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Abstract

The most important versions of the Mutual Fund Theorem and Separation results

in discrete and continuous time are presented. We further investigate whether the

predictions of the Mutual Fund Theorem hold true in actual financial markets by

analyzing proposed asset allocations of Fidelity and Vanguard.
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Introduction

Given a set of n securities, the aim of this thesis is to study the necessary conditions,

under which several mutual funds are sufficient to capture all investor demands. We

define a mutual fund H = (h1, . . . , hn) with
∑n

i=1 h1 = 1 as a linear combination

of the available securities. The basic idea of the Mutual Fund Theorem is that an

investor is indifferent between investing in the n original assets or only in a few

mutual funds. Consequently it is enough to study only the mutual funds, since they

encompass all relevant investment opportunities.

In chapter 1 we outline the notation we will use throughout the whole thesis. This

is intended to increase legibility for the reader since many of the cited papers use

different notations for the same idea and even more confusing, in some cases the

same notation for different ideas.

Chapter 2 covers the first separation results and basics of the Portfolio Theory of

Markowitz and Tobin ([18] and [32]). The great achievement of those authors was

to be the first to describe the mean variance trade off and in the process of doing so

laying the foundation for modern Portfolio Theory and finance in general.

In the following chapter we discuss the paper of Cass and Stiglitz on which utility

functions lead to separation in general discrete-time financial markets [6] and look

into Merton’s findings concerning the Mutual Fund Theorem in a µ− σ world [20].

Chapter 4 is devoted to results in continuous time. Since the technical requirements

are more advanced than in the previous chapters, we start this chapter with giving

1



a few central definitions and presenting some key ideas, such as the Itô Integral and

the definition of a martingale. In the spirit of Robert Merton ([19] and [21]) we in-

vestigate separation for log-normally distributed returns. Furthermore we study the

approach of Ross to separation for certain types of asset returns [25] and consider

Chamberlain’s results based on the martingale representation of Brownian Motion

[7].

Chapter 5 will cover recent findings, such as Khanna and Kulldorff’s generalization

of the Mutual Fund Theorem [14] and a unifying treatment of many of the previously

mentioned versions of the Mutual Fund Theorem, as presented by Schachermayer

et al. [26].

Finally, in chapter 6, we investigate whether the market conditions necessary for sep-

aration are fulfilled in real financial markets. We look at suggested asset allocations

of Fidelity and Vanguard. We check the prediction of the Mutual Fund Theorem,

namely that the ratio of stocks to bonds (risky assets) should remain constant, even

if the total share of stocks increases.
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Chapter 1

Notation

In order to ensure the legibility of this thesis, we decided to unify the different

notions the authors use in the cited papers. Throughout the thesis we will strive to

use the following notations whenever possible:

� Value of the ith security in the jth state: Sij

� Return of the ith security in jth state: sij

� Expected return of the ith security: µi

� Expected return of the portfolio: µP

� Share of the portfolio invested in the ith security: hi

� Amount of money invested in the ith security: Hi

� Number of shares of the ith security: Ni

� Value of the portfolio in the ithstate: Wi

� There are m states in the probability space. The state that occurred: θ

� Covariance between the ith and jth security: σij
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� Correlation between the ith and jth security: ρij

� Risk-free rate of return: r
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Chapter 2

Basics and fundamentals

2.1 Portfolio Selection

According to Harry Markowitz, the portfolio selection process1 consists of two steps:

(i) Observing the available securities and forecasting their future performance

(ii) Equipped with the knowledge of step one, choosing an appropriate portfolio

In his seminal paper [18] Markowitz discusses the second step of the portfolio selec-

tion process. Let us consider a market with n securities. The return of a security is

a random variable and the m different possible values for the ith security Sij occur

with probability pij. Hence the expected return for the ith security is:

µi =
m∑
j=1

pijsij (2.1)

The investor chooses to allocate his initial wealth among the n available securities.

We denote the share of his portfolio invested in the ith security as hi and don’t allow

1Process of choosing the optimal mix of securities, both risky and riskless, given the investor’s

initial endowment

5



short sales2, so hi ≥ 0. Then the expected return of the portfolio is:

µP =
n∑
i=1

E(si)hi =
n∑
i=1

µihi (2.2)

If we denote the covariance between ith and the jth security by σij, we obtain the

following formula for the variance of the portfolio:

σ2
P =

n∑
i=1

m∑
j=1

hihjσij (2.3)

For a given set of n securities, the investor can allocate his funds to achieve different

combinations of (µP , σ
2
P ).

Assumption 2.1. The investor is risk-averse. This means that he tries to minimize

the portfolio variance for a given expected return. For a given level of variance, he

tries to maximize expected return.

“The investor considers expected return a desirable thing and variance

of return an undesirable thing.” - Harry Markowitz

If there were 2 portfolios with the same expected return but different variances, a

risk averse investor would clearly prefer the less risky portfolio (the one with lower

variance). Hence only for some portfolios there isn’t a clearly superior investment

opportunity readily available. We call those portfolios efficient.

Let us consider a financial market with only 3 securities. In this case the relevant

equations for the portfolio take the form of:

µP =
3∑
i=1

E(si)hi =
3∑
i=1

µihi

σ2
P =

3∑
i=1

3∑
j=1

hihjσij (2.4)

2Selling securities the investor doesn’t own, hi < 0. This is done by borrowing them temporarily

from a third party with the intention of buying them back at a later date.
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with hi ≥ 0 and
∑3

i=1 hi = 1. If we make the straightforward replacement h3 =

1− h1 − h2, both µP and σ2
P depend only on h1 and h2.

Definition. An isomean curve is the set of all portfolios which have the same

expected return.

Definition. An isovariance curve is the set of all portfolios which have the same

variance.

Fairly straightforward calculations in [18] show that the isomean curves are straight

lines, whereas all isovariance portfolios have the shape of an ellipse. Figure 2.1

illustrates this fact.

Figure 2.1: Isomean and isovariance curves

Source: [18]
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The set of efficient portfolios are the points where the isomean lines are tangent

to the isovariance ellipses. Since those asset allocations are superior to all other

available investment strategies, the investor only chooses among them. For all other

portfolios we can find one with either the same mean and lower variance or with

a higher mean and the same variance - both are clearly advantageous to any risk

averse investor.

The great achievement of Harry Markowitz is to give a theoretical foundation to

the investment decision. His µ− σ principle, which states that risk averse investors

should maximize expected return for a given level of acceptable variance can be

used both in theoretical analysis as well as in actual portfolio selection. It therefore

represents the starting point for all future inquiries into this matter, including the

Mutual Fund Theorem.

2.2 A simple version of the Mutual Fund Theo-

rem

Tobin covers in his paper on liquidity preference [32] a simple version of the Mutual

Fund Theorem. Let us consider a market in discrete time with risk-free and risky

assets. Tobin refers to the latter as conoles. Adding to the similarities to Markowitz’s

paper, Tobin considers curves of equal mean and variance, which he refers to as

constant-return locus and constant-risk locus. In the 2-securities case, the

isomean curve takes the shape of a straight line, whereas the isovariance curve is a

quarter ellipse. We obtain the equation from 2.4:

h2
1σ11 + 2h1h2σ12 + h2

2σ22 = constant (2.5)

Again, we assume that the investor is risk averse. Since for a given level of return

he seeks to minimize variance (or equivalently for a given level of variance tries to

maximize expected return) only the portfolios where an isomean curve is tangent
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Figure 2.2: Efficient portfolios Tobin

Source: [32]

to an isovariance curve are efficient. Not surprisingly, this is the same result we

found in [18]. Tobin defines a dominant combination of assets as a set of hi which

minimize σ2
P for a given expected return µP . All efficient portfolios lie on a ray from

the origin. Hence the composition of the portfolio of risky assets is the same for all

investors. They only choose how to allocate their funds among risky and riskless

assets. This constitutes our first Mutual Fund result and is depicted in figure 2.2.
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Chapter 3

The Mutual Fund Theorem and

Separation in discrete time

3.1 Separation for certain utility functions

We distinguish between the following types of separation and investigate for which

utility functions they are attained in our 2-period model:

Definition. A utility function exhibits the generalized separability property if

and only if for any arbitrary set of n original securities there are m < n mutual

funds.

Definition. If generalized separation obtains and when in addition the number of

mutual funds m = 2 we say that the utility function exhibits the separability prop-

erty or that there is separation.

Definition. If separation obtains and when in addition one of the mutual funds

formed is money 1, we say that money separation obtains.

1Riskfree asset yielding the same in every state
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In the spirit of [6], we consider an investor with initial wealth W0 which he can

invest in n different assets. We will refer to his terminal wealth as W . The investor

seeks to maximize the portfolio’s utility. This utility takes the form of:

EU(Wθ) = EU

(∑
i

Hisi,θ

)
(3.1)

considering his budgetary constraint
∑n

i=1Hi ≤ W0. Furthermore we assume U to

be twice differentiable and strictly concave. The economic interpretation of this is

decreasing marginal utility of wealth, which means that an additional unit of wealth

increases total utility less if the investor has more wealth to begin with.

Let us firstly consider the special case when Arrow-Debreu securities are available.

For this small subset of all possible distributions of asset returns, we will show which

utility functions lead to separation and money separation. We will see that the set

of utility functions which lead to separation even under those specific circumstances

is rather limited, so we only need to consider those few utility functions when we

investigate which ones lead to separation in general markets2.

Definition. An Arrow-Debreu security is a claim against every possible state.

For every possible state θ there is a security which returns:

sθ =

 sθ > 0 if θ occurs

0 otherwise

Theorem 3.1. Given Arrow-Debreu securities, a necessary and sufficient condition

for separation is that marginal utility U’ satisfy:

AU ′(W )α +BU ′(W )β = W (3.2)

or

U ′(W )α(A+B log U ′(W )) = W (3.3)

2In general markets we don’t assume securities to have a particular distribution of returns, e.g.

log-normal or Arrow-Debreu)
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Proof. The proof is done in three steps:

(i) We show that separability is equivalent to the demand function for the ith

security to be of the form

Hi = AiW0 +Bih(W0) (3.4)

with
∑n

i=1Ai =
∑n

i=1Bi = 1

(ii) We further show that for the demand function to be of the form 3.4, a necessary

condition is that U ′−1 = G = 0 satisfy

G(xy) = f̄(x)f̃(y) + ḡ(x)g̃(y) (3.5)

(iii) Finally we show that the only solutions to 3.5 are

f̄(x) =
f̃(x)

A
= xα, ḡ(x) =

g̃(x)

B
= xβ and G(x) = Axα +Bxβ (3.6)

and

f̄(x) = g̃(x) = xα(
A

2
+B log x), f̃(x) = ḡ(x) = xα and G(x) = xα(A+B log x)

(3.7)

For the details of the proof, we refer the reader to [6].

Remark. If we plug α = 1 into 3.2, we obtain A + BU ′(W )β = W and hence

U ′(W ) = (−A
B

+ W
B

)
1
β , which we can rewrite as

U ′(W ) = (a+ bW )c (3.8)

Well known special cases of 3.8 are:

� (i) The constant relative risk aversion function

U ′(W ) = dW c (a = 0, d = bc) (3.9)
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� (ii) The quadratic utility function

U ′(W ) = a+ bW (c = 1) (3.10)

An interesting special case of 3.3 is the constant absolute risk aversion function

U ′(W ) = aebW (3.11)

The names of the above utility functions derives from the Arrow-Pratt measure

of risk-aversion in [24]. We define the measure for Absolute Risk Aversion (ARA)

and Relative Risk Aversion (RRA):

ARA = −U
′′(W )

U ′(W )
and RRA = −WU ′′(W )

U ′(W )
(3.12)

Calculating RRA for equation 3.9 we obtain:

RRA = −W dcW c−1

dW c
= −c (3.13)

which is constant, hence the name constant relative risk aversion function.

Calculating ARA for equation 3.11 we obtain:

ARA =
abebW

aebW
= −b (3.14)

which is constant, hence the name constant absolute risk aversion function.

Theorem 3.2. Given Arrow-Debreu securities, a necessary and sufficient condition

for monetary separation is that marginal utility U’ takes the form of 3.8 or of a

constant absolute risk aversion function (3.11).

Proof. The proof is done for the special case of a 3-securities market. For the proof

see [6].

These findings can be generalized if we don’t assume Arrow-Debreu securities or a

risk-free asset to exist.
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Theorem 3.3. A necessary and sufficient condition for separation in general mar-

kets is that marginal utility U’ takes the form of the constant relative risk aversion

(3.9) or that there is a quadratic utility function (3.10).

Proof. We have already seen which utility functions lead to separation in the special

case of Arrow-Debreu markets. Naturally the utility functions that lead to separa-

tion in general markets are a subset of those. We first of all check the subcases 3.8

and 3.11. Only then do we check the more general cases 3.2 and 3.3 (excluding the

subcases). The proof for the 3-securities case can be found in [6].

The set of utility functions which lead to separation in general markets is surprisingly

limited. It is understandable though, given that separation has to attain for all

possible distributions of security returns.

We have just learned that when marginal utility satisfies AU ′(W )α + BU ′(W )β =

W or U ′(W )α(A + B log U ′(W )) = W (3.2 or 3.3) in Arrow-Debreu markets, we

can construct 2 mutual funds that are sufficient to represent all relevant market

opportunities of the original securities. In order for one of the mutual funds to be

money in Arrow-Debreu markets, marginal utility must be of the form U ′(W ) = (a+

bW )c or U ′(W ) = aebW (3.8 or 3.11, the constant absolute risk aversion function).

3.2 The Mutual Fund Theorem in a µ− σ world

Merton derives the efficient portfolio frontier explicitly for more than three securi-

ties [20]. This is a significant new finding, given that before the frontier was only

described qualitatively and in graphs. The most important implication for us is the

following theorem:

Theorem 3.4. Given n risky assets among which no one can be represented as a

linear combination of the other securities (the variance-covariance matrix is non-

singular), we can construct two mutual funds, such that all risk averse investors,
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whose utility function depends only on the mean and variance of the portfolio (µP

and σ2
P ), will be indifferent between investing in the n original securities or the two

mutual funds derived from them.

Proof. We will use the following result: the frontier portfolio consists of

hk =
µP
∑n

j=1 vkj(Cµj − A) +
∑n

j=1 vkj(B − Aµj)
D

(3.15)

For certain coefficients vij, the elements of the inverse variance-covariance matrix

and A,B,C,D functions of vkj and µk and µP =
∑n

i=1 hiµi. For the derivation and

the exact definitions we refer the reader to [20]. Let ai and bi denote the proportion

of the first and respectively second mutual fund’s value invested in the ith security.

In order to simplify 3.15 we define fk =
∑n
j=1 vkj(B−Aµj)

D
and gk =

∑n
j=1 vkj(Cµj−A)

D
.

Plugging those into 3.15, we can simplify the equation:

hk = µPgk + hk = λak + (1− λ)bk for k = 1, ..., n (3.16)

This holds true since we assume the portfolio to only consist of a combination of

the two mutual funds. All solutions of this equation will satisfy λ = δµP − α, for

some α and δ which are constant and δ 6= 0. Plugging this into 3.16, we obtain

hk = λak+(1−λ)bk = (δµP−α)ak+(1−δµP +α)bk = µP (δak−δbk)+(bk+αbk−αak)

(3.17)

Assuming further that ak and bk are independent of µP , from comparing the above

equation with 3.16, we get that gk = δ(ak − bk) and fk = bk − α(ak − bk), for

k = 1, ...,m. For δ 6= 0 we can solve this system of 2 equations:

ak = fk + α
gk
δ

+
gk
δ

= bk +
gk
δ

bk = fk + α
gk
δ

(3.18)

The vectors a and b are linearly independent basis for the vector space of the frontier

portfolios. Using 3.18, we can derive both mutual fund compositions from their
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expected return. Plugging ak and bk into µa =
∑n

i=1 aiµi and µb =
∑n

i=1 biµi we

obtain the following expressions for the expected return of the mutual funds (we use∑
k fkµk = 0 and

∑
k gkµk = 1):

µa =
∑
k

akµk =
∑
k

bkµk +
1

δ

∑
k

gkµk =
1 + α

δ

µb =
∑
k

bkµk =
∑
k

fkµk +
∑
k

gkµk =
α

δ
(3.19)

Alternatively we also can write:

α =
µb

µa − µb
δ =

1

µa − µb
(3.20)

From this it is apparent that the choice of α and δ does not depend in the individual

investor’s preference. The investor can choose α and δ arbitrarily (δ 6= 0). Then

the system of equations 3.18 describes the composition of the individual funds.

Consequently it is sufficient for the individual investor to know the mean, variance

and covariance of the two mutual funds to determine how to split the money among

the two funds, or in other words to choose λ.

Remark. Merton showed that σ2
ij ≥ σ2

i > 0. The interpretation of this is that all

efficient portfolios are positively correlated. When we add one riskless security, we

can say even more: in this case all efficient portfolios are perfectly correlated. Since

showing this is beyond the scope of this thesis, the authors refer the interested reader

to [20].

In this case theorem 3.4 obviously holds, since any 2 distinct portfolios on the

efficient portfolio frontier are appropriate mutual funds. We can, however, achieve

a stronger result and describe the mutual funds in greater detail.
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Theorem 3.5. Given n risky assets and one riskless asset, we can construct a

unique pair of mutual funds where one is risky and the other one is riskless, such

that all risk averse investors, whose utility function depends only on the mean and

variance of the portfolio (µP and σ2
P ), will be indifferent between investing in the

n + 1 original securities or the two mutual funds derived from them if and only if

the risk-free rate of return is less than the expected return on the minimum variance

portfolio.

Proof. The proof follows a very similar logic as the proof for theorem 3.4 and can

be found in [20].

Before Merton’s findings it was common to derive the mutual fund by drawing

the efficient portfolio frontier and then drawing the highest possible tangent of the

frontier which goes through the portfolio which consists only of riskless assets (0, r).

The following graph illustrates the procedure:
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Figure 3.1: Mutual fund with risk-free asset

Source: [20]
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Chapter 4

The Mutual Fund Theorem and

Separation in continuous time

The remaining chapters will be more demanding from a technical point. Therefore

we begin by introducing a few key concepts and definitions.

Definition. Let Ω be a nonempty set and let F be a collection of sets of subsets of

Ω. Then F is a σ-algebra if the following conditions are met:

(i) the empty set ∅ belongs to F

(ii) if A ∈ F , then also the compliment Ac ∈ F

(iii) if A1, A2, ... ∈ F , then also their union ∪∞n=1An ∈ F

Definition. Let Ω be a nonempty set and let F be a collection of sets of subsets

of Ω. Then a probability measure P is a function that assigns every set A ∈ F

a value from the interval [0,1]. We call that number the probability of A or P(A).

Furthermore we require:

(i) P(Ω) = 1

(ii) if A1, A2, ... ∈ F , then P(∪∞n=1An) =
∑∞

n=1P(An)
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We refer to the triple (Ω,F ,P) as a probability space.

We have used the concept of a random variable before. Now we can define it formally.

Definition. A random variable is a real valued function X defined on Ω with

the property that for every Borel subset1 B of R the subset of Ω given by X ∈ B =

ω ∈ Ω;X(ω) ∈ B is in the σ algebra F .

Definition. A stochastic process (Xn) is called a martingale with respect to the

filtration F , if (Xn) is integrable and E(Xn+1|Fn) = Xn, and in continuous time:

E(Xt|Fs) = Xs for 0 ≤ s ≤ t. A martingale is what we think of as a “fair game”.

We call a stochastic process a submartingale if E(Xt|Fs) ≥ Xs and a supermartingale

if E(Xt|Fs) ≤ Xs, both for 0 ≤ s ≤ t.

Definition. For each ω ∈ Ω suppose there is a continuous function W (t) with t ≥ 0

that satisfies W (0) = 0 and that depends on ω. Then W (t) is a Brownian Mo-

tion, if for all 0 = t0 < t1 . . . < tn the increments W (t1) = W (t1)−W (t0), W (t2)−

W (t1), . . . ,W (tn) −W (tn−1) are independent and each of these increments is nor-

mally distributed with

E[W (ti+1)−W (ti)] = 0

V ar[W (ti+1)−W (ti)] = ti+1 − ti (4.1)

To put this in words, the increments have mean zero and their variance equals the

duration of the interval. For a definition of the Filtration for the Brownian

Motion we refer the reader to [30].

Next we will try to understand the expression
∫ T

0
X(t)dW (t), where X(t) is an

adapted stochastic process (X(t) is Ft-measurable) and W (t) a Brownian Motion.

1Borel sets are the sets that can be constructed from open or closed sets by repeatedly taking

countable unions and intersections.
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Since we can’t interpret this expression directly, we define the Itô Integral I(T ) of

X(T ) for tn ≤ T ≤ tn+1:

I(T ) =

∫ T

0

X(t)dW (t) =
n−1∑
i=0

X(ti)[W (ti+1)−W (ti)]+X(tn)[W (T )−W (tn)] (4.2)

A few key properties of the Itô Integral are:

(i) Adaptedness: For each T , I(T ) is F(T )-measurable

(ii) Linearity: If J(T ) =
∫ T

0
Y (t)dW (t), then I(T )±J(T ) =

∫ T
0

(X(t)± Y (t))dW (t)

and cI(T ) =
∫ T

0
cX(t)dW (t)

(iii) Martingale: I(T ) is a martingale

(iv) Continuity: I(T ) is a continuous function of the upper limit of integration T

Further details and proofs for those properties can be found both in the lecture notes

and the book of Shreve ([28] and [30]).

Let us consider Itô’s Lemma next:

Theorem 4.1. Itô’s Lemma

Let (Xt) be an Itô Process and f : R+ ×R→ R is C2, then

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)dXs +

1

2

∫ t

0

∂2f

∂x2
(s,Xs)σ

2
sds

(4.3)

Which is equivalent to

d(f(t,Xt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt)σ

2
t dt (4.4)

Since the Itô Integral plays such an important role in modern stochastics, we high-

light another notation for the same ideas, as presented in [23]:

dF (St, t) = FsdSt + Ftdt+
1

2
FSSσ

2
t dt (4.5)

A concept central to changing the probability measure is the following:
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Definition. When two probability measures P and P̃ give positive probability to

every member of Ω, we call the Radon-Nikodym derivative of P̃ with respect to

P

Z(ω) =
P̃(ω)

P(ω)
(4.6)

4.1 Separation under log-normally distributed as-

set returns

We assume a perfect market in continuous time with no transaction costs and that

the share prices Si(t) are generated by the Itô Processes:

dSi
Si

= αi(S, t)dt+ σi(S, t)dWi (4.7)

In this context the αi are the instantaneous expected percentage change in price

of the ith asset per time unit and σ2
i is the instantaneous variance per unit time.

dWi represents the change in a one-dimensional Wiener process. The second term

supplies the unpredictable, erratic movements which are scaled by the diffusion

factor σ. If α and σ are constant (we refer to α as µ in this context), the equation

takes the following form (we drop the subscripts for ease of reading):

dS

S
= µdt+ σdW (4.8)

We call this process a Geometric Brownian Motion.

[30] presents the following result: The process generating 4.8 is of the form:

S(t) = S(0) exp

((
µ− σ2

2

)
t+ σW (t)

)
(4.9)

which is a log-normally distributed random variable with expected value E[µS(t)] =

eµtS(0). The intuitive interpretation for the expected value is if we discount S(t)

with the interest rate µ, we get the present value S(0).
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Theorem 4.2. Given n assets whose price changes are log-normally distributed (αi

and σi are constant), there exists a unique pair of mutual funds independent of the

individual utility functions and wealth distributions. Furthermore, the prices of both

mutual funds will also be log-normally distributed.

Proof. Merton found the optimal portfolio to be h∗i = ai+m(W, t)bi with
∑n

i=1 hi = 1

and
∑n

i=1 bi = 0 and both ai and bi are constants for all i. For exact definitions

of the coefficients and further details see [19]. This is the representation of a line

in the hyperplane defined by
∑n

1 hk = 1. Consequently there are two independent

vectors (our mutual funds) which are sufficient to construct all portfolios investors

could possibly want to invest in. So investors are indifferent between investing in

the n original assets and the mutual funds.

For any of the mutual funds we can write the return:

dSMF

SMF

=
n∑
i=1

hi
dSi
Si

=
n∑
i=1

hiµidt+
n∑
i=1

hiσidWi (4.10)

Applying Itô’s Lemma to this equation, we get:

SMF (t) = SMF (0)exp

[(
n∑
i=1

hiµi −
1

2

n∑
i=1

n∑
j=1

hihjσij

)
t+

n∑
i=1

hiσi

∫ t

0

dWi

]
(4.11)

We recognize equation 4.9 in this, so SMF (t) is log-normally distributed.

Remark. One of the many advantages of this theorem is that whenever log-normally

distributed prices are assumed, it is sufficient to only consider the two mutual funds.

If we drop the assumption that αi and σi are constant, theorem 4.2 changes in such

a way, that all investors are indifferent between the original assets and 3 mutual

funds. These mutual funds do not depend on the individual utility functions. For

the proof we refer the reader to [21].
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4.2 Separation for certain asset return distribu-

tions

In his paper [25], Ross investigates which distribution of asset returns will lead to

separation. Central to his argument is the following concept:

Definition. A set of random returns s = (s1, ..., sn) is said to stochastically dom-

inate an alternative s̃ if for all monotone, increasing, concave utility functions U if

the following holds true

E[U(s̃)] ≤ E[U(s)] (4.12)

The economic interpretation of this is that a risk averse investor would always prefer

s to s̃. Another way of expressing this notion is:

s̃ = s+ z + ε (4.13)

where z ≤ 0 a non positive random return and ε a random noise term with E[ε|s+

z] = 0. This simply means that we add a non positive random variable to s and

also add a random noise term. The second condition implies the first. Ross shows

in his paper [25] that these two concepts are actually equivalent.

Definition. A set of returns s exhibits strong k-fund separability if there exist

k mutual funds, such that for any given portfolio P consisting of the n original

assets there exists a portfolio H = (h̃1, ..., h̃k) of k mutual funds which stochastically

dominates P.

There also exists a weaker form of separability, which can be defined by:

Definition. A set of returns s exhibits weak k-fund separability if the above

defined portfolio H depends also on the utility function.

Theorem 4.3. A vector s of asset returns exhibits 1 fund separation (the investor

is indifferent between investing in the n original securities and the 1 mutual fund)
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if and only if the following conditions are satisfied:

∃ z, ε :

(i) si = z + εi

(ii) E[εi|z] = 0

(iii) ∃α : αε = 0

Where the si represent the returns of the ith security and α is our mutual fund.

Proof. In order to prove sufficiency, we show that the portfolio α stochastically

dominates any alternative β. We define η by

β = α + η with ηe = η1 + . . .+ ηn = 0

From (1) and (3) we obtain

αisi = αi(z + εi) and αs = α(z + ε) =

= αz + αε = (α1 + ...+ αn)z = z

and E[βs|αs] = E[(α + η)(z + ε)|z] =

= z + E[ηε|z] = z

This is exactly the situation of 4.13. Hence αs stochastically dominates βs. The

proof for necessity can be found in [25].

It is very easy to construct n securities that exhibit 1-fund separability. We choose

any random return z (which is the same for all securities) and n−1 random variables

εi with E[εi|z] = 0. Then we choose εn, such that αε = 0. Hence all the conditions

of the theorem are fulfilled and 1-fund separability obtains.

Remark. If the si have finite variances, α simply represents the minimum variance

portfolio. See [25] for a proof of this.

25



Theorem 4.4. A vector s of asset returns exhibits 2-fund separation if and only if

the following conditions are satisfied:

∃ y, z, ε :

(i) si = µi + y + biz + εi

(ii) ∀λ E[εi|λy + (1− λ)z] = 0

(iii) ∃α, β : αε = βε = 0

Where µi = E[si] = a0 + a1bi and all µi lie on a straight line and are a function of

bi. If b is not a constant vector, then αb 6= βb. α and β are our mutual funds.

Proof. The proof is done in a similar way as the proof for theorem 4.3. We show

that for any possible portfolio there is a linear combination of the mutual funds

λα + (1 − λ)β that stochastically dominates the alternative portfolio. The details

can found in [25].

Remark. For any λ the linear combination of the two funds λα+(1−λ)β minimizes

variance for a given expected return. This hints at the fact that the mutual funds

are in general by no means unique. More generally, any two linear combinations of

them can be used as mutual fund. In fact, any basis of the space of optimal portfolios

is a set of mutual funds.

In theorems 4.3 and 4.4 we didn’t distinguish between weak and strong separability.

Naturally strong separability implies weak separability. Let us look at a simple case

to show that the two are actually equivalent. The figure “Equivalence of weak and

strong 2-fund separability” illustrates this matter well.

In the case of two fund separation with a riskless asset, all risk averse investors will

choose a portfolio consisting of the riskless asset and the market portfolio M . For

any possible portfolio P consisting of the n original assets, there is a portfolio on

the line L (which connects the two portfolios that only consist of the risk-free asset
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and only of the market portfolio) which stochastically dominates P , hence strong

separation obtains. For weak but not strong separability to obtain we would need

different points on the line L to stochastically dominate the portfolio P . But no

single portfolio would be ideal for all utility functions of risk averse investors. This

is clearly wrong, so in this special case the two kinds of separation are equivalent.

For a general proof we refer the reader to [25].

Figure 4.1: Equivalence of weak and strong 2-fund separability

Source: [25]

4.3 Separation and martingale representation

The following theorem, which we will present without giving a proof, has a central

role in stochastics [30]:
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Theorem 4.5. One-dimensional martingale representation

Let W (t) with 0 ≤ t ≤ T be a Brownian Motion on a probability space (Ω,F ,P)

and let F(t) be the filtration generated by the Brownian Motion. Let M(t) be a

martingale with respect to this filtration (for every t, M(t) is F(t)-measurable and

for 0 ≤ s ≤ t ≤ T : E[M(t)|F(s)] = M(s). Then there is an adopted precess Γ(u)

with 0 ≤ u ≤ T , such that

M(t) = M(0) +

∫ t

0

Γ(u)dW (u) (4.14)

The martingale representation theorem asserts that when the filtration is the one

generated by the Brownian Motion (the only information in F is the one derived

from the Brownian Motion up to time t), then every martingale with respect to this

filtration is a certain starting value plus an Itô Integral with respect to the Brownian

Motion.

Theorem 4.6. Multi-dimensional martingale representation

Let W (t) with 0 ≤ t ≤ T be a d-dimensional Brownian Motion on a probability space

(Ω,F ,P) and let F(t) be the filtration generated by the Brownian Motion. Let M(t)

be a martingale with respect to this filtration under P. Then there is an adopted

precess Γ(u) = (Γ1(u), . . . ,Γd(u)), such that

M(t) = M(0) +

∫ t

0

Γ(u) · dW (u) (4.15)

We consider the probability space (Ω,F ,P) and the Hilbert space H that consists

of F -measurable random variables which additionally are square integrable (∈ L2).

We refer to the trading strategy as θt = (θ0t, ..., θnt), which tells us how many shares

of each security the investor holds at time t. The 0th security is the risk-free asset

and there are n risky securities. We say a claim x ∈ H is marketed and write x ∈M ,

if there is a trading strategy θ, such that θTZT = x with probability 1 at maturity.

This means that we can replicate the payoff of the claim x by trading only in the
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underlying securities.

Furthermore we assume that there exists a random variable ρ ∈ H, such that ρ > 0

a.s. and π(x) = E(ρx) for any x ∈M , where π(x) denotes the price at time t = 0 of

the claim x, so π(x) = θ0S0. St = (S0t, ..., Snt) is the value of the securities at time

t. Then we can define a new probability measure P∗ =
∫
A
ρdP and E∗(x) =

∫
xdP ∗.

The ith investor has a utility function ui : R x H → R and is risk averse. Hence we

try to maximize the following expression:

max ui(c, x) with c ∈ R, x ∈M , subject to c+ π(x) ≤ initial endowment (4.16)

The economic interpretation of this is that the investor wants to consume part of his

wealth now and invest the remaining initial endowment. In our notation, the investor

consumes the amount c at t = 0 and invests in the claim x with uncertain future pay-

offs. For the remainder of this section, let us assume that this maximization problem

has the solution (c∗i , x
∗
i ). Let us further refer to the set of all claims measurable with

respect to ρ as H(ρ) = {x ∈ H : x = g(ρ) a.s. for some measurable function g :

R → R}. We also require the following notion: let Π2 be the set of all predictable

processes α with E
(∫ T

0
α2
sds <∞

)
.

Lemma 4.1. If H(ρ) ⊂M , then x∗i ∈ H(ρ).

Proof. We define x̂i = E(x∗i |ρ). Therefore we get x∗i = x̂i + e with E(e|ρ) = 0.

Consequently x̂i ∈ H(ρ) ⊂ M and (c∗i , x̂i) satisfies the budget constraint π(x̂i) =

π(x∗i )−E[ρ(x∗i − x̂i)] = π(x∗i ). Furthermore, from E(e|x̂∗i ) = 0 we know that (ci, x̂∗i )

is strictly preferred to (c∗i , x
∗
i ) unless e = 0 a.s.

We will use the condition (RN) in the next Lemma and Theorem: there is an N-

dimensional vector W of independent Brownian Motions which are square-integrable

(F ,P) Martingales such that ρ ∈ FW (the σ-algebra generated by W ).

Lemma 4.2. Suppose that condition (RN) holds. Then there is a γ = (γ1, ..., γN) ∈

Π2 such that:
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(i) Yt = Wt+
∫ t

0
γsds is an N-dimensional vector of independent Brownian motions

that is at the same time a square-integrable (P∗,F) martingale.

(ii) If x ∈ H(ρ), then x = E∗(x) +
∫ T

0
αsdYs for some α in Π2

Proof. For the rather technical proof that utilizes results from Kunita-Watanabe

and Girsanov, we refer to the appendix of [7].

Theorem 4.7. Suppose that condition (RN) holds and that H(ρ) ⊂ M . If we

assume that the ith investor choses the claim x∗i by following the trading strategy θ∗i ,

so that θ∗iTZT = x∗i a.s. Then there exists an αi ∈ Π2, such that

θ∗itZt = θ∗i0Z0 +

∫ t

0

αisdYs with (0 ≤ t ≤ T ) (4.17)

Proof. From Lemma 4.1 we get x∗i ∈ H(ρ).

From Lemma 4.2 we get x∗i = E∗(x∗i ) +
∫ T

0
αisdYs with (0 ≤ t ≤ T ).

Since both θ∗iZ and
∫
αisdYs are martingales, we have:

θ∗itZt = E∗(θ∗iTZT |Ft) = E∗(x∗i |Ft) = E∗(x∗i ) +

∫ T

0

αisdYs (4.18)

This shows that the value of any optimal portfolio can be calculated as the stochastic

integral over a martingale Y, which is the same for all optimal portfolios plus some

initial price.
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Chapter 5

The Mutual Fund Theorem and

Separation in recent papers

5.1 A generalization of the Mutual Fund Theo-

rem

Let us assume a continuous market with a risk-free asset and n risky assets. The

price dynamics of the 0th and risk-free asset is given by:

dS0(t) = r(t)So(t)dt (5.1)

while the price of the ith risky asset follows the diffusion process:

dSi(t) = bi(t)Si(t)dt+ Si(t)
k∑
j=1

σi,j(t)dWj(t) (5.2)

where W (t) is a k-dimensial standard Brownian Motion. Both the interest rate r(t)

and the volatility matrix σ(t) are known at time t. We further assume the matrix

σ(t) to be non-singular. The latter assumption is not very restrictive, since any

security that is linearly dependent on the other securities can simply be omitted in

our calculations. Let c(t) denote the instantaneous consumption rate. Then we can
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calculate the value of the portfolio at time t:

X(t) =
n∑
i=0

Ni(t)Si(t) (5.3)

where Ni(t) is the number of shares of the ith security the investor holds at time t.

The changes in portfolio value is:

dX(t) =
n∑
j=1

Hi(t)

(
bi(t)dt+

n∑
j=1

σi,j(t)dWj(t)

)
+

(
X(t)−

n∑
i=1

Hi(t)

)
r(t)dt−c(t)dt

(5.4)

If we use vector notation we get the following expression for changes in portfolio

value:

dX(t) = H(t) [(b(t)− r(t) · 1)dt+ σ(t)dW (t)] + [r(t)X(t)− c(t)] dt (5.5)

In the spirit of [14], we will henceforth only consider strategies (H(t), c(t)), for which

equation 5.5 has a unique solution. Furthermore we require the associated wealth

process to be always non-negative and refer to strategies that fulfill this condition

as feasible. Since we assume the variance matrix σ(t) to be invertible, we can define

γ(t) = σ−1(t)(b(t)− r(t) · 1)dt. Plugging γ into equation 5.5, we get:

dX(t) = H(t)σ(t)[γ(t) + dW (t)] + [r(t)X(t)− c(t)]dt (5.6)

Let us define the discount factor β(t) = exp
(
−
∫ t

0
r(s)ds

)
and the discounted wealth

process Y (t) = β(t)X(t). We get:

dY (t) = β(t)H(t)σ(t)[γ(t)dt+ dW (t)]− β(t)c(t)dt (5.7)

where we can drop the summand r(t)X(t) from equation 5.6 due to discounting. We

can further simplify this by substituting C(t) = c(t)β(t) and s(t) = β(t)H(t)σ(t).

Hence 5.7 takes the form of:

dY (t) = s(t)[γ(t)dt+ dW (t)]− C(t)dt (5.8)

Khanna and Kulldorf point out that the transformed differential equation 5.8 is a

special case of 5.5 with the following properties:
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(i) zero interest rate on bond: r(t) = 0

(ii) all stocks are stochastically independent: σi,j = 0, for i 6= j

(iii) infinitesimal variance for each stock is 1: σi,i = 1

(iv) infinitesimal drift for the ith stock at time t is γi(t)

It is sufficient to show mutual fund results for equation 5.8, the results for 5.5 follow

directly. We will refer to any solutions of the original problem as (H(X, t), c(X, t))

and to the new problem of equation 5.8 as (s(Y, t), C(Y, t)).

We don’t pose any restrictions on the utility functions. Consequently we aim to

show the following: if there exists an optimal solution, then there exists one with

only 2 mutual fund, one of which is the riskless asset. If, however there isn’t an

optimal solution to begin with, then for any arbitrary investment strategy we can

find one that is at least as good or better using only the mutual funds.

Lemma 5.1. In a complete market, if there is an optimal investment strategy

(s(Y, t), c(Y, t)), there is one of the form (s∗(Y, t), c∗(Y, t)) with

s∗(Y, t) = K(t)γ(t) (5.9)

for some scalar K(t). If no optimal strategy exists, then for any feasible strategy there

exists another one of the above form which is just as good or even advantageous to

an investor.

Proof. The proof follows the following logic: Given a strategy (s(Y, t), C(Y, t)),

we construct another investment and consumption strategy (s∗(t), C∗(t)) which

only invests in the risk-free asset and a mutual fund consisting of the original

securities. The proportion of the individual securities depends on the value of

γ(t) = σ−1(t)(b(t) − r(t) · 1)dt. We proceed to show that the wealth processes
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Y (t) and Y ∗(t) have the same distribution and E[U(Y (T ))] = E[U(Y ∗(T ))]. Since

the discounted consumption C∗(Y, t) ≥ C(Y, t) we get the result that the new strat-

egy (s∗(Y, t), C∗(Y, t)) is at least as good or even better than the original one. For

the details of the proof, see [14].

Theorem 5.1. In a complete market, if there is an optimal investment strategy

(H(t), c(t)), then there is one of the form (H∗(t), c∗(t)) with

H∗(X, t) = K ′(X, t)γ(t)σ−1(t) (5.10)

for some scalar K ′(t). If no optimal strategy exists, then for any feasible strategy

there exists another one of the form above which is just as good or even advantageous

to an investor.

Proof. Transforming the result of Lemma 5.1, [14] achieves this result.

Remark. At time t only the current and past values for r(t), b(t) and σ(t) are known

and needed to construct the mutual fund. Hence individual investor’s expectations

about future values of those coefficients do not influence present investment decisions

in any way.

Remark. If the stock returns are independent, theorem 5.1 tells us to invest in

the ith security in proportion to γi(t) = (bi(t)−r(t))
σi,i

. The economic interpretation of

this is to divide the ith security’s excess drift (drift - interest rate) by the security’s

variance, in other words: the allocation of initial wealth to the ith security increases

with excess drift and decreases with volatility.
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5.2 A further generalization of the Mutual Fund

Theorem

In this section we strive to tie all our previous findings together. We will rely

heavily on [26] and consider a market on the finite time interval [0, T ] with one

risk-free and n risky assets. We assume the process that drives stock prices S to be

a locally bounded semimartingale (we can rewrite the process as the sum of a local

martingale and an adapted finite-variation process). We define a portfolio as a pair

(x,H) where x represents initial wealth and H the trading strategy. We can express

the portfolio value:

Wt = x+

∫ t

0

HudSu with 0 ≤ t ≤ T (5.11)

We call to the set of all wealth processes with nonnegative capital at all times and

with initial value of x of the form of equation 5.11 χ(x). As Ŵ (x, U) we denote the

optimal wealth process that maximizes the following expression:

supW∈χ(x) E[U(WT )] (5.12)

We will use the term mutual fund similarly as in previous chapters:

Definition. A mutual fund for the market is any positive wealth process M with

initial capital equal to one. M ∈ χ(1)

We say the market satisfies the Mutual Fund Theorem if there exists a mutual fund

M such that for all utility functions the optimal wealth process can be written as a

certain starting value x and a stochastic integral with respect to M. In other words,

there exists a process k = k(x, U) such that:

X̂t(x, U) = x+

∫ t

0

kudMu (5.13)

We will continue to use the notation in [26] and define:

� GW
t = σ(Wt)
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� set of all bounded European options 1 on the numéraire N expiring at time T :

L∞(GN
T )

� set of all bounded random variables that are replicable by trading in the whole

market R(S)

� set of all bounded random variables that are replicable by trading in the mutual

fund and the risk-free asset: R(M)

For the following results, we need a few key assumptions.

Assumption 5.1. The set of equivalent local martingale measures2 is non-empty.

Assumption 5.2. The utility function is strictly increasing, strictly concave and

differentiable on (0,∞) and the Inada conditions hold true:

limx→0 U
′(x)→∞ and limx→∞ U ′(x)→ 0 (5.14)

We also requite the reasonable asymptotic elasticity condition

lim supx→∞
xU ′(x)

U(x)
< 1 (5.15)

We can read in [15] that many popular utility functions like U(x) = ln(x) or U(x) =

xα

α
for α < 1, fulfill this condition. It is also here the the cencept of asymptotic

elasticity was first introduced.

Assumption 5.3. We assume that u(x) <∞ for some x > 0, where

u(x) = supW∈χ(x) E[U(WT )] (5.16)

Assumption 5.4. supW∈χ(1) E[ln(WT )] <∞
1An option that is not path-dependent and has fixed maturity
2A probability measure Q ∼ P is called an equivalent local martingale measure if S is a local

martingale under Q
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We will refer to the optimal wealth process for initial wealth 1 and utility function

ln as N and the numéraire portfolio. In short: N = X̂(1, ln).

Assumption 5.5. The process Zt = 1
Nt

is a martingale.

Now we are equipped to present one of the key results of this thesis:

Theorem 5.2. Let us assume the financial market fulfills assumptions 5.1, 5.4 and

5.5. If every European option on the numéraire portfolio can be replicated by trading

only in the mutual fund M and cash, then the Mutual Fund Theorem holds true with

respect to all utility functions that fulfill assumptions 5.2 and 5.3. More formally:

If there exists a mutual fund M such that L∞(GN
T ) ⊂ R(M) (5.17)

then the Mutual Fund Theorem holds true with respect to all utility functions that

fulfill assumptions 5.2 and 5.3.

We refer to the replicability condition 5.17 as (R) and to the Mutual Fund Theorem

as (MFT).

Proof. We refer the reader to [26] for the proof.

Remark. As a direct consequence of theorem 5.2, if we can replicate every European

option on the numéraire portfolio by trading only in the numéraire and cash, then

the Mutual Fund Theorem naturally holds true with the numéraire as mutual fund.

We call this condition (RN) and write:

L∞(GN
T ) ⊂ R(N) (5.18)

We have seen that the Mutual Fund Theorem holds true if we assume either (R) or

(RN). Now it is only natural to ask if the inverse also holds true, in other words

are (R) and maybe even (RN) consequences of the Mutual Fund Theorem? The

answer in general in no. If we consider a financial market with only one risky asset,
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naturally the (MFT) holds true with the one asset being the mutual fund. But

the replicability condition doesn’t necessarily hold true, see [26] example 4.5 for a

counterexample. In order to get the implication in the other direction, we need to

make further assumptions. The following is a promising candidate:

L∞(GN
T ) ⊂ R(S) (5.19)

We will refer to this weak completeness condition as (WC). This simply means that

any European option on the numéraire can be replicated by trading in all available

stocks and the risk-free asset. Clearly (R) implies (WC): if we can replicate all

European options by trading only in a mutual fund, we can do so by trading all

available securities as well.

Theorem 5.3. Let us assume the financial market fulfills assumptions 5.1, 5.4

and 5.5 as well as weak completeness 5.19. Further, we presume the Mutual Fund

Theorem holds true with respect to all utility functions that fulfill assumptions 5.2

and 5.3. Then the replicability condition (R) 5.17 holds true.

Proof. See [26] for the proof.

Let us summarize the findings of the previous two theorems. Theorem 5.2 tells

us that under certain assumptions, (R) → (MFT ). Furthermore, as we already

pointed out, (R) implies (WC). Conversely, theorem 5.3 shows that (WC) and the

(MFT ) imply (R). Hence there is equivalency. This is the central result of [26]:

(MFT ) + (WC)↔ (R) (5.20)
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Chapter 6

Empirical study: Can we observe

the Mutual Fund Theorem?

We have discussed various versions of the Mutual Fund Theorem and numerous

Separation results in great detail. Now it is only natural to ask whether we can

observe those results in real financial markets.

In one of the most common versions, the 2-fund Separation Theorem (Capital Asset

Pricing Model, see [24],[14] and [19]) predicts that all risk averse investors should

hold only one risky mutual fund and cash. Since the mutual fund is the same for all

investors, everyone should hold the risky assets in the same proportion. Only the

ratio of risky to riskless assets varies with different degrees of risk aversion. This is

one of the central ideas of financial mathematics, which makes it even more stunning

how few empirical studies have been done to verify this. One of them, [5] surprises

the reader with the following introduction:

“Popular financial advisors appear not to follow the mutual-fund sep-

aration theorem. When these advisors are asked to allocate portfolios

among stocks, bonds, and cash, they recommend more complicated strate-

gies than indicated by the theorem. Moreover, these strategies differ from
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the theorem in a systematic way. According to these advisors, more risk

averse investors should hold a higher ratio of bonds to stocks. This ad-

vice contradicts the conclusion that all investors should hold risky assets

in the same proportion.”

Let us investigate this assertion. Basically what the CAPM states is that all in-

vestors should hold the risky assets (in our case we assume them to be risky bonds

and stocks) in the same proportion with the only variable being how much of risk-

free cash they hold. Hence the ratio of bonds
stocks

should remain constant for all investors.

But does it? Fidelity and Vanguard, by every imaginable measure two of the fore-

most investment advisors, supply their clients with a plethora of asset allocation

suggestions among stocks, bonds and cash (see tables 7.1 - 7.4 in the appendix). If

their advice were consistent with the Mutual Fund Theorem and CAPM we would

expect the ratio of bonds to stocks to remain constant.

We now plot the share of total investment in stocks as a proxy for risk tolerance on

the X-axis against the ratio of bonds to stocks on the Y-axis. Again, according to the

Mutual Fund Theorem we would expect to see a straight line parallel to the X-axis

(even if the share of stocks increases, the composition of the risky assets remains

the same and with them the bond to stock ratio). This is not, however, what we

observe. In fact, figure 6.1 paints quite a different picture. Clearly all four trend

lines are downward sloping, which means that as the portfolio gets riskier (higher

share in stocks), the composition of risky assets gets riskier as well (decrease in the

ratio of bonds to stocks).
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Figure 6.1: Isomean and isovariance curves

Data: see tables 7.1 - 7.4 in the appendix

What explains the discrepancy between the elegant theory and recommendations

from asset managers? One obvious answer is that investors simply don’t buy just

one or two mutual funds. There are thousands of different funds. Still, their ex-

istence can be explained by different expectations about the distribution of future

returns. Yet this does not justify our findings, since we observe a negative slope in

all four graphs even though every single one of them derives from recommendations

of one single assent manager and it is save to assume that they apply the same

expectations across all proposed asset combinations.

Another reason could be that people don’t follow the theory, because it is too compli-

cated. Yet in this case the conclusion of the Mutual Fund Theorem to hold the risky
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assets always in the same proportion is clearly simpler that the advice of Vanguard

and Fidelity. So this doesn’t explain the difference either.

An alternative to assuming that people make the wrong investment choices (and

asset managers propose the wrong mix of assets) is to argue that the model behind

the theory is faulty. This becomes even more likely when we consider that the

findings of the Mutual Fund Theorem and investment choices in the real world

differ systematically. All theories rest on assumptions, in the case of CAPM it’s the

following five:

(i) All assets can be freely traded

(ii) Investors consider a one-period investment horizon

(iii) Long and short positions in all assets are possible

(iv) Investors consider only mean and variance of securities

(v) A riskless asset exists

Canner et al. show in [5], that relaxing (iv) and (v) doesn’t explain the disparity.

Relaxing assumption (iii) is unlikely to do the trick either, since in about a third

(8 out of 22) of the presented asset allocation the share of cash is > 0. In those

cases short-selling of cash clearly wasn’t an option. The same is true for stocks and

bonds. This effect is even more pronounced in [5], where only 2 out of 12 sample

portfolios hold no cash whatsoever. Concerning (ii), if the asset returns are indepen-

dently distributed over time, relaxing this assumption won’t supply an explanation

either (heteroskedastic stock returns and serially correlated interest rates make in-

dependence very unlikely, see [4] and [3]). If they are not, however, further research

is required. There are assets that we simply can’t trade, e.g. human capital. It

is only natural to assume that younger people have ”more human capital, so they

should hold less stocks relative to bonds (since returns on human capital and on
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stocks should be positively correlated). This is the opposite of what we see in figure

6.1 and table 7.1, so relaxing (i) won’t help us either. We have to conclude that

current research can’t explain the apparent divergence between the predictions of

the Mutual Fund Theorem and advice of asset managers. Clearly further research

into this matter is required.
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Chapter 7

Conclusion

The goal of this thesis was to give the reader an extensive overview over the de-

velopment of the Mutual Fund Theorem in scientific literature. We covered almost

60 years, starting with Markowitz and Tobin ([18] and [32]) and finishing with the

recent results of Schachermayer et al. [26].

The literature on the Mutual Fund Theorem is extensive, yet surprisingly few stud-

ies into whether the predictions actually hold true have been done. Further studies

into why asset allocation suggestions and investment choices in general systemati-

cally seem to differ from the predictions of the Mutual Fund Theorem are needed.

It is the firm belief of the authors, that such studies would help further the under-

standing of investment choices in particular and human decision making in general.

There are exciting times ahead of us.
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Appendix
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Portfolio Shares Bonds Cash Bonds
Shares

Retirement Portfolio 2050 90% 11% 0% 12%

Retirement Portfolio 2045 85% 15% 0% 18%

Retirement Portfolio 2040 84% 16% 0% 19%

Retirement Portfolio 2035 83% 18% 0% 22%

Retirement Portfolio 2030 76% 24% 0% 32%

Retirement Portfolio 2025 70% 30% 0% 43%

Retirement Portfolio 2020 62% 35% 3% 56%

Retirement Portfolio 2015 52% 39% 9% 75%

Retirement Portfolio 2010 49% 40% 10% 82%

Table 7.1: Fidelity 1

Source: Fidelity webpage

Portfolio Shares Bonds Cash Bonds
Shares

Growth 70% 25% 5% 36%

Balanced 50% 40% 10% 80%

Conservative 20% 50% 30% 250%

Table 7.2: Fidelity 2

Source: Fidelity webpage
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Portfolio Shares Bonds Cash Bonds
Shares

Balanced 1 40% 60% 0% 150%

Balanced 2 50% 50% 0% 100%

Balanced 3 60% 40% 0% 67%

Growth 1 70% 30% 0% 43%

Growth 2 80% 20% 0% 25%

Growth 3 100% 0% 0% 0%

Table 7.3: Vanguard 1

Source: Vanguard webpage

Portfolio Shares Bonds Cash Bonds
Shares

Growth 80% 20% 0% 25%

Moderate Growth 60% 40% 0% 67%

Conservative Growth 40% 40% 20% 100%

Income 20% 60% 20% 300%

Table 7.4: Vanguard 2

Source: http://www.bogleheads.org/wiki/Vanguard_LifeStrategy_Funds
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