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All truths are easy to understand once they are discovered. 
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Galileo Galilei    



  4 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  5 
 

  

Danksagung 

Ich möchte mich bei allen bedanken, die mich bei der Erstellung dieser Arbeit und 

dem vorhergegangen Studium unterstützt haben. 

 

Im Besonderen gilt dies meiner Betreuerin Ao.Univ.-Prof.Dr. Adelheid Elbe-Bürger, 

die mich während meiner Diplomarbeit unterstützt hat. 

 

Außerdem möchte ich mich bei Christine Vaculik und Marion Prior bedanken, die 

mich in die Labormethodik eingewiesen haben und mir stets mit Rat und Tat zur 

Seite gestanden sind, wenn ich mit meinem Latein am Ende war. 

 

Weiters würde ich gerne die Möglichkeit nutzen um Nousheen Iram für die 

Einbringung der real-time PCR Daten und Thomas Bauer für die Durchführung der  

Experimente mit in vitro generierten Langerhans Zellen zu danken.  

 

Ein großer Dank auch an Sabine Laresser, Karin Pfisterer, Waltraud Mayer-

Granitzer, Christopher Schuster und den Mitgliedern der Sibilia Gruppe.  

 

Schließlich gilt mein Dank noch meiner Familie und allen Freunden und Bekannten 

für ihre moralische Unterstützung. 

 



  6 
 

  

 

 

 

 

 

 

 

 

 

 

 



  7 
 

  

Zusammenfassung 

Die Haut, die Schnittstelle zwischen dem Körper und der Umgebung, ist das größte 

Organ des Körpers und hat zahlreiche Funktionen. Eine davon ist, dass die Haut die 

erste Verteidigungsline des Immunsystems darstellt. Wichtige Vertreter des 

Immunsystems in der Haut, mit denen wir uns in dieser Arbeit befasst haben, sind 

Antigen-präsentierende Zellen (epidermale Langerhans Zellen) und T Zellen. 

Interessanterweise, ist relativ wenig über das Immunsystem der Haut von Kindern 

bekannt. Aus diesem Grund haben wir versucht, ein weiteres Stück des „Kinder 

Immunsystem Puzzles“ zusammen zu setzen. 

Receptor activator of NF-κB (RANK) ist ein Oberflächenrezeptor der auf vielen Zellen 

exprimiert wird. In menschlicher Haut wurde er auf Langerhans Zellen beschrieben 

wo er deren Lebensdauer erhöht. Es gibt jedoch Hinweise, dass andere 

Zellpopulationen innerhalb der Haut ebenfalls RANK exprimieren, allerdings wurde 

noch nicht gezeigt um welche es sich dabei handelt. Bislang wurde berichtet, dass 

etwa 95% aller Langerhans Zellen in adulter menschlicher Haut RANK exprimieren. 

Unsere umfassenden Analysen unter Verwendung mehrerer Methoden haben jedoch 

ergeben, dass die Zahl der RANK+ Langerhans Zellen in menschlicher Haut 

wesentlich geringer ist als zuvor beschrieben. Weiters konnten wir zeigen, dass 

Keratinozyten, nicht aber T Zellen und Melanozyten RANK exprimieren. Die 

Untersuchung unterschiedlicher Altersgruppen ergab einen Anstieg RANK+ 

Langerhans Zellen und einen Abfall RANK-exprimierender-Keratinozyten, mit 

steigendem Alter der Spender, was darauf hindeutet, dass das Immunsystem der 

Haut nach der Geburt noch nicht dem von Erwachsenen entspricht. 

Während man in adulter Haut hauptsächlich  Gedächtnis T Zellen findet, gibt es in 

fötaler Haut fast ausschließlich nur naive T Zellen. Unsere Daten weisen nun 

daraufhin, dass der Wandel von der predominanten naiven T Zell-Population zur 

Gedächtnis T Zell-Population bereits unmittelbar nach der Geburt geschieht.  

Diese Experimente zeigen eindeutig, dass sich das Immunsystem der Haut von 

Kindern und Erwachsenen voneinander unterscheidet und tragen somit zur 

Erweiterung unseres Wissens über das Immunsystem der Haut von Kindern bei. 
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Abstract 

The skin, the interface between the body and the external environment, is the largest 

organ of the body and has multiple functions. One of them is that the skin represents 

the first defence line of the immune system. Important representatives of the skin 

immune system we were working with, were antigen-presenting cells (epidermal 

Langerhans cells) and T cells. Interestingly, little is known about the skin immune 

system of children. For this reason we, tried to compile another, yet unknown piece of 

the “child immune system puzzle”. 

RANK is a surface receptor which is expressed on many different cell types including 

Langerhans cells in adult human skin, where it increases their survival. So far, it is 

reported that about 95% of all Langerhans cells in adult human skin express RANK. 

Other epidermal cell populations also express RANK, but the cell type has not been 

specified yet. Surprisingly, our extensive an analysis using selected methods showed 

that the number of RANK+ Langerhans cells in human skin is much lower than 

described. Additionally we showed that keratinocytes, but neither epidermal T cells 

nor melanocytes express RANK. The analysis of RANK expression in selected age 

groups revealed an increase of RANK+ Langerhans cells and a decrease of RANK+ 

keratinocytes with increasing age of the donors, which indicating that the skin 

immune system after birth differs from the adult one.  

While most T cells in adult human skin show a memory phenotype, the majority of 

fetal T cells are naive. To determine when after birth the switch from naïve to memory 

T cell phenotype occurs, skin samples from selected age groups after birth were 

examined for the presence of  cells using double immunofluorescence staining on 

cryostat sections. Our preliminary data show, that the majority of T cells in newborn 

human skin have already a memory phenotype. The density of memory T cells 

increased with increasing age.  

Our experiments show clearly that the skin immune system from infants and adults is 

different and expands our knowledge about the skin immune system of children.  
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1  Abbreviations 

7-AAD 7-amino-actinomycin D 

APC  Allophycocyanin 

BDCA  Blood dendritic cell antigen 

BSA  Bovine serum albumin 

CCL  CC-chemokine ligand 

CCR  Chemokine receptor 

CD  Cluster of differentiation 

CLA  Cutaneous lymphocyte-associated protein 

CXCL  CXC-chemokine ligand 

DC    Dendritic cell 

E-selectin Endothelial-cell selectin 

EDTA  Ethylenediaminetetraacetic acid 

EGA  Estimated gestational age 

FACS  Fluorescence-activated cell sorter 

FasL  Fas ligand 

FCS  Fetal calf serum 

FITC  Fluorescein-isothiocyanate 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

HLA-DR Human leucocyte antigen-DR 

ICAM  Intercellular adhesion molecule 

IDO  Catabolizing enzyme ideolamine 2,3-dioxygenase 

IFN  Interferon 

Ig  Immunoglobulin 

IL  Interleukin 

LC      Langerhans cell 

K  Keratin 

mAb  Monoclonal antibody 

MACS  Magnetic-activated cell sorting 

MADCAM1 mucosal vascular addressin cell-adhesion molecule 1 

MHC   Major histocompatibility complex  

mm    Millimeter 

NF-κB  Nuclear factor-κB 

NK cell Natural killer cell 
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NKT cell Natural killer T-cell 

NLR     Nucleotide-binding domain, Leucine-Rich repeat containing protein 

PBMC  Peripheral blood mononuclear cell 

PBS  Phosphate-buffered saline 

PE  Phycoerythrin 

PRR  Pattern recognition receptor 

P-selectin Platelet selectin 

RANK  Receptor activator of NF-κB 

RANKL Receptor activator of NF-κB ligand 

RPMI  Roswell Park Memorial Institute 

TCR  T-cell receptor 

TGF  Transforming growth factor 

TH cell  T helper cell 

TLR    Toll-like receptor 

TNF  Tumour necrosis factor 

TRAIL  TNF-related apoptosis-inducing ligand 

Treg cell Regulatory T-cell 

UV      Ultraviolet 

VLA-4  Very late antigen 
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2  Introduction 

2.1  Skin  

The skin is the largest organ of the body and represents an interface between the 

body and the external environment. It is a multifunctional organ, which represents a 

barrier against ultraviolet (UV) light, as well as biological, chemical, and mechanical 

insults. The skin protects the body from dehydration or massive absorption of water, 

functions as a thermo regulator and sense organ, and it also represents the first 

defence line of the immune system.   

Human skin is organised in three layers, including epidermis, dermis and hypodermis 

(Figure 1). The epidermis has an ectodermal origin, while the dermis and the 

hypodermis are of mesenchymal origin1-3. The epidermis and dermis are connected 

by the dermal-epidermal junction, which is synthesised by basal keratinocytes and 

dermal fibroblasts4. 

The skin is not built up equally; variations like thickness (varying from 1 to 4 mm), 

density of melanocytes and distribution of epidermal appendages are just few 

regional differences4. Palms, soles, and foreskin are hairless, whereas the rest of the 

body is covered by hair-bearing skin.  

 

                              

                             Figure 1. A diagram of the skin5 
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2.1.1  Epidermis 

The epidermis is a stratified, non-vascularized epithelium that renews itself 

continuously; its thickness varies between 75 and 600 µm (palms and soles). 

Approximately 90-95% of the epidermal cell types are keratinocytes, which undergo 

the specific differentiation progress of keratinization, resulting in the production of 

corneocytes which shed from the skin surface within time. Other epidermal cell types 

are melanocytes, Merkel cells, T cells and bone marrow-derived Langerhans cells 

(LCs)4;6. 

The epidermis is arranged in four layers (Figure 2): 

a. The stratum basale is the deepest layer of the epidermis and consists of 

keratinocytes, melanocytes, Merkel cells and T cells7. The keratinocytes in this 

layer have stem cell-like properties and divide constantly by mitosis, which leads 

to a movement of the new daughter cells towards the skin surface5. 

b. The stratum spinosum contains several layers of keratinocytes with a limited 

capacity for cell division5. Also sentinels of the immune system, called LCs are 

found beside T cells in the stratum spinosum7. 

c. The stratum granulosum consists of non-dividing keratinocytes which contain 

granules that are filled with keratohyalin. The nuclei and organelles of these cells 

break down, also they flatten due to successive push to the skin surface6. 

d. The stratum corneum is the outermost layer of the epidermis that contains many 

sheets of flattened, scalelike corneocytes. This layer is cornified and acts as the 

actual protection of the skin6. 

 

 
 

Figure 2. A diagram of epidermal layers5 
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2.1.2  Dermis 

The dermis is deeper and much thicker than the epidermis and can be divided into an 

upper papillary dermis and a lower reticular dermis. Its thickness varies, depending 

on the anatomic location (e.g. the back and the palms have a much thicker dermis 

than the eyelids)4. The dermis is made up of an extracellular matrix composed of 

fibrous and non-fibrous proteins, a wide network of blood vessels providing nutrient 

supply for the stratum basale of the epidermis; lymphatic vessels, nerves, muscles, 

sweat glands, sebaceous (oil-secreting) glands, hair follicles, resident and trafficking 

cells4;5. The main cell type of the dermis is the fibroblast. Besides it also harbours 

other cell types such as dermal dendritic cells, plasmacytoid dendritic cells, T cells 

(CD8+ T cells, T helper 1 [TH1] cells, TH2 cells, TH17 cells, regulatory T cells [Treg 

cells], natural killer T cells, γδ+ T cells), macrophages, natural killer cells, and mast 

cells8;9.   

 

2.1.3  Hypodermis 

The hypodermis is a subcutaneous tissue that is in fact not part of the skin. It binds 

the dermis to the underlying bones or muscles, stores lipids, regulates the body 

temperature, and insulates and cushions the body (the hypodermis contains 50% of 

body fat)5. Adipocytes, macrophages and fibroblasts are also present4. 

 

2.2  Cell types of the skin 

2.2.1  Keratinocytes 

Keratinocytes are the prevalent cell type in the epidermis and account for more than 

90% of all cells. Keratinocytes of the stratum basale are anchored by 

hemidesmosomes to the basement membrane that separates the epidermis from the 

dermis10. Adjacent keratinocytes of all layers are generally interconnected by 

desmosomes11, tight junctions, and adherens junctions12. Keratinocytes contain 

melanosomes, to store the skin color pigment melanin, which is synthesised by 

melanocytes13. 

Keratinocytes, produce the protein keratin (K) as part of their cytoskeleton. Keratins 

are one of the most potent epithelial markers and play an important role for the 

mechanical stability and integrity of epithelial cells and tissues. Two types of keratins 

can be distinguished, based on their pH-value. Type 1 keratins are acidic (K9-10, 
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K12-28, and K31-K40), whereas type 2 keratins are neutral/basic (K1-K8 and K71-

K86)14. Keratinocytes express keratin polypeptides in pairs, composed of a type 1 

and a type 2 keratin, but the constitution pattern of keratins depends on the type of 

keratinocytes. K5 and K14 are expressed in basal keratinocytes, suprabasal ones 

express K1 and K10. The keratinocytes in the stratum granulosum express K2 and 

K11, whereas those in the plantar region express K94.  

Humans have 54 keratin genes and at least 26 are specifically expressed in the hair 

follicle14. The keratin genes are clustered at two chromosomal sites. Type 1 keratins 

(except K18) are located on chromosome 17q21.2, and type 2 keratins (including 

K18) are found on chromosome 12q13.1315. 

Keratinocytes are not only bricks of the epidermis, they also function as immune 

sentinels, because of their ability to express toll-like receptors (TLR) and nucleotide-

binding domain, leucine-rich repeat containing proteins (NLRs), which recognise 

pathogen-associated molecular patterns and danger-associated molecular patterns8. 

The activation of extracellular (TLR1, 2, 4, 5 and 6) or intracellular (TLR3 and 9)16 

TLRs in keratinocytes, results in the activation of the nuclear transcription factor-κB 

(NF-κB), leading to the production of antimicrobial and antiviral peptides, chemokines 

and cytokines17. If NLRs get activated by irritants or toxins, pro-interleukin (IL)-1β and 

pro-IL-18 will get cleaved by caspase 1 to generate the active pro-inflammatory 

cytokines IL-1β and IL-1818.  

The constitutive expression of numerous cytokines like IL-1, IL-6, IL-10, IL-18 and 

tumour necrosis factor (TNF)19 by keratinocytes, makes them an important cytokine 

secreting source.  

During inflammation, keratinocytes are also capable to attract different cell types into 

the skin by secreting a wide range of chemokines. Activated keratinocytes are able to 

recruit effector T cells to the skin by expressing CC-chemokine ligand (CCL)20, CXC-

chemokine ligand (CXCL)9, CXCL10 and CXCL1118, whereas neutrophils are 

attracted through CXCL1 and CXCL818. Furthermore, LC precursors are decoyed to 

the epidermis caused by the release of CCL20/MIP3α20. 

 

2.2.2  Melanocytes 

Melanocytes represent 2-5% of all epidermal cells21, descend from neural crest and 

migrate into the basal cell layer of the epidermis4. They have a dendritic morphology 

and express constitutively  S10022, bcl-223;24, c-kit/CD11725 and vimentin26. As 
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melanocytes are the only cell population expressing CD117, this marker can be used 

to identify these cells in the epidermis27. 

Melanocytes synthesize the skin color pigment melanin within melanosomes by a 

biochemical process named melanogenesis28. During this process, melanin is 

produced from the substrate tyrosine by the enzymatic activity of tyrosinase and 

stored in melanosomes4. All humans have about the same quantity of melanocytes 

and various skin colors result from different amounts of produced and stored 

melanin5. 

Melanocytes are also able to constitutively produce IL-1α, IL-1β, IL-3, IL-6, TNFα and 

transforming growth factor (TGF) β21;29. These cytokines contribute to the regulation 

of an inflammation within the skin. 

 

2.2.3  Merkel cells 

Since their discovery in 1875, the role and origin of Merkel cells has been researched 

extensively30. These cells are located in the epithelial sheath of hair follicles and in 

the basal layer of the epidermis4, and represent between 0.2 and 5% of epidermal 

cells31;32. In hair follicles Merkel cells are rarely associated with nerve endings, 

whereas those in the epidermis are in close contact with terminal nerves33 and form 

the Merkel cell-neurite complex. However there is no evidence of a synaptic 

transmission34. Merkel cells contain melanosomes like keratinocytes, and are 

attached to them by desmosomes13.  

The cytokeratins 1835 and 2036;37 give Merkel cells epidermal characteristic features. 

Antibodies against these cytokeratins can be used to identify Merkel cells in the skin. 

Furthermore, neuroendocrine markers including chromogranin A38-40 and the protein 

gene product 9.541;42 are used to detect Merkel cells. 

The origin of Merkel cells is not evidenced yet, but two hypotheses are circulating 

among experts. On the one hand, the neural crest hypothesis exists which proposes, 

that Merkel cells are derived from the neural crest43. On the other hand the epidermal 

origin hypothesis, based on the presence of cytokeratin 20 and desmosomes, 

assumes that Merkel cells have an epidermal origin44-47. Recent findings showed that 

during embryonic development, Merkel cells arise by the differentiation of epidermal 

progenitors48. In adults, Merkel cells are not replaced by proliferation of differentiated 

Merkel cells; a cell type originating from epidermal stem cells, undergoes a slow 

turnover and replaces the old ones48.  
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2.2.4  T cells 

T cells, derive from a common lymphoid progenitor, immigrate to the thymus, where 

they undergo positive and negative selection49. The outcome is a small fraction of 

immature CD4+ and CD8+ thymocytes which show low affinity for self-peptide/major 

histocompatibility complex (MHC)50. These naive T cells express high levels of CCR7 

and CD62L, enabling these cells to home to the T cell zones in secondary lymphoid 

organs51. Notably, in the extra-thymic environment, the positive selection continues 

through dendritic cells (DC) by constant T cell receptor (TCR) interaction with self-

peptide/MHC ligands49 as described later. To keep the post-thymic naive T cells in 

interphase and alive52;53, an interaction with IL-7 and self-peptide/MHC molecules is 

necessary54. Interestingly, a small population of cells, termed fibroblastic reticular 

cells, which is found in secondary lymphoid organs, is secreting CCL21 and CCL19 

(the ligands for CCR7) and IL-751;55. 

If an antigen enters the body, antigen-presenting cells uptake, process and present it 

on MHC I or II to T cells in the secondary lymphoid organs. Signalling by the TCR 

alone is not enough to activate T cells; in addition, co-stimulation via CD28 with 

CD80/CD86, IL-2 release from T cells, as well as the release of antigen presenting 

cell-derived cytokines like IL-12, IL-15 and interferon α (IFNα) are necessary to 

convert naive T cells to effector T cells56-59. Upon activation, some T cells (CD4+) 

might either migrate to the B cell follicles in the lymph node or the spleen, where they 

stimulate   B cells; or CD4+ and CD8+ T cells enter the circulation where they respond 

to an inflammation in the periphery60. 

 

2.2.4.1 T cells possess different homing phenotypes for the skin and the 

gut 

Two subsets of effector T cells can be distinguished, dependent on their preferential 

homing capacity for cutaneous or intestinal tissues61. One subset expresses the 

α4β7-integrin, the ligand of which is the mucosal vascular addressin cell-adhesion 

molecule 1 (MADCAM1)62 and is expressed by endothelial cells of the intestinal tract 

and attendant lymphoid tissues under steady state conditions63. Most of the skin 

resident T cells, representing the second subset, express cutaneous lymphocyte-

associated protein (CLA)64, which is the ligand for E- and P-selectin. To support T 

cell rolling under non-inflamed conditions, dermal microvessels constitutively express 

E- and P-selectin in a sufficient way65. The levels of E- and P-selectin expression 
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increase during an inflammation in the tissue, which causes an enhanced T cell 

recruitment to the inflamed region66-70. For a long time, it was thought that the identity 

and localisation of the lymph nodes determine the tissue-homing-receptor profile on T 

cells71;72, but recent data indicate that the site from where DCs acquire an antigen 

constitutes the phenotype73. 

To regulate the trafficking of effector T cells to intestinal or cutaneous sites, 

chemokine receptors play an important role74. In the blood circulating α4β7-integrin+ 

T cells express CCR975-78 and its ligand CCL25 is selectively and constitutively 

expressed by human intestinal epithelial cells75;76;79. Most of the CLA+ T cells in 

peripheral blood express CCR4 and CCR1080-84. CCL17 (the ligand of CCR4) is low 

expressed by skin venules, but its expression increases during an inflammation80, 

whereas CCL27 (the ligand for CCR10) is constitutively expressed by skin 

keratinocytes81-84. 

 

2.2.4.2 Memory T cells 

Upon elimination of the pathogen, most of the antigen-specific effector T cells die 

because of a lack of IL-7 and/or TCR signaling52;54. Additionally, Treg cells are able to 

regulate T cells negatively, by reducing proliferation and facilitated apoptosis49. This 

widespread death of T cells is necessary to restore the steady state in the periphery, 

but a small fraction of these antigen-specific T cells (about 5%) survive to become 

long-lived memory T cells52, which can respond quickly to a secondary pathogen 

challenge85-87. Two types of memory T cells are described: (a) “central” memory cells, 

which return from the periphery to the lymph nodes due to the expression of the 

homing receptors CCR7 and CD62L, and (b) “effector” memory cells, which stay in 

the periphery, and have down regulated CCR7 and CD62L88-90. Effector memory T 

cells are able to enter the blood and migrate at another site of the periphery, to 

sustain a memory effect in the whole periphery of the body88-90. When the pathogen 

is cleared, antigen-specific memory T cells become effector memory T cells, which 

gradually switch to central memory T cells over time91. The mechanism behind this 

process is largely unknown.  
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2.2.4.3 Proliferation capacity of T cells 

The number of naive T cells remains relatively stable, because they do not undergo 

cell division, whereas central memory T cells proliferate every 2-3 weeks53. Central 

memory T cells express high levels of CD127 and CD122 on their surface, which 

allows them to interact with IL-7 and IL-1554. IL-7 is important for their survival as it is 

for naive T cells, while IL-15 is necessary for their intermittent homeostatic 

proliferation54.   

Effector memory T cells show also homeostatic proliferation, which is largely driven 

by IL-1592, but it is very slow compared to central memory T cells92;93 leading to a 

shift towards central memory T cells92;94. According to a recent study, memory T cells 

in the periphery show the ability to resist apoptosis longer than their counterparts in 

secondary lymphoid organs95, which is in contrast to the early mentioned view. 

Although memory T cells in lymphoid and peripheral sites are able to proliferate, the 

number of antigen-specific T cells steadily decreases within time after the pathogen 

is eliminated91;96;97.  

 

2.2.4.4 Activation of memory T cells  

In case of a recurrent infection, memory T cells in the periphery can function as 

sentinels, which alert the immune system by producing chemokines and pro-

inflammatory cytokines, or by limiting the early pathogen replication until the arrival of 

secondary antigen-specific effector T cells from the lymph nodes91. The activation of 

memory T cells in the periphery may be explained by two mechanisms. Cells of the 

innate immune system can indirectly act on memory T cells in the periphery by 

releasing pro-inflammatory cytokines, like type 1 interferons, IL-12 and IL-18, to 

induce memory T cell effector functions98-100. Also it has been proven that DCs in the 

periphery can directly interact with memory T cells and activate them101. Thus, 

memory T cells can be activated in an antigen-dependent and antigen-independent 

way91.  

 

2.2.4.5 T cells in the skin 

In normal human skin, over 90% of T cells are found in the dermis102, whereas only a 

small fraction of T cells reside in the basal and suprabasal keratinocyte layer of the 

epidermis102-106. Approximately 1x106 T cells are found in 1 cm2 normal human adult 

skin107. Most of the T cells in human skin express TCR αβ heterodimers103;108-110, and 
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only a minor population of T cells belong to the TCR γδ lineage103;103;108-112. The 

functional role of skin-resident γδ T cells is not understood, but data in a recent 

publication showed that they are able to secrete insulin-like growth factor 1 upon 

activation and seem to be involved in wound healing113.  

Multiple isoforms of CD45 can be generated by alternative splicing of the extracellular 

domain of the molecule, and can be used to distinguish between naive and memory 

T cells.114. In adult human skin, naive T cells comprise 5-19% of all CD3+ cells and 

express CD45RA106. Memory T cells constitute about 90% of the T cells in the skin 

and are all CD45RO+, whereas only about 80% of all CD3+ cells are CLA+, 90% of 

the memory T cells express CLA106. While the distribution of naive (CD3+CD45RA+) 

and memory T cells (CD3+CD45RO+) in adult blood is quite similar to the skin115, only 

10-25% of the CD3+ blood cells are positive for CLA116. Most recent data provide 

evidence that under resting conditions, 98% of all CLA+CD3+ cells are found in the 

skin107. 

While many reports exist about T cells in adult human skin, less is known about their 

appearance in the developing skin (prenatal – adult). Recent findings indicate, that 

within human fetal skin CD3+CD45RA+, CD3+CLA+ and CD3+CD45RO+ cells are 

already found in low numbers in the 18th week of estimated gestational age (EGA)117. 

The numbers of CD3+CLA+ and CD3+CD45RO+ cells do not appreciably rise until the 

30th week of EGA, whereas, the density of CD3+CD45RA+ cells multiplies, leading to 

a distribution which shows three times more naive than memory T cells within the 

skin of a fetus117. A similar distribution of naive and memory T cells was described for 

the cord blood of newborn children115. 

 

2.2.5  Dendritic cells 

DCs are important initiators of the innate and adaptive immune response. They are 

the most potent antigen-presenting cells and are found in peripheral tissues. In the 

skin, DCs can be divided according to their anatomical localisation. In the epidermis 

one can detect LCs, and in the dermis interstitial DCs and plasmacytoid DCs are 

found8. DCs reside in an immature state in the periphery and are able to identify 

foreign antigens by random sampling their environment by phagocytosis118-120, 

macropinocytosis121 and receptor-mediated endocytosis122;123. The lack of T cell 

activating receptors, and the low expression of MHC I and MHC II in the immature 

state, makes them unable to activate T cells124. The recognition of a foreign peptide 
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results in the activation of the NF-κB pathway and finally in the maturation of the DC, 

which is accompanied by the expression of co-stimulatory molecules and the 

enhanced expression of antigen-presenting MHC molecules125. This is followed by 

migration into the T cell areas of lymphoid tissues such as the lymph nodes or 

spleen, which is guided by a chemotactic cytokine gradient. During this migration 

process, DCs mature and loose their ability to capture antigens. Antigens are 

processed, and displayed on either MHC I or MHC II molecules, to be presented to 

naive T cells126. The interaction with receptors on T cells, is accomplished by 

molecules such as CD40, CD54, CD58, CD80 and CD86127;128. On which MHC 

molecule the foreign antigen is displayed, depends on the kind of antigen. CD8+       

T cells interact with MHC I, whereas CD4+ T cells are activated through MHC II124. To 

avoid an excessive immune response, activated T cells induce apoptosis in DCs by 

expressing Fas Ligand, TNF-α and TNF-related apoptosis-inducing ligand (TRAIL)129. 

DCs also have the unique ability among antigen-presenting cells, to cross-present 

antigens to naive T cells125;130. Additionally, in case of an adaptive mediated immune 

response, DCs are able to direct it towards a type-1 and/or type-2 reaction131. 

Beyond these skills, DCs are involved in the induction of tolerance in the thymus 

(central tolerance) and in lymphoid organs (peripheral tolerance). A small number of 

DCs move from the periphery to the lymph nodes, even in the absence of invading 

pathogens in the steady state125. These tolerogenic DCs do not activate T cells or 

lead to a clonal expansion, because of the release of IL-10 and catabolizing enzyme 

ideolamine 2,3-dioxygenase (IDO) which enable T cell anergy, T cell death and      

Treg cell proliferation132. The role of LCs in mediating immune tolerance is not fully 

delineated, whereas evidence for the tolerogenic function of dermal DCs exist133. 

 

2.2.5.1 Langerhans cells 

Paul Langerhans, a medical student in Berlin, first identified dendritic cells in the 

epidermis in 1868, which he supposed to be nerve cells of the skin134;135. One 

century later it was appreciated, that he discovered a new population of leukocytes, 

which was named after him130. LCs represent the first line of immunological defence 

to the external environment. They are strategically positioned in the epidermis and 

form a network with their external dendrites4. LCs account for 3-5% of epidermal cells 

in humans136 and derive from the bone marrow137. Since the discovery of Birbeck 

granules in 1961138, it has been possible to distinguish between LCs and other cells, 
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because this cytoplasmic organelle is found only in LCs. This was the only method to 

identify LCs for many years, until it was shown that Langerin (CD207), a mannose-

specific C-type lectin receptor, which is localised to Birbeck granules139 and highly 

expressed by human and mouse LCs140, can be used as a marker to identify LCs 

within the epidermis, too. Until recently, it was thought that Langerin is only 

expressed by LCs, but newest studies showed that a murine population of dermal 

DCs is also able to express this receptor141-144, whereas a human counterpart is not 

found yet. 

LCs are present in an immature state and in the human epidermis express CD1a, 

CD39, CD45, CD207, Birbeck granules, chemokine receptor (CCR) 6, CLA,             

E-cadherin, MHC I and MHC II143;145;146. Upon activation, LCs mature and upregulate 

the expression of CD40, CD45, CD80, CD83, CD86, CCR7, very late antigen (VLA) -

4, intercellular adhesion molecule (ICAM) -1, MHC I and MHC II124;125;147-154. 

While it is a matter of fact that LCs are derived from bone marrow-derived 

progenitors155, it is unsolved whether and if so, how LCs migrate into the epidermis 

under non-inflamatory conditions. Three different viewpoints exist: first, in mouse 

experiments it was shown that LCs can divide in the epidermis156. Second, it was 

described that dividing LC-precursors (CD207+CD14+) reside in the dermis and that 

the final migrating step is perhaps controlled by the release of TGFβ and 

CXCL14157;158 from keratinocytes. Third, it was demonstrated that LCs derive from 

CLA-expressing LCs precursors159, which were generated in the bone marrow, 

released to the blood, through which they reach the skin and populate the epidermis.  

Only during an inflammation process in the skin, a recruitment of LC-precursors from 

the blood is described156. To enter the epidermis, LC-precursors depend on the 

release of the keratinocyte-derived cytokine TGFβ160 and the chemokine CCL20161. 

This cytokine is necessary for the formation of Birbeck granules162, whereas CCL20 

attracts LC-precursors20;163. 

 

2.2.5.2 Dermal dendritic cells  

Three different subsets of antigen-presenting cells are found in the human dermis. 

HLA-DRhiCD14-CD1a+CD207- DCs; HLA-DRhiCD14+CD1a- DCs and HLA-

DRloCD14+CD1a-FXIIIa+CD163+ dermal macrophages164-169. CD14-CD1a+ DCs are 

able to induce a less efficient proliferation of allogeneic T cells compared to LCs167;170 
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and are distinct from LCs166;169. CD14+ cells include both migratory DCs and 

nonmigratory macrophages.   

It is known that LCs can cross-present antigens to CD8+ T cells and are potent  

inducer of a TH1 cell response, but it seems that the role of  dermal DCs is another 

one. They facilitate B cell immunoglobulin class switching and initiating follicular              

TH cells170;171.   

Plasmacytoid DCs are also localised in the dermis, but they are rarely found in 

healthy skin167;172. They express CD123, blood dendritic cell antigen (BDCA) -4 and, 

the only exclusive marker for plasmacytoid DCs, BDCA-2173. A special feature of 

plasmacytoid DCs is that they express a wide range of TLRs which makes them very 

competent to recognise microbial pathogens174. Furthermore, they are the most 

potent producers of Type I IFNs (IFN-α, β, ω) in case of a viral infection175;176.  

 

3  The role of RANK and RANKL in the immune 

system 
RANK and its ligand (RANKL) are both members of the TNF receptor superfamily129. 

RANK is constitutively expressed on DCs and osteoclasts whereas RANKL is not 

found on resting T cells, osteoblasts or keratinocytes, but is expressed upon 

activation of these cells129. The RANK-RANKL-system is associated with numerous 

physiological processes including bone remodelling, lymph node formation, 

interactions between DCs and T cells, DC survival, the regulation of DC functions 

and the formation of lactating mammary glands in pregnancy177-184. RANK can be 

detected on some cancer cells, including prostate and breast cancers and may play a 

role in the induction of tumor cell proliferation185;186. RANK and RANKL are also 

expressed in astrocytes of the brain and seem to be important for the control of 

female body temperature and the central fever response in inflammation187.  

In the periphery, interactions between RANK on DCs and RANKL on activated T 

cells, lead to a prolonged survival of DCs188;189, an increased production and release 

of proinflammatory cytokines like IL-15, IL-12, IL-6 and IL-1190;191 through DCs, and it 

seems that several DC functions, such as the activation of T cells are enhanced192. 

The RANK-RANKL-system is very well studied on osteoclasts and osteoblasts in 

bones, but less is known about this system in other tissues. UV irradiation in the skin 

leads to an upregulation of RANKL on keratinocytes which interact with LCs through 
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the RANK-RANKL-system and activate them178. These activated LCs respond by 

upregulation of certain cytokines such as IL-6, IL-10 and TNF-α and molecules such 

as CD86 and CD205 inducing preferentially the expansion of CD4+CD25+ Treg cells 

thus, suppressing an immune response in the skin129. This interplay of keratinocytes 

with LCs and LCs with Treg cells might be one reason for the immunosuppressive 

effect of UV irradiation129. It is also reported that approximately 95% of skin resident 

LCs are RANK+ and that RANKL knockout mice show LC numbers in the skin that 

are reduced to 50% as a consequence of an inferior DC survival180.  

CD40 and CD40L are members of the TNF family129. RANKL and CD40L are both 

expressed on activated T cells and show functional similarities such as the enhanced 

survival and activation of DCs188;192. The interaction of CD40 and CD40L leads to an 

altered expression of MHC II, CD54, CD80 and CD86 on DCs. Such an effect is not 

described for the interaction of RANK and RANKL129. Furthermore, CD40L is only 

expressed on activated CD4+ T cells, whereas RANKL is found on activated CD4+ 

and CD8+ T cells190;192. In kinetic experiments CD40L showed highest expression 

levels between 6 and 8 hours; a downregulation to resting levels was observed 

between 24 and 48 hours which indicates that the CD40-CD40L-system controls the 

initial priming stage188;190. In contrast, highest RANKL levels were measured after 48 

hours, leading to the conclusion that the RANK-RANKL-system is active at later time 

points188;190. Differences have also been described in the control of an immune 

response. While DCs can interact with T and B cells via the CD40-CD40L-system, it 

is only possible for them, to interact with T cells by the RANK-RANKL-system, since 

B cells do not express RANK129. 
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4  Aim of the study 
Every year dozens of new publications about the skin immune system are published, 

but most of these studies were performed with mice or adult human skin. Knowledge 

about the phenotype of immune cells, such as epidermal LCs and T cells in the 

developing human skin after birth is scarce.  

In our lab we were able to show that the morphology and the distribution of LCs is 

similar in human skin from infants and adults. However, the numbers of LCs in infant 

epidermis are reduced compared to adults193.  As RANK is an important molecule for 

LC survival, we tested whether LCs and other skin cells already express RANK 

around birth. 

As the predominant T cells in human fetal skin are naive T cells, while those in adult 

skin are memory T cells we wanted to explore, when the switch from naive to 

memory T cells occurs in the skin. 
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5  Results and discussion 

5.1 Analysis of RANK expression in the developing 

human epidermis after birth 

Barbaroux et al. have recently published that 95% of all CD1a+ cells in adult human 

epidermis express RANK180. In their study they have isolated epidermal cells from 

normal human skin biopsies, enriched LCs via ficoll flotation and analyzed them by 

flow cytometry for CD1a and RANK expression180. They described two RANK+ cell 

populations, LCs and an as yet undefined epidermal population180. They speculated 

that the latter cells may be keratinocytes, but did not further investigate this180. We 

wanted to address this question and analyzed single cell suspensions prepared from 

normal human breast and foreskin. Unlike Barbaroux et al., we have not enriched for 

LCs because our intention was to characterize all RANK+ epidermal cells. To exclude 

the possibility that our samples may be inflamed, mRNA levels of random samples 

were tested for E-selectin67 and ICAM-1131 expression by quantitative real-time PCR 

(performed by Nousheen Iram, Elbe-Bürger group; Laboratory of Cellular and 

Molecular Immunobiology of the skin, Department of Dermatology, Medical University 

of Vienna). Only donors with negative to low gene expression compared with the 

positive control were selected for further analysis (data not shown). 

Epidermal cells were stained with anti-CD1a and anti-pancytokeratin monoclonal 

antibodies (mAbs) to distinguish LCs and keratinocytes, respectively. T cells and 

melanocytes were labeled with anti-CD3 and anti-CD117 mAbs, respectively. We 

found that LCs and keratinocytes express RANK, while T cells and melanocytes are 

definitely not RANK+ (Figure 3A). To confirm that LCs and keratinocytes are the only 

two cell populations within the epidermis which are RANK+, triple staining with RANK, 

CD1a and pancytokeratin was performed. Indeed, we found that epidermal cells 

gated for RANK expression mainly contained LCs and keratinocytes (Figure 3B). 
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Figure 3. LCs and keratinocytes but not T cells and melanocytes express RANK. (A) Epidermal 
single cell suspensions were prepared from normal human foreskin [31 years (Exp. 1), 1 year (Exp. 2) 
and 11 years (Exp. 3)], and double stained with the indicated markers. Dead cells were excluded by 7-
amino-actinomycin D (7-AAD) uptake. Dot plots show 100,000 cells and are representative of 3-21 
experiments. (B) To analyze all RANK+ epidermal cells, a triple staining was performed (36 year-old 
foreskin). Viable cells were gated for RANK expression. 
 

Using flow cytometry, freshly prepared epidermal single cell suspensions from human 

donors of selected age groups were labeled with anti-RANK and anti-CD1a mAbs to 

analyze the frequency of RANK+ LCs within human epidermis. When analyzing the 

percentage of RANK+CD1a+ cells, we identified a significant increase of these cells 

with age. In foreskin from infants (11.16%±8.67) and old children (12.87%±9.29) we 

found a significant lower percentage of RANK+ LCs when compared with adult 

foreskin (32.99%±11.5) (Figure 4A, red gates, B). Also adolescent foreskin 

contained fewer RANK+ LCs when compared with adult foreskin, however, this was 

not significant. Additionally, normal human breast skin was analyzed for the presence 
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of RANK+CD1a+ cells in the epidermis to include the percentage of RANK+ LCs from 

another part of the body. Surprisingly, only 12.49% of all LCs were RANK+ (Figure 

4B), which is in contrast to the results of Barbaroux et al180.  

Furthermore, the frequency of RANK+CD1a- cells was determined (Figure 4A, 

yellow gates). Foreskin from infants (96.28%±4.68), old children (93.98%±4.68) and 

adolescents (86.87%±7.07), and normal human breast skin (91.59%±5.3)  showed a 

higher percentage of RANK+CD1a- cells in the epidermis compared to adult 

(64.62%±23.95) foreskin (Figure 4C), but only data obtained from infants and old 

children were significant when compared with adult foreskin.  

 
 
Figure 4. Analysis of RANK+CD1a+ and RANK+CD1a- cells in developing human epidermis. (A) 
Single cell suspensions from foreskin of selected age groups [infant (1 year), old child (10 years), adult 
(31 years)] were labeled with anti-RANK and anti-CD1a mAbs. Dot plots show RANK+CD1a+ (red 
gates) and RANK+CD1a- (yellow gates) cell populations. Dead cells were excluded by 7-AAD uptake. 
Dot plots show 100,000 cells. (B) The diagram displays the percentage of RANK+CD1a+ epidermal 
cells of the indicated age groups. Significant differences between infant and adult (* P<0.05) and old 
child and adult (* P<0.05) RANK+CD1a+ LCs were observed. (C) The diagram shows the percentage 
of RANK+CD1a- epidermal cells of different age groups. A significant difference between infant and 
adult (* P<0.05) and old child and adult (* P<0.05) RANK+CD1a- cells was observed. f.s. = foreskin. 
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5.2 Not all LCs in adult human epidermis express 

RANK 

To test the validity of our flow cytometry data in adult skin, epidermal sheets were 

prepared and labeled with anti-RANK and anti-CD1a mAbs (Figure 5A, B). We found 

that many LCs do not express RANK, what is again in contrast to observations from 

Barbaroux et al.180. The discrepancy of these results cannot be explained at the 

moment. 

Figure 5. Not all CD1a+ LCs in adult human epidermis express RANK. Epidermal sheets from (A) 
belly skin (41 years) and (B) gluteal skin (55 years) were stained with an anti-RANK mAb, visualized 
with an AlexaFluor-546 goat anti-mouse IgG and counterstained with an anti-CD1a-FITC mAb. Arrows 
indicate RANK-CD1a+ cells. Arrowheads indicate RANK+CD1a+ cells. Scale bars: 20 µm.   
 

5.3   Only a minor percentage of in vitro generated LCs 

express RANK 

We next determined the percentage of LCs expressing RANK, when these were 

differentiated in vitro from CD34+ cells isolated from cord blood. Upon culture of 

CD34+ cells with GM-CSF, Flt3L, SCF, TNF-α and TGF-β1194 for 9 days, cells were 

labeled with anti-RANK and anti-CD1a mAbs or with anti-Langerin and anti-CD1a 

mAbs for flow cytometric analysis. Langerin/CD1a staining was performed to confirm 

that the generated cells are indeed LCs. Unfortunately, it was not possible to 

accomplish a Langerin/CD1a/RANK staining. Therefore, it was necessary to correlate 

the percentage of CD1a+ cells in both stainings. The generation, staining and 

recording of the results were performed by Thomas Bauer (Stroble group; Institute of 

Immunology, Medical University of Vienna).  
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The mean of RANK+CD1a+ cells is about 12.12%±7.45 (Figure 6), which 

corresponds with the results obtained for RANK+CD1a+ cells in infant or old child skin 

in the in vivo experiments.  

 
 
Figure 6. In vitro generated LCs. (A) LCs were in vitro generated from CD34+ cells and labeled with 
the indicated mAbs. Only a small fraction of CD1a+ cells express RANK. (B) The diagram displays the 
percentage of in vitro generated RANK+CD1a+ cells.    
 

Thus, similar to our observation with freshly isolated epidermal cells, only a minor 

population of CD1a+ cells express RANK. Double labeling experiments need to be 

performed to test how many Langerin+ cells express RANK. All together our results 

are in direct contrast to those of Barbaroux et al.180 The use of a different isolation 

procedure is one explanation. However, it does not explain the results in epidermal 

sheets.  

The validity of our flow cytometry data is supported by our observations in epidermal 

sheets and in vitro differentiation data of LCs from their precursors  . Experiments are 

planned to investigate whether RANK+ and RANK- LCs represent different LC 

subtypes and also have a different functional capacity. It will be also interesting to 

investigate which factors in the developing skin are responsible for the upregulation 

of RANK on LCs during development. Furthermore, we plan to test when during 

prenatal development RANK expression can first be detected on LCs.  

 

5.4  Keratinocytes express RANK 

Upon identification of RANK+Cytokeratin+ keratinocytes (Figure 3), freshly prepared 

epidermal single cell suspensions from selected age groups were labeled with an 

anti-RANK and an anti-pancytokeratin mAb to determine the frequency of RANK+ 

keratinocytes (Figure 7A). A decrease of RANK+ keratinocytes from infants 

compared to adults was found. The percentage of keratinocytes expressing RANK in 

infant epidermis (0.78%±0.51) is higher compared with those of old children 
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(0.34%±0.14) or adults (0.17%±0.14). In normal human breast skin, the ratio of 

RANK+ keratinocytes is about 0.5%±0.39. 

 
Figure 7. RANK expression on keratinocytes. (A) Epidermal single cell suspensions from infant (1.5 
years) and adult (20 years) foreskin were labeled with anti-RANK and anti-pancytokeratin mAbs. 
Green gates show the percentage of RANK+ keratinocytes. Dead cells were excluded by 7-AAD 
uptake. Dot plots display 100,000 cells. (B) The diagram displays the percentage of 
RANK+Cytokeratin+ cells. f.s. = foreskin; ns = not significant. 
 

The percentage of RANK+ keratinocytes in all age groups is less then 1%. However, 

it is important to put these results in context to the total cell numbers which are 

present in the epidermis. Keratinocytes represent approximately 90% and LCs only 

3-5% of all epidermal cells. If we consider a population of 1000 epidermal cells, then 

only approximately 40 LCs and 900 keratinocytes would be identified. In infants, 

11.16% of all LCs and 0.78% of all keratinocytes are RANK+. Only 4.46 LCs and 7 

keratinocytes would express RANK in our theoretical epidermis, leading to a ratio of 

1:1.51. The total number of RANK+ keratinocytes in infant skin is higher than those of 

RANK+ LCs. In the epidermis of old children we have a ratio of 1:0.59 and in adult 

foreskin 1:0.12, showing that there seems to be a shift from higher RANK+ 

keratinocyte numbers to more RANK+CD1a+ cells. In normal breast skin the ratio is 

1:0.9, which leads to the conclusion that in normal human breast skin, the distribution 

of total RANK+ LCs and keratinocytes is almost equal. 

Our observation that some keratinocytes are able to express RANK, leads to many 

questions. It remains to be determined which keratinocytes express RANK. If 

expressed only on some basal keratinocytes, we plan to analyze whether its 

expression may correlate with proliferating (=Ki67+) keratinocytes. Are RANK+ 

keratinocytes able to interact with RANKL-expressing T cells. If yes, why? It is 

currently unclear why the percentage of RANK+ keratinocytes in infants even though 

not significant, is much higher than in any other age group and what leads to the 

reduction of RANK+ keratinocytes with time? 
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5.5 Staining of naive and memory T cells in human 

dermal single cell suspensions   

To investigate the expression of specific markers on skin T cells, it was necessary to 

first evaluate whether they are sensitive to enzymes used to prepare skin single cell 

suspensions. Therefore, dermal single cell suspensions were prepared and double 

staining were performed with the T cell specific marker CD3 and markers for naive 

(CD45RA) and memory T cells (CD45RO). Unfortunately, neither CD45RA nor 

CD45RO expression was observed (Figure 8), implying that both receptors are 

sensitive to either dispase or liberase or even both enzymes used to separate the 

epidermis from the dermis.  

 
 
Figure 8. Staining of naive and memory T cells in a dermal single cell suspension. A dermal 
single cell suspension was prepared from human adult foreskin (31 years) and labeled with anti-CD3 
and anti-CD45RA or anti-CD45RO mAbs to distinguish naive and memory T cells. Dead cells were 
excluded by 7-AAD uptake. Dot plots display 100,000 cells and are representative of 3 experiments. 
 

5.6 Staining of naive and memory T cells in human 

peripheral blood 

Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats from 

peripheral blood of healthy adult volunteers. One half of the cells was stained with 

anti-CD45RA, anti-CD45RO and anti-CLA mAbs and analyzed by flow cytometry 

(Figure 9A). The other half of the cells was incubated in dispase II (1 hour, 37°C), 

washed and digested in liberase (2 hours, 37°C) to imit ate the preparation of a 

dermal single cell suspension and to test the dispase and liberase sensitivity of the 

mentioned markers. Afterwards the cells were analyzed by flow cytometry. 

Surprisingly, no significant difference was observed, upon dispase and liberase 

treatment leading to the conclusion that the three tested markers are not sensitive for 

the treatment with dispase and/or liberase (Figure 9B). 
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Figure 9. Staining of naive and memory T cells in PBMCs. (A) PMBCs were isolated from the 
blood of healthy adult donors and stained directly after isolation or (B) incubated with dispase and 
afterwards with liberase and stained with the indicated markers. Dead cells were excluded by 7-AAD 
uptake. Dot plots display 10,000 cells and are representative of 3 experiments. 
 

5.7  Staining of naive and memory T cells in skin 

single cell suspensions   

As we found no difference in the expression levels of naive and memory T cell 

markers in T cells upon liberase treatment compared with the non-treated group, 

single cell suspensions from whole skin were prepared using liberase for digestion of 

the dermis and were stained with anti-CD45RA and anti-CD45RO mAbs. As a 

second marker for memory T cells we have used an anti-CLA mAb. Approximately 

50% of the T cells either expressed CD45RA or CLA, implying that these markers are 

partially sensitive to liberase. CD45RA and CLA showed unequivocal populations 

and no reactivity with an anti-CD45RO mAb was observed (Figure 10). 
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Figure 10. CD45RO molecules are liberase sensitive. Skin single cell suspensions were prepared 
from human foreskin [16 years (Exp. 1), 3 years (Exp. 2)] and labeled with anti-CD3, anti-CD45RA, 
anti-CD45RO or anti-CLA mAbs to distinguish between naive and memory T cells. Dead cells were 
excluded by 7-AAD uptake. Dot plots display 100,000 cells and are representative of 3-11 
experiments.   
 

5.8  Determination of the percentage of naive and 

memory T cells in developing human skin 

Human breast and foreskin samples from selected age groups were triple stained for 

CD3, CD45RA and CLA to determine the percentage of naive and memory T cells. 

Analyzed cells were gated for CD3, and CD45RA is displayed against CLA (Figure 

11A). Sensitivity of CD45RA and CLA molecules for diverse enzymes has already 

been demonstrated, but no report about liberase sensitivity was familiar for us. 

Unfortunately, most of the cells displayed only CD3, implying a loss of CD45RA or 

CLA, which makes it impossible to differentiate between naive or memory T cells in 

skin single cell suspensions. Only a small fraction of naive and memory T cells kept 

their markers, and a third fraction with a similar percentage showed a triple positive 

phenotype. This CD3+CD45RA+CLA+ population has a receptor expression profile 

previously described for regulatory T cells195-198. The obtained data were evaluated 

and displayed in a diagram to show the relation of naive and memory T cells even 

though we are aware that they do not represent the “true” picture for reasons 

described above (Figure 11B). 
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Figure 11. Distribution of naive and memory T cells in skin from selected age groups. (A) A 
single cell suspension was prepared from human foreskin (3.5 years). Left dot plot shows a gate for 
CD3+ T cells. Right dot plot displays the expression of CD45RA and CLA on CD3+ cells. Dead cells 
were excluded by 7-AAD uptake. Dot plots display 100,000 cells and are representative of 3-11 
experiments. (B) The diagram shows the relation of naive (CD3+CD45RA+, white bars) and memory 
(CD3+CLA+, black bars) T cells in human skin. Infant (10 months and 1 year), child (3.5 years, 8 years 
and 8.5 years), adolescent (15 years and 16 years), adult (36 years) foreskin and breast skin (18 
years, 45 years and 49 years) were analyzed. 
 

5.9  Naive T cells are present in infant and adult but 

not in newborn epidermis 

Due to the sensitivity of certain T cell markers to skin cell separation enzymes, 

scientists have developed new methods to isolate T cells from the skin. T cell 

chemoattracting factors and skin explants were used to allow migration of T cells out 

of the skin199. It is a procedure, which takes some days and might lead to a 

modification of the T cell phenotype. Therefore, we decided to use 

immunofluorescence staining of T cells in cryostat sections. Skin sections were 

labeled with anti-CD3, -CD45RA and -CD45RO mAbs. Inflamed samples were 

excluded, based on T cell cluster formations in the epidermis (Figure 12A) and on 

high T cell numbers in the dermis (Figure 12B).  
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Figure 12. Identification of inflamed skin. (A) Cryosections from human foreskin (10 months) were 
labeled with anti-CD3-FITC and anti-CD45RA-PE mAbs. The epidermis shows a cluster formation of T 
cells (arrow), indicating an inflammation. (B) Human foreskin (2 months) was stained with an anti-
CD45RO mAb, visualized with an AlexaFluor-546 goat anti-mouse IgG and counterstained with an 
anti-CD3-FITC mAb. High T cell numbers were detected within the dermis, indicating an inflammation. 
Scale bars: 20 µm. E = Epidermis, D = Dermis. 
 

Upon exclusion of inflamed samples, naive and memory T cell staining was 

performed with newborn, infant, and adult foreskin samples. From each donor and 

staining, at least 10 pictures were taken and analyzed. Unfortunately, it was 

impossible to analyze the dermis from adult foreskin samples due to high levels of 

collagen. Therefore, we have included normal human male breast skin which showed 

lower levels of collagen (Figures 13-15).  
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Figure 13. Naive T cells are present in infant and adult, but not in newborn epidermis.  
Cryosections from newborn (3 days), infant (5 months) and adult (31 years) foreskin were labeled with 
anti-CD3-FITC and anti-CD45RA-PE mAbs. No naive T cells were found in the newborn epidermis, 
whereas infant and adult epidermis harbors CD45RA+CD3+ cells. Arrows indicate CD45RA+CD3+ cells 
in the epidermis. Scale bars: 5 µm. E = Epidermis, D = Dermis.   
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Figure 14. Naive T cells are present in newborn, infant and adult dermis. Cryosections from 
newborn (5 days), infant (5 months) and adult (31 years) foreskin were labeled with anti-CD3-FITC 
and anti-CD45RA-PE mAbs. The dermis from adult foreskin was difficult to analyze due to high 
collagen expression. Therefore, normal human adult male breast skin (19 years) was included. 
CD45RA+CD3+ cells (white arrows) were found in the dermis of the indicated age groups. Scale bars: 
20 µm. E = Epidermis, D = Dermis. 
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Figure 15. Memory T cells are present in newborn, infant and adult epidermis and dermis. 
Frozen human foreskin samples from newborn (3 days), infant (6 months) and adult (31 years) 
individuals were labeled with an anti-CD45RO mAb, visualized with an AlexaFluor-546 goat anti-
mouse IgG and counterstained with an anti-CD3-FITC mAb. We used a normal human adult male 
breast skin (19 years) as a control. CD45RO+CD3+ cells were extremely rare in newborn epidermis, 
but their numbers increased with age. CD45RO+CD3+ cells are indicated with arrows (dermis) and 
arrowheads (epidermis). Scale bars: 20 µm. E = Epidermis, D = Dermis. 
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As naive and memory T cells were found in the epidermis and dermis of almost all 

age groups, we decided to enumerate these populations (Figure 16). 

 
 
Figure 16. Frequency of naive and memory T cells in newborn and infant skin. Frozen human 
foreskin samples from newborn (3 to 5 days) and infant (5 months, 6 months and 14 months) 
individuals were analyzed. Diagrams show the relation of naive (CD45RA+CD3+, white bars) and 
memory (CLA+CD3+, black bars) T cells in human skin. T cells numbers in the (A) epidermis and (B) 
dermis were evaluated, by counting naive and memory T cells in different donors on cryosections. At 
least three different, non-inflamed donors from each age group were analyzed. In the epidermis from 
newborns, no CD45RA+CD3+ cells were found, whereas 12.26%±7.67 of all T cells found in the 
epidermis of infants were naive T cells. Most of the epidermal CD3+ cells are memory T cells (100% in 
newborns, 95.3%±8.14 in infants). The distribution of naive and memory T cells is similar in newborn 
(5.77%±4.2 naive T cells, 97.67%±2,72 memory T cells) and infant (5.95%±1.69 naive T cells, 
90.22%±4.89 memory T cells) dermis.  
 

Immunofluorescence staining showed that epidermal T cells are very rare, but 

already present in newborn skin. No naive T cells were found in the newborn 

epidermis. Infants show a small population of CD45RA+CD3+ cells with an average of 

12.26%±7.67 of all T cells found in the epidermis. All epidermal T cells in newborns 

show a memory T cell expression profile, whereas 95.3%±8.14 of infant epidermal T 

cells are CD45RO+CD3+.  

Naive T cells are also present in the newborn dermis. Our results show that 

5.77%±4.2 from newborn and 5.95%±1.69 from infant dermal T cells are 

CD45RA+CD3+ and that 97.67%±2.72 from newborn and 90.22%±4.89 from infant 

dermal T cells have a CD45RO+CD3+ expression profile. These values are already 

comparable to those found in the literature when adult skin was analyzed106. 

We show for the first time that already the newborn skin contains more memory then 

naive T cells. We are aware that more skin samples need to be analyzed to come to 

a definitive conclusion. 
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6  Materials and methods 

6.1  Apparatuses and instruments 

Binocular (Leitz-Austria, Vienna, Austria) 

Buffy Coats (Rotes Kreuz, Vienna, Austria) 

Capillary gab microscope slides, 100 µm (Dako, Glostrup, Denmark) 

Carbon steel surgical blades (Heintel, Vienna, Austria) 

Centrifuge (Heraeus, Vienna, Austria) 

Centrifuge, megafuge 2.0 (Kendro Laboratory Products, Vienna, Austria) 

CO2 incubator (Heraeus, Vienna, Austria)  

Confocal laser scanning microscope, CLSM 510 (Zeiss, Jena, Germany) 

Cryostat (Leica, Wetzlar, Germany) 

FloJo software (Tree Star Inc., Ashland, OR, USA) 

Fluorescence-activated cell sorter (FACSCalibur, BD, Franklyn Lakes, NJ, USa) 

Freezers (-20°C, -80°C) 

Fridges 

Forceps 

GraphPad  Prism 5 Software (GraphPad, San Diego, CA, USA) 

ImmEdge, H-4000 (Vector Laboratories Inc., Burlingame, CA, USA) 

Laminar flow (Holten, Allerod, Denmark) 

LSM image browser software (Zeiss, Jena, Germany) 

Lucia general software  

Neubauer counting champer  

Optical microscope, Nikon eclipse 80i (Nikon Corporation, Tokyo, Japan) 

Pipetman, 1-50 ml (Hirschmann, Eberstadt, Germany) 

Pipette (Gilson, Middelton, WI, USA) 

Scalpel 

Vacutainer CPT 8ml (BD, Franklin Lakes, NJ, USA) 

Vortex Genie 2 (Lactan, Graz, Austria) 

Water bath 

 

6.2  Plastic material 

Cell strainer 70 µm (Falcon, Lincoln Park, New Jersey, USA) 

Gloves 
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Microscope glass cover slips, 24x60 mm (Menzel-Gläser, Braunschweig, Germany) 

Microscope slides, 76x26 mm (Menzel-Gläser, Braunschweig, Germany) 

Microtubes for flow cytometry (Micronic, Lelystad, The Netherlands) 

Petri dishes for tissue culture, 100x20 mm (Costar, Lowel, MA, USA)  

Pipettes, 5, 10 ml (Costar, Lowel, MA, USA) 

Polypropylene tubes, 14 and 50 ml (Falcon, Ulm, Germany) 

Sterile tips, 0.5-10, 1-100 and 200-1000 µl (Costar, Lowel, MA, USA) 

Tissue culture plate, 96-well, flat bottom without lid (BD, Franklin Lakes, NJ, USA) 

Tissue-tek cryomold standard (Salcuna Finetek, Zoeterwoude, The Netherlands) 

 

6.3  Reagents 

7-amino-actinomycin D (Sigma-Aldrich, St. Louis, MO, USA) 

Acetone (Merck, Darmstadt, Germany) 

Ammoniumchloride 

Ammoniumthiocyonate (Merck, Darmstadt, Germany) 

Antibodies: summarized in Table 1 

Betaisodona (Mundipharma, Vienna, Austria) 

Bovine serum albumin, BSA (Sigma-Aldrich, St. Louis, MO, USA) 

Dispase II (Roche Applied Science, Basel, Switzerland) 

DNAse (Invitrogen, Lofer, Austria) 

Ethylenediaminetetraacetic acid, EDTA (Merck, Darmstadt, Germany) 

Ethanol (Merck, Darmstadt, Germany) 

Fetal calf serum, FCS (PromoCell, Heidelberg, Germany) 

Fixation medium, Solution A (ADG, Kaumberg, Austria) 

Liberase Blendzyme 3 (Roche Applied Science, Basel, Switzerland)  

Lymphoprep (Axis Shield, Rodelokka, Norway) 

Mounting medium for cryostat sections (Vector Laboratories Inc., Burlingame, CA, 

USA) 

Mounting medium for sheets (Difco Bacto, BD, Franklin Lakes, NJ, USA) 

Optimum cutting temperature formulation (O.C.T., Tissue-Tek, Sakura Finetek, 

Zoeterwoude, The Netherlands) 

Phosphate-buffered saline, PBS (Invitrogen, Lofer, Austria) 

Saponin (Sigma-Aldrich, St. Louis, MO, USA) 

Trypan blue, 0.4% (Sigma-Aldrich, St. Louis, MO, USA) 
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Trypsin cryst. lyophalizied (Merck, Darmstadt, Germany) 

 

6.4  Buffers and media 

6.4.1  10x DNAse 

RPMI 1640 (Gibco) supplemented with:  10% FCS (PromoCell) 

 1x penicillin/streptomycin (Gibco) 

  100 mg DNAse (Invitrogen) 

 

6.4.2  Wash medium 

RPMI 1640 (Gibco) supplemented with:  10% FCS (PromoCell) 

   1x penicillin/streptomycin (Gibco) 

 

6.4.3  0.8% Trypsin 

1x PBS (Invitrogen) supplemented with:  4 g Trypsin cryst. lyophalizied (Merck) 

  

6.4.4  FACS Buffer 

1x PBS (Invitrogen) supplemented with: 1% FCS (PromoCell)   

  0.5 mM EDTA (Merck) 

 

6.4.5  MACS Buffer 

1x PBS (Invitrogen) supplemented with:  0.5% BSA (Sigma-Aldrich) 

   2 mM EDTA (Merck) 

 

6.5  Skin preparation and cell isolation 

6.5.1  Preperation of epidermal single cell suspensions 

Skin samples were obtained from infants (28 days to 24 months), young children (3 

to 5 years), old children (6 to 11 years), adolescents (12 to 17 years) and adults (18 

to 49 years). Human foreskin (routine circumcisions), normal human breast skin 

(mammary reduction), normal gluteal and belly skin were obtained as discarded 

material after the ethical committee approval of the Medical University of Vienna. 

Skin samples were stored at 4°C in PBS until use and pro cessed no longer than 6 
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hours after surgery. For the preparation of single epidermal cell suspensions, 

subcutaneous tissue was removed and remaining skin was disinfected by incubation 

in Betaisodona for approximately 10 min, followed by a short plunge in 70% ethanol 

and another incubation in PBS for 1-2 min. Then skin was cut into small stripes and 

placed epidermal side up on 25% dispase (over night, 4°C). On the next day, the 

epidermis was separated from the dermis with forceps and digested in 5 ml PBS, 2 

ml 0.8% trypsin and 1 ml 10x DNAse (12 min, 37°C). Th e digested epidermis was 

sifted through a 70 µm cell strainer and the enzymatic reaction of trypsin was 

stopped by the addition of 30 ml wash medium. The obtained cells were washed and  

resuspended in 500 µl MACS buffer. An aliquot was stained with trypan blue and the 

numbers of viable cells were determined with a Neubauer counting chamber. 

 

6.5.2  Preperation of dermal single cell suspensions 

The preparation process is identical with that described for the preparation of an 

epidermal single cells suspension until the separation step of the epidermis from the 

dermis. Dermis was digested in 15 ml PBS and Liberase Blendzyme 3 (10.7 Units; 2 

hours, 37°C). Subsequently, the digested dermis was sift ed through a 70 µm cell 

strainer and washed with 40 ml wash medium and 1 ml 10xDNAse solution. Isolated 

cells were resuspended in 500 µl MACS buffer, and viability of the cells was 

determined as described in 6.5.1. 

 

6.5.3  Preperation of skin single cell suspensions 

The preparation process was identical with that described above. Upon incubation in 

PBS (1-2 min), skin was cut as small as possible and digested in 15 ml PBS and 

Liberase Blendzyme 3 (10.7 Units; 2 hours, 37°C). Subse quently, the digested skin 

was sifted through a 70 µm cell strainer and washed with 40 ml wash medium and 1 

ml 10xDNAse solution. Isolated cells were resuspended in 500 µl MACS buffer, and 

cell viability was dertermined as described in 6.5.1. 

 

6.5.4  Preparation of human epidermal sheets 

The preparation process was identical with that for the preparation of an epidermal 

single cell suspension until the removal of subcutaneous tissue from the samples. 

Skin was cut into small squares (approximately 1 cm2) and placed on a 3.8% 

ammonium thiocyanate solution with the epidermal side up (30 min, 37°C). Then the 
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epidermis was separated from the dermis and washed in PBS (10 min, room 

temperature). Thereafter, the epidermis was fixed in acetone (10 min, room 

temperature), washed in PBS (10 min, room temperature), and incubated in 50 µl of 

a purified anti-RANK antibody (Ab) solution in a 96-well flat bottom cell culture plate 

(over night, 4°C). After two washing steps in PBS (5 m in, room temperature), 50 µl of 

an AlexaFluor-546 F(ab’)2 goat anti-mouse IgG dilution were added per well to the 

sheets (2 hours, room temperature, dark). After two washing steps in PBD (5 min, 

room temperature), the sheets were incubated in 50 µl of an anti-CD1a-FITC Ab 

solution (over nights, 4°C, dark). Finally, the sheets  were washed again (twice, 5 min, 

room temperature, dark), placed on microscope slides, mounted with mounting media 

and covered with microscope cover glasses. Control samples were stained with 

appropriate isotype Ab. Images were recorded using a CLSM 510 Confocal laser 

scanning microscope. 

 

6.5.5  Isolation of PBMCs 

Buffy coats from peripheral blood of healthy adult volunteers were purchased from 

the local transfusion service (Rotes Kreuz, Vienna, Austria). PBMCs were isolated as 

interface cells after density gradient centrifugation and erythrocytes were removed 

with ammonium chloride (0.8% NH4Cl/0.1 mM EDTA). Isolated cells were 

resuspended in 500 µl MACS buffer, an aliquot of the cells was stained with trypan 

blue and their viability and numbers were determined with a Neubauer counting 

chamber.  

 

6.6  Flow Cytometry 

Skin or epidermal single cell suspensions were incubated in microtubes                

(100 µl/sample) with APC-, FITC-, PE-conjugated or purified Ab (30 min, 4°C, dark). 

Then, cells were washed with FACS buffer and when a purified Ab was used, a PE-

conjugate was added to this staining. To analyze intracellular antigens, cells were 

permebailized and fixed with Solution A (1 ml/ml; room temperature, 15 min). 

Afterwards, the cells were washed with 0.1% saponin/PBS and stained with an 

appropriate conjugated Ab. Dead cells were excluded by 7-AAD (1 µg/ml) and cells 

were analyzed with a FACS Calibur cytometer. Data were analyzed with FlowJo 

software. Control samples were stained with appropriate isotype-matched Ab. To 

determine the percentage of different subsets of cells (e.g. RANK+CD1a+ cells), gates 
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were set (Figure 3A) based on isotype controls. The percentage of the upper right 

gate was divided through the summed up percentages of the lower and upper right 

gates, and multiplied with 100.  

 

6.7  Immunofluorescence 

Skin specimens from selected age groups were embedded in O.C.T., snap-frozen in 

liquid nitrogen and stored at –80°C until further pr ocessing. Five µm sections were 

cut, transferred onto capillary gap microscope slides, fixed in ice-cold acetone for 10 

min and air-dried. Sections were incubated with 10% normal mouse serum and 1% 

purified mouse-IgG1 Ab (20 min, room temperature). To stain memory T cells, 

sections were incubated (over night, 4°C) with a purifi ed anti-CD45RO mAb dilution. 

Skin sections were washed in PBS (3x10 min) and incubated with an AlexaFluor-546 

F(ab’)2 goat anti-mouse IgG dilution (2 hours, room temperature). Afterwards, the 

samples were washed again in PBS (3x10 min), blocked with 10% normal mouse 

serum and 1% purified mouse IgG1 Ab (20 min, room temperature), incubated with 

an anti-CD3-FITC-conjugated mAb (over night, 4°C), a nd mounted with fluorescence 

mounting medium. 

To stain naive T cells, sections were simultaneously incubated with anti-CD45RA-PE 

and anti-CD3-FITC mAbs (over night, 4°C), washed in P BS (3x10 min) and mounted 

with fluorescence mounting medium. Control samples were stained with appropriate 

isotype-matched Ab and images were taken with a Nikon eclipse 80i optical 

microscope. For the enumeration of naive and memory T cells, at least 10 images 

per donor were taken. Then epidermis and dermis were measured and the numbers 

of single and double positive cells were determined and placed in relation. 

Measurement and counting was made with Lucia general software.  

 

6.8  Statistical analysis 

The gained values were compared in a statistic diagram designed with the GraphPad 

Prism 5 software. P-values were calculated with the Mann-Whitney–U test. 

Significance results at p-values smaller than 5%. 
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Table 1. Antibodies & second-step reagents 

AB specifity Clone Ig Class Working 
dilution Source* Conjugate 

CD1a HI149 Mouse IgG1, κ 1:100 Biolegend AlexaFluor-488 

CD1a HI149 Mouse IgG1, κ 1:100 BD Pharmingen APC, PE, FITC 

CD3 SK7 Mouse IgG1, κ 1:100 BD Pharmingen APC 

CD3 UCHT1 Mouse IgG1, κ 1:50 ADG FITC 

CD45RA T6D11 Mouse IgG2b, κ 1:50 Miltenyi PE 

CD45RO UCHL1 Mouse IgG2a, κ 1:50 BD Pharmingen PE 

CD45RO UCHL1 Mouse IgG2a, κ 1:50 AbD Purified 

CD117 YB5.B8 Mouse IgG1, κ 1:100 BD Pharmingen PE 

CLA HECA-452 Rat IgM, κ 1:50 BD Pharmingen FITC 

Pancytokeratin C-11 Mouse IgG1, κ 1:500 Abcam FITC 

RANK 80704 Mouse IgG1, κ 1:100 R&D Systems purified 

Second-step reagents 

Goat anti-mouse F(ab')2 IgG (H+L) 1:250 Invitrogen AlexaFluor-546 

Goat anti-mouse Goat F(ab')2 IgG + IgM (H+L) 1:250 Dako PE 
 
*Abcam, Cambridge, United Kingdom; AbD Serotec, Kidlington, United Kingdom; ADG, Kaumberg, Austria; BD 
Pharmingen, San Diego, CA, USA; Biolegend, San Diego, CA, USA; Dako, Glostrup, Denmark; Miltenyi Biotech, 
Bergisch Gladbach, Germany; R&D Systems, Minneapolis, MN, USA. 
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