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“Words that do not match deeds are unimportant.”

Ernesto Che Guevarra





Abstract

The current PhD thesis is concerned with the investigation of the nature,

distribution and density of lattice defects in nanomaterials which have been

processed by Severe Plastic Deformation (SPD). Since these defects have

some importance for the exceptional physical properties of SPD nanoma-

terials, their careful analysis is to enable a better understanding of these

properties. As a representative technique for SPD nanostructures, that of

High Pressure Torsion (HPT) has been used because of its capability to

accurately control strain and hydrostatic pressure. Samples of copper and

nickel were deformed by HPT at different hydrostatic pressures to different

shear strains, and subjected to different DSC investigations. While in HPT-

processed Cu only vacancy agglomerates and dislocations were found, in

HPT-processed Ni also single/double vacancies could be observed. The to-

tal concentration of vacancies including those of agglomerates was higher,

indicating the influence of homologous processing temperature rather than

that of stacking fault energy. Generally, the concentrations of all lattice
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defects increased with increasing strain and pressure applied. Concerning

Ni, additional impurities have shown to stabilize the lattice defects result-

ing in an increased annealing temperature. Activation enthalpies (Q) were

determined by DSC using Kissinger’s method.

For Ni, the activation enthalpies of the two annealing peaks were deter-

mined as Qvac = 0.65 eV and Qdisl = 0.95 eV, respectively, indicating

the annihilation of single or double vacancies, and that of dislocations and

vacancy agglomerates, respectively. For the one annealing peak found in

HPT Cu, Q amounts from Q = 0.78 eV down to 0.48 eV as a function of

shear strain applied, in correspondence with the change of peak tempera-

ture. Due to the obvious correlation with the strain dependence of external

and local internal stresses, the strain dependence of Q, can be attributed to

the local internal stresses governing the annihilation of dislocations and/or

vacancy agglomerates.

In addition, pure palladium was hydrogenated, subsequently deformed by

HPT and analyzed by DSC. For comparison hydrogen-free HPT processed

samples were also investigated. The results, for the first time, gave evi-

dence for the formation of vacancy-hydrogen clusters caused by HPT. The

vacancy concentration produced in Pd-H by this method is with 7 · 10−4

extraordinarily high.

Similar to the effect of impurities in Ni, hydrogen seems to stabilize va-

cancies but also other HPT induced lattice defects as it can be concluded

from the increase in peak temperatures and from concomitant observations

by transmission electron microscopy.



Kurzfassung

Die vorliegende Dissertation befasst sich mit der Untersuchung der Natur,

Anordnung und Dichte der durch Severe Plastic Deformation (SPD) gener-

ierten Gitterdefekte in Nanomaterialien. Da diese Defekte in wichtigem

Zusammenhang mit den aussergewöhnlichen physikalischen Eigenschaften

von SPD Nanomaterialien stehen, ist ihre Analyse für das Verständnis dieser

Eigenschaften von grosser Bedeutung. Eine sehr repräsentative SPD Meth-

ode ist die Hochdrucktorsion (High Pressure Torsion - HPT), da mit ihr der

Verformungsgrad und der hydrostatische Druck kontrolliert eingestellt wer-

den können. In dieser Arbeit wurden Proben von Cu und Ni verschiedener

Reinheit mittels HPT bei verschiedenen hydrostatischen Drucken unter-

schiedlich stark verformt, bevor daran Messungen mittels Differential Scan-

ning Kalorimetrie (DSC) vorgenommen wurden. Während in HPT Cu ver-

formungsinduzierte Leerstellenagglomerate und Versetzungen nachgewiesen

wurden, konnten in HPT Ni auch Einfach- bzw. Doppelleerstellen beobachtet

werden. Die Gesamtkonzentration an Leerstellen war in Nickel höher als
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in Cu, was eher auf den Einfluss der homologen Verformungstemperatur

als auf denjenigen der Stapelfehlerenergie zurückzuführen ist. Allgemein

nehmen die Konzentrationen der verformungsinduzierten Gitterdefekte mit

höherem Verformungsgrad und höherem hydrostatischen Druck zu. Für Ni

wurde gezeigt, dass die thermische Stabilität der Gitterdefekte mit zunehmender

Verunreinigung zunimmt. Für die Bestimmung der Aktivierungsenthalpien

(Q) wurde die Kissinger Methode angewandt.

Die Aktivierungsenthalpien der Peaks in Ni betragen Qvac = 0.65 eV

und Qdisl = 0.95 eV, im Einklang mit der Interpretation, dass diese Peaks

die Ausheilung von Einzel/ Doppelleerstellen bzw. die von Leerstellenag-

glomeraten und Versetzungen repräsentieren. Für den einzigen Ausheil-

peak in HPT Cu ergibt sich eine Änderung von Q = 0.78 eV bis Q = 0.48

eV je nach HPT induziertem Verformungsgrad, in Übereinstimmung mit

der Variation der Ausheiltemperatur. Da die Grösse der Aktivierungsen-

thalpie betreffend deren Abhängigkeit vom Verformungsgrad eindeutig mit

der Grösse der lokalen inneren Spannungen korreliert, können letztere als

Ursache der Änderung der Aktivierungsenthalpien mit dem Verformungs-

grad angenommen werden.

Im Rahmen dieser Dissertation wurden auch Pd Proben mit Wasserstoff

versetzt und anschliessend einer HPT Verformung bei tiefen Temperaturen

unterzogen. Die DSC Untersuchung zeigte die Bildung hoher Konzentra-

tionen von Leerstellen-Wasserstoff Agglomeraten an (7 ·10−4), und ausser-

dem auch die Stabilisierung von Versetzungen mittels Wasserstoff, wie be-

gleitende elektronenmikroskopische Untersuchungen ergeben haben.
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Introduction

In the last two decades, nanostructured materials revealing a grain size below

100nm have attracted growing interest due to their outstanding properties like

increased strength, superplastic behavior, increased magnetic and thermoelectric

properties, and sometimes also increased corrosion resistance [1–7]. Two pro-

cessing strategies have been followed so far for the production of nanostructured

materials [8]: bottom-up and top-down methods. With the first method, ultrafine

powders consisting of nanostructured particles are processed by different tech-

niques like ball milling and inert gas condensation [9]. Nanostructured films and

coatings consisting of nanometer sized grains can also be deposited by vapor

phase deposition or electrodeposition [10]. Subsequent warm compression may

provide bulk samples but with compromises in grain size and density with poor

inter-particle bonding, and easy contamination by impurities. Porosity in partic-

ular leads to a marked loss in ductility and fracture toughness. To avoid these

problems, one should prefer a top-down method, e.g. starting with a bulk ma-

terial composed of coarse grains and refining the grains down to the nanometer

regime without marked change of the sample shape. Severe plastic deforma-
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tion (SPD) [5] seems to be the only technology in the top-down category, but

it has a number of variants, including equal-channel angular extrusion (ECAE)

[11], accumulative roll-bonding (ARB) [12, 13] and high-pressure torsion (HPT)

[14] which have different capabilities in (i) achieving small grain sizes and (ii)

to form commercial shape bulk nanostructured materials. It is well known that

large strain deformations, for example, by cold rolling or drawing, can result

in significant refinement of the microstructure at low temperatures [15]. How-

ever, the structures formed are usually such of a cellular type having boundaries

with low angle misorientations. At the same time, the nanostructures formed

from SPD are ultra fine-grained structures of a granular type containing more

than 60% high angle grain boundaries [16]. Formation of such nanostructures

could be realized by SPD methods providing very large deformations at rela-

tively low temperatures under the high hydrostatic pressure imposed [1, 11]. Due

to the high hydrostatic pressure very high strains can be reached even with con-

stant sample shape. Therefore very high densities of lattice defects are produced

[17, 18]. This is especially true for vacancies and vacancy-type defects, which

reveal concentrations near to those of vacancies in thermal equilibrium at the

melting point [18]. Vacancies have mainly two effects on work hardening [17].

Indirectly they allow edge dislocations to annihilate via climbing increasing the

ductility of the material and directly they can form clusters impeding the dis-

location motion. Ductility in nanostructured materials was investigated f.e. in

[19–21]. High dislocation densities, on the other hand, arrange in cell and fi-

nally grain boundaries and therefore produce grains with small sizes. Due to the

Hall-Petch relation, the strength of the material increases with decreasing grain

size. After rearrangement and particularly annealing of the deformation induced

lattice defects at higher temperatures, the increase in strength is lost. Therefore

it is important to find possibilities to stabilize these defects and thus gain thermal

stability of the enhanced properties. A good solution to this problem is to add
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impurities and/or alloying atoms which act as efficient traps for deformation in-

duced defects thus preventing them from annealing [22].

For this work HPT was used as SPD method, as this method revealed to be es-

pecially powerful in producing high densities of deformation induced defects and

thus a minimum of grain size. This is because of the two-fold effect of enhanced

hydrostatic pressure, i.e. (i) to prevent crack formation and thus reveal practically

infinite strains (ii) to suppress diffusion and thus annihilation of deformation in-

duced defects. There are several methods for investigation of lattice defects in

nanomaterials [23], direct ones like transmission electron microscopy (TEM),

scanning electron microscopy (SEM) and indirect ones like X-ray profile anal-

ysis (XPA) [24], residual electrical resistivity (RER) [25], positron annihilation

spectroscopy (PAS) [26, 27] and differential scanning calorimetry (DSC) [28].

The latter has been selected for this Ph thesis as it revealed to be an easy and fast

technique for investigation of the type and concentration of SPD induced defects

and in particular of their thermal stability. Another reason to carry out DSC in-

vestigations of SPD processed materials was that these has been done only quite

rarely, and that especially for HPT processed nanomaterials practically no papers

have been published so far [22, 29].

For this PhD thesis nickel was selected because of the possibility of easily

investigating vacancy effects due to their stability at room temperature and the

strong influence of impurities [22]. Copper was investigated as a second fcc

metal for comparison, not at least because of the significantly lower stacking

fault energy. Another reason to select these two metals has been the large knowl-

edge on them thanks to numerous investigations reported in literature but a few

only done in HPT processed Ni and Cu. A suitable comparison of HPT specific

properties compared to conventionally deformed Ni and Cu, and also to differ-
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ently processed Ni and Cu nanometals is therefore possible.

Some calorimetric measurements have been done on hydrogen loaded SPD

processed palladium. These studies were made in order to clarify the role of

hydrogen for the formation and stability of deformation induced surplus vacan-

cies which have been reported previously to form a high number of very stable

hydrogen-vacancy clusters with thermal vacancies provided at high temperatures.

Palladium was investigated as one of the most prominent fcc hydrogen storage

metals [30, 31].
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Aims of research

The aim of this doctoral thesis was to investigate the nature and density of de-

fects in SPD processed metals as a function of hydrostatic pressure and strain.

Therefore several questions had to be answered:

• Is it possible to detect lattice defects produced by HPT with DSC?

• Is is possible to distinguish between the different defect types?

• How big is the influence of impurities on thermal stability of defects?

• What is the influence of deformation degree and hydrostatic pressure on the

density of HPT defects?

• Is it possible to measure activation enthalpies of deformation induced de-

fects in an accurate way?

• Which parameters do affect the activation enthalpy in SPD deformed nano-

metals?

5
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Experimental details and theoretical background

3.1 Defects in metals

All metals chosen in this doctoral thesis are face-centered-cubic (fcc). Fcc is a

close packed structure where the lattice atoms are packed as dense as possible

(Fig. 3.1).

Figure 3.1: The fcc lattice structure.

Crystalline solids have a very regular atomic structure. However, most crys-

talline materials are not perfect and the regular arrangement is interrupted by
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8 3.1. Defects in metals

lattice defects. These defects are usually categorized as follows:

0-dimensional: Point defects are defects which are not extended in space in any

dimension like vacancies, interstitials and impurities (Fig. 3.2) [32].

Figure 3.2: Most common point defects in metals.

1-dimensional: Dislocations are linear defects around which some of the atoms

of the crystal lattice are misaligned [33]. The presence of dislocation results in

lattice strain (distortion). The direction and magnitude of such distortion is ex-

pressed in terms of a Burgers vector (b). For an edge type, b is perpendicular

to the dislocation line, whereas in the cases of the screw type it is parallel. In

metallic materials, b is aligned with close-packed crystallographic directions and

its magnitude is equivalent to one interatomic spacing (Fig. 3.3) [34]. It is the

presence of dislocations and their ability to move and interact under the influence

of stresses induced by external loads that leads to the characteristic deformability

of metallic materials.

2-dimensional: Planar defects like stacking faults [33] occur in a number of
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Figure 3.3: Edge and screw dislocations in metals.

crystal structures, but the common example is in close-packed structures. Face-

centered cubic (fcc) structures differ from hexagonal close packed (hcp) struc-

tures only in stacking order. A stacking fault is a one or two layer interruption in

the stacking sequence, for example if the sequence ABCABABCAB were found

in an fcc structure.

3-dimensional: Bulk defects are f.e. voids and precipitates.

There are several possibilities to generate defects in metals. Quenching, ra-

diation damage and several types of plastic deformation are the most common.

Especially methods of severe plastic deformation (SPD) are of high interest. SPD

is a generic term describing a group of metal-working techniques involving very

large strains which are imposed without introducing any significant changes in

the overall dimensions of the specimen or work-piece. A further defining feature

of SPD techniques is that the preservation of shape is achieved due to special tool

geometries which prevent the free flow of material and thereby produce a signifi-

cant hydrostatic pressure. The presence of a high hydrostatic pressure p ≥ 1GPa,

in combination with large shear strains and not too high processing temperatures
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T ≤ 0.3Tm (Tm is the melting temperature in K) is essential for producing high

densities of crystal lattice defects, particularly dislocations, which results in a

significant refinement of the grains [5, 35]. The most common SPD techniques

are ECAP (equal channel angular pressing) and HPT (high pressure torsion) and

have been schematically presented in Fig. 3.4 [16].

Figure 3.4: Schematic description of ECAP and HPT [16].

3.2 High Pressure Torsion - HPT

For the present doctoral thesis HPT was used as the main processing method for

the nanostructured samples needed. HPT refers to a kind of processing in which

the sample, generally in the form of a thin disk, is subjected to torsional strain-

ing under a high hydrostatic pressure (Fig. 3.4). The disk is located within a

cavity in the anvil, a hydrostatic pressure is applied, and plastic torsional strain-

ing is achieved by rotation of one of the anvils. The true torsional strain γ is

given by γ = rφ/d, where r is the distance from the center of the disk, φ is the

torsional angle in radians, and d is the sample thickness. For comparison with

other SPD methods, the true equivalent strain ε can be calculated using the re-
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lation ε = (1/a)γ where the coefficient a takes either the values from a plastic

flow criterion (where a = 2 for Tresca and a =
√

3 for von Mises) or from the

Taylor theory for polycrystals (where a = 1.65 for texture free fcc metals and

decreases slightly to lower values during continued deformation) [23]. HPT is a

very suitable scientific method due to the possibility to control the parameters like

hydrostatic pressure, strain and deformation temperature. The 100% dense bulk

HPT samples are attractive for products such as nanomagnets with enhanced soft

and hard magnetic properties, arterial stents, and devices for micro electrome-

chanical system applications. There have also been recent attempts to scale up

the HPT facility in order to process larger bulk samples [36].

For the present work all samples were deformed with the HPT equipment con-

structed by Pippan et al. at ESI Leoben, Austria [37]. Samples were deformed

by applying hydrostatic pressures between 2 - 8 GPa and shear strains of γ =

1 to 900. Compressive strains resulting from pressure application could be kept

below (d− d0/d0) = 0.1.

3.3 Differential Scanning Calorimetry

Lattice defects can be observed directly using transmission electron microscopy

(TEM), scanning electron microscopy (SEM) and indirectly X-ray profile anal-

ysis (XPA) [24], residual electrical resistivity (RER) [25], positron annihilation

spectroscopy (PAS) [27] and differential scanning calorimetry (DSC) [28]. In

this work most of the investigations of the defect type and concentration in the

HPT deformed metals were performed by DSC. DSC measures the energy of

the transformation process. The technique of the power compensated DSC is to

record the energy needed to establish a zero temperature difference between a

substance and a reference material against either time or temperature. During

a DSC experiment, a sample is heated over a range of temperature. At some

point, the material starts to undergo a chemical or physical change that releases



12 3.3. Differential Scanning Calorimetry

or absorbs heat. Integration of the area under the heat flow curve yields the

enthalpy change associated with the thermal event of interest. Observable pro-

cesses include simple phase transitions, characterization of polymorphism, and

the kinetics and thermochemistry for a variety of complex reactions. A schematic

construction of the DSC facility is shown in Fig. 3.5.

Figure 3.5: Design of typical power compensated differential scanning calorime-

ter.

As phase transitions result in endothermic peaks, but the annealing of defor-

mation induced defect in exothermic ones, the distinction between these defects

is rather easy. The analysis of defect types is possible because different types

of deformation induced defects anneal out at different temperatures, due to their

different activation enthalpies. The concentration can be directly evaluated from

the area of the resulting exothermic peak. The stored energy of dislocations can

be related to their density N as follows:

Estor = Gb2
N

4πκ
ln((b
√
N)−1) (3.1)
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where G is the shear modulus, b the absolute value of the Burgers vector. κ

denotes the arithmetic average of 1 and (1− ν), with ν = 0.343 as the Poisson ra-

tio, assuming equal parts of edge and screw dislocations. In equ. 3.1, it is tacitly

assumed that the external cut-off radius equals the distance between the disloca-

tions which is not necessarily true for all possible configurations of dislocations.

Thus for exact evaluations a configuration parameter alpha should be added to

the argument of the logarithm which may be quantitatively evaluated from TEM

or XPA investigations. At any case, it should be noted that the quantity Estor

does depend not only on the density and character of the dislocations involved,

but also on the arrangement of dislocations, in contrast to the quantity “residual

electrical resistivity - RER” described in chapter 4.2.

The concentration of vacancies can be evaluated from the stored energy of va-

cancies divided by the formation energy ∆Hf
ν . In Ni, ∆Hf

ν = 1.81 ± 0.02 eV, in

Cu ∆Hf
ν = 1.21± 0.01 eV and in Pd ∆Hf

ν = 1.85± 0.02 eV per vacancy [38].

Additional information on the nature of the defects can be obtained from the

activation enthalpy. For this purpose the method of Kissinger [39] was applied

by evaluating the shift of the peak temperature with changing heating rate, as

with increasing heating rate the peaks shift to higher temperatures (Fig. 3.6). By

plotting

ln

(
Φ

T 2

)
= − Q

RT
+ const. (3.2)

for various heating rates Φ and absolute peak temperatures T , the activation

enthalpy Q can be determined. R is the gas constant.

DSC measurements were performed using Netzsch DSC 204 and Perkin Elmer

DSC7. The temperature range from -190◦C to 700◦C (77K to 970K) and heating

rates 0.1 to 100 K/min−1 were available. The maximum possible sample size

was 6 mm in diameter and about in 1.5 mm height. An argon atmosphere helped
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Figure 3.6: DSC - curves for different heating rates of HPT Cu deformed to γT =

60 at 4 GPa

to avoid oxidation of the samples. The minimum peak area to be detected was

0.05 J/g which corresponds to a minimum dislocation density of N > 3 · 1014m−2

and minimum vacancy concentration of c > 3 · 10−5. This high accuracy can be

reached if one uses - as done here with all measurements - the same sample after

annealing as a reference

3.4 Hydrogen experiments

In a series of experiments, Fukai and his co-workers [40, 41] showed that in var-

ious quenched metal-hydrogen systems vacancies and vacancy agglomerates can

be formed in very high concentrations (i.e. up to several %), because they easily

get trapped by the hydrogen atoms. In related literature it has been shown these

high numbers of of vacancies can arrange to even ordered vacancy sublattices

[41, 42]. M. Krystian from our research group came up with the idea to try the

same experiment with deformation induced vacancies instead of thermal ones.

Pd was chosen because this metal has been well known and also well investi-

gated concerning its capability for hydrogen storage. For the deformation, HPT

was used in order to achieve a maximum in vacancy concentration. In sum, Pd
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samples have been subjected to hydrogen absorption and then processed by HPT

at low temperatures. For comparison HPT deformation was performed on pure

Pd samples as well.

The samples were loaded in a Sieverts-type (Fig. 3.7) apparatus (build by Dr.

Maciej Krystian [43], University of Vienna) resulting in a hydrogen concentration

x=0.6 (0.6 hydrogen atoms per 1 Pd atom). Special loading conditions slightly

above the two-phase region were chosen to avoid internal stresses (Fig. 4.21).

The apparatus is based on the volumetric adsorption/desorption technique which

is the most important method for determination of kinetics and overall uptake

capacity of hydrogen [43].

Figure 3.7: View of the main unit of the Sieverts’ apparatus (without sample

holders) [43]
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3.5 Sample preparation

Rods of Pd with 99.95%, Cu 99.99%, Ni 99.998% and Ni 99.99% purity were cut

into disks of 6mm diameter and 0.8mm thickness using spark erosion (Charmilles

Isopulse Type P25), subsequently cleaned nitric acid (Cu and Ni) or by sandblast-

ing (Pd) and annealed in a Heraeus (Typ ROK 6,5/60) furnace. For Pd a temper-

ature of 1073K for 2h in ultra high vacuum was used. Ni at 913K for 6h and, Cu

at 873K for 1 h were annealed in Argon atmosphere.

Afterwards the samples were deformed by HPT using one of the facilities avail-

able at the ESI Leoben, Austria [37]. Concerning the deformation hydrostatic

pressures of 2 to 8GPa and torsional shear strains of γ = 1 to 900 were achieved.

After the deformation the Cu and Ni samples were cut by spark erosion into discs

of 6mm diameter to fit into the DSC crucibles, and cleaned with acetone and ni-

tric acid before DSC measurements. Several samples were cut into rings with

an outer diameter of 6mm and 4mm diameter inside for a constant deformation

degree. In all cases, the deformation degree was averaged by integration over all

radii, resulting in the relation approximation of r = r/
√

3.

As concerns the experiments with hydrogen loaded Pd, samples were stored

under liquid nitrogen before and after HPT treatment. During HPT processing

they were cooled with solid CO2 pellets ensuring a deformation temperature of

233K (Fig. 3.8). To avoid water condensation during attaching of the cooled

sample into the DSC a self-made glove box was installed. The cooled Pd samples

were shaped manually in liquid nitrogen with sandpaper into 6mm discs. The

weight of each sample was determined with the micro-balance “Sartorius M3P

micro” with an accuracy of ±0.001 mg.
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Figure 3.8: CO2 cooling during HPT deformation.

3.6 Statistics

For this PhD thesis 15 trips to Leoben (Austria) were necessary for HPT defor-

mation of 565 samples altogether. More than 150 hours were spent at the spark

erosion machine in 90 sessions for sample preparation. More than 500 samples

were measured by DSC. The results were presented on four international con-

ferences. 15 international and national oral presentations and four posters were

performed. 8 publications in renowned international journals could be achieved.





4

Results and Discussion

4.1 Overview

The next chapter describes the work of four main publications which have been

already published in international journals [S1-S4]. These publications deal with

the questions described in the aims of the present thesis. It is well known that

an excessive amount of defects can be produced only in SPD deformed metals.

Especially these lattice defects are responsible for the outstanding properties like

increased strength. [S1] reports an analysis about the presence and nature of

the SPD-induced deformation induced lattice defects. The type and amount is

essential for adjusting the requirements for special tasks. The method of Residual

Electrical Resistivity (RER) is well known to be a proper method for analysis of

vacancies and dislocations although it is suitable rather for the determination of

the concentration than the nature of these defects [44].

DSC on the other hand is a less accurate, but easier and much faster technique

to determine the defect concentrations, and it is much better suited to identify the

nature of defects than RER, via measurement of their activation enthalpy. An-

19
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other important method for characterization of lattice defects is XPA (X-ray line

profile analysis). Beside the sizes of CSDs (coherent scattering domain size, that

is the size of the largest possible crystalline area without any defect) the absolute

value of dislocation densities and give information on the dislocation arrange-

ment [S1]. Since none of the methods is capable to fully quantify the defects

alone, only the combination of the methods is capable to do that while benefiting

from the specific capabilities of each method. In [S1] and [S2] Cu and Ni samples

were deformed by HPT to different strains at several hydrostatic pressures. The

annealing of HPT processed copper leads to one exothermic peak in the DSC

signal which originates from both vacancy agglomerates and dislocations. The

separation of these two defects types is possible by applying the XPA method,

since XPA is only sensitive to the dislocations. A distinction of dislocations from

the total DSC signal is possible by calculating the stored energy corresponding

to the dislocation density measured by XPA [S1]. Annealing of HPT processed

nickel, on the other hand, leads to three annealing peaks (single/double vacan-

cies, vacancy agglomerates and dislocations). The total concentration of vacan-

cies including those of agglomerates was higher in Ni compared to Cu, indicating

the influence of homologous processing temperature rather than that of stacking

fault energy. Investigating two different purities of Ni (99.99% and 99.998%)

gives evidence that impurities trap the deformation induced lattice defects, as the

annealing temperatures of the less pure material are higher. Impurities can there-

fore be used to increase the thermal stability of the nanocrystalline structure. One

important parameter governing the defect density available in the SPD materials

is the hydrostatic pressure. Samples were deformed at pressures of 2, 4 and 8

GPa for investigation of the role and influence of the applied hydrostatic pres-

sure. With the increase from 2 to 4 GPa leads to an increase of defect density, the

hydrostatic pressure of 8 GPa leads to a smaller defect density than 4 GPa caused

by recovery during the pressure release after deformation [45].



4. Results and Discussion 21

The second publication [S2] deals with the measurement of activation en-

thalpies. In nickel two values of activation enthalpies associated to the annealing

peaks could be measured, one for the annealing of dislocations and vacancy ag-

glomerates, and one for the single/double vacancies. Within the accuracy of mea-

surements, they do not vary with strain nor with the pressure applied although the

annealing temperatures do (for details see chapter 4.3). The obtained value of the

activation enthalpy for the single/double vacancy peak, Qvac = 0.65 eV, is about

a factor 2 lower than that of vacancy bulk diffusion Q = 1.18 eV [38]. This hints

at the fact that single/double vacancies move by core diffusion [46, 47]. The ac-

tivation enthalpy Q for the second peak Qdisl = 0.95 eV is also lower than the

value given for vacancy bulk diffusion, Q = 1.18 eV [38]. This indicates that

with the mechanism of dislocation annealing deformation induced excess vacan-

cies (-agglomerates) are involved.

The activation enthalpy of copper shows a strong decrease with strain. This

decrease could be caused by the high vacancy concentration produced by SPD.

But as this concentration is very high already at small strains and becomes con-

stant with higher ones, another explanation have been favored. Not only the level

of external stress but also that of long range local internal stress measured by

XPA show a strain dependence which is strictly symmetric to that of the activa-

tion enthalpy. This strongly suggests that internal stresses decrease the activation

enthalpy for the motion of dislocations and/or vacancy agglomerates and thus en-

hance their annealing.

Publications [S3] and [S4] deal with the generation of defects in hydrogenated

materials by means of SPD. As already mentioned in the previous chapter, the

idea of these experiments was to store high numbers of vacancies through trap-
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ping by hydrogen and to provide the surplus vacancies by SPD instead of quench-

ing from high temperatures.

Pd of 99.95% purity was hydrogenated and subsequently processed by HPT

to very high torsional strains of about 900 at a hydrostatic pressure as high as 8

GPa. To prevent desorption of hydrogen during deformation, HPT was perfomed

at 233K using solid CO2 pellets for cooling. For comparison also H2 loaded but

undeformed samples were investigated by DSC.

The experimental results of the previous experiments of Ni [S1, S2] were very

helpful as the metals Ni and Pd have similar material parameters (melting point,

lattice structure, stacking fault energy, and formation energy of vacancies). In

Pd a single/double vacancy peak was found as well as a peak of dislocation

annealing [S3]. Comparison of DSC measurements of the deformed with the

undeformed state, both after hydrogen loading, showed endothermic peaks of

hydrogen desorption. The same peak areas have been observed in both deformed

and undeformed samples which indicate that no hydrogen was lost during and

after deformation. In the deformed sample, hydrogen desorps at a slightly lower

temperature, as the additional grain boundaries work as fast diffusion paths. The

area of the hydrogen desorption peak is about 100 times larger and is superposed

to the with the defects’ annealing peaks which does not allow a selective eval-

uation in spite of the fact that hydrogen annealing reveals an endotherm DSC

signal in contrast to the exotherm one of defect annealing. Therefore the samples

were stored at RT for several weeks to remove the main part of hydrogen. Af-

ter the desorption of hydrogen an enormous amount of vacancies could be found

resulting in a very sharp peak at about 200◦C corresponding to a vacancy con-

centration of 7 ·10−4. Due to comparison with literature and with HPT deformed,

hydrogen free samples it could be concluded that this sharp vacancy peak does

not result from single vacancies but mainly from annealing of vacancy-hydrogen

clusters; thus, paper [S3] for the first time presented evidence for the formation
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of vacancy-hydrogen clusters out of deformation induced vacancies. The dislo-

cation density found in Pd is clearly lower than that measured in Ni, but higher

than in comparison to the non hydrogenated Pd-sample, and the annealing has

been observed at a temperature being about 150 K higher. This is a clear hint that

not only vacancies have been stabilized by hydrogen but also dislocations. These

interesting results led to supplementary investigations in [S4].

The publication [S4] comprised a reproduction of the measurements done in

[S3] and includes additional TEM investigations for verification of the hints re-

sulting from [S3] concerning the type of defects indicated by the annealing peaks.

TEM investigations were performed at first without any thermal treatment, then

after a single DSC run up to 523 K and subsequently in situ heated up to 823

K. For the studies by scanning electron microscopy (SEM), the samples after

DSC were additionally thermally treated for 1 h at 1073 K under high vacuum

in order to allow the vacancies to anneal, i.e. coalesce to pores which could be

detected by SEM investigations. These studies demonstrate for the first time that

low temperature-HPT of partially hydrogenated palladium allows for the forma-

tion of Vac-H clusters even in bulk samples. Hitherto, this formation was only

possible in powders [41, 42, 48–52] or thin layers/foils although a very high

concentration of voids instead of vacancies was detected [31, 53, 54]. At RT

these VacŰH clusters coexist with interstitial hydrogen atoms as well as with

monovacancies, and are stable in Pd up to 482 K. To emphasize once more, the

results indicate that stabilization by excess H may occur not only for vacancies

but also for other deformation-induced lattice defects like dislocations, and/or

grain boundaries. Altogether, these facts show that nanometals may experience a

marked increase in thermal stability through solute hydrogen.

As publications have to be rather concise there remains not always enough
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space for reporting of some results although they may be important. Therefore

the most interesting unpublished results made in frame of this PhD thesis have

been summarized in the chapter following the presentation of publications [S1-

S4].

4.2 The Presence and Nature of Vacancy Type Defects in SPD

Nanometals [S1]

4.2.1 Introduction

In the last two decades a few methods for achieving nanocrystalline materi-

als have been developed. Inert gas condensation and consolidation, electrode-

positing, ball milling and consolidation, and recently severe plastic deformation

(SPD). Although the grains are not always as fine as with the previous meth-

ods, SPD offers important advantages like massive as well as 100% dense and

pure materials. Moreover, there is a number of features which are not achieved

with usually nanocrystallized materials. These are (i) considerable ductility, (ii)

changes in phase stability, (iii) enhancement in diffusion. Comparing the nanos-

tructure of SPD-nanomaterials with those achieved by the other methods, it is

obvious that deformation-induced lattice defects and the connected local strains

are specific for SPD and thus, predestined to explain the features (i)-(iii). This

gives motivation to study the effects of their concentration and distribution to

the SPD special features in more detail. This paper focuses on the investigation

of the number and nature of vacancy type defects in SPD-nanometals as it has

been recently done by means of annealing calorimetry and -resistometry [4, 22].

X-ray line profile analysis (XPA) revealed to be necessary for quantifying the

dislocation density since vacancy agglomerates and dislocations anneal out at

approximately the same temperature. These former results are supplied by new
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defect-speficic investigations of SPD-deformed Ni of different purities, and will

be compared with the previous ones [4, 22] and those from literature [55].

4.2.2 Experiments

Samples and treatment

Rods of Ni with 99,99 and 99.998% purity and Cu 99,99% have been cut into

disks of 8mm diameter and 0.8mm thickness using spark erosion and subse-

quently cleaned and annealed at 640◦C for 6 h (Ni) and 600◦C for 1 h (Cu) in

Argon atmosphere. Then they were deformed by a high pressure torsion (HPT)

equipment constructed by Pippan et al. at ESI Leoben, Austria [37]. By applying

hydrostatic pressures between 2 - 8 GPa, shear strains of γ = 1 to 134 have been

achieved, with γ = rφ/d where r is the radius and d the thickness of the sample,

φ is the amount of rotation of the HPT process in radiant. Compressive strains

resulting from pressure application could be kept below (d− d0/d0) = 0.1.

Methods

Differential scanning calorimetry The differential scanning calorimetry (DSC)

measurements where performed using two different commercial facilities, i.e. a

Netzsch DSC204 and a Perkin Elmer DSC7. Heating has been carried out in a

linear way in a temperature range from 25 to 600◦C. The standard heating rate

was 10K/min, but for the determination of the activation enthalpy additional mea-

surements with heating rates of 5, 20, 30 and 50 K/min were performed. To reach

the high calorimetric accuracy of the stored energy determination of less than 1%,

an annealed reference sample with identical sample mass (within ±0.01%) was

used.

During DSC measurements, the annealing of deformation induced defects can

be observed by the occurrence of exothermic peaks (Fig. 4.1), the area of the

peaks correspond to the total enthalpy of annealing defects, from which their
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Figure 4.1: A typical heat flow curve as a function of the temperature for HPT-

deformed Ni 99.998% exhibits two exothermal peaks. The vertical

lines indicate the peak temperatures, the stored energies are evalu-

ated from the integrated areas of the peaks.

densities can be derived (see below). Information on the nature of the defects

can be obtained from the peak temperature and the activation enthalpy. For the

latter the method of Kissinger [39] was applied by evaluating the shift of the peak

temperature with changing heating rate. By plotting

ln

(
Φ

T 2

)
= − Q

RT
+ const. (4.1)

for various heating rates Φ and absolute peak temperatures T , the activation

enthalpy Q can be determined. R is the gas constant. The stored energy of

dislocations can be related to their density N as follows:

Estor = Gb2
N

4πκ
ln((b
√
N)−1) (4.2)

where G is the shear modulus, b the absolute value of the Burgers vector. κ

denotes the arithmetic average of 1 and (1 − ν), with ν = 0.343 as the Poisson
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ratio, assuming equal parts of edge and screw dislocations. The concentration of

vacancies can be evaluated from the stored energy of vacancies divided by the

formation energy ∆Hf
ν . In Ni, ∆Hf

ν = 1.81 ± 0.02 eV per vacancy, and in Cu

∆Hf
ν = 1.21± 0.01 eV per vacancy [38].

Residual electrical resistivity The residual electrical resistivity (RER) of the

deformed samples was measured at liquid helium temperature with the conven-

tional four-wire method. After the final annealing step the geometry factor was

determined, allowing for derivation of the defect resistivity ∆ρ = ρ(T )−ρi, where

ρi represents the initial or annealed sample state without deformation and ρ(T )

the resistivity after annealing at temperature T [25]. From the HPT pills, ’U’-

shaped samples with extra leads for well-defined potential contacts have been cut

by spark erosion, the U-shape enabling an approximately constant strain value

throughout the sample. The accuracy for measurement of ∆ρ was better than

δ(∆ρ)/ρ ≈ 10−3, even including repeated re-mounting of samples for annealing

purposes. Concerning the evaluation of defect densities, that of dislocations can

be derived asN = ∆ρ/ρdisl, where ρdisl denotes the specific dislocation resistivity

(being ρdisl = 2.8·10−25Ωm−3 for Ni and ρdisl = 0.8·10−25Ωm−3 of Cu [56]. If ∆ρ

arises from vacancies, their concentration cv follows from cv = ∆ρ/ρvac, where

ρvac stands for the resistivity per unit vacancy concentration (ρvac = 2.9 ·10−4Ωcm

for Ni, ρvac = 0.62 · 10−4Ωcm for Cu [38]); the values given in parentheses have

been averaged from a number of works given in [38, 56].

X-ray line profile analysis (XPA) Selected Ni and Cu samples have been sub-

jected to Multi-reflection X-ray Line Profile Analysis (XPA) using K 1 line of

rotating Cu anode generator as well as synchrotron radiation available at the Syn-

chrotron ELETTRA, Trieste, Italy. The wavelength used was λ =1.54 nm, the

spot size on the sample was about 100µmx500µm. Using a linear position sensi-

tive detector (Braun PSD-50) and a curved one (INEL CPS590), respectively, the
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following 6 reflections have been recorded simultaneously: {111}, {200}, {220}, {311}, {222}

and {400}. For details of the diffraction theory of the peak broadening related to

domain size see [57, 58], of that related to lattice distortion see [59, 60]. A nu-

merical procedure was used for fitting the Fourier transform of the experimental

profiles by the product of the theoretical functions of each, the size and strain

Fourier transforms [61, 62].

4.2.3 Results and Discussion

Peak temperature and activation enthalpy

With residual resistivity measurements performed on conventionally deformed

samples of Ni 99,998% [17, 63, 64], the two annealing peaks have been identified

to originate from the annealing of single and/or double vacancies, and disloca-

tions, respectively. Thus, in the following the peak at the lower temperature will

be called "vacancy peak" while the high temperature one will be called "disloca-

tion peak". Fig. 4.2 shows the peak temperatures as a function of strain of nu-

merous measurements on Ni of two different purities which have been deformed

by HPT at different hydrostatic pressures. With increasing strain, the dislocation

peak shifts to lower temperatures while the temperature of the vacancy peak re-

mains more or less constant. This is a general feature of cold worked materials

where the internal stresses connected to the dislocations increase with increasing

dislocation density and are assumed to shift the dislocation peak to lower temper-

atures [65]. As a difference to the dislocations, single and/or double vacancies

have a markedly smaller strain field and thus tend to anneal at about a certain

temperature irrespective of strain [17]. As concerns the influence of the purity

of the material and the applied hydrostatic pressure on the peak temperature, no

effect can be seen for the single/double vacancy peak temperatures, whereas the

dislocation peaks reveal a moderate dependency.

Performing DSC experiments with different heating rates all defect peaks shift



4. Results and Discussion 29

Figure 4.2: The peak temperatures measured by DSC for HPT Ni 99.99% (full

symbols) and Ni 99.998% (open symbols) deformed at room tem-

perature at different hydrostatic pressures (see legend) as a function

of the applied shear strain. The upper points show the peak tem-

peratures from dislocation-type peak, and the lower ones from the

vacancy peak. Tmax denotes the particular peak temperature. Please

note the axis break for better scaling.

to higher temperatures when the heating rate is increased. This effect is used

to determine the activation enthalpy according to equation (1) from regression

within the Kissinger plot. Fig. 4.3 shows an example for Ni 99.998% which

was deformed to a shear strain γ =7.7 at a hydrostatic pressure of 4 GPa. The

determination of the activation enthalpy of migration Qmig has been performed

in differently strained samples results of which are plotted in Fig. 4.4. It can

be seen that the values for single/double vacancy annealing lie around 0.65 eV

and do not change with strain, which agrees with the strain dependence of peak

temperature. The Qmig - values obtained for dislocations amount to about 0.95

eV but, in contrast to the peak temperatures, they obviously do not depend on the

strain value at least for strains γ ≤15. This problem may be connected with the
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fact that the dislocation peak actually consists of two subpeaks, one from dislo-

cations (with varying annealing temperature) and another from vacancy agglom-

erates (with constant annealing temperature), and that the latter may dominate

the first at least in connection with varying heating rates. A support of this idea

arises from the fact that the measured activation enthalpy for the second peak

Qmig =0.95 eV is lower than that given for vacancy bulk diffusion, Qmig =1.18

eV [38] which is equal to that of dislocation annealing as long as deformation

induced vacancies are present. This coexistence of vacancy agglomerates and

dislocations is discussed in more detail within the next section.

Figure 4.3: Typical Kissinger plots referring to Equ.(1) for vacancy and dislo-

cation peaks measured by DSC, for HPT Ni 99.998% deformed at

4GPa to a shear strain of 8. The full lines represent the regression to

the experimental data.

As concerns the value of the activation enthalpy for the single/double vacancy

peak, Qmig = 0.6 eV, it is about a factor 2 lower than that for vacancy bulk

diffusion Qmig = 1.18 eV [38] which is typical of the difference of activation
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enthalpies of bulk diffusion to that of dislocation core diffusion [46, 47]; thus

this mechanism can be assumed to be operative for the single/double vacancies

detected here.

Figure 4.4: Activation enthalpies Q as evaluated from DSC scans, for HPT Ni

99.99% (full symbols) and Ni 99.998% (open symbols) deformed at

room temperature at different hydrostatic pressures (see legend), as

a function of the applied shear strain. The upper points show the

activation enthalpy from the dislocation-type defects and the lower

ones from the vacancies. The dashed lines demonstrate rather con-

stant levels of Q. The crosses indicate the values from compression-

deformed Ni 99.998%.

Regarding the influence of impurities and the hydrostatic pressure to the acti-

vation enthalpies in question, no measurable effect in activation enthalpy neither
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from changes in purity nor from those in hydrostatic pressure can be recognized,

except the values measured from HPT samples after deformation at a pressure

of 8 GPa where Qmig is distinctly higher than with lower pressures. This indi-

cates the formation of a more relaxed, strain less dislocation configuration which

may result from static recovery effects which occur during unloading / pressure

release after HPT deformation as it has been described in our paper [66] for the

case of Cu.

Figure 4.5: Stored energies as measured by DSC of HPT Ni 99.998% deformed

at 8 GPa, as a function of the applied shear strain. The lines represent

a guide for the eye. Please note the axis break for better scaling.

Stored energy, defect resistivity and defect concentrations

Fig. 4.5 shows the stored energies of the vacancies and the dislocations. A rela-

tively strong increase with strain can be observed both occurring from vacancies

as well as from the dislocations. The results of the resistometric measurements

obtained by isochronal annealing treatments of HPT deformed Ni samples (at
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6GPa hydrostatic pressure) are plotted in Fig. 4.6. Here, two annealing stages

are observable: (i) a smooth drop at about 100◦C and (ii) a steep drop starting at

about 175◦C. Stage (i) corresponds to the annealing of vacancies while stage (ii)

represent the annealing of dislocations.

Figure 4.6: Change of the residual electrical resistivity during isochronal anneal-

ing of HPT Ni 99.998% deformed at 6 GPa to different amounts of

shear strain γ as indicated. The lines represent a guide for the eye.

The experimental error lies within the symbol size.

Concentration of single/double vacancies It is easy to evaluate the vacancy

concentration from the stored energy as represented by peak 1, by using the for-

mation enthalpy of single vacancies of Ni [38]. Similarly, the vacancy concen-

tration can be determined from the step height of the first drop in Fig. 4.6, using

the resistivity contribution per unit concentration of vacancies also given in [38].

In Fig. 4.7 the concentrations of single/double vacancies are presented result-

ing from evaluating both the data from DSC as well as from RER. Irrespective

of the conditions, they all lie in the same order of magnitude of ≈ 10−4 which
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is close to the equilibrium concentration of vacancies at the melting tempera-

ture - at least of the metals considered here. A detailed inspection of the graphs

shows that below a critical shear strain γ ≈15 the concentration of vacancies in-

creases with increasing pressure, whereas with shear strains beyond that value

the concentration decreases with increasing pressure. While the behaviour below

the critical strain combines with the prediction of Zehetbauer’s model to receive

enhanced deformation-induced vacancy concentrations at enhanced hydrostatic

pressure (i.e. by pressure-induced suppression of vacancy annihilation [18]), the

behaviour beyond that strain indicates recovery effects to play a role here: The

release of hydrostatic pressure immediately after SPD induces a strain relieving

rearrangement of dislocations which is achieved by vacancy-consuming dislo-

cation climb, thus reducing the total vacancy concentration. This explanation

is substantiated by previous X-ray measurements of HPT Cu [67] showing that

the internal strains markedly decrease beyond critical magnitudes in strain and

pressure.

Dislocation density In Fig. 4.8 dislocation densities as function of deformation

are presented as they have been evaluated from both quantities, i.e. stored energy

and resistivity as it has been described in the experimental section. In addition,

dislocation densities as determined by the XPA method are demonstrated. As

already reported in paper [67] for the case of SPD Cu, the XPA gives much

lower dislocation densities even with the same hydrostatic pressure applied than

the other two methods. This discrepancy can be explained by the fact that the

broadening of Bragg profiles in the XPA method is only related to dislocation

displacement fields which are larger than 5 nm. Smaller pieces of dislocations or,

above all, vacancy agglomerates do not affect the XPA signal but will markedly

contribute to those of DSC and RER. We can make use of this fact by evaluating

the "discrepancy" in terms of concentrations of vacancy agglomerates. Fig. 4.9
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Figure 4.7: The concentration of single/double vacancies evaluated from the first

peak/decay of the DSC (full diamonds) and RER (open symbols)

measurements of HPT Ni 99.998% deformed at different hydrostatic

pressures (see legend), as a function of the applied shear strain. The

dashed and full lines represent a guide for the eye. The error bars of

the DSC values result from the maximum variation of the literature

values for the vacancy formation enthalpy [38] when using them for

evaluation of the vacancy concentration.

shows the results of this evaluation exhibiting quite high concentrations of these

agglomerates which even exceed those of single/double vacancies by a factor of

4-5. Similar to the single/double vacancies, significantly more defects are stored

at higher pressures although they exhibit some enhanced stability i.e. do not

anneal so easily with the higher strains and/or pressures applied.

Comparison to HPT deformed copper As already mentioned, a similar inves-

tigation has been reported for HPT deformed Cu 99.99% [67]. Pressures applied

during HPT amounted to 4 GPa and 8 GPa, and resolved shear strains have been

achieved to values beyond 100. The dislocation density has been determined by

the XPA method, and the stored energy was measured by DSC in equal way as
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Figure 4.8: The true dislocation density determined by XPA (open up and down

triangles), and the apparent dislocation density evaluated from the

second peak of the DSC data (full diamonds) or from step height of

RER data (open circles), of HPT Ni 99.998% deformed at different

hydrostatic pressures (see legend), as a function of the applied shear

strain. The dashed and full lines represent guides for the eye. The

error bars of the DSC values denote the maximum variation of the

literature values for the vacancy formation enthalpy [38] when using

them for evaluation of the vacancy concentration. The error bars of

the XPA results represent the total error of the method.

described here for Ni. In Cu only one single exothermic peak has been found at

temperatures between 180 and 250◦C depending on the amount of strain, indi-

cating that this peak must represent the annealing of dislocations produced dur-

ing HPT. The dislocation density resulting from the measured stored energy is

plotted in Fig. 4.10 together with the results of the XPA method. As in case

of Ni, a large difference between the results of the two methods is seen which

suggests the presence of other defects than dislocations being not detectable by

XPA. A similar discrepancy has been found also for ECAP deformed Cu [4]
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where this difference has been ascribed to vacancy agglomerates, too. Evaluat-

ing the discrepancy in terms of vacancy agglomerates for the actual case of HPT

Cu, concentrations of vacancy agglomerates as function of resolved shear strain

and hydrostatic pressure were calculated as shown in Fig. 4.11. As in case with

ECAPed Cu [4], the vacancy concentration strongly exceeds that of conventional

plastic deformation (see dashed-dotted line in Fig. 4.11) which already is an

effect of extended hydrostatic pressure and strain being typical of SPD. With fur-

ther increase of pressure and of strain, the vacancy concentration still increases,

although some saturation occurs similarly as in the case of Ni. With respect to the

strain this value is reached earlier for the samples deformed at 8 GPa than those

at 4 GPa again suggesting some recovery processes being launched through the

release of hydrostatic pressure.

Comparing now these results (Fig. 4.11) with those from HPT Ni (Figs4.7,

4.9) in more detail, it is seen that - with the same strain applied at the same

hydrostatic pressure - the total maximum concentration of vacancies considering

both agglomerates and single/double vacancies is smaller in Cu than in Ni. For

an understanding of this effect, we have to consider the vacancy concentration

as a result from the balance of two terms, i.e. of vacancy generation and of

vacancy annihilation. While in case of plastic deformation (same amount) the

generation term is about the same in Cu and Ni, the annihilation is still governed

by the material specific migration enthalpies of vacancies Qmig. For Cu, the

latter amounts to Qmig = 0.76 eV [38] which is markedly smaller than that for

Ni, Qmig = 1.18 eV [38]. Therefore it is expected that the total concentration of

HPT induced vacancies left after annihilation is lower in HPT Cu than in HPT

Ni.

We may also interpret the fact that in Cu no single/double vacancies have been

observed, as it was also true for the more impure Ni (less than 99.99%, [22]).
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Figure 4.9: The concentration of vacancy agglomerates evaluated from the dif-

ference of the second peak of the DSC data (full diamonds) or from

step height of RER data (open symbols), and from the results for the

true dislocation density, of HPT Ni 99.998% deformed at different

hydrostatic pressures (see legend), as a function of the applied shear

strain. The dashed lines represent a guide for the eye. The error bars

of the DSC as well as the RER values result from the maximum vari-

ation of the literature values for the vacancy formation enthalpy [38],

and of those for the specific vacancy resistivity.

This fact may be a consequence of the lower stacking fault energy of Cu, and of

that of impure Ni (less than 99.99%, [22]) compared with that of very pure one

(99.998%): A lower stacking fault energy may facilitate the formation of vacancy

agglomerates.

4.2.4 Summary and Conclusions

Two different metals (Ni, Cu) have been investigated with respect to the gener-

ation and annihilation of vacancy type defects during and after SPD processing.

The combined application of different methods like annealing calorimetry, resis-

tometry and X-ray Bragg profile analysis allowed to specify these defects in sin-
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Figure 4.10: The true dislocation density determined by XPA (open symbols) as

well as the apparent dislocation density evaluated from the single

exothermic peak of the DSC measurements (full symbols) of HPT

Cu 99.99% deformed at different hydrostatic pressures (see legend),

as a function of the applied shear strain. The dashed and full lines

represent a guide for the eye.

gle/double vacancies and vacancy agglomerates, to measure their concentrations

and to explore their annihilation mechanisms. The results can be summarized as

follows:

1. During SPD processing, very high concentrations of vacancy type defects

are achieved being close to those of thermal vacancies at the melting point.

2. Applying increasing plastic deformation and/or hydrostatic pressure, higher

concentrations of both single/double vacancies and/or vacancy agglomer-

ates result. The concentration seems to depend on the vacancy migration

enthalpy of the material considered, while the nature of the vacancy defects

being present appears to be connected with the stacking fault energy.

3. With the highest strains and pressures applied, recovery is launched through
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Figure 4.11: The concentration of vacancy agglomerates evaluated from the dif-

ference of apparent dislocation density derived from DSC measure-

ments and the values for true dislocation density from XPA mea-

surements, of HPT Cu 99.99% deformed at different hydrostatic

pressures (see legend), as a function of the applied shear strain.

The dashed lines represent guides for the eye.

the release of pressure after SPD so that the defects - preferably the sin-

gle/double vacancies - tend to anneal via some core diffusion mechanism.

This effect limits or even decreases their maximum possible concentration

achieved.

4.3 Activation Enthalpies of deformation induced lattice defects

in SPD nanometals measured by Differential Scanning Calorime-

try [S2]

4.3.1 Introduction

The enhanced mechanical properties of nano crystalline metals like increased

strength are already well known. HPT (high pressure torsion) is a powerful
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method of severe plastic deformation (SPD) to gain fully dense samples with

a small grain size even below 100 nm. The high deformation degrees reached

by SPD methods cause high densities of lattice defects, especially dislocations

and thus provide the basis for the formation of new grain boundaries. Details of

the produced micro structure have been extensively studied by several papers [2–

7, 68]. Unfortunately at least in pure metals the small grains tend to grow already

at moderate temperatures, due to advanced annealing of the highly concentrated

deformation induced lattice defects which results in a loss of the outstanding me-

chanical properties. Therefore a careful analysis of the annealing lattice defects

and of their annihilation mechanisms is necessary. One possibility is to achieve

this by systematic measurements of the activation enthalpies of the lattice de-

fects. First treatises on performing differential scanning calorimetry (DSC) with

the method of Kissinger [39] in SPD nano materials proved DSC to be a smart

technique for the determination of the activation enthalpy of lattice defects with

sufficient reproducibility and reliability [S1].

The present paper focuses on the investigation of the activation enthalpy of the

deformation induced defects in fcc metals after HPT deformation. A systematic

study of the dependence of the activation enthalpy on both the applied strain as

well as on the hydrostatic pressure has been carried out.

The number and nature of lattice defects in SPD-nano metals was recently an-

alyzed by means of annealing calorimetry and resistometry [S1][4, 22]. It was

concluded from the specific peak temperatures that the peak at low annealing

temperature (0.23 Tm, Tm is the melting temperature in K) reflects the annealing

of single and/or double vacancies, while that at the higher temperature (i.e. the

range of T = 0.30 − 0.37Tm) represents the annihilation of both dislocations and

vacancy agglomerates. Because of the latter fact, a proper quantification of the

defect densities is required to separate the corresponding contributions. X-ray

line profile analysis (XPA) is capable to reliably determine dislocations solely
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thus enabling such a separation quantitatively. Results from a defect-specific in-

vestigation of the annealing behavior of SPD-deformed Cu and Ni are obtained

and will be compared to the previous ones [S1][4, 22] and those from literature

[55, 69].

4.3.2 Experiments

Samples and treatment

Rods of 99,99% pure Cu and Ni with 99,99 and 99.998% purity were cut into

disks of 8 mm diameter and 0.8 mm thickness using spark erosion and subse-

quently cleaned and annealed at 600◦ C for 1 h (Cu) and 640◦ C for 6 h (Ni),

respectively, under Argon atmosphere. Afterwards the discs were deformed by

high pressure torsion (HPT) at the Erich Schmid Institute Leoben, Austria [37].

Applying hydrostatic pressures of 2, 4 and 8 GPa, the samples were deformed

to shear strains of γT ≈ 1 − 134. In total more than 75 samples were produced

for each material. Here γT = (rφ/d) where r, d are the radius and the thickness

of the sample respectively, φ is the angle of rotation of the HPT process in ra-

diant. Any compressive strains resulting from the application of the hydrostatic

pressure could be kept below ((d− d0)/(d0)) = 0.1.

Methods

Differential scanning calorimetry The differential scanning calorimetry (DSC)

measurements were performed using two different commercial facilities: a Netzsch

DSC204 and a Perkin Elmer DSC7. Heating was carried out linearly in a tem-

perature range from 298 to 873 K. For the determination of the activation en-

thalpy, measurements with heating rates of 5, 10, 20, 30 and 50 K/min were per-

formed. The the peak temperatures were measured with an accuracy of ±0.5K.

Concerning the measurements of the stored energy, an accuracy of less than 1%

was achieved, by using annealed reference samples with identical sample masses
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(within 0.1%). For the DSC measurements circular samples with diameters 6 mm

were cut concentrically from the HPT discs. Each measured stored energy and/or

activation enthalpy was associated to a ’mean’ representative strain of the sample

which has been averaged by integration over the whole sample area. The DSC

samples used in the present experiments were discs of 6 mm radius cut out of the

HPT-discs concentrically via spark-erosion. The number of defects measured is

therefore the integral amount over the whole sample. In order to correlate this to

a certain amount of deformation, the torsional shear strain was equally averaged

and was used in all plots. During DSC measurements, the annealing of defor-

mation induced defects can be observed by the occurrence of exothermic peaks.

The area of these peaks corresponds to the total formation enthalpy of the an-

nealing defects, from which their densities can be derived [S1]. Information on

the nature of the defects can be obtained from the temperature of the peak maxi-

mum (determined with an error < 0.5%), as well as from the activation enthalpy.

For the latter the method of Kissinger [39] was applied in the present paper, by

evaluating the shift of the peak temperature for different heating rates: Plotting

ln

(
Φ

T 2

)
= − Q

RT
+ const. (4.3)

for various heating rates Φ and absolute peak temperatures T , the activation en-

thalpy Q can be determined (R is the gas constant).

X-ray line profile analysis (XPA) X-ray line profile analysis is a powerful tool

in the analysis of ultra-fine grained and nano-crystalline materials. It provides

valuable physical micro-structural parameters such as the density of dislocations

and their arrangement, as well as the size and the distribution of the coherently

scattering domains (CSD-size) [62]. In certain cases it is also possible to obtain

information about the internal residual stresses present in the material by using

the method described in [70].

The necessary X-ray data were collected using a highly monochromatic X-ray
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beam in the home laboratory, achieved by a special Siemens M18XHF rotat-

ing Cu anode generator with a Ge single crystal monochromator. The resulting

Cu Kα1 radiation was monochromatic with δλ/λ < 10−4 and the spot size on

the sample was about 100 x 500 µm2. The {111}, {200}, {220}, {311}, {222}

{400} and {331} Bragg reflections were recorded using a linear position sen-

sitive detector Braun PSD-50. The peaks showed asymmetric broadening that

was attributed to long range internal stresses and was evaluated according to the

procedure described in [70]. Some results of this investigation were already pub-

lished in a previous paper [66].

Thanks to the fact that XPA is not sensitive to dislocations with a length smaller

than about 3 nm, it could be used to separate the shares of the dislocations and the

vacancy agglomerates when they contributed to the same DSC peak (see Figs4.17

and 4.18a); for a close description of the procedure see [S1][4, 39]). For this pur-

pose selected Cu samples were subjected to the Multiple Whole Profile (MWP)

fitting procedure [61, 62]. This yields, most notably, the absolute values of the

dislocation densities present in the material.

4.3.3 Results and Discussion

Activation Enthalpies

As it should occur with the Kissinger method used with DSC, all defect annealing

peaks shift to higher temperatures when the heating rate is increased. According

to equation (4.3) the activation enthalpy is determined via a linear regression

within the Kissinger plot, as it has been visualized in Fig. 4.13 for the case of Ni.

The error for Q from the regression was less than 5% in all cases. The activation

enthalpies from DSC measurements of HPT deformed Cu are shown in Fig. 4.12

for different strains and different hydrostatic pressures. The graphs of activation

enthalpies exhibit a dependence of Q on the strain and the pressure applied, with

Q values between 0.78 and 0.48 eV.
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Figure 4.12: The activation enthalpy of Cu as a function of the shear strain for 2,

4 and 8 GPa

Figure 4.13: An exemplary Kissinger plot for HPT Ni 99.998% deformed to a

shear strain of 7.7 at 4 GPa

As concerns HPT Ni, the procedure shown in Figure 4.13 was performed for all

differently strained samples. The corresponding results are plotted in Figure 4.14.

In contrast to the case of Cu, DSC in HPT Ni revealed two peaks [S1][22], with

activation enthalpies Q(vac) = 0.65 eV for the single/double vacancies at low

temperature one, andQ(disl)= 0.95 eV for a mixture of vacancy agglomerates and

dislocations at high temperature. These values have been found to neither change

with strain nor with the pressure applied nor with the purity of the material.
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Figure 4.14: The activation enthalpy of vacancies and dislocations for HPT Ni

as a function of shear strain for different hydrostatic pressures. It is

found that Q(disl) = const = 0.95 eV (filled symbols), Q(vac) =

const = 0.65 eV (empty symbols)

Peak temperatures

A good indicator for the reliability of measured activation enthalpy data are the

annealing temperatures Tmax of the peaks observed. Both, Q and Tmax should

show similar behavior as a function of the deformation and the pressure. Accord-

ing to Fig. 4.15 the peak temperatures Tmax of the only peak in Cu (representing

the annealing of vacancy agglomerates and dislocations) shift to lower temper-

atures up to strain values below γT = 15, and beyond that value they level out

and/or tend to shift back to higher temperatures. With all pressures applied, the

same behavior is seen in the strain dependence of the related activation enthalpy

Q(disl) (see Fig. 4.12) so that the values of Q(disl) at least for the lowest pres-

sure 2 GPa applied, and also their strain dependence can be taken for serious.

Regarding the dependence of Q on pressure, however, the activation enthalpies

behave in a different way than the peak temperatures. Since the accuracy of peak

temperature data is much higher than that of activation enthalpy data, one should

trust in the Tmax values rather than in the Q values.
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Figure 4.15: Evolution of the DSC peak temperatures of HPT Cu with increasing

strain for different pressures

The strain dependences of peak temperatures of HPT Ni are shown in Fig. 4.16

for different peak types and purities. There is agreement between the peak tem-

perature and the activation enthalpy for the single/double vacancy peak showing

no dependence on strain, but this is not true for the peak temperatures of the

high temperature peak at least for strains smaller than γT = 15 which exhibit

a clear dependence on strain similar to the case of Cu. Apart from the reasons

given above for the smaller reliability of Q analysis, it is evident that the high

temperature peak represents the annealing of both vacancy agglomerates and dis-

locations, and in the Kissinger analysis only an average Q value can be evaluated

with its strain dependence being suppressed.

Interpretation of activation enthalpies, and comparison with literature

The activation enthalpies measured in this work for Cu are in the range ofQ = 0.48

to 0.78 eV, depending on the strain and pressure applied. These results are a little

below the activation enthalpy of boundary migration in Cu (Q = 1.1 eV) found

in the literature [71]. This enthalpy is also called “activation enthalpy of primary

recrystallization” [38]; it represents the annihilation enthalpy of dislocations and

amounts to about one half of the self diffusion enthalpy. The dependence of Q

with increasing strain, and the absolute values of Q correspond well with mea-
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Figure 4.16: The evolution of the DSC peak temperatures as a function of strain

for Ni of different purities. Note the different strain dependences of

the vacancy peak, and the vacancy agglomerate/dislocation peak,

respectively!

sured data from literature on Cu samples deformed by ECAP (Q =1 to 0.65 eV)

[69, 72] and cold rolling (Q =1.1 to 0.8 eV) [73, 74]. Recent measurements of

the activation enthalpy with tracer diffusion led to similar results (Q =0.99 eV

after one ECAP pass down to Q =0.67 eV eV after 12 passes) [75, 76]. As for

Ni, the results for activation enthalpies are also in good agreement with results

from the literature [55, 77].

There has not been measured any dependence of Q on shear strain, but we

should consider some, according to the peak temperature dependence for pur-

poses of interpretation (see next section). The value of the activation enthalpy

determined for Ni for single/double vacancies equals to Q =0.65 eV. This is

about a factor of two lower than that of vacancy bulk migration Q =1.18 eV

[38], which hints at the fact that single/double vacancies move by core diffu-

sion [46, 47]. The enthalpy for primary recrystallization in Ni amounts to about

1.4 eV. Similarly as in case of Cu, the values for Ni derived by Kissinger analysis

are below that of primary recrystallization. The reason for that may arise from

the fact that at least in the HPT Ni with high shear strains ([S1][22], Figure 4.18),

and in Cu [S1] with all strains, the high temperature peak is not only represented
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by the annealing of dislocations but also by that of vacancy agglomerates which

are expected to reveal a smaller activation enthalpy.

Figure 4.17: A DSC heat flow curve for Ni HPT deformed at 2 GPa to a shear

strain of 23. Vacancy agglomerates and dislocations anneal at about

250◦C causing an overlap of both peaks

There is no correlation of the peak temperatures and the activation enthalpies

with respect to different applied pressures in both Cu and Ni. Again, the sensitiv-

ity of the Kissinger method seems to be too low in order to distinguish between

the two different defect types if they contribute to only one annealing peak. The

more reliable variation of the peak temperature with varying pressure in Cu is

small and suggests a similarly weak dependence for the activation enthalpy of

dislocation/agglomerate annihilation.

The Strain Dependence of Q: Vacancy induced vs. Stress induced annihila-

tion of dislocations

Strain dependence of Q due to excess vacancy boosting. As has been already

argued by Cao and co-workers in [72], one explanation of the decrease of Q

with increasing strain could be the deformation induced formation of excessive

concentration of vacancy agglomerates which is increasing with increasing shear
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Figure 4.18:

a) Dislocation densities of HPT Cu for selected γT as obtained by the MWP-

fitting procedure

b) Vacancy concentration in HPT Cu as evaluated from the difference of

stored energies derived from DSC and XPA measurements [18]

strain. As already mentioned in the experimental section, XPA was used to sep-

arate the contribution of vacancy agglomerates from that of dislocations in the

DSC peak for Cu: We calculated the stored energy which corresponds to the

measured dislocation density shown in Fig. 4.18 a), and subtracted this value

from the total stored energy measured with DSC. The remaining energy repre-

sents the stored energy of vacancy agglomerates with a diameter smaller than

about 5 nm and allows for the evaluation of their concentration Fig. 4.18 b)

[S1][18, 22]. The results shown in Figure 4.18 indicate that an excessive density

of vacancy agglomerates is present which even increases with increasing shear

strain applied. It may increasingly reduce the formation enthalpy and thus the

total enthalpy of primary recrystallization. However, due to the constancy of

vacancy concentration with highest applied strains (Fig. 4.18 b), this interpre-

tation can explain a saturation of primary recrystallization enthalpy but not its
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re-increase as it has been reliably measured for Cu at highest strains observed

(Figs4.12 and4.15).

Figure 4.19: The peak temperatures measured by DSC compared with micro

hardness (HV) measurements (σ =HV/3) from [67] for HPT Cu

deformed at 4 GPa

Strain dependence of Q due to assistance of long range internal stress. In

a previous paper of our group, measurements of the annealing temperatures Tmax

of the dislocation peak in cold rolled Cu and Al as a function of rolling strain

revealed strong parallelities with the strength characteristics over the whole range

of strains observed [65]. This finding was the basis to quote the presence long

range internal stresses (as a part of the external ones) as a reason for the shift

of Tmax (and thus also the related activation enthalpy Q) with varying strain.

Now this result led us to plot Tmax as a function of shear strain also in case of

presently studied HPT deformed Cu. Obviously the same parallelity of strain

dependences of Tmax and external stress turned out, as is demonstrated by Fig.

4.19 for a pressure of 4 GPa (similar correlations have been also found for 2 GPa



52 4.3. Activation Enthalpies - [S2]

and 8 GPa). Even more direct evidence for the strain dependent change of long

range internal stresses comes from previous X-ray profile analyses which are

shown in Fig. 4.20 (from [67]): The higher is the shear strain accumulated, the

higher is the level of internal stresses in parallel to that of the external ones.

From a critical shear strain reached, the micro structure starts to recover after

HPT. Thus it exhibits less and less internal stresses because of rearrangement of

dislocations, and the dislocation need more and more activation enthalpy to get

annihilated.

Figure 4.20: internal stresses as measured by X-ray Profile Analysis [67]

Comparing now the interpretation of vacancy boosting with that of internal

stress assistance, we favor the latter because, as already mentioned, the vacancy
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hypothesis cannot explain the re-increase of Q (and/or Tmax) which occurs in Cu

at very high strains. Furthermore, there has been supports by recent publications.

One is by Molodova et al. [69] which explains the decrease of the activation

enthalpy for Cu with increasing number of ECAP passes by the increasing ease

of nucleation of grains. Further support comes from recently published works on

tracer diffusion in ECAP processed materials [75, 76] which explain the lowering

of Q with increasing strain by the increasing number of non-equilibrium grain

boundaries. Because these non-equilibrium grain boundaries involve long range

internal stresses, those findings are strictly in line with our interpretation that

long range internal stresses are responsible for the strain dependence of primary

recrystallization enthalpy.

4.3.4 Summary

Differential scanning calorimetry in combination with the Kissinger method has

proven as an easy and fast technique for measuring defect activation enthalpies.

The results of the activation enthalpies measurements in HPT deformed fcc met-

als Cu and Ni suggest that the annealing of HPT induced vacancies is ruled

by core diffusion of vacancies, and that the annealing of HPT induced vacancy

agglomerates and/or dislocations is essentially assisted by long range internal

stresses. Problems with the determination of activation enthalpy arise when the

annealing temperatures of different types of lattice defects comes close or even

coincide. This may have been one reason why he small dependence of the acti-

vation enthalpy on the hydrostatic pressure could not be quantitatively evaluated.
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4.4 Lattice Defects in Hydrogenated and HPT Processed Pd

[S3]

4.4.1 Introduction

There is a number of features that can be achieved by materials processed by Se-

vere Plastic Deformation (SPD) only, i.e. not by otherwise processed nanomate-

rials. These are (i) a considerable ductility, (ii) changes in phase stability, and (iii)

enhancement in diffusion. Comparing the nanostructures of SPD-nanomaterials

with those achieved by other methods it has been shown that deformation-induced

lattice defects, especially vacancy type ones, are specific of SPD and thus predes-

tined to explain features (i)-(iii) [4, 22]. Due to these beneficial features, there

is any reason to increase the stability of vacancy type defects. One possibility is

to introduce alloying atoms in the material which can act as traps for deforma-

tion induced vacancies [17]. In related literature it has been shown that hydrogen

could play the role of an alloying element i.e. stabilize the vacancies [30, 31]

in such high concentrations that even an ordered vacancy sublattice will form

[41, 42].

It was the aim of the present work to select a metal with potential for hydrogen

storage and to deform it by SPD before and after hydrogenisation. For this pur-

pose HPT deformation on pure and hydrogenated Pd has been achieved and the

number of nature of SPD induced defects - namely vacancy type ones - have been

studied by means of differential scanning calorimetry. This method revealed as a

suitable tool for determining the concentration of these vacancy-type defects and

their activation enthalpy [S1] [4, 22, 55]. The results will be discussed and com-

pared with our previous studies on Cu and Ni [S1] [4, 22] and those of literature

[55, 78, 79].
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4.4.2 Experiments

Samples and treatment

Rods of Pd with 99.95% purity were cut into disks of 6mm diameter and 0.8mm

thickness using spark erosion, subsequently cleaned by sandblasting and an-

nealed at 1073K for 2h in ultra high vacuum. Afterward the samples were loaded

in a Sieverts-type apparatus with gaseous hydrogen of concentration x = 0.6 (0.6

hydrogen atoms per 1 Pd atom). Special loading conditions slightly above the

two-phase region were chosen to avoid internal stresses (Fig. 4.21). Then the

samples were deformed by HPT using the equipment at ESI Leoben, Austria

[37]. By applying a hydrostatic pressure of 8GPa, shear strains of γT = 90 to

900 were achieved, with γT = rφ/d where r is the radius and d the thickness of

the sample after deformation, the angle of rotation by the HPT process in radiant.

Compressive strains resulting from pressure application could be kept smaller

than 20%. The true strain is being calculated as ε = γTMt/Mε, with Mt= 1.65

and Mε= 3.06 as the Taylor factors of fcc metals for torsion and compression,

respectively. To avoid desorption of hydrogen at room temperature, the samples

were stored under liquid nitrogen before and after HPT treatment. During HPT

processing they were cooled with solid CO2 ensuring in deformation temperature

of 233K.

Method - Differential calorimetry

Differential Scanning Calorimetry (DSC) measurements were performed using a

Netzsch DSC 204 calorimeter operated with liquid nitrogen at a constant heat-

ing rate of 5 K/min in a temperature range from 173K to 873K. The low heating

rate was chosen for comparison with literature [80]. To reach the high calori-

metric accuracy in determination of the stored energy of less than 1% of peak

area a reference sample of annealed Pd with equal sample mass was used. To

avoid water condensation during attaching of the cooled sample into the DSC a
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Figure 4.21: Pressure-concentration isotherms of the system Pd-H at different

temperatures, including the critical two phase region [40]

self-made glove box was installed. During DSC measurements the annealing of

deformation induced defects could be observed by the occurrence of exothermic

peaks [S1]. The area of the peaks corresponds to the total enthalpy of annealing

defects and allows to derive the density of the defects (see below). Information

on the nature of the defects can be obtained from the peak temperature and the

activation enthalpy [S1]. The stored energy of dislocations can be related to their

density N as follows:

Estor = Gb2
N

4πκ
ln((b
√
N)−1) (4.4)

where G denotes the shear modulus and b the absolute value of the Burgers

vector. κ amounts to the arithmetic average of 1 and (1 − ν), with ν = 0.343

as the Poisson ratio, assuming equal parts of edge and screw dislocations. The

concentration of single vacancies can be evaluated from the stored energy of

vacancies divided by their formation energy ∆Hf
ν . In Pd ∆Hf

ν =1.85 eV per

single vacancy [38].
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4.4.3 Results and Discussion

The similarity of basic properties of Pd and Ni allows direct comparison of results

of both metals [S1]: (i) both are fcc metals; (ii) the melting temperature of Pd

(1828 K) is only slightly higher than that of Ni (1728 K); (iii) the stacking fault

energies for Pd and for Ni [33] are comparable and (iv) the formation energy of

vacancies for palladium (Pd) = 1.85 eV and for nickel (Ni) = 1.79 eV [38] are

very similar. HPT deformed Pd samples show two exothermic peaks (Fig. 4.22):

the first one appears at about 373 K with an area of 0.05 J/g. This temperature

corresponds to the annealing of single and/or double vacancies in deformed Pd

[79]. The second peak between 523 K and 553 K is much broader than the first

one because it consists of at least two single, overlapping peaks. Compared with

the results from literature [S1] [78, 79] these sub-peaks could be identified as

annealing of vacancy clusters and of dislocations although the area of the whole

second peak is surprisingly low: For comparison the area of this peak in Ni is

about 10 times higher [S1].

Compared to Pd cold rolled (CR) to a true strain of ε = 1.01, the deformation

reached in HPT samples is very high. Deformations of 6 and 30 rotations are

equivalent to ε = 76 and even ε = 380(!), respectively. Surprisingly, there is al-

most no difference in the stored energy between the cold rolled sample to ε =

1.01 and the HPT deformed one achieving ε = 76. Although the dislocation peak

in the case of the HPT Pd is slightly shifted to lower temperature (522 K) but the

total amount of energy of deformation induced defects is increased by only 0.02

J/g. Another interesting behavior is shown by the curve of the sample deformed

to ε = 380 (dashed line in Fig. 4.22). Although after deformation beyond ε =

25 a saturation in defect concentration is to be expected, Pd seems to store an in-

creasing density of defects even beyond deformations of ε = 76. The DSC curve

of the sample deformed up to ε = 380 shows a peak at 561 K with an about two
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Figure 4.22: DSC results of cold rolled Pd compared to HPT (8 GPa) deformed

one without H2:

ε = 380 - dashed line; ε = 76 - dotted line; CR ε = 1.01 - solid line

times higher stored energy. The higher annealing temperature indicates that the

deformation defects are even more stable which somewhat contrasts the observa-

tion in other pure metals [S1]. Results of DSC measurements of hydrogenated

and subsequently HPT deformed Pd (dashed line) as well as of undeformed but

hydrogenated Pd (solid line; in what follows, we call it "Pd-H") are presented in

Fig. 4.23. It can be seen that the DSC peaks caused by the desorption of hy-

drogen are different to those of annealing of lattice defects: The desorption of

hydrogen is an endothermic process and releases about 100 times more energy.

The areas of the two peaks shown in Fig. 4.23 are quite similar which proves

that no hydrogen was lost during preparation and deformation of Pd-H. Probably

due to refined grain structure caused by HPT deformation, desorption of hydro-

gen in HPT processed sample occurs at an about 35 K lower temperature with

respect to the undeformed one. An interesting shoulder appears on the right side

of the peak at about 473 K which will be discussed below. The shape of the left

shoulder (313 K and 353 K) is reproducible but could not be explained so far.
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Figure 4.23: DSC results of hydrogenated undeformed Pd (solid line) compared

to HPT Pd deformed by ε = 380 at 8 GPa (dashed line)

In order to determine the small exothermic peaks of defect annealing, hydro-

gen loaded samples were stored at room temperature for several weeks in order

to entirely desorb the hydrogen. In Fig. 4.24, DSC curves of a hydrogenated

HPT deformed Pd sample (dashed line), and a HPT deformed non-hydrogenated

one (solid line) are shown. For the Pd-H sample, a very sharp peak at 482 K

with an area of 1.2 J/g was measured. This peak appears to correspond to an-

nealing of hydrogen-vacancy clusters, with up to 6 hydrogen atoms around a

vacancy [42, 80]. After desorption of most of the hydrogen it seems that these

hydrogen trapped single vacancies are surprisingly stable and anneal at 482 K

instead of 373 K compared to single vacancies solely. The concentration of these

hydrogen trapped single vacancies equals to a single vacancy concentration of

cvac = 7.4 · 10−4, which is enormous compared to vacancy concentrations of non-

hydrogenated HPT deformed Pd being cvac = 3·10−5. This sharp peak also seems

to be responsible for the right exothermic shoulder of the endothermic hydrogen

peak described above. The second peak of non-hydrogenated Pd is shifted from

522 K to even 670 K when the HPT sample has been loaded with hydrogen. This

shows that hydrogen also may stabilize deformation induced dislocations in Pd
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[30, 31]. For proving the existence and density of dislocations, X-ray line pro-

file analyses (XPA) are planned. Furthermore, positron annihilation and neutron

scattering investigations should clarify the number of vacancies in the vacancy

clusters.

Figure 4.24: DSC results of HPT deformed Pd (8 GPa, ε = 38): Upper curve:

deformed with H; lower curve: deformed with H and annealed at

RT for several weeks before DSC measurement

4.4.4 Summary

Hydrogenated and HPT-deformed Pd (99.95%) samples have been analyzed by

means of differential scanning calorimetry and compared to solely HPT-deformed

ones. The results can be summarized as follows:

1. Two exothermic peaks resulting from defect annealing were detected with

DSC. The first one arises from vacancies while the second one is a double

peak from annealing of both vacancy clusters and dislocations. The peak

temperatures and stored energies correspond well to earlier results and lit-

erature, except that of the dislocation peak which indicates much lower
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dislocation densities.

2. Deformation induced defects in Pd-H material anneal at much higher tem-

peratures than those in pure Pd exhibiting an alloy effect of hydrogen in

HPT deformed Pd.

3. Loading Pd samples with hydrogen and HPT processing causes a very high

concentration (almost 10−3) of deformation induced vacancies which is

more than an order magnitude higher than without hydrogenization.

4. The high stability and number of vacancy type defects can be attributed to

the formation of vacancy-hydrogen clusters.

4.5 Formation of superabundant vacancies in nano-Pd-H gen-

erated by high-pressure torsion [S4]

Since Graham’s pioneering investigations in the middle of the nineteenth century

[81], metal-hydrogen (M–H) systems have been studied as model alloys as, due

to the rapid diffusion of hydrogen atoms in metals, solid-state reactions are gen-

erally very fast [40, 82–87]. In 1993, Fukai and his collaborators [41, 42, 48–51]

observed, during in situ X-ray diffraction measurements under high hydrogen

pressure and at high temperature, a gradual contraction of the lattice parameter

of Ni and Pd hydrides.

Still more surprising was the fact that the reduced lattice parameter persisted

after quenching to room temperature and unloading to ambient pressure. Sub-

sequently a large number of nanopores were observed in samples subjected to

additional heat treatment [48]. Instantly it became clear that their presence could

not be understood either in terms of void formation in the process of hydride de-

composition or simply as bubbles of hydrogen [48]. Fukai concluded that “the

irreversible lattice contraction observed at high temperatures has the entire fea-

tures characteristic of vacancy formation” [49]. This assumption has been proved
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by observations of the formation of an ordered structure in the hydride phase

[41, 42, 48–51, 80, 88] and later by investigations that revealed that the lattice

contraction was in fact caused by an extraordinarily high concentration of host-

metal vacancies (Vac) introduced into the hydride phase by diffusion from the

surface [42, 48–51]. The vacancy concentration amounts to several atomic per-

cent; this value is many orders of magnitudes larger than typical vacancy concen-

trations under ambient conditions (room temperature), and therefore the surplus

vacancies were called superabundant vacancies (SAVs) [41, 42]. Since then, the

phenomenon of formation of SAVs under extreme conditions has been observed

in a large number of M–H systems showing various novel properties, e.g. (i)

an extraordinary increase in self-diffusion coefficients [42, 52]; (ii) a drastic ac-

celeration of foreign-atom diffusion [50, 52]; and (iii) a pronounced lowering of

melting points [52]. These facts were not just attributed to SAVs but also re-

garded as proof of their higher thermodynamic stability compared to defect-free

structures [41, 52]. Recently Kirchheim has published a model where the for-

mation of SAVs is interpreted on the basis of thermodynamical considerations

taking into account changes of the defect energy by solute segregation [31].

Later, the existence of Vac–H clusters was revealed in various electrodeposited

[41, 80] and electrochemically charged metals [31, 53], as well as in thin sur-

face films after plasma-based ion implantation [88]. These facts show that high

hydrogen pressure and high temperature conditions are not thermodynamically

necessary for SAV formation. It seems that high Vac–H concentrations have not

been observed at room temperature (RT) in metals to date simply because the

concentration of thermal vacancies in metals is far too low and the migration of

vacancies from the surface is too sluggish. On the other hand, if SAVs are re-

ally thermodynamically stable, they should form during any process capable of

introducing vacancies into the structure in sufficient number and at reasonable

kinetics. Thus, a key to the problem is the so-called deformation-induced va-
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cancies. Unfortunately, even after heavy cold work their concentration does not

exceed a level of 10−4 [17], which is comparable to the concentration of thermal

vacancies at the melting point. Higher plastic deformation is not possible due to

failure of the material.

However, during the past two decades new methods of plastic deformation have

been developed which are capable of processing even brittle materials – such as

some hydrides – up to extremely large strains and thus allow the generation of

vacancies in abundance. They are known under the generic term “severe plastic

deformation” (SPD). The common principle of SPD is that samples are deformed

at low homologous temperature and under high hydrostatic pressure. Of special

interest from the scientific point of view is high-pressure torsion (HPT), which

possesses three main advantages over all other SPD techniques: it provides (i)

extremely large deformation by simple shear in (ii) a continuous way without

interruption or change in strain path, under (iii) well-controlled enhanced hydro-

static pressure. The details of the technique are described elsewhere [89].

Three types of samples of high-purity Pd (99.95%, Alfa Aesar), of identical di-

mensions (8 mm diameter, 0.8 mm thickness) were prepared; two of them (num-

bered #2 and #3) were charged with hydrogen (xH = H/Pd = 0.78; β phase),

while sample #1 remained uncharged. Doping with hydrogen was achieved in

a hydrogen gas atmosphere in a specially designed,versatile hydrogen charging

device (Vienna Sieverts’ apparatus [43]) developed at the Faculty of Physics,

University of Vienna. The quantity of absorbed hydrogen was calculated simul-

taneously during hydrogenation from Sieverts’ law and confirmed immediately

after hydrogenation by the classical gravimetric method (see below). To prevent

loss of hydrogen after charging, samples were forthwith frozen and stored in liq-

uid nitrogen. Subsequently all samples were deformed by means of HPT under

8 GPa hydrostatic pressure at 265 K and at 0.2 rpm to equivalent strains ε = 42

(samples #1 and #2) and ε = 84 (#3), defined as
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ε =
2πNr

MvMd
(4.5)

where MvM =
√

3 (according to von Mises), N is the number of rotations, r is

the radius and d is the thickness of the samples, respectively. After deformation,

all samples were deposited at room temperature for 2 months in order to release

interstitial hydrogen. Afterwards, a first estimation of the vacancy concentration

cV ac was derived from the changes in density ρ and in the lattice parameter a,

according to

cV ac = 1−
ρda

3
d

ρva3
v

(4.6)

where the indexes v and d denote the virgin and deformed material, respec-

tively. This equation is equivalent to the approximation of Simmons and Bal-

luffi [90], which had been repeatedly used by Fukai [42, 51]. The density of

the material was derived from high-precision measurements by gauging the dif-

ference in the buoyancy of the sample in air and in water by a slightly adapted

high-sensitivity microgram balance (Sartorius M3P micro). The lattice constant

was measured by routine X-ray diffraction procedures using a Bruker AXS-D8

diffractometer operated with CuKα radiation. With these data, the above equa-

tion allows at least the estimation of the total vacancy concentration, as shown

in Refs. [41, 42, 51, 90]. Subsequently, differential scanning calorimetry (DSC)

measurements were carried out using a Netzsch DSC 204 calorimeter in a tem-

perature range from RT up to 775 K at a constant heating rate of 5 K min−1. The

transmission electron microscopy (TEM) study was carried out using a Philips

CM200 on HPT-deformed Pd–H (sample #3), at first without any thermal treat-

ment, then after a single DSC run up to 523 K and subsequently in situ heated up

to 823 K. For the scanning electron microscopy (SEM) studies, the samples after

DSC were additionally thermally treated for 1 h at 1073 K under high vacuum in
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order to allow the vacancies to coalesce to pores that could be detected by SEM

investigations (Zeiss Supra 40VP).

For more experimental details and DSC measurements, see Ref. [S3]. From the

density method a high vacancy concentration of 6 · 10−3 was estimated in pure

Pd after HPT deformation (#1). This value denotes the upper limit of vacancy

concentration in pure metals after SPD deformation [17, 18, 89]. Extraordinarily

high total vacancy concentrations of 1.3 · 10−2 and 4.8 · 10−2 were found in sam-

ples #2 and #3, respectively. These values agree well with the results obtained

by the density method in Pd samples exposed to high hydrogen pressure at high

temperature (and containing SAVs) [42, 51] and thus provide the first proof of

formation of Vac–H complexes during low-temperature SPD. However, we have

to note here that, due to the poor precision of the density estimation and the low

sample mass (of about 100 mg), the total accuracy of the method does not exceed

3 · 10−3.

Figure 4.25: DSC curves measured on pure Pd (sample #1, dotted line) and

PdH0.78 (sample #2, dashed line), both deformed to ε = 42, and

PdH0.78 (sample #3, full line) deformed to ε = 82 by HPT.



66 4.5. Pd with TEM - [S4]

The existence of Vac–H clusters was further confirmed by the DSC measure-

ments (see Fig. 4.25 and the interpretation given below). Between 320 and 350

K a broad peak was observed in samples #1 and #2 (unfortunately, no peak could

be viewed in sample #3 due to settling processes at the beginning of heating).

This peak could be related to the annihilation of monovacancies [78]. From the

energy released (0.1 Jg−1) and the formation energy of a monovacancy in Pd (1.7

eV [40]), the same concentration of monovacancies in both samples #1 and #2 of

6.5 · 10−5 was estimated. Further, in HPT-processed pure Pd (sample #1), another

wide peak with 0.9 Jg−1 was detected between 480 and 590 K. This is attributed

to the recovery and recrystallization processes, i.e. dislocation rearrangement and

annihilation, in agreement with earlier results on pure Pd deformed under similar

conditions [78]. In both hydrogenated samples (#2 and #3) this peak is much

larger (1.7 and 3.6 Jg−1, respectively), is shifted to 535 and 750 K and reflects

different, overlapping recovery processes (rearrangement and annihilation of dis-

locations) and recrystallization, as observed in our TEM investigations (done in

parallel to DSC, see below) as well as in Ref. [48].

However, far more important is the fact that a new, pronounced peak at 483 K was

revealed in the hydrogenated and HPT-deformed samples. This is ascribed to the

disintegration of vacancy–hydrogen clusters with the most stable – and there-

fore most probable – composition of one vacancy surrounded by six H atoms,

V acH6. Assuming that the total energy released (1.3 Jg−1) consists of (i) the

binding energy of V acH6 (exothermic, 0.17 eV [40] per H atom on average), (ii)

the annihilation energy of monovacancies (one per cluster, exothermic, 1.7 eV

[40]) and (iii) the desorption of six interstitial hydrogen atoms (endothermic, six

times (-0.1 eV) [40]), a V acH6 concentration of 6.5 · 10−4 was estimated in both

hydrogen-charged samples. This value is in good agreement with the concentra-

tion of Vac–H clusters measured in electrodeposited [41, 80] and electrochemi-

cally charged [31, 53] metals.
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Figure 4.26: SEM picture of Pd–H after HPT and additional heat treatment

showing pores of coagulated vacancies (compare to Fig. 3 in Ref.

[48, 54]).

The SEM pictures in Figure 4.26 show regions with a large number of spherical

voids in the hydrogenated samples #2 and #3 but not in sample #1. These regions,

embedded in surrounding areas without voids, are very similar to the structure

showing pores of coalesced SAVs in Ref. [48, 54]. The volume fraction of the

visible voids corresponds to a lower bound of 8.8 · 10−2 for the local vacancy

concentration (in comparison to the average Vac–H concentration obtained from

DSC above). It is worth noting that this value approaches the ideal concentration

of 25 at.% in the ordered M3V ac phase, as observed in Pd [40–42, 51].

TEM pictures reveal the microstructure of Pd–H after HPT deformation with

high dislocation densities and a mean grain size of 210±60 nm (Fig. 4.27a). No

significant change in grain size (220±95 nm) or in microstructure was observed

after heating in DSC up to 523 K, i.e. above the temperature of the Vac–H peak
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Figure 4.27: TEM images of Pd–H after (a) HPT deformation (RT, bulk); (b)

HPT and one single DSC run up to 523 K (RT, bulk); (c–e) HPT, a

single DSC run up to 523 K and subsequent in situ heating at 572,

673 and 723 K, respectively (thin film).

at 482 K (cf. Fig. 4.27b). These results confirm our interpretation that this peak

is really related to annealing of Vac–H clusters. Further TEM images of the same

sample transferred into the microscope and heated in situ up to 723 K are shown

in Figure 4.27c–e. They reveal the start of recovery processes and gradual grain

growth (up to 385±120 nm) only just above 572 K. However, one should consider

that Figure 4.27c–e shows images of a thin film whose thickness is comparable

to the grain size. This could considerably hinder the grain growth.

In concluding, the results show that SAVs are generated during low-temperature

plastic deformation in hydrogenated Pd, though obviously not in a homogeneous

way, and Vac–H clusters coexist with deformation-induced monovacancies and

with interstitial hydrogen atoms – separate release of surplus hydrogen from sam-

ples was clearly observed during storage of samples at RT. It is obvious that Vac–

H clusters could only be formed from vacancies introduced into the structure by

plastic deformation since, due to the low processing temperature (0.15 Tm), the

concentration of thermal vacancies in the structure is negligible and the possibil-

ity of vacancy diffusion from the surface can also be clearly excluded.

Further, the substantial shift of the onset temperature of recovery and recrys-

tallization towards higher temperatures by approximately 50 K may be under-
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stood either (i) in terms of the existence of Vac–H clusters in the structure, which

constitute active obstacles for dislocations movement, pin dislocations and grain

boundaries and, consequently, impede their movement or (ii) by direct stabilizing

of dislocations and grain boundaries by excess hydrogen within the same thermo-

dynamic concept used for the vacancies [31]. The second idea is confirmed by

two facts: (i) the energy released during recovery and recrystallization processes

in hydrogenated Pd (#2; 1.7 Jg−1) is almost two times higher compared to equally

HPT deformed pure Pd (#1; 0.9 Jg−1); and (ii) sample #3 released more energy

during recrystallization (3.6 Jg−1) than sample #2 (1.7 Jg−1), suggesting that the

deformation-induced dislocation density does not saturate even after such high

deformations of ε = 42 (sample #2) and ε = 82 (sample #3), respectively.

In summary, this study demonstrates for the first time that HPT at low homolo-

gous temperature of partially hydrogenated palladium allows for the formation of

Vac–H clusters even in bulk samples. Hitherto, this formation was only possible

in powders [41, 42, 48–52] or thinb layers/foils [31, 53, 54]. At RT these surplus

Vac–H clusters coexist with interstitial hydrogen atoms as well as with monova-

cancies, and are stable in Pd up to 482 K. Results also indicate that stabilization

by excess H may occur not only for vacancies but also for other deformation-

induced lattice defects, namely dislocations/grain boundaries. Together, these

facts show that nanometals may experience a marked increase in thermal stabil-

ity through solute hydrogen.

4.6 Unpublished results

Some results which are related to the topics above were not published so far,

until now. A good proof of defect stabilization by impurities is shown in Fig.

4.28. Although both Ni samples are highly pure, the difference in DSC peak

temperatures between 99.99% and 99.998% Ni is obvious.

The dependence of the peak temperature on deformation degree is shown in
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Figure 4.28: Temperature stabilization with impurities in HPT deformed Ni

99.99% compared to Ni 99.998% at 4 GPa with ε = 8.

Fig. 4.29 in HPT deformed Ni. With increasing γ the peak temperature decreases,

the peak area and so the defect density increases.

In cooperation with G. Wilde from the University Münster, Germany, tracer

diffusion measurements on HPT Cu were performed in order to verify the mea-

surements of activation enthalpy and to find out the ongoing diffusion mecha-

nisms in HPT Cu and Ni [91]. The results fit very well with the activation en-

thalpy investigated by DSC see Fig. 4.30. It is interesting to note that in contrast

to ECAP deformed materials, no ultrahigh diffusion could be detected which may

be due to the absence of pores and microcracks in SPD samples processed with

hydrostatic pressures higher than about 1.5 GPa [91].

Additional isothermal measurements helped for a better comprehension of the

desorption kinetics of hydrogen loaded Pd. The mass investigation showed Fig.

4.31 that it lasts about 4 days until the interstitial hydrogen has left the metal.
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Figure 4.29: Strain dependence in HPT deformed Ni at 4 GPa.

Figure 4.30: Activation energy measurements in HPT Cu performed by DSC fit

very well with tracer diffusion results (stars).

During this procedure the microhardness increases by a factor of 2.5 (Fig. 4.32)

which seems to indicate the formation of hydrogen vacancy clusters impeding

the dislocation motion. An interesting observation was made with edges of the
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microhardness indentations. Directly after loading the edges of the indentations

were very clear, and after a few days slip traces and markedly bowed edges has

been seen (Fig. 4.33).

Figure 4.31: Isothermal weight measurement of hydrogen desorption at RT.

Figure 4.32: Isothermal µH measurement of hydrogen desorption at RT.
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Figure 4.33: Optical micrographs of microhardness indentations directly after

hydrogen loading and with visible slip traces after annealing at RT

for several days.

Some additional DSC measurements were performed on HPT processed Ag

(Fig. 4.34) which was chosen because of its very low stacking fault energy but

still relative high mobility of defects. Like in Cu and Ni, the peak temperatures

drop with increasing deformation. More investigations on Ag are in progress.
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Figure 4.34: Peak temperatures of HPT deformed Ag of first DSC measure-

ments.
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Summary & Outlook

5.1 Summary

Samples of Ni, Cu and Pd were deformed by HPT (high pressure torsion) to sev-

eral strains at different hydrostatic pressures. HPT was used as a representative

technique for SPD nanostructures in general. The investigation of the deforma-

tion induced defects was carried out by means of DSC (differential scanning

calorimetry). From the measured annealing peaks it was possible to distinguish

between the defect types by different annealing temperatures and to evaluate the

defect density from the peak area. Additional information was provided by the

activation enthalpies connected with the annealing peaks which were determined

with the Kissinger method.

In the case of nickel, three exothermic peaks could be detected by DSC cor-

responding to the annealing of single/double vacancies, vacancy agglomerates

and dislocations. As the peak of vacancy agglomerates and that of dislocations

have a very similar annealing temperature, the peaks related usually overlap. The

75
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annealing temperature of the dislocation peak dropped from 350◦C at the shear

strain of 2 down to 250◦C at the shear strain of 30. The peak temperatures of the

singe/double vacancy peaks are around 130◦C and vary neither with strain nor

pressure applied. The peak temperatures of Ni 99.99% were about 15◦C higher

than in Ni 99.998%. This is a clear evidence of thermal defect stabilization by

impurities. The vacancy concentration measured from the peak area was in the

range of 10−4 and thus markedly higher compared to conventionally deformed

metals. The dislocation density increased from 2 · 1015m2 at a shear strain of 2 to

12 · 1015m2 at a shear strain of 30. In copper on the other hand only one exother-

mic peak of annealing of dislocations and vacancy agglomerates was present. To

distinguish between dislocations and vacancy agglomerates X-ray profile analy-

sis (XPA) was used as XPA is only sensitive to dislocations. Therefore a vacancy

agglomerate concentration was determined in the range of 1 to 5 · 10−4, and the

dislocation density in the range of 2 to 4 · 1015m2. The activation enthalpy (Q)

measured in Ni for the vacancy peak is around Qvac = 0.65 eV, and for disloca-

tionsQdisl = 0.95 eV. In view of the differences to these values to that for vacancy

bulk diffusion in Ni (1.22 eV), the value of Qvac is interpreted as vacancy core

diffusion while that of Qdisl seems to be decreased because of the presence of

deformation induced vacancies. Within the actual measuring accuracy, Q neither

depends on the pressure applied during deformation nor on the shear strain. Nev-

ertheless, a slight shift of the peak annealing temperature as a function of applied

shear strain could be observed.

In the case of copper the activation enthalpy drops from Q = 1.0 eV at a shear

strain of about 1 down to Q = 0.50 eV above shear strains of 10 and remains at

this value up to about a shear strain of 50. The measured results for the activa-

tion enthalpy correlate well with literature especially with recent tracer diffusion

investigations. Concerning the strain dependence of the larger Q, the idea that
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annihilation of dislocations is assisted by the strain-dependent concentration of

vacancy type defects could not be confirmed. Rather, the annihilation of disloca-

tions seems to be enhanced by the long-range local internal stresses because the

latter exhibit very similar characteristics in strain dependence.

HPT processing have been also carried out in hydrogenated palladium, with

the idea to generate additional deformation induced defects due to the presence

of hydrogen. It could be found that indeed vacancy-hydrogen clusters have been

formed during low temperature HPT and that the detection with DSC is possible.

The vacancy-hydrogen cluster annealing resulted in an very sharp exothermic

peak at 209◦C. A very high vacancy-hydrogen concentration (7 · 10−4) was eval-

uated from the peak area. Dislocation densities in the hydrogenated Pd samples

turned out to be by 70% higher than in Pd ones deformed without hydrogen al-

though they are still smaller compared to other fcc metals like Ni and Cu. The

identification of dislocation annealing was substantiated by specific TEM inves-

tigations, which occurs at a temperature of 400◦C instead of 250◦C due to hydro-

gen stabilization. Thus also the suspicion of the pilot paper could be confirmed

that the first annealing peak did not result from dislocations but from annealing

of vacancy-hydrogen clusters.

5.2 Outlook

Some work is still to do in the near future. More DSC measurements of HPT pro-

cessed Ag are desirable in order to compare them with the here presented results

of Cu and Ni and to better quantify the influence of stacking fault to the presence

and kinetics of SPD induced defects. It is not understood that - in spite of the

low stacking fault energy - the mobility of SPD produced lattice defects in Ag is

very high as has been recently observed by XPA investigations within the group.

Activation enthalpies are to be measured in Ag after HPT processing by different



78 5.2. Outlook

hydrostatic pressures and to different strains, and these should be compared to

the here presented results of Ni and Cu. XPA measurements should be continued

to find out whether the internal stresses are responsible for the strain dependence

of annealing temperature also in case of HPT Ag.

In the field of defect formation and stabilization by hydrogen more precise inves-

tigations are needed. (i) The loading conditions are to be optimized in order to

reach the maximum possible defect concentration during deformation. (ii) Ad-

ditional DSC investigations from H loaded Pd samples being HPT deformed to

different strains, by different hydrostatic pressures at different deformation tem-

peratures are planned. (iii) Tensile test are intended to investigate the role of high

vacancy concentrations on both strength and ductility.
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