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Abstract 

The transcriptional repressor PIE-1 is a fate determinant essential for the correct 

development of germline stem cells in C. elegans. During the asymmetric cell divisions of 

early embryos, PIE-1 must be localised asymmetrically in order to be restricted to the 

germline lineage. PIE-1 functions in the nucleus and cytoplasmic RNA–protein aggregates 

called P granules. The localisation of PIE-1 to these compartments is thought to reflect its 

cytoplasmic localisation. PIE-1 mRNA is reported to be uniformly distributed in early 

embryos, suggesting that PIE-1 localisation is controlled at the protein level.  

Using a combination of time-lapse imaging, optical manipulations and genetics, I have 

investigated how PIE-1 is segregated to the germline lineage in one-cell embryos. I found 

that PIE-1 exhibits an exponential concentration gradient with its source at the posterior 

cortex. PIE-1 stability and/or production depend on the posterior cortical component PAR-1. 

The PIE-1 gradient is initiated at polarity establishment and stabilises over a period of 

approximately 6 minutes. Partial depletion of PIE-1 does not affect gradient shape, 

consistent with a diffusion-based mechanism, but affect P granule association suggesting that 

PIE-1 concentration may limit its aggregation. 

Analysis of the PIE-1 gradient in embryos depleted of other germline fate determinants 

showed a correlation between gradient shape, diffusion rates, and P-granule association. 

These results suggest that PIE-1’s association with P granules may contribute to gradient 

stability but this is unlikely to provide the sole mechanism of gradient formation. In contrast 

to P granules, the nuclear localisation of PIE-1 had only a negligible effect on the gradient. 

Time-lapse imaging of P granules (PGL-1) and the germline factor MEX-1 in embryos 

depleted of PIE-1 indicated a hierarchy in P granule localisation, such that MEX-1 is 

required for PIE-1 localisation to P granules but not vice-versa. 

In addition to its P granule localisation, MEX-1 exhibits an exponential concentration 

gradient from the posterior cortex similar to that of PIE-1, suggesting that using a 

concentration gradient might be a common mechanism for cytoplasmic asymmetry of 

germline factors. Thus, PIE-1 appears to be restricted to the future germline lineage by a 
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diffusion-based gradient from the posterior cortex that is shaped by MEX-1-facilitated 

association with P granules. 
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Zusammenfassung 

Die Zelldifferenzierungsdeterminante PIE-1 bestimmt die Entwicklung und Identität der 

Keimbahn-Stammzellen in C. elegans, in dem die Transkription der Stammzellen inhibiert 

wird. PIE-1 akkumuliert in den asymmetrischen Zellteilungen auf einer Seite des frühen 

Embryos. Dieser Prozeß ermöglicht, daß PIE-1 nur an die Keimbahnzellen weitergegeben 

wird. PIE-1 ist im Nukleus und in zytoplasmatischen mRNA–Protein–Komplexen – so 

genannten „P granules“ – zu finden. Das Vorhandensein des Proteins in diesen 

Zellkompartimenten scheint von seiner zytoplasmatischen Lokalisierung bestimmt zu 

werden. Das spezifische Lokalisierungsmuster von PIE-1 wird möglicherweise auf 

Proteinebene reguliert, da die Boten-RNA (mRNA) gleichmäßig in frühen 

Entwicklungsstadien des Embryos verteilt ist. 

Die Frage, wie PIE-1 spezifisch an die Keimbahnlinie weitergegeben wird, versuche ich mit 

einer Kombination aus Zeitrafferaufnahmen, optischen und genetischen Manipulationen zu 

beantworten. Ich konnte zeigen, daß PIE-1 einen expotentiellen Konzentrationsgradient 

bildet, wobei sich höchste Proteinkonzentration – die Gradientenquelle – am posterioren 

Kortex befindet. Deren Proteinstabilität/-produktion hängt vom posterioren Polaritätsprotein  

PAR-1 ab. Der PIE-1–Gradient entsteht zum Zeitpunkt der beginnenden Polarisierung des 

Embryos und stabilisiert sich über die folgenden sechs Minuten. Der PIE-1–Gradient 

entsteht auch nach Verminderung der Proteinmenge, was auf einen diffusionsbasierenden 

Mechanismus schließen läßt. Jedoch verändert sich das Assoziationsverhalten von PIE-1 an 

„P granules“. Möglicherweise ist die cytoplasmatische Konzentration an PIE-1–Protein 

limitierend für diese Assoziation ist. 

Mit Hilfe der Analyse des PIE-1–Gradienten in Embryonen, in denen andere Keimbahn-

Differenzierungsdeterminanten entfernt wurden, konnte ich einen Zusammenhang zwischen 

der Form des Gradienten, der Diffusionsgeschwindigkeit und der Bindung an „P granules“ 

fest stellen. Allerdings scheint die Assoziation von PIE-1 an „P granules“ nicht der einzige 

Mechanismus zu sein, der zur Stabilität des Gradienten beiträgt. 
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Im Gegensatz zu den „P granules“ hat die nukleare Lokalisierung von PIE-1 nur einen 

geringfügigen Effekt auf die Stabilität des Gradienten. Ich konnte eine Hierarchie in der 

Binding von PIE-1 und MEX-1 an „P granules“ erkennen: Die 

Zelldifferenzierungsdeterminante MEX-1 wird für die PIE-1–Bindung an „P granules“ 

benötigt, was allerdings nicht auf die umgekehrte Situation zutrifft. Zusätzlich zur 

Lokalisierung an „P granules“ zeigt MEX-1 wie PIE-1 einen exponentiellen 

Konzentrationsgradient mit der höchsten Proteinkonzentration am posterioren Kortex. 

Zusammenfassend deuten meine Daten darauf hin, daß PIE-1 mittels eines vom posterioren 

Kortex ausgehenden, auf Diffusion basierenden Gradienten, ausschließlich an Zellen der 

Keimbahnline weitergegeben wird. Die von MEX-1 ermöglichte Bindung von PIE-1 and „P 

granules“ scheint zur Formierung des Gradienten eine entscheidende Rolle zu spielen. 
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1 Introduction 

The life of most organisms starts out with a single cell, or zygote. During development, the 

zygote divides to give rise to a multi-cellular organism consisting of highly diverse cell 

types, such as muscles, neurons, glands, and immune and blood cells, which carry out 

different functions. The creation of this wide range of cell types is facilitated by asymmetric 

cell division, resulting in two daughter cells that pursuit different cell fates and functions. 

The self-renewal of stem cells follows the same asymmetric cell division process: one 

daughter cell maintains its stem cell-like characteristics while the other differentiates. 

1.1 Asymmetric Cell Division 

It is established that two basic mechanisms result in cellular diversity: extrinsic and intrinsic 

cell fate determination. Using the extrinsic mechanism, the cell divides symmetrically to 

give rise to two identical daughter cells. Subsequently, one of the newly formed daughter 

cells receives an environmental signal that makes the cell take on a different cell fate than 

the sister. Cells using the intrinsic mechanism establish asymmetry prior to division and 

divide according to this asymmetry. Cells undergoing asymmetric cell division segregate fate 

determinants according to an internal polarity axis. The asymmetric inheritance of these 

determinants dictates the different cell fates of the two daughter cells (Betschinger and 

Knoblich, 2004). 

The nature of asymmetry in cell division is diverse; for example, the size of the daughter cell 

in the budding yeast Saccharomyces cervisiae is significantly smaller than of the mother cell. 

An even more extreme example of physical asymmetry can be observed during oocyte 

maturation of Caenorhabititis elegans: The reduction of the number of chromosomes in 

meiosis results in the oocyte and minute polar bodies (Oegema and Hyman, 2006). On the 

other hand, cells using the intrinsic mechanism demonstrate functional differences in the 

resulting daughter cells, by inheritance. In neuroblasts, the neuronal stem cell in the 

Drosophila melanogaster larval brain, inheritance of the cell fate determinant Numb, 

maintains the identity of one of the daughter cells. The other daughter cell, which is the 
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ganglion mother cell, terminates its differentiation after one additional cell division into 

neurons and glial cells (Gönczy, 2008). 

The polarity, which sets the axis for the asymmetric segregation of the cell fate determinates, 

is defined by a set of highly conserved proteins; the PAR proteins. These proteins were 

discovered in a screen for abnormal early development in the roundworm C. elegans 

(Kemphues et al., 1988). 

1.2 Caenorhabititis elegans 

The soil nematode C. elegans is an excellent model system to study asymmetric cell 

division. In the early embryo, a series of five asymmetric divisions creates the six founder 

cells: AB, MS, E, C, D, and P4, which give rise to all the cell lineages of a worm (Sulston et 

al., 1983). The first asymmetric cell division cleaves the zygote (P0) into the larger anterior 

blastomere (AB) and the smaller posterior blastomere (P1). P1 asymmetrically divides, 

resulting in EMS and P2. Subsequent asymmetric cell division of EMS into MS and E, P2 

into C and P3, and finally of P3 into D and P4 completes the generation of the founder cells 

(Sulston et al., 1983). The resulting cells differentiate to produce all cell types: the AB 

lineage produces the hypodermis, neurons, anterior pharynx and a range of cell types; MS 

gives rise to the somatic gonad, muscles, the majority of the pharynx, neurons, and gland 

cells; E makes up all intestinal cells; C produces muscle, the hypodermis and neurons; the D 

lineage differentiates into muscle; while the terminal cell of the P lineage, P4, is the germline 

precursor (Gönczy and Rose, 2005). 

Sidney Brenner chose the 1 mm long worm as a model organism to investigate mutations 

that cause behavioural defects. The decision to use C. elegans was based on its numerous 

advantages, such as a short life cycle of only 3 days under optimal conditions, small genome, 

small cell number in the nervous system, fast generation of mutants, and ease of culture in 

the laboratory (Brenner, 1974). Following the extended use of C. elegans in laboratories 

more advantages have become apparent: an invariant cell number of approximately 1000, the 

complete description of all cell lineages, genetically identical progeny caused by self 

fertilisation, and a well-annotated, fully-sequenced genome. Three recent Noble prizes have 
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been awarded to researchers for their findings in C. elegans: in 2002, for discoveries 

concerning genetic regulation of organ development and programmed cell death; in 2006, for 

the discovery of RNA interference – gene silencing by double-stranded RNA; and in 2008, 

for the discovery and development of the green fluorescent protein (GFP) 

(www.nobelprize.org). 

The body plan of C. elegans, like that of other nematodes, is simple: An unsegmented, 

cylindrical body is divided into an outer and inner tube, which are separated by the 

pseudocoelom. The body wall, which makes up the outer tube, consists of cuticle, 

hypodermis, excretory system, neurons and muscles. The inner tube comprises the pharynx, 

intestines and the gonad (WormAtlas). 

The life cycle of C. elegans is divided into embryonic stage, four larval stages (L1 to L4) 

and adulthood. Each larval stage ends with a molt. In the absence of a sufficient food source, 

L2 larvae enter the dauer stage and can survive up to 4 months of food shortage. While the 

generation time is only 3 days, the life span reaches about 3 weeks under optimal conditions 

(WormAtlas, Figure 1). 

 

C. elegans has five pairs of autosomes and one pair of sex chromosomes that defines the two 

genders: hermaphrodites (XX) and males (XO). Self-fertilizing hermaphrodites dominate 

C. elegans populations. Males arise spontaneously by non-disjunction of the X chromosome 

during meiosis. The frequency of males is very low in laboratory populations (0.1%) but can 

be increased to 50% through mating. During its life, a hermaphrodite produces sperm in the 

L4 stage and stores it in the spermatheca. Subsequently, it switches to oocyte production and 

approximately 300 eggs are fertilised with self-produced sperm. Self-fertilisation of the 

homozygous hermaphrodite results in identical progeny and, in the laboratory, male mating 

facilitates isolation and maintenance of mutant strains as well as introduction of new 

mutations to a strain (WormAtlas). 

The early cell divisions proceed in a typical manner and in rapid sequence: the first division 

is completed approximately 20 minutes after onset of polarity. The embryo itself is 50 µm in 
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length and 30 µm in diameter, making it easily accessible for imaging and optical 

manipulations (e.g., for laser ablation) (Oegema and Hyman, 2006). 

 

Figure 1: Life cycle of C. elegans. The life cycle starts with fertilisation (0 hr). The first few cell divisions of 
the fertilised egg are in utero. The eggs are laid during the gastrulation stage. The embryogenesis takes about 9 
hours and ends with the hatching of the worm. With each molt a new developmental stage starts. After 55 hours 
the worm has grown into an adult. The times given are for a life cycle at 22°C. The cells of the germ lineage are 
shaded green; the pharynx gray. Adapted from WormAtlas. 

1.3 Asymmetric Cell Division in C. elegans 

1.3.1 Oogenesis to first cell division in C. elegans 

In C. elegans, the reproductive system consists of the somatic gonad, the germline and the 

egg-laying apparatus. The two U-shape gonad arms are connected to the shared uterus 

through the two spermathecae, the sperm-storing compartments. Each ovary (distal gonad 

arm) is made up of a monolayer of somatic myo-epithelial sheaths cells and a basal 

membrane, which surrounds the germline (WormAtlas; Figure 2). 

Oogenesis takes place in each of the two arms of the ovaries. The germline stem cells are 

positioned at the distal tip of the syncitial gonad arm. In their undifferentiated and mitotic 
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state, these germline stem cells continually produce new germ cells. Cubical membranes 

surround the nuclei with the open side facing the lumen of the gonad arm. As the nuclei 

move away from the distal tip, they lose their mitotic potential, begin meiosis, and become 

fully surrounded by plasma membrane. While accumulating yolk granules and growing in 

size, the oocytes move towards the spermatheca where the fertilisation will take place. The 

unfertilised oocyte arrests in meiotic prophase I. During fertilization, the sperm and the 

surrounding gonad tissue provide signals to the oocyte to complete its maturation 

(Greenstein, 2005). 

 
Figure 2: Reproductive system of C. elegans. The two arms of the gonad make up most of the adult worm. 
The distal tip cells (DTC) are the germline stem cells and undergo mitotic divisions to produces germ cells, 
which gain meiotic potential as they move towards the proximal gonad. Membranes enclose the nuclei and the 
formed oocytes mature while travelling towards the spermatheca to become fertilised. The first cell division of 
the embryo happen in utero. The enlargement shows one gonad arm. The scale bar represents 0.1 mm. Adapted 
from WormAtlas.  

Ovulation pushes the oocyte into the spermatheca for fertilisation. Prior to sperm entry, the 

oocyte’s pronucleus moves to the side of the egg that is furthest away from the spermatheca 

(Goldstein and Hird, 1996). Thus the sperm usually, but not always, enters at the opposite 

site of the maternal pronucleus. The unfertilised oocyte has no developmentally relevant 

asymmetry: there is no preference as to where polarity will be established. With completion 

of meiosis, the zygote starts producing the three layers of eggshell: an outer vitilline layer, a 
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middle chitinous layer and an inner lipid-rich layer (WormAtlas). The production of the 

eggshell is linked to a successful meiosis; in weak mutants where the separation of the sister 

chromatids in meiotic anaphase II is affected, the secretion of the eggshell is also impaired 

(Shakes et al., 2003). 

After fertilisation, dramatic changes take place in the zygote. The plasma membrane begins 

to ruffle, which can be observed as temporary invaginations of the cortex. This causes 

cytoplasmic streaming, while the nucleus–centrosome complex moves randomly in 

proximity to the cortex within the embryo. Prior to polarity establishment (-12:00 [min:sec] 

relative to nuclear envelope breakdown [NEBD]), the pronuclei increase in size because of 

DNA synthesis. Also, the pair of sperm-provided centrioles starts recruiting pericentriolar 

material (PCM) and acquires microtubule nucleation potential (O'Connell, 2000; Pelletier et 

al., 2004). In addition, the random motion of centrosomes changes into a directed movement 

to the posterior cortex (Cowan and Hyman, 2004b). At the time of publication, the 

mechanism of action for this movement was not established.  

Polarity establishment is initially evident in a small cortical region overlying the 

centrosomes. Here, the cortical contractions stop, and the plasma membrane shows no 

invaginations and becomes smooth. At this point, the anterior–posterior axis is set up in the 

embryo. Both pronuclei continuously increase in size, while the two centrioles separate to 

form two new centrosomes on opposite sides of the paternal pronucleus (Gönczy et al., 

1999b). 

The smoothing of the membrane spreads symmetrically from the point of symmetry breaking 

towards the anterior (Cuenca et al., 2003). The smooth domain reaches its maximum size at 

pseudocleavage; the embryo is partially divided by a single reversible ingression (-4:00 

relative to NEBD). The centrosome–pronucleus complex stays in the proximity of the cortex 

during polarity establishment. 

In mitotic prophase, the chromosomes condense and the centrosomes continue accumulating 

pericentriolar material and nucleating astral microtubules. The pronuclei migrate towards 

each other. The initial movement of the maternal pronucleus is slow but speeds up 5- to 10-

fold to meet the paternal pronucleus in the posterior half of the embryo (-3:00 relative to 
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NEBD; 0.6 embryo length [EL]). The favoured model is a “pulling” of the paternal 

pronucleus towards the cell centre by astral microtubules attached to the force generator 

dynein, which is anchored to the cortex (Kimura and Onami, 2005). However, slow 

pronuclear movement is still observed in embryos that are compromised in the microtubule 

cytoskeleton, lack centrosomes or fail to recruit dynein to the nuclear envelope (Cowan and 

Hyman, 2004b; Schmidt et al., 2005), in which cytoplasmic flow may contribute to 

pronuclear movement (Goldstein and Hird, 1996). 

 
Figure 3: Time-lapse images of the first cell division in C. elegans. At -9:00, polarity has established and the 
posterior smooth domain expands. At -6:00, pronuclei migration begins and the chromosomes start 
condensation. At -3:00, the pronuclei meet and move to the centre of the embryo. At 0:00 (NEBD) the nuclear 
envelope completes disassembly while the spindle aligns along the anterior–posterior axis. At +3:00, 
centrosomes are separated and the spindle is asymmetrically displaced to the posterior. At +6:00, the cell 
division is finished. The chromosomes are visualised with histon 2B, the centrosomes with γ-tublin. All times 
are relative to NEBD. The anterior is to the left. The scale bar represents 10 µm. 
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The pronuclei–spindle complex moves to the centre of the embryo and centrosomes align 

with the anterior–posterior axis of the egg by performing a 90˚ rotation (Albertson, 1984). 

Subsequently, at NEBD (0:00), the chromosomes align at the metaphase plate and the two 

spindle poles face the poles of the embryo (Figure 3). Centration and rotation of the 

pronuclei–spindle complex is dependent on dynein and dynactin as well as long astral 

microtubules, which are anchored to the plasma membrane (Gönczy et al., 1999a; Skop and 

White, 1998). 

The separation of the chromosomes in anaphase is mediated by unequal forces acting on the 

two spindle poles, resulting in an asymmetric elongation of the spindle, its posterior 

displacement and oscillation of the posterior spindle pole (Grill et al., 2001; Labbé et al., 

2004). Concurrently, an actin˗myosin-based contractile ring assembles on the inner surface 

of the plasma membrane in preparation for cytokinesis (Schroeder, 1973). The mitotic 

spindle positions the contractile ring; the upstream signals originate in the central spindle 

and astral microtubules (Bringmann and Hyman, 2005; Dechant and Glotzer, 2003). The 

posterior displacement of the spindle causes the cleavage to be likewise displaced slightly to 

the posterior. The activity of the motor protein myosin drives the sliding of actin filaments to 

constrict the actin˗myosin ring, resulting in ingression of the cleavage furrow and, finally, 

abscission (Glotzer, 2009). This process results in a two-cell embryo with each blastomere 

differing in size and cell fate. 

 

For a successful asymmetric cell division, three initial steps are essential: First, a polarity cue 

breaks the symmetry of the egg and orients the anterior–posterior axis. Second, according to 

this axis, domains involving PAR proteins are formed at the cortex. Third, the information at 

the cortex is transduced into the cell and polarises the cytoplasm, leading to the asymmetric 

segregation of cell fate determinates (Cowan and Hyman, 2004a). 

1.3.2 Symmetry breaking and polarity establishment 

The fertilising sperm contributes a pronucleus, centrosome and cytoplasm to the oocyte. 

Approximately 20 min after fertilization, the first signs of polarity are observed; centrosomes 
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move to the cortex and the posterior cortex smoothes. At the time of publication, the cue that 

triggers these events was not established; however, evidence supports the sperm-supplied 

centrosomal signal hypothesis: The site of the sperm entry and the position of the polarity 

establishment are both in the posterior of the egg (Goldstein and Hird, 1996). Furthermore 

the paternal pronucleus–centrosome complex moves the site of polarity initiation (Cowan 

and Hyman, 2004b). Anucleated sperm is sufficient to induce the establishment of the 

anterior–posterior axis, leaving the centrosome as a potential cue (Sadler and Shakes, 2000). 

Following up on this evidence, embryos with mutations in the centrosomal proteins spindle 

defective (SPD)-2 and -5 were analysed. The embryos demonstrate severe defects in the 

recruitment of PCM, which cause impairment of the function of centrosomes and the 

establishment of polarity (Hamill et al., 2002; O'Connell et al., 2000). 

Additional evidence that the symmetry breaking cue is given by a centrosomal component 

comes from laser ablation experiments where the physical destruction of centrosomes 

prevents polarity established (Cowan and Hyman, 2004b). The timing of the ablation is 

crucial. The removal of the centrosomes can only prevent polarity when performed prior to 

the establishment of polarity. 

The cyclin E (CYE-1)–cyclin dependent kinase (CDK)-2 complex times the recruitment of 

centrosomal proteins to polarity establishment. Inactivation of this complex interferes with 

the correct assembly of the centrosomes and consequently with polarity establishment 

(Cowan and Hyman, 2006). 

1.3.3 Contractile polarity 

Shortly after the oocyte has completed the cortical rearrangement required to exclude the 

polar bodies, the ruffling of the entire cortex begins. This involves contraction of the 

underlying actomyosin network, as demonstrated by the addition of the actin 

depolymerisation drug cytochalisin, which abolishes all cortical activity (Hill and Strome, 

1988, 1990; Strome and Wood, 1983). Additional evidence to support actomyosin-based 

contractions comes from RNAi depletion experiments targeted against the actin nucleators 

formin-homology protein CYK-1, profilin-1 (PFN-1), and the nonmuscle myosin (NMY)-2 
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heavy chain and its regulatory myosin light chain (MLC)-4, which disrupted the integrity of 

the cortical actomysoin network and prevent ruffling as well as polarity establishment (Guo 

and Kemphues, 1996; Severson et al., 2002; Shelton et al., 1999). 

 

 
Figure 4: Contractile polarity in C. elegans one-cell embryo. Upon the symmetric breaking cue given by a 
centrosomal component, the cortical ruffling induced by actomyosin-based contractions ease to the anterior; 
leaving the posterior domain smooth. This domain expands and reaches it maximum dimension at 
pseudoclevage. The dashed line shows the contracile cortical domain; the solid line indicates the smooth 
domain. The anterior of the embryo is to the left. Adapted from Cowan and Hyman (2007). 

Contractile polarity describes the asymmetry of cortical activity; the anterior cortex ruffles 

while the posterior cortex is smooth (Figure 4). The asymmetry in contractile polarity can be 

visualised by time-lapse recording of GFP-tagged version of NMY-2: contractions are seen 

as dense foci of NMY-2 that move from the anterior to the posterior leaving the anterior pole 

free of cortical NMY-2 (Motegi and Sugimoto, 2006). This depends on the regulated activity 

of the small GTPase Rho (RHO-1) (Motegi and Sugimoto, 2006; Schonegg and Hyman, 

2006). RHO-1 is activated by the activator guanine nucleotide exchange factor (GEF), 

ECT-2, and inactivated by the GTPase-activating protein (GAP), CYK-4 (Motegi and 

Sugimoto, 2006; Schonegg and Hyman, 2006). The asymmetry in contractile polarity is 

initiated by removing ECT-2 from the site of polarity establishment (Motegi and Sugimoto, 

2006). Subsequently, the sperm-donated population of CYK-4 localises to the small cortical 

region in proximity to the pronucleus–centrosome complex (Jenkins et al., 2006), which 

results in the easing of contractions. The smooth cortical domain expands towards the 

anterior until approximately half the embryo is occupied: RHO-1 and ECT-2 follow the 

boundary of the shrinking contractile domain (Motegi and Sugimoto, 2006). 

The establishment of cortical polarity dictates, in part, the establishment of PAR polarity: 

PAR protein complexes localise exclusively to either the anterior or posterior cortex of the 
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one-cell embryo. The mutant in MLC-4 and NMY-2 disrupt the actomyosin network and are 

not able to establish polarity – either contractile or PAR polarity (Guo and Kemphues, 1996; 

Severson et al., 2002; Shelton et al., 1999). The initiation of contractile polarity appears to be 

PAR-protein independent because the two contractile domains are still formed in PAR null 

mutants (Kirby et al., 1990; Munro et al., 2004). 

1.3.4 PAR polarity 

The first PAR proteins were identified in a screen for proteins involved in the early 

development of C. elegans (Kemphues et al., 1988). Mutations in any of these genes 

revealed a partioning defective (PAR) phenotype resulting in symmetric cell divisions. 

PAR-1 and PAR-4 are serine/threonine kinases (Guo and Kemphues, 1996; Watts et al., 

1996). PAR-5 belongs to the 14-3-3 protein family, which serves as adaptor/scaffold proteins 

with specific binding to phosphorylated serines and threonines (Morton et al., 2002). The 

PSD-95/disc-large/ZO-1 (PDZ) domain in PAR-3 and PAR-6 is often found in scaffolding 

proteins that facilitate protein–protein interactions (Hung and Kemphues, 1999). PAR-2 

contains a RING (really interesting new gene) finger: this protein domain is often found in 

E3 ligases that target proteins for degradation via the ubiquitin–proteasome pathway (Boyd 

et al., 1996; Levitan et al., 1994). Some of the PAR proteins demonstrate a particular cortical 

localisation: PAR-3 and PAR-6 are found at the anterior cortex, PAR-1 and PAR-2 at the 

posterior, while PAR-4 and PAR-5 are symmetrically distributed at the cortex as well as in 

the cytoplasm (Boyd et al., 1996; Etemad-Moghadam et al., 1995; Guo and Kemphues, 

1995; Hung and Kemphues, 1999; Levitan et al., 1994; Morton et al., 2002). 

Prior to polarity establishment, the anterior PAR proteins are uniformly distributed at the cell 

cortex, revealed by imaging of GFP:PAR-6 (Cuenca et al., 2003). With the smoothing of the 

posterior cortex, the anterior PAR proteins recede and follow the contractile domain towards 

the anterior. Subsequently, PAR-1 and PAR-2 access the cortex, which lacks the anterior 

PAR proteins. This posterior PAR domain retracts until it occupies half of the embryo. The 

contractile polarity domains precisely align with the PAR domains (Figure 5). 
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Figure 5: PAR polarity in C. elegans one-cell embryo. Upon symmetric breaking, the posterior PARs appear 
at the cortex. The posterior PAR domain expands and is inherited by the P1 cell; the anterior PAR domain by 
the AB blastomere. The anterior of the embryo is to the left. Adapted from Cowan and Hyman (2007). 

PAR-6 additionally interacts with the atypical protein kinase C (PKC)-3 and the actin 

nucleator CDC-42, forming the functional anterior PAR protein complex (Gotta and 

Ahringer, 2001a; Li et al., 2010; Tabuse et al., 1998). PAR-1 requires the presence of PAR-2 

for proper cortical localisation (Boyd et al., 1996). The association to the cortex does not 

appear to be of a constant nature but rather follows a continuous on and off process; 

fluorescence recovery after photobleach (FRAP) experiments demonstrated that PAR-2 and 

PAR-6 dynamically associate with the cortex (Cheeks et al., 2004).  

Reciprocal inhibitory interactions are thought to keep the anterior and posterior PAR 

domains separate. Downregulation or depletion of PAR-5 leads to mislocalisation of other 

PAR proteins; the anterior and posterior domains mix (Morton et al., 2002). The protein 

kinase C (PKC)-3 associates with the anterior PAR complex and phosphorylates PAR-2, 

which cannot bind to the cortex in its phosphorylated state. Thus, PKC-3 restricts PAR-2 

from entering the anterior cortex (Hao et al., 2006). 

PAR polarity can be divided into two distinct phases: establishment and maintenance 

(Cuenca et al., 2003). In PAR-2 mutants, the actomyosin network and the anterior PAR 

complex retracts to the anterior pole. The distinct domains are not maintained, and the 

PAR-3/PAR-6/PKC-3 complex uniformly redistributes along the cortex (Cuenca et al., 

2003). The small GTPase CDC-42 contributes to the maintenance of PAR polarity by 

restricting NMY-2 to the anterior (Schonegg and Hyman, 2006). No PAR polarity is 

established if any of the anterior components are missing. The posterior PAR proteins are 

uniformly distributed along the cortex (Cowan and Hyman, 2007). The anterior PAR 
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proteins are involved in the establishment, while PAR-2 is essential for the maintenance of 

polarity.  

1.3.5 Cytoplasmic polarity 

The anterior–posterior axis of the embryo is set up by cortical polarity. Proteins downstream 

of the PAR proteins transduce the cortical signals to generate physical and functional 

asymmetry in the embryo. Physical asymmetry leads to two differently sized daughter cells, 

while functional asymmetry results in daughter cells with different fates. 

PAR proteins orient spindle displacement according to the embryo’s polarity axis. 

Downstream effectors organise the unequal force generation that causes the displacement of 

the cleavage furrow to the posterior (Figure 6). Together with the GoLoco-motiv proteins 

GPR-1/GPR-2 and the coiled-coil protein LIN-5, the redundant receptor independent Gα 

proteins GOA-1 and GPA-16 are largely responsible for the generation of the asymmetric 

force (Afshar et al., 2010; Afshar et al., 2004; Colombo et al., 2003; Gotta and Ahringer, 

2001b; Grill et al., 2003; Srinivasan et al., 2003; Tsou et al., 2003). The PAR proteins are 

important for the asymmetric localisation of GPR-1/GPR-2 (Tsou et al., 2003). Upon 

depletion any PAR protein, no asymmetric forces at the spindle cannot be detected (Grill et 

al., 2003). 

 
Figure 6: Cytoplasmic polarity in C. elegans one-cell embryo. The PAR proteins at the cell cortex organise 
the polarisation of the cytoplasm. The signals coming from the cortex induce the posterior displacement of the 
mitotic spindle during the first cell division, which results in asymmetric cell division. Furthermore 
cytoplasmic cell fate determinants localise asymmetrically according to the cortical polarity and are inherited 
by only one of the daughter cells, which will adopt a different cell fate than the other daughter. 
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The Gα proteins are symmetrically localised at the cortex (Afshar et al., 2004; Gotta and 

Ahringer, 2001b; Srinivasan et al., 2003) while LIN-5 and the GPR proteins are posteriorly 

enriched in the embryo from metaphase to anaphase in a PAR protein-dependent manner 

(Colombo et al., 2003; Gotta et al., 2003; Tsou et al., 2003). Depletion of either both Gα 

proteins, GPR-1/GPR-2, or of LIN-5 leads to symmetric cell division because no unequal 

force separates the spindles in anaphase (Gotta and Ahringer, 2001b; Gotta et al., 2003). 

It is thought that a ternary complex is formed that is anchored by Gα proteins to the 

membrane. The GPR-1/GPR-2 act as a bridge between the Gα proteins and LIN-5, which in 

turn interacts with dynein (Nguyen-Ngoc et al., 2007). This builds a force generator that can 

interact with astral microtubules (Couwenbergs et al., 2007; Grill et al., 2003). It is most 

likely that a combination of shrinking microtubules and dynein motor function generates the 

required force for the spindle displacement. The asymmetric localisation of the GPR proteins 

could lead to asymmetric Gα signalling and consequently to unequal force generation on the 

spindle. 

PAR proteins not only dictate the displacement of the spindle, but also the localisation of cell 

fate determinants, molecules that change the fate of a cell upon their inheritance (Figure 6). 

Three principal mechanisms could facilitate the asymmetric localisation of fate determinants: 

directed transport, localised degradation and translational control. 

Large ribonucleoprotein complexes called P granules segregate to the posterior of the cell 

(Hird et al., 1996; Strome and Wood, 1983). Embryos expressing mutant PAR proteins have 

mislocalised P granules (Kemphues et al., 1988). 

The following are examples of cell fate determinates that become asymmetrically 

segregated: 

The CCCH zinc-finger protein posterior segregation (POS)-1 and its mRNA become 

asymmetrically enriched in the posterior cytoplasm during the first rounds of asymmetric 

cell divisions (Ogura et al., 2003; Tabara et al., 1999). POS-1 is essential for proper fate 

specification of germ cells (Tabara et al., 1999). P granule abnormality (PGL)-1 interacts 

with the P granules and shows a similar asymmetric segregation pattern (Kawasaki et al., 
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1998). Spindle orientation defective (SPN)-4 localises to the P1 cell where it is required for 

the rotation of the spindle in the P1 cell (Gomes et al., 2001). 

The cell fate determinant posterior alae in males (PAL)-1 is required for the specification of 

the C and D founder cells and functions in the P lineage, exclusively (Edgar et al., 2001; 

Hunter and Kenyon, 1996). 

Muscle excess (MEX)-1 regulates the somatic cell differentiation in the early embryo and is 

expressed in P lineage blastomeres. In the two-cell stage of the embryo, it is required to 

restrict PIE-1 localisation to the P lineage (Guedes and Priess, 1997). Pharynx and intestine 

excess (PIE)-1 regulates the specification of cells of the P lineage, and it is only found to 

localise to these cells (Mello et al., 1992). 

1.4 P granules 

The presence of membrane-free RNA-protein granules in a germline is a common feature 

throughout the animal kingdom; germ granules are found in Drosophila, C. elegans, 

Xenopus levis, Mus musculus and Homo sapiens, where they are called polar bodies, 

P granules, germinal granules and perinuclear nuage, respectively (Eddy, 1975; Strome and 

Lehmann, 2007). These germ granules are thought to contribute to the unique qualities of 

germ cells: pluripotency and immortality. 

In C. elegans, the germ granules acquired their name from their specific segregation pattern; 

they are only inherited by cells of the P lineage: P1 to P4 (Strome and Wood, 1982, 1983). 

P granules are maternally produced and are found at high concentration in the gonads and in 

developing oocytes (Strome, 2005). At the time of fertilisation, approximately 200 small 

P granules are uniformly distributed in the egg. In the subsequent two rounds of cell 

division, the number of P granules decreases as the P0 cell segregates into the germline 

blastomeres P1 and P2 (Ogura et al., 2003; Tabara et al., 1999). In P2 cells and in cells that 

are further differentiated, the P granules attach to the nuclear envelope and appear to 

aggregate (DeRenzo et al., 2003; Spike et al., 2008b; Zhang et al., 2003).  

Little is known about the mechanism that maintains the P granules in the germline. It was 

thought that a combination of posteriograde cytoplasmic flow, nuclear envelope association 
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and degradation contributed to their posterior enrichment and asymmetric segregation 

(Cheeks et al., 2004; DeRenzo et al., 2003; Hird et al., 1996; Strome, 2005). A more recent 

study analysed P granule dynamics using a biophysical approach (Brangwynne et al., 2009). 

They observed that P granules resemble liquid droplets in that they can undergo fusion, 

dripping and wetting, which gives rise to condensation and decondensation of the droplets. 

The reported contribution of cytoplasmic flow to the posterior enrichment of P granules 

seems to be negligible; instead an increase of P granule condensation in the posterior causes 

the accumulation of larger granules. 

The list of proteins associated with P granules is increasing. To date, most of proteins were 

involved in RNA metabolism: Sm ribonuclease proteins facilitate mRNA splicing (Barbee et 

al., 2002), The eIF4E homologue IFE-1 regulates translation initiation (Amiri et al., 2001), 

GLD family proteins perform poly(A) polymerization (Barbee et al., 2002; Jones et al., 

1996; Li et al., 2010; Li et al., 2009; Wang et al., 2002), and the novel protein DEPS-1 

controls the content of mRNAi in P granules (Spike et al., 2008b). Several proteins 

associated with P granules contain predicted RNA-binding motifs: RGG in PGL proteins 

(Kawasaki et al., 2004; Kawasaki et al., 1998), DEAD box in GLH family (Kuznicki et al., 

2000), KH motif in MEX-3 (Draper et al., 1996), CCCH zinc-fingers in PIE-1 (Mello et al., 

1992), POS-1 (Tabara et al., 1999), MEX-1 (Guedes and Priess, 1997) and OMA-1 and -2 

(Shimada et al., 2006), and PUF repeats in PUF (Pumilio and FBF) protein family (Zhang et 

al., 1997). 

In addition to proteins, P granules also contain mRNAs. The proteins encoded by these 

mRNAs control a range of functions, including oocyte maturation (OMA-1, OMA-2), 

germline development (POS-1, MEX-1, NOS-2 and GLD-1), somatic development (SKN-1) 

and polarity (PAR-3) (Bowerman et al., 1993; Etemad-Moghadam et al., 1995; Guedes and 

Priess, 1997; Jones et al., 1996; Schisa et al., 2001; Tabara et al., 1999). The protein–RNA 

interactions may contribute to the structure of P granules. 

The composition of P granules varies with the developmental stage of C. elegans. For 

example, members of the PUF protein family associate with P granules only in the germ 

cells in the distal arm of gonad where they regulate mRNA translation, providing the signal 
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to continue with the mitotic divisions and maintain the stem cell properties (Ariz et al., 2009; 

Wickens et al., 2002). In addition, the CCCH zinc-finger protein PIE-1 is only present in the 

early embryo where it functions as a germline cell fate determinant (Mello et al., 1992; 

Mello et al., 1996).  

The experimental depletion of the constitutive P granule components PGL-1, GLD-1 and 

DEPS-1 cause altered P granule structure (Schisa et al., 2001; Spike et al., 2008b), and 

sterility of the adult hermaphrodite because of underproliferation of the germline (Kawasaki 

et al., 2004; Kawasaki et al., 1998; Kuznicki et al., 2000; Spike et al., 2008a). At present, no 

known component completely depletes the pool of P granules. 

P granules may regulate the associated mRNAs on the post-transcriptional level, by ‘sorting’ 

newly transcribed mRNAs as they leave the nucleus and segregating bound mRNA and 

proteins to the P lineage, thus contributing to the germline fate of the P lineage (Guedes and 

Priess, 1997). In summary, P granules are essential for germline specification and 

consequently for the fertility of the worm. 

1.5 The germline cell fate determinant PIE-1 

PIE-1 was identified in a screen for maternal-effect mutant embryos with altered pharynx 

cell fate; its phenotype caused it to be named pharynx and intestines in excess (Mello et al., 

1992). Loss-of-function mutations in pie-1 results overproliferation of intestinal and 

pharynxal in cells of the embryo, which is caused by a loss of cell identity in the P lineage 

(Mello et al., 1992); these cells obtain a somatic fate instead of maintaining their germline 

identity. PIE-1 exclusively segregates to the cells of the P lineage and determines the fate of 

theses cells by acting as a transcriptional repressor. The transcriptional potential of cells 

destined to the P lineage is kept low. Thus protecting the germline stem cell from 

differentiation signals (Mello et al., 1996). Consequently, PIE-1 was reasoned to be a 

germline-specific cell fate determinant (Mello et al., 1996; Seydoux et al., 1996). 

PIE-1 has a dynamic localisation pattern in the early embryo: uniform distribution in the 

newly fertilised egg and posterior enrichment before the first cell division, as well as 

association with centrosomes and P granules and nucleoplasmic localisation; its site of action 
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as a transcriptional repressor (Mello et al., 1996; Reese et al., 2000; Tenenhaus et al., 1998). 

In the following series of asymmetric cell divisions, PIE-1 is passed on to the cells destined 

to the P lineage (Gönczy and Rose, 2005). The segregation pattern of PIE-1 is shown in 

Figure 7. P4 – the germ cell founder cell – divides into Z2 and Z3, where the inhibition of 

transcription is lifted by degradation of PIE-1 (Mello et al., 1992). The degradation is 

mediated by the zinc-finger interacting factor (ZIF)-1, which is involved in the clearance of 

PIE-1 from the somatic blastomeres via the ubiquitin–proteasome pathway (Checchi and 

Kelly, 2006; DeRenzo et al., 2003). The germline identity of these cells is thereafter 

maintained by modifications in the chromatin architecture (Schaner et al., 2003). 

 
Figure 7: P lineage diagram of C. elegans embryo. The P lineage is established by a series of asymmetric cell 
divisions; represented by the horizontal bars. Each division gives rise to a somatic blastomere (AB, EMS, C, D) 
and a P lineage blastomere (P1, P2, P3 and P4). P4 divides into the two germline precursors. The inheritance of 
PIE-1 is highlighted in green. Adapted from (Gönczy and Rose, 2005) 

In a series of studies, the molecular mechanism of the transcriptional repression maintained 

by PIE-1 has been identified. In eukaryotes, the positive transcription elongation factor b (P-

TEFb) promotes gene expression. Shortly after the initiation of the mRNA transcription by 

RNA polymerase II (RNAPII), the polymerase stalls until its carboxy-terminal domain 

(CTD) is phosphorylated. P-TEFb is the active complex of Cyclin T1 and CDK-9, which 

binds to a heptapeptide repeat in the CTD of RNAPII and phosphorylates the signal epitopes 

within these repeats to continue mRNA transcription. PIE-1 has a non-phosphorylatable 

variation of the heptapeptide repeats, which can still be bound by CDK-9 (Figure 8). By 
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competing with RNAPII’s CTD repeat for the binding to CDK-9, PIE-1 can repress the 

elongation of transcription (Batchelder et al., 1999; Ghosh and Seydoux, 2008; Tenenhaus et 

al., 1998; Tenenhaus et al., 2001; Zhang et al., 2003). However, there may be additional 

regions in PIE-1 required for proper transcriptional repression (Ghosh and Seydoux, 2008). 

Several groups have investigated the mechanism of PIE-1’s asymmetric localisation. In situ 

hybridisation studies demonstrated that PIE-1 mRNA is uniformly distributed from oocytes 

to the 4-cell stage of the embryo; degradation of PIE-1 mRNA is initiated in somatic 

blastomeres after this time point (Tenenhaus et al., 1998). In in vivo localisation studies, the 

GFP-tagged open reading frame (ORF) of pie-1 was fused to the untranslated regions 

(UTRs) of a ubiquitously expressed gene and the expression of GFP scored. Additionally, 

GFP was fused to the pie-1 UTRs and the segregation of GFP determined (DeRenzo et al., 

2003; Reese et al., 2000). The coding sequence of pie-1 was necessary and sufficient for the 

localisation of PIE-1 to the posterior of P0 and segregation to the P lineage; this indicated 

that the information required for PIE-1 localisation is encoded in the protein itself (Reese et 

al., 2000). 

 
Figure 8: Schematic diagram of the protein domains in PIE-1. PIE-1 contains two zinc-finger (ZF) 
domains, which are established mRNA binding motifs. The CTD-like repeats are important for PIE-1’s 
function as a transcriptional repressor. Adapted from Batchelder et al., (1999) and Mello et al. (1992) 

Stepwise depletion and mutation of the pie-1 gene demonstrated which domains are 

important for correct PIE-1 localisation (Reese et al., 2000). In addition to the previously 

described CTD-like motif, PIE-1 contains two CCCH zinc-fingers, which are established 

mRNA binding motifs (Blackshear, 2002; Mello et al., 1992). Elimination of the first zinc-

finger domain (ZF1) efficiently abolishes the degradation of PIE-1 in the somatic cells after 

cell division. The second zinc-finger domain (ZF2), together with an unknown C’ terminal 

region of PIE-1, is involved in the exclusive localisation of PIE-1 in the P lineage. ZF2 could 
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target GFP to the P granules but could not produce the typical segregation pattern, 

suggesting that P granule association alone is not sufficient for PIE-1’s asymmetric 

segregation (Reese et al., 2000); leaving the localisation mechanism unknown. 

The degradation of PIE-1 in the somatic lineages depends on the interaction of the ZF1 

domain with the zinc-finger interacting factor (ZIF)-1. ZIF-1 serves as a substrate-

recruitment subunit for an elonginC-cul2-SOCS box (ECS) ligase complex (DeRenzo et al., 

2003); Therefore indicating that PIE-1 is degraded via the ubiquitin–proteasome pathway. 

The involvement of CUL-2 as the E3 ligase was established by partial CUL-2 depletion with 

RNAi experiments, in which PIE-1 was not degraded in the somatic cells (DeRenzo et al., 

2003). 

1.6 Aim of the project 

The PAR proteins set up the anterior–posterior axis in the one-cell embryo. PIE-1’s 

cytoplasmic asymmetry depends on the cortical polarity, defined by the PAR proteins and 

their associated partners. The cortical PAR polarity must be translated into cytoplasmic 

PIE-1 polarity to restrict PIE-1 segregation to cells of the P lineage during embryogenesis.  

How does the spatial information provided at the cortex produce asymmetry inside the cell?  

The regulation of PIE-1 asymmetry does not occur on mRNA level but is known to happen 

on protein level (Reese et al., 2000). The aim of my PhD project is to investigate the 

molecular mechanisms controlling the asymmetric segregation of PIE-1 and to gain insight 

into how the information from the cortex is transferred to the cytoplasm to create PIE-1 

asymmetry. 
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2 Results 

2.1 PIE-1 forms an exponential protein gradient 

To gain detailed information about the cytoplasmic changes of PIE-1, I performed 

quantitative time-lapse recording of the PIE-1::GFP expressing worm strain JH1327 during 

the first cell division. 

 
Figure 9: Time-lapse images of a one-cell embryo expressing PIE::GFP. The first cell division is shown. 
The scale bar represents 10 µm. The anterior is to the left. 

I could observe the previously reported localisations of PIE-1 to the centrosomes, pronuclei 

and P granules (Mello et al., 1992; Mello et al., 1996; Seydoux et al., 1996). Before and at 

polarity establishment, PIE-1::GFP was evenly distributed in the cytoplasm of the zygote 
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(-12:00 [min:sec] relative to NEBD). After the onset of polarity and expansion of the smooth 

domain, PIE-1::GFP intensity increased near the posterior cortex. The cytoplasmic 

PIE-1::GFP formed a posterior crescent under the cortex, which followed the expanding 

smooth domain and spread until the posterior half of the embryo was occupied at 0:00 

(NEBD). This asymmetry in PIE-1 localisation persisted through cell division. PIE-1 was 

only segregated to the P1 cell (see Figure 9). 

With different methods of intensity measurements, various aspects of the PIE-1::GFP 

asymmetry were addressed: The linescan intensity measurement showed the PIE-1::GFP 

profile along the anterior–posterior axis of a one-cell embryo (Figure 10 A). At 0:00 

(NEBD), PIE-1::GFP intensities were highest at the posterior pole and decreased along the 

posterior–anterior axis. PIE-1::GFP intensities reached background levels around embryo 

length (EL) 0.4. An exponential decay function could be fit to the PIE-1::GFP profile. The 

decay constant λ describes an exponential gradient and gives a measure of its shape. In 

wildtype embryos, the determined decay constant λ of the PIE-1 gradient was 0.17 ± 0.01 EL 

(Figure 11 C). 

The posterior–anterior ratio of PIE-1::GFP intensity described the posterior enrichment of 

PIE-1 during the first asymmetric cell division (Figure 10 B). The posterior enrichment of 

PIE-1::GFP increased steadily until -3:00 relative to NEBD and reached a final enrichment 

of 2.5-fold. I also measured the PIE-1::GFP intensities of the anterior and posterior 

cytoplasm during the first cell division (Figure 10 C). The PIE-1::GFP intensities measured 

in the anterior did not change while the posterior increased by 2-fold. 

Thus, the increase of PIE-1::GFP intensity at the posterior pole of the embryo did not appear 

to involve a significant redistribution of protein from the anterior but instead might rely on 

new protein synthesis. PIE-1::GFP intensities were highest near the posterior cortex, the 

source of the exponential decay gradient. 
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Figure 10: PIE-1::GFP forms an exponential gradient. A) Intensity profile along the anterior–posterior axis 
of a one-cell embryo at NEBD. The blue line shows the fit exponential curve. The decay constant λ is 
calculated in EL from the source of the gradient. B) Posterior enrichment of cytoplasmic PIE-1::GFP during the 
first cell division (n=7). C) Region measurements of cytoplasmic PIE-1::GFP near the anterior (dashed line) 
and posterior pole of the embryo (n=7). AU: arbitrary units, EL: embryo length, AP-Axis: anterior–posterior 
axis. 

2.2 PIE-1 gradient formation 

Next I wondered how this PIE-1 gradient could be formed. There are the possibilities of 

diffusion or active transport, for instance along microtubules. 

2.2.1 The PIE-1 gradient appears to be shaped by diffusion 

If diffusion generates the gradient, lowering the amount of protein should not change the 

decay constant λ. The maximum source intensity would be lower and the spread of PIE-1 

would be less but the shape of the gradient remained the same. This hypothesis was tested by 

partial depletion of PIE-1 by RNAi followed by determination of the decay constant λ 

(Figure 11 A). 
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Figure 11: PIE-1 gradient is formed by diffusion. Analysis of pie-1(partial RNAi) embryos expressing 
PIE-1::GFP are shown. A) Intensity profile along the anterior–posterior axis of a single one-cell embryo at 
NEBD. The blue line shows the fit exponential curve. B) Posterior enrichment of cytoplasmic PIE1::GFP 
during the first cell division (n=7). C) Calculation of the decay constant λ. The average decay constant is 0.17 ± 
0.01 EL in control (n=15) and 0.19 ± 0.01 EL in pie-1(partial RNAi) embryos (n=7). For statistical analysis an 
unpaired two-tailed student’s t-test is used. AU: arbitrary units, EL: embryo length, AP-Axis: anterior–posterior 
axis. 

The kinetics of the posterior enrichment and the formation of the exponential PIE-1 gradient 

were similar to the control. The partial depletion of PIE-1 resulted in a decrease of the 

posterior enrichment as well as the maximum PIE-1::GFP intensity at the cortex relative to 

control embryos. The decay constant λ did not change significantly upon partial depletion of 

PIE-1 (pie-1(partial RNAi): 0.19 ± 0.01 EL, control: 0.17 ± 0.01 EL, p>0.1; Figure 11 C). 

2.2.2 The PIE-1 gradient is not formed by microtubule-based transport 

To rule out contribution of transport along the microtubules to the PIE-1 gradient formation, 

I inhibited microtubule polymerisation by nocodazole. The embryos were soaked in 

nocodazole solution and recorded by time-lapse microscopy during the first cell division. 

The migration of the pronuclei did not occur; indicating that the drug had reached the 
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embryo. The PIE-1 gradient was still formed at 0:00 (NEBD). The shape of the gradient after 

nocodazole treatment was not different from the control as determined by the decay constant 

λ (nocodazole: 0.15 ± 0.01 EL control: 0.18 ± 0.01 EL, p>0.1; Figure 12). 

The exponential concentration gradient is formed rather by diffusion of PIE-1::GFP from the 

posterior source than by microtubule-based transport. 

 

Figure 12: Microtubule-based transport does not contribute to PIE-1 gradient. The average decay 
constant λ in nocodazole-treated embryos is 0.15 ± 0.01 EL (n=4) and 0.18 ± 0.01 EL in untreated embryos 
(n=7). For statistical analysis an unpaired two-tailed student’s t-test is used. EL: embryo length. 

2.2.3 The PIE-1 gradient forms independent from cytoplasmic flow 

With the onset of polarity, the cytoplasm begins streaming to the posterior, which 

redistributes e.g. yolk granules (Cheeks et al., 2004). These flows could mediate 

redistribution of existing PIE-1 protein from the anterior half of the embryo to the posterior 

and contribute to the PIE-1 gradient formation. To test this idea, I compromised the 

cytoplasmic flows with the allele nop-1(it142) (Rose et al., 1995). I performed time-lapse 

microscopy of UE12 embryos, which express PIE-1::GFP in the nop-1(it142) background 

during the first cell division. The PIE-1 gradient formation was analysed by the shape of the 

PIE-1 gradient (decay constant λ) and the goodness of the exponential fit to the PIE-1::GFP 

intensity profile along the anterior–posterior axis (R2 value) in 30 sec intervals. I used the R2 

value to assign the time at which the PIE-1 gradient became statistically exponential, using 

the cut-off values of R2≥0.75.  
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Figure 13: Cyotplasmic flows do not contribute to the PIE-1 gradient formation. Analysis of PIE-1 
gradient formation by the shape of the gradient (decay constant λ, pink) and the goodness of the exponential fit 
to the PIE-1::GFP intensity profile along the anterior–posterior axis (R2 value, blue) in control (A, n=10) and 
nop-1(it142) embryos expressing PIE-1::GFP (B, n=6). The dashed line indicates the cut-off value for 
exponential gradient formation (R2≥0.75). EL: embryo length. 

In PIE-1 wildtype, the R2 values increased during the first cell division, meaning that the 

exponential PIE-1 gradient was formed. The exponential gradient was established at -5:00 

relative to NEBD (R2=0.75). The shape of the PIE-1 gradient had a maximum spread of 0.38 

EL at -6:00 relative to NEBD, which decreased to 0.17 EL at 0:00 (NEBD). The shape of the 

PIE-1 gradient remained stable after -3:00 relative to NEBD (Figure 13 A). This increase of 

the decay constant λ was likely due to the pseudocleavage furrow.  

Compromising cytoplasmic flow only minorly changed the timing of PIE-1 gradient 

formation. The stabilization of the gradient shape occurred at the same time as in wildtype. 

The increase of the decay constant λ was lost as the pseudocleavage furrow did not form in 

nop-1(it142) embryos (Figure 13 B). 

Cytoplasmic flows appear to have only a small contribution to PIE-1::GFP gradient 

formation. 

2.2.4 The PIE-1 gradient is built by newly synthesised protein 

PIE-1::GFP showed a dramatic increase in posterior enrichment, which seems to be largely 

independent of redistribution of present protein. I reasoned that newly synthesised protein in 

the posterior could explain the change in cytoplasmic PIE-1::GFP levels. To follow up on 

this idea, I imaged the first cell division of PIE-1::GFP expressing embryos and determined 

the increase of total integrated PIE-1 intensity. The integrated intensity increased from the 
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initial value at -9:00 relative to NEBD by 8% until the end of the measurement (-2:00 

relative to NEBD, Figure 14). 

 

Figure 14: Newly synthesized protein forms the PIE-1 gradient. The increase of PIE-1 protein is determined 
by integrated intensity measurements between -9:00 and -2:00 relative to NEBD (n=5). 

There was a total increase in PIE-1::GFP protein levels, which was most likely due to 

synthesis of new protein.  

2.2.5 The PIE-1 gradient may be shaped by degradation in the anterior  

Possible degradation of PIE-1 in the anterior might be detected by following the fate of 

posterior cytoplasm displaced into the anterior. Therefore I centrifuged embryos at high 

speed prior to time-lapse microscopy and measured the PIE-1::GFP intensity in the anterior 

and posterior cytoplasm.  

Initially after centrifugation, PIE-1 was distributed uniformly throughout the cytoplasm, with 

roughly equal intensities at the anterior and posterior poles even though the embryos had 

progressed into the cell cycle and were about to undergo NEBD. Almost immediately 

however, cytoplasmic PIE-1::GFP levels decreased in the anterior while, at the posterior 

pole, the intensity levels increased (Figure 15 A). The PIE-1 gradient re-established within 3 

minutes after recording start but with a slightly altered shape; most likely caused by the 

centrifugation (Figure 15 B). After approximately 2 minutes, PIE-1 stopped increasing in 

the posterior but PIE-1 continued to disappear from the anterior. 

This could imply that the mislocalised PIE-1 in the anterior was degraded, although I could 

not eliminate the possibility of PIE-1 redistribution within the cytoplasm. 
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Figure 15: PIE-1 degradation in the anterior shapes the PIE-1 gradient. An embryo after cytoplasmic 
displacement by centrifugation is analysed for cytoplasmic levels of PIE-1::GFP near the anterior (dashed line) 
and posterior pole (A) and the PIE-1::GFP intensity profile along the anterior–posterior axis at +3:00 relative to 
NEBD (B). The still image shows the embryo at +3:00 relative to NEBD. The scale bar represents 10 µm. the 
anterior of the embryo is to the left. AU: arbitrary units, EL: embryo length, AP-Axis: anterior–posterior axis. 

2.2.6 The PIE-1 gradient is not maintained by active processes 

Next I wanted to address the question if active processes were involved in maintaining the 

PIE-1 gradient. Embryos were soaked in sodium azide solution for 30 to 40 minutes and 

analysed by time-lapse microscopy. The recording was started at pronuclei meeting (-3:00 

relative to NEBD).  

The embryos showed a very slow cell cycle: cytokinesis was never observed during the 

recording; indicating that the drug had reached the embryo. To detect possible changes in the 

shape of the PIE-1 gradient, the decay constant λ was calculated at the beginning of the 

recording and 6 minutes later, at +3:00 relative to NEBD. The decay constant λ was 0.25 ± 

0.02 EL and 0.20 ± 0.02 EL at -3:00 and + 3:00 relative to NEBD, respectively. For both 

time points the decay constant λ was not significantly change from control values (0.22 ± 

0.03 EL, p>0.3; 0.21 ± 0.01 EL, p>0.5, respectively; Figure 16 A). 

Sodium azide treatment should inhibit the ATP-dependent processes in the embryo. To test 

the hypothesis that a diffusion-based mechanism was sufficient to form the PIE-1 gradient, I 

analysed the PIE-1::GFP mobility by fluorescence recovery after photobleach (FRAP). 

Embryos were soaked in sodium azide solution for 30 to 40 minutes and subjected to FRAP 

analysis. The bleach was performed near the posterior pole at the cortex. The measured half-

time recoveries in control and sodium azide treatment were 2.69 ± 0.09 sec and 3.33 ± 0.30 

sec, respectively. The difference was not significant (p>0.3; Figure 16 B). As a control I 
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used embryos of the worm strain WH508, which expresses cytoplasmic GFP. The mobility 

of cytoplasmic GFP should be based purely on diffusion and therefore unaffected by sodium 

azide inhibition of active processes. I could not detect a difference in the half-time recovery 

in treated and untreated embryos expressing cytoplasmic GFP (Figure 16 B). 

The inhibition of active processes showed only a mild effect on the mobility of PIE-1::GFP. 

It seemed that passive processes, which I suggest to be diffusion, maintained the shape of the 

gradient. 

 
Figure 16: Active processes do not maintain the PIE-1 gradient. Embryos treated with sodium azide are 
analysed for the shape of the PIE-1 gradient (A) and by FRAP (B). A) In azide treated embryos, the average 
decay constant is 0.25 ± 0.02 EL (n=4) and 0.20 ± 0.02 EL (n=4) at -3:00 and at +3:00 relative to NEBD, 
respectively. In PIE-1 control embryos, the average decay constant is 0.22 ± 0.03 EL (n=4) and 0.21 ± 0.01 EL 
(n=4) at -3:00 and at +3:00 relative to NEBD, respectively. B) Half-time recoveries of FRAP experiments in 
embryos expressing PIE-1::GFP and cytoplasmic GFP. For statistical analysis an unpaired two-tailed student’s 
t-test is used. EL: embryo length. 

2.3 PIE-1 source formation 

In the embryo, the position of the highest cytoplasmic PIE-1::GFP level was defined as the 

source of the PIE-1 gradient, which extended along the posterior cortex from the posterior 

pole in one-cell embryos. 

2.3.1 The source of the gradient is positioned by PAR proteins 

PAR proteins are known to organise the asymmetry of events in the cytoplasm. In order to 

determine whether they might direct the PIE-1 source to the posterior cortex, I performed 

time-lapse microscopy of embryos expressing GFP-tagged versions of PAR-2, PAR-6 and 



RESULTS 

 30 

PIE-1 and analysed their cortical distribution. The GFP intensities were measured cortically 

(PAR-2 and PAR-6) and sub-cortically (PIE-1) along the cortex of the embryo. 

The plotted intensity profiles of PAR-2:GFP and PIE-1::GFP overlapped. The GFP 

intensities were highest at the posterior pole and decreased to background levels at the 

middle of the embryo, indicating that posterior PAR proteins share a similar localisation with 

the PIE-1 source (Figure 17). 

 

Figure 17: Posterior PAR proteins position PIE-1 source. The subcortical intensity profile of PIE-1 (green) 
and the cortical intensity profiles of PAR-2 (blue) and PAR-6 (red) are shown at NEBD (n=5). 

2.3.2 PAR-3, PAR-6, PKC-3 and CDC-42 position the PIE-1 source 

To address the question of whether the PAR proteins are essential for the position of the 

PIE-1 source, I depleted proteins of the anterior PAR polarity complex by RNAi in embryos 

expressing PIE-1::GFP and imaged the first cell division with time-lapse microscopy. 

The depletion of PAR-3 resulted in uniform PIE-1::GFP segregation and symmetric cell 

division. The posterior enrichment as well as the exponential PIE-1 gradient were lost during 

the first cell division (Figure 18 B). Around -8:00 relative to NEBD, a rim of high 

PIE-1::GFP intensity was formed locally at the cortex, which disappeared by 0:00 (NEBD, 

Figure 18 C). After NEBD, the PIE-1::GFP intensities along the anterior–posterior axis 

were higher in the centre of the embryo than at the poles (Figure 18 A). 

I confirmed the effects of loss of PAR-3 on the PIE-1 source by analysing par-3(it71) 

embryos expressing PIE-1::GFP. I could confirm the loss of posterior enrichment of 



RESULTS 

 31 

cytoplasmic PIE-1, uniformly distribution of cytoplasmic PIE-1 and rim formation in 

embryos depleted of PKC-3, CDC-42 or PAR-6. 

 
Figure 18: PIE-1 source position depends on PAR-3. A) Analysis of par-3(RNAi) embryos expressing 
PIE-1::GFP by linescan measurement along the anterior–posterior axis (n=5). B) Posterior enrichment of 
cytoplasmic PIE-1::GFP in par-3(RNAi) embryos (n=5). C) Pseudocoloured kymograph of PIE-1::GFP in one 
par-3(RNAi) embryo. D) Kymograph of a wildtype embryo. The pseudocolours indicate red as the highest 
intensity and blue the lowest. The measurements of wildtype embryos are shown in green. EL: embryo length, 
AP-Axis: anterior–posterior axis. 

2.3.3 PAR-2 restricts the anterior PAR proteins to maintain the PIE-1 source 

I next looked at PAR-2 depleted embryos expressing PIE-1::GFP. Until -4:00 relative to 

NEBD, cytoplasmic PIE-1::GFP was asymmetrically localised and showed posterior 

enrichment (Figure 19 B), consistent with previous data demonstrating that par-2(-) embryos 

initially established an asymmetric distribution of PAR-3/PAR-6/PKC-3 (Cuenca et al., 

2003). Afterwards, the PIE-1 asymmetry was lost and the cytoplasmic levels were evenly 

distributed (Figure 19 A and C), again consistent with regression of anterior PAR complex 

into the posterior half of the embryo in par-2(-) embryos (Cuenca et al., 2003). The depletion 

of PAR-2 resulted in uniform segregation of PIE-1::GFP to both daughter cells and 

symmetric cell division. 
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Figure 19: Maintenance of the PIE-1 source depends on PAR-2. Analysis of par-2(RNAi) embryos 
expressing PIE-1::GFP by linescan measurement along the anterior–posterior axis (A; n=5), posterior 
enrichment of cytoplasmic PIE-1::GFP (B; n=8) and kymograph (C). The pseudocolours indicate red as the 
highest intensity and blue the lowest. The measurements of wildtype embryos are shown in green. EL: embryo 
length, AP-Axis: anterior–posterior axis. 

Thus PAR-2 appeared to be indirectly required for PIE-1 asymmetry by preventing 

localisation of the anterior PAR complex to the posterior cortex. PAR-3 and the other 

anterior PAR complex proteins localised the PIE-1 source but were not required for 

formation of the PIE-1 source near the cortex. 

2.3.4 PAR-1 is required for formation of the PIE-1 source 

Finally I analysed PIE-1 in embryos depleted of the posterior PAR domain component 

PAR-1. 

The depletion of PAR-1 resulted in uniform segregation of cytoplasmic PIE-1::GFP and 

symmetric cell division. Throughout the first cell division, there was no evidence of 

posterior enrichment or gradient formation (Figure 20). 
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Figure 20: PIE-1 source position depends on PAR-1. Analysis of par-1(RNAi) embryos expressing 
PIE-1::GFP by linescan measurement along the anterior–posterior axis (A; n=5), posterior enrichment of 
cytoplasmic PIE-1::GFP (B; n=6) and kymograph (C). The pseudocolours indicate red as the highest intensity 
and blue the lowest. The measurements of wildtype embryos are shown in green. EL: embryo length, AP-Axis: 
anterior–posterior axis. 

2.3.5 PAR-1 is required for PIE-1 production 

While analysing the PIE-1 par-1(RNAi) movies, I observed a difference in total cytoplasmic 

PIE-1::GFP levels compared to control embryos. To investigate this further, I compared the 

increase of integrated intensity in par-1(RNAi), par-2(RNAi) and par-3(RNAi) embryos 

during the first cell division. Indeed in embryos depleted of PAR-1, the increase in total 

PIE-1::GFP levels was negligible, while PIE-1 accumulation in par-2(RNAi) embryos was 

like wildtype. The depletion of PAR-3 resulted in an even greater increase in total 

PIE-1::GFP levels over time than the control (Figure 21 A). 

To show that there was indeed less PIE-1::GFP protein present in par-1(RNAi) embryos, I 

analysed the protein levels by Western Blot. As expected, the depletion of PAR-2 and 

PAR-3 did not reduce the level of PIE-1::GFP relative to controls. The loss of PAR-1 

lowered the amount of PIE-1::GFP protein by at least 10-fold (Figure 21 B). 
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Figure 21: PAR-1 depletion inhibits PIE-1 source. A) Increase of total PIE-1 protein in embryos depleted of 
PAR-1 (n=3), PAR-2 (n=4), PAR-3 (n=4). B) Western Blot analysis of hermaphrodites fed with RNAis against 
PAR-1, PAR-2, PAR-3 and PIE-1. C) Ratios of measured integrated PIE-1::GFP intensities in JH1327 over 
UE37. D) Still image of an par-1(RNAi) embryo expressing PIE-1::GFP (left) and par-2(RNAi) embryo 
expressing PIE-1::GFP;mCH::β-tubulin. The insert shows the mCH signal. The scale bar represents 10 µm. 

Next I wanted to compare the differences in PIE-1::GFP levels directly in embryos. I 

performed simultaneous time-lapse microscopy on embryos depleted of different PAR 

proteins. One embryo expressed PIE-1::GFP (JH1327) and the other PIE-1::GFP;mCH::β-

tubulin (UE37), which allowed the genotypes to be distinguished. The ratio of integrated 

intensities of PIE-1::GFP in JH1327 to PIE-1::GFP in UE37 embryos was calculated at 0:00 

(NEBD). The ratios were normalised to the control ratio. To avoid any genotypic difference, 

the reciprocal RNAi experiments were carried out. 

In all cases, embryos depleted of PAR-1 had the lowest PIE-1::GFP intensities, reflected by 

ratios reflected by ratios approximately 50% higher or lower than the baseline. In contrast, 

ratios of PIE-1::GFP intensity in embryos depleted of PAR- 2 and PAR-3 were close to the 

baseline (Figure 21 C). The depletion of PAR-1 resulted in a reduction of cytoplasmic 
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PIE-1::GFP levels while depletion of PAR-2 and PAR-3 did not change the cytoplasmic 

PIE-1::GFP levels. 

With these three independent experiments, I could confirm that PAR-1 was needed for 

formation of PIE-1 source while the other component of the PAR polarity were mainly 

involved in positioning the PIE-1 source. 

 

2.3.6 Inhibition of polarity establishment does not eliminate the PIE-1 source 

To answer the question if polarity establishment was needed for the formation of the PIE-1 

source, I analysed embryos lacking functional centrosomes, which are required for polarity 

establishment in one-cell embryos. Therefore I performed quantitative time-lapse 

microscopy of spd-5(RNAi) embryos (Hamill et al., 2002) expressing PIE-1::GFP during the 

first cell division. 

 
Figure 22: PIE-1 source forms without polarity establishment in spd-5(RNAi) embryos. Intensity profile of 
PIE-1::GFP at 0:00 (equivalent to control NEBD) (A; n=3), posterior–anterior ratio (dark blue) and centre–
anterior ratio (light blue) of cytoplasmic PIE-1::GFP (B) and kymograph (C) of cytoplasmic PIE-1::GFP in 
embryos depleted of SPD-5 by RNAi. The pseudocolours indicate red as the highest intensity and blue the 
lowest. The measurements of wildtype embryos are shown in green. EL: embryo length, AP-Axis: anterior–
posterior axis. 
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The embryos showed uniform cortical ruffling but no polarity. I used the size of the 

pronuclei to assign 0:00. In all embryos recorded, polarity establishment was rescued 

between -2:00 and 0:00. I focused on the time before the polarity rescue. Cytoplasmic PIE-1 

and PIE-1 positive P granules, hereafter referred to as PIE granules, accumulated in the 

centre of the embryo before 0:00 (equivalent to NEBD, Figure 22 A and C). The posterior–

anterior ratio showed no enrichment of cytoplasmic PIE-1::GFP; however, the ratio of PIE-1 

in the centre of the embryo over the anterior showed a 1.5-fold increase (Figure 22 B). 

The prevention of polarity establishment by loss of functional centrosomes did not inhibit 

PIE-1 source formation, although the correct position of the PIE-1 source was impaired. 

2.3.6.1 Cytochalisin D treatment does not eliminate the PIE-1 source 

To confirm that polarity establishment was not required for PIE-1 source formation, I used 

cytochalisin D to inhibit polarity establishment. This actin depolymerising agent interferes 

with contractile polarity and prevented any PAR polarity (Hill and Strome, 1988). The 

embryos were soaked in cytochalisin D solution and analysed by time-lapse microscopy. 

 
Figure 23: PIE-1 source forms after cytochalisin D treatment. Linescan measurements at 0:00 (NEBD) (A; 
n=3), posterior–anterior ratio (B; n=5) and kymograph (C) of cytoplasmic PIE-1::GFP in embryos treated with 
cytochalisin D. The pseudocolours indicate red as the highest intensity and blue the lowest. The measurements 
of wildtype embryos are shown in green.  EL: embryo length, AP-Axis: anterior–posterior axis. 
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The cytochalasin D-treated embryos showed no sign of contractile polarity, indicating that 

the drug had reached the embryo. Cytoplasmic PIE-1 and PIE granules accumulated in the 

centre of the embryos, similar to embryos depleted of SPD-5 (Figure 23). The embryos were 

arrested in the cell cycle after NEBD. 

The presence of a PIE-1 gradient in cytochalisin D treated embryos confirmed the 

spd-5(RANi) results, showing that polarity was not needed for the PIE-1 source formation 

but for its correct positioning. 

2.4 PIE-1 nuclear localisation 

2.4.1 Nuclear accumulation can occur equally in both pronuclei 

PIE-1 showed strong nuclear localisation to the paternal pronucleus during most of the first 

cell division, whereas the maternal pronucleus showed weaker accumulation and only late in 

the cell cycle. First, I wondered if the nuclear accumulation of PIE-1 was specific to some 

molecular property of the paternal pronucleus, or rather whether the concentration of PIE-1 

in the posterior cytoplasm biased nuclear accumulation to the nucleus in that compartment. 

Displacement of the maternal pronucleus to the posterior should address this question. 

Therefore I centrifuged PIE-1::GFP expressing embryos to displace the maternal pronucleus 

and analysed the nuclear accumulation of PIE-1::GFP by time-lapse microscopy. The 

nuclear accumulation described the enrichment of nuclear PIE-1::GFP signal over the 

anterior cytoplasm. 

In wildtype, the paternal pronucleus constantly accumulated PIE-1 and reached a peak 

enrichment of 2.3 fold at -3:30 relative to NEBD. From this time, the nuclear envelope 

started disassembling, and the nuclear concentration was not maintained. The maternal 

pronucleus accumulated its maximal PIE-1::GFP intensity about 1 minute later and only had 

a maximal enrichment of 1.5 fold. At 0:00 (NEBD), the nuclear PIE-1::GFP levels were 

equal to the anterior cytoplasm; the enrichment was lost (Figure 24). 
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Figure 24: Nuclear accumulation of PIE-1 in wildtype embryos. The solid line represents the nuclear 
accumulation of PIE-1 in the paternal pronucleus, the dashed line in the maternal pronucleus (n=9). The time-
lapse images show the nuclear accumulation. The nuclei at pronuclear meeting are magnified, at right. The 
scale bar represents 10 µm. Anterior is to the left.  

The repositioning of the maternal pronucleus into the posterior cytoplasm by centrifugation 

resulted in similar timing and intensity of the nuclear accumulation of PIE-1::GFP in both 

pronuclei (Figure 25). 

The nuclear accumulation of PIE-1::GFP seems to be controlled by cytoplasmic PIE-1::GFP. 

 

Figure 25: Nuclear accumulation of PIE-1 embryos after repositioning of the maternal pronucleus. The 
solid line represents the nuclear accumulation of PIE-1 in the paternal pronucleus, the dashed line in the 
maternal pronucleus (n=3). The time-lapse images show the nuclear accumulation. The nuclei at pronuclear 
meeting are magnified, at right. The scale bar represents 10 µm. Anterior is to the left. 

2.4.2 Cytoplasmic PIE-1 level regulates the nuclear accumulation 

Next I wanted to know what determined PIE-1’s nuclear enrichment. To address this 

question, I lowered the protein amount of PIE-1 in C. elegans embryos by partial depletion 

of PIE-1, performed time-lapse microscopy and analysed the nuclear accumulation. The 

timing of the nuclear accumulation of PIE-1::GFP was similar to the control, but the 
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maximum nuclear enrichment was reduced in both pronculei. The maximal nuclear 

enrichment in the paternal pronucleus was 1.3-fold at -3:00 relative to NEBD (Figure 26). 

Less cytoplasmic PIE-1::GFP resulted in less PIE-1 accumulation in the pronuclei. 

The cytoplasmic level and the time the pronuclei spent in the posterior cytoplasm appeared 

to determine the accumulation of PIE-1 in the pronuclei. 

 

Figure 26: Nuclear accumulation of PIE-1 in pie-1(partial RNAi) embryos. The solid line represents the 
nuclear accumulation of PIE-1 in the paternal pronucleus, the dashed line in the maternal pronucleus (n=6). The 
time-lapse images show the nuclear accumulation. The nuclei at pronuclear meeting are magnified, at right. 
The scale bar represents 10 µm. Anterior is to the left. 

2.4.3 Shape of the PIE-1 gradient does not depend on nuclear trapping 

2.4.3.1 Nuclear import/export does not contribute to shape of gradient 

In the fruit fly embryo, nuclear trapping might play a role in formation of the Bicoid 

morphogen gradient (Coppey et al., 2007). To investigate if a similar mechanism contributed 

to the PIE-1 gradient formation in C. elegans one-cell embryos, I impaired nuclear import 

and export and assessed the PIE-1 gradient shape. Specifically, I performed time-lapse 

microscopy of imb-5(RNAi) – import – and ima-2(RNAi) – export – embryos expressing 

PIE-1::GFP during the first cell division, and calculated the nuclear accumulation throughout 

the cell cycle and the decay constant λ at 0:00 (NEBD). 

In imb-5(RNAi) embryos, the peak nuclear enrichment of PIE-1::GFP in the paternal and 

maternal pronuclei were much higher than in control embryos. The maximal nuclear 

enrichment in the control of 2.3-fold was reached at -10:00 relative to NEBD; more than 6 

minutes earlier than in the control (-3:30 relative to NEBD). 
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Figure 27: Nuclear accumulation of PIE-1 in imb-5(RNAi) embryos. The solid line represents the nuclear 
accumulation of PIE-1 in the paternal pronucleus, the dashed line in the maternal pronucleus (n=3). The time-
lapse images show the nuclear accumulation. The nuclei at pronuclear meeting are magnified, at right. The 
scale bar represents 10 µm. Anterior is to the left. 

I observed PIE-1::GFP puncta within the paternal pronucleus in imb-5(RNAi) embryos 

(Figure 27). 

The calculated decay constant λ after IMB-5 depletion  was not significantly different from 

the respective control (imb-5(RNAi): 0.19 ± 0.01 EL, control: 0.18 ± 0.01 EL, p>0.83; 

Figure 28 A). 

 
Figure 28: Shape of PIE-1 gradient is independent of nuclear accumulation. A) The average decay 
constant is 0.19 ± 0.01 EL in imb-5(RNAi) (n=6), 0.17 ± 0.02 EL in ima-2(RNAi) (n=4), 0.19 ± 0.01 EL in 
npp-9(RNAi) (n=6) and 0.18 ± 0.01 EL in the PIE-1 control embryos at 0:00 (NEBD) (n=6). B) The average 
decay constant for ran-1(RNAi) embryos at the equivalent cell cycle time of NEBD is 0.17 ± 0.02 EL (n=7); 
PIE-1 control 0.18 ± 0.02 EL (n=4). For statistical analysis an unpaired two-tailed student’s t-test is used. EL: 
embryo length. 

In ima-2(RNAi) embryos, the peak nuclear accumulation of PIE-1 in the paternal pronucleus 

was 2.8-fold enriched over the anterior cytoplasm at -3:00 relative to NEBD, compared to 
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2.3-fold in control embryos. The maximum accumulation of PIE-1 in the maternal 

pronucleus was similar to control levels. As in the IMB-5 depleted embryos, ima-2(RNAi) 

embryos showed altered temporal dynamics of nuclear PIE-1::GFP enrichment (Figure 29). 

The calculated decay constant λ of 0.16 ± 0.01 EL was not significantly different from the 

respective control (0.18 ± 0.01 EL, p>0.25; Figure 28 A). 

Interfering with nuclear import and export altered the PIE-1 levels in both paternal and 

maternal pronuclei as well as the temporal dynamics of nuclear accumulation. However, the 

shape of the PIE-1 gradient at 0:00 (NEBD) was not changed after altering the PIE-1 nuclear 

accumulation by interfering with nuclear import and export. 

 

Figure 29: Nuclear accumulation of PIE-1 in ima-2(RNAi) embryos. The solid line represents the nuclear 
accumulation of PIE-1 in the paternal pronucleus, the dashed line in the maternal pronucleus (n=6). The time-
lapse images show the nuclear accumulation. The nuclei at pronuclear meeting are magnified, at right. The 
scale bar represents 10 µm. Anterior is to the left. 

2.4.3.2 The nuclear envelope is not necessary for gradient formation 

In imb-5(RNAi) and ima-2(RNAi) embryos, the nucleus was still present and accumulated 

PIE-1. To try to further rule out any possible contribution of the nucleus to the PIE-1 

gradient shape, I depleted embryos of the nuclear envelope component NPP-9, which 

resulted in a complete failure in nuclear envelope assembly (Askjaer et al., 2002). 

PIE-1::GFP expressing npp-9(RNAi) embryos were followed by time-lapse microscopy and 

analysed for the shape of the PIE-1 gradient. The calculated decay constant λ at 0:00 

(NEBD) in npp-9(RNAi) embryos was not significantly different from the respective control 

(npp-9(RNAi): 0.19 ± 0.01 EL, control: 0.18 ± 0.01 EL, p>0.63; Figure 28 A). Similar 
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results were obtained following RAN-1 depletion, where nuclear envelope formation was 

also prevented (Askjaer et al., 2002) (Figure 28 B). 

The nuclear accumulation of PIE-1 seemed to be dispensable for shaping the PIE-1 gradient. 

2.4.4 Nocodazole treatment abolishes nuclear accumulation 

When I analysed the nocodazole-treated embryos (see 2.2.2), I observed no nuclear 

accumulation of PIE-1 in the paternal pronucleus although the cytoplasmic levels were 

similar to untreated control embryos. Only when the nuclear envelope became permeable 

(-3:30 relative to NEBD), PIE-1 entered the nucleus (Figure 30). 

Depolymerising microtubules by nocodazole treatment prevented nuclear accumulation of 

PIE-1::GFP. 

 

Figure 30: Nuclear accumulation of PIE-1 in nocodazole-treated embryos. The solid line represents the 
nuclear accumulation of PIE-1 in the paternal pronucleus, the dashed line in the maternal pronucleus (n=4). 

For all RNAis and inhibitor experiments, I confirmed that the other parameters of PIE-1’s 

asymmetry were not changed. In Figure 31, I show representative results of additional 

measurements such as posterior enrichment and PIE granule appearance for the nocodazole 

treatment: 
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Figure 31: Nocodazole treatment does not effect posterior PIE-1 enrichment of the cytoplasm and 
PIE granules appearance. The cytoplasmic PIE-1 levels are displayed as the enrichment of PIE-1 in the 
posterior of nocodazole-treated embryos (n=4). The time window of PIE granule appearance is shaded gray. 
The measurements of untreated control embryos are in green (n=7).  

2.5 PIE granule formation 

2.5.1 Dynamics of PIE granule formation 

Besides localising to the pronuclei and centrosomes, PIE-1 also associates with P granules 

(Mello et al., 1992). To investigate the dynamics of PIE-1 localisation to P granules, I 

analysed time-lapse images of PIE-1::GFP expressing embryos for the appearance of PIE-1 

positive P granules, hereafter called PIE granules. The first evidence of PIE granules could 

be seen as a local increase of PIE-1::GFP intensity. The PIE granules accumulated more 

PIE-1::GFP and their shape became defined over time (Figure 32). The movement of the 

granules could be followed for at least 1 minute. 

 
Figure 32: Appearance of PIE granules. Time-lapse series of the association of PIE-1::GFP with P granules 
(arrow). A region of the posterior cortex is shown. The images are pseudocoloured with red indicating the 
highest intensity and blue the lowest. The scale bar represents 5 µm. 

2.5.2 Reduced PIE-1 levels delay PIE granule appearance 

Next I wanted to know if the appearance of PIE granules correlated with the PIE-1::GFP 

levels of the surrounding cytoplasm. I timed the appearance of PIE granules in wildtype and 

pie-1(partial RNAi). In wildtype embryos, PIE granules were detected between -6:30 and 
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-2:30 relative to NEBD (Figure 32 A). In contrast, the lower cytoplasmic PIE-1::GFP levels 

of pie-1(partial RNAi) embryos delayed PIE granule appearance by about 3 minutes. The 

PIE granules appeared between -3:00 and -0:30 relative to NEBD (Figure 32 B). 

The low cytoplasmic PIE-1 level in embryos partially depleted of PIE-1 seemed to delay the 

appearance of PIE granules. 

 
Figure 33: Low levels of cytoplasmic PIE-1 delay PIE granule appearance. The cytoplasmic PIE-1 levels 
are displayed as the enrichment of PIE-1 in the posterior. The time windows of appearing PIE granules are 
shaded green in control (A, n=16) and pie-1(partial RNAi) embryos (B, n=10). 

2.5.3  Stabilisation of the PIE-1 gradient correlates with appearance of 
PIE granules 

I next wanted to test if the formation of the PIE-1 gradient is related to PIE granule 

appearance. I tested this hypothesis by comparing the time of PIE-1 gradient formation and 

the time of PIE granule appearance in wildtype and pie-1(partial RNAi) embryos expressing. 

In 30 sec intervals, the PIE-1 gradient formation was analysed by the gradient shape (decay 

constant λ) and the goodness of the exponential fit to the PIE-1 intensity profile along the 

anterior–posterior axis (R2 value). The R2 value was used to assign the time at which the 

PIE-1 gradient became statistically exponential, using a cut-off of R2≥0.75. 

During the early phase of polarity establishment (before -6:00 relative to NEBD) the 

gradient did not fit an exponential curve: the R2 values were smaller than 0.75. Instead, the 

PIE-1 intensity profile was best fit by a line (data not shown). Around time -4:30 relative to 

NEBD, the PIE-1 gradient became statistically exponential (R2≥0.75). The R2 values 

continued to increase during the cell cycle, meaning that the exponential PIE-1 gradient was 
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stabilised. The shape of the gradient was stable between -1:30 and +2:00 relative to NEBD, 

as indicated by stable decay constants λ. In wildtype embryos, PIE granules became 

detectable between -6:30 and -2:30 relative to NEBD. This was shortly before the 

exponential PIE-1 gradient became stable (Figure 34 A). 

In pie-1(RNAi) embryos, PIE granules were detected between -3:00 and -0:30 relative to 

NEBD (Figure 34 B). The partial depletion of PIE-1 delayed the formation of the PIE-1 

gradient by 2 minutes, which is consistent with the delayed appearance of the PIE granules. 

 
Figure 34: PIE-1 gradient forms later in pie-1(partial RNAi) embryos. Analysis of PIE-1 gradient formation 
by the shape of the gradient (decay constant λ, pink) and the goodness of the exponential fit to the PIE-1::GFP 
intensity profile along the anterior–posterior axis (R2 value, blue) in control (A, n=10) and pie-1(partial RNAi) 
embryos (B, n=4). The dashed line indicates the cut-off value for exponential gradient formation (R2≥0.75). 
The time window of PIE granule appearance is shaded green. EL: embryo length. 

These results showed that the appearance of PIE granules and the formation of the 

exponential PIE-1::GFP gradient are temporally correlated.  

2.6 Molecular contributions to PIE-1 gradient formation 

Several germline specific cell fate determinants show similar asymmetric segregation 

patterns as PIE-1. Those fate determinants are specific for cells of the P lineage and also 

associate with P granules. I wondered whether any of these other P lineage fate determinants 

were required for PIE-1 segregation. 
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2.6.1 Other cell fate determinants are required for PIE-1 asymmetry 

To find out if P lineage fate determinates are necessary for the segregation of PIE-1, a 

candidate screen was performed by Sabina Sanegre Sans in the lab. POS-1, MEX-1, PGL-1, 

PAL-1 and SKN-4 were depleted by RNAi. The shape of the PIE-1 gradient as well was 

PIE granule size and number were analysed in worms expressing PIE-1::GFP.  

 
Figure 35: Summary of candidate screen in PIE-1::GFP (A) and GFP::MEX-1 (B) embryos. Red 
indicates results with significant changes, green with no significant changes. 

MEX-1 depletion had a unique effect on all the parameters analysed in PIE-1::GFP worms, 

and thus I chose to further analyse the effects of MEX-1 depletion on PIE-1 gradient 

formation. 

2.6.2 MEX-1 depletion lengthens the PIE-1 gradient 

To determine how MEX-1 depletion affected the shape of the PIE-1 gradient, I performed 

time-lapse microscopy and calculated the decay constant λ in mex-1(RNAi) embryos 

expressing PIE-1::GFP at 0:00 (NEBD). 

The intensity profile of PIE-1::GFP along the anterior–posterior axis showed a flatter 

gradient than the control (Figure 36 A). The depletion of MEX-1 changed the shape of the 

PIE-1 gradient significantly as determined by decay constant λ was significantly different 

from the control (mex-1(RNAi): 0.20 ± 0.01 EL, control: 0.17 ± 0.01 EL, p < 0.04; Figure 36 

B). 

The shape of the PIE-1 gradient might be depended on MEX-1. 
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Figure 36: MEX-1 depletion changes shape of PIE-1 gradient. A) Intensity profile along the anterior–
posterior axis of an one-cell mex-1(RNAi) embryo at 0:00 (NEBD). The blue line shows the fit exponential 
curve. The decay constant λ is calculated in EL from the source of the gradient. B) The average decay constant 
is 0.17 ± 0.01 EL in control (n=15) and 0.20 ± 0.01 EL in mex-1(RNAi) embryos (n=12). For statistical analysis 
an unpaired two-tailed student’s t-test is used. AU: arbitrary units, EL: embryo length, AP-Axis: anterior–
posterior axis. 

2.6.3 MEX-1 depletion reduces size and number of PIE granules 

The average number of PIE granules was another parameter analysed in the candidate 

screen. The PIE granules were counted in still images of mex-1(RNAi) embryos expressing 

PIE-1::GFP at 0:00 (NEBD) after applying an intensity threshold. I could detect 

PIE granules only in 4 of the 17 analysed images in mex-1(RNAi) embryos. 

The average PIE granule number per embryo was significantly reduced in mex-1(RNAi) 

embryos (mex-1(RNAi): 1.82 ± 0.80, control: 10.44 ± 0.80, p<0.001; Figure 37 A). 

 
Figure 37: MEX-1 depletion decreased PIE granule size and number. A) The average PIE granule number 
per embryo is 10.44 ± 0.80 in the control (n=9) and 1.82 ± 0.93 in mex-1(RNAi) embryos expressing 
PIE-1::GFP (n=17). B) The average size of PIE granules per embryo in the control is 0.67 ± 0.05 µm2 (n=9) 
and in mex-1(RNAi) 0.46 ± 0.06 µm2 (n=17). For statistical analysis an unpaired two-tailed student’s t-test is 
used. 



RESULTS 

 48 

After applying the intensity threshold, the area of PIE granules was determined. The average 

size of PIE granules per embryo after MEX-1 depletion was significantly lowered to the 

control (mex-1(RNAi): 0.46 ± 0.06 µm2, control: 0.67 ± 0.05 µm2, p<0.02; Figure 37 B). 

MEX-1 might be needed for the association of PIE-1 to P granules, which could be the 

reason for the smaller number and size of PIE granules in mex-1(RNAi) embryos. 

2.6.4 MEX-1 depletion delays formation of the exponential PIE-1 gradient 

The shape of the PIE-1 gradient at 0:00 (NEBD) was slightly extended upon depletion of 

MEX-1 compared to controls. I therefore wanted to determine when MEX-1 affects the 

establishment of the exponential PIE-1 gradient. To address the question, I performed 

quantitative time-lapse microscopy of mex-1(RNAi) embryos during the first cell division. I 

analysed the PIE-1 gradient formation by the gradient’s shape (decay constant λ) and 

goodness of the exponential fit to the PIE-1::GFP intensity profile along the anterior–

posterior axis (R2 value). I used the R2 value to assign the time at which the PIE-1 gradient 

became statistically exponential R2≥0.75). Both values were calculated in 30 sec intervals. 

 
Figure 38: Delayed PIE-1 gradient formation upon MEX-1 depletion. Analysis of PIE-1 gradient formation 
by the shape of the gradient (decay constant λ, pink) and the goodness of the exponential fit to the PIE-1::GFP 
intensity profile along the anterior–posterior axis (R2 value, blue) in control (A, n=10) and mex-1(RNAi) 
embryos (B, n=7). The dashed line indicates the cut-off value for exponential gradient formation (R2≥0.75). 
The time window of PIE granule appearance is shaded. 

In comparison to the control, mex-1(RNAi) embryos formed the PIE-1 gradient at -1:30 

relative to NEBD, which was a delayed the PIE-1 gradient formation by approximately 3 

minutes (control: -4:30 relative to NEBD; Figure 38). 
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MEX-1 depletion impaired the timing of the exponential PIE-1 gradient formation, thus 

MEX-1 was needed for formation of the PIE-1 gradient. 

2.6.5 PIE granule appearance and PIE-1 gradient stabilisation temporally 
correlate in MEX-1 depleted embryos 

The analysis of PIE-1 gradient formation in wildtype embryos showed that the appearance of 

PIE granules correlated with the formation of an exponential gradient. To assign the time of 

PIE-1 gradient formation, I used the R2 value, which was the goodness the exponential fit to 

the PIE-1::GFP intensity profile. The cut-off value was R2≥0.75. 

To see whether the delayed formation of the exponential PIE-1 gradient after MEX-1 

depletion was also correlated with later PIE granule appearance, I timed the PIE granules 

appearance in mex-1(RNAi) embryos. I could observe that PIE granules appear late in 

mex-1(RNAi) embryos, between -1:30 and +3:10 relative to NEBD. Most of the PIE granules 

appeared after 0:00, which explained why so few recordings showed PIE granules when 

counted at 0:00 (NEBD, Figure 38 B). 

MEX-1 depletion delayed the appearance of PIE granules, which correlated with a delayed 

formation of the exponential PIE-1 gradient. 

2.6.6 PIE granule appearance and low cytoplasmic levels of PIE-1 correlate 
in MEX-1 depleted embryos 

To address the question if MEX-1 depletion also changes the cytoplasmic enrichment of 

PIE-1 in the posterior, I determined the ratio of cytoplasmic PIE-1 in the posterior and the 

anterior in time-lapse recordings of mex-1(RNAi) embryos expressing PIE-1::GFP. The 

maximum cytoplasmic PIE-1::GFP enrichment in the posterior in mex-1(RNAi) embryos was 

with 1.7-fold 20% lower than in the control. PIE granules appeared at a cytoplasmic 

enrichment of 1.5-fold at -1:00 relative to NEBD (Figure 39). 

The lower cytoplasmic enrichment of PIE-1::GFP in the posterior was consistent with the 

later appearance of the PIE granules and the delayed formation of the exponential PIE-1 

gradient. 
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Figure 39: Delayed PIE-1 granule appearance in mex-1(RNAi) embryos. The cytoplasmic PIE-1 levels are 
displayed as the enrichment of PIE-1 in the posterior in control (A, n=7) and mex-1(RNAi) embryos (B, n=8). 
The time window of PIE granules appearance is shaded. 

In control embryos, PIE granules appeared -6:30 and -2:30 relative to NEBD. At -6:30 

relative to NEBD, the posterior cytoplasmic enrichment of PIE-1 was 1.5-fold. In 

pie-1(partial RNAi) embryos, PIE granules appeared between -3:00 and -0:30 relative to 

NEBD. The posterior cytoplasmic PIE-1 enrichment was 1.3-fold at -3:00 relative to NEBD. 

The effect of MEX-1 on PIE-1’s ability to associate with P granules appeared to be at least 

partly independent of an affect on posterior cytoplasmic PIE-1 enrichment. My data suggests 

that there may be both concentration- and MEX-1-dependent contributions to PIE granule 

formation. 

2.6.7 MEX-1 changes mobility of PIE-1::GFP 

In a recent paper, the association of PIE-1 to P granules was proposed to slow the diffusion 

of PIE-1 in the posterior, which would contribute to the maintenance of the exponential 

PIE-1 gradient (Daniels et al., 2009). 

MEX-1 seemed to be important for the formation of PIE granules. I wanted to test if the 

depletion of MEX-1 would change the mobility of PIE-1::GFP in the posterior of the 

embryo. Therefore I performed FRAP in mex-1(RNAi) embryos and determined the half-time 

recovery as a measure for the mobility of PIE-1::GFP (Figure 40 A). The depletion of 

MEX-1 significantly lowered the half-time recovery of PIE-1::GFP compared to control 

embryos (p<0.01; Figure 40 B), which meant that PIE-1::GFP was moving much faster in 

the posterior of the embryo. 
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The formation of PIE granules seemed to be important for determining the mobility of 

PIE-1, both of which were altered by MEX-1 depletion. 

 

Figure 40: MEX-1 depletion increases PIE-1’s mobility. A) FRAP curve and determination of the half-time 
recovery. B) Calculated half-time recoveries of PIE-1::GFP in PIE-1 control and mex-1(RNAi) embryos. For 
statistical analysis an unpaired two-tailed student’s t-test is used. 

2.6.8 MEX-1 is needed for formation of PIE granule intermediates 

In a Fluorescence Correlation Spectroscopy (FCS) analysis of wildtype embryos, Daniels et 

al. (2009) found that PIE-1 appeared to be present in more than one population: a fast 

diffusing species that appears to represent free PIE-1, a slower diffusing species that may 

represent an aggregate or complexed form of PIE-1, and a very slow diffusing species that 

may reflect PIE-1 bound to P granules. The study further suggests that the fractions of each 

species vary along the anterior–posterior axis, such that in the posterior, the fast-diffusing 

species accounts for 30% of the total PIE-1, the slow-diffusing species 40%, and the very 

slow-diffusing species 30%. I wanted to test whether the depletion of MEX-1 would change 

the fractions of these different species or their diffusion properties. Therefore I depleted 

embryos of MEX-1 and measured the dynamics of single PIE-1::GFP molecules by FCS 

near the posterior cortex of the one-cell embryo. 

The autocorrelation functions could be fit with a two-component anomalous diffusion model 

in three dimensions: PIE-1::GFP was present in the posterior cytoplasm as a fast and slow-

diffusing component. This was in contrast to the three-component model used by Daniels et 
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al. (2009), but because addition of a third component did not significantly improve the fit of 

my data, I chose to use the simpler, two-component model (Figure 41). 

 

Figure 41: FCS data processing. A typical time course of PIE-1::GFP intensity fluctuations as measured by 
FCS (A) is converted into a PIE-1::GFP intensity autocorrelation function G(τ) (green line, B). The fit curve of 
the two-component anomalous diffusion model in three dimensions is shown in orange.  

The diffusion correlation time measures the dwell time of GFP molecules within the 

confocal volume of the microscope and thus is directly related to the diffusion rate and 

inversely proportional to the diffusion coefficient, respectively. The diffusion correlation 

time of the fast component (3.55 ± 0.65 msec) was 20 times faster than the slow component 

(60.97 ± 8.26 msec) and accounted for about 56% of the entire PIE-1 protein in the posterior 

(Figure 42 A). The higher diffusion correlation time of the slow component suggested that 

the PIE-1 in this fraction is associated in complexes of a larger size than the PIE-1 species 

making up the fast component. The depletion of MEX-1 significantly increased the fraction 

of the fast-diffusing component (65 ± 2%, control: 56 ± 3%, p<0.01; Figure 42 A). In 

mex-1(RNAi) embryos, the average diffusion correlation time of the fast component was 1.30 

± 0.10 msec and that of the slow component was 32.24 ± 2.41 msec, both values 

significantly faster from the control (3.55 ± 0.65 msec, p<0.01; 60.97 ± 8.26 msec; p<0.002, 

respectively; Table 1). 

To more precisely investigate how the difference in diffusion correlation times between 

wildtype and mex-1(RNAi) embryos arose, I analysed the frequency distribution of diffusion 

correlation times from individual FCS experiments. Wildtype embryos exhibited a wider 
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distribution of diffusion correlation times for both fast- and slow-diffusing components 

compared to MEX-1 depleted embryos (Figure 42 B and C). The heterogeneous correlation 

diffusion times suggested that PIE-1 was integrated into complexes of varying sizes. MEX-1 

affected the formation of PIE-1 complexes of intermediate size, consistent with the increased 

proportion of fast-diffusion PIE-1 in mex-1(RNAi) embryos. 

 
Figure 42: MEX-1 depletion changes PIE-1 intermediates. A) Fraction size of component 1 in control is 56 
± 2.6% (n=26) and mex-1(RNAi) 65 ± 2% (n=26). B) Histogram of diffusion correlation times of component 1 
in control and mex-1(RNAi). C) Histogram of diffusion correlation time of component 2 in wildtype and 
mex-1(RNAi). For statistical analysis an unpaired two-tailed student’s t-test is used. 

Table 1: Calculations of apparent Diffusion coefficient D. 

Particle Diffusion correlation time [msec] D [µm2/sec] 
PIE-1::GFP, wildtype 
component 1 

3.55 ± 0.65  3.66 ± 0.54 

PIE-1::GFP, wildtype 
component 2 

60.97 ± 8.26 
 

0.17 ± 0.03 
 

PIE-1::GFP, mex-1(RNAi) 
component 1 

1.30 ± 0.10 5.92 ± 0.59 
 

PIE-1::GFP, mex-1(RNAi) 
component 2 

32.24 ± 2.41 0.23 ± 0.03 
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2.6.9 MEX-1 depletion changes the nuclear accumulation of PIE-1 

While recording MEX-1 depleted embryos, I noticed that PIE-1::GFP seemed to accumulate 

in the maternal pronucleus earlier during the cell cycle than in wildtype embryos. Therefore I 

analysed mex-1(RNAi) embryos for the nuclear accumulation of PIE-1 (Figure 43). 

The nuclear enrichments of both pronuclei increased by the same rate. The maximum 

enrichment of the paternal pronucleus in mex-1(RNAi) embryos was 2.0-fold over the 

anterior cytoplasm, within the range in control embryos. The nuclear enrichment of PIE-1 in 

the maternal pronucleus started at -6:00 relative to NEBD, about 2 minutes earlier than in the 

control (Figure 24). 

 

Figure 43: Nuclear Accumulation of PIE-1 in mex-1(RNAi) embryos. The solid line represents the nuclear 
accumulation of PIE-1 in the paternal pronucleus, the dashed line in the maternal pronucleus (n=4). 

Because my previous studies indicated that the nuclear accumulation of PIE-1 depended 

largely on the cytoplasmic concentration of PIE-1 near the nucleus, one possible explanation 

of the earlier accumulation of PIE-1 in the maternal pronucleus in mex-1(RNAi) embryos is 

that MEX-1 depletion changes the level of cytoplasmic PIE-1 in the anterior.  

2.7 ZIF-1 affects stabilisation of the PIE-1 gradient 

Not much is known about PIE-1 interactions with other proteins. In order to identify 

potential interaction partners of PIE-1, a yeast-two-hybrid screen was performed 

commercially (Hybridgenics). The full-length cDNA of PIE-1 was used as pray, and the 

C. elegans embryonic library screened for robust interactors. The strongest candidates were: 
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C. elegans homeobox (CEH)-3 protein, poly-A polymerase (PAP)-1, prion-like (Q/N-rich) 

domain-bearing (PQN)-59 protein, SR protein related (RSR)-2 protein, stress-induced 

protein (SIP)-1, synapsis defective (SYD)-9 protein, abnormal thermotaxis (TTX)-1, zinc-

finger interaction protein (ZIF)-1. C44H4.4 and K07E3.1 were two proteins of unknown 

function.  

By testing all candidates for effects on the PIE-1 gradient formation by RNAi-mediated 

depletion, I found that several genes (ceh-37, sip-1, pap-1) gave a similar phenotype, namely 

reduced PIE-1 levels. The shape of the PIE-1 gradient and PIE granule appearance, however, 

were not affected. In contrast, zif-1(RNAi) embryos showed more pronounced PIE granules, 

and thus I focused on ZIF-1 for further analysis. 

2.7.1 zif-1 mutants change the shape of PIE-1 gradient 

The zif-1(RNAi) phenotype of was not very consistent, so I decided to use the mutant allele 

zif-1(gk117), which deletes part of the promotor and the first exon of the gene (Checchi and 

Kelly, 2006). 

 
Figure 44: zif-1 mutants change PIE-1 gradient shape. A) Intensity profile along the anterior–posterior axis 
of a one-cell embryo at 0:00 (NEBD). The blue line shows the fit exponential curve. The decay constant λ is 
calculated in EL from the source of the gradient. B) Average decay constants are in PIE-1 control 0.17 ± 0.01 
EL (n=15) and zif-1(gk117) embryos 0.21 ± 0.01 EL (n=15). For statistical analysis an unpaired two-tailed 
student’s t-test is used. AU: arbitrary units, EL: embryo length, AP-Axis: anterior–posterior axis. 

To determine whether deletion of ZIF-1 affected the shape of the PIE-1 gradient, I 

performed quantitative time-1apse recording of zif-1(gk117) embryos expressing PIE-1::GFP 

followed by calculation of the decay constant λ. The decay constant was significantly 
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different from the control (zif-1(gk117): 0.21 ± 0.01 EL, control: 0.17 ± 0.01 EL, p<0.001; 

Figure 36 B). 

The loss of functional ZIF-1 lengthened the PIE-1 gradient compared to wildtype. I observed 

the same phenotype after MEX-1 depletion. The decay constant λ was 0.20 ± 0.01 EL in 

mex-1(RNAi) embryo, which was not significantly different from zif-1 mutants (p>0.7, data 

not shown;). 

2.7.2 zif-1 mutants do not affect the number and size of PIE granules  

Next I wondered if the depletion of ZIF-1 changed the number or size of PIE granules. The 

PIE granules were counted in still images of zif-1(gk117) embryos expressing PIE-1::GFP at 

0:00 (NEBD) after applying an intensity threshold. 

The average number of PIE granules was not significantly different from the control 

(zif-1(gk117): 10.67 ± 2.68, control: 10.40 ± 0.80, p>0.27; Figure 45 A). 

 
Figure 45: Average number and size of PIE granules are independent of ZIF-1. A) The average number of 
PIE granules at 0:00 (NEBD) is 10.40 ± 0.80 (n=9) in the PIE-1 control and 10.67 ± 2.68 (n=9) in zif-1(gk117) 
embryos. B) The average size of PIE granules is 0.67 ± 0.05 µm2 (n=9) in control and 0.57 ± 0.4 µm2 (n=9) in 
ZIF-1 mutant embryos. For statistical analysis an unpaired two-tailed student’s t-test is used. 

The same intensity threshold was used to determine the size of PIE granules in zif-1(gk117) 

embryos. The average size of PIE granules in zif-1(gk117) embryos was not significantly 

different from the control (zif-1(gk117): 0.57 ± 0.4 µm2, control: 0.67 ± 0.05 µm2, p>0.11; 

Figure 45 B). 

The depletion of  ZIF-1 did not affect PIE granule formation. 
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2.7.3 Time of PIE granule appearance is unchanged in zif-1 mutants 

Next I analysed the appearance of PIE granules. I quantified the time of PIE granule 

appearance in zif-1(gk117) embryos expressing PIE-1::GFP. 

I could detect PIE granules during a similar time range as in the wildtype embryos, between 

-5:30 and -2:20 relative to NEBD. I could also see no difference in the posterior enrichment 

of cytoplasmic PIE-1::GFP in zif-1(gk117) mutants relative to the control. The maximum 

enrichment was about 2.5-fold (Figure 46 A). 

2.7.4 zif-1 mutants promote the formation of the PIE-1 gradient 

The shape of the PIE-1 gradient at 0:00 (NEBD) in zif-1(gk117) mutants was changed 

relative to controls. To answer the question if the kinetics of gradient formation was altered, 

I performed quantitative time-lapse microscopy of zif-1(gk117) embryos expressing 

PIE-1::GFP during the first cell division. The formation of the PIE-1 gradient formation was 

analysed by the shape of the gradient (decay constant λ) and goodness of the exponential fit 

to the Pie-1::GFP intensity profile along the anterior–posterior axis (R2 value) in 30 sec 

intervals. I used the R2 values to assign the time at which the gradient became statistically 

exponential, using 0.75 as the cut-off value. 

 

Figure 46: zif-1 mutants promote formation of PIE-1 gradient. A) The posterior enrichment of cytoplasmic 
PIE-1 in zif-1(gk117) embryos (n=6). The posterior enrichment in control embryos is in gray (n=10). B) 
Analysis of the PIE-1 gradient formation by the shape of the gradient (decay constant λ, pink) and the goodness 
of the exponential fit to the PIE-1::GFP intensity profile along the anterior–posterior axis (R2 value, blue). The 
dashed line indicates the cut-off value for the exponential gradient formation (R2≥0.75). PIE-1::GFP expressing 
zif-1(gk117) embryos are analysed (n=6). The time window of PIE granule appearance is shaded. EL: embryo 
length. 
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The PIE-1 gradient was already exponential at -8:00 relative to NEBD, often the beginning 

of the recordings. Thus the exponential PIE-1 gradient was formed around 3 minutes earlier 

in zif-1 mutants relative to wildtype (-5:00 relative to NEBD, Figure 46 B). 

The deletion of ZIF-1 seemed to promote the formation of the exponential PIE-1 gradient 

independently of the association of PIE-1 to PIE granules or overall levels of PIE-1. 

2.7.5 Depletion of the SUMO-conjugating enzyme UBC-9 does not affect 
PIE-1 gradient shape 

Another interaction partner of PIE-1 is the E2 ubiquitin-conjugating enzyme (UBC)-9 (C. 

Mello, personal communication), which uses small ubiquitin-like modifier (SUMO) as a 

substrate (Jones et al., 2002). To test if UBC-9 contributed to the shape of the PIE-1 

gradient, I depleted UBC-9 by RNAi. I performed quantitative time-lapse microscopy of 

ubc-9(RNAi) embryos expressing PIE-1::GFP and determined the decay constant λ at 0:00 

(NEBD). The decay constant λ was not significantly different from the control (ubc-9(RNAi): 

0.18 ± 0.02 EL, control: 0.19 ± 0.02 EL, p>0.56; Figure 47). 

Depletion of UBC-9 did not affect the shape of the PIE-1 gradient. 

 

Figure 47: Shape of PIE-1 gradient is independent of UBC-9 and AMA-1. At 0:00 (NEBD), the average 
decay constants after UBC-9 and AMA-1 depletion are 0.18 ± 0.02 EL (n=8) and 0.17 ± 0.02 EL (n=3), 
respectively. The decay constant λ is 0.19 ± 0.02 EL in the PIE-1 control (n=6). For statistical analysis an 
unpaired two-tailed student’s t-test is used. EL: embryo length. 
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2.7.6 Depletion of the large subunit of RNAPII AMA-1 does not affect PIE-1 
gradient shape 

PIE-1 is reported to compete with the CTD domain of RNAPII for binding to the CDK-9 

(Zhang et al., 2003). In C. elegans, the amanitin resistant (ama)-1 gene encodes the large 

subunit of RNAPII required for mRNA transcription. Depletion of AMA-1 by RNAi causes 

embryonic lethality at gastrulation (Powell-Coffman et al., 1996). To test if AMA-1 was 

needed for shaping the PIE-1 gradient, I performed quantitative time-lapse microscopy in 

ama-1(RNAi) embryos expressing PIE-1::GFP and determined the decay constant λ at 0:00 

(NEBD). The decay constant λ was not significantly different from the control 

(ama-1(RNAi): 0.17 ± 0.02 EL, control: 0.19 ± 0.02 EL, p>0.41; Figure 47). 

Depletion of AMA-1 did not affect the shape of the PIE-1 gradient at NEBD.  

2.8 MEX-1 forms an exponential concentration gradient 

Given that MEX-1 influenced PIE-1 gradient formation and mobility, I next sought to 

determine the localisation of MEX-1. To gain information about the dynamic distribution of 

MEX-1, I performed quantitative time-lapse microscopy of embryos expressing 

GFP::MEX-1 (UE27) during the first cell division. 

As previously reported, I observed the association of GFP::MEX-1 to P granules. In contrast 

to PIE-1, GFP::MEX-1 did not accumulate in the pronuclei throughout the cell cycle. 

MEX-1 also exhibited a non-P granule cytoplasmic localisation, similar to PIE-1. After the 

onset of polarity and expansion of the smooth domain, cytoplasmic GFP::MEX-1 intensity 

increased near the posterior cortex. At 0:00 (NEBD), cytoplasmic GFP::MEX-1 occupied 

half of the embryo. This asymmetry in MEX-1 localisation persisted through the first cell 

division. Thus, MEX-1 was only segregated to the P1 cell (Figure 48). 

I addressed the different aspect of cytoplasmic asymmetry with the following intensity 

measurements: The cytoplasmic distribution of GFP::MEX-1 was determined with the 

posterior–anterior ratio. MEX-1 was uniformly distributed at -9:00 (relative to NEBD), 

shortly after the onset of polarity establishment. GFP::MEX-1 became enriched in posterior 
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cytoplasm at -5:00 relative to NEBD. The maximal enrichment was 1.5-fold relative to the 

anterior (Figure 49 B). 

 
Figure 48: Time-lapse images of a one-cell embryo expressing GFP::MEX-1. The first cell division is 
shown. The scale bar represents 10 µm. The anterior is to the left. 

At 0:00 (NEBD), the intensity profile of cytoplasmic GFP::MEX-1 was determined along 

the posterior–anterior axis. GFP::MEX-1 intensities were highest at the posterior pole and 

decreased along the embryo axis. GFP::MEX-1 intensities reached background levels around 

0.4 EL. An exponential decay function could be fit to the GFP::MEX-1 profile (Figure 49 

A). The decay constant λ was 0.14 ± 0.01 EL (Figure 51 A). 
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Figure 49: GFP::MEX-1 forms an exponential gradient. A) Intensity profile along the anterior–posterior 
axis of an one-cell embryo at NEBD. The blue line shows the fit exponential curve. The decay constant λ is 
calculated in EL from the source of the gradient. B) Posterior enrichment of cytoplasmic GFP::MEX-1 during 
the first cell cycle (n=8). AU: arbitrary units, EL: embryo length, AP-Axis: anterior–posterior axis. 

2.8.1 MEX-1 levels accumulate independent of PAR-1 

PIE-1 accumulation depends on PAR-1. I wanted to check if MEX-1 was controlled by a 

similar mechanism. I performed quantitative time-lapse microscopy of par-1(RNAi) embryos 

expressing GFP::MEX-1 during the first cell division and determined the levels of 

GFP::MEX-1 in the anterior and posterior cytoplasm. The region measurements showed that 

the cytoplasmic asymmetry of GFP::MEX-1 between the anterior and posterior was lost in 

par-1(RNAi) embryos: GFP::MEX-1 was uniformly distributed. 

 

Figure 50: MEX-1 accumulates independent of PAR-1. Region measurements in MEX-1 control (gray, n=8) 
and par-1(RNAi) embryos expressing GFP::MEX-1 (orange, n=6). Measurements at the anterior (dashed line) 
and posterior pole of the embryo (solid line) are displayed. AU: arbitrary units 
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However, in contrast to PIE-1 in par-1(RNAi) embryos, GFP::MEX-1 intensities of the 

anterior and the posterior cytoplasm increased throughout the cell cycle in par-1(RNAi) 

embryos and reached the same level as the control (Figure 50). 

The depletion of PAR-1 did not affect the production of MEX-1. PAR-1 was needed to 

position the source of the MEX-1 gradient to the posterior cortex. 

2.8.2 PIE-1 depletion delays MEX granule appearance  

In control GFP::MEX-1 embryos, MEX-1-positive P granules, hereafter referred to as 

MEX granules, were present at the beginning of each recording, around -8:00 relative to 

NEBD. The average number and size of MEX granules was determined at 0:00 (NEBD) 

after applying an intensity threshold. About 19.92 ± 1.17 MEX granules were present with 

an average size of 0.75 ± 0.03 µm2 (Figure 51 A and B). 

 
Figure 51: Average number and size of MEX granules. The average size and number of P granules are 
determined by an intensity threshold in embryos expressing GFP::MEX-1 at 0:00 (NEBD). A) The average 
number of MEX granules in control, pie-1(RNAi), zif-1(gk117), and par-1(RNAi) embryos is 19.92 ± 1.17 
(n=12), 21.86 ± 1.51 (n=7), 25.00 ± 1.30 (n=5) and 0 ± 0 (n=7), respectively. B) The average size of 
MEX granules in control, pie-1(RNAi), and zif-1(gk117) embryos is 0.75 ± 0.03 µm2 (n=12), 0.74 ± 0.04 µm2 
(n=7), and 0.76 ± 0.05 µm2 (n=7), respectively. For statistical analysis an unpaired two-tailed student’s t-test is 
used. 

To test whether depletion of PIE-1 altered the time of MEX granule appearance, I performed 

quantitative time-lapse recoding in pie-1(RNAi) embryos expressing GFP::MEX-1 during the 

first cell division. I quantitatively timed the appearance of MEX granules in pie-1(RNAi) 

embryos. In contrast to wildtype, and I could first detect MEX granules between -6:40 and 

-3:30 relative to NEBD (data not shown). 
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The depletion of PIE-1 delayed MEX granule appearance. 

2.8.3 MEX granule size and number are independent of PIE-1 

To answer the question if PIE-1 not only delayed the time of MEX granule appearance but 

also their number and size, I analysed MEX granules in still images of pie-1(RNAi) embryos 

expressing GFP::MEX-1 after applying an intensity threshold. Neither the average number 

(21.86 ± 1.51) nor size (0.74 ± 0.04 µm2) of MEX granules in pie-1(RNAi) embryos was 

significantly different from the control (19.92 ± 1.17, p>0.45; 0.75 ± 0.03 µm2, p>0.86, 

respectively; Figure 51 A and B). 

2.8.4 PIE-1 has minor effect on MEX-1 gradient shape 

To investigate if the delayed appearance of MEX granules affected the MEX-1 gradient 

shape, I analysed recordings of pie-1(RNAi) embryos expressing GFP::MEX-1 for the decay 

constant λ at 0:00 (NEBD). The decay constant λ in pie-1(RNAi) embryos was not 

significantly different from the control (pie-1(RNAi): 0.18 ± 0.01 EL, control: 0.13 ± 0.01 

EL, p>0.05; Figure 52). 

PIE-1 has a minor effect on the shape of the MEX-1 gradient. 

 

Figure 52: Shape of MEX-1 gradient is independent of ZIF-1 and PIE-1. A) The decay constant λ was 
determined in control, pie-1(RNAi), and zif-1(gk117) embryos expressing GFP::MEX-1 as 0.13 ± 0.01 EL 
(n=4), 0.18 ± 0.01 EL (n=4), and 0.16 ± 0.02 EL (n=6), respectively. B) For statistical analysis an unpaired 
two-tailed student’s t-test is used. EL: embryo length. 

2.8.5 Kinetics of MEX-1 gradient formation are independent of PIE-1 

To investigate if delayed appearance of MEX granules would have an effect on the temporal 

dynamics of MEX-1 gradient formation, I analysed recordings of pie-1(RNAi) embryos 
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expressing GFP::MEX-1 for MEX-1 gradient formation. I analysed the MEX-1 gradient 

formation by the shape of the gradient (decay constant λ) and the goodness of the 

exponential fit to the GFP::MEX-1 intensity profile (R2 value). Both values were calculated 

in 30 sec intervals. I used the R2 value to assigned the time at which the PIE-1 gradient 

became statistically exponential, using the cut of values of R2≥0.75. 

In wildtype, the exponential MEX-1 gradient was established around -1:30 relative to 

NEBD. I used the decay constant λ for assessing the stability of the PIE-1 gradient shape. 

The shape of the MEX-1 gradient was never as stable as the PIE-1 gradient around 0:00 

(NEBD; Figure 53 A) maybe due to the small number of analysed embryos. The depletion 

of PIE-1 only minorly changed the timing of exponential MEX-1 gradient formation (-1:00 

relative to NEBD; Figure 53 B). 

The formation of the MEX-1 gradient was largely independent of PIE-1.  

Thus, there might be a hierarchy of fate determinant localisation, such that PIE-1 requires 

MEX-1 for accurate gradient formation but MEX-1 does not require PIE-1 to establish a 

gradient. 

 
Figure 53: Formation of MEX-1 gradient is independent of PIE-1. Analysis of the PIE-1-gradient formation 
by the shape of the gradient (decay constant λ, pink) and the goodness of the exponential fit to PIE-1::GFP 
intensity profile along the anterior–posterior axis (R2 value, blue) and in control (A, n=5) and in pie-1(RNAi) 
embryos expressing GFP::MEX-1 (B, n=3). The dashed line indicates the cut-off value for exponential gradient 
formation (R2≥0.75). EL: embryo length. 

2.8.6 MEX-1 gradient forms independently of ZIF-1 

The formation of the PIE-1 gradient was accelerated in zif-1 mutants. To find out if this was 

true for the formation of the MEX-1 gradient, I performed quantitative microscopy of 
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GFP::MEX-1;zif-1(gk117) embryos (UE25) during the first cell division. I determined the 

decay constant λ and the R2 values in 30 sec intervals as a measure to access the formation of 

the MEX-1 gradient. The time, at which the exponential MEX-1 gradient stabilised, was 

similar in zif-1(gk117) and control embryos, occurring around -2:00 relative to NEBD 

(Figure 54). 

Thus, zif-1 mutants did not affect the formation of the MEX-1 gradient. 

 

Figure 54: MEX-1 gradient formation independent of zif-1. Analysis of the PIE-1-gradient formation by the 
shape of the gradient (decay constant λ, pink) and the goodness of the exponential fit to PIE-1::GFP intensity 
profile along the anterior–posterior axis (R2 value, blue). GFP::MEX-1 expressing zif-1(gk117) embryos are 
analysed (n=4). The dashed line indicates the cut-off value for exponential gradient formation (R2≥0.75). EL: 
embryo length. 

2.8.7 MEX-1 granule assemble independently of ZIF-1  

To test if the MEX granules appeared independently of ZIF-1, I timed the appearance of 

MEX granules in zif-1(gk117) embryos expressing GFP::MEX-1. Similar to the controls, 

MEX granules in zif-1(gk117) embryos were present already present at the beginning of each 

recordings, as early as -8:00 relative to NEBD. 

Zif-1 mutants did not have an effect on the time of MEX granule appearance. 

To check whether zif-1 mutants have an effect on other MEX granule properties, I 

determined the number and size of MEX granules in still images of zif-1(gk117) embryos 

expressing GFP::MEX-1 at 0:00 (NEBD) after applying an intensity threshold. The average 

number of MEX granules was 25.00 ± 1.30 and the average size was 0.76 ± 0.05 µm2 in 

zif-1(gk117) embryos, neither of which was significantly different from in controls (19.92 ± 

1.17, p>0.45; 0.75 ± 0.03 µm2; p >0.86, respectively; Figure 51). 
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Thus the effect of ZIF-1 on stabilizing the cytoplasmic gradient appears to be limited to 

PIE-1. 

2.9 P granules coalesce in the posterior 

 

Figure 55: Time-lapse images of a one-cell embryo expressing GFP::PGL-1. The first cell division is 
shown. The scale bar represents 10 µm. The anterior is to the left. 

Because of the apparent importance of P granule association of PIE-1 through MEX-1 in the 

establishment of a stable PIE-1 gradient, I wanted to better understand the dynamics of 

P granules in one-cell embryos. I performed quantitative time-lapse microscopy on embryos 

expressing GFP::PGL-1 (UE18), a constitutive component of P granules (Spike et al., 

2008b). 

As described previously (Kawasaki et al., 1998), during early stages of the first cell division, 

P granules were small and numerous in the cytoplasm. With cell cycle progression, fewer, 
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bigger and brighter P granules were observed. At 0:00 (NEBD), P granules occupied only 

the posterior half of the embryo only. GFP::PGL-1 was not found in the cytoplasm. The 

asymmetry in P granules persisted through cell division. Thus P granules segregation was 

restricted to the P1 cell (Figure 55). 

2.9.1 P granule number and size are independent of PIE-1 and MEX-1 

To follow up on the idea that MEX-1 facilitates the association of PIE-1 to P granules, I 

wanted to check whether the number of P granules per se was altered due to depletion of 

MEX-1. Therefore I performed quantitative time-lapse microscopy of GFP::PGL-1 embryos 

depleted of MEX-1 during the first cell division. The average number of PGL-1 positive 

P granules was calculated after applying an intensity threshold. Depletion of MEX-1 did not 

alter significantly the number of P granules compared to controls (mex-1(RNAi): 27.40 ± 

3.45, control: 30.85 ± 3.08, p>0.4; Figure 56 A). 

To confirm that P granule appearance does not rely on PIE-1, I depleted GFP::PGL 

expressing embryos of PIE-1 and recorded the first cell division by time-lapse microscopy. 

The number of P granules was counted at 0:00 (NEBD) after applying an intensity threshold 

to the images. The average number of P granules in pie-1(RNAi) embryos was not 

significantly changed in compared to control embryos (pie-1(RNAi): 29.29 ± 3.09, control: 

30.85 ± 3.08, p>0.7; Figure 56 A). 

 
Figure 56: Average numbers and size of P granules in worms expressing GFP::PGL-1. A) The average 
numbers of P granules are determined by an intensity threshold at 0:00 (NEBD) for GFP::PGL-1 control, 
pie-1(RNAi), mex-1(RNAi) and par-1(RNAi) embryos as 30.85 ± 3.08 (n=13), 29.29 ± 3.09 (n=7), 27.40 ± 3.45 
(n=10) and 0 ± 0 (n=5), respectively. B) The average size of P granules in the control is 0.96 ± 0.04 µm2 

(n=13), after depletion of PIE-1 0.96 ± 0.04 µm2 (n=7) and of MEX-1 1.02 ± 0.05 µm2 (n=10). For statistical 
analysis an unpaired two-tailed student’s t-test is used. 
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Additionally, I determined the size of P granules in worms expressing GFP::PGL-1. The 

depletion of neither PIE-1 nor MEX-1 changed the size of P granules significantly from the 

control (pie-1(RNAi): 0.96 ± 0.04 µm2, mex-1(RNAi): 1.02 ± 0.05 µm2, control: 0.96 ± 0.04 

µm2, p>0.9; p>0.3, respectively; Figure 56 B). 

Depletion of PIE-1 and MEX-1 did not change the number and size of P granules in 

GFP::PGL-1 expressing worms. 

2.9.2 Depletion of PAR-1 impairs P granules formation  

PAR-1 depletion lowered the number of both MEX granules and PIE granules. To figure out 

if the formation of P granules was generally dependent on PAR-1, I analysed par-1(RNAi) 

embryos expressing GFP::PGL-1 using quantitative time-lapse microscopy of the first cell 

cycle. I determined the number of P granules at 0:00 (NEBD) after applying an intensity 

threshold to the images. No P granules were detected in GFP::PGL-1; par-1(RNAi) embryos, 

suggesting either granules were too small to be counted or below the intensity threshold I 

applied. Previous reports have found that PAR-1 depletion interferes with P granule size and 

number (Updike and Strome, 2009), which is consistent with my findings (Figure 56). 
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3 Discussion 

My results show that PIE-1 forms an exponential concentration gradient in the C. elegans 

one-cell embryo at entry into mitosis. The gradient’s source is located along the posterior 

cortex. The PIE-1 gradient seems to be shaped by diffusion rather than by cytoplasmic flows, 

active processes like microtubule-based transport, or nuclear trapping. Protein synthesis near 

the posterior PAR domain and protein degradation in the anterior half of the embryo may 

contribute to the exponential shape of the PIE-1 gradient. The anterior PAR complex and 

PAR-2 ensure the correct posterior positioning of the PIE-1 source and subsequently the 

cytoplasmic asymmetric localisation of PIE-1. PAR-1 is essential to generate a PIE-1 source 

at the posterior cortex. PIE-1 associates to P granules. The appearance of PIE-1 positive 

P granules, PIE granules, might help shape the PIE-1 gradient and maintain its properties in 

varying conditions, such as changes in PIE-1 protein levels or embryo size. ZIF-1 might be 

involved in a mechanism counteracting the PIE-1 gradient formation while germline cell fate 

determinant MEX-1 restricts the spread of the PIE-1 gradient and stabilises it. MEX-1 itself 

forms also an exponential concentration gradient with the source at the posterior cortex. 

PAR-1 seems to be responsible for the correct positioning of the MEX-1 gradient. 

This PIE-1 gradient achieves an asymmetric distribution of cytoplasmic PIE-1 and ensures 

the exclusive segregation of PIE-1 to P1. 

3.1 Gradient formation  

A basic question in developmental biology is what makes cells take on one particular cell 

fate in one part of the embryo and those elsewhere adopt another? This developmental 

pattering is regulated on spatial and temporal level: When and where cell fates are 

determined. Mathematics has been used to describe this formation of these patterns. The 

concept of morphogens, as a substance that changes cell fate in a concentration-dependent 

manner was introduced by Turing in 1952 (Turing, 1952). He used a reaction-diffusion 

model, which could describe the stable formation of a pattern from initially randomly 

distributed morphogens. In cells close to the gradient source, genes are expressed that need a 

high concentration of the gradient, while in cells further away from the gradient start 
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expressing genes in response to lower concentration of the morphogen. A steady-state 

morphogen gradient can be reduced to the following four parameters: production, rate of 

diffusion, degradation and immobile fraction (Kicheva et al., 2007). For each morphogen, all 

these parameters determine its specific shape. Conceptually, a morphogen gradient is the 

simplest way of spatial patterning (Lewis, 2008). 

3.1.1 Gradients in tissues 

In the development of embryos, most morphogen gradients patterns tissues and have to 

travel over several cell diameters. The development of the wing in Drosophila larvae is an 

excellent system for studying morphogen gradients. Here, the patterning of the wing margins 

of the wing, vein patterns and growth of the wing are organised by morphogens (O'Connor et 

al., 2006). I will compare the formation of Wingless and Decapentalegic morphogen 

gradients: 

Wingless, a secreted member of the Wingless/Int-1 (Wnt) family is reported to be a 

morphogen that is involved in forming the margins of the wing (Strigini and Cohen, 2000). It 

is known for its short-range gradient (Diaz-Benjumea and Cohen, 1994). The bone 

morphogenic protein (BMP) family member Decapentalegic (Dpp) forms a long-range 

gradient that spreads throughout the wing disc regulating the size of the wing (Entchev et al., 

2000; Tabata, 2001).  

Kicheva et al. (2007) measured the four parameters for the Wingless and Dpp gradient: Fast 

degradation, faster mobility and less constantly bound protein shaped the short-range 

Wingless gradient. In contrast, Dpp degradation was slow, the immobile fraction was big and 

the protein was slow-diffusing. These parameters shape the long-range Dpp gradient. 

What processes controls diffusion rate in a tissue? As secreted proteins morphogens can 

move through the extracellular space but sole movement by free diffusion would not form 

the characteristic morphogen concentration gradient (Entchev et al., 2000). Restricted 

morphogen diffusion in the extracellular space might be more suitable. Interactions with the 

extracellular matrix or morphogen receptors could slow the motion (Tabata, 2001; Yu et al., 

2009). Transport of morphogens by planar transcytosis, cytonemes and argosomes are 
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observed in wing disc development: In planar transcytosis repeated cycles of endocytosis 

and resecretion transport the morphogen for cell to cell (Entchev et al., 2000; Kicheva et al., 

2007). For instance, in the case of Dpp, it has been postulated that Dpp the gradient is 

formed by dynamin-mediated transcytosis (Entchev et al., 2000).  

Cells form actin-based long protrusion, cytonemes, which contact the cells expressing the 

source of the gradient (Ramírez-Weber and Kornberg, 1999). Agrosomes are vesicles of 

fragmented basolateral membrane, which transport the morphogen to neighbouring cells 

(Greco et al., 2001). 

All these are possibility how the diffusion of proteins is restricted to shape a gradient. For 

the fine-tuning of a morphogen gradient all four parameters (production, degradation, 

diffusion and immobile faction) are needed to make a robust system to pass on spatial 

information as needed in e.g. patterning of the wing 

3.1.2 Gradient in single cells 

The Bicoid gradient in the Drosophila embryo is one of the few examples of an intracellular 

morphogen gradient, which is set up in one big cell. The early Drosophila embryo is a 

syncytium, where the nuclei are uniformly localised along the cortex. During oogenesis, the 

Bicoid mRNA is produced in the neighbouring nurse cells, transported across the plasma 

membranes and placed at the anterior pole (Riechmann and Ephrussi, 2004). After 

fertilisation, transcription of the Bicoid mRNA is initiated in the Drosophila embryo 

(Driever and Nüsslein-Volhard, 1988a). Bicoid protein diffuses away from the site of 

synthesis and forms a gradient that organised the anterior–posterior axis of the embryo 

(Driever and Nüsslein-Volhard, 1988a). Bicoid is a transcriptional repressor by controlling 

the expression of zygotic gap genes that specify the different regions within the embryo. 

Bicoid forms a spatial concentration gradient to which cells respond at different threshold 

concentrations (Driever and Nüsslein-Volhard, 1989). Depending on the position in the 

morphogen gradient, cells of the syncycial embryo start gene expression of zygotic genes 

that set up the different segments in the embryo (Driever and Nüsslein-Volhard, 1988b). 
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What shapes Bicoid gradient? Mathematical modelling of different scenarios show that 

simple diffusion of Bicoid through the cytoplasm is not able to form a concentration gradient 

(Gregor et al., 2007). Gregor et al. (2007) developed a model in which the Bicoid gradient is 

formed by local production of Bicoid in the anterior, diffusion and uniform degradation. 

Within this model, the degradation of Bicoid ensures the stability of the gradient that would 

otherwise spread out to occupy the whole embryo instead. A more recent paper questions the 

contribution of the degradation, as the rate of Bicoid degradation has not been 

experimentally determined. Instead, Coppey et al. (2007) develop a model that suggests a 

trapping function of the nuclei, which would limit Bicoid diffusion and maintain the 

gradient. 

A recent model suggests that the protein Bicioid gradient is prefigured by an mRNA gradient 

(Spirov et al., 2009): Despite the similar shapes of both gradients, the Bicoid mRNA 

gradient is not likely to be formed by diffusion. Ribonucleoprotein complexes of bicoid 

mRNA and Staufen is formed, which travel along microtubules driven by the concentration 

difference (Weil et al., 2006). This mRNA gradient is set up before the nuclei migrate to the 

cortex of the embryo. The amount of Bicoid that is taken up by the nuclei depends on their 

position in the Bicoid gradient. 

How can a stable PIE-1 gradient be established in the C. elegans one-cell embryo? As in all 

other model systems, there is a PIE-1 source, which seems to be located along the posterior 

cortex. There is diffusion of PIE-1 in the cytoplasm away from the source. The interaction 

with P granules could change the diffusion parameters of PIE-1. The existence of an 

immobile PIE-1 fraction is at present not known. There is the possibility however that an 

immobile fraction of PIE-1 could be bound to P granules. Finally, the degradation in the 

anterior completes the shaping of the PIE-1 concentration gradient. In the next section I will 

discuss all four parameters essential for gradient formation separately. 
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3.2 The PIE-1 source 

3.2.1 Positioning of the source 

The PAR proteins at the cortex of the embryo are key regulators of polarity in the one-cell 

embryo. Their depletion leads to symmetric cell division as well as a failure in generating the 

founder cells of the cell lineages (Kemphues et al., 1988). According to PAR polarity, cell 

fate determinants are asymmetrically segregated, which results in different cell fates. 

What are the roles of PAR proteins in PIE-1 source positioning? The PIE-1 source is the 

place of the highest cytoplasmic PIE-1 level. The anterior and posterior PAR protein 

complexes seem to have distinct roles in organising the PIE-1 source positioning. The loss of 

any of anterior PAR complex proteins allows positioning of the PIE-1 source along the entire 

cortex. The “rim” of high cytoplasmic PIE-1::GFP intensity, which can be seen at the cortex 

after depletion of the anterior PAR complex, might be an initial PIE-1 source, which 

becomes bigger and spreads with progression of the cell cycle. So, the anterior PAR complex 

restricts the PIE-1 source to the posterior. 

PAR-2 is initially not needed for the positioning of PIE-1 source. Later in cell division 

PAR-2 is required for PIE-1 asymmetry by preventing localisation of the anterior PAR 

complex to the posterior cortex. There might be an additional role for PAR-2 in PIE-1 source 

positioning as cytoplasmic PIE-1 is lost along the cortex when the anterior PARs re-enter the 

posterior cortex during polarity maintenance phase (Cuenca et al., 2003). 

What happens to the PIE-1 source if polarity is not established? In spd-5(RNAi) or 

cytochalasin D-treated embryos, the PIE-1 source locates to the centre of one-cell embryos 

instead of along the posterior cortex. The treatment leads to inhibition of polarity 

establishment (Hill and Strome, 1990). The prevention of contractile polarity in the one-cell 

embryo allows the anterior PAR complex proteins to remain uniformly along the cortex. The 

anterior PAR complex may prevent the PIE-1 source from forming in the vicinity of the 

cortex, which leaves the centre of the as the only possibility for PIE-1 source location. 
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3.2.2 PAR-1 and the PIE-1 source formation 

While anterior PARs and PAR-2 are involved in source positioning, depletion of PAR-1 by 

RNAi shows a different phenotype: the cytoplasmic level of PIE-1 was depleted. Thus 

PAR-1 might contribute to PIE-1 gradient by forming the PIE-1 source. The PIE-1 source is 

defined as the position within the one-cell embryo of highest cytoplasmic PIE-1 levels. High 

levels of cytoplasmic PIE-1 could be achieved by local protein synthesis, local release of 

newly folded protein or even stabilisation of present protein. Additionally, the local 

protection from degradation or trapping of the protein could cause in formation of a protein 

source. For example, in Drosophila embryos, the local protein synthesis of Bicoid lead to the 

formation of a local protein source (Driever and Nüsslein-Volhard, 1988a). 

How could PAR-1 contribute to the formation source of the PIE-1 gradient? PAR-1 is a 

serine/threonine kinase of the highly conserved microtubules affinity regulating kinase 

(MARK) family. In mammals, these kinases control the stability of microtubules by 

phosphorylation certain microtubule-associated proteins (Drewes et al., 1997). MARK 

signalling affects the polarity e.g. in neurons and their cell differentiation (Matenia and 

Mandelkow, 2009). In the early Drosophila embryo, PAR-1 plays an important role in 

regulation of the local mRNA accumulation of the morphogen oskar, which organises the 

posterior of the embryo. By controlling the nucleation of the microtubules in this way that 

the plus-ends point towards the posterior of the oocyte (Cha et al., 2001), oskar mRNA is 

transported in a kinesin-dependent process to the posterior pole (Brendza et al., 2000). 

Additionally, Oskar protein is stabilised by PAR-1-dependent phosphorylation in the 

posterior cytoplasm (Riechmann and Ephrussi, 2001). Oskar in turn restricts PAR-1 to the 

posterior and thus amplifies the microtubule nucleation by a positive feedback loop 

(Zimyanin et al., 2007). 

PAR-1 kinase activity is needed for polarity establishment. Mutations in the kinase domain 

result in embryonic lethal (Guo and Kemphues, 1995). In C. elegans however, no target for 

PAR-1 phosphorylation has been identified. Speculations suggest a role for PAR-1 in 

regulation of mRNA localisation as P granules are fewer in the posterior in par-1(-) mutants 

(Goldstein and Macara, 2007). The presence of fewer and smaller P granules could influence 
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the PIE-1 protein production by limiting PIE-1 mRNA transcript, which in turn would cause 

less translation of PIE-1. But no evidence exists for this pathway. 

PAR-1 could be involved in PIE-1 source formation by organisation microtubules. One 

possibility would be that PIE-1 mRNA is local deposition and that the protein is made only 

in the posterior. This possibility can be excluded as no asymmetric mRNA could be detected 

in in situ hybridisation (Reese et al., 2000).  

Local deposition of mRNA would involve directed transport e.g. along microfilaments as it 

has been described for bicoid (Cha et al., 2001) and oskar mRNA (Brendza et al., 2000) in 

the developing Drosophila oocyte. The contribution of microtubules to the formation of 

PIE-1 source can be also neglected. The PIE-1 posterior localisation was undisturbed in 

nocodazole treated embryos. Similar results have been described for PIE-1’s cytoplasmic 

asymmetry in the two-cell stage (Reese et al., 2000), which indicates that PIE-1 source 

positioning is independent of PAR-1 microtubule regulation function. 

All the reported functions do not explain how PAR-1 might regulate PIE-1 source formation. 

My results suggest that PIE-1 source is most likely formed by increase of local protein levels 

along the posterior cortex. Redistribution of existing protein is unlikely to be a dominant 

mechanism of posterior PIE-1 enrichment. 

The constant increase of integrated PIE-1::GFP intensity however argues for a PIE-1 source 

formation mechanism that involves protein synthesis than stabilisation of present protein. In 

the C. elegans embryo, protein synthesis has not been observed in the one-cell embryo. The 

earliest detection of translation in the C. elegans embryo is POS-1 in the AB cell (Evans et 

al., 1994) but translation of PIE-1 was never specifically investigated.  

The release of newly folded protein could be a possible mechanism for forming the PIE-1 

source in absence of protein synthesis. The experiments I performed would not distinguish 

between protein synthesis and release of newly folded protein as the mechanism for PIE-1 

source formation. Further experiments like the inhibition of protein synthesis in the one-cell 

embryo could provide further information about the nature of PIE-1 source formation. 
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The PIE-1 source formation does not occur during the whole cell division. There seems to be 

a time window during polarity establishment in which the PIE-1 source is made. This time 

seems to be sufficient to make a source that controls the asymmetry segregation of PIE-1. 

3.2.3 PIE-granules contribution to source formation  

In my results, PAR-1 depletion caused P granules and the PIE-1 source to disappear. In the 

literature, no depletion of a protein has been reported to cause the loss of all P granules. It 

might be that the settings I used for live-cell imaging were not sensitive enough to detect the 

small P granules, which would explain why I saw neither PIE granules nor MEX granules 

nor PGL-1 positive P granules. In a recent screen by Updike et al. (2009), PAR-1, PAR-2, as 

well as CDC-42 are reported to reduced levels of P granules, which are visualised by 

GFP::PGL-1. In my thesis, I could show that depletion of PAR-2 and CDC-42 still allowed 

the formation of the PIE-1 source. I detected a defect in PIE-1 source formation only after 

PAR-1 depletion. Thus, PIE-1 source formation seems to be independent of P granules. 

3.3 Diffusion shapes the PIE-1 gradient 

Is PIE-1 freely diffusing? An excellent method to answer this question is FCS. FCS data can 

be used to describe the mobility of proteins by giving information about the diffusion 

species, the diffusion coefficient and the type of motion (Bacia and Schwille, 2003). 

The measured apparent diffusion coefficients of PIE-1 in wildtype and mex-1(RNAi) 

embryos were significantly smaller than the diffusion coefficient of free GFP in water (87 

µm2/s (Pack et al., 2006): The fastest PIE-1::GFP molecule in wildtype embryos diffused 

approximately 10x slower and the fastest PIE-1::GFP molecule in mex-1(RNAi) embryos 6x 

slower than GFP in water. However, in a cell, where the viscosity of the cytoplasm slows the 

diffusion of the GFP molecule, cytosolic GFP diffusion is about 5x slower than GFP in water 

(Pack et al., 2006). Thus it appears that PIE-1-GFP can exist as a freely diffusing 

cytoplasmic species. The majority of correlation times about 70% however, implied that 

PIE-1 more often exists in a slow-moving form. 
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Table 2: Summary of diffusion coefficients D. 
Particle D [µm2/sec] Medium Reference 
GFP 87 water (Pack et al., 2006) 
GFP 23 cytoplasm HeLa cells (Pack et al., 2006) 
PIE-1::GFP 
fastest molecule 

8 cytoplasm C. elegans 
embryo 

 

PIE-1::GFP mex-1(RNAi) 
fastest molecule 

13 cytoplasm C. elegans 
embryo 

 

 

3.4 Degradation shapes the PIE-1 gradient  

That degradation can shape a protein gradient is obvious but why is degradation so 

important? The Bicoid gradient is only present in the anterior of the developing Drosphila 

embryo, where it inhibits the transcription of genes that regulate the segment pattern of the 

embryo. In the posterior half of the embryo, transcription of these genes has to take place for 

the correct patterning of the embryo. The degradation of the morphogen, in this case Bicoid, 

restricts the spatial information to the part of the cell where it is needed. No mechanism has 

been identified that is involved in Bicoid degradation. 

Is degradation of PIE-1 important for the PIE-1 gradient shape? In the 2-cell stage, a 

mechanism for clearance of mislocalised PIE-1 in AB cell has been suggested (DeRenzo et 

al., 2003). The interaction of PIE-1 with the zinc-finger interacting protein (ZIF)-1 marks 

PIE-1 for degradation via the ubiquitin–proteasome pathway. Up to now, no role for protein 

degradation in establishing PIE-1 asymmetry in the one-cell embryo has been proposed. 

My results indicate that there might be ZIF-1-dependent degradation involved in shaping the 

PIE-1 gradient. Without degradation, the PIE-1 gradient shape is more extended. 

Is it local or global degradation? At this stage, I can only speculate about the mode of PIE-1 

degradation. If global degradation is involved, additional PIE-1 protein stabilisation or 

constant production of PIE-1 has to occur to maintain the cytoplasmic levels of PIE-1. In the 

one-cell embryo, the production of PIE-1 seems to occur only in a short time window before 

NEBD. After this time, the cytoplasmic levels of PIE-1 remained constant, which makes it 

quite unlikely to have global degradation ocurring in the embryo. 
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What could loaclise PIE-1 degradation activity to the anterior? PAR-3 seems to be an ideal 

candidate. In some experiments, the depletion of PAR-3 led to a greater increase of total 

PIE-1 than in the control. In absence of PAR-3, the local degradation might not occur, which 

would result in the accumulation of cytoplasmic PIE-1. Additionally, the uniform 

distribution of PAR-3 along the cortex in cytochalsin D-treated embryos resulted in the 

localisation of PIE-1 source in the centre of the embryo. The lack of cytoplasmic PIE-1 

along the cortex could not only be happening due to exclusion of the source from the cortex 

but also due to local degradation of PIE-1 along the cortex. 

What would happen to PIE-1 when the PIE-1 gradient extends into the anterior? 

Mislocalised PIE-1 in the anterior might be degraded to ensure that PIE-1 only occupies the 

posterior cytoplasm. Evidence of such an effect can be observed in MEX-1 depleted 

embryos: PIE-1 diffusion is not slowed and enters the anterior half of the embryo. The 

cytoplasmic levels of PIE-1 in mex-1(RNAi) embryos are lower than controls, suggesting 

perhaps that PIE-1 is degraded. Increased degradation of the mislocalised anterior PIE-1 may 

be depleting the cytoplasmic pool of PIE-1. Ultimately, less PIE-1 would be segregated into 

P1 cell, as observed in mex-1(RNAi) embryos. 

An ideal experiment would be the inhibition of the ubiquitin–proteasome pathway by 

inhibitors and measurement the shape of the PIE-1 gradient. This way the contribution of 

degradation could be assessed. 

3.5 PIE granule contribution to PIE-1 gradient formation 

3.5.1 Formation of PIE granules 

P granules have a multi protein composition. They can be visualised e.g. by PIE-1, MEX-1 

or PGL-1 (Guedes and Priess, 1997; Kawasaki et al., 1998; Mello et al., 1996). In my results, 

the numbers of P granules detected by these proteins differ: the most P granules are detected 

by PGL-1. This suggests that either not all P granules contain PIE-1 and MEX-1 or that I 

could not detect all P granules with the imaging setting I used. P granules were detected 

when their intensity was about 10% above background level. PIE-1::GFP, for example, has a 

strong cytoplasmic signal. There might have been some PIE granules that I did not detect 
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due to the their low intensity. This problem seems rather minor for MEX-1, as P granules 

were readily visualised by GFP::MEX-1. The cytoplasmic MEX-1 signal was never as high 

as observed in PIE-1. In the one-cell embryo, not all P granules might contain PIE-1 or 

MEX-1, while the constitutive P granule component PGL-1 is always present (Kawasaki et 

al., 2004). 

The formation of P granules themselves is thought to follow a hierarchical assembly: 

DEPS-1→ GLH-1→ PGL-1→ IFE-1 (Spike et al., 2008b). These proteins might interact 

with each other, with themselves, and with mRNAs, thus creating scaffold to which other 

proteins and mRNAs associate. These interactions have been described for proteins of the 

PGL family: Interactions between all three PGL proteins and IFE-1 have been reported in 

vitro. They associate with P granules independently (Kawasaki et al., 2004). There is no 

evidence for PIE-1 interacting with the any of P granules components but no extensive 

analysis has been done. 

How does PIE-1 associate with P granules? The association of PIE-1 to P granules seemed to 

be controlled by MEX-1 and by cytoplasmic PIE-1 levels: In MEX-1 depleted embryos, 

PIE granules were detected when the cytoplasm reached 1.5-fold enrichment over the 

cytoplasm. This may represent a critical cytoplasmic PIE-1 concentration that allows PIE-1 

to associate with P granules. Perhaps once PIE-1 is bound to P granules, it may be able to 

recruit more PIE-1 either directly by interacting with PIE-1 protein or by binding more 

mRNA via PIE-1’s zinc-fingers. The absence of MEX-1 delays PIE-1 association with 

P granules but does not prevent it entirely. 

MEX-1 may be needed for PIE granule formation if the cytoplasmic PIE-1 levels are lower 

than the critical concentration. Lowering the cytoplasmic PIE-1 concentration in the 

presence of MEX-1 [pie-1(partial RNAi)] allowed formation of PIE granules at a lower 

cytoplasmic concentration than without MEX-1. 

How does MEX-1 facilitate PIE granule formation? P granules have been reported to behave 

like droplets, which fuse and drip (Brangwynne et al., 2009). How dynamic these processes 

are is unknown. My FCS data suggest that PIE-1 exists as two different fractions: fast- and 

slow-diffusing components. These components themselves are PIE-1 complexes of varying 
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sizes, perhaps P granule intermediates. The PIE-1 intermediates of the fast diffusing 

component would be rather small, e.g. PIE-1 interacting with only a few other proteins, 

which lowers the diffusion of this small PIE-1 intermediate. In contrast, PIE-1 intermediates 

of the slow-diffusing component could be PIE granules that underwent fusion. This big 

PIE-1 intermediate shows very slow diffusion. 

These PIE-1 intermediates are dependent on MEX-1. Perhaps MEX-1 binds first to 

P granules and then starts recruiting PIE-1, either through protein–protein or protein–mRNA 

interactions. 

Both mechanisms, MEX-1 facilitated binding and a critical concentration of PIE-1, appear to 

contribute to the formation of PIE granules. I propose the following hierarchy of P granule 

assembly in one-cell embryos: DEPS-1→ GLH-1→ PGL-1→ IFE-1→ MEX-1→ PIE-1. 

Several steps in this pathway, however, remain to be tested. 

3.5.2 PIE granules and PIE-1 gradient formation 

The association of PIE-1 to P granules seems to be important for the formation of a stable 

PIE-1 gradient. How do PIE granules stabilise the PIE-1 gradient? The diffusion of 

morphogens in tissues or in the syncyial Drosophila embryo is restricted in order to form a 

concentration gradient (Entchev et al., 2000). In a similar way, PIE-1 diffusion may need to 

be restricted in order to form the stable PIE-1 gradient. The association of PIE-1 to 

P granules may induce the necessary restricted diffusion in the one-cell embryo of 

C. elegans. I propose the following model of PIE-1 gradient formation: PIE-1 is produced at 

the source in the posterior of the embryo and freely moves away from the source. At the 

same time, PIE-1 protein starts aggregation and formation of higher complexes that fuse with 

other P granules and make up bigger PIE granules that then are visible above the 

cytoplasmic PIE-1 levels (Brangwynne et al., 2009). Since P granules only appear in the 

posterior half of the embryo and in proximity to the cortex, PIE-1 diffusion is restricted.  

What happens if PIE-1’s association with P granules is impaired? The aggregation of PIE-1 

is reduced. Less PIE-1 is bound to P granules, which results in faster mobility of PIE-1. 

Consequently, an extended PIE-1 gradient forms.  
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But how can a stable PIE-1 gradient be formed in partial depletion of PIE-1, where fewer 

PIE granules form? The partial depletion of PIE-1 does not change PIE-1’s ability to 

associate with P granules. The cytoplasmic level of PIE-1 is under the critical concentration 

for P granule association, which delays the appearance of PIE granules. I would assume that 

the PIE-1 aggregates are still formed. These PIE-1 intermediates are smaller than the 

detection limit but nevertheless present. Consequently, association into these PIE granule 

intermediates restricts PIE-1 mobility. Thus a stable PIE-1 gradient is formed. 

3.6 Common mechanism for other germline fate determinants? 

The cell fate determinant MEX-1 shows a similar segregation pattern to PIE-1 in the early 

C. elegans embryo (Mello et al., 1992). Additionally, MEX-1 forms a posterior 

concentration gradient with the source along the posterior cortex. Is there a common 

mechanism for the asymmetric segregation of germline cell fate determinants in C. elegans 

one-cell embryos? The formation of a MEX-1 concentration gradient at the posterior cortex 

and the association of MEX-1 with P granules are similar to the mechanism of PIE-1 

segregation and would support the idea of a common mechanism. On the other hand, MEX-1 

source formation seems to be independent of PAR-1 whereas PIE-1 source formation 

depends strictly on PAR-1. Furthermore, PGL-1 does not have a cytoplasmic component. 

These are evidences that not all germline fate determinants follow the same mechanism for 

asymmetric segregation as PIE-1. The formation of a concentration gradient might be a 

common tool for the segregation of molecules; however, the parameters for establishment of 

a gradient – source, diffusion rate, degradation and immobile faction – might vary. 

 





MATERIAL AND METHODS 

 83 

4 Material and Methods 

4.1 Cloning 

4.1.1 Primers 
Table 3: List of primers. The specific annealing temperature (Tanneal) is given for the primer pair. The primer 
pair with a geneservice (GS)-ID is a RNAi feeding construct from the Ahringer library accessed through 
http://www.geneservice.co.uk/products/tools/Celegans_Finder.jsp. 

Name Sequence Tanneal GS-ID 
ama-1 FOR GATAACTGGGAGACGTCGGTG   
ama-1 REV ATCAATCGTCAGGAGGTTGG   
C44H4.4 FOR ACACTTCACTCACCCTTGGC  X-6D24 
C44H4.4 REV TCAGCAATCTCATTTGCCAG   
cdc-42 FOR GTTTGGCATTTTTCAGGGAA    
cdc-42 REV ACGTGTGCGTGCACATTTAT   
ceh-37 FOR CAACAAGTTTCAAATAGGCAAGG  X-6L05 
ceh-37 REV ATCTTCAACAAAAATCGAGGACA   
ima-2 FOR GTGAGTGATGATGCGGTAAGC   
ima-2 REV CTGGAAATGACTCGCTGACA   
ima-5 REV AAGCATTTGCGCCTCGAATCTTCG 58  
imb-5 FOR GGGACAGCGGAAGGATCAACT    
K07E3.1 FOR GTCCACAACCATTGCATCTG  X-4K07 
K07E3.1 REV AAATCCATACGGCGAAAGTG   
L4440 seq ACGACGTTGTAAAACGAC 44  
nmy-2 FOR CTCAAATGGTGACAGTAAATTGGC 52  
nmy-2 REV AACACGAGATCCAAATACTCC   
npp-9 FOR TGCGAATCCTCTCGGCTCAATGATTCCTCC 52  
npp-9 REV ATTTTGCCTCAGCGACAGCCTTCT   
pap-1 FOR CCTCAATTTTCAGATCCCGA  V-7A16 
pap-1 REV ATGTTCCGCGAATTCAAGAC   
par-1 FOR TAATACGACTCACTATAGTCCACATTCATG   
par-1 REV AATTAACCCTCACCTAAAGGCACGTGATA   
par-2 FOR GCCATTTTTCACGCAATTTT   
par-2 REV GCATCAACGACGTTCAACAG   
pie-1 #3 FOR CAAATGGCTGCACTCAACAACT 52  
pie-1 #3 REV CTTATCCTTCGCCGAGCTATG   
pie-1 #5 FOR TTTCAATGCGAATGCGACGGTT 52  
pie-1 #5 REV CTGAGAGAAGAATCCATCGGGG   
pkc-3 FOR GTGTTCCAAAGCTTCCCAATC   
pkc-3 REV CATTTCCAACCACAATTCCC   
pqn-59 FOR CGTCAATTCCTAACGGCGAT 52  
pqn-59 REV TTCCAAGATTTCCACCATTGT   
ran-1 FOR AGCTTGTCCTTGTCGGAGA   
ran-1 REV TCTACCCAAGCCAGCACTTTGAATT   
rsr-2 FOR GAGTACAACGGCGAAGATGAC 57  
rsr-2 REV TGGCAGTGGATCTTCTCTCATTT   
sip-1 FOR TGTCTTCTCTCTGCCCATAC 52  
sip-1 REV TGCTGGATGGCTTCTGGGTGA   
smo-1 FOR GCACTTCCGTGTAAAGTATGG 54  
smo-1 REV GCAATTTGGCTTCCTCATCG   
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Name Sequence Tanneal GS-ID 
spd-5 FOR GTCGCAACCAGTTCTGAAT    
spd-5 REV ATGGAGGCAAATTGTTGCTG   
syd-9 FOR GAGCAGAACGAAGCAATAGC 57  
syd-9 REV ACTACTTGCTGGAGTTGTTGG   
T7 promotor GCGTAATACGACTCACTATA 44  
ttx-1 FOR GCAACAACAGTAGCCGCCGC 63  
ttx-1 REV GAACTCTGCTCTCGGGGAGTTG   
zen-4 FOR GGAAAATGATGGACAAGCTACTG  IV-3I07 
zen-4 REV TCTTTGAATTCTGAACGAACCAT   
zif-1 FOR CAAATTTTCAATTTTCCCATCAA  III-1K08 
zif-1 REV CAAAATCGCATTTAGAGCACAAT   
ubc-9 FOR TTCGGCAGCATACTTCACAG    
ubc-9 REV CAAAAATGTCGGGAATTGCT   

 

4.1.2 Reactions 
blunt end digest  
  10 µl 
 2 µl 
 2 µl 

L4440 vector 
10x Tango buffer 
SmaI 

 add water to 20 µl 
2 hrs on 37°C  
The enzymes were removed the QIAGEN PCR purification kit following the protocol. The vector was 
eluted in 50 µl water. 

 
t-tailing reaction  
 50 µl 
 10 µl 
 10 µl 
 4 µl 
 2 µl 

DNA 
10X PCR buffer 
25 mM MgCl2 
100 mM dTTP 
Taq polymerase 

 add water to 100 µl 
2 hrs on 72°C  
The t-tailed vector cleaned with the QIAGEN PCR purification kit according to the manufacturer’s 
protocol. The vector was stored for several months on -20°C. 

 
PCR reaction  
 0.1 µl 
 0.1 µl 
 1 µl 
 2.5 µl 
 1.5 µl 
 0.25 µl 
 0.5 µl 

primer 1 (100 µM) 
primer 2 (100 µM) 
template DNA 
10X PCR buffer 
25 mM MgCl2 
dNTP mix (10 mM) 
Taq polymerase 

 add water to 25 µl 
The template DNA was genomic DNA from N2 Bristol strain. 
 
PCR Program  Temperature Time [min:sec] 
  95°C 2:00 
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 25x 
cycles 

95°C 
Tanneal 
72°C 

0:45 
0:45 
1:00/kb target (Timeextensiton) 

  72°C 2x Timeextension 
The PCR product was purified with the QIAGEN PCR purification kit according to the manufacturer’s 
protocol and eluted in 30 µl water. For the specific annealing temperatures of each primer pair see 
Table 3. 

 
Ligation reaction  
 1 µl 
 1 µl 
 8 µl 

10X T4 ligation buffer 
t-tailed L4440 vector 
insert 

16°C overnight  

 
Colony PCR 
reaction 

 

 0.1 µl 
 0.1 µl 
 1 µl 
 1 µl 
 2.5 µl 
 1.5 µl 
 0.25 µl 
 0.5 µl 

primer 1 (100 µM) 
primer 2 (100 µM) 
template DNA 
DMSO 
10X PCR buffer 
25 mM MgCl2 
dNTP mix (10 mM) 
Taq polymerase 

 add water to 25 µl 
The template DNA was a bacterial colony picked and diluted in 5 µl water. 

 
Colony PCR 
Program 

 Temperature Time [min:sec] 

  95°C 2:00 
 25x 

cycles 
95°C 
Tanneal 
72°C 

0:45 
0:45 
1:00/kb target (Timeextensiton) 

  72°C 2x Timeextension 
The PCR reaction was analysed by gel electrophoresis on a 1% agarose gel. 

A pellitier thermocycler (Biorad, DNA Engine) was used for all PCR reactions. 
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4.1.3 Vectors 

 
Figure 57: Vector map of L4440 expression vector. Adapted from Timmons and Fire (1998) and (2001). 

4.2 Maintenance of worms 

C. elegans is maintained on Nematode Growth Medium (NGM) agar plates and grown on a 

lawn of E. coli strain OP50 as a food source (Brenner, 1974). The worm stocks are kept on 

16°C or 20°C (JH1327). Every other day, 3 to 5 adult hermaphrodites are transferred to a 

new feeding plate using a LEICA MZ125 stereomicroscscope equipped with Planapo 

objectives either 1.0x or 0.63x. 

4.2.1 Freezing and recovery of C. elegans stocks 

C. elegans can be frozen and stored a limited time at -80°C. Freshly starved young larvae 

(L1-L2 stage) survive freezing best. A plate of animals was washed off the plate with 0.1 M 

NaCl in a small volume and transferred to a freezing vial. The excess NaCl solutions was 

removed and glycerol 85% was added in equal volume. The vial was placed in a Styrofoam 

container on -80°C to allow a 1°C decrease in temperature per minute (Brenner, 1974).  

For the recovery of frozen worms, 1/3 of the frozen worm stock was removed from the 

freezing vial and placed on a fresh feeding plate on room temperature. After 1 to 6 days, 

thawed worms could be recovered and transferred to a fresh feeding plate. The worms were 

used in experiments after one generation time. 
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4.2.2 Worm strains 

The following worm strains were used in this study.  

Table 4: Table of Worm strains: 

Strain name Genotyp 
JA1559 mCH::β-tubulin 
JH1327 PIE-1::GFP::rol-6 (axEx73) 
JH1380 PAR-2::GFP 
KK571 lon-1(e185) par-3(it71)/qC1 dpy-19(e1259) glp-1(q339)III 
KK725 nop-1(it142)III 
N2 Bristol strain 
TH25 GFP::PAR-6 
UE12 PIE-1::GFP::rol-6 (axEx73); nop-1(it142) 
UE13 PIE-1::GFP::rol-6 (axEx73);par-3(e2074) lon-1(e185) 
UE18 oaEX7[GFP::PGL-1];unc-119(ed3) 
UE25 GFP::MEX-1(oaEX9); zif-1(gk117):unc-119(ed3) 
UE27 GFP::MEX-1(oaEX9) 
UE29 PIE-1::GFP::rol-6 (axEx73); zif-1(gk117):unc-119(ed3) 
UE37 PIE-1::GFP::rol-6 (axEx73); mCH::β-tubulin 

4.2.3 Crosses 

4.2.3.1 UE13 

The parental strains JH1327 and KK571 were crossed. The F1 progeny was allowed to self 

and the F2 progeny scored for rol-6 expression (worms were all rollers). Positive 

hermaphrodites were allowed to self and the F3 progeny was scored for homozygosity of the 

rol-6 and for dead embryos. 

The strain was maintained heterozygous for par-3(e2074) lon-1(e185). 

4.2.3.2 UE12 

JH1327 and KK725 parental strains were used. F1 allowed to self, and the F2 generation 

scored for rol-6 mutation. Positive hermaphrodites were allowed to self, and the F3 progeny 

was scored for homozygosity of the rol-6 mutation and the no pseudocleavage (Nop) 

phenotype. In the next generation the homogozysity of the Nop phenotype was confirmed. 

4.2.3.3 UE37 

The parental strains JH1327 and JA1559 were crossed. The F1 progeny was allowed to self, 

and F2 was scored for rol-6 mutation. Positive hermaphrodites were allowed to self, and the 
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F3 generation was scored for homozygous rol-6 and mCherry expression of β-tubulin. The 

F4 progeny was scored for homozygous mCherry expression. 

4.3 RNA-mediated interference (RNAi) by feeding 

Feeding double stranded (ds)RNA expressing bacteria to C. elegans is a commonly used 

method to induce RNAi: A fragment corresponding to the gene of interest is inserted into the 

feeding vector (L4440) via TA cloning between two T7 promoters in inverted orientation. 

The vector is transformed into E. coli strain (HT115(DE3)), carrying IPTG-inducible 

expression of T7 polymerase (Kamath and Ahringer, 2003; Timmons and Fire, 1998).  

4.3.1 Making the feeding bacteria 

In brief, the linearised vector was t-tailed and the insert amplified from N2 genomic DNA 

was inserted into the modified L4440 vector and transformed into to E. coli HT115 bacteria. 

The bacteria were plated on LB + amp plates and positive colonies identified by colony PCR 

using the “T7 promotor” primer. The sequence of the insert was validated by sequencing 

using the L4440 seq primer. Transformed bacteria could be stored as a glycerol stock on -

80°C. 

4.3.2 Preparation of RNAi feeding plates 

RNAi feeding bacteria were inoculated in an over night culture (LB + carb + tet) at 37°C on 

a shaker. Then 100 µl of the liquid culture were diluted in 5 ml LB + carb and incubated for 

3 hours at 37°C on a shaker. Transcription of RNA was induced by adding 3 mM IPTG and 

additional incubation (30 min) on 37°C. The 250 µl bacterial solution was seeded onto 

NGM + carb + IPTG plates (4 cm). The plates were allowed to dry room temperature over 

night, shifted to 25°C for additional grows of the bacteria for 24 to 48 hrs and then stored at 

4°C for a maximum of 4 weeks.  

4.3.3 RNAi experiment set up 

Worms were transferred to unseeded NGM plates for about 20 min to clean them of excess 

OP50 bacteria before placing them onto RNAi feeding plates. The stage of the used worms 
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depended on the incubation time on the RNAi plates (see Table 5). RNAi was induced on 

25°C for the indicated times. 

The RNAi efficiency was confirmed with a lethality test. In brief, 4 to 6 hermaphrodites 

were transferred to an OP50 plate at the beginning of each recording. After 4 hours, the 

adults were removed, and the eggs on the plate were counted. The plate was left on room 

temperature overnight. The non-hatched embryos were counted. 

Table 5: RNAi incubation and developmental stages. * A consistent phenotype on 2 weeks old plates. In 
experiments with incubation time over 48 hrs, N2 males were added 6 hrs before the recording to avoid sterility 
of the hermaphrodites (labelled as 48+) 

RNAi Incubation Time [hrs] Worm stage 
ama-1  24 L4 
cdc-42  48+ L3 
ima-1  ≥24 L4 
imb-5  ≥24 L4 
mex-1  ≥24 L4 
nmy-2  ≥24 L4 
npp-9  ≥24 L4 
par-1  ≥24 L4 
par-2  48+ L3 
par-3  20-24 L4 
par-6  ≥24* L4 
pie-1  18-20 L4 
pie-1 partial  6 young adults 
pkc-3  <20 young adults 
ran-1  12 young adults 
smo-1  ≥24 L4 
spd-5  20-24 L4 
ubc-9  48+ L3 
zen-4  ≥24 L4 

 

4.4 Western Blot 

4.4.1 Preparation of worm lysate 

20 adult hermaphrodites were washed with 0.1 M NaCl and centrifuged for 5 min at 3000 

rpm. Afterwards, the supernatant was removed leaving about 10 µl of liquid in the reaction 

tube. The tube was transferred to liquid nitrogen for about 2 min, and an equal amount of 2x 

SDS-sample buffer was added. Twice, the lysate was heated up to 95°C and vortexed for 1 

min. The lysate could be stored on -80°C.  
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4.4.2 SDS-Gel electrophoresis and wet-transfer 

The lysate was centrifuged (max. speed, 5 min) and the supernatant was loaded on a 

NuPAGE® 4-12% Bis-Tris gradient gel (Invitrogen). The proteins were separated according 

to the manufactores protocol. 1x NuPAGE® MOPS buffer was used as the running buffer. 

The electrophoresis of the proteins was performed with 200 V constant for 50 minutes in the 

cold room. 

The 20% methanol was freshly added to 1x transfer buffer (25 mM Tris, 190 mM Glycin, 

0.02% SDS). For the wet blotting, the NuPAGE® XCellII™ Blot Module was used. 

According to the manufacture’s protocol, the transfer was run on 30 Volts constant for 

1 hour. 

4.4.3 Detection 

The membrane was incubated in blocking solution (5% milk in 0.1% Tween PBS) for 30 

min at room temperature on shaker. The primary antibodies were diluted in blocking 

solution: mouse monoclonal anti-GFP (Santa Cruz, GFP (B-2), SC9990) 1:200 and mouse 

monoclonal anti-α tubulin (Sigma, T 6199) 1:3000. The membrane was incubated with the 

primary antibody over night at 4°C under constant moving. The excess antibody was washed 

off in 0.1% Tween/PBS for 15 min at room temperature on a shaker. The wash was repeated 

twice before the secondary antibody solution was added for 30 min at room temperature. The 

secondary antibody conjugated horseradish peroxidase goat anti-mouse IG (Biorad, 170-

6516) was diluted in blocking solution 1:3000. Three washing steps removed the excess 

antibody. For the detection of the bound antibodies, enhanced chemiluminescence reagents 

were used (Amersham). 

4.5 Microscopy 

4.5.1 Preparation of worms 

Worms were shifted to 25°C 18 to 48 hours before the recording to have full expression of 

the GFP. Worms were dissected in 2.5 µl dissection buffer (0.1 M NaCl, 4% sucrose) on a 

coverslip (18x18 mm) to release early embryos. Coverslips with embryos were inverted onto 



MATERIAL AND METHODS 

 91 

an agarose pad (0.1 M NaCl, 4% sucrose, 2% agarose) on a standard microscope slide for 

microscopy.  

Alternatively, hanging drop mounting was used, where coverslips were coated twice with 

poly-L-lysine: 20 µl of 0.01% poly-L-lysine solution were placed in the middle of the 

coverslip and allowed to dry at 50°C. Worms were dissected in 8 µl of dissecting buffer and 

embryos were pressed gently onto the sticky poly-L-lysine coat using an eyelash clued to a 

toothpick. On a glass slide, two strips of double-sided tape were fixed and then inverted onto 

the coverslip to create an imaging chamber. 

4.5.2 Inhibitor treatment by soaking 

About 10 gravid hermaphrodites were placed in 10 µl dissection buffer with inhibitor on a 

coverslip (18x18 mm). After cutting the tip of the worms’ tails, the coverslip was transferred 

to a humid chamber for 20 min incubation at room temperature. Finally, the worms were 

dissected and the coverslip inverted onto an agarose pad on a microscope slide. 

 

Table 6: List of inhibitors, their stock and final concentration as well as the storage information. All 
inhibitors were solubilised in DMSO except Sodium azide, which was solubilised in water. 

Name Stock concentration Final concentration Storage 
Nocodazole 4 mg/ml 10 µg/ml -20°C several months 
Cytochalasin D 25 mg/ml 15 µg/ml 4°C, 3 years 
Sodium azide 1 M 0.1 M 25°C, several months 

4.5.3 Cytoplasmic displacement 

About 5 gravid hermaphrodites were transferred into a 1.5 ml reaction tube containing 10 µl 

of dissection buffer and centrifuged for 3 min at 13000 rpm at room temperature. Afterwards 

the worms were transferred to a coverslip and process as described in 4.5.1. 

4.5.4 Time-lapse recording 

Images were taken on a LSM 510 Zeiss microscope using a Plan Apochromat 63x/1.40 Oil 

DIC M27 lens. LSM software AIM (version 4.2) was used for controlling the microscope 

and for acquisition of 12-bit images. Embryo recording was usually performed at 20°C to 

25°C or as otherwise noted. GFP localisation dynamics were analysed by time-lapse 
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recordings at a single focal plane. Images were focused on the centre of the embryo and 

collected every 10 to 12 sec over an approximately 20 min period. At each time point, 

transmitted light images were collected. Table 7 summarises the configurations of the 

microscopes.  

Table 7: List of settings for the time-lapse recordings and the respective configurations. 

 Parameters 
Setting 1 
 
 
 
 

pixel time: 6.4 µsec 
BP 500-550 
488 laser 
pinhole: optical slice < 3.2 µm  
LSM 510 

Setting 2 
 
 
 
 

pixel time: 6.4 µsec 
BP 500-550 
488 laser 
pinhole: optical slice < 3.2 µm 
LSM 510 

Setting 4 
 
 
 
 

pixel time: 6.4 µsec 
LP505 
488 laser 
pinhole: optical slice < 3.2 µm 
LSM 510 

Setting 5 
Inhibitor Settings 
 
 
 

pixel time: 12.8 µsec 
LP505 
488 laser 
pinhole: optical slice < 3.2 µm 
LSM 510 

Setting 7 
MEX Settings 
 
 
 

Argon/2 458/477/488/514 
LP505 
pixel time: 12.8 µsec  
pinhole: optical slice < 3.2 µm 
LSM 510 DUO 

PGL Settings 
 
 
 
 

Argon/2 458/477/488/514 
LP505 
pixel time: 12.8 µsec  
pinhole: optical slice < 1.5 µm 
LSM 510 DUO 

 

4.5.5 Fluorescence Recovery after Photobleach (FRAP) 

Embryos were prepared as described in 4.5.1. Images were acquired on a LSM 510 Duo 

(Zeiss) with a Plan Apochromat 63x/1.40 Oil DIC M27 lens. GFP fluorescence was excited 

by a 488 Argon laser and recorded with a bandpass filter 500–550 nm. 5 pre-bleach images 

were taken. The time of the bleach was optimised to give an approximate 50% drop of the 
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pre-bleach GFP intensity. The bleach was performed in a circular region with a diameter 30-

pixels close to the posterior pole of the embryo (see Figure 58). The recovery of the GFP 

intensity was recorded in 0.5 sec time interval. The post-bleach time was chosen to allow 

complete recovery of the fluorescence intensity. One FRAP measurement per embryo was 

performed. 

4.5.6 Fluorescence Correlation Spectroscopy (FCS) 

Embryos were prepared using the hanging drop mounting (as described in 4.5.1) on a 170 

µm thick coverglass (Menzel-Gläser 18x18 mm #1) FCS data were acquired with a Leica 

TCS SP2 AOBS FCS2 or with a Leica TCS SP5 AOBS SMD confocal laser scanning/FCS 

microscope. Green fluorescence was excited with the 488 nm line of an Argon laser and 

detected with a bandpass filter transmitting at 500–550 nm. For FCS and imaging an HCX 

Plan Apo 63x/1.2 NA CS water immersion objective lens was used that allows correcting for 

variations of the coverglass thickness. The pinhole diameter was set to match one Airy disk. 

FCS data were acquired according to the following workflow: the focal plane of the 

microscope was placed at the equatorial plane of the embryo. Confocal images allowed to 

determine appropriate measurement positions as well as the time point when the nuclear 

envelope started to disassemble, at -2:00 relative to NEBD. Then FCS measurements were 

started for 8 x 15 sec. Images were acquired directly before and after the FCS measurement. 

Each embryo was observed until after cell division. 

4.6 Data analyses 

Data quantification was performed using MetaMorph (7.0r4) software. Data analyses were 

done in EXCEL, Graph Pad Prism 5 (version 5.0b) and GNU Octave (version 2.9.17; 

http://www.octave.org). 

Average values are presented as mean ± standard error of the mean or whisker plot showing 

the minimum and maximum. The two-tailed Student’s t-test assessed the significance of 

independent experiments. Values were considered significant at 95% confidence interval. 
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0:00 [min:sec] was assigned as nuclear envelope breakdown (NEBD): at this time, the 

nuclear envelope was completely disassembled, and the rotation of the spindle almost 

completed. If not otherwise state, the embryo length was standardised to 1 (anterior pole 

= 0). 

4.6.1 Linescan measurements 

The intensities along the anterior–posterior axis of the embryo were measured as average 

values of a 10-pixel wide line at indicated time points. The line was positioned so as to avoid 

contact with the centrosomes and nuclei, marked in Figure 58. 

For smoothing of the data, a running average with a window size of the sample size (n) was 

used. The intensities were normalised to the average PIE-1 control for the appropriate 

acquisition setting (1 to 7) in a 25 pixels region around 0.25 EL at 0:00. 

 

Figure 58: Positions for measurement in the embryo. A) The position of the ellipse to measure the 
integrated intensity of the entire embryo is drawn in orange. The positions of the three regions used to measure 
the nuclear accumulations are shown in green (1: male pronucleus, 2: female nucleus, 3: anterior cytoplasm). 
B) Positions of anterior and posterior circles to measure the posterior enrichement. C) Localisation of the 
bleach for FRAP and the FCS measurement is shown in orange. The line to get the intensity profiles and 
kymographs are shown. The dashed line indicates the postision of the disassembling nuclear envelope.  

4.6.2 Region measurements and posterior enrichment 

The cytoplasmic intensities at the posterior and anterior pole of embryos were measured as 

the average pixel intensity within circular regions (30-pixelss diameter). Pronuclei were not 

included, and the position was adjusted to avoid loss of signal due to embryo shortening 

around 0:00 (NEBD, see Figure 58). For analysis of mutant phenotypes, intensities were 

normalised to the average anterior intensity (0:00 to +0:40 relative to NEBD) of the 

respective wildtype control (setting 1 to 7). 
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The posterior–anterior ratio was determined from the average posterior and anterior region 

intensity measurements. 

4.6.3 Integrated intensity 

Embryos were mounted for microscopy with the hanging drop method. The integrated 

intensity GFP of the entire embryo was measured (Figure 58). The percent of increase was 

determined from -9:00 to -2:00 relative to NEBD. 

4.6.4 PIE-1 levels 

Embryos from JH1327 and UE37 strain were placed next to each other on poly-L-lysine 

coated coverslip and mounted for microscopy by hanging drop as described in 4.5.1. At time 

0:00 (NEBD), the PIE-1::GFP integrated intensities were measured as described in 4.6.3. 

The ratio of the integrated PIE-1::GFP intensities of JH1327 over UE37 embryos was 

normalised to wildtype ratio. 

4.6.5 Kymograph 

A kymograph is an intensity measurement plotted against the time. PIE-1 intensities along 

the anterior–posterior axis of the embryo were measured as average values of a 10-pixels 

wide line from -8:00 to +4:00 relative to NEBD. The line was positioned so as to avoid 

contact with the centrosomes and nuclei. The image was displayed in pseudocolour. 

4.6.6 Nuclear accumulation 

The GFP intensities within the maternal and paternal pronuclei were determined as the 

average intensity of circular regions (30-pixels diameter, see Figure 58). The intensities 

were analysed every 30 sec from the first appearance of the pronuclei until 0:00. The 

intensities were normalised to the anterior cytoplasm (30-pixels diameter) at each time point. 

4.6.7 P granule appearance 

The time of P granule appearance was determined qualitatively. The earliest appearance of a 

P granule that could be followed in three consecutive frames was counted as the time of 

appearance. The cytoplasmic intensity in proximity of the granule was measured (circular 
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region 20-pixels diameter, see Figure 58 for details), which were normalised to the anterior 

cytoplasm (circular region 20-pixels diameter). 

4.6.8 Determination of P granule size and number 

For detecting the size and number of P granules, an intensity threshold was used: The size 

was fixed to 0.5 and 5 µm for UE18 embryos and 0.7 and 5 µm for JH1327 and UE27 

embryos and while the intensity was set to 10% above cytoplasmic intensity at EL 0.6.  

The measurements were performed at 0:00 (NEBD). 

4.6.9 Cortical and subcortical intensity measurements 

The cortical and subcortical GFP intensities of PAR-2, PAR-6 and PIE-1 were measured as 

average values of a 10-pixel wide line at 0:00. The line was positioned on the plasma 

membrane and about 5 pixels away from the membrane for cortical and subcortical 

measurements, respectively (see Figure 58 for details). The lateral cortex of half of an 

embryo was standardised to one, with 0 representing the anterior pole and 1 the posterior. 

Each intensity profile was standardised to its maximum value.  

4.6.10 Single decay constant λ calculation (L.m) 

The shape of an exponential gradient can be described with the decay constant λ (Robbins et 

al., 2001), which is defined as the position in the embryo at which the intensity was equal the 

maximum intensity divided by e. To calculate the decay constants for PIE-1 and MEX-1, the 

GFP intensities along the anterior–posterior axis of the embryo were determined from the 

average values of a 10-pixel wide line at 0:00. The line was perpendicular to the plasma 

membrane. For details see Figure 58. 

We tried to avoid including P granules in the intensity measurements but nonetheless applied 

a filter to remove deviant intensity peaks from the data. Peak detection was performed by 

finding data points at positions x and x+4 that exhibited intensity differences exceeding 10% 

of the mean intensity value. These conditions were determined empirically using a set of 

representative PIE-1 and MEX-1 embryos with clearly visible P granule peaks. The 

background intensity was defined as the most frequent intensity bin after calculating the 

distribution histogram (ten bins) of all intensities. Intensity values were standardised to 
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background and background was subsequently subtracted. Embryo length was set to one 

(anterior pole = 0). Using intensity values from 0.33 to 0.90 EL, we then obtained the best-fit 

line (first order polynomial) of log(intensity) (x) and log(position) (y). The maximum 

intensity value from this range was divided by e to give the decay half-life, which was then 

used to solve the line equation at max/e to obtain the log(position) along the embryo axis. 

elog(position) produces the decay length of the gradient along the embryo axis. A correlation 

coefficient was calculated to evaluate the goodness of line fits; R2 values ranged from 0.75 to 

0.93 for the data included in the analysis.  

4.6.11 Time-lapse decay constant λ calculations (Ltime.m) 

Best-fit polynomials were determined every 30 sec over a period of 15 min starting with 

polarity establishment, according to the method described in 4.6.10 but including linear (first 

order), exponential (double-log first order), or complex (double-log second order) equations. 

Correlation coefficients were calculated to evaluate the goodness of fits. Higher order 

polynomials did not describe the data with greater accuracy than first order equations 

throughout the time series, and thus we did not consider complex distribution patterns. Based 

on R2 values, intensity profiles were assigned as either exponential (R2≥0.75) or linear 

(exponential R2<0.75) decays.  

4.6.12 FRAP 

For the determination of the half-time recovery, only the post-bleach recovery intensities 

were used. The average intensity in a circular region of 20-pixel diameter within the 

bleached region was used for calculating the half-time recovery. A region (20-pixel 

diameter) outside the embryo was used for background correction. The recovery curve was 

fit with a single exponential association equation using the build in function “bottom to 

span” in Graphpad Prism. The FRAP half-time t(1/2) = ln(2)/k was calculated. Only fits with 

a R2 value >0.95 were used. 

4.6.13 FCS 

The autocorrelation functions of FCS raw data were computed using the Fluctuation 

Analyser software (version 2.0) written by Malte Wachsmuth, EMBL Heidelberg, that 
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allows to remove slow fluctuations due to cellular movements or photobleaching. The 

correlated curves were fitted individually with a two-component three-dimensional 

anomalous diffusion model (Wachsmuth & Weisshart 2007) using Origin (OriginLab, 

Northampton/MA, USA): 

, 

where N is the average number of molecules inside the focal volume, θ the average number 

of molecules in a non-fluorescent state, τblink the lifetime of that state, τdiff,i the diffusional 

dwell time of the molecules of component i in the focal volume, αi the corresponding 

anomaly parameter (with ) and fi the fraction of the molecules belonging to 

component i. The ellipticity of the focal volume is accounted for with the structure parameter 

κ that describes the ratio of axial to lateral focal radius. The diffusional dwell time or 

diffusion correlation time is related to the lateral focal radius w0 and the diffusion coefficient 

Di according to . Using the fluorophore Alexa488 in aqueous solution, the 

focal volume could be characterized with , allowing determining 

apparent diffusion coefficients. 

4.7 Material 

4.7.1 Plates 
NGM plates  
 3 g 
 17 g 
 2.5 g 

NaCl  
agar 
peptone 

 
 
 

add to 1 litre with water 
autoclave for 50 min 
cool flask in 55°C water bath for 15 min 

 1 ml 
 1 ml 
 25 ml 

1 M CaCl2 
5 mg/ml cholesterol in ethanol 
1 M KPO4 

 
 
 

Swirl to mix well 
fill NGM solution petri plates 2/3 full of agar 
let plates cool down before storing them 4°C in a air-tight contrainer for several 
weeks 
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4.7.2 Reagents 

All reagents were purchased from Sigma Aldrich or otherwise indicated. 
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6 Appendix  

6.1 Abbreviations  
  

°C degree Celsius 

A-P axis anterior–posterior axis 

amp ampicillin 

AU arbitrary units 

BP bandpass filter 

carb carbenicillin 

DMSO dimethylsulfoxide 

DNA Deoxyribonucleic acid 

E. coli Escherichia coli 

EL embryo length 

FCS Fluorescence Correlation Spectroscopy 

FRAP Fluorescence Recovery After Photobleach 

GFP Green fluorescent protein 

hrs hours 

IPTG isopropyl-β-D-thiogalactoside 

kb kilo-basepair 

kDa kilo-Dalton 

LB Luria-Bertani 

Lt longpass filter 

M molar 

mCH mCherry 

MEX-1 muscle excess 

MgCl2 magnesium chlorid 

min minutes 

ml millilitre 
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mm millimetre 

mM millimolar 

mRNA messenger ribonucleic acid 

n sample size 

NaCl natrium chlorid 

NEBD nuclear envelope breakdown 

NGM  Nematode Growth Medium 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PGL-1 P granule abnormality 

PIE-1 pharynx and intestine in excess 

RNAi RNA mediate interference 

rpm rounds per minute 

SDS sodium dodecyl sulfate 

sec  seconds 

tet tetracycline 

λ lambda 

µg gram 

µl microlitre 

µm micrometer 
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6.3 Programs for GNU OCTAVE 

6.3.1 Single Gradient Calculation 
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6.3.2 Time-lapse Gradient Calculation 
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6.4 Graphs 

6.4.1 Region measurements 
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6.4.2 Gradient shape 
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6.4.3 Gradient formation 
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6.4.4 P granule size and number 
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6.4.5 GFP Profiles along the anterior–posterior axis 
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6.4.6 Posterior enrichment 
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6.4.7 Nuclear accumulation 
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