
DISSERTATION

Titel der Dissertation

Energy Efficient Resource Sharing for Networked Homes

Verfasser

Mag. Roman Weidlich

angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, 2010

Studienkennzahl lt. Studienblatt: A 786 881
Dissertationsgebiet lt. Studienblatt: Informatik
Betreuer: Ao.Univ.Prof. Dr. Helmut Hlavacs

Acknowledgements

Thanks to my supervisor Prof. Hlavacs who thoroughly introduced me to research.

He was always anxious to provide me with a work environment suitable for developing

myself and always there to keep me on the right track.

Also thanks to the colleagues in my group for allowing me to feel at home at work

due to the excellent organizational culture.

Further thanks to my parents who always gave me support that allowed me to pursue

my self-fulfillment in academics.

And, over all, infinite thanks to my wife Nadia, who never had any doubts that I

would succeed.

iii

Contents

1 Introduction 1

1.1 Wattage . 1

1.2 Power Saving . 5

1.3 Synopsis . 6

2 Related Work 7

2.1 Resource sharing . 9

2.1.1 Grid computing . 11

2.1.2 Cloud computing . 13

2.2 Virtualization . 15

2.2.1 Virtual Machine Monitor . 17

2.2.2 Virtualization Technologies . 19

2.2.3 PlanetLab . 22

2.2.4 Live Migration . 25

2.3 Virtual Home Environment . 27

2.4 Own works . 31

3 Architecture 35

3.1 Overlay . 35

3.2 Home States . 41

3.3 Front- and Backends . 43

4 Applications 47

4.1 Download Sharing . 49

4.2 Video Encoding . 51

4.3 Home Management . 53

4.4 Replication . 54

4.5 Analytical Evaluation . 59

4.6 Measurement Study . 67

4.7 Model Extension . 70

4.8 Summary . 72

5 Simulation Model 75

5.1 Basic Scenario . 82

5.2 Parameters . 86

5.3 Economic Model . 88

v

Contents Contents

6 Evaluation 93
6.1 Download Sharing (DS) . 94

6.1.1 Distribution . 97

6.1.2 Load . 99

6.1.3 Fairness . 100

6.2 Video Encoding (VE) . 102

6.2.1 Distribution . 105

6.2.2 Load . 107

6.2.3 Fairness . 107

6.3 Home Management (HM) . 110

6.3.1 Replication . 111

6.3.2 Failures . 113

6.3.3 Cluster recovery . 118

6.4 Combined Scenario . 124

6.5 Traffic Study . 127

7 Summary 133
7.1 Conclusion . 133

7.2 Future work . 133

vi

1 Introduction

Power saving, or energy efficiency, was and still is an important issue worldwide, even

in the field of computers and computer networks. We all recognize the rising number

of end users and home equipment that, of course, should ease our lives. Most people

use computers at home, at work, or while traveling. Additionally, they often use these

devices in a way that requires a stable connection to the Internet. When concentrating

on the home or residential area we can observe a rising number of always-on and

always-online equipment in a 24/7 manner like normal computers, media centers, and

home automation devices, including sensors and actuators. Computers are running

continuously for manifold reasons. For example, a continuously running and only

downloading computer can be interpreted as power wastage, because this computer is

normally underloaded and CPU time is only sparingly utilized.

This work explores power saving potentials for future networked home environments.

The emphasis lies on the future, because, as we see later, more bandwidth and distri-

bution enable better sharing and therefore more power saving. The achievable power

saving is measured as the difference between the wattage caused by homes in the local

case, where all homes execute their tasks locally without sharing, and the remote case,

where homes concurrently execute their own and remote tasks.

The major problem with computers’ power consumption is the relatively high con-

sumption under low load or in idle state. If lightly loaded computers can be avoided

and idle computers can be suspended, then power can be saved. To be more energy

efficient it is crucial to reduce the power consumption for a given load. This can be

done by resource and task sharing, albeit there are constraints like scalability, avail-

ability, reliability and fairness. Most content distribution systems are optimized versus

performance, whereas my work does optimization versus energy efficiency.

1.1 Wattage

Always-on computers consume considerable amounts of energy worldwide and therefore

energy efficiency has become a major topic in the last years. Households today contain

a multitude of devices making our lifes more comfortable besides consuming energy to

various extends. Especially even lightly loaded computers still consume energy, and of

course exhibit at the same time unused resources.

In addition to increased CO2 balance caused by high energy consumption, energy

consumption is seen as major cost factor for servers. This is also becoming true for

home networks. A doubling of energy consumption from 2000 to 2005 of volume, mid-

1

1.1. WATTAGE CHAPTER 1. INTRODUCTION

range, and high-end servers in the U.S. and worldwide1 is reported [Koo07]. The total

wattage reported in 2005 (including associated infrastructure) is equivalent to about

five 1000 megawatt power plants for the U.S. and 14 such power plants for the world,

tendency rising. Similar to server environments energy consumption is becoming a

major problem in home networking, as energy costs tend to exceed that of hardware.

A similar tendency could be expected for always-on PCs. According to a 2006 survey

commissioned by the EU [BA07], end devices in homes contribute significantly to the

electricity consumption growth. According to measurements of ENERGY STAR2 (a

joint program of the U.S. Environmental Protection Agency and the U.S. Department

of Energy) and Energy Star3 from the European Union (Directorate-General for Energy

and Transport) today’s PCs consume around 100 watt when turned on (depending on

the load) and only a few watt in suspended mode. Table 1.1 shows power consumptions

in watt during 24/7 operation and busy or idle state of typical end user computers in

2008 [Lau08].

Computer configuration Idle W Busy W

AMD Opteron 144 (1.8 GHz), 1 GB RAM, Linux 2.6.17
(Ubuntu 6.10)

75 115

Intel Pentium 4 HT (2.8 GHz), 1 GB RAM, Nvidia GeForce
FX5200LE, Windows Vista

70 125

Intel Pentium 4 HT (3.2 GHz), 2 GB RAM, Nvidia GeForce
6800, Windows XP SP2

90 155

Intel Core 2 Duo 6300 (1.87 GHz), 2 GB RAM, AMD
Radeon X1300, Windows Vista

83 103

AMD Athlon64 X2 4400+ (2.3 GHz), 2 GB RAM, AMD
Radeon X300, Windows Vista

70 125

Intel Core Duo (1.83 GHz), 17”-iMac, 1 GB RAM, Mac OS
X 10.4.9

52 68

Intel Pentium D (2.8 GHz), 512 MB RAM, Intel 82945G,
Linux 2.6.20 (Fedora Core 6)

100 184

Intel Pentium D (2.8 GHz), 512 MB RAM, Intel 82945G,
Windows XP SP2

98 191

Playstation 3, Linux 2.6.21 (Fedora Core 7) 180 200

Table 1.1: Mean power consumption of typical end user computers in watt (W) in 2008.

On average a busy computer consumes 148 watt or idle still 100 watt. Another listing4

is shown in Table 1.2, where power consumptions include a display for desktops and

battery charging for laptops. The average power consumption of desktops is then 137.9

watt and for laptops 53.3 watt which is still a considerable amount of energy under

24/7 use.

Another measurement [Kat08] investigated wattages of CPUs, GPUs, and chipsets

1http://hightech.lbl.gov/documents/DATA_CENTERS/svrpwrusecompletefinal.pdf
2http://www.energystar.gov
3http://www.eu-energystar.org
4http://www.upenn.edu/computing/provider/docs/hardware/powerusage.html

2

CHAPTER 1. INTRODUCTION 1.1. WATTAGE

Computer configuration Busy W

Apple iMac/Intel 24-inch, Core 2 Duo, 4.0 GB RAM, 640 GB hard drive,
Mac OS 10.6.2

150

Apple iMac/Intel 20-inch, Core 2 Duo, 2.0 GB RAM, 320 GB hard drive,
Mac OS 10.6.2

117.5

Apple iMac/G5 20-inch, 2.0 GHz PowerPC G5, 1.0 GB RAM, 250
GB/7200 RPM hard drive, Mac OS 10.4.9

105.5

Dell OptiPlex 755 w/19-inch Dell LCD, Core 2 Duo, 2.0 GB RAM,
160 GB/7200 RPM hard drive, UltraSharp 1906FPV display, Windows
Vista Business

128

Dell OptiPlex 745 w/19-inch Dell LCD, Core 2 Duo, 2.0 GB RAM,
100 GB/7200 RPM hard drive, UltraSharp 1907FPV display, Windows
Vista Enterprise

122

Dell OptiPlex GX620 w/17-inch Dell LCD, 3.6 GHz Pentium 4 521, 1.0
GB RAM, 160 GB/7200 RPM hard drive, UltraSharp 1704FPV display,
Windows XP Professional SP2

167

IBM ThinkCentre M52 w/19-inch IBM LCD, 2.8 GHz Pentium D 820,
1.0 GB RAM, 160 GB/7200 RPM hard drive, UltraSharp 1703FP dis-
play, Windows Vista Enterprise

175

Apple MacBook Pro 15-inch, 2.5 GHz Core 2 Duo, 4.0 GB RAM, 250
GB/5400 RPM hard drive, Mac OS 10.5.6

41

Apple MacBook Pro 13-inch, 2.53 GHz Core 2 Duo, 4.0 GB RAM, 250
GB solid state drive, Mac OS 10.5.8

58

Dell Latitude E4200 12-inch, 1.4 GHz Core 2 Duo, 3.0 GB RAM, 128
GB solid state drive, Windows Vista

68.5

Dell Latitude D420 12-inch, 1.06 GHz Core Solo, 1.0 GB RAM, 40
GB/4200 RPM hard drive, Windows Vista Ultimate

51

Lenovo ThinkPad X41 Tablet 12-inch, 1.5 GHz Pentium M, 1.5 GB
RAM, 40 GB/4200 RPM hard drive, Windows XP Tablet SP2

51

Lenovo ThinkPad T400s 14-inch, 2.53 GHz Core 2 Duo, 3.0 GB RAM,
250 GB hard drive, Windows Vista Business SP2

50

Table 1.2: Mean power consumption of typical end user computers in watt (W) in 2009.

3

1.1. WATTAGE CHAPTER 1. INTRODUCTION

(motherboard). Deduced from that data, the average wattage of todays CPUs, GPUs

and chipsets are about 89, 114.3 and 43.1 watt under load or 42.7, 63.3 and 43.1

watt if idle. Other end user equipment, like gateways (routers) or modems, consumes

approximately 7 to 15 watt and devices like sensors and actuators consume only a few

milliwatt or use a battery as power source.

Energy efficient computing is not a new topic. With the need of longer battery

life in laptops for instance, several techniques have been developed as local power

saving mechanisms. Power can be saved with various well known techniques. First,

the processor can be powered down with mechanisms like Enhanced Intel Speedstep

(EIST) and Demand-Based Switching5 [Win07b], Enhanced AMD PowerNow! and

AMD Cool’n’Quiet Technologies6. These technologies enable slowing down the clock

speeds (clock gating) or powering off parts of the chips (power gating), if they are idle

[BHK+07, Win07a].

In [ISG03, AIS04] algorithms for online Dynamic Power Management7 (DPM) are

presented. These algorithms are based on online learning and more than two states

as idle and shutdown. The power state of a device is changed accordingly to current

information available at runtime through sensing whether the device has been left idle

or not. By sensing user-machine interaction different hardware parts can be incremen-

tally turned off stepwise. This is usually applied to mobile devices but can also be used

for desktop computers.

Other energy saving methods relate to communication energy cost. Battery lifetime

of wireless devices can be improved by addressing several layers of the network protocol

stack (Physical, Data Link (LLC, MAC), Network, and Transport layers), operating

systems, middleware, and applications [JSAC01, YWL+06, GCN05].

All mentioned techniques can be categorized as local energy saving techniques.

There already exist trends for data centers to measure and reduce energy wastage,

especially caused by underutilized hardware while taking cooling cost into account

[Int06]. Thus, there is a requirement for the consolidation of servers. An energy saving

method must be investigated within the context of data centers for turning off and on

a part of machines as needed.

However, turning hardware off does not always imply energy efficiency. Energy

efficiency can be measured [KBN+06] in performance per watt as with SPECpower

ssj2008 8 or with a benchmark like JouleSort [RSRK07].

Virtualization [Int07] is a tool for consolidation of hardware. Virtualization can be

seen as splitting an underlying hardware entity into smaller identical virtual entities

which run isolated from each other. In data centers for instance, the rack-mounted

servers were configured to run a single workload to guarantee reliability, availability,

and scalability for the service. These servers are located in a controlled closed envi-

5http://www.intel.com
6http://www.amd.com
7http://dynamicpower.sourceforge.net
8http://www.spec.org/power_ssj2008

4

CHAPTER 1. INTRODUCTION 1.2. POWER SAVING

ronment like a high bandwidth network grid, which can support migration of virtual

entities between them without challenges existing for home networks like security, vary-

ing availability, and decentralized load sharing via the Internet. With virtualization a

service is dedicated to a virtual entity, but can run transparently on any available server

next to several other virtual entities. This effective consolidation of servers, i.e. run-

ning a machine at higher utilization, is usually administrated by central management

mechanisms.

1.2 Power Saving

To achieve power saving through cooperation of home networks, power consumption

should be globally minimized, whereas energy efficiency should be globally maximized.

For a number H of different homes (hi, 1 ≤ i ≤ H) the basic energy consumption E(T)

in joule over time T can be expressed as

E(T) =
H∑
i=1

T∫
0

Phi
(t) dt

where Phi
(t) is the power (joule per time unit or watt) consumed by home hi. In

absence of measurement possibilities, the power consumption of a home might as well

be estimated by assigning an energy class level to the home. To calculate the energy

efficiency, the workload introduced by homes is related to power consumption, thus the

work carried out by all homes is defined as

L(T) =
H∑
i=1

T∫
0

Lhi
(t) dt

where Lhi
(t) describes the load caused by a home at time t. Similar to [RSRK07] the

global energy efficiency η of the system, which should be maximized, is

η(T) =
L(T)

E(T)
(1.1)

with E(T) ̸= 0. If the power consumption E(T) of all homes can be reduced, the

global energy efficiency η will increase with fixed load L(T). Based on this, a distributed

solution is proposed, where load in form of tasks created by homes is distributed among

them to consolidate provided resources within a network of homes.

Networked systems offer the possibility to share resources, which has been extensively

researched to achieve higher performance and availability in parallel and distributed

systems. Using resource sharing to save energy is a radically new approach which needs

thorough investigation.

The aim of my work is to investigate how to save energy by minimizing the number

computers consuming power. Unused computers which are not necessary for the over-

5

1.3. SYNOPSIS CHAPTER 1. INTRODUCTION

all system operation will be suspended and only woken up by the system if needed.

Additionally, computers should contribute and use resources fairly. The goal of my sys-

tem is to find underutilized computers. To access computers inside a home, a special

software must run. This software can be seen as threefold; it is responsible to hold the

connection to the network of homes, to react adequately to events and changes and to

do this under some security precautions. Each computer that should participate to the

system must run such software. Furthermore this software must provide virtualization

functionality. To sum up this software (acting as a P2P-client) denotes an entry point

of the system into the home. The user can allow or prevent the system to control com-

puters. A common logic, consisting of the behavior of homes manifested as distributed

algorithms included in the software, ensures that homes act in the same way. The goal

is to let homes self-organize for emerging a local power saving goal and to lower the

global wattage caused by computation in the home network domain.

My work shows that it is possible to save power through resource sharing on the

application layer in the domain of home networks without central management, based

on current technologies for interconnection and mediation.

1.3 Synopsis

This chapter introduced the problem and goal of my work, whereas the next Chapter

2 gives an overview about related topics. Chapter 3 proposes an architecture for a net-

work of homes suitable to manage home states and load. On top of this architecture

the applications Download Sharing, Video Encoding and Home Management – com-

pletely different in their resource usage and applicable for power saving – are defined

in Chapter 4. Especially Section 4.5 goes into detail with the analytical model and

outlines the reachable gain of energy efficiency. Chapter 5 describes a simulation model

that validates the analytical model and is used for extensive experiments. Chapter 6

presents simulation output and results are discussed. Finally, Chapter 7 provides a

summary, conclusions and some ideas for future work.

6

2 Related Work

The home gateway as optimization point is suggested in [PCLP08, OHP08]. A home

gateway connects a network to the access network. Normally the home gateway is

designed to be always-on and connected for services inside the home as well as for

requests from outside. An activity scheme is considered to determine periods without

traffic flows. Power can be saved by using a newly created hardware component, the

Network Protocol Agent, that acts as traffic monitor and triggers sleep and wakeup

mechanisms for partly suspending or resuming the home gateway.

The works [PCLP08, OHP08] can be understood as supplement for my own concept

which is based on applications assuming a stable connection to the access network in

form of an always-on home gateway, whereas the home gateway is not the optimization

point for power saving.

The work [LKP+09] is a follow-up of [PCLP08] where an Energy-aware Framework

is introduced to manage and control the power status of consumer electronic devices in

homes. The framework is based on a power management scheme based on the Advanced

Configuration and Power Interface1 (ACPI). Minimum controllable resource units are

defined as Energy-aware Control Elements controlled by an Energy-aware Plug and

Play protocol that provides an open API for managing them.

The work [LKP+09] can be seen as specific case for a locally or remotely running home

management application as suggested in my own work, where sensors and actuators

are controlled for supporting the residents of a home.

In [MSHK07] a home network consisting of control devices, sensors, information ap-

pliances, data devices and AV devices is modeled and analyzed to learn about the

power consumption of devices inside under a typical use case. Energy efficient hard-

ware and power management mechanisms, already used for battery-powered wireless

devices, are applied on home devices. Power saving is reached by avoiding unnecessary

communication between home devices.

The work [MSHK07] illustrates a home management application, as suggested in my

own work, very well. However, I concentrate on inter-home cooperation and also on

reliability and not on the intra-home management at all.

The assumption of instantaneous turning-on mechanisms for computers, my work

considers, is investigated in [BH07a]. With improvements like replacing the System off

by the Suspended to RAM method or the redesign of the circuit for less standby power

consumption the wattage of a PC in standby mode can be lowered from 2.4 watt down

to 0.7 watt while ensuring resuming within 3 seconds.
1An open specification developed by HP, Intel, Microsoft, Phoenix and Toshiba.

7

CHAPTER 2. RELATED WORK

This work is a proof of concept for one aspect of my work where computers within

homes can be turned off and on by the system as required for overtaking remote tasks

and enabling the computer of the remote home to go into a low power mode.

In [HZCS09] a programmable bandwidth aggregation system for home networks is

designed and implemented. For annihilating the shortcomings of current Bandwidth

Aggregation Systems (BASs), deployed in public networks when they are directly used

in context of home networks, they require to be easily and dynamically adaptable. The

suggested Programmable Bandwidth Aggregation System (PBAS) can provide home

networks improved performance through access bandwidth sharing. The PBAS can be

understood as an open, scalable platform that exploits programs represented as Java

byte code, and transparently aggregate bandwidth for them. The speed up is achieved

by bandwidth sharing and multi-path communication.

The work [HZCS09] covers a further aspect which is not in scope of my own work. Of

course, having two access connections at home would result in more available bandwidth

enabled by a PBAS, but for my work it is sufficient to consider one access connection.

As seen later, the bigger issue as total bandwidth is the type of access in terms of

synchronous or asynchronous access.

An energy-efficient routing scheme for home automation is introduced in [OBC05].

Because of limited battery power of sensors, a point of application, as known from

wireless sensor networks, is the routing protocol between the home base and sensors.

The routing scheme here divides the home area into sectors and locates manager nodes

for each sector. Manager nodes are also sensors and additionally collect data from

sensors for forwarding it to the home base in bulk. This reduces the power consumption

of normal sensors compared to conventional sensor routing schemes.

In the same area of interest is [CKC+09]. Data fusion is considered as a process

for decreasing the transmission number of similar sensor values for home automation

and thus saving power in sensors. Sensors’ decisions for sending new data is based on

previously sent data and on the last value sent by one-hop neighboring sensors. In this

routing scheme temporal and spatial correlation is taken into account.

Also [KES+07] falls in the domain of home automation and sensors. In this work a

DLNA2-compilant home network is connected to a ZigBee3 sensor network for aiming

at energy efficient sensor control through switching between unicast and broadcast for

the sensor data gathering method in accordance with current network conditions. A

home gateway architecture connecting the two networks is proposed.

A self-organizing clustered topology with a periodic and query-based data aggre-

gation method is proposed in [KKSK09a] for saving sensor power. For some specific

time one node is chosen as cluster head for collecting and routing the data and this

role rotates within the cluster with increasing network lifetime. Then in [KKSK09b]

the clustered topology is applied to a ZigBee network to make it self-organizing where

the cluster head is chosen based on leftover power what outperforms normal ZigBee

2Digital Living Network Alliance, http://www.dlna.org
3ZigBee Alliance, http://www.zigbee.org

8

CHAPTER 2. RELATED WORK 2.1. RESOURCE SHARING

meshed networks in terms of energy consumption.

The work [PRV09] also aims at minimizing the communication overhead and there-

fore power consumption of sensors with a protocol for home automation emphasizing

energy efficiency and service discovery. This is reached by device specific low power

listening schemes for a minimal number of transactions.

These works address a further point of interest in power saving in the domain of home

management. In my work optimization of sensor action is out of scope. In fact, the

constraint of having an always-on home base is relaxed by executing home management

remotely, where sensor data is sent to a remote home and control messages back.

Power saving for mobile devices is examined in three ways in [SEP05]. Firstly,

at the network level a new routing protocol reduces power consumption on average

by 15 %. Secondly, at the processer level the memory bandwidth directly influences

performance and CPU frequency, which in turn affects the CPU speed setting and

therefore the power consumption of the CPU. Thirdly, most interesting is local versus

remote processing, investigated under relative performance and power consumption

of local and remote systems, transmission bandwidth and network congestion. The

communication and processing costs must be taken into account for deciding where to

execute a task.

[SEP05] already rudimentary dealt with local versus remote execution of load in the

area of mobile devices. My work is fully concentrated on this aspect for network of

homes with less restrictions on computing power and network bandwidth.

2.1 Resource sharing

Resource sharing is strongly related to Peer-to-Peer (P2P) networks most popular for

content distribution. P2P networks offer ad hoc collaboration for aggregating and

sharing large amounts of resources in computer networks. Logical links are defined on

top of a physical network. A single logical hop in the P2P network can be mapped to

several physical hops in the underlying network.

As resources mainly disk space, network bandwidth and CPU time are considered.

There is no distinction between resource consumer and resource provider; both roles

are referred as Peer. In pure P2P networks [SMK+01] all peers are assumed to be

equal. A peer can download data from another peer at the same time as uploading to

other peers. In hybrid P2P networks some peers are distinguished from other peers,

i.e. some peers have different capabilities than others [Tut04].

The most famous application of resource sharing is file sharing. Files are stored

among many peers; the P2P network can be understood as distributed database. Many

network protocols for file sharing have already emerged [ATS04].

Basically, P2P networks are characterized according to their topology [SW05]. In

structured networks the range of unique identifiers is equally distributed over all peers.

Each peer can be explicitly found; each peer has full knowledge about the network.

9

2.1. RESOURCE SHARING CHAPTER 2. RELATED WORK

In case of churn4 this implies repair mechanisms for ensuring a fully qualified address

space of identifiers. Also in unstructured networks there are unique identifiers but

peers do not have full knowledge about the network; the network grows and shrinks

randomly. Such a network may be clustered with varying diameters5. Churn is less

interruptive and this makes this type of networks more failure resistant. The drawback

is that rare content may not be found by the system. In structured networks also

content is addressed and each peer can find out where a certain data item is stored.

These networks establish an addressing scheme that enables the addressing of peers as

well as the addressing of content.

A further distinction are hierarchical networks compared to flat ones. In a flat

network each peer is truly equal as initially considered. To overcome increased man-

agement effort in large networks, hierarchy in form of peers with special roles where

introduced. Super peers act as information holder and entry point into the network.

This concept is also used for bootstrapping where peers are given a list of previously

known super peers. A peer connects to such a super peer for receiving references to

other peers. Super peers themselves build their own logical network within the P2P

network. This network inside the network provides peer and content discovery. Since

super peers also act as normal peers, these peers must share more resources, mostly

network bandwidth.

Whenever the logical addressing of a P2P network is established on a native network

like the Internet, this can be understood as overlay. The overlay interconnects nodes

for a special purpose. Nodes can participate in several overlays at the same time.

A special issue of resource sharing is fairness. A peer should exhibit a trade-

off between consumed and offered resources and must be prevented from free-riding

[FC05, RL02]. A peer that only consumes remote resources without contributing local

resources are called a free-rider. The work [NWD03] presents an economic model to

create incentives for fair resource sharing. Usage files must be exchanged and tell a

peer about the sharing ratio of another peer. This randomly performed auditing mech-

anism between peers increases the probability that faked usage files are detected and

malicious peers are penalized.

An incentive mechanism for fair cooperation, based on past interactions and a dis-

tributed algorithm encapsulated in a middleware, is presented in [AGR05]. A peer is

basically not considered as cooperative or selfish, but rational and changes its behavior

over time.

P2P networks solve three problems an architecture, as proposed in my work, must

deal with: home network interconnection, resource mediation and resource allocation.

What is not solved so far is fairness, because this is still an open research topic. My

work does not solve fairness in P2P networks, but points out the cost of fairness.

4Churn denotes the stochastic process of peer turnover as occurring when peers join or leave the system.
5The longest distance in hops between to arbitrary peers.

10

CHAPTER 2. RELATED WORK 2.1. RESOURCE SHARING

2.1.1 Grid computing

In Grid computing high-end computers build a high performance network [Sto07].

Moreover, Grids are multi-institutional virtual organizations mostly consisting of net-

works by scientific and research communities. A commonly agreed definition of Grid

computing by the Open Grid Forum6 (OGF) is:

“A system that is concerned with the integration, virtualization, and man-

agement of services and resources in a distributed, heterogeneous environ-

ment that supports collections of users and resources (virtual organizations)

across traditional administrative and organizational domains (real organiza-

tions).”

The OGF introduced an architecture for Grid services interaction, called Open Grid

Services Architecture7 (OGSA) which is based on the Web Service Resource Framework

(WSRF) specified by the Organization for the Advancement of Structured Information

Standards8 (OASIS).

The Grid computing model is a client-server model where servers offer specialized,

reliable, highly advanced and sophisticated scientific applications. Grids require a pre-

defined administrative infrastructure enforcing virtual organization policies. The roles,

responsibilities and privileges of collaborating users are also predefined. In contrast,

the P2P paradigm provides direct communication between peers without warranting

any policy enforcement. Responsibilities and privileges of participating users are not

defined a priori and are spontaneous. Every peer is responsible for maintaining the

access to local resources.

The work [ALM04] is a comparison of Grid computing to P2P computing. Grid com-

puting focuses on performance, control, security and Quality of Service (QoS), whereas

P2P computing focuses on fault tolerance, resilience, decentralization, cooperation and

best-effort. Grids are collaborative, because they comprise heterogeneous resources

managed by several entities across multiple institutions. The institutions usually are

closed environments enforcing strict policies describing their cooperation within the

grid. Grids provide non-trivial QoS assurances by e.g. dedicated high-speed networks

and can be distinguished into three models:

• Traditional grids are closed networks, tailored to the special requirements of driv-

ing grid members. Significant management overhead arises due to role-based us-

age by service provider, service developer, administrator and users despite the

closed number of members.

• Ad hoc grids include also participants from non-scientific context, e.g. private

home computers. Instead, the grid only consists of a predefined Virtual Organi-

zation (VO), the cooperation and resource power is mainly based on a transient,

6http://www.ogf.org
7http://www.globus.org/ogsa
8http://www.oasis-open.org

11

2.1. RESOURCE SHARING CHAPTER 2. RELATED WORK

short-lived collaboration of huge numbers of computers. For this purpose, the VO

must appoint administrative privileges and credentials, and provide a common

middleware to every grid member. Unfortunately the administrative overhead for

the VO surpasses its utility in most cases.

• Federated grids are an extension of ad hoc grids. A federated grid is a generic

grid architecture where resource consumption is not only limited to members of

the VO alone. Every participant can submit tasks to the grid while providing

own resources. An economic model ensures sufficient incentive for fair resources

usage. A contributor gains credits for donation of his resources, or pays credits in

case of a negative sharing balance. Thus, resource providers become also resource

consumers. Beyond this idea the next level of grids could be called Public Grids

very similar to P2P networks. Users could dynamically establish VOs in an ad

hoc fashion enabling collaborative resource sharing.

Since P2P networking and Grid computing are converging in terms of functionality,

my work is related to both areas. There is no best concept or protocol for driving a

network of homes with the goal of power saving through resource sharing. My focus is

rather to show that it makes sense to interconnect home networks for home user tasks

on top of an existing P2P or Grid system.

Basically, in Grid computing it is assumed that each participant is cooperative with-

out free-rider problematic. After Grid computing steps toward the commercial world,

also the issue of fairness arises similar to P2P networks. Since Grid computing is in-

tended for solving computationally intensive tasks, the sharing of CPU time is most

important.

In [IAA07] incentives are proposed for resource providers and for negotiating the ex-

ecution of tasks. The donation of resources is rewarded by the grid while new members

have minimum credits. An incentive-based algorithm fosters cooperative behavior of

members for the timely execution of tasks within a given deadline.

The work [kE07] gives a survey about Grid computing traffic patterns. The majority

of Grid traffic is not made up of enormous volumes of data and it is disproved that the

TCP/IP stack alone prevents Grids from working on their full potential. Grid traffic

can be classified in applications causing datasets under 10 MB, 100 MB and 1 GB.

The surveyed applications run on top of middleware solutions. 93 % of the surveyed

applications are deployed on dedicated clusters or mixed with desktop computers, where

only 7 % of the surveyed applications are deployed solely on desktop computers.

Also for task sharing Grids are considered [LCP+05], because it is alluring to use

worldwide idle desktop computers at homes. This is exploited by many projects run-

ning on top of the software platform BOINC [And04] (Berkeley Open Infrastructure

for Network Computing). BOINC is an open source middleware for desktop Grid

computing [Sch07]. BOINC assures that tasks are distributed above all participating

computers and results are collected. A desktop grid differs from a dedicated grid in

terms of performance, whereas in dedicated grids computers exclusively running for the

12

CHAPTER 2. RELATED WORK 2.1. RESOURCE SHARING

grid, in desktop grids any computer of the network edge can volunteer. A desktop grid

is therefore a public server-centered resource sharing system and fits well with highly

parallel computing. Projects hosted by BOINC span over various research fields as

earth sciences, astronomy and physics, biology and medicine, mathematics and strat-

egy games, etc. A user of BOINC can join several projects and divide idle cycles of

his computer between them. The most famous project is Seti@home9 (Search for Ex-

traterrestrial Intelligence) to detect narrow-bandwidth radio signals from space. This

project disseminates tasks with small data size and high CPU load. Therefore, it is eas-

ier to collect small sized data items, than transferring huge amount of data to clients.

Additionally, tasks are not strictly ordered and can be assembled as they arrive.

BOINC has similarity to my approach but lags the missing decentralization. Where

in BOINC tasks are sent out by a central server, in my work tasks can be sent out from

every peer as usually in P2P networks. Further, I do not stick to small-sized tasks and

also consider increasing tasks sizes; an original task object can consist of a description

and source data, whereas a completed one may contain much more data. What my

work and BOINC have in common is the software each client has to run. But instead

of communicating only with the server, the software assumed in my work must behave

like a P2P client.

2.1.2 Cloud computing

The latest step of on-demand and distributed computing is called Cloud computing

which can be understood as advancement of Grid computing and aims at scalable

services for end-users on the Internet [PRSBM+09]. Where a Grid is historically a

closed environment with task scheduling, Service Level Agreements (SLAs) and poli-

cies, Cloud computing is not dedicated to virtual organizations or companies. A Service

Level Agreement (SLA) is a contract between a service provider and service user. It

regulates levels of Quality of Service (QoS) in terms of security, availability, perfor-

mance etc. According to [BYV08] there is a requirement for market-orientation in

Cloud architectures for regulating the supply and demand of resources. Service re-

quests with specific QoS requirements must be met by providers for establishing SLAs.

Dealing service requests as equivalent is usually done by centric resource management

without incentives for the providers to share their resources. Thus, fairness is also an

important issue in Cloud computing.

Cloud computing is still an open term and there exist a couple of definitions of it

[Gee08], whereas in [BYV08] a Cloud is defined as follows:

“A Cloud is a type of parallel and distributed system consisting of a collec-

tion of interconnected and virtualized computers that are dynamically pro-

visioned and presented as one or more unified computing resources based on

service-level agreements established through negotiation between the service

provider and consumers.”

The term Cloud refers to the fact, that the Internet is often illustrated as a cloud

9http://setiathome.berkeley.edu

13

2.1. RESOURCE SHARING CHAPTER 2. RELATED WORK

in network diagrams. Since the Cloud provides applications and storage this encour-

ages companies to outsource their own IT infrastructure to Cloud providers. Cloud

providers sell applications, storage or even computation time similar to public services

like electricity, water, gas and telephone since the user only pays for utilization.

According to [Vou08], Cloud computing implies a Service Oriented Architecture

(SOA) [PvdH07, ZHvdA06, SHM08, KLS08] where users access an integrated suite

of functions through composition of services from possibly many different networks.

SOA addresses the requirements of loosely coupled, standards-based and protocol in-

dependent distributed computing and allows the integration of applications as reusable

services with platform independent specifications that abstract underlying complexity.

These services are delivered through next-generation data centers that are built on

compute and storage virtualization technologies. Consumers will be able to access ap-

plications and data from a Cloud anywhere on demand. The Cloud appears to be a

single point of access.

The term Software as a Service (SaaS) stands for remote access on single applications

via a web browser. The web browser is meanwhile a very suitable tool for accessing

most important functionalities required by information workers. SinceWeb 2.0 [TLT09]

allows users not only to consume information on web pages, but also to add and

customize information, the look and feel of web applications is not far away from

native applications running on the desktop. Over this, Cloud platforms enable users

to create own applications within the Cloud space which are then be used as SaaS.

As in the Amazon Elastic Compute Cloud10 (Amazon EC2) Virtualization is applied.

As execution environment Virtual Machines (VMs), e.g. based on Linux, encapsulate

an operation system with all applications and data. All services inside Amazon EC2

run into VMs.

Cloud computing is not directly related to my work but must be considered for being

in line with the trend and more important for fulfilling future end user requirements.

Thus, the network of homes can be assumed as Cloud where homes conceptually have

access to a single entity not caring about location of service and data. Further, virtu-

alization is assumed to encapsulate tasks generated by homes and executed locally or

remotely. As with Grid computing, also Cloud computing lags true decentralization.

In my work no server is in place as information broker; thus a plain P2P system is

enough for implementing my architecture.

Table 2.1 summarizes typical differences between the three discussed resource sharing

concepts. Because of the focus of this work on home networks and private computers

are involved, a P2P approach seems to be the most fitting resource sharing concept.

cdffdc

10http://aws.amazon.com/ec2

14

CHAPTER 2. RELATED WORK 2.2. VIRTUALIZATION

P2P Grid computing Cloud computing

Organization decentral central central

Access open closed closed

Allocations High number Low number High number

Request Type tiny big small

Task Scheduling no yes no

Reliability no yes no

Service-Level Agree-
ments (SLAs)

no yes yes

Dedicated Hosts no yes yes

Table 2.1: Typical differences between resource sharing concepts.

2.2 Virtualization

Nowadays, system virtualization is successfully used to consolidate services in data cen-

ters. Several services can run separately on top of a single hardware, saving hardware

costs, space and energy. In system virtualization a Virtual Machine (VM) is created,

i.e. a full host is virtualized consisting of virtual CPUs, virtual memory, virtual hard

disk, virtual network. A VM is a perfect recreation of a real machine in such a way

that an operating system can be installed on it without being aware of the resource

virtualization.

Virtualization in distributed systems refers to abstraction from physical character-

istics and location of computing resources. Virtualization is used to aggregate a pool

of hardware resources, to provide load sharing, to save hardware and energy, and to

hide the complexity of a distributed system. But also to split hardware resources into

separated parts as VMs which can run in parallel.

Large resource sharing systems leverage virtualization concepts for building clusters

as well as for administering large networks [WCC+08]. VMs allow administrators to

better control available resources through consolidation of hardware while also protect-

ing the host from faulty or malicious software. This allows administrators to provide

sandbox-like environments with little performance reduction.

According to [QNC06] the main motivations for virtualizing computer resources are:

• A VM provides a confined environment where non-trusted applications can run.

• A VM can limit hardware resource access and usage through isolation techniques.

• A VM allows adaption of the runtime environment to the application instead of

porting the application to the runtime environment.

• A VM allows using dedicated or optimized operation system mechanisms for each

application.

• Applications and processes running within a VM can be managed as a whole.

15

2.2. VIRTUALIZATION CHAPTER 2. RELATED WORK

The IT industry needed major efforts to make data centers more energy efficient.

Energy efficiency in data centers relies heavily on virtualization. In data centers vir-

tual server entities are created, copied, moved and deleted depending on management

decisions. Energy efficiency is then achieved by consolidating hardware and reducing

redundancy. Some computers run at higher load while idle computers are hibernated

or even stay in a low power mode. The management process itself is borrowed from

Grid technology, where virtualized hardware resources are allocated in a centralized

way. In order to reduce the complexity of the management process and simplify the

trust relationship, shared server hardware is usually located close to each other (e.g.

in racks) and interconnected with high-bandwidth links.

Users may access aggregated hardware as a single virtual environment (e.g. a single

Linux shell). This kind of virtualization is shown in Figure 2.1 a). A number of real

machines is aggregated to a single virtual environment. In contrast to the compositional

Grid virtualization, server virtualization uses virtualization methods in a segmenting

manner. Server virtualization aims to split hardware resources into several smaller

virtual environments, enabling more than one virtual environment on a single hardware.

Servers are virtualized to achieve load-balancing, to increase resilience, and to save

energy by consolidation. In Figure 2.1 b) this kind of resource virtualization is shown.

A single hardware is split into several virtual environments.

Figure 2.1: a) Grid virtualization and b) server virtualization.

My work assumes both types of virtualization. First Grid virtualization is applied

for the view of the single home on the rest of the network of homes. A unified interface

must provide access to any resources available at the moment. This can be done by a

software, i.e. a P2P client. Server virtualization is used as local view within homes.

Since local and remote tasks are executed concurrently, each of these tasks can be

represented by a VM. All VMs together are subdividing disposable resources. With

the help of these two virtualization concepts and in conjunction with P2P a system as

proposed by my work can be implemented.

16

CHAPTER 2. RELATED WORK 2.2. VIRTUALIZATION

2.2.1 Virtual Machine Monitor

As surveyed in [RG05] at the end of the 1960s, the Virtual Machine Monitor (VMM)

was introduced as software layer which partitions a hardware platform into VMs. Each

of these VMs has been sufficiently similar to the underlying physical machine to run

existing software unmodified. At this time, general-purpose computing was the do-

main of large and expensive mainframe hardware. Users found that VMMs provide a

compelling way to multiplex resources among multiple applications. This technology

flourished both in industry and in academic research. The 1980s and 1990s brought

modern multitasking operation systems and a simultaneous drop in hardware costs,

which eroded the value of VMMs. To reduce the effects of system crashes and lag

of performance, system administrators again resorted a computing model with one

application running per machine. This increased hardware requirements, imposing sig-

nificant cost and management overhead. As mainframes gave way to minicomputers

and then PCs, VMMs disappeared to the extent that computer architectures no longer

provided the necessary hardware to implement them efficiently. By the late 1980s, nei-

ther academics nor industry practitioners saw VMMs as much more than a historical

curiosity.

In the 1990s, Stanford University researchers began to look at the potential of VMs

to overcome difficulties that hardware and operation system limitations imposed. This

time the problems stemmed from Massively Parallel Processing (MPP) machines that

were difficult to program and could not run existing operation systems. Besides, moving

applications that once ran on many physical machines into VMs and consolidating those

VMs onto just a few physical platforms increased use efficiency and reduced space and

management costs. Thus, the VMM’s ability to multiplex hardware, this time for

server consolidation and utility computing, again led it to prominence.

With VMs, researchers found they could make various architectures look sufficiently

similar to existing platforms to leverage the current operation systems. From this

project came the people and ideas that underpinned VMware11, the original supplier

of VMMs for commodity computing hardware. Today, in research labs and universities

researchers are developing approaches based on VMs to solve mobility, security and

manageability problems.

As shown in Figure 2.2 a VMM decouples software from the host by forming a layer

of indirection between applications running in the VM, and host hardware. This layer

of indirection can be seen as a virtualization layer and lets the VMM control how guest

operation systems inside a VM access host hardware. The VMM can be a normal

application or an integrated functionality of a Hypervisor. Either a Hypervisor or a

normal operation system executes on the host. A normal operation system enables to

execute native applications beside the VMM, whereas a true Hypervisor environment

dedicates the virtualized host. On the VMM level a unitary virtual host is emulated.

The VM encapsulates a guest operation system which accesses hardware of that virtual

11http://www.vmware.com

17

2.2. VIRTUALIZATION CHAPTER 2. RELATED WORK

Figure 2.2: The basic principle of a Virtual Machine Monitor.

host. Inside the VM arbitrary operation systems are possible. For all applications,

there is no difference in running inside a VM or a native operation system.

Disadvantages of virtualization are the additional overhead and considerable com-

plexity. But advantages of virtualization are isolation, encapsulation, more flexibility,

higher availability and good scalability:

• Isolation inhibits mutual annoyance of processes. Operations of one server hosted

within an VM, can not affect the execution of another server running in another

VM on the same computer. E.g. the Mail and Web servers run on the same

machine, but a malfunction of one server can not affect other servers.

• Encapsulation means that the software within a VM is self-contained. A self-

contained environment does not require external functionality like software li-

braries or application level drivers for execution. This is a strong base for whole

operation system and application configurations without need for manual config-

uration.

• Flexibility comes from the ease of creation, migration, resumption and duplication

of VMs. Basically a VM is a normal file. In case the underlying Hybervisor or

VMM is capable of executing manifold VMs, there is no limitation on type and

number of VMs.

• Availability is reached through replication of VMs. A crashed VM can be resumed

on another machine or a passive replicate, running alongside as an on-the-fly copy

of the active master VM, takes over immediately. This can be done by monitoring

and then delegating the master role to a certain VM within a pool of slaves. In

the best case the user does not notice the crash of a virtual service.

18

CHAPTER 2. RELATED WORK 2.2. VIRTUALIZATION

• Scalability is provided by live migration. Fully loaded computers can be dis-

charged by migrating several VMs to another machine.

• Overhead and complexity are caused by the additional virtualization layer. A

crash of a physical machine can cause the breakdown of many VMs, thus many

service breakdowns. A system administrator must take this into account.

2.2.2 Virtualization Technologies

Resources can be virtualized on different layers implementing different forms of virtu-

alization [WCC+08].

Full virtualization is also sometimes called hardware emulation. An unmodified op-

eration system uses a VMM or Hypervisor as layer between guest and host opera-

tion system to trap and safely execute [WCC+08] privileged instructions at runtime.

Trapping privileged instructions can lead to less performance. To overcome this, one

strategy is to aggregate multiple instructions and translate them together, or another

strategy is binary translation [AA06].

The basic binary translation technique is to run privileged mode code (kernel code)

under control of the binary translator. The translator converts the privileged code into

a similar block by replacing the problematic instructions, which lets the translated block

run directly on the CPU. The binary translation system caches the translated block in

a trace cache so that translation does not occur on subsequent executions. When full

virtualization is supported, the virtualization software simulates full featured hardware

and runs on top of the local operation system. An example of full virtualization is the

VMware workstation.

Para-virtualization uses a Hypervisor and VMs to refer to virtualized operation sys-

tems. The work [WSG02] revitalizes para-virtualization by selectively modifying ex-

isting virtual architecture principles to enhance scalability, performance and simplicity

for non legacy operation systems. Purely virtual instructions that have no counterpart

in the physical architecture were introduced. These instructions are conceptually sim-

ilar to operation system calls, except that they are non-blocking and operate at the

architectural level instead of at the level of operation system abstractions. Existing

instruction semantics are modified and certain rarely used instructions are classified

as deprecated. Virtual registers as a lightweight mechanism for passing data between

the VMM and VMs were added to the virtualization architecture. These registers are

mapped to a well-known region of a VM’s address space. Thus, bidirectional com-

munication between VMM and VM is possible; e.g. the VMM can be noticed about

changed resource requests or releases of the VM. Virtual I/O devices export a sim-

plified architectural interface, designed to minimize VM/VMM boundary crossings.

Unlike full virtualization, para-virtualization requires changes to the guest operation

system. Guest operation systems are modified in order to perform so called hyper

calls instead of system calls, which leads to higher performance as e.g. used by Xen12

[BDF+03]. In Xen 3.0 [FHL+01] guests can be virtualized without modifying them,

12http://www.xen.org

19

2.2. VIRTUALIZATION CHAPTER 2. RELATED WORK

using the virtualization support of X86 CPUs. This avoids some performance issues

as experienced in full virtualization and the use of privileged instructions is reduced

through VM-to-Hypervisor coordination. The advantage of para-virtualization is the

relative better performance compared to full virtualization, whereas the disadvantage

is the requirement to modify the para-virtualized operation system to be ready for the

Hypervisor. Mostly this is only possible for open source operation systems.

Operation system virtualization has been proposed by the Linux-VServer13 [Lig05],

a kernel based virtualization. All guest operation systems are sharing the same kernel,

while isolated from each other. Operation system virtualization does not rely on a

Hypervisor, because the operation system itself is modified to run multiple instances

of a guest operation system isolated. Guest operation systems are referred for example

as Virtual Private Servers (VPSs). Because of no instruction trapping, the advantage

of operation system virtualization lies mainly in the near-native performance. A dis-

advantage is that all VPSs share one kernel which could compromise all VPSs if the

kernel crashes.

Native virtualization is virtualization support within a processor itself which allows to

run unmodified operation systems concurrently and directly on the processor. Native

virtualization does not emulate a processor like full virtualization. Both, Intel and

AMD support virtualization for their x86 64 processor architectures through Intel-

VT14 or AMD-V15 virtualization extensions respectively.

Table 2.2 summarizes typical differences between the four discussed virtualization

concepts. For my work currently most feasible is full virtualization, since private

Full Para OS Native

Performance (lower is faster) 4 3 2 1
Application Modification no no no no
OS Modification no yes yes no
Sandbox yes yes no yes

Table 2.2: Typical differences between virtualization technologies.

computers are involved. In a second step native virtualization would be beneficial

because of the performance gain. I do not investigate virtualization at all, but my

architecture assumes a virtualization technique used by the P2P client for exchanging

VMs between homes.

Especially VMware16 is a virtualization software [WCC+08, QNC06] for machines

based on x86 architecture. E.g. VMware Workstation and VMware Server require a

host operation system, but are highly portable and do not require any modification of

the host operation system. WMware ESX is itself an operation system. It provides

13http://linux-vserver.org
14http://www.intel.com/technology/virtualization
15http://www.amd.com/virtualization
16http://www.vmware.com

20

CHAPTER 2. RELATED WORK 2.2. VIRTUALIZATION

better performance at the cost of reduced portability. In VMware virtualization works

at the processor level. VM privileged instructions are trapped and virtualized by

the VMware process. Other instructions are directly executed by the host processor.

VMware can be seen as the market leader in virtualization technology which includes

support for both, full and native virtualization. Unlike VMware ESX, VMware Server

runs on Linux or Windows, which allows freedom in hardware use, but causes additional

overhead and less performance. VMware Server supports bridged, NAT, and host-only

networking. Bridged networking allows VMs to act as distinct hosts with own IP

addresses, where NAT networking allows VMs to use the same IP address, and host-

only networking allows the VM to directly communicate with the host without true

network interface.

Parallels17 is a virtualization software like VMware. With the Parallels Desktop 4.0

application it is possible to run Windows, Linux or any other 32 or 64 bit operation

system on a computer with the Macintosh operation system natively (OS X 10.4.11 or

later). VMware also entered the market of virtualization on Macintosh with VMWare

Fusion 2.0. Parallels introduced the support for multi core systems. Also seamless drag

and drop of files between host and guest operation system is now possible.

VirtualBox 18 is similar to VMware or Parallels a virtualization software for x86

computer architectures. Formerly an open source project, Sun adopted the project

still offering VirtualBox for free. VirtualBox runs on Windows, Linux, Macintosh and

OpenSolaris and support guest operation systems of such types.

OpenVZ 19 is the open source base of Parallels Virtuozzo Containers20. It uses op-

eration system virtualization to achieve near native performance for guest operation

systems under Linux. The main advantage of OpenVZ lies in the resource control which

is mainly missing in full virtualization or para-virtualization. Especially guest com-

munication buffer, kernel memory, memory pages and disk space accessible by guest

operation systems can be limited. For networking a virtual network device or a virtual

Ethernet device can be chosen. While the virtual network device can not be modified

by the guest operation system, the virtual Ethernet device is configurable as a standard

Ethernet device.

KVM (Kernel-based Virtual Machine) is open source and included in Linux since

version 2.6.20 and consists of a kernel module (kvm.ko) and a specific processor module.

The processor virtualization instruction sets Intel VT 21 and AMD-V 22 are supported

by using the corresponding module (kvm-intel.ko or kvm-amd.ko). KVM requires

QEMU 23, an open source processor emulator or virtualizer. QEMU can run in emu-

17http://www.parallels.com
18http://www.virtualbox.org
19http://wiki.openvz.org
20http://www.parallels.com/virtuozzo
21http://www.intel.com/technology/virtualization
22http://www.amd.com/virtualization
23http://www.qemu.org

21

2.2. VIRTUALIZATION CHAPTER 2. RELATED WORK

lator or virtualizer mode. In emulator mode QEMU is a machine emulator emulating

different computer architectures. In virtualizer mode for x86 architectures QEMU exe-

cutes guest operation systems with near native performance by directly using the host

CPU. In that case a host driver called KQEMU 24 is needed.

Xen25 is the most popular para-virtualization implementation. Guest operation sys-

tems exhibit, thanks to a small performance overhead, near-native performance. Xen

manages mainly memory and CPU allocation, whereas storage is organized as either

a single file on the host file system, or as partitions or logical volumes. Networking

is realized as a series of virtual Ethernet devices created on the host system. These

virtual Ethernet devices, each with own MAC address, function as endpoints of net-

work interfaces in guest operation systems. In Xen, one primary domain has direct

access to the host’s hardware. Through this primary domain the Hypervisor monitors

normal domains of guest operation systems. Hardware access of guests is redirected

and granted only by the primary domain. The primary domain allows the Hypervisor

also launching and shutting down normal domains.

A full virtualization solution like VMWare or the free VirtualBox is suitable to pro-

vide the functionality for my system. All necessary functions must be seamlessly in-

cluded in a P2P client executed within homes. Thus, the P2P client must create, start,

stop, pause, resume, send and receive VMs concurrently. This of course requires com-

puter resources and could be improved by a native virtualization solution included and

standardized in future operation systems.

2.2.3 PlanetLab

A special platform related to my work, is PlanetLab26[PR06, AR06, PBFM06] (used

e.g. by Emulab27). PlanetLab envisions an open distributed platform for deploying,

executing and evaluating planetary-scale network services. PlanetLab is shared, built

and maintained by a community of researchers at about 500 sites with more than 1000

nodes (checked in Jan. 2010). In exchange for hosting one or a small number of nodes,

participants obtain access to resources across the entire platform.

PlanetLab faces a complex, distributed scenario of virtualization. Hardware resources

are spread all over the planet, interconnected via the Internet without use of special

high-performance links. Within PlanetLab every single machine is split into Virtual

Machines (VMs) similar to server virtualization. These VMs are organized in slices,

which are network-wide containers that isolate services from each other. Services belong

to slices running concurrently and sharing the same global resources. Slices enforce two

kinds of isolation: resource and security isolation. The former minimizes performance

interference and the latter eliminates namespace interference.

24http://kqemu.sourceforge.net
25http://www.xen.org
26https://www.planet-lab.org
27http://www.emulab.net

22

CHAPTER 2. RELATED WORK 2.2. VIRTUALIZATION

More precisely, a slice is represented by one single VM per available PlanetLab

machine. Thus, a user who has booked a slice can create one Linux-shell per PlanetLab

machine. This scenario is illustrated in fig. 2.3. It is important to see that VMs in a

slice are not aggregated like resources in a Grid. No further abstraction than one shell

per machine is provided, leaving users with the problem of dealing with dozens or even

hundreds of shells simultaneously.

Figure 2.3: Virtualization in PlanetLab.

Services and applications run in a slice that can also be seen as a set of nodes on

which the service receives a fraction of each node’s resources in form of a VM. What

is done in PlanetLab is distributed virtualization: the acquisition of a distributed set

of VMs treated as a single, compound entity by the system. PlanetLab aims to isolate

services and applications from each other for maintaining the illusion that each service

runs on a distributed set of private machines.

The management system in PlanetLab is quite simplistic, since it allocates resources

to users without caring of their load or bandwidth requirements. A central manage-

ment authority provides slices to users; each slice is a collection of VMs (one on each

PlanetLab node). The user must centrally upload code (via SSH for instance) by ad-

dressing each node individually. This is different to the controlled approach in Grid

computing where a central management allocates exact resources to certain users and

guarantees a given service level. In contrast, distributed virtualization such as that

in PlanetLab connects virtual resources over the Internet while relying on less strict

availability and reliability of the end systems.

With the PlanetLab Central (PLC) nodes can be remotely managed. Each node

itself runs a Node Manager (NM) for controlling own VMs on top of a Virtual Machine

Monitor (VMM). Slices are created by users through operations available on the PLC.

The PLC uses the NM at nodes for creating VMs. A set of such VMs, possibly

distributed on different nodes, defines a slice; they are a global abstraction.

23

2.2. VIRTUALIZATION CHAPTER 2. RELATED WORK

PlanetLab uses simple central management, based on reservation of this slices on

machines for running Linux shells. Access to global resources is given by this slices.

PlanetLab users who wish to deploy applications acquire a slice. The slice abstraction

itself, as a distributed collection of VMs, is implemented by slice creation services.

In some sense, PlanetLab is a distributed operation system. While PlanetLab pro-

vides weak isolation between slices at the node level, it provides no isolation at the

level of aggregated resources across the entire system. Similarly, PlanetLab has only a

single type of user; all experiments are equally powerful, even those written by novices.

PlanetLab applies unbundled management where services, used to manage PlanetLab

itself, should be deployed as normal user services. This allows the system to more

easily evolve, to permit third-party developers to build own services, and to permit

decentralized control over PlanetLab resources.

To take advantage of virtualization, VM-management has to be done. In Grids

available resources have to be adequately allocated. In data centers VMs have to be

moved, copied, created and deleted e.g. for load balancing or consolidation. Similar

to the resources of Grids, server hardware is usually located close to each other as in

racks or data centers, and interconnected with high-bandwidth links. Therefore, the

management of virtualization in Grids and data centers is mainly implemented in a

centralized way, where a central management element allocates resources. VMware for

instance, provides such a centralized management element to manage VMs in data cen-

ters. Although virtualization itself is highly distributed in PlanetLab, the management

of hardware and slices is rather centralized. Slices are created, allocated and managed

via a central server. Also the user of a slice is a central point of management, having

to cope with hundreds of VMs.

A distributed management and dynamic behavior, as proposed in my work, is essen-

tially missing in a platform like PlanetLab. There, virtual environments are created

centrally, one virtual environment on each participating machine. Moreover, in Plan-

etLab shifting of load is not trivial and consolidation of machines to run at a higher

load is not yet possible. Also, there is no automation in allocating virtual resources to

a given user or to a special application. In an architecture for homes in the residential

domain, the automatic allocation of resources and consolidation of resources must be

possible.

My work adopts the concept of slices and VMs from PlanetLab. VMs containing

tasks are send to other homes for remote execution. The single home knows locations

of own tasks; this is the slice. But slice management should be considered decentralized

simply in terms of scalability due to the vast number of possible participators in form of

homes. Since in P2P systems it may be negligible to have knowledge about the entire

system, a fixed management infrastructure as used in PlanetLab could be avoided and

this assumption underpins my work.

24

CHAPTER 2. RELATED WORK 2.2. VIRTUALIZATION

2.2.4 Live Migration

Another important topic related to my work is Live Migration [HH09]. When resources

are virtualized within VMs, an additional management of VMs is required to create,

terminate, clone or move VMs from host to host. Migration of VMs can be done offline

(the VM is suspended) or online (while running the VM). The management solution

of VMware is supporting live migration.

Migrating VMs across distinct physical hosts is a useful tool for administrators of

data centers and clusters. It allows a clean separation between hardware and software,

and facilitates failure management, load balancing and system maintenance.

Migrating an entire VM allows to avoid many difficulties faced by process-level mi-

gration. In particular the narrow interface between a VM and the VMM avoids the

problem of residual dependencies in which the original host must remain available on

behalf of certain system calls or memory accesses on behalf of migrated processes. With

VM migration the original host may be released once migration has completed.

Migrating at the level of an entire VM means, that the working memory state can

be transferred in a consistent fashion. Theoretically, a game server or streaming media

server can be migrated at runtime without requiring clients to reconnect. Live migra-

tion of VMs allows a separation of concerns between users and operator. Users need not

provide any remote access to the administrator (e.g. a root login to suspend client-side

processes prior to migration). Similarly, the operator does not need to be concerned

with details of what is going on within VMs. Instead they can simply migrate and then

resume an entire running system as a single unit. If a physical machine needs to be

removed from service an administrator may migrate all VMs to alternative machines.

As stated by [CFH+05] there are three strategies to copy a VM from one host to

another host:

1. Pure stop-and-copy involves halting the original VM, copying all pages to the

destination, and then starting the new VM. This has advantages in terms of sim-

plicity, but means that both downtime and total migration time are proportional

to the amount of physical memory allocated to the VM. This can lead to an

unacceptable outage if the VM is running a live service.

2. Pure demand-migration involves a short stop-and-copy phase that transfers es-

sential kernel data structures to the destination. The destination VM is then

started, and other pages are transferred across the network on first use. This

results in a much shorter downtime, but produces a much longer total migration

time; and in practice, performance after migration is likely to be unacceptably

degraded until a considerable set of pages have been faulted across. Until this

time the VM will fault on a high proportion of its memory accesses, each of which

initiates a synchronous transfer across the network.

3. Pre-copy combines a bounded iterative push phase with a typically very short

stop-and-copy phase. Iterative means that pre-copying occurs in rounds, in which

25

2.2. VIRTUALIZATION CHAPTER 2. RELATED WORK

the pages to be transferred during round t are those that are modified during

round t − 1 (all pages are transferred in the first round). This strategy is based

on the assumption that every VM will have some set of pages that it updates very

frequently and which are therefore poor candidates for pre-copy migration which

implicates that the majority of pages rarely changes.

The migration procedure itself can be divided in two types:

• Managed migration is performed by migration daemons running on source and

destination hosts. Those are responsible for creating a new VM on the destination

machine, and for coordinating the transfer over the network. When transferring

the memory image of a running VM, daemons perform rounds of copying in

conjunction with complete scans of the VM’s memory pages. Although in the

first round all pages are transferred to the destination machine, in subsequent

rounds this copying is restricted to pages that were updated during the previous

round, as indicated by e.g. a dirty bitmap that is copied at the start of each

round.

• Self migration places the majority of migration functionality within the system

being migrated. In this design a migration stub must run on the destination

machine to listen for incoming migration requests, to create an initial VM, and to

receive memory images by the source machine. This time the operation system

maintains a dirty bitmap itself with the difficulty to transfer a consistent operation

system checkpoint. Further, the operation system must continue to run in order

to transfer the final memory state. This results in additional rounds of copying

but avoids the full pause during managed migration.

Yet live migration was only considered in local area networks and for relative small-

sized VMs[HH09]. Live migration of large enterprise applications is a major problem,

because significant parts of memory pages are dirtied at least as fast as the transfer over

network is possible. To overcome this, Dynamic Rate-Limiting is applied by increasing

the bandwidth for migration at cost of network congestion, or Rouge Process Stunning

by freezing processes with to much activity. The drawbacks are possible bottlenecks in

terms of network bandwidth or response time, which is dangerous for highly available

services hosted within VMs.

In my work, migration of VMs must not be necessarily live. Since each task is an

atomic operation, migration takes place only if a new task is created or finished (stop-

and-copy). I investigate a system under the worst case; interrupted tasks must be

restarted and there is only one place of execution for each task. If the system performs

under this constraints, it will also do so with live migration which in turn would improve

the outcome by allowing more exact determination of migration time points.

Virtualization nowadays is a well established technology for breaking up the depen-

dence between host, operation system, and applications. Virtualization is assumed as

basic part of this work and enables to abstract load through tasks that can be ex-

changed between homes to fulfill power saving goals. If VMs are mentioned later, then

26

CHAPTER 2. RELATED WORK 2.3. VIRTUAL HOME ENVIRONMENT

it is meant that VMs only contain minimal operation system and application bundles.

These (tiny) VMs contain only the necessary parts of e.g. Linux to boot and start the

application executing a task. For this purpose a solution like a VMware or VirtualBox

is considered. Deamons as part of the P2P client of each home could handle the mi-

gration of VMs and beyond that could assure reliability. This work does not focus on

virtualization itself, but is based upon it.

2.3 Virtual Home Environment

This section gives an introduction about connectivity inside and between homes. Many

technologies came up in recent years for interconnecting devices of a home network.

Also concepts for inter-home cooperation were suggested.

According to [BH06] a home network interconnects home appliances, media systems,

PCs, and various kinds of sensors via bridges. A residential gateway runs remotely

managed applications. The gateway operator maintains the gateway itself without

paying attention to applications. The service aggregator is responsible for deployment

and configuration of applications. Ideally, the customer may not be aware of updates

for applications running on the gateway. The network operator provides access to the

Internet and monitors a variety of performance parameters.

A definition by the 3rd Generation Partnership Project28 (3GPP)[PM02] describes

a Virtual Home Environment (VHE) as a concept for personal service environment

portability across network boundaries and between terminals. 3GPP is a collaboration

agreement since December 1998 that brings together a number of telecommunications

standards bodies which are known as Organizational Partners. Users are consistently

presented with the same personalized features, interface customizations and services in

whatever network, wherever the user may be located. Further the Open Service Access

(OSA) framework for separating network and service layers was proposed by 3GPP.

This OSA framework in conjunction with the Parlay Application Programming Inter-

faces, specified under the so called Parlay/OSA Specifications, was the base technology

applied in the project VESPER [RSO01, RJX+02] (Virtual Home Environment for Ser-

vice Personalization and Roaming Users). The project aimed to define, demonstrate

and promote a service architecture for provision of VHE across a multi-provider, het-

erogeneous network and system infrastructure. The key objective of VESPER was to

define a VHE architecture validated by some sample implementations of services. The

Parlay Group29 is a consortium formed to develop open, technology-independent APIs

that enable the development of applications operating across converged networks.

Also the European Institute for Research and Strategic Studies in Telecommunica-

tions30 (Eurescom) described a VHE [Geu01] as an environment enabling users to

28http://www.3gpp.org
29http://www.parlay.org
30http://www.eurescom.de

27

2.3. VIRTUAL HOME ENVIRONMENT CHAPTER 2. RELATED WORK

receive customized and personalized services, regardless of location, access network or

terminal type in a way that users will not see a difference in using services at home or

while roaming in other networks. A VHE promises to provide users with a common

look and feel of services. Eurescom is a private organization for collaborative research

and development in European telecommunications and performs multinational research

projects on networks, services, applications and further aspects of telecommunications.

Similarly in [LYBP02] the VHE concept pursues the idea of service universality,

which allows users to transparently access services anytime, anywhere with any type

of terminal. This concept allows users to be consistently presented with the same per-

sonalized features and preferences, regardless of the context. In practice this implies,

that users can access VHE services in the home or anywhere. Hence their Home En-

vironment becomes a Virtual Home Environment. Figure 2.4 shows the generic VHE

roaming model deduced from [RCXA03] and [DM02]. Internet access, home control

and service management are distributed among three providers. The user is connected

to the Internet via the network provider at his current location. A user at home is

connected to his Local Network Provider and outside to a currently available Remote

Network Provider. The VHE Provider is responsible to manage the home’s equip-

ment through a residential application layer gateway [DM02]. Such a gateway may

be equipped with OSGi31 to manage services that control home devices. OSGi is a

dynamic module system for Java32. The OSGi Alliance is a worldwide consortium of

technology innovators that advances a proven and mature process to assure interoper-

ability of applications and services based on its component integration platform. This

alliance provides specifications, reference implementations, test suites and certification.

Java is an object-oriented programming language developed by Sun33. Locally, the user

establishes a connection to his home along the edges denoted with L and remotely along

the edges denoted with R. The remote connection can be seen as roaming via Remote

Network Provider and Remote VHE Provider. The model also considers a 3rd Party

Service Provider that offers services to the home, accessible over the corresponding

VHE Provider (edges denoted with E).

Here is the own home virtually extended to another home from where services of

the own home can be remotely accessed. The relevance for my own work is the fact,

that results of tasks, sent out previously at home, could be received at another home

location for e.g. home management applications. Thus, one can create, send and

receive tasks at different locations, but the system gives the feeling of being always in

the own home network.

The work [RCXA03] proposed a Roamer Agent, already defined in the VHE architec-

ture of the project VESPER and responsible for dynamic selection of an appropriate

Remote VHE Provider within the range of a single roaming user. The Roamer Agent

negotiates user preferences and ensures Quality of Service aspects during the roaming

31http://www.osgi.org
32http://java.sun.com
33http://www.sun.com

28

CHAPTER 2. RELATED WORK 2.3. VIRTUAL HOME ENVIRONMENT

Figure 2.4: The generic VHE roaming model.

session of the user.

A major problem of the VHE model is the requirement to dynamically adapt network

capabilities to enable optimal service provision [DM02]. As in [LYBP02] outlined, the

key problem of managing services provided by a VHE, are effective adaption mecha-

nisms. The service-context leads to a multi-dimensional adaption problem. In addition

to terminal, network and user preferences, also location and time adaption must be

considered. The work [LYBP02] focuses on the service management aspects of a VHE-

middleware for context-aware, adaptable services.

In [TCdM02, TdMV+02] a multimedia delivery service in the context of the VESPER

project is described to demonstrate the features of the VESPER prototype. This

29

2.3. VIRTUAL HOME ENVIRONMENT CHAPTER 2. RELATED WORK

service provides a mechanism to distribute and adapt multimedia streams according

do the user’s terminal, connectivity and preferences. Adaption is done in terms of

user interaction (terminal capabilities, user preferences, networks) and in terms of the

media content. Code mobility in form of mobile agents are conceived to partition the

adaption between server (encoding) and terminal (decoding).

In [NUT+02] a virtual overlay network for integrating networked home appliances

is proposed while also considering media streaming and disk sharing. The aim is that

virtual overlay networks should build an Internet-scale ubiquitous computing environ-

ment. Application layer gateways are connected through the Internet and translate

between different protocols like Jini34, UPnP35, HAVi36, SOAP37 or Bluetooth38, sup-

ported by home appliances. Jini is a service oriented architecture based on Java and

defines a programming model for the construction of secure, distributed systems. The

Universal Plug and Play (UPnP) architecture offers pervasive P2P network connectivity

for computers, intelligent appliances, and wireless devices. Home Audio Video inter-

operability (HAVi) is a specification for interconnecting home entertainment products.

SOAP is a lightweight protocol intended for exchanging structured information in a

decentralized, distributed environment. Bluetooth is a protocol for wireless short-range

communication.

The work [FXY+04] analyzed in details the requirements of service content adaption

in a VHE system and created a policy based multi-dimension framework to imple-

ment adaption due to user profiles, terminal capabilities and network resources. The

framework consists of a service layer, transmit layer and terminal layer. In the service

layer occurs the context-based adaption. The transmit layer assures Quality of Service

whereas the terminal layer adjusts the content to user requirements.

The work [LMBE03] designed an architecture for integrating homes connected to the

Internet with OSGi-capable gateways. JXTA39 is combined with OSGi to build a P2P-

overlay without central server for communication, media sharing and distributed device

control. The JXTA technology is a set of open protocols that enable any networked

device to communicate and collaborate in a P2P manner.

Another work [YHJ+08] deals with the interoperability of various home network mid-

dlewares like UPnP, HAVi and Jini. A so called Multi Middleware Bridge (MMB) fa-

cilitates interoperability of different bridges for this middlewares. Normally the bridges

of two different middlewares communicate in one-to-one manner, but a bridge repos-

itory is used for coordinating the bridge systems and to provide load balancing and

dynamically linking of additional home networks.

34http://www.jini.org
35http://www.upnp.org
36http://www.havi.org
37http://www.w3.org/TR/soap
38http://www.bluetooth.com
39http://www.jxta.org

30

CHAPTER 2. RELATED WORK 2.4. OWN WORKS

The VHE-concept explained above is more restricted to a home centered scenario

where the user leaves the home network and come into range of another network (e.g.

in the car or at work) whereas data and services of the home network remain accessible.

Then the user remains virtually always within the own network.

The extended case would be that the system tracks user position and delivers in-

formation and content without user intervention to the right place. A user starts and

gives over some tasks to the system at home. The user changes his position, moves

into another network and will be notified on task completion at his current place. So,

tasks sent out at one place, were executed within the system, and sent back to another

place. E.g. one wants to encode a video, sends the video source to the system at home.

Then goes to work and some time after the system sends the outcome of the task to

the current position of the user, the computer at the workplace. This implies that

all computers (home, work) must be part of the system and logically networked to an

VHE.

2.4 Own works

This work precedes some already published works I was involved in. In the next few

paragraphs I introduce works already published since 2007.

The baseline paper [HHW+07] outlines the energy efficiency optimization goal and

the importance of decentralization and virtualization. Then an architecture for task

sharing is introduced. The analytical model for the application Download Sharing

shows the possible benefit in terms of power saving:

In this paper, a new architecture for sharing resources amongst home environments is

proposed. Our approach goes far beyond traditional systems for distributed virtualiza-

tion like PlanetLab or Grid computing, since it relies on complete decentralization in a

peer-to-peer like manner, and above all, aims at energy efficiency. Energy metrics are

defined, which have to be optimized by the system. The system itself uses virtualization

to transparently move tasks from one home to another in order to optimally utilize the

existing computing power. An overview of our proposed architecture is presented as

well as an analytical evaluation of the possible energy savings in a distributed example

scenario where computers share downloads.

My thesis is mainly related to this paper for the idea of energy efficiency and the

architecture.

In [GBH+08] an economic model for fair resource sharing in the context of the ar-

chitecture already explained in [HHW+07] is developed:

Home networks recently gained importance due to their development from pure in-

ternal networks in form of an Ethernet LAN to converged networks integrating home,

Internet, and access provider infrastructure. In emerging future home networking sce-

narios, service provisioning and network management is proposed by distributed archi-

tectures forming Virtual Home Environments (VHEs). This paper provides a service

description and corresponding traffic and cost model for fair resource sharing in VHEs.

31

2.4. OWN WORKS CHAPTER 2. RELATED WORK

The objective of the proposed cost model is to allow an evaluation of the contribution

and consumption for each user participating in the VHE to find an economic balance in

the distributed behavior. Hereby, the contribution counts positively and the consump-

tion negatively. The economic balance controls the load in the VHE and further limits

the consumption of resources by users which over-pass a corresponding threshold. A

negative balance leads to an exclusion from the VHE, if the negative balance is not

equilibrated over a mean- or long-time horizon.

My thesis is mainly related to this paper for the economic model.

In [HWH+08] results of the analytical model of [HHW+07] were extended and first

simulation output added:

We present an overview of our proposed architecture, consisting of a middleware

interconnecting computers and routers in possibly millions of homes using P2P tech-

nologies. For demonstrating the potential energy saving of distributed applications, we

present an analytical model for sharing downloads, which is verified by discrete event

simulation. The model represents an optimistic case without P2P overhead and fair-

ness. The model allows to assess the upper limit of the saving potential. An enhanced

version of the simulation model also shows the effect of fairness. The fairer the system

gets, the less efficient it is.

My thesis is mainly related to this paper for the validation of the analytical model

by simulation.

In [HWT08, HWT10] the concept of task virtualization is pursued and a prototypical

implementation presented and verified by simulation and then extended in terms of

power saving and verified with simulation:

Already, hundreds of millions of PCs are found in homes, offering high computing

capacity without being adequately utilized. This paper reveals the potential for energy

saving in future home environments, which can be achieved by sharing resources, and

concentrating 24/7 computation on a small number of PCs. We present three evalua-

tion methods for assessing the expected performance. A newly created prototype is able

to interconnect an arbitrary number of homes by using the free P2P library FreePastry.

The prototype is able to carry out task virtualization by sending virtual machines (VMs)

from one home to another, most VMs being of size around 4 MB. We present mea-

surement results from the prototype. We then describe a general model for download

sharing, and compare performance results from an analytical model to results obtained

from a discrete event simulator. The simulation results demonstrate that it is possible

to reach almost optimal energy efficiency for this scenario.

My thesis is mainly related to this paper for the idea of task virtualization as basic

assumption for the architecture.

In [HHWdM10] besides the application Download Sharing, two new applications

are analytically investigated. The application Video Encoding models more extensive

resource requirements compared to Download Sharing, whereas the application Home

Management represents a highly available service with moderate resource requirements:

32

CHAPTER 2. RELATED WORK 2.4. OWN WORKS

In this paper, we present a distributed approach for saving energy by sharing com-

puting load in home networks. In our approach, possibly thousands of home computers

may cooperate and send each other tasks which include services and applications run-

ning on a 24/7 basis. By concentrating as many tasks as possible on a small number

of computers, idle computers may go asleep and thus consume almost no energy. We

present the general architecture of our approach and analyze several 24/7 applications

by modeling the potential energy consumption with and without application sharing, as

well as the aspect of availability.

My thesis is mainly related to this paper for the applications.

In [BWS+09] a traffic study about the architecture is given:

Home environments have a great potential of resource sharing and energy saving.

More and more home computers are running on an always-on basis (e.g. media-centers

or file-sharing clients). Such home environments have not been sufficiently analyzed

regarding their energy-efficient operation, yet. This paper discusses network virtual-

ization methods that are required in future home environments to enable the energy-

efficient cooperation of home networks. End-users share their available hardware re-

sources (e.g. CPU, disk, or network resources) with other users in an energy-efficient

and balanced way. To achieve such an envisioned future home environment, an ar-

chitecture is suggested that combines different virtualization methods. In this paper,

virtualization related requirements of the suggested architecture are discussed in detail.

Network virtualization methods and concepts are compared to each other with respect

to their usability in the architecture. In addition, initial virtualization approaches are

simulated and evaluated with regard to benefits and complexity in the suggested archi-

tecture.

My thesis is mainly related to this paper for the traffic study of the P2P network of

homes.

Works listed above cover these topics:

• Power wasting in networked home environments.

• Architecture for resource and task sharing for power saving.

• Energy efficiency enabling characteristics of applications.

• Fairness for resource sharing.

• Feasibility of task virtualization and corresponding performance.

• Traffic overhead caused by P2P signaling.

My work is a roundup and comprehensive extension in terms of energy efficiency prob-

lem, related work, architecture, applications, analytical model and evaluation through

simulation.

33

3 Architecture

This chapter introduces an architecture as basis for a network of homes exchanging

load in form of tasks with the aim of power saving. Tasks are aggregated on a subset

of participating homes, whereas the majority of homes eventually switch into a low

power mode. The envisioned architecture applies virtualization for computer resources.

Resource usage must be distributed among homes with respect to energy efficiency. The

aim is to save power in each home and also to reduce the wattage of the whole network

of homes. Since the system works without central management, various functionality

must be performed by all homes like in P2P networks.

Requirements of an architecture enabling energy efficient networking highly depend

on the application domain (closed or open, centralized or decentralized). Hence, I put

my attention to the demanding application domain of home networks and huge numbers

of interconnected homes worldwide. Because of bad scalability, it is not feasible to

assume a central managing component. An open and decentralized system of homes as

non-dedicated heterogeneous resource providers is envisioned, without given structure

in terms of hardware and system software.

It is not clear to which extent energy efficiency can be achieved by means of resource

sharing under given system properties and constraints. The general objective of the

proposed architecture can be stated how to provide a distributed energy efficient system

which fulfills stated requirements. The idea is to optimize this system for energy

efficiency, thus saving power while providing at least similar degrees of availability,

Quality of Service (QoS), security and privacy as with a local solution where homes do

not cooperate.

3.1 Overlay

Figure 3.1 summarizes common elements that must be addressed by an architecture

for energy efficient resource sharing in terms of context (home networking domain),

outcome (energy efficient resource sharing), key technologies (virtualization, resource

management, decentralization) and constraints (availability, QoS, security, fairness,

privacy).

From virtualization the concept of Virtual Machines (VMs) is borrowed as encap-

sulation of tasks. Resource management and decentralization is covered by P2P and

Virtual Home Environments. Security and privacy rely on the chosen P2P technol-

ogy, whereas fairness is based on an economical model and must be included into

35

3.1. OVERLAY CHAPTER 3. ARCHITECTURE

Figure 3.1: Elemens of an architecture for energy efficient resource sharing.

the communication protocol of the P2P network. Availability and QoS are strongly

oppositional to the goal of power saving and must be seen as trade-off.

For the architecture proposed in this work, homes must be interconnected and ad-

dressable for other homes. The addressing of homes has to be solved in a distributed

way since a server is neglected. Mediation of available hardware resources has to be es-

tablished and idle resources have to be discovered and addressed (resource mediation).

Another requirement of this architecture is the distributed management of resources

(resource allocation). No central element is available that manages the balanced coop-

eration of homes and the access to available resources. Energy-efficient resource sharing

has a number of constraints. Examples are fair distribution of power consumption or

the provision of sufficient QoS to users. The distributed management has to be aware

of the different home states and must also know resources available at a certain point

of time.

Networking requirements of a network of homes can be partly met by network virtu-

alization methods [CB08, FGR07]. Two kinds of virtualized networks are widely used

today: Virtual Local Area Networks (VLAN) and Virtual Private Networks (VPN).

VLANs like IEEE 802.1Q operate mainly on the link layer, subdividing a switched

Local Area Network into several distinct groups either by assigning different ports of a

switch to different VLANs or by tagging link layer frames with VLAN identifiers and

then routing accordingly. VPNs like IPSec on the other hand, establish a network layer

tunnel to either connect two networks (site-to-site), one network and a host (site-to-

end) or two hosts (end-to-end) with an encrypted and/or authenticated channel over

the Internet. However, these kinds of virtualization methods target mainly the sharing

of links among users.

Besides the virtualization of links, also the virtualization of routers has been inves-

tigated in several approaches. In [BFdM09] system virtualization (e.g. based on Xen

[BDF+03] or VMWare ESX Server) is applied to routers to create virtualized networks

with special features. In [EGH+07, MCZ06] performance challenges are identified that

have to be tackled when virtual routers are based on Xen. Other forms of router vir-

36

CHAPTER 3. ARCHITECTURE 3.1. OVERLAY

tualization are already available in commercial products. Such solutions mainly allow

the concurrent usage of network infrastructure.

For this work the unstructured and hybrid Overnet1 P2P overlay can be suggested as

a solution for network virtualization. It has the capability to solve all of the mentioned

requirements and is resistant to high churn rates. Overnet is a very popular file sharing

P2P network with a high amount of users (and traffic) [Tut04] that has practically

proven to be very scalable. Another reason for this choice is the similarity of the

hybrid Overnet structure to the structure of the network of homes suggested in this

work (computers and gateways).

Two types of nodes are participating in the Overnet network: peers and super nodes

(index servers). Peers are providing and consuming resources, similar to the computers

in homes. Super nodes form a separate network to share information as gateways

could do. A peer can report its available resources to the super node and request

the location of hardware resources from the super node. The location of a gateway

within this architecture is very similar to the location of a super node – the gateway

is physically the first node of each home. This location makes the gateway the natural

place for gathering statistics about the home that are required to enable a fair and

energy-efficient resource sharing among homes. In addition, the gateway is supposed

to be always-on, which enables it to manage and distribute information among other

gateways.

Sure, selection of super nodes among nodes and also the optimal number of super

nodes is an own problem and not necessarily in focus of my work. Super node selection

is rudimentarily addressed in Chapter 5.

Commonly, the selection of super nodes can be formulated as P-Median problem

[FH09] among location allocation problems, i.e. which nodes have best positions to

all other nodes to minimize distances. The best P nodes are selected, which should

provide services required by all nodes. In a computer network, the selection of the P

nodes may depend on available bandwidth and delays between nodes. The P-Median

problem is not trivial as we see in equation(
N

P

)
=

N !

P !(N − P)!)

where N is the number of nodes in the network and P the given number of super nodes

to be selected among them.

Another point of view is super node selection versus demand and fixed cost. The

Warehouse Location Problem (WLP) [SS07] describes the problem of finding one or

more locations for a warehouse to supply the demand of costumers. The sum of trans-

port and fixed costs
N∑

n=1

M∑
m=1

cnmxnm +
M∑

m=1

fmym

1http://www.overnet.org

37

3.1. OVERLAY CHAPTER 3. ARCHITECTURE

in the sense of a computer network, must be minimized where f is the fixed cost of one

node acting additionally as super node, c the transport costs between N nodes and M

super nodes with binary variables x and y.

The architecture is depicted in Figure 3.2. The proposed architecture consists of a

P2P-based overlay of interconnected homes. The overlay could also be a structured

one, based on a Distributed Hash Table (DHT) [HC07]. Each home, represented by a

cycle, features a home network (stylized as a bus system) consisting of an always-on

gateway connecting the home to the Internet, one or several computers (as abstraction

for any device that can share resources), and sensors and actuators as usually existent

in smart homes [RMD+07, CEEC08]. The home network itself may include multi

networks, for example wireless and wired networks for connecting computers, sensors,

actuators, and broadband access to the Internet. The gateway is a lightweight device

which does not share resources - only essential management functionality is embedded.

Virtualization techniques are applied in two ways. First, the network of homes appears

as an abstract Virtual Organization (in compliance with Grid computing) to the single

home and is executed transparently on participating homes. Second, load distribution

and shifting is implemented by a virtualization layer.

Figure 3.2 points out that the intelligence of the distributed management layer is

situated in each contributing node. This may be both, a full-blown PC with large

computational resources (but also large power consumption), or a gateway which is

assumed to be a simple Linux-based diskless computer with small energy consumption.

However, this gateway is not able to contribute its own resources to be used by other

homes, but its computational power should be sufficient to maintain a permanent entry

in the overlay for representing its particular home. Since gateways are assumed to run

permanently, churn is thus almost zero.

Depicted modules for Distributed Algorithms, P2P-Based Virtualization and Security

implement the management layer. The architecture inside computers is divided in a

control and an execution part. The control part integrates three modules:

1. Distributed Algorithms are the behavior of homes and pose the business logic of

the overlay. All application-directed communication is defined here. Since the

system operates in true P2P-manner without servers, distributed algorithms are

the result of home-interaction according to exact equal implemented algorithms

in each home.

2. P2P-based Virtualization is the base functionality provided by the chosen P2P-

technology for discovery, resource allocation and aggregation, persistence, search,

and messaging – in short all signaling communication necessary to maintain the

overlay.

3. Security is mandatory for authentication, secure channels between homes, encryp-

tion of data stored inside homes, and sandboxed task execution. Since the module

for Distributed Algorithms uses functionality from the module for P2P-based Vir-

38

CHAPTER 3. ARCHITECTURE 3.1. OVERLAY

Figure 3.2: An architecture for distributed energy efficient resource sharing.

39

3.1. OVERLAY CHAPTER 3. ARCHITECTURE

tualization, the security concept must span over both modules. Partly security

will be already provided by the chosen P2P-technology, but the other part is up

to the business logic (e.g. statistics, trustbase, voting). This module assures that

attacks to the distributed system will be detected and consequences of intrusion

and sabotage are avoided. At the P2P layer it provides services for encryption,

authentication and secure key exchange. At the algorithm layer it mainly governs

the distributed voting process for minimizing the malicious host problem. Voting

is necessary because malicious homes may try to create damage to others. For

Home Management, shutting down the heating is unpleasant in winter. Such ap-

plications might rely on majority voting with quorums [Hou08, OFGG06, GM05],

where for instance gateways act as a policers, and only those commands may pass,

which have been signed by several other gateways.

All three modules of the control part are integrated into a P2P-client which itself is

bridged to a Virtual Machine Monitor (VMM) (or Hypervisor) which is the execution

part. Inside this VMM, tasks can be executed to the extend as resources are shared

on this computer. Tasks are, in conjunction with a minimal execution environment,

encapsulated in a Virtual Machine (VM) compatible to the VMM. Up to the shared

resources of the computer, a certain number of VMs can concurrently run. The gateway

itself does not provide resources but must be capable of running the P2P-client whereas

a minimal functionality of these modules run continuously on gateways to keep the P2P

network alive and avoid high churn [GSS06, SR06, BQ06]. Sensors and actuators do

not run any P2P-client, because they only send or receive values to the gateway.

The module for Distributed Algorithms is the true intelligence of the system. It can

be divided into five submodules:

1. The Energy Efficiency submodule is responsible for finding a global optimum

in terms of energy efficiency given by global and local constraints. The main

constraint is energy saving for individual homes, but also for the whole system.

Once a home requests remote resources, this submodule tries to identify a set of

remote homes which should be selected, because selecting them would maximize

global energy efficiency.

2. The Fairness submodule controls the contribution of local resources to the system

in order to avoid free-riding [KKU08, KSTT04], e.g. as seen in P2P systems like

Gnutella [HCW05]. For achieving a fairness goal, cheaters must be revealed based

on monitoring by other participants. This submodule contains an economic model

and uses statistics about recent and past sharing behaviors of homes. The system

requires distributed storage for persisting and accessing statistics, which must be

guarded from being manipulated by cheaters. Given a resource request and a

set of homes selected by the the Energy Efficiency submodule, this submodule

identifies homes that should improve their sharing balance towards more fairness.

3. The Availability submodule assures service availability based on redundancy, di-

versity and system statistics. For instance, storing data in a distributed manner or

40

CHAPTER 3. ARCHITECTURE 3.2. HOME STATES

doing remote Home Management forces to consider reliability by using replication

and fault-hypothesis.

4. The Privacy submodule maximizes the degree of privacy a home is experiencing.

Proxy chaining and onion routing [Owe07, FJS08, For06] cloaks the identity of a

remotely managed home. It guarantees that users of currently active homes can

not figure out the owners of their hosted remote VMs. Mechanisms, based on

encryption and tracking of privacy threats for deriving a convenient notification

about the privacy assurance level of the system, must be taken into account.

5. The Quality of Service (QoS) submodule decides whether a particular home is

able to host the requested tasks dependent on a given resource request. It de-

scribes performance characteristics (e.g. response time, bandwidth, packet loss,

jitter) and utilization. For instance, if the user wants to remotely encode video

files, the remote home should exhibit sufficient down- and uplink access band-

width and enough free CPU time. These resources would be used only once. A

slower home on the other hand might be sufficient to handle messages from Home

Management devices. This particular service then would run for a very long time,

thus achieving fairness in contrast to the encoding home. A third example for

QoS decisions is given by the tradeoff between QoS and privacy. Consider again

remote Home Management. When using long proxy chains, the degree of privacy

is high, whereas the important QoS parameters latency and bandwidth will be

much worse. There is a tradeoff between QoS and privacy.

3.2 Home States

Basically a home is in a certain state. Depending on the state of computers inside, the

gateway of the home reports a certain joint state to the overlay.

The home is for a certain time in one of these states:

• Active (A)

• Active-Blocked (AB)

• Active-Blocked-Content (ABC)

• Passive (P)

Figure 3.3 shows the homes’ state cycle and introduces possibilities for transitions

where P[event] denotes the possibility that a home transitions to another state due to

an event.

A home is in state A when at least one computer contributes to the system. The

state A is the only state where the home contributes to the system. In all other states

the home does not contribute to the system. Only in this state the home can help

41

3.2. HOME STATES CHAPTER 3. ARCHITECTURE

Figure 3.3: State cycle of homes.

other homes to save power, because in this state the home either executes only local

or also remote tasks.

The state AB supports users who want to stay in control of own computers. For

example, in the state AB the home is not ready for contributing, because if the user

wants to join an online computer game, bandwidth and CPU time should not be

contributed for energy efficient resource sharing, otherwise the gaming experience might

be negatively influenced. In this state homes do not provide any services to the system.

The state ABC defines the phase during which a home receives results from the

system, e.g. finished tasks. In this state the home does not contribute to the system,

but consumes power as long the transfer of the results lasts. Further, the home currently

being in state ABC was woken up by the system automatically and will be hibernated

again by the system. In this state the home does not overtake remote tasks. The user

must always declare the state A for being accessible for other homes.

A home is in state P if all computers of the home are in a low power mode (hiber-

nating). This home does not contribute to the system but saves power. This is the

desired state. The aim is to maximize the number of passive homes and minimize the

number of active homes. The smaller part of active homes should serve the majority

of passive homes.

Note, that also in case of a passive or active-blocked home, the gateway is still up

42

CHAPTER 3. ARCHITECTURE 3.3. FRONT- AND BACKENDS

and the home might consume services from other homes. Thus, minimal power con-

sumption by gateway, sensors and actuators are not avoidable. Optimization addresses

the wattage of computers.

To better understand possible states of computers and homes Table 3.1 lists all

possible state combinations for a home with two computers. A computer is ONLINE

if it is ready to execute remote tasks, or only online if it is connected to the overlay but

not ready to execute remote tasks, or even offline for saving power as defined in the

architecture Figure 3.2. For example, a home with one online computer is reported as

Computer 1 Computer 2 Home State

ONLINE ONLINE A
ONLINE online A
online ONLINE A

ONLINE offline A
offline ONLINE A
online offline AB(C)
offline online AB(C)
offline offline P

Table 3.1: Possible home states with two computers inside.

AB by the gateway. A home with two computers, one ONLINE and the other online,

is still A. If all computers are offline, the home is P . To sum up, if there is at least

one computer ONLINE, then this home is stated as A. If all computers are offline, the

home is reported as P .

With these states the system can distinguish contributing from other homes. A home

can obtain a list of currently active homes to select one which is then contacted for

executing a task. Naturally, the user should only decide if a computer is ready do

participate and do work for others (A) or is exclusively used (AB), because the system

will set any idle computer automatically to P (or temporarily to ABC). The state

cycle of homes is explained in detail in Chapter 5.

3.3 Front- and Backends

Thanks to the expected increase of access bandwidth in the residential domain in future,

it is imaginable that whole user desktops (Windows, Linux), encapsulated in VMs,

could be persisted, accessed, and composed in a distributed manner at runtime. Due

to virtualization, applications logically separated into frontends and backends could

transparently allocate resources like CPU time, disk storage, disk or network bandwidth

without knowledge about location or configuration of remote computers.

The frontend implements a user interface for unified access to backends, while back-

ends implement the heavy-loaded business logic of applications. Many backends could

be assigned to one frontend while the distributed execution is hidden. The user only

starts the frontend instead of each application directly. The frontend is like a remote

43

3.3. FRONT- AND BACKENDS CHAPTER 3. ARCHITECTURE

desktop tool and knows current remote locations and states of own backends. Encap-

sulating frontends and backends in VMs enables dynamical migration of load between

homes.

The idea is as follows: the user starts up the frontend which is a VM with any

operation system. This frontend is the work environment or home desktop and only

provides access to currently running backends in the network. Then the user starts

some tasks where for each of them a VM containing minimal execution environment,

task description, and source data is created; these are the backends. The backend is

an atomic unit and is sent to the network by the frontend. The frontend memorizes

the location of the backend. If the location of a backend changes during a frontend is

offline, redirection is used. At this point the frontend may go offline while backends

are distributed and running among other homes. Once tasks executed within backends

are completed, results are transferred from backends to the frontend as soon as the

frontend is online. The frontend stores results on any location. During the work phase

of backends, the computer running the frontend can be powered off or even hibernated.

Backends are aggregated on remote computers for consolidation.

Figure 3.4: Case driven virtualization.

The goal is to go away from computers with fixed operation system and applica-

tion installation. Everyone has a work environment (frontend), data and applications

(backends) are stored distributed. One can request so much resources as required, as

done in Cloud computing.

An interesting question is the path between granularity versus complexity of vir-

tualization as depicted in Figure 3.4. Coarse granularity means that services and

functionality hosted inside a VM can not be divided into smaller units (e.g. frontend).

High complexity is featured by front- and backend combinations of VMs. The problem

is to determine the best solution for a specific application.

Either whole VMs are migrated between homes or VMs are divided into heavy-

44

CHAPTER 3. ARCHITECTURE 3.3. FRONT- AND BACKENDS

weighted backends and light-weighted frontends as mentioned earlier. Depending on

the type of service, an indicated form of virtualization should be applied. Remote access

to home’s appliances can be provided by a frontend-backend combination, whereas the

location change of a user leads to a full migration of the work environment (frontend).

With the front- and backend concept it would not be necessary to always migrate

whole VMs between homes. This decreases resource requirements and improves energy

efficiency. In my work the process of backend migration is explored.

45

4 Applications

This chapter presents applications suitable to act as backend in context of the archi-

tecture introduced in Chapter 3. For energy efficient resource sharing it is necessary to

find use cases for homes where the active time of a home is minimized. And this under

the assumption that homes generate a certain level of load in form of tasks. The idea

is to model load as application-specific tasks. These tasks are aggregated on a part

of active homes. For these tasks latencies, caused by the transfer of source and result

data, must be taken into account or be negligible compared with local execution.

These applications are introduced:

• Download Sharing (DS)

• Video Encoding (VE)

• Home Management (HM)

It is assumed that homes generate load over time based on these applications. It

is further assumed, that this load is composed of many atomic tasks that can be

executed locally or remotely (backends). A specific task, stemming from one of these

applications, is referred as DS-task, VE-task or HM-task. A task of these applications

is encapsulated in a Virtual Machine (VM) that also holds all necessary components for

running autonomously on any computer. Task descriptions, executed at initialization

time of the VM, define actions during startup, execution and shutdown of the VM.

After task completion, depending on the task type, the modified usually bigger VM is

scheduled to be sent back to the creator of the task.

A DS-task is the download of a specific file from a source outside the considered

network of homes. A user in Home A (HA) wants to download some content and

instructs the P2P-client to search a remote place for task execution. The system tries

to find another home (HB), that is ready to take the task over. A prepared and secured

VM with included task description is sent to HB. HB executes the DS-task and sends

the modified VM, enriched with the download content, back to HA.

A VE-task is the encoding of a source video to a compressed format, e.g. with a video

codec such as Xvid1. The user in HA creates a VE-task and commits it to the system.

As for DS-tasks, a VM with included task description will be sent to another HB. HB

downloads the source video from HA and then encodes the video. After encoding, HB

sends the modified VM back to HA.

1http://www.xvid.org

47

CHAPTER 4. APPLICATIONS

A HM-task is intended to continuously run for controlling all the technical equipment

of a (future) smart home. Therefore, the HM-task is modeled as lightweight task in

terms of resource usage, but with high availability requirement. Each home must run

one such task, but may outsource the VM containing the HM-task to another home.

The procedure is quite similar as with the first to tasks, except that the VM is sent

back whenever the user of HA wants to regain control of the own Home Management.

HA creates its HM-task that controls all technical equipment inside. Then HA uses

the system to find another HB that can take over this task. HA transfers the HM-task

to HB and is then ready to go passive. Since the gateway of each home is assumed to

be always-on, the control of HA’s technical equipment is done remotely by HB which

receives e.g. sensor values and sends back commands to actuators. Especially for

reliability this type of application requires some extra precautions as analyzed later in

Chapter 6.

Since tasks run on computers within homes, they have certain resource requirements

as shown in Table 4.1. The intention of these tree task types is as follows: A DS-task

Task Frequency Access Disk CPU Availability
Type Bandwidth Space Utilization

DS-task high middle middle low low
VE-task middle high high high low
HM-task low low low low high

Table 4.1: Characteristics of tasks.

is frequent, where resource usage is moderate. The VE-task is a power task engrossing

many resources on typical computers. Both, DS-task and VE-task, feature low avail-

ability and no real time communication. On the contrary, a HM-task is infrequently,

but must be very responsive to react accordingly to data recorded by e.g. sensors.

With these three task types my work proofs how energy efficient resource sharing can

be reached and what are the limitations.

Since Download Sharing and Video Encoding feature low availability, best effort is

considered for avoiding overhead of repeated or resumed tasks. Failed downloads or

encodings are lost but this assumption in uncritical in reality because task creation

and execution not necessarily underlie time constraints. Also the length of the period

from starting the task until the user receives the result is uncritical. The situation

is completely different for Home Management. Only an uninterrupted controlling of

home equipment makes sense. That is the reason why reliability is very important for

Home Management but neglectable for Download Sharing and Video Encoding.

A local case is distinguished from a distributed case. In the local case each home

executes all tasks itself, thus we say local execution. In the distributed case each home

tries to send tasks away for remote execution in other homes. Remote execution must

consume less resources as local execution to achieve a power saving.

Let WL be the wattage caused by local execution of a task and WD the wattage

48

CHAPTER 4. APPLICATIONS 4.1. DOWNLOAD SHARING

caused by distributed execution of a task. More precisely, let WA and WB be the

wattages caused by the execution of one task in HA and HB respectively. Further,

let TA be the time elapsed, if a task is locally executed in HA, or let TD be the time

elapsed if the task migrates from HA to HB, is executed within HB, and then is sent

back from HB to HA. The overall wattage WL for one task in the local case is

WL(TA,WA) (4.1)

which says that in the local case only the wattage and execution time of HA is relevant,

whereby the wattage WD in the distributed case is

WD(TD,WA,WB) (4.2)

which depends on the wattage of HA as well as on the wattage of HB, and on the overall

execution time TD including the task migration time from HA to HB, the execution

time of the task in HB and the the back migration of the result from HB to HA. The

distributed wattage must be significantly below the local wattage

WD < WL (4.3)

otherwise remote execution would not result in global power saving.

4.1 Download Sharing

In case of a DS-task the work time TA consumed in HA in the local case is now

TA =
F

DA

(4.4)

and for HB

TB =
F

DB

(4.5)

whereas F is the size of the download and DA or DB is the downlink bandwidth of HA

or HB. The time TD is taken by remote execution of a DS-task in the distributed case

TD =
VA

min{UA|DB}
+ TB +

VB

min{UB|DA}
(4.6)

and depends on the filesizes of the original VM encapsulating the task VA by HA and

the modified VM encapsulating the competed task VB byHB, and the execution time in

HB as denoted in (4.5). TD depends also on the available uplink or downlink bandwidth

of HA (UA or DA) and HB (UB or DB). Before transferring VA from HA to HB, or after

task execution transferring VB from HB to HA, both homes must negotiate a minimum

bandwidth.

49

4.1. DOWNLOAD SHARING CHAPTER 4. APPLICATIONS

Revisiting (4.1) and (4.2) for introducing wattage yields

WL = TAWA =
WAF

DA

(4.7)

and

WD =
(WA +WB)VA

min{UA|DB}
+

WBF

DB

+
(WA +WB)VB

min{UB|DA}
(4.8)

Notice, that WL only depends on parameters of HA, whereas WD depends on wattages

(WA, WB) of cooperating homes as well as their downlink and uplink bandwidths

(UA, DA, UB, DB). Moreover, WD depends on the filesizes (VA, VB) of the VMs and

naturally on the size F of the download itself.

To save power, there has to be at least disparity in wattage or performance between

HA and HB. Thus, if HA wastes less power than HB, but HB has a faster access

bandwidth, then it could be still cheaper to migrate the DS-task to HB, to hibernate

HA, and then send the result back to HA later, instead of doing the task within HA

for a quite longer time due to a slow connection. The lower wattage of HA would be

relativized by the much faster access bandwidth available in HB. To express this case,

α denotes the coherence between task work times (4.4) and (4.5) as follows

TB = α× TA 0 < α ≤ 1 (4.9)

Equally, for the wattage the coherence is denoted by β

WB = β ×WA 0 < β ≤ 1 (4.10)

Theoretically it is possible that HB with poor performance (α > 1), but highly effective

power supply (β near 0), outperforms HA, but we neglect this extreme case by restrict-

ing to values less than 1. Values of 1 for α or β mean that wattage or performance of

HB is equal to that of HA which does not bring any benefit if both becomes true.

Using (4.9) and (4.10) in (4.8) results in

WD =
(WA + βWA)VA

min{UA|DB}
+

αβFWA

DA

+
(WA + βWA)VB

min{UB|DA}
(4.11)

which expresses the overall wattage in the distributed case with introduced ratios for

wattage and performance between HA and HB. Again, taking the relation between

distributed and local wattage (4.3) into account and substituting the negotiated band-

widths between HA and HB with B leads to

(WA + βWA)VA

B
+

αβFWA

DA

+
(WA + βWA)VB

B
<

WAF

DA

(4.12)

and says that the wattage in the distributed case must be below the wattage in the

local case.

50

CHAPTER 4. APPLICATIONS 4.2. VIDEO ENCODING

Simplifying to B finally gives

(1 + β)(VA + VB)DA

(1− αβ)F
< B (4.13)

whereas the left side yields the bandwidth necessary for VM-migration in the dis-

tributed case. This minimum bandwidth is the negotiated bandwidth B between HA

and HB based on the corresponding minimum of UA and DB for migration or UB and

DA for back-migration. Also the left side reveals that α and β directly affect B.

Table 4.2 shows some results for meaningful ranges of α and β and fixed VA = 10

MB, VB = 710 MB, DA = 2500 kbit/s, F = 700 MB.

α β kbit/s

1.0 0.8 23143
0.9 0.8 16531
0.8 0.8 12857
0.7 0.8 10519
0.6 0.8 8901
0.5 0.8 7714

Table 4.2: Download Sharing : Minimum transfer bandwidth required.

The scenario is as follows: a user wants to download a file with size F . The basic

VM containing the DS-task has size VA, because only a rudimentary small featured

VM including a task description is sent to another home. After the task is completed,

a VM with size VB is sent back. The DS-task is carried out with an average speed

of DA, taking into account that many tasks run inside HB. So, the factors α and

β are important variables that specify the ratio between performance (here downlink

bandwidth) and power efficiency (here wattage) of homes. We see, the smaller the

performance factor a, thus the faster HB is, the less bandwidth between HA and HB

is necessary to gain advantage of the distributed case.

4.2 Video Encoding

For a VE-task TA and TB are encoding times of a video in HA and HB respectively.

The focus lies now on the duration of encoding a source video (e.g. MPEG-22) to

a compressed format (e.g. DivX3 or Xvid4). Nevertheless, also the migration of the

original VM from HA to HB and the back-migration of the result VM from HB to HA

are critical. We take wattages for the local (4.7) and distributed (4.8) case and simplify

to

WL = TAWA (4.14)

2http://www.mpeg.org
3http://www.divx.com
4http://www.xvid.org

51

4.2. VIDEO ENCODING CHAPTER 4. APPLICATIONS

and

WD =
(WA +WB)VA

min{UA|DB}
+ TBWB +

(WA +WB)VB

min{UB|DA}
(4.15)

with TA and TB as corresponding encoding times of HA and HB. Again using the

relations between HA and HB of performance (4.9) and wattage (4.10) results in

WD =
(WA + βWA)VA

min{UA|DB}
+ αβTAWA +

(WA + βWA)VB

min{UB|DA}
(4.16)

Again taking into account that the distributed wattage must be less than the local

wattage (4.3) and substituting up- and downlink bandwidths of both homes with the

negotiated bandwidth B, leads similar to Download Sharing (4.12) to

(WA + bWA)VA

B
+ αβTAWA +

(WA + bWA)VB

B
< WATA (4.17)

Simplifying to B finally gives

(1 + β)(VA + VB)

(1− αβ)TA

< B (4.18)

which is similar to the final expression for Download Sharing (4.13) and expresses the

bandwidth necessary for gaining a benefit to send the source video out and get the

encoded video back instead of local encoding.

Table 4.3 shows the minimum required bandwidth between two homes for a VE-task

for encoding a 60 min MPEG2-DVD video with Xvid. The VM containing the source

video has 2451,6 MB and the VM with the encoded video has 507,6 MB. For calculating

TA, real measurements of Xvid encoding times on up to date computers were taken

from the well-kept benchmark desktop CPU chart on Tom’s hardware5. CPU time

available for encoding in HB is set to a 2.4 Ghz (single core processor). We can see,

α β kbit/s

1.0 0.8 22763
0.9 0.8 16259
0.8 0.8 12646
0.7 0.8 10347
0.6 0.8 8755
0.5 0.8 7588

Table 4.3: Video Encoding : Minimum transfer bandwidth required.

for higher performance (shorter encoding time) of HB, the necessary bandwidth B

between HA and HB may be lower. If the difference of the encoding time TA − TB,

depending on the performance factor α is small, then more bandwidth B is necessary

to take advantage of the distributed case. It make only sense to transfer the video to

another home that can quicker encode it.

5www.tomshardware.com

52

CHAPTER 4. APPLICATIONS 4.3. HOME MANAGEMENT

4.3 Home Management

For a HM-task the model must be rethinked. The intention of the HM-task is a software

that controls a home’s technical equipment like heating or home appliances. Such a

HM-task could be set up with some parameters (e.g. the preferred room temperature),

sent to another home, and remotely control the own home for allowing local resources

to be released. Thus, HA is controlled by its HM-task running in HB until the user

wants to regain control over its own HM-task for perhaps modifying the setup.

Since a HM-task is meant to be a lightweight process in terms of resource usage,

aggregation of many HM-tasks on a single home should be possible. But the situa-

tion becomes more difficult if additionally reliability is considered. To prevent homes

without control in case of a breakdown of HM-tasks, copies or replications of each task

must be taken into account.

Concerning reliability, the model for DS- and VE-tasks must be extended by repli-

cation. A replication factor R is introduced which says that a HM-task will be sent to

R different remote homes. If R = 3, then three other homes will receive a HM-task

of HA, where only one remote home acts as master controlling HA and the other two

homes act as slaves and help out if the master fails. Sure, there must be some logic

to handle the temporary cluster of replicate-holders, emerged by cooperation between

HA and the three remote homes, but this is not focus of this section and now we will

concentrate again on the wattage caused by HM-task replication.

Now TA and TB are merged to T and interpreted as the time the HM-task will run

either inHA in the local case or in remote homes, each denoted asHB, in the distributed

case. Modifying the wattages for local (4.14) and distributed (4.15) execution of a VE-

task, and introducing the replication factor R leads to

WL = TWA (4.19)

and

WD = R
(WA +WB)VA

min{UA|DB}
+ TWB +R

(WA +WB)VB

min{UB|DA}
(4.20)

with T as pure execution time of a HM-task similar to the encoding time of a video.

Transfer costs are multiplied with R, because R HM-tasks must be sent. Note, since

only one replicate of a HM-task is taken by a specific home over, R is omitted for the

execution (R = 1).

The distributed wattage WD again must be less than the local wattage WL which

leads to

R
(WA +WB)VA

min{UA|DB}
+ TWB +R

(WA +WB)VB

min{UB|DA}
< TWA (4.21)

Substituting WB with the wattage relation for HB (4.10) and the minimum bandwidths

53

4.4. REPLICATION CHAPTER 4. APPLICATIONS

with B gives

R
(WA + βWA)VA

B
+ βTWA +R

(WA + βWA)VB

B
< TWA (4.22)

Simplifying to B finally yields

(1 + β)(VA + VB)R

(1− β)T
< B (4.23)

where the left side again is the bandwidth necessary to send the HM-task from HA to

R other HB. Table 4.4 shows the necessary bandwidth for different wattage factors β

under assumed VM file sizes for VA and VB of 100 MB, T = 8 hours and R = 3. Even

the remote HB is not much more economical (β up to 0.9) as HA, only a relatively low

bandwidth is necessary to transfer HM-tasks to several homes and back. These low

β kbit/s

0.9 1425
0.8 675
0.7 425
0,6 300
0,5 225
0,4 175

Table 4.4: Home Management : Minimum transfer bandwidth required.

bandwidths are very compatible with nowadays residential access bandwidths and the

main problem lies in the fact that replication can counteract the advantage of doing

home management remotely. This issue is analyzed more in detail in Chapter 6 through

simulation.

4.4 Replication

This section refers to [HHWdM10] and will focus on the sensing aspect6 [OBC05] of

Home Management which relies on sensors, actuators and services controlling future

homes with utmost autonomy as suggested.

Sensing a variety of different home conditions is a major characteristic of smart

homes. From a networking perspective, each sensor typically causes periodic traffic of

constant and low intensity [CSP04]. The actual message payload of sensor information

is only a few bytes7. The sampling and sending frequencies depend on the type of

sensors and the services aggregating sensor values. Table 4.5 shows example sensors

and the estimated load caused by these sensors when assuming a UDP message of size

1280 bytes for delivering the sensor readings to a computer running the HM-task. For

indoor movement we assume a movement speed of 1 m/s and a position accuracy of

6As designed by my colleague Karin Hummel.
7http://www.tinyos.net

54

CHAPTER 4. APPLICATIONS 4.4. REPLICATION

one meter. We further assume that a refrigerator sends once a day an update of e.g.

expired food.

Sensor type Samples/min Bytes/min

Temperature, wind, humidity 4 5120
Indoor position sensing 60 76800
RFID-based refrigerator 1/1440 0.89

Overall home 81921

Table 4.5: Estimated example sensor sampling/sending rates for Home Management services.

Hence, the example home would approximately cause average sensor traffic of about

81921 bytes/min (≈ 10922 bit/s). When assuming a realistic access bandwidth of 4

Mbit/s, each home can deal with sensor data sent by about M = 366 remote homes.

Depending on the services’ requirements and in terms of real-time responses and pro-

cessing times, this number will have to be decreased because the shared CPU time is

likely to be the bottleneck of homes. In this scenario it is possible to save energy for a

number up to 365 homes by distributed Home Management.

For a general model we assume N homes and that each home is able to manage up

to M different remote homes without considering failures or related redundancy at this

point. Then the number of necessary active homes A0 is calculated as

A0 =

⌈
N

M

⌉
Since Home Management targets for embedded computing resulting in physical effects

for humans, availability is a major concern and will now be included into the model. In

the home, sensors, actuators and computers (including their hardware and peripheral

connected components) may fail and impair the availability of services. To investigate

energy consumption for distributed Home Management, we concentrate on computer

failures only and do not include failures of sensors.

In detail, the fault-hypothesis for Home Management includes only crashed homes,

caused either by intentionally leaves or peer failures. These failures, usually referred

to as peer churns, are modeled by defining two random variables Xon and Xoff for a

peer’s online and offline time in accordance to [BL07] and their expectation values Ton

and Toff . To assure trust in the system, the Home Management system is defined to be

available if all homes can be served (all home services are available). The availability

of a home is defined as

Av =
Ton

Ton + Toff

The corresponding error rate for a home is λ = 1/Ton and the repair rate µ = 1/Toff .

Repairing means that a home joins the P2P system. The availability can be increased

by redundant execution of services on k different homes to tolerate up to k−1 failures for

each home, where each service receives the sensor values by means of push information

55

4.4. REPLICATION CHAPTER 4. APPLICATIONS

dissemination. To simplify the model, it is assumed that services supported by one

home are replicated as a group on a disjunct set of other homes. Thus, these homes

must be considered as being of the same type (types 1 to A0 as shown in Figure 4.1).

In the faultless state the system consists of A0k homes. Figure 4.1 depicts the birth-

death process of the fault-tolerant system, where the states correspond to the number

of faults in the system. These faults are distributed among the home types and their

replicas.

Figure 4.1: Failures modeled as birth-death process for Home Management.

• Each home failure leads to a system state transition between state 0 and up to

A0k failures.

• Until k − 1 failures the system is in any case available for all homes.

• Within the range of k to A0(k − 1) failures the system availability depends on

which homes fail in parallel.

• In failure state A0(k − 1) + 1 the system is no longer available (i.e. at least one

home type or M services S1, . . . , Sm are not available any more).

Figure 4.2 shows the state diagram for A0 = 5 and k = 3:

Figure 4.2: Failures modeled as birth-death process for Home Management with 15 homes.

56

CHAPTER 4. APPLICATIONS 4.4. REPLICATION

• Each home failure leads to a system state transition between state 0 and up to

15 failures.

• Until 2 failures the system is in any case available for all homes.

• Within the range of 3 to 10 failures the system availability depends on which

homes fail in parallel.

• In failure state 11 the system is no longer available (i.e. at least one home type

or M services S1, . . . , Sm are not available any more).

For the states i where k ≤ i ≤ A0(k − 1), the probability that homes of similar

type fail can be calculated using the hypergeometric distribution to find the number of

occurrences Hi of a set of interesting jk failures among the i overall failures (i is here

the number of the sample set and jk is both the number of occurrences in the basic set

A0k and the number of occurrences in the sample set). Semantically, the jk are the

number of failures of homes with same type, where j is the number of different such

k-sets which fail in parallel.

Hi(X = jk) =

(
jk

jk

)(
A0k − jk

i− jk

)
(

A0k

i

)

=

(
A0k − jk

i− jk

)
(

A0k

i

) 1 ≤ j ≤ ⌊i/k⌋

To cover all sets, this probability has further to be multiplied by the binomial co-

efficient of j and A0 set, i.e. the number of possible j sets in the A0 original set.

Additionally, in case more than one home type fails, these cases are included multiple

times, hence the inclusion-exclusion principle has to be applied. Considering these two

issues, the availability in state i can be calculated by building the sum of the malicious

cases. For each i the following calculations are used

Av i =

1 0 ≤ i ≤ k − 1

1−
j=⌊i/k⌋∑
j=1

(−1)j+1

 A0k − jk

i− jk

 A0k

i

(
A0

j

)
k ≤ i ≤ A0(k − 1)

0 i > A0(k − 1)

The probabilities for the system being in one of the states i is given by pi. The

57

4.4. REPLICATION CHAPTER 4. APPLICATIONS

probabilities of the system’s steady state are given as follows [BGdMT06], where

A0k∑
i=0

pi = 1

and

p0 =

(
A0k∑
i=0

(
A0k

i

)(
λ

µ

)i
)−1

and

pi =

(
A0k

i

)(
λ

µ

)i

p0 0 < i ≤ A0k

Thus, the availability of the system can be calculated as

Availability =

A0k∑
i=0

piAv i

The overall number A of active homes necessary to maintain home services with a

configurable redundancy value k is calculated by considering the probabilities of the

system being in one of these faulty states, where i of the A0k homes fail

A =

⌈
A0k∑
i=0

pi (A0k − i)

⌉

We now investigate the number of active homes and the availability under varying

conditions. We assume that active homes support up to 1000 sensor-enriched remote

homes and provide triple redundant service execution (k = 3). To investigate the influ-

ence of the maximum load possible at homes, the load parameter (M = 50, 100, 200) is

varied. Different failure- and repair rates are selected in accordance to the assumptions

and findings in [BL07] (λ = 1/15, 1/10, µ = 1/10, 1/15) to demonstrate the influence

of these rates.

Figure 4.3 shows the active homes necessary to support up to 1000 HM-tasks.

Without sharing each home would run the own HM-task which provides less avail-

ability (k = 1) by consuming more energy. The curve shows steps due to the load M

per home. The trends show that the number of active homes is lower for homes capable

of serving more load. The failure- and repair rates also influence the number of active

homes. In case of higher failure rates and lower repair rates, less homes will be active

and less energy will be consumed. Both energy saving and achievable availability have

to be considered to derive a trade-off depending on the services’ requirements.

By investigating availability, it is clear that higher failure rates and lower repair rates

decrease availability, as shown in Figure 4.4 by the cases M = 50. Additionally, the

58

CHAPTER 4. APPLICATIONS 4.5. ANALYTICAL EVALUATION

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

N
u
m
b
er

of
ac
ti
v
e
h
om

es

Number of hosted homes for different (λ,µ,M)

(1/15,1/10,200)
(1/15,1/10,100)
(1/15,1/10,50)

(1/15,1/15,50)
(1/10,1/15,50)

Figure 4.3: Home Management : Number of active homes.

availability also decreases with lower load capabilities of homes due to the definition

that the HM-task is operable if at least one of the k replicas for each home type is

running. In case of lower load capabilities, more homes are necessary to execute the

tasks and more home types have to stay operational in parallel. Or in other words,

it is harder to remain available (as expressed by lower calculated availability). This

is of interest, because energy efficiency and availability are not contradictory to Home

Management.

4.5 Analytical Evaluation

In order to show the potential of power saving through task sharing, as suggested in

the architecture proposed in my work, this section outlines an analytical model for

Download Sharing. Since we are only interested in power saving, security and privacy

concerns are not included into this model.

Home A (HA) sends a VM containing the DS-task to Home B (HB). Once HB

finished the DS-task, HB sends the result (the VM containing the downloaded file)

back to HA, here waking up HA, which will then again consume energy as long as

the transfer is going on. As a simplification we assume that homes being active for

downloading for others, always download their own files. Furthermore, it is assumed

that downloads do not use the whole downlink bandwidth Bd as given by the Internet

connection. Instead, as it is experienced with real life file-sharing tools, the download

bandwidth for one single file is limited to some upper limit, and on average uses Bl

kbit/s with Bl < Bd. Bl usually depends on the number of seeders and on properties

59

4.5. ANALYTICAL EVALUATION CHAPTER 4. APPLICATIONS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

S
y
st
em

av
ai
la
b
il
it
y

Number of hosted homes for different (λ,µ,M)

(1/15,1/10,200)
(1/15,1/10,100)
(1/15,1/10,50)

(1/15,1/15,50)
(1/10,1/15,50)

Figure 4.4: Home Management : Achieved availability.

of the used file-sharing tool.

The scenario is described by the following parameters. Parameter N denotes the

number of homes in the scenario, while M = ⌊Bd/Bl⌋ denotes the number of DS-tasks

that may be carried out in parallel by each single home. For instance, if we assume

that a home’s raw downlink bandwidth is Bd = 4 Mbit/s, and each DS-task on average

consumes Bl = 200 kbit/s, then M = 20 downloads can be carried out concurrently.

Parameter λ denotes the arrival rate of DS-tasks at each single home, F denotes the

average filesize, tl = F/Bl denotes the average time it takes for downloading a file,

and thus µ = 1/tl denotes the rate at which each DS-task is finished. For instance, if

the size of a file on average is F = 100 MB, and Bl = 200 kbit/s, then µ = 1/4000

DS-tasks are finished per second. In order to make the model analytically tractable, it

is assumed that DS-tasks arrive accordingly to a Poisson process, and download times

(and thus file sizes) are distributed exponentially.

The Poisson process is a memoryless (the future evolution of the process is statisti-

cally independent of its past) point process of an indexed collection of random variables

with the probability that two or more arrivals happen at once is negligible. A point

process is a sequence of events called arrivals occurring at random in points of time ti
with i = 1, 2, ..., n and ti+1 > ti. The index i is used to model time as point of arrivals,

i.e. ti is the time of the ith arrival that joins a queue. A point process can be defined

by its counting process {N(t), t ≥ 0} where N(t) is the number of arrivals occurred

within [0, t). Therefore the Poisson process is a continuous-time counting process with

rate λ > 0 if it satisfies the following three conditions:

60

CHAPTER 4. APPLICATIONS 4.5. ANALYTICAL EVALUATION

1. N(0) = 0

2. The number of arrivals in two non-overlapping intervals are independent.

3. The number of occurrences in an interval of length t has Poisson distribution with

man λt.

This implies also time-homogeneity in the sense that occurrences are equally distributed

over all time. The inter-arrival times of occurrences are exponentially distributed

with parameter λ. The properties independence and time-homogeneity of the Poisson

process provides a sample with observations that are not biased.

We investigate three cases:

1. The local case where no sharing occurs (local).

2. The ideal case with resource sharing but no back transfer of the result (ideal).

3. The corrected case with resource sharing and back transfer of the result (corr).

The two latter cases differ in the way they deal with the actual transfer to the requesting

home: while in the ideal case this transfer is neglected, in the corrected case this transfer

is included (resulting in additional wake-up time for the requesting home).

First, we assume that DS-tasks are carried out on the home that created the request

while no sharing is going on. We start by modeling one single home. The number

of DS-tasks carried out by this home can be modeled by a birth-death process. The

process is in state k if the home is currently carrying out k DS-tasks. Since M is the

upper bound of DS-tasks, the process has exactly M + 1 states. It is further assumed

that if the process is in state M , newly generated DS-tasks are lost. Process states and

transition rates are shown in Figure 4.5.

Figure 4.5: Birth-death process for local DS-tasks of one single home.

Simple analysis shows, that the probability πk for being in state k is given by

[BGdMT06, Zuk09]

πk = π0
1

k!

(
λ

µ

)k

1 ≤ k ≤ M

with

π0 =

[
1 +

M∑
k=1

1

k!

(
λ

µ

)k
]−1

61

4.5. ANALYTICAL EVALUATION CHAPTER 4. APPLICATIONS

Since π0 denotes the probability that no DS-task is going on, 1 − π0 denotes the

probability that at least one DS-task is going on and the home is active. If there are

N homes, then the mean number of active homes Nl for local DS-tasks is only given

by

Nl = N (1− π0)

and hence by

Nl = N

1−

[
1 +

M∑
k=1

1

k!

(
λ

µ

)k
]−1
 (4.24)

In the next scenario we assume that homes share DS-tasks; if a home creates a DS-

task with rate λ, it first searches for an active home to pass the DS-task to. If there

is none, it will start the DS-task itself. Again the scenario is modeled by a birth-

death process, this time by modeling the state of all homes. Since there are N homes,

and each is able to carry out M DS-tasks in parallel, in total M × N DS-tasks can

simultaneously be carried out. The process has M ×N + 1 states as shown in Figure

4.6.

Figure 4.6: Birth-death process for simultaneous DS-tasks of N homes.

The solution of this process is similar to the one above, yielding

π̂k = π̂0
1

k!

(
Nλ

µ

)k

1 ≤ k ≤ MN

with

π̂0 =

[
1 +

MN∑
k=1

1

k!

(
Nλ

µ

)k
]−1

When assuming zero communication overhead, and not taking into account sending

results back (ideal), then the number of active homes necessary to carry out k DS-tasks

is a = ⌈k/M⌉. In other words, no home must be active in state zero, a = 1 home must

62

CHAPTER 4. APPLICATIONS 4.5. ANALYTICAL EVALUATION

be active in the states 1 to M , a = 2 for the states M + 1 to 2M , and so on. The

probability for needing exactly one active home is thus given by the sum of the πk

for 1 ≤ k ≤ M , and in general the probability for needing exactly a (active) homes is

therefore the sum of the πk for (a−1)M+1 ≤ k ≤ aM . For computing the expectation

Ni of a for the ideal case we derive

Ni =
N∑
a=1

a P(a homes necessary) =
N∑
a=1

a

aM∑
k=(a−1)M+1

π̂k (4.25)

In order to catch the effect of the transfer of the result to HA after the download

has finished on HB, the system is observed for a long time T . Then the total time

that homes are active within T is given by Ni T , and the time that the system was in

state k is given by π̂k T . It follows, that the number of finished DS-tasks while being in

state k, is given by π̂k T k µ. Since all N homes contribute equally to the system load

and create DS-tasks with the same λ, the origins of DS-tasks are distributed evenly

amongst all homes, but only ⌈k/M⌉ of them are active. It follows that on average the

number of DS-tasks finished in state k, carried out for a currently passive home, is

given by

π̂k T k µ
N − ⌈k/M⌉

N

The time for sending back the result to the initiating home is given by tu = F/Bu,

here taking the full raw uplink bandwidth Bu given by the Internet connection (e.g.

Bu = 1 Mbit/s), which is considered to be much faster than the average download

bandwidth Bl limited by the file-sharing tool. Thus, when sending back the result

to a home that was passive previously, the passive home must wake up and must be

active for at least tu seconds. It follows, when observing the system for T seconds,

the additional active time Ta for the back transfer to homes which have been passive

previously is given by

Ta = tu

MN∑
k=1

T π̂k k µ
N − ⌈k/M⌉

N

When considering additionally that tu = F/Bu and µ = Bl/F , the number of homes

Na additionally running for receiving transfers is then given by

Na =
Ta

T

and finally

Na =
Bl

Bu

MN∑
k=1

k π̂k
N − ⌈k/M⌉

N
(4.26)

Equation (4.26) is in accordance with the simple intuition that active time in the

sharing scenario is determined by the relation between the download bandwidth Bl

and the raw uplink bandwidth Bu.

63

4.5. ANALYTICAL EVALUATION CHAPTER 4. APPLICATIONS

The corrected average number Nc of active homes observed, including the time for

downloading and for transferring back, is then defined as

Nc = Ni +Na (4.27)

and further

Nc =
N∑
a=1

a

aM∑
k=(a−1)M+1

π̂k +
Bl

Bu

MN∑
k=1

k π̂k
N − ⌈k/M⌉

N
(4.28)

Equation (4.28) is in accordance with the simple intuition that active time is likely to

be saved only if the download bandwidth Bl is smaller than the raw uplink bandwidth

Bu.

Figure 4.7 shows results for N = 1000, F = 100 MB, Bd = 4 Mbit/s, Bl = 200 kbit/s,

and Bu = 1 Mbit/s. Each single home generates a certain number of DS-tasks per week,

0

50

100

150

200

0 5 10 15 20 25 30 35

A
ct
iv
e
h
om

es

Number of DS-tasks per home per week

local ideal corr

Figure 4.7: Number of active homes.

shown at the x-axis. The possible saving of home power is reflected by the difference

between the number of active homes in the local case (4.24) and the corrected case

(4.28). It can be seen that even when taking into account the distribution overhead,

the corrected case (corr) can save a substantial amount of power. For instance, when

assuming that each home consumes 100 W and creates 35 DS-tasks every week, without

cooperation 1000 non-cooperative homes would constantly consume more than 20 kW

on average just for downloading files, while cooperating homes would only consume

about 5.7 kW for the same task.

However, the distribution overhead of sending files back to the requesting home

clearly dominates the shared scenario, which can be seen by the difference between the

ideal and the corrected case, and which is mainly determined by the relation between

Bl and Bu. Note that changing Bl alone does not have a large effect in (4.28), since Bl

also determines M , and a smaller Bl will result in a larger M , enabling a larger degree

64

CHAPTER 4. APPLICATIONS 4.5. ANALYTICAL EVALUATION

of sharing. On the other hand, increasing Bu has a dramatic effect and yields to much

better energy efficiency.

The energy efficiency η given by (1.1), here in DS-tasks per kWh, is shown in Figure

4.8. The energy efficiency of the sharing scenario (corr) is clearly much better than

the one for the scenario without cooperation (local). It can be seen that if the load

is too small, then downloads are usually carried out sequentially, and even the ideal

case cannot save much energy by clustering DS-tasks. For increasing load the energy

efficiency approaches a system-specific upper limit.

0

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30 35

D
S
-t
as
k
s
p
er

k
W

h

Number of DS-tasks per home per week

local ideal corr

Figure 4.8: Energy efficiency η.

It must be noted that the corrected case does not take into account several details

such as representative file size distribution and protocol overhead. Additionally, it

assumes that after the last DS-task has finished, the downloading home immediately

may go passive, while in reality it must still send the file to the requesting home if

possible. On the other hand, a requesting home, which is just receiving a finished DS-

task, is a good candidate for starting DS-tasks itself. The latter two issues may cancel

each other out to some extend and thus have not been included into the model. In order

to include all the above mentioned issues, a discrete event simulator is developed and

introduced in Chapter 5 to evaluate the energy consumption for various applications

and sharing patterns.

We can also consider more future homes with synchronous access bandwidth to the

Internet. Figure 4.9 shows results for N = 100 homes, F = 100 MB, Bd = Bu = 8

Mbit/s, and Bl = 1 Mbit/s, while Figure 4.10 shows the same for N = 1000 homes.

With arrival rate λ, each single home generates a certain number of DS-tasks per

week, shown at the x-axis. The possible power saving is reflected by the difference

between the number of active homes in the local case (4.24) and the corrected case

(4.28). It can be seen that even when taking into account the distribution overhead,

i.e. sending back the files to the requesting homes, the shared scenario (corr) can

65

4.5. ANALYTICAL EVALUATION CHAPTER 4. APPLICATIONS

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

0 5 10 15 20 25 30 35

A
ct
iv
e
h
om

es

Number of DS-tasks per home per week

local ideal corr

Figure 4.9: Number of active homes for N = 100 homes.

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35

A
ct
iv
e
h
om

es

Number of DS-tasks per computer per week

local ideal corr

Figure 4.10: Number of active homes for N = 1000 homes.

66

CHAPTER 4. APPLICATIONS 4.6. MEASUREMENT STUDY

save a substantial amount of energy. For instance, in the scenario N = 1000 when

assuming that each home consumes 100 W and creates 35 DS-tasks per week, without

cooperation 1000 homes would constantly consume more than 4.5 kW on average just

for downloading files, while cooperating homes would only consume about 1.2 kW for

the same task.

What we also can see is the power of large numbers. Larger networks enable better

resource sharing through better distribution. This can be seen by comparison of the

networks with N = 100 and N = 1000 homes in the corrected case. The larger

network with 1000 homes saves 9 % more homes as the smaller network with 100

homes compared each to their local case. Thus, if the number of participating homes

increases, distribution of load becomes better, homes’ resources can be consolidated

better, and therefore more power can be saved.

4.6 Measurement Study

This section refers to [HWT08, HWT10] where the idea of task virtualization for ap-

plications, introduced in Chapter 3, is to migrate a VM containing only a specific task.

Currently, task virtualization is only possible within expert environments, since due

to the complexity of decentralized systems, users are normally not able to create tasks

for remote execution. Solving this usability problem would enable most home users to

participate in effective resource sharing and is an important part of future work.

A prototype8 called vPastry allows easy to use task virtualization for home environ-

ments. The prototype connects to other instances by using the open source library

FreePastry9.

A minimalistic resource/performance model is used comprising information about:

• CPU: Number and performance of CPU cores.

• RAM: Size and speed of main memory.

• Disk: Disk space and speed.

• Energy efficiency of the system as a whole (e.g. power supply).

• Connection: Access bandwidth to the overlay.

CPU, RAM and disk metrics can be understood as how much a user is willing or able

to contribute. This is important as it enables other participants of the overlay to find

a host with desired abilities for a specific task.

To find capable hosts for a specific task, a minimalistic search algorithm is used.

When a node receives an invitation for a task it requested, the user is prompted to

select a VM to send while a file transfer channel is established in the background.

8Developed by my colleague Thomas Treutner.
9http://www.freepastry.org

67

4.6. MEASUREMENT STUDY CHAPTER 4. APPLICATIONS

VMs following the Just enough Operating System (JeOS) approach for trying to

reduce the size of the VM to a minimum. Currently available task VMs include VMs

for performance tests, converting an MP3 file to OGG Vorbis10, a Personal Stream

Recorder (PSR) capturing N seconds of a predefined radio web stream and saving it as

MP3, stress tests for stability analysis, downloading a specified file using BitTorrent11,

and downloading a specified file using the command wget12.

Task VMs consist of a minimal Linux kernel image, a minimal root file system built

by OpenEmbedded13 and a task file system layer, which is put on top of the read-only

root file system by UnionFS 14. The VM’s task file system shelters a shell script which

is executed after the VM has started and disk space for installing required packages

(e.g. lame15) and for writing resulting data (e.g. an MP3 file) was allocated. When

the executor receives a VM, it is decompressed into a temporary place and started

by a runtime execution using the Kernel-based Virtual Machine16 (KVM) driver and

QEMU 17.

Once a task is finished (which basically means that the respective VM has exited),

the VM task file system is compressed and can be sent back to the task owner. Only the

task layer is sent back, as the root file system is mounted read-only and has encountered

no changes (and never will).

Along the described process, owner and executor of a task track the status of a given

task. When vPastry is quitted, this information is serialized to disk and vice versa.

When vPastry is started, it looks for a yet existing session to continue. Hence, the

owner of the task can turn off his computer after the task is migrated to the executor.

When the owner starts vPastry again, it automatically asks the overlay if the previously

outsourced tasks are finished yet.

When the task file system layer is migrated back, it is decompressed and moved to

a specific file and can be loopback-mounted on Linux or opened with explore2fs18 on

Windows.

Although the described work is just a tiny fracture of what would be necessary to

realize the envisaged architecture, it is the very first working prototype for distributed

energy saving for homes in a global manner and can give an insight what wattage is

produced by this system.

Now it is investigated how energy can be saved by sharing home resources, here using

Download Sharing (DS) as example. In this scenario N homes are interconnected with

gateways. For simplicity we assume a homogeneous environment. For future homes

we assume a synchronous access with either Bd = Bu = 50 Mbit/s, or Bd = 8 Mbit/s

10http://www.vorbis.com
11http://www.bittorrent.com
12http://www.gnu.org/software/wget
13http://wiki.openembedded.net
14http://www.filesystems.org/project-unionfs.html
15http://lame.sourceforge.net
16http://www.linux-kvm.org
17http://www.qemu.org
18http://uranus.chrysocome.net/linux/explore2fs-old.htm

68

CHAPTER 4. APPLICATIONS 4.6. MEASUREMENT STUDY

downlink and Bu = 4 Mbit/s uplink bandwidth. The local bandwidth within the home

is 100 Mbit/s. A DS-task uses on average Bl = 2400 kbit/s of the available access

bandwidth and has on average a size of F = 700 MB. It follows that a home can carry

out M = Bd/Bl DS-tasks in parallel. Following a Poisson arrival process, home users

create DS-tasks with arrival rate λ; the service rate is given by µ = Bl/F . As shared

CPU time 3 GHz are considered, further 100 GB of shareable disk storage.

In order to validate the resource consumption of executing VMs, following experi-

ments were carried out:

• A PC (AMD Phenom 9550 Quad-Core Processor (2.20 GHz) with 8 GB main

memory) was setup to act as a host.

• A client instance of vPastry then sent 1 ≤ k ≤ 5 DS-tasks (VMs) to the host,

which decompressed and ran the VMs.

• The DS-tasks then downloaded a file via wget at 300 kB/s from an FTP server

connected via GigabitEthernet.

The total uplink bandwidth of the FTP server was limited to 8 Mbit/s to simulate a

typical ADSL access network with 8 Mbit/s downlink bandwidth. The uplink band-

width of a single FTP connection was limited to 300 kB/s to simulate a download that

does not fully utilize the available total downlink bandwidth. The intention was to

assess the resource demands of such a scenario.

Figure 4.11 (fat lines) shows results, consisting of the long term resource utilization

of the CPU, the main memory and the network card of the host PC. As result on the

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 5 10 15 20 25 30

U
ti
li
za
ti
on

VMs

CPU 8 Mbit/s
Memory 8 Mbit/s
Network 8 Mbit/s

CPU 50 Mbit/s
Memory 50 Mbit/s
Network 50 Mbit/s

Figure 4.11: Resource utilization (CPU, memory, network) of a download scenario. Fat lines
denote results for a 8 Mbit/s access network (i.e. saturation occurs for ⌈8/2.4⌉ =
4 parallel downloads), thin lines for a 50 Mbit/s access network.

quad core under investigation, the resource utilization clearly depends linearly on the

69

4.7. MODEL EXTENSION CHAPTER 4. APPLICATIONS

number of VMs being hosted. Memory and CPU utilization grow slowly due to the

little resource demands of our minimalistic Linux operating system. This indicates,

when hosting DS-tasks on a modern PC, the system bottleneck indeed is the network,

but CPU and memory can be used to host other types of tasks. When the network is

beginning to be the bottleneck of the system, an interesting behavior can be observed:

With three DS-tasks downloading a file at 300 kB/s (2.4 Mbit/s) each, the resulting

downstream utilization is clearly within the available downlink bandwidth of 8 Mbit/s

and the network is not yet a bottleneck. Beginning with four VMs the network becomes

a bottleneck as the desirable downlink utilization would be 9.6 Mbit/s, and for five VMs

12 Mbit/s. As the downlink bandwidth is limited to 8 MBit/s, the incoming amount

of data and therefore the amount of data that has to be written to disk is limited too.

In our experiments we observed that the CPU utilization rises more slowly when the

system bottleneck is fully utilized. At this point there is no sense in adding more VMs

as the resource utilization rises with no benefit of work being done.

In a second experiment the FTP server’s total uplink bandwidth was limited to 50

Mbit/s to simulate a future Internet access like FTTH or VDSL (see thin lines in Figure

4.11). A client instance of vPastry sent 1 ≤ k ≤ 30 VMs containing a download task

(wget, 300 kB/s). The intention was to verify the linear resource demand of a Download

Sharing scenario also for future Internet access bandwidths. On the quad core under

investigation again it can be seen that the CPU utilization U clearly depends linearly

on the number of VMs k being hosted. As shown in Figure 4.11, for the situation

without network contention (1 ≤ k ≤ 20) this relation is

U(k) ≈ 0.26

20
k (4.29)

As a result our approach scales well to a large number of VMs being hosted. Even then

when the system bottleneck is the network with enough CPU and memory resources

being available for hosting other types of tasks. Furthermore, a large number of (small)

VMs, possibly > 100, can be hosted with modern PCs, which is important for other

scenarios like Home Management, where only little CPU and network resources might

be required. When the network begins to be the bottleneck of the system, which

happens in this case between 20 and 25 VMs, the above mentioned behavior is to be

observed here too.

4.7 Model Extension

Yet it was assumed that energy consumption or saving is only derived from the mean

number of active homes required to cope with a given load compared to the mean

number of passive homes. Now, based on above measurements presented in Section

4.6, we extend the model slightly by considering the fact that a home hosting several

VMs is more utilized as a home hosting less VMs. A more utilized home consumes

more energy compared to a lightly loaded one.

Utilization, depending on the number of VMs k, is assumed to be given by (4.29).

70

CHAPTER 4. APPLICATIONS 4.7. MODEL EXTENSION

As a general model for the consumed energy E(U), depending on the CPU utilization

U , we use [FWB07b] which is approximately

E(U) ≈ 0.5 +
1

2
U 0 ≤ U ≤ 1 (4.30)

where a home that does nothing approximately consumes half the energy of a fully

loaded home. Combining (4.29) and (4.30) yields

E(k) ≈ 0.5 + αk 0 ≤ k ≤ M (4.31)

with α ≤ 0.5, in our case α = 0.13/20. This can then be inserted into (4.24) for the

mean number of active homes for the local case without sharing and (4.28) for the

corrected case with sharing. In the local case each home downloads only its own files,

and the energy required for a single home is (setting ρ = λ/µ < M):

El,1 =
M∑
k=1

E(k)πk

=
M∑
k=1

(0.5 + αk)πk

= 0.5
M∑
k=1

πk + α

M∑
k=1

kπk

= 0.5(1− π0) + αρ
M∑
k=1

π0
1

(k − 1)!
ρk−1

= 0.5(1− π0) + αρ
M−1∑
k=0

π0
1

k!
ρk

= 0.5(1− π0) + αρ(1− πM) (4.32)

In the local case the energy El consumed by N homes is then given by

El = N (0.5(1− π0) + αρ(1− πM))

= 0.5Nl +Nαρ(1− πM) (4.33)

It must be noted, that Nαρ(1−πM) will be quite small (relatively to Nl) for reasonable

values of ρ and the effect of this term is thus limited. In the corrected case, when exactly

k downloads are going on, then a = ⌈k/M⌉ homes are running and the energy Ec,k

consumed by them is

Ec,k = (a− 1)E(M) + E(k − (a− 1)M)

= (a− 1)(0.5 + αM) + (0.5 + α(k − (a− 1)M))

= 0.5a+ αk (4.34)

where E(k) is given by (4.31). Summing up over all k and setting ρ̂ = Nλ/µ < N M ,

71

4.8. SUMMARY CHAPTER 4. APPLICATIONS

and considering the number of busy homes in the ideal case, Ni (4.25) yields the energy

consumption Ei due to the downloads

Ei =
N∑
a=1

aM∑
k=(a−1)M+1

π̂kEc,k

= 0.5
N∑
a=1

a

aM∑
k=(a−1)M+1

π̂k +
N M∑
k=1

αkπ̂k

= 0.5Ni + αρ̂(1− π̂NM)

= 0.5Ni +Nαρ(1− π̂NM) (4.35)

Additionally there are also transmissions for sending the content back to the content

owner, represented by Na given in (4.26). The additional effort is due to starting the

owner home which only downloads one file, i.e. the own download content. Its energy

consumption is actually E(1) = 0.5 + α, and the energy consumed for doing this is

Ea = E(1)Na = (0.5 + α)Na (4.36)

Combining the energy consumption Ei in the ideal case (4.35) with the additional

energy consumption Ea for the back transfer (4.36), and taking into account (4.27)

as the mean number of active homes Nc in the corrected case, the overall energy Ec

consumed in the corrected case is then

Ec = Ei + Ea

= 0.5Nc + αNa +Nαρ(1− π̂NM) (4.37)

Again we see that the energy consumption is equal to the consumption of idle homes

(which is essentially the number of running homes divided by 2) plus αNa which is for

modern systems negligible due to the small α, further on a term that depends on the

load ρ = λ/µ and N . Again we can state that for reasonable values of ρ the influence of

this term will be limited, but of course its influence grows as ρ grows. By inspecting the

solutions, the influence of the utilization on the overall energy consumption depends

very much on the load. In general, the system is energy efficient if the mean number

of homes Nc in the corrected case is smaller than the mean number of homes Nl in the

local case to compensate the additional mean number of homes Na that are active for

receiving results. Na can be seen as the cost of distribution.

4.8 Summary

The quintessence of this chapter was to show that it makes sense for homes to share re-

sources for power saving. Three possible and typical applications were introduced; each

covering a specific type of resource requirements. The moderate application Download

Sharing counts up for many tasks relying mainly on the downlink bandwidth of homes.

The more comprehensive application Video Encoding requires much CPU time and so

72

CHAPTER 4. APPLICATIONS 4.8. SUMMARY

the difference of homes in terms of performance is important. The Home Management

application needs high availability and in conjunction with replication also reliability.

By examining each of this applications in more detail as done in Chapter 6, we can see

better how to achieve any advantage in form of power saving.

It is also important how homes differ in performance α and wattage β. The factors

α and β can be used as weights for initial simulation parameters for CPU speed and

power consumption of homes. Especially CPU-intensive tasks strongly depend on the

performance factor α as well as on the wattage factor β.

73

5 Simulation Model

This chapter explains the simulation model and related concepts for proofing the fea-

sibility of the idea of task sharing in terms of power saving. The simulation model

consists of nodes representing homes connected to the Internet and providing network

bandwidth, CPU time and disk space to other nodes. Nodes generate and share load,

i.e. tasks as introduced in Chapter 4. It is assumed that Virtual Machines (VMs)

as introduced in Section 2.2 and considered more in detail in Section 4, encapsulate

all parts necessary to exchange tasks. Simulation experiments for Download Sharing

(DS), Video Encoding (VE) and Home Management (HM) show the feasibility of this

load sharing approach for future networked homes. Further, the simulation imple-

ments a Birth-and-Death (BD) process to model a population of load that fills up the

network of homes with tasks. The population grows due to new tasks and shrinks

while homes complete tasks. The theory beyond a BD process is well explained in

[KM08, BGdMT06]. The simulation verifies the analytical model presented in Chapter

4.

The simulation itself is a self-driven stochastic (also called synthetic or distribution-

driven) discrete-event simulation [LK99] with asynchronous timing [KM08, BGdMT06].

In combination with the stochastic feature, the simulation is designed for steady-state

analysis; after the beginning transient phase the variables average out to steady-state

values. Besides, the simulation is sequential in the sense, that events are executed on

one single machine. Latter implies a strictly event-oriented simulation that evolves

over time by executing events in increasing time order. The simulation implements a

continuous-time but discrete-state model [Jai91] in the sense that homes produce load

continuously but there is a countable number of tasks around. The simulation is prob-

abilistic and results differ on repetitions despite of the same initialization parameters.

The simulator architecture outlined in Figure 5.1 is called event-scheduling or event-

driven approach, because the simulation control scans the event list, identifies the next

event (usually the event with the smallest time) and executes the actions defined by

this event. Since the simulation is a discrete event simulation, an event is scheduled

for a given time point and events may schedule further events for the future. So, the

simulation flow steps from event to event until the termination conditions are reached.

The termination condition normally is an event with a timestamp that exceeds the

desired simulation time.

The simulation [LK99] is self-driven because Random Number Generators (RNGs)

are used for generating several rates. The arrival rate is calculated based on a RNG

and the customers constitute a homogeneous set. Arrival times of customers vary in

75

CHAPTER 5. SIMULATION MODEL

Figure 5.1: The rudimentary simulator architecture.

76

CHAPTER 5. SIMULATION MODEL

an unpredictable fashion and are only characterized in terms of i.i.d. (independent,

identically distributed) first-order statistics. Asynchronous timing (or event advance)

differs from synchronous timing in the way the simulator clock is advanced. With

asynchronous timing the simulator clock is increased by a variable amount of time

rather than a fixed time step, as with synchronous timing defined. Discrete-event,

because the simulation is kept running by discrete events occurring at given times.

The simulation clock is set to the event times. Since an event can cause future events,

the simulation goes further on the time axis.

Events are stored in a data structure called event list. The event list is an ordered

FIFO-list (First In First Out) organized as heap, a special case of a binary tree [Jai91].

A self-driven simulation requires a mechanism for generating sequences of events

which in turn govern or imitate the dynamic behavior of the system under investigation.

The random nature of events is characterized by underlying probability distributions.

The simulator must produce sequences of variates (sample values of a random variable)

from continuous probability distributions. For generating variates from any specified

distribution it is necessary to generate variates drawn from the uniform distribution.

Based on this uniformly distributed variates an e.g. exponential distributed variate can

be calculated. The simulation uses instead of Java’s built-in RNG, which is a Linear

Congruential Generator (LCG) for uniform distributed variates (java.util.Random)

according to Knuth [Knu97], a Java implementation1 of the approximately 1/3 faster

Mersenne Twister 2 [MN98] algorithm. Furthermore Mersenne Twister offers a very

high equidistribution up to 32 bits accuracy. Although Mersenne Twister also only

generates pseudorandom sequences, no important statistical tests reveal a significant

discrepancy from a truly random sequence.

Since no special network protocol must be simulated and to have a generic frame-

work with maximum adaptability, the discrete event simulation, for simulating network

communication on application level, is implemented in the general-purpose program-

ming language Java3 from scratch. For simulating the application communication of

Download Sharing, Video Encoding and Home Management, proper event handling and

network routing mechanisms have been implemented. To be independent from given

simulation frameworks like OPNET 4 or OMNeT++5 and because of not simulating

a specific network protocol, as can be done with the open network simulation ns-2 6,

an own simulation framework was created from our group to quickly generate first re-

sults and then implementing more comprehensive scenarios. Over this, the simulation

verifies an analytical model.

A middleware, where investigated applications run, divides the simulation in a net-

work and application layer. Figure 5.2 illustrates the simulated network. There are

1http://goui.net/doc/net/goui/util/MTRandom.html
2http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
3Java SE Development Kit (JDK) 6 Update 17
4http://www.opnet.com
5http://www.omnetpp.org
6http://www.isi.edu/nsnam/ns

77

CHAPTER 5. SIMULATION MODEL

Figure 5.2: Simulated network.

three types of nodes:

• A computer as resource provider inside a home.

• A gateway without resources, but with no churn that represents the home in the

overlay.

• The Internet as special node for interconnection and delay between gateways.

The simulated network consists of homes, where in each home are one gateway and at

least one computer. All homes together build an overlay. On gateways and computers

run the middleware which implements the application logic. The middleware of a

gateway only handles supportive overlay related operations, where the middleware of

a computer implements distributed algorithms for application-specific task sharing.

An addressing scheme enables routing. The address of a certain node within the

simulation is of form [H,N]. The address space defines H − 1 homes and N − 1

nodes inside a home. The Internet as special node has the address [−1,−1]. In Figure

5.2 e.g. if the computer with address [0, 1] wants to send a message to computer

with address [H − 1, 1] we have the trace [0, 1] → [0, 0] → [−1,−1] → [H − 1, 0] →
[H− 1, 1] since the Internet and gateways must be passed as in reality. The simulation

78

CHAPTER 5. SIMULATION MODEL

abstracts the Internet as single node because routing inside any overlay, as used in

common P2P-overlays, is not in scope of this work. The interest lies in application

scenarios, underlaying distributed algorithms suitable for task sharing, and the amount

of resources required for a given load.

Homes are modeled as nodes cycling through several states. The transition between

states are triggered by events during time. There are user events, like the creation of

a new task or system events created by the underlaying distributed logic of inter-home

communication. The four possible home states, as already introduced in Chapter 3,

are:

• An active (A) home executes tasks for remote homes. This state is the most

cooperative state, because the home does work for other homes. Tasks can be

also added locally by the own user, but it is assumed that all tasks can be carried

out without user invention or failures in the basic scenario.

• An active-blocked (AB) home generates new tasks but is not available for remote

tasks. Additionally, the home tries to find another home for created tasks. In this

state the home is not under system control, i.e. the user has exclusively access

on his resources.

• An active-blocked-content (ABC) home is sending back the result of a completed

task. Once a remote task is finished, the executer (home) notifies the owner

(home). If the owner is ready to receive the result as DS-task, the executer

uploads the result to the owner. In the case the owner was in state P , the state

ABC is only for awaking the owner from hibernation as long as the transfer lasts.

Indeed, a home in state ABC switches back to state P immediately after all

transfers are done. Note, that transfers can also happen if the owner is in state

A. In this case the executer tries to upload to the owner if the owner has currently

enough resources, otherwise the executer queues the completed task and retries

later.

• A passive home currently does not contribute resources to the system, but saves

power and helps to reach the global optimum of energy efficiency. The home can

be waken up by a user or a system event.

Figure 5.3 shows the homes’ state cycle and introduces possibilities for transitions

where P[event] denotes the possibility that a home transitions to another state due to

an event.

The simulation uses an arrival process with interarrival times i.i.d. exponentially dis-

tributed with rate λ. The arrival rate λ is Poisson distributed [LK99, Agr02] based on

uniform variates obtained by Mersenne Twister. The interarrival time T of customers

is based on a time period P and the load L (number of tasks within the period). The

arrival rate is then

λ =
L

P
(5.1)

79

CHAPTER 5. SIMULATION MODEL

Figure 5.3: State cycle of nodes.

and the mean interarrival time is

T =
1

λ
(5.2)

Poisson variates can be calculated from the cumulative distribution function of the

exponential distribution with mean µ

F (x) = 1− e−µx (5.3)

by setting (5.3) equal to a decimal number u from U(0, 1)

u = 1− e−µx (5.4)

and inversing it to

F−1(u) = x = − ln(1− u)

µ
(5.5)

Since 1− u is itself a random number, (5.5) can be simplified to

x = − ln(u)

µ
(5.6)

80

CHAPTER 5. SIMULATION MODEL

and this finally yields with (5.1)

x = − ln(u)

λ
(5.7)

as interarrival times for transitions 1. and 4. of Figure 5.3.

Homes build an overlay without central unit like a server that has all knowledge

about homes. The basic simulated network structure is shown in Figure 5.2. Due to

the consecutively numbering of homes’ addresses (as equivalent to IP-addresses in the

Internet), the overlay network can be imagined as ring as illustrated in Figure 5.4.

To replace server functionality, a hierarchical and structured P2P approach is used.

Figure 5.4: An overlay for 100 homes and 4 super homes.

Super Homes (SHs) segment the overlay into clusters. The gateway of a SH has the

additional role of a directory service where state information about homes is stored.

For a given network size, a certain number of SHs is defined like in Figure 5.4 with

100 homes, where 4 homes ([0,0],[25,0],[50,0],[75,0]) act as super homes. Each normal

home sends state information to its SH. The home can calculate the network address

of his SH S by

S =

⌊
H

C

⌋
× C (5.8)

where H is the network number and C is the cluster size, i.e. how many homes are

81

5.1. BASIC SCENARIO CHAPTER 5. SIMULATION MODEL

assigned to a SH according to Figure 5.4. C is simply calculated with (5.9).

C =

⌊
numHomes

numSuperHomes

⌋
(5.9)

A home can determine, that it is a SH if

0 = H mod C (5.10)

is true. Further, a super home can calculate the network address of all other SHs by

incrementing or decrementing the own network address by C within the range of the

number of homes (numHomes).

SHs replicate their knowledge about normal homes. A normal home sends a state

object (including information about the own state, the load, etc.) to its gateway.

The gateway forwards the information to the gateway of its SH. SHs forward state

objects to other SHs. Therefore, in case of a resource request by a specific home,

almost full knowledge about currently active homes is available. Gateways of homes

and SHs build a proprietary overlay providing base P2P functionality and produce

communication costs. The message flow of state information replication is shown in

Figure 5.5 with N considered SHs.

As state information is forwarded by each passed gateway, it is propagated through

the network, i.e. becomes ready for home requests. Homes also ask their gateways for

other active homes. The resource request for a list of active homes is forwarded to the

corresponding SH. The SH directly sends a network-wide actives list to the requesting

home.

This basic overlay adds communication costs to the simulation. Further it allows to

study the impact of missing state information in case of failures and high churn in the

network. This will be especially investigated in Section 6.3 where replication for Home

Management tasks is used to simulate compensation of failed or malfunctioning homes

in the network. Because state information is propagated asynchronously among SHs,

this overlay adds some uncertainty which itself causes costs if homes reported as active

fail and must be substituted.

5.1 Basic Scenario

The basic simulation scenario, according to Figure 5.3, is as follows: A user decides to

start a new task (DS-task, VE-task, HM-task, or a combination of them) with rate λ.

The creation of a new task implies a home’s transition from state P to AB (transition

1), thus the home is awaken and causes wattage through running (a) computer(s). In

state AB the user has exclusively access to his resources and passes the newly created

task to the system (e.g. via a special P2P client). The system now searches an executer

which is also connected to the overlay where the task can be executed. Figure 5.6 shows

all steps for the default communication pattern of task sharing with an initial passive

home 1 and an active home 2 with the corresponding SH.

82

CHAPTER 5. SIMULATION MODEL 5.1. BASIC SCENARIO

Figure 5.5: State information replication.

83

5.1. BASIC SCENARIO CHAPTER 5. SIMULATION MODEL

Figure 5.6: Default communication pattern of task sharing.

84

CHAPTER 5. SIMULATION MODEL 5.1. BASIC SCENARIO

If an executer could be found, the VM containing the task is sent to this home and

the owner becomes passive (transition 2) to save power. Otherwise the owner itself

becomes active to execute the task locally (transition 3) as shown in Figure 5.7 with

an initial passive home 1 and an active home 2. While in state A, a home can receive

tasks allocated by the system or added by the local user (transition 4). In state A the

home may concurrently execute own and remote tasks and accepts new arriving tasks

until a threshold. After that threshold the home only finishes running tasks to prepare

for state P .

Figure 5.7: Communication pattern of task sharing if the task can not be outsourced.

If all tasks are done, the home switches to state P (transition 5) to save again power.

If a home is passive and a request for the content of a previously finished task arrives,

the home will go into state ABC (transition 6) as shown is Figure 5.6. In state ABC

the home downloads the content (result) of its task from the executer. After that, the

home becomes again passive (transition 7). Therefore, the time a home resides in state

85

5.2. PARAMETERS CHAPTER 5. SIMULATION MODEL

ABC shortens the interarrival time of transition 1.

5.2 Parameters

The simulation is parameterized with variables derived from reality and experience.

Table 5.1 gives an overview about relevant parameters used for all simulation runs

evaluated in the rest of this work.

The simulation network consists of a number of homes (numHomes). For concentrat-

ing on inter-home instead of intra-home behavior, the home is assumed as computing

unit; therefore a home is understood as abstraction for all computing equipment in-

side. Among homes, a certain number of homes (numSuperHomes) is assigned with a

special role. These super homes act like a directory service and store state information

about homes. Super homes replicate their knowledge among each other. Factors for

performance (α) and wattage (β), as introduced in Chapter 4, weight home resources

according to two classes of homes.

The home’s shared resources are expressed by the downlink (bwDn) and uplink

(bwUp) access bandwidth, a synchronous local bandwidth (locBw) for inter-home com-

munication, the CPU time (cpu), and the disk space (mem). A wattage parameter

(watt) defines how much power is consumed on average if the home is under load.

For building the simulation network, homes are distributed in 2D-space to simulate

partitioning of homes in several aggregated areas like cities in reality. The vicinity

probability (vicinityProp) controls how near homes are situated and the position ad-

justment (posAdjust) avoids too dense positioning. The average base delay (delayBase)

for messages passing the Internet is fixed like an additional distance delay (delayDist)

that depends on the distance between homes (point to point delay). Parameters for the

latency within the Internet (latInternet) or within homes (latLocal) add communica-

tion costs. For the sake of completeness, the message size (msgSize) defines the default

size of control messages. Delay, latency and message size may sum up to considerable

communication costs in the simulation.

As in the evaluation sections for Download Sharing 6.1, Video Encoding 6.2 and

Home Management 6.3 showed, results are based on a given load (load), generated

within a given simulation period (simPeriod). The service time (serviceTime) specifies

the maximum time period an active home will accept incoming tasks. In standard

simulations a home will accept incoming tasks from the point of time it changed to

state A until the service time is expired. The simulation time (simTime) says how

much real time is simulated.

The average downlink bandwidth per DS-task (dsBwDn) can be fixed as threshold

like in common download clients for P2P networks [MRPM08]. The average uplink

bandwidth per DS-task (dsBwUp) is also assumed as fixed. Similar the average CPU

usage by a DS-task (dsCpu) and the average disk space allocated by a DS-task (dsMem)

are fixed values.

For a VE-task the length of the source video (veSrcLength) is the playtime of a video.

Additionally, with bit rates for the video (veSrcVidRate) and audio (reSrcAudRate)

86

CHAPTER 5. SIMULATION MODEL 5.2. PARAMETERS

Parameter Unit Description

numHomes Number Number of homes.
numSuperHomes Number Number of super homes.
α Factor Adjusts the performance relation between homes.
β Factor Adjusts the wattage relation between homes.

bwDn kbit/s Home’s max. shareable downlink bandwidth.
bwUp kbit/s Home’s max. shareable uplink bandwidth.
locBw kbit/s Home’s synchronous local bandwidth.
cpu Mhz Home’s max. shareable CPU time.
mem MB Home’s shared disk space.
watt watt Home’s mean power consumption under load.

vicinityProp Probability Clustering of spatial near homes.
posAdjust Factor Adjusts positions of spatial near homes.
delayBase ms Base delay within the Internet.
delayDist ms Point to point delay between homes.
latRemote ms Latency of links within the Internet.
latLocal ms Latency of links within homes.
msgSize bytes Default size of control messages.

load Number Number of task arrivals per week.
simPeriod s Mean interarrival time of tasks.
serviceTime s Period for that an active home accepts new tasks.
simTime s Simulation time.

dsBwDn kbit/s Average downlink bandwidth per DS-task.
dsBwUp kbit/s Average uplink bandwidth per DS-task.
dsCpu Mhz Average CPU time per DS-task.
dsMem MB Average disk space allocated per DS-task.

veSrcLength min Length of the source video.
veSrcVidRate kbit/s Mean source video bitrate (DVD).
veSrcAudRate kbit/s Mean source audio bitrate (DVD).
veTarVidRate kbit/s Mean target video bitrate (Xvid).
veTarAudRate kbit/s Mean target audio bitrate (Xvid).
veMinCpu Mhz Minimum granted CPU usage for encoding.

hmBwDn kbit/s Average download bandwidth per HM-task.
hmBwUp kbit/s Average upload bandwidth per HM-task.
hmCpu Mhz Average CPU usage per HM-task.
hmMem MB Average disk space per HM-task.
hmRep Number Number of HM-task replications.
hmMeanFailures Number Mean number of failures.

Table 5.1: Simulation parameters.

87

5.3. ECONOMIC MODEL CHAPTER 5. SIMULATION MODEL

part of the source material (DVD-Format with MPEG2 compression), the size of the

source file can be calculated. Also the file size of the compressed target video is specified

by video (veTarVidRate) and audio (veTarAudRate) bit rates according to e.g. Xvid7

encoding. A parameter for CPU usage (veMinCpu) defines the minimum CPU time

that must be granted for Video Encoding.

The average downlink bandwidth per HM-task (hmBwDn) is fixed and based on

the assumption that only small scaled AV-streams and sensor/actuator data is con-

sidered. Just as well as the average uplink bandwidth per HM-task (hmBwUp), the

average CPU usage per HM-task (hmCpu), and the average disk space per HM-task

(hmMem) is fixed. For availability analysis, HM-tasks are replicated by a certain num-

ber (hmRep) of copies within the network. Then, the mean occurrence of HM-task

failures (hmMeanFailures) per given simulation period (simPeriod) yields the possibil-

ity whether and when a home fails during the active period. All running tasks of a

failed home are lost. If there is replication with hmRep > 0 other homes will recover

the failed HM-tasks.

Depending on the intended application type (DS, VE, HM), each simulation run is

initialized with most of these introduced parameters which will be repeated in more

detail beneath corresponding results in Chapter 6.

5.3 Economic Model

An economic model is necessary to avoid free-riding as experienced in P2P-networks.

The problem of free-riding are selfish peers trying to get content from the P2P-network

without contributing own content or resources. There should be a mechanism for

detecting such bad sharing behavior, for measuring the sharing balance of peers, and

also for enforcing policies to avoid or penalize selfish behavior of peers.

The service time (serviceTime) addresses the fairness of the system. The service

time is the amount of time a home must reside active to be accessible by the system,

i.e. for receiving remote tasks for execution.

Longer service times cause longer active periods for homes. Longer service times also

make it easier for homes to find another home for their tasks. On the other side, a low

service time makes a home’s active period shorter and therefore homes may change to

state P earlier.

The supposed fairness of the system with a short service time is higher than with a

long one. With a short service time only a fraction of the load must be handled by

homes compared to a long service time. A long service time causes less concurrently

active homes, but leads to a worser load distribution; thus fewer homes must handle

the whole load and reside longer active. A short service time may cause more active

homes, but each of them must be active for less time. Also with a long service time

the load moves slower between homes. On the contrary, a short service time implies

better load distribution because it avoids the repeated selection of active homes due

7http://www.xvid.org

88

CHAPTER 5. SIMULATION MODEL 5.3. ECONOMIC MODEL

to their long stay in state A.

An economic model modifies the service time based on past behavior of the home.

The model relates sent tasks S to accepted tasks A and calculates the service time

for the next active period for each home. Sent tasks are those tasks, which the home

tries to sent out to another active home. Sent tasks are the cost for a home. However,

accepted tasks are remote incoming tasks. An active home accepts incoming tasks by

other active-blocked homes. The accepted tasks are the revenue of the home. If the

home is in state A, every accepted task neutralizes one sent task. Therefore equal

numbers of sent and accepted tasks implies that the home has so much contributed to

the system as consumed and no modification to the service time for the next active

period will happen.

Equation (5.11) is the short cost Ct after the active period of a home at time point

t.

Ct = A− S =

< 0 S > A

0 S = A

> 0 S < A

(5.11)

The set C of short costs with

Ct ∈ C [tdt, (t+ 1)dt) 0 ≤ t ≤ T (5.12)

is growing with time where T is the time point of the latest determined value. The

minimal short cost Cmin

Cmin = minC (5.13)

and maximal short cost Cmax

Cmax = maxC (5.14)

are used for calculating the normalized short cost Nt for an ended active period at t

with

Nt =

1
2

Cmin = Cmax

Ct − Cmin

Cmax − Cmin

Cmin ̸= Cmax

(5.15)

where

Nt ∈ N [tdt, (t+ 1)dt) 0 ≤ t ≤ T (5.16)

Additionally the limited short cost Lt for an ended active period at t with

Lt ∈ L [tdt, (t+ 1)dt) 0 ≤ t ≤ T (5.17)

is used as

Lt =

1
2

Cmin = Cmax

−Cmin

Cmax − Cmin

Cmin ̸= Cmax

(5.18)

89

5.3. ECONOMIC MODEL CHAPTER 5. SIMULATION MODEL

Lt is the marginal cost where the economic model decides that the home was neither

a donor (a home that has contributed to the system) nor a leecher (a home that has

more consumed as contributed) in the past active period. The average normalized cost

Cavg is calculated according to

Cavg =

∑T
t=1 Nt

T
(5.19)

for all determined normalized short costs Nt. The service time St+1 for the next active

period is then

St+1 =

St × (1− Cavg) Nt > Lt + ϵ

St × (1 + Cavg) Nt ≤ Lt − ϵ

(5.20)

for

0 ≤ ϵ ≤ 1 (5.21)

where St is the current service time and ϵ is the boundary for deciding if the home was

a donor, a leecher, or had a balanced behavior in the last active period.

Figure 5.8 depicts the coherence between introduced values and service time modifi-

cation. We can see the limited cost Lt is the value for deciding if the home is currently

Figure 5.8: Behavior classification for service time modification.

a leecher or donor. The parameter ϵ is the bias and extends the range for Lt. If ϵ is

big, then the economic model will hardly set a new service time and the home will be

handled as neutral, i.e. S = A. The model will react slowly to changes of the sharing

behavior of homes. On the other side, if ϵ is small each change of the sharing behavior

of a home will be considered immediately. The aim of the economic model is to shorten

the necessary service time homes must reside active with only small additional effort

and therefore a tradeoff between fairness and wattage.

90

CHAPTER 5. SIMULATION MODEL 5.3. ECONOMIC MODEL

For example, for following calculations we assume Cmin = 2, Cmax = 20, Cavg = 0.5,

ϵ = 0.5, and St = 28800 seconds (8 hours).

Now a home accepted A = 15 tasks by remote homes and sent S = 5 tasks to other

homes in the last period. According to (5.11) Ct = 10; the home was a donor in the

last period and it depends on its behavior of previous periods, more precise on Cmin

and Cmax, how the service time will be modified for the next period.

According to (5.15) Nt ≈ 0.44 and to (5.18) Lt ≈ −0.11. Since according to (5.20)

Nt > Lt + ϵ, the service time for the next period St+1 = 14400 seconds; thus reduced

by 50 % down to 4 hours.

Otherwise, if A = 5 and S = 15, then Ct = −10 and the home was a leecher.

According to (5.15) Nt ≈ −0.67 and again Lt ≈ −0.11. Now, according to (5.20)

Nt < Lt + ϵ and the service time for the next period St+1 = 43200 seconds; thus

increased by 50 % up to 12 hours.

But there is also an indifferent case where the service time will not be altered with

e.g. A = 10 and S = 10. In this case the home was neither a donor nor a leecher in

the last period with Ct = 0. Nt = Lt ≈ −0.11 and Lt − ϵ < Nt < Lt + ϵ which yields

according to (5.20) St+1 = St = 28800 seconds; thus again 8 hours.

The economic model presented in this section is implemented in the simulation and

some experiments are discussed in Chapter 6.

91

6 Evaluation

This chapter presents results of simulation runs for the applications introduced in Chap-

ter 4, produced with the simulation framework introduced in the simulation Chapter

5. As variance reduction techniques Independent Replications and Steady-state simu-

lation are applied [Whi91]. Simulation results are tested if they are below a relative

statistical error of 0.05. To avoid correlated observations, random numbers are gen-

erated based on the parallel version of the Linear-Feedback Shift-Registers generator

(Tausworthe), which is called Twisted Generalized Feedback Shift-Register or simply

Mersenne Twister 1. This generator provides a sufficient large cycle of random num-

bers and is commonly used to produce uncorrelated random numbers.

For the network part of the simulation model, following values are default as shown

in Table 6.1. A third of homes are near together (vicinityProp), thus have low com-

Parameter Unit Value

vicinityProp Probability 0.3
posAdjust Factor 1.0E-3
delayBase ms 10
delayDist ms 60
latRemote ms 20
latLocal ms 6
msgSize bytes 60

Table 6.1: Simulation parameters for the network topology.

munication cost, where no home is situated at the same place (posAdjust). The com-

munication cost consists of an experienced base delay (delayBase) of 10 ms plus a

distance-depended delay (delayDist) between two homes. The latency outside the

home (latRemote) is set to 20 ms and inside the home (latLocal) to 6 ms. A fixed

message size (msgSize) of 1000 bytes is assumed for all control messages. These values

are based on experienced data [YGM02, HHS08].

Homes share a certain amount of their access bandwidth, disk space and CPU time.

Also homes have a maximal local bandwidth and a peak power consumption. Default

values are shown in Table 6.2. As basic setup, all homes provide equal resources

and share a synchronous access bandwidth of 50/50 MBit/s (dnBw, upBw), a local

bandwidth of 100 MBit/s (locBw), at maximum 3 Ghz of CPU time (cpu), and 100

GB of disk space (mem). Each home has a peak power consumption of 100 (watt) if

busy.

1http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

93

6.1. DOWNLOAD SHARING (DS) CHAPTER 6. EVALUATION

Parameter Unit Value

dnBw kbit/s 50000
upBw kbit/s 50000
locBw kbit/s 100000
mem MB 100000
cpu Mhz 3000
watt watt 100

Table 6.2: Simulation parameters for homes.

The simulation experiments are focused on the feasibility of load distribution in the

context of future home environments. Hence, compared with todays usual bandwidths

(e.g. 8/4 MBit/s) of residential access, a very high synchronous down- and uplink

access bandwidth is supposed (50/50 MBit/s). Disk space (mem) is not a bottleneck

nowadays. The most influencing parameter, as we will see in next sections, is the

shared commuting capacity (cpu) of homes.

6.1 Download Sharing (DS)

Since this application causes not much CPU usage, performance and wattage factors

are fixed; thus homogeneous homes are considered. The basic scenario is explained in

Section 5.1. The default parameter space, derived from Table 5.1, is shown in Table

6.3. For this default setup, a simulation run is for a network of 100 or 1000 homes

Parameter Unit Value

numHomes Number 100 or 1000
numSuperHomes Number 4 or 40
α Factor 1
β Factor 1

load (A) Number 1 ≤ A ≤ 35
simPeriod s 604800
serviceTime s 28800

dsBwDn kbit/s 2500
dsBwUp kbit/s 200
dsCpu Mhz 10
dsMem MB 700

Table 6.3: Simulation parameters for Download Sharing.

(numHomes) segmented in 4 or 40 clusters, each of them served by one home acting

as super home (numSuperHomes).

Homes create 1 to 35 DS-tasks (load) per week. Per default this value is fixed to

A = 5. The parameter simPeriod is fixed to one week as mean interarrival time for new

DS-tasks with different load levels. The service time (serviceTime) is fixed to 8 hours

because it is assumed that active homes will accept new tasks for a period of 8 hours.

94

CHAPTER 6. EVALUATION 6.1. DOWNLOAD SHARING (DS)

This is a fairness parameter. A higher service time causes more available resources but

longer active times and in turn higher wattage. The economic model introduced in

Section 5.3 alters this parameter based on past behavior of homes.

The next four parameters define a DS-task. The parameter dsBwDn is the maximum

downlink bandwidth a DS-task may use. Since a home can carry out a couple of DS-

tasks, it is reasonable to restrict the bandwidth for all tasks equally with e.g. 2500

kbit/s. Further, the downlink bandwidth reachable in common P2P file-sharing systems

is the combined bandwidth from (many) different sources. Based on the real world of

P2P file-sharing, the same is considered for the uplink bandwidth (dsBwUp) which is

much lower with 200 kbit/s. Only very low CPU usage (dsCpu) is considered for each

DS-task, since the main usage lies on the memory that must be allocated. A typically

compressed video file for one movie has approximately 700 MB (dsMem).

To further refine the resource profile (including VM overhead) for a DS-task this

parameter is Pareto distributed. Since file sizes on Internet servers can be supposed as

Pareto distributed [BGdMT06], the size of the VM containing a completed DS-task is

a random variate of the Pareto distribution with

F (x) =

1−

(
k
x

)α
x ≥ k, α > 0, k > 0

0 x < k

(6.1)

where k is the mode or scale parameter, α the shape parameter of the function, and x

the target value. Setting (6.1) equal to a decimal number u from U(0, 1)

u = 1−
(
k

x

)α

(6.2)

and inversing it to

F−1(u) = x =
k

(1− u)
1
α

(6.3)

gives the Pareto distributed download size. The larger α, the closer are results for x

to the desired minimal download size specified by dsMem. Default simulation runs are

made with α = 3.

The plot in Figure 6.1 compares, for default DS-scenario parameters of Table 6.3, the

local versus the distributed case. The y-axis shows the mean number of busy homes

(homes in either the state A, AB or ABC) and the x-axis the simulation time in days

up to one year. What Figure 6.1 says is, if all homes execute their DS-tasks locally

then on average approximately 2.15 homes are busy constantly throughout the year.

On the other hand, if homes cooperate and tasks are executed in a distributed way,

only approximately 1.1 homes must be busy. Thus, the half of resources is required;

only 1.1 homes must be busy instead of 2.15 homes. Note, that not the same 1.1 or

2.15 homes do the work throughout the whole year. The load is distributed about 100

homes being in arbitrary states, but there are always sufficient homes in state A which

95

6.1. DOWNLOAD SHARING (DS) CHAPTER 6. EVALUATION

1

1.2

1.4

1.6

1.8

2

2.2

0 50 100 150 200 250 300 350

M
ea
n
n
u
m
b
er

of
b
u
sy

h
om

es

Time (days)

local dist. local CI dist. CI

Figure 6.1: Download Sharing : Mean number of busy homes with 95 % confidence intervals
(CI).

cope with the complete load as in the local case.

Energy is measured in joule. Power is energy divided by time and measured in watt.

A watt is a joule per second. A computer with a power consumption of 100 watt uses

100 joule of energy every second. Multiplying a power unit (e.g. kilowatt) by a time

unit (e.g. hours) gives an energy unit (kilowatt hours or shortly kWh).

The plot in Figure 6.2 shows, similar to the previous Figure 6.1, the difference be-

tween local and distributed case, but now in terms of energy (wattage) caused by homes

for executing the same load. In the local case each home has a power consumption of

0
1
2
3
4
5
6
7
8
9

10

0 50 100 150 200 250 300 350M
ea
n
w
at
ta
ge

p
er

h
om

e
(k
W

h
)

Time (days)

local dist.

Figure 6.2: Download Sharing : Mean wattage per home.

approximately 9.3 kWh after one year of executing DS-tasks. Comparatively, the power

96

CHAPTER 6. EVALUATION 6.1. DOWNLOAD SHARING (DS)

consumption only counts up to approximately 4.9 kWh in the distributed case. This

is a local power saving of 4.4 kWh per home for this CPU non-intensive application.

In sum, the global power saving is 440 kWh within one year for 100 homes.

As the power consumption can be correlated at most to CPU usage [FWB07a,

BH07b], the wattage is measured as the sum of the idle and the busy wattage. The

busy wattage is the difference between idle and busy peak wattage and is weighted by

the CPU utilization, which depends on the number of running tasks. It is assumed

that active but idle homes without tasks cause the half of the assumed peak wattage;

thus a fixed amount of 50 watt. The remaining 50 watt are weighted with the CPU

utilization which is variable for each home. We see that there is a correlation between

the number of busy homes and the wattage.

The joint plot, shown in Figure 6.3, combines the plots of Figure 6.1 and Figure

6.2; the mean number of busy homes and the mean wattage per home, again for 100

homes. We see that the remote case clearly outperforms the local case in both, the

0 50 100 150 200 250 300 350 400 0 1 2 3 4 5 6 7 8 910
1

1.2
1.4
1.6
1.8
2

2.2

B
u
sy

h
om

es
(#

)

local
dist.

Time (days)

Wattage (kWh)

B
u
sy

h
om

es
(#

)

Figure 6.3: Download Sharing : Joint plot of mean busy homes and mean wattage per home.

mean number of busy homes and the mean wattage per home throughout the whole

simulation period.

6.1.1 Distribution

A very interesting point is, that optimization toward energy efficiency can be achieved

easier with a larger network of homes. The plot in Figure 6.4 compares a network of

1000 homes with the hitherto network size of 100 homes. Now we pay attention to the

relative difference of the mean number of busy homes between local and distributed

case regarding to the network size. For the local case it is clear that the mean number

of busy homes must be much higher for a network of 1000 homes, than for a network

of 100 homes; always about 2.1 % of homes are busy. But the relative difference of

97

6.1. DOWNLOAD SHARING (DS) CHAPTER 6. EVALUATION

0

5

10

15

20

0 50 100 150 200 250 300 350M
ea
n
n
u
m
b
er

of
b
u
sy

h
om

es

Time (days)

local 1000 homes
dist. 1000 homes

local 100 homes
dist. 100 homes

Figure 6.4: Download Sharing : Mean number of busy homes for 1000 and 100 homes.

the mean number of busy homes in the distributed case between a network of 1000

and 100 homes can be clearly seen. Along 100 homes around 1.1 % are busy, whereby

along 1000 homes only 0.37 % have to be busy to cope with the same load of 5 DS-

tasks per week. This absolutely postulates, if we rise the network size, also the degree

of distribution is rised and this unleashes more power saving potential due to better

distribution.

But this is only the effect on the mean number of busy homes. The network size has

more influence on the mean power consumption (wattage) per home as shown in Figure

6.5. Firstly, we should agree that the mean wattage per home is the same, independent

0
1
2
3
4
5
6
7
8
9

10

0 50 100 150 200 250 300 350M
ea
n
w
at
ta
ge

p
er

h
om

e
(k
W

h
)

Time (days)

local 1000 homes
dist. 1000 homes

dist. 100 homes

Figure 6.5: Download Sharing : Mean wattage per home for 1000 and 100 homes.

from the number of homes, which is verified by the top curve with a wattage of around

98

CHAPTER 6. EVALUATION 6.1. DOWNLOAD SHARING (DS)

9.3 kWh after one year of local downloading for 1000 and 100 homes respectively. The

effect of a bigger network size directly influences the mean wattage per home to a larger

extend as the mean number of busy homes. We see, the distributed case among 100

homes amounts approximately to 4.8 kWh per year per home and approximately only

to 1.6 kWh per year per home for a network of 1000 homes. The point is, that we

have an improvement of local power saving by 3.2 kWh per home and an improvement

of global power saving of 1120 kWh if the number of participating home is increased

by factor 10. A 10 times bigger network of homes can save up to 34 % more power.

Further, the big difference of the distributed case in comparison to the local case among

1000 homes, justifies the feasibility of this task sharing approach especially for bigger

networks.

6.1.2 Load

All preceding plots were for a load of 5 DS-tasks per week. In the next plot 6.6 the load

is altered from 1 to 35 DS-tasks per week. Figure 6.6 shows the mean number of busy

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

M
ea
n
n
u
m
b
er

of
b
u
sy

h
om

es

Load (tasks per week)

local dist..

Figure 6.6: Download Sharing : Load plot for 1 to 35 DS-tasks per week.

homes for the setup of Table 6.3 and 100 homes. In the local case, where each home

execute its task self, nearly 14.7 homes are busy to cope with the load of 35 DS-tasks

per week; in the distributed case only approximately 3.14 homes are required. Thus,

similar to the effect of a lager network size, with rising load the difference between

local and distributed case grows considerably.

The relation between local and distributed case can also be seen in terms of wattage

as shown in Figure 6.7. In the local case with increasing load, the wattage per home

increases linearly. In the distributed case the increase in wattage is logarithmic. For

the load of 35 DS-tasks per week, each home can achieve a local power saving of 50.9

kWh per year. The global power saving of the whole network of homes would be

approximately 5090 kWh per year. This are nearly 78.6 % less wattage for the load

99

6.1. DOWNLOAD SHARING (DS) CHAPTER 6. EVALUATION

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35M
ea
n
w
a
tt
a
ge

p
er

h
om

e
(k
W

h
)

Load (tasks per week)

local dist.

Figure 6.7: Download Sharing : Wattage plot for 1 to 35 DS-tasks per week.

caused by on average 35 DS-tasks per home per week throughout one year.

6.1.3 Fairness

Another aspect is fairness. Yet homes stay active for a fixed period of 8 hours de-

fined by the service time (ServiceTime) mentioned in Table 6.3. The economic model,

introduced in Section 5.3, affects the service time based on past behavior of homes.

Figure 6.8 shows the mean number of busy homes under fairness, i.e. with enabled

economic model for the distributed case. To see the effect of the economic model,

1

1.2

1.4

1.6

1.8

2

2.2

0 100 200 300 400 500 600 700M
ea
n
n
u
m
b
er

of
b
u
sy

h
om

es

Time (days)

ϵ = 0.0
ϵ = 0.5

ϵ = 1.0

Figure 6.8: Download Sharing : Mean number of busy homes with fairness.

the fairness parameter 0 ≤ ϵ ≤ 1 is varied. With ϵ = 0 each change in the sharing

behavior of the home immediately affects the service time for the next active period.

100

CHAPTER 6. EVALUATION 6.1. DOWNLOAD SHARING (DS)

This means that homes that have been donors for long time and once become a leecher,

will immediately be penalized with a higher service time for the next active period.

With ϵ = 1 the economic model has no effect and the outcome is equal to no fairness

control; thus whatever behavior the home had, it will never be penalized or rewarded.

Values for ϵ in between are a gradation of the sensibility of the economic model in

terms of sharing behavior.

We see, if we immediately enforce fairness (ϵ = 0.0), the system requirements more

active homes, because under fair resource sharing (positive sent and accepted tasks

balance), homes are rewarded by shorter service times. For coping with the same

amount of load, this in turn requires more active homes.

A good tradeoff between fairness and the mean number of busy homes is ϵ = 0.5

because with this value the service time modification accompanying with 19 % less

busy homes as with a full sensible economic model (ϵ = 0.0).

In Figure 6.9 we see the mean service time per home under fairness, i.e. with enabled

economic model for the distributed case. With ϵ = 1.0 we have the case without fairness

0
1
2
3
4
5
6
7
8
9

0 100 200 300 400 500 600 700

M
ea
n
se
rv
ic
e
ti
m
e
(h
o
u
rs
)

Time (days)

ϵ = 0.0
ϵ = 0.5

ϵ = 1.0

Figure 6.9: Download Sharing : Mean service time per home with fairness.

as simulated before; since the service time is initially 8 hours, it is the same forever.

With ϵ = 0.5 the service time can be shorten from 8 hours by 86.3 % down to 1.1

hours which results only in a neglectable increase in the mean number of busy homes

as we have seen in Figure 6.8 compared to the saving here. With ϵ = 0.0 it is only 8.9

minutes which represends an extremly dynamic sharing behavoir. Note, that despite

of a very short service time of 8.9 minutes, this does not mean that homes reside active

for only 8.9 minutes. During this 8.9 minutes homes accept new tasks and then block

new ones, whatever time it takes to work out that accepted tasks.

We can see the small impact of shorter service times in terms of wattage in Figure

6.10. Without fairness (ϵ = 1.0) each home has with 9.5 kWh the lowest wattage after

101

6.2. VIDEO ENCODING (VE) CHAPTER 6. EVALUATION

0

5

10

15

20

0 100 200 300 400 500 600 700M
ea
n
w
a
tt
a
ge

p
er

h
om

e
(k
W

h
)

Time (days)

ϵ = 0.0
ϵ = 0.5

ϵ = 1.0
local

Figure 6.10: Download Sharing : Mean wattage per home with fairness.

two years. If we consider the previously as best working value of ϵ = 0.5 then the

wattage per home steps up by 58.9 % to 15.1 kWh. As also shown, the wattage of the

local case is just above the wattage of the distributed case with best fairness (ϵ = 0.0)

and this means that fairness is naturally limited in terms of the past behavior of

participating homes. If we allow long service times, then we can achieve a considerably

power saving, but if we want maximal fairness, the power consumption will be almost

the same as in the local case. Only in time the gap between wattages of the distributed

case with extreme fairness and the local case slightly increases.

To summarize, if the service time is shortened by 86.3 % this costs the home 58.9

% more power which is a tradeoff between fairness and wattage. But as anticipated,

fairness has a cost, namely power consumption.

6.2 Video Encoding (VE)

First insights in this application were given in Chapter 4. The goal is to encode a

video. A VE-task including the source video, created by the owner (home), is sent

to another executer (home), which in turn encodes and compresses the video. The

new video is then sent back to the owner. This application strongly depends on the

performance factor α and the wattage factor β, already introduced in Chapter 4. As for

the evaluation of Download Sharing, the basic scenario for Video Encoding is explained

in Section 5.1.

Simulation parameters for the default VE-Scenario are listed in Table 6.4. As ex-

plained in Section 6.1, the default setup for a VE simulation run consists of a network of

100 homes (numHomes) segmented into 4 clusters by super homes (numSuperHomes).

Performance (α) and wattage (β) factors are set to 0.6 indicating that the half of homes

share 40 percent less CPU time and therefore consume 40 percent less power for the

102

CHAPTER 6. EVALUATION 6.2. VIDEO ENCODING (VE)

Parameter Unit Value

numHomes Number 100 or 1000
numSuperHomes Number 4 or 40
α Factor 0.6
β Factor 0.6

load (A) Number 1 ≤ A ≤ 35
simPeriod s 604800
serviceTime s 28800

veSrcLength min 100
veSrcVidRate kbit/s 5000
veSrcAudRate kbit/s 448
veTarVidRate kbit/s 1000
veTarAudRate kbit/s 128

Table 6.4: Simulation parameters for the default Video Encoding Scenario.

same utilization. Thus, we have fast and slow homes.

Also the load (load) varies in the range from 1 up to 35 tasks per week per home with

a mean interarrival time (simPeriod) of 1 week. The default service time (serviceTime)

is again 8 hours.

The next five parameters describe a VE-task. The idea is to convert a video of e.g.

100 minutes (veSrcLength) in DVD format to one in AVI format. You can easily do

this with the DivX2 or Xvid3 codec manually. The source video has a video bitrate

(veSrcVidRate) of approximately 5000 kbit/s and an audio bitrate (veSrcAudRate) of

488 kbit/s. The encoded target video has a video bitrate (veTarVidRate) of 1000 kbit/s

and an audio bitrate (veTarAudRate) of 128 kbit/s. Hence, the filesize of the target

video is considerably smaller than the filesize of the source video. For example, 100

minutes of a video in DVD format requires 4086 MB disk space; the encoded video in

AVI format requires with almost 846 MB only 20.7 % of the size of the source video.

Because the source video is sent to the executer and the encoded target video back

to the owner, at least 4932 MB of data has to transferred between these homes. In

between, the encoding work must be done by the executer. This application produces

load in the sense of power tasks, because serious amounts of network bandwidth, CPU

time and disk space are required. Nevertheless, following simulation runs will show the

benefit by doing such VE-tasks remotely.

The plot 6.11 outlines the difference of the mean number of busy homes within one

year to cope with the given load of 5 VE-tasks per week per home. It can be clearly

seen that in the local case approximately 13 homes must be busy to work out the load,

whereas in the distributed case only 8.1 homes are necessary. This is a reduction of 4.9

homes and causes therefore a saving of 37.7 % of busy homes in the distributed case.

2http://www.divx.com
3http://www.xvid.org

103

6.2. VIDEO ENCODING (VE) CHAPTER 6. EVALUATION

7

8

9

10

11

12

13

0 50 100 150 200 250 300 350

M
ea
n
n
u
m
b
er

of
b
u
sy

h
om

es

Time (days)

local dist. local CI dist. CI

Figure 6.11: Video Encoding : Mean number of busy homes with 95 % confidence intervals
(CI).

The improvement can also be seen in terms of wattage in Figure 6.12, because the

mean wattage per home within one year is lower in the distributed case as in the local

case. The local case causes for each home a wattage of about 54.7 kWh after one year.

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350M
ea
n
w
at
ta
ge

p
er

h
om

e
(k
W

h
)

Time (days)

local dist.

Figure 6.12: Video Encoding : Mean wattage per home.

In the distributed case each home causes only about 37.5 kWh on average and this

is equivalent to a reduction of 31.4 % or a power saving of 17.2 kWh per home. The

relative better reduction of mean busy homes, compared to the reduction of the mean

wattage per home, comes from the fact, that Video Encoding is strongly related to CPU

usage and therefore has direct impact on the power consumption of homes that actually

do the work. Because we have a performance factor α = 0.6, most executers share 40

% more CPU time as corresponding owners and this homes cause more wattage.

104

CHAPTER 6. EVALUATION 6.2. VIDEO ENCODING (VE)

Thus, the smaller part of busy executers tends to cause more wattage relative to the

same amount of owners. This is based on the assumption, that Video Encoding can

only work in heterogeneous networks where certain members provide the calculation

power that the other part does not have. In such cases the load will aggregate on

homes providing the requested resources and this causes the main wattage.

This of course leads to a skew toward resource provider and should be compensated

by fairness models similar to the one introduced in Section 6.1.3. Besides, bringing up

the past behavior of members, also a mix of light and strong tasks in terms of resource

requirements is thinkable. Homes that offer much CPU time do the calculation work,

whereas homes with less CPU power must do downloading or storing data. This issue

is addressed later in Section 6.4.

We can see, the coherence of the mean number of busy homes and the mean wattage

per home at a glance in Figure 6.13. In the same period, local Video Encoding causes

0 50 100 150 200 250 300 350 400 0
10

20
30

40
50

60
7
8
9

10
11
12
13
14

B
u
sy

h
o
m
es

(#
)

local
dist.

Time (days)

Wattage (kWh)

B
u
sy

h
o
m
es

(#
)

Figure 6.13: Video Encoding : Joint plot of busy homes and wattage.

more than twofold. First, more homes must be busy to cope with the given load of VE-

tasks and second a bit more than a third more wattage is caused by each busy home.

This can be clearly seen by the two planes in Figure 6.13. Generally, Video Encoding

exhibits more power saving potential as Download Sharing but requires heterogeneous

homes in terms of shared CPU time.

6.2.1 Distribution

As Download Sharing also Video Encoding performs better with a higher number of

participating homes as seen in Figure 6.14. In the local case approximately 13 % of 100

or 1000 homes are busy. On the contrary, in the distributed case only appoximately

8.1 % of 100 homes or 7 % of 1000 homes are busy to cope with the same load of 5

VE-tasks per week per home. For a network of 100 homes the mean number of busy

105

6.2. VIDEO ENCODING (VE) CHAPTER 6. EVALUATION

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350M
ea
n
n
u
m
b
er

of
b
u
sy

h
om

es

Time (days)

local 1000 homes
dist. 1000 homes

local 100 homes
dist. 100 homes

Figure 6.14: Video Encoding : Mean number of busy homes for 1000 and 100 homes.

homes in the distributed case is 37.7 % smaller than for the local case. On the other

side, for a network of 1000 homes is the mean number of busy homes 46.2 % smaller

than for the local case. Thus, if the network is bigger, then task sharing gains additonal

advantage; The possibility to find a home willing to take over a task is bigger if more

homes participate.

Also the application Video Encoding unveils power saving potential and the difference

in wattage can be seen in Figure 6.15. Generally, the mean wattage per home with a

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350M
ea
n
w
at
ta
ge

p
er

h
om

e
(k
W

h
)

Time (days)

local 1000 homes
dist. 1000 homes

local 100 homes
dist. 100 homes

Figure 6.15: Video Encoding : Mean wattage per home for 1000 and 100 homes.

network of 100 homes lies above the corresponding case with a network of 1000 homes.

The rule is also here: better distribution brings lower wattage. In the distributed case

one home of 1000 with 30.3 kWh causes by 35.5 % less wattage as one home of 1000 in

106

CHAPTER 6. EVALUATION 6.2. VIDEO ENCODING (VE)

the local case with 47 kWh. On the contrary, one home of 100 causes in the distributed

case with 37.5 kWh only 31.4 % less wattage as one home of 100 in the local case with

54.7 kWh. The big network outperformes the small network with 4.1 % less wattage

which shows the considerable additional power saving potential due to distribtion.

6.2.2 Load

Figure 6.16 depicts the mean number of busy homes of 100 from 1 up to 35 VE-tasks

per week per home for one year. Under increasing load the distributed case works

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

M
ea
n
n
u
m
b
er

of
b
u
sy

h
o
m
es

Load (tasks per week)

local dist.

Figure 6.16: Video Encoding : Load plot for 1 to 35 VE-tasks per week.

better than the local one. At 35 VE-tasks per week per home saves the distributed

case with 39.2 busy homes 35.2 % of resources compared to the local case where on

average 60.5 busy homes are needed to cope with the same load.

The relation between the local and distributed case can also be seen in terms of

wattage shown in Figure 6.17. For a load of 35 DS-tasks per week each home can

achieve a local power saving of 30 % or nearly 98.3 kWh per year in the distributed

case compared to the local case.

6.2.3 Fairness

As in Download Sharing, also here exists a tradeoff between fairness and wattage. The

number of homes is 100 and Figure 6.18 shows results for the economic model and

varied fairness parameter ϵ as introduced in Section 5.3 and with 5 VE-tasks per week

per home.

The case without fairness is represented by ϵ = 1.0 where 8.1 busy homes are nec-

essary to cope with the load with a constant service time of 8 hours. If we choose

ϵ = 0.5 then the mean number of busy homes steps up to 11.5 busy homes but the

service time can be shorten from 8 to 4.7 hours as shown in Figure 6.19. This means

that more fairness causes after two years 42 % more busy homes but also 41.3 % less

107

6.2. VIDEO ENCODING (VE) CHAPTER 6. EVALUATION

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35M
ea
n
w
a
tt
a
ge

p
er

h
om

e
(k
W

h
)

Load (tasks per week)

local dist.

Figure 6.17: Video Encoding : Wattage plot for 1 to 35 DS-tasks per week.

7.5
8

8.5
9

9.5
10

10.5
11

11.5
12

12.5
13

0 100 200 300 400 500 600 700M
ea
n
n
u
m
b
er

of
b
u
sy

h
om

es

Time (days)

ϵ = 0.0
ϵ = 0.5

ϵ = 1.0

Figure 6.18: Video Encoding : Mean number of busy homes with fairness.

108

CHAPTER 6. EVALUATION 6.2. VIDEO ENCODING (VE)

4

5

6

7

8

0 100 200 300 400 500 600 700

M
ea
n
se
rv
ic
e
ti
m
e
(h
o
u
rs
)

Time (days)

ϵ = 0.0
ϵ = 0.5

ϵ = 1.0

Figure 6.19: Video Encoding : Mean service time per home with fairness.

service time which is a good tradeoff in terms of fairness. Note, if we set ϵ = 0.0, thus

making the economic model highly sensible and therefore react to the past behavior of

homes immediately, then the service time can be further lowered to 4.1 hours but this

results in 54.3 % more busy homes compared to the case with ϵ = 1.0.

This is also expressed in terms of wattage shown in Figure 6.19. The power consump-

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700M
ea
n
w
at
ta
ge

p
er

h
om

e
(k
W

h
)

Time (days)

ϵ = 0.0
ϵ = 0.5

ϵ = 1.0
local

Figure 6.20: Video Encoding : Mean wattage per home with fairness.

tion for the distributed case with fairness (ϵ = 0.5) is around 29.5 % higher as for the

distributed case without fairness (ϵ = 1.0). Although with ϵ = 0.0 the wattage is 39.5

% higher as without fairness, the mean wattage per home is with 104.9 kWh after two

years below the wattage of the local case with 109.6 kWh. Thus, with the application

Video Encoding there is a natural limit to which extend fairness can be applied. With

109

6.3. HOME MANAGEMENT (HM) CHAPTER 6. EVALUATION

the current type of economic model, based on the past behavior of homes, is it possible

to gain shorter service times, i.e. more fairness, but always staying below the wattage

of the local case.

6.3 Home Management (HM)

The Home Management application was introduced in Chapter 4 and simulation pa-

rameters in Chapter 5. Relevant simulation parameters, derived from Table 5.1 for the

simulation of Home Management, are listed in Table 6.3.

Parameter Unit Value

numHomes Number 100
numSuperHomes Number 4 or 40
α Factor 1
β Factor 1

load (A) Number 1 ≤ A ≤ 7
simPeriod s 604800
serviceTime s 28800

hmBwDn kbit/s 500
hmBwUp kbit/s 500
hmCpu Mhz 300
hmMem MB 500
hmRep (R) Number 0 ≤ R ≤ 6
hmMeanFailures (F) Number 1 ≤ F ≤ 7
hmHbeat s 300
hmCheck s 60
hmTimeout s 600

Table 6.5: Simulation parameters for the default Home Management scenario.

The default setup consists of a network of 100 homes (numHomes) segmented into 4

clusters by a super home (numSuperHomes). Performance (α) and wattage (β) factors

are set to 1 indicating homogeneous homes.

As load (load) there are 1 up to 35 HM-task arrivals per week; assumed with a mean

interarrival time (simPeriod) of one week. The default service time (serviceTime) and

interarrival time is set to 8 hours and 1 week.

The next four parameters define a HM-task. The mean downlink bandwidth (hmB-

wDn) and mean uplink bandwidth (hmBwUp) specify the bandwidth requirements of

a HM-task. Assuming audio and video surveillance, a continuous AV-stream is consid-

ered on the downlink. Similar, for dissemination of results of analyzed data to many

other homes, the same bandwidth requirement is considered uplink. The size (hm-

Mem) of a HM-task is fixed to 500 MB, based on a survey on resource needs of home

automation software. The number of replicates (hmRep) is the number of additional

copies of one HM-task that must be hosted within the network of homes to improve

110

CHAPTER 6. EVALUATION 6.3. HOME MANAGEMENT (HM)

reliability. The number of mean failures (hmMeanFailurs) defines how many homes

can crash in a given time period. Various settings for this parameters will be examined

in Section 6.3.2 to observe the system under different fault hypothesis. Basic parame-

ters for failure detection are the time between two heartbeats (hmHbeat) a home sends

messages as proof to be operative, the time between to heartbeat checks (hmCheck)

by other homes, and the timeout for a heartbeat (hmTimeout), i.e. after which time

period a heartbeat is expired and the corresponding home considered as failed.

6.3.1 Replication

The fraction of busy homes B, with parameters defined in Table 6.5, can be calculated

according to

B = (1 +R)×max

{
hmCpu

cpu
,
hmMem

mem
,
hmBwDn

bwDn
,
hmBwUp

bwUp

}
(6.4)

and because of

hmCpu

cpu
>

hmBwDn

bwDn
≥ hmBwUp

bwUp
>

hmMem

mem
(6.5)

the offered CPU time per home is the bottleneck which yields

B = (1 +R)× hmCpu

cpu
(6.6)

Based on chosen values from Table 6.5 theoretical values for B are listed in Table

6.6.

Replication Fraction of
Degree R busy homes B

0 0.10
1 0.20
2 0.30
3 0.40
4 0.50

Table 6.6: Calculated fraction of busy homes.

The plot in Figure 6.21 shows simulation results for the number of busy homes (homes

that are in either the states A, AB or ABC) for 100 homes. In the local case the

expected number of busy homes converges quickly to the network size, because each

home hosts its own HM-task without sharing. In the distributed case, but without

replication (R = 0), all HM-tasks are aggregated on a much lower number of about

10 homes as calculated with (6.6). A higher replication degree denotes higher B.

Finally, simulation results clearly show how the number of busy homes increases for

111

6.3. HOME MANAGEMENT (HM) CHAPTER 6. EVALUATION

0

20

40

60

80

100

0 100 200 300 400 500 600 700

M
ea
n
b
u
sy

h
om

es

Time (days)

local
local CI

R=0

R=0 CI
R=1

R=1 CI

R=2
R=3
R=4

R=5
R=6

Figure 6.21: Home Management : Mean busy homes under various replication degrees with
95 % confidence intervals (CI).

each additional replicate (0 ≤ R ≤ 6) per 10 percent.

Figure 6.22 shows the relation between replication degree and wattage. A home

0
100
200
300
400
500
600
700
800
900

0 100 200 300 400 500 600 700M
ea
n
w
at
ta
ge

p
er

h
om

e
(k
W

h
)

Time (days)

local
R=0

R=1
R=2

R=3
R=4

R=5
R=6

Figure 6.22: Home Management : Mean wattage per home under various replication degrees.

executing its HM-task is always running but not fully loaded, and this leads to a

wattage of approximately 873 kWh for two years in the local case. For comparison, a

fully loaded home with peak power consumption of 100 watt, as defined in Table 6.2,

causes a wattage of approximately 1747.2 kWh for two years. Thus, the execution of

one HM-task causes near the half wattage as the home would be under full load. For

Home Management, the local case is a vast power wastage and it is better to run one

home at a higher load and to avoid local task execution in other homes. The wattage

112

CHAPTER 6. EVALUATION 6.3. HOME MANAGEMENT (HM)

can be significantly lowered by distribution and even with a high replication degree

(R = 6) it is clearly below that of the local case.

From Figure 6.22 results that after two years each can save without replication

(R = 0) on average 89 % of the wattage compared to the local case. Even with high

replication (R = 6) homes still save about 29 % of their wattage in comparison with

the local case.

We see, more reliability and therefore higher replication degrees compensate the

advantage of distribution to a certain extend. This leads directly to the next question

how many replications are necessary to keep the system running, i.e. to assure that

each home’s HM-task is running continuously despite of failures under availability

assumptions and makes this sense in terms of power saving? On the base of this

observations availability under several failure hypothesis is examined in the next Section

6.3.2 implicating home failures.

6.3.2 Failures

For testing the behavior of the simulated network of homes, this section explains the

extension of the Home Management scenario with home failures.

In the normal distributed case a home creates one HM-task. In the distributed case

with replication the home creates some additional HM-tasks; the replications. One

HM-task is executed by the creator immediately and the replications migrate to other

homes. Therefore, some homes build a temporary cluster as depicted in Figure 6.23.

As we see Home 1 is member of two home clusters. In Home Cluster 1 this home hosts

its own master task HM1 and as member in Home Cluster 2 it hosts a replication of

task HM2. In the case of a crashed Home 1, one instance of HM1 and HM2 is lost.

Thus, both clusters are in error state and should compensate the crashed instance by

finding another home willing to overtake.

The simulated procedure is as follows:

• A home fails according to a failure rate and all HM-tasks are lost.

• A failed home is set to state P and will come into state AB according to the

arrival rate.

• A failed home will be detected by at least one other home of the cluster.

• Only the very first detection of a lost HM-task triggers the recovery process.

• The home that detected the failed HM-task creates a copy of its own HM-task

and tries to migrate it to any other home in the network.

• The own HM-task of the home, that recovered the failed HM-task, is now the

master.

• In the best case, next time the previously failed home becomes AB, it has nothing

to do because the cluster repaired itself in the meantime.

113

6.3. HOME MANAGEMENT (HM) CHAPTER 6. EVALUATION

Figure 6.23: Home Management : Home cluster.

• In the worst case, the home cluster is still down and the home must recreate own

HM-tasks up to the desired replication degree.

According to two reasons the occurrence of failures in all subsequent simulations are

Weibull distributed. First, as investigated in [SR06] on three different P2P systems

(Gnutella, BitTorrent, Kad) the Weibull distribution most adequately models churn in

P2P systems, because churn consists not only of a sequence of completely independent

events which normally leads to exponential distribution. Users’ presence differs in

terms of daytime and resource offer. Second, the possibility that a home fails depends

more on the user as on the equipment. Then, failures in this context can be seen as

arrivals and modeled similar.

To calculate a Weibull variate one must take the Weibull cumulative distribution

function [Jai91]

F (x) = 1− e(
x
α)

β

x ≥ 0 (6.7)

where α is the scale and β the shape parameter of the distribution. Setting (6.7) equal

to a decimal number u from U(0, 1)

u = 1− e(
x
α)

β

(6.8)

114

CHAPTER 6. EVALUATION 6.3. HOME MANAGEMENT (HM)

and inversing it to

F−1(u) = x = −α× ln(u)
1
β (6.9)

gives the Weibull variate x for the failure interarrival time with α as mean. The Weibull

distribution models lifetimes of components and for β > 1 it gives an increasing failure

rate, i.e. failure interarrival times are short. Note that for β = 1 the failure rate is

constant, but we use β < 1 for modeling a failure rate decreasing with time; the failure

rate decreases monotonically and is convex. This models early failing homes, but more

reliable homes on the longer run as it can happen for technical components which do

not endure a certain load at the beginning and fail promptly, or continuously work

error less under near constant load.

For now note the death process in the sense, that altough crashed HM-tasks will be

restarted by other cluster members, crashed home clusters will be not recovered. The

death process implies whenever a home fails, it will not recreate own HM-tasks if it

comes online again and the cluster is down in the meantime; the system goes down

over time as home failures occur.

Figure 6.24 shows cumulative numbers of home cluster crashes under different repli-

cation degrees with a mean failure rate of 1 failure per week (F = 1) and with a mean

arrival rate of 5 arrivals per week (A = 5). That is, homes come online 5 times per

week to once start the HM-task and immediately return to state P if so done before.

The chosen replication degree should have a direct impact on the number of HM-tasks

and indirectly also on the number of cluster crashes.

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700

C
lu
st
er

cr
as
h
es

Time (days)

R=0
R=1

R=2
R=3

R=4
R=5

R=6

Figure 6.24: Home Management : Number of cluster crashes for 100 homes under various
replication degrees.

Without replication (R = 0) each HM-task exists only once and therefore with a

network of 100 homes also 100 pseudo clusters, each consisting of one home, are up.

After 2 years nearly all clusters are crashed at least once in this scenario, which means

that no home will be controlled by its HM-task.

115

6.3. HOME MANAGEMENT (HM) CHAPTER 6. EVALUATION

For a specific replication degree in sum

M = (1 +R)× numHomes (6.10)

HM-tasks are running among homes; organized in so many clusters as homes in the

network. With replication (1 ≤ R ≤ 6) clusters crash later as without replication

(R = 0). In the simulated scenario homes monitor clusters’ health. If one HM-task,

because of a home failure, terminates, then other cluster members try to recover the

lost HM-task.

Note, dependent on the replication degree, replication can revive crashed clusters

before they must be reestablished by the corresponding homes. A recovered HM-task is

initially marked as sleeping, because the recovering home already executes a replication

of this HM-task. The recovering home will try to migrate the sleeping HM-task to a

new home, yet not member of this cluster. Also homes with previously recovered and

now sleeping HM-tasks can fail. This leads finally to a total system breakdown if all

home clusters are crashed.

However, there is a possibility that HM-tasks of the same cluster crash in series which

means that a cluster can be down for some period, but can be reestablished by some

recovered still sleeping HM-tasks. Such sleeping HM-task becomes then operative. This

is why home cluster can crash several times with replication and is shown in Figure

6.24 as a number of cluster crashes higher than the network size (2 ≤ R ≤ 6).

The slower rising number of cluster crashes is one outcome of replication in the Home

Management scenario modeled in this work. The next viewpoint is the achievable

availability expressed as the number of running clusters as shown in Figure 6.25.

0
10
20
30
40
50
60
70
80
90
100

0 100 200 300 400 500 600 700

R
u
n
n
in
g
cl
u
st
er
s

Time (days)

R=0
R=1

R=2
R=3

R=4
R=5

R=6

Figure 6.25: Home Management : Number of running clusters for 100 homes under various
replication degrees.

At the beginning, homes create their HM-tasks and the availability (number of work-

ing clusters) increases, but because of chosen replication degree and failure rate never

116

CHAPTER 6. EVALUATION 6.3. HOME MANAGEMENT (HM)

reaches the maximum availability. The simulated network size is 100 homes and at

least one HM-task for each home must run in order to fulfill the defined availability

constraint. Without replication (R = 0) the system never reaches a fully operative

state; although the peak of running clusters is 60.9 % after 8 days, the system goes

down quickly and is minimzed to 1.6 % of homes after 2 years. This becomes better

with replication, but only about 5.2 % of clusters can be kept operative with R = 6

because the slope asymptotically converges to a level clearly below the desired number

of 100 running clusters.

Nevertheless, replication of course causes some extra power consumption that can

be seen in the next Figure 6.26.

0
2
4
6
8

10
12
14
16
18
20

0 100 200 300 400 500 600 700M
ea
n
w
at
ta
ge

p
er

h
om

e
(k
W

h
)

Time (days)

R=0
R=1

R=2
R=3

R=4
R=5

R=6

Figure 6.26: Home Management : Mean wattage per home for 100 homes with varying repli-
cation degrees.

Similar to the case without home failures, higher replication degrees cause higher

wattage. With the most effective replication degree R = 1, the wattage is 2.8 times

higher as with R = 0, but on the other hand, the availability is also always higher. The

stepwise higher wattages of replication degrees 2 ≤ R ≤ 6 are not justified compared

to the reachable availability shown in Figure 6.25 above, because in the long term

replication degrees R > 1 can not guarantee significantly better availability but cause

linearly higher wattages.

Generally, because of the death process, wattages are much lower as in the case with-

out failures and give only an idea about the wattages relatively to replication degrees.

To become a deeper insight how much power can be saved under given replication de-

grees, the next Section 6.3.3 introduces the recovery of crashed clusters by respective

cluster owners.

117

6.3. HOME MANAGEMENT (HM) CHAPTER 6. EVALUATION

6.3.3 Cluster recovery

This chapter introduces a modification of the Home Management scenario. Now the

cluster owner (the home that is controlled by the cluster) tries to reestablish the own

cluster after a crash. A home being in state AB firstly checks if the own cluster is

operative. It creates the required number of replications if the own cluster is not

working, hosts one replication self, and tries to migrate the other replications. After

some time it naturally returns to state P , because the own cluster is active among

other homes; i.e. all HM-tasks could be migrated to other homes. Off course, recovered

clusters can fail again which represents the continuous case where homes fail, clusters

go down in series, and go up repaired by respective cluster owners.

Figure 6.27 shows cumulative numbers of home cluster crashes under different repli-

cation degrees and a mean failure rate of F = 1 failure per week and with a home’s

mean arrival rate of 5 arrivals per week (A = 5).

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700

C
lu
st
er

cr
as
h
es

Time (days)

R=0
R=1

R=2
R=3

R=4
R=5

R=6

Figure 6.27: Home Management : Number of cluster crashes for 100 homes under various
replication degrees with cluster recovering.

Note that the arrival rate can now be interpreted as repair rate. Whenever a home

becomes busy, it checks if the own cluster is up and recovers (repairs) it on demand.

This is the difference to the scenario explained in the previous section. Naturally, the

cumulated number of cluster crashes is much higher, because clusters may crash several

times during a period. Already a low replication degree R = 1 clearly outperforms no

replication R = 0 with 1.58 times less cluster crashes after two years. High replication

R = 6 avoids around 50 % of the cluster crashes compared to R = 0 after two years.

Over this, higher repliation degrees (2 ≤ R ≤ 6) lowers the number of cluster crashes

stepwise. We see the big difference between no replication and even the lowest possible

replication degree R = 1 which postulates, that too high replication degrees do not

gain a considerable advantage in terms of availability.

118

CHAPTER 6. EVALUATION 6.3. HOME MANAGEMENT (HM)

Figure 6.28 shows the number of running clusters under recovering and for two years.

Most notable, in the long term replication has no impact on the availability here and

0
10
20
30
40
50
60
70
80
90
100

0 100 200 300 400 500 600 700

R
u
n
n
in
g
cl
u
st
er
s

Time (days)

R=0
R=1

R=2
R=3

R=4
R=5

R=6

Figure 6.28: Home Management : Availability for 100 homes under various replication degrees
with cluster recovering.

essentially depends on the relation between failure and repair rate. This lies on the

fact that the repair rate of 5 arrivals per week per home (A = 5) is high enough to

compensate the failure rate of one failure per week. However, because of the supposed

failure rate the system can never reach the full operative state were all homes would

be managed at the same time. If homes recover their clusters self, replication is only

required in the transition phase to quickly rise the level of availability. In the steady-

state phase homes recover clusters quicker, as the cluster can heal itself. We see the

availability can be improved in the beginning by replication, but the question is how

much this harm the overall optimization goal wattage.

The wattage can be seen in Figure 6.29 and clearly shows that more reliability

through a higher replication degree implies more power consumption, but still outper-

forms the local case without replication with 79.3 % less wattage for R = 6 or anyhow

83.4 % less wattage for R = 1.

Note, that we cannot rise the number of replication boundlessly. The Home Man-

agement application modeled in this work is a task with considerable resource require-

ments. Only a limited number of concurrent HM-tasks can be executed by homes with

typical resource offer. Big tasks can not be replicated so many times for assuring that

no cluster crash will happen, where lightweight tasks may be replicated sufficient often

to assure that for each cluster at least one HM-task is running. The Home Management

scenario in this work is modeled to consolidate offered resources and extract the rel-

ative power consumption of local and distributed execution under a strict availability

assumption.

But what influence have different repair and failure rates on availability and wattage?

119

6.3. HOME MANAGEMENT (HM) CHAPTER 6. EVALUATION

0

200

400

600

800

0 100 200 300 400 500 600 700M
ea
n
w
a
tt
a
ge

p
er

h
om

e
(k
W

h
)

Time (days)

local
R=0

R=1
R=2

R=3
R=4

R=5
R=6

Figure 6.29: Home Management : Mean wattage per home for 100 homes under various repli-
cation degrees with cluster recovering.

For the next simulations, the replication degree is fixed with R = 2 whereas either the

mean number of arrivals per week per home (A) or the number of mean failures per

week per home (F) is altered. This allows to analyze the influence of the yet fixed

parameters separately.

Figure 6.30 shows how different arrival rates influence the number of cluster crashes.

Simulation time is 2 years, the replications degree fixed to R = 2, and the failure

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700

C
lu
st
er

cr
as
h
es

Time (days)

A=1
A=2

A=3
A=4

A=5
A=6

A=7

Figure 6.30: Home Management : Number of cluster crashes for 100 homes under various
arrival rates with cluster recovering.

rate to F = 1 per week. The arrival (repair) rate is altered (1 ≤ A ≤ 7) and shows

that more cluster crashes occur if homes become more often busy. This is because,

according to cluster recovering, homes become earlier aware of crashed clusters and

120

CHAPTER 6. EVALUATION 6.3. HOME MANAGEMENT (HM)

recover them more quickly. If the time point of a cluster crash is T1 and the time point

of the recovery T2, then the repair time

Tr = T2 − T1 (6.11)

is smaller with F = 7 as with F = 1. We can think about an arrival rate of A = 7 how

a user every day checks its home cluster and makes some adjustments. In the case of

A = 1 it only checks the cluster once a week. For availability reasons higher arrival

rates are better.

Note, that the owner home only has to recover the cluster if all replicates were

crashed. In the first stage the cluster can heal itself; thus there is always one replicate

active and the corresponding home is able to recover the cluster on-the-fly. In the sec-

ond state the owner home recovers the whole cluster. For a highly available system, an

owner home never should come into place to recover the own cluster fully, because this

would imply that the home control was interrupted. But beware, the Home Manage-

ment application is meant as setup central were users can configure home appliances

etc. without the necessity of continuous communication on a dedicated line.

Figure 6.31 shows the number of running clusters under various arrival rates (1 ≤
A ≤ 7).

0

20

40

60

80

100

0 100 200 300 400 500 600 700

R
u
n
n
in
g
cl
u
st
er
s

Time (days)

A=1
A=2

A=3
A=4

A=5
A=6

A=7

Figure 6.31: Home Management : Availability for 100 homes under various arrival rates with
cluster recovering.

An arrival rate of A = 1 is not enough to ensure the availability of the system of

at least 80 % while the number of running clusters is slowly decreasing. With A = 7

the availability is nearly stabilized at a level of 90 % and this means at least 90 % of

all homes are managend continuously by their corresponding home clusters. One can

recognize that the improvement of availability is smaller for higher arrival rates. The

difference in terms of running cluster between A = 6 and A = 7 is much smaller than

the difference between A = 1 and A = 2. The interesting point is, that the theoretically

121

6.3. HOME MANAGEMENT (HM) CHAPTER 6. EVALUATION

highest arrival rate statistically enables a home to immediatly recover crashed clusters;

thus the repair time Tr would be almost zero. But this is not a realistic scenario

whereas the basic intention, to save power by letting homes go into a low power state

P , would be violated by homes that come e.g. A = 100 times to state AB to push up

the availbility.

The tradeoff between arrival rate and wattage can be seen in the next Figure 6.32.

With A = 1 arrivals per week, the mean wattage per home counts up to 120 kWh

0
20
40
60
80
100
120
140
160

0 100 200 300 400 500 600 700M
ea
n
w
at
ta
ge

p
er

h
om

e
(k
W

h
)

Time (days)

A=1
A=2

A=3
A=4

A=5
A=6

A=7

Figure 6.32: Home Management : Mean wattage per home for 100 homes under various arrival
rates with cluster recovering.

after two years. If the home decides to become busy two times per week A = 2, then

the wattage jumps to 140 kWh, which is a good tradeoff between higher wattage and

achieved availability. Higher arrival rates (3 ≤ A ≤ 7), by now, only cost a small

additional amount of power, but also do not improve the availability considerably.

Concluding, whatever arrival rate of this scenario for homes is suggested, the mean

wattage per home will be always clearly below the wattage of the local case where all

homes host one HM-task itself and do not exchange them.

The last experiment varies the failure rate F under fixed replication degree of R = 2

and also fixed repair rate A = 5. Therefore, each home is served by a cluster of three

members; the master task and the two replicates. Figure 6.33 shows this case. We

clearly see how the number of failures per week F has a strong impact on the number

of cluster crashes in the system. With on average one failure per week per home

F = 1, almost 1548 cluster crashes occurred system-wide after two years. This are

86.1 % less failures per week per home as with F = 7. We can further see that the

stepwide between high failure rates is smaller which verifies one aspect of the simulated

model that with higher occurence of cluster crashes the owner homes must more often

recover the whole cluster instead of recovering one failed HM-task of a running cluster.

Frequently fully recoverd clusters crash more rarely as clusters where cluster members

122

CHAPTER 6. EVALUATION 6.3. HOME MANAGEMENT (HM)

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700

C
lu
st
er

cr
a
sh
es

Time (days)

F=1
F=2

F=3
F=4

F=5
F=6

F=7

Figure 6.33: Home Management : Number of cluster crashes for 100 homes under various
failure rates with cluster recovering.

must react within some delay to first detect the failed HM-task, then recover it and

finally migrate it to another home. In this time, other HM-tasks of the cluster may fail

and the cluster crashes earlier.

Figure 6.34 shows the availability in terms of running clusters. First of all, we see

0
10
20
30
40
50
60
70
80
90
100

0 100 200 300 400 500 600 700

R
u
n
n
in
g
cl
u
st
er
s

Time (days)

F=1
F=2

F=3
F=4

F=5
F=6

F=7

Figure 6.34: Home Management : Availability for 100 homes under various failure rates with
cluster recovering.

under a failure rate of one failure per week per home F = 1, that the system holds

a level around 90 % of all homes being managed by their correspondig home cluster.

Higher failure rates (2 ≤ F ≤ 7) result in a slightly decreasing availability and lie

clearly below the desired 80 % mark of runnig clusters. This can be improved by more

frequent cluster recoveries by increasing the arrival or repair rate A.

123

6.4. COMBINED SCENARIO CHAPTER 6. EVALUATION

Which impact higher failure rates have on the wattage per home is shown in Figure

6.35. This outlines the tradeoff between availability and power consumption. With

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700M
ea
n
w
a
tt
a
ge

p
er

h
om

e
(k
W

h
)

Time (days)

F=1
F=2

F=3
F=4

F=5
F=6

F=7

Figure 6.35: Home Management : Mean wattage per home for 100 homes under various failure
rates with cluster recovering.

F = 1 one home caused a wattage of 153.8 kWh, and with F = 7 148.5 kWh. That

are 3.4 % less wattage per home with F = 7 because clusters are more rarely fully up

due to frequent home failures. In the same time, the availability goes down by 39 %

as we have seen in the previous Figure 6.34. This implies that the additional wattage

caused by less home failures does not harm the power optimization goal and must be

accepted for highly available systems. The main advantage comes from executing the

load in a distributed manner but with replication.

Summarizing, Home Management, as modeled in this work, is in principle suitable for

power saving. The distributed case with replication always outperforms the local case

in two points. First, distribution of the load allows to aggregate it on a small part of

the network and therefore consolidate the offered resources in a way that a big amount

of power can be saved which results also in less wattage per home. This also holds with

additional load caused by replication, which satisfies the second optimization goal, the

availability.

6.4 Combined Scenario

The final analysis in terms of power saving is a combined scenario where all three

previous introduced applications Download Sharing (DS), Video Encoding (VE) and

Home Management (HM) are evaluated together. Now, homes start one HM-task and

many DS- and VE-tasks to create a load mix; homes have to cope with this three

different types of load at once.

The HM-task represents a task with moderate resource and availability requirements.

The DS-task is a kind of lightweight task which at most requires some network band-

124

CHAPTER 6. EVALUATION 6.4. COMBINED SCENARIO

width whereas a VE-task causes high CPU utilization but has also considerably network

bandwidth requirements. The simulation parameters for the following experiment are

listed in Table 6.7.

Parameter Unit Value

numHomes Number 100
numSuperHomes Number 4
α Factor 0.6
β Factor 0.6

load (A) Number 1 ≤ A ≤ 35
simPeriod s 604800
serviceTime s 28800

dsBwDn kbit/s 2500
dsBwUp kbit/s 200
dsCpu Mhz 10
dsMem MB 700

veSrcLength min 100
veSrcVidRate kbit/s 5000
veSrcAudRate kbit/s 448
veTarVidRate kbit/s 1000
veTarAudRate kbit/s 128

hmBwDn kbit/s 500
hmBwUp kbit/s 500
hmCpu Mhz 300
hmMem MB 500
hmRep (R) Number R = 0
hmHbeat s 300
hmCheck s 60
hmTimeout s 600

Table 6.7: Simulation parameters for the combined scenario.

The network consists of 100 homes with 4 clusters, each of them controlled by a

super home. The performance factor α and also the wattage factor β are set to 0.6

indicating that the half of homes are 40 % slower in terms of the CPU as the other

part of the network, but consume under load 40 % less power. Homes generate 1 to 35

DS- and VE-tasks per week (simPeriod), but only one HM-task. Since the HM-task

has the highest priority, the other tasks are executed under best effort. This denotes

that once the HM-task is started by each home, the system will be filled up with DS-

and VE-task as many as homes can handle with shared resources. This implies a given

loss rate and ensures that eventually all homes are consolidated. This in turn allows

the analysis of a fully loaded network.

The service time is 8 hours and indicates that active homes must accept remote

125

6.4. COMBINED SCENARIO CHAPTER 6. EVALUATION

tasks for this period. The resource requirements of a DS- or a VE-task are the same as

defined previously in Section 6.1 or Section 6.2 respectively. Also the resources required

for a HM-task is taken from Section 6.3, but this time without replication (R = 0) and

without failures for showing the maximal achievable power saving.

Figure 6.36 gives us the mean number of busy (either in state A, AB or ABC) homes

dependent on the load.

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

M
ea
n
n
u
m
b
er

o
f
b
u
sy

h
o
m
es

Time (days)

local dist.

Figure 6.36: Combined Scenario: Mean number of busy homes.

As we see in the local case, the mean number of busy homes approaches quickly the

natural maximum of 100 homes since this is the networks size. In this case no power

can be saved in the sense that certain homes can be powered down. Instead, the only

potential of power saving is to aggregate and distribute the load in a way that homes

are consolidated, thus their shared resources are on average fully utilized. This can

be done by ensuring an appropriate task mix for homes being busy and considering

aggregation of CPU intensive tasks in homes with a good performance per watt ratio.

In the distributed case the system requires 31.4 % less homes to cope with the same

load as in the local case. In the distributed case on average only 68.5 homes must be

active at the same time to work out the same load as in the local case where all homes

must be busy.

The difference between local and distributed case is smaller in terms of wattage as in

terms of busy homes as shown in Figure 6.37. In the local case, a home causes a wattage

of 932.3 kWh after two years where most of this goes back to Home Management as

mentioned in Section 6.3. In comparison, in the distributed case each home causes

690.8 kWh which is a saving of 25.9 % or 241.5 kWh per home after two years. The

whole system will save 12075 kWh after one year. The single home therefore has a

monthly power saving of 10.1 kWh.

The relation between the mean number of busy homes and mean wattage per home

126

CHAPTER 6. EVALUATION 6.5. TRAFFIC STUDY

0
100
200
300
400
500
600
700
800
900

1000

0 100 200 300 400 500 600 700M
ea
n
w
a
tt
a
ge

p
er

h
o
m
e
(k
W

h
)

Time (days)

local dist.

Figure 6.37: Combined Scenario: Mean wattage per home.

can be seen best in the following Figure 6.38. Again we see the two planes for the local

0 100 200 300 400 500 600 700 800 0
200

400
600

800
1000

20
30
40
50
60
70
80
90
100

B
u
sy

h
om

es
(#

)

local
dist.

Time (days)

Wattage (kWh)

B
u
sy

h
om

es
(#

)

Figure 6.38: Combined Scenario: Joint plot of mean busy homes and mean wattage per home.

and the distributed case. In the local case the mean number of busy homes approaches

the network size quicker where also the wattage is always above the distributed case. It

can be postulated, that the outcome of this work is the fact that for certain applications

is it possible to lower the wattage by nearly a third. It has been also shown that larger

networks can further increase power saving.

6.5 Traffic Study

In this section the application Download Sharing (DS) is used to investigate the traffic

produced under different organization schemes. Power saving is not addressed at all,

127

6.5. TRAFFIC STUDY CHAPTER 6. EVALUATION

but the aim now is to know how much traffic originate on those homes which maintain

statistics, the super homes.

A DS-task is a description of desired content (music, video, etc.) and maximum

allowed downlink bandwidth allocatable for its download. Homes play two roles; as

owner they send out DS-tasks to other homes and receive results later or as executer

they receive DS-tasks, download the desired content, and then transfer the completed

DS-task back to owners. There is a communication protocol between homes that can

be divided into a state phase and a resource phase; in the state phase state information

about homes is exchanged, whereas during the resource phase available resources are

located and allocated. State information about homes include the current state of the

home and the amount of free resources available for executing DS-tasks.

Conceptually, DS is based on Virtual Machines (VMs), encapsulating all necessary

parts for migrating a DS-task before and after execution. These VMs are rather small

on owner side and grow to considerable file sizes on executer side, because they include

now the download content. Therefore, a constraint is the possible usable bandwidth

between owner and executer.

Only for investigating the signaling traffic, a server-based approach is compared

to two unstructured hybrid overlays in terms of traffic overhead, caused by different

strategies of information management. Initially, a simplified centralized Server -based

approach is simulated. Each Home (H) sends state information to one single H that

acts as Super Home (SH), which has a global view on the system. In case of task-

migrations, all resource requests must be sent to that SH.

The second approach (called Overlay 1), shown in Figure 6.39, is based on an un-

structured and hybrid overlay inspired by Overnet as discussed in Chapter 3. A number

of SHs are defined, which cluster the network. A SH is a H that additionally acts as a

server for a cluster of Hs (clusters are illustrated as squares in Figure 6.39). Every state

change information within a cluster is replicated to all other SHs (SHs have a global

view). Resource requests of Hs are answered by their corresponding SH. The arrows

in Figure 6.39 illustrate two independent communication flows. With message S1 a H

sends its state to the SH. The SH forwards the state message to all other SHs (S2). At

this point, the state information is replicated amongst SHs. Each state change triggers

a state message, therefore a considerable amount of messages is generated. To gain

resources, a resource request (R1) is sent to to a corresponding SH. The SH replies

with a list of currently active Hs (R2).

Both of these approaches, Server and Overlay 1, create a global view on the over-

lay and cause overhead. The resource management is mainly done by lightweight

always-on gateways as described in Chapter 3 and the overhead needs to be reduced.

To achieve this, a third approach, Overlay 2 is suggested (again Overnet inspired),

that has modified communication patterns (shown in Figure 6.40). It has the aim of

keeping resource information as local as possible. Hs send state information to their

128

CHAPTER 6. EVALUATION 6.5. TRAFFIC STUDY

Figure 6.39: Topology and information flow of Overlay 1.

Figure 6.40: Topology and information flow of Overlay 2.

129

6.5. TRAFFIC STUDY CHAPTER 6. EVALUATION

corresponding SH (message S1). SHs do not replicate this information, but exchange

meta information about free hardware resources within the own cluster in configurable

time-intervals (S2). In contrast to Overlay 1, none of the SHs has a global view on

available resources. Resource information is kept local within each SH’s cluster, only

meta information is exchanged. This results in a different resource request scheme.

The resource request first goes to the responsible SH (R1). The SH checks its own

cluster and forwards the request to a H with free resources if possible (R2); this H

directly answers the requester (R3). Otherwise, if there is no host within the own

cluster that can process the task, the SH contacts other SHs based on the available

meta information. If another SH has enough idle resources in its cluster, the initial SH

forwards the resource request.

Costs of resource management in the system investigated is mainly based on the

number and size of signaling messages within the network. To understand the message

complexity of the presented overlays the sizes of modeled messages according to the

introduced communication protocol are explained. The messages are specified in Table

6.8. S = 60 byte is the size of a state message, R = 24 byte is the size of a resource

message, and L is the number of entries in the list of active Hs within a SH’s cluster

in Overlay 1. State update messages in byte/s for Server can be approximated by

Message type Overlay 1 Overlay 2

State update S (S1, S2) S (S1, S2)
Resource request R (R1) R (R1, R2b)
Resource response L× S (R2) R (R2a,R3)

Table 6.8: Signaling messages applied in Overlay 1 and Overlay 2.

NMS(T + E)

Y
(6.12)

for Overlay 1 by
NMS(T + E)

Y
×
(
2− C

N

)
(6.13)

and for Overlay 2 by
Y
UH

C + 2 Y
USH

(N
C
− 1)

Y
S (6.14)

where N is the number of Hs (network size), M is the assumed load (number of DS-

tasks per H per year), T is the number of state transitions per H if homes staying in

state A for executing tasks or staying in state P for saving power, E is the number of

state events per task as defined in the communication protocol of Overlay 1, Y is the

simulation time in seconds (one year), and C is the cluster size (each SH manages C

Hs). UH & USH indicate the delay between state updates from Hs and SHs as defined

in the communication protocol of Overlay 2.

Accordingly, the traffic of resource messages in byte/s per SH for Server can be

130

CHAPTER 6. EVALUATION 6.5. TRAFFIC STUDY

approximately calculated by
M(R + LS)

Y
N, (6.15)

for Overlay 1 by
M(R + LS)

Y
C, (6.16)

and for Overlay 2 by
2(PaMC + PbMC(N

C
− 1))

Y
R (6.17)

which shows that the critical parameter N dramatically increases the message com-

plexity for Server, whereas Overlay 1 only relies on the number of clusters C which is

a predefined fraction of N . For Overlay 2, additional parameters Pa & Pb are neces-

sary. Those parameters express the probability if a task can be processed within the

requester’s cluster (Pa), or if it is forwarded to another cluster (Pb).

Table 6.5 presents state update traffic in a network with C = 25 with N increasing.

The number of tasks per week per home (λ) is fixed to λ = 10, one year is considered

N Server Overlay1 Overlay2

100 0.69 1.21 1.65
1000 6.93 13.68 6.45
10000 69.25 138.34 54.45
100000 692.54 1384.91 534.45

Table 6.9: Expected state update traffic per SH in byte/s

where UH = 1200 s and USH = 900 s. As clearly shown, the traffic is correlated with

the network size N .

For verification and comparison all overlays are simulated. Figure 6.41 shows state

and resource traffic in byte/s with regard to N . Generally, it can be seen that state

traffic is much more critical than resource traffic. For state traffic, Server and Overlay

2 clearly outperform Overlay 1. For N > 700, Server is also outperformed by Overlay

2 ; however state traffic is still linear and a matter of scalability. Further the resource

traffic of Server grows with N .

Figure 6.42 shows the same for fixed N and increasing λ. Again, the state traffic is

the more critical one. Overlay 2 clearly outperforms Overlay 1 for λ > 6 and Server

for λ > 12. Overall, Overlay 2 exhibits the good property of being invariant to load.

Even the overhead caused by Overlay 1 does not constrict Hs with high synchronous

access bandwidth like 50 Mbit/s to act as SH.

131

6.5. TRAFFIC STUDY CHAPTER 6. EVALUATION

0

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800 900 1000

b
y
te

/
s

Number of homes (N)

State Server
State Overlay 1
State Overlay 2

Resource Server
Resource Overlay 1
Resource Overlay 2

Figure 6.41: Traffic in terms of network size with a fixed load of 10 tasks per week.

0
2
4
6
8

10
12
14
16
18
20

5 10 15 20 25 30 35

b
y
te

/
s

Tasks per week per home (λ)

State Server
State Overlay 1
State Overlay 2

Resource Server
Resource Overlay 1
Resource Overlay 2

Figure 6.42: Traffic in terms of load with a fixed network size of 400 Hs.

132

7 Summary

This thesis addresses energy efficient resource sharing for networked homes. First, the

current power usage of personal computers is identified and an energy efficiency goal

formulated. A chapter about related work introduces similar works besides resource

sharing with Grid and Cloud computing, Virtualization and corresponding technolo-

gies, and the concept of Virtual Home Environments. Then, an architecture describing

a P2P-overlay and home network states is introduced. Three applications, each of

them with different resource requirements, are suggested and investigated analytically.

A simulation model is presented and comprehensive evaluation shows the possible gain

of power saving.

7.1 Conclusion

The three sample applications Download Sharing (DS), Video Encoding (VE) and

Home Management (HM) show the power saving potential of resource sharing in the

end user or home domain under two assumptions. First, a synchronous access band-

width is necessary to gain advantage of transferring load from home to home. Second,

heterogeneous homes in terms of shared resources or energy efficiency are necessary

for CPU intensive tasks. With large networks, the possibility of many different con-

figurations rise, and by the way also the distribution of load becomes better. Down-

load Sharing demonstrates a good sharing performance in terms of distribution and

wattage. Video Encoding does not reach that power saving as Download Sharing but

still outperforms its local case. Finally, Home Management is, despite of replication

and considerable CPU demands, very suitable for distributed execution which is clearly

evinced by the power saving potential of the distributed case compared to the local

case. Considering the sharing behavior of participating homes has shown, that fairness

is oppositional to energy efficiency in the sense, that a part of the advantage of dis-

tributed execution is compensated. But the fair distributed case still outperforms the

local case without sharing.

7.2 Future work

After finishing this thesis interesting questions came up:

• Is a pure distributed solution for managing the network of homes always better

than a centralistic or even a hybrid approach and may the overhead of a fully

distributed network outweigh the advantage in comparison to a server-assisted

network topology?

133

7.2. FUTURE WORK CHAPTER 7. SUMMARY

• Makes replication for all applications sense and to which extend?

• Which economic model fits best with the energy efficiency goal and how the

underlying cost function looks like?

• Are there completely other applications with power saving potential?

• Exists a general communication pattern between future homes or even residential

locations conceptually below the application layer with optimization potential

towards energy efficiency?

• Is it possible to create virtual machines small enough for sending them, but func-

tional enough to contain a whole execution environment?

• Which concrete virtualization technology is suitable for task migration as sug-

gested in this thesis?

• Would a prototype implementation of a software client, implementing the virtu-

alization and the networking part, provide deeper insights as already done in this

work?

134

Abbrevations

A Active

AB Active Blocked

ABC Active Blocked Content

DS Download Sharing

HM Home Management

P2P Peer-to-Peer

P Passive

VE Video Encoding

VHE Virtual Home Environment

VMM Virtual Machine Monitor

135

List of Figures

2.1 a) Grid virtualization and b) server virtualization. 16

2.2 The basic principle of a Virtual Machine Monitor. 18

2.3 Virtualization in PlanetLab. 23

2.4 The generic VHE roaming model. 29

3.1 Elemens of an architecture for energy efficient resource sharing. 36

3.2 An architecture for distributed energy efficient resource sharing. 39

3.3 State cycle of homes. 42

3.4 Case driven virtualization. 44

4.1 Failures modeled as birth-death process for Home Management. 56

4.2 Failures modeled as birth-death process for Home Management with 15

homes. 56

4.3 Home Management : Number of active homes. 59

4.4 Home Management : Achieved availability. 60

4.5 Birth-death process for local DS-tasks of one single home. 61

4.6 Birth-death process for simultaneous DS-tasks of N homes. 62

4.7 Number of active homes. 64

4.8 Energy efficiency η. 65

4.9 Number of active homes for N = 100 homes. 66

4.10 Number of active homes for N = 1000 homes. 66

4.11 Resource utilization (CPU, memory, network) of a download scenario.

Fat lines denote results for a 8 Mbit/s access network (i.e. saturation

occurs for ⌈8/2.4⌉ = 4 parallel downloads), thin lines for a 50 Mbit/s

access network. 69

5.1 The rudimentary simulator architecture. 76

5.2 Simulated network. 78

5.3 State cycle of nodes. 80

5.4 An overlay for 100 homes and 4 super homes. 81

5.5 State information replication. 83

5.6 Default communication pattern of task sharing. 84

5.7 Communication pattern of task sharing if the task can not be outsourced. 85

5.8 Behavior classification for service time modification. 90

6.1 Download Sharing : Mean number of busy homes with 95 % confidence

intervals (CI). 96

6.2 Download Sharing : Mean wattage per home. 96

137

List of Figures List of Figures

6.3 Download Sharing : Joint plot of mean busy homes and mean wattage

per home. 97

6.4 Download Sharing : Mean number of busy homes for 1000 and 100 homes. 98

6.5 Download Sharing : Mean wattage per home for 1000 and 100 homes. . 98

6.6 Download Sharing : Load plot for 1 to 35 DS-tasks per week. 99

6.7 Download Sharing : Wattage plot for 1 to 35 DS-tasks per week. 100

6.8 Download Sharing : Mean number of busy homes with fairness. 100

6.9 Download Sharing : Mean service time per home with fairness. 101

6.10 Download Sharing : Mean wattage per home with fairness. 102

6.11 Video Encoding : Mean number of busy homes with 95 % confidence

intervals (CI). 104

6.12 Video Encoding : Mean wattage per home. 104

6.13 Video Encoding : Joint plot of busy homes and wattage. 105

6.14 Video Encoding : Mean number of busy homes for 1000 and 100 homes. 106

6.15 Video Encoding : Mean wattage per home for 1000 and 100 homes. . . . 106

6.16 Video Encoding : Load plot for 1 to 35 VE-tasks per week. 107

6.17 Video Encoding : Wattage plot for 1 to 35 DS-tasks per week. 108

6.18 Video Encoding : Mean number of busy homes with fairness. 108

6.19 Video Encoding : Mean service time per home with fairness. 109

6.20 Video Encoding : Mean wattage per home with fairness. 109

6.21 Home Management : Mean busy homes under various replication degrees

with 95 % confidence intervals (CI). 112

6.22 Home Management : Mean wattage per home under various replication

degrees. 112

6.23 Home Management : Home cluster. 114

6.24 Home Management : Number of cluster crashes for 100 homes under

various replication degrees. 115

6.25 Home Management : Number of running clusters for 100 homes under

various replication degrees. 116

6.26 Home Management : Mean wattage per home for 100 homes with varying

replication degrees. 117

6.27 Home Management : Number of cluster crashes for 100 homes under

various replication degrees with cluster recovering. 118

6.28 Home Management : Availability for 100 homes under various replication

degrees with cluster recovering. 119

6.29 Home Management : Mean wattage per home for 100 homes under var-

ious replication degrees with cluster recovering. 120

6.30 Home Management : Number of cluster crashes for 100 homes under

various arrival rates with cluster recovering. 120

6.31 Home Management : Availability for 100 homes under various arrival

rates with cluster recovering. 121

6.32 Home Management : Mean wattage per home for 100 homes under var-

ious arrival rates with cluster recovering. 122

138

List of Figures List of Figures

6.33 Home Management : Number of cluster crashes for 100 homes under

various failure rates with cluster recovering. 123

6.34 Home Management : Availability for 100 homes under various failure

rates with cluster recovering. 123

6.35 Home Management : Mean wattage per home for 100 homes under var-

ious failure rates with cluster recovering. 124

6.36 Combined Scenario: Mean number of busy homes. 126

6.37 Combined Scenario: Mean wattage per home. 127

6.38 Combined Scenario: Joint plot of mean busy homes and mean wattage

per home. 127

6.39 Topology and information flow of Overlay 1. 129

6.40 Topology and information flow of Overlay 2. 129

6.41 Traffic in terms of network size with a fixed load of 10 tasks per week. . 132

6.42 Traffic in terms of load with a fixed network size of 400 Hs. 132

139

List of Tables

1.1 Mean power consumption of typical end user computers in watt (W) in

2008. 2

1.2 Mean power consumption of typical end user computers in watt (W) in

2009. 3

2.1 Typical differences between resource sharing concepts. 15

2.2 Typical differences between virtualization technologies. 20

3.1 Possible home states with two computers inside. 43

4.1 Characteristics of tasks. 48

4.2 Download Sharing : Minimum transfer bandwidth required. 51

4.3 Video Encoding : Minimum transfer bandwidth required. 52

4.4 Home Management : Minimum transfer bandwidth required. 54

4.5 Estimated example sensor sampling/sending rates for Home Manage-

ment services. 55

5.1 Simulation parameters. 87

6.1 Simulation parameters for the network topology. 93

6.2 Simulation parameters for homes. 94

6.3 Simulation parameters for Download Sharing. 94

6.4 Simulation parameters for the default Video Encoding Scenario. 103

6.5 Simulation parameters for the default Home Management scenario. . . 110

6.6 Calculated fraction of busy homes. 111

6.7 Simulation parameters for the combined scenario. 125

6.8 Signaling messages applied in Overlay 1 and Overlay 2. 130

6.9 Expected state update traffic per SH in byte/s 131

141

Bibliography

[AA06] Adams and Agesen. A Comparison of Software and Hardware Techniques

for x86 Virtualization. In 12th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-

XII), San Jose, California, USA, 2006.

[Agr02] Alan Agresti. Categorical Data Analysis. Wiley-Interscience, 2nd edition,

July 2002.

[AGR05] Anceaume, Gradinariu, and Ravoaja. Incentive for P2P fair resource

sharing. In 5th IEEE International Conference on Peer-to-Peer Com-

puting (P2P 2005), Konstanz, Germany, 8 2005.

[AIS04] John Augustine, Sandy Irani, and Chaitanya Swamy. Optimal Power-

Down Strategies. In 45th Annual IEEE Symposium on Foundations of

Computer Science, Washington, DC, USA, 2004.

[ALM04] Amin, Laszewski, and Mikler. Grid Computing for the Masses: An

Overview. Lecture Notes in Computer Science; Grid and Cooperative

Computing, 3033:464–473, 2004.

[And04] Anderson. BOINC: A System for Public-Resource Computing and Stor-

age. In 5th IEEE/ACM International Workshop on Grid Computing

(GRID ’04), Pittsburgh, USA, 11 2004.

[AR06] Anderson and Roscoe. Learning from PlanetLab. In 3rd Conference on

USENIX Workshop on Real, Large Distributed Systems (WORLDS’06),

volume 3, Seattle, Washington, USA, 2006.

[ATS04] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of

peer-to-peer content distribution technologies. ACM Computing Surveys

(CSUR), 36(4):335–371, 2004.

[BA07] Bertoldi and Atanasiu. Electricity Consumption and Efficiency Trends

in the Enlarged European Union - Status report 2006 - Institute for

Environment and Sustainability. Scientific Publication EUR 22753EN,

2007. http://ie.jrc.ec.europa.eu.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and

the art of virtualization. SIGOPS Operation Systems Review, 37(5):164–

177, 2003.

143

Bibliography Bibliography

[BFdM09] Andreas Berl, Andreas Fischer, and Hermann de Meer. Using Sys-

tem Virtualization to Create Virtualized Networks. In Workshops der

Wissenschaftlichen Konferenz Kommunikation in Verteilten Systemen

(WowKiVS2009), Kassel, Germany, March 2-6, 2009, volume 17 of Elec-

tronic Communications of the EASST. EASST, 3 2009.

[BGdMT06] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.

Queueing Networks and Markov Chains: Modeling and Performance

Evaluation with Computer Science Applications. WileyBlackwell, 2nd

edition, 5 2006. http://www4.informatik.uni-erlangen.de/QNMC.

[BH06] P. Bull and M. Harrison. Managing broadband home networks. BT

Technology Journal, 24(1):79–85, 2006.

[BH07a] Ying-Wen Bai and Huang-Te Hsu. Design and implementation of an

instantaneous turning-on mechanism for PCs. IEEE Transactions on

Consumer Electronics, 53(4):1595–1601, 2007.

[BH07b] Barroso and Hölzle. The Case for Energy-Proportional Computing.

Computer, 40(12):33–37, 2007. http://www.computer.org/portal/

site/computer.

[BHK+07] Bolioli, Hamlin, Kardach, Korn, Walker, and Wong. ENERGY STAR*

System Implementation. Published by Intel with technical collaboration

from the U.S. Environmental Protection Agency, 2007.

[BL07] Andreas Blinzenhoefer and Kenji Leibnitz. Estimating Churn in Struc-

tured P2P Networks. Managing Traffic Performance in Converged Net-

works, 4516/2007:630–641, 2007.

[BQ06] Bustamante and Qiao. Designing less-structured P2P systems for the

expected high churn. IEEE/ACM Transactions on Networking (TON),

16(3):617–627, 2006.

[BWS+09] Berl, Weidlich, Schrank, Hlavacs, and de Meer. Network Virtualiza-

tion in Future Home Environments. In International Workshop on Dis-

tributed Systems: Operations and Management (DSOM09), Venice, Italy,

10 2009.

[BYV08] Buyya, Yeo, and Venugopal. Market-Oriented Cloud Computing: Vision,

Hype, and Reality for Delivering IT Services as Computing Utilities. In

10th IEEE International Conference on High Performance Computing

and Communications (HPCC-08), Los Alamitos, CA, USA, 9 2008.

[CB08] N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A Survey of

Network Virtualization. Technical report, University of Waterloo, 10

2008.

144

Bibliography Bibliography

[CEEC08] Chan, Estve, Escriba, and Campo. A review of smart homes Present

state and future challenges. Computer Methods and Programs in

Biomedicine, 91(1):55–81, 2008.

[CFH+05] Clark, Fraser, Hand, Hansen, Jul, Limpach, Pratt, and Warfield. Live

Migration of Virtual Machines. In 2nd Symposium on Networked Systems

Design & Implementation (NSDI’05), Boston, Massachusetts, USA,

2005.

[CKC+09] Kyung Choi, Mi-hui Kim, Ki-Joon Chae, Jong-Jun Park, and Seong-

Soon Joo. An Efficient Data Fusion and Assurance Mechanism us-

ing Temporal and Spatial Correlations for Home Automation Net-

works. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS,

55(3):1330–1336, AUG 2009.

[CSP04] Ci, Sharif, and Peng. An Effective Scheme for Energy Efficiency in

Mobile Wireless Sensor Networks. In IEEE INternational Confernece on

Communications, pages 3468–3490, 2004.

[DM02] Daoud and Mohan. Strategies for Provisioning and Operating VHE

Services in Multi-Access Networks. IEEE Communications Magazine,

40(1):78–88, 1 2002.

[EGH+07] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Laurent

Mathy, and Tim Schooley. Evaluating XEN for Router Virtualization. In

16th International Conference on Computer Communications and Net-

works (ICCCN 2007), pages 1256–1261, 8 2007.

[FC05] Michal Feldman and John Chuang. Overcoming free-riding behavior in

peer-to-peer systems. SIGecom Exch., 5(4):41–50, 2005.

[FGR07] Nick Feamster, Lixin Gao, and Jennifer Rexford. How to lease the inter-

net in your spare time. SIGCOMM Comput. Commun. Rev., 37(1):61–

64, 2007.

[FH09] Reza Zanjirani Farahani and Masoud Hekmatfar. Facility Location -

Concepts, Models, Algorithms and Case Studies, Chapter 8: Median Lo-

cation Problem. Contributions to Management Science. Physica-Verlag

HD, July 2009. Facility Location - Concepts, Models, Algorithms and

Case Studies.

[FHL+01] Fraser, Hand, Limpach, Warfield, Magenheimer, Nakajima, and Mallick.

Xen 3.0 and the Art of Virtualization, 2001. http://www.cl.cam.ac.

uk/netos/papers/2005-xen-ols.ppt.

[FJS08] Feigenbaum, Johnson, and Syverson. A Model of Onion Routing with

Provable Anonymity. Lecture Notes in Computer Science; Financial

Cryptography and Data Security, 4886:57–71, 2008.

145

Bibliography Bibliography

[For06] Forte. Advances in Onion Routing: Description and backtracing \ in-

vestigation problems. Digital Investigation, 3(2):52–88, 2006.

[FWB07a] Fan, Weber, and Barroso. Power provisioning for a warehouse-sized com-

puter. In 34th annual international symposium on Computer architecture

(ISCA’07), San Diego, California, USA, 2007. http://www.cse.ucsd.

edu/isca2007.

[FWB07b] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andr Barroso. Power Pro-

visioning for a Warehouse-sized Computer. In Proceedings of the ACM

International Symposium on Computer Architecture, San Diego, 6 2007.

[FXY+04] Fang, Xin, Yang, Huimin, and Ping. A policy based multi-dimension

adaption framework in the Virtual Home Environment. In 2004 IEEE

60th Vehicular Technology Conference (VTC2004-Fall), Los Angeles,

USA, 9 2004.

[GBH+08] Garćıa, Berl, Hummel, Weidlich, Houyou, Hackbarth, de Meer, and

Hlavacs. An Economical Cost Model for Fair Resource Sharing in Virtual

Home Environments. In 4th EURO-NGI Conference on Next Generation

Internet Networks (NGI-2008), Krakow, Poland, 4 2008.

[GCN05] Chamara Gunaratne, Ken Christensen, and Bruce Nordman. Managing

energy consumption costs in desktop PCs and LAN switches with prox-

ying, split TCP connections, and scaling of link speed. International

Journal of Network Management, 15(5):297–310, 2005.

[Gee08] Geelan. Twenty-One Experts Define Cloud Computing, 8 2008. http:

//virtualization.sys-con.com/node/612375.

[Geu01] Geuna. UMTS Network Aspects, 1 2001.

[GM05] Gilbert and Malewicz. The Quorum Deployment Problem. Lecture Notes

in Computer Science; Principles of Distributed Systems, 3544:316330,

2005.

[GSS06] Godfrey, Shenker, and Stoica. Minimizing Churn in Distributed Systems.

In 2006 Conference on applications, technologies, architectures, and pro-

tocols for computer communications (SIGCOMM’06), Pisa, Italy, 9 2006.

[HC07] Hautakorpi and Camarillo. Evaluation of DHTs from the Viewpoint

of Interpersonal Communications. In 6th International Conference on

Mobile and Ubiquitous Multimedia (MUM’07), Oulu, Finland, 12 2007.

[HCW05] Daniel Hughes, Geoff Coulson, and James Walkerdine. Free Riding on

Gnutella Revisited: The Bell Tolls? IEEE Distributed Systems Online,

6(6):1, 2005.

146

Bibliography Bibliography

[HH09] Stuart Hacking and Benôıt Hudzia. Improving the live migration pro-

cess of large enterprise applications. In VTDC ’09: Proceedings of the

3rd international workshop on Virtualization technologies in distributed

computing, pages 51–58, New York, NY, USA, 2009. ACM.

[HHS08] Hong, Hilt, and Schulzrinne. Evaluation of Control Message Over-

head of a DHT-Based P2P System. Bell Labs Technical Journal,

13(3):79–86, 2008. http://www3.interscience.wiley.com/journal/

97517143/home.

[HHW+07] Hlavacs, Hummel, Weidlich, Houyou, and de Meer. Energy Efficiency

in Future Home Environments: A Distributed Approach. In 1st Home

Networking Conference, Paris, France, 12 2007.

[HHWdM10] Hlavacs, Hummel, Weidlich, and de Meer. Modeling Energy Efficiency in

Distributed Home Environments. International Journal of Communica-

tion Networks and Distributed Systems (IJCNDS), 4(2):161–182, 2010.

[Hou08] Houy. A characterization of majority voting rules with quorums. Theory

and Decision, 67:295–301, 2008.

[HWH+08] Hlavacs, Weidlich, Hummel, Houyou, Berl, and de Meer. Distributed

energy efficiency in future home environments. Annals of Telecommu-

nications - Home networking: performance and architecture challenges,

63(9-10):453–541, 2008.

[HWT08] Hlavacs, Weidlich, and Treutner. Energy Saving in Future Home Envi-

ronments. In 2nd Home Networking Conference at IFIP Wireless Days,

Dubai, United Arab Emirates, 11 2008.

[HWT10] Hlavacs, Weidlich, and Treutner. Energy Saving in Future Home Envi-

ronments. Under review for the First ACM SIGCOMM Workshop on

Green Networking, 8 2010.

[HZCS09] Tzu-Chi Huang, Sherali Zeadally, Naveen Chilamkurti, and Ce-Kuen

Shieh. Design, implementation, and evaluation of a Programmable Band-

width Aggregation System for home networks. Journal of Network and

Computer Applications, 32(3):741–759, 2009.

[IAA07] Iyilade, Aderounmu, and Adigun. Incentives for Resource Sharing and

Cooperation in Grid Computing System. In The 2007 Conference on

International Next Generation Mobile Applications, Services and Tech-

nologies (NGMAST’07), Cardiff, Wales, UK, 9 2007.

[Int06] Intel. Leap Ahead (online) - White Paper - Data Center Optimization -

Increasing Data Center Density while Driving down Power and Cooling

Costs, 2006. http://www.intel.com/business/bss/infrastructure/

enterprise/power_thermal.pdf.

147

Bibliography Bibliography

[Int07] Intel. Virtualizatin View (online) - Virtualization Can Help Power

Efficiency, 2007. http://www-03.ibm.com/systems/virtualization/

news/view/011607.html.

[ISG03] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online strategies

for dynamic power management in systems with multiple power-saving

states. ACM Transactions on Embedded Computing Systems (TECS),

2(3):325–346, 2003.

[Jai91] R. K. Jain. The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation, and

Modeling. Wiley, 4 1991. http://www.cse.wustl.edu/~jain/books/

perfbook.htm.

[JSAC01] Christine E. Jones, Krishna M. Sivalingam, Prathima Agrawal, and

Jyh Cheng Chen. A Survey of Energy Efficient Network Protocols for

Wireless Networks. Wireless Networks, 7(4):343–358, 2001.

[Kat08] Katzer. Debunking Power Supply Myths, 9 2008. http://www.

anandtech.com/printarticle.aspx?i=3413.

[KBN+06] Koomey, Belady, Nordman, Lange, Tipley, Darnell, Accapadi, Rumsey,

Kelley, Tschudi, Moss, Greco, and Brill. Server Energy Measurement

Protocol - Version 1.0. In Energy Efficiency Server Benchmark Technical

Workshop, Santa Clara, CA, USA, 2006.

[kE07] El khatib and Edwards. A Survey-based Study of Grid Traffic. In Grid-

Nets 2007, Lyon, France, 10 2007.

[KES+07] Ryota Kawamoto, Takumi Emori, Shiro Sakata, Kazunori Furuhata,

Kouhei Yuasa, and Seiichiro Hara. DLNA-ZigBee gateway architecture

and energy efficient sensor control for home networks. In 2007 PRO-

CEEDINGS OF THE 16TH IST MOBILE AND WIRELESS COMMU-

NICATIONS, VOLS 1-3, pages 821–825, 2007. 16th IST Mobile and

Wireless Communications, Budapest, HUNGARY, JUL 01-05, 2007.

[KKSK09a] Saad A. Khan, Fahad A. Khan, Arslan Shahid, and Zubair A. Khan.

Load balanced clustering algorithm for energy efficient home area net-

working. In SAS 2009 - IEEE Sensors Applications Symposium, pages

284–289, 2009. 4th IEEE Sensors Applications Symposium, New Or-

leans, LA, Feb. 17-19, 2009.

[KKSK09b] Saad Ahmad Khan, Fahad Ahmad Khan, Arslan Shahid, and Zubair Ah-

mad Khan. Zigbee Based Reconfigurable Clustered Home Area Net-

work. In SENSORCOMM ’09: Proceedings of the 2009 Third Interna-

tional Conference on Sensor Technologies and Applications, pages 32–37,

Washington, DC, USA, 2009. IEEE Computer Society.

148

Bibliography Bibliography

[KKU08] Karakaya, Körpeŏglu, and Ulusoy. Counteracting free riding in Peer-to-

Peer networks. Computer Networks, 52(3):675694, 2008.

[KLS08] Kontogiannis, Lewis, and Smith. Supporting A Service-Oriented Archi-

tecture. In 2nd international workshop on Systems development in SOA

environments (SDSOA’08), Leipzig, Germany, 5 2008.

[KM08] Kobayashi and Mark. System Modeling And Analysis - Foundations of

System Performance Evaluation, volume 1. Prentice Hall, 1st edition,

2008. http://www.princeton.edu/kobayashi/Book/book.html.

[Knu97] Knuth. The Art of Computer Programming - Seminumerical Algorithms,

volume 2. Addison-Wesley Professional, 3rd edition, 1997. http://

www-cs-faculty.stanford.edu/~knuth/taocp.html.

[Koo07] Jonathan G. Koomey. Estimating Total Power Consumption by Servers

in the U.S. and the World, 2007. http://www.koomey.com.

[KSTT04] Krishnan, Smith, Tang, and Telang. The Impact of Free-Riding on Peer-

to-Peer Networks. In 37th Hawaii International Conference on System

Sciences (HICSS’04), Big Island, HI, USA, 2004.

[Lau08] Lau. Verteiltes Rechnen übers Internet mit BOINC & Co. c’t Magazin

für computer technik, 21:140–145, 2008.

[LCP+05] Lua, Crowcroft, Pias, Sharma, Lim, and Microsoft Asia. A Survey and

Comparison of Peer-to-Peer Overlay Network Schemes. IEEE Commu-

nications Surveys and Tutorials, 7(2):72–93, Second Quarter 2005.

[Lig05] Ligneris. Virtualization of Linux based computers: the Linux-VServer

project. In 19th International Symposium on High Performance Comput-

ing Systems and Applications (HPCS 2005), Guelph, Ontario, Canada,

2005.

[LK99] Law and Kelton. Simulation Modeling and Analysis. McGraw-Hill

Science/Engineering/Math, 3rd edition, 1999. http://www.mhhe.com/

engcs/industrial/lawkelton.

[LKP+09] Jong-Hoon Lee, Jung-Tae Kim, Eui-Hyun Paik, Intark Han, and Kwang-

Roh Park. Design and implementation of a service oriented power saving

system for the home network. International Conference on Computers

in Education, 0:1–2, 2009.

[LMBE03] Löser, Müller, Berger, and Eikerling. Peer-to-Peer Networks for Virtual

Home Environments. In 36th Annual Hawaii International Conference

on System Sciences (HICSS’03), Hawaii, USA, 1 2003.

[LYBP02] Liotta, Yew, Bohoris, and Pavlou. Supporting Adaptation-aware Ser-

vices through the virtual home environment, 2002.

149

Bibliography Bibliography

[MCZ06] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel. Optimizing Net-

work Virtualization in Xen. In USENIX Annual Technical Conference,

pages 15–28, 5 2006.

[MN98] Matsumoto and Nishimura. Mersenne Twister: A 623-dimensionally

equidistributed uniform pseudorandom number generator. ACM Trans-

actions on Modeling and Computer Simulation (TOMACS), 8(1):3–30,

1998. http:/www.linklings.net/tomacs.

[MRPM08] Meshkova, Riihijärvi, Petrova, and Mähönen. A survey on resource

discovery mechanisms, peer-to-peer and service discovery frameworks.

Computer Networks, 52(11):2097–2128, 2008. http://www.elsevier.

com/locate/comnet.

[MSHK07] H.-S. Mok, S.-Y. Son, J.H. Hong, and S. Kim. An approach for energy-

aware management in ubiquitous home network environment. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics), 4761 LNCS:293–

300, 2007.

[NUT+02] Nakajima, Ueno, Tokunaga, Ishikawa, Satoh, and Aizu. A Virtual Over-

lay Network for Integrating Home Appliances. In 2002 Symposium on

Applications and the Internet (SAINT’02), Nara, Japan, 7 2002.

[NWD03] Ngan, Wallach, and Druschel. Enforcing Fair Sharing of Peer-to-Peer

Resources. In 2nd International Workshop on Peer-to-Peer Systems

(IPTPS’03), Berkeley, CA, USA, 2 2003.

[OBC05] Hayoung Oh, H. Bahn, and Ki-Joon Chae. An energy-efficient sensor

routing scheme for home automation networks. Consumer Electronics,

IEEE Transactions on, 51(3):836–839, Aug. 2005.

[OFGG06] Osrael, Froihofer, Gladt, and Goeschka. Adaptive Voting for Balancing

Data Integrity with Availability. Lecture Notes in Computer Science; On

the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops,

4278:1510–1519, 2006.

[OHP08] Hyun Woo Oh, In Tark Han, and Kwang Roh Park. A power saving

system based on energy-aware control elements in ubiquitous home net-

work. In Consumer Electronics, 2008. ISCE 2008. IEEE International

Symposium on, pages 1–4, April 2008.

[Owe07] Owen. Fun with onion routing. Network Security, 2007(4):8–12, 2007.

[PBFM06] Peterson, Bavier, Fiuczynski, and Muir. Experiences building Planet-

Lab. In 7th USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI’06), Seattle, Washington, USA, 2006.

150

Bibliography Bibliography

[PCLP08] Wan-Ki Park, Chang-Sic Choi, Haeryong Lee, and Kwang-Roh Park.

Energy Efficient Home Gateway Based on User Service Traffic in Always-

On Home Network Environment. International Conference on Advances

in Electronics and Micro-electronics, 0:121–125, 2008.

[PM02] Pope and Meredith. The Virtual Home Environment, Release 5. Tech-

nical Report TR 22.121 V5.3.1, 3GPP, 7 2002.

[PR06] Peterson and Roscoe. The design principles of PlanetLab. ACM SIGOPS

Operating Systems Review (SOSP’06), 40(1):11–16, 2006.

[PRSBM+09] Milad Pastaki Rad, Ali Sajedi Badashian, Gelare Meydanipour, Morteza

Ashurzad Delcheh, Mahdi Alipour, and Hamidreza Afzali. A survey of

cloud platforms and their future. In ICCSA ’09: Proceedings of the In-

ternational Conference on Computational Science and Its Applications,

pages 788–796, Berlin, Heidelberg, 2009. Springer-Verlag.

[PRV09] H. Pensas, H. Raula, and J. Vanhala. Energy Efficient Sensor Network

with Service Discovery for Smart Home Environments. In Proceedings -

2009 3rd International Conference on Sensor Technologies and Applica-

tions, SENSORCOMM 2009, pages 399–404, 2009.

[PvdH07] Papazoglou and van den Heuvel. Service oriented architectures: ap-

proaches, technologies and research issues. The International Journal

Very Large Databases (VLDB Journal), 16(3):389–415, 2007.

[QNC06] Quétier, Neri, and Cappello. Scalability Comparison of Four Host Vir-

tualization Tools. Grid Computing, 5(1):83–98, 2006.

[RCXA03] Roussaki, Chantzara, Xynogalas, and Anagnostou. The Virtual Home

Environment roaming perspective. In IEEE International Conference

onCommunications (ICC’03), 3 2003.

[RG05] Rosenblum and Garfinkel. Virtual Machine Monitors: Current Technol-

ogy and Future Trends. Computer, 38(5):39– 47, 2005.

[RJX+02] Roussaki, Jormakka, Xynogalas, Laikari, Chantzara, and Anagnostou.

Multi-terminal and multi-network access to virtual home environment.

In IST Mobile and Wireless Telecommunications, Thessaloniki, Greece,

6 2002.

[RL02] L. Ramaswamy and Ling Liu. Free Riding: A New Challenge to Peer-

to-Peer File Sharing Systems. In 36th Hawaii International Conference

on System Sciences (HICSS’03), Big Island, HI, USA, 2002.

[RMD+07] Ricquebourg, Menga, Durand, Marhic, Delahoche, and Log. The Smart

Home Concept: our immediate future. In 9th International Conference

on Advanced Communication Technology (ICACT), Gangwon-Do, Ko-

rea, 2 2007.

151

Bibliography Bibliography

[RSO01] Roque, Soares, and Oliveira. VESPER Project- Validation of VHE Con-

cept, 2001.

[RSRK07] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and

Christos Kozyrakis. JouleSort: a balanced energy-efficiency benchmark.

In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, pages 365–376, New York, NY, USA,

2007. ACM.

[Sch07] Schmidt. A Survey of Desktop Grid Applications for E-Science. Inter-

national Journal of Web and Grid Services, 3(4):354–368, 2007.

[SEP05] Vassos Soteriou, Noel Eisley, and Li-Shiuan Peh. Software-directed

power-aware interconnection networks. In CASES ’05: Proceedings of

the 2005 international conference on Compilers, architectures and syn-

thesis for embedded systems, pages 274–285, New York, NY, USA, 2005.

ACM.

[SHM08] Sanders, Hamilton, and MacDonald. Supporting A Service-Oriented Ar-

chitecture. In The 2008 Spring simulation multiconference), Ottawa,

Canada, 4 2008.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In SIGCOMM ’01: Proceedings of the 2001 conference

on Applications, technologies, architectures, and protocols for computer

communications, pages 149–160. ACM Press, 2001.

[SR06] Stutzbach and Rejaie. Understanding Churn in Peer-to-Peer Networks.

In 6th ACM SIGCOMM conference on Internet measurement (IMC’06),

Rio de Janeiro, Brazil, 10 2006.

[SS07] Gven Sahin and Haldun Sral. A review of hierarchical facility location

models. Computers & Operations Research, 34(8):2310 – 2331, 2007.

[Sto07] Heinz Stockinger. Defining the grid: a snapshot on the current view.

The Journal of Supercomputing, Special issue on ”Grid Technologies”,

42(1):3–17, 3 2007.

[SW05] Ralf Steinmetz and Klaus Wehrle. Peer-to-Peer Systems and Applica-

tions (Lecture Notes in Computer Science). Springer-Verlag New York,

Secaucus, NJ, USA, 2005.

[TCdM02] Tomarchio, Calvagna, and di Modica. Virtual Home Environment for

multimedia services in 3rd generation networks. In NETWORKING

2002. Networking Technologies, Services, and Protocols; Performance

of Computer and Communication Networks; and Mobile and Wireless

Communications: Second International IFIP-TC6 Networking Confer-

ence, Pisa, Italy, 5 2002.

152

Bibliography Bibliography

[TdMV+02] Tomarchio, di Modica, Vecchio, Hovanyi, Postmann, and Portschy. Code

mobility for adaption of multimedia services in a VHE environment. In

Seventh International Symposium on Computers and Communications

(ISCC’02), Taormina, Italy, 1 2002.

[TLT09] Chang-Chun Tsai, Cheng-Jung Lee, and Shung-Ming Tang. The web

2.0 movement: mashups driven and web services. W. Trans. on Comp.,

8(8):1235–1244, 2009.

[Tut04] Kurt Tutschku. A measurement-based traffic profile of the eDonkey

filesharing service. Lecture notes in computer science, 3015/2004:12–21,

2004.

[Vou08] Vouk. Cloud Computing - Issues, Research and Implementations. In 30th

International Conference on Information Technology Interfaces (ITI

2008), Cavtat, Croatia, 6 2008.

[WCC+08] Walters, Chaudhary, Cha, Guercio Jr., and Gallo. A Comparison of

Virtualization Technologies for HPC. In 22nd International Conference

on Advanced Information Networking and Applications (AINA 2008),

GinoWan, Okinawa, Japan, 2008.

[Whi91] Ward Whitt. The Efficiency of One Long Run Versus Independent

Replications in Steady-State Simulation. MANAGEMENT SCIENCE,

37:645–666, 1991.

[Win07a] Windeck. Energy Star 4.0. c’t Magazin für computer technik, 14:52–53,

2007.

[Win07b] Windeck. Spar-o-Matic. c’t Magazin für computer technik, 15:200–207,

2007.

[WSG02] Whitaker, Shaw, and Gribble. Denali: Lightweight virtual machines for

distributed and networked applications. In 5th Symposium on Oper-

ating Systems Design and Implementation (OSDI 2002), Boston, Mas-

sachusetts, USA, 2002.

[YGM02] Yang and Garcia-Molina. Improving Search in Peer-to-Peer Net-

works. In International Conference on Distributed Computing Systems

(ICDCS 2002), Vienna, Austria, 2002. http://www.eecg.utoronto.

ca/icdcs07.

[YHJ+08] Younwoo, Hyunsu, Junghwan, Changhwanand, and Ik. Design of a

Multi-middleware Bridge for Supporting Interoperability in Home Net-

work Environments. In International Conference on Advanced Language

Processing and Web Information Technology (ALPIT’08), Dalian Liaon-

ing, China, 7 2008.

153

Bibliography Bibliography

[YWL+06] H. Yan, S.A. Watterson, D.K. Lowenthal, K. Li, R. Krishnan, and L.L.

Peterson. Client-Centered, Energy-Efficient Wireless Communication on

IEEE 802.11b Networks. Mobile Computing, IEEE Transactions on,

5(11):1575–1590, Nov. 2006.

[ZHvdA06] Zdun, Hentrich, and van der Aalst. A survey of patterns for Service-

Oriented Architectures. International Journal of Internet Protocol Tech-

nology, 1(3):132–143, 2006.

[Zuk09] Moshe Zukerman. Introduction to Queueing Theory and Stochastic

Teletraffic Models. Zukerman, 2009. http://www.ee.cityu.edu.hk/

~zukerman/classnotes.pdf.

154

Abstract

This work addresses power saving for home networks. It shows how power saving is

possible and clearly unveils the power saving potential of resource and task sharing

through cooperation. The global wattage of a network of homes as well as the local

wattage of a single home can be reduced by load concentration. The energy efficiency

of the remote case, in which tasks are distributed among homes, is compared to a

local case without sharing for the same load. An architecture is proposed based on

concepts of resource sharing, virtualization and virtual home environments. For this

architecture, applications with typical resource requirements are tested to show under

which circumstances power can be saved. Analytical models and simulation models

are developed to figure out the benefit of the remote case under various situations.

Zusammenfassung

Diese Arbeit beschäftigt sich mit Energieeffizienz für Heimnetzwerke. Sie zeigt inwiefern

Stromsparen mittels Ressourcen- und Aufgaben-Sharing durch Kooperation möglich

ist. Der globale Stromverbrauch eines Netzwerkes von Heimen, und auch der loka-

le Stromverbrauch eines einzelnen Heimes, können durch Lastkonzentration reduziert

werden. Die Energieeffizienz des verteilten Falls, in welchem Aufgaben unter den Hei-

men verteilt werden, wird mit der Energieeffizienz des lokalen Falls ohne Verteilung für

die gleiche Last verglichen. Eine Architektur, basierend auf Konzepten des Ressourcen-

Sharings, der Virtualisierung und virtuellen Heimumgebungen, wird vorgestellt. Für

diese Architektur werden Applikationen mit typischen Ressourcen-Anforderungen er-

forscht um aufzuzeigen unter welchen Umständen Strom gespart werden kann. Ana-

lytische Modelle und Simulationsmodelle sind entwickelt worden um den Vorteil des

verteilten Falls unter verschiedenen Aspekten darzustellen.

Curriculum Vitae

Personal: Mag.rer.soc.oec Roman Weidlich
Vienna, 29 July 1977
Austrian, married, no children yet

Education: 6.1999
School leaving examination of Commercial Academy

10.1999 – 12.2004
Economics and Computer Science at Technical University of
Vienna

10.2006 – 5.2010
PhD in Computer Science at University of Vienna

Projects: Euro-NF, Network of Excellence, Network of the Future

Softnet Austria, Formal Methods in Software Engineering of
Mobile Applications

Virtual Home Environments (VHE)

Decentralized and Self-* Networked Systems – Distributed
Algorithms for Resource Sharing

Languages: German (native)
English (fluent)
Italian (advanced)
French (basic)

Publications: Weidlich; P2P-Technologie - Design und Implementierung
einer P2P- Anwendung unter JXTA, Diploma thesis, 2005.

Hlavacs, Hummel, Weidlich, Houyou, and de Meer. Energy
Efficiency in Future Home Environments: A Distributed Ap-
proach. In 1st Home Networking Conference, Paris, France,
12 2007.

Garćıa, Berl, Hummel, Weidlich, Houyou, Hackbarth, de
Meer, and Hlavacs. An Economical Cost Model for Fair
Resource Sharing in Virtual Home Environments. In 4th
EURO-NGI Conference on Next Generation Internet Net-
works (NGI-2008), Krakow, Poland, 4 2008.

Hlavacs, Weidlich, Hummel, Houyou, Berl, and de Meer.
Distributed energy efficiency in future home environments.
Annals of Telecommunications - Home networking: perfor-
mance and architecture challenges, 63(9-10):453-541, 2008.

Hlavacs, Weidlich, and Treutner. Energy Saving in Future
Home Environments. In 2nd Home Networking Conference
at IFIP Wireless Days, Dubai, United Arab Emirates, 11
2008.

Berl, Weidlich, Schrank, Hlavacs, and de Meer. Network
Virtualization in Future Home Environments. In Interna-
tional Workshop on Distributed Systems: Operations and
Management (DSOM09), Venice, Italy, 10 2009.

Hlavacs, Hummel, Weidlich, and de Meer. Modeling Energy
Efficiency in Distributed Home Environments. International
Journal of Communication Networks and Distributed Sys-
tems (IJCNDS), 4(2):161-182, 2010.

Hlavacs, Weidlich, and Treutner. Energy Saving in Future
Home Environments. Under review for the First ACM SIG-
COMM Workshop on Green Networking, 8 2010.

