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1. Introduction 

 

Dissolved oxygen (DO) is among the most important environmental variables in coastal 

marine ecosystems. Oxygen is essential for animal life: in aquatic environments it is produced 

by plants, algae and cyanobacteria during photosynthesis, or dissolves from the atmosphere in 

the water, and it is used in respiration by all aerobic organisms. Once dissolved into the water, 

oxygen can mix down into bottom waters. Hypoxia/anoxia occurs if DO cannot reach the 

deeper layers or if the consumption rate in the bottom water is higher than the supply from the 

surface. Hypoxia is a condition of low dissolved oxygen that cannot sustain most animal life, 

and it is defined as DO values below 2 ml l
-1

 (Diaz, 2001). The susceptibility to oxygen 

depletion varies across benthic organisms, but generally from the point of hypoxia on they 

start to exhibit atypical behaviors. These include emergence of the infaunal species, 

migration, physical inactivity or unexpected inter- and intraspecific interactions (see Riedel et 

al., 2008a). If oxygen concentrations drop to 0 ml O2 l
-1

 the conditions are designated as 

anoxic. In the absence of oxygen, microbes use other electron acceptors in their metabolism, 

such as NO3, CO2 or SO4
2-

. Hydrogen sulfide (H2S) is the most important of the reduced 

compounds: it is toxic to metazoan life. This makes it difficult to separate its effect on marine 

fauna from the effect of oxygen deficiency. Most likely the two effects stress the organisms in 

an additive if not synergistic manner (Diaz & Rosenberg, 1995). According to Vaquer-Sunyer 

and Duarte (2010) the survival times in benthic communities under hypoxia are reduced by an 

average of 30% if they are exposed to H2S. 

 

 

Fig. 1: Worldwide occurrence of eutrophication-associated dead zones (Diaz & Rosenberg, 2008) 
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Marine environments with low DO have existed throughout the history of the Earth, but their 

number is most likely increasing in shallow seas today (Diaz, 2001). Oxygen depletion, 

beyond triggering aberrant behavior, can lead to mortalities of benthic fauna. In severe cases 

this can lead to so-called dead zones. The extent of dead zones has increased exponentially 

globally since the mid-20
th 

century, and at present a total area of more than 245,000 square 

kilometers, including more than 400 marine sites, are affected by this phenomenon (Fig. 1). 

The causes of oxygen depletion (Fig. 2) include both physical processes, such as water 

column stratification which hinders the oxygenation of the bottom water layers, and excess 

nutrient input (Diaz, 2001). Stratification is a consequence of strong thermal or salinity 

gradients, including freshwater input from strong precipitation or flow-off from land. 

Nutrients are introduced either as a result of upwelling (a natural, wind-driven movement of 

deeper, cooler, nutrient-rich water towards the ocean surface) or as a result of anthropogenic 

activities. Eutrophication usually occurs where human populations or agricultural production 

are high (Levin et al., 2009).  Increased nitrogen and phosphorus availability leads to 

enhanced production of dissolved and particulate organic matter, particularly in the pelagic 

subsystem in the form of plankton blooms (Stachowitsch, 1984). The sinking of planktonic 

material is followed by higher microbial respiration in bottom waters and thus reduces oxygen 

levels there (Gray at al., 2002). Climate changes may also affect the development of hypoxia 

(Conley et al., 2009): increased temperatures strengthen pycnoclines (a cline caused by a 

strong, vertical density gradient), enhance the respiratory oxygen demand of organisms and 

reduce oxygen solubility (Vaquer-Sunyer & Duarte, 2008). Considering the sources of 

hypoxia, the situation appears to be worsening in the recent decades (Wu, 2002; Rabalais et 

al., 2009). First, with the growing human population, a further increase of nutrient flux into 

coastal waters can be expected. A second phenomenon affecting the development of hypoxia 

is the global warming caused by greenhouse gases. The warming of the water leads to the 

expansion of thermoclines, and the increased air temperatures can be related to more intense 

freshwater input and to enhanced formation of haloclines. As a consequence, the extension 

and the number of the affected coastal sites is increasing (at an exponential growth rate of 

5.54% year
-1

, Vaquer-Sunyer & Duarte, 2008) worldwide. 
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Fig. 2: Schematic representation of the source mechanisms of oxygen depletion (Levin et al., 2009). 

 

 

The circulation pattern and geomorphology of certain marine environments can also facilitate 

the occurrence of hypoxic conditions. Our study site, the northern Adriatic Sea, combines 

many features associated with the development of low DO.  

The Northern Adriatic Sea, one of the three main basins in the Adriatic Sea, extends from the 

Gulf of Trieste southward to the Ancona-Pula line. It is a shallow (mean depth about 30 m), 

semi-enclosed basin with seasonally changing hydrodynamic and biological conditions (Justić 

et al., 1987, Degobbis et al., 1995), and it can thus be classified as a sensitive ecosystem. The 

northern Adriatic Sea is the most eutrophic region of the Mediterranean Sea due to the high 

nutrient input, dominated by the Po River (Degobbis et al., 2000). The enhanced phosphorus 

loading (mainly originating from detergents and synthetic fertilizers) leads to increased 

primary production near the surface. The result is higher respiration in the bottom waters 

(Justić, 1987) due to the tight benthic-pelagic coupling in these shallow waters. The 

concentration of DO decreases significantly in the bottom layers, paralleling the intense 

nutrient inflow, especially when the water column stratification persists (Zavatarelli et al., 

1998). Beyond the anthropogenic nutrient load, the freshwater flux of the Po changes the 

general circulation between the central and the northern part of the Adriatic and increases the 

water column stratification (Spillman et al., 2007). In the autumn and winter months the water 

circulation is mainly driven by thermohaline processes, modified by Bora or Sirocco winds 

(blowing northeasterly and southerly, respectively). The water body is separated into two 
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parts: the western coastal waters are diluted by freshwater inflow, while the offshore waters 

are more dense and saline (Degobbis et al., 2000).  The cold, low-salinity water flows along 

the western coast southwards (Western Adriatic Current), whereas the Eastern Adriatic 

Current transports warm, high-salinity water along the eastern coast northwards (Artegiani et 

al., 1997b). At this time, the water column is well mixed vertically, induced by the heat flux 

from the sea to the atmosphere. In spring, with the increasing surface temperatures, a 

thermocline starts to form. High freshwater injection increases the degree of stratification and 

the themohaline circulation becomes weaker, reducing the water exchange with the central 

basin (McKinney 2007). In summer the horizontal salinity gradients are less definite due to 

the negligible freshwater inflow (Degobbis et al., 2000) and the thermocline becomes stable 

due to the heat accumulation in the surface waters (Russo et al., 2005). The water column 

stratification hinders the exchange between the oxygen-rich surface water and the bottom 

layers, and hypoxia occurs. Hypoxic and anoxic events have been reported to occur in the 

northern Adriatic Sea periodically since the end of the 19
th

 century, but in the recent decades 

they have increased in intensity, frequency and extension (Crema et al., 1991).  

Three different types of hypoxia can be differentiated based on their occurrence and severity. 

In less than 20% of the hypoxic events worldwide, oxygen depletion is episodic, i.e. occurring 

less than once per year. Episodic oxygen deficiency is a first sign that a system has reached a 

critical point of eutrophication. Periodic oxygen depletion has been reported in around 25 % 

of the hypoxic/anoxic environments. In these cases, low DO conditions occur more than once 

per year, but they last a shorter period, from days to weeks. The most general form of 

eutrophication-induced hypoxia, responsible for about half the known dead zones, usually 

occurs once per year. This can begin in the summer after spring blooms and ends in autumn. 

During this part of the year the water temperature is the highest and the stratification the 

strongest (Diaz & Rosenberg, 2008). In the 1970s and 1980s in the northern Adriatic Sea, this 

seasonal oxygen deficiency was reported almost yearly, with mortality of benthic populations 

in various parts of the Gulf of Trieste in 1974, 1983 and 1988 (Stachowitsch, 1991). In 1983, 

during the most extensive event, more than 90% of macroepifauna biomass was lost within 

only four days (Stachowitsch, 1984). The mortality events are often coupled with large 

amounts of marine snow (small amorphous aggregates with a size ranging from a few 

millimeters to several meters, Danovaro et al., 2009) in the water column. Water column 

stratification under summer conditions supports the assemblage of small-sized aggregates into 

macroflocs, stringers and clouds in the water column along with creamy or gelatinous surface 
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layers, which are collectively known as marine mucilage (Stachowitsch et al., 1990; Precali et 

al., 2005). A mucilage event was reported in the Adriatic Sea for the first time in 1729, and in 

the last three decades its frequency appears to be increasing. Mucus is released by many 

marine organisms, whereby the massive marine snow amounts primarily involve 

photosynthetic extracellular release (PER) by phytoplankton under stress (Herndl & Peduzzi, 

1988; Degobbis et al., 1995). As stratification decreases, marine snow settles on the bottom, 

covering the sediment, sometimes episodically. The deposition of the aggregates on the sea 

floor and higher oxygen consumption due to the decomposition further deplete the DO and 

hypoxic/anoxic conditions can occur (Stachowitsch et al., 1990). Beyond the indirect effect of 

oxygen deficiency, the settled mucilaginous material can also directly suffocate the benthic 

fauna.  

Another factor contributing to the rapid community destruction is the nature of the community 

occupying the area itself. The soft-bottom of the northern Adriatic Sea harbors well-

developed benthic communities (Fedra, 1978). One of these is the Ophiothrix-Reniera-

Microcosmus (O-R-M) community, inhabiting large parts of the Gulf of Trieste. The term 

stems from the biomass dominants of this macroepifaunal assemblage: the brittle star 

Ophiothrix quinquemaculata, the sponges Reinera spp. and the ascidians Microcosmus spp. 

(Fedra et al., 1976). It is characterized by high biomass aggregations (370 g average wet 

weight/m
2
) of vagile and sessile invertebrates, mainly filter- and suspension-feeding 

organisms which are typically found in the form of so-called multi-species clumps or 

bioherms. These consists of biogenic structures (shells of bivalves and gastropods), which 

serve as a basis for sessile organisms like ascidians and sponges. These, in turn, present a 

substrate for mobile species. High biomass corresponds with high respiration, and the 

aggregation into multi-species clumps may accelerate mortalities even in more resistant taxa 

in a positive feedback loop of decay (Stachowitsch, 1986).  

This community is capable of removing great amounts of pelagic biomass from the water 

column due to its high filtering efficiency and capacity under normal conditions (Ölscher & 

Fedra, 1977). Thus, it is considered to have a stabilizing function in the ecosystem (Ott & 

Fedra, 1977), and such communities are considered to be a natural eutrophication control 

(Officer et al., 1982). However, repeated disadvantageous conditions, such as oxygen 

deficiencies coupled with massive marine snow development, can overwhelm this stabilizing 

capacity. The result may be various degrees of degradation of community structure or 

defaunation of benthic populations (Stachowitsch, 1984). 
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The responses of the benthic community to oxygen depletion events are complex. Microbes, 

foraminiferans and metazoan meiofauna sustain high biomass during low DO events, unlike 

other groups. Bacteria aggregate at the sediment surface and are the only group capable of 

sustaining high abundance and diversity under such conditions. Meiofauna migrates upward 

within the sediment, as does the macroinfauna (Levin et al., 2009). Epifauna species initially 

show severe signs of stress such as attempting to reach more oxygenated water layers. This 

leads to aggregations on elevated sites (taller sessile epifauna or even vagile species) or 

upward body extension (less mobile species). Beyond the direct lethal effects of low DO 

concentration and the presence of H2S, several indirect causes, such as increased 

susceptibility to predators, can cause mortality (Riedel et al., 2008a). After the onset of the 

oxygen depletion-induced behavioral modifications, the deterioration of the community 

proceeds very rapidly (Stachowitsch, 1992; Stachowitsch & Fuchs 1995).  

This quick course of ecosystem collapse, and the difficulty to predict the onset/extent of such 

events, hinders the full documentation and investigation in the field. To solve this problem, an 

underwater device (EAGU – Experimental Anoxia Generating Unit) was developed by 

Stachowitsch et al. (2007). This chamber, equipped with camera, flashes and a sensor array, 

induces and fully documents small-scale experimental anoxia in situ. It provides insight into 

the course and effect of hypoxia/anoxia. The combination of time-lapse photo-documentation 

and the recording of physico-chemical data allows behavioral reactions to be correlated with 

DO and H2S concentrations. 

The present study focuses on the full range of complex processes within a selected EAGU 

deployment and includes interactions, sublethal behavior changes and mortality sequences 

within the ORM community (macroepi- and infauna). The behaviors and mortalities are 

correlated to specific DO thresholds proposed by Diaz and Rosenberg (1995). This work will 

help to compile a generally valid catalogue of reactions at both the species and community 

levels, and a list of sensitive and tolerant species. Combined with further experiments, it will 

ultimately help to better determine the status of benthic ecosystems exposed to oxygen 

depletion here and elsewhere. 
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2. Material and Methods 

 

2.1 Study site 

 

The study site is located on soft-bottom (poorly sorted silty sand) in 24m depth in the Gulf of 

Trieste, Northern Adriatic Sea (45° 32´ 55.68´´N, 13° 33´ 1.89´´ E) (Fig. 3). Between 2005 

and 2006, a total of 13 experiments using the EAGU approach were conducted. The present 

thesis evaluates experiment Nr. 11. That deployment took place from 5-10 October.  

Macroepifauna communities are widely distributed in the Northern Adriatic, largely 

aggregated in so-called multi-species clumps or bioherms: small hard substrates (e.g. bivalve 

shells) provide the base for epigrowth of sessile suspension-feeders (mostly sponges, 

ascidians, anemones and bivalves), which in turn save as a substrate for additional mobile and 

hemi-sessile organisms (mainly brittle stars and crustaceans). The most widespread 

community, found also at the study site, is the so-called O-R-M-community, based on the 

three dominating genera, the brittle star Ophiothrix quinquemaculata, the sponge Reniera spp. 

and the ascidian Microcosmus spp. 

 

 

 

Fig. 3: Study site located about 2 km off coast of Piran near the oceanographic buoy of the Marine 

Biology Station Piran, Slovenia (Northern Adriatic Sea) (map taken from Haselmair, 2008). 
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2.2 Technical set-up 

 

We used a specially designed underwater-device, the so-called EAGU (Experimental Anoxia 

Generating Unit, Fig. 4) to document the behavioral responses and mortality sequences of 

macrobenthic assemblages to artificially induced small-scale anoxia on the seafloor.  

The system consists of two interchangeable bases, an open-sided aluminum frame and a 

plexiglass chamber (both 50x50x50cm). A separate lid (51x70cm) houses the time-lapse 

camera, two flashes, two main batteries, the datalogger and the sensor array.  

 The digital camera (EOS 30D, EFS 10-22 mm, f/3.5-4.5 USM zoom lens, TC-80N3 

Timer Remote Controller; all Canon®), located in a carbon fibre underwater housing 

(Bruder®), was programmed to take images in 6-min intervals.  This rate is a 

compromise between available energy supply, desired experiment length, and flash 

card capacity (Stachowitsch et al., 2007). Both the camera and the flashes (“midi 

analog”, series 11897; Subtronic®) are powered by 9Ah Panasonic external battery 

packs (Werner light power Unterwassertechnik®).  

 Oxygen (OX-100, outside tip Ø 90-110μmol l
-1

) and hydrogen sulfide (H2S-50, 

outside tip Ø 40-60μmol l
-1

) sensors are both Clark-type microsensors (sensors and 

PA3000UD datalogger: Unisense®), and are inserted through O-ring equipped sensor 

ports in the corners of the lid. To detect a potential oxygen gradient, the tips of the two 

oxygen sensors were positioned 2 cm (Ox1) and 20 cm (Ox2) above the sediment; the 

H2S sensor was mounted in 2 cm height. Sensor data were logged in 1-min intervals. 

Oxygen microelectrodes were calibrated in fully oxygenated seawater and in seawater 

deoxygenated with sodium hydroxide. The H2S microelectrode was calibrated in 

seawater and in a standard pH buffer, reduced with a stock solution of total sulfide (for 

more information see Unisense instruction manual). Temperature and pH in the 

plexiglass chamber were measured once a day for ca. 5 min separately by a SCUBA 

diver who inserted the sensor (TA 197-pH) through an opening in the chamber wall 

(closed with a plastic stopper during regular operation) (datalogger: 197i; all WTW®). 
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Fig. 4: Experimental Anoxia Generating Unit (EAGU): the instrument lid is positioned on top of the 

plexiglass chamber. Here, one sensor (bottom center) is connected to the datalogger and inserted 

through a sensor port in the lid. ch: camera housing, dl: datalogger, eb: external battery, fl: flashes, 

mb: metal brackets for lifting and handling lid, os: oxygen sensor, pc: plexiglass chamber, sp: sensor 

port. Photo: Gregor Eder. 

 

 

2.3 Experimental procedure 

 

The experiment consists of two phases: in a first step, the aluminum frame with the lid is 

positioned over a macrobenthic assemblage for ca. 1 day (“open” configuration). This set-up 

allows full water exchange and does not change the water currents. Here, the animal behavior 

under normoxic conditions is documented. In a second step, the frame is exchanged for the 

plexiglass chamber (“closed” configuration) and repositioned over the same assemblage for 

another 2-3 days. The device (pushed approximately 2 cm into the sediment) seals the water 

in the chamber off from the surrounding environment, so that the gradual oxygen reduction 

reflects the natural respiration rates of enclosed organisms. In this phase, the behavioral 

responses to decreasing oxygen and increasing H2S concentrations are documented.  

After the experiment, all organisms (living and dead) were collected by hand, transported to 

the laboratory, and preserved in a 4% formaldehyde:seawater solution. 
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2.4 Data analyses 

 

Experiment Nr. 11 yielded a total of 1193 images. The overall documentation time was ca. 

120 h (23.7 h open, 95.6 h closed configuration). The behavior of each individual was 

analyzed image by image and recorded on Excel data sheets containing numerous categories 

describing behavior patterns in hypoxia and anoxia (see below and Table 1). The images were 

further processed into time-lapse sequences using the program Adobe Premier 6.5 (film 

material available at http://www.marine-hypoxia.com). The behavioral analyses of bioherm-

associated crustaceans and hermit crabs are the topic of two other master theses, and these 

groups/organisms are therefore excluded from this study. 

 

2.4.1 Behavioral analysis 

Fifteen species (epi- and infauna) were selected for behavioral analysis based on the following 

criteria: visibility in situ to the camera, wide distribution in the Adriatic Sea and high diversity 

in taxonomic groups and ecological categories (mobility, feeding types; see Riedel et al., 

2008).  

All individuals of a species were evaluated. Ophiothrix quinquemaculata is an exception: due 

to the brittle star’s high abundance and the difficulty in differentiating single individuals, only 

4 conspicuous specimens were analyzed. 

Generally valid categories evaluated included visibility (exposure, i.e. not hidden under/in a 

bioherm or in the sediment), body movements, locomotion, interactions and mortality. 

Species-specific categories included arm tipping (brittle stars), color change (anemones), 

spine movements (sea urchins) or body contractions (ascidians and anemones). Some 

behaviors in certain species were further subdivided into different states: locomotion of 

gastropods, for example, was divided into minor/major and horizontal/vertical displacement, 

or the crown habitus in the sea cucumber and the anemones into closed/half open/open states 

(Table 1). Images were analyzed as long as the animal was visible and clearly identifiable on 

the photo. When accurate image analysis was no longer possible due to poor overall visibility 

(e.g. darkened sediment), viewing the time-lapse movie helped to determine that certain 

organisms (e.g., anemones) were still alive. 

Mortality was defined as the last locomotion or body movement observed, in some species 

plus two hours to account for a potential moribund phase (Table 2). 
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Table 1: Behavioral patterns evaluated. Life habit: epi=epifauna, in=infauna. Feeding: 

susp=suspension feeder, carn=carnivore, omni=omnivore, depo=deposit feeder. Behavior 

subdivisions: 
1
original, trans, final color; 

2
open, half open, closed tentacle crown; 

3
retraction into the 

sediment, constrictions/inflations of column diameter; 4
minor, major extension from the sediment; 

5
minor horizontal-, major horizontal locomotion, turns, minor upward /downward-, major 

upward/downward locomotion; 
6
retracted, extended foot; 

7
closed, half open, normal, widely gaping 

valves; 
8
constant, opening gape, closing gape; 

9
normal, swollen, retracted mantle tissue; 

10
minor, 

major locomotion; 
11

horizontal locomotion, squirming; 
12

up-, side-, downward orientated tentacle 

crown; 
13

minor, major body extension; 
14

front end upright, back end upright; 
15

horizontal, upward, 

downward locomotion, 
16

lateral arm-posture, arm-tipping, clinging to clumps.  

 

Class/Genus N Life habit Mobility Feeding Species-specific behaviors 

Anthozoa      

Cereus pedunculatus 4 epi sessile susp color1, crown habitus2, body contraction3 

and rotation, pharynx protrusion, 

extension4 

Gastropoda      

Hexaplex  trunculus 6 epi mobile carn locomotion5, foot habitus6 

Fusinus sp. 1 epi mobile carn locomotion5, foot habitus6 

Bivalvia       

Chlamys varia 1 epi hemi susp valve gape7, valve gape process8, mantle 

state9 

Corbula gibba 12 in mobile susp locomotion10 

Abra alba 2 in mobile depo locomotion10, siphon visible 

Polychaeta      

Serpula vermicularis 2 epi sessile susp crown habitus2 

Anopla (Nemertini)      

Tubulanus annulatus 1 epi mobile omni locomotion11 

Holothuroidea      

Ocnus planci 1 epi hemi susp crown habitus2 and orientation12, body 

extension13 and orientation14, 

decomposition 

Echinoidea 
     

Schizaster 

canaliferus 

4 in mobile depo locomotion, spine movements 

Ophiuroidea 
     

Ophiothrix 

quinquemaculata 

4 epi mobile susp locomotion15, arm position16 

Ascidiacea 
     

Microcosmus 

sulcatus 

3 epi sessile susp siphon habitus2, body contraction, 

drooping 

Phallusia mammilata 1 epi sessile susp siphon habitus2, body contraction, 

drooping 
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Table 2: Criteria and time of death (omitted are surviving taxa and those individuals out of view at the 

end of the experiment)  

 

Life habit/Genus N Final activity T of death (h) DO (ml l-1) H2S (μmol l-1) 

Sessile epifauna           

Microcosmus 3 drooping x/x/118 0 110 

Phallusia 1 drooping 80 0 261 

Serpula 2 crown retraction + 2h 84/84 0 250 

Hemi-sessile epifauna      

Chlamys 1 sustained wide gape + 2h 75 0 257 

Ocnus 1 body movement 90 0 244 

Mobile epifauna      

Ophiothrix 4 arm movement 47/47/48/49 0 0.01/0.2/0.2 

Mobile infauna      

Schizaster 4 locomotion + 2h 58/67/75/77 0 38/40/257/255 

 

 

2.4.2 Statistical analysis 

The behavioral patterns analyzed were related to the values of the lower oxygen sensor (Ox1). 

The data were assigned to five dissolved oxygen (DO) categories: normoxia (>2.0 ml O2 l
-1

), 

weak hypoxia (≤2.0- 1.01 ml O2 l
-1

), moderate (1.0-0.51 ml O2 l
-1

) and severe hypoxia  

(0.5- 0.01 ml O2 l
-1

) and anoxia. The nonparametric Kruskal-Wallis test was used to determine 

whether oxygen concentrations significantly changed behavior. To compare the behavioral 

responses between the oxygen categories, the Mann-Whitney-Wilcoxon test was chosen. 

Statistical analyses were performed using the software package SPSS 17.0.  
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3. Results 

 

3.1 Sensor data 

 

During the open configuration, the DO concentration of the higher oxygen sensor (Ox2) 

ranged between 2.5 and 3.2 ml l
-1

 and the lower (Ox1) between 2.6 to 3.9 ml l
-1

. The two 

oxygen curves were parallel most of the time, but Ox2 followed a slightly increasing trend, 

and, thus, it intersected the Ox1 curve once at h 7 (Fig. 5). Immediately after switching to the 

closed configuration (red arrow, Fig. 5), DO values of both sensors rapidly decreased. The 

difference between the curves became smaller until both showed the same value (15 h after 

EAGU closure). Ox1 reached weak hypoxia within ~7 h. Moderate hypoxia occurred after 

~10 h, severe hypoxia ~13 h, and anoxia ~19 h after chamber deployment. Once anoxia 

occurred, hydrogen sulfide (H2S) increased, peaking at hour 78 (304 μmol l
-1

). Thereafter, 

H2S concentrations strongly fluctuated and decreased until the end of the deployment to 105 

μmol l
-1

 after 5 days. 

 

 

 

 

Fig. 5: DO and H2S values (yellow) during the experiment 11 (5-10 October 2006). Ox1 (blue): lower 

oxygen sensor, Ox2 (black): higher oxygen sensor. Oxygen categories: n: normoxia, wh: weak 

hypoxia, mh: moderate hypoxia, sh: severe hypoxia, a: anoxia. Red arrow: switch to closed 

configuration. 

 

 

Bottom water temperature during the open and closed configuration averaged 21.3°C and 

H2S 

Ox1 

Ox2 

wh 

mh 

sh 

n 

a 
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 ranged between 20.9 and 21.7°C. The pH was 8.2 during normoxia and dropped to 7.5 at the 

end of the experiment. The salinity was 38‰. 

 

3.2 Open versus closed configuration  

 

During the open configuration the visibility was poor due to turbid water, suspended particles 

and marine snow. The color of the sediment inside the frame had the same color as the 

sediment outside (Fig. 6a). The benthic organisms showed their normal behavior: the brittle 

star Ophiothrix quinquemaculata, for example, was positioned on sponges and ascidians in its 

typical suspension-feeding position, i.e. arms held upright into the water. The tentacle crown 

of the sea anemone Cereus pedunculatus was normally expanded on the sediment surface and 

the hermit crabs occupied gastropod shells. Infaunal species, such as the irregular sea urchin 

Schizaster canaliferus, were not visible (i.e. did not emerge from the sediment). No atypical 

behavioral patterns were observed. Mobile animals (e.g. hermit crabs, gastropods and fish) 

crossed over the frame without difficulties. Some organisms originally within the frame left 

the open configuration before the EAGU was closed, others entered the frame, and still others 

remained and were enclosed in the chamber. No mortalities were recorded in the open 

configuration.  

 

 
 

Fig. 6: (a) Open configuration: the aluminum frame is visible (DO 2.6 ml l
-1

). (b) Closed 

configuration: 12 hours after switch to chamber. The water rapidly becomes clear (DO 0.6 ml l
-1

).  

(c) End of the experiment: 96 hours after chamber deployment (anoxic, H2S ~107 μmol l
-1

). The 

sediment and many decaying organisms have darkened, the bottom water layer has become murkier. 

(a) (b) 

(c) 
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After switching to the closed configuration, the visibility markedly improved, as suspended 

particles trapped within the chamber rapidly settled (Fig. 6b). The behavioral patterns clearly 

changed: the organisms either visibly increased or decreased their normal activities or began 

to show atypical behaviors. Infaunal species (e.g. the bivalve Abra alba, the irregular sea 

urchin S. canaliferus) emerged from the sediment, the anemone C. pedunculatus extended 

from the sediment, and cryptic crabs emerged from hiding and aggregated on elevated 

substrates. Brittle stars were the first to die (early anoxia); the gastropod Hexaplex trunculus 

and the anemone C. pedunculatus were among the most tolerant (all specimens survived until 

the end of the experiment). Two predatory interactions were also observed: one C. 

pedunculatus made contact with, pulled in and consumed two brittle stars during anoxic 

conditions (for a detailed description see Riedel et al., 2008). The color of the sediment 

successively became darker and turned black ~50 h after switching to the closed chamber 

(H2S ~274 μmol l
-1

). Twenty-six hours later (20 h before the end of the experiment), the 

lowermost water layer became murky due to decaying organic matter (Fig. 6c). The wet 

weight of the total enclosed and collected fauna was 1042.71 g. Almost 80% of this biomass 

was represented by sponges and ascidians (506.8 g and 291.7 g, respectively). 
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3.3. Macrofauna responses 

 

 

Fig. 7: Image taken on day 4 of the deployment, 39 h after switch to closed configuration (anoxia, H2S 

~39 μmol l
-1

). Sea anemone Cereus pedunculatus extended from the sediment (cp), ribbon worm 

Tubulanus annulatus (ta), gastropods Fusinus sp.(f) and Hexaplex trunculus (ht), infaunal bivalve 

Abra alba (aa), epifaunal bivalve Chlamys varia (cv), and infaunal sea urchin Schizaster canaliferus 

(sc). 

 

 

3.3.1 Cereus pedunculatus (Pennant, 1777; Anthozoa: Sagartiidae) 

Two of the sea anemones were positioned in the sediment with the tentacle crown on the 

sediment surface, two were “integrated” into epifaunal aggregations (Fig. 7 “cp”). Six 

species-specific behaviors are presented here (see Table 1). Under normoxia the tentacle 

crown retained its normal color (Fig. 8a). Two of the anemones had a light brown color 

originally, the other two individuals were dark brown. Hypoxia, however, triggered a 

successive change from the original color to a transitional tentacle crown color (Fig. 8b): the 

light brown individuals became brighter and the dark brown anemones had a somewhat 

reddish color. At anoxia (39 h after chamber deployment, H2S ~36 μmol l
-1

) all individuals 

turned grey (Fig. 8c). 

cv 

cp 

ht 

sc ta 

f 

aa 
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Fig. 8: Color change of Cereus pedunculatus (4 individuals): (a) original, (b) transitional and (c) final 

color. Histograms show the number of observations of the selected behavior per hour, in relation to the 

dissolved oxygen curve (blue, values averaged per hour).  

 

 

During normoxia, the tentacle crowns were mostly (> 50%) open. At weak hypoxia this 

behavior increased significantly in all anemones from 59 to 86 % of observations (p<0.01, 

Appendix 1: Table 3), peaking at moderate hypoxia (100% in 140 observations). As oxygen 

values dropped below 0.5 ml l
-1

, crown closure gradually increased (Fig. 9a).  At h 94  

(H2S ~187 μmol l
-1

), however, the crowns of the two anemones living in the sediment opened 

again and stayed in this position until the end of the experiment. From h 111 on 

(H2S ~109 μmol l
-1

), the crowns of the other two individuals also opened somewhat and 

remained in this half-open state until the end of the recordings (data not shown).  

(a) 

(b) 

(c) 
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At the onset of hypoxia, the anemones started to slightly extend from the sediment surface. 

With decreasing oxygen concentrations these minor extensions markedly increased from 28 to 

55% (p<0.01, Appendix 1: Table 3), followed by major extensions where almost the whole 

body became visible (35% of observations at severe hypoxia (Fig. 9b). Once extended, the 

anemones also gradually began to rotate, peaking at severe hypoxia (14 % in 376 

observations, Fig. 9c).  

Fig. 9d shows an increase in pharynx protrusion at weak hypoxia, peaking at moderate 

hypoxia (23% in 140 observations), followed by a slight decrease and almost stopping at 

anoxia. 

Body contractions were subdivided into retractions into the sediment and constrictions or 

inflations of column diameter. Only few retractions were observed during the whole 

experiment, but the constrictions/inflations began  when oxygen values fell below 2 ml l
-1

. his 

atypical behavior significantly increased at moderate hypoxia (p<0.01, Appendix 1: Table 3), 

peaking at anoxia (44% in 2952 observations, Fig. 9e). At the end of the experiment (ca.  

h 105), all C. pedunculatus became rather immobile: they no longer extended from the 

sediment and constriction or inflation activity ceased. All four individuals survived.  
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Fig. 9: Changes in the behavior of Cereus pedunculatus (4 individuals) during the deployment: (a) 

open (blue error bars) and closed tentacle crown (green error bars); (b) minor (blue error bars) and 

major (green error bars) extension from the sediment; (c) body rotation; (d)  pharynx protrusion and 

(e) body contractions – retraction (blue error bars), inflation (green error bars). Diagrams show course 

of selected behaviors during five oxygen categories; N=the number of photographs evaluated per 

oxygen category. The proportions of behaviors per oxygen category do not necessarily total 100% 

because not all behavioral states are included. For details see text. 

 

 

3.3.2 Tubulanus annulatus (Montagu, 1804; Anopla (Nemertini): Tubulanidae) 

This strikingly colored (brownish red with white longitudinal stripes and rings) nemertean 

(Fig. 7 “ta”) first became visible at anoxia (h 60, H2S ~35 μmol l
-1

), emerging from under a 

multi-species clump. The worm then glided over the sediment surface for nearly 8 hours (Fig. 

10), mostly along the plexiglass wall, before it disappeared from view again (h 68,  

H2S ~43 μmol l
-1

). 
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Fig. 10: Horizontal locomotion of Tubulanus annulatus (1 individual). For description of diagram see 

figure legend of Fig. 8.  

 

 

3.3.3 Fusinus sp. (Gastropoda: Fasciolariidae) 

This gastropod, originally positioned on a multi-species clump located in the lower right 

corner of the chamber (Fig. 7 “f”), made only few horizontal and vertical movements 

throughout the experiment (Fig. 11a). Turns (=changes in direction but no large distances 

covered) dominated and peaked at moderate hypoxia (29% in 35 observations, Fig. 11b). 

Fusinus extended its foot strongly the first time at h 71 (anoxia, H2S ~102 μmol l
-1

). 

Thereafter, periodically for 11 hours, such foot extensions/retractions were observed (both 

10% in 94 observations). This continued even though oxygen concentrations briefly increased 

to severe hypoxia (Fig. 11c). At h 82, the gastropod disappeared from view, hidden under a 

bioherm. 
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Fig. 11: Behavioral changes of Fusinus sp. (1 individual) during the experiment: (a) horizontal 

locomotion, (b) turn, and (c) foot habitus: retracted (blue error bars) and extended (green error bars). 

For description of diagram see figure legend of Fig. 9. 

 

 

3.3.4 Hexaplex trunculus (Linnaeus, 1758; Gastropoda: Muricidae) 

Three out of 6 of H. trunculus evaluated here were initially burrowed shallowly into the soft 

sediment (Fig. 7 “ht”). During normoxia the two fully exposed Hexaplex and the third, 

juvenile individual moved only sporadically. Weak hypoxia elicited a clear change in 

locomotion and location: the burrowed individuals fully emerged and moved horizontally in 

different directions. Vertical locomotion to the chamber lid was observed in 3 individuals, 

peaking at moderate hypoxia (5% in 210 observations, Fig. 12a). Two H. trunculus fell from 

the lid at anoxia (h 57 and h 83; H2S ~33 and ~191 μmol l
-1

, respectively): one remained 

inactive on the sediment until the end of the experiment, the second retreated again to the top 

and fell down once again at h 107 (H2S ~143 μmol l
-1

). The third individual remained 

invisible on the lid until the end of the experiment. The other three Hexaplex that stayed on 
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the sediment were mostly immobile with the foot extended. The gastropods that fell from the 

lid also showed foot extension until the end of the experiment (Fig. 12b). All six individuals 

survived. 

 

 

 

Fig. 12: Behavioral change of Hexaplex trunculus (6 individuals) during the deployment: (a) vertical 

locomotion and (b) foot extension. For description of diagram see figure legend of Fig. 9. 

 

 

 

3.3.5 Abra alba (Wood W., 1802; Bivalvia: Semelidae) 

Both individuals of this infaunal bivalve first emerged from the sediment at severe hypoxia, 

32 h after chamber deployment (Fig. 7 “aa”). They then moved horizontally across the 

sediment (Fig. 13a) and started to stretch out the siphon strongly (p<0.01, 13% in 188 

observations, Appendix 1: Table 6) at severe hypoxia (Fig. 13b). Siphon extension ceased at  

h 72 (H2S ~33 μmol l
-1

) and the bivalves gradually became motionless. The individuals were 

not clearly identifiable from h 78 on due to poor overall visibility and, thus, it was not 

possible to determine the time of death. 
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Fig. 13: Behavioral change of Abra alba (2 individuals) during the experiment: (a) minor (blue error 

bars) and major (green error bars) locomotion and (b) siphon extension.  For description of diagram 

see figure legend of Fig. 9. 

 

 

 

3.3.6 Chlamys varia (Linnaeus, 1758; Bivalvia: Pectinidae) 

This bivalve was positioned on a multi-species clump consisting mainly of the sponge 

Reniera sp. and the ascidian Microcosmus sulcatus (Fig. 7 “cv”). Immediately after switching 

to the closed configuration, Chlamys swam a few cm, directly next to the plexiglass wall, by 

flapping its valves, and then moved back to its original position (still during normoxic 

conditions). No change in the mantle tissue was observed during the open configuration. In 

the closed configuration, however, the tissue began to swell already at normoxia (h 29). This 

behavior dramatically increased from 5% to 100% and remained on the 100% level during 

moderate hypoxia. At severe hypoxia the swollen tissue significantly decreased (p<0.01, 

Appendix 1: Table 7): this retraction significantly increased and remained until the end of the 

experiment (Fig. 14a). During normoxia, weak and moderate hypoxia, the bivalve usually 

showed an “open” (normal) gape, followed by a significant decrease at severe hypoxia and 

anoxia (68 and 35%, respectively). A closed shell was observed only during anoxia (for a total 

of 4 h), followed by a sustained wide gape (Fig. 14b), which was interpreted as mortality at  

h 75 (H2S ~274 μmol l
-1

, Table 2). 
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Figure 14: The behavioral change of Chlamys varia (1 individual) during the deployment: (a) swollen 

(blue error bars) and retracted (green error bars) mantle tissue. (b) Open (blue error bars) and widely 

open (green error bars) gap. For description of diagram see figure legend of Fig. 9. 

 

 

3.3.7 Corbula gibba (Olivi, 1792; Bivalvia: Corbulidae) 

Twelve individuals emerged from the sediment (Fig. 16 “cg”). The first “group” of these 

bivalves (3 individuals) became visible already during the open configuration (between h 11 

and 15), the second (5 individuals) throughout weak, moderate and severe hypoxia (between h 

32 and h 38) and the two last “groups” (2 individuals in both cases) at anoxia (at h 51,  

H2S ~4 μmol l
-1

, and between h 74 and h 78, H2S ~275-299 μmol l
-1

, respectively). The first 

sign of emerging was the bulging of the sediment above the bivalves. Once fully exposed on 

the sediment, individuals moved across the sediment surface, mostly less than 10 cm (for 

periods ranging between 5 and 9 h; Fig. 15). After that period, six individuals remained 

motionless on the sediment, four re-burrowed into the sediment and two disappeared under 

the multispecies clumps. All individuals survived based on the observations of the collected 

animals after the experiment. 
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Fig. 15: Horizontal locomotion of Corbula gibba (12 individuals) on the sediment during the 

experiment. For description of diagram see figure legend of Fig. 8. 

 

 

 

 

Fig. 16: Image taken on day 2 of the deployment, 12 h after chamber deployment (DO 0.60 ml l
-1

, no 

H2S). Infaunal bivalve Corbula gibba (cg), polychaete Serpula vermicularis (sv), sea cucumber Ocnus 

planci (op), brittle star Ophiothrix  quinquemaculata (oq), ascidians Microcosmus sulcatus (ms) and  

Phallusia mammilata (pm). Note that brittle stars are no longer in their susupension-feeding position 

and that a crab (Pilumnus hirtellus) has crawled on top of P. mammilata. 

 

 

 

 

 

 

cg 

sv 

ms 

pm 

op 

oq 



 26 

 

3.3.8 Serpula vermicularis (Linnaeus, 1776; Polychaeta: Serpulidae) 

One tube of this serpulid polychaete worm (Fig. 16 “sv”) was attached to a multi-species 

clump consisting of the sponge Reniera sp. and the ascidian Microcosumus sulcatus. The 

second was attached to a gastropod shell inhabited by a hermit crab (and was thus moved 

about within the chamber). In the early phase of the experiment, both tentacle crowns were 

fully extended, but they retracted into the tube already during the open configuration (h 18). 

The crowns remained retracted 100% of the time during weak hypoxia and occasionally 

extended at moderate and severe hypoxia (11 and 14 %, respectively). At anoxia, this 

behavior significantly increased (p<0.01, Appendix 1: Table 8) and both crowns remained 

visible even after the animals became moribund and died (h 84, H2S ~250 μmol l
-1

, Fig. 17). 

 

 

Fig. 17: Behavioral change of Serpula vermicularis during deployment: tentacle crown visible (blue 

error bars) and not visible (green error bars).  For description of diagram see figure legend of Fig. 9. 

 

 

3.3.9 Schizaster canaliferus (de Lamarck, 1816; Echinoidea: Schizasteridae) 

Four infaunal sea urchins emerged (Fig. 7 “sc”). Sediment bulging was the first sign of 

emergence and was recorded for all four animals at moderate hypoxia. Every bulging activity 

ended in emergence. This bulging took between 4 and 18 h (19% of the time during moderate 

hypoxia, 29% during severe hypoxia and 7% during anoxia, Fig. 18a). The last specimen fully 

emerged at severe hypoxia. Once exposed on the sediment, the sea urchins moved 

horizontally across the sediment (Fig. 18b).  One individual covered a distance of ca. 40 cm, 

the other three animals, however, moved less than 10 cm. The last locomotion was recorded at 

h 75 (H2S ~257 μmol l
-1

), followed by spine movement (Fig. 18c) until mortality (Table 2). 
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Fig. 18: Behavioral change of Schizaster canaliferus during the experiment: (a) sediment bulging, (b) 

locomotion on the sediment, (c) spine movement. For description of diagram see figure legend of  

Fig. 9. 

 

 

3.3.10 Ocnus planci (Brandt, 1835; Holothuroidea: Cucumariidae) 

From normoxia until moderate hypoxia, the single sea cucumber individual was positioned on 

a multi-species clump (Fig. 16 “op”) in an upward-oriented body position. Then, at severe 

hypoxia and early anoxia, the posterior end of the body sporadically pointed upwards (13% of 

738 observations), before the animal fell onto the sediment (anoxia, H2S ~16 μmol l
-1

, Fig. 

19a). During normoxia the mouth was also directed upwards, but it increasingly turned 

sideward, peaking at moderate hypoxia (94% in 35 observations). In 3% of observations 

during severe hypoxia and 2% during anoxia, the mouth turned toward the sediment  

(Fig. 19b). O. planci also began to actively elongate at weak hypoxia (h 33, DO 1.04 ml l
-1

): 

minor elongation significantly increased until moderate hypoxia (p<0.01, Appendix 1: Table 

 (a) sediment bulging  (b) locomotion 

 (c) spine movement 

50 

40 

30 

20 

10 

0 

50 

40 

30 

20 

10 

0 

50 

40 

30 

20 

10 

0 



 28 

 

10), followed by major elongation (36 and 74% at severe hypoxia and anoxia, respectively, 

Fig. 19c). 

During normoxia, weak and moderate hypoxia, the crown was never completely open; the 

individual opened its crown at h 64 (anoxia, H2S ~ 38 μmol l
-1

) for the first time and remained 

in this state until the end of the experiment (Fig. 19d). At h 90 the last body movement was 

recorded, which was interpreted as mortality (H2S ~ 244 μmol l
-1

). Three hours later, gradual 

body inflation was observed. This was interpreted as a decomposition process.  

    

 

Fig. 19: Behavioral change of Ocnus planci during deployment: (a) anterior end (blue error bars) or 

posterior end upwardly orientated (green error bars), (b) upwards (blue error bars), to the side (green 

error bars) and downwards (red error bars) orientated mouth, (c) minor (blue error bars) and major 

(green error bars) body elongation and (d) closed (blue error bars) and open (green error bars) tentacle 

crown. For description of diagram see figure legend of Fig. 9. 
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3.3.11 Ophiothrix quinquemaculata (Delle Chiaje, 1829; Ophiuroidea: Ophiotrichidae) 

From ~40 brittle stars in the chamber (Fig. 16 “oq”), four individuals were evaluated. 

Initially, all O. quinquemaculata were mostly stationary on multi-species clumps in their 

normal suspension-feeding posture (i.e. arms were directed upwards or lateral, Fig. 20a, b). 

Weak hypoxia elicited a clear change in both locomotion and arm-posture: the brittle stars 

became more active, moved horizontally on the multi-species clumps (23% in 116 

observations), and upwards/lateral arm-posture gradually began to decrease.  

 

 

 

Fig. 20: Behavioral changes of Ophiothrix quinquemaculata during the experiment: (a) horizontal 

(blue error bars) and no locomotion (green error bars); (b) lateral arm posture, (c) arm-tipping and (d) 

cling to clumps. For description of diagram see figure legend of Fig. 9. 

 

 

Arm-tipping (i.e. the brittle stars began to stand on their arms and elevated their central disk) 

peaked at moderate hypoxia (21% of 140 observations, Fig. 20c); O. quinquemaculata 

gradually became motionless and finally clung moribund to their sponge substrate  

 (a) locomotion  (b) lateral arm-posture 
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(Fig. 20a, d). Two individuals fell onto the sediment from the multi-species clump 

immediately before death. All four brittle stars died at the onset of anoxia, between h 47 and 

49 (H2S 0.01 and 0.18 μmol l
-1

, respectively). These were the first mortalities in the 

experiment.  

 

3.3.12 Microcosmus sulcatus (Cocquebert, 1797; Ascidiacea: Pyuridea) 

Until severe hypoxia, the oral siphon of the three individuals (Fig. 16 “ms”) was mostly open, 

then siphon closure significantly increased from 14 %  at severe hypoxia to 43 % at anoxia 

(p<0.01, Appendix 1: Table 12; Fig. 21a). A completely open siphon was observed the last 

time at h 83 (H2S 191 μmol l
-1

); after that the opening was either closed or half open. Body 

contractions were observed throughout the experiment but slightly increased towards the end 

of the deployment, peaking at anoxia (13% in 2214 observations, Fig. 21b). One individual 

drooped between h 97 (H2S ~137 μmol l
-1

) and h 118 (H2S ~110 μmol l
-1

), which is 

interpreted as the time of death. The two other M. sulcatus survived. 

 

 

Fig. 21: Behavioral change of Microcosmus sulcatus during the experiment: (a) open (blue error bars) 

and closed (green error bars) siphon, (b) body contractions. For description of diagram see figure 

legend of Fig. 9. 

 

 

3.3.13 Phallusia mammilata (Cuvier, 1815; Ascidiacea: Ascidiidae) 

The change in siphon habitus of the single P. mammilata individual (Fig. 16 “pm”) paralleled 

that of M. sulcatus: in more than 72% of observations the aperture was open until severe 

hypoxia. At anoxia, closed openings dominated (56% in 738 observations, Fig. 22a). This 

ascidian also contracted its body throughout the experiment (Fig. 22b), but this activity 
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significantly increased at anoxia (p<0.01, Appendix 1: Table 13). At h 77  

(H2S ~255.27 μmol l
-1

) P. mammilata started to droop and died 2 hours later. 

 

 

Fig. 22: Behavioral change of  Phallusia mammilata during the experiment: (a) open (blue error bars) 

and closed (green error bars) siphon, (b) body contractions. For description of diagram see figure 

legend of Fig. 9. 

 

 

3.3.14 Unidentified sipunculan 

The one individual visible in the experiment emerged from hiding first at anoxia, at h 76  

(H2S ~244 μmol l
-1

). The worm moved across the sediment for one hour and disappeared from 

view (Fig 23, red column). 

 

 

Fig. 23: Visibility of the unidentified sipunculan (red column) and the unidentified worm (black 

columns). For description of diagram see figure legend of Fig. 8. 
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3.3.15 Unidentified worm  

One individual emerged at h 82 (H2S ~195 μmol l
-1

; Fig. 23, black columns). The worm 

mostly squirmed on the spot and shortly moved horizontally before it disappeared from view 

8 h later (h 90, H2S ~244 μmol l
-1

). 

 

3.4 Tolerance of evaluated species  

 

Oxygen depletion and increasing H2S concentrations killed many, but not all animals in this 

experiment. All mortalities occurred during anoxic conditions (Fig. 24). The brittle star 

Ophiothrix quinquemaculata was the most sensitive species in the experiment: it showed 

atypical arm-posture already 4 hours after chamber deployment, and was also the first to die 

(between h 47 and h 49, H2S <0.2 μmol l
-1

). Schizaster canaliferus individuals were the next 

in the mortality sequence: sediment bulging was recorded from h 34 on (moderate hypoxia, 

DO ~0.9 ml l
-1

) and the infaunal sea urchins died between h 58 and h 77  

(H2S ~38-299 μmol l
-1

). Mortality of Chlamys varia was observed also around this time, at  

h 75 (H2S ~257μmol l
-1

), but the first response to the oxygen depletion, the swollen mantle 

tissue, was recorded earlier, already at normoxia, at h 29. Phallusia mammilata died at h 80 

(H2S ~261 μmol l
-1

), the two Serpula vermicularis individuals at h 84 (H2S ~250 μmol l
-1

) and 

Ocnus planci at h 90 (H2S ~244 μmol l
-1

). The last observed mortality occurred at h 118, at a 

H2S value of ~110 μmol l
-1

, i.e. one Microcosmus sulcatus. The other two M. sulcatus 

survived until the end of the experiment, as did all individuals of Corbula gibba, Cereus 

pedunculatus and Hexaplex trunculus. These organisms survived 15.8 h of hypoxia, followed 

by 73.8 h of anoxia and H2S concentrations of ~304 μl l
-1

 (the highest value during the 

experiment). However, the resistant species also showed atypical behaviors early on: the first 

three individuals of C. gibba emerged already during normoxia, C. pedunculatus changed its 

color from h 31 on (DO ~1.7 ml l
-1

) and began to extend its body. As a first response to the 

dropping oxygen values, H. trunculus moved up on the plexiglass to the lid. This behavior 

was observed the first time already 3 h after chamber deployment. In Fusinus sp., Tubulanus 

annulatus, Abra alba, the sipunculan and the unidentified worm it was not possible to 

determine the time of death because the individuals disappeared from the view before the end 

of the experiment. 
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Fig. 24: Sequence of mortality during the experiment. Blue line: DO concentration, yellow line: H2S 

concentration. 
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4. Discussion 

 

Oxygen depletion is probably one of the most widespread deleterious effects induced by 

humans in marine ecosystems. More than any other impact, it causes extensive mortalities of 

benthic macrofauna. Over the past decades the number of coastal areas affected by hypoxia 

has increased rapidly, but our knowledge about the exact behavioral responses and tolerance 

of macroepi- and infauna to oxygen deficiency is still insufficient. The benthic community 

investigated in the present study plays a crucial role in the ecosystem; the high loss of 

biomass and the loss of this ecosystem function (Ott, 1992) during oxygen crises can lead to 

long-term ecosystem shifts (Gray et al., 2002). This makes it particularly important to 

understand the phases of its deterioration process in detail. The experimental approach of the 

EAGU provided results on the sequence of in situ reactions to hypoxia and anoxia of the  

O-R-M community in the Gulf of Trieste. Beyond the definition of behavioral responses and 

their correlation to distinct oxygen concentrations, mortality times and sequences of the 

investigated taxa were determined. 

 

4.1 Critical oxygen thresholds and behavioral reactions 

 

The basic responses to declining oxygen values and/or to increasing duration of anoxia and 

H2S were: (1) increase or decrease in normal activities, (2) initiation of atypical behaviors, (3) 

unexpected intraspecific interactions, (4) emergence of infauna, and (5) mortalities. The 

documented behaviors and mortalities of the selected species were correlated to five oxygen 

categories: normoxia (>2.0 ml O2 l
-1

), weak hypoxia (≤2.0-1.01 ml O2 l
-1

), moderate  

(1.0-0.51 ml O2 l
-1

) and severe hypoxia (0.5-0.01 ml O2 l
-1

) and anoxia (according to Diaz and 

Rosenberg, 1995). 

The framework of the present study was an experiment in the series of EAGU deployments 

introduced in Stachowitsch et al. (2007) and initially described in Riedel et al. (2008b). Those 

earlier results confirmed that reactions are related to specific oxygen levels. The presence of 

an intermediate oxygen-peak in this experiment (Fig. 1 in Riedel et al., 2008b) showed that 

the behavior changes of the organisms are strongly linked to the changes in oxygen 

concentrations: around the re-oxygenation peak, the atypical behaviors were interrupted and 

normal activities resumed. Subsequently, a return of hypoxia again induced the above atypical 

reactions during the second oxygen decrease. 



 35 

 

4.1.1 Weak hypoxia 

In present study an oxygen concentration of 2 ml l
-1

 is considered as the onset of hypoxia, in 

reference to the categories defined in Diaz and Rosenberg (1995). According to Gray et al. 

(2002), however, it is likely that different taxa have different susceptibility to hypoxia, and 

one particular threshold may be, therefore, inadequate to describe a generally valid hypoxia 

level. Vaquer-Sunyer and Duarte (2008) concluded that reactions to hypoxia occur at a broad 

range of DO concentrations, including oxygen concentrations well above the generally 

applied threshold.  

My results confirm that some organisms already exhibit responses to oxygen depletion before 

reaching 2 ml l
-1

 DO. The brittle star Ophiothrix quinquemaculata already initiated  

arm-tipping behavior at ~3.7 ml l
-1

DO. A similar situation was observed in the infaunal 

bivalve Corbula gibba: 3 individuals emerged from the sediment at ~3.2 ml l
-1

DO. 

Interestingly, the epifaunal bivalve Chlamys varia, which might have been expected to react 

earlier than the burrowing species (Hagermann, 1998), showed a swollen mantle tissue at  

~2.2 ml l
-1

. Finally, even sessile species showed early reaction: for example the polychaete 

tubeworm Serpula vermicularis retracted its crown into the tube at ~2.6 ml l
-1

DO. 

The analysis of most other species, however, underlined the validity of the Diaz and 

Rosenberg threshold: these organisms showed atypical behaviors only below the level of  

2 ml l
-1 

DO, which we termed weak hypoxia. The sea anemone Cereus pedunculatus started to 

extend from the sediment, accompanied by pharynx protrusion, body rotation and 

contractions below ~1.6 ml l
-1

DO. The column and pharynx extension may increase the 

surface area to volume ratio and decrease diffusion distances within the tissues to enhance 

oxygen uptake (Sassaman & Magnum, 1972). Body rotations and constrictions may also 

improve oxygen delivery and consumption. This behavior pattern parallels that observed by 

Sagasti et al. (2001) in laboratory experiments for Diadumene leucolena, as well as that 

recorded for C. pedunculatus by Stachowitsch (1984) in the 1983 mass mortality in the Gulf 

of Trieste and by Riedel et al. (2008b) with the same experimental set-up . The sea cucumber 

Ocnus planci started to elongate its body as well, increasing its surface area to volume ratio. 

The large coelom in holuthurians also “provides a store of oxygen”, which could improve the 

chance of survival (Astall & Jones, 1991). Weak hypoxia triggered an upward movement of 3 

individuals of the gastropod Hexaplex trunculus on the plexiglass wall to the chamber lid. 

This response can be interpreted as an avoidance reaction and as an attempt to reach more 
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oxygenated waters, as in higher water layers higher DO values are likely. According to 

Hagerman (1998), vertical movement is one of the simplest strategies to avoid hypoxia. 

O. quinquemaculata showed an initially high locomotion activity at weak hypoxia and 

continued the arm-tipping already initiated at normoxia. This behavior was followed by 

clinging to the multi-species clumps. Standing on the tips of their arms with the disc elevated 

above the substrate is interpreted as an effort to reach more oxygenated water layers. Such 

atypical postures of brittle stars during oxygen depletion have been described by Dethlefsen 

and Westernhagen (1983) in the German Bight. Humped body positions of ophiuroids have 

been recorded by Rosenberg et al. (1991) and by Visisten & Visman (1997) in laboratory 

experiments and by Stachowitsch (1984) in the field as well.  

During the whole time of weak hypoxia, Chlamys varia showed a swollen mantle tissue, 

paralleling the experiment of Riedel et al. (2008b). This condition was not observed during 

normoxia and must therefore be interpreted as a stress reaction. It is likely that its surface 

increase is aimed at longer survival in a stressed environment.  

As mentioned above, the first group of 3 individuals of Corbula gibba emerged already at 

normoxic conditions (around 21:00 h). The second group of 5 individuals, however, only 

became visible one day later around the same time, during weak hypoxia. Emergence and 

reburial of infaunal bivalves is a frequent response to oxygen deficiency in Scandinavian 

basins with seasonal hypoxia (Jørgenssen, 1980). Nevertheless, since both intervals between 

the emergence of group 1 and 2, and  group 3 and 4 (both at ~13:00 h, at anoxic conditions) 

are around 24 h, it is likely that not only the oxygen concentrations but the diurnal rhythm 

also affects this organism. 

 

4.1.2 Moderate hypoxia 

Oxygen levels between 1.0 and 0.5 ml l
-1

 DO, termed moderate hypoxia here, triggered the 

emergence of the infaunal sea urchin Schizaster canaliferus. The animals did not become 

visible in this oxygen category, but the sediment above them began to bulge, indicating an 

effect of oxygen depletion at this level. Such a sediment bulging, and its duration, have never 

been reported previously. Emergence of burrowing species under hypoxic conditions was 

reported in numerous studies (Diaz & Rosenberg, 1995; Schinner et al., 1997; Wu, 2002; 

Levin et al., 2009). Laboratory observations (Nilsson and Rosenberg, 1994) revealed similar 

oxygen thresholds for Echinocardium cordatum to my observations of S. canaliferus; both 

species began to leave the sediment before DO values reached 0.7 ml l
-1

.  
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The polychaete Serpula vermicularis opened its crown at moderate hypoxia after a continuous 

closed phase during weak hypoxia. The contraction of the tentacles during oxygen depletion 

has the advantage of reducing oxygen consumption. Further decrease of the DO values, 

however, triggers the animals to extend the crown again, even at low oxygen concentrations 

(Theede, 1973). 

The gastropod Fusinus sp. was mostly stationary during the whole experiment. Enhanced 

movement was observed only during moderate hypoxia, which ceased as oxygen 

concentrations dropped below 0.5 ml l
-1

. 

 

4.1.3 Severe hypoxia and anoxia 

The different species of bivalves reacted differently to dropping oxygen concentrations. The 

infaunal bivalve Abra alba first left its natural position in the sediment as DO values dropped 

below 0.5 ml l
-1

. Immediately after emerging it moved across the sediment surface and its 

siphon became visible. After a 20 h-period of locomotion (less than 10 cm), the two 

specimens of A. alba remained immobile, with siphons stretched across the sediment surface. 

Some bivalves react to hypoxia by stretching their siphons up into the water column where 

more oxygen may be available. In their experiments, Rosenberg et al. (1991) observed, in  

A. alba, 3.5 times higher siphon activity in the water column than that of other individuals in 

normoxic conditions. In Limfjorden (Denmark) during hypoxic conditions, siphons of  

Mya arenaria extended up to 30 cm above the bottom have been recorded by Jørgenssen 

(1980). In the 1983 mass mortality event in the Gulf of Trieste, Cardium sp. showed same 

behavioral pattern (Stachowitsch, 1986). 

Chlamys varia modified its behavior by opening its valve gape widely, followed by a repeated 

closure. Already before this process the mantle tissue became retracted. In the 1983 mass 

mortality, Pecten jacobaeus and Cardium echinatum were found on the sediment with gaping 

valves (Stachowitsch, 1984). Hexaplex trunculus located on the sediment began to 

periodically extend/retract its foot, as did Fusinus sp. Of the three H. trunculus individuals 

located on the plexiglass lid, two fell down during anoxia and showed the same behavior 

pattern. This agrees with the field observations of Stachowitsch (1984), who found the 

gastropod Murex brandaris with its foot partially retracted, lying on the side. 

At severe hypoxia, Cereus pedunculatus elongated its body more intensely, accompanied by 

an enhanced rate of rotations and contractions. This body extension ceased more than three 

days after reaching anoxic conditions; the rate of the other activities also dropped. The 
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behavior and the tolerance of the two ascidians paralleled each other. Microcosmus sulcatus 

and Phallusia mammilata gradually closed their oral siphons during severe hypoxia.  

Fiala-Medioni (1979) described a decreased pumping and filtration in P. mammilata already 

as oxygen concentrations dropped below 3.85 ml l
-1

; this may explain the very low, constant 

rate of body contractions observed in ascidians throughout the experiment. Nevertheless, 

Riedel et al. (2008b) and Steckbauer (2009) reported enhanced contraction rates in ascidians 

as DO values began to fall; this, however, might also have been provoked by the aggregation 

of crustacean at the oral siphon. 

Other behaviors observed during severe hypoxia included the locomotion of Schizaster 

canaliferus on the sediment. The sea urchins moved around over a long period on the surface, 

followed by a moribund phase. One individual covered a distance of ca. 40 cm, the other three 

animals moved less, similar to the other burrowing species mentioned above.  

During severe hypoxia, more intense elongation in Ocnus planci was observed. The sea 

cucumber opened its crown entirely for the first time during severe hypoxia. An open crown 

with extended tentacles is the feeding position of these animals. In the mass mortality event in 

the Gulf of Trieste, the same species was reported to lie on the sediment with partially 

retracted tentacles (Stachowitsch, 1984). The atypical long closed phase of the crown in this 

case, however, cannot be attributed solely to oxygen depletion because it was already 

observed during the open configuration of the chamber. This indicates a reaction to some 

other condition.   

All Ophiothrix quinquemaculata individuals were found moribund, lying on the multi-species 

clumps or on the sediment surface, some of them overturned, at the onset of anoxia. The total 

absence of oxygen, coupled with high H2S concentrations, triggered the emergence of a 

sipunculan and an unidentified cryptic worm; however, both organisms were visible only 

briefly (1 and 8 h, respectively) before hiding again under the multi-species clump. 

 

 

 

 

 



 39 

 

4.2 Tolerance and mortality 

 

Mortality, particularly mass mortality, is the common response of benthic communities to 

aperiodic and seasonal hypoxia. The timescale of the events, however, can be very different 

due to the conditions at the different locations: from months in New York Bight (Swanson & 

Sindermann, 1979) and weeks in Limfjorden (Jørgenssen, 1980), to days in the Gulf of 

Trieste (Stachowitsch, 1984). In the latter case, the time interval between the first oxygen-

depletion-induced behavioral modifications and the onset of mortalities was very quick; after 

four days, less than 10 % of the macroepifauna biomass remained and most of the emerged 

infauna species began to die (Stachowitsch & Fuchs, 1995). 

In the present experiment, despite the short, four day-deployment of the closed configuration, 

almost all organisms died. This may partially reflect the rapid time-course of hypoxia: the 

closed chamber of the EAGU generated hypoxic conditions within ~7 h and anoxia within 

~19 h. The rapidity of oxygen decline can influence mortality thresholds (Haselmair et al., in 

press). The very high biomass of the enclosed organisms (1042.71 g) might play another key 

role here: high biomass corresponds with high respiration, and after the mortality the oxygen 

demand of the microbes is related to the amount of the decomposable dead material. The 

maximum H2S value reached during deployment was ~304 μl l
-1

. All mortalities occurred 

during anoxia.  

The first animals that died, and consequently the most sensitive in the present experiment, 

were Ophiothrix quinquemaculata. The mortality of all four evaluated individuals occurred at 

the early onset of anoxia, around one day after chamber deployment. O. quinquemaculata are 

known to be very sensitive to natural oxygen depletion events (Stachowitsch, 1984). In 

laboratory experiments, however, other ophiuroids showed higher tolerance (Visisten & 

Vismann, 1997): at such low H2S values where O. quinquemaculata died in present study  

(< 0.2 ml l
-1

), the individuals of the infaunal Amphiura filiformis and the epifaunal Ophiura 

albida had a median lethal time (LT50) of five and two days, respectively. This, beyond the 

species-specific differences, may also reflect the effect of different experiment setups. The 

tolerance of a species to specific thresholds may well differ in in situ versus laboratory 

experiments, where the organisms are typically deprived of normal substrates and hiding 

places etc. 

At about the same time the evaluated brittle stars died, two atypical predatory events were 

observed: two O. quinquemaculata were predated by a Cereus pedunculatus. This 
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interspecific interaction, induced by oxygen deficiency, was described for the first time by 

Riedel et al. (2008a). C. pedunculatus extended from the sediment, made contact with, pulled 

in and consumed the brittle stars. The duration of both predatory events was around two and a 

half hours. C. pedunculatus is one of the organisms that survived and remained active until 

the end of the experiment. Anemones are known to be particularly tolerant to anoxia 

(Jørgenssen, 1980; Stachowitsch, 1984; Sagasti et al., 2001) due to their ability to use 

anaerobic pathways and to depress their metabolism (Rutherford & Thuesen, 2005). The 

combination between the activity of the anemone and the moribund condition of the brittle 

stars increases the chance of predation. Accordingly, C. pedunculatus may also benefit from 

oxygen deficiency (Riedel et al., 2008a). This supports the statement of Breitburg et al. (1994) 

that predation interactions could be affected by hypoxia, and that of Sandberg (1994) that 

oxygen depletion can induce the exploitation of the most intolerant prey. 

Another echinoderm, Schizaster canaliferus, was the second species in the mortality 

sequence. The individuals died at the latest two days after chamber deployment. According to 

Gray et al. (2002), most echinoderms are intolerant of anoxia. In contrast, Vaquer-Sunyer and 

Duarte (2008) reported a high LT50 of echinoderms exposed to acute hypoxia, but this may be 

a consequence of summarizing different types of experiments, including laboratory setups. 

The mortality of Chlamys varia occurred also around this time. Bivalves are generally tolerant 

to hypoxia. Here, however, the mortality of other key bioherm components might impact the 

resistance of theoretically more tolerant species that use them as substrate, in this case  

C. varia (Riedel et al., 2008b). Sponges, for example, were among the most sensitive taxa in 

the 1983 mass mortality in the Gulf of Trieste (Stachowitsch, 1984), and their death clearly 

accelerates stress behavior in the associated fauna (Stachowitsch, 1991). 

In contrast, the infaunal bivalve Corbula gibba and the gastropod Hexaplex trunculus 

survived until the end of the experiment. Vaquer-Sunyer and Duarte (2008) described 

mollusks and cnidarians as the most resistant groups to hypoxia. Under disadvantageous 

conditions, most mollusks can close their shells. Bivalves additionally reduce their heart beat 

and feeding activity. This reduces their oxygen demand, enabling the mollusks survive the 

oxygen-depleted periods with anaerobic energy production (Theede et al, 1969;  

Theede, 1973). Mytilus edulis and infaunal bivalves have been reported to survive anoxia for 

one to two weeks (Jørgenssen, 1980).  The tolerance of H. trunculus to oxygen depletion is 

high also (field observations; Stachowitsch, 1984). The survival of the individuals in the 
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present experiment, however, can be attributed at least partially to the advantage they gained 

by reaching the plexiglass lid, where slightly higher DO values are likely. 

After the death of C. varia the successive mortalities were: Phallusia mammilata (h 80), 

Serpula vermicularis (both individuals at h 84) and Ocnus planci (h 90). Finally, one 

Microcosmus sulcatus individual died, almost four days after chamber deployment. The other 

two M. sulcatus survived until the end of the experiment.  

Ascidians and polychaetes are known to be resistant to oxygen crises. Stachowitsch (1986) 

found living Microcosmus, a designating species in the multi-species clumps, and polychaetes 

4 days after the onset of the community deterioration. Polychaetes, due to their ability to 

reduce their metabolic activity, showed long LT50 in several experiments when exposed to 

anoxia and H2S (e.g. Theede et al., 1969; Diaz & Rosenberg, 1995; 96 and 99 h respectively).  

The long survival of the sea cucumber Ocnus planci also indicates that these animals can 

reduce their metabolic requirements under stress (Astall & Jones, 1991). In the 1983 mass 

mortality, O. planci, as was the case in all other epifaunal sea cucumbers, were reported to be 

dead on the third day (Stachowitsch, 1986). This parallels the here-observed mortality 66 h 

after chamber deployment. 

 

Discussing the sublethal/lethal effects of anoxia calls for considering the potential 

simultaneous presence of sulfide as well. Once anoxia occurs, hydrogen sulfide increases due 

to the activity of sulfate-reducing bacteria. Several studies deal with the lower resistance of 

the benthic fauna to oxygen depletion when simultaneously exposed to H2S (e.g. Theede et 

al., 1969; Theede, 1973; Visisten & Vismann, 1997; Hagerman, 1998; Vaquer-Sunyer & 

Duarte, 2010). Sulfide is very toxic to most aerobic organisms due to the inhibition of 

cytochrome c oxidase in the respiratory chain (Visisten & Vismann 1997). Adaptive strategies 

to H2S exposure are excluding sulfide from entering the body, oxidizing it to harmless 

compounds or switching to anaerobic energy production. The anaerobic metabolism protects 

the animals both against high sulfide concentrations and to anoxic conditions (Hagerman, 

1998). These abilities are exhibited by several organisms analyzed in the present study. 

Nevertheless, according to Vaquer-Sunyer and Duarte (2010) the survival times in benthic 

communities under hypoxia are reduced by an average of 30% if they are exposed to H2S. 

Visisten & Vismann (1997) argue that sulfide is the environmental factor to which benthic 

animals have the lowest tolerance. This makes it a key factor for distribution and survival. 

This also means that the threats posed to marine biodiversity by hypoxia are more significant 
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than assumed based solely on the direct effects of low oxygen concentrations (Vaquer-Sunyer 

& Duarte, 2010). 

 

The increasing number of areas affected by hypoxia and anoxia is significantly changing the 

structure of the benthic communities. This, in turn, also affects benthic-pelagic coupling. The 

accompanying mortalities eliminate well-developed communities (Diaz & Rosenberg, 1995), 

like the O-R-M community investigated in present study. The function of such filter- and 

suspension-feeding communities as a natural eutrophication control (Officer et al., 1982) is 

lost. The recolonization process of this epifaunal assemblage in the northern Adriatic Sea was 

very slow: three years after the 1983 mass mortality event, less than 50% of the original 

biomass was present and it was dominated by atypical species, including serpulid polychaetes 

and rapidly growing ascidians (Stachowitsch, 1991). Even after ten years the community still 

had not recovered from this initial disturbance and had not attained its former status 

(Stachowitsch & Fuchs, 1995). This was compounded by additional small-scale anoxias and 

the effects of benthic fisheries in the Gulf of Trieste. The present characteristics of the O-R-M 

community (low biomass, atypical species composition) most likely hinder its role in 

maintaining a stabilizing function. This makes the overall ecosystem more vulnerable to 

further disturbances.   

Oxygen depletion events have emerged as major threats to coastal ecosystems globally. The 

present study, together with ongoing experiments, will help better understand and determine 

the status of benthic ecosystems exposed to hypoxia and, hopefully, better protect and 

conserve their biodiversity in the future. 
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6. Abstract 

 

Hypoxia and anoxia are key threats to modern shallow coastal ecosystems worldwide. The 

occurrence of oxygen depletion events has increased dramatically over recent decades both in 

frequency and intensity. In the Adriatic Sea, hypoxia may affect up to 3000 km² of the 

seafloor, leading to extensive mass mortalities of the benthos. The onset of these catastrophic 

events, however, is hard to predict. Deploying an experimental anoxia generating unit 

(EAGU) we created and fully documented a small-scale anoxia event (0.25 m
2
) in 24 m depth, 

in the northern Adriatic Sea. The instrument combines photo-documentation with detailed 

chemo-physical recording and allows the analysis of the behaviors and mortalities of benthic 

organisms before, during and after oxygen depletion. The responses to declining oxygen 

values and/or to increasing duration of anoxia were: (1) increase or decrease in normal 

activities, (2) initiation of atypical behaviors, (3) unexpected intraspecific interactions,  

(4) emergence of infauna, and (5) mortalities. The documented behaviors and mortalities of 

the selected species were correlated to five oxygen categories: normoxia (>2.0 ml O2 l
-1

), 

weak hypoxia (≤2.0-1.01 ml O2 l
-1

), moderate (1.0-0.51 ml O2 l
-1

) and severe hypoxia  

(0.5-0.01 ml O2 l
-1

) and anoxia. The results show considerable differences in tolerance to 

oxygen depletion from species to species. Weak hypoxia triggered increased locomotion in 

the brittle star Ophiothrix quinquemaculata and in the gastropod Hexaplex trunculus, which is 

interpreted as an escape behavior. Different species-specific sublethal responses were 

observed, such as body extension in the sea anemone Cereus pedunculatus, and in the sea 

cucumber Ocnus planci, or swollen mantle tissue in the epifaunal bivalve Chlamys varia. 

Moderate hypoxia elicited the emergence of the infaunal sea urchin Schizaster canaliferus. At 

severe hypoxia ascidians began to close their siphon and the activity of the ophiuroids ceased 

followed by a moribund phase. The first mortalities occurred at the onset of anoxia. The 

brittle stars, infaunal sea urchins and C. varia were among the first to die; C. pedunculatus,  

H. trunculus, the infaunal bivalve Corbula gibba survived. 

The present study, together with ongoing experiments, is an important step in compiling a 

generally valid catalogue of reactions and a list of sensitive and tolerant species. This 

approach will ultimately help to better determine the status of benthic ecosystems exposed to 

oxygen depletion here and elsewhere. 
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7. Zusammenfassung 

 

Hypoxie und Anoxie sind Schlüsselfaktoren, welche die heutigen flachen Küstenökosysteme 

weltweit bedrohen. Das Auftreten von Sauerstoffarmut hat in den letzten Jahrzehnten sowohl 

in der Häufigkeit als auch in der Intensität stark zugenommen. In der Adria können bis zu 

3000 km² des Meeresgrundes von Hypoxie betroffen sein, was zu ausgedehnten 

Massensterben des Benthos führt. Der Beginn solcher Katastrophen ist kaum vorherzusagen. 

Mit Hilfe eines Gerätes, das experimentell Anoxie erzeugt, dokumentierten wir in der 

nördlichen Adria in 24 m Tiefe eine Sauerstoffkrise in kleinem Maßstab (0.25 m²). Das Gerät 

kombiniert fotografische Dokumentation mit detaillierter chemo-physikalischer Messung und 

ermöglicht Verhaltens- und Mortalitätsanalysen der benthischen Organismen vor, während 

und nach der Sauerstoffarmut. Die Reaktionen auf den abnehmenden Sauerstoffgehalt 

und/oder die ansteigende Dauer der Anoxie waren: (1) vermehrte oder verminderte Aktivität, 

(2) Auftreten von atypischem Verhalten, (3) unerwartete intraspezifische Interaktionen,  

(4) Hervorkommen von Infauna und (5) Mortalität. Die Verhaltensweisen und Sterberaten der 

ausgewählten Arten wurden mit fünf Sauerstoffkategorien in Korrelation gesetzt: normale 

Sauerstoffkonzentration (>2.0 ml O2 l
-1

), leichte (≤2.0-1.01 ml O2 l
-1

), moderate  

(1.0-0.51 ml O2 l
-1

) und ernste Hypoxie (0.5-0.01 ml O2 l
-1

) und Anoxie. Die Ergebnisse 

zeigten große Unterschiede zwischen den ausgewählten Arten im Bezug auf die Hypoxie- 

bzw. Anoxietoleranz. Leichte Hypoxie, zum Beispiel, löste eine erhöhte Lokomotionsaktivität 

des Schlangensterns Ophiothrix quinquemaculata und des Gastropoden Hexaplex trunculus 

aus, was als Fluchtverhalten gedeutet wird. Zudem wurden verschiedene artspezifische 

subletale Reaktionen dokumentiert, wie etwa die Körperausdehnung bei der Seeanemone 

Cereus pedunculatus und der Seegurke Ocnus planci oder die Mantelschwellung bei der 

epifaunalen Bivalve Chlamys varia. Moderate Hypoxie forcierte das Hervorkommen des 

infaunalen Seeigels Schizaster canaliferus. Bei ernster Hypoxie begannen die Seescheiden 

ihre Siphonen zu schließen und die Aktivität der Schlangensterne sank deutlich, bis sie 

letztendlich starben. Bei Anoxie wurden die ersten Mortalitäten dokumentiert, unter anderem 

die Schlangensterne, infaunale Seeigel und C. varia; C. pedunculatus, H. trunculus und die 

infaunale Bivalve Corbula gibba überlebten. 

Die vorliegende Studie, in Kombination mit laufenden Experimenten, ist ein wichtiger Schritt, 

um einen allgemein gültigen Katalog von Verhaltensreaktionen und eine Liste von 
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empfindlichen und toleranten Arten erstellen zu können. Dieses Herangehen wird letztendlich 

dazu beitragen, den Status benthischer Ökosysteme, welche einer Sauerstoffarmut ausgesetzt 

sind, besser einzuschätzen.
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Appendix 1 

 

Table 3: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Cereus pedunculatus (results for not shown data are omitted). Numbers 1-5 

under „comparison” refer to oxygen categories: 1: normoxia; 2: weak hypoxia; 3: moderate hypoxia; 

4: severe hypoxia; 5: anoxia. Bold numbers indicate highly significant (P<0.01); underlined numbers 

indicate significant (P<0.05) differences. 
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Table 4: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Fusinus sp. (results for not shown data are omitted). For description of table 

see table legend of Table 4. 
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Table 5: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Hexaplex trunculus (results for not shown data are omitted). For description 

of table see table legend of Table 4. 
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Table 6: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Abra alba (results for not shown data are omitted). For description of table 

see table legend of Table 4. 
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Table 7: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Chlamys varia (results for not shown data are omitted). For description of 

table see table legend of Table 4. 
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Table 8: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Serpula vermicularis (results for not shown data are omitted). For 

description of table see table legend of Table 4. 
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Table 9: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Schizaster canaliferus (results for not shown data are omitted). For 

description of table see table legend of Table 4. 
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Table 10: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Ocnus planci (results for not shown data are omitted). For description of 

table see table legend of Table 4. 
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Table 11: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Ophiothrix quinquemaculata (results for not shown data are omitted). For 

description of table see table legend of Table 4. 
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Table 12: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Microcosmus sulcatus (results for not shown data are omitted). For 

description of table see table legend of Table 4. 
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Table 13: Results of Mann Whitney U Test for differences in the number of observed behaviors in the 

five oxygen categories in Phallusia mammilata (results for not shown data are omitted). For 

description of table see table legend of Table 4. 

 

 



  

 

 

 

 

 

 

 

 

 

  

 

 


