expressions. Initially there are N
randomly generated particles. At each instance two expressions A and B are picked and interact
according to A(B). If this expression has a normal form, say C, this particle is added to the
reactor. In order to ensure constant size a randomly picked expression is subsequently removed
from the reactor in this case. This procedure is iterated.

With this specification the model produces systems which are dominated by self-replicating
or hypercyclically coupled λ-expressions, i.e. functions satisfying (f)g = g ∨ f ∀g or f(f) = f
constitute stable fixed points of the dynamic. More complex situations arise when we put
firmer constraints on the kinds of λ-expressions we allow, especially when self-copying ones are
forbidden. With this boundary condition the system encounters a nontrivial ’fixed-point’ in the
sense of a kinetic persistent behavior. A center of generators emerges from which the entire
rest of the system can be spawned. These systems are self-maintaining and able to re-produce
itself even under severe damage such as the random removal of elements – The system develops
self-repairing organizations. In a next step the authors show that it is possible for two such
organizations to coexist.

This model further clarifies the distinction between simple replicator dynamics (such as under
copying-actions) and organizational development through catalytic interactions. Note that this
behavior seems to be a generic property of constructive systems defined by formal languages,
indeed other authors arrived at similar conclusions using different formal languages see e.g. [47].

1.3.7 Kauffman networks

Instead of measuring the effects items have on each other in terms of the relative changes in
their abundances after interaction one may also model this influence explicitly. For example, if
an item i vanishes once it encounters an item j, this can be coded in the following way: ascribe
to each item i a state variable σi(t) with σi(t) = 0 if the item is not existent at time t, and
σi(t) = 1 if it is abundant. The above interaction can be expressed as σi(t) → σj(t + 1), where
’→’ stands for logical implication and 0 is interpreted as ’true’, 1 as ’false’. Let us generalize
this observation. Consider a collection of N items, each one being influenced by K other items
(maybe including itself). Each possible interaction can be encoded as one of the 22K

Boolean
logical functions mapping K bits to one bit. The time evolution in this system is given by

σi(t + 1) = fi(σi1(t), σi2(t), . . . , σiK (t)) , (1.28)

with the Boolean logical function fi : {0, 1}K 7→ {0, 1}. If these functions are chosen randomly
for each item from the set of all 22K

relations and the neighbors σi1(t), σi2(t), . . . , σiK (t) are
drawn randomly from the set of all items too, the resulting network is called a Random Boolean
Network or Kauffman network [48]. Interestingly, the global behavior of this model is to a large
extend independent of the actual choice of the fi.

Usually one distinguishes the quenched from the annealed case. In quenched dynamics the
rules fi and neighbors for each node are chosen randomly in the beginning and then fixed,
whereas in the annealed variant they are randomly drawn at each iteration. Since both versions
will yield the same results qualitatively and in the N →∞ limit even exactly, we will drop this
distinction here.

It is interesting to study the dynamics of this model in terms of stability. To this end consider
two configurations of internal states Cj(t) = {σi(t)}N

i=1, with j = 1, 2 and their Hamming
distance dt(C1(t), C2(t)), i.e. the number of bits they differ in. When we start with two very
similar configurations, d0 = m ¿ N , the question is if for large t this distance will stay small
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compared to N or eventually span a macroscopic proportion of the system. It has been shown
that the stability of Kauffman networks undergoes a phase transition at a critical connectivity
Kc = 2. For K < Kc the system is frozen, limt→∞ limN→∞ dt/N = 0 whereas for K > Kc the
system is called ’chaotic’, limt→∞ limN→∞ dt/N > 0.

Originally this model was motivated as a model for genetic activity. The binary variables
correspond to the respective gene being activated or not. Kauffman was interested in two things,
the number of different limit cycles and their length. For both one can construe a biological
metaphor, the number of different limit cycles for one genome can be thought of as the number
of different cell types a stem cell can differentiate in, whereas their length corresponds to the
duration of one cycle of such a cell type. In real world data both entities scale as

√
N with the

genome size N . Remarkably, this is the same scaling behavior that Kauffman networks possess
when they are tuned to the critical point K = Kc. But again, the question remains open why
nature should be exactly that fine-tuned.

1.3.8 Organization Theory

Chemical reactions are a prime example for recombinatory interactions. When it comes to the
study of the dynamics of a large set of molecular species it is thus no surprise that theoretical
chemistrists developed model to simulate such system efficiently. One approach to this problem
which turned out to have a much broader scope of evolutionary phenomena than just chemistry
is the theory of organizations [49].

Organization theory establishes firm topological characterizations of a collection of items. A
set of items is closed if for all interactions all participating items are a member of the set (note
that this is not the same definition of a closed set as usually adopted in topology). A set is
semi-self-maintaining if every items ’used up’ is also produced via interactions. A set that is
closed and semi-self-maintaining is a semi-organization. If each item does not participate in
any other interaction than those contained in the set and the internal production rate of the
system is non-negative, the set is called self-maintaining. Finally, an organization is a closed
and self-maintaining set.

The authors have been interested in the evolution of such an organization over time. Evolu-
tionary items are binary strings and a well defined instruction table (allowing self-replication)
was used giving a rule how to combine two strings s1 and s2 to form a third one s3 = As1(s2) with
A being an automaton. The strings are initially placed in a reactor, each string having multiple
copies summing up to N items in total. Two items meet at random and interact, additionally
items are drained with a given rate – a catalytic flow system in a well stirred reactor.

The focus here lies on organizational evolution, rather than on the evolution of individual
items. Thus the (concentration) state space is analyzed after N interactions in terms of the
organizations it contains, which usually involves a high reduction in dimensionality. To this end
generate the smallest closed set containing each item abundant at time t and find its biggest self-
maintaining set St. Organizational evolution takes place in the space of all possible organizations.
By introducing mutations (randomly negating 10 bits each time-step) the authors find three
distinct behaviors. When St+1 ⊃ St the change is called upwards movement – the space of all
accessible items has been enlargened . In contrast, if St+1 ⊂ St we find downwards movement
meaning that the potential diversity of the system declined. Sometimes a combination of upwards
and downwards movement can be found, labeled sidewards.

An interesting insight from this model is that movement in the space of organizations and
change in actual diversity is mostly correlated (i.e. upwards movement leads to actual increase
of items, downwards to decrease) but need not be the same. Sometimes upwards movement
is accompanied by a loss of diversity. Relating the organizational level with the dynamical
complexity of a system, this insight might bear the potential for interesting future research
related to the emergence of complexity in systems subject to evolution.
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1.3.9 Hanel-Thurner-Kauffman model

A fruitful approach to study properties of the catalytic network equation Eq.1.15 is to map it
onto topological recurrence equations [50]. This allows to conduct large-scale investigations on
recombinatory systems and even analytical calculations of some key quantities, at the expense
of a higher abstraction level. A crucial insight here is to formally establish the existence of scale-
invariant behavior of these system, i.e. behavior which is not size-dependent. This approach
therefore allows to study systems of arbitrary dimensionality.

This model aims at explaining the dynamical origins of diversification in evolutionary system
and its possible breakdown, i.e. crises. Suppose a model universe in which things get recom-
bined to produce new things: chemicals react to form yet new compounds, technologies can be
combined to create artefacts serving a new functionality, species influence the selection of other
species and give rise to new mutant forms. Under which initial conditions will such a system
bloom or starve? And if the system shows high diversity, under which conditions is this state
sustainable?

We assume that an item i is described by its internal state σi(t) ∈ {0, 1} at time t. The
interaction topology is assumed to be completely random with respect to a homogeneous rule
density. In the simplest case, each item has a mean number of r+ tuples of items with a positive
influence on it, i.e. for a system with N items we distribute r+N nonzero entries randomly in
the interaction table α.

Suppose there are initially on average a0 ≡ (1/N)
∑N

i=1 σi(0) items present. Whenever σi(t) =
1, σj(t) = 1 and αijk > 0 item i and j can be recombined to produce item k, σk(t + 1) = 1. If
there are only positive influences allowed, the final diversity of the system can be calculated by
solving the recurrence relation

at+1 = at + ∆at ,

∆at+1 = r+(1− at+1)(a2
t+1 − a2

t ) . (1.29)

The asymptotic solution of these relations, a∞(a0, r
+), can be mapped on the Van der Waals

equation of state, therefore this system possesses a creative phase transition of second order.
Given a small number of initial elements the entire system becomes populated. In subsequent
work the authors included destructive influences in very much the same manner and showed
that in this phase of full diversity the introduction of a small number of defects which cascades
through the network (i.e. if item i is turned off all items which are produced in no other way
than through i are turned off too) can lead to a breakdown of the highly diverse state and the
system is thrown back into a state of vanishing diversity – a destructive phase transition.

Negative influences can also be coded directly in α by defining a negative rule density along
a parameter r− analogous to r+. Additionally, items decay with a pre-specified rate. This
coupled dynamic may yield meta-bi-stability – systems are continually thrown from a phase of
high diversity into one of low, reside there for an arbitrary number of iterations and are thrown
back again, and so on. These results can also be extended to the case where an item is influenced
not by two other elements (corresponding to α being an N ×N ×N tensor) but by an arbitrary
number, α is then an N ×N × · · · ×N interaction tensor.

This is a minimal model which captures the main features of recombinatory dynamics and
therefore establishes the analytic tractability of arbitrarily sized systems which are subject to
evolution.

1.3.10 Model comparison

Each of the models we have investigated here presents a unique approach to study different
facets of systems subject to evolution. As a common denominator they all make statements
about the expected diversity of their realizations and its dynamic, as well as how the items are
interdependent, i.e. if structure emerges. Furthermore their interactions are captured by the
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evolutionary axioms to which external constraints have been added in varying degrees. We will
now try to inter-relate them.

The straight-forward study of micro-evolutionary dynamics can be thought of as a special case
of a model. Our system is then given by the directly observable abundances of items and the
direct measurable rate coefficients of their interactions. If we would possess knowledge about
all these variables, we could in principle simulate the system. This corresponds to a model
with zero level of abstraction, the entities in our model are the directly measureable quantities.
In turn this implies that there is a vast amount of variables to specify, we say this model has
maximal specifity. Due to this high level of knowledge required to conduct experiments this
approach is, of course, inapplicable to a huge number of systems where direct observation is
limited (be it due to technical imperfections, funding money or more conceptual reasons). Even
worse, each system would necessitate its own model. This can be overcome by trading specifity
versus abstraction.

We will now attempt to rank the models according to their loss of specifity and their gain
in abstraction. In doing so, the models gradually lose power to make quantitative predictions
which can be tested against real world data but therefore give us insight into which ingredients
constitute certain qualitative phenomena observable in evolutionary systems. Of course, this
ranking will only be our subjective proposal and always lies in the eye of the beholder.

The model closest to micro-evolutionary dynamics are the random catalytic networks. Here
we simulate the micro-evolutionary system directly under the assumption of random interac-
tions. The Jain-Krishna model becomes less specific in focussing only on linear interactions
which are again randomly, therefore it imposes an external selection mechanism. Such a mech-
anism is also present in the Solé-Manrubia model, we have additionally switched to binary
internal states which brings us into position to make contact with spin-models known from
the physics literature. In the Hanel-Thurner-Kauffman model interactions are binary random
variables too, therefore the focus lies explicit on recombinatory interactions, no external selec-
tion mechanism is needed. The NK-model adds internal structure to evolutionary items on
which the interactions are defined. As an abstraction to this, the Bak-Sneppen model sets out
to reproduce the qualitative behavior of such an evolution on a fitness landscape with varying
’rugged’ness. Kauffman-networks study arbitrary logical connectives between items and gradu-
ally lose empirical underpinning of the interactions at work. In organization theory interactions
are logical functions of bit-strings too, additionally a topological and set-theoretical structure
is super-imposed and studied. We find the highest level of abstraction in the λ-calculus where
evolutionary items become expressions of a universal computing language, i.e. a formalism in
which every computable function can be expressed and evaluated. For a schematic illustration
of the interrelation of models see Fig.1.1.

The task in modelling evolutionary systems is now clear. Starting with micro-evo-lutionary
dynamics we will try to formulate a model by trading as much specifity as possible against the
least amount of abstraction. To which extend this program is successful is indicated by the
number of quantitative predictions which can be made on the basis of the model and tested
against real data while constantly ensuring full compatibility with dynamics derived from our
evolutionary axioms. To achieve this is the aim and purpose of this thesis. Referring to the
sketch in Fig.1.1, we try to move along the arrow towards the point of a model with least amount
of specifity and abstraction.
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RCN: Random Catalytic Nets

JK: Jain-Krishna

SM: Solé-Manrubia

HTK: Hanel-Thurner-Kauffman

NK: NK-model

BS: Bak-Sneppen

KN: Kauffman network

OT: Organization Theory

λ: λ -calculus

Figure 1.1: The inter-relation of the models discussed in this section is pictured symbolically
along two dimensions, each corresponding to resources needed to make the model
work. ’Specifity’ indicates the amount of specific knowledge about the realization
of the evolutionary system which is needed to formulate the model. ’Abstraction’
corresponds to the grade of abstraction adopted in the model and therefore measures
how stylized the model is compared to reality. The arrow points in the direction we
aim for the remainder of this work.
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2 Topology of Evolutionary Systems

Everything should be as simple as it is,
but not simpler.

Albert Einstein, 1879 - 1955

We seek the formulation of a model of evolution with minimal level of abstraction (i.e. with
closest contact to the micro-evolutionary axioms given in Tab.1.1) and simultaneously the least
degree of specifity, that is a minimal number of model parameters. We will go beyond the
paradigmatic approach to model evolutionary systems as a linear network of interconnected
items by focussing on the recombinatory part of the interactions. This is motivated by (i) our
emphasis on the role of innovations, which means that certain recombinations of existing items
introduce a new feature or quality in the system (the whole is more than the sum of its parts –
metaphorically) and (ii) the observation that replication, mutation and competition are nothing
else than special instances of recombinations.

2.1 Mapping Evolutionary Axioms to Power Set Topology

Traditional network theory assumes the elementary existing units to be identical to the ele-
mentary interacting units. An item i is here completely speciefied by its abundance and its
interactions: the in- and outgoing links to other items. This is at variance with the contextual
nature of evolutionary items: the functional role of an item i, its links, may depend on which
other items are simultaneously abundant. Crudely speaking, hydrogen may be life saving to a
human in combination with oxygen but death bringing in combination with chlorine. Yet all
this three constituents can be produced independent, it is their combination that adds the life
saving or death bringing quality. We have to develop a model where functional elements are not
individual items but collections of them. Let us make this observation mathematically explicit.

Collect all N items of an evolutionary system into a set N . This set contains items which
may play a role in the system at any possible time and is possibly of infinite order. The power
set P(N ) of N is defined as the set of all subsets of N . For example, if N = {0, 1, 2} then
P(N ) = {{ }, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}. So if N is of order N , P(N ) is of
order 2N . Let i and j be two subsets of N , i.e. two elements of P(N ), i, j ∈ P(N ). We
subsumize the evolutionary axioms of replication, mutation, competition and recombination
into the general interaction scheme

i
αij−−→ j . (2.1)

To see that this relation indeed encompasses the basic interactions we show how to rederive the
axioms from relation 2.1.

• replication: Consider an item i described by abundance xi. If i = {i} and j = {i} we
recover axiom REP.

• competition: If the two subsets overlap we have the general structure of competition.
Choose i = {i, j} and j = {j} to obtain COMP.

• mutation: This is the case that the subsets are of order 1 and do not overlap, MUT is
given by i = {i} and j = {j}.
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• recombination: The prototype of a recombinatory interaction, REC, can be expressed
as i = {j, l} and j = {i}.

• development: We can investigate phenotypic traits via an assignment as given in DEV
in exactly the same manner as before by keeping the definition E(p) =

∑
i pixi as above.

In addition to that we can also assign traits to a selection of sets by assigning traits pi to
subsets i.

We now aim for a topological description of a large system of items interacting through the
general scheme of relation 2.1. To this end we will make use of the concept of a hypergraph – a
generalization of the familiar graph concept.

From all possible 2N subsets of N items not all of them have to be functional elements. Indeed,
in a real system this holds for the vast majority of them. Assign to each member of the power
set of N a 1 if a recombination of the elements this subset contains leads to a new item and 0 if
not. That is, we collect all general interactions of the system and mark which subsets of items
appear at the left-hand sides of the relations 2.1. They constitute a hypergraph HIN given by
the mapping

HIN : P(N ) 7→ {0, 1} . (2.2)

Proceeding in a similar way we can collect all right-hand sides of the interactions in the system
into a hypergraph HOUT given by the map

HOUT : P(N ) 7→ {0, 1} . (2.3)

The map αij which we have introduced in relation 2.1 is then a homomorphism between HIN

and HOUT – a linear map on the power set of N
We will call the elements of P(N ) which are mapped to a nonzero value by HIN in-sets and

the nonzeros of HOUT will be called out-sets analogously. The in- and out-sets are hyperedges
on the set of all items. As a generalizations to a normal graph, where edges can join only two
vertices, a hyperedge can join an arbitrary number of them. If all hyperedges contain the same
number of elements, i.e. have the same cardinality, the hypergraph is called uniform. The degree
of an item i is the number of hyperedges it is contained in. A hypergraph is called regular if all
vertices have the same degree. Subsequently we will study different hypergraph topologies by
specifying the distributions of vertex degrees and hyperedge cardinalities.

The topology of an evolutionary system is completely specified by the collections of in-sets
HIN , out-sets HOUT as well as the homomorphism α between them.

2.2 Setting Up the System’s Dynamic

In the study of evolutionary systems one is mostly not interested in the exact abundance of a
specific item, but only in if the system has the capability to sustain its existence, the diversity
of the system is one of the main observable. Within this framework we can therefore switch
from a continuous description of states, i.e. relative abundances xi of item i, to binary internal
states σi(t) ∈ {0, 1}. This can be pictured as introducing a threshold concentration xi,c for each
i such that it is present, active or simply ’on’ indicated by σi(t) = 1 if xi ≥ xi,c. Otherwise it
is not present, inactive or ’off’, i.e. σi(t) = 0. The threshold has to be chosen for each item
such that it assumes its functional role if it is abundant above this value and the interactions
are negligible if they are below xi,c. We define

σi(t) =

{
0, if xi < xi,c

1, if xi ≥ xi,c

at time t. (2.4)
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However, interactions take place between sets of items. Therefore we also introduce a binary
state for an in-set or out-set i,

σi(t) =
∏

i∈i

σi(t) . (2.5)

An arbitrary in- or out-set is ’on’ iff all the items it contains are on. This definition mimicks
the mass-action dependence in nonlinear evolutionary equations such as Eq.1.15. Note that here
and henceforth italic indices denote individual items, whereas bold indices denote elements of
the power set of all items.

In the most general and cumbersome case the entries of the map α can take arbitrary values –
there is no a priori restriction to the reaction rates. Since our state variables are binary now, we
can gain here descriptive clearance now too. For each entry of α we can again introduce critical
threshold values α+

ij,c and α−ij,c. Let us define a map α+ taking accont of positive interactions by

α+
ij =

{
0, if αij < α+

ij,c

1, if αij ≥ α+
ij,c

. (2.6)

In the same spirit we handle negative interactions with a map α− defined straightforwardly by

α−ij =

{
0, if αij > α−ij,c
1, if αij ≤ α−ij,c

. (2.7)

We have thus decomposed α into two separate maps α+ and α− which keep track of the func-
tional relevant interactions. Note that they do not depend on time. If two or more items can be
recombined or not is thought of depending on the laws of nature. For instance, if certain chemi-
cals react or not depends on the inner structure of the involved molecules and their surrounding,
chemical rules do not change dynamically. Two given biological species may compete e.g. for
the same resources or not depending on their ecological context, but the possibility for them to
compete stays unaltered. If it turns out to be useful or not to recombine two technologies also
depends on which other technologies and constraints are currently available or present, but the
mere possibility to recombine them is a constant property.

Adopting our proposed general evolutionary description language we can call two sets i and
j linked through a nonzero entry in α+ complements. The abundance of items in the in-set i
makes the existence of the items in the out-set j favorable, the link is constructive. In case they
are linked through α− we can also refer to them as substitutes: the in-set i’s abundance may
be rendered anachronistic once out-set j manifests itself, the interaction is called destructive.
These two processes of course depend on the entire surrounding of those items – whether the
existence of an item turns out to be favorable or not can only be decided in the context of the
entire network. We will devote a large part of this thesis to the study of exactly this interplay
on a macroscopic scale.

Coming back to a more formal viewpoint, we have enlargened the space of all functional
elements from the set of all items to its power set. With respect to this we have introduced
interactions between those sets by the homomorphisms α±. We can reconcile their role now
with a network point of view; α+ and α− are adjacency matrices on the power set of all items.
But note that these dynamics only is linear if we look at only one iteration of the system. It
is a nontrivial task to determine which active out-sets can be recombined to active in-sets. In
our framework the problem of treating highly nonlinear systems has been shifted to exactly this
point exactly.

For an illustration of the topology we have arrived at consider Fig.2.1. The circles correspond
to items whose internal states are shown by different colors, gray if the item is active and white
if inactive. We pick out an arbitrary item i whose internal state is on, σi(t) = 1. Item i is
contained in two in-sets of cardinality two, in-sets i and k. Since the other element in i is active
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Figure 2.1: The circles show evolutionary items which are filled with gray color if their internal
state is on and left white if they are off. We picked an item i and show one in-set
i it is contained in having constructive influence on the out-set j. It also resides in
in-set k with destructive influence on out-set l. Since i is on at the next time step
all items in j are also on, whereas the item in l will not be de-activated through
negative influence because in-set k is not active.

we have σi(t) = 1 whereas σk(t) = 0 since here the other item is inactive. The in-set i has a
constructive influence on its complement, out-set j of cardinality three, as denoted by α+

ij = 1.
Since i is on we will have σj(t+1) = 1 at the next time step, i.e. each item in j will be activated.
Item i also resides in in-set k having destructive influence on its substitute out-set l of size one,
indicated by α−kl = 1. But since the in-set k is not active out-set l, and the items it contains,
will not be de-activated in the next time step.

2.3 Interaction Indication Functions

We conclude the topological prelude to the study of dynamics of evolutionary systems by intro-
ducing interaction indication functions. To determine whether a given item i will be active or
not in the forthcoming timestep one needs to have knowledge of three things. In which out-sets
is i contained? Which interaction are defined for these out-set through α±? And finally, which
are the corresponding in-sets for these interactions? The idea is to construct an expression de-
pending on the answers to these questions indicating whether an interaction takes place at time
t or not.

Let us consider constructive influences. An in-set can give rise to such interactions if it is
active. That is, in-set i can participate if σi(t) = 1. It acts upon out-set j given by α+

ij = 1.
An interaction will only take place, if there is an item in j that is not active at time t, that is
we have σj(t) = 0. Thus saying that a constructive interaction between in-set i and out-set j
happens at time t is equivalent to saying

σi(t) α+
ij (1− σj(t)) = 1 . (2.8)

We call the left-hand side of Eq.2.8 the constructive interaction indication function. Whenever
this function yields one, a constructive interaction can take place and we will have σj(t+1) = 1.

We proceed in a similar way for destructive influences. Again, an in-set i has to be on and
there has to exist a destructive interaction with set j through α−ij = 1. But now the interaction
will only take place if set j is already active at time t. Thus the occurrence of a destructive
interaction is indicated by

σi(t) α−ij σj(t) = 1 . (2.9)
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Whenever this relation holds, i.e. the destructive interaction indication function yields one, we
will have σj(t + 1) = 0. Each item in set j gets deactivated in this iteration. Note that we could
also deactivate out-set j by switching only one item in it to off. However, if we would impose
this kind of dynamics we could equally well exclude the un-altered items from the out-set.

Let us reflect what these interaction indication functions exactly do. Quite remarkably, they
map interactions to numbers. Each presently occurring interaction is assigned a unit of one.
This observation is the key point to start our dynamical investigations.
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3 Evolutionary Mechanics

The press, the machine, the railway, the telegraph
are premises whose thousand-year conclusion

no one has yet dared to draw.
Friedrich Nietzsche, 1844 - 1900

Evolutionary dynamics appears in a multitude of different contexts. Evolution basically de-
scribes how sets of elements, such as biological species, goods and services in an economy, groups
of living beings, or chemical compounds, change over time. Examples are abundant in various
areas. Chemical compounds react with other compounds to produce new chemicals. Integrated
circuits performing specific computational tasks can be combined to create another circuit for
a different computational task. Prey and predator may co-evolve by succinctly acquiring new
traits and thereby develop into new species. In the following we will use species for elements
in whatever context, chemicals, goods, biological species, etc. The removal or addition of a
single species in an evolutionary system may have dramatic consequences. For example, in
starfish removal experiments (e.g. Mukkaw Bay in Washington [51]) starfish are removed from
an eco-system with the consequences that mussel populations explode and drive out most other
species, while the urchin population destroys coral reefs. In 1904 English physicist John Am-
brose Fleming accidentally manufactured the first vacuum tube which triggered a cascade of
technological and economic co-evolutions and adaptations; in 2004 the semiconductor industry
was a market of $ 213 billion and enabled the generation of approximately $ 1200 billion in
electronic system businesses and $ 5000 billion in turn in services which amounts to 10% of
world GDP [28]. Typically in evolutionary systems species are endogenously added or removed
from a large system of mutually influencing species. Two species influence each other if the ex-
istence of one species has a positive or negative effect on the change of abundance of the other.
The possibilities for interactions in evolutionary systems involve different natural, economic or
social laws on a variety of time or length scales. The collective result of these (’microscopic’)
interactions between elements leads to ubiquitous well-known macro phenomena in evolutionary
systems, such as punctuated equilibria, booms of diversification, breakdowns and crashes, or
seemingly unpredictable responses to external perturbations. Maybe one of the most exciting
questions in natural sciences today is to understand if evolutionary dynamics can be understood
by a common underlying principle and – if yes – how such a principle might look like. Such a
principle must be general enough to capture the multitude of different phenomena, and at the
same time must be in a form which can be applied easily to specific problems.

3.1 Exorcising Darwin’s Demon with a Variational Principle:
Evolutionary Mechanics

In the present understanding of evolution the concept of fitness is of central importance. Usually
the relative abundance of species (wrt other species) is described by replicator equations (first-
order differential equations) and variants such as Lotka-Volterra equations [33, 35, 39]. Their
mutual influence is quantified by a rate specifying how the abundance of one species changes upon
contact with another. In biology this rate is called Malthusian fitness, in chemistry one refers to
it as the reaction rate, in economics it is related to production functions. Similar proliferation
rates could also be introduced for technological, financial or even historical contexts. In the
following we subsume them all under the term fitness.
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A distance between two species can be defined as the minimal number of evolutionary steps
needed for one species to evolve into the other one (in biology this distance is often the number
of single-point mutations two species differ in). In this way a metric is given on the space of all
possible species. A fitness landscape assigns to each point in this space (that is to each species)
its reproductive success or fitness. Evolution is sometimes pictured as an optimization problem
where species evolve via adaptations toward peaks in this landscape. In this view evolutionary
systems may approach a unique equilibrium once each species approaches its adaptive peak –
with profound consequences. The idea of clearing markets and equilibrium economics is based
on this line of reasoning and actually used for policy formulation.

The concept of fitness is limited however. To see this consider the following thought experi-
ment. Suppose one -say a demon- would have exact knowledge about the abundance and fitness
of each biological species in the universe. ’Knowing the fitness of a species’ means knowledge
of the functional dependence of its proliferation rate on the entire current environment (i.e.
all other species). The omniscient hypothetical entity in possession of this knowledge could be
called Darwin’s demon for obvious reasons. The demon may be pictured as a super-biologist
able to measure each species’ abundance as well as the dependence of its proliferation rate on
each other species in each habitat. That is, he knows the set of all existing species and can
measure their associated fitness landscape to an arbitrary degree of exactness. What can the
demon predict about the future course of evolutionary events, such as biodiversity in 100 mil-
lion years or the time to the next mass extinction event? Surprisingly little, for the following
reasons. A key characteristic of evolutionary systems is its potential to generate innovations,
i.e. new species. In biological systems this can happen through mutations, in technological or
economical ones through spontaneous ideas of an inventor, etc. Once a new species is created
it becomes part of the very environment and thereby potentially changes the conditions for all
already existing species and for those yet to arrive. To now assess the fitness of a new species one
has to measure how it spreads in an environment it is now part of. The demon has information
related to a different environment, one which only existed before arrival of the new species. Thus
the demon may have an exact description of the current biosphere, but with the advent of each
new species this description loses accuracy. Fitness thus always encodes a posteriori knowledge,
and can not be used to make falsifiable predictions. The idea that evolution is guided by the
principle ’survival of the fittest’ is obviously tautological and translates into ’survival of whoever
turned out to survive in hindsight’. To know how ’fit’ a species will be somewhere in the future
knowing how fit it was in the past is of no use. Instead we have to understand how species and
their fitness landscapes co-construct each other.

To make headway in understanding the phenomenology of evolution, i.e. in identifying prin-
ciples which guide evolutionary dynamics, a series of quantitative models have been suggested
[45, 46, 43, 44, 54, 55, 49, 48, 53, 3, 52, 57]. Here explicit assumptions are made about how
new species come into being, how they interact with each other and under which conditions or
under which selective forces they vanish. Each of these models focuses on particular aspects
of evolution. For example in Kauffman NK models [45] species are bit-strings with randomly
assigned fitness values. Arthur [55] focuses on technological evolution with integrated circuits
as species whose fitness is examined by how well they execute certain computational tasks. Jain
and Krishna [44] consider ecological systems and elucidate the interplay between interaction
topology and survival of species. In most of these models some ad hoc assumptions about the
mechanisms are made. In the model by Jain and Krishna, for example, species are actively
removed and added to the system, therefore innovations are externally enforced and not endoge-
nously produced. Arthur compares the output of randomly assembled circuits to a prescribed
list of desired computational tasks (such as bitwise addition). In the NK model only single-point
mutations of bit-strings are allowed as evolutionary interactions. Although these assumptions
are rectifiable in the specific contexts of their models, it is not at all clear whether conclusions
derived on the basis of these assumptions are valid in different evolutionary contexts. Arthur’s
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model is not applicable if one cannot pre-specify a list of tasks or abilities that should evolve,
Jain and Krishna’s model does not apply to static interaction topologies such as closed chemical
reaction networks, similarly one cannot devise NK models for e.g. economic settings, where
dominant interactions are not given by single-point mutation of bit-strings. Thus the scope of
all these models is limited.

To arrive at a general evolutionary description (without ad hoc specifications) one has to
identify principles which are abstract enough to be applicable in each evolutionary context
but which must be specific enough to make useful quantitative predictions. To meet these
requirements, evolution can be pictured as a three-step production/destruction process. Step
1: New species come into being through recombination of already present species. That is, each
species arises only under the condition that a given (and maybe not unique) set of other species
or environmental factors exists. For example, to assemble an MP3-player all parts –including
software– are needed. Sodium chloride can be produced by sodium hydroxide in solution with
hydrochloric acid. Or with a healthy amount of oversimplification one can say that apes and
steppe formation give rise to mankind. Step 2: The new species becomes part of the system
and can now be combined with other, already existing species. One can legally download music
for the MP3-player and listen to it, sodium chloride reacts with e.g. calcium carbonate in the
Solvay process, mankind slashes forests and woodlands to create fields for agriculture. Step
3: As a consequence, through this recombination yet new species may come into being and
other already existing ones may vanish or be destroyed. For example, MP3 currently drives CDs
out of the market but can be combined with cell phones to give smartphones. Soda ash can
be used to remove sulfur dioxide from flue gases in power stations which might help to reduce
the current Holocene extinction event of biological species possibly influenced by the advent
of mankind. In previous work models incorporating these types of production and destruction
processes have been shown to reproduce a wide range of evolutionary phenomena, including
booms of diversification [50], breakdowns of diversity [56] or punctuated equilibria [52]. Such
processes further allow to understand stylized facts in time-series data on evolutionary systems,
such as scale-free distributions of species lifetimes, the number of species per genus or the size
of extinction events in fossil data [3], or GDP and business failures in economic markets [57].

In this work we propose a variational principle from which dynamics – identical to the dynam-
ics of the production / destruction processes described above – can be derived. To this end we
define the evolutionary potential of a species. This function measures in how many productions
and destructions a species would (no longer) take part if it would enter (be removed from) the
system. With this potential one obtains two formal representations of the system’s dynamic.
(i) The potential can be used to explicitly deduce a set of dynamical update equations of system
diversity for production / destruction processes. (ii) Using this evolutionary potential and a
measure for ongoing productions and destructions one can construct a balance function. The
evolutionary process solving the dynamical update equations (i) always minimizes the balance
function (ii). The balance function further allows asymptotic solutions for the system diversity
(mean-field approximation). These analytic solutions are in good agreement with numerical sim-
ulations of the full model of productions and destructions. This is to a certain degree unexpected
since the dynamics is dominated by strong and nonlinear interactions.

This description of evolutionary systems allows to understand how the set of abundant species
and their fitness landscapes co-construct each other from first principles, as opposed to research
strategies portrayed by Darwin’s demon, where snapshots of regions of fitness landscapes are
empirically explored. Accordingly the focus shifts from predicting ’microscopic’ properties such
as individual proliferation rates to estimating the occurrence of global, ’macroscopic’ events.

This work is structured as follows. In section 3.2 we develop a general framework for evolution-
ary systems via a variational principle. We discuss deterministic and stochastic implementations
and obtain asymptotic diversity solutions in a mean-field approximation. In section 3.3 we mo-
tivate and define the choice of evolutionary interactions as production and destruction rules as
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in [57]. We treat the special cases of systems with only productive interactions in section 3.4
and the pure destructive case in section 3.5. Then we discuss the full model of productions and
destructions in section 3.6. We discuss empirical relevance of this work in section 3.6.3 and turn
to a conclude in 3.8.

3.2 General formulation of diversity dynamics

3.2.1 Dynamical systems

The abundance of species i is given by a binary state variable σi(t) ∈ {0, 1}. If species i exists
at time t, σi(t) = 1, otherwise σi(t) = 0. The system can be populated by N species (N
arbitrarily large, even infinite). A particular configuration of the system is characterized by the
N -dimensional vector in phase space ~σ(t) = (σi(t)) ∈ Γ = {0, 1}N . The system’s diversity D(t)
is given by D(t) = 1

N

∑
i σi(t).

At each time, species i may experience three scenarios, (i) annihilation σi(t) = 1 → σi(t+1) =
0, (ii) nothing σi(t) = σi(t + 1) or (iii) creation σi(t) = 0 → σi(t + 1) = 1. Suppose that there
exists a function fi(~σ(t)) : {0, 1}N → R indicating which of the transitions (i)-(iii) takes place.
Specifically, let fi(~σ(t)) indicate the following transitions

(i) fi(~σ(t)) < 0 ⇒ σi(t + 1) = 0
(ii) fi(~σ(t)) = 0 ⇒ σi(t + 1) = σi(t) (3.1)
(iii) fi(~σ(t)) > 0 ⇒ σi(t + 1) = 1

For (i) or (iii) a transition occurs if σi(t) = 1 or 0, respectively. That is, if fi(~σ(t)) ≥ 0 the
system evolves according to

σi(t + 1) = σi(t) + ∆σi(t) with ∆σi(t) = sgn [(1− σi(t))fi(~σ(t))] . (3.2)

∆σi(t) can only be non-zero if σi(t) = 0 and fi(~σ(t)) > 0. Similarly, for fi(~σ(t)) ≤ 0 ∆σi(t) =
sgn [−σi(t)fi(~σ(t))]. Let us define the ramp function R(x) by R(x) ≡ x iff x ≥ 0 and R(x) ≡ 0
iff x < 0. Using these definitions we can generically map the indicator function fi from Eq.(3.1)
onto the update equation

σi(t + 1) = σi(t) + ∆σi(t) ,

∆σi(t) = sgn
[(

1− σi(t)
)

R

(
fi(~σ(t))

)
− σi(t)R

(
−fi(~σ(t))

)]
. (3.3)

3.2.2 Variational principle for deterministic diversity dynamics

Consider a virtual displacement of σi(t), σ′i(t) = σi(t) + δσi(t). Let us define 1 the activity
function Ki as

Ki(σ′i(t), σi(t)) ≡ µ

2
(
σ′i(t)− σi(t)

)2
, (3.4)

where we – for the moment – regard µ as a free parameter of the theory confined to the interval
µ > 0. We introduce the activity function as a tool to record the number of state changes in the
system. Since Ki 6= 0 ⇔ σ′i(t) 6= σi(t) the sum

∑
i Ki measures the total activity in the system

and is by definition always positive semi-definite.
We define the potential Vi by

Vi(σ′i(t), ~σ(t)) ≡
∣∣∣∣
(

1− σ′i(t)
)

R

(
fi(~σ(t))

)
− σ′i(t)R

(
−fi(~σ(t))

)∣∣∣∣ , (3.5)

1In analogy to kinetic energy.
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Table 3.1: We exhaustively insert all possible values for σi(t) and σ′i(t) in Eq.(3.3) and Bi for
non-zero values of fi(~σ(t)). For convenience we choose |fi(~σ(t))| = 1 and confine the
threshold to 0 < µ < 2. We underline the values of σ′i(t) for which Bi is a minimum,
this underlined values always equal σi(t + 1).

σi(t) fi(~σ(t)) σ′i(t) Ki Vi Bi σi(t + 1)
0 -1 0 0 0 0 0
0 -1 1 µ

2 1 1 + µ
2 0

0 1 0 0 1 1 1
0 1 1 µ

2 0 µ
2 1

1 -1 0 µ
2 0 µ

2 0
1 -1 1 0 1 1 0
1 1 0 µ

2 1 1 + µ
2 1

1 1 1 0 0 0 1

which ’counts’ the number of possible interactions for σ′i(t) . Depending on σ′i(t) Eq.(3.5) will
reduce to Vi(σ′i(t), ~σ(t)) = |R(±fi(~σ(t)))|. A possible intuition behind Eq.(3.5) is that the
function fi acts as a ’field’ on σi(t) which is ’probed’ by σ′i(t). From now on we will occasionally
drop the σ-dependences in the balance functions for a clearer notation. The balance function Bi

now reads Bi ≡ Ki + Vi.
Ki measures the actual activity in the system – it counts all state changes. Depending on these

states, the potential Vi counts the potential activity in the newly obtained states. The function
Bi therefore contains the full dynamical information of Eq.(3.3) which can now be expressed via
a variational principle.

Given ~σ(t), the solution σi(t + 1) of Eq.(3.3) is identical to the value of σ′i(t) for
which Bi assumes its minimum, i.e.

σi(t + 1) = argmin
σ′i(t)

[
Bi

(
σ′i(t), ~σ(t)

)]
, (3.6)

with argmin
x

[f(x)] denoting the value of x for which f(x) takes its minimum.

This is seen by exhaustive insertion. First, consider the case fi(~σ(t)) = 0. From Eq.(3.3)
∆σi(t) = 0 and Vi = 0 follows. The only possible term contributing to Bi is Ki and we have
Ki = 0 if σ′i(t) = σi(t) and Ki = µ

2 > 0 otherwise. The balance function Bi takes its minimum,
Bi = 0 at σ′i(t) = σi(t) = σi(t + 1). Similar reasoning can be applied to the cases of a non-zero
fi(~σ(t)), see Tab.(3.2.2). This also clarifies the role of the parameter µ. One can think of it as
an inertial threshold, the dynamics of Eq.(3.3) is only obeyed if the ’field’ fi(~σ(t)) describing
a certain state-change exceeds the activity barrier set up by µ. There is always a choice for µ
such that Eq.(3.3) holds.

3.2.3 Stochastic diversity dynamics

We define now a stochastic variant of diversity dynamics. In Eq.(3.3) a state transition σi(t) →
σi(t + 1) is determined by ∆σi(t) ∈ {−1, 0, 1}. In contrast to this in the stochastic case studied
now we will specify transition probabilities for this evolution.

From the variational principle Eq.(3.6) follows that Eq.(3.3) always minimizes the balance
function Bi. In the stochastic variant we assume that the lower Bi the higher the probability
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to find the system in the respective configuration σi(t). In analogy to magnetic spin systems we
define this probability as

p(σi(t)) ∝ e−βBi(~σ(t)) , (3.7)

with the inverse temperture β ≡ 1/T as a free parameter. To obtain transition probabil-
ities we invoke the principle of detailed balance. Consider a transition σi(t) → σ̂i(t) with
σ̂i(t) ∈ {σi(t), 1− σi(t)}, the principle of detailed balance states that p(σi(t))p(σi(t) → σ̂i(t)) =
p(σ̂i(t))p(σ̂i(t) → σi(t)). With Eq.(3.7) this becomes

p(σi(t) → σ̂i(t))
p(σ̂i(t) → σi(t))

=
p(σ̂i(t))
p(σi(t))

= e−β(B̂i−Bi) , (3.8)

with B̂i ≡ Bi(σ̂i(t), σ(t)j 6=i). There are several ways to choose transition probabilites such that
Eq.(3.8) is satisfied, we use here the Metropolis transition probabilities given by p(σi(t) →
σ̂i(t)) = 1 if B̂i − Bi < 0 and p(σi(t) → σ̂i(t)) = exp[−β(B̂i − Bi)] otherwise. The stochastic
case of diversity dynamics is fully specified by setting σi(t + 1) = σ̂i(t)2.

Whereas in the deterministic case the balance function Bi is minimized, in stochastic diversity
dynamics we also have to account for ’disordering effects’ due to non-zero temperature T as given
in Eq.(3.7). We quantify this with Boltzmann-Gibbs entropy as a measure.

3.2.4 Mean-field approximation

Let us denote the expectation value of σi(t) by qi(t) = 〈σi(t)〉 and assume that the probability
distribution factorizes, i.e. p(~σ(t)) =

∏
i pi(σi(t)) with pi(σi(t)) = (1− qi(t))δσi(t),0 + qi(t)δσi(t),1.

In this mean-field approximation the Boltzmann-Gibbs entropy s for item i is given by

s(σi(t)) = −〈ln pi(σi(t))〉 ≡ s(qi(t)) , (3.9)

s(qi(t)) = −
(

1− qi(t)
)

ln(1− qi(t))− qi(t) ln qi(t) .

With this definition we obtain the ’free energy’ functional φ(σi(t)) for the system as

φ(qi(t)) = 〈Bi〉p(~σ(t)) −
s(qi(t))

β
. (3.10)

The asymptotic state of item i, qi(t → ∞) ≡ qi, is given by a minimum in free energy. The
necessary condition for this, ∂φ(qi)/∂qi = 0, is ∂〈Bi〉

∂qi
+ 1

β ln
(

qi

1−qi

)
= 0, and

qi =
1
2

{
tanh

[
−β

2
∂〈Bi〉
∂qi

]
+ 1

}
. (3.11)

The self-consistent solution to Eq.(3.11) yields the asymptotic configuration.

3.3 General formulation of evolutionary interactions

Traditionally in the master equations framework3 interactions are classified by transfer rates
for abundances of species. The transfer rates measure how the change in abundance of a given
species i is related to the abundance of other species j1, j2, . . . . Depending on how i and
j1, j2, . . . are chosen, one obtains different systems of differential equations which can be related
to a specific form of evolutionary interactions. If species i with abundance xi replicates with

2One can also define the dynamics ’backwards’ through the transition probability p(σ̂i(t) → σi(t)) which could
be interpreted as inferring ~σ(t) from knowledge of ~σ(t + 1).

3as is typical for traditional evolutionary biology.
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rate fi, the interaction is of type replication and is represented as xi
fi→ 2xi, (replicator equation

[35]). Competition is a mechanism where the replication rate of species i also depends on other
species j through a transfer rate pij , xi + xj

pij→ xi. This type of interactions is used in the
game dynamical equation [36], which is a special case of the frequency dependent replicator
equation [39, 38]. The mechanism mutation assigns a mutation or transfer rate qij between two
species according to xi

qij→ xj , together with replication and competition we obtain the replicator-
mutator equation [37], of which the quasispecies equation [40] is a special case. Replication can
take place without replicators, species are then produced by recombination processes. In the case
of three species i, j and k with a recombination rate αijk, this mechanism is xj +xk

αijk→ xi. The
corresponding dynamical system is called catalytic network equation see e.g. [41]. It is formally
possible to express replication, mutation and competition as special cases of the recombination
mechanism [32, 34]. In this sense recombination mechanisms provide a unifying description of
the other evolutionary interactions above – an observation we use as a starting point for our
model.

In the general form of a recombination process an arbitrary number of species j1, j2, . . . , jn

influences a given species i. We distinguish two types of interactions of this form, (i) constructive
interactions or productions where species i benefits from species j1, j2, . . . , jn and (ii) destructive
interactions or destructions where the j’s are causing harm to i. In the master equation frame-
work constructive interactions correspond to positive transfer rates, destructions to negative
ones. We denote the set of species j1, j2, . . . , jn = j. If the set of all species is N , j is an element
of the set of all subsets of N , i.e. j is an element of the power set of N , P(N ). A recombination
always maps an element from P(N ) to an element from N via a transfer rate αi,j, i.e. by a map
α : P(N ) → N . From now on italic indices refer to elements of N , e.g. i ∈ N , while bold-face
indices refer to elements of the power set, j ∈ P(N ). Transfer rates are represented by their
sign. For convenience define binary state variables for sets of nodes, let σj(t) =

∏
i∈j σi(t). The

most general form of evolutionary interactions can then be written as

σj
αi,j→ σi . (3.12)

We summarize in Tab.(3.2) how the evolutionary interaction mechanisms of replication, compe-
tition, mutation and recombination are contained in Eq.(3.12) for special choices of j. If there is
a constructive interaction between j and i, i.e. j is a constructive set, we capture it in the pro-
duction rule table α+ : P(N ) → N with α+

i,j = 1, otherwise α+
i,j = 0. Similarly, if the interaction

in Eq.(3.12) is destructive, i.e. j is a destructive set, we record this in the destruction rule table
α− : P(N ) → N with α−i,j = 1, otherwise α−i,j = 0. At some points in this work we will assume
that the rule tables α± are random tensors. In this case they are given by two parameters n±

and r±. n+ is the cardinality of constructive sets, |j| = n+ in Eq.(3.12) and for random α+ each
species i has on average the same number r+ of constructive sets, 〈∑j α

+
i,j〉i = r+. Similarly α−

is given by n− and r−.

3.4 Constructive interactions

3.4.1 Constructive dynamical system

We first consider a system with constructive interactions only. We read Eq.(3.12) as ‘from
σj(t) = 1 follows that σi(t + 1) = 1’. In a chemical setting the chemical compounds contained
in j react to give compound i, in an economic setting the goods j can be assembled to produce
good i, see Fig.3.1(a). The constructive dynamical system characterized by Eq.(3.12) is given
by

∆σi(t) = sgn




(
1− σi(t)

) ∑

j∈P(N )

α+
i,jσj(t)


 , (3.13)
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Table 3.2: Summary of the traditional evolutionary interaction mechanisms: replication, com-
petition, mutation and recombination. We indicate how the constructive/destructive
set j has to be specified in Eq.(3.12) in order to recover the various mechanisms in
our model.

mechanism power set notation

replication xi
fi→ 2xi j= {i}

competition xi + xj
pij→ xi j= {i, j}

mutation xj
qij→ xi j= {j}

recombination xj + xk
αijk→ xi j= {j, k}

Figure 3.1: A graphical representation of constructive, destructive and combined interactions.
(a) The constructive set j (green area) contains three species (circles) j = {l, m, n}.
They produce species i, i.e. α+

i,j = 1. Since each of these species is active (indicated
by the blue color of the circle) we have σj(t) = 1 and σi(t) = 0, by Eq.(3.13)
σi(t+1) = 1. (b) The destructive set j’ (red striped area) of cardinality two is active
since each of its contained items m′, n′ is active and interacting with item i′ through
α−i′,j′ = 1. Following Eq.(3.18), σi′(t) = 1 will be deactivated, σi′(t + 1) = 0. (c) A
pictorial description of a network with both constructive and destructive interactions
at a point in time.

i.e. fi(~σ(t)) from Eq.(3.1) becomes f+
i (~σ(t)) =

∑
j α

+
i,jσj(t).

3.4.2 Deterministic constructive diversity dynamics

In the limiting case of T = 0 i.e. β → ∞ the system deterministically obeys the dynamics Eq.
3.13. The behavior of D(t →∞) is well understood; this case is identical to the model studied
in [50, 56] for random interaction topologies α+ given by n+, r+ here. D(∞) was computed as
a function of n+, r+ and D(0). It was shown that this system has a phase transitions formally
equivalent to the phase transition of a van der Waals Gas. There exists a critical diversity of
initially species Dc(0) above which the system is driven toward an almost fully populated state,
see Fig.(3.2); below this threshold the dynamics freezes. All these findings are identical what
we find here in the T = 0 case.

3.4.3 Stochastic constructive diversity dynamics

We next turn to non-zero temperature T . The crucial feature distinguishing deterministic and
stochastic diversity dynamics is the dependence on the initial conditions. In the presence of
stochastic perturbations the final diversity is not a function of the initial diversity D(0). We
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Figure 3.2: Left: Phase diagram of the constructive dynamics obtained via solution of the update
equation. We see the creative phase transition in the D(0)-r+ plane. Parameters
where set to β → ∞, n+ = 2. Middle: Phase diagram of the destructive dynamics,
with n− = 2, β → ∞. The higher r−, the lower the final diversity. There is no de-
structive phase transition. Right: Phase diagram of the combination of constructive
and destructive dynamic. We introduce a parameter x here to interpolate between
both cases. We set β →∞, n± = 2. The rule densities are then changed as r+ = 3x
and r− = 1− x. We find a creative phase transition again.

employ a mean-field approach by assuming that the expectation value of a product equals the
product of expectation values, 〈g1(σ)g2(σ)〉 = 〈g1(σ)〉〈g2(σ)〉. The expectation value of the
constructive potential 〈V +

i 〉p(~σ(t)) of species i is

〈V +
i 〉p(~σ(t)) =

(
1− qi(t)

) ∑

j∈P(N )

α+
i,j

∏

j∈j

qj(t) , (3.14)

quantifying what could be produced given the actual configuration of the system4.
As mentioned above, µ plays the role of a threshold. For 0 < µ < 2 a species gets activated by

one constructive set, for 2 < µ < 4 at least two constructive sets are needed and etc. From now
on we fix the threshold µ = 1. The contribution to free energy is K+

i (t) = 1
2(∆σi(t))2. We can

estimate the expectation value 〈Ki(t)〉p(~σ(t)) by making use of the dynamical relation Eq.(3.13),
and get for the mean-field assumption

〈K+
i 〉p(~σ(t)) =

1
2




(
1− qi(t)

) ∑

j∈P(N )

α+
i,j

∏

j∈j

qj(t)




2

. (3.15)

Using this in Eq.(3.11) gives us the mean-field solution for arbitrary interaction topologies α+.
To compute it explicitly we assume random interaction topologies. The aim is to derive an
expression for ∂〈Bi〉

∂qi
in the limit t → ∞. Note that ∂〈Vi〉

∂qi
= −∑

j∈P(N ) α+
i,j

∏
j∈j qj . Due to the

randomness in α+ the same average ‘field’ is exerted on each species. With q ≡ 〈qi〉i we get
∂〈Vi〉
∂qi

= −r+qn+
. We apply the same reasoning to the distance-contribution 〈K+

i 〉p(σ(t)). By first
carrying out the derivation and then putting in the assumptions about α+, we get

∂〈Bi〉
∂qi

= −r+qn+ − (1− q)(r+qn+
)2 , (3.16)

and the self-consistent solution for the asymptotic abundance q,

q =
1
2

{
tanh

[
β

2

(
r+qn+

+ (1− q)(r+qn+
)2

)]
+ 1

}
, (3.17)

4Note that the structure of V +
i has a strong similarity to the potential of the paradigmatic Ising model. Our

model diverges in the following ways: (i) interactions are defined not between nodes but between constructive
sets and nodes and (ii) interactions are not symmetric, the action of j on i does not equal the action of i on j.
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Figure 3.3: Diversity as a function of inverse temperature β for various dynamical systems ob-
tained from a mean-field approach (lines) and Metropolis simulations (symbols). (a)
Constructive dynamics with r+ = 2. (b) Destructive dynamics with r− = 2. (c)
Combined dynamics with r+ = 3, r− = 1 and n− = 2.

from which the diversity follows as D(t →∞) = Nq. We compare predictions of Eq.(3.17) with
simulations results from a Metropolis algorithm. The later was implemented in the following
way: We constructed a random α+ and initialized the system with a random initial condition
~σ(0). After initialization the algorithm applies the following procedure to each species once
within one timestep (random sequential update):

• Pick a species i randomly.

• Calculate Bi = Ki + Vi, according to Eqs.(3.4) and (3.5) with σ′i(t) = σi(t).

• Calculate Bi = Ki + Vi with σ′i(t) = 1− σi(t).

• Calculate ∆B = Bi

(
σ′i(t) = 1− σi(t)

)
−Bi

(
σ′i(t) = σi(t)

)

• If ∆B < 0 set σi(t + 1) = 1− σi(t).

• If ∆B > 0 set σi(t + 1) = 1− σi(t) with probability e−β∆B.

We executed the algorithm for one realization of α+ for 103 timesteps and averaged over this
time-span after discarding transient behavior (typically about 50 iterations). We performed
simulations for system sizes of N = 102 − 104 without noticing size effects on the results.
However, the time-to-converge depends on N . We show the degree of agreement of simulations
and Eq.(3.17) in Fig.3.3(a).

3.5 Destructive dynamics

3.5.1 Destructive dynamical systems

Assume now that only destructive interactions take place, e.g. two chemicals catalyzing the
consumption of another chemical species, or biological species gaining (in symbiosis) an evo-
lutionary advantage over another species. Eq.(3.12) is now read as ‘from σj(t) = 1 follows
σi(t + 1) = 0’, see Fig.(3.1(b)). To formulate this as a dynamical system as in Eq.(3.3) set
fi(~σ(t)) → f−i (~σ(t)) = −∑

j α
−
i,jσj(t) to get

∆σi(t) = sgn


−σi(t)

∑

j∈P(N )

α−i,jσj(t)


 . (3.18)

We discuss the deterministic (T = 0) and stochastic (T > 0) scenario.
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3.5.2 Deterministic destructive diversity dynamics

In the deterministic case the asymptotic diversity D(t →∞) is a function of the initial diversity.
Let us discuss the case of a completely random destructive rule table α−. By denoting q(t) =
D(t)/N we can derive an update equation for q(t) following the same reasoning as in [50],

q(t + 1) = q(t)−∆−q(t) with ∆−q(t) = r−q(t)
(

qn−(t)− qn−(t− 1)
)

. In the limit of sparse rule

densities r− this leads to q(t →∞) = q(0)− n−r−qn−+1. In contrast to constructive dynamics,
destructive dynamics do not exhibit a phase transition. With more species being destroyed
the number of deactivated power nodes increases even faster, thus the process comes to a halt
without reaching a strongly unpopulated state, see Fig.(3.2).

Stochastic destructive diversity dynamics

For a stochastic variant of the destructive dynamical system of Eq.(3.18) we repeat the analysis
of the constructive case. We start with the corresponding destructive potential and distance
terms,

〈V −
i 〉p(~σ(t)) = qi(t)

∑

j∈P(N )

α−i,j
∏

j∈j

qj(t) ,

〈K−
i 〉p(~σ(t)) =

1
2


qi(t)

∑

j∈P(N )

α−i,j
∏

j∈j

qj(t)




2

. (3.19)

We proceed with the derivation of the destructive balance function Bi and get

∂〈Bi〉
∂qi

= r−qn− + q(r−qn−)2 , (3.20)

and the self-consistent solution for the asymptotic abundance q,

q =
1
2

{
tanh

[
−β

2

(
r−qn− + q(r−qn−)2

)]
+ 1

}
. (3.21)

We compare this prediction to results of a Metropolis simulation in Fig.3.3(b). As is seen in the
n− = 1 case, the deviation between Eq.(3.21) and simulations increases with β. For higher n−

and r− the same extent of deviation occurs for a higher value of β. The mean-field approximation
starts to significantly differ from simulations once entropic effects become negligible and the
system’s evolution approaches the deterministic scenario, that is e−β∆Bi . 1/N ∀i (on average
less than one random state flip per iteration). To approximate V −

i (t) = σi(t)
∑

j α
−
i,j

∏
j∈j σj(t)

at any time t we have to consider the species which have not been deactivated at t − 1 – the
system possesses memory. This is not captured in the mean-field approximation 〈V −

i 〉 = r−qn−

where we assume the populated species to be randomly distributed over N possible species at
each time t. In the destructive case the mean-field approach thus works best whenever the
random fluctuations are large enough to ‘smear out’ this memory effect, otherwise the system
is better approximated by the deterministic description.

3.6 Combined dynamics

3.6.1 Combined dynamical systems

We now study the interplay of both constructive and destructive dynamics [52, 57]; the situation
is sketched in Fig.(3.1(c)). Destructive interactions represent an implicit selection mechanism[57].
Each species may be targeted (influenced) by constructive and destructive interactions. Assume
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that each interaction has equal influence. If the constructive forces outweigh the destructive ones
the species prefers to be active and vice versa. For some systems other choices of weighting could
be more appropriate (e.g. assuming that one destructive interaction outweighs any number of
constructive ones – ‘it is easier to destroy than to build’). It is straight-forward to incorporate
alternative weighting schemes in the present framework.

To combine constructive and destructive interactions we add their indicator functions,

fi(~σ(t)) = f+
i (~σ(t)) + f−i (~σ(t)) =

∑

j

α+
i,jσj(t)−

∑

j

α−i,jσj(t) , (3.22)

and get for the dynamical equation

∆σi(t) = sgn
[(

1− σi(t)
)

R(fi(~σ(t)))− σi(t)R(−fi(~σ(t)))
]

. (3.23)

The purely destructive or constructive dynamical systems are recovered by setting α± = 0.

3.6.2 Deterministic combined diversity dynamics

To obtain an estimate for the asymptotic diversity, we make again use of an update equation
combining the finding for the constructive and destructive cases. If we denote ∆q+(t) ( ∆q−(t))
to be the average in-(de)crements in the constructive (destructive) scenario, we have to study
the update equation q(t+1) = q(t)+∆q+(t)−∆q−(t). This equation is solved making the same
ansatz as in [50], yielding q(t →∞) = q(0)− n−r−qn−+1 + n+r+(1− q)q.(n+), see Fig.(3.2).

3.6.3 Stochastic combined diversity dynamics

Let us calculate 〈Bi〉 for the stochastic scenario. The expectation value of the distance-contribution,
〈Ki〉p(~σ(t)), is more involved now. Constructive (destructive) dynamics take place under the
condition that fi(~σ(t)) ≥ 0(≤ 0). Start with an expression for the probability that fi(~σ(t)) is
positive (negative) semidefinite, p±. Consider random interaction topologies specified by r±, n±.
Define p(k, r+) as the probability that there are exactly k active constructive interactions, that
is p(k, r+) ≡ (

r+

k

)
qn+k(1 − qn+

)r+−k. Analogously, q(l, r−) is the probability that exactly l out
of r− destructive interactions are active. Then

p+ =
r+∑

k=1

p(k, r+)
min(k−1,r−)∑

l=0

q(l, r−) ,

p− =
r−∑

l=1

q(l, r−)
min(l−1,r+)∑

k=0

p(k, r+) . (3.24)

The average distance follows as

〈Ki〉p(σ) =
1
2

(
(1− qi)p+ + qip

−
)2

, (3.25)

and, abbreviating fi(~σ(t)) ≡ fi, the potential is

〈Vi〉p(σ) = |(1− qi) R(fi)− qiR(−fi)| . (3.26)

Taking the derivative with respect to qi the mean-field result is

∂〈Bi〉
∂qi

= −r+qn+
+ r−qn− − [

(1− q)p+ + qp−
]
(p+ − p−) , (3.27)
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Figure 3.4: We compare the distribution of systemic observables of evolutionary systems with
those of the combined stochastic model for two different parameter settings: Sim-
ulation 1 with β = 15, r± = 5, n± = 2 and Simulation 2 with β = 15, r+ = 8,
r− = 12, n± = 2. Each distribution has been normalized (sum over all data points
equals one). (a) The percent change of GDP of the UK since 1950 is compared to
the model. (b) The reaction rate distribution in the model and in the metabolic
network of E. coli is shown. (c) Species lifetime distributions as found in fossil data
are well reproduced with the model.

with the self-consistent solution for the asymptotic abundance q

q =
1
2

{
tanh

[
β

2

(
r+qn+ − r−qn− +

[
(1− q)p+ + qp−

]
(p+ − p−)

)]
+ 1

}
. (3.28)

Again we compare the MF prediction to results of a Metropolis simulation of the full model in
Fig.3.3(c).

3.7 Discussion on Empirical Relevance

3.7.1 Economical setting

We interpret the model in different evolutionary contexts and compare its behavior to measured
data. In an economic setting one can identify the number of active interactions as a measure
for the productive output of an economy – for example the GDP [57]. An interaction is defined
to be active iff σi(t) = σj(t) = α±i,j = 1. We show in Fig.3.4(a) a comparison between the actual
distribution of percent increments of the GDP of the UK and the number of active productions
from the combined stochastic model for two different parameter settings. In one setting β = 15,
r± = 5, n± = 2 is used, the other has a denser interaction topology, β = 15, r+ = 8, r− = 12,
n± = 2. Both model and real-world GDP timeseries produce fat-tailed distributions, with power
exponents in the range between -2 and -4. These features are also found in GDP timeseries of
other countries and for a wide range of model parameters, see e.g. [57].

3.7.2 Chemical setting

Another possible interpretation of the combined stochastic system is a chemical reaction network.
In this case chemical species j = {j1, j2, . . . } are producing or degrading chemical i. There are
N(r+ + r−) reactions. A reaction rate is defined as the frequency with which a certain reaction
is active and a reaction is active if α±i,j = 1, σi(t) = 1 and σj(t) = 1. This is compared to reaction
rates in the metabolic network of E. coli [59] in Fig.3.4(b). Distributions of reaction rates in
both cases, model and living organism, are fat-tailed. Least-squares fits to model power-laws
yield exponents in the range of −1 to −3, depending on parameters. This compares well to the
value of −1 found for E. coli.
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3.7.3 Biological evolution setting

Translated into a macro-ecological setting, one can compare the distribution of lifetimes of
species in the combined stochastic model (number of iterations a given species is unintermitted
abundant) with the distribution of species lifetimes in fossil data [60] in Fig.(3.4(c)). Again one
finds power-laws in the model with exponents between −2 and −4, which matches well with
the paleontologic data, which suggest slopes between −2 and −3. Note that there is a strong
dependence on the values used for the fit. We work with an intermediate choice in Fig.3.4(c).

3.8 Discussion

We propose a general framework to systematically study a large class of dynamical evolutionary
systems defined on an arbitrate large number of species. The trajectory of existence of each
species is governed by a function incorporating information of the surroundings – the existence of
other species. We show how to express the resulting system dynamics via a variational principle.
We discuss deterministic and stochastic variants. For the latter we derive a closed expression for
the asymptotic diversity of evolutionary systems within a mean-field approximation. We discuss
the quality of this approximation with respect to Metropolis simulations of the full model.
Although the model explicitly introduces strong correlations between species’ abundances the
mean-field approximation for asymptotic diversities match the simulation data surprisingly well.
The model can be seen as a generalization of several previous models, which are contained as
special cases. The deterministic constructive case is identical to the random catalytic networks
studied in [50]. In the model of Solé and Manrubia only linear interactions are allowed (i.e.
|j| = 1 in Eq.(3.12)) and new species are created not by endogenous recombinations as here,
but by an explicit mutation mechanism. As discussed in [57], fi(~σ(t)) in our model plays the
identical role as the randomly assigned fitness values in the Bak-Sneppen model [46]. To recover
the NK-model [45], associate each species here with a random bit-string and allow interactions
only between species who differ by single-point mutations.

We find that the model of constructive and destructive interactions reproduces stylized facts of
man-made (economies) and natural evolutionary systems (metabolic networks, macro-ecology)
across different orders of magnitude. We belief this adds empirical substance to our claim that
we have identified a crucial and ubiquitous building block of evolutionary systems with recom-
binatory, non-linear interactions within a simple binary framework. The model systematically
expands on the idea that the concept of fitness is an a posteriori concept. Fitness in the tradi-
tional sense can of course be reconstructed for every timestep in our model. It is nothing but
the co-evolving network of rates of the actually active (productive) processes at a given time,
see [57] for more details. It becomes clear that fitness can not be used as concept with much
predictive value, even if a ‘Darwinian Daemon’ knowing all mutual influences at a given time
would exist. The proposed model is ‘Darwinian Daemon’ free.

This work was supported in part by the Austrian Science Fund, FWF P19132.
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4 Schumpeterian economic dynamics as a
model of evolution

The essential point to grasp is that in dealing with capitalism
we are dealing with an evolutionary process.

Joseph A. Schumpeter, 1883 - 1950

We will now develop the abstract model of evolution proposed in the former chapter into a
minimum model for economic systems. Surprisingly, a qualitative description of this undertaking
goes back to the economist J.A. Schumpeter. We have now a formal machinery at hands to
understand his work quantitatively.

4.1 Introduction

The essence of the work of Joseph Schumpeter is to understand economic development and
growth as an evolutionary process, out of equilibrium, driven by the appearance and disappear-
ance of goods and services. Goods and services appear and disappear endogenously as a result
of technological progress and innovation, which is driven by market participants (firms and con-
sumers) maximizing their respective profit or utility functions. Trying to understand capitalist
economy without these concepts is “... like Hamlet without the Danish prince” [61] 1.

Schumpeterian growth is based on the endogenous introduction of new goods, products, pro-
cesses or services and is governed by the process of creative destruction [62, 61]. Creative de-
struction means that the appearance of a new good (through a successful innovation) can have
devastating effects on seemingly well established goods, eventually driving them out of business.
Examples include the collapse of horse carriage industry with the innovation of the combustion
engine, or the disappearance of Polaroid cameras with the invention of the digital camera. The
process of creative destruction is sometimes referred to as gales of destruction, pointing to the
fact that economic consequences of innovation can be severe and massive. Excluding innovations
leads to a stationary state which is described by Walrasian equilibrium [30]. Entrepreneurs, by
transforming ideas into innovations, disturb this equilibrium and cause economic development.
With this view Schumpeter aimed at a qualitative understanding of empirical economic facts
such as business cycles, or fluctuations [62].

Surprisingly, current main stream economics, general equilibrium theory in particular, sys-
tematically focuses on situations where none of the above elements are present. By excluding
evolutionary and dynamical aspects from economic models a mathematical treatment often be-
comes possible; this however comes at the price that many fundamental features of economics
will as a consequence not be understood, see e.g. [64]. Most complex systems, and many aspects
of economics in particular, can not be reduced to a few parameters - without throwing the prince
out of Hamlet. Schumpeter himself criticized e.g. J.M. Keynes for proposing abstract models

1From [61] chapter 8: “The essential point to grasp is that in dealing with capitalism we are dealing with an
evolutionary process [...] The fundamental impulse that sets and keeps the capitalist engine in motion comes
from the new consumer goods, the new methods of production, or transportation, the new forms of industrial
organization that capitalist enterprise creates [...] In the case of retail trade the competition that matters arises
not from additional shops of the same type, but from the department store, the chain store, the mail-order
house and the super market, which are bound to destroy those pyramids sooner or later. Now a theoretical
construction which neglects this essential element of the case neglects all that is most typically capitalist about
it; even if correct in logic as well as in fact, it is like Hamlet without the Danish prince.”
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Table 4.1: Moments of the percent-increment processes shown in Fig. 4.1 and model results for
two choices of the model parameter p.

mean variance skewness kurtosis
GDP 0.58 1.04 0.26 6.30
business failures 6.23 939.68 2.58 17.49
patents 5.17 305.12 1.58 9.13
model (p=0.01) 0.70 138.90 0.43 3.77
model (p=0.0001) 0.21 40.11 0.81 9.63

on the basis of insubstantial evidence and for freezing all but a few variables. Of the remaining
ones, one could then argue that one caused another in a simple fashion. For this the expression
Ricardian vice was coined [63], for an overview see [65]. A dangerous consequence of this vice is
that it suggests that valid policy conclusions could be derived. Note that what is today called
Schumpeterian growth theory originated in the 1990s [66, 67, 68, 69, 70]. It relates output to
labour, technology and population growth under various assumptions, and has little to do with
the evolutionary aspects of Schumpeterian economics. Our following proposal of a dynamical,
fully endogenous evolutionary model has nothing to do with these developments.

Schumpeter’s contributions on economic development are phrased in non - mathematical terms
– for a good reason: His ideas are non-equilibrium concepts based non-linear models of evolu-
tionary processes, which are hard to (to some extent maybe impossible) capture in mathematical
terms. Only in recent years there have been serious attempts to make evolution dynamics – in-
cluding their endogenous destructive elements (see e.g. [54]) – a predictive and falsifiable theory,
in the sense that quantitative models generate testable predictions on e.g. statistical features of
evolutionary time series, such as the species diversity, species lifetimes, genera per species, etc.
[45, 46, 43, 54, 71, 3, 52]. A large number of recent models are based on Kauffman networks,
see e.g. [53] and references therein. Statistical features, often characterized by power-laws in
corresponding distribution functions, can then be compared with e.g. fossil data. A particular
experimental feature of evolutionary timeseries is the occurrence of so-called punctuated equi-
libria, which imply that the diversity of species is relative robust over large timescales, and only
changes (often drastically) over very short timescales. This leads to non-Brownian processes
showing clustered volatility. For pioneering work on punctuated equilibria see [72].

These features are also present in economic timeseries related to Schumpeterian dynamics.
In Fig. 4.1 we show timeseries for GDP (as a proxy for economic productivity), the number
of firm failures (as an example of destructive dynamics) and the number of patents issued in
the US (for an estimate for the innovation potential). In all cases the percent increments of
the timeseries show three characteristics: they show phases of relatively little activity followed
by bursts of activity, they show clustered volatility, and they show non-Gaussian distributions,
whose moments are summarized in Table 4.1.

The bottleneck of a formal understanding of Schumpeterian processes is the current under-
standing of evolutionary dynamics. The reason why progress is limited in this direction lies in
the mathematical and conceptual difficulties in dealing with this type of dynamics. In particular
the facts that the system is an open system (hard to find a ’constant’ of motion, diversity, in-
teractions, new possibilities constantly change). That the system does not reach an interesting
or meaningful equilibrium is a direct consequence.

Some recent progress in a quantitative formulation of the dynamics of technological progress
was made in [55], where certain products (logical circuits) are produced at random. Each of
these products has a certain characteristic function (they compute something). According to
their function these products get selected through an exogenous selection mechanism. Even
though the model produces some realistic results in the spirit of Schumpeterian dynamics the

60



G
D

P

(a)

1960 1970 1980 1990 2000

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

1960 1970 1980 1990 2000
−4

−2

0

2

4

6
(b)

in
cr

ea
se

 o
f G

D
P

 [%
]

10
0

10
2

10
0

10
1

10
2

(c)

fr
eq

ue
nc

y

γ
GDP

 ≈ −2.8

bu
si

ne
ss

 fa
ilu

re
s

(d)

1880 1900 1920 1940 1960 1980
0

2

4

6

8

10
x 10

4

1880 1900 1920 1940 1960 1980
−100

−50

0

50

100

150

200

250
(e)

in
c.

 o
f b

us
in

es
s 

fa
ilu

re
s 

[%
]

10
0

10
2

10
0

10
1

10
2

(f)

fr
eq

ue
nc

y

γ
fail

 ≈ −1.8

year

pa
te

nt
s 

is
su

ed

(g)

1800 1850 1900 1950 2000
0

0.5

1

1.5

2
x 10

5

1800 1850 1900 1950 2000
−50

0

50

100

(h)

year

in
cr

ea
se

 o
f p

at
en

ts
 [%

]

10
0

10
2

10
0

10
1

10
2

10
3

(i)

absolute change [%]

fr
eq

ue
nc

y

γ
pat

 ≈ −2.3

Figure 4.1: (a) GDP of the UK starting 1950 [73]. (b) Percent increase of GDP from (a). (c)
Histogram for (b); a least squares fit to a power-law yields a slope of ≈ −2.8. (d)-(f)
Number of business failures in the conterminous United States from 1870 onward,
data from [31]. (e) Annual change in percent for (d), (f) histogram for (d); power-law
exponent ≈ −1.8. (g) Total number of patents issued on inventions in the United
States from 1790 to 2007, data from [31]. (h) Annual increase of patents in percent,
starting 1800. (i) Histogram of absolute values of (h); power-law exponent ≈ −2.3.
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necessity of exogenous utility or fitness functions for the selection process is unsatisfactory.
By trying to get rid of such endogenous elements in describing evolutionary dynamics some
purely endogenous models for creative and destructive processes have been proposed [50, 56].
These however miss a satisfactory combination of productive and destructive elements, which is
attempted here.

In this paper we present a simple toy model that tries to capture the essence of Schumpeterian
dynamics. It is (in principle) an open model, that endogenously produces new goods and services.
These new elements in the system then ‘interact’ with each other (and with old existing goods)
in the sense that these interactions can serve to aid the production of yet new goods and services.
Which good can produce an other one is predetermined in an infinite hypothetical production
table , which captures all possible (thinkable) combinations of goods that lead to the production
of novel ones. Also the opposite is true, a good that gets produced can have an adverse effect on
an existing good. Which good – given it gets produced – drives out which other good, is given
by a predetermined destruction table.

This model builds on previous work developed in a biological context [52]. The aim of the
present model is to provide a tool that allows to understand Schumpeterian dynamics, including
its gales of destruction within a minimum framework. The model is able to provide an open,
non-equilibrium concept and explains important dynamical facts of Schumpeterian dynamics.
These include phases of boosts in economic development (measured in the diversity of available
goods), phases of crashes, and phases of relative stability followed by turbulent restructuring of
the entire economic ’world’. It is possible to interpret the successions of characteristic phases
of construction, destruction and relative stability as ’business cycles’. We observe clustered
volatility and power-laws in our model data. Within this model we are able to understand
various phases of Schumpeterian dynamics as topological (emergent) properties of the dynamical
production networks. Parts of the model are exactly solvable, for the full model however, we
have to rely on a simple agent based computational realization.

4.2 Model

Schumpeterian economics is driven by the actions of ‘entrepreneurs’ who realize business ideas.
The result of these actions are new goods and services which enter the economic scene – the
market. Usually new goods and services are (re)combinations or substitutions of existing things.
The Ipod is a combination of some electrical parts, Wikipedia is a combination of the internet
and the concept of an encyclopedia. New goods and services can ‘act on the world’ in three
ways: They can be used to produce other new things (as e.g. modular components), they can
have a negative effect on existing things by suppressing their production or driving them out of
the market (destruction), or they have no effect at all.

4.2.1 Goods

In our simple model all thinkable goods and services are components in a time-dependent N -
dimensional vector ~σ(t). N can be very large, even infinite. For simplicity the components of
this vector are binary. σi(t) = 1 means that good i is present (it exists) at time t, σk(t) = 0,
means service k does not exist at t, either because it is not invented yet, or it got eliminated from
the market. (In a more general continuous setting, the state vector 0 < σi(t) < 1, could be the
relative abundance of good i w.r.t. to the abundances of the other goods). New products come
into being through combination of already existing products. An innovation – the production
of a new good i – can only happen if all necessary components (e.g. parts) are simultaneously
available (exist). If a combination of goods j and k is a method to produce i, both j and k must
be available in the system. Technically σ(t) can be seen as the availability status, if σi(t) = (0)1
product i is (not) accessible for production of future new goods, nor for the destruction of
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Figure 4.2: (a) Illustration of a production process. Products i and j reside in a productive set.
There exists a production rule α+

ijk = 1. Thus product k becomes produced. This
active production is depicted as a full square and indexed by i. (b) The same as
(a) for a destruction process. Products i′ and j′ substitute k′ via the destruction
rule α−i′j′k′ = 1. (c) Examples of non-active productions (6 possible). Non-active
productions are symbolized as open squares. (d) Definition of a link in the active
production network: if a good produced by a production i is part of the productive
set of an other active production j, production j gets a directed link from production
i.

existing ones. The product diversity of the market is defined as D(t) = 1
N

∑N
i=1 σi(t).

4.2.2 Entrepreneurs/Production

Whether a product k can be produced from components i and j is encoded in a production table,
α+

ijk. If it is possible to produce good k from i and j (i.e. α+
ijk > 0), this is called a production.

An entry in the production table is in principle a real number which quantifies the rate at which
a good is produced. Here for simplicity an entry in α+

ijk is assumed to be binary, 0 or 1. If goods
i and j can produce k, α+

ijk = 1, goods i and j are called the productive set of k. If there is no
production method associated with this combination, α+

ijk = 0. The production process is then
given by

σk(t + 1) = α+
ijkσi(t)σj(t) , (4.1)

regardless whether σk(t) = 0 or 1. If a production is actually producing k, (i.e. σi(t) = σj(t) =
σk(t) = α+

ijk = 1), we call it an active production, see Fig. 4.2 (a).
The role of the entrepreneur is to discover that k can get produced as a combination of i and

j, i.e. to discover and activate the production. In general, a particular good can be produced
through more than one production method. In our (binary) notation the number of ways to
produce good k is Nprod

k (t) =
∑

ij α+
ijkσi(t)σj(t).

4.2.3 Competition/Destruction

If a new product can get produced and serves a purpose (or a need) which hitherto has been
provided by another product, the new and the old products are now in competition. The good
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that can be produced in a cheaper way or that is more robust etc., will sooner or later drive
the other one from the market. This mechanism we incorporate in the model by allowing that
a combination of two existing goods can lead to a destructive influence on another product.
The combination of goods i′ and j′ produces a good l which then drives product k′ out of the
market. To keep it simple we say: the combination of i′ and j′ has a destructive influence on k′.
We capture all possible destructive combinations in a destruction rule table α−i′j′k′ , see Fig. 4.2
(b). If α−i′j′k′ = 1, products i′ and j′ substitute product k′. We call {i′, j′} the destructive set
for k′. Note that in this way we don’t have to explicitly produce the competing good l. In the
absence of a destruction process, α−i′j′k′ = 0. As before an active destruction is only happening
if σi′(t) = σj′(t) = σk′(t) = α−i′j′k′ = 1. The elementary dynamical update for a destructive
process reads (for a good which is present at time t, i.e. σk(t) = 1),

σk(t + 1) = 1− α−ijkσi(t)σj(t) (4.2)

In general , at any given time, a good k can be driven out of the market by more than one
substitute – in our notation – by Ndestr

k (t) =
∑

ij α−ijkσi(t)σj(t) destructive pairs.
Imagine the N goods as circles assembled on a plane, see Fig. 4.3 (a). If they exist they are

plotted as full blue circles, if they are not produced, they are white open circles. All existing
goods have at least one productive set (pair of 2 existing (blue) circles); at time t there exist
Nprod

i (t) such sets. Many circles will in the same way assemble to form destructive sets, the exact
number for node i being Ndestr

i (t). Now draw a circle around each productive and destructive set
and connect each set with the good it is producing/destroying. The graph which is produced this
way, Fig 4.3 (a) is the economic web [29] of products. In this web in general every good will be
connected to several productive/destructive sets. To specify a dynamics we decide that if there
exist more production processes associated with a particular good than there exist destructive
processes associated with it, the good will be produced. If there are more destructive than
productive sets associated with a good, it will not be produced, or it will get destroyed if it
exists. If the number of productive and destructive sets for a good i are the same, the state of
i will not be changed, i.e. σi(t + 1) = σi(t). More quantitatively this reads

Nprod
i (t) > Ndestr

i (t) → σi(t + 1) = 1

Nprod
i (t) < Ndestr

i (t) → σi(t + 1) = 0

Nprod
i (t) = Ndestr

i (t) → σi(t + 1) = σi(t). (4.3)

Note that a production or destruction is only active if both goods in its production / destruction
set are currently available. Thus changes in the status of a product possibly induce changes in
the status of active production / destruction network.

4.2.4 The active production network

It is essential to distinguish the production rules encoded in the tensors α± and the active
production networks A(t). α± is a collection of static rules of all potential ways to produce all
thinkable goods. These rules exist regardless if goods exist or not. The production network
A(t) captures the set of actual active productions taking place at a given time t. It maps the
state of the economy ~σ(t) (existing goods and services) with its rules α+ onto the set of active
productions. It can be derived in the following way. A production is defined as a pair (i, j) which
produce a good k, and is nothing but a non-zero entry in α+. There are Nr+ productions in
the economy, where r+ is the (average) number of productions per good. Non-existing goods
are open circles, the symbol used for a production is a square. A production is called an active
production if the production set and the produced node all exist (σi(t) = σj(t) = σk(t) = 1).
An active production is shown in Fig. 4.2 (a) symbolized as a filled square. In (c) we show
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Figure 4.3: Comparison between static production rules α+ (a) and active production networks
A(t) (c). Production rules are all possible combinations to produce all thinkable
goods in an economy. They correspond to all non - zero entries in α±. In (b)
the actual state of the system ~σ(t) (which goods exist) is superimposed on α±.
Representing (b) not in terms of goods but in terms of productions we arrive at the
active production network (c), using the definition for links in Fig. 4.2 (d).

some examples of non-active productions (open square). We label active productions by bold-
face indices, i ∈ {1, . . . Nr+}. These constitute the nodes of the active production network.
A directed link from active production node i to node j is defined if the node produced by
production i is in the productive set of production j, see 4.2 (d). It is then denoted as Aij = 1.
This definition is illustrated in Fig. 4.2 (c). As an example of how to construct the active
production network A(t) from ~σ(t) and α+, see Fig. 4.3. In Fig. 4.3 (a) we show a section of the
static α+, in (b) we superimpose the knowledge of which of these nodes actually exist at time t.
In (c) all productions are shown as squares (active ones full, non-active ones empty). The links
between the active productions constitute the active production network. In this way we map
the production rule tensor α+ onto a production (adjacency) matrix A(t). It is defined on the
space of all productions and links two nodes if one node is the product of an active production
currently fed by another node. The active destruction network is obtained in the same way.

After having constructed the active production network, we then remove all unconnected
nodes. To detect dominant links in this network, we introduce the following threshold: we remove
all links from the active production network which exist less than a prespecified percentage of
times h within a moving time-window of length T . So if h = 95 and T = 100, the network at
time t, A(t), only contains links which have existed more than 95 times within the timewindow
[t− T, t].

4.2.5 Spontaneous ideas and disasters

From time to time spontaneous ideas or inventions take place, without the need of the produc-
tion network. Also from time to time goods disappear from the economy, say through some
exogenous events. To model these we introduce a probability p with which a given existing good
is spontaneously annihilated, or a non-existing good gets spontaneously invented. This is the
only stochastic component of the model (besides the update sequence) and has an important
effect as a driving force.

Clearly, we can relate the spontaneous innovation probability p to the temperature T of the
system. More concrete, the stochastic driving with nonzero temperature is equivalent to the
bounded rationality scenario we will discuss shortly.
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Table 4.2: Summary of model parameters.
Variable
σi(t) state of good i. exists / does not exist dynamic
D(t) diversity at time t dynamic
A(t) active production network dynamic

Parameter
α± productive/destructive interaction topology fixed
r± rule densities fixed
p spontaneous-innovation parameter fixed

4.2.6 A Schumpeterian algorithm

Consider you are at timestep t, the update to t + 1 happens in the following three steps:

• pick a good i at random (random sequential update)

• sum all productive and destructive influences on i, i.e. compute ∆±
i (t) ≡ ∑N

j,k=1 (α+
ijk−

α−ijk) σj(t)σk(t). If ∆±
i (t) > (<)0 set σi(t + 1) = 1(0). For ∆±

i (t) = 0 do not change,
σi(t + 1) = σi(t)

• with probability p switch the state of σi(t+1), i.e. if σi(t+1) = 1(0) set it to σi(t+1) = 0(1)

• continue until all goods have been updated once, then go to next timestep

As initial conditions (t = 0) we chose a fraction of randomly chosen initial goods, typically we
set D(0) ∼ 0.05− 0.2.

In principle it is possible to empirically assess production or destruction networks in the real
economy, however in practice this is unrealistic and would involve tremendous efforts. For a
systemic understanding of Schumpeterian dynamics a detailed knowledge of these networks is
maybe not necessary, and a number of statistical descriptions of these networks would suffice.
The simplest implementation of a production/destruction network is to use random networks,
i.e. to model α± as a random tensors. These tensors can then be described by a single number r+

and r− which are the constructive/destructive rule densities. With other words the probability
that any given entry in α+ equals 1 is P (α+

ijk = 1) = r+
(
N
2

)−1
, or each product has on average r±

incoming productive/destructive links from productive/destructive sets. Further, which goods
form which productive sets is also randomly assigned, i.e. the probability that a given product
belongs to a given productive/destructive set is 2r±/N (for r± ¿ N).

Certainly real production networks carry structure and logic; the assumption that production
networks are unstructured is unrealistic to some degree. For this reason we will look at scale-
free versions of production/destruction topologies. Finally, note that α± is fixed throughout the
simulation.

4.3 Results

Implementing the system in a computer model we get a model dynamics as seen in Fig. 4.4,
where we show the individual trajectories of 100 nodes. Time progresses from left to right. Each
column shows the state of each of the goods i = 1, . . . , N at any given time. If good i exists
at t, σi(t) = 1 is represented as a white cell, a black cell at position (i, t) indicates σi(t) = 0.
It is immediately visible that there exist two distinct modes in the system’s dynamics, a quasi
stationary phase, where the set of existing products does practically not change over time, and a
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Figure 4.4: Individual trajectories of all goods for the parameter settings r+ = 10, r− = 15,
p = 2 · 10−4, N = 102 and an initial diversity of 20 randomly chosen goods.

phase of massive restructuring. To extract the timeseries of diversity D(t) we sum the number of
all white cells within one column at time t and divide by N which is shown in Fig 4.5 (a). Again
it is seen that the plateaus of constant product diversity (punctuated equilibria) are separated
by restructuring periods, characterized by large fluctuations of the products that exist. Note
that quasi stationary plateaus differ in value. Depending on parameter settings, stationary
diversity levels may differ by up to 50%. These fluctuations are by no means Gaussian, as
can be inferred from Fig. 4.5 (b), where the histogram of the percent-changes in the diversity
timeseries, Rt = (D(t) −D(t − 1))/D(t − 1), is shown. The skew in the distribution is absent
when looking at the increment distribution of D(t). For this parameter setting the dynamics of
the system does not reach a static or frozen state, stationary phases and chaotic ones continue
to follow each other. We have checked this up to 106 simulation timesteps.

For the number of active productions (a proxy for our model ‘GDP’) and destructions (model
‘business failures’) at every timestep we fitted the corresponding (percent increment) histograms
to power-laws (not shown). The exponents are ≈ −2.6 for the productions and ≈ −2.8 for
the destructions, respectively. While the exponent for productions coincides well with the one
estimated from the GDP (Fig. 4.1 (c)), the destructive one is larger than for the business
failures, Fig. 4.1 (f).

However, the dynamics changes with altering the ‘innovative’ rate p, see Fig. 4.6. In the
situation where there is a rate of p = 0.01, (a)-(b), i.e. in a system of N = 100 there is about
one spontaneous innovation or destruction per timestep, we observe extended restructuring
processes, almost never leading to plateaus. For p = 10−4 (one innovation/destruction every
100 timesteps) the situation is as described above, (c)-(d). When p gets too small (p ¿ N−1)
the system is eventually not driven from a stationary state and freezes (e)-(f). In the next
section we will discuss alternatives to the driving process, where innovation rates p get replaced
by product lifetimes or alternative competition models. These alternatives also drive the system
dynamically away from frozen states.

We have studied under which topological circumstances the generic dynamics is maintained
for p in the range of [103− 105]. If there are too many destructive influences w.r.t. constructive
ones (r+ ¿ r−) the system will evolve toward a state of low diversity in which innovations are
mostly suppressed. If there are much more constructive than destructive interactions (r− ¿ r+),
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Figure 4.5: (a) Diversity D(t) from the simulation in the previous figure which shows a punc-
tuated pattern. The system jumps between phases of relatively few changes – the
plateaus – and chaotic restructuring phases. The length of the chaotic phases is dis-
tributed as a power law which is identical with the fluctuation lifetime distributions
shown in Fig. 4.9. (b) Histogram over the percent-increments of diversity. The line
is a Gaussian distribution with the same mean and variance.
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Figure 4.6: Timeseries of goods and system diversity as in the previous figures for various values
of p. For high innovation rates the system never settles into plateaus, p = 0.01
(a)-(b), for intermediate levels p = 10−4 plateaus form (c)-(d), and for low levels
p = 10−6 the system freezes, (e)-(f).

i.e. little competition, the system is expected to saturate in a highly diverse state. In between
these two extremal cases we find sustained dynamics as described above. This regime is indeed
very broad, and does not need a finetuning of r+ and r−.
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Figure 4.7: Difference between active production and destruction influences per node
〈∆±

i 〉σi(t)=1, averaged over all active nodes for the same run displayed in Fig. 4.5.

Let us finally give an intuitive explanation of what drives the dynamics of the system. The
dynamics can be interpreted as if products tend to populate locations in product-space which
are locally characterized by high densities of productive rules and low densities of destructive
influences. If the system remains in such a basin of attraction this results in diversity plateaus.
Small perturbations can force the activated population of goods out of these basins. Products
undergo a restructuring phase until an other basin of attraction is found. To quantify this Fig.
4.7 shows 〈∆±

i 〉σi(t)=1, averaged over all active nodes, for the simulation with time series shown
in Fig. 4.5). This quantity indicates the surplus of production over destruction rules. Stable
phases in diversity (plateaus in diversity in Fig. 4.5) are always associated with higher values
of 〈∆±

i 〉σi(t)=1 than in the restructuring (chaotic) phases. Typical values in the stable phases lie
between one and two, meaning that the average node can lose one productive pair and still be
sustained. In the chaotic phases 〈∆±

i 〉σi(t)=1 tends toward zero. Note here that once a node is
deactivated it is not considered in the average anymore. This is the reason why 〈∆±

i 〉σi(t)=1 ≥ 0.

4.4 Results on model variants

4.4.1 More realistic competition

We studied the influence of hierarchical suppression as a more realistic mechanism of compe-
tition. We start again with productive rules which are distributed randomly as above. Then
for each node, we identified its productive set. If for example sets i, j,k all produce node l
we randomly assign a hierarchy on these sets, say j → i → k, meaning j dominates i, and i
dominates k. This domination could mean for example j produces l cheaper than i, and k is the
most expensive way to assemble l. The intuition behind this approach is that if a more efficient
way to produce node l is available, as here for example the production i for good l is cheaper
than production k, and i will supersede the old one (k) and thus suppress its productive set. If
we find an even better rule e.g. j, this again suppresses the less efficient productions i and k.

Technically, say the nonzero entries in α+ producing l are α+
i,l = α+

j,l = α+
k,l = 1. We then

impose the domination network for product l in the following way: Suppose i = {i1, i2} and
k = {k1, k2} then we encode the hierarchical suppression in α− by setting α−i,k1

= α−i,k2
= 1 and

α−j,k1
= α−j,k2

= α−j,i1 = α−j,i2 = 1. We repeat this step for each node l ∈ {1, . . . , N}. Except for
this alternative construction of α− the model stays completely the same as before. In Fig. 4.8
we show the dynamical features of this model variant. Note that the slope in the production
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Figure 4.8: Trajectories (a), number of total active productions at time t (b), and (c) histogram
of percent increments of (b), for the more realistic competition process described in
4.4.1. Parameters r+ = 2.5, r− = 2 and p = 10−3.

increments is somewhat steeper than for the original model.

4.4.2 Topology of production and destruction networks

Results are surprisingly robust with respect to changes in production/destruction topology α±.
We have studied the dynamics on a scale-free production/destruction networks. In particular
we investigated three possibilities to introduce power-law degree distributions: (i) the number
of productive/destructive sets per node (‘in-degree’) follows a power-law, (ii) the number occur-
rences of a given node in productive/destructive sets follows a power-law (‘out-degree’) or (iii)
both in-degree’ and ‘out-degree’ are distributed in a scale-free manner.

For all choices the dynamical pattern of stochastic transitions between static and chaotic
phases is retained. The presence of hubs somewhat stabilizes the system, i.e. generally with
increasing exponent in the topological power-laws, lifetimes of plateaus increase.

Note, that the size of the productive/destructive sets is not limited to two. Exactly the
same qualitative dynamical features of the system are recovered for any values of produc-
tive/destructive set sizes, n±, as long as n+ > 1. For n± = 1 the dynamics becomes linear
and the system does not behave critical any more. In the same manner, the number of produced
goods per productive set need not be restricted to one. One can think of one set produc-
ing/destroying more than one good. We have studies variations in set sizes of this kind and
found no changes in the qualitative dynamical behavior.

4.4.3 Asymmetry in production and destruction

For some circumstances it might be a realistic assumption that destructive influences have a
larger impact than productive ones, i.e. that it is easier to destroy something than to ‘create’
something. A simple way to study this is to enforce to set ∆±

i (t) to a negative value, as soon
as there is at least one active destructive interaction pointing to good i, e.g. Ndestr

i (t) > 0 →
∆±

i (t) = −1. Note that this is similar to changing a majority rule to an unanimity rule [74].
The dynamical patterns we observe are robust concerning this variant. The same applies if we
choose an ‘intermediate’ model variant where we introduce a threshold m > 0, below which
∆±

i (t) is set to be negative, i.e. if ∆±
i (t) < m → ∆±

i (t + 1) = −1.

4.4.4 Modular structure of production/destruction networks

It may be reasonable to impose a modular structure on the production/destruction topology.
We constructed modules with different and random topologies which differ from each other by
different values of r±. Several modules (up to ten) of different densities r± were then linked by
a few connecting links. By increasing the density of these connections between the modules, the
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Figure 4.9: Cluster size distribution (a) and fluctuation lifetime distribution (b) of a system of
size N = 1000 for different densities r+ and r−. The slopes for power-law fits for
r+ = r− = 4 are k1 = −2.3 for the sizes, and k1 = −2.6 for fluctuation durations,
while for r+ = 10 and r− = 6, we get k2 = −1.8 for sizes, and k2 = −2.5 for durations.
Given that these parameter settings correspond to highly different scenarios, the
similarity of power exponents indicates some degree of robustness.

system gradually undergoes a transition from a regime where each module behaves independently
to a regime where the entire system’s behavior becomes dominated by the most densely connected
modules.

4.4.5 Finite lifetime of goods and services

It might be reasonable to consider that goods do not exist infinitely long, even in the case where
no destructive set points at it. One might want to introduce a decay rate of goods, i.e. a good i
decays with probability λ. For this model variant we find the same qualitative results as reported
below. This decay rate can serve as a stochastic driving force, keeping the system from a frozen
state. This means that even for p = 0, for finite λ the system does not freeze.

4.4.6 Bounded rationality

If a product can get produced it does not mean that it actually will get produced. To incorporate
this possibility we say that if a good can get produced, it will actually get produced with a
probability q. This means that that if a good should be produced or destroyed according to Eq.
(4.3), this happens only with probability q. With probability 1− q the opposite happens, i.e. if
something should get produced – it will not, if something should be destroyed – it will continue
to exist. This probability can either be seen as a spontaneous idea of an entrepreneur or as a
lack of rationality. This variant is formally almost exactly the same as driving the system with
the innovation parameter p; the scenarios only differ if the sign of ∆±(t) changes exactly when
the p or q event happens, which is rare.

We recover the exact model of the former chapter if we replace q by the ’Boltzmann factor’
e−β∆B.

4.4.7 Variations in the update

The qualitative behavior of the model does not change if we employ a parallel update or a
sequential update in a deterministic order. The only impact of these changes is that the system
needs longer to find frozen states in parallel updating.
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4.5 Understanding Schumpeterian dynamics

The high level of generality of the presented model of Schumpeterian dynamics allows several
ways of understanding. We discuss two ways. First we show a correspondence to self-organized
critical (SOC) sandpile models. Second, we understand Schumpeterian dynamics on the basis
of the eigenvalues of the active production network.

4.5.1 Schumpeterian dynamics is a SOC sandpile

Schumpeterian dynamics in our implementation can be seen as a self-organized critical system.
To see the direct similarities to a sandpile model [58] we proceed in the following way: set
p = 0 and wait until the system reached a frozen state, which we define as one or less changes
in ~σ occurring over five iterations 2. We then flip one randomly chosen component σi. This
perturbation may or may not trigger successive updates. In Fig. 4.9 (a) the cluster size (total
number of goods that get updated as a consequence of this perturbation) distribution is shown
. The observed power-laws reflect typical features of self-organized criticality: one spontaneous
(irrational) event may trigger an avalanche of restructuring in the economy; the power-laws
demonstrate that large events of macroscopic size are by no means rare events, but rather the
rule than the exception. We show the distribution of ‘fluctuation-lifetimes’ in Fig. 4.9 (b), i.e.
the number of iterations which the system needs to arrive at a frozen state. The distribution of
‘lifetimes’ also follows a power-law, which confirms the existence of self-organized criticality in
our model in the sense of [58].

4.5.2 Eigenvalues, keystone productions

To understand Schumpeterian dynamics it seems natural to study the topology of the active
production network. In particular the question arises of how topology is related to the outcome
of the dynamical system. The simplest quantitative measure related to dynamics on networks
is to compute the maximum real eigenvalue of the active production network A(t). In Fig. 4.10
(a) we show a plot of the diversity vs. the maximum real eigenvalue of the adjacency associated
to the active production adjacency network. The latter have been constructed as described in
Section 4.2.4, however without using the filtering, i.e. h = 1 and T = 1. There is a correlation
of about ρ ∼ 0.85 the slope is ∼ 16.

In Figs. 4.10 (b) and (c) we demonstrate that the dependence of the maximum eigenvalue is
rather independent of the choice h and T , and thus justifies the approach, whenever h and T
remain in reasonable limits. For the chaotic phases the maximal eigenvalue is mostly zero which
indicates an directed acyclic graph. When a maximal eigenvalue of one is found this indicates
one or more simple cycles [72]. On the plateaus we typically find values larger than one which is a
sign of a larger number of interconnected cycles in A. In this sense the plateaus are characterized
by a long-lasting high level of ’cooperation’, whereas in the chaotic phase cooperation between
cyclically driven production paths is absent. This is the topological manifestation of collective
organization which the model produces.

The situation here is similar to what was found in a model of biological evolution by Jain
and Krishna [44]. Unlike the dynamics of the active production/destruction network A, in their
model, Jain and Krishna update their interaction matrix through a selection mechanism. They

2More precisely, we count the number of changes of states between two consecutive time steps, i.e. the quantity
∆σ(t) =

∑
i |σi(t + 1) − σi(t)|. If ∆σ(t) is not higher than one, within five iterations, i.e. ∆σ(t′) ≤ 1 ∀

t′ ∈ {t, t + 1, . . . , t + 5}, we call the state of the system quasi stationary. Now if the system is in such a state
and gets perturbed, our definition ensures that we still remain in the same stationary state if this perturbation
dies out within five iterations. On the other hand, if the perturbation triggers a cascade and spreads over the
system, there will soon be more than one update between two iteration and the system escapes the stationary
state.
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Figure 4.10: (a) At each time step we construct the active production network A(t) for the run of
Fig. 4.5, with h = 1 and T = 1. Its maximal eigenvalue is plotted vs. the system’s
diversity at that time t. Every point represents one timepoint. (b)-(c) Comparison
of the maximum EV when computed with filtering, using T = 20, h = 0.95 (b) and
T = 50, h = 0.8 (c) for the same run shown in Fig. 4.5.

were among the first 3 to relate the topology of the dynamical interaction matrix to the diversity
of the system. In particular they could show that the highly populated phases in the system is
always associated with autocatalytic cycles and keystone species, i.e. species building up these
cycles. Drastic increase in diversity is associated to the spontaneous formation of such cycles,
the decline of species diversity is triggered by breaking a cycle. Even though we do not have any
explicit selection mechanism in the model the relation between topological structure of A and and
the state of the dynamical system is the same as in [44]. To explicitly show the relation between
eigenvalues, cycles and product diversity we show the trajectory of the maximum eigenvalue of
A together with snapshots of active production networks along the trajectory in Fig. 4.11.

4.6 Discussion

We try to capture the essence of Schumpeterian economic dynamics in a simple dynamical
model, where goods and services co-evolve with their ‘activated’ production networks. New
goods and services are endogenously produced through re-combinations of existing goods. New
goods entering the market may compete against already existing goods and as a result of this
competition mechanism existing goods may be driven out from the market - often causing
cascades of secondary defects (Schumpeterian gales of destruction).

The model leads to a generic dynamics characterized by phases of relative economic stability
followed by phases of massive restructuring of markets – which can be interpreted as Schum-
peterian business ‘cycles’. Cascades of construction and destruction produce typical power-law
distributions, both in cascade size and in times of restructuring periods. The associated power
exponents are rather robust under the chosen parameters governing the density of produc-
tive/destructive rules. The model can be fully understood as a self-organized critical system.

Alternatively the diversity dynamics generated by the model can be understood along the
same lines as the evolution model of Jain and Krishna [44]. As in [44] we are able to relate
the diversity of the system to topological properties of the active production network. The
maximum real eigenvalue of the active production networks correlates strongly with diversity.
Further we were able to identify ‘keystone’ productions, which – when removed – dramatically
reduce the maximum eigenvalue. To a certain extend it is also possible to relate the model to
the Bak-Sneppen model [46], in the sense that the local quantity ∆±

i can be thought of playing
the role of the random fitness in the Bak-Sneppen model.

Model timeseries of product diversity and productivity reproduce several stylized facts of

3In [72] this has been already anticipated before.
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economic timeseries on long timescales such as GDP or business failures, including non-Gaussian
fat tailed distributions, volatility clustering etc. We have studied a series of more realistic model
variants. Remarkably, the majority of the statistical results holds qualitatively also for these
variants, and a certain degree of universality of the model is indicated. So far we have not
analyzed universality issues in much detail.
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5 Pruning the Tree of Life – Biological
Evolution

As buds give rise by growth to fresh buds, and these,
if vigorous, branch out and overtop on all sides many a feebler branch,

so by generation I believe it has been with the great Tree of Life,
which fills with its dead and broken branches the crust of the earth,

and covers the surface with its ever-branching and beautiful ramifications.
Charles Darwin, 1809 - 1882

We will adopt the general framework of this thesis to incorporate a model of biological evolu-
tion. To this end we explicitly split the interaction topology into (linear) mutations and (non-
linear) recombinatory interactions. Furthermore we will incorporate the destructive interactions
by a more feasible, less random principle.

5.1 Introduction

Quantitative interest in evolutionary models originates from the fact that fossil data from dif-
ferent sources [75, 60] shows power law behaviour with typical exponents for three observables:
(i) the distribution of sizes of extinction events, (ii) the lifetime of species and (iii) the number
of species per genus, see e.g. [54] for an overview.

One of the first quantitative models of evolution was the NK model proposed by Kauffman
[48], where species evolve and compete on a rugged fitness landscape. A species’ fitness and
therefore lifetime is given by its genome and the randomly associated fitnesses to the respective
genes. In a similar vein Bak and Sneppen [46] refined Kauffman’s ideas to a model exhibiting self-
organized criticality. Here it is assumed that the fitness landscape possesses valleys and peaks
and over time a species will mutate ”across” a fitness barrier to an adjacent peak. In contrast
to these models, where there is no explicit species-species interaction, Solé and Manrubia [43]
constructed a model focusing on interspecies dependencies. They incorporate a connection
matrix containing the mutual support between two species. If this support drops below a
critical value the species will not be able to maintain its existence anymore, it will go extinct.
In contrast to the NK and Bak-Sneppen model which are per se critical, the Solé-Manrubia
model’s criticality is parameter dependent. For a review see again [54].

Recently a more general and abstract framework to treat systems subject to evolution was
developed out of the notion of catalytic sets on networks [50]. We will use this approach to
model species proliferation in the evolutionary system. As the main novelty of the present work
we study the feasibility of k-core percolation [76] as a selection mechanism. k-core percolation
is a systematic, iterative procedure where a node in a network is removed from a network if it
sustains less than a fixed number of k links to other nodes. We show that evolutionary systems
which grow according to a catalytic set dynamics combined with a k-core selection mechanism,
reproduce power law behaviour as observed in fossil data

For the three observables: size of extinction events, lifetime and number of species per genus.
The model explicitly describes the origination of species and their interactions, the fitness land-
scape is co-evolving with the topology specified by these interactions.
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Figure 5.1: At time t (left panel) node i is chosen to mutate. It has one incoming link from
j and two outgoing links. At time t + 1 (right panel) node k came into existence
through the mutation of i under the supportive influence of j. Here m = 1, i.e. k
copies all outgoing links from i.

5.2 The Model

In the following species are represented as nodes in a network. We introduce two types of links
between these nodes, the first type keeping the ancestral relations, the other type describing the
interactions between species. These links are recorded in two separate adjacency matrices, as
described below.

5.2.1 Growth

The system is initiated with a small number N0 of species. These are assumed to be constantly
present i.e. they are not subject to the selection mechanism. New species (nodes) are introduced
as mutations of already existing ones. They will prove viable only if they receive some ’support’
from other species. At each time step a species may be subject to a mutation which leads to a
new node. The mutation is favored/suppressed through the influence of other already existing
species. We identify the probability for the occurrence of a viable mutation with the effective
growth rate λ of the system. In the absence of any selection mechanisms or extinctions the
system diversity grows according to N (t) = N0eλt. To take into account ancestral relationships
we introduce the ancestral table α, a three dimensional tensor with entries αijk ∈ {0, 1}. Suppose
that species i mutates and gives rise to a new species k and that species j provides support for the
survival of k. In this case the ancestral adjacency matrix element αijk = 1, otherwise αijk = 0.
Each species is associated to a genus. If species i is from genus gi, its mutant k will most likely
be assigned to the same genus gi. However, with a small probability pgen the mutation will be
large enough that k constitutes a new genus gk 6= gi. The results will, as discussed later, only
marginally depend on the actual choice of pgen, we worked with a figure of pgen = 0.005.

On top of this ancestral relationship, a new species will also interact with other species in
its surrounding. The environment of a new species – its ecological context – will be strongly
determined by the environment of its ancestors, i.e. the species the ancestors interact with. A
given species k (descending from i) will thus be most likely to interact with more or less the
same species as i. k receives a given fraction of interaction-links from i.

As a consequence of this growth rule with the particular copying mechanism, clusters of
strongly interconnected, interacting species naturally emerge. In other words, species in a cluster
are highly adapted to each other and form an environment to which can be referred to as an
”ecological niche”.

Interspecies dependencies are encoded in the interaction matrix Iij . A general choice for
the entries in I would be to introduce a probability that an entry is non-zero, i.e. there is an
interaction between species i and j, and in this case let the values of I vary between −1 and +1,
for inhibitive and stimulating influences. Evolutionary dynamics of this kind has been studied
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[44] and it has been shown to lead to a proliferation of predominantly stimulating influences
(positive entries). Thus, since here we are interested in a model for macro-evolution and not
ecology, we assume only positive binary entries in I, i.e. Iij ∈ {0, 1} for no interaction, or
stimulating influence, respectively.

For later use, the indegree of node i, κin
i is defined as the sum of the i-th line of the interaction

matrix I, i.e. κin
i =

∑
{x∈N(t)} Ixi. Note that the number of species N(t), and thus matrices α

and I are here non-constant over time.

5.2.2 Growth dynamics

The model consists of a two-step process: a growth and diversification process, followed by a
selection procedure. During one time step we apply the following procedure to each node in a
random update:

• Pick a node i. With probability 1− λ (same for all i) do nothing and pick another node,
otherwise with probability λ do the following:

• Choose at random one of the nodes linking to i, say node j. Add a new node k to the
network which is a mutation of either i or j. Set either αijk = 1 or αjik = 1 with equal
probability. This means that either i or j has mutated.

• Let us assume i mutated. Then the new species k receives an incoming link from i (Iik = 1)
and copies each outgoing link from i with a probability m, i.e. if i links to i′ (Iii′ = 1), k
links to i′ with probability m. (If it links we set Iki′ = 1).

• With probability pgen the new species k constitutes a new genus, otherwise k is associated
with the same ancestor genus i.

Effectively, we employ a ’copying mechanism’, where a node i gets copied (produces node k)
together with the two types of links involved: In the case of the ancestral relationships either
a link to i is established or, with same probability, one incoming link of i, namely from j, is
copied. In the case of the species interactions each outgoing link from i is copied to k with
probability m. See Fig. 5.1 for an illustration. A copying mechanism of this kind has been
studied by Vázquez [77] and was applied in the context of protein interaction networks [78].

5.2.3 Selection as k-core pruning

By assuming that selection predominantly acts on species of low fitness, a quantitative measure
for fitness is necessary. It was argued that a species’ individual fitness should be related to
the number of stable relationships that this species is able to maintain in its environment [79].
The higher this number, the more interactions ensure its survival. In this view one can directly
identify the indegree of species i, κin

i , with its fitness; one can picture κin
i as the total ’support’

i gets from its surroundings. In this view it is natural to implement the selection procedure in
the following way:

Suppose there exists an exogenous stress level for all species, kstress which fluctuates due to
abiotic causes. It can be modelled as a random process drawn at each time step from a Poisson
distribution Pr

(
kstress = n

)
=

(
θne−θ

)
/n!. The mean θ of this distribution gives the average

biotic stress in the system. Species with κin
i < kstress become removed from the network with

all their links. As soon as these nodes are removed some of the surviving nodes will now have an
indegree smaller than kstress and become extinct too, and so on. In other words, at each time
step only the k-core of the network survives, the network is pruned down to its k-core.
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5.3 Theoretical estimates

We now estimate the distributions of three quantities which are observable in fossil data, extinc-
tion events, lifetime and species per genus. These are known to be compatible with power-law
distributions, with exponents between 1.5 and 2 [54]. We analytically derive the exponents for
extinction size γE , number of species per genus γS , and lifetimes γL, and discuss parameter
(in)dependence of the results. We then compare them to simulations at the end of this section.

5.3.1 Size distribution of extinctions

We are interested in the number of species becoming extinct in each time step, i.e. the distribu-
tion of extinction sizes. It can be derived analytically by making some simplifying assumptions.
A node i’s indegree is given by κin

i =
∑
{x∈N(t)} Ixi. Since each node receives an incoming link

from its ancestor, the minimal indegree in the network is one. Thus each species can survive
if we prune the network with kstress ∈ {0, 1}. The probability psurv for the occurrence of a
stress level kstress, which does not lead to a single extinction event, is given by a Poisson pro-
cess psurv =

∑1
n=0

(
θne−θ

)
/n! = e−θ (1 + θ). With probability psurv the diversity proliferates

as N (t + 1) = N (t) (1 + λ). We assume that the main contribution to extinction sizes stem
from percolation with kstress = 2, which is the case for reasonable choices of the parameters
λ and θ. By reasonable choices we mean values for λ and θ where a nontrivial interplay be-
tween the growth and extinction dynamics can de facto be observed. Otherwise, keeping λ fixed
and choosing θ too low the system would just grow exponentially, conversely for too high θ all
species would vanish within a few iterations. We further make the simplifying assumption that
if kstress > 1 occurs, a constant fraction c of the entire population will go extinct. Thus from
our assumptions follows the Ansatz that with probability 1 − psurv the diversity behaves like
N (t + 1) = N (t) (1− c).

Let us call the number of species becoming extinct at each time step ∆N † (t) and assume that
∆N † (t) = cN (t). Then we have ∆N † (t) /N0 = exp (λt), or equivalently t = (1/λ) ln

(
∆N † (t) /N0

)
.

Assume that an extinction event occurs at time t+1. The probability that the system has prolif-
erated over the past T iterations is given by pT

surv (T being an exponent), so the probability to find
a specific extinction size ∆N∗ is given by Pr

(
∆N † (t) = ∆N∗) = p

(1/λ) ln(∆N∗(t)/N0)
surv . Taking the

natural logarithm on both sides and plugging in for psurv we finally have ln
(
Pr

(
∆N † (t) = ∆N∗)) =

const + [(−θ + ln (1 + θ)) /λ] ln ∆N∗. Thus the distribution of extinction sizes follows a power-
law with exponent γE depending on λ and θ:

Pr
(
∆N † (t) = ∆N∗

)
∝ (∆N∗)−γE , γE =

θ − ln (1 + θ)
λ

. (5.1)

A comparison between this prediction and simulation results from the full model (without
assumptions) is shown in Fig. 5.2 for θ = 1, revealing excellent agreement. Slopes from
the simulation data were estimated using a maximum likelihood method [80], standard de-
viations are smaller than symbol size. This a posteriori justifies our simplifying assumption
∆N † (t) = cN (t). The difference to simulation data stems from the fact that also percolations
with higher k occur albeit exponentially less likely.

5.3.2 Distribution of species per genus

Whereas the extinction-size distribution displays explicit parameter dependence on λ and θ, this
will be shown to be not the case for the distributions of species per genus and lifetimes. Let us
start with the indegree distribution of our growth model p

(
κin

i

)
encoded in I, which is known

to be scale-free [77]. Growing networks have scale-free degree distribution if they incorporate
preferential attachment. How is preferential attachment present in the present model? Consider
the avenue of a new species k due to a mutation of i under the supportive influence of j and a
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Figure 5.2: We compare the prediction from Eq. (5.1) (solid line) with simulation data (red
circles) for θ = 1.

randomly chosen, already existing node l. What is the probability that the indegree of l, κin
l , will

increase by one? This can happen if l receives an incoming link from k because it already has an
incoming link from i which happens with a probability proportional to the indegree of node l.
This introduces preferential attachment and the resulting indegree distribution, as worked out
in [77], follows a power law with

p
(
κin

) ∝ κin−2
, (5.2)

as long as the link-copying probability m > 0.4 (1) [77] , which we assume to hold.
Suppose our system size is N species. Denote the number of genera containing ns species by

n̄g(ns, N). It is then straight forward to derive the growth equation

n̄g(ns, N + 1) = n̄g(ns, N) + n̄g(ns − 1, N)w(ns − 1)− n̄g(ns, N)w(ns) , (5.3)

where w(ns) is the probability for each genus of size ns to increase its size by one. The dependence
on pgen is introduced in the boundary conditions given by n̄g(ns = 1, N + 1). For each node
associated to an already existing genus, the number of pgen/(1 − pgen) nodes are added to
this one per time step, so we get n̄g(1, N + 1) = n̄g(1, N) − w(1)n̄g(1, N) + pgen/(1 − pgen).
We are interested in stationary solutions of Eq. 5.3, i.e. solutions which are independent of
the actual system size N . For this let us define ng(ns) ≡ Nn̄g(ns, N). The probability for a
genus of size ns to increase its size by one is obviously w(ns) = ns/N , this can be interpreted
as the probability that a new node copies the genus information from a node of a genus of
this respective size. Plugging all this into Eq. 5.3 we get the recursive relationship ng(ns) =
[(ns−1)/(ns+1)]·ng(ns−1) from which one can readily conclude ng(ns) = f(pgen)·(ns(ns+1))−1

where f(pgen) is a constant, thus we have ng(ns) ∝ n−2
s to leading order.

An important feature of k-core percolation is that it preserves statistical invariants [81], that
is, if the original network follows a scale-free degree distribution with a given exponent, its k-core
has the same distribution up to the cut-off at k. The scale-free network architecture imposed by
our growth and diversification rules will not be altered by extinction events. Thus the species
per genus distribution of the model is

ng (ns) ∝ n−2
s , (5.4)

i.e. γS = 2, for the distribution of taxon sizes.
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Figure 5.3: Comparison of fossil data [75, 60] (solid line with diamonds) with simulation data
(red circles) for the three observables (a) extinction event size, (b) species per genus
and (c) lifetimes. The straight line is the maximum likelihood estimate for the
power-law exponent of the simulation data and indicates the range where the fit was
applied.

5.3.3 Lifetime distribution

To estimate for the distribution of lifetimes of long living species, i.e. species which will not
become extinct after the first few iterations, we ask for the lifetime τi of species i with an
indegree κin

i drawn from p
(
κin

i

)
. The probability that the stress level will be higher than the

node’s indegree is Pr
(
kstress > κin

i

)
=

∑∞
k=κin

i +1

(
e−θθk

)
/k!. The leading term in this sum is

k = κin
i + 1. Consider that T iterations of the dynamics have taken place. We are asking for

long lived species, i.e. that within T À 1 iterations there occurs no stress level higher than κin
i .

Generally, the probability that within T trials with success probability Pr
(
kstress > κin

i

)
zero

successes are obtained is given by a binomial distribution. For large sample sizes T the binomial
distribution approaches a Poisson distribution, independent of T . Accordingly, in our case the
probability for zero successes (the occurrence of no stress level kstress > κin

i ) follows a Poisson
distribution e−Pr(kstress>κin

i ). From this it can be concluded that the probability to encounter a
species i with lifetime τ , i.e., Pr (τi = τ), can be estimated from the node’s indegree only. One
can identify a necessary criterion for the survival of a node, namely that it has an indegree κin

i

which is not exceeded by the stress level kstress for T À 1 iterations. So the probability to
encounter a lifetime τ is given by the probability for the occurrence of a stress level higher than
κin

i ,
Pr (τi = τ) ∝ p

(
κin

i

)
ePr(kstress>κin

i ) . (5.5)

The probability to find a node with lifetime τ is proportional to the probability of finding a node
with a given indegree κin, truncated with the probability for the occurrence of specific stress
levels. There exists a regime where Pr (τi = τ) ∝ Pr

(
κin

i = κin
)

holds and by virtue of Eq. (5.2)
we find γL = 2, i.e.

Pr (τi = τ) ∝ τ−2 . (5.6)

5.3.4 Simulations

We compare simulation results of the presented model to fossil data for extinctions and life-
time drawn from Sepkoski (1992), as well as species per genus after Willis (1922) in Fig. 5.3.
The model was implemented in a MatLab program and executed until a statistics of 2 · 104

extinction events were accumulated. This corresponds to sample sizes of 105 − 106 for indi-
vidual lifetimes and numbers of species per genus, depending on the parameter settings. For
λpsurv < c (1− psurv) the size of the network does not diverge over time and the samples can
be obtained from a single run of the simulation. For λpsurv > c (1− psurv) the system tends to
grow infinitely large; for practical purposes we aborted runs as soon as N (t) > 104 and iterated
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Table 5.1: Exponents of the distributions of extinction sizes γE , species per genus γS , and life-
times γL, as obtained from the fossil record and compared to the exponents of various
well known evolution models. The value for γE from this model was obtained from
simulations with λ = 0.15,m = 1, θ = 1.

γE γS γL

fossil data 2.0(2) 1.7(3) 1.5(1)
Kauffman, 1993 '1 - -
Bak and Sneppen, 1993 1 to 3/2 1 -
Solé and Manrubia, 1996 2.05(6) - 2.05(6)
Newman, 2003 2.02(2) 1.03(5) 1.6(1)
present model 2.049(8) 2 2

until a satisfactory statistic was reached. For all three subplots the simulation data was fitted
with a maximum likelihood estimation [80], the range of the fit is indicated by the range of the
straight line. Subsequently the numerical results were binned logarithmically and, if necessary,
shifted multiplicatively to enhance the clarity of the plots.

For the extinction events the resulting slope is parameter dependent, we used the setting
(λ = 0.15,m = 1, θ = 1) to obtain agreement with the slope of γE = 2.0 (2) from the fossil data.
Although not obvious from the sparse data shown here, the existence of a power-law in the
extinction event sizes with this exponent in the Sepkoski database was reported by Raup [71]
by comparing it to Monte-Carlo simulations of genus survivorships and by the sophisticated
analysis of Newman and Palmer [54]. Both works favored a power-law over an exponential
form. For the number of species per genus and lifetimes the distributions are independent of
the parameter settings and given by the topology (which is a scale-free indegree distribution for
values of m > 0.4(1)) of our network only, yielding γS = 2, γL = 2. We find a higher exponent in
the species per genus distribution than in the database from [75], where γS = 1.5(1). However,
this exponent has to be taken with some care. We computed over all iterations, i.e. a long
period of time, whereas Willis’ data is taken from a snapshot. The latter favors long-living
species which leads to a lower exponent than a measurement over long timespans. In addition,
the mere existence of a power-law is intriguing. The exponent for the lifetime distribution can
be estimated between 1.2 and 2.2 from the fossil data, depending on the range where the fit
is applied. Our value of 2 compares to the intermediate value of 1.7(3) from the data. Our
exponents are summarized and compared to several previous models in Table 5.1.

5.4 Discussion

We presented a model for evolution which reproduces statistical features observed in fossil data.
An evolutionary system is modelled as a catalytic network with two superimposed network
topologies, one incorporating species-species interactions, the other the phylogenetic tree struc-
ture. The fitness of species is given by the connectivity structure of the network, thus naturally
a co-evolving fitness landscape arises. Fitness becomes nothing but a co-evolving topological
entity, the more relationships a species is able to build and sustain, the fitter it becomes. Species
interactions are introduced by a variant of preferential attachment known as ’copying mecha-
nism’ [77]. Without any further assumptions this mechanism leads to a natural emergence of
”ecological niches”, which in network terms relate to a high degree of clustering in the network.

In this model we have taken a gradualist viewpoint concerning speciation in assuming that the
growth rate λ is constant. However, this choice was only made for reasons of simplicity. Benton
and Pearson [82] propose that gradual speciations are more likely to occur in stable environments
(as it is the case for e.g. marine plankton), whereas marine invertebrates and vertebrates are
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more likely to show a punctuated pattern of speciation. The latter case could be naturally
introduced in our model by assuming a functional dependence λ ≡ λ (θ), i.e. introducing a
mechanism that couples the growth rate with the actual values of kstress. Irrespective of this
choice, the main characteristics of our model would not be altered. The number of species per
genus and lifetimes only depends on topological features of the network which would not be
affected by a varying growth rate. Our analysis for the extinction sizes would hold too, except
that one has to set λ = λ (θ) in Eq. (5.2). The existence of the power law is independent of
both the functional form of the growth rate and the stochastic stress level.

Our selection mechanism differs from the one studied by Solé and Manrubia [43] in that
extinction avalanches spread over successive time steps in their model and that each species
becoming extinct is immediately replaced by a randomly chosen one (therefore leading rather
to a model for ecology where empty niches are re-filled), whereas in our model the selection
mechanism acts on a ’snapshot’ of the population and does not depend on which randomly
chosen species replaces an extinct one. Our pruning procedure further differs from the selection
mechanism adopted by Newman [54] in that each species has a randomly assigned fitness value
(independent of interspecies relationships) and species below a given stress level become extinct,
which is contrasted by mass extinctions of causally connected species in our model.

We suggested the use of k-core percolation as a mechanism to select species according to their
fitness values. On a technical level this allows to understand the system by studying its k-core
architecture. If the applicability of this mechanism to prune the ’tree of life’ can be justified
beyond the statistical features presented here, remains an open question.
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6 Evolution of Beliefs: Opinion Formation

Society works not because we have consciously invented it,
but because it is an ancient product of our evolved predispositions.

It is literally in our nature.
Matt Ridley, *1958

We will now be concerned with the evolution of humans belief and how different opinions
compete amongst each other.

6.1 Introduction

Many decisions of human beings are often strongly influenced by their social surroundings,
e.g. the opinion of friends, colleagues or the neighborhood. Only a few types of decisions in
few individuals emerge from absolute norms and firm convictions which are independent of the
opinion of others. Much more common is the situation where some sort of social pressure leads
individuals to conform to a group, and take decisions which minimize conflict within their nearest
neighborhood. For example, if a large fraction of my friends votes for one party, this is likely
to influence my opinion on whom to vote for; if I observe my peers realizing huge profits by
investing in some stock this might have an influence on my portfolio as well; and if the fraction
of physicist friends (coauthors) publishing papers on networks exceeds a certain threshold, I will
have to reconsider and do the same; the social pressure would otherwise be just unbearable.
Lately, the study of opinion formation within societies has become an issue of more quantitative
research. In first attempts agents were considered as nodes on a lattice, and opinion dynamics
was incorporated by the so-called voter model (VM) [83, 84] (only two neighbors influence each
other at one timestep), the majority rule (MR) [85, 86, 87] (each member of a group adopts the
state of the local majority), or the Axelrod model [88] (two neighbors influence themselves on
possibly more than one topic with the objective to become more similar in their sets of opinions).
In addition to this variety of interaction rules the underlying network topology was found to play
a prominent role in the emergence of collective phenomena. Most observed structures of real-
world networks belong to one of three classes: Erdös-Renyi (ER) [105], scale-free [89] or small-
world networks [115]. This has been accounted for the VM [90, 91, 92] as well as for the MR on
different topologies [94, 93]. For a review of further efforts in this directions see [95] and citations
therein. Aiming at a coherent description of the co-evolution of topologies and opinions, network
structure itself has been modeled as a dynamical process [96, 97, 98, 99, 100]. An alternative
approach to model social interaction – which is not necessarily based on interpreting agents
as some sort of Ising spins– was developed out of the notion of catalytic sets [50] (evolutionary
approach), leading to an unanimity rule (UR) model [74] on arbitrary networks in an irreversible
formulation.

There are basically two types of social influence [101, 102] which the model presented here
should be able to capture. Conformity can arise as a consequence of informational influence. Here
an individual assumes that others have more information on a given issue and is happy to accept
the majority’s opinion. On the other hand, with normative social influence, the mechanism of
peer pressure can force an individual to publicly comply with the majority. Aside from the
actual size of the majority subgroup, the question whether an agent is likely to conform or not
depends also on other determinants [103], such as the social status or prestige of neighbors,
the importance of the decision or the prepotency of the group’s induced response. To take
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Figure 6.1: Update process for two different configurations of neighbors and an update threshold
of pu = 0.8. The node in the center gets updated. (a) Three out of five neighbors are
in a different state, so the threshold is not exceeded and the node stays unchanged.
(b) Four out of five neighbors are in a different state; 4/5 ≥ 0.8 thus the node adopts
the state.

these dependencies into account, in the tradition of statistical physics we present a reversible
generalization to the UR and MR models introducing an arbitrary threshold governing updates
(’laggard’ parameter). The UR and MR are extremal cases of the model. In [104] the idea of a
threshold was introduced in the context of global cascades in ER networks of ’early-adopters’.
In contrast to this work, where updates were only allowed in one direction (irreversible), the
following model is fully reversible in the sense that two opinions compete against each other in
a fully symmetric way.

6.2 The Model

Each individual i is represented as a node in a network. The (binary) state of the node represents
its opinion on some subject, yes/no, 0/1, Bush/Mother Theresa, etc. Linked nodes are in contact
with each other, i.e. they ’see’ or know each others opinion. The opinion formation process of
node i is a three-step process (see Fig.6.1): Suppose i is initially in state ’0’(’1’).

• Check the state of all nodes connected to i.

• If the fraction of state ’1’(’0’)-nodes of i’s neighbors exceeds a threshold pu, i adopts
opinion ’1’(’0’).

• Otherwise i remains in state ’0’(’1’).

As a substrate network we chose random graphs [105], i.e. N nodes are randomly linked with
L links (self-interactions are forbidden), the average connectivity being k̄ = L/N . We do so to
keep results most clear and exclude influences from complex network topologies. The update
threshold pu has to be higher than 0.5 in order to be meaningful in the above sense. The update
is carried out asynchronously. In a network containing N nodes, at time t, there are A0

t nodes
with opinion ’0’ and A1

t nodes with opinion ’1’. The relative number of nodes are a
0/1
t = A

0/1
t /N .

One time step is associated with applying the update procedure N times, i.e. each node gets
updated once per timestep on average. As time goes to infinity, the relative population of nodes
with opinion 0/1 will be denoted by a

0/1
∞ .
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Figure 6.2: Asymptotic population sizes of the ’0’-state fraction, a0∞, as a function of its initial
size, a0

0, for N = 104, pu = 0.8. (a) k = 2 for all nodes (1D circle), (b) ER graph
with k̄ = 9000 and (c) ER graph with k̄ = 10.

6.3 Analytical and Numerical Results

To derive a master equation for the evolution of this system we calculate opinion-transition
probabilities via combinatorial considerations in an iterative fashion, motivated by [50]. A
master equation for a0

t is found explicitly, the situation for a1
t is completely analogous. At t = 0,

we have a fraction of a0
0 nodes in state ’0’. The probability that at time t one node belonging to

a0
t will flip its opinion to ’1’ is denoted by p0→1

t . This probability is nothing but the sum over
all combinations where more than a fraction of pu of the neighbors are in state ’1’, weighted by
the probabilities for the neighboring nodes to be either from a0

t or a1
t =

(
1− a0

t

)
,

p0→1
t =

k̄∑

i=dk̄pue

(
k̄

i

) (
1− a0

t

)i (
a0

t

)k̄−i
, (6.1)

where d.e denotes the ceiling function, i.e. the nearest integer being greater or equal. The
same consideration leads to an expression for the opposite transition p1→0

t , where 1 and 0 are
exchanged in Eq.(6.1). The probability for a node to be switched from ’0’ to ’1’, ∆0→1

0 , is the
product of the transition probability, p0→1

t , and the probability to be originally in the fraction
a0

0, i.e. ∆0→1
0 = p0→1

0 a0
0. The same reasoning gives ∆1→0

0 = p1→0
0

(
1− a0

0

)
and provides the

master equation for the first time step (i.e. updating each node once on average),

a0
1 = a0

0 + ∆1→0
0 −∆0→1

0 . (6.2)

Let us now examine some special cases.

6.3.1 The low connectivity limit

Low connectivity. If k̄ and the update threshold pu are chosen such that dk̄pue = k̄ holds,
the system arrives at a frozen state after one iteration. Here the update rule is effectively the
unanimity rule in the sense that all linked nodes have to be in the same internal state to allow
for an update. This can be either checked by direct inspection or by considering the following:
Assume that after the first iteration no consensus has been reached which is equivalent to saying
that we can find two neighboring nodes with different internal states, say agent i is in state 0,
j holds state 1. To let agent i conform, each of his neighbors ought to be in state 1. But then
i could not be in 0. Either the update to 1 would have already occurred or there is an agent k
in i’s neighborhood which also holds state 0 and will not conform because of his connectedness
with i. The dynamics of the system freezes after the first iteration. Note that it is crucial that
we carry out the updates random sequentially since for parallel updates the configuration would
stay maximally random at any given time.
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For the special case k = 2 (1D circle) the final population in state ’0’ is given by a0∞ = a0
1.

Inserting this in Eq.(6.2) yields

a0
∞ = 3(a0

0)
2 − 2(a0

0)
3 . (6.3)

A comparison between the theoretical prediction of Eq.(6.3) and the simulation of this system
(on a regular 1D circle network with N = 104) is seen in Fig.6.2(a).

6.3.2 Higher connectivities

For higher connectivities there are much more configurations allowing for potential updates, the
evolution does not stop after one single iteration. Naively one would try to iterate Eq.(6.2),
however since our dynamics are reversible this would not take into account specific histories of
individual nodes. To estimate how likely a node can switch its state at t = 1 (e.g. an update
0 → 1) w.r.t. the initial populations (in this case a0

0) we have to include the contributions from
nodes changing their state at t = 0 and exclude the contributions from those which underwent
the respective update at t = 0. We have, for example, ∆1→0

1 =
(
p1→0
1 − p1→0

0

) (
1− a0

0

)
. For

arbitrary times t this is straight forwardly seen to be ∆1→0
t =

(
p1→0

t − p1→0
t−1

) (
1− a0

0

)
, and the

master equation is given by the second order iteration a0
t+1 = a0

t +∆1→0
t −∆0→1

t . Note that the
pt’s depend on a0

t−1, a
0
t−2, . . . a

0
0 and therefore include the influence of nodes switching forth and

back on the system‘s evolution from the initial populations. Inserting for a0
t in a recursive way

yields the master equation

a0
t+1 = a0

0 + p1→0
t

(
1− a0

0

)− p0→1
t a0

0 . (6.4)

Again, theoretical predictions of Eq.(6.4) agree perfectly with numerical findings, see Fig.6.2
(b). Three regimes can be distinguished: two of them correspond to a network in full consensus.
Between these there is a mixed phase where no consensus can be reached.

High connectivity limit.

For the fully connected network the asymptotic population sizes can easily be derived: if a0
0 > pu

or a0
0 < 1 − pu consensus is reached. For 1 − pu < a0

0 < pu the system is frustrated and no
update will take place, giving rise to a diagram like Fig.6.2(b). Compared to Fig.6.2(a) a sharp
transition between the consensus phases and the mixed phase has appeared. We now try to
understand the origin of this transition.

Intermediate regime.

The transition between the smooth solution for the final populations as a function of a0
0 and the

sharp one for higher connectivities becomes discontinuous when the possibility for an individual
node to get updated in a later timestep ceases to play a negligible role. In Eq.(6.4) we do
not assume any kind of correlations between configurations at different time steps, i.e. the
configurations are assumed to be maximally random w.r.t. the constraining population sizes.
The fact that Eq.(6.4) coincides with the numerical results for high connectivities justifies the
assumption for high k̄. However, as explained above when we have an unanimity rule the
correlation is so strong that no updates take place on subsequent iterations. It is intuitively
clear that there exists a regime in between where the no-correlation hypothesis loses its validity
and evolution does not freeze after one iteration.

For pu = 0.8 the sharp transition arises for values of k̄ around 10. Fig.6.2(c) shows simulation
data for ER graphs with N = 104 nodes and k̄ = 10 with pu = 0.8. Here we already find
two regimes with consensus and an almost linear regime in-between. The curve obtained from
numerical summations of Eq.(6.4) resembles the qualitative behavior of the simulations up to
deviations due to the no-correlation assumption. The dynamics of the system is shown in the
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Figure 6.3: Phase diagram for a0∞ as a function of initial fraction size a0
0 and connectedness,

k̄/N . Simulations where performed with ER graphs with N = 103 and pu = 0.8.
Two symmetrical regions of consensus and a mixed phase in between are observed.
The dotted line indicates a smooth transition, the solid line a discontinuous one.
Inset: Detail for small k̄. Arrows mark the change from smooth to sharp transitions,
positioned at k̄/N ∼ 0.01. (b) Phase diagram for a0∞,∞. Technically adjacency
matrices with N = 104 were generated and checked by Monte-Carlo simulations
whether they allow an update at fixed a0

0 and k̄. (c) Half-life time τ (t̄ until half the
population reached consensus) vs. relative number of neighbors for T = 0.25, 0.5, 1.
Inset: Same in log-log scale. Scaling around the pole kc/N ∼ 0.61 with an exponent
γ ≈ 7.4 is suggested. 103 initial populations with a0

0 = 0.5 and N = 102 were
averaged.

phase diagram, Fig.6.3(a). It illustrates the size of the respective regimes and their dependence
on the parameters a0

0 and connectedness k̄/N . The order parameter is a0∞. Along the dotted
lines a smooth transition takes place, solid lines indicate discontinuous transitions from the
consensus phase to the mixed phase. The change from smooth to sharp appears at k̄/N ≈ 0.01.
For larger pu the regions of consensus shrink toward the left and right margins of the figure.

6.4 Social Temperature

So far we assumed static networks. However, this is far from being realistic, as social ties
fluctuate. We now check the robustness of the phase diagram when stochastically perturbing
the underlying network structure, i.e. allowing links to randomly rewire with the rewirement
process taking place on a larger time scale than the opinion update. Let us assume that the
number of rewired links per rewirement-timestep is fixed to L′, so that it becomes natural to
define a social temperature, Tsoc = L′/L. Tsoc quantifies the individual’s urge to reconsider a
topic with new acquaintances, or equivalently, the fluctuation of ties in their social surrounding.
Note that this process is substantially different from the (dis)assortative mixing scenarios in the
literature [97].

The evolution of opinions in a network at Tsoc 6= 0 is as follows: We fix a network and perform
the same dynamics as for Tsoc = 0, until the system has converged and no further updates
occur. Then perturb the system by a rewirement step and randomly rewire L′ links among the
N nodes (N and L are kept constant over time), increase the time-unit for the rewirement steps
by one and let the system relax into a (converged) opinion configuration. Iterate this procedure.
Note that this process can be viewed as a dynamical map of the curves shown in Figs.6.2(a)-(c).
With this view it becomes intuitively clear that consensus will be reached for a wider range of
parameters, where the time to arrive there crucially depends on the value of k̄.

To incorporate the temperature effect in the master equation we introduce the second timescale
and denote the population in state ’0’ as a0

t,t̄. Here t is the time for the update process as before
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and t̄ is the time step on the temperature time scale, i.e. counts the number of rewirement
steps. We use a0

0 ≡ a0
0,0. a0

∞,0 can be obtained from a0
∞,0 = limt→∞

(
a0

t,0 + ∆1→0
t,0 −∆0→1

t,0

)
for

high k̄, and from Eq.(6.2) for low k̄, when we only observe updates during the first iteration.
This evolution is nothing but a dynamical map. The probabilities to find a configuration of
neighbors allowing an update are no longer given only by ∆0→1

t,0 and ∆1→0
t,0 , instead we have to

count the ones constituted by a rewiring, which happens with probability Tsoc. That is why
we can consider this kind of evolution as a dynamical map of the former process, with a0

∞,0 as
the initial population for the first rewirement step evolving to a0

∞,1, and so on. The transition
probabilities are now given by Tsoc∆1→0

t,t̄ and Tsoc∆1→0
t,t̄ , since only new configurations can give

rise to an update. We thus assume the master equation for a system at T 6= 0 after the first
rewiring to be

a0
∞,t̄+1 = lim

t→∞

(
a0

t,t̄ + Tsoc

(
∆1→0

t,t̄ −∆0→1
t,t̄

))
. (6.5)

Furthermore, one expects the existence of a critical value kc, below which the intermediate regime
(mixed state) will disappear. This will occur whenever there is no chance that a configuration
of neighbors can be found leading to an update. The value for kc can be easily estimated:
Say we have a node in state ’1’ and ask if an update to state ’0’ is possible under the given
circumstances. For a given k̄ this requires that there are at least dk̄pue neighbors in state ’0’
present in the set A0

0. If k̄ is above the critical value kc it occurs that even if all nodes from A0
0

were neighbors of the node in state ’1’, there are still too many other neighboring nodes (which
are then necessarily in state ’1’) to exceed the update threshold. This means that we can not
have updates if dk̄pue > A0

0, and we get kc = a0
0N
pu

. For pu = 0.8 and a0
0 = 0.5, kc ≈ 0.61N .

We next consider the time-to-convergence in the system. To this end we measure the half-life
time τ , of initial populations at a0

0 = 0.5 for different connectivities k̄, see Fig.6.3(c). The figure
suggests that the observed scaling of τ could be of power-law type, with a pole at kc/N , i.e.

τ ∝
(

kc−k̄
N

)−γ
. The estimated critical exponent γ ≈ 7.4 seems to be independent of temperature.

Note, that the estimate is taken rather far from the pole at kc, which suggests to interpret the
actual numbers with some care.

The phase diagram for the Tsoc 6= 0 system is shown in Fig.6.3(b). There are still three
regimes, which are arranged in a different manner than before. Consensus is found for a much
wider range of order parameters; the mixed phase is found for high connectivities, i.e. k̄ > kc.
The value of kc at a0

0 = 0.5, as found in Fig.6.3(b), is 0.63, slightly above the prediction of 0.61.
This mismatch is because we used networks with inhomogeneous degree distributions (Poisson).
Whether a network allows for an update or not is solely determined by the node with the lowest
degree k, which explains why we can still observe updates when the average degree k̄ is near
to but already above kc. Systems in the mixed phase are frustrated. kc is linear in a0

0 which
we confirm by finding a straight line separating the frustrated from the consensus phase. For
larger pu the regions of consensus shrink. The solutions depicted in Fig.6.3(b) are independent
of Tsoc. Here we do not assume a (dis)assortative mixing scheme (linking preferences) and focus
on stochastic perturbations instead. The explicit type of perturbation plays no role in this
mechanism so we chose the simplest possible.

6.5 Conclusion

Summarizing we presented a model bridging the gap between existing MR and UR models.
The conceptual novelty of this work is that we interpret opinion formation as a special case of
the evolution of catalytic systems [50, 74]. This different perspective places opinion formation
problems in a more general framework with respect to previous extensions and modifications of
the ’Ising model’ type in the literature, recently called the ’Ising paradigm’ [106]. On a technical
level this results in an algorithmically more feasible and straight-forward way to actually solve
opinion formation models - for special cases even in closed form. In particular we studied opinion
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dynamics on static random networks where agents adopt the opinion held by the majority of
their direct neighbors only if the fraction of neighbors exceeds a pre-specified laggard-threshold,
pu. This system shows two phases, full consensus and a mixed phase where opinions coexist. We
studied the corresponding phase diagram as a function of the initial opinion distribution and
the connectivity of the underlying networks. As the laggard-parameter pu increases the regions
of full consensus shrink. Opinion formation models can be categorized by whether consensus is
the only frozen state, as for the voter-model, MR, Sznajd-model, etc., [106], or models allowing
for a continuum of stationary solutions, as bounded confidence, the UR, or the model presented
here. The reported richness of stationary solutions arises from the interplay between the update
threshold pu and the random sequential update procedure only, and can not be attributed to
network topology effects. For this reason we restricted this work to random networks. We
introduced rewiring of the underlying network during the opinion formation process (’social
temperature’). For Tsoc > 0 the coexistence phase vanishes, the system can escape the frozen
state a

0/1
∞ 6= 1, and global consensus is reached. In the case of ’usual’ temperature (opinions

of nodes switch randomly) [93], a different behavior is expected. For low temperature, the
system also can escape the frozen state, however for higher values of Tsoc the system undergoes
a transition from an ordered to an unordered phase, where a∞ = 1/2. In the formation of public
opinion one can find two scenarios [107]: a trend toward consensus or a coexistence of different
opinions. From our findings we can speculate that this difference could be related to our concept
of social temperature. Even though laggards sometimes enjoy a bad reputation as being slow
and backward-oriented, societies of laggards are shown to have remarkable levels of versatility
as long as they are not forced to interact too much.
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7 To How Many Politicians Should
Government Be Left?

It seems like numerology to me. I understand the isn’t-it-cool appeal
of this sort of analysis, but I simply don’t believe it.

I think it’s quackery.
Anonymous Referee

As a slightly more light-hearted conclusion of this work, we present an application of our ideas
in the field of politics.

Finally something useful.

7.1 Introduction

Honorable statesmen, like Charles de Gaulle or Chester Bowles, arrived at the conclusion that
’politics is too important to be left to politicians’. The highest executive power in today’s polit-
ical landscape is mostly conferred upon committees called cabinets – the countries’ governments
– consisting of people having, according to Robert Louis Stevenson, the only profession for which
no preparation is thought necessary. It is natural to ask to how many of them government can
be left without furnishing a democratic collapse. The question to how many individuals gov-
ernment should be left to ensure democratic effectiveness was first tackled in a semi-humorous
attempt by the British historian C. Northcote Parkinson [108]. His investigations lead to what
is now known as the ’Coefficient of Inefficiency’, conjecturing that a cabinet loses political grip,
due to an inability of efficient decision-making, as soon as its membership passes a critical size
of 19-22.

We show that Parkinson’s conjectures about cabinet sizes and government efficiency hold
empirically to remarkable levels of significance. By relating cabinet size to several governance
indicators, assembled by the UNDP [109] (the Human Development Indicator), the CIA [110]
and the World Bank [111], we confirm the hypothesis that the higher number of members in the
highest executive committee, countries are more likely to be political less stable, less efficient
and less developed. Note that we do not claim that there is any causal relationship (that is,
remove a member and the government becomes more effective), but merely that the number
of persons participating in decisions and thus the number of interests to be satisfied negatively
correlates to the overall quality in a country’s governance.

This case study in national governments serves as a motivation to extend the scope of this
correlation to decision-making in groups in general. To this end we introduce a socio-physical
dynamical model aimed to reproduce opinion formation processes in small groups. As the main
result of this work we show the existence of a characteristic group size within such models which
resembles the qualitative change of behaviour conjectured by Parkinson as the ’Coefficient of
Inefficiency’.

7.2 Cabinet sizes and efficiency

We determine the actual number of members of the highest executive committee, the cabinet, for
197 self-governing countries and territories using data provided by the CIA [110]. For a complete
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listing of them see Tab. 7.1 in the appendix. Cabinets vary between 5 and 54 members with
a clearly visible peak between 13 and 20. All except three countries (Pakistan, Democratic
Republic of Congo and Sri Lanka) are found in the range between 5 and 36. It is worth noting
that all countries avoid cabinets with 8 members, a curious fact that was observed already some
fifty years ago (Parkinson, 1957).

To determine whether cabinet size can serve as an indicator for efficient policy making we
compare it with indicators reflecting complex issues of states which – to get advanced reason-
ably – need a certain consensus within the political leadership. One such indicator is the Human
Development Indicator [109] (HDI) which assesses a country’s achievement in different areas of
human development. It is composed of the GDP, life expectancy at birth, the literacy and
the gross enrolment ratio. A second indicator is assessed on behalf of the World Bank [111],
measuring a country’s governance along three dimensions: Political Stability (PS, indicating the
likelihood that the government will be destabilised or overthrown), Voice & Accountability (VA,
quantifying to which extent citizens can select their government) and Government Effectiveness
(GE, measuring the quality of policy formulation and implementation). Note that none of these
indicators includes any prior dependence on the cabinet size. Fig. 7.1 (c)-(f) show the average
values for these 4 indicators versus cabinet size. Note that the value for these indicators falls
below the global average (line) when cabinet size exceeds 20 (Parkinson’s coefficient of ineffi-
ciency). Interestingly the frequency of cabinet-sizes peaks at this point and slightly below, see
Fig. 7.1 (a),(b). This indicates that cabinets are most commonly constituted with memberships
close to Parkinson’s coefficient, but not above it and thus lends further support to the conjecture
that a cabinet’s functioning undergoes a remarkable change at this point. These observations
strongly suggest a correlation between increasing cabinet size and a declining overall quality
in governance and achievements for human development. To assert statistical significance of
the data we compute the correlation coefficient of size and the 4 indicators, and the p-value
for the null-hypothesis that size and indicator are not correlated. For the HDI, PS, VA, and
GE we find correlation coefficients of ρ = −0.88,−0.88,−0.82,−0.73 and significance levels of
p = 4.8× 10−11, 7.3× 10−12, 2.9× 10−9, 7.8× 10−7, respectively. Our results are thus significant
against the null-hypothesis up to a p-value of p ≤ 10−6. Let us stress once more that this does
not assert any causal relationship. The conclusion is that cabinet size can serve as an indicator
for the overall quality of policy formulation and human development indices. To exclude the
possibility that we observe this due to a trivial super-correlation with e.g. size of the coun-
tries, we compute the corresponding correlation coefficient and p-value for the area (ρ = 0.24,
p = 0.16) and population (ρ = 0.15, p = 0.40), i.e. no significant correlations.

7.3 Opinion formation and group size

How can these facts be understood? Why should a cabinet size around 20 be special in the sense
that it separates countries ranking above and below the global average of the studied indicators?
The idea of this paper is to show in a simple model that in opinion formation processes there
exists a critical number of individuals, above which it becomes exceedingly difficult to reach
consensus in the group.

In general cabinets are subject to a law of growth. This has been elaborated in detail for
British cabinets from the year 1257 up to the 20th century by Parkinson [108]. In a sense
cabinets reflect the most important interest groups in a country. Besides core ministries (like
finance, inner and outer affairs, etc.), which exist in nearly all countries, some interests strongly
depend on the region’s characteristics. OPEC countries, for example, sustain a ministerial post
for petroleum; countries with mixed ethnicities sometimes have a minister for each of them. A
secretary for land mining or aviation will more probably be found in Africa than in Europe, to
name only a few examples. Also the political climate is represented, e.g. the number of parties
taking part in the government. On the one hand there is always pressure from outside groups
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Table 7.1: Number of members on the highest level of the executive committee as of 10/09/2007.
Size Countries
5 Liechtenstein, Monaco
6 Macao, Nauru
7 Cook Islands, Micronesia, Netherlands Antilles, Switzerland, Tuvalu
9 Aruba, China, Palau, Seychelles
10 Andorra, Comoros, Dominica, Saint Kitts and Nevis, San Marino
11 Antigua and Barbuda, Belize, Cyprus, Marshall Islands, Timor-Leste
12 Bahamas, Bermuda, Grenada, Iceland, Kiribati, Paraguay, Saint Vincent and Grenadines
13 Argentina, Bangladesh, Brunei, Hong Kong, Japan, Luxembourg, Malta, Nepal, Nic-

aragua, St Lucia, Sao Tome & Principe, Samoa
14 Austria, Estonia, Guatemala, Kuwait, Lithuania, Quatar, Tonga, Uruguay, Vanatu
15 Barbados, Belgium, Cape Verde, Colombia, Croatia, El Salvador, France, Georgia, Hun-

gary, Ireland, Rwanda
16 Albania, Botswana, Czech Rep., Fiji, Germany, Jamaica, Kyrgyzstan, Panama, Romania,

Singapore, Slovakia, Swaziland
17 Gambia, Laos, Montenegro, Netherlands, Portugal, Spain, Tajikistan, United Kingdom,

United States
18 Armenia, Bolivia, Central African Rep., Costa Rica, Djibouti, Greece, Haiti, Peru, Slove-

nia, Trinidad and Tobago
19 Bosnia and Herzegovina, Bulgaria, Denmark, Dominican Rep., Eritrea, Kazakhstan,

Latvia, Lesotho, Libya, Macedonia, Mexico, Moldova, Mongolia, Norway, Suriname
20 Finland, Guinea, Guyana, Honduras, Liberia, Mauritius, Poland, Solomon Islands, Thai-

land
21 Bahrain, Chile, Guinea-Bissau, Iraq, Morocco, Nigeria, Philippines, Russia, Uzbekistan
22 Ethiopia, Korea (South), Lebanon, Malawi, Sweden, Vietnam
23 Burundi, Maldives, Saudi Arabia, Sierra Leone, Zambia
24 Benin, Israel, Mozambique, Namibia, Ukraine, United Arabian Emirates
25 Jordan, Mauritania, Serbia, Taiwan, Togo, Turkey, Uganda
26 Azerbaijan, Ecuador, Tanzania
27 Australia, Brazil, Italy, Kenya, Malaysia, New Zealand, Papua New Guinea, Syria, Tunisia,

Turkmenistan
28 Afghanistan, Madagascar, Mali
29 Equatorial Guinea, South Africa, Venezuela
30 Burkina Faso, Cambodia, Congo (Rep. of), Egypt
31 Angola, Belarus, Chad, Ghana
32 Algeria, Canada, Cuba, Somalia
33 Iran, Sudan, Zimbabwe
34 Korea (North), Niger, Oman, Yemen
35 Burma (Myanmar), Cote d’Ivoire, Indonesia
36 Cameroon, Gabon, India, Senegal
38 Pakistan
40 Congo (Dem. Rep. of)
54 Sri Lanka

95



0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

Cabinet Size

F
re

qu
en

cy

World

(a)

10 20 30 40
0

2

4
Africa

10 20 30 40 50
0

5

Asia

10 20 30
0

5

Europe

10 20 30
0

2

4
North America

10 15 20 25
0

2

4
Oceania

Cabinet Size
15 20 25

0
1
2
3

South America

Cabinet Size (b)

0 10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cabinet Size

H
um

an
 D

ev
el

op
m

en
t I

nd
ic

at
or

ρ = −0.877 
p = 4.8 ×  10−11 
k = −0.0077

0 10 20 30 40 50 60

−2

−1

0

1

2

Cabinet Size

P
ol

iti
ca

l S
ta

bi
lit

y

ρ = −0.88 
p = 7.3 ×  10−12 
k = −0.069

0 10 20 30 40 50 60

−2

−1

0

1

2

Cabinet Size

V
oi

ce
 &

 A
cc

ou
nt

ab
ili

ty

ρ = −0.82 
p = 2.9 ×  10−9 
k = −0.054

0 10 20 30 40 50 60

−2

−1

0

1

2

Cabinet Size

G
ov

er
nm

en
t E

ffe
ct

iv
en

es
s

ρ = −0.73 
p = 7.8 ×  10−7 
k = −0.039

Figure 7.1: Histograms of (a) the world’s cabinet sizes, (b) for each continent show that the
cabinet sizes for Europe, America and Oceania follow the same pattern with the
vast majority of countries lying below 20, whereas in Africa and Asia cabinets tend
to grow beyond this point. There is no cabinet with eight members. Cabinet size
is negatively correlated with (c) the Human Development Indicator, (d) Political
Stability, (e) Voice & Accountability and (f) Government Effectiveness. For each
indicator the line separating countries ranking above and below the global average
lies around 20. The correlation is highly significant to a p-value of p ≤ 10−6.
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seeking to be included and represented in decision-making processes, on the other hand it is
obvious that the larger the decision-making body, the more difficult consensus is reached. It
is one of the classical challenges of governance to find a balance between these two competing
forces: wide representation and effective leadership.

It is a trivial observation that the higher the membership of the group, the higher the probabil-
ity that the group may be divided into internal factions and will not reach consensus. However,
it is not clear how the incremental change in this likelihood by enlarging a group of size N to
N + 1 depends on N . If one additional voting member would lead to a significant decrease in
consensus finding, there should be resistance to enlargement, if an additional member does not
further complicate the opinion formation process, there should be no reason to exclude him/her.

In case there exists a characteristic group size below which adding one member significantly
decreases the ability to reach consensus, and above which this incremental decrease becomes
smaller, it is reasonable to conjecture that this characteristic size is critical for the functioning
of a decision-making group. In case of a cabinet, above this critical size there is less restriction
to the admission of more representatives due to outside pressure, which in turn implies that
a loss in efficiency is more likely. If a cabinet exceeds this point (coefficient of inefficiency) it
gradually loses its ability to be an institution where decisions are reached and remains merely
a nominal executive. In this case the effective executive power might not be in the hands of
governments anymore.

Speaking in general terms, we study finite-size effects of the group size on the probability to
obtain consensus in an opinion formation process. We will now describe our main results in
showing that such a critical point does exist within a large class of simple opinion formation
models.

7.4 A model for opinion formation in small-world groups

In recent years physics has repeatedly crossed disciplinary boundaries toward a quantitative
understanding of social phenomena [112, 113, 106]. A topic of mayor interest is to uncover the
relevant mechanisms driving collective decision-making processes, the study of opinion formation
models [83]. The system is composed of interconnected agents, holding an internal state e.g. a
binary opinion (like a spin in the Ising model), which interact by a given microscopic dynamical
rule [85, 84, 88, 86, 91]. These local rules quantify the social influence individuals have upon
each other. Depending on how these rules and inter-agent networks are specified, the system
will evolve either toward a state given by maximal consensus [114], or alternatively the system
may get stuck in a so-called ’frozen state’ which is usually strongly determined by the initial
conditions of the system [1]. In the latter model the group is composed of N individuals (nodes
in a network), each one holding an internal state 0 or 1, for example a binary (yes/no) vote
on a given topic. Two agents who have social or informational influence upon each other are
connected by a link in the network. For the inter-agent network we chose a small-world network
[115] where each node can potentially influence k other nodes in its local neighborhood and, with
some probability L, also nodes in the more distant neighborhood. For example, imagine agents
having the same party affiliation (local neighborhood) where they can influence each other in
debates etc. With a certain probability (L) these agents might also talk to cabinet members
of the opposite party, due to e.g. overlapping responsibilities, sympathy, etc. An impressive
number of social networks was shown to be of the small-world type [116], for the remainder we
consider this network as static over time. As a dynamical rule we implement a ’majority rule’
with a predefined threshold [104, 1] h ∈ (0.5, 1]. Here one node adopts the state of the majority
of its neighbours only if this majority exceeds the fraction of its neighbors hk, otherwise the
node’s internal state stays unchanged. The threshold h takes statistically account of various
determinants whether an agent will conform to the majority’s opinion. These determinants
include the social status or prestige of the neighbors, the importance of the decision or the
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Figure 7.2: Simulation results for the dissensus parameter D (N) versus cabinet size. For N < 10
consensus is always reached except in the ’Charles I’ scenario for N = 8. As cabinet
size increases dissensus becomes more likely. For 10 ≤ N < 18 each new member
adds a dissensus-increment of k1 = 0.013. The range between 19 and 21 (position of
the conjectured coefficient of inefficiency) is shaded. Beyond this size the increment
in dissensus by each new member is lowered to k2 = 0.0065, which confirms the
existence of a critical point. This point separates two scenarios where in the first an
increase in size has a comparably large negative impact on efficiency, an effect that
diminishes in the second scenario where the admission of a new member has a minor
effect.

prepotency of the group’s induced response [102, 103]. For h > 0.5 the pure majority rule is
recovered [85]. We choose L = 0.1, h = 0.6 and k = min [N − 1, 8]. Parameter dependence of
our results is discussed in the appendix, however, most findings are robust.

The evolution of this model is given by a random sequential application of the dynamical rule.
In one iteration the described update procedure is applied once to each node in a random order.
After a sufficient number of iterations the system will reach a stationary state where no more
updates take place. The question here is whether this state is consensus, i.e. all nodes are in the
same internal state, or not. The initial condition is determined by the fraction of nodes in the
two respective states, let us call the number of nodes initially in 0 Ai and the final population
in this state Af . For our purposes we want to determine the group’s general ability to avoid
dissensus. Therefore we define (as the order parameter) the ’dissensus’ parameter,

D (N) =
〈

Θ
(

1− max (Af , N −Af )
N

)〉

Ai

, (7.1)

where Θ (x) is the Heaviside step function and 〈·〉Ai denotes the average over all possible initial
conditions. Ai is drawn with uniform probability from (0, 1, . . . N). According to this the
opinions are randomly assigned to the individual nodes. D (N) is the expectation value of a
final state without consensus and measures the group’s proneness to end up in dispute. It only
depends on the group-size N . Dissensus vs. N is shown in Fig. 7.2 for fixed k. For groups of
less than 10 members consensus can always be reached, with the notable exception of N = 8
(we refer to this case as ’Charles I’. Why? See explanation below). For 10 < N < 20 increase
of group size leads to increasing dissensus with a constant rate (slope) of k1 = 0.013. This
behaviour changes at N ∼ 20, where increments become considerably smaller; a linear fit yields
a slope of k2 = 0.0065.

These findings are closely related to the changes the topology undergoes with different group-
sizes. For N < 10 the network is fully connected - each member can directly influence each
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other. The choice of the update threshold h assures that consensus can be reached in this range
for each N (with the exception of N = 8). As the group grows there appear nodes which are
not directly linked. Order phenomena emerge. A necessary prerequisite for dissensus is that
there is a minority of at least five members (for the chosen h and k, since 5 > hk = 0.6). When
five adjacent nodes hold the same state none of them can be updated anymore (since each of
them will have maximally four neighbours in a different state which is not enough to reach a
majority). In case one state is dominating in a local neighbourhood this may establish a stable
cluster of at least five nodes, depending on the actual update sequence. These sensitivities
concerning the initial distribution of nodes interplaying with the random sequence of updates
makes it impossible to solve the model analytically, but on the other hand give rise to the
observed nontrivial behaviour. With the avenue of a new group member more possibilities are
opened up to establish stable clusters of different opinions. This is nothing but the forming of
internal coalitions. It is straight-forward to see what happens if group size passes the critical
region between 19 and 21. At this point two nodes arise which do not have any neighbours
in common. Beyond this size also four internal groupings can be established. In other words,
the number of ways to reach a dissensus has significantly expanded. The admission of one
more member will thus have a lesser impact than in the smaller group. This constitutes the
existence of a critical size which arises at the point where independent conversations between
nodes can take place in the network. For large group sizes, as the maximal distance between
two nodes increases (their correlation decreases), it becomes almost inevitable that balanced
initial distributions lead to internal coalitions. These results hold, in principle, for every model
of the opinion formation process which allows the formation of stable clusters, i.e. introduces
(realistic) spatial correlations. Here this feature is incorporated by highly clustered small-world
structure in combination with the random sequential updates.

The time has arrived to mention the case of N = 8. As stated above this is the only feasible
cabinet size which has been avoided by all countries now and fifty years ago. Without claiming
any scientific relevance of this point, it is amusing that with our choice of h = 0.6 is is possible
to reproduce exactly this effect. In this case each node has seven neighbours and the network
is fully connected. When the initial distribution is given by Ai = 4 the majority seen by the
members is 4/7 ≈ 0.57 < h, so the threshold is not exceeded. This accounts for one out of nine
initial distributions and we find D (8) = 1

9 = 0.1. In British history this number was chosen
only once for a cabinet [108]. It might not come as a surprise that this occurred under the reign
of Charles I, King of England, Scotland and Ireland, who became famous for being beheaded
after advocating the Divine Right of Kings, levying taxes without the Parliament’s consent and
therefore triggering the First English Civil War [117].

7.5 Description of the datasets

7.5.1 Cabinet Size

The cabinet size for 197 self-governing countries and territories is extracted from a weekly
updated database provided by the CIA [110], as of November 9, 2007. We are interested in the
number of persons in the highest executive committee. This accounts for a country’s cabinet
where we counted the number of Minister or Secretaries including the Prime Minister (if he is a
member of the cabinet, as it is mostly the case but not always, e.g. Switzerland) and his vice(s).
We do not include members of cabinets who hold a redundant office (e.g. Minister-Assistants
or Minister of States). Attention has to be paid to the fact that in many cases the same person
holds more than one office in a cabinet, we always count the number of persons and not offices.
The obtained values are listed in Tab. 7.1. The only country where data is available but not
included in our considerations is Bhutan. Here all but three members of the cabinet withdrew
their office due to a new law stating the illegality of political party affiliation for cabinet members.
The current caretaker regime does not formulate new governmental policies and only maintains
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Figure 7.3: Evolution of the opinion formation process in groups of three different sizes (N =
15, 25, 35). Each individual is a box, whose opinion is either black or white. For
each value of N we show 4 independent update-runs, all starting with the same
initial configurations and the same network. In each run we show time steps 0,1,2,3,
where time 0 corresponds to the initial configuration. Line 1 is obtained by the
iterative application of the opinion formation protocol on the initial configuration in
a random sequence of updates. The next lines (2,3) in are obtained in the same way.
The particular sequence is seen to play a crucial role for the final state at time 3.
Two different trajectories leading to consensus (all colors white or black at time 3)
or dissensus (mixed colors) are shown for each size. It becomes apparent that once a
cluster of five neighboring nodes with the same internal state has been established,
this is stable over time. The question of con-or dissensus is thus equivalent to asking
whether clusters with different states can appear (i.e. internal coalitions are built)
which in turn crucially depends on the update sequence. Groups having passed the
coefficient of inefficiency, as it is the case for N = 25 and N = 35, allow the formation
of four clusters.
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Figure 7.4: The diagrams for the cabinet size versus the Human Development Indicator and the
three governance indicators Political Stability, Voice & Accountability and Govern-
ment Effectiveness exhibit the same dependencies. For each indicator the correlation
coefficient ρ, p-value and the slope k are listed. The confidence levels vary between
p ≤ 10−6 and p ≤ 10−11. The error bars show the standard deviations stemming
from the averaging (see text), when the data comes from only one country the lit-
erature’s standard deviation is used (with the exception of the HDI, where no error
margins are provided). The horizontal dashed lines show the global average, the
positions of the vertical lines are given by the intersections between the linear fit
and this average. For all indicators these cabinet sizes are found between 18 and 20.

day-to-day business.

7.5.2 Human Development Indicator

The Human Development Indicator (HDI) is published in the Human Development Report
[109] on behalf of the United Nations Development Programme (UNDP) on an annual basis.
It compares the achievements in human development of 173 countries along three dimensions.
The indicator is equally weighted composed of the standard of living (measured by the gross
domestic product), knowledge (as given by the adult literacy rate and gross enrolment ratio)
and a long and healthy life (given by the life expectancy at birth). Each index is normalized on
a scale between 0 and 1, the HDI is then the arithmetical mean of those three. Unfortunately,
no standard deviations are available.

7.5.3 Governance Indicators

The World Bank publishes annually six dimensions of governance in the Worldwide Governance
Indicator research project. We use current data [111] based on several hundred individual
variables from 33 separate data sources by 30 different organisations. From this six aggregate
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indicators are constructed. We consider in the present work three dimensions of governance.
Political Stability and Absence of Violence. This measures the perceptions of the likelihood

that the government will be destabilised or overthrown by non-constitutional means. Aggre-
gates for this indicator include the military coup risk, armed conflicts, social unrest, internal
and external conflicts, government stability, political troubles, fractionalisation of the political
spectrum, risk of political instability, etc.

Voice & Accountability. This measures to which extent people are able to participate in the
selection of their government as well as basic human freedoms. Aggregates include political
rights, freedom of the press, government censorship, military in politics, democratic account-
ability, institutional permanence, representativeness, hardening of the regime, transparency of
government policies, etc.

Government Effectiveness. This measures the quality of public and civil services, the degree
of independence from political pressures and the quality of policy formulation. Aggregates
are government instability and ineffectiveness, institutional failure, e-government, quality of
bureaucracy, public spending composition, satisfaction with public transport systems, policy
consistency and forward planning, management of public debt, health services and education,
trust in government, etc.

The governance indicators are measured in units following a normal distribution with zero
mean and a standard deviation of one in each period, the vast majority of points lies between
−2.5 and 2.5, standard deviations are provided.
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Figure 7.5: The regional correlations in both, the indicators and the cabinet size, can also be
seen from the raw data. Each point represents one country with coordinates given
by the cabinet size and the respective indicator. The colour corresponds to the
continent where the capital is found to be. Countries from Europe, America and
Oceania dominate the north-western regions of the diagrams, countries from Asia
and Africa are more likely to be found in the south-eastern regions.

Fig. 7.4 shows the interdependency between cabinet size and these indicators. For each size the
mean values and standard deviations of the indicators are computed (standard deviations from
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the literature are used if only one country has the respective size, since this error is comparably
small to the deviations from our averaging). From these values we computed the correlation
coefficient ρ and the p-value. Subsequently we bin the cabinet sizes with an interval of three
and compute the error bars by Gaussian error propagation.

Let us discuss the implications of these correlations in more detail. These governance indi-
cators give us a tool to investigate a country’s political climate in more concise directions than
the Human Development Indicator. The indicator Political Stability can be interpreted as a
measure for the influence of constitutional and non-constitutional forces on a destabilisation of
the government and is therefore related to the number of interests and interest groups that have
to be satisfied. This is also reflected in the composition of the cabinet, thus the negative correla-
tion with the cabinet-size. A naive interpretation of our results makes the conclusion tempting
that a dictatorship would be the most effective form of decision-making. The indicator Voice &
Accountability, however, reveals that exactly the opposite holds. It quantifies to which extent
citizens have elected their current leaders. A country with a low value here is thus more likely
to be reigned by a sovereign leader or council which often confers executive, legislative and
jurisdicative powers onto one hand. In this case the nominal executive council, the cabinet, is
less influent and important than in countries where it is indeed the highest executive council.
We find that this tends to increase the membership of the cabinet which can be understood
through the minor importance and therefore exclusivity of it. Government Effectiveness gives
us insight into the quality of policy formulation in the government and is thus directly related
to a cabinet’s ability to find consensus on an issue in question and advance it reasonably. Let
us stress that the actual size of the cabinet is not included in the aggregates. Furthermore,
this indicator also measures how efficient this policies are implemented from the government
downward to the citizens.

In Fig. 7.5 we show the raw data for the indicators versus cabinet size. A colour code for
the continents shows regional clustering of the points. Countries from Europe, America and
Oceania are more likely to be found in the north-western region of the plots than countries from
Asia and Africa.

7.6 Simulation details

The numerical results are obtained by counting the frequency of final configurations without
consensus out of 105 realisations. In each run we first create a regular 1D ring where each node
is connected to its k nearest neighbors. Each link is then deleted with probability L and new
links are randomly created such that there are Nk links in total and each node has exactly k
links again.

Influence of the model parameter. The number of neighbours k determines the position of the
critical point. The driving mechanism is the allowance for internal coalitions, i.e. the formation
of stable clusters. When the network is fully connected we either encounter consensus or a
frozen system, depending on h. Our choice of h = 0.6 is primarily motivated by giving rise to
a frozen state for a fully connected network with N = 8 and a balanced initial distribution, i.e.
an equal number of nodes being initially in state 0 and 1. For other choices one may encounter
different frozen states. For fixed model parameters and increasing group sizes there is always a
point where stable clusters begin to emerge. It is this point where the increase in dissensus not
stemming from an initially frozen state sets in. Note that for our choices in the case of N = 10
the main contributions in dissensus still com from frozen systems, here an evolution toward a
dissensus state is highly unlikely. Finally the critical point, where an increase in group size
leads to considerably smaller increments in the dissensus, can be found when four cluster can be
formed for given h and k. With increasing L the topology becomes less regular and approaches
a random graph for L = 1. In other words, the neighbourhoods of two neighbouring nodes are
becoming more independent with increasing L and local correlations diminish. Consensus can
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be easier reached for networks with higher L. Fig. 7.6 shows D (N) for different parameter
settings and confirms the above stated observations.
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Figure 7.6: D (N) for four different settings of the model parameters (k, h, L) are shown. As a
reference we show D (N) for (8, 0.6, 0.1) again (pluses). Decreasing the connectivity
of the group‘s network, parameter setting (6, 0.6, 0.1), circles, shifts the position
of the critical point and increases the tendency toward dissensus. Adjusting the
threshold such that we recover the pure majority rule, (8, 0.5 + ε, 0.1), crosses, has
no impact on D (N) due to our choice of k, except that we do not find the ’Charles
I’ scenario in this case. Of course, for the same k, L and h > 5/8 = 0.6125 we
would find an increase in dissensus. Lowering L and therefore increasing the spatial
correlations in the network hardens the finding of consensus too, as can be seen from
the settings (8, 0.6, 0.05) (diamonds).
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8 Summary

Evolutionary thinking is based on well-grounded observations of how systems composed of a
large number of interconnected items behave on a collective level. New items come constantly
into being, interact with already existing ones and get accordingly selected on the basis of how
’useful’ or ’fit’ they are in their environment. These interactions in turn possibly alter the
boundary conditions of the entire system and therefore bring new innovations forth. In recent
decades this line of reasoning transcended from the fields of biology and population ecology into
social, economic and technological contexts.

We explained what traditional quantitative attempts to study such systems achieved – but
also what they did not. A physicist is accustomed to treat dynamical systems by extracting
the relevant variables, specifying initial and boundary conditions and then sitting down and
calculate. Evolutionary systems defy this approach when it comes to the study of innovations.
We argued that items are manifestly contextual in the sense that their functional role is first
and foremost defined by their environment and may radically change with it. To talk slang,
boundary conditions co-evolve. We learned that the ’fitness’ or ’utility’ of an item can be
related to the adjacent possible which is the potential of all new substitutes or complements
a new item might bring to a system. We quantified this concept with interaction indication
functions and formulated a variational principle on this basis. Using this principle, we employed
the statistical physics machinery to define a free energy for evolutionary systems allowing us to
obtain asymptotic diversities via a simple minimization procedure.

We showed how based on the current understanding of constituent relations in evolutionary
systems we can define a general interaction scheme. We suggest to go beyond the usual network
approach and regard the topology of evolutionary systems to be defined as an adjacency matrix
on the power set of all existing items. We studied versions of this model both analytically and
empirically in economic, biological and social settings. We are able to reproduce a significant
number of stylized facts found in real-world natural or man-made systems, spanning orders of
magnitudes.

Finally we showed how our master equation approach to quantify the adjacent possible can
be used in solving an opinion formation problem and applied this in the context of political
decision-making as envisaged by Parkinson’s Law as a semi-satiric reprise.
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7.2 Simulation results for the dissensus parameter D (N) versus cabinet size. For
N < 10 consensus is always reached except in the ’Charles I’ scenario for N = 8.
As cabinet size increases dissensus becomes more likely. For 10 ≤ N < 18 each
new member adds a dissensus-increment of k1 = 0.013. The range between 19 and
21 (position of the conjectured coefficient of inefficiency) is shaded. Beyond this
size the increment in dissensus by each new member is lowered to k2 = 0.0065,
which confirms the existence of a critical point. This point separates two scenarios
where in the first an increase in size has a comparably large negative impact on
efficiency, an effect that diminishes in the second scenario where the admission of
a new member has a minor effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Evolution of the opinion formation process in groups of three different sizes (N =
15, 25, 35). Each individual is a box, whose opinion is either black or white.
For each value of N we show 4 independent update-runs, all starting with the
same initial configurations and the same network. In each run we show time
steps 0,1,2,3, where time 0 corresponds to the initial configuration. Line 1 is
obtained by the iterative application of the opinion formation protocol on the
initial configuration in a random sequence of updates. The next lines (2,3) in are
obtained in the same way. The particular sequence is seen to play a crucial role
for the final state at time 3. Two different trajectories leading to consensus (all
colors white or black at time 3) or dissensus (mixed colors) are shown for each
size. It becomes apparent that once a cluster of five neighboring nodes with the
same internal state has been established, this is stable over time. The question of
con-or dissensus is thus equivalent to asking whether clusters with different states
can appear (i.e. internal coalitions are built) which in turn crucially depends on
the update sequence. Groups having passed the coefficient of inefficiency, as it is
the case for N = 25 and N = 35, allow the formation of four clusters. . . . . . . 100
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7.4 The diagrams for the cabinet size versus the Human Development Indicator and
the three governance indicators Political Stability, Voice & Accountability and
Government Effectiveness exhibit the same dependencies. For each indicator the
correlation coefficient ρ, p-value and the slope k are listed. The confidence levels
vary between p ≤ 10−6 and p ≤ 10−11. The error bars show the standard devi-
ations stemming from the averaging (see text), when the data comes from only
one country the literature’s standard deviation is used (with the exception of the
HDI, where no error margins are provided). The horizontal dashed lines show the
global average, the positions of the vertical lines are given by the intersections
between the linear fit and this average. For all indicators these cabinet sizes are
found between 18 and 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5 The regional correlations in both, the indicators and the cabinet size, can also
be seen from the raw data. Each point represents one country with coordinates
given by the cabinet size and the respective indicator. The colour corresponds to
the continent where the capital is found to be. Countries from Europe, America
and Oceania dominate the north-western regions of the diagrams, countries from
Asia and Africa are more likely to be found in the south-eastern regions. . . . . . 102

7.6 D (N) for four different settings of the model parameters (k, h, L) are shown. As
a reference we show D (N) for (8, 0.6, 0.1) again (pluses). Decreasing the connec-
tivity of the group‘s network, parameter setting (6, 0.6, 0.1), circles, shifts the po-
sition of the critical point and increases the tendency toward dissensus. Adjusting
the threshold such that we recover the pure majority rule, (8, 0.5 + ε, 0.1), crosses,
has no impact on D (N) due to our choice of k, except that we do not find the
’Charles I’ scenario in this case. Of course, for the same k, L and h > 5/8 = 0.6125
we would find an increase in dissensus. Lowering L and therefore increasing the
spatial correlations in the network hardens the finding of consensus too, as can
be seen from the settings (8, 0.6, 0.05) (diamonds). . . . . . . . . . . . . . . . . . 104
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