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1 Introduction

This thesis studies the phenomenon of asymmetric pricing, according to which

output prices tend to adapt di�erently to input cost increases than to input cost

decreases. Empirically, asymmetric pricing (aka asymmetric price adjustment or

rockets and feathers1) is typically associated with negative cost shocks being passed

along to consumers in a `slower' fashion than positive cost shocks. The general

public as well as government authorities often attribute this pricing behavior to an

abuse of market power, i.e., implicit or explicit collusion. However, to the best of

my knowledge, no formal model capable of generating rockets and feathers through

collusion has been developed. Therefore, the main contribution of my thesis will

be to provide a collusive model of asymmetric price adjustment. Furthermore, I

will summarize several other models of asymmetric pricing that do not rely on an

abuse of market power and compare their results.

Why is asymmetric pricing even a relevant topic, and which support exists for it?

During the last two decades, numerous empirical studies con�rmed the so called

pattern of rockets and feathers. Because of the rich amount of data available and

some theoretical reasons that make gasoline a good candidate to test for asym-

metric pricing, many studies have concentrated on the gasoline market. Examples

include Johnson (2002); Bacon (1991); Karrenbrock (1991); Borenstein et al. (1997)

and Lewis (2009). However, there is growing support that asymmetric pricing is

not restricted to few specialized markets, but is a very broad phenomenon. Yang

and Ye (2008, p. 547) state that other markets where adjustment asymmetry can

be found include

1Output prices rise like rockets when there is a positive cost shock, but fall like feathers when
there is a negative one.



fruit and vegetables (Pick et al., 1991; Ward, 1982), beef and pork

(Boyd and Brorsen, 1988; Goodwin and Holt, 1999; Goodwin and

Harper, 2000) and banking (Hannan and Berger, 1991; Neumark and

Sharpe, 1992; O'Brien, 2000).

Finally, in his comprehensive study of 77 consumer and 165 producer goods, Peltz-

man (2000) shows that asymmetric pricing can be found in more than two thirds

of the markets he observed. He also points out that positive cost shocks usually

have twice the immediate impact on output prices than negative ones, and that

this asymmetry tends to last for at least �ve to eight months.

But while asymmetric price adjustment is found to be common in a great number of

markets, it is not well understood from a theoretical perspective. As a consequence,

modern economic theory seems incomplete and the �eld of asymmetric pricing

could turn out to greatly enhance our understanding of how markets work. As

Peltzman (2000, p. 468) points out:

If [asymmetric pricing] was shown to be general and not just limited

to a few case studies, it would point to a serious gap in a fundamental

area of economic theory.

So which ideas and models are available that can lead to a better understanding

of the phenomenon? First of all, Borenstein et al. (1997) provide three hypotheses

which could explain adjustment asymmetry in gasoline retail. Some of the ideas

mentioned in their paper might easily translate to other markets. Probably most

interesting is the �rst hypothesis, which states that

[p]rices are sticky downward because when input prices fall the old out-

put price o�ers a natural focal point for oligopolistic sellers. (Boren-

stein et al., 1997, p. 324)
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In brief, �rms in oligopolistic markets could choose to maintain the price charged

before a negative cost shock, as this price provides a focal point for (implicit)

collusion. The idea for this hypothesis stems from the so called `trigger sales'

model of Tirole (1988), however, the economic literature still seems to lack an

explicit formal analysis of this mechanism.2

The principal contribution of my thesis will thus be to try to overcome this theo-

retical de�cit by providing a simple model of asymmetric pricing caused by tacit

collusion in a trigger sales context. This will be the focus of the main section of

my thesis. There, I will explain the basic mechanism that leads to asymmetric

price adjustment in my model, describe its setup, prove that a collusive equilib-

rium exists for certain parameter values and present several comparative statics

results. I will then extend the basic model to a multitude of separated submar-

kets and show that this model can reproduce realistic pricing patterns. Finally, I

will point out some possible extensions that could be considered for future research.

In the rest of my thesis, I will explain most other models of asymmetric price

adjustment that are currently available. Which models are these? First of all, the

other proposed hypotheses for asymmetric price adjustment in Borenstein et al.

(1997) were production lags with �nite inventories and a signal extraction problem

for consumers when prices are very volatile in a consumer search scenario. While

2Support for this can be found in Lewis (2009, p. 18), who writes that

No rigorous model of focal price collusion has been speci�ed, and testing against
the predictions of a super-game model of tacit collusion is di�cult since there are
an in�nite number of equilibrium price paths.

and Eckert (2002, p. 53), who states that

While a theory linking tacit collusion with an asymmetric response to input prices
has not been formally derived, the intuition has been discussed in the context of
the Green and Porter (1984) model of tacit collusion with price wars.

3



the �rst explication has not been examined in detail, consumer search has become

the number one modeling approach for rockets and feathers.

In fact, at least four rigorous models capable of generating `true' rockets and

feathers through consumer search exist. They have been invented by Yang and

Ye (2008); Tappata (2009); Lewis (2009) and Cabral and Fishman (2008). As one

can see, these papers are pretty recent, with the latter two being unpublished as

of now. Although consumer search is the main economic concept which drives

them, they build on di�erent assumptions and provide heterogeneous mechanisms

to derive adjustment asymmetry of output prices. I will provide a detailed sum-

mary and comment on limitations and possible extensions of the �rst two models

in Section 4 of my thesis. There, I will also give a brief intuition of how the latter

two models work.

Alternatives to consumer search include the mechanism of production lags with

�nite inventories proposed by Borenstein et al. (1997) as well as the models of

Ball and Mankiw (1994) and Eckert (2002). Ball and Mankiw create a model of

asymmetric pricing through asymmetric menu costs in in�ationary environments.

However, their model comes with several conceptual problems and is unlikely to

be relevant in most markets. Eckert provides a model of Edgeworth price cycles

that results in a pattern of price changes resembling asymmetric pricing although

prices move independently from costs. Interestingly, an extension of this model

could lead to true asymmetric pricing. See Section 5 for a further discussion of

these three approaches.

The thesis will be organized as follows. In the next section, I will try to give a more

formal de�nition of asymmetric pricing, both listing all the relevant types of rockets

and feathers and providing graphical examples. In the main section (Section 3) of

4



this work, I will derive and discuss an own model of asymmetric price adjustment

in a collusive setting. In Section 4 and Section 5, I will proceed to present several

other ideas how to model the phenomenon. I will also discuss problematic aspects

and possible extensions of these ideas. A short summary (Section 6) concludes.

5



2 Types of Asymmetric Pricing

Before I will start to present various models of asymmetric pricing, it seems useful

to give the reader a better understanding of how the phenomenon can be under-

stood. In order to do so, I will distinguish between the various types of rockets

and feathers discussed in the literature and provide a formal de�nition. Several

diagrams are included for convenience.

The de�nition of asymmetric pricing given is based on Karrenbrock's (1991) de�ni-

tion of asymmetric gasoline price movements and the general de�nitions of Meyer

and Cramon-Taubadel (2004, p. 538 �.). According to the former,

[r]etail price movements are de�ned as asymmetric if an increase in the

wholesale price a�ects the retail price di�erently than an equal-sized

decrease. (Karrenbrock, 1991, p. 22)

Karrenbrock then proceeds to list three distinct types of asymmetric price ad-

justment. The �rst type deals with the speed of adjustment. If an input price

increase is passed along more quickly than an input price decrease, he refers to

time asymmetry. A typical example for time asymmetry would be an immediate

and full pass-through of positive cost shocks, but a delayed, full pass-through of

negative cost shocks. In other words, an equal amount of some equal-sized, posi-

tive or negative input price change is passed along to output prices eventually, but

adjustment needs longer when prices have decreased. The following �gure taken

from Meyer and Cramon-Taubadel (2004) illustrates this �rst type of adjustment

asymmetry at the top panel, with pin referring to some upstream input price and

pout referring to the output price. The shaded area represents the welfare loss that

is implied for consumers.
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Figure 2.1 Time, amount and pattern asymmetry. Source: Meyer and Cramon-Taubadel
(2004, p. 584)
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The second type of asymmetry is called amount asymmetry. This means that,

once the adjustment process is over, a higher percentage of an input price increase

will be re�ected in the new output price, compared to an input price decrease. In

this case, price increases and decreases induce an equally long adjustment process,

but after the phase of transition, output prices will have changed more (in abso-

lute terms) after a positive cost shock than after a negative one. For example,

if after two weeks an input price increase of ten cents results in an output price

increase of eight cents, while an input price decrease of ten cents only results in an

output price decrease of six cents, this can be referred to as amount asymmetry.

A graphical example can be found in the middle panel of Figure 2.1.

It is worth noting that true amount asymmetry is unlikely to prevail in actual

markets. The reason is that input and output prices are usually not indepen-

dent, but a�ect each other through some kind of equilibrium relation. But true

amount asymmetry implies that prices would drift apart over time, destroying any

projected equilibrium relation. In other words, amount asymmetry can only oc-

cur over the short run, with the long run equilibrium being restored over time.

(Wikipedia, 2009)

The �nal and most important type of asymmetry is a combination of the types

explained above. Price adjustment can di�er in its length and amount. For ex-

ample, it might be the case that an input price increase leads to a full output

price increase after one day, while an input price decrease needs three days to be

transmitted, with only 80% of the price change being �nally re�ected in the new

output price.

But even if both the length and amount of price adjustment are equal, the pat-

terns of the adjustment process can di�er. For example, a three-week full price

adjustment after an input price increase of ten cents could be (5, 3, 2) cents,

8



while it might be (2, 4, 4) cents when facing an input price decrease. As this is

also clearly a case of adjustment asymmetry, the third type will be referred to as

pattern asymmetry and includes the combination of time and amount asymmetry

mentioned �rst. For a graphical example, see the bottom panel of Figure 2.1.

The above illustrations might induce the thought that amount asymmetry (or

amount asymmetry combined with time asymmetry, but not pure pattern asym-

metry) is the worst type of adjustment asymmetry, as consumers would have to

bear `in�nite' welfare losses. This is obviously not the case, as the net present value

of the welfare loss induced by large time asymmetry might very well exceed the net

present value of the loss induced by small amount asymmetry that persists forever.

As a �nal note, it is important to notice that all of my examples refer to a state

called positive asymmetric price transmission (PAPT), which simply means that

output prices react more quickly (or completely) to input price increases than to

input price decreases. PAPT is the most commonly observed type of adjustment

asymmetry and is the sole focus of my thesis. For the sake of completeness,

the opposite case is called negative asymmetric price transmission and implies

that output prices tend to adjust more rapidly to input price decreases than to

increases, i.e., that there is a welfare redistribution from producers to consumers.

Figure 2.2 showcases this behavior.

A last distinction could also be made between vertical and spatial asymmetric

price transmission, but in my thesis, only vertical relations will be covered.

9
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3 Asymmetric Pricing due to Tacit Collusion in a Simple

Dynamic Oligopoly Model

In this main section of my thesis, I develop a model of asymmetric pricing based

on tacit collusion among �rms. The idea to this stems from the �rst hypothesis

of how asymmetric might emerge proposed in Borenstein et al. (1997). There, the

authors argue that asymmetric pricing might occur because �rms who compete in

Bertrand competition coordinate their selling prices on the price that was charged

before a negative cost shock, but have to immediately increase their prices after

a positive cost shock because margins are squeezed and �rms would have to incur

losses otherwise. Due to random demand shocks, collusion slowly breaks down

after a cost decrease, leading prices to slowly adapt to negative cost shocks. In

contrast, positive cost shocks are transmitted without delay to output prices.

This section will be organized as follows: In Subsection 3.1, I will give a more

detailed intuition of how asymmetric pricing emerges in the model and will outline

its setup. In Subsection 3.2, I will calculate the equilibrium of the static game, i.e.,

the equilibrium of the game when it is not repeated. In Subsection 3.3, I propose a

collusive strategy combination that turns out to be an equilibrium of the dynamic

game. Doing so, I will provide several comparative statics and ultimately show

that asymmetric pricing results for certain parameter values. Next, in Subsection

3.4, I will show that a more realistic pattern of price adjustment can be found

if one thinks of one market to be composed of several separated submarkets, as

has already been proposed in Borenstein et al. (1997). A short summary and

discussion (Subsection 3.5) concludes.
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3.1 Intuition and Model Setup

The basic mechanism which leads to asymmetric pricing in my model is as follows.

After a negative cost shock, �rms witness rising margins. While there could be

�erce competition and a quick negative response of the output price to the cost

shock, �rms can also collude on the price charged before the cost shock because it

provides a natural focal point for collusion.

In traditional models of industrial organization, �rms can observe the prices of all

their competitors3 and thus, depending on some discount factor δ, only one type

of collusive equilibrium is possible. The strategies involved in this equilibrium are

to price at the collusive price whenever all of the other �rms price at the high

price, and to price at cost forever (or at least several periods) as punishment if any

�rm deviates. In this scenario, either all �rms collude forever on some high price

that maximizes their pro�ts or all �rms price at cost (deviation from the collusive

behavior either pays or not, so �rms either have no incentive to deviate in every

period or no collusive equilibrium exists).

However, things change drastically if one introduces imperfect information. If �rms

cannot observe the prices of their rivals, they would have to �nd other mechanisms

to keep their competitors from deviating. One way to do so is by making collu-

sion dependent on sales in previous periods. I will call a strategy that conditions

cooperation on previous sales a trigger sales strategy. The intuition behind such

a strategy is that �rms can infer from low sales that other �rms have broken the

tacit collusive agreement and will end collusion as well. From this, it is only a

3Usually facing a delay of one period.
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small step to asymmetric pricing. If �rms confuse random demand shocks with

changes in demand caused by �rms that deviate from the collusive price4, collusion

can slowly break down due to random demand shocks although every �rm wishes

to collude forever.

In contrast, positive cost shocks are translated without delay because margins are

very small and would become negative otherwise. The result is asymmetric price

transmission: positive cost shocks are transmitted immediately to output prices

whereas negative cost shocks need some time to have a negative e�ect on prices.

Since demand is random, the source of randomness is crucial for determining the

speed with which collusion breaks down, and how prices react once collusion ends.

In the easiest case, only overall demand is random and all �rms end collusion at

the same time in symmetric equilibria, i.e., when sales fall below some critical

value that is de�ned by a trigger sales strategy.5 Because of this, all prices in the

market would have to drop sharply and simultaneously once collusion ends. This

behavior is usually not observed in real markets. However, a possible solution to

4For this to be possible, there must be some fraction of uninformed consumers that buy at a ran-
dom �rm because otherwise, �rms can always accurately determine whether some competitor
has deviated to a lower price.

5Another possibility would be that demand is random for every �rm and also overall demand is
random. Unfortunately, it seems that no trigger sales equilibrium can be found for this model.
The reason for this is that if every �rm followed a strategy of deviating when demand falls
under some critical value, a best response to this strategy combination would be to always
price at the collusive price, implying higher pro�ts (if all other �rms do not deviate, a �rm
shouldn't deviate if it faces a random demand shock). Although there are certainly ways to
overcome this issue by introducing beliefs or other sophistications, I will leave this open for
future research.
Also, a two-�rm model can be conceived where overall demand is constant, but each �rm
faces random demand (i.e., overall demand is split randomly among both �rms). In this case,
the strategy combination of playing the collusive price as long as sales do not fall below some
threshold and sales of the other �rm do not fall below the same threshold (which, in this
case, can be inferred from the �rm's own demand) results in an equilibrium. While this would
again imply asymmetric pricing, I will not discuss a model of this type in my thesis.
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this problem is if one thinks of one big `market' to be comprised of several in-

dependent submarkets. This assumption is probably justi�ed for many `markets'

that are in fact composed of spatially separated submarkets (e.g. in gasoline re-

tail, a city could be de�ned as one market although there is an inner city market,

suburban market, highway market, etc. with all of those being independent from

each other). In this case, collusion can progressively break down in parts of the

`market' (each with random demand), which leads to a smooth decline of average

market prices.

First, I will provide a model of the former type, i.e., a model where collusion is

maintained for several periods and then suddenly collapses, leading to a full and

abrupt decline of average market prices. Then, I will extend this model to allow

for separated submarkets, resulting in a more realistic pattern of price response to

negative cost shocks.

For the former, consider a market with n ≥ 2 �rms who produce a homogeneous

good at marginal cost c. Firms compete à la Bertrand and try to maximize ex-

pected pro�ts over the current and future periods. Moreover, while �rms can

perfectly observe the demand they faced in every elapsed period, they can never

observe the prices charged by their competitors (both for current and bygone pe-

riods).

Time is discrete, with t = 1, 2, 3, .... The interval between two periods is assumed

to be short (e.g. one day) such that �rms' discount factor is close to one. For

simplicity, I will suppose that �rms do not discount over future periods.6 Each

6In contrast to classic trigger strategy games, the model doesn't rely on discounting because
its structure ensures that di�erent cost states will have a �nite expected length. The model
is robust to the introduction of a discount factor as long as it is su�ciently close to one. For
a short interval between periods, this is a realistic assumption.

14



period, the n �rms in the market have to pay either low or high marginal cost

which is common to all �rms, c ∈ {cL, cH}, with cL < cH . Cost states follow a

two-state Markov process with transition probability (ρ, 1− ρ), with ρ > 1/2. Put

di�erently, it holds that Pr(ct = cL|ct−1 = cL) = Pr(ct = cH |ct−1 = cH) = ρ > 1/2.

The consumer side is characterized by a continuum of (potential) consumers with

random measure X ∼ U [0, 2]7 that is identically and independently distributed

(i.i.d.) in each period, with E[X] = 1. This random measure is unobservable for

�rms. Also, consumers have a reservation price ν that is equal to cH , i.e., ν = cH ,

and unit demand in each period. A fraction λ ∈ (0, 1) of consumers is informed

and observes all prices in the market. These consumers are called shoppers and

buy at the lowest priced �rm (if two or more �rms have the same lowest price,

shoppers buy at one of the �rms at random). The remaining fraction 1 − λ of

nonshoppers only observes one random price and thus buys at a random �rm.

Consumers do not buy if a price exceeds their reservation price ν. Note that my

model is a partial equilibrium model: while �rms behave optimally, consumers

can only decide whether to buy or not. For models where the search decision of

consumers is endogenous, see Section 4.

The parameters n, λ, ρ, cL, cH , ν as well as the distribution of potential consumers

are assumed to be common knowledge.

Because of the above assumptions, the expected demand of some �rm i, pricing at

p ≤ ν, can be written as

7The uniform distribution is mainly chosen for technical convenience because it has a simple
and closed form cumulative distribution function. In principle, every continuous distribution
with a bounded or semi-in�nite interval that has zero as lower bound can be chosen. If
minimum market demand is greater than zero, it depends on the model parameters whether
a collusive equilibrium can exist.
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E(Di|p) =

 E[(λ
b

+ (1−λ)
n

)X] = λ
b

+ 1−λ
n
|if p = pmin

E[( (1−λ)
n

)X] = 1−λ
n

|if p > pmin
(3.1)

where pmin = min{p1, ..., pn} and a total of 1 ≤ b ≤ n �rms price at pmin.

In what follows, I will derive Nash-equilibria for the stage game8 and, building

on this, the dynamic game where the stage game is repeated in�nitely. Once

equilibrium for the dynamic game in the market has been derived, I will proceed

to analyze the e�ect on average market prices when there are multiple separated

submarkets.

3.2 Equilibrium of the Stage Game

If the above game is only played for one period (i.e., only for t = 1), the strategy

space of �rms is restricted to either price at some level for sure (playing a pure

strategy) or to randomize between prices (playing a mixed strategy).

It is straightforward to see that there can be no symmetric equilibrium in pure

strategies if c = cL < ν. The reason for this is an undercutting argument. Suppose

every �rm played some pure strategy p ∈ (cL, ν]. Then each �rm would have an

incentive to slightly undercut all of its rivals because it can increase its expected

demand without e�ectively decreasing its pro�t margin. This goes on until every

�rm would price at cL, driving pro�ts to zero. But then again, each �rm would

have an incentive to price at some higher price and make a positive pro�t by getting

positive expected demand of 1−λ
n

from the nonshoppers. Therefore, no equilibrium

in pure strategies can exist if costs are low.

On the other hand, if c = cH = ν, in principle every price that is greater or equal to

the valuation of consumers ν can be played as equilibrium strategy, each resulting

8For this, I will use a methodology similar to Varian (1980).
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in a pro�t of zero. I will restrict the action space of �rms such that they cannot

price above ν.9 Doing so, the only equilibrium of the stage game when costs are

high is that every �rm prices at ν. This is a crucial feature of the model: only

because �rms do not randomize over prices under high costs, there exists a unique

focal point for collusion (i.e., p = ν) once costs drop.

Because of the above result that there can be no pure strategy equilibrium of

the stage game if costs are low, in any symmetric low cost equilibrium, �rms will

have to price using a probability distribution F (p) := Pr(p̃ ≤ p) with support

[p, p = ν].10 The trade-o� between attracting shoppers and extracting high pro�ts

from non-shoppers is resolved by using mixed strategies. In equilibrium, surplus-

appropriation must be balanced by business-stealing e�ects, which is only possible

when �rms randomize between prices (see Varian, 1980; Tappata, 2009, p. 677).

The equilibrium price distribution can now be calculated by the following logic:

playing the mixed strategy of F (p) can only be optimal if any price in the support

[p, p = ν] yields the same expected pro�t. Otherwise, the mixed strategy F (p)

could pro�tably be altered by choosing prices that generate lower pro�ts less fre-

quently. Since ν is clearly in the pricing support of �rms, it must hold in particular

that setting any price p in the support has to yield the same expected pro�t as

setting p = ν. Formally, for F (p) to be an equilibrium strategy it must hold that

E(Πi(p;F (p)) = E(Πi(v;F (p)), (3.2)

9This can be motivated if one assumes �rms to strictly prefer positive demand over zero demand.

10ν has to be the highest price in the support because it would make no sense for a �rm to price
at p if p < ν: the �rm would not attract any informed consumers anyway and could thus
make a higher pro�t by pricing at ν.
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where Πi(x;F (p)) denotes the pro�t of �rm i if it prices at x, given that all other

�rms in the market price according to the probability distribution function F (p).

Using the expected demand function of �rms given by Equation (3.1) and realizing

that b = 1 when all other �rms price according to F (p) (which has no mass

points11), the left hand side of Equation (3.2) is given by

E(Πi(p;F (p)) = (p− cL)[E(Di|p = pmin) Pr(p = pmin) + E(Di|p > pmin) Pr(p > pmin)]

= (p− cL)

[
λn+ 1− λ

n
(1− F (p))n−1 +

1− λ
n

(1− (1− F (p))n−1)

]
= (p− cL)

[
λ(1− F (p))n−1 +

1− λ
n

]
.

From this it immediately follows that the right hand side of Equation (3.2) can be

written as

E(Πi(ν;F (p)) = (ν − cL)
1− λ
n

.

Setting both sides equal and rearranging �nally yields

F (p) = 1− n−1

√(
ν − p
p− cL

)
1− λ
λn

. (3.3)

Using that F (p) = 0, one can also solve Equation (3.3) for p. It holds that

p =
ν(1− λ) + λncL

1− λ+ λn
> cL. (3.4)

11A rigorous proof for this can be found in Varian (1980).
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One can see that p will only reach cL if λ = 1 (i.e., every consumer is informed)

or n → ∞. Interestingly, the equilibrium of the stage game collapses to a full

competition Bertrand equilibrium when λ = 1, but ends up in the monopoly case

(with each �rm pricing at ν) when there is an `in�nite' number of �rms in the

market. This is because the expected pro�t from business-stealing decreases with

a higher rate than the expected pro�t from surplus-appropriation for increasing

n, i.e., having the lowest price in the market will pay less and less for higher n.

Of course, the game will also collapse to the monopoly outcome if the fraction of

informed consumers λ is zero.

3.3 Equilibrium of the Dynamic Game

Now that the equilibrium strategies for the static game have been determined,

I will proceed to propose a collusive equilibrium for the dynamic game, i.e., the

stage game when it is repeated in�nitely.

First of all, it is straightforward to see that the strategy combination of pricing

at p = ν whenever c = cH and pricing according to F (p) whenever c = cL clearly

constitutes a subgame perfect Nash-equilibrium of the supergame. This is because

by de�nition, the equilibrium of the stage game must be an equilibrium of every

stage (period). Thus, if other equilibria for the dynamic game exist, it is in

principle impossible to pin down which equilibrium will be played. In fact, the

well known Folk theorem states that in repeated games, any strategy combination

can constitute an equilibrium as long as each player'sminimax condition is ful�lled,

meaning that each player minimizes their maximal loss. (See Wikipedia, 2010, and

the references therein)

More speci�cally, if costs drop and �rms want to collude on some high price to

keep their margins at a high level, there are generally in�nitely many prices �rms

can collude on in equilibrium, rendering it unclear how they can coordinate on

one particular price. Because of this, I will only examine equilibria where �rms'
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collude on the price that was charged before a negative cost shock, as it provides

a natural focal point for collusion. It seems plausible that, if there is no other in-

formation available, �rms' best guess would be to keep prices unchanged in order

to coordinate their selling prices after a cost decrease.

Also, among all possible collusive equilibria, I will only consider trigger sales equi-

libria in which �rms' pro�ts are maximized. As will turn out below, this implies

that, depending on the parameters n and λ in the market, either the equilibrium

of the stage game will be played in every period (I will call such markets `�erce', as

�rms engage in �erce competition) or a collusive trigger sales equilibrium emerges

(I will call such markets `collusive').

I will now prove that, for some values of n and λ, the following trigger sales strategy

combination constitutes a subgame perfect Nash-equilibrium:

� Price at p = ν whenever c = cH .

� Price at p = ν in the �rst period after costs drop from cH to cL.

� Price at p = ν in subsequent periods where c = cL as long as the demand

faced in every elapsed period (where c = cL) exceeded a critical value k, with

0 < k < 2
(

1−λ
n

)
.12 If demand has been lower than k in some period, price

according to the equilibrium of the low cost static game (i.e., price according

to F (p)) until costs rise to cH again.

12A minimum demand of zero (implying that �rms always collude) can never be an equilibrium,
as will be outlined below. 2

(
1−λ
n

)
is the maximum demand (demand if X = 2) a �rm

can face if some other �rm has deviated by undercutting. Because of this, a strategy of
breaking collusion conditional on having witnessed a demand greater or equal to this value
(i.e., k ≥ 2

(
1−λ
n

)
) makes no sense. This is because for X ∈ [2

(
1−λ
n

)
, k], �rms would break

collusion as punishment even though they would know with certainty that every other �rm
in the market colluded in the previous period.
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As will be shown, there is generally a continuum of values of k (and therefore in-

�nitely many trigger sales strategies) that result in an equilibrium of the dynamic

game. However, as mentioned above, I will determine k endogenously by assuming

that �rms collude on the value of k that maximizes their expected pro�ts while

still keeping �rms from deviating.

Which value of k is that? In a world with perfect information, �rms would observe

overall market demand and could therefore accurately deduct whether low demand

is caused by some rival �rm undercutting or a random demand shock. However, in

the model �rms do not get to know the random demand (which ranges from 0 to

2) and will thus have to break collusion if demand falls below some critical value

k > 0 even if every �rm wishes to collude. Otherwise, it would pay to deviate

because if there is no punishment for deviation, it must always be pro�table to do

so: all other �rms would keep playing ν anyway no matter how low their demand

gets.

The optimal (pro�t maximizing) value of k is thus given by the minimal k (say k∗)

that is still incentive compatible with not deviating from the collusive strategy.

This is because the lower k, the less likely it is that market demand falls below

this threshold value despite of every �rm colluding.

Having outlined the intuition behind the critical value k, some preliminary results

are needed to determine combinations of the number of �rms n, persistence pa-

rameter ρ, number of informed consumers λ and critical value k that allow for a

collusive equilibrium.

I will denote by q the probability that demand reaches at least k for any �rm

playing ν if all other �rms play ν. As the measure of potential consumers is
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random, X ∼ U [0, 2], the demand for such a �rm is random as well, with Di =

(λ
n

+ (1−λ)
n

)X = X
n
. Now q := Pr(Di ≥ k|ν; ν) = Pr(X

n
≥ k) = 1 − Pr(X < nk).

Using the distribution function of a uniformly distributed random variable with

support [0, 2], it follows that

q = 1− nk

2
(3.5)

if 0 < k < 2
(

1−λ
n

)
, as assumed.

Analogously, I will denote by r the probability that demand reaches at least k for

any �rm playing ν if at least one other �rm undercuts and plays ν − ε. It holds

that r := Pr(Di ≥ k|ν; pmin < ν) = Pr((1−λ
n

)X ≥ k) = 1 − Pr(X < nk
1−λ). Again

using the distribution function of uniformly distributed random variables, one gets

r = 1− nk

2(1− λ)
(3.6)

if 0 < k < 2
(

1−λ
n

)
, as assumed. It can clearly be seen that r must be smaller than

q for λ > 0, as should be expected.

As mentioned above, 2
(

1−λ
n

)
is the maximum demand (demand if X = 2) a

colluding �rm can get if some other �rm deviates, as the fraction λ of informed

consumers would never be attracted. Threshold values of k greater or equal to

2
(

1−λ
n

)
would thus result in a range of demand where collusion would be broken

as punishment although �rms know that every �rm has colluded in the previous

period with certainty. These paradox values of k are excluded in this analysis.

Next, since there is an expected total market demand of 1, the expected demand

for a �rm if every �rm colludes is equal to 1
n
. This means that the expected pro�t

during collusion is ν−cL
n

for every �rm if cost is low. It was also calculated that the

expected pro�t for a �rm playing any price in the pricing support [p, ν] must be

equal to (ν − cL)1−λ
n

if there is no collusion. Once collusion ends and �rms begin

to price according to F (p), each �rm's pro�t will therefore be this high.
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The only pro�t that is yet missing is the expected pro�t a �rm makes when it

deviates from a collusive strategy combination. The best possible deviation is to

price at p = ν − ε, with ε close to zero. Doing so, a �rm attracts all of the in-

formed consumers without e�ectively facing a decrease of its pro�t margin. That

is, a deviating �rm will make an expected pro�t of (ν − cL)λn+1−λ
n

.

Overall, collusion under low cost can thus be maintained if the expected pro�t

stream of a �rm playing the strategy outlined on page 20 exceeds the expected

pro�t stream of optimally deviating from the proposed strategy.13 In any period,

such an optimal deviation is characterized by playing p = ν − ε. Also, if deviation

in any period is optimal, it must be optimal in every period since �rms face the

same maximization problem. This leads to the following

Proposition 3.1. In the dynamic game, there exists a continuum of subgame

perfect Nash-equilibria with demand threshold k if ρ > n−1
λn

. The pro�t maximizing

threshold value k∗ that is still incentive compatible with collusion is given by

k∗ =
2(1− 1

n
)( 1
ρ
−1)

1
1−λ−n

.

Proof. First, as �rms' actions are restricted to pricing below or equal to ν, setting

p = ν in every period of high costs is the only possible action �rms can under-

take under high costs. Pricing at ν under c = cH is thus clearly subgame perfect.

Second, if costs are low, no matter what a �rm has done in previous periods, it

knows whether all of its competitors will keep pricing at ν in the current period

(if demand has been greater than k in every elapsed period of low costs) or will

price according to F (p) (if demand has been low enough in some bygone low cost

period).

13Recall that I assume for simplicity that �rms do not discount.
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In the former case, if colluding (i.e., pricing at ν) is incentive compatible for a �rm

given that all other �rms price at ν, it must be incentive compatible no matter how

many periods of low costs have already elapsed, as the random process costs follow

is memoryless : for τ > 0, it holds that E(ct = cL|c1, ..., ct−1 = cL) = E(ct+τ =

cL|c1, ..., ct+τ−1 = cL) = ρ. This implies that �rms �nd it optimal to keep colluding

in any period of low costs if colluding is incentive compatible at all.

In the latter case, if a �rm knows that every competitor will price according to the

stage game equilibrium F (p) until costs rise to cH again, any price in the support

[p, p = ν] constitutes a best response, as each price would yield the same expected

pro�t. In particular, randomizing according to F (p) must clearly be optimal.

I have thus proven that a trigger sales strategy as proposed will constitute a sub-

game perfect Nash-equilibrium of the dynamic game if colluding is incentive com-

patible for �rms. When is that?

For collusion to be sustainable, it must hold that that the expected pro�t stream

of collusion exceeds the expected pro�t stream of optimally deviating. Using the

above results, it is clear that colluding in the �rst period where costs are low, given

that all other �rms collude, yields an expected pro�t of ν−cL
n

, whereas deviating

in the �rst period yields an expected pro�t of (ν − cL)λn+1−λ
n

.

Costs remain low for another period with probability ρ (with probability 1 − ρ,

costs change to cH and the �rms' strategies are reset). Also, demand has only been

higher than the critical threshold value k with probability q in the �rst period if

every �rm colluded. Thus, with probability q, a �rm will continue to make an

expected pro�t of ν−cL
n

, whereas with probability 1 − q, it will only make the ex-

pected pro�t of the stage game equilibrium, i.e., (ν−cL)1−λ
n
. In sum, the expected

second period pro�t for a colluding �rm is equal to ρ[ν−cL
n
q + (ν − cL)1−λ

n
(1− q)].

On the other hand, if a �rm deviated in the �rst period, demand only exceeded the
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threshold value k with probability r < q. Thus, such a �rm will continue to make

the deviating pro�t of (ν − cL)λn+1−λ
n

with probability r. With probability 1− r,

a deviating �rm will only make the expected pro�t of the stage game equilibrium

(ν − cL)1−λ
n
, as does the colluding �rm with probability 1− q < 1− r.

After this, a third period of low costs only happens with the ex ante probability of

ρ2. Also, since the measure of (potential) consumers is assumed to be i.i.d. across

periods, it is obvious that the probability of �rms having witnessed a demand

greater or equal than k in both elapsed periods (of low costs) must be either q2 (if

the �rm colludes) or r2 (if the �rm deviates), and so on.

Formally, for collusion to be sustainable it must therefore hold that

ν − cL
n

+ ρ

[
ν − cL
n

q + (ν − cL)
1− λ
n

(1− q)
]

+

+ ρ2

[
ν − cL
n

q2 + (ν − cL)
1− λ
n

(1− q2)

]
+ ... ≥

(ν − cL)
λn+ 1− λ

n
+ ρ

[
(ν − cL)

λn+ 1− λ
n

r + (ν − cL)
1− λ
n

(1− r)
]

+

+ ρ2

[
(ν − cL)

λn+ 1− λ
n

r2 + (ν − cL)
1− λ
n

(1− r2)

]
+ ...

Multiplying by n
ν−cL

and using that qτ + (1− λ)(1− qτ ) = 1− λ+ λqτ , as well as

(λn+ 1− λ)rτ + (1− λ)(1− rτ ) = 1− λ+ λnrτ , this expression simpli�es to

1 + ρ(1− λ+ λq) + ρ2(1− λ+ λq2) + ... ≥

(λn+ 1− λ) + ρ(1− λ+ λnr) + ρ2(1− λ+ λnr2) + ...
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1 + λ[ρq + (ρq)2 + ...] ≥ λn+ 1− λ+ λn[ρr + (ρr)2 + ...]

λ[1 + ρq + (ρq)2 + ...] ≥ λn[1 + ρr + (ρr)2 + ...]

which �nally results in

ρ ≥ n− 1

nq − r
. (3.7)

Now, depending on the model parameters n and λ, two cases can be discerned

when solving inequality (3.7) for k.

First, if λ ≤ 1 − 1
n
, no value of k exists that results in a trigger sales equilibrium

for any ρ < 1. In consequence, the reversal of this inequality,

λ > 1− 1

n
, (3.8)

gives a necessary condition for a collusive equilibrium under a trigger sales strat-

egy. In case the above condition is not satis�ed, the equilibrium of the stage game

(i.e., all �rms price according to F (p)) will be the only possible outcome in each

low cost period if one restricts trigger sales strategies as the only alternative to

F (p).

Second, if λ > 1− 1
n
, it follows that

k ≥
2(1− 1

n
)(1
ρ
− 1)

1
1−λ − n

. (3.9)
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Using that k is not allowed to reach or exceed 2
(

1−λ
n

)
, the minimum ρ that is

necessary for collusion can easily be computed. Setting k = 2
(

1−λ
n

)
and solving

condition (3.9) for ρ leads to

ρ >
n− 1

λn
:= ρmin, (3.10)

which is the value that was stated in the proposition.

What is now the minimum value of k that allows for a collusive equilibrium? This

value, say k∗, is given by inequality 3.9 solved for strict equality if (and only if) ρ

exceeds the ρmin that is given by condition (3.10). Formally, it holds that

k∗ =
2(1− 1

n
)(1
ρ
− 1)

1
1−λ − n

if ρ >
n− 1

λn
(3.11)

which is again the expression found in the above proposition.

If ρ > n−1
λn

, every trigger sales strategy that uses a k∗ as de�ned in Equation

(3.11) must constitute the optimal (in terms of �rms' pro�ts) collusive trigger

sales strategy. I have thus proven that, given that the exogenous parameters n,

λ and ρ of a market ful�ll a certain criterium, a continuum of collusive, subgame

perfect Nash-equilibria of the game exist. The optimal demand threshold k∗ is

given by the minimum value of k that is still incentive compatible with collusion.

A graphical example for parameter values that constitute collusive equilibria and

the minimum collusive demand threshold k∗ can be found in Figure 3.1.
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As a side note, reexpressing inequality (3.10) to ρ >
1− 1

n

λ
, one can see that, given

some �xed persistence parameter ρ, the fraction of informed consumers λ has to

increase for an increasing number of �rms in the market in order for collusion to

be sustainable. This result is obtained because the absolute di�erence in pro�ts

under collusion (expected pro�t from collusion when some �rm deviates vs. ex-

pected pro�t from collusion when all other �rms collude) is given by λ
n
in each

period, which is increasing in λ and decreasing in n. Given some �xed persistence

parameter ρ, λ must therefore increase for an increased n in order to keep a col-

luding �rm's ability to detect deviation on the same level.

The interpretation of this is that the signal extraction problem �rms have to face

when determining whether demand is low because of some random demand shock

or because of a rival �rm undercutting gets worse the smaller the number of in-

formed consumers λ relative to the number of �rms in the market n. If λ is small,

�rms have essentially no chance to successfully punish deviating �rms and no equi-

librium using a trigger sales strategy as proposed can exist. This signal extraction

di�culty implies that a larger number of �rms in the market needs to be balanced

by a higher proportion of informed consumers.

Having determined k∗, in what follows, I will analyze the e�ect of the parameters

ρ, n and λ on k∗. Then, I will translate the variable k∗ back into a probability q∗

that can be interpreted as the minimum probability with which �rms end collusion

because of random demand shocks in a cooperative equilibrium. This probability

will �nally be used to determine the speed with which negative cost shocks are

passed along to prices.

The �rst thing one can see is that k∗ is inversely related to ρ. The higher the

persistence of costs, the lower minimum demand is needed to sustain collusion.

This result is not surprising: the higher the probability that low costs persist, the

higher the incentive for �rms to keep colluding and not inducing a high risk of

collusion to break by deviating.
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Next, it is again straightforward to see that k∗ is inversely related to λ. This shows

that more informed consumers lead to a lower minimum demand needed for a col-

lusive equilibrium. This property is consistent with the fact that more informed

consumers make it easier for �rms to distinguish between random demand shocks

and demand shocks caused by a rival �rm undercutting.

Finally, as the nominator of k∗ is increasing and its denominator is decreasing in n,

k∗ is positively related to n. This means that the absolute demand threshold above

which collusion can be maintained must increase in n although the expected num-

ber of consumers per �rm under collusion decreases for a larger number of �rms

in the market. More competition thus leads to a smaller range of threshold val-

ues which are compatible with collusion, i.e., collusion gets more di�cult until no

collusive trigger sales equilibrium exists anymore. Similar results are typical for

many models of industrial organization.

In order to understand the degree of asymmetric pricing in the model, I will now

express the probability q∗ of an additional collusive period that is associated with

k∗. If k∗ exists (i.e., Equation (3.11) holds), one can use Equation (3.5) to solve

for q∗. Doing so, it follows that

q∗ =
λ− 1

ρ
(n− 1)(1− λ)

1− n(1− λ)
. (3.12)

This leads to the following

Corollary 3.2. If a collusive trigger sales equilibrium with threshold value k∗

exists, the probability that collusion breaks down after at most j periods of low

costs is given by ψ(j) := 1− (q∗)j−1. This probability is

� decreasing with the persistence of costs ρ,

� decreasing with the fraction of informed consumers λ
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� and increasing with the number of �rms n

in the market.

Proof. If every �rm colludes at k∗, the probability that the random measure of

consumers X falls below k∗ will be the same in each period. Thus, considering

that collusion can never break down in the �rst period of low costs, the probability

that collusion is maintained for at least j periods is equal to (q∗)j−1. Consequently,

the probability that collusion breaks down after at most j periods must be given

by 1 − (q∗)j−1. The second part of the above corollary follows from q = 1 − k
2
.

Thus, the comparative statics of q∗ must be opposite to those of k∗: the probability

q∗ that collusion is maintained for another period is increasing with ρ and λ and

decreasing with n. As ψ is decreasing in q∗, ψ must �nally be decreasing with ρ

and λ and increasing with n.

Finally, it follows

Corollary 3.3. Asymmetric pricing does emerge in the model as long as ρ > n−1
λn

.

Positive cost shocks are passed along immediately to output prices whereas negative

cost shocks are transmitted after an expected φ := 1
1−q∗ > 1 periods.

Proof. The mechanism that leads to asymmetric pricing is very straightforward.

If a positive cost shock happens, margins are squeezed and �rms have to increase

their selling prices immediately to ν in order to avoid incurring losses (in fact,

�rms have to price at ν because their action space is restricted to pricing equal to

or below ν).

If a negative cost shock happens, a collusive equilibrium will be played if ρ > n−1
λn

.

Then, costs are sticky in the �rst period, meaning that no �rm has an incentive

to price lower than ν under collusion. In every period that follows where costs
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remain low, demand will be high enough to maintain collusion with probability q∗.

With probability 1−q∗, due to a random demand shock, demand drops su�ciently

to lead �rms to deviate as punishment, as they confuse random demand shocks

with demand shocks caused by a rival �rm undercutting. This implies that the

probability that collusion breaks down exactly j periods after a negative cost

shock is geometrically distributed with probability parameter 1− q∗, i.e., given by

(q∗)j−1(1− q∗) for j > 0 and zero if j = 0. As the expectation of a geometrically

distributed random variable with probability parameter 1 − q∗ is given by 1
1−q∗ ,

this proves that prices will need an expected φ = 1
1−q∗ > 1 periods to adjust after

a negative cost shock, implying asymmetric pricing.

For example, for n = 2, λ = 0.8 (like in Figure 3.1) and ρ = 0.75, one obtains

q∗ = 8/9 and φ = 9. Collusion will thus break an expected nine periods (e.g.

days) after a negative cost shock, whereas prices will immediately jump to ν after

a positive cost shock (if �rms priced according to F (p)). A graphical depiction of

the resulting probability distribution function of the number of low cost periods

until collusion breaks down in the above example can be found in Figure 3.2.

While collusion will not break down deterministically in a collusive equilibrium,

once collusion breaks down, every �rm in the market will immediately price like

in the competitive equilibrium. This would lead to an abrupt decline of average

market prices once collusion ends, as can clearly be seen in the simulation I depict

in Figure 3.3. In the next subsection, I will discuss the pattern of asymmetric

price transmission that emerges when one market consists of multiple independent

submarkets.
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Figure 3.2 Probability distribution function of the number of periods until collusion col-
lapses for n = 2, λ = 0.8, ρ = 0.75. Source: Own calculations.
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3.4 Asymmetric Pricing with Separated Submarkets

For this subsection, consider the following extension of the model. Now, the whole

market consists of a total of N �rms who share the same cost level c ∈ {cL, cH = ν}

in every period, with costs evolving according to the same two-state Markov pro-

cess as in the basic model. The market is divided into a = 1, ...,m spatially

separated and completely independent submarkets with na ≥ 2 �rms each, such

that N =
∑m

a=1 na. Firms compete through Bertrand competition in the submar-

kets only.

Also, for the consumer side, each market consists of λa ∈ (0, 1) informed con-

sumers who observe all prices in the market, and 1 − λa uninformed consumers

who only observe one price at random. Demand in each submarket follows the

same principles outlined in Subsection 3.1.

In other words, each submarket is de�ned by the very same structure as the whole

market in the basic model, and there is no interaction between the submarkets

whatsoever. Because of this, the analysis of the extension of the basic model will

be very simple: depending on the model parameters na and λa of a submarket, each

result of the simple model will directly translate to the extended one: if ρ ≤ na−1
λana

,

a submarket will be characterized by �erce competition and symmetric pricing,

i.e., with every �rm pricing according to the equilibrium of the stage game in each

period. If, however, it holds that ρ > na−1
λana

, a submarket will be characterized by a

collusive trigger sales equilibrium with threshold value k∗a(na, λa) and asymmetric

pricing, i.e., with �rms adjusting prices to negative cost shocks after an expected

1
1−q∗a(na,λa)

periods, in contrast to an immediate response to positive cost shocks.

Overall, the response of average prices to negative cost shocks will be di�erent than

in the simple model. Depending on how the parameters na and λa are distributed

across submarkets, 0 ≤ l ≤ m of the submarkets will be characterized by collusive
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equilibria and asymmetric pricing. On the other hand, m − l of the submarkets

will engage in �erce competition (where every �rm plays F (p) under low costs)

and symmetric pricing.

As a consequence, the probability that 0 ≤ κ ≤ l of the l collusive submarkets

end up in �erce competition after at most j periods of low costs would be com-

plicated to determine, as di�erent values of na and λa across submarkets would

imply di�erent probabilities q∗a(na, λa) with which collusion is maintained, which

in turn would imply di�erent values of the probability that collusion is maintained

for at most j periods ψ(j) = ψ(j;na, λa) for each submarket. Hence the number of

collusive submarkets where collusion has ended after j periods would be a sum of l

Bernoulli-distributed random variables with di�erent probability parameter ψ(j).

While I will use values of na and λa that vary across submarkets in the simulation

at the end of this subsection, I will not derive the probability with which collusion

breaks down in κ of the l collusive submarkets after j periods of low costs if the

collusive submarkets have di�erent parameters na and λa.

However, if the parameters na and λa are the same for each collusive submar-

ket, also q∗ and hence ψ(j) are the same for each submarket and the number of

submarkets where collusion has broken down after (at most) j periods is simply

binomially distributed with probability parameter ψ(j). That is, it must hold that

Pr(Z(j) = κ) =

(
l

κ

)
ψ(j)κ(1− ψ(j))l−κ =

(
l

κ

)
[1− (q∗)j−1]κ[(q∗)j−1]l−κ (3.13)

with Z(j) denoting the number of submarkets where collusion has broken down

after j periods of low costs.

Also, in expectation, lψ = l[1− (q∗)j−1] of the collusive submarkets will engage in

�erce competition after j periods, which is increasing in j.
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Figure 3.4 depicts the probability mass function of the number of collusive sub-

markets where collusion has collapsed after j = 2, 3, 5, 10 and 20 periods of low

costs. The parameters involved are: na = 4 and λa = 0.9 for every collusive sub-

market (implying that q∗ = 0.782 for every submarket), ρ = 0.85, l = 50. One

can clearly observe that the expected number of �rms that quit collusion increases

for the number of elapsed low cost periods j. As the number of submarkets where

collusion is maintained will reduce gradually in expectation, average market prices

for the whole market will decrease in expectation if c = cL persists.

Thus, given that there are l collusive and m− l �erce submarkets, a negative cost

shock will have the following e�ect:

� In the �rst period, prices will drop to F (p) for all the submarkets which

are characterized by �erce competition, implying that average market prices

drop to some extent in the �rst period of low costs.

� In every period that follows, some of the collusive submarkets will quit coop-

eration in expectation, leading to a gradual decline of average market prices.

� This goes on until either every �rm in the whole market prices according to

F (p) (implying that average market prices have reached their minimum) or

costs rise back to cH .

Finally, the pattern of asymmetric price transmission that is observed in many

markets becomes apparent: Positive costs shocks are immediately passed along to

output prices whereas negative cost shocks are only partly passed along to output

prices in the �rst period and then continue to decline gradually in expectation

until their minimum is reached when every �rm prices according to F (p).

Figure 3.5 shows a simulation of the behavior of average market prices during a

period of four weeks (28 days), in which each hour a cost shock can happen with
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probability 0.02. The following parameters were used: cL = 70, cH = ν = 80,

ρ = 0.98, na ∼ P (1) + 2 (implying an expected three �rms in every submarket),

λa ∼ U [0.6, 1] and m = 50. The overall number of �rms that was the result of

this simulation wasN = 151, while l = 41 of them = 50 submarkets were collusive.

One can see that prices do indeed follow an asymmetric transmission pattern: av-

erage prices rise instantaneously to ν if costs rise to cH . In contrast, after negative

cost shocks, there is only a partial immediate e�ect on average prices because out

of the m = 50 submarkets in the market, only nine are characterized by �erce com-

petition (with those immediately pricing according to F (p) whenever costs drop

to cL).

After this initial reaction, average prices continue to decline because of random

demand shocks that lead collusion to successively break down in the other, col-

lusive submarkets. Overall, asymmetric pricing is present: negative cost shocks

need much longer to be fully14 transmitted to output prices than positive ones.

The corresponding pattern of how collusion breaks down in the submarkets in

order to produce Figure 3.5 can be found in Figure 3.6.

14It has to be noted that even in the competitive scenario, average prices will never reach costs
under the low cost regime: after all, �rms price according to F (p) with a minimum price of
p > cL (see Subsection 3.2). Because of this, average prices will typically be somewhere in
the middle of cL and cH = ν even if none of the �rms collude.
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3.5 Summary and Discussion

In this section, I have developed a trigger sales model able to generate asymmetric

price transmission caused by oligopolistic coordination. After negative cost shocks,

�rms use the price charged under high costs as focal point for collusion. However,

�rms confuse random demand shocks with demand shocks caused by rival �rms un-

dercutting. In consequence, collusion can break down although every �rm wishes

to collude. In the simple model, collusion will break down at once, leading to a

sudden and full decline of average market prices once collusion ends. In contrast, if

one assumes that markets are composed of several spatially separated submarkets,

average market prices can decline smoothly after a negative cost shock. In the

�rst period after a shock, prices will drop to some extent because of submarkets

where collusion is impossible. In every low cost period that follows, the expected

number of submarkets where collusion has ended increases, implying that average

market prices will decline in a smooth fashion if the number of submarkets in a

market is relatively large.

There are several implications of my model that can be tested empirically. First,

collusive equilibria and thus asymmetric pricing under collusion should only be

found if the number of informed consumers is large, relative to the number of

�rms in a market. Even for small numbers of �rms in a market, high fractions

of informed consumers are needed to allow for asymmetric pricing. Next, I cal-

culated that the speed with which negative cost shocks are transmitted to output

prices decreases for a higher persistence of costs and larger fractions of informed

consumers, but increases for a larger number of �rms in a market.

While the �rst and third of these comparative statics are intuitively straightfor-

ward, the second result is somewhat strange: the more informed consumers there

are in a market, the faster cost changes are generally expected to be re�ected in
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output prices. However, a larger fraction of informed consumers does in fact facil-

itate collusion in the model as it makes it easier for �rms to monitor the action of

their competitors. This e�ect outweighs the increased incentive for �rms to deviate

from a collusive equilibrium, which in turn leads a larger proportion of informed

consumers to imply a slower response of output prices to negative cost shocks.

As a �nal note, I want to say that the purpose of this exercise was to generate

a simple and straightforward model of asymmetric pricing under collusion. The

main strength of my approach is that it provides a basic mechanism of rockets and

feathers that future models can build on. Also, even the simple theoretical frame-

work I used is able to generate several economic implications that can be tested

empirically. By comparing these features with the predictions of other models of

asymmetric pricing, researchers might be able to better distinguish between the

causes of asymmetric pricing in di�erent markets. This in turn could improve

policy makers' e�ciency to reduce the welfare redistribution from consumers to

producers that is associated with asymmetric price adjustment.

Like in any model of real markets, the simplicity of my model comes at a cost.

For example, the assumption that there are only two possible cost states, with

high costs being equal to the reservation price of consumers, is quite unrealistic.

In actual markets, costs can take a continuum of values, with cost shocks being

randomly large. Also, the value of the reservation price ν will usually di�er for

individual consumers, implying that demand should be elastic to prices even if

every �rm colluded at the same price. However, I think that the basic intuition

of my model should carry over if one extended it to a continuum of cost states.15

15A possible solution to the resulting coordination problem �rms would have to face when costs
drop might in fact be to assume demand that is price elastic, as this implies some unique
monopoly price given costs.
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More importantly, my model doesn't even try to explain why demand might be

random across periods or why there is exactly a fraction λ of informed consumers

in the market. For more realism, one would have to incorporate consumer search

and thus, the search intensity of consumers (and possibly overall demand) would

become endogenous.

Finally, I think that the model could be improved if one allowed for an interac-

tion between the separated submarkets. If, for example, the measure of poten-

tial consumers in a submarket was somehow negatively related to the number of

submarkets with �erce competition, di�erent dynamics for the transmittance of

negative cost shocks could be obtained. Then, prices might begin to adjust slowly,

but as collusion collapses in more and more submarkets, the probability that some

collusive submarket still maintains a demand greater than the minimum threshold

diminishes, as more and more potential consumers leave a submarket.

To sum up, I think that my model might capture some of the e�ects that drive

asymmetric pricing under oligopolistic coordination. While some of the model's

assumptions are clearly unrealistic and numerous extensions of the model can be

conceived, most of its implications seem plausible and (as can be seen below)

are also shared by other models of asymmetric price transmission. Thus, I think

that my model provides a good starting point for future research in the area of

asymmetric pricing caused by oligopolistic coordination.
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4 Asymmetric Price Adjustment due to Consumer Search

Although policy makers, the media and a fair share of researchers tend to attribute

asymmetric pricing to an abuse of market power and oligopolistic coordination, it

was already mentioned in the introduction of this thesis (see Section 1) that con-

sumer search coupled with asymmetric information drives most contemporaneous

models of rockets and feathers. More precisely, there are at least four formal mod-

els capable of generating asymmetric pricing through imperfect consumer search.16

In this section, I will try to give the reader insight into these theoretical approaches.

Doing so, in Subsection 4.1 and Subsection 4.2, I will explain the models of Yang

and Ye (2008) and Tappata (2009) in detail, both providing their rudimentary

mathematical structure and discussing some of their unorthodox aspects as well

as possible extensions. In both subsections covering these models, I will start to

outline the basic mechanism that drives asymmetric pricing in the model, explain

the model's setup and derive equilibrium of the static game. This will be followed

by the derivation of equilibrium of the dynamic game and, for the model of Yang

and Ye, the computation of several comparative statics. A short discussion con-

cludes.

Finally, in Subsection 4.3, I will brie�y provide the intuition behind the two other

consumer search models of asymmetric pricing that are currently available. These

were created by Lewis (2009) and Cabral and Fishman (2008). For the sake of

brevity, I will not include any derivations in the discussion of these models.

16Not counting the dynamic oligopoly model I developed in Section 3, I am only aware of two
other formal models that lead to asymmetric pricing. These two models (as well as the idea
of Borenstein et al. (1997) that asymmetric pricing might be the product of �nite inventories
and lags in adjustment of production) will be covered in Section 5.
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4.1 A Model of Consumer Search With Learning

Model Setup and Equilibrium of the Static Game The �rst consumer search

model that leads to asymmetric pricing I will discuss in this thesis was suggested

by Yang and Ye (2008). It is a dynamic model of search with learning. In con-

trast to the traditional opinion that asymmetric pricing is a consequence of market

power (see Section 3), the model shows that there can be a natural tendency to-

wards it even in markets where no collusion is apparent. This tendency is caused

by asymmetric information between �rms and consumers, with the latter being

unable to directly observe the cost realization of �rms.

The basic principle that drives asymmetric pricing in the model is that positive

cost shocks are immediately learned by agents who search, which results in a full

adjustment of the search intensity and prices in the next period. Conversely, non-

searchers need longer to learn the true cost state when a negative cost shock occurs,

which leads to a slower adaption of the search intensity and prices.

The model's setup is as follows. The agents in the model are a continuum of

rational17 consumers and a continuum of �rms (having capacity constraints) pro-

ducing a homogeneous good. All �rms share the same unit cost level, which can

be either high or low and is unobserved by consumers. There are three types of

consumers: consumers who always search (low search costs), consumers who never

search (high search costs), and, most importantly, critical consumers (intermedi-

ate search cost) that endogenously determine whether they search or not. Like

in other search models, these consumers will search when the expected bene�t of

search (in terms of expected price reduction) exceeds their search costs.

17In the sense that they optimally process all the information available to them.
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Nonsearchers will shop randomly and buy from the �rst �rm they encounter (given

there is no binding capacity constraint for the �rm), while searchers will observe

the price quotations of all �rms and buy at the �rm with the lowest price (again

given that this �rm is not capacity constrained).18 That is, the protocol of nonse-

quential search is adopted.

Formally, the total measure of �rms is normalized to one, with each �rm having

a (marginal) cost realization of either cL or cH , with cL < cH . Firms observe this

realization at the beginning of the static game and then compete in prices. Also

�rms have a capacity constraint in the sense that each �rm can sell k < ∞ units

of the good at most.

The continuum of consumers is normalized to a total measure of β, with β > 1.

β can thus be interpreted as the number of consumers per �rm in the market.

Consumers have a unit demand with a reservation price equal to ν > cH . It is

also assumed that β < k, which implies that the number of consumers per �rm in

the market is smaller than the capacity constraint (i.e., overall, there are enough

goods for each consumer). Consumers cannot observe the true cost realization of

�rms, but have certain beliefs. Let α denote the probability a consumer assigns

to the realization of the high cost level, cH .

The type of each consumer is fully characterized by his or her search cost. A

fraction λ1 of consumers has zero search cost sL = 0; these consumers are named

18The capacity constraint of �rms that is part of the model can result in rationing among
consumers, i.e., it can happen that low-price �rms attract too many customers. In this case,
it is assumed that each customer is served with equal probability. If a nonsearcher is rationed,
they will randomly shop at another �rm (without additional cost). If a shopper is rationed,
they will go to the �rm with the lowest price of all remaining �rms (and so on, if they are
rationed again).
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shoppers. Each shopper will search in equilibrium, no matter what their beliefs α

are. A fraction λ2 of consumers is assumed to have a search cost sH > ν, implying

that it will never search in equilibrium. The remaining 1−λ1−λ2 consumers have

intermediate search cost sM ∈ (sL, sH). Their decision whether to search or not is

endogenously determined and depends on their beliefs about the cost state α. As

mentioned above, they are referred to as critical consumers.

As the critical consumers are the only consumers that have an endogenous search

decision, I will denote the cumulative distribution function of critical consumers'

beliefs by F (α), with F (α) being the fraction of critical consumers believing

Pr(c = cH) ≤ α.

The stage game will have the following timeline. After observing production costs,

�rms simultaneously set their prices. Then, the critical consumers make their

search decision based on their beliefs, while all of the shoppers search for sure

and all the nonshoppers don't. The game is complete after the buying process of

consumers is �nished.

The focus of the analysis will be laid on symmetric equilibria, which means that

each �rm has to use the same pricing strategy, following a price distribution G. If

one denotes the endogenously determined µ ≥ λ1 as the proportion of consumers

who search (shoppers plus critical consumers that search), a symmetric perfect

Bayesian equilibrium of the game can be characterized by a combination of µ∗ and

G∗(.|c) such that given the equilibrium search intensity µ∗ and their cost level,

�rms' optimal pricing strategies yield the price distribution G∗(.|c), while given

G∗(.|c) and the consumers' beliefs F (α), consumer's optimal search decisions lead

to a search intensity of µ∗.
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As a starting point, the analysis of the game is carried out with a �xed (exogenous)

search intensity µ. Let p be the lowest price in the support of the equilibrium price

distribution, and η(p) be the proportion of �rms charging this price. Then a �rm

charging p will make sales of

µβ

η(p)
+ (1− µ)β (4.1)

if this number is smaller than it's capacity constraint k, or sales of k if not.19

The authors prove that there are several direct implications of the above result.20

First, they show that �rms charging pmust always sell k units in every equilibrium,

and that they are not rationed while doing so. Formally, it must thus hold that

each low price �rm gets exactly a demand of k in equilibrium, i.e., it holds that

µβ

η(p)
+ (1− µ)β = k. (4.2)

19The most natural way to understand Equation (4.1) is by thinking in discrete terms. If the
total number of consumers is denoted by nc, the total number of �rms is denoted by nf
and there are nf (p) �rms charging a price of p, the number of searchers shopping at some
random �rm that prices p would clearly be µ nc

nf (p) .

By expanding the numerator and denominator of this ratio by 1
nf

and using that nc

nf
= β

as well as
nf (p)

nf
= η(p), one can see that

µ

nc
nf
nf (p)
nf

=
µβ

η(p)
,

which is the �rst term of Equation (4.1).

Also, a �rm pricing p can expect to attract (1−µ)nc

nf
nonsearching consumers by chance.

Using again that nc

nf
= β, the second term of Equation (4.1) becomes clear.

20For a rigorous proof, see Yang and Ye (2008, p. 552f)
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Also, it can be shown that no equilibrium exists such that prices are continuously

distributed over [p, p] if p ≤ ν. From this the most important property can be

derived, namely that

Lemma 1. The price distribution has two mass points. Given µ and c, each �rm

must either charge p = ν or p = p ∈ (c, ν) in equilibrium.

Because �rms can only choose between pricing at ν and pricing at p, the �nal step

to obtain an equilibrium of the static game when the search intensity µ is exogenous

is to equate the pro�ts of �rms charging these two prices, as both types of �rms

have to make the same pro�t in equilibrium. As mentioned above, a low price �rm

will sell k units and thus make a pro�t of π(p) = k(p− c). A high price �rm will

face a demand of (1− µ)β and hence make a pro�t of π(ν) = (1− µ)β(ν − c).

Equilibrium is then de�ned by Equation (4.2) and

π(ν) = π(p). (4.3)

Rearranging equations (4.2) and (4.3), it directly follows that

η(p) =
µβ

k − β + µβ
(4.4)

and

p = c+
(1− µ)β

k
(ν − c). (4.5)

It can easily be proven that the price distribution from above (a fraction η(p) of

the �rms pricing p and the remaining �rms pricing ν) is in fact an equilibrium

of the static game, given an exogenously determined µ, some cost level c and the

parameters β, k and ν. To do so, one can simply show that it makes no sense to

deviate for any �rm pricing ν or p.
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It is worth noting that all the properties of the above equilibrium make sense.

η(p) is an increasing function with µ, implying that a higher search intensity will

lead more �rms to price low. Also, the low price p is decreasing with µ. The

interpretation for this is that when more consumers decide to search, the overall

elasticity of demand will increase, making it pro�table for some high price �rms

to deviate. Low price �rms will (cet. par.) attract more consumers, implying that

their pro�t margin p− c must become smaller (by a reduction of p) to keep them

indi�erent between pricing at p and ν.

It can also be seen that the cost level c has no in�uence on the ratio of low and

high price sellers, but only on the level of the low price.

Having determined the equilibrium of the static game when the search intensity

is exogenous, it is �nally necessary to endogenize this variable in order to derive

a true equilibrium of the stage game. For this, it is assumed that �rms know the

distribution of consumers' beliefs F (α), while consumers may or may not know it.

Then, it is possible to determine the expected price reduction for a consumer with

belief α, i.e., who beliefs that Pr(c = cH) = α and Pr(c = cL) = 1− α. Doing so,

the authors show that the expected price reduction by search is not in�uenced by

the search intensity µ, which means that the gains from search are independent

from the search level. It also becomes apparent that the expected gain from

search is decreasing with a consumer's belief α. This is quite an intuitive result

and shows that consumers with a pessimistic belief (i.e., high α) expect to have

lower gains from search (compared to more optimistic consumers). It also follows

that there must be a cuto� belief α̂ which divides the group of critical consumers

into searchers and nonsearchers. α̂ can simply calculated by equating the search

costs of the critical consumers sM with their expected gains from search, which

results in
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α̂ =
(ν − cL)(k − β)− ksM

(cH − cL)(k − β)
. (4.6)

From this, it is only a small step to calculate the equilibrium search intensity µ∗.

As F (α) is de�ned as the fraction of consumers that have beliefs of α or less (with

less being more optimistic), it follows that a fraction F (α̂) of the critical consumers

will search. Combined with the fraction λ1 of consumers that will search anyway,

the equilibrium search intensity µ∗ can be written as

µ∗ = λ1 + (1− λ1 − λ2)F (α̂). (4.7)

The authors show that both α̂ and µ∗ are unique, which gives rise to a unique equi-

librium. This unique equilibrium of the static game is de�ned by equations (4.4),

(4.5), (4.6) and (4.7). Given F (α) and the parameters of the model, consumers'

optimal decisions lead to an equilibrium search intensity of µ∗. Firms anticipate

that and price accordingly, following the distribution derived earlier. No rationing

occurs in equilibrium.

To �nish the analysis of the static game, it is useful to look at some attributes

and comparative statics of the equilibrium. The �rst thing one can see is that the

average price paid by customers will be lower under low costs. This is because the

low price p
L
under low costs (when c = cL) is lower than the low price p

H
under

high costs (when c = cH), while the high price ν and the fraction of low and high

price �rms is the same in both states. It can also be shown21 that prices are more

dispersed (as measured by the di�erence of the average price to the lowest price)

21see Yang and Ye (2008, p. 554)
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under the low cost state, making search more rewarding under this state (although

consumers don't know in which state they are, of course).

Also, as F (α̂) is increasing in α̂, a higher cuto� level for critical consumers α̂ will

imply a higher search intensity µ∗. From this it follows that p
H
and p

L
are both

decreasing in F (α̂) (as p is decreasing in µ). Furthermore η(p) is increasing in

F (α̂) too because η(p) is increasing in µ. Finally it can be proven that the average

price paid by consumers is decreasing in µ and increasing in F (α̂). This concludes

the analysis of the static game.

Equilibrium of the Dynamic Game and Comparative Statics Now, the static

game as described above will be extended to a dynamic framework. For this, I

consider the static game played repeatedly over time. Time is modeled as discrete,

i.e., t = 1, 2, ..., and will be denoted by a subscript.

The �rst thing necessary to model the dynamic game is to describe how costs will

evolve over time. Like in the dynamic oligopoly model of Section 3, it is assumed

that

Pr(ct+1 = cH |ct = cH) = Pr(ct+1 = cL|ct = cL) = ρ > 0.5, (4.8)

i.e., that there is some persistence parameter ρ > 0.5 that de�nes the probability

of observing the same cost state in t + 1 as in t. For the �rst period (t = 1), it

is assumed that Pr(c1 = cH) = Pr(c1 = cL) = 0.5, that is both states are equally

likely at t = 1. Also, Equation (4.8) and the probabilities for the �rst period are

considered common knowledge.

It is further assumed that �rms always know the current and past cost levels

whereas consumers can only update their beliefs based on the prices they observe.

Consumers do not get to know the past cost realizations, although they are some-

times able to exactly determine them from the price distribution. The assumption

that consumers do not eventually �nd out past cost realizations is a very essential
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one for the model. Only because of this, there can be a gradual learning process

among consumers that will lead to asymmetric price adjustment. In the next sec-

tion, a model of Tappata (2009) will be discussed that doesn't incorporate learning

and hence explains asymmetric price adjustment in a di�erent fashion.

Next, it is important to recapitulate that the price distribution of the static game

was dependent on consumers' beliefs and the cost realization. In particular, one

could see that p was dependent on the cost level c, and it could be shown that

p
H
> p

L
holds for any search intensity µ. The dynamic setting can now use this

feature to explain a delayed response to negative input price changes.

To do this, it is helpful to make some parameter restrictions that greatly reduce

the complexity of the problem �rst. The parameters are assumed to be such22

that the lowest possible price under high costs, i.e., p
H
when all critical consumers

search, will still be higher than the highest possible price under low costs, i.e., p
L

when none of the critical consumers search (recall that p is negatively related to µ).

This can also be called the nonoverlapping condition, meaning that the supports

of p
H
and p

L
(whose ranges are determined by µ) do not overlap.

The simple conclusion to this is that a price observation of p directly tells a con-

sumer in which cost regime they are. Using Equation (4.8), such a consumer can

immediately calculate the correct probabilities for the cost states in the next pe-

riod.23 In contrast, a (nonsearching) consumer that observes the high price ν will

not be able to infer anything from this observation because ν is the high price in

each cost regime and the fraction of �rms charging ν, 1− η(p), doesn't depend on

22See Yang and Ye (2008, p. 555)

23Their belief αt+1 = Pr(ct+1 = cH) will be ρ if they observe p
H
and 1− ρ if they observe p

L
.
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c either. This can also easily be proven formally by applying Bayes' rule.

As no new information for a nonsearching consumer becomes available if they

observe p = ν, their beliefs update according to

αt+1 = ραt + (1− ρ)(1− αt). (4.9)

A consumer with initial belief ρ who observes ν in each subsequent period will

thus have beliefs converging to 1/2 from above, that is αt+k = 1/2 for k → ∞

according to Equation (4.9).

This yields another parameter restriction that is needed to derive equilibrium. It

is assumed that α̂ will be such that, on the one hand, consumers with the most

optimistic belief 1− ρ will always search, and on the other hand, that consumers

with the most pessimistic initial belief of ρ will never search if they observe a price

of ν in every period that follows. This condition boils down to α̂ ∈ (1 − ρ, 1/2).

Another interpretation of α̂ < 1/2 is that critical consumers will never search if

they believe that the high cost state is more likely than the low cost one.

Now how does asymmetric pricing emerge in the dynamic setting? First of all, a

benchmark for prices can be de�ned. In a given period, the average price (and

lowest price p) will be lowest when the cost level is low (ct = cL) and all of the

critical consumers search, i.e., µ∗t = µ = 1 − λ2. Analogously, the average price

(and lowest price p) will be highest when the cost level is high (ct = cH) and none

of the critical consumers search, i.e., µ∗t = µ = λ1. Restricting the model param-

eters in a way that the search cost sM of critical consumers is such that there

must always be a positive fraction of critical consumers that does (not) search if

α ∈ (0, 1), consumers will have full knowledge about the cost regime they live in

if the search intensity is µ or µ, as otherwise there would be heterogeneity among
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critical consumers. Because of this, it is possible to de�ne full price adjustment

under both cost states. Prices will have fully adjusted if it holds that µ∗t = 1− λ2

under cL or µ∗t = λ1 under cH .

From this, it can be seen why there will be asymmetries in price adjustment. First,

consider the case were high costs persist from period t onwards, i.e., having a cost

realization of cH for t, t+ 1, t+ 2, ....

In period t, the fraction Ft(α̂) of consumers that have beliefs αt < α̂ will search

and observe the price p
H
. Thus they can immediately infer in which cost state

they are (leading to an immediate partial price adjustment if costs were di�erent

before), and their initial beliefs for period t+1 will become ρ > 1/2 > α̂ according

to the assumption made above that α̂ < 1/2.

The fraction 1− Ft(α̂) of critical consumers that do not search in t will consist of

consumers that happen to observe the low price p
H
by chance (which is a fraction

ηt(pH) of nonsearching critical consumers) and consumers that only observe the

high price ν. The nonsearching critical consumers that observe the low price can

also immediately infer in which state they are (again leading to an immediate

partial price adjustment in case of a cost regime change) and will adapt their

beliefs for t + 1 to ρ > α̂, just like the searching critical consumers. Solely the

nonsearching critical consumers that observe ν cannot immediately infer in which

state they are (averting full price adjustment in t if costs have changed) and also

cannot correctly adapt their beliefs for t + 1. Thus they will update their beliefs

following 4.9, with αt+1 ∈ [1/2, ρ] as Equation (4.9) is approaching 1/2 from above.

Combining these observations, one can see that every critical consumer will have

beliefs αt+1 > 1/2 > α̂ in t+ 1, implying that

Ft+1(α̂) = 0 if ct = cH . (4.10)
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Overall, a positive cost shock in period t will only have a partial price adjustment

e�ect in period t (as some fraction of nonsearching critical consumers is unable to

infer the true cost state in t), but will induce a full adjustment of prices in period

t+1 because the search intensity µ will drop to µ within one period as of Equation

(4.10). However, this only holds if the cost remains high in period t + 1, as only

in this case beliefs and prices will not be a�ected by a chance observation of p
L
by

some nonsearching critical consumers in t+ 1.

In contrast, examine the case where a negative cost shock happens at period t,

changing costs from cH in period t−1 to cL in periods t, t+1, t+2, .... Like above,

critical consumers in period t will be split into three subgroups. Those with a

belief of αt < α̂ will search, observe p
L
, directly infer the true cost state from

it and cause an immediate e�ect on prices. Their beliefs for t + 1 will update to

αt+1 = 1−ρ < 1/2. The same happens for the fraction ηt(pL) of critical consumers

that do not search but observe the low price p
L
by chance. The remaining 1−ηt(pL)

nonsearching critical consumers that observe ν cannot infer new information about

the current state (which results in no immediate e�ect on prices) and will adapt

their beliefs for t+1 according to 4.9, with αt+1 remaining in [1/2, ρ]. As 1−ρ < α̂,

the former two subgroups will search in period t+1, while the latter subgroup will

not. That is, Ft+1(α̂) = Ft(α̂) + ηt(pL)[1− Ft(α̂)] or

Ft+1(α̂) = Ft(α̂) +
µ∗tβ

k − β + µ∗tβ
[1− Ft(α̂)]. (4.11)

As it is assumed that there is an initial cost shock (costs are high in t − 1), it

follows from using 4.1024 for t = t− 1 (i.e., Ft(α̂) = 0 and µ∗t = µ) that

Ft+1(α̂) =
µβ

k − β + µβ
< 1 if ct = cL, ct−1 = cH . (4.12)

24Recall that (4.10) doesn't depend on an initial cost shock to apply.
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The above ratio is smaller than unity, implying that consumers' beliefs do not

update as quickly (i.e., within one period) when there is a negative cost shock as

when there is a positive one. Full price adjustment would only be reached if it

held that Ft+1(α̂) = 1, which means that every critical consumer would search in

t + 1, i.e., it would have to hold that µ∗t+1 = µ. Furthermore, even if the low cost

state persists, there will always be some fraction of consumers that has not yet

observed the low price p
L
. It can be shown via Equation (4.11) that a negative

cost shock in period t which persists forever would need in�nitely many periods to

�nally result in F (α̂) = 1, i.e., µ = µ, resulting in full price adjustment.

It can also be seen that the magnitude of asymmetry in the �rst period after a

cost shock will be quite large. As a full adjustment after a cost decrease implies

that Ft+1(α̂) =
µβ

k−β+µβ
should be equal to 1, the amount of adjustment will be

small if µ is small (or k − β is large). The former is true when the fraction of

consumers with very low search costs (who always search) is small, which seems

to be a plausible assumption.

In summary, the model predicts a full adjustment of the search intensity (and

hence, prices) to a positive cost shock within two periods, whereas a negative cost

shock is predicted to induce a long adjustment period, with only a gradual increase

in the search intensity and a gradual decrease in prices. The intuition behind this

is that positive cost shocks are immediately learned by critical consumers who

search, which directly in�uences their beliefs for the next period, making them

nonsearchers. Critical consumers who do not already search either observe p
H
,

infer from this that they are in the high cost state and stop searching as well, or

observe ν and update their beliefs such that they stay nonsearchers in the next

period. Thus none of the critical consumers will search in t+1. On the contrary, a

negative cost shock can never have the e�ect that every critical consumer searches
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in the next period because those critical consumers who do not search in t and

that do not happen to observe p
L
in this period will keep nonsearching in t + 1,

as their beliefs only converge to 1/2 > α̂ from above. In each subsequent period,

some residual fraction of nonsearching critical consumers will never have observed

p
L
so far and will remain nonsearching in the period that follows. This is why

there will only be a gradual increase in search intensity and slow decline in prices,

compared to a positive cost shock.

Finally, it is worth noting that there is an in�nite number of possible equilibrium

paths, generated by di�erent cost evolutions {ct}. All of those would be character-

ized by di�erent degrees of asymmetry, depending on how the cost states change.

But it is not surprising that when examining the expected evolution path, adjust-

ment asymmetry is obvious. This is because in expectation, each cost state (H

or L) will last for some constant number of periods, say N .25 The expected cost

evolution will thus look like

LL...︸ ︷︷ ︸
N

HH...︸ ︷︷ ︸
N

LL...︸ ︷︷ ︸
N

... .

Following the argumentation from above, it is evident that the lowest price will

be reached in the Nth period of state L, while the highest price will already be

reached in the second period of state H. The larger the value of N is (implying

a higher ρ), the more adjustment asymmetry will be present in the economy, on

average.

In other words, the comparative statics for the persistence parameter ρ are such

that a higher persistence of costs will lead to a more pronounced adjustment asym-

25The expected duration of one cost regime will be ρ+ ρ2 + ρ3 + . . . = 1
1−ρ > 2.
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metry of prices to cost shocks, at least on the expected evolution path of costs.

More intuitively, this can be seen by de�ning the amount of asymmetry as the

ratio of absolute price adjustments within one period after a negative and positive

price shock (adjustment ratio). Then, it can be shown that this adjustment ratio

will be smaller (implying more severe rockets and feathers) if ρ increases. The

reason for this is that a larger ρ implies a longer expected duration of some cost

state, resulting in a lower minimum price after an expected N periods of low costs.

Then, the change in average prices after a positive cost shock will be larger, as

positive cost shocks lead to a full adaption of prices after one period. On the other

hand, the speed with which average prices fall after a negative cost shock does

not depend on ρ. Overall, this means that the adjustment ratio will be smaller

for large ρ, as the adjustment to positive cost shocks (which is in the denominator

of the adjustment ratio) increases, while the adjustment to negative cost shocks

(which is in the nominator of the adjustment ratio) stays the same.

A nice feature of this property is that it can be tested empirically. In markets where

costs do not tend to �uctuate much, price adjustment should be more asymmetric

than in markets with very instable input costs. Also, as this result was already

obtained by the trigger sales model provided in Section 3, the property that asym-

metric pricing should be more severe under a high persistence of costs gets further

support.

The next parameter with interesting comparative statics is the fraction of shoppers

λ1. It can be shown that a smaller fraction of shoppers implies a longer adjust-

ment process to negative cost shocks. I will again leave out a formal proof as

the intuition behind this is quite striking. When a negative cost shock occurs in

some period t and persists afterwards, a smaller λ1 directly implies that a smaller
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fraction of consumers searches in each period, which leads to a slower adjustment

of beliefs and prices in t and every period that follows. On the contrary, a pos-

itive cost shock will be learned by every critical consumer after one period, just

as with a higher λ1. Overall this leads to a higher degree of adjustment asymmetry.

Interestingly, this feature of the model is the exact opposite of the result obtained

in the oligopolistic coordination model I provided in Section 3, where a higher

fraction of shoppers in any submarket implied a higher likelihood of asymmet-

ric pricing among �rms. The fraction of shoppers λ can thus be considered as

benchmark to test which model yields the better predictions: if a high fraction

of informed consumers does in fact decrease the chance of asymmetric pricing in

many markets, a trigger sales model in the form I provided would turn out to be

an improper explanation for such a behavior.

Finally one can derive that an increase in the capacity of �rms k compared to

the measure of consumers β will also lead to a slower adjustment to negative cost

shocks. The reason for this is that a smaller k/β will lead less �rms to set the

low price p.26 Hence in each period after a negative cost shock, fewer critical

consumers (that do not search) will learn that they are in the low cost state by

chance, resulting in a slower adjustment of beliefs and prices.

Discussion Like in any other economic model, the authors had to make simpli-

fying assumptions. Probably the most unorthodox assumption of the model is that

26To see this, recall Equation (4.4) of the static model. As
∂η(p)

∂k = −µβ
(k−β+µβ)2 < 0, fewer �rms

will set the low price p if k gets bigger compared to β.
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there is not a discrete set of �rms, but a continuum with measure one. The reason

for this is mostly a technical one, i.e., it avoids having to deal with randomness

and makes the derivation of equilibrium easier. I agree with the authors that the

implications should be no di�erent to a discrete model with, say, n = 1000 �rms.

However, as the number of �rms reaches a level were collusion becomes possible

(perhaps ten or less �rms), I think the results will probably be inadequate and the

model proposed in Section 3 might yield better predictions. But as the point of

the model was not the description of behavior in an oligopolistic framework, this

is just a minor point of consideration.

Another implication of the assumed continuum of �rms is that searchers (who

are able to observe every price quotation made by �rms) e�ectively get to know

in�nitely many prices in each period. This seems to be quite an implausible prop-

erty. To its defense, the authors show that there would be no explicit equilibrium

solution for the case where each searching consumer only observes n > 1 prices

(which would be a more realistic scenario).

Also I think that they are right in their view that the basic features of the model

should carry over to a model with a �nite number of observed price quotations

in each period. The reason for this is that the key mechanism that drives price

adjustment asymmetry in the model is that nonsearchers only observe one price

quotation per period and can thus only slowly update their beliefs in case of a

negative cost shock. In contrast, even if searching consumers only observe n in-

stead of in�nitely many price quotations, they will be able to update their beliefs

much quicker than nonsearching consumers if a negative cost shock has happened.

In fact, with a fraction η(p) of �rms charging the low price, the probability of ob-

serving at least one low price p when observing n random prices is 1− [1− η(p)]n.

This value quickly converges to one for increasing n.
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The last unconventional assumption is that each �rm has a capacity constraint of

exactly k units. While it is probably true that there are some (possibly pretty

loose) constraints in most retail markets, the model implies that these constraints

play a crucial role for reaching equilibrium, which is, in my opinion, a bit far-

fetched.27 The authors address part of this defect by relaxing the model assump-

tions to allow for two di�erent capacity constraints k1 and k2. They can show that

a two-point distribution of prices will also emerge in this case and that asymmetric

pricing is robust to heterogeneous capacity constraints (at least for two di�erent

constraints).

Overall, none of the assumptions of the model seem to be indefensible, although

the property of binding capacity constraints for each �rm that sets the low price

p seems to be quite unrealistic. Also it has to be emphasized that Yang & Ye's

model only addresses the case of markets with a large number of competing �rms.

Once collusion gets more probable and the number of �rms decreases, the model's

implications might become inaccurate.

As a �nal remark, it has to be said that the authors are among the �rst who

provide a theoretical explanation of why asymmetric price adjustment might nat-

urally emerge in competitive markets. If some of their predictions can be veri�ed

empirically, their contribution should have a large impact on contemporary eco-

nomic theory, especially the theory on consumer search and optimal pricing under

competition.

27E.g. a big gasoline retailer will usually not have a binding capacity constraint.
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4.2 A Model of Consumer Search Without Learning

Model Setup and Equilibrium of the Static Game In this subsection, I will

present a model suggested by Tappata (2009) that explains asymmetric price ad-

justment but doesn't rely on a learning process to derive this asymmetry. In some

way, Tappata's model can thus be considered as a more elemental version of Yang

& Ye's work. The price for this is that a gradual adaption of prices cannot be

modeled, meaning that prices always fully adjust within two periods.

Tappata uses a model based on nonsequential consumer search in a competitive

market with rational agents to explain asymmetric price adjustment by �rms to

random cost shocks. In order to do so, the author points out that the demand

elasticities of consumers must be a function of previous cost realizations.28 If this

was not the case, �rms would have no incentive to di�erentiate between positive

and negative cost shocks when determining their optimal output prices. Even in

the case of imperfectly informed consumers with positive search costs, the result-

ing equilibrium price dispersion (see Varian, 1980) will result in a new optimal

markup that doesn't discriminate between positive and negative cost shocks.

So what is the key mechanism that drives asymmetry in Tappata's model? Like

in many prominent search models, �rms choose some optimal price distribution

G∗(.|µ, c) that is dependent on the search intensity µ of consumers and the �rms'

cost level c. Similar to Varian's model, �rms will choose less dispersed prices

under high than under low costs because their pricing range, i.e., the di�erence

between marginal costs and the monopoly price, gets smaller under high costs. As

28Or, as in Yang and Ye (2008), beliefs about previous cost realizations.
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consumers are rational, they adapt to this behavior by searching less when they

expect prices to be high.

Here comes another feature into play that was already used in Yang & Ye's model,

namely that cost shocks can be time dependent. Again, this means that there can

be some persistence parameter ρ > 1/2 that de�nes the likelihood of some cost

state carrying over to the next period. So if ρ > 1/2 (and consumers know this),

search will be low if the previous period's costs were high and high when the pre-

vious period's costs were low. This is exactly what constitutes demand elasticities

that are dependent on previous cost realizations, but not current ones.

An unexpected change from low to high costs will thus lead �rms to quickly in-

crease their prices because consumers will search a lot. In contrast, a change from

high to low costs will have a smaller e�ect because less consumers will search.

Overall this implies asymmetric price adjustment to costs.

Having outlined the intuition behind Tappata's model, it is time to brie�y describe

the model setup in the static framework. The industry constitutes of n = 2 �rms

that sell a homogeneous good and compete through prices. At the beginning, both

�rms are randomly assigned either low (c = cL) or high (c = cH) production costs,

with the probability of both �rms having costs of cH being α and both �rms having

costs of cL being 1− α.

While the model can be fully extended to n > 2 �rms in the market, with most of

its predictions being robust to the introduction of a multitude of �rms, I will not

discuss the model for the case where n > 2. However, I will brie�y point out some

of its implications for increased n in the concluding discussion.

But no matter what n is, the �rst crucial di�erence to Yang & Ye's model becomes

apparent. Instead of a continuum of �rms (that creates issues like in�nitely many
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price observations per searcher), there is only a �nite (and possibly small) number

of �rms in the market.

Like in most search models, there is a continuum of consumers (this time with

measure one) having a unit demand and a reservation price ν. Before consumers

buy, they decide whether to search or not by the protocol of nonsequential search.

If they search, they get to know all (i.e., for n = 2, both) prices set by the �rms

and shop at the �rm with the lowest price. If they do not search, they shop at a

random �rm.

Again, some fraction λ of consumers called shoppers has zero search cost, while

all other (i.e., 1 − λ) consumers are called nonshoppers and have positive search

costs drawn from a continuous distribution, with si ∈ S = [0, s]. H(s) denotes the

fraction of nonshoppers that have search costs smaller than s.29

Depending on the expectation of consumers about the �rms' cost level and the

resulting price dispersion, only those nonshoppers will search that have search

costs lower than the expected gains from search, resulting in some search intensity

µ. At the same time, �rms anticipate this search intensity and maximize their

pro�ts by setting prices accordingly. Equilibrium can thus again be characterized

by some equilibrium search intensity µ∗ and an equilibrium distribution of prices

G∗(.|µ∗, c).

From the above assumptions, it is easy to calculate the pro�t of a �rm charging

pj, facing a search intensity of µ, costs of c and the price of the other �rm p−j. It

holds that

πj(pj, p−j; c;µ) = (pj − c)[
1 + µ

2
I{pj<p−j} +

1

2
I{pj=p−j} +

1− µ
2

I{pj>p−j}] (4.13)

29This distribution of search costs is assumed to be public knowledge.
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with I{X} = 1 if X is true, and 0 if not. For example, if pj < p−j, it follows

that πj(pj, p−j; c;µ) = (pj − c)(1+µ
2

) = (pj − c)(µ + 1−µ
2

), i.e., the full measure of

shoppers and half of the measure of nonshoppers is served for the price of pj.

Then, the utility of some consumer i can be de�ned as the di�erence of their

reservation price ν to the expected price they have to pay (including search costs

in case they search).

To solve for a (symmetric) Bayesian Nash equilibrium where the �rms' pricing

strategy G(.|c) is a best response to the consumers' search decision µ and the

consumers' search decision is a best response to the �rm's pricing decision, it is

useful to start with the pro�t function of �rms. Using an undercutting argument

similar to the one provided in Subsection 3.2 and Varian (1980), one can show that

that there can be no symmetric equilibrium in pure strategies if 0 < µ < 1.

Solving for a mixed strategy equilibrium where both �rms price according to some

probability distribution F (p), one can show that

F (p) = 1− 1− µ
2µ

(
ν − p
p− c

)
(4.14)

for any p in a range of [p, ν], with

p = c+

(
1− µ
1 + µ

)
(ν − c). (4.15)

For a proof that (4.14) and (4.15) do in fact constitute a unique Nash Best Re-

sponse to µ, see Varian (1980).

It can easily be seen that p is negatively related to the search intensity µ, i.e.,

�rms' pricing range increases when consumers search more. The reason for this is

that more informed consumers imply smaller pro�ts for �rms, extending the range

of prices that �rms can charge while remaining indi�erent between them.
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Also, it can be seen that F (p, µ′; c) is bigger than F (p, µ; c) for every µ′ > µ. That

is, the probability of observing some price smaller than p is always larger for higher

search intensities µ′ > µ. This can be explained by the fact that higher search

intensities make it more pro�table for �rms to try to steal informed consumers

from their competition by charging the lowest price in the market.

Next, the search decision of individuals (who are not capable of in�uencing µ

because there are in�nitely many consumers) will be examined. Given �rms' best

response to some search intensity µ that was derived above, a consumer's expected

bene�t from search is their expected price reduction given µ, i.e., E[p − pmin|µ].

Tappata shows that

E[p− pmin|µ] = (ν − E[c])
1− µ
2µ2

[
log

(
1 + µ

1− µ

)
− 2µ

]
(4.16)

with E[c] = αcH + (1− α)cL.

The above expression can also be interpreted as price dispersion. The higher this

dispersion gets, the more consumers will decide to search (given the distribution of

search costs H(s)) because more and more consumers will have an expected ben-

e�t from search that exceeds their search costs. According to Tappata, Equation

(4.16) can be shown to have an interior maximum at some point µ̂ with 0 < µ̂ < 1,

meaning that beyond some optimal search intensity, the expected bene�t of search

begins to diminish.

Like in other search models, a consumer will decide to search when the bene�ts of

search exceed their search cost. It is clear that the fraction λ of consumers with

zero search cost (shoppers) will always search. In contrast, consumers with search
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cost greater than ν − p∗ will never search, as their search cost will always exceed

their bene�ts from search. That is, a fraction (1− λ)(1−H(ν − p∗)) will strictly

prefer to shop at a random �rm in equilibrium.

The search costs of an indi�erent consumer s̃ must be equal to their expected

bene�ts from search, i.e., their net bene�t from search must be zero. That is,

s̃ = (ν − E[c])
1− µ
2µ2

[
log

(
1 + µ

1− µ

)
− 2µ

]
(4.17)

Having de�ned s̃, every consumer with search costs less than s̃ will search, while

every consumer with higher search costs will not. To be precise, it must hold that

µ = λ+ (1− λ)H(s̃). (4.18)

By combining equations (4.17) and (4.18), an equilibrium solution for s̃ and µ can

be found. This market equilibrium depends on the number of shoppers λ, the

distribution of search costs H(s) and the parameters that in�uence the gains from

search. One problem is that it doesn't have to be unique, meaning that there can

be multiple s̃ and µ where a marginal consumer is indi�erent between searching

and not. However, it can be shown that the equilibrium must be unique if λ > µ̂.30

One example for a unique equilibrium can be seen in Figure 4.1. Here, search costs

(si ∈ [0, s]) are assumed to be uniformly distributed among nonshoppers, implying

that some marginal nonshopping consumer that has not yet searched will have

search costs of (µ− λ) s
1−λ when µ consumers have already decided to search. The

equilibrium levels of µ and s̃ can easily be determined by the intersection of the

gains from search and search cost lines. The blue curve depicts the expected gains

from search under higher expected costs, i.e., higher α.

30For another parameter condition that implies unique equilibria, see Tappata (2009, p. 679).
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Figure 4.1 Example for a unique equilibrium in Tappata's model. Source: Modi�cation of
Tappata (2009, p. 679)
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As we see, equilibrium constitutes of some optimal search intensity µ∗ that is a

best response to �rms' expected price dispersion and an optimal price dispersion

E[p − pmin|µ∗] that is a best response to this optimal search intensity µ∗. The

higher the equilibrium search intensity, the more dispersed prices are.

Recalling Equation (4.15), it is important to recognize that the range of prices

�rms will choose from is smaller with high production costs c. As a result, the

price dispersion (and thus, bene�ts from search) are smaller under high production

costs, implying that consumers who expect costs to be high will search less.31

Because the expectation of consumers can be wrong and �rms have an informa-

tional advantage over them by getting to know the true production costs without

delay, �rms' optimal response to cost shocks will be di�erent for positive and neg-

ative shocks. As mentioned earlier, a sudden change from low to high production

costs in period t will result in a `too high' search intensity of consumers in period

t + 1 (compared to if they knew in which cost state they are), leading �rms to

increase prices more than it would be optimal under perfect information. In con-

trast, a sudden dump in production costs has the e�ect that `too few' consumers

will search in the next period, implying that �rms' optimal strategy is to reduce

prices less than it would be optimal in a world with perfect information. This

is exactly the mechanism that drives asymmetric pricing in Tappata's model. In

what follows, I will derive this asymmetry for the dynamic game.

31This can be seen by considering Equation (4.16) for increasing α. As the gains from search get
smaller for each search intensity µ if E[c] increases, the search costs of the indi�erent consumer
s̃ are smaller for high α, implying less search intensity µ under pessimistic consumers. This
can also be seen graphically by considering the blue curve in Figure 4.1.
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Equilibrium of the Dynamic Game Here, I will proceed to extend the static

version of Tappata's model to a dynamic framework and show that asymmetric

price adjustment does emerge if production costs are persistent, i.e., cost shocks

are not independent and identically distributed. In order to do so, the static game

is repeated over time, with t = 1, 2, .... At the beginning of each period, nature

assigns high production costs with probability α and low production costs with

probability 1−α to both �rms. Then, consumers get to know the previous period's

cost realization and can update their beliefs accordingly. Finally �rms maximize

their utility by choosing some price distribution that maximizes their pro�ts, while

anticipating the search decision of consumers.

It is clear that in this setup, prices can change because of two reasons. First of all,

�rms will adapt their pricing strategies to cost shocks. But the more important

feature of the model is that the distribution of prices will also change when con-

sumers' priors relative to the true state of the economy change. This means that

the demand elasticities of consumers will depend on previous cost realizations, al-

lowing �rms to react asymmetrically to cost shocks.

Similarly to the model I provided in Section 3 and the model discussed by Yang

and Ye, the probability α of the high cost state will be ρ if there were high costs in

the last period and 1− ρ if there were low costs in the last period, with 0 < ρ < 1.

As consumers always get to know the previous period's cost realizations and adapt

their beliefs immediately, there are only four di�erent states of the economy to con-

sider. If one again denotes the low cost state by L and high cost state by H, these

states (ct−1, ct) are {LL,LH,HL,HH}. Also, the search intensity of consumers

will only depend on the previous period's cost state.

In this setting, it is easy to verify that it will take only two periods for prices to

fully adjust to some cost shock. In the period where the cost shock happens
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(say t), consumers will have some (distorted) prior about the current cost realiza-

tion and �rms will adapt to the cost change by modifying their price distribution

accordingly, both taking into account the new cost level and consumers' beliefs.

But if the new cost state persists, consumers get to know the true state in t+1, ad-

just their search intensity and lead �rms to price optimally given the (now correct)

beliefs of consumers. Thus, in order for pricing asymmetry to exist, asymmetry

must be found in the very period where the cost shock happens (i.e., in the �rst

period with the new cost state).

More explicitly, adjustment asymmetry will be prevalent if the expected absolute

change of the average price in the market is bigger for positive cost shocks than for

negative ones. For this, it has to be considered that a positive cost shock can only

happen if the previous period's costs were low, i.e., the cost state must have been

LL or HL and change to LH. Analogously, a negative cost shock can only happen

if the economy's state was LH or HH and changes to HL. Overall, Tappata is

able to determine the di�erence of the expected absolute change of the average

market price after a positive cost shock compared to a negative cost shock as

E[|∆p| |∆c > 0]−E[|∆p| |∆c < 0] =
−ρ(1− ρ)

2
[(pHH−pHL)−(pLH−pLL)] (4.19)

where pxy denotes the average market price under the respective cost state xy.

The usual case of a slower adaption to negative cost shocks is thus found if the

above expression is larger than zero. It is possible to decompose the sign of (4.19)

such that it will only depend on the sign of the following: −ρ(1−ρ)
2

(cH − cL) times

i) [t]he e�ect of previous cost realization on consumers' priors, ii) the

e�ect of those priors on the equilibrium search intensity, and iii) the

e�ect of the search intensity on the cost pass-through. (Tappata, 2009,

p. 682)
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As mentioned earlier, the e�ect of consumers' priors α on the search intensity µ

is clearly negative ( ∂µ
∂α

< 0) while it is obvious that the e�ect of the change of

previous period's costs (compared to the period before that) on consumers priors

is positive ( ∆α
∆ct−1

> 0) if costs are persistent, i.e., ρ > 1/2. What remains is the

e�ect of the search intensity on the cost pass-through. Using expected market

prices for given cost realizations c and consumers' priors α, Tappata is able to

derive this equilibrium pass-through of costs. To be precise, he shows that

∂E(p|c)
∂c

= 1− 1− µ
2µ

log

[
1 + µ

1− µ

]
≥ 0. (4.20)

As the pass-through of costs (given some cost level c) is dependent on the expected

elasticity of demand faced by �rms and this elasticity of demand increases with

the search intensity µ, the cost pass-through will positively depend on µ (this can

easily be shown by di�erentiating (4.20) with respect to µ). Using L'Hôpital's rule,

one can also show that the pass-through for perfect competition (µ = 1) is one

and the pass-through for the monopoly case (µ = 0) is zero, as expected.

Because of the above results, the sign of Equation (4.19) will solely depend on
−ρ(1−ρ)

2
(that is, the process that drives α). Because the sign of this expression is

negative, the overall sign of (4.19) will be positive (negative, positive, positive and

negative yields positive).

In other words, adjustment asymmetry to cost shocks in the traditional sense can

be found in the dynamic setting. Again, the intuition for this is that �rms face

higher demand elasticities in periods where a positive cost shock has happened

than in periods where a negative cost shock has. This is because high costs in the

previous period (i.e., a negative price shock) lead consumers to search too little

as they expect costs to remain high. In contrast, consumers will search too much
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when a positive cost shock has happened, leading �rms to substantially increase

prices. Note that while there is pattern asymmetry in this model (with a di�erent

immediate price reaction to cost shocks), no timing or amount asymmetry can be

found. After two periods, prices and beliefs will always return to the long-run

equilibrium values.

Summary and Discussion Tappata's model is able to explain an asymmetric

response of retail prices to random cost shocks if cost shocks are persistent. In or-

der to do so, Tappata models the demand elasticities faced by �rms such that they

depend on past cost realizations observed by consumers. As consumers always ob-

serve the true cost realizations with a delay of one period, Tappata's model is in a

way more elementary than Yang & Ye's. While in citetyang, it would (in principle)

be necessary to trace the past beliefs of a continuum of consumers for all elapsed

periods,32 Tappata only needs to distinguish between four states of the economy.

In each state, the beliefs of consumers are uniquely determined and will either be

correct (if no cost shock took place at the beginning of the period) or distorted.

This leads �rms to adapt di�erently to positive and negative cost shocks as the

search intensity of consumers and thus the demand elasticities faced by �rms will

depend on consumers' beliefs about present costs, which will be distorted if a cost

shock happened.

I want to emphasize one more time that this simpli�cation in Tappata's model

comes at the price that cost shocks are always absorbed within two periods. While

Yang & Ye are able to model a slow adaption of output prices to a negative cost

(while positive shocks are fully priced in after one period), prices will immediately

32Yang & Ye overcome this technical problem by assuming a continuum of �rms, which in turn
implies some theoretical objections (outlined in the discussion of the last subsection).
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jump to their stable values after a one time shock in Tappata's economy in the

following period. Empirically, the latter adjustment pattern cannot be con�rmed.

There are some other di�erences between Yang & Ye's and Tappata's model. First,

while Yang & Ye use a continuum of �rms to derive equilibrium in their paper,

Tappata focuses on the case of only two �rms. Although his results carry over to

the case with more than two �rms in the market, some of the implications of this

are quite awkward. While an increased number of �rms is usually associated with

a better functioning of markets (reaching perfect competition in the limit), it can

be shown that an increased number of �rms in the model economy actually raises

average prices for given search intensities µ.

The expected cost pass-through of prices can also be proven to diminish for in-

creasing n, implying that atomistic markets will have a very slow adaption to cost

shocks for values of µ that are not close to unity. Depending on how the exact

distribution of search costs for consumers looks like, this implies that the model

makes a prediction for competitive markets that cannot be con�rmed by reality if

there is even a small fraction of consumers that �nds it unpro�table to search in

any case.

Another discrepancy between the models is that Tappata uses no capacity con-

straints of �rms to derive his results. An important objection to Yang & Ye's model

was that each �rm pricing the (for each state uniquely determined) low price p

had to be capacity constrained. Clearly this is quite an implausible assumption

for most retail markets. Another problem was that each �rm was assumed to have

the same capacity constraint, which is an unrealistic assumption. Tappata in turn

needs no capacity constraints at all, which seems clearly superior.
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Possible extensions to Tappata's model would be the consideration of oligopolistic

behavior among �rms for small n, an imperfect learning process for consumers or

the incorporation of dynamic learning that is in�uenced by past search decisions

(consumers who have searched in the past might recognize cost levels more accu-

rately than consumers who have not). Also, a mechanism could be conceived that

ensures that average prices will not rise once the number of �rms rises beyond

some point.

Overall, Tappata's model can be understood as a concise theoretical work that is

able to explain asymmetric pricing in competitive markets while only relying on

few limiting assumptions. Although some of the model's predictions are not in

accordance to the behavior of real markets, Tappata provides a very interesting

starting point for future research in the area of asymmetric pricing caused by con-

sumer search. In contrast, Yang and Ye rely on more limiting assumptions, but

are able to achieve results that closer match current empirical evidence.
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4.3 Other Consumer Search Models

4.3.1 A Reference Price Search Model with Asymmetric Pricing

In a yet unpublished working paper, Lewis (2009) suggests a reference price con-

sumer search model that results in asymmetric pricing. The basic mechanism

which is employed in Lewis' model is as follows. Consumers observe one random

price in the market for free, but have to pay positive search cost if they want to

see another price quotation.

Most importantly, unlike in the consumers search models that were discussed

above, consumers are not acting fully rationally: they do not know the random

process with which �rms' costs are determined and thus base their expectations

of current prices on the prices they have observed in previous periods, using some

prior distribution of prices that can be di�erent from their actual distribution. In

the model, expectations need to be biased in order to produce asymmetric pric-

ing. Given these expectations, both consumers and �rms act rationally. However,

wrong expectations lead consumers to either search too much or search too little

when costs change.

In particular, consumers who observe a price that is lower than the price they paid

in the last period will assume that there is only a small chance of �nding an even

lower price when searching, implying that fewer consumers will search. Thus, �rms

can get away with higher margins because there will be less competition among

them (the fewer consumers search, the more incentive a �rm has to price high, as

it doesn't care about the small fraction of searching customers it loses to a �rm

that prices lower). Basically, if costs drop signi�cantly, �rms only need to reduce

prices a little to keep consumers from searching, and thus negative costs shocks

are transmitted slowly to output prices.
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On the other hand, if there is a signi�cant positive cost shock, �rms will have to

adapt their prices instantaneously because margins are squeezed and would be-

come negative otherwise. As no consumer would expect such a big rise in costs,

every consumer would choose to search after observing the �rst price, implying

that the only price �rms can charge in equilibrium are the marginal costs �rms

are facing, meaning that a full information Bertrand-type scenario results.

Overall, asymmetric pricing has to emerge: output prices react immediately to

`large' (in relation to margins) positive cost shocks, but slowly adapt to large neg-

ative cost shocks. If cost shocks are small relative to margins, there will be a slow

decline of market prices no matter whether costs rise or fall.

Lewis' model of asymmetric pricing has one major implication. As mentioned

above, his model predicts that prices should only follow changes in marginal costs

when costs have risen signi�cantly (such that �rms need to price higher in order

to avoid making losses) or have fallen slightly. If costs drop excessively, �rms will

choose to decrease them just as much to ensure that no consumer searches, gener-

ating high margins. If costs rise slightly but margins are very high, �rms will opt

to further decrease their selling prices in order to avoid generating search.

In other words, prices will only be sensitive to cost shocks if margins are small.

If margins are small and a positive cost shock happens, �rms need to adapt their

output prices immediately in order to retain a positive price-cost margin. If mar-

gins are small and costs decline, prices will fall slightly (in concordance with costs)

because �rms try to prevent search.

However, if margins are high and a (large) negative or (small) positive cost shock

happens, �rms will optimally react to consumers biased expectations by slightly

reducing their prices in an attempt to discourage search.
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Lewis' main �nding hence is that margin size, rather than the sign of a cost shock,

is the main driving force behind the speed of price transmission to cost changes.

The phenomenon of asymmetric pricing is only apparent because small margins

(implying a quick response to cost shocks) usually correlate with cost increases,

while high margins (implying slow price adjustment) correlate with cost decreases.

Interestingly, Lewis' model predicts similar dynamics to the dynamics obtained by

the collusive trigger sales model proposed by Borenstein et al. (1997), which I tried

to formalize in Section 3. If costs decrease signi�cantly in the model (i.e., costs

drop from cH to cL), �rms start colluding on the old equilibrium price, with aver-

age prices decreasing slowly because of random demand shocks. As a consequence,

a signi�cant negative cost shock leads to high margins and a slow transmission of

prices, just as in the model of Lewis.

On the other hand, if costs rise by a signi�cant amount, margins drop to zero and

�rms must behave competitively, pricing at cost without delay. This means that

a large increase in costs has an immediate e�ect on prices and goes hand in hand

with low margins, again just like in Lewis' model.

It has to be noted, however, that my model is only able to di�erentiate between

two cost states, which was necessary to allow for a unique focal point on which

�rms can collude once costs drop. Therefore, no statement can be made about

what the e�ect of a small cost decrease under high margins would be, as in the

model, high margins can only be found if costs are already low. Analogously, low

margins coupled with a signi�cant cost increase are impossible too, as zero mar-

gins can only occur if costs are already high. However, low margins coupled with

a cost increase should naturally lead to a rise in prices, as margins would become

negative otherwise.
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Also, Lewis �nds that the consumer search models of Yang and Ye (2008) and

Tappata (2009) contradict some of the implications of his model, at least if they

are generalized to an arbitrary amount of di�erent cost states:

In the Tappata (2008) and Yang and Ye (2008) models, more search and

faster price response occur when dispersion is largest, and dispersion

is inversely related to marginal cost. Therefore, a more generalized

version of these models would predict that prices respond more quickly

to cost changes when margins are high than when they are low. This

contradicts Prediction 2 of the reference price search model. (Lewis,

2009, p.17)

Now that I've compared the implications of Lewis' model to those of the models

explained above, I want to brie�y address two of its problematic issues. First,

as mentioned before, the consumers in his model are not perfectly rational in the

sense that consumers' expectations always need to be biased in order to generate

equilibria where asymmetric pricing occurs. Such an assumption is not needed by

the consumer search models discussed before.

Second, Lewis assumes that �rms are myopic in the sense that in each period,

they try to maximize their pro�t without taking into account supergame strate-

gies. This assumption e�ectively destroys any possibility of collusion in the model.

But models where consumers have wrong expectations would certainly be prone

for collusive strategies, which is ignored completely.

Overall, while Lewis' model provides a plausible alternative mechanism for asym-

metric pricing, some of its assumptions are probably not justi�ed for many markets.

On the other hand, it generates empirical implications that can easily be tested.

This is also done in Lewis (2009), where the author is able to con�rm most of his

model's predictions. While this doesn't mean that other models of asymmetric
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pricing are wrong or inferior to the one of Lewis, his empirical research points

out several key implications any model of asymmetric pricing should be able to

provide. Most importantly, Lewis �nds that the speed of price adjustment to costs

is typically dependent on margin size. This in turn should help researchers in the

development of better or more general models of asymmetric pricing.

4.3.2 Asymmetric Pricing caused by Sticky Consumer Prices

Cabral and Fishman (2008) provide a model of sticky consumer prices when input

prices are sticky. Under certain conditions, they show that the model also implies

asymmetric price transmission in the traditional sense (i.e., a faster response to

positive cost shocks), however only if input cost changes are small.

The underlying principle of the model is as follows: if a �rm's input cost increases

by a small amount, it might be optimal for the �rm to refrain from increasing its

output price to the new optimal level, as an increased price might lead consumers

to search. If the expected pro�t loss caused by searching consumers (buying at

another �rm) exceeds the expected additional pro�t caused by adapting prices to

the new optimal level, �rms should not increase prices.

In contrast, if costs decrease by a small amount, �rms have no incentive to cut

prices because consumers optimally decide not to search after they observe un-

changed prices. This is the basic mechanism why prices are sticky in the model.

Asymmetric price transmission �nally occurs if cost changes are correlated across

competing �rms. In principle, if costs are su�ciently correlated, the signal of a

slightly increased price tells consumers that market prices have likely increased

in general (due to a positive cost shock), implying that consumers might �nd it
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optimal not to search. Because of this, �rms can immediately react to positive

cost shocks by increasing their selling prices. On the other hand, the dynamics

of the model ensure that a small decrease in costs bears no incentive for �rms to

reduce their prices, as consumers will refrain from search anyway if prices don't

change at all.

It can be shown though that no large price increase can be found in the model,

which is an implication that is very di�erent from those of all other models dis-

cussed in this thesis. Also, price decreases are typically large in the model, which

is again di�erent to the results of the other models discussed.

Overall, the model of Cabral and Fishman predicts the following behavior, which

can also be tested empirically:

� Small cost decreases are transmitted with lag whereas small cost increases

are transmitted to prices instantaneously. Large cost decreases or large cost

increases do not yield asymmetric price adjustment.

� Cost changes and price changes have a higher correlation if costs are increas-

ing than if costs are decreasing.

� Price decreases are typically less frequent than price increases, but price

decreases tend to be larger in magnitude.

� Prices decreases are only less frequent than price increases if costs change by

a small amount. If costs change signi�cantly, no such asymmetry is found.

� Asymmetric price adjustment is only found if costs are (very) sticky.

Out of those, only implications two and �ve are shared by most of the models

that have been discussed. While Cabral and Fishman provide empirical support

for some of the other results, I think that implications one and four are somewhat

awkward. It seems unlikely that adjustment asymmetry should only be found if

cost changes are small. Intuitively, the other way round seems more plausible: a
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large cost increase needs to be transmitted immediately to prices in order for �rms

to avoid making losses whereas a large cost decrease can be exploited to achieve

high margins for several periods.

Implication three is quite interesting though because it seems to resemble the

pricing behavior in some markets where prices �uctuate much. For example, re-

tail gasoline stations are often said to behave as follows: in the morning, prices

are lowest but they continuously increase by small amounts throughout the day.

Signi�cant price drops are typically only found at early morning or after weekends.

While I have no empirical support for this claim, if retail gasoline stations and

other �rms do in fact act like this, the model of Cabral and Fishman does a good

job to capture the e�ect. Also, all other models I have discussed predict the

opposite behavior: price increases are typically large and non-recurring, whereas

prices decreases are small and recurring until minimum costs are reached eventu-

ally, given some persistent lower cost level.

Thus, the model of Cabral and Fishman, although not speci�cally designed to

yield asymmetric price transmission, provides a di�erent mechanism to explain

asymmetric pricing which is worth considering for future research.
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5 Miscellaneous Sources for Asymmetric Price Adjustment

Now that several models of the two most common explanations for asymmetric

pricing, namely oligopolistic coordination and imperfect consumer search, have

been discussed, I want to brie�y present some alternative ideas to model the phe-

nomenon. In this last theoretical section of my thesis, I will describe the intuition

behind three di�erent and unrelated mechanism that might lead to asymmetric

pricing.

In Subsection 5.1, I will start by presenting an idea of Borenstein et al. (1997),

where asymmetric pricing is suggested to be the result of a slow adaption of pro-

duction to cost shocks. In Subsection 5.2, I will point out a model of Ball and

Mankiw (1994), in which asymmetric price adjustment is caused by asymmetric

menu costs under in�ation. Finally and probably most interestingly, I will discuss

a model of Eckert (2002) in Subsection 5.3. There, pricing patterns that resemble

rockets and feathers emerge in highly competitive markets as the result of price

wars in which �rms battle over market share. Also, as will be seen, an extension

of the model considered could lead to `true' asymmetric pricing.
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5.1 Asymmetric Pricing due to Lags in Adjustment of Production and

Finite Inventories

One alternative mechanism that could result in asymmetric was already given by

Borenstein et al. (1997). In their second hypothesis, they argue that

[p]roduction lags and �nite inventories of gasoline imply that negative

shocks to the future optimal gasoline consumption path can be acco-

modated more quickly than positive shocks. (Borenstein et al., 1997,

p. 327)

While their paper concentrates on the gasoline market, this concept could also be

extended to other branches.

In short, if a severe supply shock happens, asymmetric price adjustment could

result because it might take some time in order to adapt production to future op-

timal consumption. To see this, consider a signi�cant positive supply shock �rst,

e.g. because production costs drop sharply. Then, it is clear that future output

prices will have to sink eventually. However, prices cannot fall as much in the

short run because inventories are �nite and it will take a couple of days or weeks

to alter production to increase output. This implies that negative cost shocks are

transmitted slowly to selling prices.

On the other hand, if a severe negative supply shock happens (e.g., because produc-

tion costs increase sharply), �rms cannot pro�tably decrease current production.

However, they can simply choose to raise prices immediately (building up inven-

tories) in an attempt to cover their increased expenses later. This leads to a quick

rise in prices once production costs rise.

Overall, an asymmetric price adjustment to (signi�cant) cost changes will be found.

The above mechanism is certainly interesting because it di�ers greatly from all

other explications of rockets and feathers presented in this thesis. I think that for

markets with severe production bottlenecks, high market concentration and sig-
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ni�cant supply or demand shocks, it could turn out to be one of the main driving

forces behind asymmetric price adjustment.

However, most retail markets are characterized by di�erent conditions: in many

cases, there are no production bottlenecks and retailers can choose to buy virtu-

ally unlimited amounts of the commodity they obtain from wholesale. Also, severe

supply or demand shocks are likely uncommon in many markets. As a result, the

hypothesis seems worth considering for future research, but is unlikely to describe

asymmetric pricing in every or a majority of markets.

5.2 Asymmetric Pricing due to Asymmetric Menu Costs

Ball and Mankiw (1994) propose a partial equilibrium model of asymmetric price

adjustment that is caused by asymmetric menu costs under positive trend in�a-

tion. The intuition behind their model is as follows. If in�ation is positive and a

�rm wishes to decrease its price relative to the aggregate price level (e.g. because

of a negative cost shock), it can simply wait until its desired relative price level is

reached. This is possible because positive trend in�ation increases the aggregate

price level and thus reduces relative prices over time. If the �rm wishes to increase

its relative price level, however, it has to o�set the in�ation in the market and the

gap to its new desired relative price. It cannot wait until its desired relative price

level is reached because, in the absence of another shock to its desired price, this

gap would become wider and wider.

If there are no menu costs in the model, �rms would simply set their relative price

equal to their desired price in every period. But if there are menu costs which are

large enough to have an e�ect on the choice of whether to change prices or not,

asymmetric pricing will occur: price adjustment will be pro�table more frequently
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when there is a positive shock to the desired relative price compared to a negative

shock, and if prices are adjusted, adjustment will be larger under positive shocks.

While the simplicity of this model is certainly appealing, I don't believe that it is

able to capture the true mechanism that leads to asymmetric pricing. The main

reason for this is that in�ation rates are usually very small compared to changes

in input and output prices. Costs and other determinants of desired relative prices

tend to �uctuate so much, in relation to their levels, that a typical single-digit

in�ation rate could never hope to have a signi�cant e�ect on the adjustment of

output prices.

Also, menu costs are likely very small in the great majority of retail markets. For

example, a gasoline retail station that wants to adjust its selling price is probably

not worried about the cost this change of price creates. In fact, I think that menu

costs (in the traditional sense) are much too small to have an in�uence on the

decision of changing prices in most markets were input prices �uctuate regularly.

Thus, in sum, I don't think that the model of Ball and Mankiw (1994) will play a

crucial role in identifying the sources of asymmetric pricing.

5.3 Edgeworth Price Cycles Resembling Asymmetric Pricing

Finally, a very interesting alternative to rockets and feathers was provided by

Eckert (2002). In his model, a pattern similar to asymmetric pricing emerges

although prices move more or less independently from costs. In the model, �rms'

price setting is characterized by two di�erent regimes,

an undercutting regime, in which �rms battle over market share, and

an increasing regime, in which �rms cease battling for the market and

instead choose to restore temporarily high prices. (Eckert, 2002, p. 64)
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In other words, �rms slightly undercut each other in the former regime, leading

to a slow decline of average market prices until prices are close to marginal cost.

Once they are su�ciently close to it, �rms stop undercutting, price at cost and

begin a `war of attrition'. During this war, �rms randomize between continuing

to price at cost or increasing prices to a much higher level. Once one of the �rms

does so, it loses most or all of its market share for the next period, but the other

�rms in the market quickly follow to price at the high level. This is how the in-

creasing regime is characterized. Once all prices have reached the highest level, a

new undercutting regime starts.

Overall, the pattern of price movements that emerges (see Figure 5.1) can get con-

fused with asymmetric pricing if input costs are unobservable: price decreases are

small and the lowest price in the cycle is approached slowly whereas price increases

are large, almost simultaneous and prices jump to the highest price in the cycle.

As argued above, Edgeworth price cycles can look like rockets and feathers even

though prices move independently from costs.33 Also, following the author's argu-

mentation, these cycles should mainly be found in the most competitive markets,

whereas less competitive markets should rather be characterized by sticky or con-

stant prices. Consequently, if Edgeworth price cycles are the correct explanation

for a perceived asymmetric price adjustment, policy makers could make a big

mistake by (only) punishing �rms who compete in markets where such a pricing

behavior is apparent.

The pattern Eckert describes in his model has nothing to do with `true' asymmet-

ric pricing, which is the sole focus of my thesis. However, it is straightforward to

33If marginal cost is constant, only the lowest price in the cycle will be a function of cost.
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see that an extension of his model could lead to rockets and feathers in the tradi-

tional sense. If marginal cost is not assumed to be constant, but can change with

a su�ciently low probability, Eckert argues that �rms will not alter the strategy

outlined above in equilibrium. If costs change unexpectedly while �rms are in the

undercutting regime (which they are most of the time), it seems reasonable to

think that the undercutting regime would continue until the new marginal cost is

reached, given that prices are still above cost. This is because �rms try to steal

market shares in the undercutting regime, which shouldn't be a�ected by lower or

higher marginal cost. If marginal cost rises to such an extent that margins become

negative, however, �rms are expected to immediately increase prices to the (new)

highest point of the cycle.

In sum, asymmetric price adjustment will be found: negative cost shocks are trans-

mitted slowly to selling prices (as the undercutting regime is simply prolonged)

whereas positive cost shocks can have an immediate e�ect on prices if margins

become negative. But even if not, the undercutting regime lasts shorter, meaning

that positive cost shocks will be transmitted more quickly to output prices than

negative ones. This implies asymmetric pricing in the traditional sense.

In summary, I think that Edgeworth price cycles à la Eckert (2002) might turn out

to be one of the most important sources of asymmetric pricing in highly competitive

markets. If such cycles were found to be common in many competitive markets,

the theory of asymmetric pricing would have to be reconsidered. Then, other

explanations like implicit collusion or costly consumer search would lose much of

their appeal.

On the other hand, if cost shocks were usually found to be transmitted in the

classic sense of rockets and feathers, with only few markets exhibiting a pattern of

Edgeworth price cycles, new theories would be needed to pin down the reasons that
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discern classical asymmetric pricing from asymmetric pricing caused by Edgeworth

cycles. In any case, a lot of further empirical and theoretical research will be

necessary to give a better understanding of the issue.
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6 Summary and Conclusion

In this thesis, the phenomenon of asymmetric adjustment of output prices to input

price shocks was examined in detail. After pointing out why asymmetric pricing

is a relevant topic in contemporaneous economic research in the introduction, I

started out by providing a de�nition and distinction between the various types of

the so called pattern of rockets and feathers.

In the main section of this work, I proceeded to develop a model of oligopolis-

tic coordination that resulted in asymmetric price adjustment. In particular, my

intention was to bridge the gap between the numerous research papers that refer-

ence collusion as one of the main sources of asymmetric pricing and the absence

of any formal model that is actually able to derive asymmetric pricing caused by

collusion.

Finally, I summarized several other models that lead to rockets and feathers in

the last two sections of this thesis. While consumer search models are currently

the dominating category, other interesting ideas have been developed that might

renew our understanding of asymmetric pricing.

Overall, one can conclude that there are numerous mechanisms that could pos-

sibly result in asymmetric pricing. As of now, it is still unclear whether rockets

and feathers is a product of collusion, imperfect consumer search, miscellaneous

sources (like, for example, lags in adjustment of production or Edgeworth price

cycles) or a combination of all or some of those.

In this thesis, I was able to prove that a simple dynamic oligopoly model can lead

to asymmetric pricing. If overall demand is random and enough consumers in

a market know the prices of all competing �rms, �rms might �nd it optimal to

collude on the price that was charged before a negative cost shock if costs drop,
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but increase prices immediately if costs increase. Due to the random component

of demand, collusion can slowly break down after a negative cost shock, leading

to asymmetric pricing.

The model I contributed shares one feature with most other models of asymmetric

pricing: a higher persistence of costs leads to a more severe adjustment asymmetry

of prices. Also, more competition in a market leads to a reduced likelihood of col-

lusion and thus asymmetric pricing, which is a plausible result. On the other hand,

the property that a higher fraction of informed consumers strengthens asymmetric

price transmission is not found in any other model I examined. While this predic-

tion of the trigger sales model may seem problematic at �rst, it is not surprising in

its context: if the fraction of informed consumers is small, �rms have essentially no

chance to punish deviating �rms under collusion. Put di�erently, the trigger sales

model provides a benchmark to distinguish asymmetric pricing caused by collusion

from asymmetric pricing caused by imperfect consumer search and (at least some)

other mechanisms. Asymmetric pricing under collusion should only be found if

consumers are very well informed about the prices in a market. If consumers have

limited knowledge about them, collusion becomes a less likely explanation for the

phenomenon of rockets and feathers.
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Appendix A

A.1 Abstract

This thesis studies the phenomenon of asymmetric pricing, according to which

output prices tend to adapt quicker to input cost increases than to input cost de-

creases. Although the general public and government authorities tend to attribute

this pricing behavior to an abuse of market power, no formal model capable of

generating asymmetric pricing through collusion has been developed. The main

contribution of this thesis is to provide such a model. In my model, positive

cost shocks lead �rms' margins to be squeezed, implying an immediate response

of output prices. In contrast, �rms try to coordinate their prices after negative

cost shocks because the old output price provides a natural focal point for collu-

sion. However, overall market demand is random and unobservable to �rms. As

a consequence, they confuse random demand shocks with demand shocks caused

by rival �rms undercutting, leading collusion to eventually break down. Overall,

asymmetric pricing is the result.

Several other models of asymmetric pricing are presented in this thesis. While

consumer search models typically imply a less pronounced form of asymmetric

pricing if many consumers are informed (i.e., observe all prices in the market),

my model predicts the opposite. The reason is that collusion under random and

unobservable demand can only be maintained if �rms can successfully punish a

deviating �rm. This is unlikely to happen if deviation has little e�ect, which is

the case if there are few informed consumers.
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A.2 Abstract (German)

Diese Diplomarbeit befasst sich mit dem Phänomen der asymmetrischen Preis-

transmission, welches eine schnellere Reaktion von Verkaufspreisen auf positive

Kostenschocks im Vergleich zu negativen Kostenschocks impliziert. Obwohl die

Ö�entlichkeit sowie Regierungsstellen asymmetrische Preistransmission häu�g mit

Marktmissbrauch gleichsetzen, wurde bisher noch kein formales Modell entwick-

elt, welches asymmetrische Preistransmission durch Kollusion erklären kann. Der

wichtigste Beitrag dieser Arbeit is daher, ein solches Modell zu entwickeln. In

meinem Modell führen positive Kostenschocks zu einer unmittelbaren Veränderung

der Verkaufspreise, da die Verkaufsmarge sonst negativ würde. Im Gegensatz

dazu veranlassen negative Kostenshocks die Firmen, ihre Preise auf dem alten

Verkaufspreis zu koordinieren, da dieser Preis einen natürlichen Fokuspunkt für

Kollusion darstellt. Da aber in meinem Modell die Gesamtnachfrage zufällig und

unbeobachtbar ist, verwechseln die Firmen zufällige Nachfrageschocks mit Nach-

frageschocks, die durch unterbietende Firmen enstehen. Dies führt dazu, dass

Kollusion nach einer gewissen Anzahl an Perioden zusammenbricht. Insgesamt

kommt es zu asymmetrischer Preistransmission.

Diverse andere Modelle asymmetrischer Preistransmission werden ebenfalls in dieser

Diplomarbeit präsentiert. Während Consumer-Search Modelle typischerweise eine

schwächere Form von asymmetrischer Preistransmission bei einer geringen Anzahl

von informierten Konsumenten (d.h. Konsumenten, die sämtliche Preise im Markt

beobachten) implizieren, sagt mein Modell das Gegenteil voraus. Der Grund hier-

für ist, dass Kollusion unter zufälliger und unbeobachtbarer Gesamtnachfrage nur

dann aufrecht erhalten werden kann, wenn Firmen erfolgreich eine abweichende

Firma bestrafen können. Dies ist aber unwahrscheinlich, wenn Abweichung einen

sehr kleinen E�ekt hat, wie das bei einer geringen Anzahl von informierten Kon-

sumenten der Fall ist.
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