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Chapter 1

Introduction

1.1 Nitrification

Nitrification is a fundamental step of the global biogeochemical nitrogen cycle (Fig.

1.1). This two-step process is catalyzed by microorganisms, which use the oxidation of

reduced inorganic nitrogen compounds as their major energy source (Bock and Wagner

2006). Nitrification is long known to be catalyzed by two physiologically distinct groups

of microorganisms: aerobic, chemolithoautotrophic ammonia-oxidizing bacteria (AOB)

and nitrite-oxidizing bacteria (NOB) (Juretschko 2000; Koops et al. 2003; Adamczyk

2005). Ammonia oxidizers catalyze the first and rate-limiting step of nitrification, the

oxidation of ammonia to nitrite, whereas nitrite oxidizers perform the second step of

nitrification, the oxidation of nitrite to nitrate (Bock and Wagner 2006). These two

functional groups are widely distributed in various environments, including fresh water,

seawater and salt lakes, soils, rocks, masonry and wastewater treatment systems and

buildings (Kowalchuk and Stephen 2001; Bock and Wagner 2006).

Besides aerobic ammonia oxidation, anaerobic ammonium oxidation (Anammox) to

dinitrogen gas with nitrite as electron acceptor was described (Van de Graaf et al. 1990;

Mulder et al. 1995) and the responsible bacteria a few years later identified as members

of the phylum Planctomycetes (Strous et al. 1999). These obligate anaerobic organisms

are now known to be important players in the marine nitrogen cycle (Dalsgaard et al.

2005; Kuypers et al. 2003; Schmid et al. 2007; Lam et al. 2007), freshwater ecosystems

(Penton et al. 2006) and wastewater treatment plants (Jetten et al. 2001).

In addition to autotrophic nitrification, various chemoorganotrophic bacteria, fungi

and algae are capable of ammonia oxidation. This so called heterotrophic nitrification

is a cometabolism that is not coupled to energy conservation (Wood 1988; Bock and

1



1.1 Nitrification 2

Figure 1.1: The biogeochemical nitrogen cycle.

Wagner 2006).

Since the first isolation of nitrifying microorganisms in the late 19th century, it has

been assumed that all autotrophic ammonia oxidizers are within the Bacteria (Jetten

2008). However, metagenomic surveys of soil and marine samples provided the first

genetic hints that some crenarchaeotes might be capable of ammonia oxidation (Venter

et al. 2004; Treusch et al. 2005; Schleper et al. 2005). Finally, Könneke et al. (2005)

could prove that a member of this phylum is capable to aerobically oxidize ammonia.

This radically changed the view on the microbial players involved in aerobic ammonium

oxidation, as reviewed by Nicol and Schleper (2006) and Jetten (2008). Until now, no

nitrite-oxidizing archaea have been discovered.

Ammonia- and nitrite-oxidizing microorganisms (AOM, NOM) often thrive in the same

environment, but are adapted to separate niches. In general, they are adapted to

different ammonium and nitrite levels (Schramm et al. 1999; Maixner et al. 2006;

Hatzenpichler et al. 2008) and often differ in their affinity to the respective substrate.

Among other factors that are responsible for the distribution of AOM and NOM are

temperature, pH, oxygen and salinity (Alawi et al. 2007; Santoro et al. 2008; Nicol

et al. 2008; Erguder et al. 2009).
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1.1.1 Ammonia oxidation

Ammonia oxidation is a two-step process. In AOB, ammonia monooxygenase (Amo),

a membrane-associated enzyme (Hyman and Wood 1985), catalyzes the oxidation of

ammonia (NH3) to hydroxylamine (NH2OH) (Fig. 1.2). Amo was found to share many

similarities with the particulate monooxygenase (Pmo) of methane-oxidizing bacteria

(MOB) and the enzymes are evolutionary related (Holmes et al. 1995). The second step

is performed by hydroxylamine oxidoreductase (Hao), which oxidizes hydroxylamine

to nitrite (Fig. 1.2), and is located in the periplasmic space but anchored in the

cytoplasmic membrane (Olson and Hooper 1983; Bock and Wagner 2006).

Figure 1.2: Ammonia oxidation reactions catalyzed by Amo and Hao enzymes of AOB.

The ammonia monooxygenase consists of three subunits, AmoA, AmoB and AmoC

which are encoded by genes amoA, amoB and amoC which are organized in an operon.

The AmoA protein is assumed to contain the active site of Amo (Hyman and Arp

1992) and amoC, which is located in the region upstream of the genes amoA/amoB,

might encode a chaperone helping the AmoA and AmoB complex to integrate into the

membrane (Klotz et al. 1997).

Ammonia-oxidizing archaea were shown to encode homologs of the three bacterial

Amo-subunits, however, phylogenetic analysis showed that the novel archaeal proteins

form a separate, distinct group within the Amo/Pmo family (Schleper et al. 2005;

Treusch et al. 2005). AmoA can be used as a phylogenetic and functional marker for

the analysis of both AOB and AOA (Purkhold et al. 2000; Schleper et al. 2005).

Amo uses free ammonia (NH3) as substrate. Free ammonia and ionized ammonium

(NH4
+) represent two forms of reduced inorganic nitrogen, which exist in equilibrium

depending upon pH, temperature and salinity. If the pH is low, the equilibrium shifts to

NH4
+, thus less substrate is available. Amo does not possess high substrate specificity

and is additionally able to oxidize several apolar compounds such as methane, carbon

monoxide and some aliphatic and aromatic hydrocarbons (Hooper et al. 1997). The

broad substrate range of Amo also is responsible for inhibition of ammonia oxidizers

by a variety of substances, like for example ethylene (Bock and Wagner 2006).
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1.1.1.1 Ammonia-oxidizing bacteria (AOB)

The known AOB, characterized by the prefix Nitroso-, are members of the β- or γ-

subclass of Proteobacteria (Bock et al. 1991; Bock and Wagner 2006). The genera

Nitrosomonas (including Nitrosococcus mobilis), Nitrosospira, Nitrosolobus and Ni-

trosovibrio form a closely related monophyletic group within the β-subclass of Pro-

teobacteria, whereas the genus Nitrosococcus is affiliated to a separate branch within

the γ-subclass of Proteobacteria (Purkhold et al. 2000). Ammonia oxidizers have a

slow growth rate and the shortest generation time measured in laboratory experiments

was around 7 h for Nitrosomonas (Bock et al. 1990; Bock and Wagner 2006). Un-

til now, AOB of the γ-subclass have only been detected in the marine environment

(Kowalchuk and Stephen 2001; Koops et al. 2003), whereas AOB of the β-subclass of

the Proteobacteria have a much broader environmental range (Kowalchuk and Stephen

2001; Koops et al. 2003).

1.1.1.2 Ammonia-oxidizing archaea (AOA)

For years, archaea were characterized as obligate extremophiles and to be metabolically

constrained to a few environmental niches. However, this picture changed within the

last two decades, when it was discovered that mesophilic members of the crenarchaeota

are of crucial importance in many moderate environments. Most importantly, marine

crenarchaeotes were shown to represent up to 40% of the bacterioplankton in deep

ocean waters (Karner et al. 2001) and to account for 1-5% of 16S rRNA genes in soil

(Ochsenreiter et al. 2003).

Phylogenetic analysis revealed distinct mesophilic crenarchaeotal lineages, which are

mostly defined from sequences of marine plankton (group I.1A) or soils (group I.1B),

but many other lineages exist (Schleper et al. 2005).

In 2005, Könneke et al. (2005) reported the isolation of “Candidatus Nitrosopumilus

maritimus”that grows chemolithoautotrophically by aerobically oxidizing ammonia to

nitrite, being the first observation of nitrification within the Archaea. The isolation of

this marine crenarchaeote provided definitive proof that members of this phylum are

capable of catalyzing the first step of nitrification (Könneke et al. 2005).

The potential for crenarchaeotal ammonia oxidation has also been confirmed by en-

richment of a member of the Group 1.1b “soil”lineage, “Candidatus Nitrososphaera

gargensis”(Hatzenpichler et al. 2008), and enrichment of Nitrosocaldus yellowstonii,

an ammonia-oxidizing archaeon from a terrestrial hot spring (De la Torre et al. 2008).
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Besides, the sponge symbiont Cenarchaeum symbiosum, affiliated to the marine group

I.1A of crenarchaeota, is likely capable of ammonia oxidation (Hallam et al. 2006).

Until now, archaeal amoA gene sequences have been discovered in a wide range of

habitats, like hot springs (Reigstad et al. 2008; De la Torre et al. 2008), marine

ecosystems (Karner et al. 2001; Francis et al. 2007; Beman et al. 2008), estuaries/fresh

water (Caffrey et al. 2007; Santoro et al. 2008), soil (Leininger et al. 2006; Tourna

et al. 2008) and wastewater treatment plants (Park et al. 2006). Additionally, some

studies demonstrate that archaeal amoA copies are more abundant than bacterial amoA

copies in terrestrial (Leininger et al. 2006) and marine environments (Francis et al.

2005; Wuchter et al. 2006; Mincer et al. 2007) or indicate a higher transcriptional

activity of archaeal over bacterial ammonia oxidizers in soil (Treusch et al. 2005;

Leininger et al. 2006; Tourna et al. 2008), suggesting that AOA play a major role in

the global nitrogen cycle. Recently, Jetten (2008) postulated that due to increasing

indications for the importance of archaeal ammonium oxidizers in the global nitrogen

cycle the contribution of ammonium-oxidizing bacteria has to be reassessed.

Important factors that are responsible for the distribution of AOA are substrate con-

centration and temperature. Archaeal amoA genes were detected in environments

which often contain only low amounts of ammonia, such as open-ocean and hot springs

(Wuchter et al. 2006; Reigstad et al. 2008). Recently, Martens-Habbena et al.

(2009) found that the NH3 concentration required for growth of “Candidatus Nitrosop-

umilus maritimus”is more than 100-fold lower than the minimum concentration re-

quired by cultivated AOB. The affinity of “Candidatus Nitrosopumilus maritimus”for

NH3 is among the highest affinities reported for microbial substrates and is more than

200-fold higher than that of AOB (Martens-Habbena et al. 2009). As stated by

Martens-Habbena et al. (2009), their findings provide evidence for the existence of

oligotrophic ammonia oxidizers among the Crenarchaeota and their ability to compete

for ammonia in the nutrient-low ocean water.

The existence of nonthermophilic (i.e. Nitrosopumilus maritimus and Cenarchaeum

symbiosum) and thermophilic (i.e. “Candidatus Nitrosocaldus yellowstonii”and “Can-

didatus Nitrososphaera gargensis”) members of the ammonia-oxidizing crenarchaeota,

and the detection of archaeal amoA genes at sites with very low (down to 0.2 ◦C) to

high (up to 97 ◦C) temperatures provides an example of the broad distribution and

diversity of AOA and the niches that they can occupy (Erguder et al. 2009).

Recently, Brochier-Armanet et al. (2008) stated that mesophilic crenarchaeota should

be considered as members of a third archaeal phylum, which they named Thaumar-

chaeota. Their suggestion is based on the genome sequence of the mesophilic crenar-
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chaeote Cenarchaeum symbiosum, which differs from hyperthermophilic crenarchaeota

and branches deep in the archaeal tree. Features of the genomes of “Candidatus Ni-

trososphaera gargensis”and “Candidatus Nitrosopumilus maritimus”indicate that these

two organisms might be affiliated to Thaumarchaeota (Spang et al., unpublished).

1.1.2 Nitrite oxidation

Nitrite oxidation is a reversible process performed by the membrane-bound nitrite-

oxidoreductase (Nxr). This enzyme catalyzes the oxidation of nitrite to nitrate (NO3
−;

Fig. 1.3) and, in the absence of oxygen, the reduction of nitrate to nitrite (Bock and

Wagner 2006; Sundermeyer-Klinger et al. 1984). Nxr of Nitrobacter is a heterodimer

containing α (NxrA) and β (NxrB) subunits and is evolutionary related to the Nar-type

dissimilatory nitrate reductase (Kirstein and Bock 1993).

Figure 1.3: Nitrite oxidation as catalyzed by the Nxr enzyme of NOB.

1.1.2.1 Nitrite-oxidizing bacteria (NOB)

The second step of nitrification is catalyzed by aerobic nitrite-oxidizing bacteria (NOB),

which are named with the prefix Nitro-, and catalyze the oxidation of nitrite to nitrate.

Nitrite oxidizers belong to a broad range of phylogenetic groups and until now com-

prise the genera Nitrobacter (α-subclass of Proteobacteria), Nitrococcus (γ-subclass of

Proteobacteria), Nitrospina (tentatively assigned to the δ-subclass of Proteobacteria),

the recently discovered Nitrotoga (β-subclass of Proteobacteria) (Teske et al. 1994;

Alawi et al. 2007) and Nitrospira (phylum Nitrospirae) (Ehrich et al. 1995).

Due to the polyphyletic distribution of NOB in several classes of Proteobacteria and in

the Nitrospirae phylum, it remains difficult to investigate the diversity of NOB using

the 16S rRNA gene as phylogenetic marker. For the Nitrobacter genus, which contains

highly similar 16S rRNA gene sequences, it was recently found that the highly variable

nxrA gene provides a good marker gene for studying molecular diversity of Nitrobacter

(Poly et al. 2007).

Like AOB, NOB have slow growth rates. The shortest generation time measured in

laboratory experiments was around 10 h for Nitrobacter (Bock and Wagner 2006).
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While species of the genus Nitrobacter have been isolated from a variety of environ-

ments, including soil and fresh water, it was long assumed that the other genera were

confined to marine environments (Bock and Koops 1992). However, bacteria affiliated

to the genus Nitrospira were detected in many non-marine habitats and were shown

to be the dominant nitrite oxidizers in wastewater treatment plants (Juretschko et al.

1998; Schramm et al. 1999; Daims et al. 2001).

An example for niche differentiation among NOB provides the different adaptation to

nitrite of Nitrospira and Nitrobacter. It is known that Nitrospira-like bacteria have a

higher affinity for nitrite and represent K strategists, while Nitrobacter species are r

strategists which depend on higher nitrite concentrations (Schramm et al. 1999).

1.2 Aims of this work

1.2.1 Physiological characterization of “Candidatus Nitrosos-

phaera gargensis”enriched from the Garga hot spring

In 2005, Lebedeva and colleagues enriched thermophilic nitrifiers from a hot spring in

Russia and showed that the highest nitrite production was found between 46◦ and 50◦C.

In 2008, Hatzenpichler and coworkers identified an archaeon responsible for oxidizing

ammonia chemoautotrophically in this enrichment. It was affiliated to the soil group

1.I.b of Crenarchaeota and named “Candidatus Nitrososphaera gargensis”(identifying

the sampling site, the Garga hot spring). Mesophilic crenarchaeota are abundant in

various, often nutrient-deprived, environments (Martens-Habbena et al. 2009). Prosser

and Nicol (2008) stated that possible alternative substrates for archaeal Amo have

to be considered and that mesophilic crenarchaeota might use potential alternative

metabolisms and growth strategies.

Therefore, the aim of this study was to characterize the physiology of “Candidatus Ni-

trososphaera gargensis”by determining whether this chemolithoautotrophic AOA has

a potential for mixotrophic growth by using microautoradiography (MAR). Enrich-

ments were kindly provided by cooperation partners from Moscow (Elena Lebedeva)

and Hamburg (Eva Spieck).
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1.2.2 Identification of bacterial contaminants in the Garga hot

spring enrichments

The enrichment containing “Candidatus Nitrososphaera gargensis”has been maintained

for several years, but no pure culture is so far available. This enrichment contained

around 5-7 microbial contaminants, which were assumed to be heterotrophic bacteria.

One of the contaminants was identified as a novel putative AOB (Hatzenpichler 2006).

The aim was to identify all bacteria in order to obtain a pure culture of the AOA,

since information about their identity might help to select against them. In this study,

these stable bacterial contaminants in the enrichment should be identified, further

characterized and if possible, visualized directly by fluorescence in situ hybridization

(FISH).

Additionally, Elena Lebedeva could enrich the putative novel AOB in a separate cul-

ture (“culture 7.3”). As proof of ammonia oxidation was still missing, cultures were

incubated with NH4
+ and 13C-labeled sodium bicarbonate and sent to Vienna to in-

vestigate the samples by using Raman-microscopy.

1.2.3 Attempts to enrich novel nitrifying microorganisms from

environmental samples

The first ammonia-oxidizing archaeon, “Candidatus Nitrosopumilus maritimus”, was

recently isolated by Könneke and coworkers (2005), but until now no archaea perform-

ing the second step of nitrification, the oxidation of nitrite to nitrate, have been found.

Enrichment cultures were performed in order to selectively enrich nitrite-oxidizing ar-

chaea.

Incubation media were inoculated with soil sampled near the Vienna Ecology Center

and sludge from an industrial WWTP located near the Humber estuary (UK). Soil

and sludge enrichments were performed according to a protocol established by Simon

and colleagues (2005), who successfully enriched soil crenarchaeota within a relatively

short time. In a second attempt, enrichment cultures were performed using biofilm

growing on filter installations obtained from a pool of the “Haus des Meeres”(Vienna).

Biofilm was inoculated directly in aquarium water. By using aquarium water as in-

oculum, Könneke et al. (2005) had managed to enrich “Candidatus Nitrosopumilus

maritimus”from an aquarium tank.

The aim was the phylogenetic identification and in situ detection (using FISH) of new

nitrifiers.



Chapter 2

Material and methods

In this study, all buffers, media and solutions were prepared using double distilled and

filtered water (H2Obidist) produced by a water purification facility (MQ Biocel, Milli-

pore Corporation, Billerica, MA, USA). They were autoclaved in a watervapour-high

pressure autoclave (Varioclav 135S, H+P, München Germany) for 20 min at 121◦C

and 1.013×105 Pa pressure and stored at room temperature (RT), if not stated oth-

erwise. Chemicals were purchased and used in p.a. quality, if not stated otherwise.

Substances and solutions unstable at high temperatures were sterile filtered and added

after autoclaving.

2.1 Technical equipment

Table 2.1: Technical equipment used

Equipment Company

Beadbeater BIO 101 Carlsbad, CA, USA
Capillary electrophoresis for sequencing and T-RFLP: Applied Biosystems Lincoln, USA
3130xl Genetic Analyzer
Centrifuges:
Mikro 22 R Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany
Rotina 35 S Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany
Confocal Laser Scanning Microscope LSM 510 Meta Zeiss, Jena, Germany
DCodeTM system for DGGE Biorad, München, Germany
Elektroporator MicroPulserTM Biorad, München, Germany
Gelcarriage:
HoeferTM HE 33 - gel running tray (7 × 10cm) Amersham Biosciences (SF) Corp., USA
Sub-Cell GT UV-Transparent Gel Tray (15 × 15 cm) Biorad, München, Germany
Gel electrophoresis:
HoeferTM HE 33 Mini Horizontal submarine unit Amersham Biosciences (SF) Corp., USA
Sub-Cell R© GT Biorad, München, Germany
Gel Dokumentationsystem MediaSystem FlexiLine 4040 Biostep, Jahnsdorf, Germany
Heatblock VWR Digital Heatblock VWR international, West Chester, PA, USA
Hybridisation oven UE-500 Memmert GmbH, Schwabach, Germany

9
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LabRAM HR800 UV confocal Raman microscope Jobin-Yvon, UK
Laminar flow hood Safe 2010 Modell 1.2 Holten, Jouan Nordic, Allerrd, Dänemark
Microwave MD6460 Microstar
Mixing block MB-102 Biozym Scientific GmbH, Oldendorf, Germany
PCR thermocyclers:
Icycler Biorad, München, Germany
Mastercycler gradient Eppendorf, Hamburg, Germany
pH-Meter WTW inoLab Level 1 Wissenschaftl.-Techn. Werkstätten GmbH, Weilheim, Germany
Photometers:
NanoDrop R© ND-1000 NanoDrop Technologies, Wilmington, USA
Spectralphotometer SmartSpecTM 3000 Biorad, München, Germany
Power device for gelelectrophoresis PowerPac Basic Biorad, Munich, Germany
Orbital shaker Innova 2300 New Brunswick Scientific Co., Inc., Madison NJ, USA
Power device for gelelectrophoresis PowerPac Basic Biorad, München, Germany
Transilluminator UST-30M-8E (312 nm) Biostep GmbH, Jahnsdorf, Germany
tubing pumps IPC-N-4 Ismatec R©, Glattbrugg-Zürich, Switzerland
Ultrasonic homogenizer HD 2070 Bandelin Sonopuls, Bandelin Electronics, Berlin, Germany
Vortex Genie 2 Scientific Industries, New York, USA
Water purification facility: MQ Biocel Millipore Corporation, Billerica, MA, USA
Waterbaths:
DC10 Thermo Haake, Karlsruhe, Germany
GFL Typ 1004 Gesellschaft für Labortechnik GmbH, Burgwedel, Germany
Water purification facility Ultra ClearTM, Barsbüttel, Germany
Watervapour high pressure autoclaves:
Varioclav 135S H+P, München, Germany
Varioclav 25T H+P, München, Germany

2.2 Software

Table 2.2: Software used

Program URL Reference

analySIS getIT http://www.soft-imaging.net/ Olympus Soft Imaging Solutions
e-seq http://www.licor.com/bio/eSeq/DNASeq1.jsp Licor Inc., Lincoln, NE, USA
ARB software-package http://www.arb-home.de/ Ludwig et al. 2004
Basic Local Alignment Search Tool http://www.ncbi.nlm.nih.gov/BLAST/ Altschul et al. 1990
daime http://www.microbial-ecology.net/daime/ Daims et al. 2006
FinchTV http://www.geospiza.com/finchtv/ Geospiza, USA
Labspec software http://www.jobinyvon.de/pressreleases/0611labspec.htm Jobin-Yvon
Peak Scanner http://appliedbiosystems.com/peakscanner Applied Biosystems, USA
Phylip http://evolution.genetics.washington.edu/phylip.html Felsenstein 1993
probeBase http://www.microbial-ecology.net/probebase/ Loy et al. 2003
probeCheck http://www.microbial-ecology.net/probecheck/ Loy et al. 2008
Ribosomal Database Projekt http://rdp.cme.msu.edu/ Cole et al. 2003
TRF-CUT http://www.arb-home.de/ Ricke et al. 2005

2.3 Expendable items

Table 2.3: Expendable items used

Expefndable item Company

Alukappen Rotilabo R© Carl Roth GmbH & Co., Karlsruhe, Germany
Citifluor AF1 Agar Scientific Limited, USA
Cover slips 24 × 50 mm Paul Marienfeld, Bad Mergentheim, Germany
Elektroporations-Küvetten, 0.2 cm Biorad, München, Germany
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Eppendorf Reaktionsgefäße (ERT), various sizes Eppendorf AG, Hamburg, Germany
Erlenmeyer-Kolben DURAN R©, various sizes Schott Glas, Mainz, Germany
Glass bottles Ochs GmbH Glasgerätebau & Laborfachhandel,

Bovenden, Germany
Glascapillaries (50 µl in 5.1 cm) Idaho Technology Inc., Salt Lake City, UT, USA
Injekt R© - F syringe Braun Melsungen AG, Melsungen, Germany
IsoporeTM membrane filters, various sizes Millipore, Ireland
Microseal “A”Film MJ Research, Waltham, MA, USA
Microplate 6 Well/ Flat Bottom Iwaki/Asahi Technoglass, Gyouda, Japan
Mikrotitterplatte MicrosealTM 96, V-Boden MJ Research, Waltham, MA, USA
Nitrate test strips Merck KGaA, Darmstadt, Germany
Nitrite test strips Merck KGaA, Darmstadt, Germany
Petri dishes 94/16 Greiner Bio-one GmbH, Frickenhausen, Germany
pH indicator sticks Macherey-Nagel GmbH & Co, Düren, Germany
Pipet tips, various volumes Carl Roth GmbH & Co., Karlsruhe, Germany
Plasticcuvettes, Halb-Mikro Greiner Bio-One GmbH, Frickenhausen, Germany
Rotilabo R©-Schlauchverbinder Carl Roth GmbH & Co., Karlsruhe, Germany
Sampling vessels, 50 ml Greiner Bio-One GmbH, Frickenhausen, Germany
Schott DURAN R© glass bottles, various sizes Labware Schott AG, Mainz, Germany
slides, 10 Well Paul Marienfeld, Bad Mergentheim, Germany
Sterican R© insulin needle, various sizes Braun Melsungen AG, Melsungen, Germany
Tygon R©-Schlauch ST Carl Roth GmbH & Co., Karlsruhe, Germany

2.4 Chemicals

Table 2.4: Chemicals used

Chemicals Company

4’-6’-diamidino-2-phenylindole (DAPI) Lactan Chemikalien und Laborgeräte GmbH, Graz, A
Acetic acid Carl Roth GmbH & Co., Karlsruhe, Germany
Acrylamide/Bisacrylamide (40%, 37.5:1) Biorad, Munich, Germany
Agar Fluka Chemie AG, Buchs, Switzerland
Agarose, Electrophoresis Grade Invitrogen Corporation, Carlsbad, CA, USA Cambrex
Ammonium chloride (NH4Cl) Carl Roth GmbH & Co., Karlsruhe, Germany
Ammonium molybdate tetrahydrate (NH4)6Mo7O24 × 4H2O Carl Roth GmbH & Co., Karlsruhe, Germany
Ammonium peroxydisulfate (APS) Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Amphotericin B Biochemika, Fluka, Steinheim, Germany)
Ampicilline Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Blocking reagent Roche Diagnostics Wien GmbH, Vienna, Austria
Boric acid (H3BO4) Fluka Chemie AG, Buchs, Switzerland
Bromphenol blue Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Calcium chloride dihydrate (CaCl2 × 2H2O) Mallinckrodt Baker BV, Deventer, Holland
Calciumcarbonat (CaCO3) Carl Roth GmbH & Co., Karlsruhe, Germany
Chloramphenicol Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Cobalt(II) chloride hexahydrate (Cl2Co × 6H2O) Fluka Chemie AG, Buchs, Switzerland
CopperII sulfate 5-hydrate (CuSO4 × 5H2O) Carl Roth GmbH & Co., Karlsruhe, Germany
Cycloheximide Sigma-Aldrich, Steinheim, Germany
Dichloroisocyanuric acid sodium salt dihydrate Sigma-Aldrich, Steinheim, Germany
Di-Sodiumhydrogenphosphate (Na2HPO4) J. T. Baker, Deventer, Holland
Ethanol absolute Merck KGaA, Darmstadt, Germany
Ethidium bromide (EtBr) Fluka Chemie AG, Buchs, Switzerland
Ethylenediamine tetra-acetic acid (EDTA), di-sodium salt Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Iron II sulfate hepta-hydrate (FeSO4 × 7H2O) Carl Roth GmbH & Co., Karlsruhe, Germany
Formamide (FA) Fluka Chemie AG, Buchs, Switzerland
Hydrochloric acid (HCl) Carl Roth GmbH & Co., Karlsruhe, Germany
Hydrogen peroxide (H2O2) 30% Carl Roth GmbH & Co., Karlsruhe, Germany
Isopropanol (2-propanol) Carl Roth GmbH & Co., Karlsruhe, Germany
Isopropyl-b-D-Thiogalactopyranoside (IPTG) Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Magnesiumsulfate heptahydrate (MgSO4 × 7H2O) Merck KGaA, Darmstadt, Germany
Manganese(II)-sulfate monohydrate (MnSO4 × H2O) Carl Roth GmbH & Co., Karlsruhe, Germany
N-(1-Naphthyl)-ethylendiamindihydrochlorid Carl Roth GmbH & Co., Karlsruhe, Germany
N-Allylthiourea Fluka Chemie AG, Buchs, Switzerland
N,N,N’,N’-Tetra-methyl-ethylenediamine (TEMED) Fluka Chemie AG, Buchs, Switzerland
N,N-Di-methylformamide (DMF) Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Nessler’s reagent Fluka Chemie AG, Buchs, Switzerland
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Nickel(II) chloride hexahydrate (NiCl2 × 6H2O) Riedel-de Haen, Seelze, Germany
NuSieve R© 3:1 Agarose (low-melting-point) Bio Science Rockland, Inc., Rockland, ME, USA
Paraformaldehyde (PFA) Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Poly-L-Lysin solution Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Potassium acetate (KCl) J. T. Baker, Deventer, Holland
Potassium dihydrogen phosphate (KH2PO4) Mallinckrodt Baker BV, Deventer, Holland
Sodium bicarbonate (NaH12CO2) Carl Roth GmbH & Co., Karlsruhe, Germany
Sodium bicarbonate (NaH13CO3) Cambridge Isotope Laboratories, Inc., Andover ,USA
Sodium chloride (NaCl) Carl Roth GmbH & Co., Karlsruhe, Germany
Sodium dodecyl sulphate (SDS) Fluka Chemie AG, Buchs, Switzerland
Sodium-di-hydrogenphosphate (NaH2PO4) J. T. Baker, Deventer, Holland
Sodium hydroxid (NaOH) J. T. Baker, Deventer, Holland
Sodium nitrite (NaNO2) Carl Roth GmbH & Co., Karlsruhe, Germany
Sodium nitroprusside dihydrate Sigma-Aldrich Chemie GmbH, Steinheim, Germany
Sodium salicylat Sigma-Aldrich Chemie GmbH, Steinheim, Germany
Streptomycin Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Sulfanilamid Carl Roth GmbH & Co., Karlsruhe, Germany
SYBR R© Green I Cambrex Bio Science, Rockland, Inc., Rockland, ME,USA
Tetracycline hydrochloride Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Tris Carl Roth GmbH & Co., Karlsruhe, Germany
Triton X-100 Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Tryptone Oxoid LTD., Hampshire, England
Urea USB Corp., Cleveland, USA
X-Gal(5-brom-4-chlor-3-indolyl-β-D-galactopyranoside) Carl Roth GmbH & Co., Karlsruhe, Germany
Xylencyanol Sigma-Aldrich Chemie GmbH, Steinhausen, Germany
Yeast extract Oxoid LTD., Hampshire, England
Zinc sulphate heptahydrate (ZnSO4 × 7H2O) Carl Roth GmbH & Co., Karlsruhe, Germany

2.5 Buffers, media and solutions

2.5.1 General buffers

a) TE buffer

Tris 10 mM

EDTA 5 mM

pH was adjusted to 8.0 using HCl.

b) PBS

• PBS stock solution

NaH2PO4 200 mM 35.6 g/l

Na2HPO4 200 mM 27.6 g/l

pH of NaH2PO4 solution was adjusted to 7.2-7.4.

• 1 × PBS

NaCl 130 mM 7.6 g/l

PBS stock solution 10 mM 50 ml/l

H2Obidist ad 1000 ml
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pH 7.2–7.4

• 3 × PBS

NaCl 390 mM 22.8 g/l

PBS stock solution 30 mM 150 ml/l

H2Obidist ad 1000 ml

pH 7.2 –7.4

2.5.2 Media and solutions for enrichment of nitrifiying bacte-

ria and archaea

2.5.2.1 Medium for AOA enrichment

• Stock solution (10 ×), autoclaved

KH2PO4 0.54 g

KCl 0.74 g

MgSO4 × 7 H2O 0.049 g

NaCl 5.84 g

H2Obidist ad 1000 ml

• Trace element solution (TES), sterile filtered

MnSO4 × H2O 0.0338 g

H3BO4 0.0494 g

ZnSO4 × 7 H2O 0.0431 g

(NH4) 6Mo7O24 × 4 H2O 0.0394 g

FeSO4 × 7 H2O 0.937 g

CuSO4 × 5 H2O 0.022 g

H2Obidist ad 1000 ml

• AOA medium

100 ml stock solution

0.5 ml cresol red (0.05 % in 0.01 N HCl), for monitoring pH

1 ml TES
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0.144 g CaCl2 × 2 H2O

(0.0267 g NH4Cl)

H2Obidist ad 1000 ml

2.5.2.2 Medium and solutions for NOM enrichments

• Stock solution

CaCO3 0.07 g

NaCl 5.0 g

MgSO4 × 7H2O 0.5 g

KH2PO4 1.5 g

H2Obidist ad 1000 ml

• Trace element solution (TES)

MnSO4 × H2O 0.0338 g

H3BO3 (BO4) 0.0494 g

ZnSO4 × 7 H2O 0.0431 g

(NH4) 6Mo7O24 × 4 H2O 0.0371 g

FeSO4 × 7 H2O 0.937 g

CuSO4 × 5 H2O 0.025 g

H2Obidist ad 1000 ml

• Nickel Cobalt solution (NiCo)

NiCl2 × 6 H2O 3.8 µM

COCl2 × 6 H2O 7.6 µM

• NOM medium

100 ml stock solution

1 ml TES

1 ml NiCo

ad 1000 ml MQ
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pH 8.6 (the pH was adjusted with NaOH)

The medium was stored for 1 month at room temperature, after which the pH

should be 7.0. Because pH was 8.4, it was adjusted by adding 2 N HCl and 0.2

N NaOH. 2 × 500 ml of NOM medium were sterile filtered trough a 0.2 µM pore

filter and stored at 4◦C.

• NaNO2 solutions

2.5 mM, 6.25 mM, 12.5 mM, 25 mM

The appropriate amount of NaNO2 was weighted and each time diluted in 200

ml of media (1/4 water, 3/4 aquarium water) and sterile filtered.

• 0.3 M NaH12CO3 and NaH13CO3

NaHCO3 was diluted in aquarium water and sterile filtered.

2.5.3 Buffers, solutions and standards for gel electrophoresis

a) TAE buffer

• 50 × TAE

Tris 2 M

Sodium acetate 500 mM

EDTA 50 mM

pH was adjusted to 8.0 with pure acetic acid.

• 1 × TAE

50 × TAE 20 ml/l

H2Obidist ad 1000 ml

b) TAE buffer, modified (Millipore)

• 50 × TAE, modified

Tris 2 M

EDTA 5 mM

pH was adjusted to 8.0 with pure acetic acid.
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• 1 × TAE, modified

50 × TAE 20 ml/l

H2Obidist ad 1000 ml

c) TBE buffer

• 10 × TBE

Tris 890 mM 162.0 g/l

Boric acid 890 mM 27.5 g/l

EDTA 20 mM 9.3 g/l

H2Obidist ad 1000 ml

pH 8.3 – 8.7

• 1 × TBE

10 × TBE 100 ml/l

H2Obidist ad 1000 ml

d) Loading buffer

Ficoll 25% (w/v)

Bromphenol blue 0.05% (w/v)

Xylencyanol 0.05% (w/v)

EDTA 50 mM

e) Ethidium bromide solution

• Ethidium bromide stock solution

10 mg/ml Ethidium bromide (EtBr) in H2Obidist

• Ethidium bromide staining solution

EtBr-stock solution diluted 1:10,000 in H2Obidist
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f) SYBR R© Green I solution

• SYBR R© Green I stock solution

SYBR R© Green I 10,000 × concentrate in DMSO

• SYBR R© Green I staining solution

SYBR R© Green I stock solution diluted 1:10,000 in H2Obidist

g) DNA ladder (KbL)

GeneRulerTM 1kb (Fermentas, St. Leon-Rot, Germany)

2.5.4 Culture media for Escherichia coli (E. coli) strains

a) Luria Bertani medium (LB medium)

Tryptone 10.0 g/l

Yeast extract 5.0 g/l

NaCl 5.0 g/l

H2Obidist ad 1000 ml

pH 7.0-7.5. For solid media 15 g/l agar were added before autoclaving.

b) SOC medium

Tryptone 2 % w/v

Yeast extract 0.5 % w/v

NaCl 10 mM

KCl 2.5 mM

MgCl2 10 mM

MgSO4 10 mM

Glucose 20 mM

2.5.5 Antibiotics

To solid media antibiotic stock solution was added after the temperature of the auto-

claved media dropped to ∼50◦C. Media were stored at 4◦C. Antibiotics were added to

liquid media right before use.
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a) Amphotericin B (Amph B)

Amphotericin B 25 mg/ml

Amph B was added to the medium to reach a final concentration of 25 µg/ml.

b) Ampicillin stock solution (Amp)

Ampicillin 100 mg/ml

Amp was dissolved in 50% EtOHabs and added to the medium to reach a final concen-

tration of 100 µg/µl.

c) Chloramphenicol stock solution (Camp)

Chloramphenicol 170 mg/ml

Camp was dissolved in 50% EtOHabs and added to the medium to reach a final con-

centration of 70 µg/ml.

d) Cycloheximide

Cycloheximide 100 mg/ml

Cycloheximide was added to the medium to reach a final concentration of 100 µg/ml.

e) Streptomycin (Str)

Streptomycin 100 mg/ml

Str was dissolved in H2Obidist and added to the medium to reach a final concentration

of 100 µg/ml.

f) Tetracycline (Tet)

Tetracyclin 50 mg/ml

Tet was dissolved in 50% EtOHabs and added to medium reaching a final concentration

of 100 µg/ml.

2.5.6 Solutions for selection and induction

a) X-Gal stock solution

X-Gal is used for blue/white screening after cloning and allows identification of insert-

positive cells.

X-Gal (5-brom-4-chlor-3-indolyl-β-D-galactopyranoside) 40 mg/ml
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X-Gal was dissolved in di-methylformamide (DMF) and sterile filtered using 0.22 µm

pore size filters (Millipore). The solution was stored in the dark at -20◦C. To identify

insert-positive cells, before cells were plated, 40 µl of X-Gal solution were spread on a

LB-agar plate containing 100 µg/ml ampicillin.

b) IPTG stock solution

Isopropyl-β-D-thiogalactopyranosid (IPTG) 1 M

IPTG was dissolved in H2Obidist, sterile filtered (using 0.22 µm pore size) and stored at

-20◦C. IPTG was used to induce in vivo transcription of 16S rRNA genes which were

cloned into plasmids and transferred into E. coli expression strain JM109 (DE3) (see

2.15 and 2.24). Therefore, 100 µl of IPTG stock solution were added to an actively

growing 100 ml culture (OD600 = 0.334).

2.5.7 Solutions for plasmid isolation

a) P1 buffer

Tris-HCl, pH 8.0 50 mM

EDTA 10 mM

RNAse A 100 µg/ml

b) NaOH/SDS solution

H2Obidist 8 ml

NaOH (2 M) 1 ml

10% SDS 1 ml

c) Potassium acetate/acetate solution

KCl (5 M) 6 ml

H2Obidist 2.85 ml

Acetic acid (pure) 1.15 ml
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2.6 Enrichment of nitrifying microorganisms

2.6.1 Enrichment of nitrifying microorganisms from soil and

sludge

2.6.1.1 Sampling and sample preparation

Two 50 ml Greiner tubes were filled with soil sampled near the Vienna Ecology Center

from a meadow at a depth of approximately 15 cm. The soil was pounded and plant

roots, big fungal hyphae and small stones were removed with sterilized forceps.

Sludge originated from an industrial wastewater treatment plant located near the Hum-

ber, an estuary on the east coast of England, and was kindly provided by Marc Muss-

mann.

2.6.1.2 Cell separation and inhibition of bacterial growth

Different methods for cell separation were combined with chemical and physical treat-

ments to inhibit growth of bacteria. The methods were based on a protocol by Simon

et al. (2005), who enriched crenarchaeotes in cultures inoculated with plant root ex-

tract. Crenarchaeotes accounted for up to 20% of total microorganisms after only two

months. Thus, in this study a medium resembling the one reported by Simon et al.

(2005) was used and cell separation methods were performed in accordance to their

study, but different antibiotics were supplemented and incubations were not shaken.

The following steps were performed:

• washing

20 g of soil were dissolved in 15 ml of 1 × PBS (autoclaved) and shaken for 1

h 20 min at 220 rpm at room temperature in order to wash the cells from soil

particles. The remaining soil was stored at –80◦C.

For sludge enrichments, 19.3 g of sludge were dissolved in 15 ml of 1 × PBS.

• sonication

After the washing step, microorganisms were displaced from soil particles and

sludge aggregates by sonication for 30 sec at 20% power.

• freeze-thawing
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In addition to sonication, in one of the enrichments a freeze-thaw cycle was

performed to break open cell clusters. Therefore, samples were frozen in a dry

ice-ethanol bath for 5 min and quickly thawed in a water bath (48◦C) for 5 min.

• centrifugation

To remove the coarse particles, samples were centrifuged and pelleted for 1 min

at 520 g (pellet 1), 1170 g (pellet 2) and 2090 g (pellet 3) using a Rotina 35S

centrifuge (Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany). Each time

the supernatant was collected. Then the cells were centrifuged at 15,820 g for 5

min and the SN discarded (SN 4).

• lysozyme treatment

Lysozyme damages bacterial cell walls by catalyzing hydrolysis of glycosidic

bonds in peptidoglycan, which is not present in most archaeal cell walls. To

restrict the growth of bacteria, the pellet was dissolved in 4.5 ml TE-buffer con-

taining lysozyme (0.5 g in 5 ml of TE-buffer) and incubated for 15 – 30 min at

37◦C.

• freeze-thawing

After lysozyme usage, freeze/thaw treatments should even more effectively de-

stroy the already weakened bacterial cell walls. Therefore, freeze-thaw cycles

were performed by three consecutive rounds of quick-freezing in a dry ice-ethanol

bath for 5 min, followed by thawing at 48◦C for 5 min. Subsequently, cells were

centrifuged again at 15,820 g for 5 min and the SN discarded (SN 5). The pellet

was dissolved in 0.9 ml NOM-medium (enriched biomass).

2.6.1.3 Inoculation

The culture media prepared for enrichment of NOM was a mineral medium, which

consisted of salts and trace elements. The only carbon source was bicarbonate.

Enrichment 1: soil

200 µl of cells (enriched biomass) were inoculated into 20 ml of NOM-medium (1:100

dilution). To each culture amphotericin B was added to inhibit fungal growth. Strep-

tomycin and tetracycline were added to prevent bacterial growth.

The following incubations were performed:

1. Incubations with NO2
−: Cultures were supplemented with NO2

− to the final
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concentration of either 75 µM or 750 µM. Thus, 20 µl and 200 µl of the 75 mM

NO2
− stock solution were added, respectively.

2. NO2
− control: Medium was incubated without cells to test for abiotic conversion

of NO2
−. The control was supplemented with NO2

− to the final concentration of

750 µM.

3. Incubations with NH4
+ : Cultures were supplemented with NH4

+ to the final

concentration of either 75 µM or 750 µM. Thus, 20 µl and 200 µl of the 75 mM

NH4
+ stock solution were added, respectively.

4. NH4
+ control: Medium was incubated without cells to test for chemical loss of

NH4
+ via evaopration. The control was supplemented with NH4

+ to the final

concentration of 750 µM.

The flasks were each filled with only one-fifth of its volume. A large head space was

left in order to guarantee oxygen supply. Cultures were incubated without shaking at

20◦C in the dark. The remaining 100 µl of cells (enriched biomass) were fixed with

PFA (see 2.21.1.1).

Enrichment 2: soil and sludge

In another approach, 5 ml of NOM-medium (1:25 dilution) was inoculated with 200 µl

of cells in order to obtain a more concentrated culture. Each culture was supplemented

with cycloheximide, which inhibits translation in eukaryotes and was utilized to avoid

fungal growth.

The following incubations were performed:

1. Incubations with NO2
−/NH4

+: The setup consisted of 3 incubations supple-

mented with NO2
− and NH4

+ to the final concentration of 5, 50 and 500 µM,

therefore 0.35, 3.5 and 35 µl of substrates were added, respectively.

2. NO2
− /NH4

+ control: No cells were added to the medium. The control was

supplemented with NO2
− and NH4

+ to the final concentration of 500 µM.

A 6 well microplate (Iwaki/Asahi Technoglass, Gyouda, Japan) was used for incuba-

tions, which were carried out without shaking at 20◦C in the dark. The remaining 100

µl of cells (enriched biomass) were fixed with PFA (see 2.21.1.1).
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2.6.2 Enrichment of nitrifying microorganisms from biofilm of

aquarium filters

2.6.2.1 Sampling in the “Haus des Meeres”

Two autoclave bags full of filter balls overgrown with biofilm and 10 l of aquarium

water (artificial seawater “Reef crystals”, Aquarium Systems) were collected from the

filter installations of the big shark pool in the “Haus des Meeres”, Vienna. The filter

balls were made of polypropylene and had a diameter of approximately 5 cm. The pool

comprised 300 000 l of water and is permanently run at a temperature of 27◦C and a

pH of 8.4.

2.6.2.2 Sample preparation for pre-incubations

In the beginning, different pre-incubations were performed in order to test if any ni-

trifying activity could be observed. First, big particles like shells and plastic stripes

were removed from filter balls with forceps. The incubations were supplied with ei-

ther ammonia or nitrite, in order to support growth of ammonia and nitrite oxidizers,

respectively. To select for archaea, streptomycin and tetracycline were added and to

inhibit fungal growth all cultures were supplemented with amphotericin B (final con-

centration: 25 µg/ml). To test if the nitrifying community was present in the water

or in the biofilm, incubations with aquarium water (without biofilm) and with differ-

ently treated biofilm were performed. For the incubations with biofilm, the biofilm was

washed off from three filter balls with 20 ml of aquarium water. For each incubation 20

ml of aquarium water were used, except for the incubation with the whole filter balls,

in which more volume was necessary to cover the balls. For the incubations 100 ml

Schott flasks were used. They were filled with only one-fifth of its volume, guaranteing

oxygen supply, and covered with aluminium foil.

The following incubations were performed:

1. aquarium water only, supplemented with NO2
−: To test if the nitrifying commu-

nity was present in the water or in the biofilm, aquarium water without biofilm

was incubated. The control was supplemented with NO2
− to the final concentra-

tion of 500 µM, thus 133 µl of the 75 mM NO2
− stock solution were added.

2. NO2
− + biofilm: Biofilm was washed off the filter balls without further treatment.

Therefore, an Erlenmeyer flask containing aquarium water and a filter ball was

shaken well until the biofilm went off the ball. The procedure was repeated with
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two more filter balls. All cultures were supplemented with NO2
− to the final

concentration of 500 µM.

3. NO2
− + antibiotics + biofilm: Antibiotics targeting bacteria were added to se-

lect for archaea. Streptomycin and tetracycline were added to reach the final

concentration of 100 µg/ml and 50 µg/ml, respectively. Thus, 20 µl were added

from each stock solution.

4. NO2
− + antibiotics + crushed biofilm: Biofilm was crushed by vortexing, in order

to allow antibiotics to more easily penetrate into the biofilm.

5. NO2
− + filtrate: After washing the biofilm off the filter balls, aquarium water

containing biofilm was filtered (Millipore) in order to inoculate medium only with

biofilm flocs bigger than 12 µm. After filtration, the flocs were scraped off the

filter and added to the medium.

6. NO2
− + balls: Filter balls as a whole were incubated in aquarium water.

Approaches 1. to 5. were also performed supplemented with NH4
+. Therefore, these

cultures were supplemented with NH4
+ to the final concentration of 500 µM. Thus,

500 µl of the 20 mM NH4
+ stock solution were added.

All cultures were incubated in the dark without shaking at 27◦C.

These pre-incubations were performed in order to test if any nitrifying activity could

be observed. To test for nitrification, samples were taken after four and five days to

measure NH4
+ and NO2

− concentrations.

10 filter balls of the original aquarium biofilm sample obtained from “Haus des Meeres”

were washed in 100 ml of aquarium water and fixed with EtOH and PFA (see 2.21.1)

for later FISH analysis.

2.6.2.3 Main incubations

For each incubation biofilm was washed off 3 filter balls using 20 ml of aquarium water.

Every incubation except the chemical control (autoclaved H2Obidist) was supplemented

with 20 µl of sterile filtered 1 M NaHCO3 (final concentration: 1 mM) to support

autotrophic growth, and cycloheximide to prevent fungal growth. To some incubations

streptomycin was added to the final concentration of 100 µg/ml (cultures labeled AB).

The incubations were supplemented with either 500 µM of sterile filtered NH4
+ or 500

µM of sterile filtered NO2
−, therefore, 100 µl of a 100 mM NH4

+ and NO2
− stock

solution were added, respectively.
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The following incubations (27◦C in the dark) were performed to enrich the nitrifying

community:

1. NO2
− + aquarium water only

2. NO2
− + biofilm (in duplicates; abbreviation: NO2

− bf I, II)

3. NO2
− + antibiotic + biofilm (in duplicates; abbreviation: NO2

− AB bf I, II)

4. NH4
+ + aquarium water only

5. NH4
+ + biofilm (in duplicates; abbreviation: NH4

+ bf I, II)

6. NH4
+ + antibiotic + biofilm (in duplicates; abbreviation: NH4

+ AB bf I, II)

7. H2Obidist (autoclaved) + NH4
+ + NO2

− (as chemical control)

Samples were taken regularly to measure substrate concentrations and control the pH.

Additionally, samples were collected for FISH analysis of the cultures. Therefore, 1-2

ml of biomass were collected and PFA-fixed as described in 2.21.1.1. After sampling

for FISH, cultures were refilled with aquarium water.

2.6.2.4 Dilution of incubations

After approximately every two months the incubations were diluted 1:10 to select for

the nitrifying community and to dilute non-target organisms. Therefore, 2 ml of the

respective old incubations were inoculated in 18 ml of fresh sterile filtered aquarium

water (stored at 4◦C) and supplemented as described above (see 2.6.2.3).

2.6.2.5 Stable isotope probing

With the intention to perform stable isotope probing combined with Raman micro-

scopic analysis, four of the nitrite consuming cultures (NO2
− bf I, II and NO2

− AB bf

I, II) were connected to an automatical feeding and aeration system. This was done to

provide a more effective culturing and faster growth of biomass.

Setting up of pumps, preparation of tubes and feeding solutions

Tygon tubes for feeding and aeration were cut into appropriate length, connected with

adapters (Rotilabo R©-Schlauchverbinder, Carl Roth GmbH & Co., Karlsruhe, Ger-

many) and applied to the pumps (IPC-N-4, Ismatec R©, Glattbrugg-Zürich, Switzer-

land) or connected to an aerator. The tubes for feeding were washed three times with
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70% EtOH and afterwards three times with sterile filtered aquarium water. The pumps

were adjusted in such a way that the flow in each tube was the same. Finally, in 8.6

sec a volume of 100 µl was pumped through. Pumps were pumping at power 6 and

feeding was set for every 3 h. Depending on the amount of µM NO2
− added, pumping

periods were set between 2.5 sec and 17.2 sec. The aerator was set up to change every

two h the head space in cultures with fresh air. For feeding, 2.5 mM, 6.25 mM, 12.5

mM and 25 mM NaNO2 solutions were prepared. NaNO2 was diluted in one quarter

of autoclaved water and three quarters of sterile filtered aquarium water. This was

done due to evaporation of the medium in cultures: the aquarium water was used to

avoid dilution of the cultures, while the water was used in order to prevent too high

salt concentration in the incubation medium.

Setup for incubation

For incubations 200 ml syringe bottles were used. For each culture, three different

incubations were performed:

1. culture + 12C bicarbonate + NO2
−

2. culture + 13C bicarbonate + NO2
−

3. culture + 12C bicarbonate w/o NO2
− (negative control)

The incubation volume was 50 ml and 1:10 dilutions were performed. Thus, 5 ml of the

respective culture (incubating since January 2009) were added to 45 ml of sterile fil-

tered aquarium water. After this, flasks were closed with aluminium caps (Rotilabo R©,

Carl Roth GmbH & Co., Karlsruhe, Germany) and the following additions were done

using needles (Sterican R© insulin needle, Braun Melsungen AG, Melsungen, Germany).

Cultures were supplemented with cycloheximide and streptomycin as before. 12C in-

cubations were supplemented with sterile filtered 0.3 M NaHCO3 and 13C incubations

were supplemented with sterile filtered 0.3 M NaHCO3, leading to a final concentration

of about 5 mM 12C or 13C bicarbonate. Flasks were incubated in a water bath at 27◦C

with mild shaking and tubes from the NO2
− solution and the aerator were connected

to them (Fig. 2.1). Tubes were covered with aluminium foil to inhibit phototrophic

growth. Between aeration tubes and flasks 0.25 µm pore filters were added, to reduce

possible contamination from air. At the beginning, NO2
− was added every 3 h to the

final concentration of 5 µM. When no NO2
− accumulated, the feeding rate was in-

creased. This was done either by increasing the feeding time or by replacing the NO2
−

solution with a more concentrated one. Incubations were carried out in the dark. Prior

to PFA-fixation (2.21.1.1) cultures were shaken and 1 ml of culture was sampled with

syringe and needle.
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Figure 2.1: Setup for stable isotope probing. On the left side, the incubations in the
waterbath are shown. On the right side, the two pumps are visible, which are connected
to cultures trough tubes covered with aluminium foil.

The different conditions for the respective enrichment cultures are summarized in Table

2.5.

Table 2.5: Conditions for nitrifying enrichment cultures.

sample cell separation medium antibiotics nutrients incubation
material volume

enrichment 1 soil washing (PBS) NOM tetracycline 75, 750 µM 20 ml
sonication streptomycin NO2

−, NH4
+

centrifugation amphotericin B
lysozyme treatment

enrichment 2 soil washing (PBS) NOM cycloheximide 5, 50, 500 µM 5 ml
sonication NO2

−, NH4
+

centrifugation
lysozyme treatment
freeze-thawing

sludge washing (PBS) NOM cycloheximide 5, 50, 500 µM 5 ml
sonication NO2

−, NH4
+

centrifugation
lysozyme treatment
freeze-thawing

enrichment 3 biofilm from washing (seawater) aquarium streptomycin 500 µM 20ml, 50ml
aquarium filters water cycloheximide NO2

−, NH4
+
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2.7 Enrichment cultures from the Garga hot spring

2.7.1 “Candidatus Nitrososphaera gargensis”enrichment cul-

ture from the Garga hot spring

2.7.1.1 Sample material

One ERT with a thick brown cell pellet was sent by cooperation partners from Ham-

burg. Additionally, four 50 ml Greiner tubes filled with NH4
+-free and bicarbonate-

free AOA-medium were received. The enrichment mainly consisted of the ammonia-

oxidizing archaeon (AOA) “Candidatus Nitrososphaera gargensis”(∼70% of biomass)

and about 5-7 estimated heterotrophic contaminants (∼30%). One of the contaminants

had already been described as a putative AOB (Hatzenpichler 2006).

2.7.1.2 Activation and maintaining of enrichment culture

After resuspending the cell pellet in a minimal volume of medium, it was added to

a 250 ml Erlenmeyer flask containing 80 ml of the AOA-medium. 2 ml of a 20 mM

NH4Cl stock solution were added, leading to a final ammonium concentration of 0.5

mM. 500 µl of this culture were immediately taken and frozen at -20◦C (zero time point

for NH4
+ and NO2

− measurements). The culture was incubated in the dark at 46◦C

without shaking. NH4
+ and NO2

− concentrations were monitored daily by photometric

methods (see 2.8) and pH adjusted if necessary by addition of 0.1% NaOH, until the

medium was slightly pink. After the culture became highly active (NH3 oxidation to

NO2
− per day), 65 ml of medium containing 0.5 mM NH4

+ was added and the culture

was divided into two approximately equal volumes (∼70 ml). Later on, cultures were

diluted further to avoid accumulation of NO2
−.

NH4
+, NO2

− concentration measurements and pH control

Samples (500 µl) were collected daily for measurement of NH4
+ and NO2

− concentra-

tions in order to follow the oxidation of NH3 to NO2
− and to gain information about

the activity of the cells. Because of the production of acidic substances by ammonia

oxidizers pH was controlled regularly with pH stripes. When all NH3 was converted to

NO2
−, the culture was fed with new NH4

+.
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2.7.1.3 Temperature experiment with Garga enrichment culture

To investigate the temperature dependence of NH3 oxidation, a temperature series

experiment was performed. Incubations were done in duplicates at following tempera-

tures: 37◦C, 46◦C, 56◦C and 66◦C. 3 ml of an active culture containing 0.5 mM NH4
+

at adjusted pH (∼7.5-8) were pipetted into 10 ml autoclaved glass-vials, which were

put into closed 50 ml Greiner tubes and incubated at the respective temperature. For

negative control, H2Obidist supplemented with 0.5 mM NH4
+ was incubated at 46◦C.

Samples (200 µl) were taken to measure NH4
+ and NO2

− values at time point zero.

Every day the tubes were opened shortly close to a flame, to guarantee that enough

oxygen was available. After every 3-4 days, samples (200 µl) were taken for NH4
+ and

NO2
− concentration measurement, and stored at -20◦C. In addition to this, cultures

were fed with 75 µl of 20 mM new NH4
+ (0.5 mM end concentration). Additionally, pH

was controlled in some of the cultures. After two weeks, the experiment was stopped.

NH4
+ and NO2

− were measured photometrically as described in 2.8.

2.7.2 Enrichment culture containing a putative AOB from the

Garga hot spring

An enrichment culture (“culture 7.3”) highly enriched with putative AOB was main-

tained by Elena Lebedeva. Cultures were supplemented with NaH13CO3 and NaH12CO3

and incubated for 72 h (performed by Elena Lebedeva in Hamburg). During the in-

cubations, cells consumed around 2 mM of NH4
+. Samples were taken at different

time points and were both PFA- and EtOH-fixed. Finally, they were sent to Vienna.

The aim was to perform Raman spectroscopic analysis combined with FISH in order

to proof autotrophic growth in the presence of ammonia as energy source at the single

cell level.
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2.8 Measurement of Ammonium, Nitrite, Nitrate

and pH

2.8.1 Ammonium

2.8.1.1 Colorimetric determination of ammonium concentration in potas-

sium chloride and water extractions

The principle of the method is the oxidation of ammonia to chloroamine by sodium

dichloroisocyanuric acid, which subsequently forms a green indophenol in the presence

of phenolic compounds under alkaline conditions. The absorbance is measured at 660

nm.

Solutions

0.3 M NaOH

Sodium salicylat solution 8.5 g sodium salicylat and 63.9 g sodium nitroprusside

dihydrate dissolved in 50 ml H2Obidist.

Color reagent 0.3 M NaOH solution, sodium salicylate solution and

H2Obidist mixed 1:1:1; freshly prepared before use

Oxidation solution 50 mg of dichloroisocyanuric acid sodium salt dihydrate

dissolved in 50 ml H2Obidist.

For calibration an ammonium nitrogen stock standard solution (1,000 mg/l) and an

ammonium nitrogen working standard solution (5 mg/l; 0.5 ml of stock diluted in 99.5

ml H2Obidist) were prepared.

Procedure

Prior to each measurement, standard dilutions for calibration were prepared. Each

time, 10 standard dilutions were prepared, starting with a concentration of 357 µM

nitrogen-NH4
+ and diluted 1:2 with H2Obidist. 300 µl of standards and 300 µl of samples

were pipetted into 1.5 ml ERT and 150 µl of color reagent and 60 µl of oxidation solution

were added. If samples were expected to contain higher concentrations of NH4
+ than

the most concentrated NH4
+ standard, appropriate dilutions were performed. Then,

samples were shaken on a mixing block (Biozym Scientific GmbH, Oldendorf, Germany)

at 1,000 rpm for 30 min. The color intensity was measured with a spectrophotometer

(SmartSpecTM 3000, Biorad, München, Germany) at 660 nm.

Calculation

The measured adsorption of standards was plotted against concentration and a linear
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regression was performed using Excel (Microsoft). If a straight line was obtained for

standards, its equation was used to determine the NH4
+ concentration of the samples.

2.8.1.2 Nessler’s reagent

To quickly find out if NH4
+ was present in the cultures, Nessler’s reagent, an alkaline

solution of potassium tetraiodomercurate(II) (K2(HgI4)), was used. NH4
+ reacts with

the mercury to form a complex of HgO·Hg(NH2)I, which leads to a yellow or brown (at

higher NH4
+ concentrations) coloration. To 40 µl of samples 40 µl of Nessler’s reagent

was added and after vortexing the color was controlled by eye.

2.8.2 Nitrite

2.8.2.1 Photometric Measurement of NO2
− concentration

For photometric measurement of the NO2
− concentration the Griess reagent was used.

The Griess reagent system uses sulfanilamide and N-1-napthylethylenediamine dihy-

drochloride under acidic (phosphoric acid) conditions to detect NO2
− in a variety of

samples.

Solutions

0.1% N-1-napthylethylenediamine dihydrochloride (NED)

1% sulfanilamide in 5% phosphoric acid

Procedure

Determination of NO2
− concentration in samples was performed following the manu-

facturers protocol (Promega, Madison, USA).

2.8.2.2 Nitrite test stripes

For a rough estimation of the concentration of NO2
−, test stripes (Merck KGaA, Darm-

stadt, Germany) were used.

2.8.3 Nitrate

For a rough estimation of the concentration of NO3
−, test stripes (Merck KGaA, Darm-

stadt, Germany) were used.
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2.8.4 pH measurement

To control the pH value test stripes sensitive in a range between 7.5 to 9 (Macherey-

Nagel GmbH & Co, Düren, Germany) were used.

2.9 Cultivation and maintenance of recombinant E.

coli strains

2.9.1 Culture conditions and cell harvesting

Solutions

LB medium

Amp stock solution

Procedure

Recombinant E. coli cells were either plated on solid media or inoculated into liquid

media. LB media contained 100 µg/ml Amp in order to avoid growth of cells lacking

plasmid. To culture cells in liquid media, a single white colony was picked under sterile

conditions from plates with a toothpick, inoculated in a tube containing 5 ml of LB

medium and incubated at 37◦C o/n on an orbital shaker (Innova 2300; New Brunswick

Scientific Co., Inc., Madison NJ, USA) at 200 rpm. For harvesting cells, 2 × 2 ml

of the culture were centrifuged at 13,000 rpm for 1 min at RT (Mikro 22R, Hettich,

Tuttlingen, Germany) in sterile ERT.

When cells were cultured for Clone-FISH (see 2.24.3), 1 ml of an o/n culture was

inoculated into 200 ml Erlenmeyer flasks containing 100 ml of LB medium and incu-

bated at 37◦C on an orbital shaker at 200 rpm until the final OD was reached. For

OD measurement, sterile LB medium was used as blank control. OD was measured

in plastic cuvettes (Halb-Mikro, Greiner) using a spectrophotometer (SmartSpecTM

3000, Biorad) at a wavelength of 600 nm.

2.9.2 Maintenance

For maintenance single clones were applied to LB-Amp masterplates, incubated o/n at

37◦C and plates stored at 4◦C.
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2.10 DNA isolation

2.10.1 Extraction of genomic DNA from environmental sam-

ples

2.10.1.1 Isolation of genomic DNA from biofilm

For DNA isolation biofilm was washed off 10 filter balls with 100 ml of aquarium water

and subsequently divided into 2 Greiner tubes. The biofilm samples were centrifuged at

15,820 g for 15 min at RT (Rotina 35S). After centrifugation the supernatant (SN) was

discarded and the pellets were stored on -20◦C and on 4◦C for DNA extraction. DNA

was extracted from biofilm sample using the Ultra CleanTM Soil DNA Kit (MoBio

Laboratories). The cells were disrupted by bead beating two times for 20 sec at 4.5 m/s

(Beadbeater BIO 101, Carlsbad, CA, USA) using bead beating vials. The extraction

was performed following the manufacturer’s protocol. As negative control H2Obidist

was used. At the end the isolated DNA was dissolved in 40 µl H2Obidist and stored at

–20◦C.

2.10.1.2 Isolation of genomic DNA from Garga hot spring enrichment

a) Kit

Genomic DNA was extracted from 2 ml of enrichment culture using the Power SoilTM

DNA Kit (MoBio Laboratories). The cells were mechanically disrupted by bead beat-

ing 2 times for 20 sec at an intensity of 4.5 m/s. The isolation was done according to

the manufacturer’s protocol. A negative control (H2Obidist) was used to test for con-

tamination of the reagents. After the isolation DNA was dissolved in 50 µl H2Obidist

and stored at –20◦C.

b) Phenol-Chloroform-DNA extraction

DNA was extracted from 2 ml of culture using the Phenol-Chloroform-DNA extraction

method similar as performed by Lueders et al. (2004).

Solutions

120 mM NaPO4 buffer, 112.87 mM Na2HPO4, 7.12 mM NaH2PO4, filter sterilize,

pH 8 autoclave

TNS-solution 500 mM Tris-HCl pH 8.0, 100 mM NaCl, 10% SDS (w/v),

adjust pH with HCl, filter sterilize, autoclave
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PEG precip. solution 30% (wt/vol) polyethylene glycol 6000 in 1.6 M NaCl,

prepared with RNAse free water, autoclave

EB buffer 10 mM Tris-HCl, pH 8.5, prepare with RNAse free water,

filter sterilze, autoclave

Procedure

750 µl of 120 mM NaPO4 buffer and 250 µl of TNS were filled into lysing matrix A

vials (Bio 101, Carlsbad, CA, USA). Then the sample (maximum 500 µl) was added to

the vial so that it was maximally filled to the top of the gripping ring. Next, samples

were bead beaten for 45 sec at 6.5 m/s and placed on ice. After centrifugation for 4

min at maximum speed at 4◦C 800 µl of SN were pipetted into a 2 ml vial on ice.

DNA was extracted with 1 vol of Phenol/Chloroform/Isoamylalcohol (25:24:1) at pH

8 to increase DNA and decrease RNA yield, mixed and centrifuged again for 4 min

(max. speed, 4◦C). 700 µl of SN were taken and placed into a 2 ml “Phase Lock

Gel Heavy”tube. Then, 1 Vol. of Chloroform/Isoamylalcohol (24:1) was added and

samples were centrifuged for 4 min at maximum speed. After this, 650 µl of SN were

mixed thoroughly with 2 volumes of PEG and precipitated by centrifugation for 30

min (max. speed, 4◦C). The liquid was removed and 500 µl of cold 70% EtOH were

added to wash the pellet. After centrifugation (4 min, max. speed, 4◦C) the EtOH

was removed carefully and DNA was dried briefly at RT (max. 5 min). The DNA

precipitate was dissolved in 50 µl H2Obidist and stored at -20◦C. A negative control was

performed to test for potential contamination of reagents.

2.10.2 Extraction of plasmid DNA from recombinant E. coli

cells

The plasmid isolation was done according to the principle of alkaline lysis, precipitation

of proteins and precipitation of plasmid DNA by 2-propanol.

Solutions

P1 buffer

NaOH/SDS solution

Potassium acetate/acetate solution

2-propanol

70% EtOH
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Procedure

2 × 2 ml of an o/n culture were centrifuged in a sterile ERT for 1 min at 13,000 rpm

(Mikro 22R) and the SN was discarded. The cell pellet was resuspended in 100 µl

of buffer P1 and incubated for 5 min at RT to digest RNA. To lyse cells, 200 µl of

NaOH/SDS solution were added. Tubes were inverted several times and incubated for

5 min on ice (meanwhile inverted several times). For protein precipitation, 150 µl of

potassium acetate/acetate solution were added, the tubes vortexed briefly, and put on

ice for 5 min. Then, the proteins were separated by centrifugation (13,000 rpm, 1 min)

and the obtained SN (=450 µl) transferred to a new sterile ERT. DNA was precipitated

by adding one volume of 2-propanol, inverting the tubes several times and incubating

them for 10 min at RT. After this, the tube was centrifuged (13,000 rpm, 2 min), the

SN removed, and the DNA-pellet washed in 500 µl of ice-cold 70% EtOH. After a final

centrifugation step (13,000 rpm, 1 min) SN was removed and the pellet dried on air at

46◦C in a hybridization oven. The DNA was dissolved in 40 µl of H2Obidist and stored

at -20◦C.

2.11 Quantitative and qualitative analysis of nu-

cleic acids

2.11.1 Quantitative, photometric analysis of nucleic acids

DNA concentrations were quantified using a NanoDrop R© ND-1000 spectrophotometer

(Wilmington, USA). Before measurement the spectrophotometer was blanked with 1.5

µl of H2Obidist. 1.5 µl of the extracted nucleic acid solution were pipetted onto the end

of a fiber optic cable and the nucleic acid concentration was measured at λ=260nm.

2.11.2 Qualitative analysis of nucleic acids using agarose gel

electrophoresis

Qualitative analysis of nucleic acids was performed by using gel electrophoresis, in

which an electric current is applied to a gel matrix. The gel matrix provides a network

in which DNA fragments are separated dependent on their size. Migration of fragments

is obtained by applying an electric field, in which DNA moves due to its negative charge

to the positive electrode.
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Solutions

1-2.5 % (w/v) agarose in 1 × TBE buffer

Loading buffer

DNA-ladder (KbL)

EtBr staining solution

Procedure

Different amounts of agarose were weighted, mixed with 1 × TBE buffer and heated

in a microwave until the solution was homogenous. For control of successful PCR

concentrations 1-2% agarose gels were used, whereas for RFLP analysis concentrations

>2% were used. The gel was cooled under running water and poured into a gel-tray

containing a comb. After polymerization of the gel the carriage was transferred to the

electrophoresis apparatus. PCR-products and fragments derived from RFLP analysis

were mixed with loading buffer in a ratio of 2:1 and pipetted into the pockets of the

gel. A DNA marker (KbL) with fragments of known length was run to compare the

size of the DNA fragments with. Dependent on the type of use electrophoresis was run

between 60 and 90 min applied with an electric current between 90 and 120V. After

electrophoresis, DNA was stained in an ethidium bromide bath for ∼30 min. EtBr

intercalates into nucleic acids and emits visible light after excitation with UV light,

making DNA observable. With a transilluminator emitting UV-light (λ=312nm) band

patterns were visualized and recorded with a gel-documentary system.

2.12 In vitro amplification of DNA fragments with

Polymerase Chain Reaction (PCR)

To amplify gene fragments of interest polymerase chain reaction and gene specific

primers (see Table 2.6) were used. The reaction is initiated by a single denaturation

step, followed by 20-40 temperature-cycles. The cycling starts with a DNA denatura-

tion step, in which hydrogen bonds between complementary bases of double stranded

DNA templates are broken. After this, primers, oligonucleotides with typical length

between 15 and 25 nucleotides, anneal to single-stranded DNA templates in a sequence

specific manner takes place. The last step is the extension/elongation, in which DNA

polymerase synthesizes a new DNA strand complementary to the DNA template. A

single final extension/elongation step is performed to attach dATP overhangs to the

3’ ends of the fragments, which are needed later for ligation of the amplicons into



2.12 In vitro amplification of DNA fragments with Polymerase Chain

Reaction (PCR) 37

Table 2.6: Primers used for the amplification of plasmids carrying 16S rRNA gene
fragments

Primer
Sequence (5’-3’)b T [◦C]c

Binding
Specificity Reference

namea positiond

616V AGA GTT TGA TYM TGG CTC 54 7 – 24 most Bacteria
Juretschko
et al. 1998

630R CAK AAA GGA GGT GAT CC 54 1528 – 1542 most Bacteria
Juretschko
et al. 1998

1492R GGY TAC CTT GTT ACG ACT T 56 1492 – 1510
most Bacteria Loy et al.
and Archaea 2002

Arch21F TTC CGG TTG ATC CYG CCG GA 56 7 – 26 most Archaea DeLong 1992

C341Fe CCT ACG GGA GGC AGC AG 60 – 57f 341 – 357 most Bacteria
Muyzer et al.
1993

907R CCG TCA ATT CMT TTG AGT TT 60 – 57f 907 – 926 most Bacteria
Muyzer et al.
1993

RHG1148R AGT GCC CAC CTC TCG CGT 61 1130 – 1148 putative AOB
Hatzenpichler
2006

Arch912Rg GTG CTC CCC CGC CAA TTC CTT TA 56 912 - 934 most Archaea
Lueders and
Friedrich 2002

Ntcoc84F CGG AAA GGT GGC TGG CGA 54 84 – 102
Nitrococcus Juretschko
mobilis 2000

a F, forward primer; R, reverse primer
b abbreviations according to IUPAC: K = G/T, M = A/C, Y = C/T
c annealing temperature of the primer
d according to E. coli 16S rRNA (Brosius et al. 1981)
e primer was used for DGGE analyses with a GC-clamp (5’-CGC CCG CCG CGC CCC GCG CCC GTC CCG CCG

CCC CCG CCC G-3’) at its 5’-end
f primers were used in a touchdown PCR
g modification of the original Arch915R primer, which carries a 3-bp elongated 3’ end and was designed by Lueders and

Friedrich (2002)

TOPO TA-vectors (see 2.15). Primers described in this study were obtained from

Thermo Electron GmbH (Ulm, Germany). PCR reactions were performed using the

Icycler (Biorad, Munich, Germany) or the Mastercycler gradient PCR cycler (Eppen-

dorf, Hamburg, Germany). PCR amplification from the “Haus des Meeres”enrichment

cultures were performed directly with the biomass and without prior DNA-extraction.

2.12.1 Amplification of 16S rRNA gene fragments

Solutions:

MgCl2 (25 mM) (Fermentas Inc., Hanover, MD, USA)

MgCl2 (25 mM) (QIAgen, Hilden, Germany) when using hot start Taq

10 × Ex Taq polymerase-buffer (Fermentas Inc., Hanover, MD, USA)

10 × hot start Taq polymerase-buffer (QIAgen, Hilden, Germany)
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Nucleotide-Mix (2 mM/dNTP) (Fermentas Inc., Hanover, MD, USA)

Forward primer (25-100 pmol/µl)

Reverse primer (25-100 pmol/µl)

Bovine Serum Albumine (BSA; 20 mg/ml) (New England BioLabs Inc., Beverly, MA,

USA)

Taq DNA-polymerase (5 units/µl) (Fermentas Inc., Hanover, MD, USA)

hot start Taq DNA-polymerase (5 units/µl) (QIAgen, Hilden, Germany)

H2Obidist

Standard reaction mix:

MgCl2 2-4 µl (dependent on polymerase used)

Buffer (10 x) 5 µl (dependent on polymerase used)

dNTP-mix 5 µl

Forward primer 0.5-1 µl

Reverse primer 0.5-1 µl

BSA 0.5 µl

hot start/standard Taq DNA polym. 0.25 µl

Template 1-3 µl

H2Obidist ad 50 µl

For every PCR a master mix (without template) was prepared and, dependent on how

much template was used, 47-49 µl of the master mix were pipetted into each tube.

Additionally, for every PCR a positive control and a negative control (H2Obidist instead

of template) were included.

The conditions used for the amplification of 16S rRNA gene fragments are shown in

Table 2.7.

Table 2.7: Conditions for the amplification of 16S rRNA gene fragments

PCR-step Temp.[◦C] Time Number of cycles

Denaturation 95 5, 15 mina 1
Denaturation 95 30 sec

Annealing 54 – 60b 30 sec 35
Elongation 72 1 min

final elongation 72 10 min 1
a Taq or hot start Taq polymerase, respectively
b for the respective annealing temp. of the primers see table 2.5.
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To amplify 16S rRNA genes of bacterial contaminants in the “Candidatus Nitrososphaera

gargensis”enrichment, a PCR with primers 616F/630R combined with RHG1148Rlock

was performed. RHG1148Rlock is specific for a putative AOB but lacks the OH-group

on the 3’ end, inhibiting the addition of nucleotides by the polymerase. The primer was

used with the aim to select against the amplification of putative AOB 16S rRNA gene

fragments. For PCR, the following combinations were used: 616F/630R/RHG1148Rlock

and 2×616F /630R/RHG1148Rlock. To test if the intact primer RHG1148R works,

PCR was performed with 616V/RHG1148R only.

2.12.2 Touchdown PCR for the amplification of 16S rRNA

gene fragments for Denaturing Gradient Gel Electro-

phoresis (DGGE)

For amplification of 16S rRNA gene fragments for DGGE a touchdown PCR was per-

formed (Tab. 2.8), in which the annealing temperature is decreased during cycles.

Table 2.8: Conditions for the amplification of 16S rRNA gene fragments for DGGE
analysis

PCR-step Temp. [◦C] Time Number of cycles

Denaturation 95 5 min 1
Denaturation 95 40 sec

Annealing 60-57a 40 sec 12
Elongation 72 1 min

Denaturation 95 40 sec
Annealing 57 40 sec 23
Elongation 72 1 min

final elongation 72 10 min 1
a the annealing temperature was decreased by 0.5◦C every second

cycle until a temperature of 57◦C was reached

2.12.3 Amplification of amoA gene fragments

Table 2.9: Conditions for the amplification of amoA gene fragments

PCR-step Temp. [◦C] Time Number of cycles

Denaturation 95 5, 15 mina 1
Denaturation 95 40 sec

Annealing 50-53b 40 sec 35
Elongation 72 1 min

final elongation 72 10 min 1
a Taq or hot start Taq polymerase, respectively
b for the respective annealing temp. of the primers see Table 2.8.
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Table 2.10: Primers used for the amplification of amoA gene fragments

Primer
Sequence (5’-3’)b T [◦C]c

Binding
Specificity Reference

namea positiond

amoA1F GGG GTT TCT ACT GGT GGT 50 332 – 349
β-proteobacterial Rotthauwe
AOB et al. 1997

amoA2R CCC CTC TGC AAA GCC TTC TTC 50 802 – 822
β-proteobacterial Rotthauwe
AOB et al. 1997

Arch-amoAF STA ATG GTC TGG CTT AGA CG 53 - AOA
Francis et al.
2005

Arch-amoAR GCG GCC ATC CAT CTG TAT GT 53 - AOA
Francis et al.
2005

a F, forward primer; R, reverse primer
b abbreviations according to IUPAC: S = C/G
c annealing temperature of the primer

2.12.4 Amplification of nxrB gene fragments

Table 2.11: Primers used for the amplification of nxrB gene fragments

Primer
Sequence (5’-3’)b T [◦C]c

Binding
Specificity Reference

namea positiond

nxrBF169 TAC ATG TGG TGG AAC A 56,2 169 - 184
all known Nitrospira- Maixner et
like nxrB al., in prep.

nxrBR638
CGG TTC TGG TCR ATC A 56,2 638 - 653

all known Nitrospira- Maixner et
(707) like nxrB al., in prep.

nxrBF706 AAG ACC TAY TTC AAC TGG TC 56 706 - 725
Nitrobacter, Nitro- Maixner et
coccus al., in prep.

nxrBR1431 CGC TCC ATC GGY GGA ACM AC 56 1411 - 1430
Nitrobacter, Nitro- Maixner et
coccus al., in prep.

a F, forward primer; R, reverse primer
b (abbreviations according to IUPAC)
c annealing temperature of the primer

Table 2.12: Conditions for the amplification of nxrB gene fragments

PCR-step Temp.[◦C] Time Number of cycles

Denaturation 95 5, 15 mina 1
Denaturation 95 40 sec

Annealing 54-56.2b 30 sec 35
Elongation 72 1 min

final elongation 72 10 min 1
a Taq or hot start Taq polymerase, respectively
b for the respective annealing temp. of the primers see Table 2.10.
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2.13 Gel Purification of PCR products

Solutions

2 % (w/v) Nusieve 3:1 agarose (low-melting-point) in 1 × TAE buffer

Loading buffer

DNA ladder (KbL)

SYBR R© Green I staining solution in TAE

Procedure

Low-melting-point agarose gels were stained with SYBR R© Green I staining solution

for 20 – 30 min and DNA-bands of correct size were cut out from gels with 50 µl glass

capillaries (Idaho Technology Inc., Salt Lake City, UT, USA) and transferred into a

sterile ERT. 50 µl H2Obidist were added and the mixture was melted at 75◦C for 10 min

on a heating block (VWR international, West Chester, PA, USA), before cloning was

performed.

2.14 Cloning of gene amplicons with the TOPO TA

Cloning R© kit

PCR products were cloned into vector pCR R©II-TOPO. Cloning was performed using

the TOPO TA Cloning R© kit (Invitrogen Corporation) following the protocol pro-

vided by the manufacturer. For transformation chemical-competent E. coli TOP10

cells were used. The vector pCR R©II-TOPO carries dTTP overhangs and a covalently

bound topoisomerase that catalyzes the ligation with dATPs located at the end of the

PCR-products. Successful transformation and presence of the insert was tested via

blue/white screening of the colonies. The vector comprises two antibiotic resistance

genes (ampR and kanR) and the lacZα fragment, which is interrupted by the insertion

site. Cells containing a vector without insert complement the lacZ gene and are able

to cleave X-Gal into a blue product, whereas cells with an insert will be white. Cells

without vector are killed due to their sensitivity against the antibiotics used.

2.14.1 Ligation

Standard reaction mixture: 6 µl
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PCR-product 4 µl

Salt solution 1 µl

Vector 1 µl

The mix was centrifuged briefly and incubated for 20 min at RT before transformation.

In order to achieve a higher cloning output, more PCR-product and salt solution were

used.

2.14.2 Transformation

The entire ligation reaction mix was added to the competent E. coli TOP10 cells and

the mixture was stired gently with a tip. After incubation for 30 min on ice, the cells

were heat-shocked for 30 sec at 42◦C and immediately placed on ice. 250 µl of SOC

medium were added and the cells incubated for 1 h at 37◦C on an orbital shaker (200

rpm). On each plate (LB-Amp) 40 µl of sterile X-Gal were spread out. For each cloning

approach 100 µl and 150 µl of pre-incubated cells were plated and incubated o/n at

37◦C.

2.14.3 Identification of recombinant clones

After o/n-incubation plates were put on 4◦C for ∼30 min to enhance coloration of

the colonies. White colonies were picked using sterile toothpicks and transferred to a

masterplate (LB-Amp). At the same time, clones were used for a M13-screening PCR

to check for correct insert size.

2.14.4 Insert size verification via M13-screening PCR

M13-primers binding positions flank the TOPO cloning vectors multiple cloning site

(Tab. 2.13). Thus, a PCR (see Tab. 2.14) with this primer pair enables to amplify the

insert and to verify its correct size by agarose gel electrophoresis.

The reaction mix was the same as for a standard PCR described above except that no

BSA was added to the master mix. Colonies were picked using sterile toothpicks and

suspended in the reaction mix, provided in the cavities of a 96-well microtiterplate,

which was kept on ice. Prior to PCR, the microtiterplate was sealed with thermostable

foil. PCR-products were analyzed by using a 1% agarose gel.
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Table 2.13: Primers used for M13-screening PCR

Primer namea Sequence (5´-3´) T [◦C]b Reference

M13F GTA AAA CGA CGG CCA G 60 TOPO cloning kit (Invitrogen
M13R CAG GAA ACA GCT ATG AC 60 Corporation, Carlsbad, CA, USA)

a F, forward primer; R, reverse primer
b annealing temperature of the primer

Table 2.14: Conditions for M13-screening PCR

PCR-step Temp.[◦C] Time Number of cycles

Denaturation 95 5 1
Denaturation 95 40 sec

Annealing 60 40 sec 35
Elongation 72 40 sec

final elongation 72 10 min 1

M13 PCR-products from clones carrying a correct-sized insert were inoculated into

LB-Amp liquid medium and incubated at 37◦C o/n at 200 rpm. The plasmid DNA

was isolated from the recombinant E. coli cells as described in 2.11.2.

2.15 RFLP

Restriction fragment length polymorphism (RFLP) analysis were performed with the

M13-screening PCR-products in order to estimate the sequence diversity represented in

a clone library. In RFLP, DNA is cut by restriction enzymes (restriction endonucleases)

at specific short recognition sites. The resulting DNA fragments are then separated by

length with agarose gel electrophoresis after which specific band patterns are obtained.

Since different sequences have different restriction sites, RFLP as a fingerprinting tech-

nique can be used as a method for rapid comparison of DNA and thus for estimating

the sequence diversity of a clone library.

2.15.1 Restriction and inactivation of enzymes

Standard reaction mix for RFLP:

PCR product 5 µl

restriction-enzyme (10 U/µl) 0.3 µl

restriction-buffer 1 µl

H2Obidist 3 µl
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For each restriction a mastermix of enzymes, buffer and H2Obidist was prepared and

4,3 µl of the mix was pipetted into each reaction tube. The used enzymes are listed

in Table 2.15. Then, the PCR-product was added and the reaction was incubated for

3 hours at 37◦C. Enzymes were inactivated for 20 min at 65◦C and reactions were put

on 4◦C before they were applied to >2% agarose gels and run at 90 V for 1.5 h. The

plasmids of at least two representative clones of each banding pattern obtained were

isolated (2.11.2) and the inserts of the purified plasmids were sequenced (see 2.19).

Enzyme Restriction sitea Buffer Tinc [◦C]b Company
AluI AG↓CT Tango 37 Fermentas Life Sciences Inc., Hanover, MD, USA

MspI (HpaII) C↓CGG Tango 37 Fermentas Life Sciences Inc., Hanover, MD, USA
RsaI GT↓AC Tango 37 Fermentas Life Sciences Inc., Hanover, MD, USA

a arrow indicates site of restriction
b incubation temperature

Table 2.15: Restriction enzymes used for RFLP and T-RFLP analysis

2.16 T-RFLP

Terminal-restriction fragment length polymorphism (T-RFLP) is based on PCR am-

plification of a target gene with one or both the primers having their 5’ end labeled

with a fluorescent molecule. Like in RFLP, amplicons are subjected to a restriction

reaction (see 2.16.1). After this, the mixture of fragments is separated using capillary

electrophoresis and the sizes of the different terminal fragments are determined by a

fluorescence detector. Only the sizes of the terminal restriction fragments (T-RFs),

that is the labeled ends, are determined. The result of a T-RFLP profiling is a graph

called electropherogram. What appears as a band after separation by gel electrophore-

sis appears as a peak on the electropherogram. T-RFLP can provide a sensitive and

rapid means to assess community diversity and obtain a distinctive fingerprint of a

microbial community (Liu et al. 1997).

Primers were labeled at 5’ ends with fluorescent dye phosphoramidite fluorochrome 5-

carboxyfluorescein (6-FAM) or oxazole yellow (YO) from Thermo Electron GmbH Ulm,

Germany. For bacteria, 616F-FAM/1492R-YO were used, and for archaea 21F/Arch912-

FAM and 21F/1492-YO were used. PCR conditions used for T-RFLP can be found

in Table 2.5 and 2.6, respectively. PCR-products were purified with the QIAquick R©

PCR Purification Kit (QIAgen, Hilden, Germany) according to the manufacturer’s

protocol and dissolved in 50 µl DNA-free H2Obidist. Then, the concentration of each

purified PCR product was determined on a Nanodrop photometer (see 2.12.1). Total

amount of PCR products in the restriction mixture was 100 ng. Restriction was done

using endonucleases AluI, MspI and RsaI (Tab. 2.15), to obtain a higher resolution as
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compared to the use of one enzyme. For each restriction a mastermix of enzyme and

buffer was prepared and 2.5 µl of the mix were added to each PCR tube. Digestion

and inactivation of the enzyme was carried out as described for RFLP in 2.16.1. After

restriction samples were wrapped in aluminium foil and stored at -20◦C, before further

analysis.

Standard reaction mix for T-RFLP:

PCR product 100 ng

restriction-enzyme (10 U/µl) 0,5 µl

restriction-buffer 2 µl

H2Obidist ad 20 µl

2.17 DGGE

Denaturing gradient gel electrophoresis (DGGE) can be used to evaluate the diversity

of complex microbial systems (Muyzer et al. 1993). The technique reveals sequence

variation in a mixture of PCR-fragments of equal length. This separation is based

on the sequence-dependent melting behavior of DNA fragments in a polyacrylamide

(PAA) gel containing a concentration gradient of an increasing denaturant (Muyzer and

Smalla 1998), for example urea. An artificial GC-rich sequence, a so-called GC-clamp,

is added to the 5’-end of primers to prevent complete melting of the DNA fragments

and to detect differences in their melting behavior.

The conditions of touchdown PCR for the amplification of 16S rRNA gene fragments

for Denaturing gradient gel electrophoresis (DGGE) are listed in Table 2.7. DGGE

analysis were performed using 6% PAA solution (for the separation of fragments of

about 600 bp length). With acrylamide solutions containing either 20% and 80% of

urea, or 40% and 80% of urea a gradient was formed.

2.17.1 Preparation of acrylamide stock solutions

Stock solution with 0% urea (6% acrylamide)

Acrylamide/bisacrylamide solution 40% (37.5:1) 70 ml

50 × TAE buffer 10 ml

H2Obidist ad 500 ml
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The solution was stored in the dark at 4◦C.

Stock solution with 80% urea (8% acrylamide)

168 g urea were added slowly to 100 ml H2Obidist.

Acrylamide/bisacrylamide Solution 40% (37.5:1) 70 ml

50 × TAE 10 ml

Formamide 160 ml

H2Obidist ad 500 ml

The solution was stored in the dark at 4◦C.

2.17.2 Preparation of PAA gels

Solutions

10% SDS

Acrylamide stock solution with 0% urea

Acrylamide stock solution with 80% urea

Ammonium peroxydisulfate (APS)

N,N,N’,N’-tetra-methyl-ethylene-di-amine (TEMED)

Preparations

First, glass plates and spacers were cleaned with 10% SDS solution, washed with

H2Obidist and dried at RT. Then, the apparatus for the preparation of the gel was

assembled. 11 ml of acrylamide solutions for the respective lowest and highest urea-

concentration, 4-5 ml 0% solution for the collecting gel (sup), and 2 ml 80% solution

for the stop gel (seal) were prepared.

Procedure

After addition of 25 µl APS and 8 µl TEMED to the 80% stop solution, it was carefully

pipetted between the glass plates and let stand for polymerization. The stop gel was

prepared to impede DNA fragments from running into the buffer during gel separation.

Meanwhile, the gradient solutions with 20 and 80% of urea (first gel) and 40 and 80%

of urea (second gel) were poured into the gradient mixer (Econo model EP-1 gradient

pump Biorad, München, Germany). Air bubbles were removed from solutions. To each

solution 30 µl of APS and 8 µl of TEMED were added. The gel was gently poured

under constant mixing of the solutions by a magnetic stirrer. After this process 20
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µl APS and 4 µl TEMED were supplemented to the 0% solution which was carefully

pipetted on top of the gel. In the end, the comb was applied and the gel was incubated

for ∼1,5 h at RT to let the acrylamide polymerize. If the gel was not used immediately

after polymerization, it was stored at 4◦C over night.

2.17.3 Electrophoresis

Preparations

The DGGE chamber (Biorad, München, Germany) was filled with 1 × TAE buffer

(modified) and the buffer was pre-heated for 1,5 h at 63 ◦C prior to gel electrophoresis.

After application of the gel, the comb was removed and the gel-pockets were rinsed

with buffer. The gel was pre-run for 15 min at a voltage of 150 V.

Procedure

The PCR-products were mixed with 6 × loading buffer and pipetted into the gel-

pockets. DGGE analysis was performed with amplified genes from extracted DNA

and clones. 50 µl of amplicons from environmental DNA were mixed with 10 µl of

loading dye and 4 µl of clonal DNA were mixed with 1 µl of loading dye, respectively.

DGGE was run for 4.5 h at 150 V and at a temperature of 60◦C. Finally, the gel was

stained with SYBR R© Green I staining solution for 45-60 min. Evaluation was done as

described for agarose gels (see 2.12.2).

2.17.4 Excision and purification of DNA from PAA gels

Stained DNA-bands of interest were cut out with a scalpell, transferred to a sterile

1.5 ml ERT and diluted in 30 µl H2Obidist. Excised bands were stored at -20 ◦C.

Later on, reamplification of PCR-products with DGGE primers (Tab. 2.6) was per-

formed under the conditions listed in Table 2.8. The PCR-products were purified using

QIAquick R© PCR Purification Kit (QIAgen) following instructions of the protocol and

DNA concentration was measured on a Nanodrop photometer (see 2.12.1). Finally,

these amplificates were used for sequencing.

2.18 Sequencing

Sequencing was performed after the di-deoxy mediated chain termination method

(Sanger et al. 1977) combined with PCR including a DNA-polymerase (Saiki et al.
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1988).

Procedure

PCR was performed wit a reaction mix that contains both dNTPs and ddNTPs.

ddNTPs lack the 3’ OH group needed by the polymerase for adding nucleotides. There-

fore, after the integration of a ddNTP the elongation of the PCR product stops. Each

of the four ddNTPs is labeled with a fluorescent dye, each with different emission spec-

trum. Thus, the identity of the 3’ end of the nucleotide at which the PCR stopped is

revealed by the labeled PCR product. PCR products of different length and differently

labeled are separated by capillary electrophoresis in the DNA sequencer. Sequencing

was carried out using the DNA Sequencer Applied Biosystems 3130 following the manu-

facturer protocol. For sequencing of plasmid inserts vector-specific primers TopoSeq-F

or TopoSeq-R were used, whereas for direct sequencing of DGGE-bands the respective

forward-primer was used as sequencing primer (Tab. 2.6). After capillary electrophore-

sis DNA sequence chromatograms are obtained. Sequences were determined using the

software program e-seq (Licor Inc., Biotechnology Devision, Lincoln, NE, USA) and

exported in FASTA-format.

2.19 Sequence analyses

2.19.1 Sequence proofreading

Proofreading of sequences was performed using the FinchTV software. Sequences were

imported into ARB (2.20.3) and bases wrongly identified by automatic inspection were

manually corrected.

2.19.2 Quick analyses of sequences

To quickly analyze their phylogenetic affiliation the obtained sequences were com-

pared against existing online databases using the Basic Local Alignment Search Tool

(BLAST) (Altschul et al. 1990). BLAST is a sequence comparison algorithm opti-

mized for speed and used to search sequence databases for optimal local alignments.

The most similar sequences were imported as reference sequences into the software

program ARB for a detailed comparison.



2.19 Sequence analyses 49

2.19.3 Comparative sequence analysis using the ARB soft-

ware package

Sequence data were further analyzed using the software program ARB (Ludwig et al.,

2004). The ARB software is a graphically oriented package comprising various tools for

sequence database handling and data analysis, like data import and export, sequence

editing, sequence alignment, filter calculation, phylogenetic treeing and primer and

probe design and evaluation.

2.19.3.1 Alignment of sequences

FASTA-files with sequences of interest were imported into ARB. After deleting vector

nucleotides, sequences were automatically aligned by using the fast aligner function.

With the fast aligner new sequences can be compared to either an already existing

dataset or to the selected reference sequences. In the process, homologous regions

are aligned. After this, sequence alignment was manually improved. Sequences of

protein-coding genes (nxr, amoA) were translated in silico and amino acid sequences

was aligned.

2.19.3.2 Oligonucleotide probe design targeting 16S rRNA

A 16S rRNA targeted oligonucleotide probe for fluorescence in situ hybridization

(FISH) studies was designed manually with the ARB software. Probes were designed

in a way that mismatches to non-target-organisms were located in the center of the

probe. First, sequences of the target organisms were screened for a site at which all had

exactly the same nucleotide sequence. Then the site was compared to E. coli 16S rRNA

gene sequence to control if the probe targeted a conserved or variable region. The aim

was to find a variable region which would not be found in non-target sequences. Thus,

additional sequences from different phyla were used for comparison of the selected site.

To control if the probe could hybridize to any non-target organisms, the probe se-

quence was matched against SILVA database using the programme probeCheck, and

against the Ribosomal Database Project using the tool probe match. The length of

the designed probe was 18 nucleotides and the GC content was ∼60% (see Tab. 2.14).
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2.20 Phylogenetic analyses

Phylogenetic trees were calculated by analysis of nucleic acid (16S rRNA) and protein

(nxrB) sequences and were performed using the software package ARB (Ludwig et al.

2004). Calculation of phylogenetic trees was performed using conservation filters, in

which highly variable base pairs and sequence ends were excluded. In all calculations

unrelated sequences were used as outgroup, allowing the rooting to the position of the

outgroup. For each nucleotide tree, only sequences longer than 1,100 nt were used.

Therefore, 16S rRNA genes were sequenced from both sides and merged using ARB.

Two important methods for phylogenetic reconstruction included in ARB are described

shortly below. Treeing methods are classified according to how data are treated and

how trees are constructed. Comparative 16S rRNA analysis is a most widely used

technique in identification, classification and systematics of organisms today.

2.20.1 Neighbour joining

Neighbour joining (NJ) is a distance-based method, in which aligned sequences are

converted into a pairwise distance matrix, which provides the basis for the calculation

of the tree. The distance between each pair of two sequences is used to evaluate branch

lengths in trees. Since neighbour joining underestimates the actual distance between

sequences, correction models (e.g. Jukes-Cantor (DNA), Kimura (protein), ...) are

needed. NJ trees are assembled by clustering, in which one sequence after the other is

joined to the group with the lowest divergence, resulting in a gradually growing tree.

However, final tree distances often do not reflect the actual distance matrix distances.

An advantage of NJ is that the time needed for calculation of trees is short and large

data sets can be analyzed. A disadvantage is the loss of original sequence information,

due to the use of distance values for treeing calculation.

2.20.2 Maximum likelihood

Maximum likelihood (ML) is a method, in which each single nucleotide site is consid-

ered directly. For a set of data and an underlying evolutionary probability model, ML

tries to find the tree that maximizes the probability of observing the input data (a tree

that makes the data “more likely”). Trees are constructed on the basis of optimality

methods, which try to find the tree that concurs best with a model of evolution. This

is achieved by heuristically searching a subset of all trees, which is then expected to
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contain the optimal tree with the maximum likelihood. An advantage is that real se-

quences are analyzed and tree topology and branch lengths are considered. A drawback

is that the method is very time consuming.

2.21 Fluorescence in situ hybridization (FISH)

Fluorescence in situ hybridization uses rRNA-targeted fluorescent oligonucleotide pro-

bes and permits the phylogenetic identification and quantification of individual cells

without the need for prior cultivation. After cell fixation and immobilization to a slide,

hybridization under stringent conditions and a washing step are performed. After this,

analysis of samples can be achieved using fluorescence microscopy (Amann et al. 1995;

Llobet-Brossa et al. 1998).

2.21.1 Cell fixation

Due to the different cell wall composition of gram-positive and gram-negative bacterial

cells as well as archaeal cells, different fixation methods had to be used.

2.21.1.1 Cell fixation with paraformaldehyde (PFA)

PFA crosslinks terminal amino groups and therefore stabilizes the cell wall. 3 Vol.

4% PFA were added to 1 Vol. of sample and incubated for 2-3 h at 4◦C (enrichment

cultures) or for 1 h at RT (E. coli cells heterologously expressing cloned 16S rRNA

genes). When samples were fixed o/n, 0.5% PFA was used. To stop fixation the sample

was centrifuged (21,250 g, 15 min, 4◦C; Rotina 35S) and the SN was discarded. The

pellet was resuspended in 1 × PBS and centrifuged again. Finally, SN was discarded

and the pellet resuspended in 1 Vol 1 × PBS and 1 Vol. EtOHabs. Fixed cell samples

were stored at -20◦C.

2.21.1.2 Fixation with EtOH

1 Vol EtOHabs was added and samples were stored at -20◦C. Samples were centrifuged,

SN was discarded and the cell pellet washed in 1 × PBS. After another centrifugation

step the pellet was resuspended in 1 Vol 1 × PBS. Then, 1 Vol EtOHabs was added

and samples were stored at -20◦C.
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2.21.2 In situ hybridization

2.21.2.1 16S rRNA targeted oligonucleotide probes

To select appropriate probes the online database probeBase (Loy et al. 2003) was

used. The oligonucleotide probes used (Thermo Electron GmbH, Ulm, Germany) are

described in Table 2.16. From stock solutions, working solutions with a final concen-

tration of 50 ng/µl for Fluos-labeled probes and 30 ng/µl for Cy3- and Cy5-labeled

probes were made. Stock and working solutions were stored in the dark at -20◦C.

2.21.2.2 Immobilizing cells on glass slides

When small volumes (<10 µl) were used for FISH, 10 µl 1 × PBS were pipetted on the

well of a slide to guarantee an even distribution of the cells on the slide. Depending on

the respective cell concentration of the sample, 0.5-30 µl of sample were pipetted on

the slide and dried at 46◦C for 10 min in a hybridization oven.

2.21.2.3 Dehydration of the sample

After immobilization, an increasing EtOH series was performed. Therefore, slides were

put into 50%, 80% and 96% EtOH for 3 min, respectively, and air dried afterwards.

2.21.2.4 Probe hybridization

Hybridizations were performed at 46◦C between 1.5 and 3 h in a hybridization oven.

Appropriate stringency was achieved by addition of formamide to the hybridization

buffer and NaCl to the washing buffer. Formamide increases the reaction stringency

by destabilizing hydrogen-bondings between nucleic acids, while Na+-ions stabilize the

negative nucleic acid duplex due to its positive charges.

Solutions

5 M NaCl

1 M Tris/HCl, pH 8.0

0.5 M EDTA, pH 8.0

10 % (w/v) SDS

Formamide (FA)
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Table 2.16: Characteristics of oligonucleotide probes used for FISH analysis

Probe name Sequence (5’-3’) [FA]a
Binding

Specificityc Reference
positionb

EUB338d GCT GCC TCC CGT
0 - 50 338 - 355 most Bacteria

Amann et al.,
AGG AGT 1990

EUB338IId
GCA GCC ACC CGT

0 - 50 338 - 355 Planctomycetales
Daims et al.,

AGG TGT 1999

EUB338IIId
GCT GCC ACC CGT

0 - 50 338 - 355 Verrucomirobiales
Daims et al.,

AGG TGT 1999

ALF968
GGT AAG GTT CTG

20 968 - 985 α-Proteobacteria0 Neef 1997CGC GTT

BET42a
GCC TTC CCA CTT

35 1027 - 1043 β-Proteobacteria
Manz et al.,

CGT TT 1992

GAM42a
GCC TTC CCA CAT

35 1027 - 1043 γ-Proteobacteria
Manz et al.,

CGT TT 1992

PLA46
GAC TTG CAT GCC

30 46 - 63 Planctomycetales
Neef et al.,

TAA TCC 1998

Nscoc1248
TGC TTG GCC ACC

35 1248 - 1265
Nitrosococcus oceani, Juretschko,

CTC TGT Nitrosococcus halophilus 2000

Nso1225
CGC CAT TGT ATT

35 1224 - 1243 β-proteobacterial AOB
Mobarry et al.,

ACG TGT GA 1996

NEU
CCC CTC TGC TGC

40 653 - 670
most halophilic and halo- Wagner et al.,

ACT CTA tolerant Nitrosomonas spp. 1995

FGall178a
TCC CCC TCA GGG

35 178 - 195 family Gallionellaceae
Lücker,

CAT ATG unpublished

Ntoga221
TAT CGG CCG CTC

35 221 - 238 genus Nitrotoga
Lücker,

CGA AAA unpublished

Ntspa712
CGC CTT CGC CAC

50 712 - 732
most members of the Daims et al.,

CGG CCT TCC phylum Nitrospirae 2001

Ntspa712Comp
CGC CTT CGC CAC

50 712 - 732 competitor for Ntspa712
Daims et al.,

CGG TGT TCC 2001

Ntspa662
GGA ATT CCG CGC

35 662 - 679 genus Nitrospira
Daims et al.,

TCC TCT 2001

Ntspa662comp
GGA ATT CCG CTC

35 662 - 679 competitor for Ntspa662
Daims et al.,

TCC TCT 2001

Ntspa1151
TTC TCC TGG GCA

35 - 40 1151 - 1170 sublin. I of Nitrospirae
Maixner et al.,

GTC TCT CC 2006

Ntspa1431
TTG GCT TGG GCG

35 1431 - 1148 sublin. II of Nitrospirae
Maixner et al.,

ACT TCA 2006

NIT3
CCT GTG CTC CAT

40 1035 - 1052 Nitrobacter spp.
Wagner et al.,

GCT CCG 1996

NIT3comp
CCT GTG CTC CAG

40 1035 - 1052 competitor for NIT3
Wagner et al.,

GCT CCG 1996

Nctoc84
TCG CCA GCC ACC

10 85 - 101 Nitrococcus mobilis
Juretschko,

TTT CCG 2000

Ntspn693
TTC CCA ATA TCA

10 694 - 713 Nitrospina gracilis
Juretschko,

ACG CAT TT 2000

RHG1130
AGT GCC CAC CTC

35 1130 - 1148 putative AOB
Hatzenpichler,

TCG CGT unpubl., 2006

GaBI830
GGT CAA ACC CAC

35 830 - 848 Thermaerobacter spp. this study
CCA CAC
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ARCH915
GTG CTC CCC CGC

10 915 - 934 most Archaea Stahl, 1991
CAA TTC CT

CREN512
CGG CGG CTG ACA

10 512 - 527 most Crenarchaeota
Jurgens et al.,

CCA G 2000

RHGA702
GTG GTC TTC GGT

10 702 - 719
“Candidatus Nitrososphaera Hatzenpichler

GGA TCA gargensis” et al., 2008

NonEUB
ACT CCT ACG GGA

0 - 30 -
control (complementary to Wallner et al.,

GGC AGC EUB338) 1993

a formamide concentration in the hybridization buffer
b according to E. coli 16S rRNA (respective 23 rRNA for probes BET42a and GAM42a) (Brosius et al., 1981)
c for newly designed probes only full length sequences detected are listed
d these probes were mixed to detect all Bacteria; this mix is referred to below as EUBmix

Hybridization buffer (1 ml):

5 M NaCl 180 µl

1 M Tris/HCl pH 8,0 20 µl

Formamide × µl

10% (w/v) SDS 1 µl

H2Obidist ad 1 ml

Washing buffer (50 ml, pre-warmed in 48◦C):

5 M NaCl y µl

1 M Tris/HCl pH 8,0 1 ml

0.5 M EDTA pH 8,0 500 µl*

10% (w/v) SDS 50 µl

H2Obidist ad 50ml

*EDTA was used to bind bivalent cations and used for NaCl concentrations ≤ 225 mM

only.

Table 2.17: Volumes of FA, NaCl and EDTA used in hybridization and washing buffers

Hybridization buffer (1 ml) Washing buffer (50 ml)

Formamide [%] Formamide [µl] H20bidest [µl] NaCl [mM] 5 M NaCl [µl] 0.5 M ETDA [µl]
0 0 800 900 9.000 -
10 100 700 450 4.500 -
20 200 600 225 2.150 500
25 250 550 159 1.490 500
30 300 500 112 1.020 500
35 350 450 80 700 500
40 400 400 56 460 500
45 450 350 40 300 500
55 550 250 20 100 500
70 700 100 0 0 500
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Procedure

10 µl of hybridization buffer and 1 µl of the fluorescently labeled probe (final concen-

tration: 5 ng/µl and 3 ng/µl for Fluos and Cy3 probes, respectively) were pipetted

onto the well and the solution was gently stirred without scratching the surface. The

slide was then put into a 50 ml tube (Greiner Bio-One GmbH, Frickenhausen, Ger-

many) with a tissue soaked in remaining hybridization buffer. The tube was closed

and incubated for 1.5-3 h at 46◦C in a hybridization oven UE500 (Memmert GmbH,

Schwabach, Germany). After hybridization, the slide was washed in pre-warmed wash-

ing buffer for exactly 10 min. After washing, the slide was dipped into ice-cold H2Obidist

and immediately dried using compressed air. Slides were stored at -20◦C in the dark

until microscopic analysis.

The fluorescence intensity of newly designed probes was tested by FA-series of E. coli

cells that heterologously expressed the cloned 16S rRNA gene of interest (see 2.24) by

increasing concentrations of FA.

2.21.3 Staining with 4’-6’-di-amidino-2-phenylindole (DAPI)

and Sybr Green

Before microscopic analysis samples were stained with 4’-6’-di-amidino-2-phenylindole

(DAPI), which binds to double stranded DNA, making cells more easily observable

during microscopic analyses. The DAPI stock solution (1 mg/ml) was diluted 1:1,000

in H2Obidist. 10 µl of this working solution were pipetted carefully onto the sample.

After incubation of 3-10 min in the dark, DAPI was removed. The sample was washed

gently with 10 µl of H2Obidist to remove remaining DAPI and slides were dried for 15

min at RT in the dark.

For Sybr Green staining, the stock solution was diluted 1:1,000 in Citifluor. The

working solution was then carefully pipetted between samples and distributed over the

biomass by applying a coverslip.

2.21.4 Confocal Laser Scanning Microscopy (CLSM)

Confocal Laser Scanning Microscopy (CLSM) has the advantage to collect the light

emitted or reflected by a single plane of a sample examined. Light that is coming from

objects outside the plane gets stopped by a pinhole, in order that only light from objects

in focus can reach the detector. Specimen are scanned with a laser and reconstructed
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by software. Besides, CLSM allows the analysis of the 3-dimensional structure of a

sample.

2.21.4.1 Detection of fluorescently labeled cells

Before the coverslip was applied, samples were embedded in Citifluor AF1 (Agar Sci-

entific Limited) to reduce bleaching during microscopic analysis. Sample analysis was

performed using a Confocal Laser Scanning Microscope LSM 510 Meta (Zeiss, Jena,

Germany) that was equipped with an Argon-laser (430-514 nm) for excitation of the

Fluos-fluorophore) and two Helium-Neon-lasers (543 nm and 633 nm) for excitation

of Cy3 and Cy5, respectively). DAPI was excitated by UV light at around 350-365

nm. For magnification, 40 ×, 63 × and 100 × Plan-Neoflar objectives were used and

combined with a 10 × ocular. Documentation was done by using the provided software.

2.21.4.2 Evaluation of formamide (FA) series

Signal intensity for each FA concentration was evaluated using 63 × magnification by

CLSM. Settings for optimal signals were adjusted to 10% FA concentration and saved

for all following recordings. The mean signal intensity for different FA concentrations

and the best fitting sigmoid curve was calculated for 5-10 fields of view (for at least

about 100 cells per view) using the daime software (Daims et al. 2006). Finally, the

highest FA concentration yielding a bright FISH signal of the probe was determined

to be the optimal stringency condition for the probe.

2.22 CARD-FISH

Fluorescence in situ hybridization (FISH) was hailed as a breakthrough for microbial

ecology. Nevertheless, methodological improvements are important to overcome for

example the difficulties in samples other than from highly eutrophic systems. Many

microorganisms are slow growing, starving or in a dormant stage in environmental

samples, and the signal intensities are frequently below the detection limit or lost in

high background fluorescence. One alternative to improve the sensitivity of FISH was

the combination with catalyzed reporter deposition (CARD) (Morita 1998; Schönhuber

et al. 1997; Pernthaler et al. 2002). The hybridization involves an oligonucleotide that

is covalently crosslinked to a horseradish peroxidase (HRP). Amplification of the signal

is achieved by the radicalization of multiple tyramide molecules by a single horseradish
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peroxidase. The molecular weight of HRP is approximately 40 kDa, which makes cell

permeabilization an important issue (Amann and Fuchs 2008).

2.22.1 Preparation of poly-L-lysine coated slides

Due to many washing steps during CARD-FISH, slides were coated with poly-L-lysine

to improve cell immobilization .

Solutions

1% HCl in 70% EtOH

0.01% poly-L-lysine solution

Procedure

10 well slides (Paul Marienfeld, Bad Mergentheim, Germany) were washed in 1% HCl

in 70% EtOH for 5 min, followed by coating with 0.01% poly-L-lysine solution for 5

min. Coated slides were dried for 1.5 h at 60◦C in a Heraeus T20 drying oven (Kendro

Lab. Products, Hanau, Germany) and stored in a dustfree box at RT.

2.22.2 Cell immobilization

Sample immobilization on poly-L-Lysine coated slides and EtOH series were done as

described for standard FISH (2.22).

2.22.3 Embedding

To guarantee better immobilization (due to the high number of washing steps in CARD-

FISH) the slide was dipped into 0,2% agarose (in H2Obidist) and dried at RT.

2.22.4 Permeabilization of the cell wall

Because the HRP is a high molecular weight enzyme the samples had to be treated

with proteinase K or lysozyme to permeabilize cell walls.
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2.22.4.1 Proteinase K treatment

For the stock solution 5 mg of proteinase K (Sigma-Aldrich Chemie GmbH, Stein-

hausen, Germany) were dissolved in 1 ml TE (0.1 M Tris, 0.01 M EDTA). Then, 15

µl of the proteinase K working solution (15 µg/ml) were pipetted onto each well and

the slide was incubated at RT between 5 and 10 min, depending on the sample to be

analyzed. After that, samples were washed in 50 ml H2Obidist for 1 min.

Inhibition of proteinase K

The slide was incubated in 0.01 M HCl for 15 min to to inactivate remaining proteinase

K and to bleach endougenous peroxidases to avoid a false positive CARD-FISH signal.

2.22.4.2 Lysozyme treatment

Instead of proteinase K, lysozyme treatment was performed for non-archaeal cells.

Besides, for some samples both proteinase K and lysozyme treatment were used to

compare hybridization signals. 5 mg lysozyme (Fluka Chemie GmbH, Buchs, Switzer-

land) were solved in 1 ml TE buffer and 20 µl of this solution were pipetted onto the

sample. After an incubation for 15-60 min in a humid chamber (50 ml tube with tissue

soaked in water) at 37◦C, the lysozyme was removed by washing the slide in H2Obidist

two times for 1 min. Afterwards, the slides were dried with compressed air.

2.22.4.3 Inactivation of endogenous peroxidases

The slide was put into methanol containing 0.15% H2O2 for 30 min to inactivate intra-

cellular peroxidases and to reduce autofluorescence of sample material. Samples were

washed again two times for 1 min in H2Obidist and air dried.

2.22.5 Probe hybridization

Hybridizations were done according to 2.21.2, but with the following differences. The

hybridization buffer was the same as used for standard FISH except for the presence

of dextran sulfate (1 g/10 ml; Sigma, D 8906), a substance known to stabilize nucleic

acid duplexes, and blocking reagent (Roche Diagnostics Vienna GmbH), yielding a

final concentration of 1% (w/v). 10 µl of hybridization buffer and 1 µl of HRP-labeled

probe (50 ng/µl) were pipetted onto the wells so that a final probe concentration of

0.17 ng/µl was reached. The slide was put into a humid chamber (tissue soaked in
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H2Obidist with respective FA concentration) and incubated at 46◦C for 3-18 h.

2.22.6 Washing

For washing, all constituents in the washing buffer were the same as described for

standard FISH in Tab. 2.17, except for the use of EDTA (0.5 M) also at NaCl con-

centrations ≥225 mM (to obtain a 450 mM NaCl concentration in the washing buffer,

4400 µl of 5 M NaCl were used). After hybridization slides were put into pre-warmed

washing buffer and incubated for 15 min at 48◦C. After washing the slide was dipped

shortly into ice-cold H2Obidist to remove the salt and then incubated in 1 × PBS for 10

min at RT. The slide was dabbed on blotting paper and quickly dried with compressed

air.

2.22.7 Tyramide signal amplification

The tyramide signal amplification solution was freshly prepared each time. Cy3- or

Fluos-tyramide stock solution was first diluted 1:10 in H2Obidist and afterwards in

amplification buffer, which consisted of following substances:

PBS (20 ×) 2 ml

Blocking reagent (10%) 0.4 ml

NaCl (5 M) 16 ml

H2Obidist ad 40 ml

Dextrane sulfate 4 g

The solution was heated up to 40-60◦C.

Tyramide was diluted 1:10 in amplification buffer and 1 µl of 0.15% H2O2 was added

per 100 µl of solution (final concentration: 0,0015%). The solution was kept on ice in

the dark until use. From this mixture 10 µl were pipetted onto each well and the slide

was incubated in a humid chamber in the dark at 46◦C for 1 h. Afterwards, the slide

was dabbed on tissue paper and washed in 1 × PBS for 10 min at RT in the dark.

Finally, samples were washed in H2Obidist (RT, dark) for 1 min, the slide was air dried

and samples were stained with DAPI as described in 2.21.3 and stored at -20◦C in the

dark until microscopic analysis.
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2.23 FISH of E. coli expressing cloned 16S rRNA

genes (Clone-FISH)

To validate the specificity of newly designed probes, clone-FISH was performed. In this

method 16S rRNA genes of interest are cloned into an expression vector containing a

T7 RNA polymerase promoter and transferred into E. coli host cells with an IPTG-

inducible T7 RNA polymerase. By addition of IPTG the in vivo transcription of

plasmid inserts is induced and by the use of Camp, which increases plasmid copy

numbers and leads to an accumulation of RNA, high numbers of target rRNA can be

generated (Schramm et al. 2002). Finally, cells are fixed and used for FISH analysis.

2.23.1 Amplification of 16S rRNA genes and cloning

16S rRNA genes were amplified (B.13.1.) and PCR products were cloned into an

expression vector (B.15.). After transformation of chemical competent E. coli TOP10

cells clones were screened via M13 PCR and inserts were sequenced. The respective

plasmid was isolated as described in 2.11.2.

2.23.2 Electroporation of E.coli

Solutions

SOC medium

LB medium

Kan stock solution

Procedure

During this step, electro-competent E. coli cells are transformed with isolated plas-

mids via electroporation. An aliquot of E. coli JM109 (DE3) cells was thawed on ice.

Then, 1 µl of plasmid solution (containing insert of clone GaBI27) was added and the

solution mixed gently. Cells were transferred carefully to a pre-cooled electroporation

cuvette (0.2 cm; Biorad, München, Germany) using a 1 ml pipette tip to minimize

shearing stress. The cuvette was inserted into the electroporator MicroPulserTM (Bio-

rad, München, Germany) and electroporation was performed at a voltage of 2.49 kV

for 4.8 ms (condenser 25 mF, resistor 200 Ω). 250 µl SOC-medium were added imme-

diately and the solution was transferred to a sterile ERT. The cells were incubated at
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37◦C for 1 h at 200 rpm. Afterwards, 10 µl and 50 µl of the cells were spread out on

LB-Kan plates and incubated over night at 37◦C. Plates were then stored at 4◦C.

2.23.3 In vivo transcription of plasmid encoded 16S rRNA

genes

Preparations

3 clones were picked from the LB-Kan plate and a M13-screening PCR was carried out

to test for the correct insert size (see 2.14.4). After this, 5 ml LB-Kan medium was

inoculated with one positively tested clone and incubated o/n at 37◦C at 200 rpm.

Solutions

LB-Kan medium

1 M IPTG

Camp stock solution

Procedure

1 ml of pre-culture was inoculated into 100 ml LB-Kan medium in a 200 ml Erlenmeyer

flask (Schott Glas, Mainz, Germany) and grown at 37◦C at 200 rpm until an OD600

of 0.334 (see 2.11.1). After the appropriate cell density had been reached, in vivo0

transcription was started by adding 100 µl of 1 M IPTG and incubating the culture for

1 h. After that, 170 µl Camp were added and the cells were incubated for 4 h. Finally,

cells were harvested by centrifugation for 5 min at 3270 g (Rotina 35S).

2.23.4 Cell fixation, test on successful in vivo transcription

and FISH

Cells were fixed with PFA for 45 min at RT as described in 2.21.1.1. FISH and FA-

series were then performed under identical conditions for all hybridizations as described

in 2.21.2. After hybridizations, samples were embedded in CF and 6-10 pictures were

recorded for each of the 10 slides (FA concentrations from 0 to 70%) using CLSM

(2.21.4).
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2.24 Raman-spectroscopy and Raman-FISH

Raman spectroscopy is a technique based on the measurement of the vibrational energy

of chemical bonds. It can be applied also for microbial cells on single cell level to study

their ecophysiology. Samples are illuminated with monochromatic light generated by a

laser and inelastically scattered light following excitation is measured. Fingerprints of

abundant cellular components such as nucleic acids, proteins, lipids and carbohydrates

are clearly visible in the Raman spectra. Anabolic incorporation of 13C stable isotope

tracers causes significant changes in the observed resonance spectra due to modifica-

tion of bond vibrational states through the increased molecular mass contributed by

the heavier isotopes. This modification is termed a “red shift”. Since these spectral

shifts correlate with the tracer content of the cells, Raman microspectroscopy offers a

quantitative approach. Isotope-labeling techniques combined with molecular detection

tools are frequently used by microbial ecologists to directly link structure and function

of microbial communities and to monitor metabolic properties of uncultured microbes

at the single cell level. The combination of Raman spectroscopy with FISH offers the

simultaneous cultivation-independent identification and metabolic characterization of

microbial cells. (Huang et al. 2004; Huang et al. 2007; Wagner 2009).

Raman microscopy was performed using a LabRAM HR800 UV confocal Raman mi-

croscope (Jobin-Yvon, UK) based on an Olympus BX-41 microscope. The Olympus

microscope chassis was modified with a 100-W Xenon lamp and standard FITC, Cy3

and Cy5 filter blocks and an F-View camera (Soft Imaging Systems). For combined

Raman-FISH analysis, cells displaying oligonucleotide hybridization signals were lo-

cated using epifluorescence imaging on the modified Raman (Huang et al. 2007), and

their Raman spectra recorded.

2.24.1 Raman spectroscopy with putative AOB

2.24.1.1 Cell immobilization on calcium fluoride slides

Due to the very highly enriched culture of putative AOB (“culture 7.3”), Elena Lebe-

deva), Raman analysis without FISH was carried out. 1.5 µl of PFA-fixed cells from
13C and 12C incubations lasting 72 h were spotted onto a calcium fluoride (CaF2) slide

and dried. CaF2 slides were used to reduce background peaks. After this step, the slide

was dipped for 2 sec in ice-cold H2Obidist and dried rapidly by compressed air. Raman

analysis was performed without mounting media or coverslips.
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2.24.1.2 Raman spectroscopic analysis

For calibration and Raman spectra recording, the Labspec software (Jobin-Yvon) was

used.

Calibration

Prior to analysis, the system was calibrated using a silicon Raman reference (520

cm−1). Once the right focus plane was reached, a single spectrum from the silicon

coated slide was acquired with an NdYAG laser. Therefore, the image acquisition was

switched to the inbuilt Raman CCD detector, the laser was started and the option

“autocalibration multigradients”was chosen. The exact settings for recording spectra

are described below.

Spectral analysis of single cells

For Raman spectral analysis of a chosen cell, the laser was focused directly on the

middle of a single cell. Raman scattering was excited by the laser at 532.09 nm and

the incident laser power was adjusted to D1, in which damage of cells should be avoided.

The pinhole of the Peltier cooled (-70◦C) CCD Raman detector was set to 250 µm and

spectra were obtained by acquisition at 1250 cm−1 and 60 sec duration each. For 12C-

and 13C-incubations, spectra for 32 and 30 cells were recorded, respectively. After this,

Raman spectra with little background noise were processed for baseline correction and

normalized and smoothed using Labspec software. The spectra were then exported to

Excel (Microsoft) for peak determinations and calculations of the red shift ratio (RSR).

The red shift ratio of a specific peak is calculated as the intensity of wavelength of

the unlabeled peak divided by the wavelength of the labeled peak and was shown to

correlate with the 13C-content in cells by Huang et al. (2007).

Analysis of spectra with Excel

With the diagram assistant, 32 spectra were recorded for cultures fed with 12C and

30 spectra were recorded for cultures fed with 13C bicarbonate, and averaged. Signif-

icant peaks of the mean spectra like phenylalanine and cytochrome C were visually

compared and further investigated for presence of shifts. The RSR was calculated for

phenylalanine for each single 12C and 13C spectrum by dividing peak intensities at 965

cm−1(labeled) through peak intensities at 1001 cm−1 (unlabeled). The RSR of 12C and
13C peaks were spotted in a diagram and compared.
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2.24.2 Raman-FISH with Nitrococcus enrichment from ”Haus

des Meeres“

Before taking samples, incubations were shaken and 1 ml of 12C culture and 1 ml

of 13C culture were used for PFA-fixation (2.21.1.1). For Raman-FISH, 15-30 µl of

biomass were pipetted onto CaF2 slides and FISH was carried out as described in

2.21.2 with the EUBmix probe in Fluos and Ntcoc84 in CY3. Additionally, Raman-

FISH was carried out with a PFA-fixed sample of a pure culture of Nitrococcus mobilis.

For FISH analysis, the Raman microscope was upgraded with an epifluorescence light

source, epifluorescence filter blocks and an extra fluorescence imaging camera. To take

pictures, the programme analySIS getIT was used. Exposure time and intensity of

light were adjusted until single cells exhibited a distinct signal. Then, pictures were

taken and single cells, which were identified as Nitrococcus, were chosen for spectral

analysis, which was performed as delineated for putative AOB in 2.24.1.2. In contrast

to Huang et al. (2007) no background fluorescence was observed when cells hybridized

with Cy3-labeled probes, thus no bleaching step with the incident NdYAG laser prior

to spectra acquisition was necessary. 20 spectra of cells fed with 12C bicarbonate and

33 spectra of cells fed with 13C bicarbonate were recorded. For the pure culture, 7

spectra were recorded.

2.25 MAR

Microautoradiography (MAR) is a technique that enables direct visualization of active

cells and their metabolic capabilities without prior enrichment or cultivation. When

combined with fluorescence in situ hybridization using oligonucleotide probes for iden-

tification of the microorganisms, it is possible to link key physiological features to the

identity of microorganisms (Nielsen 2003). MAR is based on incubation with radioac-

tively labeled substrates and relies on the emission of β-particles during radioactive

decay. Cells that have incorporated the radioactive labeled compound will lead to

silver grain formation in a photographic emulsion on top of them and can thus be

distinguished from metabolically inactive cells.

Solutions

NH4Cl 1M stock solution 20 mM working solution, final concentration: 0.5 mM

NaOH 0,1% w/v

allyl-thiourea (ATU) 200 µM 40 µl added to 2 ml medium
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Table 2.18: Substrate concentrations used for MAR incubations

Substrate
with w/o Substrate

Substrate Radio- 14C-labeled 14C-labeled
ATUa ATU

NH4
+ NH4

+ [µM]
added activity Substrate Substrate

[µM]
added

[µl] added [µCi] [µM] added [µl] [µl]

Pyruvate yes yes 79 23 1.8 79 20 / /

Amino acid
yes yes 25 57.5 2.5 25 55 / /

mixtureb

Phenol yes yes 104 11.5 3 104 6.6 / /

Benzoic acid yes yes 620 7.7 1 620 1.1 / /

Bicarbonate yes yes 26 23 3 26 13.2 / /

Phenol
no yes 104 11.5 3 104 6.6 200 20

+ ATU

Benzoic acid
no yes 1860 7.7 1 1860 1.1 200 20

+ ATU

Dead control
yes no 26 23 3 26 13.2 / /

Bicarbonate

a ATU, allyl-thiourea
b amino acid mixture containing all amino acids (in different concentrations)

2.25.1 Pre-incubations

From a culture enriched with “Candidatus Nitrososphaera gargensis”containing 0.5

mM NH4
+ and with adjusted pH (7.0), 2.3 ml were pipetted into 12 autoclaved 10 ml

glas-vials each, representing 10 different experiments containing NH4
+ (5 experiments

in duplicates and negative control). From a second culture (obtained by splitting

the culture), in which NH3 had been completely oxidized to NO2
−, 2.3 ml each were

pipetted into 14 10 ml glas-vials each, representing the 14 different experiments without

NH4
+ in the medium (7 experiments in duplicates). As a test for chemographic uptake

and chemical loss of NH4
+, a dead control was prepared. Therefore, 4 ml of the culture

were fixed o/n with 1% PFA at 4◦C. On the following day, dead cells (resuspended in

1 × PBS) were resuspended in 600 µl of NH4
+-free medium and 300 µl were added

with 2 ml of medium in 10 ml glas-vials (final volume 2.3 ml). NH4
+ concentration

was adjusted to 0.5 mM. To all glas-vials the different (non-radioactive) heterotrophic

substrates or bicarbonate and ATU were added (Table 2.18). After this, the vials were

inserted into 50 ml closed tubes (Greiner), to avoid loss of NH4
+ via evaporation of

water, and the cultures were incubated for 5 h at 46◦C without shaking.

2.25.2 Incubations with radioactively labeled substrates

Before starting the main incubation, 300 µl from each vial was removed to measure

NH4
+ and NO2

− concentrations (vials were shaken before sampling; 2.8). After this,

NH4
+ was adjusted to 0.5 mM for experiments containing NH4

+ and the pH was
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adjusted by adding 220 µl of 0.1% NaOH, which later turned out to have increased

pH to 9. Nevertheless, the vials were transferred to the isotope-lab, in which the 14C-

labeled substrates were added. The incubations were performed o/n at 46 ◦C without

shaking in a hybridization oven. In Table 2.18 the substrate concentrations and the

amount of radioactivity added are listed.

2.25.2.1 PFA-fixation of cells and supernatant collection for downstream

analysis

After the incubation with radioactive substrates, approximately 2 ml of each incubation

was transferred to 2 ml ERT and centrifuged for 10 min at 21,250 g at 4◦C (Rotina

35S). The SN was transferred into new 2 ml ERT. 300 µl of the SN was pipetted into

1.5 ml ERT for subsequent NH4
+ measurement and 50 µl of the SN was put into 0.5

ml caps for subsequent NO2
− measurement.

For PFA-fixation of the cells a 3% PFA solution was used. PFA was added to the cell

pellets and incubated for 3 h at 4◦C and processed as described in 2.21.1.1. Finally,

pellets were diluted in 200 µl PBS:EtOH (1:1) and stored at -20◦C until further analysis.

2.25.3 Test on activity dependence on pH

Because MAR experiments were performed at a too high pH, the activity of cells

was compared at neutral and alkaline pH. Therefore, incubations in duplicates supple-

mented with 0.5 mM NH4
+ were performed. 2 ml of the culture was added to each of

four glass vials. Two of the vials were supplemented with 25 µl of 0.1% NaOH and 175

µl of H2Obidist, leading to a pH of around 7.5, whereas the other two veils were supple-

mented with 200 µl of 0.1% NaOH, leading to a pH of 8.5-9, at which MAR experiments

were performed. After a short incubation, samples to measure NO2
− production were

taken.

2.25.4 MAR protocol

2.25.4.1 Sample preparation

6 spots of 1 × PBS were pipetted on coverslips and 1-2 µl of biomass were distributed.

On each coverslip, 3 duplicates were spotted, yielding 6 spots per coverslip. Coverslips

were dried at 46◦C before covering of samples with film emulsion took place.
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Solutions:

Kodak D19 40 g/l mix for 300 ml: 12 g stored at RT in

the dark

Stopping solution: H2Obidist stored at - 4◦C

Fixative: Sodiumthiosulfate 30% mix for 300 ml: 90 g stored at - 4◦C

2.25.4.2 Covering with film emulsion and exposition

The autoradiographic film emulsion (LM-1 emulsion, Amersham) was heated for 10

min at 45◦C and after that carefully stirred with a glass rod. All working steps were

performed in a dark room. Some of the film emulsion was poured into a dipping vessel.

To cover the slides, each slide was dipped for approximately 7 sec into the film emulsion.

Then, sildes were dried on the backside with tissue paper. Finally, slides were fixed

horizontally in a box, which was wrapped into aluminium foil, together with a package

of dry silica gel. The box was stored on 4◦C and slides were exposed from several days

to weeks.

2.25.4.3 Development of film

In the dark room slides were taken out of the box and transferred into a plastic rack.

Subsequently, slides were submerged into the developing solution for 1-5 min, depend-

ing on the expected signal intensity. Afterwards, slides were submerged in the ice-cold

stopping solution (H2Obidist) for 1 min and into the ice-cold fixative solution (Sodi-

umthiosulfate) for 4 min. Finally, slides were submerged into ice-cold H2Obidist for 2

min and dried and stored in the box at 4◦C until further analysis. Before investiga-

tion of the slides on a CLSM they were stained with Sybr green in CF (see B.21.3.).

Pictures were taken with same settings using CLSM.



Chapter 3

Results

3.1 “Candidatus Nitrososphaera gargensis”enrich-

ment from the Garga hot spring

3.1.1 “Candidatus Nitrososphaera gargensis”

3.1.1.1 Activity of the enrichment

Only some hours after the culture was inoculated, near-stoichiometric conversion of

ammonia to nitrite by AOA was observed: after o/n incubation NH4
+ concentration

had decreased by ∼320 µM and NO2
− concentration had increased by ∼300 µM. After

some weeks, activity of the cultures decreased until they finally were not active any

more.

3.1.1.2 Microautoradiography (MAR)

The first exposure time examined was 3 weeks, the second exposure time was around 9

weeks. In all cultures, except for cultures supplemented with amino acids, “Candidatus

Nitrososphaera gargensis”was forming very dense aggregates, in which single cocci were

not recognizable any more. Results are summarized in Table 3.1 and 3.2. Heterotrophic

bacteria were always present as single rods and never showed any MAR-signal, thus

only AOA are described.

For the samples exposed around 9 weeks no differences to samples exposed shorter

could be observed, except for the incubations supplemented with phenol and supple-

mented with NH4
+, in which big aggregates were MAR positive (but were not before).

68
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In general, slides that were exposed longer were more difficult to analyze because some

slides were covered with a black layer (which was not composed of silver grains but left-

overs of film). In Figure 3.2 cultures supplemented with and w/o NH4
+ and incubated

with different radioactively labeled substrates are shown. In nearly all cultures AOA

form dense aggregates, in contrast to cultures supplemented with amino acid mix, in

which single cocci are visible. It can be observed that silver grains accumulated close

to and over clusters of the AOA, and often accumulated only in the middle of clusters.

PFA-fixed cells that should serve as dead control (C) revealed silver grain formation.

In Table 3.3 NH4
+ and NO2

− concentrations before and after the MAR incubation

are listed. It could be observed that NH4
+ consumption in cultures supplemented

with NH4
+ was quite high. However, NO2

− production was not very high in cultures

supplemented with bicarbonate, as well as in most of the other cultures. Only cultures

supplemented with amino acid mix (both with NH4
+ and w/o NH4

+) were producing

a lot of NO2
−.

Test for activity dependence on pH

Since MAR incubations were performed at a too high pH (9.0), NO2
− production was

tested at pH 7.5 and 9.0. No difference in activity was observed: in both cultures

around 250 µM of NO2
− was produced over two days.

Table 3.1: Sample description and MAR results for incubations with NH4
+.

sample description (+NH4
+) MAR signal (+NH4

+)

Bicarb I cocci form dense aggregates yes: most of the aggregates MAR positive,
centre very active, border less active

Bicarb II small & big aggregates of cocci yes: strong MAR signal in middle of aggregates,
big aggregates strong MAR positive

Benz I aggregates no
Benz II small & middle-sized no

aggregates, one big aggregate
AA I very big loose aggregates, single cocci still no

visible
AA II like AA I no
Phe I no biomass (washed off) not determined
Phe II cocci in aggregates (middle-sized & small) no
Pyr I some small aggregates, middle-sized & big yes/no: small aggregates not active; middle-sized

aggregates low activity; big aggregate partly active
Pyr II middle-sized & big aggregates yes: aggregates strong & medium active in middle
Dead I middle-sized & small aggregates (no big yes/no: small aggregates no signal; some with signal
(Bicarb) aggregates)
Dead II middle-sized & small aggregates (no big yes/no: small aggregates no signal; some with signal
(Bicarb) aggregates)
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Table 3.2: Sample description and MAR results for incubations w/o NH4
+.

sample description (-NH4
+) MAR signal (-NH4

+)

Bicarb I small, middle-sized & big aggregates yes/no: small aggregates low signal;
some aggregates very strong signal

Bicarb II a lot of middle-sized aggregates yes: signal in middle of aggregates
Benz I a lot of small aggregates, middle-sized no

aggregates, one big aggregate
Benz II small, middle-sized aggregates no
Benz ATU I broken slide not determined
Benz ATU II broken slide not determined
AA I huge loose aggregates, cocci visible; no

in middle more dense
AA II huge loose aggregates, cocci visible; no

in middle more dense
Phe I big & small aggregates yes: big aggregate with a lot of signal (middle);

small aggregates no strong signal; some no signal
Phe II big & small aggregates yes: huge aggregate with signal;

small aggregate without signal
Phe ATU I small, middle-sized & one big aggregate yes/no: big aggregate black in middle;

small aggregates little/no signal
Phe ATU II middle-sized aggregates yes/no: active & not active aggregates
Pyr I small, middle-sized & two big aggregates yes/no: active (at certain areas)

& not active aggregates
Pyr II aggregates yes/no: active & not active aggregates

3.1.1.3 Temperature experiment

To evaluate the temperature dependence of NO2
− formation, cultures (in duplicates)

were incubated at four different temperatures for 14 days and NH4
+ and NO2

− con-

centration were measured regularly by photometric methods (2.8). In Figure 3.1 NO2
−

concentrations over time at the respective temperature are shown. It was observed that

AOA were still producing NO2
− at a temperature of 66◦C. A list of measured NH4

+

and NO2
− concentrations at the different temperatures and sampling points and a list

of the NO2
− production (at each temperature) at each sampling point, per day and

within two weeks is added on the enclosed CD (“Temperature experiment”).
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Figure 3.1: NO2
− production at four different incubation temperatures over a time

span of 14 days. For graph calculations, mean values of the duplicates were used.
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Figure 3.2: MAR performed with an enrichment culture of “Candidatus Nitrososphaera
gargensis”after exposure for three weeks. Cells are stained with Sybr green. (A) AOA
microcolony with uptake of 14C bicarbonate supplemented with NH4

+ and (B) w/o
NH4

+. (C) PFA-fixed dead control incubated with 14C bicarbonate, showing a micro-
colony with a MAR signal. (D) Loose aggregate supplemented with NH4

+ showing no
uptake of amino acid mix. (E) Microcolony with uptake of 14C pyruvate supplemented
with NH4

+ and (F) with poor uptake of substrate w/o NH4
+. (G) Microcolony with

no uptake of 14C benzoate supplemented with NH4
+. (H) Microcolony with no uptake

of 14C phenol supplemented with NH4
+. (I) MAR-positive microcolony incubated w/o

NH4
+ with 14C phenol and (J) with 14C phenol and ATU.
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Table 3.3: NH4
+ and NO2

− concentrations pre and post the MAR incubations. Cul-
tures that were supplemented with NH4

+ are marked with “+”, those that were not
fed are marked with “-”.

NH4
+ NO2

−

Pre Pre(fed) Post consumption Pre Post production

AA I+ 381 500 410 90 23 322 299

AA II+ 384 500 410 90 37 315 278

Benz I+ 229 500 361 139 771 802 31

Benz II+ 221 500 369 131 831 872 41

Bicarb I+ 222 500 356 144 747 807 60

Bicarb II+ 217 500 344 156 756 805 49

Phe I+ 269 500 320 180 674 678 4

Phe II+ 285 500 379 121 706 755 49

Pyr I+ 231 500 358 142 763 791 28

Pyr II+ 234 500 363 137 779 767 -12

Dead I+ 414 500 355 145 0 -3 -3

Dead II+ 387 500 403 97 -1 -2 -1

NH4
+ NO2

−

Pre Post consumption Pre Post production

AA I- 22 18 4 54 252 198

AA II- 23 21 3 67 445 378

Benz I- 2 3 -1 580 697 117

Benz II- 1 5 -4 574 579 5

Benz ATU I- 1 5 -4 592 615 23

Benz ATU II- 1 5 -4 589 598 9

Bicarb I- 2 3 -1 585 614 29

Bicarb II- 0 5 -5 600 611 11

Phe I- 1 4 -4 874 616 -258

Phe II- 1 4 -2 589 653 64

Phe ATU I- 2 5 -3 587 593 6

Phe ATU II- 2 5 -3 596 579 -17

Pyr I- 2 3 -1 579 584 5

Pyr II- 1 3 -2 588 609 21
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3.1.2 Bacterial contaminants of the “Candidatus Nitrosos-

phaera gargensis”enrichment

3.1.2.1 Amplification of bacterial 16S rRNA gene fragments

DNA was extracted using the Power SoilTM DNA Kit (MoBio Laboratories) and

Phenol-Chlorofotm DNA extraction (2.10.1.2) from the “Candidatus Nitrososphaera

gargensis”enrichment.

For the amplification of bacterial 16S rRNA genes the general primer pair 616F/630R

(Table 2.6) was used, leading to an amplicon length of 1535 bp. The PCR-product was

cloned and insert-positive clones were identified via M13 screening PCR (Table 2.13).

A total of 120 clones were picked.

In another PCR, primers 616F/630R were combined with the primer RHG1148Rlock,

which lacked the OH group at 3’ end. This was done in order to try to inhibit amplifi-

cation of 16S rRNA genes of a putative AOB and to amplify genes belonging to other

contaminants in the enrichment. Amplicons had a length of 1535 bp. As a control,

primer 616F was used with the intact primer RHG1148R for PCR, which resulted in

an amplicon length of 1141 bp. After cloning of PCR-products, 71 clones were picked

and tested for correct insert via M13-screening PCR.

3.1.2.2 RFLP

a) RFLP with clones from 616F/630R PCR

RFLP screening was carried out for 90 bacterial clones using enzymes AluI and MspI

(Table 2.15). Four different patterns were obtained, two of them were very abundant.

At least one clone representing each pattern was sequenced. Finally, 24 sequences were

obtained (named GaB).

b) RFLP with clones from 616F/630R/RHG1148Rlock PCR

RFLP analysis was done for 107 bacterial clones using enzymes AluI and MspI. Four

patterns could be observed, among them two that were not observed for clones using

primer pair 616F/630R. A total of 21 clones, representing all different patterns, were

sequenced. Clones were named GaBI.
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3.1.2.3 Sequence analysis

The 24 GaB-clone sequences were compared to online databases using BLAST. All

sequences showed high similarity to putative AOB, which were already known to be

present in the enrichment (termed RHG; (Hatzenpichler et al. 2008; Hatzenpichler

2006)). Thus, no further analysis was performed.

Among 21 GaBI-clone sequences 9 were identified as putative AOB clones. 9 of the

sequences (GaBI3, 5, 14, 17, 26, 27, 28, 33, 36, 58 and 69) had high similarity to

Thermaerobacter subterraneus, and 2 (GaBI5, 69) were highly similar to the 16S rRNA

gene of an uncultured low GC gram positive bacterium clone and to Thermaerobacter

sp. Another sequence (GaBI25) was highly similar to an uncultured cyanobacterium

clone and to Microcoleus chtonoplastes.

3.1.2.4 DGGE analysis

Touchdown DGGE PCR was performed as described in Table 2.8 with primers C341F

and 907R (Tab. 2.6). As template, DNA extracted from the “Candidatus Nitrososphaera

gargensis”enrichment, RHG-clones (which were the least similar to each other), GaB-

clones and GaBI-clones were used.

In the first DGGE gel (20-80% gradient) (Fig. 3.3) one strong band was observed for

each clone. The fragments of clone RHG27 and 28 migrated a little further than frag-

ments of the other clones. DGGE performed with DNA extracted from the enrichment

resulted in three distinct bands. All samples revealed additional faint bands. The

upper band obtained from enrichment DNA was the only band which was represented

in the clone library by putative AOB (GaB- and RHG-clones).

In order to obtain a higher resolution, a second DGGE gel was performed containing

a 40-80% gradient (Fig. 3.4). DGGE PCR using the enrichment sample as a template

was carried out in replicates, pooled and applied to the gel. Like in the first DGGE

gel, clones produced a prominent band and some weak bands. The fragment of clone

RHG36 migrated a little slower than fragments of the other clones. In the enrichment

DNA sample, three characteristic bands and some faint bands were present. Two of

the fragments observed in the environmental sample were represented in the clone

library: the upper band represented the putative AOB (RHG clones), while to the

lowest band the two Thermaerobacter -clones (GaBI27 and 33) could be assigned. Clone

GaBI25 revealed a single band which could not be detected in the enrichment DNA. The

enrichment DNA fragments (designated as band 1, 2 and 3) were cut out, reamplified,
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Figure 3.3: DGGE gel containing an urea gradient from 20-80% showing the low di-
versity of bacterial 16S rRNA genes amplified from the Garga hot spring enrichment
(lane 5, 6) and clones (GaB35, 42, 51 and 56: lane 1-4; RHG16, 27, 28 and 30: lane
7-10). Due to a pipetting mistake in lane 5 some of the material applied ran through
lane 4. Only one fragment observed for the environmental sample is represented in the
clone library.

Figure 3.4: DGGE gel containing an urea gradient from 40-80% showing bacterial 16S
rRNA gene fragments amplified from the Garga hot spring enrichment (lane 4) and
clones (GaBI25, 27 and 33 (latter two: Thermaerobacter) : lane 1-3; RHG16, 26, 36
and 40: lane 5-8; GaB35, 42, 51: lane 9-11). Two of three fragments observed for the
environmental sample are represented in the clone library. Letters B1-B3 indicate the
three obtained fragments that were cut out, reamplified and sequenced.

purified and sequenced.

DGGE sequence analysis

Sequences of reamplified DGGE bands were compared to other sequences using BLAST.

Band 1 was most similar to putative AOB clones (RHG). Band 2 and 3 both could be

identified as Thermaerobacter -related sequences.

3.1.2.5 T-RFLP

For PCR, 5’-labeled primers 21V/Arch912-FAM and 21V/1492R-YO were used to am-

plify archaeal 16S rRNA genes, while for bacterial genes primers 616V-FAM/1492R-YO

(30 cycles; Tab. 2.6) were used as described under the conditions in Table 2.7. After
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PCR-products had been purified (QIAquick R© PCR Purification Kit, QIAgen, Hilden,

Germany) their concentration was determined. Total amount of PCR products in the

restriction mixture was 100 ng. Restriction was done using three different endonucle-

ases, AluI, MspI and RsaI (Tab. 2.15), to obtain a higher resolution (see 2.16).

The in silico predicted T-RF length from 16S rRNA sequences of Thermaerobacter

(GaBI clones), putative AOB (GaB and RHG clones) and “Candidatus Nitrososphaera

gargensis”are listed in Table 3.4.

Table 3.4: In silico predicted T-RF lengths for bacterial and archaeal clones.

T-RF length (bp)
AluI MspI RsaI

Thermaerobacter (616V) 69 147 488
Thermaerobacter (1492R) 443 33 119

putative AOB (616V) 234 123 471
putative AOB (1492R) 443 129 85

“Candidatus N. gargensis”(1492R) 81 519 613
“Candidatus N. gargensis”(912R) 129 142 43

The resulting electropherograms for bacteria are shown in Figure 3.5, 3.6 and 3.7. For

bacteria primers 616V-FAM/1492R-YO were used. In every electropherogram, peaks

could be assigned either to Thermaerobacter sp. or the putative AOB. Assignment was

performed using the program TRF-CUT, which is implemented in the ARB software

and which links clonal sequences to T-RF peaks. With all enzymes, except for AluI and

the terminal fragments amplified with 1492R, two single peaks could be assigned either

to Thermaerobacter sp. or putative AOB, respectively. Using AluI only one peak was

assigned to both Thermaerobacter and putative AOB. The peak at 20 bp, which was

present in all electropherograms, represented the primer. Next to peaks that could be

assigned to either Thermaerobacter sp. or putative AOB, in some electropherograms

some more small peaks were visible, probably representing pseudopeaks (see Discussion

4.2.4)

The archaeal profiles were obtained by using 21V/Arch912V (Fig. 3.8) and 21V/1492R

(Fig. 3.9) and the same restriction enzymes as for bacteria. In each profile obtained

using reverse primer 912R one major peak and smaller ones are visible, whereas only

one peak was obtained using primer 1492R.
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Figure 3.5: Electropherograms of the bacterial community in the enrichment sample
derived after digestion with AluI. TRFs amplified with labeled 616V (above) and with
labeled 1492R (below) are shown. y-axis: relative fluorescence units, x-axis: fragment
size (bp). Abbreviations of organisms: Th, Thermaerobacter, pAOB, putative AOB.
T-RF lengths above: 69=Th, 234=pAOB, below: 443=Th, pAOB

Figure 3.6: Electropherograms of the bacterial community in the enrichment sample
derived after digestion with MspI. TRFs amplified with labeled 616V (above) and with
labeled 1492R (below) are shown. y-axis: relative fluorescence units, x-axis: fragment
size (bp). Abbreviations of organisms: Th, Thermaerobacter, pAOB, putative AOB.
T-RF lengths above: 147=Th, 123=pAOB, below: 33=Th, 129=pAOB
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Figure 3.7: Electropherograms of the bacterial community in the enrichment sample
derived after digestion with RsaI. TRFs amplified with labeled 616V (above) and with
labeled 1492R (below) are shown. y-axis: relative fluorescence units, x-axis: fragment
size (bp). Abbreviations of organisms: Th, Thermaerobacter, pAOB, putative AOB.
T-RF lengths above: 488=Th, 471=pAOB, below: 119=Th, 85=pAOB

Figure 3.8: Electropherograms of “Candidatus Nitrososphaera gargensis”in the en-
richment sample derived after digestion with AluI, MspI, RsaI (from above). For
T-RFLP analyzing archaea, the reverse primer (912R) was labeled. N.g., “Candidatus
Nitrososphaera gargensis”. T-RF length above: 129=N.g., middle: 142=N.g., below:
43=N.g.
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Figure 3.9: Electropherograms of “Candidatus Nitrososphaera gargensis”in the enrich-
ment sample derived after digestion with AluI and MspI (from above). For T-RFLP
analyzing archaea, the reverse primer (1492R) was labeled. N.g., “Candidatus Ni-
trososphaera gargensis”. T-RF length above: 81=N.g., below: 519=N.g.

3.1.2.6 Phylogeny

For phylogenetic analysis only full length sequences were used. All obtained sequences,

not affiliated to putative AOB, formed a monophyletic branch outside Thermaerobacter

spp (Fig. 3.10). The sequences of the enrichment showed high similariy (>99%) to

each other, except for sequence GaBI58F, which was >97% similar to the other clones.

The closest relative was Thermaerobacter marianensis (or Aerothermobacter marianus)

with a similarity between 88-89% (∼87% similarity for GaBI58F).

3.1.2.7 In situ detection of Thermaerobacter spp. in the enrichment sam-

ple

a) FISH-probe design

To detect Thermaerobacter spp. in the enrichment sample a FISH-probe (GaBI830),

specific for all obtained GaBI-clones (Tab. 2.20), was designed using ARB as described

in 2.20.3.2.

b) Clone-FISH

For evaluation and validation of the newly designed probe the 16S rRNA of the clone
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Figure 3.10: 16S rRNA based ML tree, rooted against Chlamydia psicatti, showing
the phylogenetic positioning of Thermaerobacter -related sequences obtained from the
Garga hot spring enrichment (in bold). The tree was calculated by analysis of se-
quences >1,400 nt. Only positions conserved in at least 50% of all bacteria were used
for tree determination. Short sequences from metagenomic analysis (con; Hatzenpich-
ler, unpublished) were subsequently added without changing the overall tree topology.
All clones clustered together and showed highest similarity to Thermaerobacter mari-
anensis. The scale bar represents 10% estimated sequence divergence.

GaBI27 was heterologously expressed in E. coli cells JM109.

Test of new probe on clone-FISH sample and enrichment

Before FA series were performed, the specific probe GaBI30 was used for FISH with

E. coli expressing 16S rRNA genes of Thermaerobacter spp. and with the Garga

enrichment sample. The aim was to test if the newly designed probe hybridizes to

Thermaerobacter 16S rRNA, therefore an FA concentration of only 10% was used. For

the clone-FISH sample, probes Gam42a/HGC and EUBmix/GaBI830 (Tab. 2.13) were

used as described in 2.22.2. Since Thermaerobacter marianensis is a high-G+C-content

bacterium (Takai et al., 1999), a probe that targets high-G+C-content bacteria (HGC)

was used. All E. coli cells revealed a signal with the probe specific for γ-Proteobacteria,

but no signal was obtained with the HGC probe. The negative control did not show

any unspecific signals. EUBmix showed signals for all cells, while intensity of the signal

varied for GaBI830.
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Additionally, FISH was performed with the PFA- and EtOH fixed enrichment sample.

HGC/EUBmix probe and EUBmix/GaBI30 probe were used for FISH analysis. Gener-

ally, the signals were stronger when PFA-fixed cells were used. When the Fluos-labeled

EUBmix probe was used, most of the rods showed weak FISH-signals. These rods re-

vealed also signals when using Cy3-labeled HGC probe. After the EUBmix/GaBI830

hybridization, EUBmix signal was only rarely detectable and no signal was obtained

using the Thermaerobacter spp. specific probe.

FA series

For the newly designed probe, FA-series from 0% to 70% were performed to evaluate

the best FA concentration for FISH-hybridization. After this, a FA concentration of

35% was found to provide the optimal stringency (Fig. 3.11).
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Figure 3.11: Dissociaton profile of Thermaerobacter -specific probe GaBI830 under in-
creasing FA concentrations. The mean fluorescence intensity of at least 100 cells was
determined for each data point.

c) FISH with the enrichment sample

FISH was carried out with cells from the enrichment that had been fixed with EtOH

and PFA immediately after cultures were started using probes EUBmix/GaBI30. Ad-

ditionally, a younger (diluted) culture, which was not very active, was used to test the

specific probe for Thermaerobacter spp. In PFA- as well as EtOH-fixed samples of the

original culture a lot of cell could be identified as bacteria (using EUBmix). Among

them, aggregates of Thermaerobacter spp. could be detected. In the diluted culture a

lot of bacteria were present, but no Thermaerobacter spp. were detectable.

In an attempt to identify and quantify Thermaerobacter -related species, probes GaBI30,

RHG1130 (specific for putative AOB in the enrichment) and EUBmix were used.

Therefore, a culture was used on which metagenomic analysis had been carried out

(Hatzenpichler, unpublished). Sybr green staining (see 2.21.3) showed that cocci
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(AOA) were very abundant. For FISH, combinations of following probes were used:

GaBI830/EUBmix, RHG1130/EUBmix and RHG1130/GaBI830. Some rods could be

identified as Thermaerobacter -related species, but only weak signals were obtained.

Putative AOB revealed brighter FISH signals and were more abundant in the sam-

ple than Thermaerobacter -related species. Finally, bacteria were either identified as

Thermaerobacter or putative AOB and no other contaminants were observed.

3.2 Enrichment containing a putative AOB from

the Garga hot spring

3.2.1 FISH

To quantify putative AOB and contaminants in the enrichment, a sample (which was

taken 24 h after starting the incubation) was investigated with FISH using probe

RHG1130 specific for the putative AOB combined with EUBmix and DAPI staining.

A lot of cells were detectable with DAPI and one dominant morphological type, short

rods, was observed. A very minor population was probable represented by cocci, but

they were not easily distinguishable from the short rods. Nearly all of the cells hy-

bridized to the EUBmix probe. All short rods showed a FISH signal with the specific

probe RHG1130 and thus were identified as the putative AOB. To test if the cocci

might represent “Candidatus Nitrososphaera gargensis”, CARD-FISH with EUBmix

and probe RHGA702, specific for the archaeon, was performed. After DAPI staining,

some cocci could be detected, which were present in clusters and did not give a sig-

nal with the EUBmix probe. When using probe RHGA702, bright FISH signals were

detected only for very densely packed clusters of cocci. In contrast, in loosely packed

aggregates the FISH signal was weak or not detectable.

3.2.2 Raman spectroscopic analysis

In order to show ammonia-oxidizing activity of the putative AOB, they were cultured

in ammonia oxidizer medium with 12C or 13C bicarbonate as sole carbon source and

supplemented with ammonia as energy source (performed by Elena Lebedeva). For

Raman analysis, samples incubated for 72 h were used. Confocal Raman microscopy

produced accurate and highly reproducible Raman vibrational spectra of microorgan-

isms. Key peaks determined from the literature for major cellular constituents such as

proteins, lipids, nucleic acids and carbohydrates were present in each Raman spectrum
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of a single cell.
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Figure 3.12: Raman mean spectra obtained for PFA-fixed putative AOB grown in
media containing either 12C- or 13C-labeled bicarbonate as sole carbon source. For
12C- and 13C-incubations, 32 and 30 cells were analyzed and their spectra averaged,
respectively. Spectra were acquired over 60 s for an individual cell and baseline was
corrected, normalized and smoothed. The strong resonance peak at 1001 cm−1 shows
phenylalanine and one pronounced cytochrome c peak at 747 cm−1. Assignment of
spectral regions to compound classes was performed according to previously published
data (Naumann et al. 2001, Huang et al. 2004, Pätzold et al. 2008).

Comparing the mean spectra from cultures grown on 12C or 13C bicarbonate (denoted

as 12C and 13C, respectively) did not reveal any red-shifts in characteristic regions of

the spectrum (Fig. 3.12). The characteristic peak of the amino acid phenylalanine at

1001 cm−1 was analyzed in detail by calculating the red shift ratio (RSR). The RSR

of each 12C and 13C spectrum was calculated and plotted on a diagram.

The RSR of the 13C spectra fell, with one exception, within the range of all 12C

spectra, which showed that cells were not labeled sufficiently for detection by Raman

microspectroscopy (Fig. 3.13). In 2007, Huang et al. demonstrated a linear relationship

between RSR and 13C content in bacterial cells. If the upper RSR of 12C is considered

as outlier, four 13 spectra with RSR between 0.63 and 0.74 would be above 12C RSR

values and indicative of around 15-30% labeling, according to the study of Huang et al.

(2007). The average RSR of 12C spectra was <0.5, which indicated that cells were not



3.3 Enrichment of nitrite-oxidizing microorganisms from soil and

sludge 84

1 2
 

 

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

R
ed

sh
if
t

ra
ti

o
(R

S
R

)

12C
13C

Figure 3.13: Red shift ratios (RSR) of the phenylalanine peak of 13C and 12C spectra
of putative AOB.

labeled.

3.3 Enrichment of nitrite-oxidizing microorganisms

from soil and sludge

3.3.1 Enrichment 1: soil

3.3.1.1 Determination of cell numbers in inoculum

During the cell separation procedure (2.6.1.2) samples were taken between the cen-

trifugation steps to check for cell loss and cell density. Samples were stained with Sybr

green (2.21.3) and examined under the microscope. First, three centrifugation steps

at low speed were performed to remove big particles. After the first centrifugation,

biomass (pellet 1) contained only some cells and after the second centrifugation step,

the biomass (pellet 2) consisted of a low amount of cells which formed aggregates. After

the third centrifugation step the pellet (pellet 3) contained more cells. Then, samples

were centrifuged two times at high speed. This time the supernatant was controlled

for cell loss. After the first high speed centrifugation, a lot of cells were detected in the

supernatant (SN 4). After another centrifugation, the supernatant (SN 5) contained a

high number of mainly small cells, indicating that during the separation procedure loss

of biomass occurred. The enriched biomass sample, which was used as inoculum, con-

tained a lot of cells and some smaller particles which were probably sediment. There

were no aggregates and filaments visible and all cells had the same morphology.
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3.3.1.2 Control of NH4
+, NO2

− and NO3
−

During the incubations, NH4
+ concentration was determined photometrically and NO2

−

and NO3
− concentrations were estimated by using test stripes (Merck KGaA) (see 2.8).

In Table 3.5 the values at the different time points are listed. NH4
+ and NO2

− con-

centrations at day 0 differed from the intended starting concentrations. Since the

photometrical measurement of NH4
+ should be accurate, for cultures supplemented

with NH4
+ probably a wrong working solution had been prepared. However, since

knowing the exact NH4
+ concentration at the start of the incubations in order to ob-

serve NH4
+ decrease was more important than obtaining the wanted concentration,

this error was not corrected. For measurement of NO2
− concentrations test stripes

were used which are not as accurate as the photometric determination of NO2
− levels.

Thus, the NO2
− concentration should have been measured again photometrically. On

the other hand, the aim was not to know the exact NO2
− level but to test for NO2

−

decrease. Therefore, no effort was made to determine NO2
− concentrations by a more

accurate method or to obtain the originally wanted starting levels of NO2
−.

After 28 days, NH4
+ was only slightly decreased in cultures supplemented with NH4

+,

whereas NO2
− could not be detected at any time point. In cultures supplemented with

NO2
−, nitrite concentrations did not decrease until day 28, where no nitrite could be

measured.

Table 3.5: NH4
+, NO2

− and NO3
− concentrations measured in soil incubations.

Start: day 0 Day 14 Day 28
NH4

+ NO2
− NO3

− NH4
+ NO2

− NO3
− NO2

− NO3
−

µM µM µM µM µM µM µM µM
NH4

+ control 310 0 0 330 0 0 0 0
NH4

+ 75 µM 120 0 0 50 0 0 0 0
NH4

+ 750 µM 380 0 0 300 0 0 0 0
NO2

− control 0 1700 1600-4000 10 1700 4000-8000 1700 1600-4000
NO2

− 75 µM 80 40-100 160 60 100-200 160 0 0
NO2

− 750 µM 80 1700 1600-4000 50 1700 4000-8000 0 0

Day 29
NH4

+

µM
NH4

+ control 490
NH4

+ 75 µM 60
NH4

+ 750 µM 120
NO2

− control 30
NO2

− 75 µM 70
NO2

− 750 µM 70

As a rough estimate of cell density OD600 was regularly measured with a photometer

(Biorad). No evidence for increased cell density was obtained.
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3.3.1.3 Detection of cells in inoculum and incubations using FISH and

CARD-FISH

EUBmix, Arch915 and Cren512 probes were used for FISH in a PFA-fixed sample that

was used as inoculum for enrichment of nitrite oxidizers from soil (Tab. 3.6). After

each hybridization DAPI staining was performed. There were no aggregates visible but

a lot of cocci could be detected with EUBmix.

The different incubations were screened via FISH to test for enrichment of bacteria

and archaea (Tab. 3.7).

After 29 days of incubation (Tab. 3.8) cultures were overgrown by fungal hyphae. In or-

der to remove them, cultures were filtered, but after some days the filtered incubations

became overgrown again and the cultures were discarded.

Table 3.6: CARD-FISH performed with soil inoculum. Samples were treated either
with lysozyme (Lys) or proteinase K (PK) in order to test for the best permeabilization
method.

CARD-FISH inoculum: day 0
FISH signal

EUBmix (Lys 15’) small single cells, some cocci, little rods; low signal intensity
EUBmix Lys 30’ more cells detected than Lys 15’, coccoid, irregular; stronger signal
EUBmix Lys 60’ similar to Lys 30’
EUBmix PK 10’ a lot of small cocci (not all DAPI stained cells); the strongest signal

(as compared to Lys 15’, 30’ and 60’)
Arch915 (Lys 15’) no signal
Arch915 Lys 30’ no signal
Arch915 Lys 60’ no signal
Arch915 PK 10’ no signal
Arch915 PK 5’ no signal
Cren512 PK 10’ no signal
Cren512 PK 5’ no signal

Table 3.7: CARD-FISH with soil enrichments after 15 days of incubation. PK, pro-
teinase K

CARD-FISH: day 15
Arch915 PK 10’

NH4
+ control few cells; no signal

NH4
+ 75 µM few cells, rarely big dividing cells, bacterial ghosts? lysed cells?; no clear signal

NH4
+ 750 µM few cells: small cocci, big cells, bacterial ghosts? lysed cells?; signal for big cells

NO2
− control few cells, some small cocci, big cells; signal for big cells

NO2
− 75 µM more cells: rods, filaments, a lot of sediment; signal for rods and in cell cluster

NO2
− 750 µM few cells; signal for some small cocci

Inoculum signal for big dividing cell

general observation: big dividing cells in some cultures
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Table 3.8: FISH and CARD-FISH with soil enrichments after 29 days of incubation.
PK, proteinase K

FISH: day 29
EUBmix(Fl.)/Arch915(Cy3)

NH4
+ control low number of cells; some EUBmix signal, probably some Arch signal

NH4
+ 75 µM a lot of hyphae (fungi?); no signal

NH4
+ 750 µM a lot of cells; no signal (some small cells maybe EUBmix positive)

NO2
− 75 µM a lot of hyphae, some small cells; maybe some EUBmix and Arch signal

NO2
− 750 µM a lot of hyphae; rarely EUBmix signal, some Arch signal

Bet42a/Fl.)/Gam42a(Cy3)
NH4

+ control low number of cells; no signal
NH4

+ 75 µM a lot of hyphae; no signal
NH4

+ 750 µM some cells, no hyphae; no signal
NO2

− 75 µM fungal hyphae
NO2

− 750 µM a lot of cells; no signal
EUBmix(Fl.)/EUK(Cy3)
SYBR green in CF staining

NO2
− 750 µM EUK signal for hyphae

CARD-FISH: day 29
EUBmix PK 10’

NH4
+ control some single cells, weak DAPI staining, some big dividing cells strong

DAPI staining; some small cells signal
NH4

+ 75 µM a lot of hyphae, some single cells (rods); no signal
NH4

+ 750 µM a lot of single cells, rods dominant; no signal
NO2

− control some single cells; some signal, big dividing cell: signal
NO2

− 75 µM some hyphae, some cells, sediment; no signal
NO2

− 750 µM some hyphae, some cells, sediment; no signal

Arch PK 10’
NH4

+ control some single cells; rarely signal
NH4

+ 75 µM some cells, low number of hyphae; no signal
NH4

+ 750 µM a lot of cells (rods), strong DAPI staining; (nearly) no signal
NO2

− control some cells, some clusters, some big dividing cells; some signal
NO2

− 75 µM some cells, sediment; no signal, signal in cluster
NO2

− 750 µM rods, filaments; clusters; signal in clusters

3.3.2 Enrichment 2: soil and sludge

3.3.2.1 Control of NH4
+, NO2

−, NO3
− and pH

Substrate concentrations were controlled in weekly intervals by photometric methods

(NH4
+, NO2

−) and via test stripes (NO3
−; Merck KGaA). Additionally, pH was con-

trolled (∼5.5 in each culture at both days) using test stripes (Macherey-Nagel GmbH

& Co; see Tab. 3.9).



3.3 Enrichment of nitrite-oxidizing microorganisms from soil and

sludge 88

Table 3.9: NH4
+, NO2

− and NO3
− concentrations measured in soil/sludge incubations.

Data are rounded.

Day 8 Day 14
NH4

+ NO2
− NO3

−- NH4
+ NO2

− NO3
−-

µM µM µM µM µM µM
soil 5 µM NH4

+, NO2
− 5 10 0 10 0 0

soil 50 µM NH4
+, NO2

− 20 50 160 0 0 0
soil 500 µM NH4

+, NO2
− 0 470 1600 0 480 1600

soil control 500 µM NH4
+, NO2

− 10 530 1600 0 540 1600

sludge 5 µM NH4
+, NO2

− 15 10 0 0 10 0
sludge 50 µM NH4

+, NO2
− 20 60 160 0 60 160

sludge 500 µM NH4
+, NO2

− 10 500 1600 10 480 1600
sludge control 500 µM NH4

+, NO2
− 10 500 1600 0 540 1600

3.3.2.2 Detection of cells in inoculum and incubations using FISH and

CARD-FISH

EUBmix and Arch915 probes were used for identification of PFA-fixed cells that were

used as inoculum for enrichment of NOM from soil and sludge. Additionally, samples

were stained with Sybr green and DAPI (Tab. 3.10).

Table 3.10: FISH and CARD-FISH performed with soil and sludge. The same samples
were used as inoculum for cultures. For CARD-FISH samples were treated either with
lysozyme (Lys) or proteinase K (PK).

FISH: inoculum
sludge soil

SYBR green a lot of cells: short rods, some long rods, no a lot of single cells, filaments
clusters, sludge particles with a lot of single cells

DAPI high number of cells high number of cells
EUBmix some cells in clusters (sediment), some (nearly) no signal

filaments; weak signal
Arch915 signal rarely signal (more than EUBmix)
NonCy3, NONEUB Fluos no signal, some cells with autofluorescence no signal

(thick cocci)

CARD-FISH: inoculum
sludge soil

Arch915 PK 10’ high number of sludge particles and rods; in and around sediment, little AF; very rarely
particles a lot of signal (DAPI: much more signal) signal

EUBmix Lys 1h a lot of signal (nearly all DAPI stained cells) some cells signal, compared to
DAPI ∼10%

EUBmix PK 10’ a lot of signal (not all DAPI stained cells), less signal than with Lys
more signal with Lys

After 14 days putative fungal hyphae were visible in the cultures. In order to test for

fungal contamination, FISH was carried out using probe EUK combined with EUBmix

(Tab. 3.11). Since hyphae revealed a strong signal with the EUK probe, incubations

were stopped.
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Table 3.11: FISH with soil and sludge enrichments after 14 days of incubation.

FISH: day 14
EUBmix(Fl.)/EUK(Cy3)

Soil 5 µM NH4
+, NO2

− single cells, cluster; some single cells EUBmix signal, a lot of hyphae
EUK signal

Soil 50 µM NH4
+, NO2

− cell cluster EUBmix signal, some hyphae EUK signal

Sludge 5 µM NH4
+, NO2

− single cells in flocs EUBmix signal, hypahe EUK signal
Sludge 50 µM NH4

+, NO2
− hyphae with EUK signal

3.4 Enrichment from biofilm growing on aquarium

filters

3.4.1 Preparatory work

3.4.1.1 FISH with biofilm used as inoculum for enrichment of NOM

To screen the composition of the biofilm, FISH was performed with PFA- and EtOH-

fixed cells, using probes EUBI, EUBII, EUBIII, EUBmix, Alf968, Bet42a, Gam42a,

Nso1225, Ntspa712; Ntspn693, Ntcoc84, Nit3, Pla46, Arch915, EUK and NonEUB

combined with Nonsense under the conditions described in 2.21.2. Description of the

sample and observed FISH signals are summarized in Table 3.12. DAPI staining showed

the presence of a high number of single cells and cells grown in clusters, among them

rods and cocci, but also filaments. A majority of DAPI-stained cells were detected

by EUBmix. In general, a much better FISH signal was obtained with Cy3-labeled

probes than with Fluos-labeled probes. Overall, signals were rarely detectable for

single cells (except with EUBmix), and cells in clusters often showed a better FISH-

signal. For rods located in clusters signals were obtained with probes Bet42a, Gam42a,

Nso1225, Ntspn693, Ntcoc84 and Nit3. Strong signal and different cell morphologies

were detected when using Alf968. In many cases, the nonsense probe showed a lot of

signal, mainly for rods in clusters, making it possible that FISH signals using other

probes were unspecific. Signals for some cocci in clusters were detected using probe

Ntspa712 and Pla46. Archaea were not or only rarely detected using FISH. Thin

filaments which were present in the biofilm did not reveal any signal using EUK probe.

3.4.1.2 DNA extraction and PCR with biofilm inoculum

After DNA extraction with the Ultra Clean Soil DNA kit (2.11.1.1), the DNA concen-

tration was 15 ng/µl for the sample. 2.4 ng/µl DNA were measured in the negative
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Table 3.12: Description of community composition of aquarium water biofilm revealed
after FISH and DAPI staining with PFA- and EtOH-fixed samples. Probes were Cy3-
labeled and used in combination with EUBmix (Fluos), if not stated otherwise. Fl.,
Fluos

sample: biofilm
PFA EtOH

EUBI single cells and clusters: signal; Fluos weak in clusters lot of signal, weaker
signal; not all DAPI-stainded cells with signal signal with Fluos

EUBII signal in clusters: cocci single rods and in clusters: signal
EUBIII signal in clusters: rods signal in clusters: rods
EUBmix single cells and clusters: signal; Fluos weak in clusters a lot of signal;

signal; not all DAPI-stainded cells with signal signal better with Cy3
Alf968 no single cells with signal, cluster: a lot of many clusters with signal: rods,

rods with signal, single cells weak/no EUBmix signal cocci; EUBmix signal in aggregates
Alf968(Fl.)/EUBmix(Cy3) weak or no Alf signal; many cells EUBmix signal no Alf signal
Bet42a no single cells with signal; in clusters: rods some single rods with signal

with (unspecific?) signal thick filaments: EUBmix signal
Bet42a(Fl.)/EUBmix(Cy3) no signal; a lot of EUBmix in clusters weak signal, some rods signal
Gam42a short rods in clusters with signal some single rods with signal;

clusters: rods with signal
Gam42a(Fl.)/EUBmix(Cy3) some rods in cluster with signal; unspecific weak signals, not clear if cells

signal in clusters
Nso1225 in clusters some rods with signal in clusters some rods with signal
Ntspa712 in clusters signal for cocci (or AF?) no description
Ntspn693 a lot of rods with signal, mainly in clusters cocci in clusters
Ntcoc84 signal for rods, mainly in clusters signal for rods, mainly in clusters
Nit3 rods in clusters with signal (unspecific?) a lot of rods with signal
Pla46 a lot of cocci (attached on filamentous cocci (cells?) in clusters with signal

structures) with signal
Arch915 most single cells no Arch and EUBmix signal; in cluster: cocci with signal

clusters: some rods with signal (unspecific?)
EUK/EUBmix thin filaments no signal; EUBmix weak some signals (some thick filaments,

tetrads), no signal for long filaments
Nonsense/NONEUB a lot of Cy3 signal in aggregates, often rods; a lot of autofluorescence (Cy3);

signal similar with Ntcoc84 , Ntspn693 probe in clusters: (unspecific) signal for
rods, not as much as with Alf968

control. These concentrations were used undiluted for PCR. For amplification of bacte-

rial and archaeal 16S rRNA gene fragments, primers 616V/630R and 21V/1492R were

used under the conditions described in Table 2.7, respectively. Bacterial 16S rRNA

amplicons had a length of 1535 bp, whereas archaeal 16S rRNA amplicons were 1503

bp long. Both bacterial and archaeal amoA gene fragments were amplified (see Tab.

2.9) when using the primers amoA1F/amoA2R and ArchamoAV/ArchamoAF (Tab.

2.10), respectively, and resulting in an amplicon length of 490 bp for bacterial amoA

and of 595 bp for archaeal amoA. To amplify parts of the nxrB gene (see Tab. 2.12),

primers nxrBF169/nxrBF638 were used (Tab. 2.11), resulting in an amplicon length

of 485 bp.

3.4.1.3 pre-incubations: NH4
+, NO2

− and NO3
− measurements

In pre-incubations, substrate concentrations were measured (see Tab. 3.13) to test for

nitrifying activity. In some of the cultures supplemented with NH4
+ and NO2

−, a lot of

NH3 and NO2
− was consumed after some days, respectively. Substrates concentrations
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differed significantly between cultures without and with antibiotics.

Table 3.13: NH4
+, NO2

− and NO3
− measured during pre-incubations with biofilm from

“Haus des Meeres”. As starting concentration around 500 µM of NH4
+ and NO2

− were
added.

start after 4 days after 5 days
NH4

+ NO2
− NH4

+ NO2
− NO2

− NO3
−

µM µM µM µM µM µM
NH4

+ aquarium water only 431 2 1
NH4

+ bf 453 4 35 8 4 400
NH4

+ AB bf 42 343 385
NH4

+ AB crushed bf 286 53 70
NH4

+ filtrate 438 0 1

NO2
− aquarium water only 25 655 501

NO2
− bf 46 508 25 6 310 400

NO2
− AB bf 39 265 254

NO2
− AB crushed bf 37 309 283

NO2
− filtrate 56 514 482

NO2
− balls 31 16 61

3.4.2 Main incubations

3.4.2.1 Control of NH4
+, NO2

−, NO3
− concentration and pH

NH4
+, NO2

− concentration and pH were regularly measured whereas NO3
− was only

rarely tested. Culture dilutions (1:10) were performed approximately every two to

three months. In the following chapters, “original culture”refers to the initial cultures

that were started, while “diluted culture”refers to cultures that originate from one or

more dilutions of the initial culture. Cultures were prepared on 23.10. (referred to as

original cultures). On 26.11., 26.01., 17.04. and 22.07. 1:10 dilutions were performed.

a) Observations with incubations supplemented with NH4
+

In the original cultures, NH4
+ was nearly completely consumed in approximately 4

days. Results, if not stated otherwise, were consistent between duplicates. After the

first dilution, NH4
+ was consumed slowly, and in later cultures, in which only Nessler’s

reagent was used to test for presence or absence of NH4
+ (see 2.8.1.2), NH4

+ started to

accumulate. In the original and diluted NH4
+ cultures without antibiotics (NH4

+ bf I,

II), NO2
− concentrations always remained very low and most of the time no NO2

− could

be detected. In the two original cultures supplemented with antibiotics (NH4
+ AB bf

I, II), NO2
− concentrations slowly increased over time and reached a concentration of

3-4 mM after three months. This was not observed in diluted cultures supplemented

with antibiotics. NO2
− also accumulated in the culture which was supplemented with
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NH4
+ and only contained filtered aquarium water as medium. NO3

− was constantly

measured only in the original cultures. In the cultures with no antibiotics added,

NO3
− concentrations did not change significantly over time, whereas in the cultures

containing antibiotics and in the NH4
+ control culture, NO3

− concentration increased

up to 8 mM. pH decreased in all cultures over time, but more dramatically in cultures

to which no antibiotics were added, and was readjusted regularly.

b) Observations with incubations supplemented with NO2
−

In the original cultures, NO2
− accumulated in the cultures to which antibiotic had been

added. The microorganisms in cultures without antibiotic completely oxidized NO2
−

in the first week. Then, NO2
− started to accumulate. If it is not stated otherwise, re-

sults were consistent between duplicates. After the first dilution was performed, NO2
−

was oxidized in all four NO2
− cultures after some weeks. After this, in all cultures

and following dilutions that were performed, NO2
− was consumed in approximately

seven days (NO2
− concentrations were always measured after 7-10 days, after which

NO2
− could never be detected using test stripes). The NO2

− concentration in the

aquarium water control was stable for most of the time. From the start of the incuba-

tions on, NO3
− concentrations in all four NO2

− cultures were very high (0.8 to 8 mM)

and changed over time. The NO3
− concentration in the aquarium water control was

constant. NH4
+ concentrations were measured only in original cultures and cultures

obtained after the first dilution. They remained low (between 0 and 0.5 mM) and

alternately increased or decreased. pH was relatively stable and was readjusted if nec-

essary in cultures without antibiotics. For a detailed list of all concentrations measured

and observations recorded over a 10 month period see the accordant sheet (substrate

concentrations and pH of the “Haus des Meeres”enrichments) on the attached CD.

3.4.2.2 Detection of cells using FISH and CARD-FISH

For FISH experiments, the following probes and combination of these probes were used

at the conditions described in 2.21.2 and 2.22: EUBmix, Arch915, Alf698, Bet42a,

Gam42a, Nso1225, Nscoc1248, Ntspa712, Ntspa662, Ntspa1431, Ntspa1151, Ntcoc84,

Ntspn693, Nit3, FGall178a, Ntoga221 and Nonsense (Cy3) combined with NonEUB

probe (Fluos).

a) NH4
+ incubations

In the two cultures without antibiotic, high numbers of cocci and rods could be detected

with DAPI. They were either single cells or formed differently sized clusters embedded

in exopolymeric substance. Nearly all of the DAPI-stained cells showed signals with



3.4 Enrichment from biofilm growing on aquarium filters 93

the EUBmix probe. Arch915 did not reveal any signal when using standard FISH

protocol, whereas with CARD-FISH a very small amount of cells showed a specific

signal. When using probe Gam42a, signals were obtained for a large proportion of

rods, but no signals were observed using Nscoc1248. Many small cocci showed signals

when using probe Ntspa712, but no signal could be observed when using genus specific

probe Ntspa662, and sublineage specific probes Ntspa1431 and Ntspa1151. In cultures

NH4
+ bf II, a signal with Nso1225 was observed only in one small aggregate.

In one original culture supplemented with antibiotic, a lot of cells could be detected

with DAPI staining, whereas in the diluted cultures only a low number of cells could

be seen. Some of them showed FISH signals using EUBmix, but no archaea could be

detected using FISH and CARD-FISH. Many cells were detected using Gam42a, and

one big aggregate in one NH4
+ bf I culture contained some rods which hybridized to

probe Nso1225.

In summary, no FISH signals were observed with probes specific for ammonia and

nitrite oxidizers. Signals were only obtained using EUBmix, Gam42a and Ntspa712,

although FISH was performed several times and PFA-fixed cells from different cultures

and different amounts of biomass were used.

b) NO2
− incubations

In cultures without antibiotic, a lot of cells were present as revealed by DAPI staining.

Most of the cells showed signals using EUBmix probe. Using CARD-FISH, archaea

were not or only rarely detectable. γ-Proteobacteria were observed mainly in clusters.

In both original duplicates, signals were obtained for thick cocci located in clusters using

probe Ntcoc84 as well as probe Gam42a. In all NO2
− bf II cultures cells identified as

Nitrococcus were dominant and densely packed in small and large clusters but also

present as single cells. In contrast, in culture NO2
− bf I Nitrococcus microcolonies

became less abundant after some dilutions or could not be detected any more. In Fig.

3.14 Nitrococcus growing as single cells and in clusters is depicted.

In one NO2
− bf I culture, a very low number of Nitrospira (using probe Ntspa662) could

be observed in one big cluster, but signals were bleaching fast. No enriched population

of NOB was detected with other probes targeting known nitrite oxidizers. Thus, more

general probes were tested. Using Alf968, a lot of cells, mainly rods which were present

as single cells and in clusters, showed FISH signals and probe Pla46 revealed many cells

to be members of the Planctomycetes.

In NO2
− cultures supplemented with antibiotic, a lot of cells were present but nearly

all of the detected single cells and clusters showed FISH signals with EUBmix. Signals
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Figure 3.14: In situ analysis of Nitrococcus within biofilms of enrichment NO2
− bf II.

The FISH picture shows Nitrococcus as single cells and in microcolonies (detected by
probe Ntcoc84). Green color results from binding of probe-mix EUBmix to bacterial
cells. Nitrococcus cells appear yellow, due to simultaneous binding of EUBmix (Fluos)
and Ntcoc84 (Cy3) probe.

could be seen using Ntspa712, but no signals were obtained using more specific probes

Ntspa662, Ntspa1431 and Ntspa1151. Gam42a showed signals in culture I. At a certain

time point original cultures were very highly dominated by cocci (EUBmix), whereas

diluted cultures did not contain cocci in such high amounts any more. The cocci did

not show FISH signals with known NOB probes or probes Alf698, Bet42a and Pla46.

3.4.2.3 Molecular investigation of the NO2
− cultures: clone libraries for

bacterial 16S rRNA and nxr genes

a) Amplification of bacterial 16S rRNA genes, cloning and RFLP analysis,

sequencing and BLAST analysis

PCR was performed directly with cells from four active cultures supplemented with

NO2
− (NO2

− bf I, II, NO2
− AB bf I, II). For amplification of bacterial 16S rRNA genes

primers 616V/630R and a hot start Taq polymerase were used. Bacterial 16S rRNA

gene fragments were obtained from all four cultures, having an amplicon length of

approximately 1535 bp. 16S rRNA clone libraries were constructed for cultures NO2
−

bf I, II and NO2
− AB bf I. After cloning, RFLP analysis was performed. Since many
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freshwater clone MNC2 (AF293010)
groundwater clone (AF351228)

nitrite oxidising bioreactor clone GC86 (Y14644)
drinking water clone DSSD62 (AY328760)

soil clone 1183 (AY493911)
Nitrospira moscoviensis (X82558)

soil clone 339 (AY493910)
SBBR clone B28 (local_host:2:926784268)

SBBR clone C12 (local_host:1:952345570)
SBR clone RC11 (Y14636)

Candidatus "Nitrospira defluvii" (ARB_61A44005)
Nitrospira sp. (AJ224038)
fluidized bed reactor clone B30 (AJ224041)

Bor Khlueng hot spring clone PK287 (AY555798)
uranium contaminated aquifer clone 1013−28−GC51 (AY532586)

enrichment 47°C clone 7 (local_host:2:1059496197)
Nullarbor caves clone wb1_C17 (AF317762)

Nullarbor caves clone wb1_F07 (AF317764)
Nitrospira marina (X82559)
Nitrospira marina (L35501)

deep sea sediment clone BD3−8 (AB015550)
sponge_clone Cc137 (ARB_4AB80E9C)

C1, biofilm enrichment

C6, biofilm enrichment
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0.10

Figure 3.15: Unrooted phylogenetic tree of the phylum Nitrospira based on comparative
analysis of 16S rRNA sequences, showing the positioning of sequences obtained in this
study from biofilm enrichment NO2

− AB bf I from “Haus des Meeres”(in bold). The
tree topology was determined by maximum-likelihood analysis of sequences longer than
1,300 nucleotides. Only positions conserved in at least 50% of all Nitrospira were used
for tree inference. The scale bar represents 10% estimated sequence divergence.

different patterns were detected, a high number of clones was sequenced. Finally, for

culture NO2
− bf I, culture NO2

− bf II and culture NO2
− AB bf I, 20, 31 and 20 16S

rRNA sequences were obtained, respectively.

Sequences were compared against online databases using BLAST, which showed that

none of the 20 sequences obtained from culture NO2
− bf I had any similarity to known

nitrite oxidizers. Seven sequences were similar to γ-Proteobacteria and eight sequences

were similar to uncultured α-Proteobacteria. Three sequences were identified as un-

cultured Chloroflexi. From 31 sequences from NO2
− bf II, 18 were closely related

to α-Proteobacteria and six sequences derived from uncultured members of Plancto-

mycetes. For culture NO2
− AB bf I, 21 16S rRNA sequences were received. Three

sequences were closely related to Nitrospira marina 16S rRNA genes. Most of the se-

quences (eight) were similar to uncultured γ-proteobacterial clones and six sequences

were closely related to uncultured α-proteobacterial clones. The remaining four se-

quences were similar to uncultured planctomycetes. The Nitrospira marina related

sequences (C1, C4 and C6) were further analyzed using ARB and their phylogenetic

affiliation determined (Fig. 3.15). The three sequences (C1, C4 and C6) were 97.6-

99.2% similar to each other and showed 92.2-93.9% similarity to Nitrospira marina.

b) Amplification of nxrB genes from the “Haus des Meeres”enrichment,

cloning and sequencing

To amplify Nitrospira nxrB and Nitrobacter nxrB gene fragments, primers nxrBF169/

nxrBR707 and nxrB706/nxrBR1431 were used, respectively (Tab. 2.11). Nitrospira
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nxrB gene fragments with a length of 485bp were amplified in all four cultures and clone

libraries were constructed from cultures NO2
− bf I, II and NO2

− AB bf I. Only in culture

NO2
− bf II Nitrobacter nxrB fragments with a length of 725 bp were amplified. Finally,

for culture NO2
− bf I seven nxrB Nitrospira sequences (Anxr1-7) were obtained. For

culture NO2
− bf II eight nxrB Nitrobacter (Nitrococcus, BnxrB1,3-9) sequences and

three nxrB Nitrospira (Bnxr2,3,10) sequences were obtained and for culture NO2
− AB

bf I six nxrB Nitrospira sequences (Cnxr1,2,5-8) were received. After analyzing the

nxrB sequences using ARB, phylogenetic trees were calculated for Nitrococcus nxrB

(Fig. 3.16) and Nitrospira nxrB sequences (Fig. 3.17), respectively. Nitrococcus nxrB

sequences were 97.4-99.6% similar to each other and had a similarity of 97.4-98.7% to

Nitrococcus mobilis, but only 61.8-63.2% similarity to Nitrobacter hamburgensis nxrB

sequences on amino acid level. Nitrospira nxrB sequences from culture NO2
− bf I

(Anxr clones) were 97.3-100% similar to each other and had the highest similarity to

Nitrospira marina nxrB sequences (98.0-98.7%). BnxrB clones (culture NO2
− bf II)

were 98.0-100% similar to each other and between 98.0 and 99.3% similar to Nitrospira

marina nxrB sequences. Cnxr clones (culture NO2
− AB Bf I) were 98.7-100% similar

to each other and had a similarity of 97.3-98.7% to Nitrospira marina nxrB sequences.

NxrB_KLsoil_clone10

NxrB_KLsoil_clone3

NxrB_KLsoil_clone22

Nitrobacter hamburgensis (X66067)

Nitrobacter sp. (AY508480)

Nitrobacter hamburgensis (76185)

Nitrobacter sp. (AY508479)

Nitrobacter sp. (AY508482)

Nitrobacter sp. (AY508481)

Nitrobacter winogradskyi (L76187)

Nitrobacter winogradskyi (AY508478)

Nitrobacter winogradsky (AY508477)

Nitrobacter sp. (L76190)

BnxrB3

BnxrB5

BnxrB8

BnxrB9

BnxrB1

BnxrB6

BnxrB4

Nitrococcus mobilis Nb−231 109 (ARB_C286A2A0)
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Figure 3.16: Unrooted NxrB based phyML tree of Nitrococcus and Nitrobacter, showing
the positioning of sequences obtained from biofilm enrichment NO2

− bf II using primers
nxrBF706/nxrBR1431. Scale bar represents 10% estimated sequence divergence.

3.4.2.4 Amplification of 16S rRNA genes of Nitrococcus mobilis, cloning

and sequencing

Because no Nitrococcus 16S rRNA sequences could be found in the 16S rRNA clone

library from culture NO2
− bf II, a semispecific PCR with primers Ntcoc84F/630R and

Ntcoc84F/1492R was carried out to specifically amplify 16S rRNA genes of Nitrococcus.

As a positive control, PFA-fixed cells of a pure culture of Nitrococcus mobilis were used.

Primers Ntcoc84F/630R did not yield a product with a pure culture of Nitrococcus
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Figure 3.17: NxrB based phyML tree of Nitrospira, showing the positioning of se-
quences obtained from biofilm enrichment NO2

− bf I (Anxr), NO2
− bf II (Bnxr) and

NO2
− AB bf I (Cnxr) using primers nxrBF169/nxrBR707. The tree was rooted against

Nitrococcus mobilis nxrB. The scale bar represents 10% estimated sequence divergence.

mobilis. When using primes Ntcoc84F/1492R, amplicons with the expected length of

approximately 1408 bp were obtained. After cloning and sequencing, 18 full sequences

were obtained. Sequences were imported into ARB and aligned to the deposited 16S

rRNA gene of Nitrococcus mobilis. All 18 sequences revealed a similarity of 100% to

each other. The sequence similarity to the 16S rRNA gene of Nitrococcus mobilis was

100%.

3.4.3 Stable Isotope Probing (SIP)-incubations

3.4.3.1 Consumption of NO2
−

The four NO2
− cultures incubated each with 12C and 13C bicarbonate became stable

within some weeks and after this, constantly consumed the added NO2
−. The most

active culture was NO2
− bf II, which was fed with approximately 1.5 mM NO2

− per

week after around six weeks of incubation. NO2
− bf I (the duplicate culture) was not

as active as NO2
− bf II, but oxidized 800 µM NO2

− per week. The cultures with added

antibiotic were less active and consumed roughly 400 µM NO2
− per week after six
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weeks of incubation. NO3
− concentrations did not change significantly and were in the

range between 400 and 800 µM. pH was stable (between 8.4 and 8.6) and never had

to be readjusted. For a detailed description of the data see the attached CD (“SIP”).

Unfortunately, due to an error in the heating system of the waterbath, cultures were

killed and had to be discarded after around 2 months.

3.4.3.2 Investigation of cultures (staining, FISH) and confirmation of ac-

tivity using Raman-FISH

The composition of cultures supplemented with antibiotic and incubated either with
12C- or 13C-bicarbonate (NO2

− AB bf I, NO2
− AB bf II) was analyzed using DAPI

staining. In cultures NO2
− AB bf I 13C or 12C, mostly single cells and only a few

clusters were detected and rods were the dominant morphological type. Cultures NO2
−

AB bf II 13C and 12C contained not so many single cells and cells were clustering

together. Mainly rods were observed. Cultures without antibiotic (NO2
− bf I, II) were

screened by FISH using probes Ntcoc84/EUBmix and DAPI staining to screen the

composition of cultures and the enrichment of Nitrococcus mobilis. In culture NO2
− bf

I incubated with 13C or 12C, one morphology was dominating, namely very short single

rods. Only few small clusters could be observed, in which rarely some Nitrococcus cells

were detected. Composition of cultures differed between NO2
− bf II cultures incubated

with 12C and 13C. NO2
− bf II 12C was highly dominated by short rods, which also could

be observed in NO2
− bf I cultures. Only one cluster containing some Nitrococci was

observed. The only heterotrophs seemed to be the highly abundant short rods. The
13C culture contained a lot of cells of unknown identity. Most of the unknown bacteria

were very short rods, but they were not as abundant as in the 12C incubation and in

NO2
− bf I cultures. Differently sized clusters were present. Each cluster contained

colonies and single cells of Nitrococcus mobilis, which were embedded in a matrix.

Raman-FISH was performed with culture NO2
− bf II, in which Nitrococcus mobilis

was very abundant and the most NO2
− was consumed. Raman microscopy produced

accurate and reproducible Raman vibrational spectra of Nitrococcus mobilis. Charac-

teristic peaks determined from the literature for dominant cellular component such as

proteins, lipids, nucleic acids and carbohydrates were clearly visible in the spectra of

a single cell (Fig. 3.18).

Comparing the 12C- and 13C mean spectra did reveal “red-shifts”in characteristic peaks

of the spectra, like cytochrome or phenylalanine. The characteristic peak of pheny-

lalanine was specifically analyzed by calculating the red shift ratio (RSR). The RSR

of each 12C spectrum was compared to the RSR of each 13C spectrum and plotted on
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a diagram (see Fig. 3.19). Nearly all RSR of the 13C spectra fell above RSR of 12C

spectra, indicating that nearly all cells from the 13C experiment were labeled. The av-

erage RSR of 13C spectra was 0.72, which indicated labeling of around 25%, according

to the study of Huang et al. (2007). The cell that showed the most labeling had a

RSR of 0.81 and was labeled ∼40%. The two cells which had a RSR within the range

of 12C incubated cells were probably not labeled. All in all, Nitrococcus mobilis cells

in culture NO2
− bf II were labeled up to 40% after an incubation of around 6 weeks

with stable isotopes.
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Figure 3.18: Raman mean spectra obtained for PFA-fixed Nitrococcus mobilis enrich-
ments grown in aquarium water containing either 12C- or 13C-labeled bicarbonate as
sole carbon source. For 12C- and 13C-incubations, 20 and 33 cells were analyzed and
their spectra averaged, respectively. Spectra were acquired over 60 s for an individual
cell and in each case baseline corrected, normalized and smoothed. The strong reso-
nance peak at 1003 cm−1 shows phenylalanine, and at 747 cm−1 a pronounced peak
of cytochrome c is visible. Assignment of spectral regions to compound classes was
performed according to previously published data (Naumann et al. 2001, Huang et al.
2004, Pätzold et al. 2008).

Originally, the aim was to perform Raman microscopic analysis with all active cultures.

Since no known NOB (except for Nitrococcus) could be identified, the intention was

to test for autotrophic growth of cells showing a characteristic morphology. Since all

cultures were killed after 2 months, these experiments could not be performed.
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Figure 3.19: Red shift ratios (RSR) of the phenylalanine peak of 13C and 12C spectra.



Chapter 4

Discussion

4.1 “Candidatus Nitrososphaera gargensis”enrich-

ment from the Garga hot spring in Russia

4.1.1 “Candidatus Nitrososphaera gargensis”

A thermophilic, nitrifying enrichment originating from the Garga hot spring in Russia

had been maintained for years under nitrifying conditions at a temperature of 46◦C

(Lebedeva et al. 2005). In 2006, Hatzenpichler screened for AOM and found that the

enrichment consisted of a dominant population of a single archaeon, which was then

shown to be an aerobic, chemolithoautotrophic ammonia oxidizer and named “Candi-

datus Nitrososphaera gargensis”(Hatzenpichler et al. 2008), and a minor population of

bacterial contaminants. “Candidatus Nitrososphaera gargensis”is a moderately ther-

mophilic (46◦C optimum of NH3 oxidation) archaeon affiliated to the I.1b soil cluster

and adapted to very low ammonium concentrations (partial inhibition of AOA was

observed with 3.08 mM ammonium) (Hatzenpichler et al. 2008).

Background

Bacterial Amo is known to be a multifunctional enzyme which oxidizes methane, car-

bon monoxide and a range of organic compounds, but these do not provide growth

substrates in laboratory culture (Prosser and Nicol 2008). Presently, little is known

of the alternative substrates for archaeal Amo but the sequences are only distantly

related to bacterial Amo which might have consequences for functional diversity. Ad-

ditionally, Prosser and Nicol (2008) suggested that potential alternative metabolisms

and growth strategies for mesophilic crenarchaeota have to be considered. Taken to-
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gether, their abundance may not result only from ammonia oxidation but, for example,

from mixotrophic or heterotrophic growth. Therefore, higher crenarchaeal amoA gene

abundance may not be linked to archaeal ammonia oxidation (Prosser and Nicol 2008).

Wuchter et al. (2003) demonstrated the uptake of bicarbonate using marine surface

water in situ, and that the majority of autotrophically incorporated carbon is found

in crenarchaeal isoprenoids. However, Ingalls et al. (2006) showed that at a depth

of 670 m in the Pacific Ocean, the 14C inside archaeal membrane lipids could not

be explained by incorporation of dissolved inorganic carbon and calculated that 17%

of the lipid carbon was derived from heterotrophic consumption of organic carbon.

Their data suggest that either the marine archaeal community consists of both au-

totrophs and heterotrophs or is represented by a single population with a mixotrophic

metabolism. Indeed, Ouverney and Fuhrman (2000) found indications for heterotro-

phy of planktonic archaea, as they demonstrated their uptake of amino acids, but it

was not determined whether these archaea were crenarchaeota. Agogué et al. (2008)

determined contributions of putative AOA and AOB to the total archaeal and bacte-

rial community in subsurface waters to 4000 m depth in the North Atlantic and could

show that most bathypelagic crenarchaeota were not autotrophic ammonia oxidizers.

They observed a significant decrease of archaeal amoA copies with depth and very

low fixation rates of carbon dioxide and concluded therefore a heterotrophic lifestyle

of bathypelagic crenarchaeota. However, these studies aimed for marine archaea and

their growth strategies. Comparable studies for soil archaea do rarely exist.

In this study, it was determined whether the chemolithoautotrophic AOA “Candidatus

Nitrososphaera gargensis”has a potential for mixotrophic growth using MAR. Since

MAR only gives information about the potential C-source, chemical measurements of

NH4
+ and NO2

− concentrations before and after the MAR-incubation were performed

to test if energy for growth or maintenance derived from ammonia oxidation.

4.1.2 Microautoradiography (MAR)

Biomass, stained with Sybr green, consisted of differently sized microcolonies of “Can-

didatus Nitrososphaera gargensis”and rarely planktonic rods which were bacterial het-

erotrophic contaminants. The heterotrophic bacteria had morphologies from thick to

short rods but also longer filaments could be rarely seen. The only exception was cul-

tures supplemented with amino acid mix, in which colonies could not be detected but

only single AOA cells were present.

In general, silver grains accumulated close to and over clusters of the AOA, but often

were observed to accumulate only in the middle of clusters or only at specific sites.
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No single colony was detected at which silver grains coincided exactly with the AOA

microcolonies. Since microcolonies of AOA were very dense, it can not be excluded

that heterotrophic bacteria resided within the aggregates and were active. However,

FISH did not give any hint for the presence of bacteria inside the AOA microcolonies.

Unfortunately, experiments were performed at the wrong pH (pH 9 instead of 7.5),

making it obligatory to repeat the experiment. The original sample from the Garga hot

spring had a pH of 7.9 (Lebedeva et al. 2005), while the enrichments were maintained at

a pH of 7.5. During the experiment it was observed that cells mostly formed aggregates

(but single cells before), which were probably caused by this pH change. It is possible

that cells on the border of aggregates were not so active compared to cells in the middle

of the aggregates, in which they could have been protected from the high pH and thus

more active. However, cultures that were incubated at a pH 9 showed no difference in

activity to ones at 7.5, which does not substantiate this hypothesis.

A negative control with PFA-fixed biomass supplemented with NH4
+ and 14C-labeled

bicarbonate was performed to test for possible adsorption phenomena and chemogra-

phy of the 14C-bicarbonate and potential chemical loss of NH4
+ through evaporation.

No negative controls were performed with the other 14C-labeled substrates. Since dif-

ferent substrates might have different adsorption characteristics, a negative control for

each substrate is a necessary part of the experiment in order to get conclusive results.

Unfortunately, microcolonies from the negative control showed a positive MAR sig-

nal, making it difficult to interpret the MAR results from cultures supplemented with

bicarbonate. In the discussion it always has to be kept in mind that cells possibly

did not incorporate the substrates and that MAR signals were caused by substrate

adsorption on the cell surface. Lee et al. (1999) used pasteurized samples as a con-

trol for possible adsorption phenomena, since they observed enhanced adsorption with

paraformaldehyde-treated biomass that was probably caused by fixative-induced chem-

ical modification of bacterial cell surfaces. Besides, they postulate that once chemical

adsorption is observed for a specific substrate, extra washing steps must be used. Thus,

it is possible that during the incubation labeled bicarbonate adsorbed on PFA-treated

cells of the dead control. On the other hand, it is possible that an old PFA-solution

was used. It was stated that in unbuffered solutions (used in this study) the pH might

drop and PFA might decompose (product information by Sigma-Aldrich). However, in

the dead control NH4
+ concentration decreased, but no NO2

− was produced, and since

no nitrite oxidizers were present, it is more likely that cells were dead and not active,

and that MAR signals were caused by adsorption of substrate onto the biomass.

NH4
+ decrease is no proof of ammonia oxidation, since ammonia can also evaporate

(more pronounced at elevated temperatures), used as nitrogen source (for assimila-



4.1 “Candidatus Nitrososphaera gargensis”enrich-

ment from the Garga hot spring in Russia 104

tion) or can be stored intracellularly. However, it must be noticed that accumulation

of NH4
+ inside the cell might, above a certain level, lead to intracellular concentra-

tions that negatively influence the cytoplasmic pH and thus could result in inhibition

(Hatzenpichler et al. 2008). Therefore, the storage of high amounts of NH4
+ is unlikely.

Focus will lie on NO2
− production, which can only result from ammonia oxidation.

Most microcolonies were heavily coated with silver grains in bicarbonate cultures with

and without NH4
+ addition. In cultures without NH4

+ addition MAR-positive cells

were present, which could indicate that cells consumed intracellularly stored NH3.

However, only negligible amounts of NO2
− were produced. In the sample supplemented

with NH4
+ only a little bit more NO2

− was produced compared to the sample to which

no NH4
+ was added, demonstrating that AOA in general had not been very active

during the experiment.

In the sample supplemented with benzoate no silver grain coated microorganisms were

observed, which showed that benzoate was not used as heterotrophic substrate. In

benzoate cultures that were not fed with NH4
+ negligible amounts of NO2

−, like in

bicarbonate cultures, were produced. Some NO2
−, but smaller amounts than in the

bicarbonate cultures supplemented with NH4
+, was produced in benzoate cultures

supplemented with NH4
+. This could indicate that NH3 was used for maintenance.

Cultures that were not supplemented with NH4
+ probably used intracellularly stored

NH3 as energy source.

Samples that were incubated with phenol and NH4
+ did not give any MAR signal after

three weeks of exposure, but longer exposure lead to silver grain formation, indicating

that only small amount of phenol was assimilated. Microcolonies in phenol cultures

without NH4
+ addition and without NH4

+ addition but ATU addition were covered

with silver grains. In the incubation supplemented with NH4
+ only little NO2

− was

produced. In the incubation without NH4
+ addition either intracellularly stored NH3

was used as energy source and/or phenol was oxidized itself, which should then result

in absence of NO2
− production. However, in one duplicate, some NO2

− was formed.

To test if Amo oxidizes phenol, cultures without NH4
+ were supplemented with allyl-

thiourea (ATU), a substance known to inhibit bacterial Amo (Adamczyk et al. 2003)

and, to a minor extent, archaeal Amo (Hatzenpichler et al. 2008). Hatzenpichler et al.

(2008) observed after addition of ATU in the presence of ammonium and bicarbonate

a strongly decreased MAR signal of the AOA microcolonies. In incubations with ATU

addition, no NO2
− was produced. Nevertheless cells were MAR positive, which suggests

that they used phenol not only as heterotrophic source of carbon but also as energy

source. Since ATU is a known inhibitor of Amo was, it is assumed that the enzyme was
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not catalyzing the oxidation of phenol. After addition of ATU the MAR signal did not

decrease, which favors the conclusion that phenol was used as energy source. Besides,

the results show that NH4
+ presence partly inhibited either uptake or utilization of

phenol, possibly indicating that the AOA prefer NH4
+ over phenol as source of energy.

The utilization of aromatic compounds by certain bacteria is well known for a long

time (Evans 1946) and recently, it also has been shown that a thermophilic archaeon

(Sulfolobus solfataricus) can efficiently grow on phenol as the sole source of carbon and

energy by the action of monooxygenases (Izzo et al. 2005).

No silver grains could be observed in incubations that were fed with amino acid mix,

regardless if NH4
+ was added or not. This was not expected, since amino acids are

ubiquitous, and provide an important source of both C and N that can be used directly

for biosynthesis as well as metabolized for energy (Suttle et al. 1991). Interestingly,

contrary to all other incubations, AOA in the presence of amino acids formed no

microcolonies, but were present as planktonic cells. Additionally, the NO2
− production

in amino acid cultures both with and without NH4
+ addition was much higher than in

any other culture, including the positive control (bicarbonate). Compared to the other

incubations, the NH4
+ decrease in amino acid cultures was quite low. These results led

to the assumption that NH3 released by the hydroxylation of amino acids was used as

energy source. Besides, in no other incubation similar amounts of NO2
− were produced.

It is possible that the high pH and high concentration of amino acids caused adverse

effects and led to dispersion of aggregates. Hallab et al. (1995) reported the relation

between cellular adhesion and surface charge, surface roughness, adsorbed protein and

cell morphology and although they tested cell adsorption on different materials in can

be assumed that some of these factors also influenced the adherence of AOA in this

study.

Since “Candidatus Nitrososphaera gargensis”formed very dense aggregates, it can be

assumed that EPS supported biofilm formation. EPS like extracellular DNA is sug-

gested to function as intercellular adhesion (Izano et al. 2008). EPS is known to be

important in flocculation or biofilm formation (Sobeck and Higgins 2002). At high

pH, acidic groups in EPS become negatively charged, leading to repulsion between

the negatively charged EPS (Comte et al. 2006). Such structures need to be stabi-

lized by the presence of cations to neutralize the negative charge. It is possible that

amino acids in the medium chelated positively charged metal ions, which prevented

biomass from dispersion. Chelators are usually negatively charged oxygen or nitrogen

containing molecules that interact with positively charged metal ions to form a stable

complex. For chelation, at least two electron pair donor groups are needed to form

a complex with a positively charged metal ion, which acts as electron pair acceptor.
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A well known chelating agent is EDTA. With EDTA it was possible to make calcium

ions inaccessible to activated sludge, which resulted in reduction of floc strength and

increase of solubility of EPS (Sanin and Vesilind 2000). Amino acids are known to

function as chelators, which are used e.g. in plant nutrition (DeWayne 1986). Glycine

is used in crop production as a chelating agent for micronutrients. Other amino acids

used to complex or chelate cation micronutrients include lysine, glutamic acid, cysteine

and histidine. It is likely, that with increasing pH chelating properties of some amino

acids increase, since they have more negatively charged groups. Besides, since glycine

is the simplest amino acid, it is likely that some amino acids having complex side chains

represent very efficient chelators. In conclusion, it can be assumed that amino acids

caused cell dispersion due to their function as chelators. This effect was enhanced by

the high pH. Since dispersed aggregates were not observed in culture supplemented

with other substrates, it is likely that the amino acid mix combined with a high pH

led to dispersion of aggregates. None of the other substrates is likely to have chelating

properties since they have only one group that can serve as an electron pair donor.

Microcolonies with attached silver grains could also be detected in cultures fed with

pyruvate. Only very low amounts of NO2
− were produced in all cultures, indicating

that pyruvate was used and oxidized to CO2 via the citric acid cycle, during which

energy is generated. Genomic data indicate that Cenarchaeum symbiosum, a member

of the marine group I.1a of crenarchaeota, harbors besides an ammonia-based chemoli-

toautotrophic energy metabolism a nearly complete citric acid cycle and therefore may

be able to grow mixotrophically (Hallam et al. 2006). The MAR results suggest that

“Candidatus Nitrososphaera gargensis”may be able to use pyruvate as carbon source

and therefore has the possibility to grow mixotrophically.

In summary, there are hints that “Candidatus Nitrososphaera gargensis”is able to

grow mixotrophically. However, since the dead control supplemented with 14C-labeled

bicarbonate showed MAR signals and since no negative controls were performed for

the other 14C-labeled substrates, it can not be ruled out that substrates adsorbed

unspecifically onto biomass. On the other hand, it is possible that unspecific MAR

signals only took place in the dead control, since incubations were done with PFA-

fixed biomass, and Lee and colleagues (1999) observed enhanced levels of unspecific

adsorption with PFA-treated biomass. Nevertheless, experiments need to be redone. In

this study no washing steps were performed after MAR incubations and prior to PFA-

fixation of cells. Zang et al. (2008) reported that the radioactivity in the pasteurized

control was reduced through an additional washing step from 62% to 20%. Thus, when

repeating the experiments, a pasteurized control instead of PFA-fixed biomass could be

used as negative control, but extra washing steps should be done prior to PFA-fixation
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(after all incubations) to guarantee the removal of excess unincorporated substrates.

In addition, for each substrate used, a dead control should be performed to test for

possible adsorption phenomena, since they can differ between different substrates.

4.1.3 The thermophilic ammonia oxidizer “Candidatus Ni-

trososphaera gargensis”

One of the most important factors regulating nitrification is temperature, and temper-

atures between 30◦C and 36◦C are estimated as optima for nitrifying bacteria (Belser

1979). However, Lebedeva et al. (2005) could demonstrate the presence of nitrifiers

in the Garga hot spring enrichment at temperatures between 45◦C and 59◦C, with

maximum oxidation rates at 46 and 50◦C. Although temperature experiments already

had been performed in 2005, they were repeated in this study because the community

composition and the amount of AOA changed over the years. Thus, the “Candidatus

Nitrososphaera gargensis”enrichment was incubated at four different temperatures and

nitrite production was measured. Although the culture was not very active, nitrite

was produced at all four temperatures, the most at higher temperatures of 56◦C and

66◦C. Interestingly, in the early enrichment ammonia oxidation was already inhibited

at 60◦C (Lebedeva et al. 2005). It is shown that “Candidatus Nitrososphaera gar-

gensis”even is active at temperatures above 66◦C. The moderately thermophilic “Can-

didatus Nitrososphaera gargensis”represents the first organism within group I.1b for

which ammonia oxidation has been shown and all previously described AOA and AOB

were mesophiles (Hatzenpichler et al. 2008). In the meantime, Reigstad et al. (2008)

proofed archaeal ammonia oxidation in terrestrial hot springs at high temperatures and

De la Torre et al. (2008) described an ammonia-oxidizing member of the crenarchaeota

that grows up to 74◦C. These findings are in accordance with studies which reported

nitrite oxidation (Lebedeva et al. 2008), nitrogen fixation (Mehta and Baross 2006) and

denitrification (Stetter 1998) in thermophilic environments. A thermophilic origin was

also proposed for the anaerobic oxidation of ammonium (Canfield et al. 2006). Barns

et al. (1996) hypothesized that mesophilic crenarchaeota are descendants of ancestral

thermophiles and Hatzenpichler et al. (2008) concluded that archaeal ammonia oxida-

tion evolved under thermophilic conditions and that mesophilic AOA might represent

adaptations to lower temperatures.
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4.2 Bacterial heterotrophic contaminants in the

Garga hot spring enrichment

Since the start of the enrichment in 2001, no pure culture of “Candidatus Nitrososphaera

gargensis”has been obtained. It was always known that heterotrophic bacteria were

present in the culture, but their identity and function remained unknown. With more

information on the nature of the contaminants, our cooperation partners hoped to be

able to select against them and obtain a pure culture of the AOA. The Garga enrich-

ment consisted of ∼70% AOA and ∼30% bacterial heterotrophic contaminants when

experiments were done in this study. The screening for bacterial contaminants was

started before metagenomic analysis had been performed. Thus, at this time point

it was estimated that around 5-7 different bacterial contaminants were living in the

enrichment. So far, only one contaminant had been identified as a putative AOB

(Hatzenpichler 2006), which will be discussed in detail later (see 3.3).

For identification of bacterial contaminants the full cycle 16S rRNA gene approach

was used, which consists of DNA extraction, PCR, cloning, sequencing, phylogenetic

analysis, probe design and FISH with the original sample do identify microorganisms

in situ.

4.2.1 Amplification of bacterial 16S rRNA gene fragments

with PCR

Bacterial 16S rRNA genes were amplified using general primers. Additionally, another

PCR was performed using general primers in combination with a primer specific for

the putative AOB, which was lacking the 3’ OH group and bound downstream of the

630R primer. This was done in order to inhibit amplification of 16S rRNA genes of the

putative AOB, which were the only identified bacteria at that time. The aim was to

amplify 16S rRNA genes of other contaminants in the enrichment, which seemed not

to be amplified due to a DNA extraction or PCR bias, or not detected due to a too

low number of analyzed clones. Since DNA polymerase adds a nucleotide onto only a

preexisting 3’-OH group, it needs a primer with a 3’-OH group at which it can add the

first nucleotide. This “inhibiting primer”would not be elongated by polymerase. Since

the Taq polymerase used has a low 5’-3’ exonuclease activity, it should not degrade

inhibiting primers from its 5’ end with high efficiency, and therefore the amplification

of putative AOB 16S rRNA genes should be less efficient.
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4.2.2 RFLP and sequence analysis

After the amplification of bacterial 16S rRNA gene fragments in the enrichment culture,

cloned genes were analyzed using RFLP to get information about the diversity of

sequences in the clone library.

a) RFLP with clones after general 16S rRNA PCR

RFLP screening was carried out with 90 bacterial clones and 24 were sequenced, rep-

resenting the four different patterns obtained. However, after BLAST, all 24 sequences

were found to be most similar to already identified putative AOB (RHG clones; Hatzen-

pichler 2006). Since different patterns turned out to represent the same species, it is

likely that different strains of putative AOB were present or that sequence divergence

was caused by the Taq polymerase, which lacks proofreading activity and causes one

mismatch per 1,000 bp. Due to BLAST hits it was assumed that putative AOB were

positively selected. When they were identified by Hatzenpichler (2006), PCR was per-

formed directly with the cell pellet. In this study, DNA extraction was performed prior

to PCR, but nevertheless no new bacterial contaminant could be identified. A reason

could be that cells of certain contaminants were not cracked efficiently and, thus, only

putative AOB 16S rRNA genes could be amplified during PCR. However, bead beating

should crack open cells very effectively. Therefore, it was assumed that due to a PCR

bias only the 16S rRNA genes of putative AOB were amplified. It is possible that

secondary structures in ssDNA of other bacteria led to lower amplification of their 16S

rRNA genes. On the other hand, high temperatures and reduced MgCl2 concentration

should prevent the formation of secondary structures. A second possibility is that other

contaminants lacked primer binding sites, although general primers were used.

b) RFLP with clones after PCR selecting against putative AOB

RFLP analysis was performed for 107 bacterial clones. Four patterns were obtained,

but in contrast to the general 16S rRNA gene PCR, two new patterns could be observed.

21 clones, representing all different patterns, were sequenced. This time, bacteria

could be identified that had the highest similarity to Thermaerobacter subterraneus

or an uncultured low GC gram positive bacterial 16S clone and to Thermaerobacter

sp. One sequence (GaBI25) was highly similar to an uncultured cyanobacterium clone

and to Microcoleus chtonoplastes, a cyanobacterium. Although some of the clones were

affiliated to the putative AOB, it was the first time that another bacterial contaminant

could be detected. Although it is not clear how exactly and if the PCR using an

“inhibiting”primer worked at all, the only difference to the first PCR was this extra

primer. In addition, in the first attempt to get bacterial sequences, a total of 90 clones
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revealed only four patterns, and after sequencing all turned out to be putative AOB

16S rRNA genes. As revealed by BLAST, the new obtained sequences were similar

to a species named Thermaerobacter. The Microcoleus chtonoplastes-related sequence

seemed to be a chimaera and never could be identified again (see DGGE, Fig. 3.4).

Although the original sample was taken from a microbial mat which was dominated by

a filamentous cyanobacterium and a phototrophic bacterium (Lebedeva et al. 2005),

it is not very likely that a cyanobacterium was able to survive over years in cultures

which were maintained in the dark and transferred via plates occasionally.

4.2.3 Phylogeny of Thermaerobacter-related sequences

All obtained 16S rRNA sequences were highly similar to each other and thus it can be

assumed that they derived from a single species. Short fragments of putative 16S rRNA

genes of Thermaerobacter obtained during metagenomics clustered together with clones

obtained in this study. Cut out DGGE bands were not used for phylogeny because

only full length sequences should be used for tree calculations.

After phylogenetic tree calculations the sequences were shown to form a monophyletic

branch closest to a cluster formed by Thermaerobacter spp., which falls into the order

Clostridiales within the phylum Firmicutes. The clones showed the highest similar-

ity to Thermaerobacter marianensis (88-89%), a high-GC-content bacterium related

to grampositive, low-GC-content anaerobic thermophilic bacteria within the Bacillus-

Clostridium subphylum isolated by Takai et al. (1999) from the deep sea. Members

of the genus Thermaerobacter occur in the world’s deepest sea-floor but also in hy-

drothermal vent environments. Thermaerobacter marianensis is described as strictly

aerobic heterotroph capable of utilizing as sole energy and carbon source different or-

ganic compounds like yeast extract, peptone, cellulose, sugars and amino acids (Takai

et al. 1999). The bacteria are not known to be able of denitrification, which can be

performed by a wide range of microorganism and includes the subsequent reduction

of nitrate via nitrite to nitric oxide, nitrous oxide and finally dinitrogen gas under

anoxic conditions (Jetten 2008). Incubations were maintained under aerobic condi-

tions but possible niches with very low oxygen concentrations have to be considered.

However, no hint for denitrifying activity of Thermaerobacter was found, suggesting

that Thermaerobacter -related bacteria in the enrichment thrived on excretion prod-

ucts of “Candidatus Nitrososphaera gargensis”, putative AOB or degraded biomass.

The strictly aerobic lifestyle of Thermaerobacter marianensis and the optimum pH for

growth between 7 and 7.5 are both in accordance with the conditions under which the

enrichment was maintained. However, the temperature range for growth was reported
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to be 50 to 80◦C, with an optimum at 75◦C. Cultures have been kept at 46◦C, which

is below the temperature range reported and far below the optimum growth temper-

ature of Thermaerobacter marianensis. However, it is likely that the contaminating

bacteria inside the enrichment do have a different temperature range for growth than

Thermaerobacter marianensis, due to high sequence divergence. On the other hand

it is also possible that one of the reasons why these bacteria were not abundant and

never overgrew AOA was suboptimal temperature. In conclusion, it can be assumed

that the Thermaerobacter -related contaminants were not able to denitrify but could

live on dead biomass and end-products of the AOA metabolism. Besides, for none

of the other described species (Thermaerobacter nagasakiensis, Thermaerobacter sub-

terraneus and Thermaerobacter litoralis) the capability for denitrification has been

reported (Nunoura et al. 2002; Spanevello et al. 2002; Tanaka et al. 2006).

4.2.4 DGGE and T-RFLP as fingerprint analysis of the com-

munity

To obtain more information on the number of bacterial contaminants in the sample,

the diversity was screened using DGGE and T-RFLP.

a) DGGE

DGGE fragments were also amplified from the clonal 16S rRNA gene sequences, to

test which bands in DGGE gels were represented in the clone library. The diversity

was, as expected, very low. However, only three fragments could be observed. This

result differed from the estimated 5-7 bacterial contaminants. A reason might be that

primers did not target all bacterial contaminants, although the primers used should

target most of bacteria (Muyzer et al., 1993). Since DGGE is a PCR based method,

the general bias of molecular techniques in microbial ecology, e.g. produced by sample

handling, uneven cell lysis and PCR, have to be kept in mind (Von Wintzingerode et al.

1997; Muyzer and Smalla 1998). It can not be excluded that certain genes had little

accessibility due to secondary structures and thus were not or only in minor amounts

amplified during PCR. It was reported that amplification of parts of the 16S rRNA

gene using universal primers underestimates biodiversity (Vallaeys et al. 1997). In ad-

dition to the limited sensitivity of detection of rare community members it is generally

known that the detection limit of PCR is highly increased when attaching a GC clamp

to the forward primer, which is very disadvantageous for detection of low abundance

community members. However, there are strategies to overcome these problems, as

for example the application of a group-specific PCR or a nested PCR (Heuer et al.
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1997; Vanbroekhoven et al. 2004). Vanbroekhoven et al. (2004) could reduce the

detection limit from 104 cells/g soil to 10 cells/g soil using a nested PCR approach.

Thus, it is likely that using a nested PCR instead of a direct PCR approach in this

study would result in an increase in sensitivity. However, in this study the aim was

to identify all of the bacterial contaminants, thus no group-specific primers could be

used. Two of three obtained fragments were represented in the existing clone library,

one representing Thermaerobacter (GaBI) clones and the other one representing puta-

tive AOB (RHG) clones. Nevertheless, all three fragments were cut out, purified and

sequenced. Comparison of the sequences using BLAST showed that band 1 (see Fig.

3.4) indeed was the most similar to putative AOB clones. Band 2 and 3 both could be

identified as Thermaerobacter sequences, which led to the assumption that probable

different strains of Thermaerobacter were present, resulting in different migration of

their 16S rRNA gene fragments. DGGE is highly accurate and a single base substitu-

tion already leads to a different melting behavior of double-stranded DNA molecules

(Wu et al. 1998; Myers et al. 1987). Myers et al. (1985) reported that DGGE can

detect up to 95% of all possible single base substitutions amongst sequences of up to

1000 bp in length. Thus, it is also possible that no different Thermaerobacter strains

were present but that two DGGE bands affiliated to Thermaerobacter resulted from

PCR-associated artifacts (inaccuracy of the Taq polymerase). However, misincorpora-

tion by Taq polymerase had to happen in the early cycles of the PCR, otherwise this

fragment would not be amplified to the amount detectable by DGGE. On the other

hand, a limitation of DGGE is the detection of molecules produced by different rRNA

operons of the same organisms (Nuebel et al. 1996). Thus, it can not be ruled out

that different 16S rRNA gene operons of the same Thermaerobacter species resulted

in two different bands. One strong band and additional faint bands were observed for

each clone (Fig. 3.4). DGGE with enrichment DNA also resulted in three prominent

bands and, at close distance, weak bands. Since these bands could be seen in both en-

richment and clonal DNA, they likely represent artifacts. Janse et al. (2004) reported

the observation of artifactual “double bands”which were also occurring with cloned

sequences. However, the authors were able to significantly decrease the intensity of ar-

tifactual bands by extending the final elongation step. Their explanation was that Taq

polymerase was probably hindered by secondary structures which could be disrupted

by elongated incubation at a high temperature and allow the enzyme to complete the

elongation.

b) T-RFLP

T-RFLP was performed as an additional method for community analysis and because

it is considered to be more sensitive than DGGE (Moeseneder et al. 1999; Nunan et al.
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2005). To guarantee the best resolution, forward and reverse primer were labeled, each

with different a fluorescent dye, and three different restriction enzymes were applied.

Phylogenetic identification of T-RFLP peaks was based on clonal sequences and their

in silico predicted TR-F lengths. In all electropherograms prominent peaks could be

assigned to Thermaerobacter and putative AOB, when bacteria-specific primers were

used for PCR. One primer combined with restriction enzyme AluI resulted in a T-

RF with the same length for Thermaerobacter and putative AOB. This serves as an

example in which the observed diversity was lower than expected due to conserved

regions in both of the bacterial contaminants, showing that more than one restriction

enzyme should be used. Since T-RFLP is a PCR based method it is limited by inherent

biases of this technique. In consequence, the results were interpreted not quantitatively

but only qualitatively. Although T-RFLP is a semiquantitative method (Sipos et al.

2007; Sánchez et al. 2006), for quantitative studies PCR bias and the number of operons

and the potential differences between them have to be considered (Moeseneder et al.

1999). Since no information is available for numbers of operons in the contaminants

and PCR bias was not evaluated, only the number of peaks was interpreted. In all

electropherograms additional peaks next to Thermaerobacter and putative AOB-peak

were visible. One peak could be seen in all diagrams and probably was representing

primer dimers or nonspecific PCR products. However, due to the high formamide

concentration double stranded primer dimers are not very likely. In general, other

peaks observed could represent additional members of the bacterial community in the

enrichment or PCR artifacts. Sánchez et al. (2006) observed additional T-RFs due to

formation of chimeric molecules and pseudo-T-RFs derived from partly single-stranded

16S rRNA amplicons. However, T-RFLP in contrast to DGGE still gave the hint for

the possible presence of additional contaminants in the Garga enrichment, which might

have been overlooked due to undersampling of clones.

T-RFLP using archaeal primers was performed to test if “Candidatus Nitrososphaera

gargensis”was the only archaeon present in the enrichment. However, some electro-

pherograms revealed not a single peak as expected, but one additional smaller peak.

The additional small peaks may represent a minor population of another archaeon,

different strains of “Candidatus Nitrososphaera gargensis”or pseudopeaks. However,

metagenomics proofed that “Candidatus Nitrososphaera gargensis”was the only ar-

chaeon in the enrichment and no hint for different “Candidatus Nitrososphaera gar-

gensis”strains was obtained (Hatzenpichler, unpublished). Thus, it can be assumed

that PCR led to the formation of pseudopeaks. Since no more bacterial contaminants

could be shown to be present in the enrichment by DGGE, and T-RFLP showed one

or two additional peaks, which probably represented artifacts, it was assumed from
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this data that no other contaminants were present in the enrichment culture. Finally,

after metagenomic analysis was finished, seven bacterial rRNA genes were partially

sequenced. All of them were assigned to Thermaerobacter or the putative AOB. Thus,

the characterization of the bacterial community in the Garga enrichment can be seen

as completed.

4.2.5 Clone-FISH and detection of Thermaerobacter-like bac-

teria in the enrichment

For evaluation and validation of the newly designed probe Clone-FISH was carried out,

in which the 16S rRNA of Thermaerobacter clone GaBI27 was heterologously expressed

in E. coli cells.

Before FA series were performed, the probe was tested on the clone-FISH sample and

the Garga enrichment sample under non-stringent conditions. Since Thermaerobacter

marianensis is a high-GC content bacterium (Takai et al. 1999), probe HGC was used.

Unexpectedly, no signal was obtained with the HGC probe using the clone-FISH cells.

Probably the rRNA was folded differently in E. coli so that probes had no access to

their binding site. When using GaBI30 probe, signal for different cells varied, indicat-

ing that the cloned 16S rRNA genes of Thermaerobacter were expressed in different

amounts in E. coli. In the enrichment sample a lot of bacterial rods were present.

In contrast to the E. coli clone-FISH cells, most of the rods could be identified as

high-GC content bacteria but no Thermaerobacter -related bacteria were detected. An

explanation why Thermaerobacter could not be found is that probably the 16S rRNA

genes of these bacteria have secondary structures that need higher FA concentrations

to get denatured, which can be referred as low accessibility of the target sites. Indeed,

after using 35% FA concentration, Thermaerobacter spp. were detected (see below).

In the E. coli cells, however, the specific probe showed signals. It is possible, that

ribosomal RNA were differently folded when heterologously expressed and revealed a

better accessibility to probes despite non-stringent conditions.

After this, FA series were performed to determine the optimal hybridization conditions

of the new designed probe, which was a concentration of 35% FA (Fig. 3.11).

After Clone-FISH and FA series were completed, the specific probe was used for in

situ detection and visual quantification of Thermaerobacter -like contaminants in the

enrichment. Besides, the aim was to compare the quantity of Thermaerobacter and

putative AOB. In the oldest culture, which was also used for MAR experiments, a

lot of bacteria could be detected and among them, aggregates of Thermaerobacter -
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related bacteria were visible. Signals were obtained for straight to slightly curved rods,

which was the morphology of Thermaerobacter marianensis as described by Takai and

colleagues (1999). Since genome sequencing was performed with an earlier culture

that was not maintained in this study, FISH was done in more detail with PFA-fixed

cells of this sample. Some AOA were present as planktonic cells but most of them

formed very dense clusters, in which no cells could be distinguished (and which also

could be observed during MAR experiments). For AOM it is known that they tend

to form clusters (Sliekers et al. 2005) and AOA clusters possibly were also embed-

ded in EPS, which could provide the substrates for bacterial heterotrophs. In this

sample some bacteria were detected, which formed loose aggregates. Among the rod-

shaped bacteria that were detected more could be identified as putative AOB than

as Thermaerobacter -related species. Besides, signals for putative AOB were brighter

than for Thermaerobacter -like bacteria. It is likely that the ribosomal content of Ther-

maerobacter was low, since the temperature possibly was not optimal for their growth

(see 4.2.3). Besides, no energy and carbon source was added to support heterotrophic

growth. Thus, Thermaerobacter -related organisms were dependent on the activity of

the AOA or possibly putative AOB inside the enrichment. An explanation why puta-

tive AOB were more abundant than Thermaerobacter -related species and why signals

were stronger is that, assuming they are indeed ammonia oxidizers, they were sup-

plemented with their energy source. On the other hand it is possible that abundance

of Thermaerobacter was underestimated since it was reported that Thermaerobacter

marianensis is Gram variable and cells stain slightly Gram-positive in the exponential

growth phase but Gram-negative in the stationary growth phase (Takai et al. 1999).

For Gram-positive bacteria an additional cell wall degradation step like lysozyme treat-

ment might be necessary to ensure that probes can enter the cell through their thick

cell walls (Shockman and Barett 1983; Bidnenko et al. 1998).

4.3 A putative AOB enriched from the Garga hot

spring

4.3.1 Origin and first discovery of putative AOB

One of the stable contaminants in the enrichment described above was described as

putative AOB (Hatzenpichler 2006). First hints for putative AOB in the enrichment

were obtained by Lebedeva et al. (2005) who performed immunofluorescence labeling

using AmoA and AmoB antibodies and could detect curved rods with AmoB antibodies
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(confirmed by Hatzenpichler, unpublished). The morphology of the cells was most sim-

ilar to vibroid members of the genus Nitrosospira (Lebedeva et al. 2005). Additionally,

the enrichment was unsuccessfully screened for amoA and amoB genes of β- and γ-

proteobacterial AOB and for 16S rRNA genes of β-proteobacterial AOB (Hatzenpichler

2006; Hatzenpichler et al. 2008). Using general 16S rRNA primers, sequences were ob-

tained that formed a monophyletic group outside the β-proteobacterial AOB. Metage-

nomics of the enrichment revealed four 16S rRNA gene fragments of putative AOB,

but no amoA genes could be found. Besides, no known AOB could be detected in

the sample using AOB- and nitrite oxidizer-specific FISH probes (Hatzenpichler et al.

2008). A newly designed specific probe (RHG1130) showed signals for cone-like shaped

microorganisms. Furthermore, cells were located in close proximity to cells of the genus

Nitrospira (Hatzenpichler 2006). Using FISH-MAR, Hatzenpichler (unpublished) ob-

served signals for putative AOB, but also incubations without added NH4
+ showed

MAR signals (although weaker).

Recently, Elena Lebedeva (unpublished) was able to highly enrich the putative AOB

in a separate culture, in which ammonia-oxidizing activity was observed in incubations

run at 3 mM NH4
+. Since a specific probe had been designed to detect putative

AOB (Hatzenpichler 2006) and proof of their capability of ammonia oxidation was still

missing, Raman-FISH combined with stable isotope probing was performed to link

identity and function of the microorganisms. Therefore, Elena Lebedeva incubated

enrichment cultures containing putative AOB (Hamburg) with 13C bicarbonate for

72h, fixed cells at different time points and sent the samples to Vienna.

First, FISH with the specific probe RHG1130 combined with EUBmix and DAPI stain-

ing was performed to get information about the composition and density of the enrich-

ment. The nonsense probes did not give any unspecific signal, thus unspecific binding

of the probes could be excluded. After DAPI staining one dominant morphology was

detected, which were curved short rods. In original enrichments of the Garga hot

spring, Lebedeva et al. (2005) reported the presence of two different cell types of

putative AOB in the enrichment: small pleiomorphic cells and curved rods, and that

curved rods were characterized by intracellular membrane-stacks, which is typical for

Nitrosospira ssp. The cone-like morphology observed by Hatzenpichler (2006) might

reflect the pleiomorphy of this cells and represent one of the possible cell shapes. How-

ever, in the recent enrichment culture putative AOB cells were curved small rods and

looked the same as described by (Lebedeva et al. 2005). Nearly all of the cells in

the enrichment hybridized to the EUBmix probe and all short rods showed a FISH

signal with the specific probe RHG1130, and thus could be identified as putative AOB.

Of course, some rods not representing the putative AOB might have been overlooked.
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A very minor population was represented by cocci. They were only detectable using

DAPI staining and thus they were assumed to be archaea. In conclusion, FISH results

showed that the culture was highly enriched with putative AOB.

4.3.2 Do cocci represent “Candidatus Nitrososphaera gargen-

sis”?

Putative AOB have been representing one of the bacterial contaminants and have

been coexisting very stably for many years in the enrichment culture containing the

AOA “Candidatus Nitrososphaera gargensis”. In the new enrichment of putative AOB,

some cocci were observed after DAPI staining, and thus were assumed to most likely

be “Candidatus Nitrososphaera gargensis”. In order to test if the cocci might represent

AOA, CARD-FISH with EUBmix and RHGA702 probe, specific for the archaeon, was

performed. Some cocci forming aggregates could be seen with DAPI, which was already

observed in the AOA enrichment during MAR experiments. Cocci did not give any sig-

nal with the EUBmix probe, which indicated that cells were archaea. Using the probe

specific for “Candidatus Nitrososphaera gargensis”, bright FISH signals were detected

but only in the very dense clusters. Some loose aggregates revealed only weak or no

FISH signal. A reason for the different intensities of FISH signal could be that tight

aggregates were metabolically more active and thus had a higher ribosome content.

It is commonly referenced that the preferred mode of growth for bacteria is a high

density community described as a biofilm (Costerton et al. 1995), which might be true

for archaea as well. In a study by Schleheck et al. (2009) it was reported that plank-

tonic aggregates have characteristics of surface associated biofilms, thus “Candidatus

Nitrososphaera gargensis”clusters can be viewed as biofilm. It has been reported in a

lot of studies that cells forming biofilms benefit over planktonic single cells in respect of

protection from various environmental or artificial stresses and antibiotic treatments,

nutrient availability and metabolic cooperativity, enhanced cell-cell interaction and

horizontal gene transfer (e.g. Schleheck et al. 2009, Davey and O’toole 2000). Since

“Candidatus Nitrososphaera gargensis”was numerically dominated by putative AOB

and, assuming that both are ammonia oxidizers, they had to compete for NH3. How-

ever, incubations were run at a concentration of 3 mM NH4
+, and partial inhibition

of the AOA was observed with 3.08 mM NH4
+ (Hatzenpichler et al. 2008). A reason

why putative AOB did not form clusters might be that they were optimally supported,

were highly enriched and were not exposed to environmental stress. Thus, the need to

form clusters to enhance metabolic cooperativity was not given.
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4.3.3 Stable isotope labeling combined with Raman spectro-

metric analysis: are putative AOB indeed ammonia ox-

idizers?

In order to prove ammonia-oxidizing activity of putative AOB, they were incubated

with 12C or 13C bicarbonate as sole carbon source and supplemented with NH4
+ as

energy source. For Raman spectroscopic analysis, only samples incubated for 72 h

(maximum incubation time) were used. In the 12C mean spectrum and the 13C mean

spectrum characteristic peaks described in literature were detectable, corresponding

to proteins (e.g. phenylalanine, cytochrome c), nucleic acids, lipids and carbohydrates

(Naumann 2001; Maquelin et al. 2002; Pätzold et al. 2008) (Fig. 3.12). No shifts

of these peaks were visible, indicating that cells were not labeled with 13C. In 2008,

Pätzold and coworkers used the resonance Raman effect of cytochrome c (Cyt c) and

were able to record the microbial distribution of nitrifiers and anammox bacteria di-

rectly in their natural environment. The authors were able to group bacteria down to

strain level based on the heterogeneity of the resonance Raman spectra of the heme

containing protein Cyt c (Pätzold et al. 2008). Cyt c is a part of the respiratory

chain of most bacteria (Bertini et al. 2006) and nitrifiers are known to have a high

content of the heme-containing protein Cyt c (Pätzold et al. 2008). Because of the

variation of the protein content between different bacterial strains, it should allow the

identification of bacteria with a high Cyt c-content, although in literature concerning

the identification of microorganisms resonant Raman spectra of Cyt c are currently not

considered (Pätzold et al. 2008). The difficulty is to assign the spectrum to a specific

bacterial species due to the limited amount of references and the lack of a spectral

database of unknown microorganisms (Pätzold et al. 2006). Thus, if putative AOB

are indeed ammonia oxidizers, a high Cyt c amount would provide a hint for a nitrify-

ing lifestyle and spectra could be compared to Nitrosomonas and Nitrobacter strains

(Pätzold et al. 2008). A pronounced Cyt c peak for putative AOB was obtained at

747 cm−1, which was one of four cytochrome C peaks observed for Nitrosomonas. Two

additional cytochrome c peaks could be observed, but were not as pronounced as the

peak at 747 cm−1.

Finally, the peak of the essential amino acid phenylalanine was analyzed in detail by

calculating the red shift ratio (RSR). Wei et al. (2008) performed surface-enhanced

raman spectroscopy (SERS) and compared SERS spectra of three cysteine-containing

aromatic peptides to their respective normal Raman spectra. The authors observed

that the 1003 cm−1 peak of the ring breathing mode in phenylalanine was the most

intense peak of all the aromatic modes in both SERS and Raman spectra. The final
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conclusion of their study was that aromatic amino acid residues provide the dominant

features of peptides and proteins when present and make spectral interpretation easier.

Thus, the easily assigned peak of phenylalanine was used to determine 13C labeling.

The RSR of nearly all 13C of putative AOB spectra fall within the range of 12C spectra,

which confirms that phenylalanine of cells is not labeled (see Fig. 3.12). In 2007,

Huang et al. demonstrated a linear relationship between RSR and 13C content of cells.

According to their study, an average RSR of 12C spectra <0.5 indicates absence of

label (Huang et al. 2007).

There are three possibilities why putative AOB were not labeled:

First, it can be concluded that “putative AOB”are not able to oxidize NH3 and that

they were not responsible for ammonia oxidation in the enrichment and did not fix

labeled inorganic carbon. There are some observations that disfavor this conclusion,

like the detection of amoB using antibodies and FISH-MAR, in which cells were ac-

tive, despite cells grown without NH4
+ also showed some MAR signal. Putative AOB

were shown in one culture to live in close proximity to Nitrospira, which is another

hint that they might be ammonia oxidizers. In sea- and freshwater environments as

well as in soil, nitrite produced by the ammonia oxidizers is immediately consumed

by nitrite oxidizers (El-Demerdash and Ottow 1983; Schmidt 1982), and consequently

AOB and NOB are colocalized. Close associations between ammonia oxidizers and

nitrite oxidizers were reported in several studies (Schramm et al. 1998; Maixner et al.

2006). The inability to amplify amoA and AOB-specific 16S rRNA gene fragments

can be consequences of primers being designed on the basis of known AOB and, thus,

might easily underestimate the true diversity. This is a common problem in microbial

ecology, as for example reported by Treusch et al. (2005), who presented genes en-

coding a potential novel nitrite reductase and Amo-related proteins that had not been

identified earlier by PCR from environmental samples because they were too divergent

from already known genes. Sequences detected by PCR amplification are limited due

to the nature of the primers used (Treusch et al. 2005). A possible solution for this

drawback is metagenomics, as the discovery of archaeal amoA genes had shown. Ana-

lyzing metagenomic data obtained from the Sargasso Sea (Venter et al., 2004) and soil,

(Treusch et al. 2005) first revealed putative archaeal amoA-like genes. The findings of

archaeal amoA genes increased interest of researchers and finally led to the isolation

of the first marine crenarchaeote that grows chemolithoautotrophically by aerobically

oxidizing ammonia (Könneke et al. 2005). Finally, pronounced Cyt c peaks observed

after Raman analysis could be another hint that putative AOB are indeed nitrifiers

(Pätzold et al. 2008).
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Second, the incubation of cultures for 72 h was probably too short to detect any

labeling in the cells. The sensitivity of Raman-FISH was reported not to be suitable

below a labeling level of 10 atom% 13C (Huang et al. 2007), which was unfortunately

not considered before planning the experiment. Although the enrichment culture was

very active within this time and oxidized around 2 mM of NH3, NH3 is an energetically

poor compound and thus carbon fixation rate probably was low. Theoretically, it is also

possible that cells only used energy for maintenance. Maintenance energy is the energy

consumed during activities that allow the cell to survive without biomass production

(Geets et al. 2006). However, it is unlikely that no biomass was produced at all, since

both energy and carbon source were available. In order to detect labeling in the cells,

turnover of cellular components has to occur. However, it is generally known that

nitrifiers are slow-growing organisms because their cell growth is inefficient (Bock and

Wagner 2006). For cell division in natural environments, most nitrifier species even

need a generation time of several days to weeks depending on substrate and oxygen

availability, temperature and pH (Bock and Wagner, 2006). However, cells do not

necessarily have to grow to get labeled, but carbon has to be utilized or incorporated, for

example in the form of storage compounds. It is possible that each single cell did oxidize

only small amounts of NH4
+ and did not fix enough carbon to get sufficiently labeled

for Raman analysis. How much energy is generated in an enrichment culture is relative

to the density of cells in the enrichment. In summary, it is very likely that putative

AOB were not incubated for a long enough time for detection of carbon fixation, at

least not in such amount that it could be detected using Raman spectroscopy. A

more realistic incubation time therefore would be three weeks, with taking samples

after one, two and three weeks. However, cross-feeding could be a problem since the

culture probably consisted of another ammonia oxidizer, “Candidatus Nitrososphaera

gargensis”. Summarized, cells might have been labeled but under the detection limit

of Raman spectroscopy. As an alternative method and without the need to repeat

incubations the more sensitive method using nanoSIMS could be applied. NanoSIMS

instruments are significantly more sensitive than Raman microspectroscopy and allow

the quantification of several isotopes in a microbial cell simultaneously (Wagner 2009).

Lechene et al. (2006) reported that the absolute sensitivity of SIMS is among the

highest of current chemical analysis methods and 1000 times more sensitive than 14C

autoradiography, which by itself is ∼10-100 times more sensitive than Raman. Thus,

if putative AOB were indeed actively fixing carbon, but not enough to be detectable

via Raman spectroscopy, nanoSIMS would be the method of choice.

Third, it cannot be excluded that “Candidatus Nitrososphaera gargensis”, which was

detected as contaminant in the enrichment, was oxidizing NH3. Although only a small
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amount of cells in very dense clusters could be detected, it cannot be ruled out that

contrary to the putative AOB each single cell was extremely active. However, Raman

data for AOA did not indicate any labeling (performed by Kilian Stoecker), however,

it can also not be excluded that 72 h incubation time was too short to observe labeling.

On the other hand, incubations were performed with 3 mM NH4
+ and Hatzenpichler

et al. (2008) reported partial inhibition of the AOA at 3.08 mM NH4
+, which sup-

ports the hypothesis that AOB and not AOA were oxidizing NH3. Recently, a study

showed that a strain of “Candidatus Nitrosopumilus maritimus”was inhibited by sim-

ilar NH4
+ concentrations as reported for “Candidatus Nitrososphaera gargensis”, sug-

gesting that both represent ammonia oxidizers thriving in oligotrophic environments

(Martens-Habbena et al. 2009).

Concluding, the incubation of cultures was probably too short to detect any labeling in

the cells using Raman spectroscopy. Therefore, besides Raman spectroscopy combined

with stable isotope labeling to proof NH3 oxidation, more sensitive methods like MAR-

FISH or nanoSIMS should be used.

4.4 Enrichment of nitrifiers from soil and sludge

Both enrichments were performed according to a study by Simon and colleagues (2005),

who were able to enrich crenarchaeota from soil within 2 month up to 20%. However,

different antibiotics were used because in cultures supplemented with antibiotics used

by Simon and coworkers Pseudomonas fluorescens had been enriched, which was found

to be able to grow on the antibiotics (Großpraktikum).

For soil enrichments sampling was performed at a depth of 15 cm. This depth was

chosen due to the light-sensitivity of nitrifiers: Mueller-Neugück and Engel (1961)

observed that Nitrobacter winogradskyi was completely inhibited by light and Schön

and Engel (1962) and Bock (1965) found strains of Nitrobacter and Nitrosomonas

to be sensitive to light and suggested that photo-oxidation of cytochrome c was the

mechanism for inhibition. Besides, Leininger et al. (2006) reported a high abundance

of archaeal amoA copies and transcripts in different soil types between 10 and 70 cm

depth. The coexistence of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing

bacteria (NOB) is well founded (Schramm et al. 1998; Maixner et al. 2006). In order

to find nitrite-oxidizing microorganisms (NOM) a depth at which AOA are supposed

to be abundant (Leininger et al. 2006) was chosen.

Since efforts to enrich nitrifiers were unsuccessful, only a short discussion will follow.

The inoculum samples in the enrichments contained a lot of biomass, showing that the
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separation procedure worked well.

In the soil enrichment (enrichment 1), NH3 and NO2
− were consumed in all cultures

after some weeks, however, at that time cultures were overgrown by fungal hyphae and

enrichments had to be discarded. Fungi are very dominant in terrestrial ecosystems

and play an important role in soil ecosystems (Smit et al. 1999; Le Calvez et al. 2009).

Since fungi are known to possess the potential for heterotrophic nitrification (De Boer

and Kowalchuk 2001) it is thus likely that substrates were consumed by fungi and

not by ammonia- and nitrite oxidizers using organic compounds from dead biomass.

Besides, many fungi can perform denitrification (Shoun et al. 1992) and are known to

assimilate nitrate and nitrite.

Despite using high concentrations of amphotericin B, an antibiotic which binds to

ergosterol, the primary sterol in the fungal cell membrane, fungi were growing in the

enrichments (amphotericin B leads to a disruption of the membrane and oxidative

proteins in the target cells; (Ellis 2002)). Although resistance to amphotericin is quite

rare, there are reports on fungal resistance to this antibiotic (Sutton et al. 1999; Ellis

2002). Ellis (2002) stated that resistance is caused by a decrease in the amount of

ergosterol in the fungal membrane or a change in the target lipid, which leads to a

decrease in the binding of amphotericin B.

CARD-FISH revealed that most of the cells in the inoculum and the cultures were

bacteria. However, some larger cells, which seemed to be dividing (not stained by

EUBmix but with Arch915), probably have represented archaea. In the late stage,

hyphae could be seen by eye.

In enrichment 2 (soil, sludge) some modifications were introduced. Additional freeze-

thaw cycles during cell separation were performed to kill bacteria more efficiently,

cycloheximide was used (instead of amphotericin B) to inhibit protein synthesis in

eukaryotic cells (Krokhina et al. 1991). However, only low numbers of archaeal cells

were detectable in the cultures and already after two weeks they were overgrown by

cycloheximide-resistant fungi, a well known problem in field soils (Ali-Shtayeh and

Abu Ghdeib 1999).

Finally it was found that the group of Simon also had to deal with fungal contamination.

However, they performed much more cultures and were able to maintain cultures not

contaminated by fungi. In conclusion, a lot of different cultures supplemented with

different antibiotics, substrate concentrations and regular dilutions would most likely

result in successful enrichment of archaea. The fungus could be identified by Sylvia

Klaubauf as Gliocladium roseum.
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4.5 Enrichment using biofilm from aquarium filters

of the “Haus des Meeres”

4.5.1 Amplification of 16S rRNA and functional genes from

biofilm growing on aquarium filters

Bacterial and archaeal 16S rRNA genes were amplifiable as well as bacterial and ar-

chaeal amoA gene fragments and nxrB gene fragments of Nitrospira. Though the mere

presence of a gene is not a proof of the enzymatic activity in vivo, the ability to amplify

general 16S rRNA genes and functional genes of nitrifiers from inoculum provides a

good basis for trying to enrich nitrifiers from that sample.

4.5.2 A closer look at the biofilm using FISH

The amount of biomass in the biofilm was high and the composition within the biofilm

was very diverse: planktonic cells and clusters were present and different cell mor-

phologies could be detected. Most of cells showed signals using EUBmix probe but

archaea were not or only rarely detectable, suggesting that archaea were present in

the biofilm only in a minor amount. However, it can not be excluded that some ar-

chaea were overlooked using standard FISH protocol. It was reported that archaea are

important members of marine microbial communities (Reed and Colwell 2002; Rusch

et al. 2003) and are known to possess unusual cell wall structures (Wagner et al. 2003).

Therefore, standard permeabilization protocols may not be effective for archaea, which

are characterized by diverse cell walls and possess compounds that often differ from

those typical for bacteria (Kandler and König 1993). Additionally, they might have

a ribosomal content under the detection limit of standard FISH. Thus, to improve

the sensitivity of FISH a combination with catalyzed reporter deposition (Schönhuber

et al. 1997; Schönhuber et al. 1999; Pernthaler et al. 2002) can be used. (Ishii et al.

2004) used protease for permeabilization of cell walls and reported improved detection

of rare organisms such as archaea using CARD-FISH.

Due to fungal filaments dominating the former soil incubations, filaments in the biofilm

sample were tested for signals using probe EUK, but no signals were detected and

only some rare thick filaments and tetrads showed signals. Fungi are regarded as key

organisms in terrestrial ecosystems which play an important role in the soil ecosystems

(Smit et al. 1999; Le Calvez et al. 2009), however, there are studies about marine

fungal species (Schoch et al. 2007; Le Calvez et al. 2009).
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In general, Cy3-labeled probes yielded a much better FISH signal than Fluos-labeled

probes. Overall, signals for planktonic cells were rarely detectable, whereas cells in

clusters often showed a strong FISH-signal. It often has been reported that biofilm

forming cells benefit over planktonic cells, among other reasons due to metabolic co-

operativity (Schleheck et al. 2009; Davey and O’toole 2000), and therefore might have

shown a brighter FISH signal due to higher ribosome content.

Unfortunately, the nonsense probe showed signals for rods located in clusters. Only

probe Alf968 revealed much more signal than the nonsense probe, suggesting that

α-Proteobacteria were probably present. In summary, FISH did not yield a lot of

information about the identity of microorganisms in the sample.

4.5.3 Nitrifying activity in pre-incubations

Before starting the main-incubations, pre-incubations were performed for five days to

test for nitrifying activity. To some cultures antibiotics were added with the aim to

select for archaea. All incubations were run under fully aerobic conditions in the dark

at 27◦C without shaking.

In incubations supplemented with NH4
+ (NH4

+ bf, NH4
+ AB bf; see Tab. 3.13) nearly

all of the added NH4
+ was oxidized after 4 days, indicating that ammonia oxidizers had

been active. There was no difference between the cultures with and without antibiotic,

indicating that either both AOB and AOA or AOB resistant to streptomycin were

present. In the culture to which no antibiotic was added (NH4
+ bf), no NO2

− was

present after 4 days, indicating that nitrite oxidizers oxidized NO2
− to NO3

−, which

was present. Despite aerobic conditions denitrification, the anaerobic reduction of

NO3
− and NO2

− to N2, can not be completely excluded, because the existence of

anaerobic niches remains possible. Denitrifiers are found in almost all phylogenetic

bacterial groups and among archaea (Zumft 1997). However, NO3
− was detectable and

denitrifiers use NO2
− and NO3

− as substrate, thus under denitrifying conditions NO3
−

should not be present. In the culture supplemented with antibiotics (NH4
+ AB bf)

NO2
− was accumulating after four and five days. This probably was indicating that no

nitrite-oxidizing archaea and no antibiotic-resistant NOB were present in the culture.

In the culture to which antibiotic and crushed biofilm was added (NH4
+ AB crushed

bf), only little activity was observed, suggesting that microorganisms living as biofilm

were more shielded from antibiotic compared to planktonic cells. Finally, a culture in

which biofilm was crushed and filtered to only incubate big particles (NH4
+ filtrate),

revealed no ammonia oxidation and leads to the assumption that microorganisms were

lost during filtration. In the aquarium water control (NH4
+ aquarium water only) no
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NO2
− production could be observed, which leads to the conclusion that both AOB and

AOA were present in the biofilm and not in the aquarium water. The measured NO2
−

and NO3
− concentrations indicate that ammonium was not lost through evaporation

but oxidized by microorganisms. Decrease of NH4
+ concentration could also originate

from assimilation or intracellular storage. However, NH3 can not be assimilated without

energy and AOM gain energy by NH3 oxidation. On the other hand, heterotrophic

microorganisms use different sources of energy for NH3 assimilation, but it is not very

likely that NH4
+ decrease is mainly caused by assimilation of NH3 by heterotrophs.

The storage of high amounts of the toxic substrate NH3 might negatively affect the

cells and is unlikely. Consequently, the most probable reason for ammonia decrease is

ammonia oxidation by AOM.

In cultures fed with NO2
−, differences between the culture with biofilm (NO2

− bf) and

between cultures with crushed biofilm (NO2
− crushed bf) and the biofilm supplemented

with antibiotics (NO2
− AB bf) were observable (see Tab. 3.13). Whereas in the

culture with biofilm all of the NO2
− added was oxidized after four days, a lot of NO2

−

was still present in the culture with biofilm and antibiotics and with crushed biofilm

and antibiotics. This led to the conclusion that assumed nitrite-oxidizing archaea

or antibiotic-resistant bacteria were not present. It is possible that some antibiotic

resistant NO2
− oxidizers consumed some of the NO2

− or that denitrifiers used NO2
−.

In the culture to which biofilm that was crushed and filtered was added (NO2
− filtrate),

no decrease of NO2
− was detectable, indicating that a lot of microorganisms had been

lost by filtration. In one culture whole filters balls with intact biofilm were used for

incubations (NO2
− balls) and showed high activity, but were not used due to easier

handling and sampling of washed off biofilm. The NO2
− incubation with aquarium

water showed no change of NO2
− concentration, indicating that NOM were localized

only in the biofilm but not in the surrounding aquarium water.

There is strong evidence that NO2
− decrease was caused by NOM. First, incubations

were performed under aerobic conditions, and denitrification is an anaerobic respiration

process, although it is possible that some anaerobic niches formed within aggregates

and provided conditions for denitrifiers. In the culture with biofilm (NO2
− bf), NO3

−

could be detected, which suggests that NOB formed NO3
− and denitrifiers were not

present, since NO3
− provides a substrate but was detectable. A hint that NO2

− de-

crease was not caused by abiotic factors is provided by the aquarium water control, in

which NO2
− did not decrease. In summary, differences between cultures treated with

and without antibiotic were observed, providing evidence that antibiotic treatment in-

fluenced culture composition and/or activity. Additionally, NOM seemed to be present

in biofilm but absent from the aquarium water.
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4.5.4 Substrate utilization patterns in main incubations

4.5.4.1 Incubations supplemented with ammonia

NH3 was consumed constantly in cultures with and without antibiotic, indicating that

ammonia-oxidizing bacteria as well as ammonia-oxidizing archaea were active.

Ammonia is, in addition to lithotrophic nitrifiers, oxidized by various heterotrophic

bacteria, fungi and algae to nitrate (Focht and Verstraete 1977; Killham 1986; Papen

et al. 1989), but contrary to lithotrophic nitrification the so called heterotrophic ni-

trification is not coupled to energy conservation and therefore, heterotrophic nitrifiers

are dependent on the presence of organic carbon (Bock and Wagner 2006). It cannot

be completely excluded that decrease of NH3 concentration partly resulted from het-

erotrophic nitrification. Although the sole supplemented carbon source in the medium

was inorganic carbon (added in the form of bicarbonate), the aquarium water probably

contained high amounts of organic substrates, which unfortunately could not be cir-

cumvented while enrichment cultures were maintained. It is likely that these substrates

were used and that organic substrate concentration decreased with time, but for each

dilution fresh aquarium water was used, providing again new organic carbon source.

Furthermore, it is possible that organic matter was present due to death and subse-

quent degradation of microorganisms and subsequent release of organic compounds,

which supplemented growth of heterotrophic nitrifiers. Bacterial mortality is known

to be an important factor that influences both growth and abundance of microorgan-

isms (Cottrell and Kirchman 2003). Besides, heterotrophic microorganisms might have

thrived from by-products of nitrifiers located in the biofilm. It was demonstrated that

autotrophic nitrifiers produce and release soluble microbial products (SMP) into so-

lution from substrate metabolism (usually with biomass growth), and decay biomass

(Rittmann and Stahl 1994). In conclusion, it is not known if heterotrophs obtained

their carbon source from the aquarium water or from SMPs of nitrifiers or dead biomass.

But it is likely that heterotrophs were supplemented with organic carbon source. On

the other hand, it was reported that nitrification rates of heterotrophic nitrifiers are low

compared to those of autotrophic nitrifiers (Robertson and Kuenen 1988) and that het-

erotrophic nitrification is thought to occur preferentially under conditions unfavorable

for autotrophic nitrification, e.g. in acidic environments (Killham 1986). Therefore, it

is unlikely that NH3 was oxidized primarily by heterotrophic nitrifiers.

These observations support the hypothesis that ammonia oxidizers and possibly, in

minor amounts, heterotrophic nitrifiers were responsible for ammonia decrease. In

conclusion, most of ammonia was used as energy source for maintenance, biosynthesis
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and growth.

Besides aerobic oxidation of ammonia by nitrifiers, ammonia can also be oxidized

anaerobically by obligate anaerobic ammonium-oxidizing (Anammox) microorganisms

(Strous et al. 1999), which use ammonia and nitrite to produce dinitrogen gas (N2).

These organisms, members of the Planctomycetales, are now known to be key players

in the marine nitrogen cycle as they were found in a range of marine environments in-

cluding sediments, sea ice and anoxic water columns (Dalsgaard et al. 2005), but thrive

only under strictly anaerobic conditions. Incubations in this study were run under fully

aerobic conditions. Thus it can be ruled out that anaerobic ammonia oxidizers were

present and anammox process can be excluded.

Finally, ammonia volatilization can be a reason for ammonium loss. Ammonia is a

degradation product of organic nitrogen compounds and dissolves in water in the ion-

ized form (NH4
+) at neutral pH and in the unionized form (NH3) at high pH (Sasaki

et al. 2002), at which it will evaporate. It was reported that increasing temperature

and/or soil pH markedly increased NH4
+ volatilization (Ernst and Massey 1960). In-

cubations were performed at 27◦C and a pH of around 8.5, at which a lot of nitrogen

in form of NH4
+ should be present and might evaporate. However, studies also have

shown that ammonia and not ammonium is the substrate for ammonia oxidation in

Nitrosomonas (Suzuki et al. 1974; Schmidt and Bock 1998). Thus with higher pH more

substrate is available. On the other hand, pH sometimes dropped to around 5 and was

not immediately adjusted. It is not known how many days cultures were maintained at

a low pH, however, activity did not decrease. These AOB possibly possessed an active

ammonia/um uptake system, which was reported already for Nitrosomonas europaea

(Schmidt et al. 2004; Weidinger et al. 2007). Concluding, under pH of around 8.5, at

which cultures were mostly maintained, the NH4
+ pool will decrease faster due to both

higher ammonia loss and ammonia-oxidizing activity. However, since in water controls

ammonia was stable, evaporation was not assumed to be the main cause of ammonia

decrease. In summary, it can be assumed that ammonia was oxidized by AOB and

AOA. Cultures were active from the start of the incubations, suggesting that they had

optimal growth conditions. They consumed around 500 µM of ammonia in 1-8 days.

pH dropped in cultures, which is an indication for ammonia-oxidizing activity, since

the oxidation of ammonia results in an acidification of the environment (Meincke et al.

1989). pH dropped more often in cultures without antibiotics. An explanation for that

is that in cultures without antibiotics both AOB and AOA are supposed to be present,

whereas in cultures supplemented with antibiotic only AOA and possibly some resis-

tant AOB were active. After the first dilution of cultures, ammonia was not consumed
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as fast any more as in original cultures, and in diluted cultures ammonia started to

accumulate. Serial dilutions were performed in order to enrich nitrifiers further and

to reduce the amount of heterotrophic contaminants. In general, serial dilution and

subsequent recultivation from the most diluted sample is the classical approach for iso-

lation of nitrifying bacteria (Bartosch et al. 2002; Bock and Koops 1992). Spieck et al.

(2006) were successfully enriching Nitrospira-like bacteria using a novel enrichment

protocol, in which they performed dilutions after every 2-3 months, which was also

used for the incubations described here. However, their enrichments were much more

discriminative, as for example the use of different nitrite concentrations, to enrich NOB

adapted to different niches, showed. It is important that dilutions are not performed

too early, because the target group has to be enriched already. In particular, ammonia

oxidizers are known to grow very slowly. Thus, it is possible that ammonia oxidizers

were not enriched enough yet and that they were rapidly outcompeted and overgrown

by heterotrophs after dilutions, which e.g. used degraded biomass for growth. It might

also be possible that dilutions were performed after a too long incubation time, which

would also favor heterotrophic growth. It was shown that at low dilution rates the

amount of dead biomass increases, which would support heterotrophs with organic

substrate. Sinclair and Topiwala (1970) modeled cell viability in a chemostat culture

and assumed that cell viability is a function of the dilution rate. Thus, at low dilution

rates, like in this study, the amount of dead biomass may represent an appreciable

proportion of the total biomass (Veillux 1980). It can be assumed that at low dilution

rates heterotrophs rely on activity of ammonia oxidizers and their release of organic

by-products, and/or on a high mortality rate, since organic substrates from aquarium

water most likely were used in a short time. Dead biomass favors heterotrophs and

their growth is not dependent any more only on excretion of organic substances from

ammonia oxidizers. Besides, it was reported that in the presence of organic carbon,

nitrifiers are usually outcompeted by heterotrophs due to the low growth rate and low

growth yield (Kindaichi et al. 2004).

Another possibility why cultures became less active with time might be inhibition

of ammonia oxidation by toxic compounds. For example, toxic intermediates such

as hydroxylamine in high concentrations were shown to inhibit exponentially growing

cells of Nitrosomonas europaea (Abeliovich and Vonshak 1993). Because in the cultures

discussed here no AOB were grown exponentially and community was composed of a lot

of other species, it can be excluded that hydroxylamine accumulated and assumed that

it was subsequently oxidized further to NO2
−. Besides, hydroxylamine is not stable at

RT. Accumulation of NO2
− was not observed in cultures without antibiotic. Since no

accumulation of NO2
− was observed, it can be excluded that high NO2

− concentrations
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were the reason for less activity. It is likely that NO2
− was oxidized further to NO3

−

by nitrite oxidizers. In cultures with antibiotic, NO2
− concentrations slowly increased

over time. Here it can be assumed that NO2
− inhibited and killed AOM, although

in the first month nitrite was not present in very high amounts (around 300 µM). An

explanation why nitrite accumulated in cultures with antibiotics is that NOB were

killed and NOA not present.

An important factor that definitively influences marine communities are bacteriophages

because they are numerous and important components of oceanic food webs (Paul

2008). Fuhrmann (1992) stated that viral lysis provides a density-dependent agent

of bacterial mortality, resulting in higher growth rates at higher levels of bacterial

abundance. Besides, Paul (2008) observed that environmental conditions that favor

host growth activated lytic phage genes, resulting in phage production and host lysis

and infection of more rapidly growing host cells. Since environmental conditions were

chosen that constantly favored growth of ammonia oxidizers, it is possible that, after

they had been enriched, cell lysis by phages was increased.

4.5.4.2 Incubations supplemented with nitrite

In the original cultures supplemented with NO2
−, NO2

− accumulated in the cultures

with antibiotic. The aim was to enrich archaea involved in nitrite oxidation, which have

not been detected until now. The accumulation of nitrite in cultures supplemented with

antibiotics led to the assumption that nitrite-oxidizing archaea were not present. On

the other hand, they could be present but inhibited by other microorganisms. The

microorganisms in cultures without antibiotic consumed the added NO2
− within the

first week. Then, NO2
− also started to accumulate, suggesting that NOB were present

but eventually inhibited by toxic intermediates of other organisms.

Very interestingly, after the first dilution was made, NO2
− was used after some weeks

in all four NO2
− cultures, and from then on was constantly consumed. Since all cul-

tures were active, it was assumed that in incubations supplemented with antibiotics

either archaea or resistant bacteria oxidized nitrite. Since substrate concentrations,

oxygen, temperature and pH were not changed, these factors can not be the reason

for sudden activity of NOB. Activity was observed some weeks after the first dilutions

were performed. Thus it is likely, that a minor population of slow growing, possibly

resistant (in cultures supplemented with antibiotics) NOM became enriched after this

long time.

The original cultures very likely contained a very diverse and dense microbial commu-
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nity. Probably, nitrite oxidizers were outcompeted at the beginning by fast-growing

heterotrophs, which could use organic compounds from aquarium water or degraded

biomass. It was reported that in the presence of organic carbon, nitrifiers are outcom-

peted by heterotrophs due to their low growth rate and low growth yield of the former

organisms (Okabe et al. 1996; Kindaichi et al. 2004). Cultures became active after

dilutions were performed. Thus, it can be assumed that dilutions favored growth of

NOB. From the time at which NOB became active, it is very likely that the competi-

tion between heterotrophs and nitrifiers for dissolved oxygen and space started, which

was reported for biofilm models and is a well described process (Ohashi et al. 1995;

Nogueira et al. 2002). Okabe et al. (1996) described that the presence of organic

substrates in waste water creates competition between nitrifiers and heterotrophs. Or-

ganic substrates were available and originating from aquarium water, dead biomass

and by-products of nitrifiers.

In general, it is more likely that nitrification was the reason for NO2
− decrease, because

cultures were run under aerobic conditions. However, it is possible that anaerobic

niches were present that enabled denitrification. If denitrification is assumed to be the

reason for nitrite decrease, nitrite should be consumed constantly from the beginning

on. On the other hand, it can not be excluded that denitrifiers had to adapt to

environmental conditions. However, in the cultures supplemented with NO2
−, the

NO3
− concentrations were high and in most cultures increased over time, whereas

NO3
− in the aquarium water control was stable. This indicated that denitrification

was not the major process in the incubations, but that NO3
− was formed by NOB.

To rule out the possibility of denitrification in the cultures, pool dilution technique

could be performed. Isotope pool dilution techniques enable gross rates of nitrification

(or mineralization) to be determined by monitoring the decline in the 15N abundance

in a nitrate (or ammonium) pool. This technique enables not only to test for ni-

trification but also to distinguish between autotrophic and heterotrophic nitrification

(Barraclough and Puri 1995). However, for this method, nitrite oxidation rates and

nitrate production rates have to be evaluated. Unfortunately, substrate concentrations

could not be measured on high performance liquid chromatography (HPLC) due to the

high salt concentration in the aquarium water, which has the same retention time as

nitrite and nitrate. Thus, no final proof of nitrification was obtained, although it was

very probable.

It has to be mentioned that the chance to enrich nitrifiers was quite low from the begin-

ning, because incubations were not very discriminative. Only one substrate concentra-

tion and only one antibiotic to suppress growth of bacteria was used. To increase the
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outcome of enrichments, different substrate concentrations selecting differently adapted

NOB, different antibiotics and incubation volumes should be used and much more par-

allel cultures should be started. The cultivation of nitrifying microorganisms requires

a lot of time and space, which both were not available for this study.

4.5.5 Inability to detect ammonia oxidizers in cultures sup-

plemented with ammonia

FISH was performed with cultures that were actively consuming ammonia over some

weeks to months using general and AOB-specific probes. Archaea were present in very

small amounts and could only be detected using CARD-FISH. Since only low numbers

of archaea were detected, it can be concluded that AOA were not dominant in cultures

to which antibiotic was added. The observation with FISH that archaea were only

rarely detectable leads to the assumption that AOB were responsible for ammonia

oxidation, although it cannot be excluded that a low number of AOA were highly active.

In all cultures no hint for enrichment of any known AOB was observed. In cultures

without antibiotic, contrary to cultures with antibiotic, NO2
− concentration remained

always low, indicating that nitrite was oxidized further by NOB. However, also NOB

could not be detected. In a culture without antibiotic very low signal was observed

using probe Nso1225, specific for β-proteobacterial AOB, which include Nitrosomonas

(and Nitrosococcus mobilis), Nitrosospira, Nitrosolobus and Nitrosovibrio (Purkhold et

al., 2000). However, no signal was obtained using Bet42a, suggesting that signals were

unspecific and providing another confirmation that no β-Proteobacteria were enriched.

The only probe that revealed signal was Gam42a, but no signal was obtained using the

probe specific for Nitrosococcus oceani, which is affiliated with the γ-subclass of the

Proteobacteria (Watson 1965; Purkhold et al. 2000). Although FISH was performed

several times using different cultures and different amount of biomass, no AOB were

identified.

It is likely that biofilm was attached to the surface of the glass flasks, which was

unfortunately not controlled during the whole study. Underhill and Prosser (1987)

investigated surface attachment of nitrifying bacteria and demonstrated that growth

rate of Nitrosomonas and Nitrobacter cells colonizing glass surfaces was greater than

that of suspended cells. A hint for their attachment to the surface is that the glass

surface of some flasks probably was turbid. On the other hand, it is possible that

only a low number of AOB were present and have been overlooked, however it is

more likely that, since cultures were consuming ammonia, AOB constituted a certain

amount of the community and thus should be visible with FISH. Additionally, it was
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reported that nitrifiers in general prefer living in aggregates (Sliekers et al. 2005), which

comprise a lot of cells and should not be easily overlooked. Neither can it be ruled out

that PFA-fixation of cells was performed when cells did not contain a high amount of

ribosomes. However, for AOB it is known that even under starving conditions they

sustain their ribosome content and thus, if AOB really are present in the sample, should

be detectable by FISH (Wagner et al. 1995; Morgenroth et al. 2000). Since no AOB

could be identified, another plausible explanation is that known AOB were not present

in the enrichment sample and therefore could not be detected with probes designed on

the basis of known AOB. In summary, attachment of nitrifiers to the glass surface is

the most probable reason for the inability to detect AOB.

4.5.6 Nitrococcus in cultures supplemented with nitrite

In the culture supplemented with NO2
− (NO2

− bf II) and all diluted cultures that

followed, thick cocci were identified as Nitrococcus mobilis, a nitrite oxidizer belonging

to the γ-subclass of Proteobacteria. Nitrococcus mobilis was isolated from marine envi-

ronments and described as a large coccus (Watson and Waterbury 1971). Nitrococcus

in the enrichments had a characteristic coccoid, but frayed morphology. They were

present as planktonic cells but mostly formed characteristic microcolonies in the form

of dense aggregates, which easily could be distinguished from other cells in the enrich-

ment cultures. The dense microcolonies were surrounded by layers of extrapolymeric

substance (EPS). Interestingly, cells organized in tetrads and the formation of dense

microcolonies embedded in EPS has been reported for Nitrospira-like cells (Bartosch

et al. 2002; Spieck et al. 2006), and similar observations were made in this study for

cultures containing Nitrococcus. Daims et al. (2001) observed cavities and a network

of channels inside Nitrospira microcolonies, which they suggested provides a better

diffusion of nitrite, gases, and metabolic waste compounds throughout the aggregates.

Thus, it can be assumed that also Nitrococcus microcolonies were forming a complex

network.

There are many studies that reported on the coexistence of heterotrophs with nitrifiers

in autotrophic nitrifying biofilms cultured without an external organic carbon supply

(Okabe et al. 1996; Okabe et al. 1999; Okabe et al. 2002). Some studies have shown

that extracellular exopolymeric substances and soluble microbial products (SMP) pro-

duced by nitrifying bacteria are utilized by heterotrophic organisms (Rittmann and

Stahl 1994; Kindaichi et al. 2004). Thus, they also interact with other microorgan-

isms through the exchange of organic matter. Some of the SMP have been identified

as humic and fulvic acids, polysaccharides, proteins, amino acids, nucleic acids, and
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structural components of cells (Barker and Stuckey 1999). Since heterotrophic mi-

croorganisms grew to a considerable proportion in the cultures reported here, even

after dilutions series were performed, it can be assumed that organic substrates were

present in high amounts. No external organic carbon was added, however, the incu-

bation medium (aquarium water) provided organic substrates. Thus, next to SMP

produced by nitrifiers, aquarium water and degraded biomass provided organic sub-

strates for heterotrophic bacteria. However, since nitrifiers were supplemented con-

stantly with their carbon and energy source, SMPs likely served as constant carbon

and energy source for heterotrophic bacteria in the cultures. It is worth to mention that

heterotrophic contaminants did not seem to be very diverse. In addition, the microbial

community in some (also duplicate) cultures developed completely different, showing

the need to perform a lot of replicates. In some incubations it even seemed as if only

one contaminant was present. This indicates that only a low number of species could

be stably maintained in the cultures and compete with NOB. Although morphology

is not a good characteristic to distinguish microorganisms, it was in certain cultures

quite noticeable that rods having exactly the same length and shape were present as

major contaminants.

Spieck et al. (2006) noticed Nitrospira-like bacteria forming aggregates or living a

planktonic lifestyle, which was also observed in this study for Nitrococcus. They spec-

ulated that clusters establish while nutrients are available in high amounts and plank-

tonic cells when resources are limited. The authors stated that this switch is an efficient

strategy to escape severe conditions and to colonize new habitats. Additionally, they

stated that variable cell morphology may be a common adaptation mechanism to chang-

ing growth conditions (Spieck et al. 2006). Since Nitrococcus cultures were regularly

supplemented with NO2
−, starving periods did no longer take place. Indeed, most of

the cells were forming clusters, a support of this theory. The irregular shape of cells,

organization into tetrads surrounded by layers of EPS and the change from clusters

to a planktonic lifestyle, observed in enrichments of Nitrospira-like bacteria from soil

and activated sludge, were also observed for enrichments of Nitrococcus of aquarium

biofilm. These observations probably represent common features of nitrite-oxidizing

bacteria.

In summary, it can be assumed that there was an efficient food web in the autotrophic

nitrifying biofilm community, in which heterotrophic bacteria lived from organic com-

pounds abundant in water and produced by nitrifiers, as shown in a study by Kindaichi

et al. (2004).
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4.5.7 Unidentified decrease of NO2
− in some cultures

In one culture supplemented with NO2
− (NO2

− bf I) probably low numbers of Ni-

trospira were present (as shown by FISH), but they could not be detected in diluted

cultures. It is possible that they became diluted or were attached to the glass surface

of the flask and overlooked. In NO2
− cultures supplemented with antibiotic nearly all

of the detected single cells and clusters were bacteria, indicating that streptomycin-

resistant NOB were oxidizing nitrite. In general, no known NOB were detectable, but

a lot of cells, mainly rods, turned out to belong to the α-Proteobacteria. The only

so far known nitrite oxidizer that belongs to the α subclass of Proteobacteria is Ni-

trobacter, a rod-shaped bacterium, which could not be detected. However, soils are

regarded as the privileged habitats of Nitrobacter (Degrange et al. 1998; Grundman

and Normand 2000), and Nitrospira is regarded as more important than Nitrobacter in,

for example, wastewater treatment plants and aquaria (Vanparysa et al. 2007). Thus,

α-Proteobacteria were presumably heterotrophic contaminants. Some of the older cul-

tures supplemented with antibiotic were very highly dominated by planktonic coccoid

bacteria, which first were thought to represent NOB. However, probes targeting known

NOB did not show a signal. After dilutions were performed, the community of microor-

ganisms changed and planktonic rods were dominating. Since nitrite consumption did

not change over time, it can be assumed that these abundant rods did not represent

NOB. Finally the question arises who is oxidizing nitrite in cultures supplemented with

antibiotic and the culture with no antibiotics added (NO2
− bf I), in which only in some

cases Nitrococcus had been observed.

Although NOB could not be identified, it is likely that NOB were present, since NO2
−

was oxidized. The planktonic cell community changed over time and after dilutions

had been performed, but nitrite oxidation rates were stable, suggesting that planktonic

cells were not responsible for nitrite oxidation and that NOB were located mainly in

aggregates. Formation of aggregates was also observed for Nitrococcus cultures in this

study and for Nitrospira-like bacteria in a study by Spieck et al. (2006). In cultures

supplemented with antibiotics a lot of aggregates were present. They, however, looked

different from aggregates formed by Nitrococcus and no characteristic tetrad formation

or morphology was observed within the aggregates. According to Spieck et al. (2006),

nitrite oxidizers were present in clusters since they were supplemented with nutrients

in high amounts.

In conclusion, it is possible that some new and antibiotic resistant NOB were oxidizing

the NO2
−. However, it is more likely that NOB could not be identified because they

were attached to the glass surface of the flasks. In the case of new members of the
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NOB, RNA-SIP would provide a helpful method to gain information about the identity

of the active population.

4.5.8 16S rRNA gene sequences

16S rRNA clone libraries were performed for cultures supplemented with NO2
− (NO2

−

bf I, II) and one culture supplemented with NO2
− and antibiotics (NO2

− AB bf I).

RFLP analysis showed that the community composition was diverse, since many dif-

ferent patterns were obtained.

None of the sequences obtained from culture with NO2
− added (NO2

− bf I) showed

any similarity to known nitrite oxidizers. This is in accordance with FISH results,

because only rarely some Nitrococcus colonies could be detected. Out of 20 sequences

eight belonged to the α-subclass of Proteobacteria, seven sequences were affiliated to γ-

Protebacteria and three sequences were similar to Chloroflexi. This was comparable to a

study about ecophysiological interaction between nitrifying and heterotrophic bacteria

in autotrophic nitrifying biofilms (Kindaichi et al. 2004), in which α-Proteobacteria

followed by γ-Proteobacteria were the numerically dominant heterotrophs. In an-

other study (Okabe et al. 2005) Chloroflexi were the most dominant members of

heterotrophic bacteria, followed by α-, β- and γ-Proteobacteria.

In the culture supplemented with NO2
− (NO2

− bf II), in which Nitrococcus was very

abundant, no 16S rRNA genes of Nitrococcus were obtained. Most of the 31 sequences

(18) were closely related to α-Proteobacteria, which was in agreement with FISH re-

sults. Six sequences were similar to Planctomycetes and only two affiliated to the

γ-Proteobacteria. This result shows that the microbial community might have devel-

oped differently in duplicate cultures (NO2
− bf I and II), showing the need to perform

many duplicates. An explanation why Nitrococcus 16S rRNA genes were not ampli-

fied is that primer binding sites were possibly lacking, although the general primers

616V and 630R should target Nitrococcus (Juretschko et al. 1998). As discussed later

(4.5.10), Nitrococcus 16S rRNA genes could be amplifies using a semispecific PCR with

primer pair Ntcoc84V/1492R.

Interestingly, from the culture with antibiotic added (NO2
− AB bf I), three out of

21 sequences were closely related to Nitrospira marina 16S rRNA genes. Most of the

remaining sequences belonged to γ-Proteobacteria and some sequences to uncultured

α-Proteobacteria. Eilers et al. (2000) depicted that γ-Proteobacteria are typically not

abundant members of marine bacterial communities, but they have the potential for

rapid growth which enables them to overgrow other bacteria in enrichment cultures.
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Thus, it is possible that γ-Proteobacteria were not very abundant in the original sam-

ples. The phylum Nitrospira currently consists of three main monophyletic lineages and

the genus Nitrospira forms monophyletic sublineages (Daims et al. 2001; Spieck et al.

2006; Lebedeva et al. 2008). Within a lineage, sequences share 16S rRNA similarities

of at least 94.9%, while, based on a suggestion by (Stackebrandt and Goebel 1994), the

similarities of sequences that belong to different sublineages are always below 94.0%.

Sequences showed the highest similarity to Nitrospira marina (∼93%). However, since

this value is below 94%, they were not falling into sublineage IV, which hosts the cul-

tivated species Nitrospira marina (Daims et al. 2001). Thus, sequences obtained in

this study were possibly not members of any of the four sublineages. However, these

sequences are incomplete (∼900 bp) and their exact phylogenetic affiliation cannot be

determined with certainty. Since their similarity is close to 94% it might be possible

that full length sequences would affiliate to sublineage IV of Nitrospira.

It is interesting that no Nitrospira were detectable using FISH and that no cells were

observed that showed their characteristic morphology. However, it is still possible that

low numbers of Nitrospira cells were present and overlooked. Even if Nitrospira have

been overlooked by FISH it is still not likely that such a small amount was actively

oxidizing nitrite and not getting enriched, despite their slow growth rate. Besides,

nitrite consumption in cultures in which Nitrococcus was abundant was comparable to

cultures supplemented with antibiotics. Although different NOB are adapted to differ-

ent substrate concentrations, it is not likely that a very small, overlooked population

of NOB oxidizes the same amount of nitrite as a highly abundant population of Nitro-

coccus. Therefore, a more likely possibility is that the majority of NOB was attached

to the glass surface of the flasks.

Nevertheless, Nitrospira 16S rRNA gene sequences were found in a culture supple-

mented with streptomycin. Nitrospira-like bacteria which fell into sublineage I of Ni-

trospira were reported to be resistant to low concentrations of ampicillin (50 µg/ml),

and this was used to suppress growth of Nitrobacter and heterotrophic bacteria (Spieck

et al. 2006). However, they reported that tetracycline and streptomycin (50-100 µg/ml)

caused decrease of Nitrospira-like bacteria. In this study streptomycin was added to

cultures with a final concentration of 100 µg/ml, which makes it unlikely that Nitrospira

was inside the cultures. On the other hand, it is possible that Nitrospira were located

inside the biofilm. It is known that microbial biofilms provide protection against antibi-

otics probably due to a high binding capacity of charged molecules or degradation of

antibiotics by extracellular enzymes (Foley and Gilbert 1996). However, although Ni-

trospira-like bacteria reported by Spieck et al. (2006) were surrounded by dense layers

of EPS, they still were sensitive to streptomycin. However, the Spieck and coworkers
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investigated Nitrospira-like bacteria from activated sludge, and results are probably not

comparable to marine ecosystems. It is possible that the microorganisms detected here

were resistant to streptomycin, as they differed in their 16S rRNA genes from mem-

bers of sublineage I. It could be that Nitrospira-like bacteria identified in this study

gained genetic material from other organisms by horizontal gene transfer. Horizontal

gene transfer plays an important role for survival and persistence of microorganisms

(Coughter and G.J. 1989).

4.5.9 NxrB sequences

Nitrospira nxrB gene fragments were obtained from all four nitrite cultures but clone

libraries were performed only for cultures supplemented with NO2
− (NO2

− bf I, II) and

supplemented with NO2
− and antibiotics (NO2

− AB bf I). Only in culture NO2
− bf II

nxrB fragments could be amplified using primers for Nitrobacter, which also target nxrB

of Nitrococcus. BLAST hits did not reveal the definite origin of the sequences, since

nitrite-oxidoreductase has high similarity to respiratory nitrate reductase (Kirstein and

Bock 1993; Poly et al. 2007; Starkenburg et al. 2008).

However, tree calculation using ARB showed that sequences indeed grouped together

with Nitrococcus mobilis nxrB. Interestingly, nxrB gene sequences showed 97.4-98.7%

similarity to nxrB of Nitrococcus mobilis, while their 16S rRNA genes were 100% similar

to each other (see below). This suggests that nxrB is more variable than 16S rRNA

genes of Nitrococcus. Poly et al. (2007) stated that, in contrast to the highly similar

16S rRNA genes of NOB, the more variable nxrA gene provides a good marker gene

for studying molecular diversity of NOB (Poly et al. 2007). It is likely, that this is also

true for nxrB genes of NOB.

Interestingly, in culture I, in which some Nitrococcus had been detected in early cul-

tures, no Nitrococcus nxrB could be amplified, indicating that Nitrococcus probably

were overgrown by other NOB or heterotrophs by then.

4.5.10 16S rRNA gene sequences of Nitrococcus mobilis

Interestingly, Nitrococcus 16S rRNA genes were only obtained after a semispecific PCR

using Ntcoc84V/1492R, but not with primers Ntcoc84V/630R. This shows that primer

630R was the reason why Nitrococcus 16S rRNA genes had not been amplified before.

630R binds at position 1528-1542 and targets most of bacteria (Juretschko et al. 1998),

1492R binds position 1492-1510 and targets most of bacteria and archaea (Loy et al.
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2002). The 18 full sequences had a similarity of 100% to each other and to Nitrococcus

mobilis. Thus, according to 16S rRNA gene similarity, neither a new species nor a new

strain had been enriched. However, nxrB genes showed more diversity. Although it is

very unlikely, it cannot be completely excluded that the positive control (pure culture

of Nitrococcus mobilis) was cloned.

4.5.11 Effective SIP

Cultures were incubated with stable isotopes to perform Raman microscopic analysis

in order to test for autotrophic growth. For SIP incubations, newly diluted cultures

were connected to peristaltic pumps, automatically aerated and fed with either 12C or
13C bicarbonate as the sole carbon source and nitrite as energy source. This system

had the advantage that cultures were fed constantly with low amounts of nitrite and

optimally supported with oxygen. Besides, this more controlled cultivation method

was used in order to enhance growth of biomass, since a sufficient amount of biomass is

necessary to perform SIP. Indeed, using this system, increased nitrite consumption was

observed in the cultures without antibiotic. Finally, the most active culture (NO2
− bf

II), in which Nitrococcus had been identified, oxidized approximately 1.5 mM nitrite

per week after around six weeks of incubation compared to 0.5 mM in manually fed

cultures. The duplicate culture (NO2
− bf I) was not active, which probable contained a

low number of Nitrococcus, oxidized around 800 µM nitrite per week. The cultures with

added antibiotic were less active and consumed nitrite in the range of the manually fed

cultures. Unfortunately, microorganisms were killed after around 2 months, due to an

error in the heating system of the waterbath. Within this time, Raman microscopic

analysis could only be performed with culture NO2
− bf II. Since Nitrococcus mobilis

could be identified in this culture, Raman microscopic analysis combined with FISH

was performed.

4.5.12 Stable isotope labeling combined with Raman-FISH

confirms activity of Nitrococcus mobilis

Before Raman spectroscopic analysis, Nitrococcus cultures were tested for successful

enrichment of Nitrococcus mobilis. In NO2
− bf I Nitrococcus was rarely detected and

only present in some small colonies. This suggests again that in culture I Nitrococcus

was not the dominant nitrite oxidizer. In NO2
− bf II supplemented with 13C bicarbon-

ate, Nitrococcus mobilis had been highly enriched. A lot of microcolonies had formed

which were embedded in layers of EPS. A possible reason why Nitrococcus was more
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abundant in cultures that were automatically supplemented with NO2
− than in man-

ually fed cultures is that they were constantly fed with nitrite which increased their

growth rate. Raman-FISH was performed with this culture. Besides, from this culture

nxrB and 16S rRNA sequences of Nitrococcus mobilis were already available.

In the 12C mean spectrum and the 13C mean spectrum dominant peaks of cellular

compounds were visible, like proteins (e.g. phenylalanine, cytochrome c), nucleic acids,

lipids and carbohydrates (Naumann 2001; Maquelin et al. 2002; Pätzold et al. 2006).

The 12C- and 13C mean spectra showed “red-shifts” for characteristic peaks, like cy-

tochrome or phenylalanine (see Raman analysis with putative AOB, 4.3.3). In both

mean spectra, one pronounced peak of cytochrome c at 747 cm−1 is clearly visible (Fig.

3.18). The phenylalanine peak (1003 cm−1)was used for determination of 13C labeling

by calculating the red shift ratio (RSR). The RSR of nearly all cells incubated with
13C was higher than the RSR of cells incubated with 12C. Since the RSR is linearly

correlated with the 13C content of cells (Huang et al. 2007), most of the cells were la-

beled with 13C. According to Huang et al. (2007), cells were labeled on average around

25% up to 40%. In conclusion, incubations with stable isotope for six weeks led to an

average labeling of Nitrococcus mobilis of around 25%.
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Conclusion

Nitrification is a key part of the global nitrogen cycle and until recently was thought to

be catalyzed only by two distinct groups of microorganisms, ammonia-oxidizing bac-

teria (AOB) and nitrite-oxidizing bacteria (NOB). However, the recent detection of

ammonia-oxidizing archaea (AOA) in various terrestrial and marine habitats changed

the view of the potential key players in nitrogen cycling. For functional and phyloge-

netic analysis of nitrifying microorganisms, the genes for the key metabolic enzyme of

ammonia-oxidizing microorganisms (AOM), ammonia monooxygenase (Amo), and of

NOB, nitrite-oxidoreductase (Nxr) are used as markers.

In this study, the physiology of the moderately thermophilic chemoautotrophic AOA

“Candidatus Nitrososphaera gargensis”, a member of the soil group I.1b of crenar-

chaeota, was investigated for potential mixotrophic growth using microautoradiogra-

phy (MAR). Since mesophilic crenarchaeota are very abundant and possibly are capa-

ble of mixotrophic or heterotrophic growth, studies suggest that potential alternative

metabolisms and growth strategies for mesophilic crenarchaeota have to be considered.

Unfortunately, only a dead control was performed for bicarbonate, which showed a

positive MAR signal. Therefore it is impossible to tell whether MAR signals resulted

from substrate adsorption on the cell surface or from incorporation of substrates.

Additionally, the nitrifying thermophilic enrichment culture of “Candidatus Nitrosos-

phaera gargensis”was screened for contaminants. The aim was to identify contaminants

and use this knowledge also to optimize cultivation strategies. Former MAR experi-

ments identified the contaminants as heterotrophs with a rod-shaped morphology, and

one contaminant already has been identified as a putative AOB. One new member of

the contaminating population could be identified by its 16S rRNA sequences. Despite

several attempts, it was not possible to detect other contaminants in the enrichment
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by the 16S rRNA approach, and DGGE or T-RFLP. This is in agreement with other

analysis, such as metagenomics.

To proof autotrophic growth of the putative AOB, stable isotope probing with labeled

bicarbonate and Raman microscopic analysis were performed. However, no labeling

could be detected, suggesting that the incubation time was too short to detect labeling

via Raman spectroscopy or that “putative AOB”are not able to oxidize ammonia.

Furthermore, in order to find novel nitrifying microorganisms, enrichment cultures with

soil and sludge from a WWTP were performed. No nitrifiers could be enriched, since

despite antibiotics cultures were rapidly overgrown by fungi.

In a second attempt to enrich nitrifying microorganisms, biofilm growing on filter

balls from an aquarium pool in the “Haus des Meeres”was used as inoculum. It was

possible to amplify bacterial and archaeal 16S rRNA genes as well as the functional

genes amoA and nxrB from the biofilm. In addition, decrease of ammonia and nitrite

could be observed in the enrichments. In none of the cultures high numbers of archaea

could be detected. No known AOB could be identified, however, in some cultures

Nitrococcus mobilis, a member of NOB, was detected. A clone library and sequence

analysis confirmed that the enriched NOB were indeed 100% similar on 16S rRNA

level to the isolated Nitrococcus mobilis. However, in other active cultures no NOB

could be detected and in clone libraries no 16S rRNA genes of nitrifiers were found,

except for one culture, in which three clones were most similar to Nitrospira marina

from “sublineage IV”of the genus Nitrospira. In order to show autotrophic growth

of Nitrococcus mobilis on a single-cell level, a culture that was incubated with 13C-

labeled bicarbonate was investigated using Raman microscopy. Finally, Raman-FISH

analysis provided proof of autotrophic growth of Nitrococcus mobilis. Taken together,

the obtained results show that biofilm from aquarium water provided a good sample

for enrichments of nitrifying microorganisms and that in some cultures Nitrococcus

mobilis was successfully enriched. Nitrite-oxidizing cultures, in which no NOB could

be identified, possibly contained only a very low amount of nitrifiers or harbored new

microorganisms involved in nitrification. Another plausible explanation is that NOB

attached to the glass surface of the incubation flasks and were overlooked.
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Zusammenfassung

Nitrifikation stellt einen Schlüsselprozess des globalen Stockstoffkreislaufes dar und

wird von zwei verschiedenen Gruppen von Mikroorganismen katalysiert: ammoniak-

oxidierenden Bakterien (AOB) und nitrit-oxidierenden Bakterien (NOB). Die kürzliche

Entdeckung von ammoniak-oxidierenden Archaeen (AOA) in diversen terrestrischen

und marinen Habitaten veränderte das Bild der potentiell beteiligten Mikroorganismen

im Stickstoffkreislauf. Das metabolische Schlüsselenzym der ammoniak-oxidierenden

Mikroorganismen (AOM) stellt die Ammoniak Monooxygenase (Amo) dar, und jenes

der NOB die Nitrit Oxidoreduktase (Nxr). Amo und nxr Gene werden zur funktionellen

und phylogenetischen Analyse von nitrifizierenden Mikroorganismen als Markergene

eingesetzt.

In dieser Studie wurde die Physiologie des moderat thermophilen chemoautotrophen

AOA “Candidatus Nitrososphaera gargensis”, einem Mitglied der Gruppe I.1b der

Crenarchaeota, auf potentielles mixotrophes Wachstum mittels Mikroautoradiographie

(MAR) getestet. Mesophile Crenarchaeoten sind sehr abundant und es gibt Hinweise

auf ihr mixotrophes oder heterotrophes Wachstum, weshalb diverse Studien alterna-

tive Metabolismen und Wachstumsstrategien mesophiler Crenarchaeoten in Betracht

ziehen. Bedauerlicherweise wurde in der Bicarbonat-Totkontrolle des Experiments ein

positives MAR Signal beobachtet und für die weiteren verwendeten Substrate keine

jeweils eigene Totkontrolle vorbereitet. Daher war es unmöglich zu unterscheiden, ob

die MAR Signale aus der Adsorption der Substrate an die Zelloberfläche oder aus der

Inkorporation der Substrate in die Zelle resultierten.

Zusätzlich sollten die bakteriellen Begleitorganismen in der nitrifizierenden, thermophilen

Anreicherung von “Candidatus Nitrososphaera gargensis”identifiziert und nachgewiesen

werden, unter anderem um die Kultivierungsstrategie verbessern zu können. Früher
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durchgeführte MAR Experimente gaben bereits Hinweise auf heterotrophe Bakterien

mit stäbchenförmiger Morphologie. Ein Kontaminant war bereits vor der Studie als

putativer AOB identifiziert worden. Im Laufe der Arbeit konnte ein weiterer Kontami-

nant anhand seiner 16S rRNA Sequenz identifiziert werden. Trotz mehrfacher Ansätze

und Versuche war es nicht möglich, die Identität weiterer Kontaminanten anhand des

16S rRNA Ansatzes und mit Fingerprint-Methoden wie DGGE und T-RFLP in der An-

reicherung zu bestimmen. Dieses Ergebnis wurde auch durch metagenomische Analyse

der Anreicherung unterstützt.

Um autotrophes Wachstum der putativen AOB nachzuweisen, wurden Zellen mit iso-

topenmarkiertem Bicarbonat inkubiert. Die Inkubationen wurden mittels Raman-

Mikrospektroskopie untersucht und ausgewertet. Da keine markierten Zellen entdeckt

wurden ist es möglich, dass die Inkubation der AOB mit stabilen Isotopen zu kurz war

um markierte Zellen mittels Raman-Mikrospektroskopie zu detektieren, oder, dass die

“putative AOB”kein Ammoniak oxidieren können.

Ein zweiter wichtiger Teil der Arbeit beinhaltete den Versuch, neue nitrifizierende

Mikroorganismen aus verschiedenen Umweltproben anzureichern. Dazu wurden Kul-

turen mit Erde und Klärschlamm angesetzt. Allerdings konnten keine Nitrifikanten

angereichert werden, da trotz der Zugabe von Antibiotika die Kulturen nach kurzer

Zeit von Pilzen überwachsen waren.

In einem weiteren Versuch nitrifizierende Mikroorganismen anzureichern wurde Biofilm,

der auf den Filteranlagen eines Aquariums des Haus des Meeres wuchs, als Inoku-

lum für die Anreicherungskulturen verwendet. Hier konnten sowohl bakterielle und

archaeelle 16S rRNA Gene als auch die funktionellen Gene amoA und nxrB ampli-

fiziert werden. Außerdem wurde in den Anreicherungen ein Verbrauch von Ammoniak

und Nitrit beobachtet. In keiner der Kulturen waren Archaeen abundant. Weiters

konnten keine bekannten AOB gefunden werden, in einigen Kulturen wurde jedoch

Nitrococcus mobilis, ein Nitrit Oxidierer, identifiziert. Die Erstellung einer Klon-

bibliothek und anschließende Sequenzanalysen bestätigten die Identität der angere-

icherten NOB als Nitrococcus mobilis basierend auf einer 16S rRNA Ähnlichkeit von

100%. Allerdings konnten in anderen Kulturen, die ebenfalls aktiv Nitrit konsum-

ierten, weder NOB identifiziert, noch ihre 16S rRNA Gene in den dazugehörigen Klon-

bibliotheken gefunden werden. Eine Ausnahme stellten drei Klone dar, die in einer

Kultur gefunden wurden und große Ähnlichkeit zu Nitrospira marina aus der Unter-

gruppe IV des Genus Nitrospira aufwiesen. Um autotrophes Wachstum von Nitrococcus

mobilis auf Einzelzellebene nachzuweisen, wurden die Zellen mit 13C-markiertem Bi-

carbonat inkubiert und anschließend mittels Raman-Mikrospektroskopie untersucht.
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Mit Raman-FISH konnte schließlich autotrophes Wachstum von Nitrococcus mobilis

gezeigt werden. Zusammenfassend zeigen die Ergebnisse dieser Kultivierungen, dass

Biofilm aus Aquarium-Filteranlagen eine geeignete Umweltprobe für Anreicherungen

von nitrifizirenden Mikroorganismen darstellte und in einigen Kulturen Nitrococcus

mobilis erfolgreich angereichert werden konnte. Mikrobielle Biofilme in Kulturen,

die Nitrit oxidierten, in denen jedoch keine NOB identifiziert werden konnten, be-

standen möglicherweise nur zu einem sehr geringen Anteil aus Nitrifikanten oder aber

enthielten neue und unbekannte nitrifizierende Mikroorganismen. Eine andere plausi-

ble Erklärung dafür, dass keine NOB gefunden werden konnten, ist die Möglichkeit,

dass sich die NOB an die Wände der Glasflaschen, in denen sie inkubiert wurden,

anlagerten und somit übersehen wurden.
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Abbreviations

16S rRNA small subunit of rRNA

α alpha

β beta

γ gamma

ε molar extinction coefficient

λ lambda, unit of wavelength

µ micro (10-6)

Ω Ohm
◦C degree Celsius

% percent

A adenine

AB antibiotic

abs absolute

Amo ammonium monooxygenase

amoABC genes coding for subunits A, B and C of Amo

Amp ampicillin

AOA ammonia-oxidizing archaea

AOB ammonia-oxidizing bacteria

AOM ammonia-oxidizing microorganisms

APS ammonium peroxy-di-sulfate

ARB software package for phylogenetic analysis (from lat. arbor, “tree”)

ATU allyl-thiourea

bf biofilm

bidist double-distilled and filtered

BLAST basic local alignment search tool
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bp base pair(s)

c centi (10−2)

C cytosine

Camp chloramphenicol

CARD catalyzed reporter deposition

CLSM confocal laser scanning microsope (or microscopy)

CO2 carbon di-oxide

Cy3 5,5’-di-sulfo-1,1’-di-(X-carbopentynyl)-3,3,3’,3’-tetra-

methylindol-Cy3.18-derivative N-hydroxysuccimidester

Cy5 5,5’-di-sulfo-1,1’-di-(X-carbopentynyl)-3,3,3’,3’-tetra-

methylindol-Cy5.18-derivative N-hydroxysuccimidester

D Dalton (1,66018x10-24 g)

DAPI 4’-6’-di-amidino-2-phenylindole

DGGE denaturing gradient gel electrophoresis

DMF N,N-di-methylformamide

DMSO di-methylsulfoxid

DNA desoxyribonuleic acid

dNTP desoxy-nucleotide-tri-phosphate

E. Escherichia

EDTA ethylene-di-amine-tetra-acetic acid

e.g. exempli gratia (lat., “example given”)

EPS extrapolymeric substance

ERT Eppendorf reaction tube

et al. et alteri (lat., “and others”)

EtBr ethidium bromide

EtOH ethanol

F forward (used for labeling of primers)

FA formamide

Fig. figure

FISH fluorescence in situ hybridization

Fluos 5,(6)-carboxyfluorescein-N-hydroxysuccimidester

g gram(s)

G guanine

GC% mol % guanine and cytosine

h hour(s)

H+ Proton

Hao hydroxylamine oxidoreductase

H2O water
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H2O2 hydrogen peroxide

HCl hydrochloric acid

HPLC high performance liquid chromatography

HRP horseradish peroxidase

i.e. id est (lat., “that is”)

IPTG isopropyl-â-D-thiogalactopyranoside

IUPAC International union of pure and applied chemistry

k kilo (103)

K guanine or thymine

Kan kanamycin

KBL kilobase-ladder (DNA length standard)

KCl potassium acetate

l liter(s)

lacZ gene coding for â-galactosidase

lacZα α-subunit of lacZ

LB Luria Bertani

m milli (10-3); meter(s)

M molar; adenine or cytosine

MAR microautoradiography

Max. maximum

min minute(s)

ML maximum likelihood

MOB methane-oxidizing bacteria

n nano (10-9)

N adenine, thymine, guanine or cytosine

NaCl sodium chloride

NaOH sodium hydroxide

NH2OH hydroxylamine

NH3 ammonia

NH4
+ ammonium

NJ neighbor joining

N2 dinitrogen

NO2
− nitrite

NO3
− nitrate

NOA nitrite-oxidizing archaea

NOB nitrite-oxidizing bacteria

NOM nitrite-oxidizing microorganisms

nt nucleotide(s)
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Nxr nitrite oxidoreductase

nxrAB genes coding for subunits A and B of Nxr

O2 molecular oxygen

o/n overnight

ODx optical density, measured at a wavelength of x nm

p.a. pro analyticum (lat., “for analysis”), grade of purity

Pa Pascal

PAA poly-acrylamide

PBS phosphate buffered saline

PCR polymerase chain reaction

PFA para-formaldehyde

PHYLIP phylogeny interference package (software package for phylogenetic analysis)

Pmo particulate methane monooxygenase

R reverse (used for labeling of primers); adenine or guanine

RDP ribosomal database project

RFLP restriction fragment length polymorphism

RNA ribonucleic acid

rpm rotations per minute

rRNA ribosomal RNA

RSR red shift ratio

RT room temperature

S cytosine or guanine

SDS sodium dodecyl sulfate

sec second(s)

SN supernatant

sp. species (singular)

spp. species (plural)

T thymine

Ta annealing temperature

Tab. table

TAE Tris-acetate-EDTA

Taq thermostable DNA-polymerase from Thermus aquaticus

TBE Tris-boric acid-EDTA

TE Tris-EDTA

TEMED N,N,N’,N’-tetra-methyl-ethylene-di-amine

Temp. temperature

Tinc incubation temperature

T-RFLP Terminal restriction fragment length polymorphism
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T-RF Terminal restriction fragment

U uracil; unit(s)

UV ultraviolet

V forward (used for labeling of primers); Volt

Vol volume(s)

W adenine or thymine

w/v weight per volume

X-Gal 5-brom-4-chlor-3-indolyl-â-D-galactopyranoside
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Temperature experiment

Page 1

cultures were incubated at 37°C, 46°C, 56°C and 66°C; duplicates (I, II) were performed; MQ=negative control (H2Obidist); T=temperature

NH4 and NO2 concentrations measured
incubations 08/28/09 09/01/09 09/04/09 09/08/09 09/11/09

NH4 µM NO2 µM NH4 µM NO2 µM NH4 µM NO2 µM NH4 µM NO2 µM NH4 µM NO2 µM
start culture 701 798
37 I 539    910 1010 948 1212 1133 1585 1141
37 II 510    897 927 1045 1153 1210 1455 1241
46 I 479    906 950 1070 1072 1267 1455 1368
46 II 491    1029 953 1029 1167 1238 1571 1293
56 I 314    986 718 1069 938 1259 1305 1416
56 II 372    941 732 1093 993 1246 1339 1317
66 I 162    1041 441 1163 649 1269 1117 1432
66 II 246    636 589 1174 802 1317 1225 1,368    
MQ I 601 2 427    1 968 0 1345 0 1703 1
MQ II 454    1 931 1 1257 1 1631 0

NO2 production
28.8.-1.9. 1.9.-4.9. 4.9.-8.9. 8.9.-11.9.  in 2 weeks per day average per T

37 I 112 38 185 8 343 25 28
37 II 99 148 165 31 443 32
46 I 108 164 197 101 570 41 38
46 II 231 0 209 55 495 35
56 I 188 83 190 157 618 44 41
56 II 143 152 153 71 519 37
66 I 243 122 106 163 634 45 43
66 II -162 538 143 51 570 41
MQ I -2 -1 0 1
MQ II -1 0 0 -1



Substrate concentrations and pH of the  "Haus des Meeres" enrichments

Page 1

10/23/08 10/24/08 10/27/08 10/30/08 10/30/08 11/5/08 11/7/08 11/10/08 11/13/08 11/14/08 11/24/08 11/26/08 12/9/08 01/09/09 01/23/09 01/26/09 02/02/09 02/14/09 02/26/09 03/06/09
Incubations NH4 NO2 NO3 NH4 NO2 NO3 NH4 NO2 NO3 pH Incubations NH4 NO2 NO3 NO3 NH4 NO2 pH pH NH4 NO2 NO3 pH NH4 NO2 NO3 NH4 NO2 pH pH NH4 some cultures with fungi (discarded)NO2 NO3 NO2 pH NO2 pH all original cultures discarded pH

µM µM mg/l µM µM µM mg/l µM µM µM mg/l µM µM µM mg/l µM mg/l µM µM µM µM µM mg/l µM µM µM mg/l µM µM µM µM pH µM mg/l µM pH mg/l mg/l
NH4 534 1 25 403 147 0 25 403 86 0 25 403 NH4 68 3 25 403 25 403 51 21 8    234 35 25 403 <7,5 527 OVER <500 8060 177 1824 22 2886 >500 >8060 NH4 <7,5 NH4 / <7,5 / <7,5 / <7,5
NH4, bf 1 805 26 25 403 161 162 50 806 117 2 25 403 7.9 NH4, bf 1 58 3 50 806 <50 806 44 -1 5    211 1 <50 806 <7,5 314 1 50 806 132 0 6 0 50 806 NH4, AB, bf 1 8.2 NH4, AB, bf 1 / 8.6 / fungi
NH4, bf 2 197 191 50 806 109 0 50 806 NH4, bf 2 41 0 >50 806 100 1613 76 123 <7,5 5    289 133 >100 1613 <7,5 393 0 100 1613 176 0 >7,2 33 0 100-250 1613-4032
NH4, AB, bf 1 175 21 25 403 93 62 50 806 8,4-8,6 NH4, AB, bf 1 13 117 >50 806 100 1613 23 253 7-7,5 198 312 50 806 8.2 329 422 100-250 1613-4032 101 850 8 7.5 3275 >500 >8060 NO2 test stripes from now on (instead of photometrical measurement)NO2 20 <7,5 20 <7,5 15 <7,5
NH4, AB, bf 2 150 385 100 1613 69 264 100 1613 NH4, AB, bf 2 14 365 100 1613 100-250 1613-4032 13 704 7-7,5 197 913 250-500 4032-8060 7.5 241 1266 500 8060 75 2188 10 7.5 3865 >500 >8060 NO2 present NO2 bf I 0 8.4 0 8.6 fungi

NO2, bf 1 absent 7–7,5 NO2 AB bf II >80 8.6 >80 8.8 >80 8.8
NO2 1 460 100-250 1613-4032 109 484 100-250 1613-4032 73 499 100-250 1613-4032 NO2 7 504 100-250 1613-4032 100 1613 2 516 8 193 498 100-250 1613-4032 8.4 128 425 100-250 1613-4032 27 2 8.4 66 <7,5 0 25 403 NO2, AB, bf 2 present 8–8,5 MQ 80 >80
NO2, bf 1 14 aus 100-250 1613-4032 136 440 100-250 1613-4032 74 0 50 806 8.2 NO2, bf 1 9 x0 <100 1613 100-250 1613-4032 30 OVER 5 294 1186 >500 8060 <7,5 586 1289 500 8060 150 1148 8.2 0 ~7,5 0 >100 >1613
NO2, bf 2 145 332 100 1613 74 0 50 806 NO2, bf 2 10 x0 <100 1613 250 4032 33 OVER <7,5 5 257 1170 500 8060 <7,5 520 1222 <500 8060 160 1 8.2 27 <7,5 0 100-250 1613-4032
NO2, AB, bf 1 179 411 100 1613 65 468 100-250 1613-4032 8,4-8,6 NO2, AB, bf 1 9 567 100-250 1613-4032 100-250 1613-4032 3 746 7.5 203 875 250 4032 8.4 280 1028 <500 8060 1 957 8.4 -5 8.6 0 100-250 1613-4032
NO2, AB, bf 2 224 OVER 250-500 4032-8060 68 OVER 500 8060 NO2, AB, bf 2 17 OVER 500 8060 500 8060 4 OVER 7-7,5 207 2300 >500 8060 8.2 353 3228 >500 8060 3 3767 8.4 -8 8.6 OVER >500 >8060
MQ MQ 29.10. 487 495 100 1613 100-250 1613-4032 199 578 8.2 494 574 100-250 1613-4032 <7,5 655 606 MQ 637 654 553 <7,5 789 ~250 4032
MQ MQ 30.10. 490 499 100 1613

OVER=not enough diluted and therefore not measurable
11/26/08
new dilutions

11/26/08 12/9/08 01/09/09 01/26/09 02/02/09 02/14/09 02/26/09 03/06/09 03/13/09 03/24/09 04/02/09 04/17/09 04/27/09 05/06/09 05/13/09 05/20/09 05/27/09 06/26/09 07/03/09 07/29/09
NH4 NO2 NH4 NO2 pH pH NH4 pH NO2 NO3 NO2 NO2 pH NO2 pH NO2 pH NO2 pH NH4 (Nessler's reagent from now on)NO2 pH NH4 NO2 pH NH4 NO2 pH NH4 NO2 pH NH4 NO3 NO2 pH NH4 NO3 NO2 NO3 pH pH
µM µM µM µM µM µM mg/l µM mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

MQ 129 511 123 536 8.5 283 8.2 574 100-250 1613-4032 MQ ~40 / ~40 / ~40 / ~40 / yellow to clear ~40 / yellow to clear ~40 / yellow / / yellow MQ 40 / / 100-250
NH4 168 182 -6 804 8.2 303 <7,5 2688 >500 >8060 NH4 <7,5 NH4 / 7.5 / <7,5 / <7,5 / <7,5 yellow / <7,5 yellow / 7.5 yellow / 7.5 clear NH4 / <7,5 clear / <7,5 clear
NH4, bf 1 196 -1 127 601 8.2 295 0 ~100 1613 NH4, bf 1 <7,5 NH4, bf 1 / <7,5 / <7,5 / <7,5 / <7,5 orange / <7,5 orange / <7,5 orange / <7,5 yellow NH4, bf 1 / fungi orange
NH4, bf 2 190 -1 -5 707 8.2 341 0 ~100 1613 NH4, bf 2 <7,5 NH4, bf 2 / <7,5 / <7,5 / <7,5 / <7,5 orange / <7,5 yellow / <7,5 yellow / <7,5 yellow NH4, bf 2 / <7,5 clear / <7,5 clear
NH4, AB, bf 1 110 45 96 107 8.4 220 OVER >500 >8060 NH4, AB, bf 1 <7,5 NH4, AB, bf 1 / 7.5 / 7.5 / 7.5 / 7.5 yellow / 8.2 yellow / 7,5-7,9 yellow / 8.6 yellow NH4, AB, bf 1 / fungi yellow
NH4, AB, bf 2 92 143 78 372 8.4 253 OVER >500 >8060 NH4, AB, bf 2 <7,5 NH4, AB, bf 2 / <7,5 / <7,5 / 7.5 / 7.5 yellow / <7,5 yellow / <7,5 yellow / 7.9 clear NO3 NH4, AB, bf 2 / 7.5 yellow / <7,5 yellow NO2 NO2 pH NO2 pH

mg/l mg/l mg/l mg/l
NO2 -6 472 5 494 8.4 8.2 174 8.4 472 ~100 1613 NO2 20 8.2 NO2 20 8,2-8,4 20 8.2 20 7.9 20 7.9 / 20 8.2 / 20 7.9 / 20 7.9 / 100-250 NO2 10–20 7.9 / 100 5–10 7.9 / ~250
NO2, bf 1 3 562 4 542 8.4 8.4 212 8.8 0 ~50 806 NO2, bf 1 0 8.4 NO2, bf 1 0 8,6-8,8 0 8.8 0 8,6-8,8 0 8.8 / 0 9.1 / 0 9.1 / 0 9.2 / 100-250 NO2, bf 1 0 8.8 / 100-250 0 8.8 / >500 0 250 NO2, bf 1 0 0 0 8.6
NO2, bf 2 0 523 2 284 7.9 8.4 194 <7,5 2 ~50 806 NO2, bf 2 0 <7,5 NO2, bf 2 0 <7,5 0 <7,5 0 <7,5 0 <7,5 / 0 <7,5 / 0 <7,5 / 0 <7,5 / 100-250 NO2, bf 2 0 <7,5 / 100-250 0 <7,5 / 500 0 ~500 <7,5 <7,5 NO2, bf 2 0 fungi <7,5
NO2, AB, bf 1 -5 554 -9 568 8.8 8.2 157 8.8 7 <50 <806 NO2, AB, bf 1 20 8.6 NO2, AB, bf 1 0 8,6-8,8 2–5 8.8 0 8,6-8,8 0 8.8 / 0 8.8 / 0 8.8 / 0 8.8 / >100 NO2, AB, bf 1 0 8.8 / 100-250 0 8.6 / >500 0 ~500 NO2, AB, bf 1 0 0 0 8.6
NO2, AB, bf 2 2 734 -4 782 8.6 8.4 171 8.8 0 <50 <806 NO2, AB, bf 2 ~5 8.6 NO2, AB, bf 2 0 8,6-8,8 0 8.8 0 8,6-8,8 0 8.8 / 0 8.8 / 0 9.1 / 0 8.8 / 100-250 NO2, AB, bf 2 0 8.8 / 100 0 8.6 / 250 0 ~500 NO2, AB, bf 2 0 0 0 8.6

02/14/09
new dilutions

02/14/09 02/26/09 03/06/09 03/13/09 03/24/09 04/02/09 04/17/09 04/27/09 05/06/09 05/13/09
MQ 40 / 40 / 40 / 40 / yelllow 40 / yellow 40 / yellow 40 / yellow MQ / / yellow
NH4 / 8.6 / 8.4 / 8.4 / 8.2 clear / 7.9 clear / 7,5-7,9 clear / 7.9 clear NH4 / <7,5 clear / <7,5 clear
NH4, bf 1 / 8.6 / 8.8 / 8.6 / 8.8 orange / 9.1 orange / 8.8 orange / 9.1 yellow NH4, bf 1 / 9.1 yellow / 9.1 yellow
NH4, bf 2 / 7.5 / <7,5 / <7,5 / <7,5 yellow / <7,5 yellow / <7,5 clear / <7,5 clear NH4, bf 2 / <7,5 orange fungi
NH4, AB, bf 1 / 8.6 / 8.8 / 8.8 / 8.8 yelllow / 9.1 yellow / 8.8 orange / 8.8 yellow NH4, AB, bf 1 / 9.1 yellow / 9.1 yellow
NH4, AB, bf 2 / 8.6 / 8.4 / 8.2 / 8.4 nearly clear / 8.2 clear / 7.9 clear / 8.2 clear NH4, AB, bf 2 / 7.5 clear / 7.5 clear

used for SIP
NO2 ~20 8.6 ~20 8.6 ~20 8.6 ~20 8.6 / 20-40 8.6 / 20-40 8.4 / 20 8.6 / 250 NO2 40 8.6 / 100 20-40 8.6 / 100 NO2
NO2, bf 1 0 8.6 0 8.8 0 8.8 0 8.8 / 0 9.1 / 0 8.8 / 0 9.1 / 100 NO2, bf 1 0 8.8 / 100 0 8.8 / 100-250 0 ~250
NO2, bf 2 0 8.6 0 8.8 0 8.8 0 8.8 / 0 9.1 / 0 8.8 / 0 8.8 / 100 NO2, bf 2 0 8.6 / 50 0 8.6 / 250 0 250
NO2, AB, bf 1 0 8.6 0 8.8 10 8,6-8,8 0 8.6 / 0 8.6 / 0 8.6 / 0 8.8 / 100 NO2, AB, bf 1 0 8.8 / 50 0 8.8 / 250 0 250
NO2, AB, bf 2 0 8.6 0 8.8 0 8.8 0 8.8 / 0 9.1 / 0 8.8 / 0 8.8 / 100 NO2, AB, bf 2 0 8.8 / 50 0 8.6 / 250 0 250

04/27/09 05/06/09 05/13/09 05/20/09 05/27/09 06/26/09 07/03/09 07/29/09
NO2 NO2 NO2

04/17/09 mg/l mg/l mg/l
new dilutions NO2, bf 1 10 8.8 100 0 8.8 100-250 0 100-250 8.8 NO2, bf 1 20 0 0

NO2, bf 2 0 8.6 25 0 8.8 100-250 0 100-250 8.6 NO2, bf 2 0 0 0 8.6
NO2, AB, bf 1 5–10 8.6 50 0 8.8 100-250 2–5 100-250 8.8 NO2, AB, bf 1 0 0 0
NO2, AB, bf 2 0 8.8 25 0 8.8 100-250 0 100-250 8.6 NO2, AB, bf 2 ~10 0 0

07/22/09
new dilutions 07/29/09 08/06/09 08/14/09

NO2 NO2
mg/l mg/l

NO2, Bf 1 5–10 0 0
NO2, Bf 2 5–10 0 0
NO2, AB, Bf 1 20 0 0
NO2, AB, Bf 2 2 0 0
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26.6. SIP START 05/27/09 05/29/09 06/01/09 06/02/09 06/03/09 06/04/09 06/05/09
feeding: NO2 mg/l feeding: NO2 mg/l NO2 mg/l NO2 mg/l NO3 mg/l pH NO2 mg/l NO3 mg/l NO2 mg/l feeding: NO2 mg/l feeding:
50µM NO2/3h morning afternoon deconnected from pumps morning afternoon 50µM NO2/24h 5µM NO2/3h 

NO2 AB bf I 13C 10 NO2 AB bf I 13C 10–20 5 50 2–5 25-50 2 >5 5
12C 10 <20 12C <20 ~5 ~10 50 8,4-8,6 10 10 ~20 20

NO2 AB bf II 13C 10 NO2 AB bf II 13C ~5 2–5 ~50 2 2 5 5
12C 10 10–20 12C <20 5 5 ~50 5 2–5 <10 5

NO2 I 13C 10 NO2 I 13C 2–5 2–5 25-50 2 0 5 5
12C 10–20 12C 10–20 10 50 8.6 5 50 5 10–20 2–5

NO2 II 13C <5 NO2 II 13C 2 0 2–5 50 0 25-50 2–5 5 0
12C 12C 0 ~10 25-50 0 25-50 0 5 20

manually feeding

06/12/09 06/19/09 06/22/09 06/23/09 06/24/09 06/25/09 06/26/09 06/29/09
NO2 mg/l NO2 mg/l NO2 mg/l NO3 mg/l NO2 mg/l feeding: NO2 mg/l NO3 mg/l NO2 mg/l feeding: NO2 mg/l feeding: NO2 mg/l NO3 mg/l feeding: NO2 mg/l NO2 mg/l

morning afternoon 10µM NO2/3h 16µM NO2/3h 14µM NO2/3h morning 13µM NO2/3h afternoon late afternoon
NO2 AB bf I 13C 2 0 0 25 0 0 25 0 2–5 ~10 (disconn.) 10 (disconn.)

12C 20 20 10 50 10 (disconnected) 10 (disconn.) 25 10 (disconn.) <10 (disconn.) >5 (disconn.) 5 (disconn.)
NO2 AB bf II 13C 2 0 0 25 0 0 25 0 2–5 5–10 (disconn.) ~10 (disconn.)

12C 0 0 0 25 0 0 25 0 2–5 10 (disconn.) 10 (disconn.)
NO2 I 13C 0 0 0 25 0 0 25 0 2–5 <5 2–5 (disconn.) 2–5

12C 0 0 0 25 0 0 25 0 2–5 5 <5 (disconn.) 2–5
NO2 II 13C 0 0 0 25 0 0 25 0 2 0 >25

12C 0 0 0 25 0 0 25 0 2 0

06/30/09 07/01/09 07/02/09 07/03/09 07/04/09 07/06/09 07/07/09 07/09/09 07/10/09 07/13/09
NO2 mg/l NO2 mg/l feeding: NO2 mg/l NO2 mg/l NO2 mg/l feeding: NO2 mg/l feeding: NO2 mg/l feeding: NO2 mg/l feeding: NO2 mg/l feeding: NO2 mg/l feeding:
morning afternoon 13µM NO2/3h 

NO2 AB bf I 13C 5–10 (disconn.) ~5 (disconn.) 5 <5 disconn. 2 (disconn.) 0–2 7µM NO2/3h 2–5 (disconn.) 2 (disconn.) 0 10µM NO2/3h 
12C 5 (disconn.) ~5 (disconn.) 5 5 disconn. <5 (disconn.) <5 (disconn.) 2–5 (disconn.) 2–5 (disconn.) 2–5 (disconn.)

NO2 AB bf II 13C 5–10 (disconn.) ~5 (disconn.) <5 <5 disconn. 0 10µM NO2/3h 0–2 10µM NO2/3h 2 (disconn.) 0 10µM NO2/3h 0 10µM NO2/3h 
12C 5–10 (disconn.) 5–10 (disconn.) 5–10 5 disconn. <5 (disconn.) 2–5 (disconn.) 2 (disconn.) 0–2 10µM NO2/3h 2 (disconn.)

NO2 I 13C 2 (disconn.) 0 0–2 0–2 0–2 9µM NO2/3h 0 10µM NO2/3h 0 10µM NO2/3h 0 11µM NO2/3h 0 11µM NO2/3h 0 13µM NO2/3h 
12C 2–5 (disconn.) 2 2 >2 (disconn.) 0 9µM NO2/3h 0 10µM NO2/3h 0 10µM NO2/3h 0 11µM NO2/3h 0 11µM NO2/3h 0 13µM NO2/3h 

NO2 II 13C 0 0 17µM NO2/3h 0 20µM NO2/3h 0–2 20µM NO2/3h 0 23µM NO2/3h 0 23µM NO2/3h 0 26µM NO2/3h 
12C 0 0 17µM NO2/3h 0 20µM NO2/3h 0 20µM NO2/3h 0 23µM NO2/3h 0 23µM NO2/3h 0 26µM NO2/3h 

07/15/09 07/17/09
NO2 mg/l feeding: all cultures killed

NO2 AB bf I 13C 0–2 10µM NO2/3h 
12C 2–5 (disconn.)

NO2 AB bf II 13C 0 10µM NO2/3h 
12C 0 10µM NO2/3h 

NO2 I 13C 0 13µM NO2/3h 
12C 0 13µM NO2/3h 

NO2 II 13C 0 26µM NO2/3h 
12C 0 26µM NO2/3h 


